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Preface

Early stages in modern drug discovery often involve screening small molecules

for their effects on a selected protein target or a model of a biological pathway.

In the past 15 years, innovative technologies that enable rapid synthesis and

high-throughput screening of large libraries of compounds have been adopted

in almost all major pharmaceutical and biotech companies. As a result, there

has been a huge increase in the number of compounds available on a routine

basis to quickly screen for novel drug candidates against new targets/pathways.

In contrast, such technologies have rarely become available to the academic

research community, thus limiting its ability to conduct large-scale chemical

genetics or chemical genomics research. However, the landscape of publicly

available experimental data collection methods for chemoinformatics has

changed dramatically in very recent years. In 2005, the National Health

Institute (NIH) launched a Molecular Libraries Initiative (MLI) that included

the formation of the national Molecular Library Screening Centers Network

(MLSCN). MLSCN aims to offer to the research community the results of

testing about a million compounds against hundreds of biological targets.

Due to the broad application of high-throughput synthetic and analytical

chemical technologies, scientists who generate large volumes of data are no

longer equipped with adequate tools and approaches to manage and analyze

this data. At the same time, the revolutionary development of information and

communication technologies during the last few decades has changed drama-

tically our capabilities of collecting and accessing all sorts of molecular data

and has afforded the creation of huge heterogeneous data depositories. For

instance, the PubChem database has been developed by the NIH as the central

repository for chemical structure–activity data. PubChem currently contains

over 18 million chemical compound records, more than 700 bioassay results,

and links from chemicals to bioassay description, literature, references and

assay data for each entry. This data requires the development and application

of sophisticated mathematical and statistical tools for the discovery of new

patterns and structures in large chemical datasets and to achieve a deeper
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understanding of the relationship between chemical structure and physical and

biological properties. From the computational knowledge mining prospective,

the availability of large collections of chemical structures affords the oppor-

tunity for virtual screening of these collections in silico to identify and prioritize

promising candidate compounds for experimental validation.

Virtual screening has been typically considered an area of computer-aided

drug discovery where three-dimensional protein structures are used to discover

small molecules that fit into the active site (docking) and have high predicted

binding affinity (scoring). Traditional docking protocols and scoring functions

rely on explicitly defined three-dimensional coordinates and standard defini-

tions of atom types of both receptors and ligands. Albeit reasonably accurate in

many cases, conventional structure-based virtual screening approaches are

relatively computationally inefficient, which has precluded them from screening

really large compound collections. Significant progress has been achieved over

many years of research in developing many structure-based virtual screening

approaches. However, several recent publications comparing many available

scoring and docking approaches suggest that their accuracy still needs to be

improved considerably to afford their automated and successful application to

solve practical problems in drug design.3,4 Yet the availability of millions of

compounds in chemical databases and billions of compounds in synthetically

feasible virtual chemical libraries for virtual screening calls for the development

of approaches that are both fast and accurate in their ability to identify a small

number of viable computational hits that deserve subsequent experimental

investigation.

Here we discuss the use of chemoinformatics as a powerful virtual screening

methodology that presents both an alternative as well as complement to tradi-

tional structure-based docking and scoring approaches. The first published

definition of chem[o]informaticsi defined it as:

the use of information technology and management has become a critical part of

the drug discovery process. Chemoinformatics is the mixing of those information

resources to transform data into information and information into knowledge for

the intended purpose of making better decisions faster in the area of drug lead

identification and organization.

This definition introduced by an industrial pharmaceutical scientist was

obviously biased towards pharmaceutical applications. However, many years

of research in multiple areas of chemistry, computational chemistry, chemo-

metrics, molecular modeling, computer science and statistics, both before and

after that publication, provide clear evidence that modern chemoinformatics

appeals to almost any area of chemical research, including organic, physical,

analytical chemistry and, more recently, systems biology.5 In this sense, fol-

lowing an early definition by G. Paris6 we describe chemoinformatics broadly

iBoth cheminformatics and chemoinformatics are used in the literature interchangeably and both
spellings will be found in this book, depending on the personal preferences of the authors.
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as a scientific discipline encompassing the design, creation, organization,

management, retrieval, analysis, dissemination, visualization and use of che-

mical information.

We note that chemoinformatics is distinct from other computational molecular

modeling approaches in that it uses unique representations of chemical structures

in the form of multiple chemical descriptors, has its own metrics for defining

similarity and diversity of chemical compound libraries, and applies a wide array

of statistical, data mining and machine learning techniques to very large collec-

tions of chemical compounds in order to establish robust relationships between a

chemical structure and its physical or biological properties. Chemoinformatics

addresses a broad range of problems in chemistry and biology; however, the most

commonly known applications of chemoinformatics approaches have arguably

been in the area of drug discovery, where chemoinformatics tools have played a

central role in the analysis and interpretation of structure–property data collected

by the means of modern high-throughput screening.

Owing to the broad nature of chemoinformatics, several monographs have

appeared recently that discuss various aspects of chemoinformatics research.7–14

The present book presents a unique focus on chemoinformatics approaches that

are used for virtual screening of available collections of chemical compounds to

identify novel biologically active molecules. The approaches discussed by the

contributors rely on chemoinformatics concepts such as representation of

molecules using multiple descriptors of chemical structures, advanced chemical

similarity calculations in multidimensional descriptor spaces, the use of advanced

machine learning and data mining approaches for building quantitative and

predictive structure–activity models, the use of chemoinformatics methodologies

for the analysis of drug-likeness and property prediction, and the emerging trend

of combining chemoinformatics and bioinformatics concepts in structure-based

drug discovery.

The chapters are organized in a logical flow that a typical chemoinformatics

project would follow, i.e., from structure representation and comparison to

data analysis and model building to applications of structure–property rela-

tionship models for hit identification and chemical library design. Chapter 1, by

I. Baskin and A. Varnek, discusses the fundamental chemoinformatics concept

of chemical structure representation by the means of molecular descriptors,

focusing on fragment descriptors and their use in Quantitative Structure–

Activity Relationship (QSAR) studies and database mining. This introductory

chapter is followed by chapters by D. Horvath (Chapter 2) and by T. Langer

and colleagues (Chapter 3) that discuss recent advances in pharmacophore

identification and their use in virtual screening. Naturally, the pharmacophore

is the major concept in medicinal chemistry and computational drug discovery,

and many research papers and monographs have been published on this subject

over the years. Still, these two chapters that have different focuses on phar-

macophores derived from (two-dimensional) chemical graphs (Chapter 2) and,

the more common, three-dimensional pharmacophores (Chapter 3) offer

unique perspective on pharmacophore identification as a tool for knowledge

discovery and mining in molecular databases.
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Whereas pharmacophore identification can be viewed as an example of

chemical data mining approaches focusing on specific descriptors of chemical

structures, much information about structure–activity relationships can be

obtained by using another major concept of chemoinformatics, i.e., that of

chemical (or molecular) similarity. Chapter 4 by L. Peltason and J. Bajorath

summarizes recent advanced studies into this fundamental chemoinformatics

problem and discusses the use of molecular similarity calculations in virtual

screening. The next two chapters focus on recent methodologies that esta-

blish and explore quantitative structure–activity relationships (QSAR). E.

Radchenko, V. Palyulin and N. Zefirov (Chapter 5) cover the use of topological

molecular fields in drug design and virtual screening whereas D. Filimonov and

V. Poroikov (Chapter 6) present an analysis of promising probabilistic

approaches in QSAR modeling.

Chemoinformatics approaches are finding growing and important applica-

tion in developing a better understanding of the chemical features that distin-

guish drugs and drug-like molecules from other organic molecules. In fact, this

area so far has almost exclusively relied on ligand based approaches. Chapter 7

by G. Schneider and colleagues addresses the issue of drug-likeness and dis-

cusses ligand-based methodologies that can be used in designing viable drug

candidates. Chapter 8, by I. Tetko and T. Oprea, presents an overview of

chemoinformatics methods that are used in early stages of drug discovery to

identify and prioritize compounds with optimal ADMET (Adsorption, Dis-

tribution, Metabolism, Excretion and Toxicity) properties.

Chemical library design has always been an important component of che-

moinformatics studies and it could be viewed in fact a special case of virtual

screening. Chapter 9 by W. Zheng and S.R. Johnson provides an expert

overview of computational approaches that are employed in the design of

targeted and diverse chemical libraries, including the use of property (i.e.,

ADMET) filters.

The final chapter by A. Tropsha looks into chemoinformatics methodologies

that rely on compound representation in multidimensional chemical descriptor

space and chemical similarity searches that could be employed in structure

based drug discovery. These approaches could enrich traditional structure-

based virtual screening and docking methodologies. The chapter may serve to

illustrate the importance of building natural bridges between structural bioin-

formatics and structural chemoinformatics approaches in addressing the

common problem of virtual screening that is the major theme of this book.

In conclusion, we believe that the focus on extending the experiences accu-

mulated in chemoinformatics research towards virtual screening makes the

theme of this monograph highly attractive for all computational and experi-

mental researchers in the area of drug discovery or, more broadly, chemical

biology. We stated at the beginning that virtual screening is one important area

of modern chemoinformatics research that deserves special attention, which

motivated us to develop this monograph. We believe, however, that due to its

generic data-analytical focus we will see growing application of chemoinfor-

matics approaches in multiple areas of chemical and biological research such as
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synthesis planning, nanotechnology, proteomics, physical and analytical

chemistry and, of course, chemical genomics.

Alexandre Varnek and Alexander Tropsha
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CHAPTER 1

Fragment Descriptors in SAR/
QSAR/QSPR Studies,
Molecular Similarity Analysis
and in Virtual Screening

IGOR BASKINa AND ALEXANDRE VARNEKb

a Department of Chemistry, Moscow State University, Moscow 119992,

Russia; b Laboratoire d’Infochimie, UMR 7177 CNRS, Université Louis

Pasteur, 4, rue B. Pascal, Strasbourg 67000, France

1.1 Introduction

Chemoinformatics1–5 is an emerging science that concerns the mixing of chemi-

cal information resources to transform data into information, and information

into knowledge. It is a branch of theoretical chemistry based on its molecular

model, and which uses its own basic concepts, learning approaches and areas of

application. Unlike quantum chemistry, which considers molecules as ensemble of

electrons and nuclei, or force field molecular mechanics or dynamics simulations

based on a classical molecular model (‘‘atoms’’ and ‘‘bonds’’), chemoinformatics

represents molecules as objects in a chemical space defined by molecular

descriptors. Among thousands of descriptors, fragment descriptors occupy a

special place. Fragment descriptors represent selected subgraphs of a 2D mole-

cular graph; structure–property approaches use their occurrences in molecules or

binary values (0, 1) to indicate their presence or absence in the given graph.

The unique properties of fragment descriptors are related to the fact that

(i) any molecular graph invariant (i.e., any molecular descriptor or property)
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can be uniquely represented as a linear combination of fragment descriptors;7–9

(ii) any symmetric similarity measure can be uniquely expressed in terms

of fragment descriptors;10,11 and (iii) any regression or classification structure–

property model can be represented as a linear equation involving fragment

descriptors.12,13

An important advantage of fragment descriptors is related to the simplicity of

their calculation, storage and interpretation (see review articles14–18). They belong

to information-based descriptors,19 which tend to code the information stored in

molecular structures. This contrasts with knowledge-based (or semi-empirical)

descriptors derived from consideration of the mechanism of action. Owing to

their versatility, fragment descriptors can efficiently be used to build structure–

property models, perform similarity search, virtual screening and in silico design

of chemical compounds with desired properties.

This chapter reviews fragment descriptors with respect to their use in

structure–property studies, similarity search and virtual screening. After a

short historical survey, different types of fragment descriptors are considered

thoroughly. This is followed by a brief review of the application of fragment

descriptors in virtual screening, focusing mostly on filtering, similarity search

and direct activity/property assessment using quantitative structure–property

models.

1.2 Historical Survey

Among a multitude of descriptors currently used in Structure–Activity Rela-

tionships/Quantitative Structure–Activity Relationships/Quantitative Structure–

Property Relationships (SAR/QSAR/QSPR) studies,20 fragment descriptors

occupy a special place. Their application as atoms and bonds increments in the

framework of additive schemes can be traced back to the 1930–1950s; Vogel,21

Zahn,22 Souders,23,24 Franklin,25,26 Tatevskii,27,28 Bernstein,29 Laidler,30 Benson

and Buss31 and Allen32 pioneered this field. Smolenskii was one of the first, in

1964, to apply graph theory to tackle the problem of predictions of the physico-

chemical properties of organic compounds.33 Later on, these first additive

schemes approaches have gradually evolved into group contribution methods.

The latter are closely linked with thermodynamic approaches and, therefore,

they are applicable only to a limited number of properties.

The epoch of QSAR (Quantitative Structure–Activity Relationships) studies

began in 1963–1964 with two seminal approaches: the s-r-p analysis of Hansch

and Fujita34,35 and the Free–Wilson method.36 The former approach involves

three types of descriptors related to electronic, steric and hydrophobic charac-

teristics of substituents, whereas the latter considers the substituents themselves

as descriptors. Both approaches are confined to strictly congeneric series of

compounds. The Free–Wilson method additionally requires all types of sub-

stituents to be sufficiently present in the training set. A combination of these

two approaches has led to QSAR models involving indicator variables, which

indicate the presence of some structural fragments in molecules.
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The non-quantitative SAR (Structure–Activity Relationships) models

developed in the 1970s by Hiller,37,38 Golender and Rosenblit,39,40 Piruzyan,

Avidon et al.,41 Cramer,42 Brugger, Stuper and Jurs,43,44 and Hodes et al.45

were inspired by the, at that time, popular artificial intelligence, expert systems,

machine learning and pattern recognition paradigms. In those approaches,

chemical structures were described by means of indicators of the presence of

structural fragments interpreted as topological (or 2D) pharmacophores (bio-

phores, toxophores, etc.) or topological pharmacophobes (biophobes, toxo-

phobes, etc.). Chemical compounds were then classified as active or inactive

with respect to certain types of biological activity.

Methodologies based on fragment descriptors in QSAR/QSPR studies are

not strictly confined to particular types of properties or compounds. In the

1970s Adamson and coworkers46,47 were the first to apply fragment descriptors

in multiple linear regression analysis to find correlations with some biological

activities,48,49 physicochemical properties,50 and reactivity.51

An important class of fragment descriptors, the so-called screens (or struc-

tural keys, fingerprints), were also developed in 1970s.52–56 As a rule, they

represent the bit strings that can effectively be stored and processed by com-

puters. Although their primary role is to provide efficient substructure

searching in large chemical structure databases, they can be efficiently used also

for similarity searching,57,58 clustering large chemical databases,59,60 assessing

their diversity,61 as well as for SAR62 and QSAR63 modeling.

Another important contribution was made in 1980 by Cramer who invented

BC(DEF) parameters obtained by means of factor analysis of the physical

properties of 114 organic liquids. These parameters correlate strongly with

various physical properties of diverse liquid organic compounds.64 On the other

hand, they could be estimated by linear additive-constitutive models involving

fragment descriptors.65 Thus, a set of QSPR models encompassing numerous

physical properties of diverse organic compounds has been developed using

only fragment descriptors.

One of the most important developments of the 1980s was the CASE

(Computer-Automated Structure Evaluation) program by Klopman et al.66–69

This ‘‘self-learning artificial intelligent system’’69 can recognize activating and

deactivating fragments (biophores and biophobes) with respect to the given

biological activity and to use this information to determine the probability that

a test chemical is active. This methodology has been successfully applied to

predict various types of biological activity: mutagenicity,67,70,71 carcinogeni-

city,66,69,71–73 hallucinogenic activity,74 anticonvulsant activity,75 inhibitory

activity with respect to sparteine monooxygenase,76 b-adrenergic activity,77

m-receptor binding (opiate) activity,78 antibacterial activity,79 antileukemic

activity,80 etc. Using the multivariate regression technique, CASE can also

build quantitative models involving fragment descriptors.72,77

Starting in the early 1990s, various approaches and related software tools

based on fragment descriptors have been developed and are listed in several

conceptual and mini-review papers.14–18 Because of the wide scope and large

variety of different approaches and applications in this field, many important
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ideas were reinvented many times and continue to be reinvented. In this review

we try to present a clear state-of-the-art picture in this area.

1.3 Main Characteristics of Fragment Descriptors

In this section different types of fragments are classified with respect to their

topology and the level of abstraction of molecular graphs.

1.3.1 Types of Fragments

A tremendous number of various fragments are used in structure–property

studies: atoms, bonds, ‘‘topological torsions’’, chains, cycles, atom- and bond-

centered fragments, maximum common substructures, line notation (WLN

and SMILES) fragments, atom pairs and topological multiplets, substituents

and molecular frameworks, basic subgraphs, etc. Their detailed description is

given below.

Depending on the application area, two types of values taken by fragment

descriptors are considered: binary and integer. Binary values indicate the pre-

sence (true, yes, 1) or the absence ( false, no, 0) of a given fragment in a

structure. They are usually used as screens and elements of fingerprints for

chemical database management and virtual screening using similarity-based

approaches as well as in SAR studies. Integer values corresponding to the

occurrences of fragments in structures are used in QSAR/QSPR modeling.

1.3.1.1 Simple Fixed Types

Disconnected atoms represent the simplest type of fragments. They are used to

assess a chemical or biological property P in the framework of an additive

scheme based on atomic contributions:

PE
XN

i¼1

ni � Ai ð1:1Þ

where ni is the number of atoms of i-type, Ai is corresponding atomic con-

tributions. Usually, the atom types account for not only the type of chemical

element but also hybridization, the number of attached hydrogen atoms (for

heavy elements), occurrence in some groups or aromatic systems, etc. Nowa-

days, atom-based methods are used to predict some physicochemical properties

and biological activities. Thus, several works have been devoted to assess the

octanol–water partition coefficient log P: the ALOGP method by Ghose-

Crippen,81–83 later modified by Ghose and co-workers,84,85 and by Wildman

and Crippen,86 the CHEMICALC-2 method by Suzuki and Kudo,87 the

SMILOGP program by Convard and co-authors,88 and the XLOGP method

by Wang and co-authors.89,90 Hou and co-authors91 used Equation (1.1) to
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calculate aqueous solubility. The ability of this approach to assess biological

activities was demonstrated by Winkler et al.92

Chemical bonds are another type of simple fragment. The first bond-based

additive schemes, such as those of Zahn,22 Bernstein29,93 and Allen,32,94

appeared almost simultaneously with the atom-based ones and dealt, pre-

sumably, with predictions of some thermodynamic properties.

‘‘Topological torsions’’ invented Nilakantan et al.95 are defined as a linear

sequence of four consecutively bonded non-hydrogen atoms. Each atom there

is described by the type of corresponding chemical element, the number of

attached non-hydrogen atoms and the number of p-electron pairs. Molecular

descriptors indicating the presence or absence of topological torsions in

chemical structures have been used to perform qualitative predictions of bio-

logical activity in structure–activity (SAR) studies.95 Later on, Kearsley et al.96

recognized that characterizing atoms by element types can be too specific for

similarity searching and, therefore, it does not provide sufficient flexibility for

large-scaled virtual screening. To solve this problem, they suggested assigning

atoms in the Carhart’s atom pairs and Nilakantan’s topological torsions to one

of seven classes: cations, anions, neutral hydrogen bond donors, neutral

hydrogen bond acceptors, polar atoms, hydrophobic atoms and other.

The above-mentioned structural fragments – atoms, bonds and topological

torsions – can be regarded as chains of different lengths. Smolenskii33 suggested

using the occurrences of chains in an additive scheme to predict the formation

enthalpy of alkanes. For the last four decades, chain fragments have proved to

be one of the most popular and useful type of fragment descriptors in QSPR/

QSAR/SAR studies. Fragment descriptors based on enumerating chains in

molecular graphs are efficiently used in many popular structure–property and

structure–activity programs: CASE66–69 and MULTICASE (MultiCASE,

MCASE) by Klopman97,98 NASAWIN99 by Baskin et al., BIBIGON100

by Kumskov, TRAIL101,102 and ISIDA18 by Solov’ev and Varnek. ‘‘Molecular

pathways’’ by Gakh and co-authors,103 and ‘‘molecular walks’’ by Rücker,104

represent chains of atoms.

In contrast to chains, cyclic and polycyclic fragments are relatively rarely

applied as descriptors in QSAR/QSPR studies. Nevertheless, implicitly cyclicity

is accounted for by means of: (i) introducing special ‘‘cyclic’’ and ‘‘aromatic’’

types of atoms and bonds, (ii) ‘‘collapsing’’ the whole cycles and even polycyclic

systems into ‘‘pharmacophoric’’ pseudo-atoms and (iii) generating cyclic

fragments as a part of large fragments [Maximum Common Substructure

(MCS), molecular framework, substituents]. Besides, the cyclic fragments are

widely used as screens for chemical database processing.105,106

1.3.1.2 WLN and SMILES Fragments

WLN and SMILES fragments correspond respectively to substrings of the

Wiswesser Line Notation107 or Simplified Molecular Input Line Entry

System108,109 strings used for encoding the chemical structures. Since simple
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string operations are much faster than processing of information in connection

tables, the use of WLN descriptors was justified in the 1970s when computers

were still very slow. At that time Adamson and Bawden published some linear

QSAR models based on WLN fragments.48,50,51,110,111 They have also applied

this kind of descriptor for hierarchical cluster analysis and automatic classifi-

cation of chemical structures.112 Qu et al.113,114 have developed AES (Advanced

Encoding System), a new WLN-based notation encoding chemical information

for group contribution methods. Interest in line notation descriptors has not

disappeared completely with the advent of powerful computers. Thus, SMILES

fragment descriptors are used in the SMILOGP program to predict log P,88

whereas the recently developed LINGO system for assessing some biophysical

properties and intermolecular similarities uses holographic representations of

canonical SMILES strings.115

1.3.1.3 Atom-centered Fragments

Atom-Centered Fragments (ACF) consist of a single central atom surrounded

by one or several shells of atoms separated from the central one by the same

topological distance. This type of structural fragments was introduced in

the early 1950s by Tatevskii,27,28,116–119 and then by Benson31 to predict some

physicochemical properties of organic compounds in the framework of additive

schemes.

ACF fragments containing only one shell of atoms around the central one (i.e.,

atom-centered neighborhoods of radius 1) were introduced into chemoinfor-

matics practice in 1971 under the names ‘‘atom-centered fragments’’ and ‘‘aug-

mented atoms’’ by Adamson,120,121 who studied their distribution in large

chemical databases with the intention of using them as screens in chemical

database searching. Hodes used, in SAR studies, both ‘‘augmented atoms’’45 and

‘‘ganglia augmented atoms’’325 representing ACF fragments with radius 2 and

generalized second-shell atoms. Subsequently, ACF fragments with radius 1 were

implemented in NASAWIN,122–124 TRAIL101,102,125 and ISIDA18 programs.

ACF fragments with arbitrary radius were implemented by Filimonov, Poroikov

and co-authors in the PASS126 program under the name Multilevel Neighbor-

hoods of Atoms (MNA),127 by Xing and Glen as ‘‘tree structured finger-

prints’’,128 by Bender and Glen as ‘‘atom environments’’129,130 and ‘‘circular

fingerprints’’131–133 (Figure 1.1), and by Faulon as ‘‘molecular signatures’’.134–136

Several types of ACF fragments were designed to store local spectral para-

meters (chemical shifts) in spectroscopy data bases. Thus, Bremser has deve-

loped Hierarchically Ordered Spherical Environment (HOSE), a system of

substructure codes aimed at characterizing the spherical environment of single

atoms and complete ring systems.137 The codes are generated automatically

from 2D graphs and describe structural entities corresponding to chemical

shifts. A very similar idea has also been implemented by Dubois et al. in the

DARC system based on FREL (Fragment Réduit à un Environment Limité)

fragments.138,139 Xiao et al. have applied Atom-Centered Multilayer Code
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(ACMC) fragments for structural and substructural searching in large data-

bases of compounds and reactions.140 An important recent application of ACF

fragments concerns target prediction (‘‘target fishing’’) in chemogenomic data

analysis.126,141,142

1.3.1.4 Bond-centered Fragments

Bond-centered fragments (BCF) consist of two atoms linked by the bond and

surrounded by one or several shells of atoms separated by the same topological

distance from this bond. Although these fragments are rather rarely used in

structure–property studies, they can be efficiently used as screens for chemical

database processing.143 BCF have been used as a part of MDL keys144,145 for

substructure search in chemical databases, database clustering60 and for SAR

studies of 17 different types of biological activity.62 Bond-centered fragments

have also been used in the DARC system.138,139

1.3.1.5 Maximum Common Substructures

For a set of molecular graphs, a Maximum Common Substructure (MCS) is

defined as a largest substructure in all graphs belonging to the given set. In most

practical applications, only MCS for graph pairs are considered, i.e., for sets

containing only two graphs. MCS can be found by intersecting molecular

graphs using several different algorithms (for a review see ref. 146), the best

known of which involve clique detection in so-called compatibility graphs.

C

NH2

OH

O

0

1

2

Layers: 0 1 2

C.ar (sp2) C.ar (sp2)

C.ar (sp2)

C.ar (sp2)

C.ar (sp2)

C (sp2) N (sp3)

O (sp2)

O (sp3)

Figure 1.1 Circular fingerprints with Sybyl mol2 atom typing. An individual finger-
print is calculated for each atom in the molecule, considering those atoms
up to two bonds from the central atom (level 2). The molecular fingerprint
consists of the individual atom fingerprints of all the heavy atoms in the
structure. (Adapted from ref. 132.)
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Notably, a pair of graphs can have more than one MCS. The main advantage

of MCS fragments is related to the fact that their complexity is not limited and

therefore they can be used to detect property-relevant features that could not be

detected by fragments (subgraphs) of limited complexity.

MCSs were first applied to SAR studies in the early 1980s by Rozenblit and

Golender in the framework of their logical-combinatorial approach.40,41,147

Since at that time computer power was limited, the authors suggested the use of

reduced graphs (Section 1.3.5) built on pharmacophoric centers. The MCS

fragments were subsequently applied to perform a similarity search,148 to

cluster chemical databases149,150 as well to assess biological activities of organic

compounds.99,151,152

1.3.1.6 Atom Pairs and Topological Multiplets

Characterizing atoms only by element types is too specific for similarity

searching and, therefore, does not provide sufficient flexibility for large-scale

virtual screening. For that reason, numerous studies have been devoted to

increase the informational content of fragment descriptors by adding some

useful empirical information and/or by representing a part of the molecular

graph implicitly. The simplest representatives of such descriptors were ‘‘atom

pairs and topological multiplets’’ based on the notion of a ‘‘descriptor center’’

representing an atom or a group of atoms that could serve as centers of

intermolecular interactions. Usually, descriptor centers include heteroatoms,

unsaturated bonds and aromatic cycles. An atom pair is defined as a pair of

atoms (AT) or descriptor centers separated by a fixed topological distance:

ATi-Dist-ATj, where Distij is the shortest path (the number of bonds) between

ATi and ATj. Analogously, a topological multiplet is defined as a multiplet

(usually triplet) of descriptor centers and topological distances between each

pair of them. In most of cases, these descriptors are used in binary form

to indicate the presence or absence of the corresponding features in studied

chemical structures.

Atom pairs were first suggested for SAR studies by Avidon as Substructure

Superposition Fragment Notation (SSFN).41,153 They were then independently

reinvented by Carhart and co-authors154 for similarity and trend vector analysis.

In contrast to SSFN, Carhart’s atom pairs are not necessarily composed only of

descriptor centers but account for the information about element type, the

number of bonded non-hydrogen neighbors and the number of p electrons.

Nowadays, Carhart’s atom pairs are popular in virtual screening. Topological

Fuzzy Bipolar Pharmacophore Autocorrelograms (TFBPA)155 by Horvath are

based on atom pairs, in which real atoms are replaced by pharmacophore sites

(hydrophobic, aromatic, hydrogen bond acceptor, hydrogen bond donor,

cation, anion), while Distij corresponds to different ranges of topological dis-

tances between pharmacophores. These descriptors were successfully applied in

virtual screening against a panel of 42 biological targets using a similarity search

based on several fuzzy and non-fuzzy metrics,156 performing only slightly less
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well than their 3D counterparts.155 Fuzzy Pharmacophore Triplets (FPT) by

Horvath157 is an extension of FBPF156 for three-site pharmacophores. An

important innovation in the FPT concerns accounting for proteolytic equili-

brium as a function of pH.157 Owing to this feature, even small structural

modifications leading to a pKa shift may have a profound effect on the fuzzy

pharmocophore triples. As a result, these descriptors efficiently discriminate

structurally similar compounds exhibiting significantly different activities.157

Some other topological triplets should be mentioned. Similog pharmacophoric

keys by Schuffenhauer et al.158 represent triplets of binary coded types of atoms

(pharmacophoric centers) and topological distances between them (Figure 1.2).

Atomic types are generalized by four features (represented as four bits per atom):

potential hydrogen bond, donor or acceptor, bulkiness and electropositivity. The

‘‘topological pharmacophore-point triangles’’ implemented in the MOE soft-

ware159 represent triplets of MOE atom types separated by binned topological

distances. Structure–property models obtained by a support vector machine

method with these descriptors have been successfully used for virtual screening

of COX-2 inhibitors160 and D3 dopamine receptor ligands.161

1.3.1.7 Substituents and Molecular Frameworks

In organic chemistry, decomposition of molecules into substituents and mole-

cular frameworks is a natural way to characterize molecular structures.

In QSAR, both the Hansch–Fujita34,35 and the Free–Wilson36 classical

approaches are based on this decomposition, but only the second one explicitly

accounts for the presence or the absence of substituent(s) attached to molecular

framework at a certain position. While the multiple linear regression technique

was associated with the Free–Wilson method, recent modifications of this

approach involve more sophisticated statistical and machine-learning approa-

ches, such as the principal component analysis162 and neural networks.163
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Figure 1.2 Example of a Similog key. (Adapted from ref. 158.)
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In contrast to substituents, molecular frameworks are rarely used in SAR/

QSAR/QSPR studies. In most cases, they are implicitly involved as indicator

variables discriminating different types of molecular motifs (see, for example,

ref. 164). The distributions of different molecular frameworks and substituents

(side chains) in the databases of known drug molecules has been thoroughly

studied by Bemis and Murcko.165,166

1.3.1.8 Basic Subgraphs

Regarding fragment descriptors, one could imagine a huge number of possi-

bilities to split a molecular graph into constituent fragments. Making a parallel

with the decomposition of vectors into a limited number of basis functions,

Randič326 suggested the existence of a small set of basic subgraphs representing

any structure and which could be used to calculate any molecular property. In

particular, for small alkanes a set of disconnected graphs representing paths

(chains) of different length has been proposed (Figure 1.3).

However, later it has since been found that this set is not sufficient to dif-

ferentiate any two structures. Skvortsova et al. have extended the set of Randič

basic subgraphs by including cyclic fragments and more complex subgraphs

consisting of single node attached to a cyclic fragment.167 This set exhibits good

coding uniqueness (i.e., different vectors of descriptors correspond to different

structures) and coding completeness (i.e., they can approximate a numerous

structure–property functions). Basic fragment descriptors of this kind were

used in several QSPR studies.168
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Figure 1.3 Randič basic graphs for a maximum number of nodes of 7.
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In fact, a rigorous solution of the problem of finding a set of basic graph

invariants was obtained by Mnukhin169 for simple graphs and then extended to

molecular graphs by Baskin, Skvortsova et al.7–9 (Figure 1.4). It has been shown

that the complete set of basic graph invariants could be built on all possible

subgraphs, and hence one can not to confine this to any subset of limited size.

Nonetheless, for many practical tasks the application of a limited number of

basic subgraphs and the corresponding fragment descriptors could be useful.

Another application of basic subgraphs arises from the possibility8,169 of

relating the invariants of molecular graphs to the occurrence numbers of some

basic subgraphs. Estrada has developed this methodology for spectral moments

of the edge-adjacency matrix of molecular graphs – defined as the traces of the

different powers of such matrix:170–172

mk ¼ trðEkÞ ð1:2Þ

where mk is the k-th spectral moment of the edge-adjacency matrix E (which is a

symmetric matrix whose elements eij are 1 only if edge i is adjacent to edge j)

and tr is the trace, i.e. the sum of the diagonal elements of the matrix. On the

other hand, spectral moments can be expressed as linear combinations of the

occurrence numbers of certain structural fragments in the molecular graph.

These linear combinations for simple molecular graphs not containing hetero-

atoms have been reported for acyclic170 and cyclic172 chemical structures.

To illustrate these notions, consider a correlation between the boiling points

of alkanes and their spectral moments reported in ref. 170:

bpð�CÞ ¼ �76:719þ 23:992m0 þ 2:506m2 � 2:967m3 þ 0:149m5 ð1:3Þ

R ¼ 0:9949; s ¼ 4:21; F ¼ 1650

The first six spectral moments of the edge-adjacency matrix E are expressed as

linear combinations of the occurrence numbers of fragments listed in Figure 1.5:

m0 ¼ F1j j ð1:4Þ

k = 2 k = 3 k = 4

k = 5

Figure 1.4 Skvortsova’s basic graphs for a maximum number of nodes of 5.
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m2 ¼ 2� F2j j ð1:5Þ

m3 ¼ 6� F3j j ð1:6Þ

m4 ¼ 2� F2j j þ 12� F3j j þ 24� F4j j þ 4� F5j j ð1:7Þ

m5 ¼ 30� F3j j þ 120� F4j j þ 10� F6j j ð1:8Þ

m6 ¼2� F2j j þ 60� F3j j þ 480� F4j j þ 12� F5j j þ 24� F6j j
þ 6� F7j j þ 36� F8j j þ 24� F9j j ð1:9Þ

where |Fi| denotes the occurrence number of subgraph Fi in molecular graph.

Thus, by substituting spectral moments in the QSPR Equation (1.4) for their

expansions (Equations 1.5–1.10) one can obtain the following QSPR equation

with fragment descriptors:

bpð�CÞ ¼ � 76:719þ 23:992jF1j þ 5:01jF2j � 13:332jF3j
þ 17:880jF4j þ 1:492jF6j ð1:10Þ

Thus, any spectral moment and hence the activities/properties of chemical

compounds can be represented by contributions of corresponding fragments.

This approach was further extended to molecular graphs containing hetero-

atoms by weighting the diagonal elements of the bond adjacency matrix.171

This methodology has been implemented in TOSS-MODE (TOpological Sub-

Structural MOlecular Design) and TOPS-MODE (TOPological Substructural

MOlecular DEsign) methods,173 which were successfully used to assess various

physicochemical properties of chemical compounds: retention indices in chro-

matography,174 diamagnetic and magnetooptic properties,175 dipole moments,176

F1 F2
F3 F4

F5 F6 F7

F8 F9 F10

Figure 1.5 First ten structural fragments contained in molecular graphs of alkanes.
(Adapted from ref. 170.)
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permeability coefficients through low-density polyethylene,177 etc.), 3D-para-

meters178 and a different types of biological activity (sedative/hypnotic activity,173

anti-cancer activity,179 anti-HIV activity,180 skin sensitization,181 herbicide acti-

vity,182 affinity to A1 adenosine receptor,
183 inhibition of cyclooxygenase,184 anti-

bacterial activity,185 toxicity in Tetrahymena pyriformis,186mutagenicity,187–189 etc.

1.3.1.9 Mined Subgraphs

The notion of mined subgraphs is closely linked to graph mining (or subgraph

mining), a field of searching the graphs (subgraphs) specifically related to some

properties or activities.190–195 The advantage of this approach is that all relevant

fragments are available for analysis without the need to consider an almost

infinite number of all possible subgraphs, which allows one to select the most

‘‘useful’’ fragments. This methodology196,197 is based on efficient algorithms for

mining the most frequent fragments occurring in sets of molecular graphs, such

as the AGM (Apriori-based Graph Mining) algorithm by Inokuchi et al.,198

the FSG (Frequent Sub-Graphs) algorithm by Kuramochi and Karypis,199 the

chemical sub-structure discovery algorithm by Borgelt and Berthold,200 the

gSpan (graph-based Substructure pattern mining) algorithm by Yan and Han,194

the TreeMiner algorithm by Zaki201 and the HybridTreeMiner and CMTree-

Miner algorithms by Chi, Yang and Muntz,202,203 etc. The mined subgraphs

approach was originally used to classify chemical structures.204,205 ‘‘Weighted

substructure mining, in conjunction with linear programming boosting,206 allows

one to build QSAR regression models involving mined fragment descriptors.195

1.3.1.10 Random Subgraphs

The success of different fragmentation schemes in SAR/QSAR studies strongly

depends on the initial choice of relevant fragment types. Since it is unrealistic to

consider all possible fragments because of their enormous number, one should

always select their small subsets. However, any attempt to apply a limited

subtype of them (e.g., to use only chains with the user specified length) risks

being inefficient because of missing of important fragments. One possible

solution is to generate substructural fragments using stochastic techniques.

Such an approach has been used by Graham et al., who generated ‘‘tape

recordings’’ of chemical structures from atom-bond-atom fragments extracted

from molecular graphs by random walks.207 In the MolBlaster method by

Batista, Godden and Bajorath, for each molecule the program generates a

‘‘random fragment profile’’ representing a population of fragments generated

by randomly deleting bonds in hydrogen-suppressed molecular graph.208 This

method was successfully applied in similarity-based virtual screening.209

1.3.1.11 Library Subgraphs

Many studies employ fixed sets of fragments taken from some libraries con-

taining preliminary selected fragments. Thus, most additive schemes and group
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contribution methods have been derived using fixed sets of fragments. Some

SAR/QSAR/QSPR expert systems also employ fixed sets of selected fragments

and often apply an internal language specifically designed for handling the

descriptors lists. For example, to describe fragments, the DEREK expert sys-

tem for assessing toxicity uses the PATRAN language,210 whereas the ALogP

method86 for predicting the octanol–water partition coefficient log P is based

on the SMARTS line notation [as implemented in the MOE (Molecular

Operating Environment) software suite159].

1.3.2 Fragments Describing Supramolecular Systems

and Chemical Reactions

Using ‘‘special’’ bond types, molecular graphs can represent not only individual

molecules but also more complex species: supramolecular systems, chemical

reactions and polymers with periodic structure. For example, the ISIDA pro-

gram can recognize a ‘‘coordination bond’’ between central metal atom and

donor atoms of the ligand in the metal complexes and ‘‘hydrogen bond’’ in

supramolecular assemblies.32 Varnek et al. used fragment descriptors derived

from ‘‘supramolecular’’ graphs in QSPR modeling of free energy and enthalpy

of formation of 1 : 1 hydrogen bonded complexes.18

The concept of molecular graphs can also be expanded to describe chemical

reactions by introducing special types of ‘‘dynamical’’ bonds corresponding to

formation, modification and breaking of chemical bonds (for a review see ref.

211). The resulting reaction graph contains all necessary information to

reconstruct both reactants and products in the corresponding reaction equa-

tion. Partial reaction graphs containing only ‘‘dynamical’’ bonds were used to

classify and enumerate organic reactions in the framework of Ugi–Dugundji

matrix formalism212 and the Zefirov–Tratch formal-logical approach.213,214

Vladutz condensed reactants and products of a chemical reaction into a single

Superimposed Reaction Skeleton Graph (SRSG)215 containing both dynamical

and conventional (not modified in the reaction) bonds. Similar reaction graphs

under the name ‘‘imaginary transition state’’ were also suggested by

Fujita216,217 for classification and enumeration of organic reactions. This

approach has been extended recently by Varnek et al.18 in Condensed Graphs

of Reactions (CGRs) containing both ‘‘dynamical’’ and conventional bonds

(Figure 1.6). Fragment descriptors derived from CGRs were used in similarity

search of reactions, in reaction classification and in the development of QSPR

models of the rate constant of SN2 reactions in water.218

To encode reaction transformations Borodina et al. have developed Reacting

Multilevel Neighborhood of Atom (RMNA)219 descriptors representing an

extended version of the MNA descriptors. Unlike CGRs, where reaction

information is condensed, in the RMNA approach the information about

modified, created or broken bonds is added to the list of the MNA descriptors

generated for all products and reactants. The RMNA descriptors were applied

to predict metabolic P450-mediated aromatic hydroxylation.219
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1.3.3 Storage of Fragment Information

This section discusses different techniques to store the information about

molecular fragments. The most common way is present a given chemical

structure as a fixed-size array (vector), in which each element corresponds to

the occurrence of a given molecular fragment. Structural keys are descriptor

vectors containing binary values indicating presence of absence of fragments.

Since structural keys can be kept in computer memory as bit strings they are

processed very rapidly, which explains their popularity in chemical database

management, similarity search, SAR/QSAR studies and in virtual screening

(Figure 1.7).

The composition and length of structural keys always depend on the

choice of constituent fragments. Often, structural keys become very sparse,

i.e., they contain very few non-zero values. Such highly imbalanced data pre-

sentation is rather inefficient for computer processing. As a partial solution to

this problem, fragment descriptors can be stored in a list containing the codes

(names) of fragments ‘‘ON’’. Although application of lists reduces the storage’s

size, it is still time consuming to be used for a substructural search in large

databases.

Search efficiency can be improved significantly by using hash tables, allowing

one to link directly the name of descriptor and location of the descriptor’s

value. This technology is used in hashed molecular fingerprints operating with

binary values (Figure 1.8). In contrast to structural keys, in molecular finger-

prints each fragment is mapped onto several cells, positions of which are

computed from the fragment code. The advantage of hashed fingerprints is a
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Figure 1.6 Phenol acetylation and related Condensed Graph of Reaction. ‘‘Dyna-
mical’’ bonds marked with green and red correspond, respectively, to
formation and breaking a single bond.
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Figure 1.7 Generation of structural keys for a molecule of aspirin.

O OH

O

O

O OH

O

O

. . .
. . .

Fragment Generation

0 1 0 1 1 0 1 0 0 1

Hashed fingerprints

Figure 1.8 Generation of hashed fingerprints. Each fragment leads to ‘‘switching on’’
of several bits. A bit with collisions is underlined and shown in bold.
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possibility to include a big number of fragments in a bit string of reasonable

length. Their drawback is related to the existence of collisions when two or

more fragments are mapped in the same bit. Nonetheless, this problem could be

solved by trade-off between the length of bit string, the number of fragments

types and the number of bits allocated for each fragment.

An interesting way of encoding structural information is realized in mole-

cular holograms, which represent an integer array of bins of predetermined

length (hologram length) that contains information about the occurrences

of fragments. In the course of generating a molecular hologram, each fragment

is coded using the SLN (SYBYL Line Notation).220 Using the cyclic redun-

dancy check (CRC) algorithm,221 this code is transformed into a fragment

integer ID, indicating the location of the particular bin in the molecular

hologram (Figure 1.9). The occupancy of bins is then incremented by one as

soon as the corresponding fragments occur. Since the hologram length I always

smaller than the number of fragments, several different fragments map to the

same bin in the molecular hologram. The resulting bin occupancy is equal to

the sum of occurrence numbers of all these fragments. Molecular holograms

were specially designed to be used in the Holographic QSAR (HQSAR)

approach.63

1.3.4 Fragment Connectivity

Fragments used for building fragment descriptors can be connected and dis-

connected. Most applications are based on connected fragments. The point is
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Algorithm

Fragment Integer IDs . . .

3 6 2 0 5 13 0 7 1 8

1 2 3 4 5 6 7 8 9 10

Molecular Hologram

Bin IDs

Figure 1.9 Generation of a molecular hologram. A molecule is broken into several
structural fragments that are assigned fragment integer identifica-
tions (IDs) using the CRC algorithm. Each fragment is then placed
in a particular bin based on its fragment integer ID corresponding to
the bin ID. The bin occupancy numbers are the molecular holo-
gram descriptors that count structural fragments in each bin. (Adapted
from ref. 63.)
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that the indicators of presence or occurrences of disconnected fragments can

always be expressed through the corresponding values obtained for connected

fragments.8 Hence, descriptors based on disconnected fragments are redun-

dant, since they do not carry any additional information compared to their

connected counterparts.

Nonetheless, in some cases disconnected fragments descriptors could simplify

QSAR/QSPR equations. In particular, nonlinear models involving connected

fragments can be replaced with linear models built on disconnected fragments,

because the occurrences of disconnected and connected fragments are non-

linearly related. Thus, the use of disconnected fragments may be viewed as an

implicit way of introducing nonlinearity into QSARs/QSPRs. If binary

descriptor values are used, disconnected fragments implicitly introduce con-

junctions (logical .AND.) into logical expressions instead of nonlinear terms for

connected fragments. Tarasov et al.222 have shown that the compound structural

descriptors defined as combinations of unrelated fragments improve sig-

nificantly the efficiency of mutagenicity predictions. Implicitly, disconnected

fragments, as conjugations of binary (logical) connected fragment descriptors,

were used to build probabilistic SAR models for some biological activities (see

ref. 223 and references therein).

1.3.5 Generic Graphs

In contrast to QSPR studies based on complete (containing all atoms) or

hydrogen-suppressed molecular graphs, assessment of biological activity,

especially at the qualitative level, often requires greater generalization. In that

case, it is convenient to describe chemical structures by reduced graphs, in which

each vertex – descriptor center or pharmacophoric center – represents an atom

or a group of atoms capable of interacting with biological targets, whereas each

edge measures the number of bonds between them. Such a biology-oriented

representation of chemical structures was invented in 1982 by Avidon et al.

under the name Descriptor Center Connection Graphs (DCCG)41 as a gen-

eralization of SSFN descriptors (Section 1.3.1.6).

Figure 1.10(b) shows the DCCG for phenothiazine. In this case, the reduced

graph consists of 16 edges and 10 vertices corresponding to descriptor centers

shown in Figure 1.10(a). Descriptor centers involve four heteroatoms (1–4; see

numbering in Figure 1.10a), which can take part in donor–acceptor interaction

with biomolecules and in the formation of hydrogen bonds, three methyl

groups (5–7), which can take part in hydrophobic interaction with bio-

molecules, two benzene rings (8, 9) and one heterocycle (10), which can take

part in p–p and p–cation interactions with biomolecules. Eleven edges in the

DCCG labeled with positive numbers indicate the topological distances

(counted as the number of bonds) between the atoms included in the corre-

sponding descriptor centers, while the negative labels denote relations between

rings within a polycyclic system. Such graphs are very useful not only as a
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source of biology-oriented fragment descriptors but also for pharmacophore

based virtual screening.

The atom-pairs proposed by Carhart et al.154 are rather similar to the SSFN

descriptors. They can be considered as two-vertex connected fragments of

reduced graphs, in which edges correspond to paths between certain atoms.

Modifications introduced to the atom-pairs descriptors by Kearsley et al.96

through encoding physicochemical properties of atoms render these fragments

even more generic. In 2003 Gillet, Willett and Bradshaw (GWB) introduced

another type reduced graphs and proved their high efficiency in a similarity

search.224 A GWB reduced graph consisting of six vertices and five edges is

shown in Figure 1.11. Its three vertices R correspond to rings, its two vertices

L to linkers, while the vertex F corresponds to a feature – an oxygen atom in this

case, which can form hydrogen bonds. In contrast to DCCG, the edges of GWB

reduced graphs are not labeled and correspond to ordinary chemical bonds.

An important feature of the GWB reduced graphs is a hierarchical organi-

zation of vertex labels. For example, the label Arn (non-hydrogen-bonding

aromatic cycle) is less general than the label Ar (any aromatic cycle), which, in

turn, is less general than R (any ring). Due to this feature, GWB reduced graphs
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Figure 1.10 (a) Structure of phenothiazine with descriptor centers marked on it.
(Adapted from ref. 41.) (b) Descriptor center connection graph for
phenothiazine. (Adapted from ref. 41.)

19Fragment Descriptors in SAR/QSAR/QSPR Studies



can also be organized hierarchically, and the level of their generalization can be

controlled (Figure 1.12). Besides similarity searching, fragment descriptors

based on GWB reduced graphs have been applied to derive SAR models using

decision trees.225

1.3.6 Labeling Atoms

In some cases selected atoms in molecules could be marked with special labels,

indicating their particular role in a modeled property. Some examples are (i)

local properties, such as atomic charges or NMR chemical shifts, which should

always be attributed to a given atom(s), (ii) anchor atoms in the given scaffold

to which substituents are attached (Figure 1.13), (iii) atoms forming a main

chain in polymers and (iv) reaction centers in a set of reactions. Zefirov et al.

have applied labeling in QSPR studies of pKa
226,227 chemical NMR shifts and

reaction rate constant for the acid hydrolysis of esters.226,228 Varnek et al.18

labeled hydrogen bond donor and acceptor centers to model free energies and

enthalpies of formation of the 1 : 1 hydrogen-bond complexes.

1.4 Application in Virtual Screening
and In Silico Design

This section considers the application of fragment descriptors at different stages

of virtual screening and in silico design.
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Figure 1.11 Examples of chemical structures corresponding to the same GWB
reduced graph of type R/F (shown in center). (Adapted from ref. 224.)
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1.4.1 Filtering

Filtering is a rule-based approach aimed to perform fast assessment of usefulness

of molecules in the given context. In terms of drug design, the filtering is used to

eliminate compounds with unfavorable pharmacodynamic or pharmacokinetic

properties as well as toxic compounds. Pharmacodynamics considers binding

drug-like organic molecules (ligands) to chosen biological target. Since the effi-

ciency of ligand–target interactions depends on spatial complementarity of their

binding sites, the filtering is usually performed with 3D-pharmacophores,

representing ‘‘optimal’’ spatial arrangements of steric and electronic features of

ligands.229,230 Pharmacokinetics is mostly related to absorption, distribution,

metabolism and excretion (ADME) related properties: octanol–water partition

coefficients (log P), solubility in water (log S), blood–brain coefficient (log BB),

partition coefficient between different tissues, skin penetration coefficient, etc.

Fragment descriptors are widely used for early ADME/Tox prediction both

explicitly and implicitly. The easiest way to filter large databases concerns

detecting undesirable molecular fragments (structural alerts). Appropriate lists of

structural alerts are published for toxicity,231 mutagenicity,232 and carcinogeni-

city.233 Klopman et al. were the first to recognize the potency of fragment

descriptors for this purpose.66,67,69 Their programs CASE,66 MultiCASE,97,234 as

well as more recent MCASE QSAR expert systems,235 proved to be effective tools

to assess the mutagenicity67,234,235 and carcinogenicity69,234 of organic com-

pounds. In these programs, sets of biophores (analogs of structural alerts) were

identified and used for activity predictions. Several more sophisticated fragment-

based expert systems of toxicity assessment – DEREK,210 TopKat236 and Rex237

– have been developed. DEREK is a knowledge-based system operating with

human-coded or automatically generated238 rules concerning toxicophores.

Fragments in the DEREK knowledge base are defined by means of the linear

notation language PATRAN, which codes the information about atom, bonds

and stereochemistry. TopKat uses a large predefined set of fragment descriptors,

whereas Rex implements a special kind of atom-pairs descriptors (links). For

more information about fragment-based computational assessment of toxicity,

including mutagenicity and carcinogenicity, see ref. 239 and references therein.

The most popular filter used in drug design area is the Lipinski ‘‘rule of

five’’,240which takes into account the molecular weight, the number of hydrogen

bond donors and acceptors, along with the octanol–water partition coefficient

log P, to assess the bioavailability of oral drugs. Similar rules of ‘‘drug-likeness’’

or ‘‘lead-likeness’’ were later proposed by Oprea,241 Veber242 and Hann.243

Formally, fragment descriptors are not explicitly involved there. However, most

computational approaches that assess log P are fragment-based;244–246 whereas

H-donors and acceptor sites are the simplest molecular fragments.

1.4.2 Similarity Search

The notion of molecular similarity (or chemical similarity) is one of the most

useful and at the same time one of the most contradictory concepts in
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chemoinformatics.247,248 The concept of molecular similarity plays an impor-

tant role in many modern approaches to predicting the properties of chemical

compounds, designing chemicals with a predefined set of properties and,

especially, in conducting drug design studies by screening large databases

containing structures of available (or potentially available) chemicals. These

studies are based on the similar property principle of Johnson and Maggiora,

which states: similar compounds have similar properties.247 The similarity-

based virtual screening assumes that all compounds in a database that are

similar to a query compound have similar biological activity. Although this

hypothesis is not always valid (see discussion in ref. 249), quite often the set of

retrieved compounds is considerably enriched with actives.250

To achieve high efficacy of similarity-based screening of databases containing

millions compounds, molecular structures are usually represented by screens

(structural keys) or fixed-size or variable-size fingerprints. Screens and finger-

prints can contain both 2D- and 3D-information. However, the 2D-fingerprints,

which are a kind of binary fragment descriptors, dominate in this area.

Fragment-based structural keys, like MDL keys,62 are sufficiently good for

handling small and medium-sized chemical databases, whereas processing of

large databases is performed with fingerprints having much higher information

density. Fragment-based Daylight,251 BCI,252 and UNITY 2D253 fingerprints are

the best known examples.

The most popular similarity measure for comparing chemical structures

represented by means of fingerprints is the Tanimoto (or Jaccard) coefficient

T.254 Two structures are usually considered similar if T 4 0.85250 (for Daylight

fingerprints251). Using this threshold, Taylor estimated a probability to retrieve

actives as 0.012–0.50,255 whereas according to Delaney this probability is even

higher, i.e., 0.40–0.60 (ref. 256) (using Daylight fingerprints251). These com-

puter experiments confirm the usefulness of the similarity approach as an

instrument of virtual screening.

Schneider et al. have developed a special technique for performing virtual

screening referred to as Chemically Advanced Template Search (CATS).257

Within its framework, chemical structures are described by means of so-called

correlation vectors, each component of which is equal to the occurrence of a

given atom pair divided by the total number of non-hydrogen atoms in it. Each

atom in the atom pair is specified as belonging to one of five classes (hydrogen-

bond donor, hydrogen-bond acceptor, positively charged, negatively charged,

and lipophilic), while topological distances of up to ten bonds are also con-

sidered in the atom-pair specification. In ref. 257, the similarity is assessed by

Euclidean distance between the corresponding correlation vectors. CATS has

been shown to outperform the MERLIN program with Daylight fingerprints251

for retrieving thrombin inhibitors in a virtual screening experiment.257

Hull et al. have developed the Latent Semantic Structure Indexing (LaSSI)

approach to perform similarity search in low-dimensional chemical space.258,259

To reduce the dimension of initial chemical space, the singular value decom-

position method is applied for the descriptor-molecule matrix. Ranking

molecules by similarity to a query molecule was performed in the reduced space
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using the cosine similarity measure,260 whereas the Carhart’s atom pairs154 and

the Nilakantan’s topological torsions95 were used as descriptors. The authors

claim that this approach ‘‘has several advantages over analogous ranking in the

original descriptor space: matching latent structures is more robust than

matching discrete descriptors, choosing the number of singular values provides

a rational way to vary the ‘fuzziness’ of the search’’.258

The issue of ‘‘fuzzification’’ of similarity search has been addressed by

Horvath et al.155–157 The first fuzzy similarity metric suggested155 relies on

partial similarity scores calculated with respect to the inter-atomic distances

distributions for each pharmacophore pair. In this case the ‘‘fuzziness’’ enables

comparison of pairs of pharmacophores with different topological or 3D dis-

tances. Similar results156 were achieved using fuzzy and weighted modified Dice

similarity metric.260 Fuzzy pharmacophore triplets (FPT, see Section 1.3.1.6)

can be gradually mapped onto related basis triplets, thus minimizing binary

classification artifacts.157 In a new similarity scoring index introduced in ref.

157, the simultaneous absence of a pharmacophore triplet in two molecules is

taken into account. However, this is a less-constraining indicator of similarity

than simultaneous presence of triplets.

Most similarity search approaches require only a single reference structure.

However, in practice several lead compounds are often available. This moti-

vated Hert et al.261 to develop the data fusion method, which allows one to

screen a database using all available reference structures. Then, the similarity

scores are combined for all retrieved structures using selected fusion rules.

Searches conducted on the MDL Drug Data Report database using fragment-

based UNITY 2D,253 BCI,252 and Daylight251 fingerprints have proved the

effectiveness of this approach.

The main drawback of the conventional similarity search concerns an

inability to use experimental information on biological activity to adjust

similarity measures. This results in an inability to discriminate relevant and

non-relevant fragment descriptors used for computing similarity measures. To

tackle this problem, Cramer et al. 42 developed substructural analysis, in which

each fragment (represented as a bit in a fingerprint) is weighted by taking into

account its occurrence in active and in inactive compounds. Subsequently,

many similar approaches have been described in the literature.262

One more way to conduct a similarity-based virtual screening is to retrieve

the structures containing a user-defined set of ‘‘pharmacophoric’’ features. In

the Dynamic Mapping of Consensus positions (DMC) algorithm263 those

features are selected by finding common positions in bit strings for all active

compounds. The potency-scaled DMC algorithm (POT-DMC)264 is a modi-

fication of DMC in which compounds activities are taken into account. The

latter two methods may be considered as intermediate between conventional

similarity search and probabilistic SAR approaches.

Batista, Godden and Bajorath have developed the MolBlaster method,208 in

which molecular similarity is assessed by Differential Shannon Entropy265

computed from populations of randomly generated fragments. For the range

0.64 o T o 0.99, this similarity measure provides with the same ranking as the
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Tanimoto index T. However, for smaller values of T the entropy-based index is

more sensitive, since it distinguishes between pairs of molecules having almost

identical T. To adapt this methodology for large-scale virtual screening, Pro-

portional Shannon Entropy (PSE) metrics were introduced.209 A key feature of

this approach is that class-specific PSE of random fragment distributions

enables the identification of the molecules sharing with known active com-

pounds a significant number of signature substructures.

Similarity search methods developed for individual compounds are difficult

to apply directly for chemical reactions involving many species subdivided by

two types: reactants and products. To overcome this problem, Varnek et al.18

suggested condensing all participating reaction species in one molecular graph

[Condensed Graphs of Reactions (CGR),18 see Section 1.3.2] followed by its

fragmentation and application of developed fingerprints in ‘‘classical’’ simi-

larity search. Besides conventional chemical bonds (simple, double, aromatic,

etc.), a CGR contains dynamical bonds corresponding to created, broken or

transformed bonds. This approach could be efficiently used for screening of

large reaction databases.

1.4.3 SAR Classification (Probabilistic) Models

Simplistic and heuristic similarity-based approaches can hardly produce as

good predictive models as modern statistical and machine learning methods

that are able to assess quantitatively biological or physicochemical properties.

QSAR-based virtual screening consists of direct assessment of activity values

(numerical or binary) of all compounds in the database followed by selection of

hits possessing desirable activity. Mathematical methods used for models

preparation can be subdivided into classification and regression approaches.

The former decide whether a given compound is active, whereas the latter

numerically evaluate the activity values. Classification approaches that assess

probability of decisions are called probabilistic.

Various classification approaches have been reported to be used successfully

in conjunction with fragment descriptors for building classification SAR mod-

els: the Linear Discriminant Analysis (LDA),266,267 the Partial Least Square

Discriminant Analysis (PLS-DA),268 Soft Independent Modeling by Class

Analogy (SIMCA),269 Artificial Neural Networks (ANN),270 Support Vector

Machines (SVM),271 Decision Trees (DT), 269,272,273 Spline Fitting with Genetic

Algorithm (SFGA),269 etc. Probabilistic methods usually used with fragment

descriptors are: Naı̈ve Bayes (NB)142 and its modification implemented in

PASS,126 Binary Kernel Discrimination,6 Inductive Logic Programming

(ILP),274 Support Vector Inductive Logic Programming (SVILP),133 etc.

Numerous studies have been devoted to classification (probabilistic)

approaches used in conjunction with fragment descriptors for virtual screening.

Here we present several examples.

Harper et al. 6 have demonstrated a much better performance of probabilistic

‘‘binary kernel discrimination’’ method to screen large databases compared to
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backpropagation neural networks or conventional similarity search. The Car-

hart’s atom-pairs154 and Nilakantan’s topological torsions95 were used as

descriptors.

Aiming to discover new cognition enhancers, Geronikaki et al.275 applied

the PASS program,126 which implements a probabilistic Bayesian-based

approach, and the DEREK rule-based system210 to screen a database of highly

diverse chemical compounds. Eight compounds with the highest probability of

cognition-enhancing effect were selected. Experimental tests showed that all of

them possess a pronounced antiamnesic effect.

Bender, Glen et al. have applied129–133 several probabilistic machine learning

methods (naı̈ve Bayesian classifier, inductive logic programming, and support

vector inductive learning programming) in conjunction with circular finger-

prints for making classification of bioactive chemical compounds and per-

forming virtual screening on several biological targets. The latter of these three

methods (i.e., support vector inductive learning programming) performed

significantly better than the other two methods.133 The advantages of using

circular fingerprints were pointed out.131

1.4.4 QSAR/QSPR Regression Models

The Multiple Linear Regression (MLR) method was historically the first and to

date the most popular method used to develop QSAR/QSPR models with

fragment descriptors (Figure 1.14). Linear models involving fragments are built

in several program packages: CASE,66–69 MULTICASE,97,98 TRAIL,101,102

ISIDA,18 EMMA,276 QSAR Builder from Pharma Algorithms277 and some

others. The Partial Least Squares (PLS) regression,278,279 an alternative tech-

nique for building linear quantitative models, has also been successfully cou-

pled with fragment descriptors.63,128,280–282 This approach is efficiently used the

Holographic QSAR (HQSAR)63 (implemented in the Sybyl software253) and

the ‘‘Generalized Fragment-Substructure Based Property Prediction

Method’’.282 The success of treating the fragment descriptors in PLS is

explained by efficient handling of multicollinearity, which is a typical problem

of fragment descriptors. Two other methods, the Group Method of Data

Handling (GMDH)283 and the more recent Maximal Margin Linear Pro-

gramming Method (MMLPM),284,285 also displayed their efficiency in building

the linear models from an initial pool of highly correlated fragment descriptors.

Among nonlinear regression methods used in conjunction with fragment

descriptors, the Back-Propagation Neural Networks (BPNN)286–289 occupy a

special place. It has been proved7,8 that any molecular graph invariant can be

approximated by an output of a BPNN using fragment descriptors as an input.

Indeed, numerous studies have shown that the BPNN models based on frag-

ment descriptors efficiently predict various physicochemical properties16,290–294

and some biological activities16,163,295 of organic compounds. A popular ASNN

(Associative Neural Networks) approach consists of an ensemble of BPNN

coupled with kNN correction in the space of models.296 This technique,
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together with fragment descriptors, has been successfully used to model the

thermodynamic parameters of metal complexation285 and melting point of

ionic liquids.297 Besides, the Radial Basis Function Neural Networks298

(RBFNNs) have also been used with fragment descriptors for predicting the

properties of organic compounds.285,299 The Support Vector Regression (SVR)

technique300–303 is a serious ‘‘competitor’’ of neural networks, as has been

demonstrated in QSAR/QSPR studies285,304 involving fragment descriptors.
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In drug design, regression QSAR/QSPR models are often used to assess

ADME/Tox properties or to detect ‘‘hit’’ molecules capable of binding a cer-

tain biological target. Thus, one could mention fragments based QSAR models

for blood–brain barrier,305 skin permeation rate,306 blood–air307 and tissue-

air partition coefficients.307 Many theoretical approaches to calculating the

octanol–water partition coefficient log P involve fragment descriptors. In

particular, it concerns the methods by Rekker,308,309 Leo and Hansch

(CLOGP),245,310 Ghose-Crippen (ALOGP),81–83 Wildman and Crippen,86

Suzuki and Kudo (CHEMICALC-2),87 Convard (SMILOGP)88 and by Wang

(XLOGP).89,90 Fragment-based predictive models for estimation of solubility

in water311 and DMSO311 are also available.

Benchmarking studies on various biological and physicochemical proper-

ties305–307,312 show that QSAR/QSPR models for involving fragment descriptors

in many cases outperform those built on topological, quantum, electrostatic and

other types of descriptors.

1.4.5 In Silico Design

In this section we consider several examples of virtual screening performed on a

database containing only virtual (still non-synthesized or unavailable) com-

pounds. Virtual libraries are usually generated using combinatorial chemistry

approaches.313–315 One of simplest ways is to attach systematically user-defined

substituents R1, R2, . . . , RN to a given scaffold. If the list for the substituent Ri

contains ni candidates, the total number of generated structures is:

N ¼
Y

i

ni ð1:11Þ

although taking symmetry into account could reduce the library’s size. The

number of substituents Ri (ni) should be carefully selected to avoid generation

of too large a set of structures (combinatorial explosion). The ‘‘optimal’’ sub-

stituents could be prepared using fragments selected at the QSAR stage, since

their contributions to activity (for linear models) allow one to estimate an

impact of combining the fragment into larger species (Ri). In such a way, a

focused combinatorial library could be generated.

The technology based on combining QSAR, generation of virtual libraries

and screening stages has been implemented in the ISIDA program and applied

to computer-aided design of new uranyl binders belonging to two different

families of organic molecules: phosphoryl containing podands316 and mono-

amides.317 QSARmodels have been developed using different machine-learning

methods (multi-linear regression analysis, associative neural networks296 and

support vector machines301) and fragment descriptors (atom/bond sequences

and augmented atoms). These models were then used to screen virtual com-

binatorial libraries containing up to 11000 compounds. Selected hits were

synthesized and tested experimentally. Predicted uranyl binding affinity was

28 Chapter 1



shown to agree well with the experimental data. Thus, initial data sets were

significantly enriched with new efficient uranyl binders, and one of new mole-

cules was found to be more efficient than previously studied compounds. A

similar study was conducted for the development of new 1-(2-hydroxy-

ethoxy)methyl)-6-(phenylthio)thymine (HEPT) derivatives potentially posses-

sing high anti-HIV activity.318 This demonstrates the universality of fragment

descriptors and the broad perspectives of their use in virtual screening and in

silico design.

1.5 Limitations of Fragment Descriptors

Despite the many advantages of fragment descriptors they are not devoid of

certain drawbacks, which deserve serious attention. Two main problems should

be mentioned: (i) ‘‘missing fragments’’;319 and (ii) modeling of stereochemically

dependent properties.

The term ‘‘missing fragments’’ concerns comparison of the lists of fragments

generated for the training and test sets. A test set molecule may contain fragments

that, on one hand, belong to the same family of descriptors used for the mod-

eling, and, on the other hand, are different from those in the initial pool calcu-

lated for the training set. The question arises whether the model built from that

initial pool can be applied to those test set molecules? This is a difficult problem

because a priori it is not clear if the ‘‘missing fragments’’ are important for the

property being predicted. Several possible strategies to treat this problem have

been reported. The ALOGPS program,320 predicting lipophilicity and aqueous

solubility of chemical compounds, flags calculations as unreliable if the analyzed

molecule contains one or more E-state atom or bond types missed in the training

set. In such a way, the program detects about 90% of large prediction errors.319

The ISIDA program18 calculates a consensus model as an average over the

‘‘best’’ models developed with different sets of fragment descriptors. Each model

corresponds to its ‘‘own’’ initial pool of descriptors. If a new molecule contains

fragments different from those in that pool, the corresponding model is ignored.

As demonstrated by benchmarking studies,285 this improves the predictive per-

formance of the method. For each model, the NASAWIN software99 creates a

list of ‘‘important’’ fragments including cycles and all one-atom fragments. The

test molecule is rejected if its list of ‘‘important’’ fragments contains those absent

in the training set.321 The LOGP program for lipophilicity predictions322 uses a

set of empirical rules to calculate the contribution of missed fragments.

The second problem of using fragment descriptors deals with accounting for

stereochemical information. In fact, its adequate treatment is not possible at the

graph-theoretical level and requires explicit consideration of hypergraphs.323

However, in practice, it is sufficient to introduce special labels indicating ste-

reochemical configuration of chiral centers or (E/Z)-isomers around a double

bond, and then to use them in the specification of molecular fragments. Such an

approach has been used in hologram fragment descriptors324 as well as in the

PARTAN language.238
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1.6 Conclusion

Fragment descriptors constitute one of the most universal types of molecular

descriptors. The scope of their application encompasses almost all existing

areas of SAR/QSAR/QSPR studies. Their universality stems from the basic

character of structural theory in chemistry as well as from the fundamental

possibility of molecular graph invariants being expressed in terms of subgraph

occurrence numbers.8 The main advantages of fragment descriptors lie in the

simplicity of their computation, the easiness of their interpretation as well as in

efficiency of their applications in similarity searches and SAR/QSAR/QSPR

modeling. Progress of their use in virtual screening could be related to the

development of new types of fragments and of new mathematical approaches of

their processing.
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279. A. Höskuldsson, J. Chemometrics, 1988, 2, 211–228.

280. L. Xing, R. C. Glen and R. D. Clark, J. Chem. Inf. Comput. Sci., 2003, 43,

870–879.

281. D. Butina and J. M. R. Gola, J. Chem. Inf. Comput. Sci., 2003, 43,

837–841.

282. M. Clark, J. Chem. Inf. Comput. Sci., 2005, 45, 30–38.

283. H. R. Madala and A. G. Ivakhnenko, Inductive Learning Algorithms

for Complex System Modeling, CRC Press, Boca Raton, Ann Arbor,

London, Tokyo, 1994.

284. A. V. Antonov, I. V. Tetko, M. T. Mader, J. Budczies and H. W. Mewes,

Bioinformatics, 2004, 20, 644–652.

285. I. V. Tetko, V. P. Solov’ev, A. V. Antonov, X. Yao, J. P. Doucet, B. Fan,

F. Hoonakker, D. Fourches, P. Jost, N. Lachiche and A. Varnek, J.

Chem. Inf. Model., 2006, 46, 808–819.

286. D. E. Rumelhart, G. E. Hinton and R. J. Williams, in Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Volume 1:

Foundations., D. E. Rumelhart and J. L. McClelland eds., MIT Press,

Cambridge, MA, 1986, pp. 318–362.

287. J. Zupan and J. Gasteiger, Neural Networks in Chemistry, Wiley-VCH,

Weinheim, 1999.

288. D. A. Winkler and F. R. Burden,Methods Mol. Biol., 2002, 201, 325–367.

289. N. M. Halberstam, I. I. Baskin, A. Palyulin Vladimir and N. S. Zefirof,

Russian Chemical Reviews, 2003, 72, 629–649.

290. I. I. Baskin, V. A. Palyulin and N. S. Zefirov, Doklady Akademii Nauk,

1993, 332, 713–716.

41Fragment Descriptors in SAR/QSAR/QSPR Studies



291. N. V. Artemenko, V. A. Palyulin and N. S. Zefirov, Doklady Chemistry

(Translation of the chemistry section of Doklady Akademii Nauk), 2002,

383, 114–116.

292. N. I. Zhokhova, I. I. Baskin, V. A. Palyulin, A. N. Zefirov and N. S.

Zefirov, Russian Chemical Bulletin (Translation of Izvestiya Akademii

Nauk, Seriya Khimicheskaya), 2003, 52, 1885–1892.

293. N. I. Zhokhova, I. I. Baskin, V. A. Palyulin, A. N. Zefirov and N. S.

Zefirov, Russian Journal of Applied Chemistry (Translation of Zhurnal

Prikladnoi Khimii), 2003, 76, 1914–1919.

294. N. I. Zhokhova, I. I. Baskin, V. A. Palyulin, A. N. Zefirov and N. S.

Zefirov, Journal of Structural Chemistry, 2004, 45, 626–635.

295. T. M. Martin and D. M. Young, Chem Res Toxicol, 2001, 14, 1378–1385.

296. I. V. Tetko, J. Chem. Inf. Comput. Sci., 2002, 42, 717–728.

297. A. Varnek, N. Kireeva, I. V. Tetko, I. I. Baskin and V. P. Solov’ev,

J. Chem. Inf. Model., 2007, 47, 1111–1122.

298. E. Hartman, D. Keeler and J. Kawalski, Neural Computation, 1990, 2,

210–215.

299. J. Tetteh, T. Suzuki, E. Metcalfe and S. Howells, J. Chem. Inf. Comput.

Sci., 1999, 39, 491–507.

300. B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond, MIT Press, Cam-

bridge, MA, London, England, 2002.

301. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.

302. N. Christianini and J. Shawe-Taylor, An introduction to Support Vector

Machines and Other Kernel-Based Learning Methods, Cambridge Uni-

versity Press, 2000.

303. R. Herbrich, Learning Kernel Classifiers: Theory and Algorithms, MIT

Press, 2002.

304. P. Lind and T. Maltseva, J. Chem. Inf. Comput. Sci., 2003, 43, 1855–1859.

305. A. R. Katritzky, M. Kuanar, S. Slavov, D. A. Dobchev, D. C. Fara,

M. Karelson, W. E. Acree Jr., V. P. Solov’ev and A. Varnek, Bioorg. Med.

Chem., 2006, 14, 4888–4917.

306. A. R. Katritzky, D. A. Dobchev, D. C. Fara, E. Hur, K. Tamm,

L. Kurunczi, M. Karelson, A. Varnek and V. P. Solov’ev, J. Med. Chem.,

2006, 49, 3305–3314.

307. A. R. Katritzky, M. Kuanar, D. C. Fara, M. Karelson, W. E. Acree Jr,

V. P. Solov’ev and A. Varnek, Bioorg. Med. Chem., 2005, 13, 6450–6463.

308. R. Mannhold, R. F. Rekker, C. Sonntag, A. M. ter Laak, K. Dross and E.

E. Polymeropoulos, J. Pharm. Sci., 1995, 84, 1410–1419.

309. G. G. Nys and R. F. Rekker, Eur. J. Med. Chem., 1973, 8, 521–535.

310. A. Leo, P. Y. C. Jow, C. Silipo and C. Hansch, J. Med. Chem., 1975, 18,

865–868.

311. K. V. Balakin, N. P. Savchuk and I. V. Tetko, Curr. Med. Chem., 2006,

13, 223–241.

312. A. Varnek, N. Kireeva, I. V. Tetko, Baskin II and V. P. Solov’ev, J. Chem.

Inf. Model., 2007, 47, 1111–1122.

42 Chapter 1



313. B. P. Feuston, S. J. Chakravorty, J. F. Conway, J. C. Culberson,

J. Forbes, B. Kraker, P. A. Lennon, C. Lindsley, G. B. McGaughey,

R. Mosley, R. P. Sheridan, M. Valenciano and S. K. Kearsley, Curr. Top.

Med. Chem., 2005, 5, 773–783.

314. D. V. Green and S. D. Pickett,Mini Rev. Med. Chem., 2004, 4, 1067–1076.

315. D. V. Green, Prog. Med. Chem., 2003, 41, 61–97.

316. A. Varnek, D. Fourches, V. P. Solov’ev, V. E. Baulin, A. N. Turanov,

V. K. Karandashev, D. Fara and A. R. Katritzky, J. Chem. Inf. Comput.

Sci., 2004, 44, 1365–1382.

317. A. Varnek, D. Fourches, V. Solov’ev, O. Klimchuk, A. Ouadi and

I. Billard, Solvent Extraction and Ion Exchange, 2007, 25, 433–462.

318. V. P. Solov’ev and A. Varnek, J. Chem. Inf. Comput. Sci., 2003, 43,

1703–1719.

319. I. V. Tetko, P. Bruneau, H.-W. Mewes, D. C. Rohrer and G. I. Poda,

Drug Discovery Today, 2006, 11, 700–707.

320. I. V. Tetko, V. Y. Tanchuk and A. E. P. Villa, J. Chem. Inf. Comput. Sci.,

2001, 41, 1407–1421.

321. N. M. Halberstam, Ph.D. Thesis, Moscow State University, 2001.

322. A. J. Leo and D. Hoekman, Persp. Drug Discov. Des., 2000, 18, 19–38.

323. E. V. Konstantinova and V. A. Skorobogatov, Discrete Mathematics,

2001, 235, 365–383.

324. K. M. Honorio, R. C. Garratt and A. D. Andricopulo, Bioorganic &

Medicinal Chemistry Letters, 2005, 15, 3119–3125.

325. L. Hodes, J. Chem. Inf. Comput. Sci., 1981, 21, 132–136.
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CHAPTER 2

Topological Pharmacophores

DRAGOS HORVATH

UMR 7177 CNRS – Laboratoire d’Infochimie, Université Louis Pasteur, 4,

rue Blaise Pascal, 67000 Strasbourg, France

2.1 Introduction

Pharmacophores, defined1 as ‘‘the ensemble of steric and electronic features that

is necessary to ensure the optimal supramolecular interactions with a specific

biological target structure and to trigger (or to block) its biological response’’

conceptually emerged as an attempt by chemists to empirically rationalize

structure–property relationships. Following the understanding of the three-

dimensional nature of molecules and of the stereochemical rules determining the

preferred conformations, ligand binding to macromolecules was explained by

the (oversimplified) key-and-lock paradigm2 of shape complementarity. The

nature of the non-covalent binding forces – electrostatic, hydrogen bonding and

dispersive contributions, including solvation/hydrophobic effects3 – is, however,

prohibitively complex. Affinity predictions based on an in-depth study of the

physicochemical ligand–target–solvent interactions – flexible docking4 or free

energy perturbation simulations5 – are typically far too time-consuming to be of

large-scale practical use (even though they are based on severe approximations

of the physical reality, using empirical force field energy calculations). Instead,

the principle of functional group complementarity (cations interact favorably

with anions, donors with acceptors and hydrophobes among themselves) was

coined as ‘‘ligand-site physical chemistry in a nutshell,’’ to become the second

pillar of the pharmacophore concept, next to shape complementarity.

In medicinal chemistry, the pharmacophore is often viewed as being com-

plementary to the molecular scaffold, i.e., the molecular topology. Scaffold
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hopping6 – the quest of bioisosteric, topologically different structures, which

nevertheless orient their interacting groups in space in a similar way to the

starting compound and therefore display similar interactions with the biolo-

gical targets – became a central paradigm in drug design. Its importance stems

from its ability to open up new synthetic routes once all the analogs around a

given scaffold have been explored, to escape the chemical space covered by

scaffold-based patent applications or to discover molecules with different

pharmacokinetic properties but similar binding affinities with respect to the

aimed target. Lead optimization is therefore alternatively oriented along two

conceptually orthogonal research directions:7 the sampling for various scaffolds

compatible with a given pharmacophore pattern and the sampling of various

pharmacophore patterns that can be supported by a given scaffold.

2.1.1 3D Pharmacophore Models and Descriptors

With the advent of computer-aided drug design,8 the intuitive pharmacophore

concept was rapidly adopted by chemoinformaticians.9 Modern substructure

search tools can be easily adapted to recognize specific functional groups and

categorize them into complementary pharmacophore features: hydrogen bond

donors (HD) interact with acceptors (HA), cations (PC – positive charges) form

salt bridges with anions (NC), while hydrophobes (Hp) are complementary to

themselves. Often, aromatics (Ar) are considered as a specific category, com-

plementary to both themselves and to hydrophobes. In the following, NT

represents the number of considered types (NT¼ 6 according to the enumera-

tion above). Formally, pharmacophore-type information can be represented

under the form of a binary pharmacophore flag matrix F(a,T ), with F(a,T )¼ 1

if atom a is of type T and F(a,T )¼ 0 otherwise. An alleged binding pharma-

cophore can then be derived by generating a three-dimensional alignment of

actives and picking the space regions in which all of the training set compounds

chose to place pharmacophorically equivalent groups. Pharmacophore

hypotheses10,11 are a list of conserved, overlapping features found in the

alignment model. Any candidate compound possessing such groups, and able

to orient each within the sphere circumscribing the equivalent overlapping

training set features, is then assumed to match the ‘‘binding pharmacophore’’

and to be, therefore, active. A large variety of tools gravitating around the same

general idea have been developed, testifying to the great popularity of the

pharmacophore paradigm. Pharmacophore spheres may be replaced by fuzzy

‘‘pharmacophore fields’’ (ComPharm12) to be matched by the aligned candidate

molecules, or pharmacophore typing may be skipped altogether, in favor of

straightforward monitoring of steric and electrostatic fields (CoMFA13). This

notwithstanding, the principle is the same: given the common alignment, space

zones featuring occupancies/field values that correlate14–16 with experimental

activities over the whole series of training set examples enter the ‘‘pharmaco-

phore’’. At the next stage, test molecules and external candidates in virtual

screening need to prove their ability to align to the considered template such as
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to appropriately occupy (or generate the appropriate field intensities in) these

important zones. Claiming that the important zones actually correspond to the

space regions in which ligand-site interactions actually happen is only a small

conceptual step away. Such a step should, however, be taken with extreme

caution,17 for the observed field/activity correlations are not proof of any

causal relationship. Alternatively, binding pharmacophores can be extracted as

the ‘‘negative image’’ of a protein binding site,18 by programs searching for the

most appropriate locations of hydrophobic, polar and charged probes within

the site, and then combined into one or several pharmacophore hypotheses.

Overlay models are, however, time-consuming and, more important, limited to

data sets that share a significant common substructure, in the absence of which no

meaningful alignment can be achieved. To circumvent these drawbacks, align-

ment-invariant pharmacophore fingerprints, representing the pharmacophore

pattern of the molecule, have been introduced. The pharmacophore pattern can

be defined as the relative spatial arrangement of all the present pharmacophore

features – whether involved in actual site-ligand interactions or not. A simple way

to characterize the pharmacophore pattern is to generate density distribution

histograms of the atom pairs corresponding to each pharmacophore feature

combinations,19,20 with respect to the distance separating them. The pharma-

cophore pattern may then be characterized by a vector in which every element

Ti–TjDk stands for the number of pairs of atoms in which the first is of phar-

macophore type Ti, the second represents the feature Tj and the distance separ-

ating them falls within the binning range Dk. If NB represents the number of

considered distance bins, so that binning ranges uniformly span a distance interval

between some dmin and dmax, then Dk¼ [dmin+(k�1).e,dmin+k.e] with e¼
(dmax�dmin)/NB, and the dimension of the fingerprint will equal NBNT(NT–1)/2.

The space points between which distances are measured and binned must not be

actual atoms but rather space zones21,22 where a given (hydrophobic or polar)

probe reaches optimal energy levels: in these cases, the type of the considered

probes count as features F. Pharmacophore triplets23 or quadruplets24 may be

monitored instead of pairs. In binary three-point fingerprints, basis triangles i are

fully specified by a list of three pharmacophore types Tj(i ) – each type of Tj being

associated to a corner j¼ 1, 2, 3 of the triangle – plus a set of three tolerance ranges

[dkj
min(i),dkj

max(i)] specifying constraints for triangle edge lengths. Basis triangles

should thus be understood as the meshes of a grid onto which a molecule is being

mapped. Considering an atom triplet (a1, a2, a3) in a molecule, this triplet is said to

match a basis triangle i if:

1. Each atom aj is of pharmacophore type Tj(i), e.g., F [aj,Tj(i)] 4 0 for each

corner j.

2. The calculated – geometric or other – interatomic distances dist(aj,ak) each

fall within the respective tolerance ranges: dkj
min(i)r dist(aj,ak)odkj

max(i).

If in a molecule M an atom triplet simultaneously fulfilling the above-

mentioned conditions can be found, then the fingerprint of M will highlight the

bit i corresponding to this basis triangle.
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Such fingerprints are static descriptors of the global pharmacophore pattern

in the molecule – they describe how the existing representatives of each phar-

macophore type are oriented with respect to each other, but make no statement

whatsoever about the actual subset of functional groups that actually participate

in (or block) ligand binding. Therefore, such fingerprints were mainly – and

successfully – used in molecular similarity calculations, within the conceptual

framework of the molecular similarity principle,25,26 which is briefly stated as

‘‘similar molecules have similar properties’’, or, more precisely, ‘‘Similar mole-

cules are more likely to share similar properties than any pairs of randomly

chosen compounds.’’ Pharmacophore fingerprints are the exponents of a

stronger version of the similarity principle: ‘‘Molecules with similar overall

pharmacophore patterns are likely to share similar reversible non-covalent

binding behavior to biological targets.’’

Beyond similarity-based applications, machine learning techniques27–29 may

pick the specific descriptor elements that appear to correlate with the observed

activity trends throughout a training set. Unlike in overlay models, where there

is an obvious link between pharmacophore spheres or ‘‘fields’’ in space and

their source atoms, the actual pairs (triplets, etc.) of atoms in molecules that

incarnate the picked descriptor elements must be first established, to gain any

potential insights into the binding mechanisms.

2.1.2 Topological Pharmacophores

Pharmacophores are intrinsically three-dimensional – what, then, is ‘‘topolo-

gical pharmacophore’’ supposed to mean? This chapter highlights the key

aspects of this topic along with some published studies. Its goal is to convey a

general introduction to the main concepts and issues in 2D pharmacophore

modeling, and was not conceived as an exhaustive literature review. This sec-

tion briefly introduces key topics that are then detailed later on.

2.1.2.1 Topological Pharmacophores from 2D-alignments

Certainly, molecular geometry is an implicit function of connectivity. However,

to build pharmacophore hypotheses as outlined in Section 2.1.1, stable con-

former(s) of the compounds concerned have first to be explicitly generated.

Nevertheless, avoiding the conformational sampling step – time-consuming

and notoriously noisy, in particular for flexible molecules, where stochastic

procedures return different and incomplete sets of conformers at every run – is

worth every effort. Encouragingly, the success of topological indices in QSAR

studies hint that the bypassing of the explicit 3D modeling step may prove

feasible, and the pharmacophore feature detection is, per se, purely based on

molecular connectivity considerations. The literature-wide debate25 on the

relative performances of 2D vs. 3D descriptors, opposing simplicity and

robustness of the former against the higher information content of the latter, is

ongoing. Overlay-based 3D pharmacophore models may perform excellently if
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the bioactive conformations of the training set actives used for model cali-

bration is known. Otherwise, what geometries should one use? The most stable

(provided the structures are rigid enough to allow a reproducible sampling of

their phase space)? Would some randomly picked conformer within the most

stable ones returned by a stochastic search do? What happens if the geometry

returned for two very close analogues turn out to be radically different?

Although overlapping 2D molecular sketches leads to nothing but unreadable

patches of atom symbols and crossing bonds, making little sense from a gra-

phical point of view, methods aimed at establishing a mapping of the groups of a

molecule onto equivalent groups in another do exist, and may be used to

highlight conserved patterns in actives. Typically, compounds in a training set

are merged to form a hypermolecule, with their chemically and topologically

equivalent atoms fused into unique hypermolecule vertices. Eventually, vertices

specifically populated in actives and inactives can be learned. Subsets that

(almost) exclusively occur among actives are termed ‘‘pharmacophores’’ and are

thought to be responsible for activity, whereas subsets specifically seen to occur

in inactives are termed ‘‘antipharmacophores’’ and are claimed to prevent the

ligand from binding to an active site. These subsets do not have to represent

contiguous graphs – therefore, such methods should be in principle capable of

scaffold hopping. Unfortunately, hypermolecule-based approaches are most

often seen to exploit 3D information as well – there appears to be no explicit

study addressing the advantages and pitfalls of topology-based vs. geometry-

based overlay models in QSAR build-up and pharmacophore elucidations.

2.1.2.2 Topological Pharmacophores from 2D

Pharmacophore Fingerprints

The analogy between 3D and topological pharmacophore pattern descrip-

tors30,31 is quite obvious: it suffices to replace the Euclidean distances in 3D

fingerprints with shortest-path topological interatomic distances. These are

integers and thus simplify the distance-based binning scheme (all pairs at a

given topological distance enter a same bin). 2D pharmacophore fingerprints

can then be used exactly like their 3D counterparts – either for similarity-based

screening or for machine learning of pharmacophore models based on the

selected descriptor elements. If actual interatomic 3D distances correlate well

with their topological separations, then 2D and 3D pharmacophore descriptors

should behave similarly. Certainly, molecules may fold such as to close up

atoms that are separated by many bonds – a situation in which 2D descriptors

are bound to fail. However, in practice the bioactive conformer may be

unknown – therefore, 3D fingerprints often rely on an ensemble of conformers

rather than on a single geometry. It has been shown that single geometry-based

3D descriptors often behave erratically, because geometry build-up programs

may return different structures for topologically similar compounds (and dif-

ferent programs may return different conformers of the same compound) so

that close analogs may be coded by very different fingerprints. Alternatively,
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interatomic distance averages over a set of geometries are much stronger cor-

related with topological distances, if the conformational diversity is sufficient

(i.e., the set enumerates both folded and unfolded structures). In this sense, 3D

fingerprints are actually not as ‘‘3D’’ as their authors claim.23,32 Using geo-

metry ensembles for fingerprint generation means diluting the 3D information

based on the bioactive structure with topology-related information: ‘‘2.5D’’

fingerprints would be a more fitting designation for these descriptors. 2D

pharmacophore fingerprints, therefore, may be strong performers in both

similarity calculations and machine learning. Even at lesser performance with

respect to their 3D counterparts they might still rank as the method of choice,

in view of their much lower computational cost.

After discussing 2D pharmacophore fingerprints and their applications in

similarity searches, this chapter focuses on the issue of 2D pharmacophore

models obtained by machine learning. In principle, any machine learning

method can be used to mine for a correlation between the (binary) presence/

absence or the (continuous) population levels of certain elements of the 2D

pharmacophore fingerprint. Since each element stands for a particular pattern

(pair, triplet), selected elements can be traced back to the matching atom

subsets in each molecule. Therefore, ‘‘pharmacophores’’ and ‘‘antipharmaco-

phores’’ in the sense of Section 1.2.1 may in principle be extracted from

pharmacophore fingerprint-based QSAR models. A central question to be

addressed here is the quest for the actual meaning of such ‘‘pharmacophores’’

and ‘‘antipharmacophores’’ – is the claim that these stand for actually inter-

acting ligand groups justified? If so, then these patterns must be scaffold-

independent, i.e., models must apply to various families of bioisosteric

structures and not only to the series of differently substituted variants of a same

scaffold. A classical pitfall likely to occur with pharmacophore fingerprints is

learning from a homogeneous series of actives, which leads to the selection of

fingerprint elements that are specific to the scaffold, so that the alleged phar-

macophore model actually behaves like a fragment based approach and turns

out to be unable of scaffold hopping.

2.1.2.3 Topological Index-based ‘‘Pharmacophores’’?

Last but not least, the pharmacophore concept was often (mis)used in the lit-

erature in a much larger sense, i.e., as the ‘‘recipe’’ to make an active molecule.

In SAR studies, claims such as ‘‘the 3-hydroxyphenyl substituent in position 4

of the scaffold is a key element of the binding pharmacophore’’ or ‘‘the phar-

macophore requests a substituent with high Balaban33 index value at position 5

of the scaffold’’ abound. In this sense, every QSAR model based on classical 2D

indices may arguably be regarded as a ‘‘topological pharmacophore’’ model. In

the first case, however, the statement lacks generality. In the second, the

statement is mechanistically obscure: how does the Balaban index relate to the

steric and physicochemical properties and enable the favorable interaction

between the group and the site? Replacing a –CH3 by an –NH3
1 group in the
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substituent has no impact whatsoever on the Balaban index, but is not likely to

leave affinity unchanged. The correlation between activity and the topological

index is likely to owe its existence to limited diversity in model training or

validation sets. The final goal of this chapter is to issue a warning against

overhasty claims of ‘‘pharmacophore’’ extractions from topological index-

based QSARs. Topological indices may meaningfully correlate with various

activities, but the obtained models are either (i) whole molecule property (log P,

boiling point, etc.) predictors or (ii) they specifically apply to a limited struc-

tural family. Neither of these cases is compatible with the common definition of

pharmacophores. In case (ii), if atom type sensitive topological indices such as

E-state keys are used, the model may describe the activity-enabling substitution

patterns of a given scaffold in terms of substituent polarity, very much like in a

classical pharmacophore approach. However, scaffold-bound approaches

obviously lack scaffold-hopping ability, are mechanistically obscure and

strongly prone to over-interpretation.

2.2 Topological Pharmacophores from 2D-Aligments

Generating a 2D-aligment, the precursor step of 2D pharmacophore elucidation

consists in first establishing, for each atom of the aligned molecule, a list of

possible matches34 (equivalent atoms) in the target compound (subsequently

referred as the ‘‘template’’). Unless the aligned compound is a close analogue of

the template, this problem is not trivial, for certain atoms may not have any

appropriate equivalents in the partner compound. Putatively matching atom

pairs are vertices of similar ‘‘chromatism’’ (nature) located in similar neigh-

borhoods (with similar successive coordination spheres). This information (atom

nature, neighborhood) can be synthetically rendered by means of specific atomic

Topological Indices (TI). The most likely matched template atoms for a given

vertex of the aligned graph can be pinpointed easily as the ones with the closest

TI values. Next, a unique equivalence map needs to be established, linking each

atom of the aligned molecule to at most one template atom. The various map-

ping alternatives need to be scored, to enable searching for the optimal one:

‘‘bonuses’’ are considered each time atoms were successfully mapped onto an

equivalent of very similar TI value, and ‘‘gap penalties’’ subtracted for unmat-

ched atoms. Unlike in bioinformatics, where specific sequence alignment tools35

have emerged as industry standards, there is no universally accepted 2D align-

ment tool for organic compounds. First, there is no consensus on the ‘‘coloring’’

of the molecular graphs (the default being by atom symbols, although a coloring

by pharmacophore feature could be meaningful – to our knowledge, such an

attempt has not been reported). In addition, the 2D nature of organic ligands

complicates the construction of the equivalence map, by contrast to the

straightforward 1D sequence matching procedures. 2D alignment-based

approaches emerged in the 1980s,36 introducing the concept of ‘‘hypermolecule’’,

a graph obtained by fusion of individual molecular graphs, by matching

equivalent atoms as outlined above. Although the alignment criterion is of
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topological nature (MTD – Minimal Topological Difference, i.e., matching of

topologically equivalent vertices), the approach was typically used37,38 to pilot

the overlay of 3D molecular models to build 3D pharmacophores or pseudo-

receptor models. Hypermolecule vertices can be classified in ‘‘cavity’’ points

(specifically present in active training set compounds, therefore allegedly har-

boring favorable site-ligand interactions), ‘‘site wall’’ points (present in inactives,

therefore allegedly representing space points that should not be occupied by the

ligand) and ‘‘indifferent’’ points. A purely topological39 version of MTD relies

on the alignment of each candidate molecule on the hypermolecule, to calculate

specific topological indices with respect to the atom subsets that map onto

‘‘cavity’’ and ‘‘wall’’ points, respectively. No 3D aspects are taken into account,

and significant QSARmodels are obtained within a series of close trimethoprime

analogues. The models are, however, far from intuitive and cannot be used to

interpret the mechanism of reversible binding to dihydrofolate reductase. In an

additional QSAR study concerning carbonic anhydrase inhibitors (2-substituted

1,2,3-thiadiazol-5-sulfonamides), the authors found the topological approach to

be competitive with the classical 3D-based MTD model.

More recently, a purely topological alignment-based strategy relying on

subtree matching, the MTree approach,40 has been reported to lead to mean-

ingful topological pharmacophores. First, molecules are reduced to ‘‘feature

trees’’ in which every vertex stands for interconnected functional groups and is

colored according to the pharmacophore type of the representing group. A new

pairwise alignment algorithm (dynamic match search)41 leads to a consistent

topological molecular alignment based on chemically reasonable matching of

corresponding functional groups. On the basis of such alignment, a new tree

(MTree model) combining the information from several input feature trees can

be created. The nodes represent the matches containing the features of the

mapped subtrees, while edges are formed by following the topologies of the

input feature trees. Each MTree node can be color-coded by the degree of its

conservation in active molecules. The authors found that, in a study of a1A
antagonists featuring two aromatic moieties connected by a central linker

featuring a cationic secondary ammonium group, the most heavily conserved

features are, indeed, the cation and the flanking phenyls. This perfectly coin-

cides with a Catalyst-built pharmacophore model – however, the considered

actives are all obvious representatives of this F�NH2
1�F, so that the outcome

could hardly have been different, irrespective of the 2D or 3D nature of the

alignment tool. Virtual screening for angiotensin converting enzyme (ACE)

inhibitors, either based on the feature trees of individual well-known inhibitors

or on their consensus tree, employed the similarity score between the feature

tree of a candidate compound and the reference and returned excellent

enrichments and allowed the retrieval of topologically diverse ‘‘seeded’’ hits. In

some cases, enrichments better than the ones obtained by Catalyst-based 3D

pharmacophore screening were obtained – probably a consequence of either

active compounds not having the hypothesis-fitting conformer included in their

representative conformer families or inactive compounds fortuitously folded

such as to match the hypothesis. Also, note that the Catalyst pharmacophore

51Topological Pharmacophores



hypotheses did not incorporate excluded volume information. The MTree

approach does not explicitly account for exclusion zones either, but, since it is

based on similarity scoring, candidates much larger than the template

hypotheses, thus at risk of clashing against the site wall, will be implicitly

discarded as dissimilar even if they include the template as a substructure.

MTree models are per se not ‘‘conceptually equivalent to topological phar-

macophores’’, as the authors claim, but rather conceptually equivalent to the

above-mentioned hypermolecules. They represent a fusion of nodes seen in

training set compounds – some conserved in many molecules, other occurring

less often. To generate a topological pharmacophore out of an MTree model,

node weights should be introduced to account for the relative occurrence of

each node within actives, by contrast to inactives – as pointed out by the

authors in the perspectives section.

2.3 Topological Pharmacophores from Pharmacophore
Fingerprints

Recently, a plethora of topological pharmacophore fingerprints, binary presence

indicators or fuzzy population level counts of pharmacophore-typed atom

pairs20,25,31,42,43 or triplets23,30,44 have been developed. Typically, topological

pharmacophore build-up consists of several steps: molecule import, standardi-

zation (counterion deletion, ambiguous bond order fixing, hydrogen atom adding/

deletion, etc.) and topological analysis (calculation of the shortest-path topolo-

gical distance matrix). Eventually, pharmacophore typing of the atoms/functional

group is undertaken and the feature pairs or triplets are detected and classified

with respect to topological separations and pharmacophore types. Notably,

although topological pharmacophore fingerprints are being thought of as con-

ceptually different from fragment counts, the borderline between these two key

categories is not as sharp as it seems. In fact, 2D pharmacophore fingerprints can

be obtained45 by means of a SMARTS46-driven generic substructure search

procedure and the pharmacophore patterns counted by each element of the 2D

pharmacophore fingerprint are generic ‘‘wildcard-matching’’ fragments. For

example, the expression ‘‘Hp’’B*B*B*B‘‘HA’’, where ‘‘Hp’’ and ‘‘HA’’ would

be generic SMARTS definitions for ‘‘hydrophobes’’ and ‘‘acceptors,’’ respectively,

matches any hydrophobe-acceptor pair separated by four bonds – a typical

CATS42 term. Technically, the choice of SMARTS-driven pharmacophore

detection is quite powerful, for it may implicitly allow for any arbitrary degree of

refinement of pharmacophore type definitions (e.g., donors and acceptors cate-

gories may be split into finer subtypes) without having to modify the software.

2.3.1 Topological Pharmacophore Pair Fingerprints

One of the most widely used pairwise descriptors, CATS42 (Chemically

Advanced Template Search), represents counts of the 150 different atom pair
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types defined as the combinations of five considered pharmacophore features

(HA, HD, PC, NC and lipophilic¼Hp+Ar), times ten monitored shortest

path distance values (1–10 separating bonds). The same principle holds for all

pairwise pharmacophore fingerprints: differences occur only in terms of the

explicitly considered pharmacophore types (a distinction between Hp and

Ar may be considered30,32), in terms of applied pharmacophore typing rules (in

ref. 43, for example, tertiary amino groups are, by contrast to primary or

secondary ones, not considered under cationic form) and in terms of monitored

distance ranges. Although fuzzy counting of pharmacophore patterns was

initially introduced as a means to smooth out noise due to conformational

sampling-dependent 3D distances in 3D fingerprints,25 blurring the borders

between the clear-cut distance categories defined in terms of integer topological

distances appears to be nevertheless beneficial.25,30 It may indirectly account for

the implicit tolerance of receptors that may typically tolerate an insertion/

deletion of a –CH2– group in linkers without dramatic shifts of affinity. The use

of reduced graphs47 represents a further step towards fuzziness, as structural

details are being merged into generic functional groups. Interestingly, the

authors find that in addition to this implicit ‘‘fuzzifying’’ an explicit fuzzy pair

counting strategy may, up to a certain point, still enhance retrieval rates in

virtual screening.

2.3.2 Topological Pharmacophore Triplets

To generate topological triplets, a basis set of reference pharmacophore triplets

is chosen, enumerating all possible combinations of pharmacophore features of

the corners, times all the considered integer edge lengths obeying triangle

inequalities, within a finite range [Emin, Emax]. A basic example for such fin-

gerprints are Typed Graph Triangles (TGT),44 a binary fingerprint monitoring

the presence/absence of each of the considered pharmacophore triangles. A

series of improvements,48 such as allowing for overlapping pharmacophore

types (i.e., allowing functional groups to represent several types – carboxylates

counting both as acceptors and anions, for example) and monitoring triplet

counts rather than binary presence/absence, led to improved performances in

similarity screening. Eventually, the recently developed topological Fuzzy

Pharmacophore Triplets 2D-FPT adopted these improvements and introduced

two more innovations: fuzzy mapping of atom triplets onto basis triplets and

pKa-dependent pharmacophore typing. As a consequence of the former, the grid

of basis triplets may now be spaced, in considering only triangles with edge

lengths being multiples of a user-defined Estep value, controlling the graininess of

2D-FPT. At Estep¼ 2, for example, triplets associated to the elements of the 2D-

FPT vectors are exclusively triangles of even edge lengths. Odd edge length

triplets in the molecules are, however, not ignored: they will partially map onto

several basis triplets of neighboring even edge lengths. In general, each triangle

in the molecule will contribute to the population levels of several similar basis

triplets, allowing for recognition of analogues with spacer group insertions or
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deletions. Total population levels of basis triplets form a sparse vector, the 2D-

FPT descriptor, with non-zero elements corresponding to the basis triangles that

are either present per se or are represented by similar triplets in the molecule.

The second major improvement in 2D-FPT, pKa-dependent pharmacophore

typing, consists of the enumeration of all the significantly contributing proto-

nation states at a given pH, according to predicted49 pKa values of ionizable

groups. The molecular 2D-FPT is then returned as a population-weighed

average of fingerprints of considered protonation states. Rule-based flagging

considers the protonation states of functional groups taken out of the molecular

context (therefore, due to the mechanical application of the rule ‘‘secondary

amines are protonated’’ to an ethylenediamino moiety, R1-NH-CH2-CH2-NH-R2

will be flagged as doubly protonated R1-NH2
1-CH2-CH2-NH2

1-R2). By con-

trast, pKa-dependent flagging returns an average fingerprint of the two domi-

nant species R1-NH2
1-CH2-CH2-NH-R2 and R1-NH-CH2-CH2-NH2

1-R2,

with two key differences over the rule-based. First, the pKa-sensitive triplet will

not display any populated triplets featuring a cation–cation edge, as the two

putative cations are never simultaneously present in a same species. It will

therefore be quite similar to the one of R1-NH-CH2-CH2-O-R2 or even R1-NH-

CH2-CH2-CH2-R2, which is good news for medicinal chemists: a piperazine

ring, for example, behaves very much like morpholine or even cyclohexylamine,

while rule-based flagging would suggest significant differences due to an addi-

tional charge.i Furthermore, changes in R1 and R2, including substitutions that

would not make any difference at all in rule-based pharmacophore typing (e.g.,

replacement of a –CH3 group by –Cl, both being hydrophobes), may now

significantly affect the obtained fingerprint if they affect the pKa of the amino

groups, which would trigger a change in relative population levels of the two

main protonated states and, therefore, alter the participations of the respective

fingerprints when calculating the molecular average 2D-FPT.

2.3.3 Similarity Searching with Pharmacophore

Fingerprints – Technical Issues

Prior to a brief discussion of specific applications of topological pharmaco-

phore fingerprints in similarity-based virtual screening, some general remarks

can be made.

2.3.3.1 The Fundamental Flaw of Similarity Searches

Similarity-driven retrieval of (hopefully) active analogs has nothing to do with

actual pharmacophore elucidation. In a certain sense, it assumes that the query

iThis is the reason for the somewhat peculiar decision of ChemAxon to consider tertiary amines, a
group often seen in drugs, as not protonated in their default pharmacophore flagging scheme:
similarity scoring is better off when ignoring charges altogether instead of considering doubly
charged piperazines.
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structure per se is the pharmacophore, as the aim of similarity searching is to

find analogues entirely matching the query pharmacophore pattern. For

example, if the reference contains a carboxylate that played an essential role

during its synthesis, but does not interact at all with the biological target,

pharmacophore-based similarity searching will nonetheless insist on retrieving

negatively charged species. These may contain a tetrazole ring, an elegant

bioisosteric replacement for the useless carboxylate, but miss some unapparent

hydrophobe that is actually responsible for most of the binding free energy of

the reference. The similarity search results will be disastrous, but neither

descriptors nor search metric should be blamed – the problem is having used a

‘‘holistic’’ approach, not making the distinction between the overall pharma-

cophore pattern and the actual binding pharmacophore. Certainly, in the

absence on any additional SAR data, overall similarity is the only rational

choice, and its intrinsic risks need to be accepted. If analogues having both a

carboxylate and the key hydrophobe would have been present in the database,

they would have been ranked at the top of the list. Analogues containing the

hydrophobe but not the –COOH may well be returned, but rank lower than the

inactive acids missing the hydrophobe (negative charges are much rarer than

ubiquitous hydrophobes, so that their insertion/deletion in a structure will

typically have much more impact on the fingerprints than the insertion/deletion

of one ethyl group among many others).

2.3.3.2 Knowledge-enhanced Similarity Searching:

A Workaround

It is possible50 to perform knowledge-enhanced pharmacophore fingerprint-

driven similarity searching, by assigning higher weights to the fingerprint ele-

ments that specifically code for the patterns involving the functional groups

actually interacting with the site. In the cited publication, these groups were

pinpointed by looking at experimental X-ray structures, but in principle they

could also be inferred by machine-learning driven pharmacophore elucidation

(see below). The weight-biased similarity search still behaves much more like a

traditional similarity search (NB this still is a topological pharmacophore based

similarity search – the only 3D information being used to determine the weights

of fingerprint elements), in the sense that the holistic matching of the entire

pharmacophore pattern of the query is being aimed at. However, failure to

match the highlighted groups would result in higher penalty scores – in terms of

the example mentioned in the previous paragraph, analogues containing the

key hydrophobe but not the carboxylate would now be made to rank higher

than the inactives with carboxylate and no hydrophobe. Unsurprisingly, the

authors achieved significant increases in performance upon the introduction of

knowledge-based weighing. In fact, such a hybrid method regroups both

advantages of pharmacophore hot spot matching and of similarity searching.

Discarding the reference compound moieties that are not directly interacting

with the site, i.e., going for ‘‘pure’’ pharmacophore hot-spot matching might
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not necessarily be a good idea, for it may open the door to many false positives

that are too large or structurally too different to actually bind. Keeping

an intrinsic holistic similarity component in the score implicitly amounts

to checking whether the candidates matching the hot spots are within the

applicability domain51 of the method. Of course, the X-ray structure of

the active site with a co-crystallized ligand is mandatory for the approach,

so the direct use of docking52 methods could be preferred, in view of the fact

that the similarity search would discard any actives adopting different binding

modes, whereas docking has at least a theoretical chance of picking them up.

The authors, however, showed that quick similarity-based filtering still retrieves

enough chemically diverse candidates, so that it can be used as high-throughput

filtering before actual docking of passing candidates.

2.3.3.3 Similarity Metrics Should take Descriptor Nature

into Account

Typically, the metrics53 used for pharmacophore fingerprint-based virtual

screening are the same universal distance functions used in conjunction with any

arbitrary descriptor space. However, pharmacophore descriptors (or, for that

matter, fragment descriptors,54 to which the present discussion applies as well)

are not real numbers on an arbitrary scale, but presence indicators or, even

better, counts of actual patterns in molecules. In a descriptor space defined, for

example, on hand of topological and 3D whole molecule indices, two molecules

m and M with low Balaban index values b are, in fact, as ‘‘similar’’ as two

molecules having high Balaban index values. It therefore makes sense to rely on

the difference [b(m)� b(M)] in similarity scoring – to estimate an Euclidean

distance, for example. With pharmacophore descriptors p, the situation is dif-

ferent: a pharmacophore pair or triplet that is seen to occur in both m and M

� p(m)¼ p(M)4 0 – is, indeed, an indicator of similarity. However, p(m)¼
p(M)¼ 0 is clearly a less stringent indicator of similarity – all that can be said is

that m and M are not different in terms of p, but it would be an overstretch to

claim that shared absence of something should count as a common point. Fur-

thermore, p(m)ap(M) is synonymous for dissimilarity, but [p(m)¼ 0, p(M)¼ 1]

is a different situation than [p(m)¼ 4, p(M)¼ 3] – one pattern more or less with

respect to the three already present is not on equal footing with the fundamental

transition from absence to presence. Therefore, it makes little sense to base

pharmacophore dissimilarity calculations on p(m)–p(M). Euclidean distances25

were found to be weak performers in Neighborhood Behavior (NB) studies with

pharmacophore descriptors. They are prone to size artifacts: a random pair of

small molecules is guaranteed to have low Euclidean distances because p(m)¼
p(M)¼ 0 for all but very few of the features p in the fingerprint. Complex

molecules have, in contrast, many populated features. Therefore, in a pair of

similar complex molecules most of these will be present in both, but those few

that happen not to be shared may yet be more numerous than the sum of features

(overlapping or not) found in a pair of small compounds. In consequence, a
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similar pair of complex compounds may score higher Euclidean distances than a

pair of completely unrelated small molecules. Correlation coefficient-based

scores seem to perform much better as far as pair descriptors are concerned –

most of the studies that will be mentioned below bear witness to this. Triplets,

however, may form a much too large and sparse fingerprint to be properly

handled by classical metrics: their NB can be significantly enhanced upon

introduction of tailor-made metrics30 that acknowledge the different impact of

shared absence vs. shared presence of triangles. This topic was never directly

addressed in the context of pairwise 2D pharmacophore fingerprints, or fragment

descriptors. Recently, pharmacophore fingerprints have been increasingly used

as more or less sophisticated kernels in Support Vector Machine55,56 learning.

Pharmacophore kernels were introduced as classical kernels based on standard

similarity scoring formulas, to be used in connection with pharmacophore fin-

gerprints. However, kernels specifically tuned to account for the peculiarities of

pharmacophore pattern information are yet to be developed. Self-organizing

maps are another interesting alternative57,58 to classical similarity searching with

2D pharmacophore fingerprints.

2.3.3.4 What can be Really Learned from Virtual Screening

Simulations of Seeded Databases?

All articles introducing novel topological pharmacophore fingerprints validate

their methodologies by typical virtual screening studies such as similarity-driven

retrieval of hidden actives in seeded databases. It is, however, for various rea-

sons, difficult to extract any strong general statements concerning an absolute

utility scale of topological pharmacophore vs. fragment-based fingerprints. A

key problem therein is the nature of the involved compound sets: used references

(query compounds, in virtual screening terminology), hidden analogues (some-

times referred as ‘‘the needles’’) and the decoy compounds (‘‘the haystack’’). If

the queries and the ‘‘needles’’ belong to a same series of analogues, whereas the

‘‘haystack’’ is a large diverse more or less drug-like database, virtual screening

will be successful with both pharmacophore and fragment-based fingerprints.

Take a series of 200 analogues around a common scaffold, half of which are

actives, and a haystack of 10000 random compounds. Depending on the part of

the molecule represented by the scaffold (i.e., the fraction of functional groups

tied to the scaffold, and therefore conserved throughout the series, by contrast to

the varying ‘‘ornaments’’ seen in specific compounds only), all these molecules

will display some potentially significant degree of overlap of both their fragment

thesaurus and their pharmacophore pattern. If the substituents tend to be

relatively small with respect to, say, a common benzodiazepine ring system, there

may be an upper bound concerning the fragment-based dissimilarity scores

within the series (no matter what small ‘‘ornaments’’ are entered, the scaffold is

so large that it always contributes say 80% of fragments, and those are shared

throughout the series). However, there is no upper bound in terms of the

pharmacophore-based dissimilarities within the set: pharmacophore features
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carried by the scaffold are here to stay, but small ‘‘ornaments’’ may significantly

alter the pharmacophore landscape. Insertion of ammonium groups and/or

carboxylates would not dramatically disturb the fragmentation scheme, but

highlight many of the previously absent cation and anion-involving feature

combinations. Pharmacophore fingerprints are combinatorial, i.e., adding a

novel feature to a context already including t other types will highlight t novel

pairs (grafting a carboxylate onto a hydrophobic scaffold will only highlight Hp-

NC pairs, whereas many more – HA-NC, HD-NC, PC-NC – will spring into life

if the same –COOH is grafted on a highly functionalized compound containing

acceptors, donors and cations). Supposing that the ‘‘haystack’’ does not contain

any representatives of the considered scaffold, the 200 actives and inactives of

the seeding set will be ranked at the top of the list by any fragment-based

screening. This means that the selected top 200 would include 100 actives,

whereas in the unsorted haystack 10200 compounds would have to be tested

before retrieving the same 100 actives. This amounts to a huge enrichment score

of (100/200)�(100/10200)�1¼ 51, which is, however, not attributable to any

‘‘predictive power’’ of the approach (a simple substructure query of the nude

scaffold would have lead to exactly the same results – therefore, beware of taking

high enrichment factors for intrinsic proofs of the predictive power). With

pharmacophore fingerprints, results may be less straightforward if the haystack

contains original scaffolds that are nevertheless compatible with the query

pharmacophore. The caveat here is that these unexpected ‘‘hits’’ are usually of

unknown activities and are by default considered as inactives, thus unfavorably

biasing the enrichment statistics. Scaffold hopping, which is a landmark of

pharmacophore fingerprints, may actually be penalizing in carelessly designed

study cases. Furthermore, another imponderable factor of the virtual screening

success is the ability of the method to discriminate between actives and inactives

from the set. It should be kept in mind that such sets were developed under real-

life constraints in the drug discovery laboratory, not aimed at providing the ideal

set for virtual screening validation studies. If, for example, medicinal chemists

have picked an activity-neutral position to insert various polar groups to

modulate the pharmacokinetic properties, the set will contain many actives with

quite different overall pharmacophore patterns. These will be ranked rather

towards the bottom of the similarity-sorted list. For all these reasons, it is not

astonishing that no absolute goodness score can be defined in Neighborhood

Behavior studies. Virtual screening of ‘‘seeded haystacks’’ should be interpreted

with extreme precaution, and the expectation that in benchmarking the un-

avoidable data set artifacts will similarly skew the results of all the methods – so

that relative comparisons may yet hold – is not automatically granted.

2.3.4 Similarity Searching with Pharmacophore

Fingerprints – Some Examples

Going beyond typical seeded haystack analyses, neighborhood behavior studies

conducted with respect to the set of drugs on the market,59 and based on an
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entire activity panel rather than on a single property,30,60 form a much more

solid basis for benchmarking, but are still not fully exempt of artifacts – note,

for example, the dominance of G-Protein Coupled Receptor ligands and the

associated dominance of the aromatic–cation pharmacophore pattern among

the nowadays marketed drugs. In this context,25 pure topological fuzzy pair-

wise pharmacophore descriptors performed only slightly worse than their 3D

counterparts (all things being equal, except for the average 3D distances from

multiconformational models being replaced by topological distances). This is

consistent with the expectation to see properly (fuzzily) binned 3D distances

to win over topological information. Practically, however, the achieved

improvement in NB may not compensate for the additional effort of 3D

buildup and conformational sampling. Both 3D and 2D fuzzy pharmacophore

pairs dramatically outperform 3D bitwise 3-point descriptors, which are sen-

sitive to geometry artifacts to the point of failing to recognize obviously similar

pairs of compounds because of 3D build-up differences.

Alternatively, topological pharmacophores were thought to be potentially

helpful in classification studies, aimed at discriminating between some more

or less well-defined compound category and the rest of the world (drugs vs.

non-drugs,61 natural vs. synthetic compounds62 or G-Protein Coupled

Receptor GPCR binders vs. non-binders58). Such studies unavoidably lead

to fuzzy discussions and conclusions – the more nebulous the employed

classification criterion, the less meaningful the study. While the difference

between synthetic and natural products is mainly a question of complexity

(but also, to some extent, a matter of latest ‘‘fashionable’’ organic synthesis

routes), the discrimination between GPCR binders and non-binders is

expected to rely on some objective structural patterns. The cited58 study

found a slight advantage of the in-house dictionary-based fingerprint Acte-

lionFP over topological two-point pharmacophore fingerprints, but sheds

little light on the underlying reasons. Nothing is told about the actual com-

position of the GPCR binder sets: what percentage of bioactive amines did it

contain? A significant excess thereof can be safely assumed, as these dominate

the pool of currently marketed drugs, while inhibitors of peptide-binding

GPCRs are sparse. Are we then simply witnessing a correct recognition of the

bioactive amine pattern, and are the more ‘‘exotic’’ GPCR ligands the mis-

classified ones? If so, it is not astonishing to see the dictionary-based

approach scoring better than the topological pharmacophore: the dictionary

terms were well chosen – but how? The pharmacophore-based method may

be confused by the presence of the typical aromatic–cation pair of bioactive

amines in decoy structures (which were labeled inactive because they were not

designed as GPCR ligands – but not strictly disproved not to have some

affinity for such targets). Certainly, the practical importance of the work

should not be minimized – the main message is that supplier libraries can be

analyzed in terms of their propensities to contain GPCR hits. It should,

however, not be regarded as a benchmarking study and its conclusions should

not be presented out of context, as general statements about relative

descriptor quality.
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More general studies might require access to large big-pharma corporate

databases (which are still far from ideal environments, given their fair share of

historical bias). The truth is that incontestably unbiased benchmarking studies

would need to involve a significant fraction of the ‘‘universe’’ of drug-like

molecules, and it is impossible to set up any training set that represents a sig-

nificant fraction out of allegedly 1056 compounds. Without denying the

importance of benchmarking, all sources of bias notwithstanding, the chemical

meaningfulness of fingerprints may sometimes intuitively be evidenced from

specific observations, rather than overall performance scores. For example,30

specific pairs of strikingly similar compound pairs with nevertheless diverging

biological activities were proven not to be as similar as typical rule-based

pharmacophore descriptors might suggest (or, for that matter, not as similar as

medicinal chemists may guess, at a first glance). These ‘‘activity gaps’’ found in

many classical SAR landscapes no longer show up as discontinuities in the 2D-

FPT mapping of activity space, due to the explicit accounting for pKa shifts in

pharmacophore typing (Section 2.3.2).

Eventually, the ultimate judge of molecular descriptors is not being the best in

benchmarking but having practically contributed to the discovery of new

compounds. Logically, 2D pharmacophore fingerprints were typically employed

as quick and effective means to perform scaffold hopping32,63,64 and/or bio-

isosteric replacements65 in virtual screening or de novo drug design.66 A typical

similarity screening example42 based on CATS is depicted in Figure 2.1. The two

isofunctional compounds (T-channel blockers) both feature the same global

pharmacophore pattern: two aromatic systems (one including some polar

groups) separated by a flexible aminodialkyl linker. Although there is significant

variance within the aromatic terminal groups, the overall pharmacophore

pattern – and the activity – was conserved. Notably, however, chemotypes with

flexible linkers spanning two rigid ends are most likely to perform well in

topological pharmacophore-based similarity screening. These fingerprints

would also return flexible linker analogs by ‘‘opening’’ rigid cyclic systems in

Figure 2.1 Typical example of scaffold hopping, obtained by similarity screening with
CATS descriptors. Starting from the left-hand reference T-channel blocker
mibefradil, the right-hand compound clopimozid, a submicromolar
T-channel blocker, is found among the 12 top ranking analogs.
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active references – and probably lose the scaffold-hopping ‘‘bet’’, for the initial

rigidity is likely to be a paramount contributor to activity. Reversely, they may

come up with rigid analogs of the flexible query compounds – with potential

benefits, but significant risks: if the substituents in the rigid analogs are oriented

compatibly with the active site, activity will dramatically increase. Otherwise,

analogs will be plainly inactive. Starting from a flexible central linker and

sticking to that pattern (introducing modifications of the extremes) is certainly

the failsafest scenario in ‘‘scaffold hopping’’. 2D pharmacophore pattern simi-

larity of topologically different structures is necessary, but not sufficient, to

ensure activity similarity. Therefore, ‘‘scaffold hopping’’ is always a risky

undertaking – however, topological pharmacophore similarity is nevertheless

the most rational manner to address the problem. Perhaps (that is certainly,

except that negative results, not being published, are not at hand to substantiate

this claim) most of the scaffold hopping attempts using 2D pharmacophore

fingerprint similarity are bound to fail due to wrong stereochemistry, despite

conserved pharmacophore pattern. Considering 3D models of rigid scaffolds is

very likely to improve the success rate of virtual screening (if the 3D modeling is

performed properly – the likelihood of which is inversely proportional to the

sizes of the compound libraries to be screened). Conversely, the random alter-

native of blindly choosing scaffolds with neither correct stereochemistry nor

conserved pharmacophore pattern is certainly bound to fail. Therefore, using

2D pharmacophore fingerprints for scaffold hopping certainly represents an

advantageous performance/cost tradeoff – one excellent example being the

retrieval of completely original 5-lipoxigenase inhibitors.67

Interestingly, but not surprisingly, the Euclidean metric is found to be the top

performer in the quest for bioisosteric replacements65 based on a fuzzy binary

2D pharmacophore fingerprint. In this specific context, focused on the

description and comparing of pharmacophore patterns within functional

groups rather than in whole molecules (a specific ‘‘attachment point’’ dummy

feature being considered to situate the free valences of the fragments in the

context of their pharmacophore features), size artifacts as mentioned in Section

2.3.3 will not occur. Bioisosteric substitutions suggested by this approach were

shown to make chemical sense (e.g., aminoisoquinolines as a replacement for

benzamidines in thrombin inhibitors).

2.3.5 Machine-learning of Topological Pharmacophores

from Fingerprints

Machine learning can be used to select or weigh specific pharmacophore ele-

ments from a fingerprint, to improve the predictive power of the model, in letting

it focus on the actually important patterns in the ligands and ignore unbound

ligand moieties pending out into solvent (recall discussion in Section 2.3.3).

An intermediate between similarity searching and descriptor-selection based

QSAR, self-organizing maps68 (SOM), will be mentioned first. SOMs try to

classify a population of individuals (each described by a fingerprint) into a fixed

number of final categories, by assigning to each such category (or ‘‘neuron’’) a
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characteristic fingerprint. Individuals will be assigned to the category that is

most similar in terms of its characteristic fingerprint. Since these characteristic

fingerprints evolve during the training step, their final states may be thought as

‘‘consensus fingerprints’’ of the individuals in each category. As training is

completely unbiased with respect to the properties of the objects to be cate-

gorized, the utility of a SOM only becomes apparent after it has been built: if

objects sharing a certain property are assigned to a same neuron (more often

than randomly expectable) then it may be assumed that any external objects

assigned to that neuron are likely to share that property as well. To resume, a

topological pharmacophore fingerprint-driven SOM performs a similarity-

based screening operation, except that the known actives are not used straight

ahead as queries but are first classified, together with the inactives, into phar-

macophore pattern categories. The resulting categories are assessed with

respect to enhanced likelihood of harboring actives. For those passing this test,

the fingerprints – consensus fingerprints of the predominantly active members

assigned to that neuron, in which activity-favorable features are becoming

enforced and unimportant features down-weighted – will practically serve as

queries to retrieve candidate compounds. In principle, an investigation on

what specific features are being enforced and what others were downscaled

within active neurons may indirectly highlight activity-specific features in

molecules. Although such analysis was (unfortunately) not undertaken by

the authors, a CATS-driven SOM was successfully employed to discover

purinergic antagonists.57

There are relatively few QSAR build-up attempts with 2D pharmacophore

fingerprints in the literature. Some of those focus on the question whether 2D

pharmacophore fingerprints can yield statistically valid models (i.e., whether

they encode the proper chemical information required to explain reversible

binding), and find that this is actually the case.15,45,69 However, analysis of the

pharmacophore pairs or triplets selected in regressions (or entering the model

with high weighing factors, in PLS) may, at least in principle, shed some light

on the actual ligand functional groups involved in direct interactions with the

site. Indeed, it was shown that the (binary topological) pharmacophore triplets

appearing to play an important role in recognition of Cox-215 and respectively

thrombin69 inhibitors closely match functional groups seen to effectively par-

ticipate in binding. Unlike in linear regression-based QSAR, where the coeffi-

cients fitted for the entering descriptors are a directly accessible measure of their

relative importance, SVM models15 are ‘‘black boxes’’ that do not allow such a

straightforward analysis. This notwithstanding, the importance of each triplet

in a molecule was calculated by comparing the predicted activity in the real

compound, with the triplet ‘‘on’’ to the prediction that would have be obtained

if the triplet were set to ‘‘off’’. Then, individual atom weights are determined as

the average of the above-determined importance of all the triplets containing

the atom. The procedure raises a series of problems, since bluntly turning a

triplet ‘‘off’’ may not necessarily make physical sense: to assess the role of an

atom on the activity, one should perhaps simultaneously switch off all the

triplets involving that atom – in a nonlinear SVM model, this is not the same as

switching the triplets off one at a time. Furthermore, fingerprint degeneracy
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(which ‘‘haunts’’ regression-based pharmacophore fingerprints models as well,

see below) may complicate a lot of the interpretation of the models. In this

binary context, the issue is particularly sensitive: if a pharmacophore triplet is

embodied by several distinct atom triplets in a molecule, what exactly is

switching off supposed to mean? Despite these numerous issues related to SVM

interpretability, the fact is that apparently correct site-ligand anchoring points

could be successfully highlighted. As the authors point out, the SVM-derived

information is far from accounting for all the subtleties of Cox-2 binding (in

fact, the extraction of a Cox-2 pharmacophore is a relatively easy challenge,

since Celecoxib analogues are tightly bound and virtually completely buried

into the active site – so it is difficult to find a moiety that actually does not

interact17). Also, some bias induced by the peculiar make-up of the training set

can be seen to affect the highlighted pharmacophore. Furthermore, the authors

have also successfully employed the same methodology for thrombin inhibitor

pharmacophore extraction, which is a more difficult problem than Cox-2.

In a recent69 benchmarking exercise involving 13 typical QSAR training sets

from the literature, fuzzy topological pharmacophore triplets (2D-FPT) were

shown to fare extremely well, outperforming not only 2D and 3D-index-based

models, but also the elaborate, overlay-based CoMFA approaches. The bio-

logical property less well handled by pharmacophore triplet models is, unsur-

prisingly, the heme alkylating activity of artemisinin analogues, the only

studied property not reflecting a reversible non-covalent target inhibition

process. Topological pharmacophore triplets are thus information-rich and

relevant descriptors of site-ligand recognition processes. The study of optimal

2D-FPT fuzziness highlighted the problem of 2D-FPT degeneracy, which may

be of serious concern in descriptor selection-based QSARs (much more so than

in similarity scoring), although pharmacophore triplets suffer much less from

this problem than pair-wise descriptors.

Nevertheless, the topological pharmacophores defined by triplets enter-

ing 2D-FPT models are not necessarily representatives of ligand-site anchoring

points. This work highlighted the very limited scope of typical QSAR train-

ing and validation sets, showing many situations where the successful QSAR

fitting and validation relied on family-specific idiosyncrasies. A clear symptom

of training set limitations consists in set-specific artifacts gaining the upper hand

over pKa-related effects: the best performing pharmacophore flagging scheme

was often the one best exploiting some set-specific coincidence, not necessarily

the one based on physicochemically sound ionization states. Furthermore, the

work depicted antipharmacophores (selections of unwanted features) to be one

more warning signal of poor training set diversity. Thrombin models with

excellent validation performance (against an external set, issued, however, from

the same structural family) turned out to be pIC50 (bigger values mean stronger

affinity) predictor equations with very high intercept values and penalties for the

presence of certain triplets specifically encountered in inactives. This makes

sense from a machine learning point of view: presented with a homogeneous

series of inhibitors based on a common scaffold, the system may assume inac-

tivity ‘‘by default’’ and pick features that are positively correlated. Equivalently,

it may as well assume all molecules to be active (all the molecules the learning
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agent knows about contain the activity-relevant scaffold!), and pick features

likely to specifically decrease activity scores for those that are not. The latter

approach, however, produces meaningless models from a chemical point of

view: they return the plain intercept value (of up to 9 pIC50 units) for the alleged

nanomolar thrombin inhibitor H2O, which obviously contains none of

the antipharmacophore triplets contributing activity decrements. In principle,

the mere presence of a pharmacophore element or fragment somewhere in the

molecule cannot be held responsible for a drop in activity, unless it is intimately

interwoven with the binding moieties. Alternatively, a fingerprint descriptor

merely states whether a given pair or triplet is populated, not where it lies.ii It is

in principle possible to design an active compound core to which the alleged

antipharmacophore is connected through a spacer, harmlessly pending in the

solvent (unless it includes charged groups, while the target generates a long-

range electrostatic potential blocking its access to the site neighborhood).

Therefore, equations based on pharmacophore (or, for the matter, fragment)

pattern counts should avoid including negative contributions. This can be

achieved by adding chemically diverse alleged inactives to the training set, which

also have the merit of forcing the system to learn structural elements of the

conserved scaffold (otherwise, essential scaffold-typical features, present in all

training molecules, actives and inactives alike, might finish up as a fully useless

constant fingerprint column in the activity-descriptor table). Under these cir-

cumstances, topological pharmacophores extracted from the models could be

successfully matched with reported thrombin site–ligand interaction hot spots.

All in all, the question of whether selected triplets match actual binding phar-

macophores turned out to be, primarily, a matter of training set diversity. 2D-

FPT may lead to valuable QSAR models, provided the training set diversity is

sufficient to force the learning of key features, not of secondary pharmacophore

signatures that serendipitously reflect subsets locally enriched in actives. If this is

the case, the applicability range of such models may extend over several che-

motypes – and may even go beyond expectations if the targeted active site offers

alternative models to accommodate a topological triplet.

2.4 Topological Index-based ‘‘Pharmacophores’’?

Arguments in favor of QSAR studies systematically included the claim that the

models may help in elucidating ligand binding mechanisms. Unfortunately,

recent results reveal that this is unlikely to be the case, unless draconian

standards in terms of training set diversity and size are being fulfilled. Even in

the presence of enlarged data sets, and benefiting from:

� inclusion of a vast majority of published actives and thousands of

experimentally certified inactives;

iiThat information may be implicitly coded by other pairs or triplets that involve the end points of
the monitored element, but is difficult to extract and analyze in fingerprint-based QSARs.
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� a reputedly easy-to-model target (Cox-2);

� full-blown three-dimensional pharmacophore descriptors and model

building tools that lead to excellent statistical validation criteria (margin-

ally better than training values) and an outstanding ratio of 6 explaining

variables for two thousand explained data points.

the extracted pharmacophore models made sense only for Cox-2 (-coxib-like)

inhibitors, but did not fit at all the Cox-1/Cox-2 unspecific inhibitors (despite

the fact that their activity values were properly predicted).17 Therefore, claims

that QSAR-derived conclusions are mechanistically relevant should be

endorsed with extreme caution. With this in mind, a skeptical stance is strongly

advised as to whether relevant pharmacophores can be obtained from QSAR

modeling with standard topological descriptors (TIs), bypassing the pharma-

cophore fingerprint-specific graph coloring step by pharmacophore features.

We failed to find any convincing example thereof in the literature, but retrieved

many counter-examples of heavily overinterpreted models instead. For exam-

ple, a QSAR study70 of 24 benzodiazepine derivatives with anti-Alzheimer

activity allegedly solved the pharmacophore responsible for this activity –

thought to consist of the two phenyl rings A and B in Figure 2.2.

This conclusion has been derived on the basis of QSAR models using elec-

trotopological state atom indices (ETSA) for each of the numbered atoms of

the common scaffold of the series. Atoms from the substituents are being

implicitly accounted for, through the perturbing influences they exercise on the

ETSA values of the numbered atoms. There are several obvious reasons why

Figure 2.2 Common scaffold, with standardized numbering of atoms for which
electrotopological state atom indices (ETSA), sensitive to the perturba-
tions induced by the substituents R1–R5, were calculated and used in
QSAR modeling. The study overhastily concluded that phenyl rings A
and B must be part of the pharmacophore, explaining anti-Alzheimer
activity, because the QSAR study picked the average ETSA values of the
atoms within the rings as key descriptors.
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the pharmacophore elucidation claim can, to put it mildly, be suspected to be

an overstatement:

� The authors have found alternative equations of comparable quality,

involving either ring A or ring B, but never both rings at the same time. If

both rings were mechanistically involved they should both enter the model.

� The authors basically claim that the substituents involved modulate the p

electron densities of the considered phenyl rings, which in response form

more or less strong stacking interactions with some aromatic protein

residues. That might sound plausible as far as ring B is concerned, but no

inductive effect of reasonable strength should be felt by ring A, from any of

the considered substituents. Of course, ETSA calculations implicitly cap-

ture some very weak ‘‘inductive effects,’’ propagated as inversely propor-

tional to the square of the topological distances. QSAR model build-up is,

per se, not at all concerned with the strength of the perturbations – it is

enough if ETSA scores show some non-zero variance, for this can be

arbitrarily amplified by multiplication with a large fitted coefficient. The

biological receptor, however, is not working as an amplifier of minute

electron density fluctuations, to achieve expected modulations in activity.

Note that, on an absolute scale, the coefficients fitted for ring A con-

tributions are one order of magnitude greater than the one associated to

contributions from B. It may be that the pocket binding A has a preference

for electron-enriched rings, while the B-binding one prefers electron-

depleted phenyls (hence explaining the different signs of the respective

coefficients), but it is difficult to believe that their relative sensitivity to ring

electron density fluctuations may differ by one order of magnitude.

� Note that any numbered atom within the scaffold contributes a constant

ETSA increment with respect to all the other scaffold atoms, throughout

the series. As a consequence, their direct involvement in binding cannot be

addressed by the method. The importance of rings A and B has not been

deduced from first-order evidence – there is no example showing what

happens if either of them is deleted or replaced. They were singled out

because they reflect the perturbations seen elsewhere in the structure in a

way that happens to correlate with activity. The numbered reference nodes

used to locally probe ETSA perturbations feel differently weighted con-

tributions from the varying substituents R1–R5, because of differing sets of

separating topological distances. With such a small data set of only 24

members, at least some of the scaffold atoms appear to be ‘‘properly’’

placed, in the sense that the peculiar interplay of substituent group elec-

tronegativities and separating topological distances lead to final ETSA

values that match activities. Data scrambling tests should have been per-

formed to discard the hypothesis of such chance correlations.

� Conversely, suppose that the R groups themselves interact with the site.

Unfortunately, the model could not monitor this – only indirectly (if at all)

by means of the perturbations the R groups cause at the level of the

reference atoms. In other words, the model is ‘‘prejudiced’’ in the sense that
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it will compulsory design the ‘‘culprits’’ for the incriminated activity

among the numbered reference vertices – even if the actual responsibles are

elsewhere in the molecule.

2.5 Conclusions

Binding pharmacophores are three-dimensional models of ligand–site key

interactions, and represent an arguably simplistic, but intuitive and effec-

tive, way to rationalize the search for novel active organic compounds in

drug design. Since, however, modeling of ligand geometries is, in many

respects, a bottleneck in modern day computer-aided drug design (computa-

tional effort, accuracy, uncertainty regarding the bioactive conformer, repro-

ducibility of geometries obtained by stochastic methods, etc.) various

chemoinformatics tools and applications emerged, approaching the pharma-

cophore problem from a purely topological perspective. These are the main

topic of this chapter.

2.5.1 How Important is 3D Modeling for Pharmacophore

Characterization?

In many respects, these methods rely on the central working hypothesis that

actual geometrical distances used by their 3D counterparts can be replaced by

the interatomic topological distances (i.e., the number of interposed bond on

the shortest path connecting two atoms). In many situations, this working

hypothesis is remarkably fruitful and the performance of topological phar-

macophore fingerprints in various benchmarking studies was shown to be

comparable or sometimes superior to the that of their 3D counterparts. It is,

however, not easy to come up with some general statements about how much

information is lost when choosing a topological approach over its three-

dimensional counterpart. There no questioning whether a loss of information

does occur – if the 2D method performs better then it may only be because of

specific shortcomings of the competing 3D approach. To our knowledge there

is only one report25 of a direct comparison of 3D multiconformational models

(with their implicit drawbacks) against topological ones, all other things being

strictly equal in the fingerprint setup. Most of the literature is concerned with

comparisons of 2D approaches with fully unrelated 3D methods (docking,

Catalyst hypotheses, etc.), so there can be no interpolation of the exact impact

imputable to approximating geometry by topology. Furthermore, the multiple

and unavoidable sources of bias in the benchmarking data sets seriously limit

the generality of the conclusions that can be drawn from such comparative

tests. However, topological pharmacophore-based approaches are likely to be

state-of-the-art performers in drug design, unless applied to problems where

stereochemistry is known to be a primordial issue (rigid ring systems with

strictly oriented terminal groups, chiral centers, etc.).
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2.5.2 2D Pharmacophore Fingerprints are Mainstream

Chemoinformatics Tools, whereas 2D Pharmacophore

Elucidation has been Rarely Attempted

Following the classical distinction between overlay-based and overlay-inde-

pendent (fingerprint-based) 3D modeling techniques, this chapter has followed

the same classification to monitor the typical topological pharmacophore-

derived techniques. It has been shown that purely topological considerations

(atom-to-atom mapping techniques) can be successfully applied to pilot

molecular superimposition processes, but actual 3D alignment remains by far

the one preferred by medicinal chemists, over the computationally feasible but

much less readable 2D alignment of putative ligands. 2D alignments of phar-

macophore feature trees were shown to yield a chemically reasonable estima-

tion of molecular similarity, but were not (yet) used for pharmacophore

elucidation.

Clearly, overlay-independent approaches are the dominant trend in topolo-

gical pharmacophore modeling, with similarity search-based applications lar-

gely outnumbering machine learning-based modeling studies. Of these latter,

very few address the issue of the relevance of the highlighted key features

(topological pharmacophore) compared to known 3D binding modes. While

2D pharmacophore fingerprints are now main-stream technology, attempts to

highlight binding pharmacophores on a purely topological basis are rare.

Although the pertinent papers were largely successful at pinpointing mechani-

stically relevant groups in inhibitors of known binding modes, and clearly

showed that training set richness and diversity may be much more important

for successful elucidation than the actual use of 3D geometries instead of

topological distances, binding pharmacophore extraction is still perceived as

the typical 3D chemoinformatics application.

Various implementations of topological pharmacophore fingerprints

have been proposed in terms of considered multiplets (pairs, triplets), phar-

macophore flagging strategies (based on various chemical common-sense

rules or, alternatively, on predicted ionization states at given pH) or population

level monitoring (binary, multiplet counts, fuzzy multiplet counts). None of

these may claim absolute advantages in terms of relative neighborhood

behavior (i.e., the extent to which they verify the similarity principle), for

no exhaustive benchmarking study has ever compared all of them, under

identical conditions. Reports of various authors seem to agree that a certain

amount of fuzziness enhances scaffold hopping performance, while too

much tends to ‘‘blur’’ the query structures to the point where almost any

candidate may match. Also, an accurate assignment of ionization states when

flagging the donors, acceptors, cations and anions may be able to explain

otherwise surprising activity cliffs, involving pairs of almost identical com-

pounds (except for an intuitively unobvious shift of a ionization constant,

leading to different proteolytic behaviors that may well explain the unexpected

activity differences).
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Machine learning (using both linear and nonlinear techniques) with topo-

logical pharmacophore fingerprints was shown to be largely successful in

explaining binding affinities for various QSAR series – at least as successful as

elaborate 3D modeling techniques. However, training set-related bias was seen

to play a paramount role in QSAR build-up based on congeneric series, so that

none of these studies can be used to derive any general scale of QSAR-building

propensities for the various 2D pharmacophore fingerprints, in the context of

other molecular descriptors. A good point for 2D pharmacophore fingerprints

is their straightforward interpretability, which allowed the particular flaws of

the studied training sets to be pinpointed easily. For example, activity models

largely based on ‘‘antipharmacophore’’ contributions (penalties for the pre-

sence of allegedly unwanted pharmacophore features) should be rejected unless

one has good physicochemical reasons to explain why the presence of these

features is incompatible with activity.

2.5.3 Each QSAR Problem should be Allowed to Choose

its Descriptors of Predilection

The choice of descriptors may be, in itself, relevant to pharmacophore eluci-

dation – if founded on an information-rich training set.

A general conclusion emerging from this study is that all the exploratory work

concerning descriptor-based structure–activity relationships is split over a ple-

thora of more or less biased data sets and therefore does not lead to any

objective, general recommendations concerning the rational choice of descrip-

tors for a given context. It has been proven that giving up 3D modeling in favor

of topological description is certainly not synonymous with a dramatic loss in

predictive power, but we cannot advance any solid estimate of the likelihood of

seeing 2D modeling performing either as well or even better. Chemoinforma-

ticians must thus rely on common sense in choosing the proper descriptors to

address a problem. Similarly, are 2D pharmacophore fingerprints better than

fragment-based descriptors? Studies are split on the issue, and typically do not

go into a detailed analysis of the reasons for the different behaviors (which

would likely lead to the insight that the winning descriptors claimed victory due

to a peculiar set-specific artifact). On closer inspection, however, the question as

formulated above makes no sense, since pharmacophore descriptors are nothing

but wild-card matching fragments that may be counted using SMARTS-driven

substructure search. The real question is ‘‘How precise or fuzzy should fragment

definition be?’’ Or, this is obviously a target-specific problem. Suppose that a

target accepts an acceptor-substituted phenyl ring in one of its pockets.

Depending on the exact nature of the interaction and the flexibility of the side-

chain interacting with the donor, there are two extreme scenarios: if the site

donor is a backbone amide 4N–H, there will probably be little tolerance with

respect to steric effects near the acceptor lone pair. Both F-OH and F-OMe

fragments may therefore display different activities and fragment-based

69Topological Pharmacophores



modeling could effortlessly learn the rule. From a topological pharmacophore

point of view, the two analogues are very probably undistinguishable,iii and

fragment-based modeling wins. The drawback of well-defined fragments is that

they do not allow any generalizations at all: the learnt rule ‘‘F-OH is favorable’’

does not allow any extrapolation to F-NH2, F-CH¼O, etc. On the contrary, the

pharmacophore model, having learnt form F-OH that Ar-HA patterns are

favorable, will – rightly or erroneously – adventure to predict that F-NH2 and

F-CH¼O are actives too. Suppose now the opposite scenario, where interaction

occurs with a flexible lysine side-chain cation: a diverse set of acceptor-decorated

aromatics may be accepted and even variable length spacers between the ring

and its acceptor may work. In this case, different species, a pyridyl or F-CH2-

COO�, may count among the actives as well. Now fuzzy pharmacophore fin-

gerprints will have a significant advantage, for the characteristic pharmacophore

signature of all these fragments is now being condensed into very few specific

fingerprint elements (say, a fuzzy aromatic-acceptor counts at three bonds).

Certainly, the fragment-based model may, in principle, learn by allowing all the

specific fragment counts to enter, but the variable-rich resulting model may run

into cross-validation issues. If, for example, there is only one training set

example of an active F-CH2-COO�, that is technically enough to fit a coefficient

for the participation of that fragment, but ‘‘leaving-the-only-example-out cross-

validation’’ makes no sense. In the pharmacophore model, this compound will

be assimilated to one of the many examples with Ar-HA pairs and will effort-

lessly pass leave-one-out prediction tests. The pharmacophore model may

erroneously conclude that F-NO2 derivatives are strongly active as well (if the

flagging rules considered nitro groups as acceptors), whereas in practice the

hydrogen bond accepting propensity of the nitro derivatives only suffices for a

modest affinity level. In this case, a pharmacophore-based general term com-

bined with a nitro fragment-specific penalty would be the ideal answer.

To sum up the preceding discussion, topological pharmacophore models are,

unlike specific fragment-based approaches, able to make chemotype-transcending

generalizations: the acceptor-aromatic pattern can be learned from phenols alone,

and extrapolated to anilines. For fragment-based approaches, anilines would be

outside the applicability domain of the phenol-trained model. The great success

of fragment-based descriptors is very much due to their conservative ‘‘no risk – no

errors’’ character. The pharmacophore model suggesting the ‘‘bioisosteric hop-

ping’’ from F-OH to F-NH2 may be commended for its enhanced extrapolability

if it is right – otherwise, false positives wasting resources on synthesis and testing

are typically a stronger issue than false negatives, representing only a virtual

‘‘missed opportunity’’ out of the 1056 drug-like ligand candidates. In any case,

poor training sets (including only F-OH) will lead to poor models, which are either

iiiExcept when learning from highly biased training sets: if, for example, the inactive –OMe deri-
vatives happen to be the only training set compounds that do not contain any donor at all,
machine learning may pick any donor-related fingerprint element and give it a positive weight,
concluding ‘‘donor is needed (phenyl –OH acts as a donor!)’’ instead of ‘‘do not sterically crowd
the acceptor.’’
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Figure 2.3 Comparative density distribution histograms (on X, bins with respect to the
validation set correlation coefficients R2

V, on Y – percentage of models
scoringR2

V values within each bin) of linear QSARmodel sets obtained with
fuzzy pharmacophore triplets FPT-1 (grid filling), ISIDA fragments (solid
gray) and composite descriptors: FPT and ISIDA mixture, CD (hashed).
Descriptors, the employed Stochastic QSAR Sampler and the three anti-HIV
compound data sets (labeled CU, HEPT and TIBO) have been described
elsewhere.27 The synergy effect of combined fragments and pharmacophores
(histogram shift to the right) is particularly strong within the CU series.



unable to extrapolate (with fragments) or may be technically able to extrapolate,

at the user’s own risk (with pharmacophore patterns). Model mining of rich

training sets, simultaneously including both specific fragments and fuzzy finger-

prints, may, however, allow the procedure to settle for the best target-specific

choices. In this sense, the nature of the chosen descriptors may carry an implicit

message concerning the nature of site–ligand interactions: if data mining selected

fuzzy pharmacophore fingerprint components, then the interaction site is prob-

ably flexible. Conversely, if only certain fragments entered the equations, whereas

others of their isopharmacophoric analogues do not, binding at that specific

anchoring point may be more of a rigid key-and-lock scenario. Potential synergies

between pharmacophore and fragment descriptors are furthermore likely to

ensure improved validation propensities of the QSAR models (see, for example,

Figure 2.3). While ceaselessly repeating the call for high training set diversity

standards, it should also be pointed out that model mining in the context of

several thousands of candidate descriptors, if fragment and pharmacophore

fingerprints are to be merged, does call for some methodological progress as well.

To confirm its credibility, the quest for meaningful binding model extraction from

structure–activity data needs to mature, in moving from artisan regressions on 30

congeneric compounds to aggressive, massively parallel mining of models with

(tens of) thousands of compounds.

Abbreviations

2D-FPT Topological fuzzy pharmacophore triplets

Ar Aromatic

HA/HD Hydrogen bond acceptor/donor

Hp Hydrophobe

NB Neighborhood behavior

PC/NC Positive/negative charge

QSAR Quantitative structure–activity relationships

TI Topological index
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CHAPTER 3

Pharmacophore-based Virtual
Screening in Drug Discovery
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3.1 Introduction

In past years, considerable efforts have been devoted to compacting the early

phase of hit-to-lead development in the drug discovery process within the phar-

maceutical industry. In particular, as combinatorial chemistry and high-

throughput screening failed to show the expected success, in silico-based virtual

screening approaches emerged and largely evolved.1 Several issues related to

efficient search algorithms, but also to library design, to diversity selection, to

drug and/or to lead-likeness assessment arose that were addressed in numerous

papers and some reviews.2–8 In this chapter, we focus on work in the context of

generation and use of pharmacophore models and related methods for mining

virtual compound libraries and on new developments in the field of pharmaco-

phore usage for in silico screening. All these procedures in general aim at

obtaining hits (or leads) that have enhanced likelihoods of leading to successful

clinical candidates by medicinal chemistry efforts. The goal is to reduce the overall
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cost associated with the discovery and development of a new drug, by identifying

the most promising candidates to focus the experimental efforts on.

In many cases, drug discovery projects have reached an already well-advanced

stage before detailed structural data on the protein target has become available.

Even though it has been shown that novel methods of molecular biology toge-

ther with biophysics and computational approaches enhance the likelihood of

successfully obtaining detailed atomic structure information, full elucidation of

the target’s 3D structure often lags behind the first results of screening experi-

ments. A consequence is that medicinal chemists have to develop novel com-

pounds for a target using preliminary structure–activity information, together

with theoretical models of interaction. In such a case, responses that are con-

sistent with the working hypotheses will contribute to an evolution of the used

models. In this context, the chemical feature-based pharmacophore approach

has proven to be extremely successful, allowing the perception and under-

standing of key interactions between a receptor and a ligand on a generalized

level. Such feature-based pharmacophore models together with large 3D struc-

ture databases originating either from commercial vendors, from in-house

compound collections, or from virtual combinatorial chemistry have proven to

be of great value for performing in silico database mining. Successful application

to virtual screening described in recent papers is summarized within this chapter.

3.2 Virtual Screening Methods

In parallel with the widely used high-throughput screening (HTS) technology,

virtual screening (VS) has become an indispensable tool for identifying possible

lead structures.9VS is now established as one of the most important computational

techniques used to discriminate between wanted (presumably active) and unwan-

ted (presumably inactive) molecules within compound libraries. This task has to be

done as early as possible in the drug discovery pipeline to reduce drug discovery

costs. Hristozov et al.10 have recently presented a classification of four different

main scenarios for VS: (i) prioritizing compounds for subsequent HTS, (ii)

selecting a predefined (small) number of potentially active compounds from a large

chemical database, (iii) assessing the probability that a given structure will exhibit a

given activity and (iv) selecting the most active structure(s) for a biological assay.

The different scenarios may require different amounts of data available for model

generation, favor different approaches and require different benchmarking values.

When the three-dimensional structure of the target is unknown, pharmaco-

phore approaches play a predominant role among the compound selection

filters that have been designed for retrieving bio-active molecules. Additional

pre-filtering based upon favorable physicochemical properties necessary for,

e.g., oral bioavailability,11 aqueous solubility, metabolic clearance, and che-

mical reactivity or the presence of toxic chemical groups,12,13 clearly will

enhance the success rate of finding possible candidates for further optimization.

If the target 3D structure is known, docking turned out to be a valuable

structure-based VS method to be applied for successful identification of novel
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bioactive molecules.14–17 However, the biggest and so far unsolved problem of

docking methods remains the scoring of the docked compounds. In fact, the

major weakness of these procedures currently does not lie in the docking

algorithms themselves, i.e., in the ability to find the correct ligand-poses, but

rather in the inaccuracy of the scoring functions that are used to estimate the

binding affinity between ligand and target – including a rough separation

between actives and inactives. Such scoring functions for VS have been ana-

lyzed,18 giving insight into weaknesses and strengths of currently used models

for affinity estimation. A review highlighting the most relevant advances in

docking and scoring has been published recently,19 also indicating that the

major drawbacks still exist. When using pharmacophore models as screening

filters instead of protein 3D structures, affinity estimation is based on a geo-

metric fit of structures to the model. In such a case, the values calculated are

often also far from reality; however, they are useful for filtering possible hits

from non-binding molecules. Moreover, in the pharmacophore fitting proce-

dures, computational demands are considerably lower than when docking

algorithms are applied for VS. This allows the number of compounds to be

processed in a comparable time to be by far higher than even in so-called high-

throughput docking. This advantage becomes even more important considering

the fact that for compound profiling the use of parallel screening on different

targets will become indispensable in the near future.

Apart from the afore-mentioned pharmacophore and docking methods,

other approaches have been successfully applied to VS scenarios: especially at

the early stages of a drug discovery program, where little is known about both

target and ligands, similarity searching is a useful method.20,21 To analyze the

results from a high-throughput screening campaign, consisting of both active

and inactive compounds, various machine learning techniques that can differ-

entiate between the two classes have proven succesfull.22,23

Parallel screening for targets and anti-targets, enabling the prediction of

unfavorable side-effects and therefore allowing some risk assessment in the

early stage of drug discovery, based on different methods, has been proposed

recently.24–26 Finally, VS is not only useful for retrieving hits from existing

compound libraries, but additionally represents a valuable tool for the design

of a combinatorial library with a given target.

3.3 Chemical Feature-based Pharmacophores

In the past few years an increasing influence on rational drug design has

been exerted by several software programs from major software companies

(CATALYST2,4,27,28 – now integrated into DiscoveryStudio29 by Accelrys;

DISCOtech,30 GALAHAD,31 GASP,32–35 and UNITY36,37 by Tripos; MOE38

by Chemical Computing Group; and Phase39–42 by Schrödinger) that rely on the

concept of chemical feature-based pharmacophore models. The following sec-

tion explains the basic concepts of 3D pharmacophore modeling and highlights

differences and similarities between some state-of the art software-packages.
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3.3.1 The Term ‘‘3D Pharmacophore’’

The term ‘‘pharmacophore’’ has become increasingly used in medicinal

chemistry in recent years and has had different meanings attributed to it.

‘‘Pharmacophores’’ are often regarded as structural fragments or functional

groups being related to a chemical compound. However, the official IUPAC

definition43 from 1998 is more precise: ‘‘A pharmacophore is the ensemble of

steric and electronic features that is necessary to ensure the optimal supra-

molecular interactions with a specific biological target structure and to trigger

(or to block) its biological response’’.44 This definition clearly emphasizes the

abstraction of common steric and electronic interactions of bio-active com-

pounds exhibiting comparable biological effects within the same binding site in

a comparable situation. This abstract model, containing chemical functional-

ities (such as ‘‘positive ionizable’’ instead of ‘‘primary amine’’) can serve as an

effective search filter for VS. This concept is not new in medicinal chemistry and

has already been successfully applied before computers were used in chem-

istry.45,46 Still, in recent years an increasing influence on rational drug design

has been exerted by several software programs from major software companies

(Accelrys, Chemical Computing Group, Schrödinger, Tripos) that rely on the

concept of chemical feature-based pharmacophore models.

To be a useful tool for drug design, a pharmacophore model47 has to provide

valid information for medicinal chemists investigating structure–activity rela-

tionships. First, the pharmacophore model has to describe the nature of the

functional groups involved in ligand–target interactions, as well as the type of

the non-covalent bonding and intercharge distances. The model also has to

show predictive power which, at its best, enables the design of novel chemical

structures that are not evidently derived by the translation of structural features

from one active series to the other, or even allows effective scaffold hopping.48

3.3.2 Feature Definitions and Pharmacophore Representation

Selecting the right chemical feature types is a first crucial step for the develop-

ment of a high quality pharmacophore model. In early pharmacophore modeling

techniques, such as the active analog approach described by Marshall et al.,49

features constituting a pharmacophore could contain any fragment or atom

type. More recent techniques, such as the software package Catalyst50 use a

more general way for building pharmacophore queries, e.g., a single geometric

entity for all negative ionizable groups. The discussion below will show that

several arguments exist for continuing with this trend and even to further extend

the generalization of chemical functionalities. In real-life applications, however,

built-in features are often tailored to achieve a desired filtering restrictivity

level,51 i.e., the ability to restrict a model to identify a specified set of compounds

that the model was created for.

General definitions may result in models that are universal, at the cost of

restrictivity. However, restrictivity is an important issue in pharmacophore

searching and, therefore, feature descriptions that are too general need to be
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changed from reflecting universal chemical functionality to representing distinct

functional groups. To describe the levels of universality and specificity of che-

mical features, a simple layer model is used in the following discussion to allow

referral to these properties more easily. Table 3.1 shows a proposed classifica-

tion of abstraction layers of the most important chemical features.52 A lower

level corresponds to higher specificity and, therefore, to lower universality.

The most frequent reason for creating features on the low universality levels 1

and 2 is that the definitions of the higher levels are not sufficient to describe the

features occurring within the collection of known active ligands (see ref. 51 for

an example). Even if customization results in a layer 1 or layer 2 feature, there

should be a possibility of including layer 3 or 4 information to categorize and,

thus, increase comparability (e.g., a carboxylic acid as a layer 2 feature is a

subcategory of ‘‘negative ionizable’’, which is a layer 4 feature).

Software packages for pharmacophore modeling always have to face a trade-off

in the design of a generally applicable feature set that is universal and, at the same

time, still selective enough to reflect all relevant types of ligand–receptor inter-

actions. The most relevant interactions and their geometric representation in some

current software packages, Catalyst,53 Phase,54MOE,55 and LigandScout,56,57 are

described in the following section, with Table 3.2 providing a summary.

3.3.2.1 Hydrogen Bonding Interactions

Hydrogen bonding occurs when covalently bound hydrogen atoms with a

positive partial charge interact with another atom with a negative partial

charge. To capture the characteristics of hydrogen bonding, Catalyst and

LigandScout model H-bond donor and acceptor features as a position for the

Table 3.1 Abstraction layers of pharmacophoric feature contraints.

Layer Classification Universality Specifity

4 Chemical functionality without geometric
constraint, e.g., an H-bond acceptor without
a projected point or a lipophilic group

+++ �

3 Chemical functionality (H-bond acceptor,
H-bond donor, positive ionizable, negative
ionizable, hydrophobic) with geometric
constraint, e.g., an H-bond acceptor vector
including an acceptor point as well as a
projected donor point; aromatic ring
including a ring plane

++ +

2 Molecular graph descriptor (atom, bond)
without geometric constraint, e.g., a geome-
trically unconstrained phenol group

� ++

1 Molecular graph descriptor (atom, bond) with
geometric constraint, e.g., a phenol group
facing a parallel benzenoid system within a
distance of 2–4 Å

� +++
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Table 3.2 Summary of pharmacophoric feature abstraction, representation and customization in different pharmacophore

modeling applications.

Feature Phase MOE Catalyst LigandScout

Hydrogen bonding
interaction

H-donors located at
hydrogen atom, acceptors
at heavy atom. Modeled
as layer 3 feature with
direction constraint and
position tolerance

Geometric constraints
depend on selected
pharmacophore scheme.
Features located at heavy
atoms with tolerance
sphere.

Acceptor and donor
features positioned on
heavy atom with
tolerance sphere. (Layer 3
feature) Max. one donor
or acceptor feature per
atom

Acceptor and donor
features positioned on
heavy atom with toler-
ance sphere. Represented
as layer 3 features with
feature position and
projected point

Lipophilic area Represented as tolerance
spheres. Aromatic rings
not recognized as hydro-
phobic areas

Represented as tolerance
spheres. Aromatic rings
not recognized as hydro-
phobic areas

Represented as tolerance
spheres

Represented as tolerance
spheres

Aromatic
interaction

Represented as position
with tolerance and ring
plane orientation

Modeling of aromatic fea-
tures depends on the
selected pharmacophore
scheme

Represented as position
with tolerance and ring
plane orientation

Represented as position
with tolerance and ring
plane orientation

Electrostatic
interaction

Represented as tolerance
spheres, no explicit char-
ges necessary

Represented as tolerance
spheres, require charges
(cationic and anionic)

Represented as tolerance
spheres, no explicit
charges necessary

Represented as tolerance
spheres, no explicit char-
ges necessary

Definition and
customization

Definition and customiza-
tion through SMARTS
patterns with associated
geometry attributes

Implementation of new
pharmacophore schemes
possible with scripting
language (SVL)

Definition of new features
and customization via
graphical interface

Feature definitions as
SMARTS or boxed algo-
rithms, adjustment of
feature specific para-
meters and geometric
constraints
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heavy atom and a projected point representing the position from which the

participating hydrogen will extend. These two positions form a vector that

indicates the direction from the heavy atom to the projected point of the

hydrogen bond. However, in Catalyst, only a single hydrogen bonding feature

is permitted per heavy atom, whereas LigandScout allows an acceptor or donor

atom to be involved in more than one H-bonding interaction. In the situation

shown in Figure 3.1 (PDB code 2GDE) either all hydrogen bonds or two

hydrogen bonds and the ionizable feature must be omitted in Catalyst, or

several different models must be created to reflect all interactions.

In a similar manner, Phase positions H-bond acceptor features on heavy

atoms that carry one or more lone pairs, and, depending on the hybridization of

the acceptor atoms, assigns vector attributes to each idealized hydrogen bond

axis. Hydrogen bond donor features are centered on donor hydrogen atoms with

a single vector constraint directed along the hydrogen bond axis. An alternative

to this ligand-centric convention is to represent acceptors and donors as pure

projected points, located at complementary positions on theoretical binding

sites. The projected point approach does not incorporate vector character into

the site definition and permits situations where two ligands form hydrogen

bonds to the same receptor atom, but from different locations and directions.

In MOE the modeling of H-donor and acceptor features depends on the

selected pharmacophore scheme. There are six schemes supplied with MOE:

PCH, PCHD, PCH_All, PPCH, PPCH_All, and CHD. The PCH scheme

(which is the default) defines H-bond acceptors and donors as layer 4 point

features. In contrast, the PCHD scheme also includes putative points from

hydrogen bond donors and acceptors that are projected in the approximate

direction of the hydrogen bond.

Figure 3.1 Thrombin inhibitor SN3401 in complex with Thrombin (PDB entry
2GDE): three hydrogen bond donors (green), one acceptor (red), and one
charge transfer feature (blue) are recognized by LigandScout. In order to
show more detail of the interaction, only a portion of the structure of
SN3401 has been shown.
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3.3.2.2 Lipophilic Areas

Lipophilic contacts represent layer 4 features with no geometric constraints and

are generally represented as tolerance spheres located in the centre of hydro-

phobic atom chains, branches or groups. Although the perception of hydro-

phobic areas in Catalyst, Phase and LigandScout is based on the same

algorithm described during Catalyst development by Greene et al.,50 subtle

deviations seem to exist and the results differ considerably, which makes an

otherwise possible program interoperability hard to accomplish.

3.3.2.3 Aromatic Interactions

Aromatic features can be modeled as layer 4 point features or as layer 3 fea-

tures. In Catalyst, Phase, and LigandScout these features are also attributed

with a ring plane normal defining the spatial orientation (layer 3 feature). In

MOE, the selected pharmacophore scheme determines whether a ring plane

orientation constraint is included or if aromaticity is modeled as a pure point

feature with a tolerance sphere.

3.3.2.4 Electrostatic Interactions

Positive or negative ionizable areas are single atoms or groups of atoms that are

likely to be protonated or deprotonated at physiological pH. Ionizable features

are commonly implemented as spheres with a certain tolerance radius for

pharmacophore matching. While Catalyst, LigandScout and Phase are insen-

sitive to the protonation state from the input molecules, MOE requires pre-

processing of the molecules and the assignment of explicit charges. Additionally,

in MOE, positive and negative ionizable areas are limited to single atoms

(including resonance anions and cations) carrying a corresponding charge,

causing limits for groups like carboxylic acids or guanidines.

3.3.2.5 Customization and Definition of New Features

Although feature definitions should be general and describe all possible inter-

actions that are observed in ligand binding, some models still do not fulfill all

requirements for restrictivity. For this reason, most applications provide means

for customization or extension of the predefined feature set. Catalyst, e.g.,

allows customization and extension of the built-in features via the graphical

user interface, allowing specification of one or more chemical groups that

satisfy a particular feature (OR logic). Similarly, Phase allows specification of

matching chemical groups and exclusions for a particular feature as a list of

SMARTS58 patterns. Each pattern can be associated with a geometric repre-

sentation (point, group, or vector) and additional flags for hydrogen bond

acceptors and donors. Although the Phase approach is very flexible and user

friendly, only a maximum of three additional custom feature definitions can be
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added. In MOE, the user has the possibility of implementing a new or mod-

ifying an existing pharmacophore scheme, using the scripting language SVL.

LigandScout defines all chemical features as SMARTS patterns in a single

configuration file and additionally provides a means for defining geometric

constraints, e.g., for hydrogen bonding or stacking of aromatic ring systems.

No graphical user interface is provided for modifying feature definitions, but

angle constraints and distance ranges for feature recognition in a macro-

molecule ligand complex can be fine-tuned in a graphical user interface.

Some recent examples of user-customized features include extended negative

ionizable features including sulfonamides,51 Michael acceptor features for

covalent addition,59 zinc ion binding features,60 and extended positive ionizable

features that can map carbocation intermediates.61

Once chemical feature points are detected, they can be used as input for the

computationally more challenging part: aligning a molecule to a pharmaco-

phore. The algorithms described below can all be used to superposition two

molecules according to their pharmacophoric annotation points, to overlay a

molecule to a pharmacophore, or to overlay two 3D pharmacophores. These

algorithms form the basis for both the elucidation of common pharmacophore

patterns amongst different ligands with similar known biological activity and

for VS. Both tasks are time-consuming, even on modern hardware, and

therefore efficiency remains important.

3.3.2.6 Current Super-positioning Techniques for Aligning

3D Pharmacophores and Molecules

In the broad field of possible pharmacophoric alignment techniques one can

distinguish between either point- or property-based approaches.62 With point-

based approaches, atoms or chemical feature point distances are minimized,

while property-based approaches generate a pharmacophore by assessing the

molecular interaction potential (MIP) similarity, based on Goodford’s GRID63

method, to generate alignments. Programs representing both approaches have

been applied for the generation of pharmacophore models of neuronal nicotine

acetylcholine receptor (nAChR), resulting in good agreement between the two

methods.64 Considering recent trends and examining currently-available com-

mercial software packages, most of the programs use point-based alignment

algorithms, superposing pairs of points by minimizing distances. As already

described, an important issue is the positioning of pharmacophoric anchor

points, since this is the only chemical representation of the molecule for the

algorithms. To discover the relevant chemical feature points, Dror et al. dif-

ferentiate between points being either atoms, fragments or chemical features.65

Compared to property-based techniques, this abstraction is one of the greatest

limitations of all point-based methods, because aligning dissimilar ligands can

become problematic in either case. Nevertheless, the feature-based approach –

in the sense of pharmacophoric features – has become widely accepted and is

used in nearly all drug discovery toolkits nowadays. If advanced feature point
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algorithms are used, the points represent bioisosterically comparable molecule

parts, and the geometric sensitivity becomes an advantage of these algorithms.

Three-dimensional alignment incorporates the problem of conformational

flexibility. One possibility to address the problem is to pre-generate con-

formations (like in DISCO66 or Catalyst50), which makes the actual alignment

less time-consuming, but the user has to ensure that all relevant conformations

are included. On the other hand, there are in-process approaches that perform

the pattern identification and conformational search simultaneously.

A well-known pharmacophore elucidation program using such an approach is

GASP33,67 that was developed by Jones and co-workers in the mid-1990s and is

marketed by Tripos. The program is based on a genetic algorithm, i.e., a non-

deterministic method that simulates evolution by randomly mutating chromo-

somes of a certain population. In terms of pharmacophore pattern matching,

each chromosome represents a potential flexible pharmacophore by encoding

all bond angles and by listing all feature mappings to a manually-selected

reference compound. In each run, chromosomes are selected that score best,

according to some crucial fitness function, and those are then mutated by

applying random torsional rotations to cover conformational space on-the-fly.

GALAHAD,32,35,68 developed at the University of Sheffield, Novo Nordisk,

and Biovitrum, and also marketed by the company Tripos, uses a modified

genetic algorithm reducing bias towards a single template (base) molecule and

introduces partial matching and an improved multi-objective scoring function.

Searching is faster than with GASP, since GALAHAD allows the use of pre-

generated conformations. For pharmacophore elucidation, GALAHAD uses a

very efficient atom-based alignment technique,31 but lacks important feature

definitions like the flexible placement of hydrophobic features which is possible

with the other programs.

In contrast to the in-process techniques providing fully flexible models, the

other very different class of algorithms relies on rigid-body techniques for

aligning molecular structures.69 Either these methods are completely structure-

based approaches or consider conformational flexibility in terms of handling pre-

generated conformations sequentially. The advantage of these techniques is that

the time-consuming process of generating conformations is out-sourced and the

conformations can be stored persistently – because multi-conformational gen-

erators actually have the ability to provide generally applicable conformational

ensembles that sufficiently sample most small organic drug-like molecules.70

Nearly all commercial software using rigid-body alignment techniques is based

on maximum common substructure search. One of the first programs that go

along with this and which had a considerable influence on modern techniques62

is DISCO.66 It is based on distance geometry71 and the alignment is implemented

using the Bron–Kerbosh clique-detection algorithm72 in terms of inter-distance

comparisons. Because of exploring the complete conformational space, the

technique is limited to a small number of input compounds of preferably limited

flexibility – the main drawback when looking for an optimal solution.

A further development of the exhaustive search is Catalyst’s HipHop27

algorithm, just relaxing the GASP requirement that each feature in the
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pharmacophore must be present in each of the input compounds. Furthermore,

HipHop starts by finding all two-feature models and expands the model until

no more configurations can be found. All of the numerous results are listed and

ranked according to their rarity-based score.

Another example of an exhaustive search is employed by Schrödinger’s

program Phase.40 The algorithm enhances performance by narrowing the

search space. The conformational search is dedicated to find a pharmacophore

containing a user-defined number of features that are shared by a user-defined

number of input molecules regarding a user-defined tolerance. All possible

pharmacophores are grouped in a tree according to their inter-site distance, i.e.,

a vector containing distances of all feature pairs. The tree is traversed and if a

node fails to contain pharmacophores from the minimum number of actives,

the complete sub-tree is eliminated from further investigation. Phase places

high emphasis on user interaction, providing user intervention possibilities at

each step of the pharmacophore elucidation process.

The most recent development regarding pharmacophore alignment technique

is LigandScout’s pattern matching approach.73 In a first step, feature pairs are

formed based on feature types and distance characteristics, encoding the whole

pharmacophore for each feature in a rotationally and translationally indepen-

dent manner. For each feature type and feature, a distance shell contains several

bins counting neighboring features, with each bin representing space at a certain

distance interval. The core part of the algorithm for identifying pairs is a fast

maximum weighted bipartite matching algorithm that scales polynomially with

the number of features involved and thus allows its application to larger mole-

cules like peptides. Through its performance, this algorithm has the possibility to

perform rigid alignments within less than 100ms on a modern single CPU,

allowing for interactive usage within the graphical user interface of LigandScout.

3.4 Generation and Use of Pharmacophore Models

In the generation of pharmacophore models, one can generally distinguish two

approaches: the ligand-based approach and the structure-based approach. This

separation is based on whether structural information (e.g., from an X-ray

crystal structure of a protein–ligand complex) is available and can be used for

the generation of the model, or whether only the structures, but not the bioactive

conformations, of a group of ligands are known. Both approaches are highly

valuable for the retrieval of novel lead structure scaffolds and there are studies

available that demonstrate the efficiency of both techniques in direct compar-

ison74,75 as well as synergism by using both approaches in combination.76,77

3.4.1 Ligand-based Pharmacophore Modeling

In the ligand-based approach, a pharmacophore is deduced from the arranged

key interactions of active ligands – having the same binding mode to the
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target – with respect to conformational flexibility.78 As described in the pre-

vious section, known active compounds are usually aligned by aligning the

pharmacophore features present in the compounds, while keeping the con-

formational energy of the ligands within reasonable limits. Ideally, the com-

pounds used for deriving these models cover a broad structural space, showing

a different distribution of flexible and rigid parts, thus minimizing the number

of possible overlays.

While several ligand-based pharmacophore building methods are already

implemented in commercial software products (Catalyst by Accelrys, now

included in DiscoveryStudio29 Sybyl/Unity by Tripos,79 MOE by CCG,55 Phase

by Schrödinger54) and widely distributed in the drug discovery community, still

new promising methods have recently been described in the literature. Among

these, the approach by Feng et al.80 seems rather promising. Fingerprints of 3D

features and a modification of Gibbs sampling to align a set of known flexible

ligands, where all compounds are active, are used to discern possible pharma-

cophores. A clique detection method is used to map the features back onto the

binding conformations. The complete algorithm is described in detail, and it is

shown that the method can find common superimpositions. The method

reproduces answers very close to the crystal structure and literature pharmaco-

phores in the examples presented. The basic algorithm is relatively fast and can

easily deal with up to 100 compounds and tens of thousands of conformations,

as shown in test sets of D2 and D4 ligands.80 In a recent review, Renner et al.81

describe the application of alignment-free pharmacophore pattern using a cor-

relation vector approach for several purposes in bio-active compound selection,

similarity searching, and virtual library design. Feature-trees as described by

Rarey et al.82,83 differ from most other descriptors in structure. The node-labeled

tree structure is more closely related to the molecular than linear structures and it

implies, however, more complex comparison algorithms. The descriptor com-

bines conformation independence with alignment dependence, which makes it

somehow unique. Alignment dependence is often seen as a disadvantage due to

the more time-consuming comparison and the potential bias resulting from

heuristic alignment schemes. Both arguments do not hold in the case of Feature

Trees (FTrees available from BioSolveIT84) since the optimal alignment can be

computed within milliseconds by employing dynamic programming techniques.

Starting from a model composed of features placed on one conformation of a

rather rigid cyclic peptide, Jia et al. have shown how genetic algorithms can be

applied to successively improve their model for melanocortin type 4 receptor

agonists by optimizing the classification of a large training set of both known

agonists and agonists. The optimized model was able to correctly retrieve

37 out of 55 agonists, and none out of 51 nonagonists, while the initial model

started off with a ratio of 37/32. Similarly, the retrieval rate for a test set of

55 agonists and 50 nonagonists improved from 40/31 to 33/8.85 Frequently,

ligand-based models are used to guide the synthesis of novel compounds, as has

been shown, e.g., for T-type calcium channel blockers,86 HIV integrase strand

transfer inhibitors,87 metabotropic glutamate receptor 5 inhibitors,88 and

sigma-1 receptor ligands.89
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3.4.2 Structure-based Pharmacophore Modeling

During the last decade, structure-based methods (also called target-based or

direct approaches), which rely on the availability of structural data of the

target, have gained significant interest, since the number of experimentally

determined three-dimensional structure of targets has grown constantly.

Information on the target structure is preferentially taken from experimental

investigations, but can also be taken from homology modeling.90 Today, the

largest database of X-ray and NMR structures of protein and protein–ligand

complexes in public domain, the Protein Data Bank (PDB),91 is just

approaching the 50 000 entries mark, which is about eight times more than in

1997. This number does not include the large amount of propriety structural

data. Despite being originally conceived as primarily a ligand-based method,

pharmacophore modeling approaches have been successfully used in a wide

range of structure-based VS applications. They aim at being complementary to

docking procedures, including the same level of information, but are less

demanding with respect to computational demands and therefore much more

efficient.

There are different ways to generate structure-based pharmacophore models,

both in the presence or absence of a ligand. Additionally, while structure-based

models derived from a single protein–ligand complex may be highly specific at

retrieving compounds similar to the complexed ligand, they may be too

restrictive for retrieving other active compounds that do not share all of the

detected pharmacophore interactions. This may be one of the reasons why

some authors still prefer ligand-based methods that identify common features

among their ligands, despite the availability of X-ray structures for their tar-

gets.92–94 The strategies for the identification of all features present in a given

complex structure, as well as of those features that are common to most or all

ligands, are discussed in the following.

The traditional way of identifying pharmacophore features in a given pro-

tein–ligand complex was to just look at the binding site, analyze what inter-

actions can be detected, and then add the corresponding features manually.

Nowadays, all major pharmacophore modeling software packages allow for the

construction of the pharmacophore model on top of the imported complex

structure. We have automated this task of detecting protein–ligand interactions

with our software package LigandScout.52,56,73 LigandScout is a novel tool for

structure-based pharmacophore model generation, comparison and manip-

ulation. The PDB, which is the largest available public repository of biologi-

cally relevant proteins complexed with small organic molecules, serves as a

starting point. The major focus of this work has been put on the ligands with

the aim of extracting relevant information about the respective binding mode.

Owing to poor data quality of the ligands in some complexes resulting from

historic growth, existing algorithms were adopted and new strategies were

developed to interpret ligand topology adequately. A step-by-step interpreta-

tion is performed on the PDB ligand entries: planar ring detection, assignment

of functional group patterns, hybridization state determination, and Kekulé

88 Chapter 3



pattern assignment. The interpretation procedure forms the basis for the next

step, the fully automated creation of pharmacophore models, implementing a

rule set that automatically detects and classifies protein–ligand interactions into

H bond interactions, charge transfers and lipophilic regions. The entire set of

interactions forms a pharmacophore model, which can be used for rapid VS in

external screening platforms, like Catalyst, MOE, and Phase. Furthermore, the

pharmacophore models derived from different complexes – whether from

different experimental X-ray structures or from docking experiments – can be

overlayed either by their pharmacophore features or by the alignment of the

a-carbon atoms of the amino acids forming the binding site, thus allowing the

creation of both common feature models and merged feature models, which

incorporate features obtained from different complex structures.73 An example

of the creation of a structure-based common feature model is shown for two

different COX-1 inhibitors (PDB codes 1EQG and 1PGE) in Figure 3.2.

Ortuso et al.95 recently published their GRID-based pharmacophore model

(GBPM) approach for pharmacophore model generation. The authors use the

GRID force field63 calculation of interaction energies for the elucidation of hot

spots encoding favorable regions for protein–ligand interaction. The approach

aims at the automated generation of unbiased pharmacophore models starting

from protein–ligand structural data. The large number of GRID probes allows

the generation of highly potent and selective pharmacophore models that can

successfully identify lead structures during virtual high-throughput screening as

well as to optimize lead structures. The approach has been evaluated with

pharmacophore models generated for X-linked inhibitors of apoptosis (XIAPs)

as well as for the interleukin 8 dimer interface. Another GRID-based approach

that uses four-point pharmacophore fingerprints has been described by Baroni

et al.96 ‘‘Fingerprints for ligands and proteins’’ (FLAP) is a three-dimensional

pharmacophore profiling technique for ligands and proteins based on their

common frame of reference. It allows ligand–ligand, ligand–protein and

protein–protein comparisons at each atom, once classified in its corresponding

GRID-type. Four-point pharmacophores are built considering features for

hydrophobicity, hydrogen-bond donor or/and acceptor and positive or

negative charge. The exhaustive combination of all of the atoms provides the

information about the four-point pharmacophores together with the chirality

to be stored in an appropriate file. This method was able to distinguish between

the three serin proteases factor Xa, trypsin, and thrombin, a dataset that had

been reported previously by one of the authors for a comparison with a similar

method.97 In a second application example, FLAP was able to correctly classify

23 kinase X-ray structures belonging to five different kinase targets (CDK2,

GSK3b, P38a, and LCK) by their four-point pharmacophore fingerprints.

Similarly, the Pocket module in the LigBuilder program analyzes the binding

site with different probes in a grid-based manner, but it also uses information

from the co-crystallized ligand for selecting the essential binding-spots among

all the detected,98,99 an approach for which also Ahlström et al. reported that it

gave better retrieval rates of active compounds in their study of GRID-derived

pharmacophores.100
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Finally, ‘‘dynamic’’ structure-based pharmacophore models can be derived

through a method first described by Carlson et al.101 that uses multiple con-

formations of the target protein, which are obtained either by molecular

dynamics simulation or by the use of multiple experimentally determined

conformations. The binding sites of the respective snapshots are flooded with

small molecular probes (e.g., methanol for hydrogen-bond interactions and

benzene for aromatic hydrophobic interactions) and while the protein structure

is held rigid the probe molecules are subjected to a low-temperature Monte

Carlo minimization where they undergo multiple, simultaneous gas-phase

Figure 3.2 Generation of structure-based models for COX-1 with LigandScout:
(A) binding pocket of PDB entry 1PGE, with the surface of the binding
pocket coloured by aggregated lipophilicity (high: yellow; low: blue).
(B) Automatically generated pharmacophore model in the same pocket.
Yellow spheres: hydrophobic, red star: negative ionizable, red arrows:
hydrogen-bond acceptor features. (C) 2D depiction of the ligand and its
interactions with the binding site amino acids. (D) Ligand and pharma-
cophore model extracted from PDB entry 1EQG. (E) Models and ligands
from 1PGE and 1EQG are aligned. (F) A common feature pharmaco-
phore model is generated that has the features present in both binding-site
models. For clarity, excluded volume spheres are not shown throughout
this figure.
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minimizations and cluster into regions that define their complementary binding

regions. The results for the different protein conformations are overlayed and

pharmacophore features are placed at the conserved clustering spots, thus

identifying the feature locations that are independent of the binding-site con-

formation.101–105

Other new approaches include the application of pharmacophore fingerprints

for lead identification, e.g., as implemented in the methods FLIP (fingerprint-

based lead identification protocol106) and SIFt (structural interaction finger-

print107). Such SIFts are 1D binary representations of the interaction patterns

derived from a 3D protein–inhibitor complex. The fingerprint representation of

the interaction patterns is compact, and allows for rapid clustering and analysis

of massive numbers of complexes. For a group of structures binding to the

same target protein, the receptor site is defined as the list of residues comprising

the union of all residues involved in ligand binding over the entire library of

structures. By default, seven different types of interactions occurring at each

binding residue are extracted and classified. The resulting binary fingerprint can

be extended to so-called p-SIFts (profile-based structural interaction finger-

prints)108 and used for enabling the researcher to describe the conservation of

interactions between a set of protein–ligand receptor complexes. The use of

profiles provides a sensitive means to compare and contrast multiple inhibitors

binding to a drug target. A p-SIFt thus represents the degree to which inter-

actions are conserved across a set of ligand–receptor complexes.

Using a modification of the PharmPrint methodology,109–111 McGregor has

identified pharmacophore patterns for 220 X-ray crystal structures of protein

kinases in complex with ligands.112 The protein structures and their respective

pharmacophore models were then overlayed to generate a pharmacophore

map, which can be inspected to visualize the interactions made by all ligands

with their receptors or to highlight differences between the kinases. Further-

more, a fitting and scoring algorithm was described that can retrieve con-

formations close to the crystal structure pose for most ligands, starting from 2D

ligand structure and no knowledge of the crystal structure from which it was

derived. The algorithm also gave a useful enrichment of active compounds in a

training set.

To test the flexibility and reliability of the structure-based pharmacophore

design approach, Spitzer et al.113 used pharmacophore models to describe

interactions between DNA and minor groove binding ligands. The study

focused on the implementation of sequence specific properties encoded by the

minor groove. The pharmacophore models were created by using exclusively

DNA structure information: the bases facing the minor groove floor were

decorated with hydrogen bonding features decisive for selective ligand inter-

action. To enable the resulting DNA pharmacophore model to be compared

with the ligand, feature types and directions were inverted and the model was

divided into small overlapping parts. Adding excluded volume spheres that

described the shape of the groove was found to be useful. By mapping the

ligand on each single part of the model a stepwise screen of the whole minor

groove could be simulated. The collected Fit values of all mappings showed a
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clear preference of the ligand for the experimentally confirmed binding site,

showing the great potential of the method for future application in VS

experiments.

3.4.3 Inclusion of Shape Information

One of the most prominent reasons for the retrieval of false-positives in

pharmacophore screens is the lack of spatial restriction of the models: the

chances that a compound will have the required features somewhere present in

its structure increases with its size and flexibility. Therefore, most 3D phar-

macophore methods have the possibility to add either inclusion or shape

volumes that must be filled by the ligands, or ‘‘forbidden’’ or excluded volumes

that describe the space that is occupied by atoms forming the binding site.

Creation of an inclusion shape feature describing the allowed maximum or

required minimum volume is usually straightforward by converting the best-

fitting conformation of a highly active ligand matched against the pharmaco-

phore. Depending on the desired restrictivity of the model, the smallest as well

as the biggest high affinity ligand may be chosen. The problem with inclusion

shapes is that the rigidity of the inclusion volume is the same in every direction,

meaning that some large actives may be missed. Still, there are many examples

of successful screening enrichments with this method.61,114,115 Furthermore, VS

methods relying primarily on shape similarity, as used in OpenEye’s ROCS,

have been proven to be quite effective for VS.116–119

The advantage of the excluded volume approach is that features can be used

to only partially limit the space around the ligands, which describes the actual

situation in a binding site in a more accurate way. For ligand-based models, the

placement of excluded volume spheres can be induced by the inclusion of

compounds that are inactive despite their ability to map all the required fea-

tures, and for which a good reason exists to assume that this lack of affinity is

caused by sterical constraints (another possible reason for this could be nega-

tive interactions, such as repulsing charges of the same type close to each other

in both ligand and binding site). Such methods for the automated placement of

excluded volume spheres are, e.g., included in the HypoRefine and HipHo-

pRefine modules of Catalyst and have successfully been applied for the iden-

tification of P450 19 (aromatase) and PTP1B inhibitors, respectively.120,121 A

similar method exists in Phase, where the user can also create an excluded

volume shell around the aligned ligands, which consists of multiple excluded

volumes placed at rectangular grid points within a given distance of the

molecules.40

In structure-based pharmacophore modeling, excluded volume spheres can

be placed at atoms forming the binding site, a feature that has also been

included in LigandScout. For faster screening and less restrictive models,

LigandScout alternatively allows for the placement of only a few excluded

volume spheres at the lipophilic side-chain residues that are in contact with

hydrophobic features in the ligand.119,122 We have found that excluded volume
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coats of the binding site can drastically increase specificity, but this is usually

also accompanied by a certain decrease of sensitivity, which supports the

findings of Pandit et al., who have applied a similar approach for HIV protease

inhibitors in MOE.123 Both included and excluded volume shapes have been

used to create a pharmacophore model for the fitting of small molecule inter-

calators of double stranded DNA.124

3.4.4 Qualitative vs. Quantitative Pharmacophore Models

If a set of diverse molecules with measured affinities spanning multiple orders of

magnitude is available for a given target, one can create pharmacophore

models that can predict the binding affinity of the investigated compounds.

The most widely-used method for this task is the Catalyst/DiscoveryStudio

module HypoGen.125 HypoGen tries to find models that are common among

the active compounds of the training set but do not reflect the inactive ones.

Pharmacophores that correlate best the three-dimensional arrangement of

features in a given set of training compounds with the corresponding phar-

macological activities (IC50 or Ki) are constructed and ranked. Certain guide-

lines for 3D QSAR model generation in Catalyst must be respected: to ensure

the statistic relevance of the calculated model, the training set should contain at

least 16 compounds together with their activity values derived from comparable

binding assays, i.e., from an equivalent analytical method, similar species, and

similar tissue. Activities should spread equally over at least four orders of

magnitude.125 The most active compound available must be included, and each

order of magnitude should be represented by at least three compounds. Each

compound should provide new structural information. An uncertainty factor

(default value 3) for each compound is defined, representing the ratio range

of uncertainty in the activity value based on the expected statistical straggling

of biological data collection. The generation of pharmacophore models (called

hypotheses in Catalyst) with HypoGen consists of three steps: the hypotheses

created in the initial phase, the constructive phase, consider all possible

pharmacophore configurations of the most active compounds to imply phar-

macophore demands. In the second phase, the subtractive phase, all possible

pharmacophore configurations of the constructive phase are analyzed and only

those models are kept that are not mapping the least active training set mem-

bers as well. In the final optimization phase, small perturbations are applied to

the remaining pharmacophore models, and scored based on geometric fit,

activity, error estimation, and cost calculation. The hypothesis generation

process stops when no better score of the hypothesis can be accomplished.2

Usually, ten hypotheses are output. Reliable models are characterized by high

cost difference (70 or higher), low error cost, low root-mean-square divergence

values, and high correlation coefficients. Using the module CatScramble, the

molecular spreadsheets of the training set is modified by arbitrary scrambling

of the affinity data for all compounds. These randomized spreadsheets should

yield hypotheses without statistical significance; otherwise, the original model is
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also random. To achieve, e.g., a statistical significance level of 95%,

19 random spreadsheets have to be generated from each training set. Each

feature of the resulting models occupies a certain weight that is proportional to

its relative contribution to biological activity. HypoGen therefore constructs

pharmacophore models that correlate best with measured activities and that

consist of as few features as possible. The final hypotheses can then be eval-

uated by predicting the affinity of compounds from a test set. Various appli-

cations of this method have been reported, as, e.g., our paper on the discovery

of high-affinity ligands of sigma-1 receptor, ERG2, and emopamil binding

protein (EBP).61 The HypoRefine module can be used to generate quantitative

models with excluded volume spheres by adding compounds that are inactive

for sterical reasons to the training set.93,120

An explicit specification of inactive compounds as well as the maximum

number of excluded volume spheres, and softening of excluded volume spheres

during fitting can be adjusted by the user.

Notably, the obtained quantitative models are somewhat different from

qualitative ones, as produced by the Catalyst module HipHop:27 while the

qualitative model seeks to find common features present in all models of the

training set, the quantitative method looks primarily for those features that can

explain the high affinity of the most active compounds, and which are not

present in the lesser active ones. Often publications report the use of structu-

rally closely related compounds for the generation of quantitative pharmaco-

phore models. This may be largely because during optimization of initial lead

structures, where this method is preferentially applied, medicinal chemists

usually work on a distinct chemical class of compounds. A qualitative model

based on highly similar compounds identifies all those features that were not

changed (for whatever reason) as being equally important for the binding, and

therefore often identifies also structurally quite similar compounds in a data-

base screen, as we showed in a recent study for 11b-hydroxysteroid dehy-

drogenase (11b-HSD) inhibitors.126 A quantitative model based on highly

similar compounds, however, may be well suited for investigating further

derivatives of the investigated compounds, but may miss some features that are

important for the general affinity. Two recent examples for such models are

given for ligands of the kappa opioid receptor77 and of the SARS-CoV 3C-like

protease:127 in these two cases, only 2 out of 5 and 1 out of 3 features (the latter

model is enhanced by two excluded volume spheres), respectively, are placed at

the common scaffold – obviously as anchor points for the alignment of those

features that are important to explain the structure-affinity relationship.

The range of applicability of quantitative pharmacophore models that were

created from compounds showing the same scaffolds and have activities

spanning less than three orders of magnitude remains questionable to us.128,129

For pharmacophore models aiming to identify novel scaffolds by VS, we

recommend to use a high ligand diversity within the training set.

Even with quantitative models that have been generated with the upmost care

to the guidelines given above, affinity prediction can often be off by two or more

orders of magnitude for certain compounds. It has thus become a widely-used
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method to assess the quality of a model in a semi-quantitative way,130 which

may meet the requirements for many applications: three or more activity classes

are defined at certain cutoff-values for Ki or IC50, such as high activity (+++),

medium activity (++), low activity (+) and inactive (�). The models are

then evaluated for their ability to place a compound into the correct activity

class.77,114,127,131–133 Vadivelan et al.93 evaluated their HypoRefine model for

CDK2-cyclin A inhibitors on a database of 302 molecules. Of these compounds,

213 were classified as highly active (IC50o1mM), 54 as moderately active

(IC50¼ 1–10 mM), and 35 as having low activity (IC50 4 10mM). For this clas-

sification, 16 false positives and 12 false negatives were found. While it might

have been advantageous to shift the cutoff values to get a more balanced dis-

tribution of the activity classes for the test set compounds, whose IC50 values are

well distributed across almost six orders of magnitude, the calculated r2 value of

0.912 gives another good measure for the overall quality of the model. In

another recent paper,134 the same group evaluated their HypoGen models for

histone deacetylase inhibitors based on three different chemotypes. In this case,

378 molecules were again divided into three sets of molecules: 109 highly active

(IC50o20 nM), 108 moderately active (IC50¼ 20–200 nM), and 161 with low

activity (IC50 4200nM). For these, 36 false positives and 12 false negatives were

found, with a correlation factor of 0.897.

While HypoGen calculates the affinity based on Fit values with different

weights for the features, the 3D QSARmethod included in Phase uses a method

similar to classical 3D QSAR methods: a rectangular grid is placed around the

aligned molecules, and present pharmacophore features are converted into

volume bits that are treated as a pool of independent variables for QSAR

model development by applying partial least squares (PLS) regression. Cubes

of favorable or unfavorable interaction are highlighted upon alignment of a test

molecule.40 This method was extensively evaluated against HypoGen for eight

different targets, and while the grid technique of Phase showed equal or better

results than the HypoGen method, the overall quality of test set prediction

remained disappointing for both programs, with what the authors classified as

‘‘good’’ models being obtained for only four out of eight data sets by Phase and

two out of eight by Catalyst.42 Comparison with a recent paper135 led the

authors to the assumption that in terms of R2 predictivity alone, fingerprint-

descriptor-based QSAR methods might provide superior results.

3.4.5 Validation of Models for Virtual Screening

A useful pharmacophore model must be able to correctly classify – and in the case

of quantitative models, correctly predict the affinity of – a so-called test or vali-

dation set, which consists of active compounds that were not used during the

generation of the model. Often the ability of the model to retrieve known actives

from a larger drug-like database is also assayed. It has been confirmed by several

studies that the characteristics of the known inactives or decoys chosen for VS

assessments have a significant impact on the enrichment of VS approaches.136–138
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Both known inactives and decoys are required to meet some essential pre-

requisites to achieve meaningful results. The most important need for decoys is

the comparability of their physicochemical properties to the actives set. Probably

one of the best examples of the hidden impact of decoy characteristics on the

enrichment of VS techniques is the direct dependence of docking scores on the

molecular weight of the ligands.139 Verdonk et al.136 have demonstrated that

docking campaigns conducted against smaller decoys than actives achieve sig-

nificantly higher enrichment than with larger decoys. The authors provide evi-

dence that it is not sufficient to just use a random library (e.g., subsets of public

databases) for performance assessments, but it is essential to build up a so-called

focused library that reflects the physicochemical properties of the actives set. The

largest public available database of decoys that considers comparable 1D

properties is the Directory of Useful Decoys (DUD),137 which is available from

http://dud.docking.org/. The DUD is a collection of 36 decoys for each of the

2950 collected actives of 40 different targets (95 316 in total, after duplicate

removal). The compounds, representing a subset of the ZINC database, are of

similar physical properties (e.g., molecular weight, calculated Log P).140 Decoys

should be topologically dissimilar with respect to the active compounds.

Otherwise, it is likely that several decoys are actually actives, which would lead to

a significant amount of false positive hits, an unwanted bias. The DUD also

meets this requirement.

Different descriptors have been found to answer the different questions that

may be asked to address the quality of the VS run: how has the method improved

the percentage of retrieved hits? Does the model find all actives? Does it filter out

the inactives? Does a high score mean that the compound is highly active? Or

does it describe the probability that the compound is active in a qualitative way?

Some of the most common metrics will be described in the following short

overview, though a more exhaustive discussion is given elsewhere.141,142

The general aim of VS methods is to retrieve from a molecular database a

fraction of true positives that is significantly larger than that of a random

compound selection. If a VS method selects nmolecules from a database with N

entries, the selected hit list consists of active compounds (true positive com-

pounds, TP) and decoys (false positive compounds, FP). Active molecules that

are not retrieved by the VS method are defined false negatives (FN), whereas

the unselected database decoys represent the true negatives (TN) (Figure 3.3).

Figure 3.3 Selection of n molecules from a database containing N entries by a virtual
screening protocol.
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One of the most popular descriptors for evaluating VS methods is the yield of

actives (Equation 3.1). This descriptor quantifies the probability that one of n

selected compounds is active. In other words, it represents the hit rate if all

compounds selected by the VS protocol are tested for activity.62,143,144 How-

ever, it contains no information about the consistence of the database and the

increase of the ratio of active molecules to inactives within a VS compound

selection compared to a random compound selection:

Ya ¼ TP

n
ð3:1Þ

This issue is addressed by the enrichment factor EF (Equation 3.2). This

descriptor takes into account the improvement of the hit rate by a VS protocol

compared to a random selection:62,144,145

EF ¼ TP=n

A=N
ð3:2Þ

One disadvantage of the EF is its high dependency on the ratio of active

molecules of the screened database.146,147 This descriptor can be used to decide

which VS method possesses the best performance if the same database of

actives and decoys is utilized for evaluation. In contrast, comparisons of EFs

derived from VS workflow evaluations using compound sets with different

ratios of active molecules are less reliable.147 Another disadvantage is that all

actives contribute equally to the value. On that account, the EF does not dis-

tinguish highest-ranked active molecules from actives ranked at the end of a

rank-ordered list.147 Thus, the EF belongs to the classic enrichment descriptors

that do not consider the ‘‘early recognition problem’’.

Many of the commonly used enrichment descriptors are based on two values.

The first value is the sensitivity (Se, true positive rate, Equation 3.3), which

describes the ratio of the number of active molecules found by the VS method

to the number of all active database compounds:62,146

Se ¼ N selected actives

N total actives
¼ TP

TPþ FN
ð3:3Þ

The second value is the specificity (Sp, false positive rate, Equation 3.4),

which represents the ratio of the number of inactive compounds that were not

selected by the VS protocol to the number of all inactive molecules included in

the database:146

Sp ¼ N discarded inactives

N total inactives
¼ TN

TN þ FP
ð3:4Þ

The ‘‘Goodness of hit list’’ (GH) was designed by Güner and Henry for eva-

luation of the discriminatory power of pharmacophore models (Equation 3.5).
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With respect to the presence of active molecules that bind to another site of the

target which cannot be represented by the pharmacophore model, the descriptor

favors the Ya over Se:148b

GH ¼ 3

4
Yaþ 1

4
Se

� �

� Sp ð3:5Þ

The Receiver Operating Characteristic (ROC) curve analysis describes Se for

any possible change of n as a function of (1–Sp).146 The second term describes

the percentage of false positives obtained compared to all inactives. If all

molecules scored by a VS protocol with sufficient discriminatory power are

ranked according to their score, starting with the best-scored molecule and

ending with the molecule that got the lowest score, most of the actives will have

a higher score than the decoys. Since some of the actives will be scored lower

than decoys, an overlap between the distribution of active molecules and

decoys will occur, which will lead to the prediction of false positives and false

negatives. The selection of one score value as a threshold strongly influences the

ratio of actives to decoys and therefore the validation of a VS method. The

ROC curve method avoids the selection of a threshold by considering all Se and

Sp pairs for each score threshold.146 The ROC curve representing the ideal

distribution, where no overlap between the scores of active molecules and

decoys exists, proceeds from the origin along the ordinate to the upper-left

corner until all the actives are retrieved and Se reaches the value of 1. There-

after, only decoys can be found using the VS method. In contrast, the ROC

curve for a set of actives and decoys with randomly distributed scores tends

towards the Se¼ 1–Sp line asymptotically with increasing number of actives

and decoys. Finally, ROC curves between the random graph and the ideal

curve are plotted for VS workflows that can score more active molecules higher

than decoys and cause overlapping distributions, which represents the usual

case in VS (Figure 3.4).146 If the ROC curves do not cross each other, the curve

that is located closer to the upper-left corner represents the VS workflow with

the better performance in discriminating actives from decoys. On that account,

ROC curves allow an intuitive visual comparison of the discriminatory power

of different VS methods over the whole spectrum of Se and Sp pairs.147

The final validation of the usefulness of the model is of course its ability to find

new active compounds by VS of a large database, which may contain, e.g.,

compounds from commercial suppliers or compounds from an in-house collec-

tion. Often the hit-lists are too large to screen all compounds reported by the

model, and further filtering has to be applied, e.g., by the rank order presented by

the pharmacophore, the Lipinski rules,11 ADME filters, diversity of the hits by

2D fingerprints, high quality docking, and also by visual inspection by a trained

medicinal chemist. Pharmacophore models are frequently applied as an early

filtering method, when other methods would demand too much effort to be

applied to the whole database. The fact that pharmacophore screening methods

often leave place for – or demand – certain decisions to be made by the scientists,

must be taken into consideration when trying to quantitatively compare VS

protocols against each other or against high-throughput screening methods.
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3.5 Application of Pharmacophore Models
in Virtual Screening

As shown in the previous section, there have been an impressive number of new

approaches and tools appearing in the field of structure- and ligand-based

pharmacophore modeling. All of them address slightly different issues and

therefore a combination of several methods, as shown in different application

examples, can significantly enhance the chances of success.

In our study on the discovery of novel ligands for the sigma-1 receptor and

related proteins we were able to find compounds binding to the targets up to the

subnanomolar concentration range by using a ligand-based VS approach,

combining molecular shape descriptors with pharmacophore constraints for

database mining.61 In addition to several synthetic compounds, interesting

natural products like tomatidine and solanidine were also identified and

experimentally confirmed to be potent sigma-1 binders. Furthermore, we were

able to show the similarities between the sigma-1 receptor and the homologous

ERG2 sterol isomerase by comparing the similar pharmacophore models and

pointing out the matching of the assumed high-energy intermediate of sterol

isomerization to the ERG2 model.

Schuster et al. developed ligand-based pharmacophore models for

11b-hydroxysteroid dehydrogenase (11b-HSD) inhibitors.126 By VS they were

able to identify inhibitors of this enzyme active in the nanomolar range.

Figure 3.4 ROC curves for ideal and overlapping distributions of actives and decoys.
The three ROC curve points S1, S2, S3 represent different cut-off values,
depending on the overall screening purpose (few false positives vs. no false
negatives). A random distribution causes a ROC curve that tends towards
the Se¼ 1 – Sp line asymptotically with increasing number of actives and
decoys.
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Some hits also revealed sufficient selectivity of type 1 inhibition versus the type 2

isoform, which is advantageous for the side-effect profile of these compounds.

Comparison of the model for 11b-HSD1 inhibitors with the X-ray crystal

structure (which was published shortly after model generation and VS) showed

good correlation of the chemical features responsible for ligand binding. In

another study, a combination of common feature-based qualitative and

quantitative models was used as 3D pharmacophore search query to success-

fully detect novel endothelin-A antagonistic lead structures.148a

Steindl et al.149 used structure-based pharmacophore modeling together with

statistical analysis of molecular descriptors to identify new inhibitors of the

human rhino virus coat protein. Barreca et al.150 have described successful

computational strategies in discovering novel non-nucleoside HIV-1 reverse

transcriptase (RT) inhibitors. They generated a three-dimensional common

feature pharmacophore model using the X-ray structure of RT/non-nucleoside

inhibitor (NNRTI) complexes. Starting from the pharmacophore model and

the structure of the lead compound TBZ, new NNRTIs were designed and

synthesized, possessing the benzimidazol-2-one system as a scaffold. Docking

experiments showed that these molecules docked in a position and orientation

similar to that of known inhibitors. HIV-1 integrase (IN) is an essential enzyme

for viral replication and the discovery of b-diketo acids was crucial in the

validation of IN as a legitimate target in drug discovery against HIV infection.

In their study, Dayam et al.151 discovered a novel class of IN inhibitors using a

3D pharmacophore guided database search procedure. The recently published

3D structure of an isoform of angiotensin converting enzyme (ACE2) led Rella

et al.60 to perform a structure-based 3D pharmacophore search and to identify

and experimentally confirm several novel scaffolds that will serve as interesting

starting points for the development of selective ACE2 inhibitors.

Schlegel et al.152 compared the performance of three different Catalyst

pharmacophore models, each based on the assumed bio-active conformation of

a single ligand, against GOLD docking into a homology model for the human

histamine H3 receptor. While the docking method obtained good results in

scoring known active compounds it was outperformed by the pharmacophore

models, leading to the suggestion of a combined approach for VS. Another

homology model-derived pharmacophore was used by Edwards et al.153 for the

identification of formylpeptide receptor (FPR) antagonists. The initial database

of about 480 000 compounds was reduced to 4324 compounds, which were

physically screened with the HyperCyt flow cytometry platform in high-

throughput, no-wash assays. 52 compounds (1.2% of the selected compounds)

were confirmed as hits, which corresponds to an enrichment factor of 12 com-

pared to a previous study screening a random collection (1 active out of 880).154

The pharmacophore-based screening approach has recently been shown to

be also very successful for the identification of bio-active natural products.

Rollinger et al.155,156 derived a structure-based pharmacophore model on the

co-crystal structure of acetylcholine esterase (AChE) with its ligand galantha-

mine, and used it for an in silico screening of a multi-conformational database

consisting of more than 110 000 natural products. From the obtained hit list,
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promising candidates were selected, namely scopoletin and its glucoside sco-

polin. Their AChE inhibitory effect was verified first from the crude extract of

Scopolia carniolica roots as in the in vivo test. The i.c.v. application of both

coumarins on rats resulted in a long-lasting, pronounced and – in the case of

the glucoside – even in a two-fold higher increase of the neurotransmitter’s

concentration than the one caused by the positive control galanthamine. In

another study, the objective was to determine the cyclooxygenase (COX)

inhibitory activity of Morus root bark, applying two different methods for their

discovery. Firstly, the computer-aided approach with VS filtering experiments

was used to identify the compounds able to interact with the pharmacophore

models for COX-1 and COX-2. Secondly, a bioassay-guided fractionation was

conducted for the isolation of the COX-inhibiting constituents. This resulted in

the isolation of nine compounds belonging to the chemical classes of sang-

genons and moracins. In the enzyme assay, the isolates showed moderate to

potent inhibitory activities on COX-1 and COX-2. While the five sanggenons

were correctly predicted, the four moracins were not detected by the pharma-

cophore model because they could not map with all the set features.157

3.5.1 Pharmacophore Models as Part of a Multi-step

Screening Approach

Recent years have seen increasing use of pharmacophore models as one step in

a multistep screening approach. In such screening runs, large databases are

successively reduced to smaller and smaller compound sets, until in the end

only a handful of compounds remains for in vitro testing. Accordingly, it seems

reasonable that the first steps consist of fast filters that quickly remove the

clearly undesired compounds, and that the complexity and accuracy – and with

that often the computational efforts needed to virtually screen the remaining

molecules – of each step increases. Here we give a few examples of successful VS

protocols where pharmacophore screening was one of multiple successive steps

that led to the identification of novel lead-structures.

Tintori et al.158 reported the identification of HIV-1 integrase inhibitors by first

screening the Asinex Gold database of over 200 000 compounds with the elec-

tron–ion interaction potential (EIIP) method,159 which describes the long-range

interaction of biological molecules, then with filters for Lipinki’s rule of five11

and rotatable bonds o10, followed by a ligand-based pharmacophore model.

Finally, the remaining 15000 compounds were docked and scored, leading to the

selection of 12 compounds, one of which displayed significant inhibitory potency.

Lu et al.160 screened a prefiltered set of 11 000 compounds from the NCI

database with a pharmacophore model based on the crystal structure of murine

double minute 2 (MDM2) oncoprotein in complex with the p53 tumor sup-

pressor and several non-peptide small inhibitors. The remaining compounds

were docked, scored, and 67 compounds were selected for testing, ten of which

were active in a competitive binding assay. Similarly, Yu et al.92 used a Catalyst

HipHop model combined with the molecular shape of an experimental X-ray
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structure to search the Maybridge database for inhibitors of vascular endo-

thelial growth factor receptor tyrosine kinase. Eleven of the obtained 39 hits

were rejected by the Lipinski filter, and docking into the binding site finally

identified one hit with both high docking score and high Catalyst Fit value,

which could be experimentally shown to inhibit the target. Charlier et al.161

were able to discover new human 5-lipoxygenase inhibitors acting at con-

centrations in the nanomolar range by a combined ligand- and target-based

approach. Additionally, by comparing the results from pharmacophore mod-

eling and docking of ligands into the binding site, they obtained structural

insights into the mode of action of such compounds.

Barreca et al.162 screened for non-nucleoside reverse transcriptase inhibitors of

HIV-1 by searching the Derwent World Drug Index (WDI) and the Chemicals

Available for Purchase (CAP) databases with a Catalyst model generated by

LigandScout. A Fit value cutoff of 3.0 and Lipinski filters, followed by docking,

led to the selection of three compounds, two of which were commercially

available. A search for available close analogues of all three compounds finally

led to the purchase of six compounds, of which five were shown to be active.

Evers and Klabunde163 applied a hierarchical screening approach to search

the Aventis in-house database for antagonists of the alpha1 adrenergic recep-

tor. After filtering for compounds with a maximum number of nine rotatable

bonds and a molecular weight below 600, compounds were screened with two

pharmacophore models. The retrieved hits were docked into a homology model

of the alpha1 receptor, and clustered by their Unity fingerprint similarity, which

led to the selection of 80 diverse compounds, 37 of which revealed Ki values

better than 10 mM, with the most active compound displaying 1.4 nM affinity.

Desai et al.164 applied a slightly different approach in their attempt to identify

inhibitors for parasitic cysteine proteases falcipain-2 and falcipain-3: as there

were only a few nonpeptide inhibitors of falcipain-2 reported so far, with IC50

values in the micromolar range, they generated homology models of the two

targets and screened a filtered set from the Available Chemical Directory

(ACD) database with the GOLD docking program. From the 100 selected

compounds, 22 were detected to be active against at least one of the investi-

gated targets. Here, pharmacophore models were used in a follow-up investi-

gation to rationalize the common pharmacophore features shared among the

identified hits coming from different structural classes.

3.5.2 Antitarget and ADME(T) Screening

Using Pharmacophores

In the search for an optimal lead compound, not only activity on the desired target

but also activity on other targets should be considered. Sometimes, multi-protein-

targeting is desired, e.g., for multi-kinase inhibitors in the oncology field.165

However, also activity on side effect-related targets – so-called antitargets –

is to be investigated. Compounds with no or very low affinity to proteins related

to cardiovascular, cytotoxic, or metabolic effects are more likely to pass
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subsequent phases of drug development. In this context, complementary to in vitro

profiling for potential side effects, large-scale in silico activity profiling is now

emerging. Compounds of interest are screened against hundreds or thousands of

parameters to predict their pharmacokinetic and pharmacodynamic profile.

Parameters such as adsorption, distribution (binding to plasma proteins, drug

transporters), metabolism (e.g., by the cytochrome P450 system), and toxicity

(e.g., affinity to the cardiac potassium channel hERG) can be derived from such a

screening. The use of computational tools can guide the chemical optimization of

novel lead series lacking antitarget-mediated side effects.

In recent publications, Klabunde et al.166,167 describe their efforts to generate

anti-target pharmacophore models to avoid GPCR-mediated side effects.

Pharmacophores derived for the rational design and synthesis of alpha receptor

ligands as described by Barbaro et al.168 can in principle also be used in such a

counter-screening strategy to eliminate compounds that might bind to these

targets. Also for modeling of pharmacokinetic properties of drug candidates, the

pharmacophore approach has been used successfully. Chang and Ekins sum-

marize the results of numerous studies aimed at building pharmacophores for

human ADME/Tox related proteins.169

A pharmacophore-based cytochrome P450 (P450) profiler was presented by

Schuster et al.170 This parallel screening-based system includes models for

P450s 1A2, 2C9, 2C19, 2D6, and 3A4 substrates and inhibitors, respectively.

These isoenzymes contribute mainly to xenobiotic metabolism and can possibly

lead to drug–drug interactions resulting in severe side effects. However, meta-

bolism-mediated side effects not only occur by direct interaction at the enzyme.

P450 expression is mediated by several nuclear receptors, the most prominent

of them being the pregnane X receptor (PXR). Pharmacophore models that can

successfully identify potential ligands for PXR171 are therefore also useful anti-

target filters in the early drug discovery phase. Notably, though, inhibitors of

certain cytochromes, e.g., P450 19 (aromatase), might be of interest in the

treatment of breast cancer. In this case, the enzyme may be seen as a target, and

pharmacophore modeling can be of use for finding new potential inhibitors in

an efficient way.120 The application scenario of a pharmacophore model,

whether for the identification of a few highly active compounds for lead finding

or for reliable prevention of critical side-effects will of course largely influence

the optimization of the model towards either high specificity (no false-positives)

or high sensitivity (no false-negatives).

3.5.3 Pharmacophore Models for Activity Profiling and Parallel

Virtual Screening

Today, large-scale counter screening can be technically handled using parallel

screening systems. However, these methods are quite expensive and so, espe-

cially for academic groups and small companies, parallel VS for novel drug

candidates can be a cost-effective alternative to identify new lead structures

with good selectivity profiles.
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Steindl et al.25,26 have recently published a Pipeline Pilot-based parallel

screening system using structure-based pharmacophore models: the parallel

screening of 100 antiviral compounds against 50 models belonging to five dif-

ferent targets led to a correct activity profile in 89% of the cases. In a second

experiment,172 they determined the selectivity of HIV protease inhibitor models

against other protease inhibitors and inactive compounds. The results showed a

clear trend toward most extensive retrieval of known actives followed by

general protease inhibitors and lowest recovery of inactive compounds. Cleves

and Jain24 presented broad multi-target ligand-based profiling based on

molecular similarity and imprinting methods.

In silico activity profiling can also be applied to so-called target fishing. In this

context, possible targets (or anti-targets) for a compound are searched for. Markt

et al.122 performed a validation study of the target fishing approach using 357

compounds with known activity on peroxisome proliferator activated receptor

(PPAR) isoforms. They screened all compounds against all models from the

Inte:Ligand pharmacophore database. From 181 targets screened, PPAR targets

were ranked first more often than any other target. This approach is also highly

relevant especially in the field of natural products,173,174 where constituents of

proven herbal drugs can be subjected to virtual in silico profiling to identify

the active compound. More generally, virtual natural product databases175 can be

screened using computer-aided methods. Another application example would be

to profile the whole compound library in stock of a pharmaceutical company

with the goal of finding the ‘‘hidden treasures’’: compounds with excellent

activity, maybe even selectivity, for targets that have not been screened yet.

3.6 Pharmacophore Method Extensions and
Comparisons to Other Virtual Screening Methods

In the following section, we discuss the differences between pharmacophore

modeling approaches and some other VS methods, highlighting the advantages

and short-comings of the respective methods.

3.6.1 Topological Fingerprints

Topological fingerprints consider the connection table of a target molecule and

ignore the respective atom coordinates. The rapid calculation and efficiency of

such fingerprint methods implicate their wide acceptance in industry.117 An

overview of similarity-based 2D fingerprint methods and their performance

during VS is provided in ref. 176.

Structurally similar molecules will often bind to the same group of proteins.

While this hypothesis may be violated in specific cases – a small change in

chemical structure can dramatically change binding affinity – chemical similarity

is often a good guide to the biological action of an organic molecule.177 Keiser

et al. have recently presented a method to relate receptors to each other
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quantitatively, based solely on the chemical similarity, as described by Daylight

fingerprints, between their respective ligands.178 In their method, called the

Similarity Ensemble Approach (SEA), two sets of ligands are often judged

similar even though no single identical ligand is shared between them.

Pharmacophore fingerprints proved to be superior to chemical fingerprints

when used by von Korff and Steger179 as descriptors for the creation of self

organizing-maps (SOMs) for distinguishing small molecules that bind to

GPCR subtypes from those that bind to other proteins. McGaughey and co-

workers117 found in a comparative evaluation of topological, shape, and

docking methods for VS on 11 targets (carbonic anhydrase, cyclin-dependent

kinase 2, cyclooxygenase-2, dihydrofolate reductase, estrogen receptor, HIV-1

protease, HIV reverse transcriptase, neuraminidase, protein tyrosine phos-

phatase 1B, thrombin and thymidylate synthetase) that simple methods based

on topological descriptors keep up surprisingly well with 3D VS methods, as

they can retrieve the largest number of actives with the least amount of com-

putational power. However, the work also demonstrates that hits obtained

from topological screening methods are less diverse than hits retrieved from 3D

VS. Since the diversity of lead structure candidates is of extraordinary

importance for VS, the higher computational demands of more sophisticated

approaches may be justified.

Recently, Nettles et al.180 have reported the development of the Novartis in-

house software FEPOPS (FEature POint PharmacophoreS) which uses a ‘‘fuzzy’’

molecular representation: a compound is reduced to (usually four) feature points,

onto which the pharmacophoric properties are encoded.180,181 The authors

analyzed subsets of 47505, 2351 and 109 457 annotated ligands from the

WOMBAT (World of Molecular Bioactivity) database,182 respectively, by both

2D fingerprint methods, using ECFP-6 and MDL fingerprints, and FEPOPS 3D

descriptors. While the 2D methods were better in the overall ability to identify a

neighbor molecule that shared the same primary protein target as the query

structure, the 3D method proved to be superior in capturing compounds of the

same activity in those cases where the query structures showed low structural

similarity to any other compound in the database (so-called singletons).

CATS48 (chemically advanced template search) specifically targets the

problem of scaffold hopping. It is based on the idea of generating an exhaustive

molecular 2D fingerprint based on topological pharmacophore models for

pair-wise comparison of molecules. CATS3D81 is the three-dimensional,

computationally more demanding counterpart of CATS. It is based on the

correlation vector representation of a 3D conformation – in contrast to the

topological representation of CATS – and has been successfully applied to

identifying inhibitors of metabotropic glutamate receptors (mGluR) 1 and 5,

using both supervised and unsupervised neural networks.183 As ligand binding

to the protein is a 3D problem, the exploitation of this additional information

in CATS3D is supposed to increase predictive accuracy. SURFCATS81 is

another extension of CATS3D, considering molecular surfaces.

One of the major strengths of pharmacophore descriptors and searches is

that they are well suited for scaffold hopping, which is finding compounds with
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similar bioactivity to a reference ligand but with different chemotype.48 A

different chemical scaffold can yield a favorable side effect profile compared to

the reference ligand. Additionally, it enables patenting of compounds for

already established mechanisms of action. Atom-based topological descriptors,

on the other hand, are frequently used to assay the structural diversity of

compounds used for pharmacophore model generation, and to evaluate the

obtained hits from a pharmacophore screening run. However, recent methods

like group fusion methods,184,185 which combine several different reference

structures for 2D similarity searching, or clique detection applied to reduced

graphs186 have shown their ability to overcome the short-comings of conven-

tional 2D chemical fingerprints and 2D graphs with respect to scaffold hopping.

3.6.2 Shape-based Virtual Screening

As molecular shape plays a central role during ligand binding, this property is

used in several approaches as a metric for molecular similarity (see Haigh

et al.187). Moreover, several docking algorithms geared towards high-

throughput screening use shape-guided procedures for rapid ligand placement

at the binding site (e.g., Fred188,189 and LigandFit190). ROCS191–193 is currently

the most commonly used shape-based, ligand-centric VS platform available. It

uses a smooth Gaussian function to define molecular volumes of small organic

molecules. In our recent comparative study on structure-based pharmaco-

phores and ROCS we found comparable performance of both approaches.119

Sykes et al.194 used ROCS for the prediction of nonspecific binding of drugs to

hepatic microsomes. Thereby, they found that the color force field (based on a

series of SMARTS patterns) considerably enhances the performance of ROCS.

3.6.3 Docking Methods

Today, protein–ligand docking is the most prominent approach for structure-

based VS. The docking process is divided into two major steps: first, the correct

placement of the ligand at the protein binding-site and, second, the estimation of

the ligand affinity by a scoring function. In contrast to rapid VS methods like

pharmacophore modeling, the performance of docking methods is always a

trade-off between computational demands and accuracy. This is reflected by the

plentitude of very different docking approaches available that aim at different

fields of application: incremental construction approaches (e.g., FlexX195), shape-

based algorithms (e.g., DOCK196,197), genetic algorithms (e.g., GOLD198), sys-

tematic search (e.g., Glide199,200), Monte Carlo simulations (e.g., LigandFit190),

and surface-based molecular similarity methods (e.g., Surflex201). Most exhaus-

tive algorithms focus on the accurate prediction of a binding pose; more efficient

algorithms on the docking of small ligand databases within reasonable time, and

rapid algorithms on the virtual high-throughput screening of millions of com-

pounds. Warren et al.202 have investigated the performance of ten docking

programs and 37 scoring functions on eight different targets. They found that
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docking programs are in general able to generate ligand poses that are similar to

the experimentally determined ligand pose bound to the protein. The perfor-

mance is highly dependent on the target. Moreover, they found no statistically

significant correlation between docking scores and ligand affinity. As we have

shown in the previous section, pharmacophore screening and docking methods

are frequently combined as two different approaches towards the given problem.

Often the pharmacophore model is used as a quick first filter. Similarly to

docking, the problem of poor correlation between scores and affinity can be seen

for pharmacophore models, even for quantitative models.42 However, similarly

to the scores given by a pharmacophore model, docking scores can sometimes be

useful to describe the general likeliness of affinity of a compound, rather than

trying to predict the affinity of the compound itself, as can be seen by the shape of

retrieved ROC or enrichment curves.146,152,202,203 While pharmacophore models

are thus able to provide good enrichment of candidate molecules from the

screening of large database with less computational efforts, docking methods

may sometimes still be better fit for analyzing smaller sets of compounds, espe-

cially in retrospective analysis. Pharmacophore models are sometimes too coarse

to pick up subtle differences induced by small structural variations in the ligands.

Furthermore, docking studies try to include all the possible interactions – both

positive and negative – at the binding site at the same time, thus allowing the

detection of unexpected binding modes as well as unfavorable interactions. One

major advantage of pharmacophore models is that they provide the user with a

large number of options for model refinement: models can be trained with the

help of a training set and optimized through automated or manual refinement of

feature weights, variation of feature definitions, addition or deletion of features,

the placement of excluded volume spheres, and many more. Changing the

parameters for the docking algorithms and docking scores, on the other hand, is

a much more demanding task. The recent inclusion of protein flexibility, as, e.g.,

in Schrödinger’s Induced Fit Methodology,204,205 provides an interesting exten-

sion of the docking approach, especially for pose-prediction and explanation of

received binding-affinities. It remains to be seen, though, whether the increased

computational demands and the provision of even more possibilities for com-

pounds to fit the binding site will make this method useful for the successful VS

of large databases.

Finally, while pharmacophore and docking methods are still two distinct

methods for VS, the distance between them appears to be growing smaller:

structure-based pharmacophore methods are trying to include more and more

information about the binding site (Sections 3.4.2 and 3.4.3), while some

docking programs have successfully incorporated pharmacophore constraints,

which we discuss in the next section.

3.6.4 Pharmacophore Constraints Used in Docking

One of the most important applications for docking methods is the correct

prediction of a possible binding pose, an ability that has been exhaustively
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studied for various docking programs, and ways to optimize the assessment of

binding pose quality have been discussed.136,206–208

Sometimes, the available data on a given binding pocket and a corresponding

set of known ligands may provide a very good reasoning for the assumption as

to where exactly a certain part of the ligand is located inside the binding pocket.

In such a case, pharmacophore constraints describing the well-known or

expected interactions may speed up the docking process while at the same time

minimizing the number of wrong pose predictions. Simple pharmacophore-like

sterical constraints can be applied, e.g., in the docking packages GOLD198 and

Glide.199,200 Verdonk et al.136 showed that pharmacophore restraints and

modified scoring functions that include a pharmacophore mapping term

improved the enrichment during screening of libraries against CDK2 and

neuraminidase. The pharmacophore approach has been applied to the FlexX

docking method, resulting in the development of the FlexX Pharm pro-

gram.209,210 Other examples include GEMDOCK,211 LibDock,212 and SP-

Dock.213 While we have not found a reported application for this procedure

yet, it should be noted that, e.g., DiscoveryStudio29 allows the quick filtering of

obtained docking poses with a structure-based pharmacophore model by tak-

ing the absolute coordinates of each docked pose and checking whether the

conformation matches the pharmacophore model.

3.7 Further Reading

Pharmacophore modeling methods have been in use for about 20 years now

and have found broad application in modern drug discovery. One book chapter

can thus only give a small overview of the research carried out so far. Two

books have been published that deal exclusively with pharmacophore model-

ing.62,143 Two recent book chapters by Martin discuss methods and applica-

tions of pharmacophore models.214,215 Van Drie has given a critical review of

pharmacophore methods, including a historical overview.216 The performance

of Catalyst, DISCO and GASP has been investigated by Patel et al.217

Recently, Evans et al.42 have published a comparative study on Phase and

Catalyst, and we have investigated the screening performance of Catalyst using

LigandScout pharmacophore queries in direct comparison to ROCS screen-

ing.119 Applications of pharmacophore models for drug-transporters218 and ion

channels219 have been reviewed. A two-part review discussing different methods

and applications for VS was published recently by Ekins, Mestres, and Testa.7,8

3.8 Summary and Conclusion

The pharmacophore concept is a successful and well-known approach – both

ligand- and structure-based – for drug design as well as for VS. Several methods

for describing pharmacophores have been established, showing significant dif-

ferences and capabilities in the way in which they describe chemical features as
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building blocks for pharmacophores. It is important that the chemical feature

representation used reflects the interactions that are relevant for the target being

represented, and some chemical feature representations are more universal than

others. The computational part of pharmacophore modeling (different align-

ment techniques used for pharmacophore elucidation and VS) has significantly

improved with the availability of new software packages. The use of new

algorithms has led to performance optimizations over the past few years, leading

to modern pattern recognition approaches that can superposition pharmaco-

phores and molecules in a fraction of the time needed by earlier approaches.

The number of papers published within the last years together with the

increasing interest of researchers into the re-emerging field of pharmacophore

modeling in drug discovery is obviously a consequence of other approaches like

structure-based docking not fully meeting the expectations people had of them.

While considerable progress has been made in docking with respect to speed

and accuracy of binding pose prediction, the biggest issue still remains the

correct prediction of the free binding energy. The scoring functions used for this

task may work well in each special application cases for which they were tuned

to. In other target families, they will probably fail. Since docking and scoring is

computationally expensive and since ranking of hits is still not possible with the

desired accuracy, the simple concept of 3D pharmacophores has become of

interest again. The pharmacophore concept is used while always keeping in

mind the need to understand, explain and predict molecular interactions with

the targets as well as structure–activity relationships. Its practical applicability

for medicinal chemists makes it an excellent communication tool between

modelers and synthetic chemists. Pharmacophores are of unambiguous sim-

plicity and usefulness for searching structural databases.143,220 In our opinion,

due to their computational efficiency in database mining, their importance will

largely increase when parallel screening software based on pharmacophores will

become available together with publicly or commercially available collections

of pharmacophore models covering important target as well as anti-targets.

This, in fact, will allow for rapid bio-activity profiling of compounds even

before they are synthesized and also will drastically enhance the library design

process. However, there is still a lot of room for research aimed at improving

methods or the design of novel algorithms. Some examples that are not yet (or

at least not broadly) included are the possibility to include multi-point features,

the automated detection and inclusion of tautomeric forms during both model

generation and screening, description of hydrophobic regions by non-spherical

features, the use of projection points instead of fixed locations for features

other than hydrogen-bonds (thus allowing for a more protein-centered phar-

macophore model), inclusion of negative (forbidden) features, and a broad

description of different ligand–metal interactions.

Both in the pharmaceutical industry and software companies specialized in

computer-aided molecular design the demand for experts in the field interfacing

medicinal chemistry and computer sciences will increase within the next decade.

There is no doubt that we will experience an exciting period of substantial

progress in pharmacophore-based VS technologies in the near future.
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CHAPTER 4

Molecular Similarity Analysis
in Virtual Screening

LISA PELTASON AND JÜRGEN BAJORATH

Department of Life Science Informatics, B-IT, LIMES Institute, Program

Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-

Wilhelms-Universität, Dahlmannstr. 2, D-53113 Bonn, Germany

4.1 Introduction

Molecular similarity analysis as we narrowly define and understand it today

employs a holistic molecular view and attempts to establish structure–activity

relationships between molecules beyond what one can ‘‘see’’ with a chemist’s eye.

Similarity analysis has become an integral part of the chemoinformatics spec-

trum.1 A plethora of conceptually different similarity methods have been, and

continue to be, developed and are applied in the hunt for novel active com-

pounds in pharmaceutical and other research settings. Table 4.1 lists exemplary

methods that reflect current development trends in molecular similarity research.

These and other approaches are often applied to search large virtually formatted

compound databases for active molecules using information of known ligands as

input, a process commonly referred to as ‘‘virtual screening’’. A characteristic

feature of currently available similarity methods is that the underlying algo-

rithms and their complexity often differ in rather significant ways. Nevertheless,

every newly introduced methodology is shown to have predictive value, at least

in benchmark calculations, and approaches ranging from the most simplistic to

complicated ones often produce comparable results when applied to the same

test cases. In fact, the impression one typically gets when reviewing this field is

that essentially ‘‘anything goes’’, at least to some extent. At the same time, the
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Table 4.1 Exemplary similarity-based methodologies applicable to virtual screening.a

Method Descriptors Approach Reference

compound
classification
and mapping

clustering property descriptors,
fingerprints

distance-based grouping of
compounds

41,42

decision trees property descriptors partitioning of compounds
along tree structures

43

binary kernel
discrimination

fingerprints estimation of class label
probabilities

44

support vector
machine (SVM)

property descriptors,
fingerprints

prediction of class labels
using a maximum-margin
hyperplane

45,46

cell-based
partitioning

property descriptors mapping of compounds to
subsections of chemical
reference space

47

DMC binary transformed
property descriptors

mapping of compounds to
consensus positions in
chemical space

48,49

MAD,
DynaMAD

property descriptors mapping of compounds to
activity-selective descrip-
tor value ranges with
iterative dimension exten-
sion (DynaMAD)

50,51

similarity
searching

fingerprint
comparison

BCI: predefined struc-
tural fragments

quantitative comparison of
bit string representations
using a similarity
coefficient

52

1
2
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Table 4.1 (Continued ).

Method Descriptors Approach Reference

Daylight: hashed con-
nectivity pathways

53

Molprint 2D: layered
atom environments

54

shape fingerprints: set of
reference shapes

55

3D pharmacophore fin-
gerprints: set of phar-
macophore patterns

9,56

PDR-FP: equifrequently
binned activity-sensi-
tive 2D descriptors

57

reduced graphs simplified 2D graphs determination of graph
similarity

20

ROCS gaussian shape models determination of volume
overlap

58

MolBlaster random fragment
populations

comparison of histograms 22

BDACCS property descriptors Bayesian distance function 59

aClustering is the original approach to similarity-based compound classification, for which many different algorithms have been developed. For simplicity,
clustering is only referred to as a general approach. Similar considerations apply to cell-based and statistical partitioning for which BCUTs and decision trees are
referenced as a prototype, respectively. The table format is adapted from.5
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performance of similarity methods typically shows a strong compound class

dependence that is not predictable. Moreover, in practice, similarity-based

methods generally perform less well in virtual screening than suggested by results

obtained in conventional benchmark calculations. Despite the intense efforts that

go into the development and evaluation of novel methodologies and search tools,

the reasons for these more general observations are not well understood and

many open questions remain. Therefore, we feel it is timely to look at similarity-

based methods from a more principal point of view and evaluate potential

reasons for the above-mentioned trends. Accordingly, this chapter focuses on the

scientific foundations of molecular similarity analysis that generally affect simi-

larity approaches and their performance in virtual screening, regardless of

methodological details and complexity.

4.2 Ligand-based Virtual Screening

Virtual screening (VS) techniques have become an integral part of modern

computer-assisted drug discovery.2 VS consists of a spectrum of methods

designed to efficiently search large compound databases in silico for molecules

likely to have a desired biological activity. Hits from a VS campaign are typically

selected for testing in a biological assay and, if novel actives are identified, further

development towards lead structures. Thus, VS attempts to rationalize drug

candidate testing strategies, in contrast to random screening. VS methods are

principally divided into approaches that take the structure of the target protein

into account (structure-based virtual screening, SBVS)3,4 and approaches that

rely on structures of known active small molecules (ligand-based virtual

screening, LBVS).5,6 While SBVS aims to identify active small molecules by

‘‘docking’’ them into the target binding site, LBVS uses information of known

active molecules to find novel structures with the desired activity. LBVS greatly

benefits from its independence of the target structure, because, in many cases,

active compounds present the principal source of information. Of course, SBVS

and LBVS strategies are not mutually exclusive and can be used in concert.

As stated above, LBVS techniques derive knowledge from given active mole-

cules to estimate the activity of candidate molecules in large databases. Various

methods have been developed that are distinguished by the chemical information

they use and the methodological paradigm that is followed. Figure 4.1 gives an

overview of the distinct approaches. Methods like pharmacophore searching7–9

or QSAR predictions10 focus on local features of chemical structure, whereas

molecular similarity analysis employs a global view of molecular structure.

Chemical similarity searching has one of its origins in substructure searching,

where database molecules are screened for the presence of a predefined structural

fragment.11 A substructure search retrieves all molecules that contain the query

fragment, irrespective of the structural environment in which it occurs, which

corresponds to a purely local method of compound comparison. A pharmaco-

phore search is distantly related to substructure searching in that an ensemble of

chemical groups is defined as a query for database screening.
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In some ways, pharmacophore models represent an activity-centric refine-

ment of substructure queries guided by three-dimensional (3D) information

and knowledge of or hypotheses about target–ligand interactions. In pharma-

cophore modeling, a set of 3D conformations of active reference molecules is

used to derive hypotheses concerning the parts of a molecule that render it

active through interactions with its target. This spatial arrangement of inter-

action points and elements represents the pharmacophore model that is used as

a query for database searching. Molecules that exhibit geometric features

similar to the pharmacophore are selected as candidate molecules likely to bind

to the target of interest.

Another method that derives information about bioactivity from local fea-

tures of a set of reference molecules is Quantitative Structure–Activity Rela-

tionship analysis (QSAR). Conceptually similar to pharmacophore methods,

QSAR initially concentrates on parts of a molecule where chemical changes

alter biological activity and that are believed or known to form interactions

with its target. The effects of local chemical changes on biological activity of

molecules are then studied. A mathematical model is derived that relates

structural features and molecular properties with bioactivity in a quantitative

manner. Properties are typically expressed through the use of chemical

descriptors. The model is applied to predict activities of candidate molecules.

QSAR requires sufficient knowledge about the parts of a molecule that are

relevant for bioactivity and usually depends on the availability of series of

closely related molecules or analogs, which also reflects the intrinsically ‘‘local’’

nature of the approach, irrespective of methodological details.

Ligand-based virtual screening

descriptor-

based

histogram-

based

superposition-

based

molecular

similarity

graph-

based

substructure

searching

3D pharmacophores QSAR models

global local
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arohyd

Ligand-based virtual screening
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histogram-

based
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based
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global local
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arohyd
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Figure 4.1 Ligand-based virtual screening methods. The figure shows different com-
putational methods for screening compound databases that take either a
local or a global view on molecular structure. Molecular similarity
methods that operate on molecular descriptors, histogram representations,
superposition or (reduced) molecular graphs evaluate molecular structure
globally. By contrast, local structural features are explored by sub-
structure and pharmacophore searching or QSAR modeling.
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In contrast to pharmacophore or QSAR modeling, chemical similarity

searching and other similarity-based methods require ‘‘global’’ molecular

representations that take the complete molecular structure into account and do

not rely on pre-conceived notions of activity-determining structural features.

The global similarity between the structure of each database compound and

one or several active reference compound(s) is evaluated. Database compounds

are ranked according to their similarity to the reference molecules. Molecules

that are overall similar to active reference molecules are thought to have a high

probability of displaying similar activity. This requires an appropriate specifi-

cation of intermolecular similarity that captures molecular characteristics

relevant for activity. Concepts and applications of molecular similarity are

discussed in the following.

4.3 Foundations of Molecular Similarity Analysis

A theoretical foundation of molecular similarity analysis is the assumption of

‘‘neighborhood behavior’’,12 which refers to the tendency of molecules with

globally similar structures to exhibit similar biological activity. The well-known

‘‘similarity-property principle’’ (SPP) of Johnson andMaggiora13 expresses this

paradigm and promotes a holistic view of molecular structure and properties.

Molecular similarity applications assume that chemical similarity can be related

to biological activity in a meaningful manner. However, the success of this

approach ultimately depends on the way molecular similarity is defined.

4.3.1 Molecular Similarity and Chemical Spaces

For the definition and analysis of molecular similarity, a reference frame is

needed that relates molecular structures to each other and facilitates compu-

tational comparisons. Hence, an important aspect of similarity analysis is the

definition of theoretical chemical spaces into which compounds are projected.14

A chemical reference space is spanned by a set of molecular descriptors, where

each descriptor adds a dimension to the reference space. Molecules are located

in reference spaces according to their descriptor values; molecular ‘‘coordi-

nates’’ in the reference space correspond to the values that descriptors adopt for

individual compounds. Molecular similarity or dissimilarity is then defined

through the intermolecular distance in the reference space. Meaningful che-

mical space representations map similar compounds to contiguous regions. The

major challenge for chemical space design is the choice of molecular repre-

sentations such that similar biological activity and properties are reflected by

small intermolecular distances. For this purpose, various molecular descriptors

are currently used.15,16 Generally, a molecular descriptor is a mathematical

representation of a molecule that contains information about structure or

physicochemical properties. This information can be conveyed by scalar values,

vectors, or bit strings. Descriptors are often classified according to the
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dimensionality of the molecular representation from which they are calculated.

1D descriptors utilize the chemical formula and represent mostly bulk prop-

erties such as molecular weight or atom counts. Descriptors based on the

molecular graph representation are classified as 2D and contain, for example,

information about connectivity or defined structural fragments, but also esti-

mations of physicochemical properties. 3D descriptors such as molecular

volume, surface or pharmacophore patterns require an experimental or pre-

dicted 3D conformation of a molecule. A ‘‘molecular fingerprint’’ is a type of

descriptor that is widely used in similarity searching.14 Fingerprints are string

representations of chemical structures consisting of bins, each of which con-

tains a scalar descriptor. Most often, fingerprints are bit strings where the

molecular information is encoded in a binary format. For example, the popular

structural keys (e.g. MACCS17) constitute a class of binary fingerprints where

each bit denotes the presence or absence of a predefined structural fragment. In

contrast to this simple type of 2D fingerprint, several fingerprints are available

that use 3D geometrical information. For example, pharmacophore finger-

prints18 monitor possible pharmacophore patterns in conformers of a molecule

and usually contain very large numbers of bit positions.

4.3.2 Similarity Measures

Whatever molecular representation is used, it is important to note that neigh-

borhood relationships between molecules are not invariant to the choice of

chemical reference space. Hence, molecular similarity can be assessed only with

respect to a given molecular representation. As stated above, molecular simi-

larity or dissimilarity is measured by intermolecular distance in the chosen

reference space. Conventional distance metrics such as Euclidean or Hamming

distance measure the distance between molecules in chemical space, whereas

similarity coefficients (e.g., Tanimoto, Dice or Cosine coefficient) directly assess

intermolecular similarity.19 Most similarity coefficients yield values that range

from 0 (denoting maximum dissimilarity) to 1 (maximum similarity), or can be

normalized accordingly, and are referred to as association coefficients. When

binary fingerprints are used, bit string overlap serves as a measure of molecular

similarity. The association coefficient most widely used in chemical applications

is the Tanimoto coefficient (Tc), which counts the number of bits common to

two binary fingerprints with respect to the total number of bits that are set in

each fingerprint. The Tc for two binary fingerprint representations A and B is

calculated as follows:

TcðA;BÞ ¼ NAB

NA þNB �NAB

ð4:1Þ

where NAB is the number of bits set on in both fingerprints and NA and NB refer

to the number of bits set on in A and B, respectively.

However, these descriptor-based similarity definitions present only one class

of available similarity and distance measures. Approaches to molecular
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similarity assessment independent of conventional descriptors include, for

example, superposition, molecular graph representations,20 histogram com-

parisons,21,22 and Brownian processing of molecules.23

4.3.3 Activity Landscapes

A given chemical space representation provides a projection of molecular data

into a multi-dimensional reference space. For a set of molecules active against

the same target, the magnitude of their individual activities adds another

dimension to the given reference space. The projection of molecules into che-

mical space together with their activities can thus be envisioned as a topo-

graphical map, where the magnitude of the activities (potencies) forms the

surface of an ‘‘activity landscape’’.24 For instance, if a 2D projection of che-

mical space is employed, the activity surface forms 3D shapes comparable to

geographic landscapes (Figure 4.2). The notion of activity landscapes illustrates

basic relationships between molecular structure and biological activity and

helps to characterize them.

4.3.4 Analyzing the Nature of Structure–Activity Relationships

Similarity search calculations are known to show highly varying performance on

different compound activity classes. Methods of different design and complexity

descriptor 1 d
e
sc

ri
p
to

r 
2

a
ctivity

Figure 4.2 Schematic illustration of an activity landscape. A two-dimensional che-
mical reference space is defined by two molecular descriptors. Biological
compound activity adds a dimension to the reference space, forming the
surface of an activity landscape.

127Molecular Similarity Analysis in Virtual Screening



often succeed comparably well, whereas in other cases considerable differences

in compound recall are observed and there is very little overlap between sets of

selected compounds.5 Currently available results suggest that there is no gen-

erally preferred methodology, which implies that there should be principal

limitations to the success of similarity assessment beyond specific features of

computational methods. The strong activity class dependence of similarity

search calculations indicates that the nature of underlying structure–activity

relationships (SARs) is a major determinant of success or failure of similarity

methods.

The conceptual basis for similarity analysis is provided by the similarity-

property principle that states that similar molecules have similar biological

activity.13 This rather intuitive principle has been widely accepted and sub-

stantiated by a wealth of observations. The success of many similarity-based

virtual screening calculations can only be rationalized on the basis of this

principle. However, minor modifications in molecular structure can dramati-

cally alter the biological activity of a small molecule.25 This situation is

exploited in lead optimization efforts, but limits the potential of similarity

methods. These considerations also suggest that there must be fundamental

differences between the structure–activity relationships (SARs). Thus, different

types of SARs are expected to critically determine the success of similarity

methods and systematic SAR analysis helps to better understand on a case-by-

case basis why similarity methods might succeed or fail.

SARs are largely distinguished by the responsiveness of molecules to struc-

tural modifications. SAR characteristics are mirrored by the topology of the

activity landscape under consideration and such topologies might substantially

differ. For example, what we regard as ‘‘continuous’’ SARs are characterized

by gradual biological responses to chemical changes, which results in smooth

activity landscapes reminiscent of gently rolling hills.24 The spectrum of active

compounds, which we call the ‘‘activity radius’’, covers a range of increasingly

diverse structures, including closely related molecules or analogs as well as

different chemotypes having comparable biological activity. In certain regions

within continuous SAR landscapes molecules with different core structures can

be found that have similar potency. This situation is consistent with the simi-

larity-property principle and provides a sound basis for molecular similarity

analysis. The holistic nature of similarity methods builds on the presence of

different structural motifs displaying the same activity. In particular, con-

tinuous SARs enable the departure from given core structures and the identi-

fication of novel active compounds, which is generally considered the major

challenge for virtual screening.

In contrast to continuous SARs, ‘‘discontinuous’’ SARs are characterized by

substantial changes in biological activity in response to small or even minute

chemical changes. In the presence of discontinuous SARs, modification of only

a single functional group can decrease the biological activity of a molecule

dramatically or even abolish it altogether. Conversely, a small structural

modification might transform an active molecule into a highly potent lead

(Figure 4.3). This situation corresponds to the presence of ‘‘activity cliffs’’ in the
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activity landscape that produce an area of a rugged canyon-like surface.24 In

these cases, the activity radius is limited by the need for bioactive compounds to

contain substructures that are responsible for the formation of crucial binding

interactions with a receptor. It follows that discontinuous SARs do not con-

form to the holistic molecular view of similarity and the similarity-property

principle. When discontinuous SARs are prevalent, molecular similarity ana-

lysis becomes a futile exercise.

However, notably, the concept of an activity radius does not generally

assume a homogeneous distribution of compound properties throughout a

given radius. The presence of continuous SARs within a given similarity range

does not imply that the corresponding activity radius consists of exclusively

continuous SARs. Within the same radius, discontinuous regions can also be

encountered, depending on the direction into which we move in chemical space.

Consequently, compounds within a given activity radius will in most cases

exhibit varying SAR characteristics.

In systematic SAR analysis, molecular structure and similarity need to be

represented and related to each other in a measurable form. Just like any

molecular similarity approach, SAR analysis critically depends on molecular

representations and the way similarity is measured. The nature of the chemical

space representation determines the positions of the molecules in space and

thus ultimately the shape of the activity landscape. Hence, SARs may differ

considerably when changing chemical space and molecular representations. In

this context, it becomes clear that one must discriminate between SAR features

that reflect the fundamental nature of the underlying molecular structures as

opposed to SAR features that are merely an artifact of the chosen chemical

space representation. Consequently, activity cliffs can be viewed as either

fundamental or descriptor- and metrics-dependent. The latter occur as a con-

sequence of an inappropriate molecular representation or similarity metrics and

can be smoothed out by choosing a more suitable representation, e.g., by

considering activity-relevant physicochemical properties.26 By contrast, activity

cliffs fundamental to the underlying SARs cannot be circumvented by changing

the reference space. In this situation, molecules that should be recognized as

Figure 4.3 Example of an ‘‘activity cliff’’ illustrated by closely related adenosine
deaminase inhibitors having dramatic potency differences. The introduc-
tion of a hydroxyl group that coordinates a zinc cation in the active site of
the enzyme adds several orders of magnitude to the potency of an
inhibitor.
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similar by any meaningful metrics display different biological activity. Hence,

holistic similarity methods cannot solve such discontinuity, irrespective of the

molecular representations that are used.

4.3.4.1 Relationships between Different SARs

The different prototypic SAR characteristics described above have been

observed for various compound classes. It is puzzling at first glance that the

ligands of many target proteins display apparently inconsistent SAR features.

Often, series of target-specific inhibitors are related by continuous SARs; they

gradually depart in structure from a potent molecule but show only moderate

losses in potency. However, for the same target, other series of similar mole-

cules are found that display remarkably different potency or selectivity. This

apparent inconsistency can be rationalized by systematic SAR analysis. Cor-

relation of the structural similarity of biologically active molecules and their

potency reveals that activity landscapes are more variable than often thought

and complex relationships exist between different SAR characteristics.27 There

is substantial evidence that activity landscapes frequently contain both smooth

and rugged regions that are populated by different series of inhibitors related to

each other by either continuous or discontinuous SARs. Thus, different types

of SARs might coexist within an active site. Such insights have suggested that

many SARs should be ‘‘heterogeneous’’ in nature5 and this possibility has been

thoroughly explored by systematic comparisons of experimental binding con-

formations, 2D similarity, and potency of series of ligands binding to different

enzyme targets.27 The following sections describe in more detail the investi-

gations that have provided a conceptual framework for qualitative and quan-

titative characterization of SARs.

4.3.4.2 SARs and Target–Ligand Interactions

The biological activity of small molecules ultimately has to be considered in the

context of receptor–ligand interactions. In other words, for the study of SARs,

it is important to take into account that the biological activity of small mole-

cules always results from their interaction with a macromolecular target, most

often an enzyme or receptor protein. For a small molecule, specific binding to a

receptor requires the formation of well-defined chemical and physical inter-

actions. Crucial for binding is the chemical and geometrical complementarity of

ligand and receptor, and these requirements are not independent of each other.

Chemical complementarity is reflected by the formation of hydrogen bonds,

electrostatic or ionic interactions, van der Waals interactions and, in addition,

by hydrophobic or other entropic effects. Geometrical complementarity

requires that the ligand matches the shape of the binding site, as originally

postulated using the lock-and-key analogy28 or the induced-fit model of ligand

binding,29 which is often more appropriate.
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This target-centric view of biological activity helps to rationalize the SARs of

many different activity classes and to distinguish them from each other. On the

one hand, activity cliffs can be envisioned as resulting from critically important

target–ligand interactions that are indispensable for binding, irrespective of

ligand structure and properties. Such rigid constraints posed by a binding site

introduce cliffs into the activity landscape and define the boundaries of an

activity radius. On the other hand, continuous SARs are often indicative of

permissive binding events and binding sites having plasticity that tolerate

ligand variability to a certain extent. Such binding sites might often require a

high degree of shape complementarity with a ligand but provide different

potential interaction points, or sub-sites, to achieve the required com-

plementarity. However, consistent with the variable nature of activity land-

scapes,27 SAR characteristics are not exclusively dictated by binding site

elements. The structural and chemical features of ligands also play an impor-

tant role and co-determine the ‘‘language’’ that proteins and ligands use to

communicate. Moreover, continuity or discontinuity of SARs is not simply

determined by the region of the molecule where structural modifications are

made. Often, affinity changes are achieved by chemical modification of

the parts of a molecule that interact with its target. But there are also cases

where such modifications do not produce significant affinity variation or trigger

the formation of different binding modes, which provides evidence that SARs

are not necessarily local molecular characteristics. The global nature of SARs is

also reflected by the presence of compounds having different molecular scaf-

folds but sharing the same biological activity: the ‘‘holy grail’’ of similarity

analysis. Furthermore, there are also potency determining effects that do not

depend on receptor–ligand interactions, for example, desolvation free energy.

4.3.4.3 Qualitative SAR Characterization

Characterization of SARs was facilitated through systematic comparison of 2D

and 3D similarity of ligands with their potency.27 For this purpose, X-ray

structures were collected of different target enzymes for which complexes with

multiple ligands had been determined. Table 4.2 summarizes the crystal-

lographic structures that were analyzed. For each enzyme, binding conforma-

tions of ligands were compared in a pair-wise manner using alignments based

on overlap of atomic property density functions that took positional and

conformational differences into account. 2D similarity between ligand pairs

was calculated using the Tanimoto coefficient on MACCS structural keys.

Moreover, for each ligand pair, the relative potency difference was calculated.

This provided the basis for the qualitative assessment of SARs that offered

fundamental insights into the nature of activity landscapes. Representative

results are discussed below.

A set of inhibitors of the coagulation factor Xa is found to present prototypic

continuous SARs. There is detectable correlation between 2D and 3D mole-

cular similarity and most similar 2D structures bind very similarly and with
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Table 4.2 Summary of crystallographic data used for qualitative SAR

analysis.

Dataa Ribonuclease A
Carbonic
anhydrase Factor Xa Elastase

Number of com-
plex structures

9 27 16 14

PDB codes 1afk (PAP) 1a42 (BZO) 1ezq (RPR) 1bma (4-mer)
(hetero ID) 1afl (ATR) 1avn (HSM) 1f0r (815) 1eas (TFK)

1jn4 (139) 1bcd (FMS) 1f0s (PR2) 1eat (TFI)
1o0f (A3P) 1bn1 (AL5) 1fjs (Z34) 1ela (4-mer)
1o0h (ADP) 1bn3 (AL6) 1g2l (T87) 1elb (4-mer)
1o0m (U2P) 1bn4 (AL9) 1ksn (FXV) 1elc (4-mer)
1o0n (U3P) 1bnn (AL1) 1lpg (IMA) 1eld (4-mer)
1o0o (A2P) 1bnq (AL4) 1lpk (CBB) 1ele (4-mer)
1qhc (PUA) 1bnt (AL2) 1lpz (CMB) 1gvk (4-mer)

1bnu (AL3) 1mq5 (XLC) 1h9l (4-mer)
1bnv (AL7) 1mq6 (XLD) 1inc (ICL)
1bnw (TPS) 1nfu (RRP) 1qr3 (8-mer)
1cil (ETS) 1nfw (RRR) 4est (5-mer)
1cim (PTS) 1nfx (RDR) 5est (3-mer)
1cin (MTS) 1nfy (RTR)
1cnw (EG1) 1xka (4PP)
1cnx (EG2)
1cny (EG3)
1g1d (FSB)
1g52 (F2B)
1g53 (F6B)
1g54 (FFB)
1if7 (SBR)
1if8 (SBS)
1okl (MNS)
1okn (STB)
1ttm (667)

2D similarity
minimum 0.76 0.07 0.24 0.34
maximum 0.99 1 1 0.92
average 0.87 0.59 0.50 0.52
3D similarity
minimum 0.13 0 0.28 0.09
maximum 0.87 0.99 0.96 0.96
average 0.44 0.60 0.58 0.37
correlation
2D/3D similarity 0.58 0.79 0.47 0.31
potency (Ki values
in nM)

minimum 27 0.03 0.007 0.46
maximum 82000 125000 131 890000
average 12820 4669 24 120512

aShown are PDB accession codes and similarity and potency data for complex crystal structures
subjected to qualitative SAR analysis. The table is adapted from the supplementary material of.27
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comparable potency. In addition, there is a significant degree of structural

diversity. A perhaps unexpected characteristic of diverse factor Xa inhibitors

with distinct chemical scaffolds is their tendency to bind in similar conforma-

tions. Diverse structures adopt comparable binding modes that match the

shape of the binding pocket (Figure 4.4). This indicates that, in this case,

binding to the receptor is largely governed by shape complementarity, which

provides the basis for the structural diversity of factor Xa ligands. The active

site of factor Xa tolerates structural variations as long as a high degree of

spatial complementarity is maintained and a few key interactions are formed.

A different example is provided by a set of elastase inhibitors. These ligands

are also related by continuous SARs. This is reflected by the presence of highly

potent inhibitors with diverse structures and, in addition, structurally similar

ligands that display only minor potency differences. However, in contrast to

factor Xa, 3D analysis reveals a more complex picture. Specifically, elastase

accepts multiple binding modes, each of which is adopted by structurally

Figure 4.4 A pair of factor Xa inhibitors with limited structural similarity that adopt
very similar binding conformations. 3D similarity is calculated from the
overlap of atomic property density functions (for details, see ref. 27).
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diverse ligands. Moreover, structurally similar ligands can bind in distinct

conformations and orientations, whereas structurally diverse inhibitors

are found to adopt the same binding mode and have very similar 3D con-

formations (Figure 4.5). Subsets of elastase inhibitors can be identified that

show either direct or inverse correlation between 2D and 3D similarity.

However, the 3D binding characteristics appear to have no significant influence

on the potency of the structures. Hence, substantially different SAR chara-

cteristics are observed for different series of compounds that are active against

the same target.

By contrast, discontinuous SAR characteristics are present among, for

example, ribonuclease A inhibitors. All inhibitors studied here are closely

related nucleotide analogs containing one or more phosphate groups and either

an adenine or a uracil base. Despite these shared moieties, there are potency

differences of several orders of magnitude among analogous structures. In

addition, binding conformations exhibit a remarkable degree of variability.

Two distinct binding modes are observed that distinguish between inhibitors

containing different nucleobases (Figure 4.6a). Hence, structurally closely rela-

ted inhibitors bind in a completely different manner, dependent on which base

they contain. Moreover, even analogs of the same nucleotide can adopt dif-

ferent binding conformations. Inspection of the architecture of the receptor

binding site helps to better understand this spatial permissiveness. The active

site of ribonuclease A contains a positively charged phosphate binding pocket.

Potent inhibitors fill this pocket with a phosphate group. Apart from this severe

structural constraint, the enzyme accommodates different binding conforma-

tions and allows a remarkable degree of structural variability. However, these

findings cannot explain the high potency differences among very similar

ligands, because the highest potency differences occur between ligands that

Figure 4.5 Different binding modes of elastase inhibitors. The three inhibitors on the
right-hand side have similar 2D structures but adopt distinct binding
modes. By contrast, the two structures on the left (separated by the dashed
vertical line) have only limited 2D similarity but share the same binding
mode. MACCS Tc values are reported for pair-wise comparisons.
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share the same binding mode (Figure 4.6b). Ribonuclease A inhibitors present

an example of discontinuous SARs that manifest themselves on both the 2D

and 3D level.

Taken together, the qualitative characterization of SARs on the basis of

available structural and potency data reveals that most target sites have a

certain degree of permissiveness to structural variation of ligands. Few targets

are completely restrictive or permissive in their binding characteristics. There is

often more than one way that ligands interact with their target. Accordingly,

the corresponding activity landscapes frequently contain multiple regions of

strong local activity, each of which is limited by the presence of an activity cliff

and a resulting individual activity radius. Ligands adopt specific 3D binding

conformations to specifically match chemical and geometric features of a

binding site. Analysis of multiple binding conformations often helps to ratio-

nalize underlying SARs. Owing to the intrinsic variability of many target–

ligand interactions, diverse structures can be accommodated in binding sites

through distinct binding modes. Hence, the analysis of target–ligand interac-

tions and binding conformations enables SAR analysis on the basis of

Figure 4.6 Ribonuclease inhibitors. (a) Analogs of different nucleotides adopt distinct
binding modes. (b) Closely related analogs that differ only in the position
of two phosphate groups and bind in very similar conformations show
significant potency differences.
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experimental structural and binding data. The findings discussed above suggest

that many SARs are not exclusively continuous or discontinuous, but rather

are heterogeneous in nature. This has important implications for molecular

similarity analysis and virtual screening, as further discussed below.

4.3.4.4 Quantitative SAR Characterization

The qualitative analysis of SARs described above has shed light on the highly

complex nature of SARs. In medicinal chemistry, SARs are typically analyzed on

a case-by-case basis. Thus far, few if any approaches have been introduced to

systematically and quantitatively describe SAR characteristics of different

compound classes. In the following, two related approaches are presented that

provide a quantitative measure of SAR characteristics only based on 2D struc-

tural similarity and binding data. Limiting similarity assessment to 2Dmolecular

representations departs from the 3D similarity-oriented correlation studies

described above, but makes it possible to extend quantitative SAR analysis to

targets for which no, or only few, relevant X-ray structures are available.

SAS Maps. Structure–activity similarity (SAS) maps were originally intro-

duced by Maggiora and colleagues30 and provide a graphical representation of

relationships between structural similarity and ‘‘activity similarity’’ of bioactive

compounds. Structural similarity of ligand pairs is evaluated based on the

Tanimoto coefficient for MACCS structural keys and plotted against an index

for activity similarity derived from IC50 values. In the resulting graphs, regions

of varying information content can be identified. For instance, regions of high

2D structural similarity and low similarity in activity correspond to rugged

activity landscapes, whereas regions of high structural and activity similarity

form smooth activity landscapes. According to these features, SAS maps for

idealized rough and smooth activity landscapes can be devised to serve as a

reference for SAR comparisons. The comparison of different SAS maps is

based on an information-theoretic metric that compares the frequency dis-

tributions of the structural and activity similarity in theoretical and observed

SAS maps. The Kullback–Leibler divergence31 applied for this purpose pro-

vides a quantitative measure of the divergence between these distributions.

Using idealized SAS maps as a reference, the smoothness or roughness of

activity landscapes of sets of active molecules can be estimated.

SAR Index. The SAR Index (SARI) has recently been introduced to quan-

titatively capture the continuous, discontinuous, or heterogeneous nature of

activity landscapes and SARs.32 Similar to SAS maps, it exclusively relies on

the 2D structural similarity and potency distribution within a set of active

compounds. However, SARI aims to categorize the SARs of a population of

compound sets without employing idealized reference states. It generates a

numerical index between 0 and 1 that reflects the (dis-)continuity of the SARs

under consideration. SARI distinguishes between three major categories of
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SARs: continuous, discontinuous and heterogeneous. In the following, the

conceptual framework of SARI will be presented and compound classes

representative for the distinct SAR types are discussed.

SARI is constituted by two individual score components that evaluate the

similarity spectrum within a compound class and potency differences between

related ligands as the major determinants of SAR characteristics. Two-

dimensional structural similarity of compounds is calculated using the Tanimoto

coefficient for MACCS structural keys and potency is represented by either pKi

or pIC50 values. Both individual scores of the SARI are first calculated in a

‘‘raw’’ numerical form and then transformed into final normalized scores.

The ‘‘continuity score’’ estimates the continuous character of an activity

landscape. The essence of continuous SARs is the presence of increasingly

diverse structures with similar potency, corresponding to the absence of acti-

vity cliffs that are captured by the ‘‘discontinuity score’’, as explained below.

Therefore, the continuity score essentially measures the structural diversity

within a class of active compounds. It is derived from the potency-weighted

mean of pair-wise compound similarity. For each ligand pair, the weights

combine the magnitude of their potency and also the potency difference.

Accordingly, pairs of ligands with high potency but low potency differences

contribute more to the continuity score than ligand pairs with overall low

potency and high potency differences. This weighting scheme takes into

account that continuity of SARs is often reflected by the presence of com-

parably potent inhibitors of increasing structural diversity. The potency-

weighted mean of ligand similarity is transformed into a diversity measure by

subtraction from 1. The ‘‘raw’’ continuity score is defined as:

rawcont ¼ 1�

P

Ligands i >j

wijsimði; jÞ
P

Ligands i >j

wij

ð4:2Þ

where the weight for each ligand pair (i, j) is set to:

wij ¼
potðiÞ � potð jÞ

1þ potðiÞ � potð jÞjj ð4:3Þ

In this formula, pot(i) gives the potency value of compound i and sim(i, j) refers

to the MACCS Tanimoto similarity between compounds i and j.

The ‘‘discontinuity score’’ assesses the discontinuous features of an activity

landscape.

The most prominent characteristic of discontinuous SARs is the presence of

activity cliffs. Accordingly, the discontinuity score considers average potency

differences for pairs of similar ligands. Here only ligand pairs are considered

that reach a predefined similarity threshold value because the discontinuity of

SARs is largely reflected by the presence of similar compounds having signifi-

cant differences in potency. To emphasize potency differences among closely
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related compounds, the potency difference of each ligand pair is multiplied by

their pair-wise similarity value. The ‘‘raw’’ discontinuity score is defined as:

rawdisc ¼

P

fi4jj simði;jÞ40:6g
potðiÞ � potðjÞj j � simði; jÞ

fi4jj simði; jÞ40:6gj j ð4:4Þ

The similarity threshold for ligand pairs that are considered in calculating the

discontinuity score is set to 0.6. This relatively ‘‘soft’’ threshold value ensures

that also potency differences between remotely similar compounds are taken

into account and thus enables a thorough assessment of putative activity cliffs,

which is further emphasized by multiplication by pair-wise ligand similarity.

To obtain a common reference frame for SARI analysis, raw scores are

converted into z-scores using the sample mean and standard deviation of the

scores of a reference set of different activity classes. For initial SARI calcula-

tions discussed herein, a set of 16 representative compound classes was used as

a reference set32 (Table 4.3). Using larger reference sets had no significant

influence on the results of the analysis. Thus, the classes studied here were

sufficient to calculate statistically sound z-scores. Therefore, the mean and

Table 4.3 Summary of quantitative SAR characteristics of 16 reference

classes.a

SAR characteristics

Target
Continuity
score

Discontinuity
score SAR index

continuous
poly(ADP-ribose) polymerase 0.82 0.03 0.89
coagulation factor Xa 0.71 0.12 0.80
cyclin-dependent kinase 2 0.74 0.36 0.69
protein-tyrosine phosphatase 1b 0.75 0.44 0.66
elastase 0.64 0.38 0.63
heterogeneous
carbonic anhydrase II 0.30 0.08 0.61
cyclooxygenase 2 0.79 0.69 0.55
trypsin 0.37 0.42 0.47
dihydrofolate reductase 0.59 0.67 0.46
thromboxane synthase 0.82 0.89 0.46
acetylcholine esterase 0.82 0.93 0.45
peptidylprolyl isomerase (FKBP-12) 0.17 0.26 0.45
thymidylate synthase 0.16 0.33 0.41
thrombin 0.71 0.92 0.40
discontinuous
ribonuclease A 0.004 0.68 0.16
adenosine deaminase 0.15 0.85 0.15

aSARI scores for 16 sets of active compounds used as reference classes for SARI calculations. The
table is adapted from.32 The SARI scoring range of approximately 0.4–0.6 is considered inter-
mediate and indicates the presence of heterogeneous SARs.
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standard deviation derived from this set can also be used as reference for SARI

calculations on other compound classes.

The z-scores are then transformed into scores between 0 and 1 by calculating

the cumulative probability distribution for each score under the assumption of a

normal distribution, which yields the final continuity and discontinuity scores:

scorecont ¼ Fðz-scorecontÞ ¼
1
ffiffiffiffiffiffi

2p
p

Zz-scorecont

�N

exp �1

2
x2

� �

dx ð4:5Þ

scoredisc ¼ Fðz-scorediscÞ ¼
1
ffiffiffiffiffiffi

2p
p

Zz-scoredisc

�N

exp � 1

2
x2

� �

dx ð4:6Þ

The SAR Index is ultimately calculated as the mean of the final scores. High

continuity and discontinuity scores are indicative of opposite SAR character-

istics and, therefore, the discontinuity score is subtracted from 1 to obtain a

complementary value:

SARI ¼ 1

2
½scorecont þ ð1� scorediscÞ� ð4:7Þ

Hence, the SAR Index yields values between 0 and 1. Low SARI values

indicate discontinuous SARs, high SARI values continuous ones, and inter-

mediate values heterogeneous SARs that combine continuous and dis-

continuous elements.

Exemplary SAR Analysis. In addition to classifying SARs into the three

major categories described above, SARI analysis has made it possible to dis-

tinguish between two previously unobserved sub-types of heterogeneous SARs

that differ in the way continuous and discontinuous elements are related to each

other. Examples are presented in the following section. For each compound

class the relationship between structural similarity and potency is represented in

a diagram that correlates pair-wise 2D molecular similarity and potency dif-

ferences, reminiscent of SAS maps. Representative diagrams corresponding to

the compound classes discussed below are shown in Figure 4.7. Table 4.3

summarizes SARI and its component scores for the 16 activity classes.

Continuous SARs. The set of factor Xa inhibitors discussed above presents a

prime example of continuous SARs. As illustrated in Figure 4.7(a), many

compounds show a high degree of structural diversity but have rather similar

potency values and, in addition, similar compounds also have similar potency.

These characteristics are reflected by a high SARI score of 0.80 produced by

high continuity and low discontinuity scores, which is indicative of a con-

tinuous SAR. The continuity score of 0.71 reflects high intra-class structural

diversity, whereas the discontinuity score of 0.12 indicates that similar ligands

139Molecular Similarity Analysis in Virtual Screening



generally have very low potency differences. Figure 4.8 shows a diverse spec-

trum of inhibitors with potency in the nanomolar range.

Discontinuous SARs. Consistent with the results of our qualitative SAR

analysis presented above, SARI scoring indicates that ribonuclease A inhibi-

tors are a prototypic example of discontinuous SARs. The potency among

these highly similar nucleotide analogs differs by up to three orders of mag-

nitude (Figure 4.7b). As already mentioned above, these features clearly indi-

cate the presence of discontinuous SARs. The low SARI score of 0.16 mirrors

these findings. It results from the combination of a very low continuity score of

nearly zero (0.004) that reflects the lack of structural diversity within the
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Figure 4.7 Potency difference versus 2D similarity of enzyme inhibitors. Each data
point represents a pair-wise comparison of inhibitors within an activity
class. Data points are grayscale-coded according to potency represented as
the sum of their pKi values using a continuous spectrum from light grey
(lowest combined potency) to black (highest combined potency). Dis-
tributions are shown for four sets of enzyme inhibitors that represent
different types of SARs, as discussed in the text: (a) factor Xa, (b) ribo-
nuclease A, (c) thromboxane synthase and (d) carbonic anhydrase.
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compound set and a high discontinuity score of 0.68 that accounts for large

potency differences among very similar ligands.

Heterogeneous SARs. Heterogeneous SARs combine continuous and dis-

continuous features that can be associated in different ways, depending on the

nature of the activity class. Systematic SARI calculations revealed two distinct

sub-types of heterogeneous SARs. Both sub-types yield intermediate SARI

scores but are distinguished by the magnitude of continuity and discontinuity

scores. One sub-type is characterized by mutually coexisting continuous and

discontinuous SARs, yielding both high continuity and discontinuity scores.

This combination is indicative of permissive or adaptable binding sites.

Accordingly, the corresponding SAR category is termed ‘‘heterogeneous-

relaxed’’. The other sub-type of heterogeneous SARs consists of inhibitors that

are related by continuous SARs that exist within the boundaries presented by a

binding constraint and the ensuing activity cliff. In this case, the binding con-

straint is best rationalized as a structural feature within an active site imposing

interactions on ligands that are essential for binding. For example, this could be

an ion coordination sphere or a charged residue presented in an otherwise

hydrophobic binding site environment. This situation produces both low

continuity and discontinuity scores and the corresponding SAR sub-type is

referred to as ‘‘heterogeneous-constrained’’.

Inhibitors of thromboxane synthase are an example of heterogeneous-

relaxed SARs. The ligand spectrum includes diverse and highly potent inhibi-

tors, similar to factor Xa, but also pairs of structurally similar inhibitors having

very different potency (Figure 4.7c). In this case, the coexistence of continuous

Figure 4.8 A spectrum of structurally diverse factor Xa inhibitors with potencies in
the nanomolar range.
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and discontinuous SARs is reflected by high continuity and discontinuity scores

of 0.82 and 0.89, respectively.

Carbonic anhydrase inhibitors represent a prototype of a heterogeneous-

constrained SAR type, characterized by a low continuity (0.30) and very low

discontinuity (0.08) score. The low continuity score indicates that the diversity

of inhibitors is limited, especially among highly potent ones (Figure 4.7d). All

inhibitors share a sulfonamide group, which is required to complex a cataly-

tically important zinc cation within the active site of carbonic anhydrase. The

need to complex this zinc ion presents a binding constraint for the inhibitors.

However, this activity cliff does not render the activity landscape completely

discontinuous. It is only one important element in a landscape of heterogeneous

topology that limits the activity radius of effective inhibitors. Compounds that

fall within this activity radius meet the constraint and are related by a restricted

continuous SAR. Accordingly, moderate structural variations are tolerated

that result in gradual potency changes, consistent with the features of con-

tinuous SARs (Figure 4.9).

4.3.4.5 Implications for Molecular Similarity Analysis

and Virtual Screening

The systematic qualitative and quantitative analysis of SAR characteristics

confirms the assumption that many SARs should be heterogeneous in nature

and provides a stringent formalism for classification of SAR categories.

Clearly, the results of systematic similarity and potency correlation analysis

show that SARs are more complex than often assumed. Multiple SARs can

coexist within the same active site, providing evidence that the architecture of

the binding site does not always ‘‘dictate’’ SAR features, but rather tolerates

different types of SARs depending on the features of ligands. Moreover, even

severe constraints on binding permit significant variability of compound

Figure 4.9 Carbonic anhydrase inhibitors following a continuous SAR. Within a set
of sulfonamides, increasing structural diversity is accompanied by gradual
changes in potency. 2D similarity is reported on the basis of MACCS Tc
values for pair-wise comparisons using the molecule on the left-hand side
as the reference structure.
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binding modes and at least some degree of structural diversity among ligands.

These findings partly revise current views that similar ligands display a general

tendency to bind in very similar ways to the same target.33 The confirmed

variability of activity landscapes indicates that, for a multitude of target pro-

teins, heterogeneous SARs prevail. Therefore, for many target proteins, the

similarity-property principle, one of the cornerstones of similarity analysis, is

applicable and active compounds are expected to cover a diverse structural

spectrum.

What can SAR analysis teach us about the general nature of compounds that

are active against a specific target? As with every knowledge-based approach,

SARI calculations are limited to the information that can be derived from

available data. SAR characteristics of small populated regions within theore-

tical activity landscapes do not comprehensively capture their global topology.

Specifically, systematic SAR analyses and the fundamental considerations

presented above lead to the conclusion that purely continuous or discontinuous

SARs are rare. This implies that compound sets showing strong continuous or

discontinuous SAR features might only represent a limited repertoire of the

overall spectrum of structures that are active against a given target. However,

extrapolating from the SAR characteristics of known bioactive compounds is

often complicated by the existence of multiple SARs for which available

compound data might be, at least in part, limited or biased. Nonetheless, for

activity classes in which continuous or heterogeneous-relaxed SARs are

observed, the opportunity exists to discover structurally diverse active com-

pounds. In contrast, in compound classes that exhibit discontinuous or hete-

rogeneous-constrained features, activity cliffs severely restrict activity radii,

which limits the success of similarity search calculations.

In a typical LBVS scenario, ligands with known biological activity serve as

reference molecules. These reference compounds often provide the only infor-

mation available for SAR analysis. However, as described above, knowledge

about the nature of the SARs can be obtained. This knowledge has implications

for the potential success or failure of molecular similarity methods. Again, the

topology of an activity landscape presents the major determinant for the suc-

cess or failure of global similarity analysis. Hence, the existence of continuous

SAR elements is a prerequisite for the successful application of similarity

methods and the identification of structurally diverse molecules having a

desired bioactivity. In contrast, discontinuous SARs are inconsistent with the

similarity-property principle and do not provide a basis for global similarity

evaluation and correlation with biological activity. In this case, due to the

presence of activity cliffs in discontinuous activity landscapes and small activity

radii, similarity methods are prone to produce many false-positives and their

results become essentially meaningless. However, Table 4.3 shows that most

SARs studied thus far fall into the intermediate SARI range that is char-

acteristic for heterogeneous SARs. Ultimately, the success of holistic similarity

methods in virtual screening critically depends on the presence of continuous or

heterogeneous SARs. Only for compound classes where underlying SARs have

such features can we expect to identify diverse structures having similar
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activity. Going beyond hit identification through molecular similarity analysis,

heterogeneous SARs are of high interest for lead optimization: in the presence

of heterogeneous SARs, there is not only a high probability of finding novel

active molecules; moreover, it is also likely that these compounds can be

optimized, provided analog generation can be focused on a region with an

activity cliff that disrupts the rolling hill topology of the activity landscape. By

contrast, although purely or mostly continuous SAR landscapes are prime

targets for LBVS, they can present severe problems for medicinal chemistry,

because it might be rather difficult to substantially improve the potency of hits

by generating series of analogs and converting them into leads. This gives rise

to a phenotype often called ‘‘flat SAR’’, which is much disliked by medicinal

chemists.

4.4 Strengths and Limitations of Similarity Methods

The heterogeneous nature of many SARs helps to rationalize why rather dif-

ferent similarity methods succeed in many cases and are indeed capable of

identifying structurally diverse active compounds. Moreover, it also provides an

explanation for the strong compound class dependence of similarity methods,

albeit only in part. The existence of distinct SAR categories does not readily

explain why various methods frequently perform rather differently on a given

compound class. However, we also need to consider that one of the fundamental

challenges for similarity analysis is to find local SAR regions of continuous

nature by selecting reference molecules that account for these features. At this

stage, we can expect alternative methods to either succeed or fail, dependent on

the molecular representations and chemical reference spaces they utilize and the

way SARs are established within these reference frames. The choice of mole-

cular representations and reference spaces significantly influences the topology

of activity landscapes and ultimately determines whether or not continuous

SAR features can be abstracted from reference compounds. The rather intricate

relationships between coexisting individual continuous and discontinuous SARs

and their dependence on chosen representations and the way similarity rela-

tionships are ‘‘measured’’ complicate similarity analysis in many ways. The fact

that diverse structures can have similar activity whereas closely related analogs

may differ substantially in their activity presents a ‘‘similarity paradox’’, at least

at first glance, and illustrates principal caveats for similarity methods at the

molecular level of detail (Figure 4.10).

One should also consider that the potential success of similarity methods is

not exclusively determined by representation- and reference frame-dependent

SAR characteristics. Importantly, the success of similarity methods is also

influenced by more technical factors. In other words, SAR categories princi-

pally determine if similarity search calculations can succeed; whether they

actually do is another question. For example, the intrinsic structural diversity

of active compounds related by many continuous SARs makes similarity cal-

culations particularly difficult because remote similarity relationships must be
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detected, which is much more difficult than searching for analogs or closely

related actives. The detection of remote similarity relationships is also highly

sensitive to chosen molecular representations, pre-selected structural features

or descriptors, and the composition and dimensionality of chemical reference

spaces, just like the categorization of SARs.

Molecular similarity methods are set apart from other LBVS approaches by

the holistic view they take on molecular structure and similarity. This global

approach contributes to the attraction but, at the same time, presents a major

drawback of such approaches. In fact, a common criticism is that the global

similarity approach takes molecular features into account that do not con-

tribute to biological activity. However, similarity searching is particularly

attractive if no information about target–ligand interactions or mechanisms of

bioactivity is available. Because similarity analysis considers the entire mole-

cular structure, no knowledge or hypotheses about an activity-dependent

pharmacophore is required and no information is needed concerning details of

the underlying receptor–ligand interactions. Moreover, although similarity

searching benefits from the use of multiple active reference structures,34–36 it

Figure 4.10 Example of a heterogeneous SAR. Four inhibitors of vascular endo-
thelial growth factor receptor (VEGFR-2) tyrosine kinase are shown.
The two inhibitors at the top have different core structures but equally
high potency and are thus part of a continuous SAR. By contrast, closely
related analogs of each inhibitor shown at the bottom have several
orders of magnitude lower potency, which is a characteristic feature of
discontinuous SARs.
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can also be applied when only single reference molecules are available (in

contrast to similarity-based compound classification or machine learning

methods2). Thus, similarity searching and related methods provide valuable

tools during the early stages of a drug discovery campaign, when little addi-

tional information is available. The global assessment of molecular similarity

adds a degree of ‘‘fuzziness’’ to the analysis, which facilitates the departure

from given reference structures and enables ‘‘scaffold hops’’,37 i.e., the transi-

tion from one series of active compounds to another. However, the comparably

low resolution of similarity analysis causes a general tendency to produce false-

positives, which also explains why benchmark calculations on hand-selected

activity classes consisting of optimized molecules added to random decoys are

typically much more successful than ‘‘real life’’ virtual screening trials where the

targets are hits, not optimized leads. Nevertheless, many practical applications

also show the value of similarity analysis in virtual screening and computer-

aided drug discovery. If we take into account that millions of test compounds

are often screened on the computer to ultimately select only tens or hundreds of

candidates for testing, akin to a ‘‘needles in haystacks’’ scenario, then the

identification of novel active compounds for further study and optimization

presents a considerable success, even if only a few are found.

4.5 Conclusion and Future Perspectives

In this chapter we have discussed the foundations of molecular similarity

analysis that are largely responsible for success or failure of similarity-based

methods in the context of virtual compound screening. Furthermore, we have

described how crucial underlying SAR characteristics are for molecular simi-

larity analysis and presented a comprehensive methodological framework for

the qualitative and quantitative analysis of SARs and the classification of

different SAR types.

The classical application scenario for similarity methods is the retrieval of

candidate molecules with a desired bioactivity from a compound database.

While similarity searching continues to be of great use in this field, new

application areas are beginning to emerge. For example, the development of

chemogenomics38 as a relatively young interdisciplinary area of research brings

up new challenges for similarity analysis in target and lead discovery. Che-

mogenomics aims at the exploration of therapeutically relevant target families

using small molecules and mapping of ‘‘pharmacological space’’,39 i.e., a sys-

tematic analysis of the universe of specific target–ligand interactions. Thus, the

major aspect of such studies is to relate small molecule chemical space to target

space, e.g., by profiling small molecules against arrays of target proteins. Here,

similarity analysis can be of particular use for identifying active compounds

that are similar to reference molecules and also show activity against other

targets within the same family. Going beyond compounds that have differential

activity against members of target families or sub-families, ‘‘selectivity

searching’’ can be applied to detect compounds that are selective against
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individual targets among related ones.40 Clearly, despite its principal limita-

tions and caveats, the opportunities of molecular similarity analysis reach

beyond its classical application scenarios and we can expect that there will be

much more to come.
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CHAPTER 5

Molecular Field Topology
Analysis in Drug Design
and Virtual Screening

EUGENE V. RADCHENKO, VLADIMIR A. PALYULIN
AND NIKOLAY S. ZEFIROV

Department of Chemistry, Moscow State University,

Moscow 119991, Russia

5.1 Introduction: Local Molecular Parameters
in QSAR, Drug Design and Virtual Screening

During the search for effective drugs and other bioactive compounds, attention is

usually focused on specific activity stemming from the ‘‘receptor-like’’ interac-

tions of small organic ligand molecules with a well-defined biological target

(enzyme, receptor, etc.).1 The nature and strength of such interactions are

obviously controlled by the local physicochemical features of a molecule, related

in structural terms to the properties of its atoms and bonds. Thus, structure–

activity relationships can be analyzed by correct comparison of activity and local

molecular properties, both within a single structure and between various con-

generic structures. Once such a comparison is achieved, one can build a pre-

dictive statistical model linking these properties to the bioactivity parameters.

This model can then be used as a virtual screening filter to select a manageable

subset of promising structures among a large body of conceivable or accessible

structures of the same chemical class. In addition, such a model can lead to
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important conclusions with respect to the mechanism of drug action as well as

the directions for further optimization of activity profile.

Generally speaking, existing approaches to the QSAR analysis based on local

molecular properties can be classified into 3D-based and topology-based,

depending on the underlying structure representation. The first group of

approaches starts with a 3D model of atom positions. From it, some uniform

representation of structural features is derived to make different molecules

comparable. Instead of individual atoms, this representation is linked to the

molecular axes of inertia or to an abstract spatial grid, thus avoiding the

problem of matching the atoms of different structures. However, the path from

molecular structure to uniform representation is not well defined and often

requires some heuristics and manual intervention, which complicates not only

the construction of a model but also its application to virtual screening.

Another, topological, group of approaches is directly based on the structural

formulae of the compounds, representing types of atoms and bonds (in addition,

atoms and bonds may be labeled with the physicochemical and stereochemical

data). At first glance, 3D-based approaches seem more precise and better reflect

the actual 3D nature of biotarget and ligand. However, practical experience

shows that consideration of a 3D model is not always beneficial. In part,

topological approaches are easier to synchronize to the mentality of organic and

medicinal chemists, thus facilitating the design of novel promising structures

and synthesis planning. In addition, 3D techniques involve a lot of data on the

particular details of molecular structures, conformational behavior and physico-

chemical parameters of the compounds. Unfortunately, in many cases they fail

to create a holistic picture of the ligand–target interaction, serving instead as a

kind of ‘‘info-noise’’ that complicates the structure–activity analysis.

The most commonly used and possibly even ‘‘classical’’ method of 3D QSAR

analysis is the Comparative Molecular Field Analysis (CoMFA) technique intro-

duced by R. Cramer et al. in 1988.2 In almost 20 years since, it has seen substantial

development and enhancement, as well as the creation of several related approa-

ches. In general terms, it aims to identify the spatial regions around the molecule

where certain local properties have a positive or negative effect on activity.

The foundation of the CoMFA approach lies in the fact that the interaction

between the biotarget and organic ligand is usually non-covalent and sub-

stantially controlled by the shape of molecules. In addition, van der Waals and

Coulomb forces in most cases provide an adequate description of non-covalent

interactions within a molecular mechanics framework. Thus, the authors

assumed that the biological action of compounds can be explained by the shape

and electrostatic field of their molecules.

A key feature of this approach is the comparison of the quantitative measures

of these fields following the spatial alignment of 3D structures of similar com-

pounds. It involves populating the descriptor matrix with calculated energies of

the van der Waals (steric) and Coulomb (electrostatic) interaction of a molecule

with a probe species in each node of a rectangular 3D grid. Depending on the spe-

cific problem, various probe species can be used, such as proton, sp3 carbon atom

with a unit positive charge, etc. The QSAR models are usually derived from these
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megavariate data matrices by means of the cross-validated Partial Least Squares

Regression (PLSR).3 In contrast to the traditional multiple linear regression, it

allows the predictive statistical relationship to be detected even if the number of

descriptors is much greater than the number of the experimental data points.

Despite some problems,4 this approach rapidly gained widespread accep-

tance in the QSAR field. First, this can be attributed to the appeal of 3D

activity maps derived from the PLSR model and representing regions of

favorable and unfavorable interactions. In addition, after patenting the

CoMFA technique,5 it was implemented in a popular Tripos SYBYLmolecular

modeling package.6 Many hundreds of works have been published concerning

the application and further development of the CoMFA approach to the pre-

diction of bioactivity of organic compounds.7 The GRID/GOLPE technique,8,9

an approach conceptually similar to CoMFA, is also commonly used.

In addition to the steric and electrostatic descriptors, it was proposed to use

other 3D molecular fields characterized by the sampling over the rectangular

grid – in particular, the hydrophobic field/molecular lipophilic potential

(MLP),10–12 hydrogen bonding13 and quantum-chemical parameters, e.g., orbital

densities.14,15 Descriptor selection techniques are often recommended to enhance

the stability, predictivity and interpretability of the CoMFA models.16–18

Nevertheless, the practical application of CoMFA is frequently hampered by

the large number of descriptors and by the problem of alignment of the 3D

molecular structures,19 especially for flexible molecules where many accessible

low-energy conformations exist and the induced ligand–biotarget fit may give

rise to ligand conformations substantially different from optimal conforma-

tions of the isolated molecules. In some cases, simple topological models (e.g.,

fragment-based) can provide a better prediction of activity.20,21

Several approaches were proposed to alleviate these problems.Modifications of

the original CoMFA procedure2 involve flexible instead of rigid molecular

alignment22,23 as well as the alternative statistical analysis techniques.24 In addi-

tion, some approaches aim to minimize model sensitivity to alignment or elimi-

nate altogether this step from the analysis. For instance, steric molecular fields

can be characterized by the intersection volume of the van derWaals spaces of the

ligand molecule and probe species. The distance dependence of such volumes is

smoother than the standard Lennard-Jones potential function.25 The spatial auto-

and cross-correlation parameters4,26,27 as well as the mass and charge distribution

moments28 and vibrational modes29 provide 3D molecular descriptors invariant

to the translation and rotation of molecules and less sensitive to their con-

formations. Unfortunately, they are also less intuitive and interpretable.

Within a series of congeneric compounds, some canonical (i.e., formal) rules

for conformer selection and alignment often are required and are sufficient to

obtain useful CoMFA results.19,30,31 Further development of this concept has

led to the creation of the Topomer CoMFA approach32–34 that can be regarded

as an automated ‘‘2.5D’’ alignment followed by the 3D QSAR analysis. While it

is undoubtedly a very promising technique, addressing many common obstacles

and particularly well adapted to virtual screening, one potential issue lies in the

very fact that alignment is built without taking into account any specific features
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of the receptor.32 This might create a risk of overlooking important differences

in binding modes, as well as weaken the (already indirect) correspondence

between 3D QSAR model and the actual target structure. Now that the

Topomer CoMFA is publicly available, it will be very interesting to see it

applied to a wide range of QSAR problems.

Generally speaking, 3D QSAR approaches provide useful tools for drug

design and virtual screening. However, in many cases they require one to ‘‘go

back’’ to topology-based (2D or 2.5D) structure representation rather than

analyze the 3D molecular models directly.

5.2 Supergraph-based QSAR Models

5.2.1 Rationale and History

As we have shown, topological (2D-based) approaches to QSAR modeling are

free from several complications typical of 3D analysis. If the compounds under

study have sufficiently similar structures, the comparison of the local molecular

properties should allow one to reveal structural features critical for activity. In a

sense, this concept can be traced back to Hansch analysis35–37 (parameters of the

substituents in specific positions) and Free–Wilson approach38,39 (indicator

variables representing particular substituents present in specific positions).

However, these substituent-based approaches lose their applicability if we go

beyond a limited number of simple substituents to more practically useful

compound series. Thus, most topological QSAR approaches rely on some

characteristics of the molecule as a whole, e.g., presence or occurrence number

of certain fragments (substructures).40 In this case, the information on the

arrangement of various molecular features is almost lost, limiting the applica-

tion of these approaches to the modeling of the receptor-type activity.

Nevertheless, several proposed approaches are based on the concept of a

superstructure spanning the variability of molecules in a dataset. It can be

thought of as a topological network that allows superimposing of every dataset

structure. This brings their atoms and bonds into the same frame of reference,

yielding the uniform representation of the local molecular properties.

Notably, the concept of super- or hyperstructure is sometimes used in chemo-

informatics as a way to build the most compact representation of a series of

structures for easy database storage and retrieval.41,42 Some attempts were

made to take qualitative activity data into account during the construction of a

hyperstructure.43 However, the primary goal of compactness dictates certain

hyperstructure features and algorithms that complicate its chemical inter-

pretation and use in QSAR modeling.

On the other hand, several superstructural approaches were designed speci-

fically for the QSAR analysis and lead optimization for organic compounds.

Let us consider them in more detail.

The DARC/PELCO method (Méthode de perturbation d’environnements

limités concentriques ordonnés)44,45 for predicting the properties of organic
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compounds was developed by J.-E. Dubois and C. Mercier. In this approach,

the structures are considered as a combination of the core (common central

substructure of a series) and the environment (all other atoms and bonds

partitioned into a sequence of concentric levels based on their distance from the

core). A trace of the population unites all the sites present at least in a single

compound of a series and basically represents the superstructure of a series. In

the simplest form of this method the indicator variables encoding the presence

of the particular atom and bond types in each site of the environment are used

as the structural descriptors. The activity of a structure as a whole is repre-

sented as a sum of some basic activity of the core and the ‘‘perturbations’’

caused by all the occupied environment sites. These contributions are deter-

mined by means of the regression analysis and can be visualized by the ‘‘activity

maps’’. Thus, the DARC/PELCO method may be viewed as a detailed and

generalized version of the Free–Wilson approach.38,39

If necessary for the analysis, secondary descriptors may be included that are

constructed as logical combinations of the primary descriptors.46 In further

development of the method, it was proposed to include the so-called ‘‘external’’

physicochemical properties of a whole molecule, e.g., lipophilicity and quantum-

chemical parameters important for the mechanism of action.45,47 Unfortunately,

in recent years, the progress of this approach seems to have ceased.

In the approach proposed by G. Menon and A. Cammarata48,49 a series of

congeneric structures is classified by the activity type using the principal com-

ponents of a set of local molecular descriptors based on a superstructure con-

structed by the simplest ‘‘chemically consistent’’ superposition of the structures.

The Positional Analysis approach proposed by P. Magee50,51 aims to detect

the structural features responsible for the ligand–biotarget interaction by

constructing the simplest common hyperstructure for a series of compounds

and analyzing the presence and interaction parameters for each hyperstructure

position by means of the multiple linear regression.

The Minimum Topological Difference (MTD) approach52,53 developed by

Z. Simon and T. Oprea, especially in its newer MTD-PLS variant employing

the PLS regression analysis, successfully relates the activity to the presence and

physicochemical parameters of the atoms and fragments defined over a quasi-

3D hypermolecule54 as well as global physicochemical descriptors.55 Despite

some methodological problems and limitations, this approach is promising and

in active current development.56

5.2.2 Molecular Field Topology Analysis (MFTA)

5.2.2.1 General Principles

The Molecular Field Topology Analysis (MFTA) technique was proposed by

us57,58 as a generalization and extension of several superstructural approaches

to the QSAR analysis of organic compounds. It is in line with the modern trend

of QSAR studies that involves application of the topological and quasi-topo-

logical (2D and 2.5D) methods to the modeling of drug–biotarget interactions.
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In a sense, MFTA may be viewed as a topological analogue of the CoMFA

approach.

The method is based on the assumption that, in many cases, the alignment of

the topological (2D) rather than the spatial (3D) structures of the compounds

could alleviate the problems inherent to the 3D QSAR approaches and provide

rather general methodology for the prediction of bioactivity of organic com-

pounds based on the specific (receptor-like) action mechanism. As molecular

descriptors, this approach uses the local physicochemical parameters – atom

and bond properties that can be quickly estimated from the structure of the

compound. The uniform frame of reference for their analysis is provided by a

so-called molecular supergraph (MSG) – simple graph automatically con-

structed in such a way that any training set structure can be represented as its

subgraph.

The process of the QSAR analysis based on the MFTA approach59 and

implemented in the convenient MFTAWin software involves two related pro-

cedures: the construction of a structure–activity model and the prediction of

bioactivity for the new, as yet untested compounds. Figure 5.1 presents the

general flow-chart of the analysis.

In the model construction phase, the molecular supergraph is first con-

structed for a training set of compounds with known experimental activity

data, and the local molecular descriptors are calculated. By superimposing each

structure onto the supergraph, the uniform descriptor matrix is obtained that

can be analyzed by means of the PLS regression or other statistical learning

techniques, yielding the predictive QSAR model. During the prediction phase,

the new structures are also superimposed onto the supergraph, and the

resulting uniform descriptor vectors are used to estimate the predicted activity

values from the statistical model. These values can be used to select the pro-

mising structures in the virtual screening study. In addition, the MFTA model

itself can provide valuable insights into the critical features of the active

Training

Set

Molecular

Supergraph

Descriptor

Matrix

Statistical

Model

Model Construction

Prediction

Set

Descriptor

Matrix

Predicted

Activity

Prediction

Molecular

Supergraph

Figure 5.1 The general flow-chart of the MFTA QSAR analysis involves the con-
struction of a model and the prediction of activity.
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molecules, helping to identify the potential drug–biotarget interactions as well

as the directions of lead optimization.

Each of these steps is discussed in more detail in the following sections.

5.2.2.2 Local Molecular Descriptors: Facets of

Ligand–Biotarget Interaction

One of the advantages of the MFTA approach is the support of the open

descriptor set that can be modified or extended to take into account the specific

features of a problem. The currently available descriptors can provide an

adequate description of the major types of ligand–biotarget interactions:59

� Electrostatic descriptors, in particular, effective atomic charge Q esti-

mated using the electronegativity equalization approach60,61 and absolute

charge Qa.

� Steric descriptors, in particular, Bondi’s van der Waals radius of an atom

R,62 effective van der Waals radius of a group Rg (taking into account the

steric requirements of a central non-hydrogen atom and connected

hydrogen atoms), effective van der Waals radius of atom’s first environ-

ment Re (taking into account the steric requirements of a central

non-hydrogen atom and all the connected atoms, both hydrogen and non-

hydrogen), atomic contribution to the molecular van der Waals surface S

(the surface of the atom’s van der Waals sphere excluding the areas

intersected by other atoms, neglecting the possible ternary intersections)

and relative steric accessibility A¼S/Sfree (where Sfree is the van der Waals

surface of the isolated atom of the same type).

� Lipophilicity descriptors, in particular, the atomic lipophilicity contribution

La in Ghose and Crippen’s system, taking into account the environment of

an atom,63 and group lipophilicity Lg defined as a sum of contributions for

a non-hydrogen atom and attached hydrogens.

� Hydrogen bonding descriptors, in particular, the ability of an atom in a

given environment to be a donor (Hd) and acceptor (Ha) of a hydrogen

bond characterized by the Abraham’s constants.64

� Indicator variables taking into account, for instance, position occupancy,

bond presence and/or local stereochemistry.

In each particular problem, only a subset of the available descriptors should

be used that reflects the factors important for the activity in question.

5.2.2.3 Construction of a Molecular Supergraph

Molecular supergraph for the MFTA analysis is a graph allowing the super-

imposition of the training set structures. The supergraph is not required to be

minimal (although, for the sake of model reliability, it is desirable to use the

most compact supergraph consistent with the chemical reason and a specific
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problem) or unique. The basic procedure for the supergraph construction

involving the stepwise processing of the training set structures is illustrated in

Figure 5.2. In each step, the intersection is found between the currently con-

structed (initially empty) supergraph and the molecular graph of a structure.

Then the supergraph is augmented by the vertices and edges corresponding to

the atoms and bonds missing from the intersection (such as the ethyl sub-

stituent at step 2 in Figure 5.2).

The algorithm for the detection of intersections59 combines the approaches

based on the vertex-by-vertex expansion and on the search for the maximum

cliques (complete subgraphs) in the modular graph product.65 It provides

efficient and flexible detection of the maximum connected graph intersections.

The set of possible mappings between the MSG and the structures is deter-

mined by the atom and bond matching rules for a specific problem. If, for a

given atom or vertex, several possible mappings are available, the preferred

mapping is selected so as to achieve the maximum similarity of the local

property distributions in their immediate environment.59 This is an important

feature of our algorithm that, in most cases, facilitates quick identification of

the most suitable mapping of the entire structure to the supergraph, taking into

account the atomic parameters critical for the interaction with the biotarget.

However, one should keep in mind that the exact topology of a supergraph and

the correspondence between the structure atoms also depends to some extent

1) N

O NH2

2) N

O NH2

3) N

O NH2

4) N

O NH2

Figure 5.2 Construction of a molecular supergraph (MSG) for a simple series of
structures. In each step the bold lines mark the fragments missing from the
current structure-MSG intersection that are to be added to the supergraph.

157Molecular Field Topology Analysis in Drug Design and Virtual Screening



on the local descriptors used. Thus, it can be controlled explicitly for each

particular problem instead of relying on some formal protocols.

5.2.2.4 Formation of Descriptor Matrix

The molecular supergraph enables the formation of uniform descriptor vectors

for all the structures of a training set. Once the structure is superimposed onto

the MSG, the descriptor vector is filled by assigning the local descriptor values

(e.g., atomic charge Q and its van der Waals radius R) for the structure atoms

and bonds to the corresponding MSG vertices and edges. This procedure is

illustrated in Figure 5.3 for the fourth structure of Figure 5.2. As is usual in the

topological analysis of molecular structures, the properties of the hydrogen

atoms are taken into account as additional descriptors for the corresponding

non-hydrogen atom rather than handled explicitly. If some vertex or edge is not

occupied in a particular structure, the ‘‘neutral’’ descriptor values are assigned

(e.g., Q0, R0 in Figure 5.3). In contrast to some approaches using zero values for

empty positions, the neutral values provide a model of properties in the un-

occupied regions of space around the molecule. Thus, they should not be con-

sidered as ‘‘missing values’’ in the statistical sense. If necessary, these parameters

may be optimized for a particular problem; nevertheless, our tests show that the

model is not affected by small variations in their values if a qualitative picture is

correct.

5.2.2.5 Statistical Analysis

The descriptor matrix formed by the uniform descriptor vectors for all the

training set structures, as well as the experimental activity values, serves as the

source data for the statistical analysis and construction of the QSAR model.

Q1 … QN R1 … RN

Q0 Q[i] Q[j] R0 R[i] R[j]

N

O NH2

Figure 5.3 Formation of a uniform descriptor vector for a structure by superimposing
it onto the MSG.
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This model can subsequently be used to predict the activity estimates for new

structures. In addition, it can provide information concerning the influence on

activity for each local descriptor in different positions of the structure, which

can be useful for the lead optimization, the analysis of action mechanism, and

the detection of relevant 3D alignment anchors.

In most cases, the MFTA models are built using the Partial Least Squares

Regression (PLSR)3 technique that is suitable for the stable modeling based on

the excessive and/or correlated descriptors (under-defined data sets). However,

the MFTA approach is not limited to the PLSR models and can successfully

employ other statistical learning techniques such as the Artificial Neural Net-

works (ANN) supporting the detection of the nonlinear structure–activity

relationships.66

In addition, we have developed several extensions of the basic PLSR proce-

dure67 to enhance the quality and reliability of the models. The first extension is

a so-called Stable Cross-Validation (Stable-CV) procedure designed to provide a

more objective and reliable estimate of the model predictivity, i.e., the statistical

expectation of prediction error within the model’s applicability domain.68 In

practice, one has to assume (for lack of better data) that the available set of

compounds represents a reasonable sampling of this region of the chemical

universe. This set serves as a basis for the construction as well as the validation

of a model. Taking into account the unavoidable irregularities of the sampling

and the absence of the a priori knowledge of factors affecting the activity, the

traditional training/test set approach (external validation) is arguably not the

best strategy for identifying the most predictive QSARs. This problem is

resolved to some extent by the traditional cross-validation approaches using

several complementary splits of a dataset into the training and test subsets.

However, experience shows that the results are still significantly affected by the

actual grouping of the compounds. This is especially important if the pre-

dictivity measures are to be used as guidance for model selection and/or opti-

mization (e.g., by means of a descriptor selection), increasing the risk of a

chance correlation.

From the above general principle, the best model should provide the lowest

average error of prediction for all reasonable splits of a dataset. We propose to

use the Q2 values averaged over several random reshufflings of the compounds

between the fixed-size cross-validation groups. Such a reshuffling and accu-

mulation is repeated iteratively until the resulting average Q2 is stabilized

within a specified precision. The tests show that a few dozen iterations are

sufficient to bring the variation below the 0.001 threshold.

Figure 5.4 illustrates typical behavior of the traditional and stable Q2 values.

The values for the individual reshufflings indeed vary substantially, sometimes

even changing the preferred number of factors. However, the average values are

quickly stabilized.

The computational experiments with the artificially constructed data sets

containing varied amounts of both Y-noise (random offset from the true func-

tion) and X-noise (additional descriptors unrelated to the true function) show

that the Stable-CV procedure (especially with higher precision requirements)
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allows one to minimize the risk of chance correlations for normal modeling as

well as for the model/descriptor selection.

Notably, the Stable-CV Q2 is, strictly speaking, a different quantity than a

conventional Q2, and the received rules-of-thumb concerning the acceptable

value ranges require some refinement. Additional research on this topic is still

needed, but the models with Stable-CV Q2 above 0.4–0.5 seem to provide useful

and interpretable models consistent with independently constructed models as

well as the biotarget structure.

Another extension is the descriptor selection procedure designed to enhance the

stability and predictivity of the PLSRmodels. Its aim is to minimize the info-noise

that can dilute and distort the true structure–activity relationship. The proce-

dure69 involves two phases. The first phase consists of the elimination of the low-

variable descriptors that have the same value for all but a few (2–3) compounds in

the training set. Such descriptors cannot provide useful statistical information and

instead simply help to fit these particular compounds into a model, thus

decreasing its predictivity. This filtering is performed entirely in the X-space,

without regard for the activity values. In the optional second phase, the descriptor
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Figure 5.4 Sample Stable-CV run for a dataset of 60 compounds and 159 descriptors.
Point series (F1–F6) represent the Q2 values for the individual reshufflings
and the lines (A1–A6) show the dynamics of the averaged Q2 values for
one- to six-factor models, respectively.
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subset included in a model is optimized for better predictivity using the Q2-guided

descriptor selection by means of a genetic algorithm. Measures should be taken

(e.g., by using the Stable-CV procedure) to avoid obtaining correlations of

insufficient reliability with artificially inflated Q2 values. Without Stable-CV, Q2-

guided descriptor selection often finds the ‘‘quasi-optimal’’ descriptor subset for a

particular split of a data set. The model based on a full descriptor set, despite a

lower Q2 value, may prove more reliable and more useful in the screening of

prospective structures thanks to taking into account the influence and inter-

correlations of all descriptors. On the other hand, a correct subset-based model

provides more focused picture of factors critical for activity and may be more

interpretable. Thus, the Q2-guided descriptor selection is a powerful tool that

should be used with care. In most cases some experimenting may be required.

5.2.2.6 Applicability Control

In the virtual screening context, the detection of compounds falling outside the

applicability range of a model is of utmost importance, since a misleading

prediction is worse than a failed one. For the MFTAmodels, such a detection is

performed on two levels. First, the structure in question must allow super-

imposition onto the molecular supergraph (or at least the mismatches should be

minimal and located in the parts of a structure not critical for activity), veri-

fying that the compound belongs to the same broad chemical class (scaffold) as

the training set structures.

Second, the descriptors for a compound should fit the pattern of inter-

descriptor correlations implicit in the PLSR model. The compounds with a

substantially different descriptor values are detected using the outlier rating67

that is based on a relative residual descriptor variance for a prediction object i

compared to the residual training variance:

OR2Xi ¼
S2PXi

S2CX
ð5:1Þ

where the residual X-block (descriptor) variance for a prediction object i is:

S2PXi ¼
1

DF

XM

j

e2ij ð5:2Þ

where the number of degrees of freedomDF¼M�F. The total residual X-block

(descriptor) variance for the training objects is:

S2CX ¼ 1

DF

XN

i

XM

j

e2ij ð5:3Þ

where the number of degrees of freedom DF¼M*(N� 1). The number

of training objects is N, the number of descriptors is M and the number of

factors is F.
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This parameter is similar and closely related to the DModXnorm parameter

used in the SIMCA software70 [in fact, DModXnorm¼O(OR2X)].

Depending on the primary goal of a study, the applicability constraints may

be more conservative (to obtain a small number of promising candidates) or

more liberal (to extrapolate, explore wider chemical space and iteratively refine

the models).

5.3 From MFTA Model to Drug Design
and Virtual Screening

5.3.1 MFTA Models in Biotarget and Drug Action Analysis

In a sense, the MFTA model is just the beginning of a road to better active

compounds and a deeper understanding of the activity. Let us consider some

ways in which it can be helpful.

First of all, the coefficients of the back-rotated PLSR model67 may be trans-

formed into the normalized descriptor impacts according to Equation (5.4):59

Ij ¼
bj rangeðxjÞ
rangeðyÞ ð5:4Þ

where bj is the coefficient at the descriptor xj, range(xj) is the range of xj, and

range( y) is the range of activity in the training set.

The signs and values of the descriptor impacts may be graphically encoded

and overlaid on the corresponding molecular supergraph vertices, creating the

visual activity map that summarizes the most important factors affecting

the activity. This data allows one to draw conclusions concerning the possible

ligand binding site as well as to identify the directions for beneficial structure

modifications.

As an example, let us consider the MFTA model71,72 of the HIV-1 reverse

transcriptase inhibition by the tetrahydroimidazobenzodiazepinone (TIBO)

derivatives.73–75 The model is based on the atomic charge Q, atomic van der

Waals radius R and group lipophilicity Lg as the local descriptors (N¼73,

NF¼ 5, R2¼ 0.887, Q2¼ 0.686). Figure 5.5 shows the molecular supergraph

with the superimposed structure of one training set compound.

Figure 5.6 gives the major local descriptor contributions to the activity. For

comparison, the 3D molecular structure of the ligand-binding site of the HIV-1

reverse transcriptase in complex with a TIBO derivative (Protein Data Bank,76

structure 1TVR) is shown. The molecular surface of the protein is colored

according to the values of electrostatic and lipophilic potential using the

SYBYL software.6 Figure 5.6(a) shows the most important contributions of

local charge Q on the ligand atoms matching the electrostatic potential (EP) on

the molecular surface of the protein. The positions where the activity tends to

increase with increasing charge in the ligand molecule (red circles) correspond
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to relatively negative local electrostatic potential in the protein (preference of

interaction with positively charged groups). In contrast, the positions where the

activity decreases with increasing charge (blue circles) correspond to more

positive EP values (preference of interaction with more negatively charged

groups).

Figure 5.6(b) compares the effect of occupancy and steric bulkiness in the

particular positions of a ligand (characterized by the van der Waals radii R) to

the steric requirements in the ligand-binding site of a protein (represented by its

molecular surface). In particular, areas where steric bulk leads to decrease in

activity (blue circles) correspond to a tight binding pocket, while a positive

effect of steric bulk on activity (red circles) is found in the open pocket area.

Finally, Figure 5.6(c) demonstrates the correspondence between effect of

local lipophilicity Lg on activity (identified by the MFTA model) and the

molecular lipophilic potential (MLP) of the protein. An increase of activity

with increasing lipophilicity of ligand atoms (red circles) is found in the

hydrophobic pocket area. In contrast, positions in the supergraph where

activity is decreased by an increase in lipophilicity (blue circles) interact with

relatively hydrophilic areas of the protein.

In a study of non-peptide inhibitors of the measles virus entry77 the findings

from the MFTA model were also consistent with the 3D molecular model of the

binding site of virus fusion protein. In addition, they suggest the structural

modifications to improve the activity. Similar results were obtained in a study of

structure–activity and structure-selectivity relationships for anticholinesterase

O-phosphorylated oximes.78

5.3.2 MFTA Models in Virtual Screening

Virtual screening of the novel promising compounds is among the most

important applications of the MFTA technique. Basically, the MFTA model

allows one to filter the large set of structures to identify the structures having

high estimates of activity predicted with sufficient reliability. Generally

N

N

NH

S

Cl

CH3

Figure 5.5 Molecular supergraph for a series of tetrahydroimidazobenzodiazepinone
(TIBO) derivatives with superimposed structure of a representative
training set compound.

163Molecular Field Topology Analysis in Drug Design and Virtual Screening



speaking, three possible sources of structures can be used for virtual screening:

(i) limited sets of structures proposed intuitively by a medicinal chemist taking

into account the SAR and accessibility considerations; (ii) databases of the

compounds available in-house or from commercial suppliers; (iii) virtual

structure libraries built by means of structure generators. Each of these sources

has some specific features that affect the screening procedure. The limited,

manually constructed series simplify the prediction of activity and the analysis

of results; in addition, the chemical stability and accessibility of the compounds

Figure 5.6 Complementarity between the major MFTA descriptor contributions to
activity of the TIBO inhibitors of HIV-1 reverse transcriptase and the
molecular properties of the biotarget protein: (a) atomic charge (Q) and
electrostatic potential (EP); (b) atomic van der Waals radius (R) and
molecular surface; (c) local lipophilicity (Lg) and molecular lipophilic
potential (MLP) – see text for details.
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should be handled implicitly. However, it is very easy to overlook some

interesting regions of the available chemical universe, producing a sub-optimal

set of candidate structures (especially when the structure–activity relationships

are complex). Thus, more automated approaches consistent with the synthetic

and medicinal chemistry are desirable. Let us consider their principles and

illustrations in more detail.

5.3.2.1 MFTA-based Virtual Screening of Compound Databases

Numerous organic compounds, from simple to rather complex, are now avail-

able from many suppliers. Databases of such compounds in various formats

can, usually, be obtained directly from the suppliers and/or from the publicly

available ZINC project79 site. In addition, most organizations have their own in-

house databases of compounds. The important advantage of this source of

screening structures is that the compounds in question are already synthesized

and can be purchased and tested rather quickly. The major disadvantage is that

the selection of compounds for them is more or less accidental. Thus, it may be

difficult or impossible to find the compounds having a particular scaffold and/or

substitution pattern; moreover, most of the structures fall outside the applic-

ability domain of a QSAR model and should be filtered out at the preprocessing

stage (if possible).

In general, the virtual screening procedure for the database of available

compounds involves the following steps:

� Normalization of the structure data set (e.g., removal of explicit hydrogen

atoms, standard representation of nitro, azido and similar groups, ‘‘de-

ionization’’, and removal of duplicate structures).

� Preliminary filtering by structural class/scaffold (if desired for the extra-

polation or the targeted exploration purposes, wider chemical domain can

be covered compared to the training set of a model).

� Prediction of bioactivity endpoints by means of the MFTA models.

� Post-filtering of structures that fall outside the model applicability domain

and have unreliable predicted values.

� Selection of candidate compounds having the desired combination of

activity endpoints.

� Evaluation of candidate compounds with respect to availability, stability

and other relevant factors.

The candidate compounds should also be evaluated for the possibilities of

further refinement of target activity as well as extension of the training set.

As an example, let us consider the virtual screening of the potential adenosine

receptor agonists selective to the A3 receptor subtype vs. the A2A subtype.

Using the structure and activity data for a training set of 29 compounds,80 the

MFTA models with the following parameters were constructed for the affinity

165Molecular Field Topology Analysis in Drug Design and Virtual Screening



to A3 subtype [represented as log(1/Ki,A3); Ki, nM] and the selectivity to A3 over

A2A [represented as S(A3/A2A)¼ log(1/Ki,A3) – log(1/Ki,A2A); Ki, nM] based on

the values of the atomic charge Q, the effective van der Waals radius of the

atom’s first environment Re and the group lipophilicity Lg as the descriptors81

(the Q2 values were estimated using the Stable-CV procedure):

log(1/Ki,A3):N¼29,NF¼6,R2¼0.915, RMSE¼0.290,Q2¼0.612, RMSEcv¼0.631;
S(A3/A2A): N¼29, NF¼4, R2¼0.809, RMSE¼0.428, Q2¼0.537, RMSEcv¼0.678.

Figure 5.7 shows the major contributions of the local descriptors to activity

and selectivity. As can be seen, the activity and selectivity maps are quite similar

but also differ. Such fine distinctions are difficult to take into account to design

new promising structures intuitively (especially if selectivity with respect to

other receptor subtypes is also required). Thus, the automated virtual screening

approach is preferred.

For the virtual screening, the Asinex, IBScreen and Maybridge vendor

subsets were obtained from the ZINC site.82 In total, these databases contain

876 930 structures. After the normalization and structural pre-filtering steps, a

focused screening subset of only 58 structures was obtained. We used somewhat

relaxed structural filtering criteria in the hope of identifying possible distantly

Q Q

Re Re

Lg Lg

a b

Figure 5.7 Major local descriptor contributions to the MFTA models of activity (a)
and selectivity (b) for the A3 adenosine receptor agonists.

166 Chapter 5



similar ligands. Nonetheless, all the structures in the focused subset were quite

close derivatives of the adenosine.

After predicting the activity and selectivity values by means of the MFTA

models, the compounds with unreliable predictions were filtered from the vir-

tual screening set using the outlier rating values (Section 5.2.2.6) for two pre-

dictions (the threshold value was 30). As a result, a set of 50 structures was

obtained. Figure 5.8 shows the distribution of the predicted values. Only one

compound is predicted to provide better selectivity than the training set

structures as well as reasonable activity. The local descriptor values for this

adenosine derivative indeed match the descriptor impacts identified by the

MFTA-based selectivity model.

Another example deals with the virtual screening of the potential selective

indole ligands of the melatonin (MLT) receptors. Using the structure and

activity data for a training set of 80 compounds,83–85 MFTA models with the

following parameters were constructed for the affinity and intrinsic activity

with respect to human MT1 and MT2 receptor subtypes (MT1 relative affinity

pRA1¼ pKi,1–pKi,1[MLT]; MT1 intrinsic activity relative to melatonin IAr1;

MT2 relative affinity pRA2¼ pKi,2 – pKi,2[MLT]; MT2 intrinsic activity relative

to melatonin IAr2; Ki, nM) based on the values of the atomic charge Q and the

effective van der Waals radius of the atom’s first environment Re (the Q2 values

were estimated using the Stable-CV procedure):

log(1/Ki,A3)
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Figure 5.8 Distribution of the predicted values of selectivity and activity to the A3

adenosine receptor for the filtered virtual screening dataset.
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pRA1: N¼80, NF¼6, R2¼0.882, RMSE¼0.495, Q2¼0.718, RMSEcv¼0.769;
pRA2: N¼80, NF¼6, R2¼0.903, RMSE¼0.476, Q2¼0.767, RMSEcv¼0.742;
IAr1: N¼40, NF¼6, R2¼0.934, RMSE¼0.103, Q2¼0.693, RMSEcv¼0.225;
IAr2: N¼40, NF¼6, R2¼0.919, RMSE¼0.113, Q2¼0.537, RMSEcv¼0.273.

The structure of the molecular supergraph is shown in Figure 5.9 with several

examples of superimposition of the training set structures. It reflects substantial

diversity of the training set compounds and, despite apparent complexity,

supports reasonable comparison of different structures. Simpler MSGs could

N
H

NH

O

O

Melatonin

N

NH

O

O

N

O
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O

Cl

Figure 5.9 Molecular supergraph for a series of melatonin receptor ligands with
superimposed structures of several representative training set compounds.
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be obtained by splitting the dataset into more narrow structural subsets;

however, in this case the statistical stability and applicability of the resulting

models would also be diminished. Moreover, the superposition of the similar

side groups at the expense of partial mismatch in the indole core seems con-

sistent with relative indifference of the melatoninergic system to the exact

nature of central bicyclic aromatic moiety.86 The affinity and intrinsic activity

maps are rather complex and difficult to take into account to design new

promising structures intuitively. Thus, the automated virtual screening

approach is preferred.

For the virtual screening, the Asinex vendor subset was obtained from the

ZINC site.82 The database contains 322 992 structures. After the normalization

and structural pre-filtering steps, the focused screening subset of 4972 struc-

tures containing the indole fragment was derived.

At the MFTA prediction step, we used quite strict superimposition

requirements: the structures with incomplete supergraph fit were filtered out.

This brings the number of compounds down to 387. After predicting the affinity

and intrinsic activity endpoints by means of the MFTAmodels, the compounds

with unreliable predictions were filtered from the virtual screening set using the

outlier rating values (Section 5.2.2.6) for the four predictions (the threshold

value was 20). As a result, a set of 151 structures was obtained. Figure 5.10

shows their distribution with respect to the predicted values of affinity and

activity to both target receptors as well as the cross-target selectivity. Some

broad correlation between the targets can be seen; nevertheless, this series of

compounds provides fairly uniform coverage of affinity/activity space, allowing

the selection of compounds with different predicted activity profiles. For

instance, let us identify the potential selective MT1 receptor agonists. Filtering

the dataset by the condition shown in Equation (5.5) yields a series of only six

candidate compounds:

pRA14�1; pRA2o�2 ð5:5Þ

The distribution plots shown in Figure 5.11 confirm that they can be

expected to behave as rather good MT1 agonists with weak MT2 partial agonist

or antagonist activity.

5.3.2.2 MFTA-based Virtual Screening of Generated

Structure Libraries

As mentioned above, the databases of available compounds often do not

provide sufficient coverage of regions of the chemical space that may be

interesting to explore during lead optimization of the compounds possessing a

particular activity. A useful complementary approach involves virtual screen-

ing of artificial structure libraries obtained from the structure generator soft-

ware. Even general-purpose structure generators for QSAR studies87 can build

a library containing all structures belonging to a specified chemical class or its
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representative subset. Such a library could be used for the virtual screening.

However, in the context of the MFTA modeling this approach has some

drawbacks. In particular, it is difficult to avoid generating the structures that do

not fit the molecular supergraph and thus fall outside the applicability domain

of a model. On the other hand, some promising structures could be overlooked.

In addition, manual definition of generation parameters based on the MFTA

model may be complicated and time-consuming. Thus, a specialized generator

is desirable that could take into account the integral features of an MFTA

model.
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Figure 5.10 Distribution of the predicted values of affinity and intrinsic activity to the
MT1 and MT2 melatonin receptors for the filtered virtual screening
dataset of indole derivatives. (a) MT1 affinity vs. MT1 intrinsic activity,
(b) MT2 affinity vs. MT2 intrinsic activity, (c) MT1 vs. MT2 affinity,
(d) MT1 vs. MT2 intrinsic activity.
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We have developed an approach to the efficient generation of molecular

graphs oriented to the MFTA models.88 An important feature of this technique

is the support for a flexible system of structural constraints. It is critical because

otherwise an MFTA supergraph may in principle give rise to a very large

number of generated structures, many of which are obviously unpromising,

synthetically difficult or chemically unstable.

The generation algorithm can be used in two modes: deterministic and

stochastic. The task of the deterministic generation involves the construc-

tive enumeration of all possible connected molecular graphs that are subgraphs

of the MFTA supergraph and do not violate the specified constraints. In

stochastic generation, a representative subset of the set of all possible struc-

tures should be obtained. All generated molecular graphs must include the

‘‘central fragment’’ (or a scaffold) – a connected subgraph present in all

the structures of a training set. Allowable valences of atoms must also be

observed. In addition, the researcher can specify forbidden fragments and

forbidden bonds (a fragment consisting of a pair of bonded atoms) to avoid the

generation of chemically unstable compounds, toxophoric groups or structural

fragments that are not represented in the training set. Constraints on the

number of substituted positions of the central fragment and on the molecular

weight (e.g., based on the Lipinski rule89) make it possible to prevent the

generation of overdecorated structures unfavorable for chemical synthesis and

drug action.
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Figure 5.11 Affinity and intrinsic activity profile for the six potential selective MT1

melatonin receptor agonists – virtual screening hit compounds:
(a) MT1 vs. MT2 affinity and (b) MT1 vs. MT2 intrinsic activity.

171Molecular Field Topology Analysis in Drug Design and Virtual Screening



Since all generated structures must contain the central fragment, the problem

can be reduced to the generation of substituted derivatives of a given organic

compound from a set of elementary fragments.87 In the MFTA supergraph, the

following components are detected: the central fragment, cyclic and polycyclic

fragments, and the vertices in acyclic fragments. Then, a so-called fragmental

supergraph is constructed as a tree rooted in the central fragment (Figure 5.12).

It serves as a compact representation of all possible structures. For all vertices

of the fragmental supergraph, the set of possible pairs ‘‘molecular fragment –

type of bond to the parent fragment’’ is formed and the structures are

assembled.

Figure 5.12 Detection of components in the MFTA supergraph and the construction
of a fragmental supergraph for structure generation.
(Reproduced with permission from ref. 88, r 2007 Pleiads Publishing
Ltd.)
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To generate labels of vertices (atom types) and edges (bond types), the

training set is examined and the lists of possible types of atom and bond are

created for, respectively, each vertex and each edge of the molecular super-

graph. All possible combinations of vertex and edge labels are enumerated by

means of a recursive algorithm that checks for the correct valence of atoms and

the absence of forbidden bonds and fragments in the generated molecular

graphs (these steps are illustrated in Figure 5.13). Then, the structure is gen-

erated by stepwise extension of the central fragment using the depth-first tra-

versal of the fragmental supergraph and the selection of fragments and bonds.

To satisfy the constraints on molecular weight, the contributions of all

possible molecular fragments are precalculated. Based on the depth-first tra-

versal order, at every step of the generation one can calculate the lower and

upper bounds of the molecular weight of the resulting structures. If they are not

compatible with the required molecular weight range, the addition of the cur-

rent fragment is unproductive.

As an example, let us consider the application of this approach implemented

in the convenient molecular generator software90 to the virtual screening of

selective AMPA receptor antagonists. Using the structure and activity data for

a training set of 55 compounds,91–93 the MFTA models with the following

parameters were constructed for the affinity to the AMPA receptor [represented

as log(1/Ki,AMPA); Ki, mM] and the selectivity to AMPA over glycine/NMDA

receptor [represented as S(AMPA/NMDA)¼ log(1/Ki,AMPA) – log(1/Ki,NMDA);

Ki, mM] based on the values of the atomic charge Q and the effective van der

C, O

– , =

Ø, –C, =C,–O, = O

Figure 5.13 Analysis of a training set and the construction of all possible molecular
fragments.
(Reproduced with permission from ref. 88,r 2007 Pleiads Publishing Ltd.)
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Waals radius of the atom’s first environment Re as the descriptors81 (the Q2

values were estimated using the Stable-CV procedure):

log(1/Ki,AMPA): N¼55, NF¼2, R2¼0.666, RMSE¼0.488, Q2¼0.505, RMSEcv¼0.600;
S(AMPA/NMDA): N¼55, NF¼4, R2¼0.819, RMSE¼0.292, Q2¼0.637, RMSEcv¼0.417.

Figure 5.14 gives the major contributions of the local descriptors to activity

and selectivity. Similar to the previous example, the automated virtual

screening approach is preferred to take into account the subtle differences in the

influence of various local parameters.

Based on the MFTA model and several constraints, a set of 3000 struc-

tures was generated in the stochastic mode. For this virtual screening set, the

activity and selectivity values were predicted by means of the MFTA models.

Figure 5.15 illustrates the distribution of these endpoint values versus the

outlier rating values. It can be seen that a substantial portion of the dataset has

rather high activity/selectivity and low outlier rating. The structures with

unreliable predictions were filtered from the screening set using the outlier

rating values for both predictions (the threshold value was 20). As a result, a set

of 1126 structures was obtained. Figure 5.16 shows the distribution of the

predicted values. Taking into account the factors of synthetic attainability and

chemical stability, one can select several compounds as the most promising

Q Q

Re Re
a b

Figure 5.14 Major local descriptor contributions to the MFTA models of activity (a)
and selectivity (b) for the AMPA receptor antagonists.
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Figure 5.15 Distribution of the predicted endpoint and outlier rating values for the
activity (a) and selectivity (b) of the AMPA receptor antagonists.
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candidates that are predicted to provide better selectivity and activity than the

training set structures.

5.4 Conclusion

The examples of application of the Molecular Field Topology Analysis pre-

sented in this chapter and other publications show that this approach provides

a powerful and efficient tool for the modeling and understanding of the

structure–activity relationships as well as for the virtual screening of new

promising structures. It is especially useful for the series of congeneric organic

compounds whose activity is based on specific interactions with one or more

biotarget proteins. Despite the 2D nature of this technique, the results are

consistent with the molecular models of ligand–biotarget interactions and in

many cases outperform the 3D QSAR approaches in terms of model quality,

computational efficiency and chemical interpretability. Further development of

this approach is in progress and, with feedback from the medicinal chemistry

log(1/Ki,AMPA)

-1 -0.4 0.2 0.8 1.4 2 2.6 3.2 3.8 4.4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

S(AMPA/NMDA)

Figure 5.16 Distribution of the predicted values of selectivity and activity to the
AMPA receptor for the filtered virtual screening dataset.
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community, we hope to make the MFTA a valuable instrument for the design

and virtual screening of future drugs.
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G. Náray-Szabó, J. Mol. Struct. (THEOCHEM), 1996, 367, 139–149.

56. A. Bora, T. I. Oprea, L. Kurunczi and E. Seclaman, in 16th Eur. Symp. on

Quantitative Structure-Activity Relationships and Molecular Modelling,

Italy, September 10–17, 2006, p. 193.

57. E. V. Radchenko, V. A. Palyulin and N. S. Zefirov, in 11th Eur. Symp. on

Quantitative Structure-Activity Relationships, Lausanne, Switzerland,

September 1–6, 1996, p. P-21A.

58. N. S. Zefirov, V. A. Palyulin and E. V. Radchenko, Doklady Chemistry,

1997, 352, 23–26.

59. V. A. Palyulin, E. V. Radchenko and N. S. Zefirov, J. Chem. Inf. Comp.

Sci., 2000, 40, 659–667.

60. J. Gasteiger and M. Marsili, Tetrahedron, 1980, 36, 3219–3228.

61. A. A. Oliferenko, V. A. Palyulin, S. A. Pisarev, A. V. Neiman and

N. S. Zefirov, J. Phys. Org. Chem., 2001, 14, 355–369.

62. A. Bondi, J. Phys. Chem., 1964, 68, 441–451.

63. A. K. Ghose, A. Pritchett and G. M. Crippen, J. Comput. Chem., 1988, 9,

80–90.

64. M. H. Abraham, P. P. Duce, D. V. Prior, D. G. Barratt, J. J. Morris and

P. J. Taylor, J. Chem. Soc. Perkin Trans. 2, 1989, 10, 1355–1375.

65. Yu. E. Bessonov, Vychisl. Sist., 1985, 112, 3–22. (Russ.).

66. E. V. Radchenko, O. D. Baranova, V. A. Palyulin and N. S. Zefirov, in

Designing Drugs and Crop Protectants: Processes, Problems and Solutions,

ed., M. Ford, D. Livingstone, J. Dearden, H. Waterbeemd, Blackwell,

Malden, 2003, p. 317–318.

67. H. Martens and T. Naes,Multivariate Calibration, Wiley, Chichester, 1989.

68. E. V. Radchenko, V. A. Palyulin and N. S. Zefirov, in 16th Eur. Symp. on

Quantitative Structure-Activity Relationships and Molecular Modelling,

Italy, September 10–17, 2006, p. 207.

69. V. A. Palyulin, E. V. Radchenko, O. D. Baranova, A. A. Oliferenko and

N. S. Zefirov, in Designing Drugs and Crop Protectants: Processes,

179Molecular Field Topology Analysis in Drug Design and Virtual Screening



Problems and Solutions, eds. M. Ford, D. Livingstone, J. Dearden and

H. Waterbeemd, Blackwell, Malden, 2003, p. 188–190.

70. L. Eriksson, E. Johansson, N. Kettaneh-Wold, J. Trygg, C. Wikström and

S. Wold,Multi- and Megavariate Data Analysis, Part I, Basic Principles and

Applications, Umetrics, Umea, 2006.

71. E. V. Radchenko, M. S. Belenikin, A. A. Sokolov, V. A. Palyulin and

N. S. Zefirov, in QSAR and Molecular Modelling in Rational Design of

Bioactive Molecules, CADD&DS, Istanbul, Turkey, 2004, p. 100–101.

72. E. V. Radchenko, V. A. Palyulin and N. S. Zefirov, Russ. Khim. Zhurn.

(Russ.), 2006, 50, 76–85.

73. M. J. Kukla, H. J. Breslin, R. Pauwels, C. L. Fedde, M. Miranda, M. K.

Scott, R. G. Sherrill, A. Raeymaekers and J. Van Gelder, J. Med. Chem.,

1991, 34, 746–751.

74. H. J. Breslin, M. J. Kukla, D. W. Ludovici, R. Mohrbacher, W. Ho,

M. Miranda, J. D. Rodgers, T. K. Hitchens and G. Leo, J. Med. Chem.,

1995, 38, 771–793.

75. W. Ho, M. J. Kukla, H. J. Breslin, D. W. Ludovici, P. P. Grous, C. J.

Diamond, M. Miranda, J. D. Rodgers and C. Y. Ho, J. Med. Chem., 1995,

38, 794–802.

76. http://www.pdb.org/ (accessed December 2007).

77. A. Sun, A. Prussia, W. Zhan, E. E. Murray, J. Doyle, L.-T. Cheng, J.-J.

Yoon, E. V. Radchenko, V. A. Palyulin, R. W. Compans, D. C. Liotta,

R. K. Plemper and J. P. Snyder, J. Med. Chem., 2006, 49, 5080–5092.

78. E. V. Radchenko, G. F. Makhaeva, V. V. Malygin, V. B. Sokolov, V. A.

Palyulin and N. S. Zefirov, Doklady Biochem. Biophys., 2008, 418, 47–51.

79. J. J. Irwin and B. K. Shoichet, J. Chem. Inf. Model., 2005, 45, 177–182.

80. A. A. Ivanov, V. A. Palyulin and N. S. Zefirov, J. Mol. Graph. Mod., 2007,

25, 740–754.

81. V. A. Palyulin, E. V. Radchenko, I. I. Baskin, V. I. Chupakhin, A. A. Ivanov

and N. S. Zefirov, in 16th Eur. Symp. on Quantitative Structure-Activity

Relationships and Molecular Modelling, Italy, September 10–17, 2006, p. 153.

82. http://zinc.docking.org/ (accessed December 2007).

83. S. Rivara, M. Mor, C. Silva, V. Zuliani, F. Vacondio, G. Spadoni,

A. Bedini, G. Tarzia, V. Lucini, M. Pannacci, F. Fraschini and P. V. Plazzi,

J. Med. Chem., 2003, 46, 1429–1439.

84. G. Spadoni, C. Balsamini, G. Diamantini, A. Tontini, G. Tarzia, M. Mor,

S. Rivara, P. V. Plazzi, R. Nonno, V. Lucini, M. Pannacci, F. Fraschini

and B. M. Stankov, J. Med. Chem., 2001, 44, 2900–2912.

85. M.-T. Teh and D. Sugden,Naunyn-Schmiedeberg’s Arch. Pharmacol., 1998,

358, 522–528.

86. D. Sugden, K. Davidson, K. A. Hough and M.-T. Teh, Pigment Cell Res.,

2004, 17, 454–460.

87. A. A. Melnikov, V. A. Palyulin and N. S. Zefirov, J. Chem. Inf. Model.,

2007, 47, 2077–2088.

88. A. A. Melnikov, V. A. Palyulin, E. V. Radchenko and N. S. Zefirov,

Doklady Chemistry, 2007, 415, 196–199.

180 Chapter 5



89. C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Adv. Drug

Deliv. Rev., 1997, 23, 3–25.

90. V. A. Palyulin, E. V. Radchenko, A. A. Melnikov and N. S. Zefirov, in

3rd German Conference on Chemoinformatics, Goslar, Germany,

November 11–13, 2007, pp. 57.

91. D. Catarzi, V. Colotta, F. Varano, G. Filacchioni, A. Galli, C. Costagli

and V. Carla, J. Med. Chem., 2001, 44, 3157–3165.

92. D. Catarzi, V. Colotta, F. Varano, L. Cecchi, G. Filacchioni, A. Galli and

C. Costagli, J. Med. Chem., 1999, 42, 2478–2484.

93. F. Varano, D. Catarzi, V. Colotta, G. Filacchioni, A. Galli, C. Costagli

and V. Carla, J. Med. Chem., 2002, 45, 1035–1044.

181Molecular Field Topology Analysis in Drug Design and Virtual Screening



CHAPTER 6

Probabilistic Approaches
in Activity Prediction

DMITRY FILIMONOV AND VLADIMIR POROIKOV

Institute of Biomedical Chemistry of Russian Academy of Medical Sciences,

10, Pogodinskaya Str., Moscow, 119121, Russia

6.1 Introduction

Biological activity has a probabilistic nature, and the most appropriate

approaches in activity prediction are based on the theory of probability. The

statistical nature of the maximum likelihood method and the Bayesian approach

is well recognized, but many other methods (multiple regression, factor analysis,

pattern recognition methods such as linear discriminant analysis, linear learning

machine, support vector machines etc.)1–3 can also be considered as probabilistic

ones.4,5 An informational search in PubMed Central with the queries ‘‘(prob-

abilistic approach) OR (probabilistic method)’’ or ‘‘(statistical approach) OR

(statistical method)’’, will find 3477 documents and 180 475 documents,

respectively. It is impossible to analyze all these publications, particularly taking

into account that, despite of the presence of this term in their titles, many of

them are not really probabilistic (see, for instance, refs 6–20). We propose the

following definition of probabilistic approaches: ‘‘The methods that use prob-

abilities as an essential part of the algorithm, and/or for which the results of

application are presented as probability estimates.’’ Thus, many approaches that

do not correspond strictly to the definition are not considered in this chapter.

Since data on general dose–response relationships are not available in many

cases, biological activity is often represented by a single quantitative or even

qualitative characteristic. Therefore, many training sets are created with activity
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data presented in such mode. These probabilistic ligand-based drug design

methods are further used for virtual screening. Existing training sets are not ideal,

not just due to the simplified definition of biological activity but also because (i) no

one activity is represented by all relevant chemical classes and (ii) no one com-

pound has been tested against all kinds of biological activity. So, the probabilistic

character of biological activity is caused not only by experimental errors of its

determination but also by the incompleteness of available information.

Typically, virtual screening methods are used to select hits with a single

required activity,21–24 while the final aim of pharmaceutical R & D is to identify

safe and potent leads and drug-candidates.25–28 To overcome this problem, the

authors have developed a method for prediction of many kinds of biological

activity simultaneously based on the structural formula of chemical compound,

which is realized in the computer program PASS (Prediction of Activity Spectra

for Substances).29,30 PASS provides the means for evaluation of general bio-

logical activity profile at the early stages of R & D, and thus its prediction can

be used as a basis for the selection of compounds with the required kinds of

biological activity but without unwanted ones.31,32

In this chapter we overview some probabilistic methods used for biological

activity prediction, paying particular attention to the problems of creation of

the training and evaluation sets, validation of (Q)SAR models, estimation of

prediction accuracy, interpretation of the prediction results and their applica-

tion in virtual screening.

6.2 Biological Activity

Biological activity is the result of a chemical compound’s interaction with

biological objects. It depends on the characteristics of (i) the compound

(structure of molecule and its physicochemical properties), (ii) biological object

(kind, sex, age, etc.), (iii) way of exposure (route of administration, dosage) and

(iv) peculiarities of the experimental terms and conditions.

The major paradigm of the twentieth century was based on the concept ‘‘one

disease – one target’’;27,33 therefore, at first chemical compounds were tested

against the targeted activity, and only for those leads that passed through this

‘‘filter’’ was a more general biological activity profile estimated. Currently, it is

recognized that most pharmaceutical agents interact with several or even many

targets in the organism, and thus their selectivity is rather relative. For example,

by analysis of the available literature one may find that biological activity of

caffeine (CAS No. 58-08-2) is described by the terms related to the following:

� ten pharmacotherapeutic effects (analeptic, antihypertensive, antihypo-

tensive, cardiotonic, diuretic, immunosuppressant, psychostimulant,

respiratory analeptic, saluretic, spasmolytic);

� 18 biochemical mechanisms of action (ATP diphosphatase inhibitor, ade-

nosine deaminase inhibitor, cyclic AMP phosphodiesterase inhibitor, cyto-

chrome P450 inhibitor, dATP(dGTP)-DNA purinetransferase inhibitor,
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glycogen (starch) synthase inhibitor, guanylate cyclase inhibitor, hydroxy-

acylglutathione hydrolase inhibitor, lactoylglutathione lyase inhibitor,

nucleotide metabolism regulator, P-glycoprotein inhibitor, phosphatidylino-

sitol kinase inhibitor, phosphodiesterase inhibitor, phosphorylase inhibitor,

purine nucleosidase inhibitor, thymidine kinase inhibitor, urate oxidase

inhibitor, xanthine-like agent);

� nine adverse/toxic effects [arrhythmogenic, spasmogenic, convulsant, non-

mutagenic (salmonella), embryotoxic, teratogen, carcinogenic, carcino-

genic (group 3), toxic];

� 16 metabolic terms (CYP1 substrate, CYP1A inhibitor, CYP1A substrate,

CYP1A1 substrate, CYP1A2 inhibitor, CYP1A2 substrate, CYP2 sub-

strate, CYP2B substrate, CYP2B1 substrate, CYP2B2 substrate, CYP2E

substrate, CYP2E1 substrate, CYP3A substrate, CYP3A1 substrate,

CYP3A4 substrate, CYP3A5 substrate).

Some apparent contradictions in terms representing the biological activity of

caffeine can be explained either by its opposite effects in different doses or by

peculiarities of experimental terms and conditions in the appropriate studies.

A similar picture can be observed also for most well-known pharmaceuticals.

On the other hand, even acting on the same target, different chemical com-

pounds can bind to them in different modes.34 Therefore, any individual che-

mical structure exhibits many biological activities, and vice versa a particular

biological activity can be caused by many different chemical structures.35,36

Biological activity is tested both in vivo and in vitro. In the past 20 years, due

to advances in preparative and measuring techniques, a significant part of

assays is the testing of ligand binding to the macromolecular target in vitro. It is

necessary to keep in mind that such binding can occur not with the site of

macromolecule that is responsible for its biological activity or for suppressing

of this biological activity. As a result, many ligands found in high-throughput

assays may appear to be nonspecific or ‘‘promiscuous’’ inhibitors.37 Moreover,

binding is not a sufficient condition for ensuring that a beneficial function will

ensue in the cell or in the organism as a whole.38 After the deciphering of the

human genome and first results in postgenomic studies it became obvious that

many diseases have a complex etiology,27 while drug action on a certain target

often leads to activation/inhibition of other elements in the appropriate reg-

ulatory network. As a consequence of negative feedback, expected pharma-

cotherapeutic action may be significantly decreased or even completely

suppressed.39 Therefore, specially designed multi-targeted drugs may have

certain advantages over single-targeted medicines.33

Since the final purpose of pharmaceutical studies to find hits & leads with the

required, but without unwanted, properties the virtual screening should pro-

vide the estimation of general biological activity profile because such experi-

mental studies are highly expensive and time-consuming.

We proposed the biological activity spectrum of a substance concept, which

seems to be a fundamental basis for description of biologically active sub-

stances.29,30,32,40–43 The ‘‘biological activity spectrum’’ of a substance is the set
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of different kinds of biological activity, which reflect the results of chemical

substance’s interaction with various biological entities. This more general

concept was introduced earlier than ‘‘biospectra’’44,45 or other ‘‘activity spec-

tra’’.46 Biological activity is defined qualitatively (‘‘yes’’/’’none’’), suggesting

that the ‘‘biological activity spectrum’’ represents the ‘‘intrinsic’’ property of a

substance, depending only on its structure and physicochemical characteristics.

Certainly, this is a simplified definition because the exhibition of biological

activity depends on the presence and state of the corresponding targets and

experimental conditions (object, route of administration, dose, etc.). However,

such approximation provides a possibility for combining of information from

many different sources, which is necessary because no one particular publica-

tion represents comprehensively different aspects of biological action of a

compound. For example, to collect information on the biological activity

profile of caffeine discussed above, an extensive information search was per-

formed of the available literature and databases.

6.2.1 Dose–Effect Relationships

In the most general form the description of biological activity of a certain

chemical compound can be represented as a probability of occurrence of a

certain biological response, depending on the experimental conditions (object,

its state, means of exposure) and ‘‘dosage’’ of the compound (‘‘dosage’’ can be

represented in many different ways, in particular a single per os administration

or fixed amount of a substance): Pr(Doze,Test). Under the fixed experimental

conditions one obtains a simple relationship ‘‘dose–effect’’: Pr(Doze,Test) ¼
P(D). It must be stressed that P(D) is the probability of occurrence of a certain

effect, which depends on a dose D as a parameter.

According to the recommendations,47 in quantitative measurements of bio-

logical activity drug action is expressed in terms of the effect, E, produced when

an agonist, A, is applied at a concentration [A]. The relationship between E and

[A] can often be described empirically by Hill’s equation,48,49 which has the form:

E

Emax

¼ A½ �nH

A½ �nH þ A½ �nH50
ð6:1Þ

where Emax is the maximal action of A, nH is the Hill coefficient and [A]50 is the

concentration that produces an effect that is 50% of Emax. Figure 6.1 shows an

example of effect–concentration relationships estimated according to the Hill

equation (Equation 6.1). Clearly, if [A]¼ [A]50, all curves pass through the point

at which the effect is half of its maximal value.

Unfortunately, Hill’s equation (Equation 6.1) is only a convenient mathe-

matical idealization, which can be realized for ligand binding to the pure iso-

lated receptor in vitro. In an intact biological object a ligand interacts with

several or even many different macromolecules,50 and the final biological effect

may dramatically differ from the simple relationship presented in Figure 6.1.
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For example, if some effect may be caused by two mechanisms, and a ligand

interacts with the appropriate receptors, both activating and inhibiting them,

then either activating or suppressing of the effect E can be observed depending

of the concentration [A] of the ligand (Figures 6.2 and 6.3).
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Figure 6.1 Relative values of effect depending on relative agonist concentration
calculated according to the Hill equation. nH are the different values of
the Hill coefficient.
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Figure 6.2 Relative effect vs. concentration of agonist provided the agonist simulta-
neously acts on another target as a weak antagonist.
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In experimental testing of toxicity the results are presented by the numbers of

surviving (n) and dying (m) biological objects within the fixed period of time

under the fixed doses of acting substance D. The conditional probability

P(m,n|D) of certain numbers m and n at the certain D corresponds to the

Bernoulli distribution:

Pðm; njDÞ ¼ ðmþ nÞ!PðDÞmð1� PðDÞÞn
m!n!

ð6:2Þ

where P(D) is the probability of death of a biological object at the obtained

dosage D. Based on the experimental results, P(D) can be estimated only

approximately by calculation of parameters for a definite parameter relation-

ship P(D), for instance Equation (6.1).

Usually, the dose–effect relationship P(D) is simplified to the single quanti-

tative or even qualitative characteristic. For example, for a certain level of

probability q it is possible to determine an appropriate characteristic dose

(quantile) Dq¼Arg{P(D)¼ q}. Most often, the ED50 for q¼ 0.5 values are used,

but q¼ 0.16, q¼ 0.75, q¼ 0.84 are also considered sometimes. However, for a

non-monotonic dependence of P(D), Dq can be ambiguous or even not exist if

P(D)oq; for instance if (i) the part of population is resistant to the acting

compounds and (ii) the suggested threshold q exceeds the fraction of the

responsible part of population.

In accordance with the probabilistic nature of the biological activity concept,

the most relevant methods for prediction of activity are those based on prob-

abilistic theory and mathematical statistics, and the purpose of prediction is the

complete relationship Pr(Doze) ¼ P(D).
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Figure 6.3 Example of relative effect dependence on the agonist’s concentration
provided the agonist acts on another target as antagonist with equal semi-
effective concentrations and different Hill coefficients.
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Unfortunately, in practice, the application of such approaches is strongly

limited by the available experimental data, which in most cases are presented by

semi-effective doses and even by qualitative characteristics ‘‘active/inactive’’.51,52

6.2.2 Experimental Data

The determination of biological activity is always associated with some

experimental errors, which may be caused by variability of biological objects,

inaccuracy of measurements due to the limited precision of the used equipment,

inaccuracy of the personnel doing manual and mental work.

If the experimental measurements have been repeated several times, the

resultant data are presented as average values and standard deviations (SDs) of

the measurements. In many cases numerical data in the literature and, parti-

cularly, in databases are presented without SDs even in cases where such values

could be calculated on the basis of primary data. Also, the results of testing in

high-throughput assays for inactive compounds typically mean that the com-

pound does not cause the studied effect at a certain threshold, e.g., at 10 mM,

1 mM, etc.52

Experimental errors associated with human error may be introduced both in

experimental procedures (e.g., inaccuracies of sample preparation) and in

theoretical analysis of the study results (e.g., errors in data drawing in pub-

lications, errors during the input of data into a computer).

As was concluded by Christoph Helma et al.:53

After summarizing our experiences with the quality assurance of chemical data in

predictive toxicology, we conclude that the currently available databases and

computational chemistry programs are too faulty to be trusted without further

inspection. The development of reliable quality control procedures definitely needs

more discussion, exchange of experience, and research activity. In this sense, we

hope that we will raise some awareness in regard to data quality issues and quality

assurance in predictive toxicology.

The necessity of quality control for chemical structures, particularly when the

data are aggregated from different sources, was recently emphasized in another

publication.54

However, the main source of scattering in experimental data is certainly

determined by the variability of biological response. As was shown by com-

parison of results obtained in rodent carcinogenicity experiments, the con-

cordance between the results taken from general literature and the results

obtained from US National Toxicology Program is only about 57%.55

Therefore, the reproducibility of biological assays may be quite poor. It is well

known that LD50 values for rodents obtained in different laboratories may vary

significantly (e.g., in LD50 studies performed by eleven laboratories to stan-

dardize a type A botulinum toxin assay for accessing the toxin in food con-

taminations, up to a ten-fold difference in results was shown).56
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Notably, in actual practice training sets are not ideal: in addition to a sim-

plified definition and high variability of biological activity they do not contain

all chemical classes relevant to a particular biological activity, and information

about all kinds of biological activity that can be revealed by a particular

compound is always incomplete (no one compound is tested against all kinds of

biological activity, and there is no one activity for which all possible ligands are

known). Consequently, the probabilistic character of biological activity is

caused not only by experimental errors of its determination but also by the

incompleteness of available information.

6.3 Probabilistic Ligand-based Virtual
Screening Methods

Virtual screening methods are based on the modeling of the biological pheno-

menon of molecular recognition, either by the principle of complementarity or

by the principle of similarity.57

Probabilistic ligand-based virtual screening methods look rather simple and

fast; however, for their successful application it is necessary to have a training

set of compounds with known activity. Probabilistic methods are based on

the achievements of machine learning and have a long history, starting from

pattern recognition methods.4,5,58–63 Especially for the purposes of drug design,

probabilistic methods were developed by Golender and Rozenblit,64 and rea-

lized later in the expert system OREX.65 In Section 6.4 we describe in detail the

probabilistic method developed by our team, and to which the methods7,66–74

and binary QSAR51,52,75,76 are rather close in basic characteristics.

An important component of probabilistic ligand-based virtual screening

methods is the design of the training set, which is the set of ligands available or

selected to develop the virtual screening system.77–81 The selection of this set

and its usage strongly influence the overall performance of the final system.82,83

Also, it is necessary to use the appropriate evaluation of prediction accuracy

and reliability, and the representation and interpretation of biological activity

prediction results is very important. Based on the probabilistic approach, it is

possible to solve all these problems.

6.3.1 Preparation of Training Sets

Training sets should be representative for the compounds to be classified by the

ligand-based virtual screening system.83 Virtual screening is usually performed

on a set containing a large number of ligands with a high diversity of molecular

structure. For successful results, the diversity of structures from the training set

must be comparable to those from the corresponding set used for virtual

screening. As a rule, any training set must include sufficient active compounds

as well as inactive ones.
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It seems obvious that an ‘‘ideal’’ training set must include all tested active

and inactive compounds. However, in practice it is necessary to be very careful

during the design of training set because ‘‘a data set consisting of database

chemical drawings and HTS assay measurements may be very misleading’’.52

There exist some other peculiarities, for instance every compound in the

MDDR database (MDLs Drug Data Report84) has one or several records in

the field ‘‘activity class’’, indicating that the compound is related to a certain

therapeutic area. However, because of ‘‘umbrella patents’’, not each substance

in MDDR was actually tested in biological assays. Those substances for which

biological activity was studied in detail are called ‘‘principal compounds’’, and

they have some records in the field ‘‘Action’’, such as experimental data on

activity, LD50, IC50, Ki, etc. There are some publications, in which the training

set is prepared on the basis of the MDDR database but this peculiarity is not

taken into account.7,73,74,85–87 In these publications, for each ligand from the

training sets that was actually tested in biological assays there are several

structurally similar molecules for which biological activity was assigned with

the purpose of umbrella patenting. Therefore, unsurprisingly, structure simi-

larity methods studied in these publications were shown to be rather successful

during the validation.

In a well-designed training set the structural diversity must be as uniform as

possible. It is very difficult to control such uniformity; however, the presence of

closely similar compounds series in the set could (and have to) be checked, to

avoid degeneracy.

In general, any ligand-based virtual screening method is based on direct or

generalized similarity between the screened compound and compounds from

the training set. Therefore, if such similarity is absent at all, no reasonable

prediction of screened compound’s properties can be made by using this

training set.

6.3.2 Creation of Evaluation Sets

There are two fundamental problems in ligand-based virtual screening systems

development: model selection and performance estimation. Almost invariably,

all ligand-based methods have one or more adjustable parameters. To select the

‘‘optimal’’ parameter(s) or model for a given classification problem, it is

necessary to utilize the independent evaluation set that was not used in the

training procedure. Once the predictive system is developed, to estimate its

performance, one must utilize the test set that was not used during the devel-

opment process. To obtain the precise estimation of system performance, the

test set must be large, ideally infinite. However, for a good choice of a model or

its parameter(s), the number of compounds in training and evaluation sets must

also be large. For theoretical analysis one can subdivide all available data into

two (training and test) or three (training, evaluation and test) sets, which have

to be approximately equal in size. However, to develop the actual working

virtual screening system one must used all available data for the training;
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therefore, nothing remains for the evaluation and test sets. To overcome this

contradiction, the most suitable methods for construction of evaluation (test)

sets are K-Fold Cross-Validation (KF CV) and Leave-One-Out Cross-

Validation (LOO CV).87–90

To perform KF CV a K-fold partition of the data set is created. For each

from K experiments, K-1 folds are used for training and the remaining one for

testing. The true error estimate is obtained as the average of the separate K

estimates. LOO CV is the degenerated case of KF CV, where K is chosen as the

total number of examples. For a data set with N examples, perform N

experiments, for each experiment use N–1 examples for training and the

remaining one example for testing. The true error is estimated as the average

error value on test examples – on all existing examples. Vapnik4 proved several

theorems, which stated unbiasedness and consistency of LOO CV estimation, if

LOO CV is carefully performed: no information about the excluded compound

is used for training and tuning the system based on a residual part of data set.

Unfortunately, in the general case the computational time for LOO CV or even

for KF CV will be very large due to the large number of sequential experiments.

Fortunately, the probabilistic approaches usually have a small or zero number

of tuned parameters and the LOO CV procedure can be performed quite easily.

Thus, all available data can be used both for training and for evaluation of

probabilistic ligand-based virtual screening systems. Earlier we have shown91

that LOO CV provides a more rigorous accuracy estimation than the repeated

many times 2-Fold (or jack-knife) CV.

6.3.3 Mathematical Approaches

Many different methods can be applied to virtual screening, and such methods

are described in other chapters of this book and/or in the Handbooks of Che-

minformatics.3 Here we discuss the methods based on a probabilistic approach.

Unfortunately, there are many publications in which the ‘‘probabilistic’’ or

‘‘statistical’’ approach items are farfetched. The Binary Kernel Discrimina-

tion8–10,17,20 and the Bayesian Machine Learning Models6 are actually special

cases of Artificial Neural Networks; whereas the Probabilistic Neural Net-

works14–16 are really similarity-based methods, which do not take into account

the results of well-developed nonparametric regression methods.92

In virtual screening of the chemical structures set called the Screening Set

(SS) for each compound CASS any proposed method P should give the esti-

mate P(C), which, being compared with a certain criterion, provides the basis

for decision about the advisability of further testing of the chemical compound

C. In other words, it is necessary to recognize whether compound C belongs to

the class of compounds in which we are interested in, i.e., to solve

the task of pattern recognition (PR), which is a typical problem of

Machine Learning (ML). There are a lot of publications, monographs

and specialized journals devoted to the problems of ML and PR; machine

learning approaches are widely used in cheminformatics (see, for example, refs.
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11,67,69–71,73,87,93,94). Notably, the fundamentals of machine learning were

developed much earlier than the informational technologies (IT) became widely

introduced. For example, Nilsson61 noted, referring to Kanal,59 that the

engineers rediscover for themselves well-known methods of statistics. Later, in

machine learning these methods were discovered for a second time, and now the

same situation is observed in cheminformatics: methods well known to engi-

neers and IT specialists are rediscovered once again.

Mathematically, the estimate P(C) in many cases can be represented as:1,61

PðCÞ ¼
X

i
aifiðCÞ ð6:3Þ

where fi (C) are the different functions of chemical structure of compound C,

independent from the coefficients ai. Various methods differ in the values of

estimates P(C), in the choice of functions fi(C), and in approaches that are used

to determine the coefficients ai. Without restriction of generality, let us suggest

that the estimate P(C) is a real quantity, and the decision about advisability of

further testing of chemical compound C is taken if P(C) 4 y, where y is a

threshold value. If the functions fi (C) represent physicochemical parameters or

other quantitative characteristics of molecular structure and/or every possible

function of these characteristics, and coefficients ai are determined on the basis

of regression, PLS, SVM etc., then the estimate P(C) is the result of a QSAR

method. If, at the same time, fi (C) are determined as a measure of similarity of

structure of molecule C with another molecule Ci from the training set, it is a

QSAR method based on similarity. If the functions fi(C) possess only the values

0 and 1, and coefficients ai are determined on the basis of probabilistic

approach, it is the method described in this chapter.

It is widely accepted that probabilistic approach was first developed and

applied in expert systems MYCIN95,96 and PROSPECTOR.97 In these expert

systems the likelihood estimates are calculated for several competitive hypo-

thesis H on the basis of available evidences E. In the expert system MYCIN

each hypothesis was estimated by a confidence factor CF(H|E1,E2, . . . ) as a

difference of estimates for the measure of belief MB(H|E1,E2,. . .) and the

measure of distrust MD(H|E1,E2,. . .):

CF HjE1;E2; . . .ð Þ ¼ MB HjE1;E2; . . .ð Þ �MD HjE1;E2; . . .ð Þ ð6:4Þ

where MB and MD were calculated by aggregation of values for separate

evidences Ei MB(H|Ei) and MD(H|Ei) according to the theory of probability

rules. In fact, these aggregation rules are piecewise-linear approximations of

simpler formula:

CF HjE1;E2; . . . ;Emð Þ ¼ CF HjE1;E2; . . . ;Em�1ð Þ þ CF HjEmð Þ
1þ CF HjE1;E2; . . . ;Em�1ð ÞCF HjEmð Þ ð6:5Þ

These equations follow directly from the approach, which is very popular in

recent times in Machine Learning, Data Mining, Text Mining and Knowledge
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Data Discovery, bioinformatics and cheminformatics, and called ‘‘naive Bayes

classifier’’.7,63,66,68,98,99 Such an approach was applied for virtual screening by

Labute and Gao,51,52,75,76 and other researchers,67,69–71,73 and also by the

authors of this chapter.91,100–104

When applied to virtual screening the naive Bayes classifier consists in the

following.

Let a molecular structure of compound C be represented by the set of

descriptors {D1, D2,. . . Dm}, and the probability that it belongs to a given class

A is estimated by a conditional probability P(A|C)¼P(A|D1, D2, . . . Dm).

Using Bayes’ theorem, we write:

P AjD1;D2; . . . ;Dmð Þ ¼ P Að Þ � P D1;D2; . . . ;DmjAð Þ
P D1;D2; . . . ;Dmð Þ ð6:6Þ

where P(D1, D2, . . . Dm|A) is the conditional probability of the descriptors set

{D1, D2, . . . Dm} occurrence in a compound C from class A; P(A) is the class A

prior probability, P(D1, D2, . . . Dm) is the descriptors set {D1, D2, . . . Dm} prior

probability. The ‘‘naive’’ conditional independence assumptions mean that each

descriptor Di is conditionally independent of every other descriptor Dj for ja i.

This means that:

P D1;D2; . . . ;DmjAð Þ ffi P D1jAð ÞP D2jAð Þ . . .P DmjAð Þ ¼
Ym

i¼1

P DijAð Þ ð6:7Þ

As a result, the log-likelihood ratio of the conditional probability P(A|D1,

D2, . . . Dm) of the class A and P(:A|D1, D2, . . ., Dm) of its complement :A can

be expressed as:

ln
P AjD1;D2; . . . ;Dmð Þ
P :AjD1;D2; . . . ;Dmð Þ

� �

¼ ln
P Að Þ
P :Að Þ

� �

þ
X

i
ln

P DijAð Þ
P Dij:Að Þ

� �

ð6:8Þ

Taking into account that P(:A|D1, D2, . . ., Dm)¼ 1�P(A|D1, D2, . . ., Dm)

and using Bayes’ theorem for ratio P(Di|A)/P(Di|:A), we find:

ln
P AjD1;D2; . . . ;Dmð Þ
P :AjD1;D2; . . . ;Dmð Þ

� �

¼ ln
P Að Þ

1� P Að Þ

� �

þ
X

i
ln

P AjDið Þ
1� P AjDið Þ

� �

� ln
P Að Þ

1� P Að Þ

� �� �

ð6:9Þ

In terms of the general formula Equation (6.3), we can write:

P Cð Þ ¼ ln
P AjD1;D2; . . . ;Dmð Þ
P :AjD1;D2; . . . ;Dmð Þ

� �

ð6:10aÞ

a0 ¼ ln
P Að Þ

1� P Að Þ

� �

; f0 Cð Þ � 1 ð6:10bÞ
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ai ¼
X

i
ln

P AjDið Þ
1� P AjDið Þ

� �

� ln
P Að Þ

1� P Að Þ

� �� �

ð6:10cÞ

fiðCÞ ¼ 1 if Di 2 D1;D2; . . . ;Dmf g and fiðCÞ ¼ 0 if Di =2 D1;D2; . . . ;Dmf g:
ð6:10dÞ

Clearly, the constant a0 can be included into threshold value y, so that the

function f0(C)� 1 is not necessary. We must stress that in such form the

probabilistic approach has no tuned parameters at all. Some tuning of naive

Bayes classifier can be performed by selection of the molecular structure

descriptors [or fi(C)] set. This is a wonderful feature in contrast to QSAR

methods, especially to Artificial Neural Networks.

The describing functions fi(C )¼ 1 if DiA{D1, D2, . . . Dm} [and fi (C )¼ 0

otherwise] can be constructed on the basis of very wide approaches. In our

investigations we use as descriptor sets {D1, D2, . . . Dm} substructure fragment

descriptors (see below). For quantitative parameters the describing function

fi(C) can be equal to 1 if molecule parameter(s) xj satisfies the certain condition

k, e.g., if the value of xj belongs to some interval or multidimensional xj belongs

to some region in appropriate space, and so on. Like this, the naive Bayes

approach was proposed and developed by Labute and Gao.51,52,74–76,105

The naive Bayes approach has several well-known difficulties. The condi-

tional independence of descriptors of a molecule structure is not true as a rule.

The probability P(A|Di) estimations can be close or even equal to 0 or 1 and in

such case coefficients ai become too large or infinite. To overcome this problem,

we have substituted the logarithms of probabilities ratios ln[P(A|Di)/

(1�P(A|Di))] for ArcSin(2P(A|Di)�1). The ArcSin(2P(A|Di)�1) shape coinci-

des with the shape of ln[P(A|Di)/(1�P(A|Di))] for almost all values of P(A|Di),

but ArcSin(2P(A|Di)�1) values are bounded by the values 	p/2.

Interestingly, the naive Bayes approach is ‘‘too simple’’, but as a rule it

provides high accuracy of recognition.7,63,68

6.3.4 Evaluation of Prediction Accuracy

When a classifier that provides the estimation of P(C) is constructed, its per-

formance must be estimated. The most important estimation is of the predic-

tion accuracy. To do this, an evaluation set (test set or validation set – see

Section 6.3.2) must be used. The evaluation set (ES) must be relevant and

include both type of examples – positive and negative (‘‘active’’ and ‘‘inactive’’

compounds). For all compounds CAES, estimations P(C) are calculated, and

obtained values are analyzed using knowledge about the ‘‘true’’ classification of

compounds in ES. Figure 6.4 shows the main features of this task.

Let us suggest that for compounds in ES we have values of some targeted

molecular property. ‘‘Expert’’ divides ES into two parts: positive and nega-

tive examples. Using a constructed estimator we calculate P(C) values and,

selecting the threshold value, divide ES into two other parts: predicted positive
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if P(C)4y and predicted negative if P(C)oy. We compare prediction results

with known data and calculate four numbers: TP is the number of true posi-

tives, FP is the number of false positives, TN is the number of true negatives,

and FN is the number of false negatives (Figure 6.4).

It is important to keep in mind that the situation illustrated in Figure 6.4 is a

common case and it has symmetry in relation to errors: errors can be both in

estimations P(C) and in experimental values. The result like that shown in

Figure 6.4 occurs, even if the classifier is ideally true but experimental values are

known with finite accuracy.

For pattern recognition or classification, usually, the following character-

istics of recognition accuracy are used (see, for example, refs. 66,106–108):

Sensitivity : ¼ TP
TPþFN

Specificity : ¼ TN
TNþFP

Accuracy ðconcordanceÞ: ¼ TPþTN
TPþFPþTNþFN

Predictive value positive : ¼ TP
TPþFP

Predictive value negative : ¼ TN
TNþFN

False negative rate : ¼ FN
TPþFN

False positive rate : ¼ FP
TNþFP

Observed value
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Figure 6.4 An artificially generated relationship between observed and calculated values
of effect is shown as points with binormal distribution. Compounds are
divided by the vertical line into actives and inactives according to the experi-
mental values and by the horizontal line into predicted actives and inactives,
at the selected threshold value. Compounds that fall into the appropriate
quadrants are classified based on the test as ‘‘True Positives’’ (TP), ‘‘True
Negatives’’ (TN), ‘‘False Positives’’ (FP), and ‘‘False Negatives’’ (FN).
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and others; each of them has some disadvantages. To minimize the disadvantages,

Youden’s index was proposed in 1950.109 Youden’s index summarizes the test

accuracy into a single numeric value, Sensitivity+Specificity – 1, or:

YI ¼ TP

TPþ FN
þ TN

TN þ FP
� 1 ¼ TP � TN � FP � FN

TPþ FNð Þ � TN þ FPð Þ ð6:11Þ

The recognition accuracy estimation described above faces one very impor-

tant problem: what is the best choice for the threshold value y? To solve this

problem, statistical decision theory is used.110–113 The basis for this is an

analysis of the so-called the Received Operating Characteristic (ROC) curve.

By tradition, ROC is plotted as a function of true positive rate TP/(TP+FN)

(or sensitivity) versus false positive rate FP/(TN+FP) (or 1-Specificity) for all

possible threshold values y. Figure 6.5 presents an example of such a ROC

curve for the results obtained with our computer program PASS in predicting

antineoplastic activity.

Estimation of the optimal threshold value is provided by minimizing a risk

function, which depends on a priori probabilities of positive and negative
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Figure 6.5 Relationships between the sensitivity [TP/(TP+FN)] (shown by the
curve), specificity [TN/(TN+FP)] and accuracy (concordance)
[(TP+TN)/(TP+FP+TN+FN)] as functions of False Positive Rate
[FP/(TN+FP)]. The estimations were obtained by PASS 2007 in a leave-
one-out cross-validation procedure for antineoplastic activity.
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examples and loss values for all four (TP, FP, TN and FN) possible results. If a

priori probabilities or losses are not known, the optimal choice is MiniMax

(Minimizing the Maximum possible loss) according to which the optimal

threshold value must satisfy the condition ‘‘Sensitivity¼ Specificity’’. Another

choice may be the maximum of Youden’s index.

In any case, this approach uses several additional assumptions. For this

reason in the last time in ML the recognition accuracy criterion of the Area

Under the ROC Curve (AUC), which is free of additional assumptions,

becomes very popular.7,63,68–71,106–108,112–116 Mathematically, AUC equals the

probability that the estimation P(C) assigns the higher value to a randomly

drawn positive example C1 than to the randomly drawn negative example C�:

AUC Pð Þ ¼ Probability P Cþð Þ4P C�ð Þf g ð6:12Þ

In our papers91,117 we have used the Invariant Accuracy of Prediction (IAP)

criterion, which exactly coincides with the AUC, and it is calculated as:

IAP ¼ Number of P Cþð Þ4P C�ð Þ
Number of C�Þ � Number of Cþð Þð ð6:13Þ

In our computer program PASS (Section 6.4) we also use the Invariant Error

of Prediction (IEP) criterion: IEP� 1� IAP.

Computationally, it is more convenient to calculate the estimate of prediction

accuracy on ES as an Invariant Accuracy (IA), which equals 2AUC(P)� 1 and

can be calculated as a result of comparison of estimates P(C1) for positive and

P(C�) for negative examples through all pairs (each positive example and each

negative example) in a form:

IA ¼
P

ES Sgn½PðCþÞ � PðC�Þ�
NþN�

; SgnðzÞ ¼
�1;
0;
þ1;

zo0

z ¼ 0

z40

8

<

:
ð6:14Þ

which is the difference of numbers of cases of true P(C1)4P(C�) and false

P(C1)oP(C�) divisions of pairs of positive and negative examples, divided by

the number of all pairs N1N�. These are the following general cases:

� If all objects are predicted with the same value P(C), then IA¼ 0.

� If the prediction is random and the estimates P(C1)4P(C�) and P(C1)

oP(C�) have equal probabilities, then IA¼ 0 on average of probability.

� If all outcomes P(C1)4P(C�) or P(C1)oP(C�), then IA¼ 1 or –1,

respectively.

If inaccuracy of division of ES onto two classes exists, then:

IA ¼ A � 1�m�
N�

�mþ
Nþ

� �
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where Ar 1 is the potential accuracy of the method, m� is the number of

compounds mistakenly described as negative examples (not found yet or not

studied positive examples), and m1 is the number of compounds mistakenly

described as positive examples, for instance due to the errors in data used for

creation of the sets, mistakes of personnel, etc. With:

IA ¼ A � 1�m�
N�

�mþ
Nþ

� �

it is possible to compare the accuracy of several classifiers using ES with ‘‘errors

of the teacher’’ correctly.

The IA (IAP, AUC) criterion gives a robust estimation of general classifiers

performance, but in the case of virtual screening to find several ligands at a top

of ranked compounds list, the minimal number of decoys may be more

important.116,118 For this purpose, Enrichment Factor7,115,119–122 analysis of

the robust initial enhancement (RIE)116,118 and Boltzmann-Enhanced Dis-

crimination ROC (BEDROC)116 criteria were proposed.

6.3.5 Single-targeted vs. Multi-targeted Virtual Screening

Most existing virtual screening methods have been developed to be used for

selection of hits with a single targeted activity.22–24 However, most discovered

pharmaceutical agents have several or even many kinds of biological activity.

Some of these biological activities represent adverse/toxic effects, some others

can be considered as a reason for utilization of known medicines according to

new indications, which is called repositioning of drugs.123–126

Both new pharmacotherapeutics and adverse/toxic effect can be discovered

on the basis of computer predictions with probabilistic methods. Different

methods can be applied either sequentially or simultaneously. Early attempts to

predict many kinds of biological activity simultaneously using such an

approach were performed by Avidon and co-authors,127 Golender and

Rozenblit,64,65 and Vassiliev and co-authors.128

Since the early 1990s, the authors have been developing the computer pro-

gram PASS, which predicts many kinds of biological activity based on the

structural formula of a compound.29,30,32,40,41,43,100 This program, the present

version of which predicts over 3000 kinds of biological activity with a mean

accuracy of about 95%, is described in more detail below. Different PASS

applications in virtual screening of multi-targeted ligands have been presented

in several publications.100–104,129

The Prous Institute for Biomedical Research130 is developing a computa-

tional method based on a wide range of molecular descriptors and binding

profiles, called BioEpistemes, which is claimed to facilitate the discovery of

new medicines and new uses for existing drugs. Pre-requisites of the BioEpis-

teme approach are quite close to the PASS concept: ‘‘A drug may interact with

multiple targets and produce more than one therapeutic response and/or
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adverse effect.’’ Unfortunately, we could not find a detailed description of the

method used in BioEpisteme in the available literature – only the very general

scheme presented on the web-site.130 Recently, the number of different mole-

cular mechanisms covered by BioEpisteme was reported to be about 400.131

Quantum Pharmaceuticals132 recently proposed a new method for toxicity

prediction based on computation of small molecules’ affinity to about 500

human proteins. The analysis of binding profiles for about 1000 known phar-

maceutical agents led to establishment of a relation between the toxicological

properties of a molecule and its activity against the selected representatives of

approximately 50 protein families. This activity profile was further used as a

‘‘natural’’ set of descriptors for various toxicological endpoints predictions,

including human-MRDD, human-MRTD, human-TDLo, mouse-LD50 (oral,

intravenous, subcutaneous), rat-LD50 (oral, intravenous, subcutaneous, intra-

peritoneal), etc.46

Thus, probabilistic biological activity prediction methods can be used for

both estimation of adverse/toxic effects in molecules under study and for

finding the multi-targeted ligands, which might ‘‘yield drugs of superior clinical

value compared with monotargeted formulations’’.33

6.4 PASS Approach

The computer program PASS was designed to predict many kinds of biological

activity simultaneously based on the structural formulae of chemical com-

pounds. Thus, PASS may estimate the biological activity profiles for virtual

molecules, prior to their chemical synthesis and biological testing.

6.4.1 Biological Activities Predicted by PASS

The latest version of PASS (2007) predicts 3300 kinds of biological activity with

a mean prediction accuracy of about 95%. PASS could predict about 1000

kinds of biological activity in 2004,32 only 541 activities in 1998,133 and 114

activities in 1996.30

The default list of predictable biological activities currently includes 374

pharmacotherapeutic effects (e.g., antihypertensive, hepatoprotectant, noo-

tropic, etc.), 2755 mechanisms of action, (e.g., 5-hydroxytryptamine antagonist,

acetylcholine M1 receptor agonist, cyclooxygenase inhibitor, etc.), 50 adverse

and toxic effects (e.g., carcinogenic, mutagenic, hematotoxic, etc.) and 121

metabolic terms (e.g., CYP1A inducer, CYP1A1 inhibitor, CYP3A4 substrate,

etc.). Information about novel activities and new compounds can be straight-

forwardly included into PASS.

In PASS biological activities are described qualitatively (‘‘active’’ or ‘‘inac-

tive’’). Qualitative presentation allows integrating information concerning com-

pounds tested under different terms and conditions and collected from many

different sources, as in the general PASS training set. Any property of chemical
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compounds that is determined by their structural peculiarities can be used for

prediction by PASS. Clearly, the applicability of PASS is broader than the pre-

diction of biological activity spectra. For example, we used this approach to

predict drug-likeness134 and the biotransformation of drug-like compounds.135

6.4.2 Chemical Structure Description in PASS

The 2D structural formulae of compounds were chosen as the basis for

description of chemical structure because this is the only information available

in the early stage of research. Plenty of characteristics of chemical compounds

can be calculated on the basis of structural formulae.3,67,136–139 Earlier29 we

applied the Substructure Superposition Fragment Notation (SSFN) codes.140

But SSFN, like many other structural descriptors, reflects rather abstraction of

chemical structure by the human mind than the nature of the biological activity

revealed by chemicals. The Multilevel Neighborhoods of Atoms (MNA)

descriptors91,141,142 have certain advantages over SSFN. These descriptors are

based on the molecular structure representation, which includes the hydrogens

according to the valences and partial charges of present atoms and does not

specify the types of bonds. MNA descriptors are generated as a recursively

defined sequence:

� zero-level MNA descriptor for each atom is the mark A of the atom itself;

� any next-level MNA descriptor for the atom is the sub-structure notation

A(D1D2. . .Di. . .),

where Di is the previous-level MNA descriptor for i-th immediate neighbors of

the atom A. The mark of atom may include not only the atomic type but also

any additional information about the atom. In particular, if the atom is not

included into the ring it is marked by ‘‘-’’. The neighbor descriptors

D1D2. . .Di. . . are arranged in uniquely, e.g., in lexicographic order. Iterative

process of MNA descriptors generation can be continued, covering first, sec-

ond, etc. neighborhoods of each atom. MNA descriptors have a more general

background than the descriptors,67,137 which look like MNA.

The molecular structure is represented by the set of unique MNA descriptors

of the 1st and 2nd levels. The substances are considered to be equivalent in

PASS if they have the same set of MNA descriptors. Since MNA descriptors do

not represent the stereochemical peculiarities of a molecule, substances whose

structures differ only stereochemically are formally considered as equivalent.

6.4.3 SAR Base

The PASS estimations of biological activity spectra of new compounds are

based on the Structure–Activity Relationships data and knowledge-base (SAR

Base), which accumulates the results of the training set analysis. The in-house
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developed general PASS training set currently (December 2007) includes about

117000 known biologically active substances (drugs, drug-candidates, leads,

and toxic compounds). Since new information about biologically active com-

pounds is discovered regularly, we perform a special informational search and

analyze the new information, which is further used for updating and correcting

the PASS training set.

6.4.4 Algorithm of Activity Spectrum Estimation

The algorithm of activity spectrum estimation is based on the above-mentioned

Bayesian approach, but differs in several details. For each kind of activity Ak,

which can be predicted by PASS, on the basis of a molecule’s structure

represented by the set of MNA descriptors {D1D2. . .Dm} the following values

are calculated:

S0k ¼ 2P Akð Þ � 1 ð6:15aÞ

Sk ¼ Sin
1

m

X

ArcSin 2P AkjDið Þ � 1ð Þ
� �

ð6:15bÞ

Bk ¼
Sk � S0k

1� SkS0k

ð6:15cÞ

where P(Ak) is the a priori probability of finding a compound with activity of

kind Ak; P(Ak|Di) is a conditional probability of activity of kind Ak if the

descriptor Di is present in a set of a molecule’s descriptors. For each kind of

activity, if for all descriptors of molecule P(Ak|Di)¼ 1, then Bk¼ 1; if for all

descriptors of molecule P(Ak|Di)¼ 0, then Bk¼�1; if the relationship between

descriptors of molecule and activity Ak does not exist and P(Ak)EP(Ak|Di),

then BkE 0.

The simplest frequency estimations of probabilities P(Ak), P(Ak|Di) are

given by:

P Akð Þ ¼ Nk

N
; P AkjDið Þ ¼ Nik

Ni

ð6:16Þ

whereN is the total number of compounds in the SAR Base;Nk is the number of

compounds containing the activity Ak in the activity spectrum; Ni is the number

of compounds containing descriptor Di in the structure description; Nik is the

number of compounds containing both the activity Ak and the descriptor Di.

In PASS version 1.703 and later the estimations of probabilities P(Ak),

P(Ak|Di) are calculated as:

P Akð Þ ¼
P

n fn Akð ÞPi gn Dið Þ
P

n

P

i gn Dið Þ ð6:17aÞ
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P AkjDið Þ ¼
P

n fn Akð Þgn Dið Þ
P

n gn Dið Þ ð6:17bÞ

where fn(Ak) is the generic function of compound n belonging to a set of

compounds containing the activity Ak in the activity spectrum, fn(Ak) is equal

to 0 or 1; gn(Di) is the measure of compound n belonging to the set of com-

pounds containing descriptor Di in the structure description, now gn(Di) is

equal to 0 or 1/mn, where mn is the number of descriptors for the molecule n,

and
P

i gnðDiÞ � 1 in this case.

The estimations Equations (6.17a, b) of probabilities P(Ak), P(Ak|Di) not

only increase the algorithm’s prediction accuracy but also open up new pos-

sibilities. For example, function fn(Ak) in the range [0,1] can be considered as a

measure of molecule n belonging to a fuzzy set of molecules that reveal activity

Ak. The descriptor weight gn(Di) can be considered in the same manner, and

then the molecule structure descriptors can be of arbitrary nature, e.g., such as

in the refs. 51 and 52.

The main purpose of PASS is the prediction of activity spectra for new,

possibly not yet synthesized compounds. Therefore, the general principle of the

PASS algorithm is the exclusion from SAR Base of substances that is

equivalent to the substance under prediction. So, if molecule n is equivalent to

the molecule under prediction then this substance is excluded from sums in

(Equations 6.17a,b).

To obtain the qualitative (‘‘Yes/No’’) results of prediction, it is necessary to

define the threshold Bk values for each kind of activity Ak. On the basis of

statistical decision theory (Section 6.3.4) it is possible using the risk functions

minimization, but nobody can a priori determine such functions for all kinds of

activity and for all possible real-world problems. Therefore the predicted

activity spectrum is presented in PASS by the list of activities with probabilities

‘‘to be active’’ Pa and ‘‘to be inactive’’ Pi calculated for each activity. The list is

arranged in descending order of Pa�Pi; thus, the more probable activities are at

the top of the list. The list can be shortened at any desirable cutoff value, but

Pa4Pi is used by default. If the user chooses a rather high value of Pa as a

cutoff for selection of probable activities, the chance to confirm the predicted

activities by the experiment is high too, but many activities will be lost. For

instance, if Pa480% is used as a threshold, about 80% of real activities will be

lost; for Pa470%, the portion of lost activities is 70%, etc.

An example of prediction results for sulfathiazole is shown in Figure 6.6.

This substance was found in SAR Base and was excluded from the SAR Base

on prediction of its activity spectrum. The known (contained in SAR Base of

PASS version 2007) activity spectrum includes the following activities: anti-

bacterial, antibiotic, dihydropteroate synthase inhibitor, iodide peroxidase

inhibitor. In Figure 6.6 the predicted activity spectrum includes 65 of 374

pharmacological effects, 176 of 2755 molecular mechanisms, 7 of 50 side effects

and toxicity, 11 of 121 metabolism terms at default Pa4Pi cutting points. All

activities included in the SAR Base are predicted with Pa4Pi. The activity of as
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>  <PASS_MNA_COUNT> 

 32 

>  <PASS_KNOWN_ACTIVITIES> 
 Antibacterial 

 Antibiotic

 Dihydropteroate synthase inhibitor 

 Iodide peroxidase inhibitor 

>  <PASS_RESULT_COUNT> 

 65 of   374 Possible Pharmacological Effects at Pa > Pi

176 of  2755 Possible Molecular Mechanisms at Pa > Pi

  7 of    50 Possible Side Effects and Toxicity at Pa > Pi 

 11 of   121 Possible Metabolism at Pa > Pi 

>  <PASS_EFFECTS>

0.886  0.004  Antiobesity 

0.769  0.004  Antidiabetic 

0.766  0.008  Antieczematic atopic 

0.738  0.010  Antiprotozoal (Toxoplasma) 

0.752  0.027  Antineoplastic (colorectal cancer) 

0.727  0.002  Antiprotozoal (Coccidial)

0.651  0.043  Antineoplastic (brain cancer)

0.601  0.072  Antinephritic 

0.601  0.091  Antiviral (Arbovirus) 

0.578  0.083  Antineoplastic (lymphocytic leukemia)

0.578  0.083  Antineoplastic (non-Hodgkin's lymphoma) 

0.418  0.005  Hypoglycemic 

0.484  0.093  Allergic conjunctivitis treatment

0.408  0.019  Diuretic inhibitor
0.395  0.016  Antibacterial 

0.421  0.043  Hematopoietic inhibitor 

   ... 

0.253  0.059  Antiprotozoal (Trichomonas) 
0.209  0.021  Antibiotic

0.267  0.093  Anticoagulant 

   ... 

0.008  0.005  Histone acetylation inducer 

>  <PASS_MECHANISMS> 

0.732  0.004  Para amino benzoic acid antagonist 
0.675  0.004  Dihydropteroate synthase inhibitor 

0.661  0.028  Chloride peroxidase inhibitor

0.592  0.025  5 Hydroxytryptamine 6 agonist

0.591  0.062  Phthalate 4,5-dioxygenase inhibitor 

   ... 

0.265  0.227  Pterin deaminase inhibitor 
0.138  0.100  Iodide peroxidase inhibitor 

0.166  0.129  Cathepsin H inhibitor 

   ... 

0.141  0.140  3-Hydroxybenzoate 4-monooxygenase inhibitor 

>  <PASS_TOXICITY> 

0.555  0.112  Hematotoxic 

0.442  0.139  Hepatotoxic 

0.392  0.135  Nephrotoxic 

0.275  0.066  Carcinogenic, female rats

0.205  0.114  Carcinogenic, female mice

0.341  0.269  Torsades de pointes 

0.162  0.123  Carcinogenic 

... 

Figure 6.6 Structure of sulfathiazole and part of its predicted activity spectrum. Acti-
vities contained in the SAR Base of PASS version 2007 are marked in bold.
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a dihydropteroate synthase inhibitor is second among the 176 predicted

molecular mechanisms.

The probabilities Pa and Pi are functions of the initial estimation Bk defined

by the equations:

FAk Pað Þ ¼ Bk; FIk Pið Þ ¼ Bk ð6:18Þ

where the functions FAk and FIk are obtained as the final result of the training

procedure, which consists of the following.

For each kind of activity and each MNA descriptor the estimations of prob-

abilities P(Ak), P(Ak|Di) are calculated by Equations (6.17a,b). For each kind of

activityAk, for each p ofNk active, and for each q ofN�Nk inactive compound in

SAR Base, after excluding this compound, the estimates Bkp and Bkq are calcu-

lated. TheNk estimates of Bkp for active compounds are sorted in ascending order;

the N�Nk estimates of Bkq for inactive compounds are sorted in descending

order. The functions FAk and FIk are calculated as conditional expectations:

FAk Fð Þ ¼
XNk

p¼1

C
p�1
Nk�1F

p�1 1� Fð ÞNk�p
Bkp ð6:19aÞ

FIk Fð Þ ¼
XN�Nk

q¼1

C
q�1
N�Nk�1F

q�1 1� Fð ÞN�Nk�q
Bkq ð6:19bÞ

where Cm
n F m 1� Fð Þn is the binomial distribution, Cm

n ¼ n!=½m!ðn�mÞ!� is the

binomial coefficient,

F is in the range [0, 1]. Clearly, FAk and FIk are estimations of the quantile

functions of the probability distributions of the estimations Bkp and Bkq. Thus,

the probabilities Pa and Pi are both the measures of belonging to subsets of

‘‘active’’ and ‘‘inactive’’ compounds and the probabilities of the 1st and 2nd

kinds of prediction error, respectively. These two interpretations of the prob-

abilities Pa and Pi are equivalent and can be used in understanding the results

of prediction.

In Figure 6.7 shows an example of probabilities Pa(B) and Pi(B) estimation

as functions of B value, and in terms of Sensitivity, Specificity and Youden’s

index, for antihypertensive activity in the SAR Base of PASS version 2007.

Leave one out cross-validation for 3300 kinds of biological activity and

117 332 substances provides the estimate of PASS prediction accuracy during

the training procedure. The average accuracy of prediction is about 94.7%

according to the LOO CV estimation, while that for particular kinds of activity

varies from 65% [System lupus erythematosus treatment, Immunomodulator

(HIV)] to 99.9% (Allergic rhinitis treatment, histone acetylation inducer). The

estimated accuracy of prediction for all kinds of biological activity predicted by

PASS is presented at the web site.143

The accuracy of PASS predictions depends on several factors, of which

the quality of the training set seems to be the most important (Section 6.3.1).
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Figure 6.7 Estimations of probabilities Pa(B) and Pi(B) as functions of B value (a) and
in terms of sensitivity, specificity and Youden’s index (b). The curves are
obtained for activity antihypertensive based on data presented in SAR
Base PASS version 2007.
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A perfect training set should include comprehensive information about biolo-

gical activities known or possible for each compound. In other words, the

whole biological activity spectrum should be thoroughly investigated for each

compound included into the PASS training set. Actually, no database exists

with information about biologically active compounds tested against each kind

of biological activity. Therefore, information concerning known biological

activities for any compound is always incomplete. We investigated the influence

of the information’s incompleteness on the prediction accuracy for new com-

pounds. About 20 000 ‘‘principal compounds’’ from the MDDR database

(Section 6.3.1) were used to create the heterogeneous training and evaluation

sets. At random, 20, 40, 60, 80% of information were excluded from the

training set. Either structural data or biological activity data were removed in

two separate computer experiments. In both cases it was shown that even if

up to 60% of information is excluded the results of prediction are still

satisfactory.91 Thus, despite the incompleteness of information in the training

set, the method used in PASS is robust enough to get reasonable prediction

results.

6.4.5 Interpretation of Prediction Results

Only activities with Pa4Pi are considered as possible for a particular

compound.

It is necessary to remember that the probability Pa first of all reflects the

similarity of molecule under prediction with the structures of molecules that are

the most typical in a sub-set of ‘‘actives’’ in the training set. Therefore, usually,

there is no direct correlation between the Pa values and quantitative char-

acteristics of activities.

Even an active and potent compound, whose structure is not typical of the

structures of ‘‘actives’’ from the training set, may obtain a low Pa value and

even PaoPi during the prediction. This is clear from the way the functions

Pa(B) and Pi(B) are constructed: the values Pa for ‘‘actives’’ and Pi for ‘‘inac-

tives’’ are distributed fully uniformly. Taking this into account, the following

interpretation of prediction results is possible.

If, for instance, Pa equals to 0.9, then for 90% of ‘‘actives’’ from the training

set the B values are less than for this compound, and only for 10% of ‘‘actives’’

is this value higher. If we decline the suggestion that this compound is active, we

will make a wrong decision with probability 0.9.

If Pa is less than 0.5, but Pa4Pi, then for more than half of ‘‘actives’’ from

the training set the B values are higher than for this compound. If we decline

the suggestion that this compound is active, we will make a wrong decision with

a probability of o0.5. In such a case the probability of confirming this kind of

activity in the experiment is small, but there is a more than 50% chance that

this structure has a high degree of novelty and may become a New Chemical

Entity (NCE).
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If the predicted biological activity spectrum is wide, the structure of the

compound is quite simple, and does not contain peculiarities that are respon-

sible for the selectivity of its biological action.

If it appears that the structure under prediction contains a few new MNA

descriptors (in comparison with the descriptors from the compounds of the

training set), then the structure has low similarity with any structure from the

training set, and the results of prediction should be considered as very rough

estimates.

Based on these criteria, one may choose which activities have to be tested for

the studied compounds on the basis of a compromise between the novelty of

pharmacological action and the risk of obtaining a negative result in experi-

mental testing. Certainly, one will also take into account a particular interest in

some kinds of activity, experimental facilities, etc.

6.4.6 Selection of the Most Prospective Compounds

A fundamental limitation must be kept in mind: any observation, estimation or

calculation has only restricted accuracy. In absolutely all cases instead of the

desirable unknown intrinsic Real value we have only:

Observation ¼ Real þNoise

This is critically important for (virtual) screening especially. To highlight

this, Figure 6.8 presents the generated data of 1000 points with binormal dis-

tribution and correlation coefficient square R2¼ 0.95 and R2¼ 0.5. Clearly, for

R2¼ 0.5 the relationship looks like a weak tendency only. Figures 6.9–6.11

show the results of the selection of the 100 Bests (with the highest Real values)

and the 100 Winners (with the highest Estimation values) among 1 000 000

‘‘screened’’ examples. Clearly, only for R2¼ 0.95 is coincidence of the

Winners and the Bests relatively good (about 60%), while for R2¼ 0.5 it is

practically zero.

It is possible to perform a complete analysis of such relationships, but even

the presented data provide enough evidence for the following conclusion: the

method for (virtual) screening must be highly accurate, and/or many different

virtual screening methods must be used in combination and/or the number of

selected candidates must be sufficiently large at all stages of screening (in

Figures 6.9 and 6.10, the number 100 is not ‘‘sufficiently large’’).99,116,144,145

6.5 Conclusions

Since the predicted with PASS biological activity spectra contain the estimates

of probabilities for the pharmacological main and side effects, molecular

mechanisms of action and specific toxicity, the choice of the most prospective

compounds from the available samples of chemical compounds can be realized

on the basis of complex criteria. Both the presence of targeted biological effects
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with desirable mechanisms of action and the absence of unwanted adverse

effects and toxicity have to be taken into account. In such studies, the search for

leads with the required properties and their optimization to decrease the

adverse and toxic effect, usually performed sequentially, will be solved
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Figure 6.8 Example of relationships between the available measured values and
unavailable true values. 1000 points are presented; all values have a
normal distribution. Error of measurement (calculation) corresponds to
the square of correlation coefficient R2¼ 0.95 (a) and 0.5 (b).
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simultaneously. Moreover, it was shown that the algorithms used in PASS can

be successfully applied for discrimination between the so-called drug-like and

drug-unlike compounds,134 which provides the possibility for extension of the

applicability of the program by ‘‘filtering’’ in the early stages chemical com-

pounds, for which probability of becoming a drug is rather small.
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Winner

Best

Figure 6.9 Example of relationship between the available measured (calculated)
values and unavailable true values. The 100 Winners and the100 Bests of
1 000 000 are presented. All compounds have a normal distribution; the
error of measurement (calculation) corresponds to the square of corre-
lation coefficient R2¼ 0.5.
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Figure 6.10 Example of relationship between the available measured (calculated)
values and unavailable true values. The 100 Winners and the100 Bests of
1 000 000 are presented. All values have a normal distribution; the error
of measurement (calculation) corresponds to the correlation coefficient
R2¼ 0.8.
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The evolution of any molecule from hit to lead and from lead to drug-

candidate typically is associated with the detailed evaluation of pharmaco-

dynamics and pharmacokinetics of the compound. Using several different

probabilistic methods for virtual screening together it might be possible to

increase significantly the rate of promising substances in the selected sub-

set.101,103 A challenging task is to optimize simultaneously both pharmacody-

namics and pharmacokinetics of lead compounds because it is very difficult to

modify the appropriate molecular determinants that define the desired com-

pound characteristics in a consistent manner. However, even this task might be

solved using ‘‘an integrated software framework that monitors ligand (or

library) alterations in the context of ‘fitness landscape’’’.26
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CHAPTER 7

Fragment-based De Novo Design
of Drug-like Molecules

EWGENIJ PROSCHAK, YUSUF TANRIKULU
AND GISBERT SCHNEIDER

Goethe-University Frankfurt, Institute of Organic Chemistry and Chemical

Biology, Siesmayerstr. 70, D-60323 Frankfurt am Main, Germany

7.1 Introduction

Automated molecular de novo design has been an active research area in che-

minformatics since the early 1990s.1–3 Academic researchers and molecular

design groups in pharmaceutical industry alike have come up with numerous

software solutions and implementations. The basic idea is to assemble mole-

cular building-blocks in silico so that novel molecular structures emerge. The

designed molecules can then be assessed by medicinal chemists. For the actual

design process atoms (atom-based design) or fragments (fragment-based design)

can be used as building blocks. Currently, we are witnessing renewed interest in

fragment-based design approaches.4 This may be attributed to several reasons:

1. Fragment-based de novo design methods have been proven to be successful

in prospective applications leading to novel compounds with a desired

activity profile.2 Fragment hits often possess high ‘‘ligand efficiency’’

(binding affinity per heavy atom), which is pivotal for lead series develop-

ment.5,6 The level of trust in such methods has undoubtedly increased.

2. Fragment-based compound assembly tends to produce synthetically tractable

structures.3 Purely atom-based construction has often resulted in molecules
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that were not appealing to chemists, containing multiple stereocenters or

substructure elements that are difficult to synthesize or impracticable.7

3. The combination or ‘‘tethering’’ of molecular fragments that were derived

from known drugs or lead structures with known and desired bioactivity

often results in chimera that also exhibit the desired function.8,9 Linking

of some few active fragments can result in multiple lead structures, as

shown recently by researchers at Abbott Laboratories.10

4. Molecular fragments sometimes represent preferred substructure ele-

ments, e.g., benzamidine binding to the S1 pocket of serine proteases, or

hydroxamic acid for zinc ligation in metalloprotease inhibitors. It can thus

be advantageous to design new molecules containing such function-

enabling building-blocks (‘‘needles’’) or core fragments.11–13

5. Fragment-based de novo design is supported by experimental small fragment

screening, e.g., by high-throughput NMR and crystallography.14–17 Such

approaches render starting points for computational de novo design by

providing validated base fragments.

Accurate structural information of validated drug targets (mainly protein–

ligand complexes) provides the basis for structure-based molecular design. The

large number of high-resolution protein structures available from the Protein

Data Bank18 (PDB) has opened up new opportunities for rational drug design.

Still, the accurate description of ligand binding pockets and consideration of

flexible-fit phenomena remains a central issue. This renders automated binding

site analysis pivotal for rational drug design, including automated ligand

docking and de novo design, and for finding potential binding pockets in pro-

teins that lack a known ligand. These methods require exact structural infor-

mation of the binding site in a ligand-bound state as a starting point. This

prerequisite currently limits the application domain of receptor-based de novo

design to globular proteins (mainly enzymes) and other targets for which a

high-resolution (o3 Å) structural model is available.

Various computational methods exist for the location of possible ligand

binding sites. Most of these pocket detection algorithms rely on geometric

criteria to find clefts and surface depressions. Empirical studies have actually

shown that quite often ligand binding sites usually coincide with the largest

pocket of a protein’s surface.19 Figure 7.1(a) shows an example of an auto-

matically identified protein pocket in thrombin with an inhibitor bound. The

lactam-based inhibitor is shape-complementary to the pocket surface and fills

the whole pocket. Prediction and experiment are in perfect agreement. The

ligand completely fits into the protein pocket, leaving almost no unoccupied

space. This is an ideal scenario for application of receptor-based de novo design.

Notably, automated pocket identification does not always deliver correct

results. Figure 7.1(b) shows a crystal structure of Factor Xa with an inhibitor

binding-mode that accesses a shallow part of the pocket area. Although auto-

mated pocket detection software was used to find the ligand binding site and the

overall prediction was correct, the experimentally determined ligand binding mode

differs from the predicted pocket. The ligand occupies a non-detected sub-pocket.
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It would have been impossible to identify the ligand in Figure 7.1(b) with the

pocket shape suggested by the pocket extraction software. This example illustrates

some of the potential pitfalls of automated receptor-based techniques.

In contrast to receptor-based molecular design, ligand-based design of

compound libraries requires known bioactive molecules as a starting point.

These template molecules are often referred to as ‘‘seed structures’’, ‘‘queries’’

or ‘‘reference compounds’’. Novel structures are constructed so that they

exhibit some kind of similarity to the templates. Focused compound libraries

can be designed in silico, synthesized and tested for activity in vitro. We stress

that the choice of an appropriate similarity measure depends on the drug dis-

covery project and is context-dependent (cf. Chapter 5). In this chapter, we

focus on ligand-based approaches, as these are applicable irrespective of the

availability of a receptor model, and for a large group of drug targets, namely

G-protein coupled receptors (GPCR) and other integral membrane proteins

like ion channels, reliable atomistic models are rare or unavailable. Table 7.1

lists selected examples of recent advances in the field of ligand-based de novo

design methods. For an overview of earlier developments and receptor-based

design, the reader is referred to the literature.1–3

De novo design software produces molecular structures with desired prop-

erties from scratch. In this attempt we are confronted with a virtually infinite

search space. In theory, the search space for de novo design is given by all drug-

like compounds – a number estimated to be in the range of 1020 to 10100.25 The

fragment-based design concept drastically reduces this search space as it limits

the numbers of molecules. Furthermore, instead of the systematic construction

and evaluation of each individual compound (as in experimental high-

throughput screening), the de novo design process relies on the Principle of

Figure 7.1 Examples of automatically identified ligand-binding pockets with inhibitors
bound. For pocket detection, a grid-based approach was used (Pocket-
Picker).19 Dots represent surface cavities identified by PocketPicker, colored
by ‘‘buriedness’’. Solvent-accessible pocket surfaces are indicated by a mesh
(left) or as hard surface (right). Darker shading of the grid dots indicates
greater buriedness. (a) Thrombin active site (PDB identifier: 2cf8, 1.3 Å
resolution; with a lactam inhibitor), (b) co-crystal structure of Factor Xa
(PDB entry 1ezq, 2.2 Å resolution; with inhibitor RPR128515). The auto-
matically extracted pocket does not match with the surface-exposed parts of
the actual inhibitor binding pocket. (Adapted from ref. 3.)
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Local Optimization.31 This means that only a fraction of all potential screening

candidates are actually constructed and evaluated. Since it is impossible to

enumerate all possible virtual molecules in advance, only those candidate

molecules are considered at a time, which represent a local neighborhood of the

actually best solutions. Notably, most software implementations are non-

deterministic, and design processes rarely converge on the global optimum (the

one ‘‘super-molecule’’) but on a local or ‘‘practical’’ optimum.32 Multiple runs

of de novo design software will therefore produce different ‘‘promising’’ can-

didates rather than perfect solutions due to the nature of the search. Basically,

three questions must be addressed by any de novo design program:

1. How to assemble candidate compounds?

2. How to evaluate molecule quality (‘‘fitness’’)?

3. How to systematically navigate in search space?

One can further differentiate between ‘‘positive’’ and ‘‘negative’’ design.3 Positive

design restricts virtual compound assembly to regions of chemical space that have a

higher probability to find drug-like molecules, while negative design criteria help

prevent adverse properties (e.g., very high lipophilicity) and unwanted substructures

(e.g., reactive groups, stereocenters). It is essential to understand that de novo design

will rarely yield novel lead structures with nanomolar activity, high target selec-

tivity, and an acceptable pharmacokinetic profile in the first place. Despite all

efforts to produce synthetically tractable molecules with a good property profile

Table 7.1 Recently published software solutions for automated ligand-based

de novo design.

Software Description

Molecule Evoluator20 Atom-based design by evolutionary operators
FluX21,22 Adaptive fragment-based design by evolu-

tionary operators
COREGEN23 Fragment-based ring-linker-based assembly

of scaffold libraries
Evolutionary Algorithm Inventor24 Atom- and fragment-based evolutionary

algorithm
Ftrees25 Fragment combination by connection rules an

Ftrees analysis
Skelgen26 Employment of active reference ligands and a

pseudo-receptor approach
Fragment Trees27 Exhaustive enumeration of fragment-based

chemical space with target-specific
constraints

Combinatorial library
enumeration28

Construction of large combinatorial libraries
by use of ‘‘real reactions’’ and a heuristic
backtracking algorithm

Compound Generator (CoG) and
the median molecules concept29,30

Multi-objective de novo design by Pareto-
ranking and genetic operators on molecular
graph-based chromosomes
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there is no guarantee that a designed molecule finds immediate appraisal by a

synthetic chemist! Quite the opposite: de novo generated structures often represent

molecules that require significant further optimization. What can be expected is an

increased hit rate in a focused compound library compared to screening of an

arbitrary compound collection. This directly leads to the need for synthetically

accessible structures. This issue was recognized early in the history of de novo

design, but has been addressed only recently. A common pattern of the few de novo

design programs that consider ease of synthesis is to assemble molecular building

blocks by virtual reaction schemes. For example, suitable building blocks can be

obtained by virtual retro-synthesis of drug molecules, using simplistic fragmenta-

tion schemes like RECAP.33 The same set of reaction schemes is then employed to

assemble candidate compounds.21,34 It is reasonable to assume that the designed

compounds will have some degree of ‘‘drug-likeness’’ and contain only few awk-

ward structural elements. Ideally, virtual structure assembly is guided by simulated

organic synthesis steps so that a synthesis route can be proposed for every generated

structure. Some of the advanced software implementations actually made a step

toward this goal. These programs automatically analyze generalized synthetic

routes and pick potential synthons from databases of available compounds.28,35,36

In the following we highlight aspects of fragment-based design with an

emphasis on ligand-based approaches, and the combination of shape-matching

and pharmacophore-based scoring functions.

7.2 From Molecules to Fragments

The goal of de novo design is the generation of compounds that were not syn-

thesized before. Synthesis of such compounds should be feasible, with few syn-

thetic steps, high yields, and cheap starting material. There are different

approaches to estimate the synthetic accessibility of de novo designed molecules.

One of the recently developed methods introduced by Boda and co-workers35

takes into account structural complexity, similarity to available starting material,

and assessment of strategic bonds where a structure can be decomposed into

retrosynthetic fragments. This concept incorporates a scoring scheme derived

from the knowledge of medicinal chemists. Another sophisticated approach to

obtain synthesizable molecules was conceived by Vinkers et al. in their program

SYNOPSIS (SYNthesize and OPtimize System In Silico):36 virtual synthesis

starts from commercially available compounds and employs 70 reaction types to

connect the fragments. In a prospective application to HIV inhibitors the authors

demonstrated that SYNOPSIS is not only able to deliver active compounds but

also a synthesis route that could be followed.

Fragment-based programs employ molecular building-blocks from a frag-

ment database that contains virtual synthons from commercially or syntheti-

cally available compounds or from virtual retrosynthetic decomposition of a

compound database. The bonds cleaved during the retrosynthetic dissection

process are not necessarily the ones that will be made during the actual

synthesis. For example, the formation of a tertiary amine in the reaction shown

in Figure 7.2 can be performed in different ways. Typically, retrosynthesis
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software does not consider the effectiveness of the formation of such a bond.

Another critical issue is the consideration of stereochemistry, because stereo-

selective reactions are not always readily applicable.

There are two main strategies to obtain a fragment library from which the de

novo compounds can be assembled. A straightforward idea is to screen commer-

cially available libraries for suitable fragments. The definition of a fragment has

been widely discussed in literature.37 In analogy to Lipinski’s Rule-of-5 for drugs,38

a Rule-of-3 has been suggested to define suitable fragments.39 Accordingly,

molecular weighto300Da, number of hydrogen bond acceptors r3, number of

hydrogen bond donors r3, and clog Pr3 might be useful criteria for fragment

selection. The number of rotatable bonds (NROT) ofr3 and a polar surface area

(PSA) of r60 Å2 represent additional criteria for the selection of fragments for in

silico reactions. Elimination of fragments with a known liability for toxicity alerts

can be helpful to avoid their occurrence in the designed structures.

7.2.1 Pseudo-retrosynthesis

Another way to obtain a library of fragments is to decompose a known data-

base of drug- or lead-like molecules by pseudo-retrosynthetic rules like RECAP

(Retrosynthetic Combinatorial Analysis Procedure).33 The RECAP bond

cleavage procedure consists of eleven bond cleavage types shown in Figure 7.3.

This approach has several advantages:

� Fragments derived from drug-like molecules are often correlated with

biological activity and a good pharmacokinetic and -dynamic profile.

Novel compounds designed from these building-blocks are expected to

behave in the same way.

� The synthetic accessibility of the linked fragments is considered implicitly.

� Several approaches have been made to design targeted fragment libraries

from actives for a target class (e.g., kinases)23 or even a specific target.27

A meaningful pre-selection of compounds ensures the similarity of novel

compounds to the ones with confirmed activity, often resulting in so-called

‘‘chimera’’. The BREED approach widely employs this technique.40

N

H
N

CH2Br CHO

Figure 7.2 Two synthetic routes to form an amine bond.
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RECAP bond cleavage types were derived from common reactions that can

be performed in a laboratory. The bond cleavage type is neither linked to a

special reaction type nor to specific starting material. For example, the amine

bond (RECAP bond cleavage type 3) can be effectively built by a nucleophilic

substitution or by reductive amination (Figure 7.2). The fragments obtained

from RECAP decomposition are not real synthetic units. Rather, they can be

used to virtually assemble novel compounds that should be synthetically

accessible. As an example, Figure 7.4 shows the RECAP dissection of a Factor

Xa inhibitor 7.1, with the three resulting fragments 7.2–7.4.

RECAP dissection of DrugBank,41 a database containing 877 approved

drugs, yields 860 fragments. The molecular weight of the fragments is below

300Da, and the other parameters also obey the Rule-of-3 (vide supra). Lipo-

philicity, expressed as clog P, is also comparable to the 62 174 fragments of the

‘‘fragment-like’’ ZINC collection,42 which is a property-filtered subset of the

ZINC database containing approximately 4.6 million commercially available

compounds (Figure 7.5).

7.2.2 Shape-derived Fragment Definition

An important step according to several de novo design concepts is fragment

matching on a query structure. This requires fragment representations that are
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10 = Aromatic carbon-
        aromatic carbon

11 = Sulphonamide

Figure 7.3 RECAP bond cleavage types.33
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independent of the molecular graph. One such approach is the generation of a

surface-based fragment representation as implemented in our SQUIRRELnovo

approach (E. Proschak et al., unpublished).43 First, the solvent-accessible surface

of the molecule is calculated. Then, the surface is decomposed into hyperbolic

paraboloids (called Shapelets).44 These are surface patches with constant local

curvature. When fragments are generated by a RECAP-like bond cleavage

procedure, the surface area of the fragment and the referring hyperbolic para-

boloids represent the fragment surface and can be used for matching (Figure 7.6).

While de novo design methods can produce fully assembled structures, a

chemist’s expertise is often decisive for generation of novel leads that are syn-

thetically accessible. Step-by-step fragment assembly under supervision of the

human expert is implemented in SQUIRRELnovo, which can be used as an idea

generator for medicinal chemistry. Fragments that are superposed with the query
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Figure 7.4 Fragment decomposition of Factor Xa inhibitor RPR128515 (1). Num-
bered atoms indicate cleavage sites, which can be used for virtual forward
synthesis of variant molecules.
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Figure 7.5 Distributions of molecular weight (Da) and lipophilicity (clog P) for 860
fragments from DrugBank (obtained by application of RECAP rules) and
62 174 fragments from the ZINC fragment-like collection (property-
filtered).
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structure are the starting points for bioisosteric replacements. SQUIRRELnovo

uses Shapelets of the fragment and of the query molecule for partial matching. It

aligns the surface of the fragment to parts of the query surface. This alignment is

then assessed by manual inspection, since human experts select the most pro-

mising fragments for upcoming assembly steps. The main advantage of fragment

representation by surface-derived Shapelets is the independence from the

underlying chemotype. This abstraction allows for scaffold-hopping and suggests

bioisosteric groups with similar shape.

7.3 From Fragments to Molecules

Arbitrary combination of molecular fragments creates an immense set of

possibilities, which is claimed to be virtually infinite. By implementing chemical

information into the molecule assembly process (virtual synthesis) one can gain

(i) synthetically tractable molecules and (ii) a reduction of search space to a

manageable size. There are three main ways to navigate through chemical space

by assembling candidate compounds: full enumeration, deterministic and non-

deterministic techniques. Obviously, full enumeration and evaluation of every

single virtual molecule (brute-force approach) is straightforward. This certainly

represents a method of choice for the automated construction of small libraries

of up to a few million compounds. Larger libraries or ‘‘chemical spaces’’

demand approximate solutions, and often de novo design is implemented as a

local optimization process. Compound optimization can be achieved in a

deterministic or non-deterministic manner. The latter typically involves a sto-

chastic sampling part. We will now briefly describe three algorithms that are

representative for either one of these strategies.

Full enumeration algorithms are confronted with a prevalent problem in

computer science theory: the naı̈ve assembly of molecular fragments to form

virtual candidate compounds results in a combinatorial explosion. Owing to the

enormous number of different molecular fragments and the way they can be

Figure 7.6 Fragment generation and matching using the Shapelets approach. (a) A
molecular fragment is described by its Shapelets (paraboloids) decom-
position of the solvent-accessible surface (mesh). (b) Result of fragments
matching to a reference structure. A benzamidine building-block was
matched to a thrombin inhibitor by Shapelets-matching.
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linked, we are not able to solve this problem, including our current knowledge in

suitable time and quality constraints. Therefore, some programs soften one of

these two constraints in order to satisfy the remaining criterion. This is achieved

either by calculation of ‘‘good’’ candidate compounds in long computation times

or by fast combinatorial algorithms yielding large candidate compound libraries

that may contain some high quality compounds.

SMILIB implements an exemplary algorithm for the latter case.45,46 On the

one hand, it offers rapid construction of very large virtual molecule sets. On the

other hand, for extremely large libraries one will not find a fitness function to

compute the quality of all resultant virtual molecules in reasonable time. A way

to direct the design process (in terms of compound quality) is given through the

molecule composition theme (Figure 7.7). The combinatorial principle behind

the algorithm is that virtual molecules are a composition of three substructure

types: scaffolds, linkers and building-blocks. Three sets containing fragments of
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Figure 7.7 Combinatorial molecule assembly scheme. Resultant candidate molecules
are objects that have building-blocks attached to scaffolds via linkers.
Three user-definable fragment sets are needed to feed the algorithm with
fragments for each domain. A few example fragments of each type are
shown for clarity. For virtual library enumeration, each database frag-
ment gets linked to each other fragment following a combinatorial
assembly scheme.
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only one substructure type represent the basis for combinatorial design. Each

fragment of each type is combined with each fragment of the other types using

predefined linkage rules. To obtain molecules exhibiting desired affinity to a

target, one can feed the algorithm with ‘‘privileged’’ fragments.23 Moreover, it

is possible to emulate real chemistry by selecting linker fragments that are

known to be bridging patterns of organic reactions. Although it is not possible

to model ring formation reactions such as the Diels–Alder reaction using the

scaffold/linker/building-block scheme, synthesis rules can be implemented that

may bring the results closer to synthetic feasible compounds.

Other algorithms exploit the combinatorial nature of de novo design processes

by sequentially growing molecules, e.g., FlexNovo.47,48 This software is based on

an incremental construction algorithm exhibiting dynamic programming prin-

ciples. The advantage over the previous presented strategy is that construction of

every possible virtual molecule is avoided. Instead, the compositions are scored

on the fly – in the case of FlexNovo by docking scores. Note that this is a

receptor-based method, hence it is an example on how to reduce the number of

enumerated candidate compounds by integrating binding site information. In the

initial step, all available fragments are docked into the target binding pocket.

Therefore, this method is not suitable in the absence of receptor structure

information, which is the case for many integral membrane proteins. Figure 7.8

Start
fragments

Final candidates

Intermediate
compositions

Figure 7.8 Build-up scheme of a deterministic molecule design approach. The first row
shows start fragments (triangles), which are docked into the target binding
pocket. Actual de novo design starts from the second row, which represents
the first extension cycle (depth ¼ 1). In an iterative process, fragments are
assembled to yield candidate compounds (squares) or, if the resultant
molecules can be further extended, composed fragments (circles). By eval-
uating the intermediate compositions during the design process, branches of
the search tree are dropped using heuristics. (Adapted from ref. 48.)

227Fragment-based De Novo Design of Drug-like Molecules



shows an outline of the de novo design process. The triangle row (depth zero)

represents the solutions of the initial step, i.e., the pre-docked fragments. The

construction phase with a user-defined number (k-greedy) of extension cycles

starts from these initial partial solutions. This part of the algorithm is responsible

for evolving virtual molecules. In the first construction cycle (depth ¼ 1), every

fragment is linked to compatible ones which may result in final molecules if

dummy atoms representing ‘‘bridges’’ are no longer present. After evaluation of

these intermediate compositions, the construction continues (depth ¼ 2) by

extending only the best compositions from the previous cycle. This iterative

process continues until the k-th extension step is reached.

Non-deterministic approaches can solve the problem of chemical space

navigation by means of stochastic algorithms. Here, the algorithm of

FLUX21,22 is exemplary (Figure 7.9). In contrast to deterministic algorithms,

where unique endpoints (final candidate molecules) are defined, stochastic

processes typically result in different solutions with each run. The algorithm

generates offspring from the start molecule by exchanging single fragments via

genetic operators. As known from evolutionary algorithms, each variant

molecule is evaluated until a candidate compound is found. Molecule optimi-

zation is achieved by implementing chemical information about reference

compounds which will route the design process to the respective ‘‘activity
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Figure 7.9 Non-deterministic de novo design pipeline including an evolutionary
algorithm for optimization. This scheme contains a population-based
algorithm that mimicks biological evolution through mutation and
recombination during the breeding process.
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island’’ in chemical space.49 Notably, the map of chemical space indicating

regions of higher and lower quality is compiled en passant during the design

process. In terms of positive design, the process is directed directs toward active

compounds, whereas negative (inactive, non-selective) reference compounds

define ‘‘tabu zones’’ in search space.

7.4 Scoring the Design

Evaluation of candidate compounds is the most critical step in de novo design. It

is the duty of the fitness function to decide whether a composed virtual molecule

is kept or discarded in deterministic algorithms. One must always be aware that it

is the used fitness function that defines the search space for novel molecules.

Many different fitness function categories exist. In ligand-based de novo

design, scoring is often reduced to the task of a similarity analysis between

query molecules and virtual molecules. Receptor-based methods employ more

sophisticated scoring functions combined with automated docking algo-

rithms,50 receptor-based pharmacophores51 or molecular dynamics and free-

energy perturbation (FEP) methods.52 The latter has been implemented in the

software BOMB, which was conceived by Jorgensen and co-workers.53 We

highlight this particular approach because it represents one of the most

advanced receptor-based techniques. Most ligand-based de novo design meth-

ods, in contrast, are more simplistic but remarkably faster.

BOMB first places core fragments within the binding site of the target pocket

using common substructures found in known drugs. Thousands of these virtual

constructs are scored using multiple fragment conformations in combination

with force field methods. The top-scoring candidate fragments are then opti-

mized by the Monte Carlo/FEP technique. FEP calculations yield relative free

energies of binding. Briefly, the FEP procedure can be used to ‘‘morph’’ one

structure into another in incremental small steps. Typically, approximately 20

such steps are performed. In a recent BOMB design study, nanomolar HIV-RT

inhibitors like compound 7.5 were obtained (Figure 7.10).
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Figure 7.10 De novo design of HIV-1 reverse transcriptase (RT) inhibitors using the
software BOMB for core fragment placing and growing, and free energy
perturbation (FEP) calculations for optimization of the heterocycle (Het)
and the substituent X.53
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Pharmacophore methods have demonstrated their usefulness as fitness

functions because the constitutive definition of a pharmacophore allows the

analysis of compounds in terms of a generalized interaction profile.54 A

pharmacophore description of a molecule is an abstract view on the underlying

chemotype, because reference compounds are reduced to hypothetical inter-

action sites (potential pharmacophoric points, PPP) that may be responsible for

ligand binding. As information on the molecular graph is abandoned, this

concept enables searching for novel structures with prevalent binding modes

but different molecular substructures. This is often a desired result. Pharma-

cophore-based methods like Recore allow for re-scaffolding.55 Although

Recore was originally implemented to work with docking poses, it also allows

for definition of an anchor pharmacophore that can be matched by alternative

scaffolds. When pharmacophore-based descriptors are used to evaluate the

difference of virtual molecules and bioactive reference compounds, structural

exchange is of course not limited to ligand core structures. For example, FLUX

employs a topological pharmacophore descriptor (CATS descriptor)56 for the

design of molecules with bioisosteric replacements which appear in the core and

in peripherals of the molecular graph.

Topological methods are not able to address conformational aspects in

de novo design because one topology can yield different spatial conformations.

Recent de novo design approaches like SQUIRRELnovo satisfy the requisi-

tion for shape-based matching of fragment surface patches into the mantle of

one or multiple reference molecules. Shape matching is achieved by spatial

alignment of Shapelets (Figure 7.6). Subsequent assessment of candidate

compounds is based on the overlay of the fragment’s pharmacophore

points and a pharmacophore model of the reference molecule(s). Figure 7.11

shows this idea for the example of a thrombin inhibitor and a benzamidine

fragment after molecular superposition by Shapelets. A three-dimensional

Figure 7.11 Pharmacophore-based scoring of the alignment shown in Figure 7.6(b).
The reference molecule, its Gaussian field-based pharmacophore model,
and the matched fragment are shown. Green fields characterize lipophilic
interaction sites, red and blue ones show hydrogen-bond acceptor and
donor sites. Hydrophobic atoms of the matched fragment are shown as
little green balls. Small blue balls indicate hydrogen-bond donor points.
Scoring of the fragment is achieved by summing up probability values of
pharmacophoric points of the fragment in the respective interaction field
of the reference pharmacophore model. The fragment has a dummy atom
for linking (orange).
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pharmacophore model of the reference molecule using trivariate Gaussian

mixture models is computed (LIQUID approach).57 Gaussian mixture models

are suited for pharmacophore modeling because they allow calculation of the

size and orientation of pharmacophore interaction fields in three-dimensional

space. Another advantage is that one can construct a scoring function based

on probability distributions.

Figure 7.12 show the results of a validation study. The task was to identify

bioisosteric replacements for fragments in known PPAR (peroxisome pro-

liferator-activated receptor) ligands. Fibrates are therapeutic agents for the

treatment of metabolic disorders and activate PPARa, a member of the PPAR

family.58 It has been demonstrated that the 2-methyl-propionic acid moiety 7.6

is responsible for the selectivity of fibrates toward PPARa.57 SQUIRRELnovo

suggests bioisosteric replacement for this group. These groups have been

patented for action on PPARa.59–62

To illustrate ligand-based de novo design with drug-derived molecular frag-

ments, we present a recent application of Skelgen26 published by Roche and

et al., who designed novel antagonists for the constitutively active histamine H3

receptor.63 The H3 receptor is mainly known for its modulating activity on

histamine production and release. It is responsible for regulation of other
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Figure 7.12 Bioisosteric replacement of 2-methylpropionic acid in 7.6. These frag-
ments were suggested by SQUIRRELnovo based on shape matching
(mesh) and pharmacophore point scoring (LIQUID ‘‘fuzzy’’ pharma-
cophore method). All bioisosteres have been proven to exhibit the
desired bioactivity as building-blocks for PPAR agonists.
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neurotransmitters in both the central and peripheral nervous system.64,65 The

starting point for the design was given by two previously known H3 ligand

pharmacophore hypotheses, model 1 and model 2.66,67 Literature and patent

analyses led to a merged pharmacophore model, which was used by the soft-

ware Skelgen to assemble novel candidate structures fulfilling the three-

dimensional pharmacophore constraints (Figure 7.13). Several compounds

were suggested, synthesized and tested. Potent inverse agonists were obtained,

exhibiting an EC50 of 0.2 nM and Ki ¼ 0.3 nM (human H3 receptor).

Another successful ligand-based study has recently been performed with our

software FLUX to generate novel ligands of the trans-activation response

element (TAR) of the human immunodeficiency virus (HIV)-1 mRNA, which is

a potential drug target in the treatment of AIDS.68,69 Specific binding of the Tat

protein to TAR is essential for viral replication. Inhibitors blocking this pro-

tein–RNA interaction are lead structure candidates for drug development.

Owing to its remarkable flexibility, TAR RNA represents a comparably chal-

lenging drug target.70 It had been shown in NMR experiments that a central

bulge region of this small RNA element can accommodate intercalating ligands
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Figure 7.13 The de novo design software Skelgen26 was used by Roche to fit fragments
into a pharmacophore model that was obtained by merging the information
of models 1 and 2. The best designed molecule is shown (EC50 ¼ 0.2nM;
Ki ¼ 0.3 nM). The pharmacophore features are displayed as black, grey and
white circles, representing basic amines, electron-rich regions and aromatic
interaction centers, respectively.
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like, for example, acetylpromazine (7.7, Figure 7.14).71 The task for fragment-

based de novo design was to find novel TAR RNA binding agents mimicking

the reference structure acetylpromazine.

For de novo design with FLUX, Schüller et al. employed a fragment database

containing approximately 6000 unique building blocks, which had been com-

piled from a drug and lead database.72 Both virtual retro-synthesis and virtual

forward synthesis were performed using RECAP reactions. Then, new struc-

tures were designed by applying the evolutionary optimization concept of

FLUX. The population size was set to 100 individuals, and optimization was

terminated after 75 generations. One-hundred runs were performed to obtain

multiple suggestions. The topological pharmacophore descriptor CATS served

as a basis for ‘‘fitness’’ calculation, i.e., Euclidian distances between the 150-

dimensional CATS descriptor vectors of 7.7 and the virtual structures were

computed. The design objective was to obtain a virtual compound with a

minimal distance to the template. In addition, the molecular weight of designed

candidate compounds was limited to 200–750Da.
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Figure 7.14 Using the TAR RNA ligand acetylpromazine as a template structure,
FLUX suggested compound 7.8 as a result of automated fragment-based
de novo design. Compound 7.9 was derived from this precursor, syn-
thesized and successfully tested in a binding assay. The distribution of
pharmacophoric points is very similar in 7.7 and 7.9.
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The best design was compound 7.8. Inspection of this compound by experi-

enced chemists resulted in a variant structure (7.9), because the original

design 7.8 contains a tetrafluoroethoxy group. For ease of synthesis, and because

the CATS descriptor does not explicitly consider fluorine moieties as pharma-

cophoric, molecule 7.8 was modified to obtain 7.9, where an ethoxy group

substitutes for the 1,1,2,2-tetrafluoro-1-ethoxy moiety. Figure 7.14 shows the

almost perfect fit of all pharmacophoric features in a superposition of 7.9 with

the reference acetylpromazine (7.7). Chemical synthesis was straightforward,

which is a consequence of using drug-derived molecular fragments and a pseudo

retro-synthesis approach for de novo design. In a binding assay the desired

activity of the compound was conformed, namely disruption of the Tat–TAR

interaction.72

These example show that it is possible to perform scaffold-hopping by

fragment-based de novo design. One might argue that by using fragments as

building-blocks instead of atoms, no ‘‘true’’ de novo design is performed.

Also, it has long been unclear whether fragment-based approaches actually

suggest truly novel molecular structures. Only recently, Krüger et al.

addressed this question systematically and demonstrated that, for one or

multiple templates of a given chemotype, alternative replacements are reached

during de novo compound generation, thus indicating successful scaffold-

hops.73 In an extensive design study using 73 known inhibitors of angiotensin

converting enzyme (ACE) as template structures, the FLUX algorithm pro-

duced approximately 20% known scaffolds (i.e., identical chemotypes as the

templates) and 80% new scaffolds, which were not contained in the set of 73

template structures. In total, over 9000 designed compounds were analyzed.

Figure 7.15 shows the most prominent scaffold classes. Notably, the benzene

ring is by far the most popular scaffold among these designs. This analysis

clearly shows that fragment-based de novo design can come up with novel

compound suggestions.

7.5 Conclusions and Outlook

We currently witness renewed strong interest in automated de novo design

methods after their introduction in the 1990s. Recent successful applications of

fragment-based design techniques have demonstrated their applicability and

usefulness to drug discovery projects. Although de novo designed molecules are

usually treated as suggestions only, some of the original computer-generated

designs have actually been synthesized and successfully tested in various assays.

It is safe to say that fragment-based de novo design has been proven to work.

The strong interest in this technique is motivated by several additional facts:

Drug discovery teams are confronted with the task of finding novel, patent-free

lead structures for optimization, which is often hampered by high attrition rates

during later stages of the drug discovery pipeline.74,75 As a consequence, only a

few new chemical entities have been approved by the authorities in recent

years.76 In this context, de novo design might provide a valuable source of
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inspiration in the early stages of hit and lead identification. This concept is

further supported by the successful application of experimental fragment-based

approaches like high-throughput X-ray or NMR screening. As a consequence

of recent new software developments, de novo design methods have become

available for a broader group of users. Limited access to such software tools

might have hindered its wide-spread use in the past. Several academic and

commercial software suites now contain a ‘‘de novo design module’’. However,

such tools are not always readily applicable. Improved software with comfor-

table and versatile user interfaces is needed. This brings us to the limitations of

the available methods. We think that there still is much room for future

development, e.g., by inclusion of realistic chemical reactions instead of pseudo-

reaction schemes, and multidimensional optimization taking secondary con-

straints like ADMETox issues into account. First software implementations

already include such options. Certainly, more sophisticated scoring functions

10%

5.5%

4.8 %

4.6% 4.5%

2 .9%2.7 %

2.3%

2.2%
2.2%

Figure 7.15 The ten most prominent frameworks produced by FLUX from 73
reference structures (known ACE inhibitors).66
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are required that allow for proper consideration of enthalpic and entropic

contributions of individual molecular fragments to ligand–receptor complex

formation. Experimental data from spectroscopic and calorimetric measure-

ments of fragment–receptor interaction could provide a valuable basis for

tuning adjustment of scoring functions. The use of shape descriptors and

pharmacophoric properties might represent a more coarse-grained straight-

forward heuristic approach toward this goal and seems to be particularly suited

for rapid first-pass molecular design. A further possibility for improving the

impact of fragment-based de novo design is provided in the form of natural-

product derived fragments and scaffolds.77,78 The influence of natural product

structures has been marked in past decades.79 Therefore, the automated gen-

eration of both individual compounds as well as whole compound libraries will

benefit from natural product-derived fragment collections. Finally, the assess-

ment of intermediate design suggestions by a human expert has been proven to

be helpful if not essential for the final success. In our view, there is no real need

for increased computer power for molecular de novo design. Instead, smart

interfaces for human–machine interaction are required that enable ‘‘chemical

intelligence’’ be transferred to the actual software implementation.
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12. E. W. Lameijer, J. N. Kok, T. Bäck and A. P. Ijzerman, J. Chem. Inf.

Model., 2006, 46, 553.

13. J. Batista and J. Bajorath, J. Chem. Inf. Model., 2007, 47, 1405.

14. S. Bartoli, C. I. Fincham and D. Fattori, Curr. Opin. Drug Discov. Devel.,

2007, 10, 422.

15. R. E. Hubbard, B. Davis, I. Chen and M. J. Drysdale, Curr. Top. Med.

Chem., 2007, 7, 1568.

16. H. O. Villar and M. R. Hansen MR, Curr. Top. Med. Chem., 2007, 7, 1509.

17. H. Jhoti, A. Cleasby, M. Verdonk and G. Williams, Curr. Opin. Chem.

Biol., 2007, 11, 485.

18. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,

I. N. Shindyalov and P. E. Bourne, Nucleic Acids Research, 2000, 28, 235.

19. M. Weisel, E. Proschak and G. Schneider, Chemistry Central J., 2007, 1, 8.

20. E. W. Lameijer, J. N. Kok, T. Bäck and A. P. Ijzerma, J. Chem. Inf.
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CHAPTER 8

Early ADME/T Predictions:
Toy or Tool?
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8.1 Introduction

The successful development of new drugs critically depends on the ability of

researchers to predict the ADME/T (absorption, distribution, metabolism,

excretion, and toxicity) properties of chemical compounds. These properties are

important to narrow the search for New promising Chemical Entities (NCEs) in

the early phases of drug discovery. Despite significant increases in R&D funds in

the top 50 major pharmaceutical companies over the last decade, the number of

NCEs remains practically unchanged. Indeed, a rigorous analysis indicates that

the total cost of developing new drugs increased from $350 million in 1991 to

over $800 million in 2003 (normalized for US$ in 2000).1 When analyzed by

disease class, new drugs cost more for respiratory disorders ($1.134 billion) and

cancer ($1.042 billion) than for, e.g., HIV/AIDS ($504 million). Some of the low

success rates can be attributed to the failure of drug candidates in clinical studies

due to poor ADME/T properties. Thus, frontloading the risk by utilizing reli-

able in silico ADME/T tools may become a cost-saving endeavor.

A further increase in the interest for predictive ADME/T methods is due to

the development of high-throughput screening and synthesis methods. The

possibility to design, make and test millions of compounds has increased the
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risk of following poor leads – as pointed out by Lipinski and colleagues in

1997.2 Shortly thereafter, Lipinski identified poor permeability and poor

solubility as critical issues related to the poor success of developing orally

available drugs.3 Strategies to select better leads4 and the lead-like concept5,6

emerged at the same time. Tools for rapid in silico evaluation emerged in

response to this pressure, i.e., computational chemists and cheminformaticians

were tasked to evaluate molecules faster than the experimentalists could make

and evaluate them,7 which led to significant attempts to integrate virtual

screening and ADME/T evaluation.8 The past decade has seen increased

interest in the accurate estimation of ADME/T properties. The industrial sector

has given stronger preference for the progression of candidates with the most

favorable physicochemical and biological profile to clinical studies, in an effort

to minimize the risk of failure in later stages of drug development. The in silico

profiling of virtual libraries as a means of focusing on the most promising

compounds for pharmaceutical development, places an increased emphasis on

developing computational tools that reliably predict ADME/T properties.

Each year, a growing number of publications report on computational

methods for the development of predictive ADME/T models. However, cur-

rently available methods are not reliable enough and are limited in their

application,9 despite the recognition of their importance in the drug discovery

process.10 Are we able to generate such reliable models, considering the severe

limitations related to the intrinsic chemical diversity, the quantity and quality

of the data? In this chapter, we critically review data and approaches used to

develop physicochemical and biological ADME/T models, in an attempt to

address this question.

8.2 Which Properties are Important for Early
Drug Discovery?

Which computational properties are considered relevant during the early stages

of drug discovery? Several reports from leading pharmaceutical companies

provide a comprehensive review of these properties and the methods deployed

in early stages.

8.2.1 Pfizer

The ‘‘rule of 5’’ (R05) by Lipinski et al. (molecular weight, MW, r500, Clog

Pr 5, the number of hydrogen bond donor atomsr5 and the count of nitrogen

and oxygen atoms [accounting for hydrogen bond acceptor atoms] r10) is the

most implemented four-parameter system. Its implementation as an early alert

system in industrial medicinal chemistry research has significantly altered the

way early drug discovery has been carried out in the past decade. Indeed, over

2000 papers cite this publication2 and its reprint11 according to Scopus (http://

www.scopus.com) and ISI knowledge (http://isiknowledge.com/). Violation of
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two or more of these R05 criteria is used to indicate that low absorption and thus

low permeability are likely (exception: biological transporter substrates). One

R05 criterion, Clog P, is in fact a QSAR (fitted) descriptor, while the others can

(un)ambiguously be assigned from molecular structure; (Un)ambiguous relates

to the relatively simple task of counting hydrogen bond donors and acceptors.

Consider the case of water (H2O), and the ambiguity caused by cheminformatics

tools that count only one donor and one acceptor. This system does not allow

the formation of the tetrahedral ice structure, where each water molecule

donates, and accepts, two hydrogen bonds. Aiming to evaluate a relatively large

number of small molecules at Pfizer with the R05 criteria may explain why

simplicity (sum of N, O) was preferred over scientific accuracy.

Not only due to the R05 approach, but also to numerous previous papers in

the QSAR field, pioneered by Corwin Hansch,12 Clog P has become one of the

most relevant computed properties when small molecules are initially evaluated

and prioritized. In the words of Lombardo et al.:13

At any rate, due to its wide popularity and the vast availability of literature and in-

house data, whether computed or experimentally determined, octanol–water partition

or distribution data, remain by far the most utilized single parameter for ADME,

QSPR and QSAR predictions.

8.2.2 Abbot

Figure 8.1 shows that the properties that Abbot scientists predicted most fre-

quently for their compounds, using their WWW portal, are structural alerts for

toxicity and mutagenicity.14 The second largest number of predictions is for log

P followed by bioavailability scores (rule of five2 and internal Abbot score15),

pKa, and solubility prediction as well as prediction of some other more complex

properties, such as Blood–Brain Barrier (BBB) permeability, binding energy,

polar/non-polar surface area, and log D.

8.2.3 Novartis

Novartis uses the In Silico Profiling web tool.16 Available properties include the

octanol–water partition coefficient log P, molar refractivity, flexibility index,

hydrogen bonding characteristics and molecular polar surface area. Various

drug properties, such as intestinal absorption, BBB permeability or Plasma–

Protein Binding (PPB) are calculated based on in-house models.

8.2.4 Bayer

Scientists at Bayer implemented ‘‘traffic lights’’ for the prioritization of mole-

cules from the HTS hits.17 Their score is based on solubility, lipophilicity,

molecular weight, Polar Surface Area (PSA), and number of rotatable bonds.
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These descriptors are similar to R05 criteria, since PSA directly correlates with

the sum of hydrogen-bond donors and acceptors. Water solubility is also cri-

tically related to permeability and bioavailability.

8.2.5 Inpharmatica

The Admensa Interactive tool18 developed by scientists from Inpharmatica

incorporates several ADME properties, namely log P, log D7.4 (log P at

pH7.4), aqueous solubility, human intestinal absorption, BBB penetration,

cytochrome P450 (CYP) affinities, P-glycoprotein transport, hERG inhibition

and PPB to score and prioritize their molecules.

The above examples highlight the early frontloading of ADME/T properties,

which includes physicochemical properties such as log P, aqueous solubility,

pKa and pH-dependent variants of these properties. These are deemed relevant

by medicinal chemists, when prioritizing small molecules for early drug dis-

covery. Other criteria, such as those used in R05, as well as PSA and the

numbers of non-terminal rotatable bonds are also deemed relevant for early

lead profiling. Although these are important by themselves, complex ADME/T

properties such as BBB permeability and CYP affinities are also estimated using

such descriptors. Therefore, the accuracy of physicochemical property

Figure 8.1 Illustration of the number of molecules processed at the Abbot site
through the various algorithms available on the property calculation web
page. (Reproduced from ref. 14 with permission of Wiley-VCH Verlag
GmbH.)
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estimation, e.g. Clog P, may ultimately determine the prediction accuracy of

complex ADME/T properties.

Considering the data quantity and quality limitations related to ADME/T

measurements, we raise a concern related to the use of ‘‘complex’’ ADME/T

models – which in turn rely on ‘‘simple’’ models such as Clog P, and the

untested assumption that using such ‘‘complex’’ models is more advantageous

than using ‘‘simple’’ properties on which complex models are built. This con-

cern holds particularly true in the very early stages of drug discovery, where a

large number of molecules are profiled (only) in silico, without the influence of a

proper feedback loop, whereby the cycle prediction - experiment - error

correction - model improvement - (better) prediction is absent.

We start this chapter with an analysis of methods to predict log P and

aqueous solubility. In this context, we discuss the issue of applicability domain

for QSAR models and the accuracy of prediction. Data available for simple

physicochemical and ADME/T properties are compared by discussing the

limitations of prediction of biological ADME/T properties. We restrict our-

selves to several absorption and distribution properties, without discussing

ME/T models. The interested reader is referred to the relevant sections in

Comprehensive Medicinal Chemistry II (41100 pages).19

8.3 Physicochemical Profiling

8.3.1 Lipophilicity

The partition coefficient is defined as the ratio of the concentration of a solute

in the organic phase to its concentration in the water phase. This definition

applies to the same neutral microspecies. However, many small molecules of

pharmaceutical, agricultural and environmental interest may assume different

protomeric and tautomeric forms, which increases the complexity of the above

(simple) definition. Indeed, many small molecules contain moieties that ionize

in water, thus contributing to a decrease in lipophilicity. The distribution

coefficient, log Dxy, measures the pH-dependent distribution of drug in octa-

nol–water phases at pH xy.

Practically, the determination of log D at fixed pH is simpler than the log P

measurement, which may require multiple titration experiments and/or extra-

polations to the neutral state of the compound. Moreover, by using some

specific ranges of pH (e.g., pH 1–2 for stomach or neutral pH 6.5 for jejunum),

one can better simulate the medium in the gastrointestinal tract.

8.3.1.1 Data Availability

Data quality and quantity are important issues when addressing the limitations

of the existing calculated log Pmodels. The amount of data for log P prediction

is one of the largest in the field. The MedChem database20 contains the largest

commercially available collection, with over 60 000 measurements of log P and
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log D (http://www.biobyte.com). The PHYSPROP database21 of the Syracuse

Research Inc. provides experimental log P values for 13 058 compounds.

LOGKOW database (http://logkow.cisti.nrc.ca), which is supported by the

Sangster Research Laboratories, provides on-line access to about 20 000

molecules, including log P, log D and pKa values. This database is updated

quarterly and is the largest publicly available collection of octanol–water

partition coefficients in the field. The inter-laboratory variation of log P values

were estimated as s¼ 0.45 (MAE¼ 0.26) log-units.22 The larger number of

experimental measurements is available within the industry, particular for

log D measurements. For example, more than 96 000 molecules were used to

benchmark several methods in Pfizer and in Nycomed.23 HQSAR Tripos

descriptors were used by Bayer AG to develop log D models at pH 2.3 using

70 000 compounds.24 The log D values for 11 283 measurements performed

using the shake flask method at pH7.4 were used by Merck.25

8.3.1.2 Models

Many models for log P prediction have been developed and published in the

literature, which is a consequence of the availability of a large amount of log P

data. There are much fewer log D models and, moreover, models built with

large datasets are almost exclusively from large companies.13 One can distin-

guish two main groups for log P calculation: fragmental and based on

descriptors calculated for the whole molecule.23,26

The log P is to a large extent an additive property. Thus, not surprisingly, a

considerable number of fragmental methods to predict this property have been

published. The general equation for this group of methods can be represented as:

logP ¼ aþ
XN

i¼1

biGi þ
XK

j¼1

cjFj ð8:1Þ

where Gi is the number of occurrences of the group i, Fj are the correction factors

and a, bi and cj are the regression coefficients. Several popular methods, e.g. Clog

P,27,28 ACD/log P,29 Sf-SYBYL,30,31 Klog P,32 Hlog P,33 AB/log P,34,35 use the

fragmental representation of molecules to correlate lipophilicity of molecules

with their structures.

The second group includes methods that use the 3D structure representation

of molecules, such as CLIP,36 QikProp,37 COSMOlogP.38,39 Methods based on

atom-type or topological indices calculated for the whole molecules, such as

AUTOLOGP,40 KOWWIN,41,42 VLOGP,43,44 XLOGP45 and ALOGPS46,47

were also proposed. Several reviews describe and compare the advantages and

features of these approaches.23,48,49

One may think that the main difference of the second group compared to

fragmental methods is the absence of the ‘‘missed’’ fragments, a problem that

can seriously hamper prediction ability of fragment-based methods. However,
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it appears that the use of methods based on whole molecule descriptors can also

have very low prediction ability for molecules that were not covered by the

training set (Section 8.4).

8.3.2 Solubility

Permeability and solubility/dissolution are two major determinants of gastro-

intestinal drug absorption. The prediction of solubility of molecules is more

difficult than for lipophilicity. Solubility critically depends on the solid-state

properties of compounds. The same compound can exist in amorphous or in

several crystalline states50 and this can result in very different solubility of

molecules. The prediction of crystalline properties, represented, for example, by

the melting point, is one of the most difficult problems of physical chemistry.51

Like the octanol–water partition coefficient, water solubility critically depends

on the pH and ionization state of molecules.

8.3.2.1 Data Availability

The largest commercially available datasets are the Physical Properties

(PHYSPROP)21 and AQUASOL databases (ca. 6000 compounds in each

database). The AQUASOL database has been published as a book.52 Fur-

thermore, two relatively large sets of aqueous solubility data models were used

in many other studies.53,54 Data from the AQUASOL database had an inter-

laboratory variation of about s¼ 0.49 log-units (as estimated for N¼ 1031

molecules).55 Moreover, large inter-laboratory errors mask the influence of

temperature, and differences as large as DT¼ 30 1C do not increase this error.

In-house models developed at pharmaceutical companies could be based on

similar or even larger numbers of measurements. For example, about 5000

molecules were used to develop a model at Bayer Healthcare AG.24

8.3.2.2 Models

The prediction of aqueous solubility is more complex compared to lipophilicity.

Frequently, solubility models incorporate log P as one of the descriptors.

Yalkowsky56,57 considered a physical model of the solubilization and provided

a theoretical basis of the link between log P and solubility of molecules in his

General Solubility Equation (GSE). The 2001 version58 of GSE is amazingly

simple:

logS ¼ 0:5� 0:01ðMP� 25Þ � logP ð8:2Þ

where MP is the melting point – fixed at 25 1C for liquid compounds. Despite its

simplicity, the equation has good predictive ability. Indeed, the accuracy of this

equation59–61 is similar to that of the Monte Carlo simulation of Jorgenson and
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Duffy,62 the group contribution approach of Klopman63 and the neural net-

work model of Huuskonen.54 The PCCHEM program used at the US Envir-

onmental Protection Agency (EPA) incorporates three different equations. All

of them are similar to GSE but have different coefficients to predict aqueous

solubility depending on the range of log P values.64 Meylan and Howard used a

database of 817 (RMSE¼ 0.62) compounds to derive a heuristic equation:

logS ¼ 0:69� 0:96 logP� 0:0031MW � 0:0092ðMP� 25Þ þ
P

fi ð8:3Þ

which contains 15 additional correction factors.41

Given that MP as a property is difficult to predict, some groups do not make

such predictions. For example, a median melting point value of 125 1C is com-

monly used at Syngenta to apply the GSE in the absence of experimental values.65

In the early stages of drug R&D, for example when evaluating HTS libraries, this

omission makes practical sense: compounds can exist in different forms, ranging

from amorphic (less pure, thus lower MP) to crystalline (high purity, higher MP).

In the later stages, e.g., in drug development, molecules reach a higher purity,

which in turn may result in decreased solubility. Thus, a use of medianMP values

may lead to perhaps significant errors, given the changes in solubility caused by

the purification of substances that occurs during the development process.

Log P can be used as an additional parameter, in combination with other

descriptors. For example, neural network models developed by Liu and So66

and Goller et al.24 use log P in combination with topological and quantum-

chemical descriptors. Many methods do not use log P as a descriptor. These

methods have been described in several reviews.55,65,67 However, there is a clear

relationship between these two physicochemical properties, namely log P and

aqueous solubility.

Analysis of in-house data in pharma companies frequently demonstrates a

low prediction ability of current models for both lipophilicity68–70 and aqueous

solubility.71,72 The calculated errors of these models are often around or higher

than 1 log-unit, which is not sufficient for screening purposes. Thus, despite

relatively large amounts of data for physicochemical properties and their

simplicity compared to more complex ADME/T properties, the accuracy of

prediction remains low. Let us consider factors that limit the prediction accu-

racy of models.

8.4 Why Predictions Fail: The Applicability
Domain Challenge

The failure of models to yield accurate predictions is a consequence of either

experimental design or differences in the chemical spaces used to develop and

test the models.73 The identification of model Applicability Domain (AD) can

differentiate reliable from non-reliable predictions. There are, indeed, many

different approaches to determine AD. These methods can be classified in two
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categories: methods that explore the similarity of molecules in the descriptor

space74 and methods based on the predicted property.75

8.4.1 AD Based on Similarity in the Descriptor Space

These methods can be categorized as (i) range-based methods, (ii) geometric

methods, (iii) distance-based methods and (iv) probability-density distribution

range methods.76 The range-based methods introduce upper and lower limits

(which can also be infinity or no limit) for some descriptors. Those molecules

with descriptor values above or below these limits are placed outside the AD.

Descriptors can be either structural features (e.g., number of fragments of a

particular type) or properties (e.g., lipophilicity, aqueous solubility, etc.). Range-

based methods have simple interpretation, and are thus popular in cheminfor-

matics. Often, range-based methods are implicitly present in a model. For

example, R05 criteria are in fact a range-based AD for a model, which can be

stated as ‘‘all molecules are orally permeable’’. Any violation of two of these rules

corresponds to an ‘‘out of the applicability domain’’ prediction, which implies a

decreased probability that such molecules have good oral permeability.

Another known case of implicit range-based AD methods is that of fragment-

based log P methods that evaluate missing fragments. For example, with the

CLOGP software, versions 4 or earlier denied the user the ability to obtain a

numerical estimate for lipophilicity when the input molecules contained ‘‘missing

fragments’’. Quite possibly due to market (‘‘evolutionary’’) pressure, later ver-

sions of CLOGP include an ‘‘ab initio’’ estimation of the contribution for missed

fragments.27 This ‘‘ab initio’’ calculation, however, may lead to less reliable log P

predictions. For example, about 67% of the molecules (376 out of 558) with large

CLOGP errors (41.5 log-units) in the PHYSPROP dataset contained fragment

values calculated by the ‘‘ab initio’’ method.47 The ALOGPS program,47 which

predicts lipophilicity and aqueous solubility of chemical compounds, flags

unreliable predictions when the input molecule contains one or more E-state

atom or bond types that were not represented in the training set. This simple AD

flag makes it possible to identify 90% of the outliers (357/394) with large pre-

diction errors (41.5 log-units) for the same dataset.

Range-based cut-offs are used to determine whether the input molecule is

inside or outside the space defined by the training set, to determine the Optimal

Prediction Space (OPS) used in the TOPKAT package.43,44 An example of the

geometric methods is a convex envelope that is the smallest convex region

enclosing all points from the training set.74 This method provides a nice visual

interpretation for models with few variables, but this feature is lost in higher

dimension spaces. Distance-based methods include different metrics, such as

Euclidian, city block, as well as three other interrelated measures such as

Mahalanobis, hoteling T2 and leverage, to assess quality of predictions.76–80

Leverage is defined as:

h ¼ xTðXTXÞ�1
x ð8:4Þ
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where x is the vector of descriptors of a query compound and X is the matrix

formed with descriptors from the training set. High h values indicate that the

input molecule stands out from the training set and may involve considerable

extrapolation, rather than interpolation. Leverage was recommended for

assessing AD in several studies.80,81 The probability density function can also

be used to determine the distance to the descriptor space.74

8.4.2 AD Based on Similarity in the Property-based Space

ADs in the descriptor space actually ignore the most important parameter, the

predicted property itself. Indeed, the target property is implicitly included in

similarity measures, since it guides the selection of descriptor sets to find the

optimal target property model(s).82 One way to account for the influence of the

target property during AD determination is to weigh variables for similarity

measures using, e.g., the importance of a given descriptor for the model.74

Several methods explore variations in the model residuals. In such methods, not

one but a set (ensemble) of models is usually generated (e.g., using different

subsets of the data,46 different variables83 etc.). Residuals and/or confidence

values for predictions are analyzed to derive model ADs.

The decision forest method builds multiple models by combining, in one pre-

dictor, results of multiple Decision Trees (DTs).83 DTs are constructed to be as

heterogeneous as possible, using each variable maximum one time in all models.

Using the example of the analysis of estrogen receptor binding, the prediction

accuracy was demonstrated to increase as the confidence level of the prediction

increased.74,84A similar result was observed in methods developed to discriminate

soluble from poorly soluble molecules.85 The authors applied an ensemble of

neural network models and demonstrated that molecules with small standard

deviations of predictions (o0.01) had 2–3 times lower errors than the rest of the

dataset. Thus, predictions with high standard deviations were outside the AD of

models. The standard deviations were also used to predict the vapor pressure and

solubility of chemical models.24,86,87 In another study,88 the standard deviation of

predictions originating from an ensemble of Bayesian Regularized Neural Nets

was shown to be positively correlated to the distance to the model in the

descriptor space; both metrics were used to estimate prediction errors.

The Gaussian Process could be also used to estimate prediction accuracy

based on the variance of different models derived within this approach. The

usefulness of this approach for confidence intervals prediction of aqueous

solubility and lipophilicity was shown.89,90

The Associative Neural Networks (ANNs)46 method uses residuals calcu-

lated from an ensemble of models to categorize new input molecules. The

property-based similarity, R, of a given molecule to the training dataset is

defined as the square of maximum correlation of a vector of residuals of the

query molecule to vectors of residuals of all molecules in the training set.91,92

The log P prediction analysis from a PHYSPROP dataset using the ALOGPS

program46,47 showed that molecules with R4 0.8 and Ro0.3 had Mean
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Absolute Errors (MAEs) of approximately 0.3 and 0.7 log-units,91,92 respec-

tively (Figure 8.2). Property-based similarity was used to differentiate reliable

vs. non-reliable log P predictions, showing excellent agreement of actual vs.

predicted values for 7498 and 8750 neutral molecules from AstraZeneca and

Pfizer datasets, respectively.75 Moreover, for 450% of the in-house Pfizer

compounds (as characterized by property-based similarity values of 40.8),

predicted log P values had an accuracy of 0.35 log-units, which is similar to that

of experimental measurements.93 The same approach was successful in esti-

mating the accuracy of log P predictions for Pt(II) complexes.94

8.4.3 How Reliable are Physicochemical Property Predictions?

AD approaches can be used to estimate prediction errors for newmolecules. For

example, using the error-correlation dependencies from Figure 8.2 it was pos-

sible to estimate that only less than 20% of molecules from the NCI database

will have predicted errors with MAEo0.5 log-units using a log P model based

on the PHYSPROP database.91 For chemical vendor databases, such as Asinex

or Ambinter, the same accuracy could be expected for onlyB3% of compounds

(Figure 8.3).91 The use of in-house data does not dramatically change the

coverage and accuracy of predictions. Indeed, the expected accuracy of the

ALOGPS program increased only by 0.06–0.07 log-units on average, when

predicting the 10 million compounds from the iResearch Library, after

improving ALOGPS with in-house AstraZeneca and Pfizer data.75

Conceivably, by using different descriptors, one may develop models with

improved applicability domains. However, we noticed that the prediction accu-

racy of methods developed to predict lipophilicity and aqueous solubility was

governed by the diversity of molecules in the training set, not by the choice of
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Figure 8.2 Prediction accuracy of ALOGPS46 program as a function of a property-
based similarity of a molecule to the training set compounds (MAE ¼
mean absolute error).91,92

250 Chapter 8



machine learning methods.47,55,95 This observation is in agreement with similar

conclusions, based on 20 diverse datasets (log D, aqueous solubility, pKa and

biological activities), made by Sheridan et al.25 Benchmarking of 14 different

distances to model for prediction of toxicity against T. pyriformis also indicates

that the diversity and distribution of data the training set, not the choice of

computational approaches and molecular descriptors, were the limiting factors

determining the accuracy of predictions and applicability domain of the models.96

Thus, within the current set of descriptors, datasets and machine learning

tools, one is unlikely to develop models that work like ‘‘magic’’ to provide

accurate predictions for all possible chemicals, even for relatively simple phy-

sicochemical properties such as log P and aqueous solubility. Indeed, the

quantity and quality of data, as well as the diversity of the training set, less so

the machine learning method and the choice of molecular descriptors, are likely

to determine model quality with respect to prediction accuracy. With this

conclusion in mind, let us examine the prediction of more complex, biological

ADME/T properties.

8.5 Available Data for ADME/T Biological Properties

8.5.1 Absorption

Several parameters relate to the prediction of absorption. One of the para-

meters used to quantify Human Intestinal Absorption (HIA) is the fraction

absorbed (%F), which is defined as the mass absorbed divided by the total mass

of the given drug dose:

%FA ¼ ma=mt ð8:5Þ

Figure 8.3 MAE and percentage of compounds predicted with ALOGPS program for
the National Cancer Institute and two commercial providers.91,92
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where ma and mt are absorbed and total dose, respectively. In most cases (and

always specified), %FA relates to oral absorption. Oral %FA is governed by,

among other factors, the area of the absorbing surface and the residence time of

the drug at the absorbing surface – which are likely to directly influence the

fraction of the drug dose that is absorbed, while several other factors (e.g.,

complexation with bile salts, metabolic reactions in the intestine, etc.) are likely

to result in decreased %FA.97,98 Oral %FA estimates include specific regions of

the gastro-intestinal tract that may absorb (or not) drugs at different rates,

which further increase the biological complexity of this parameter.

Furthermore, there are drug delivery routes that may lead to systemic

availability, among which are topical administration routes, e.g., intra-nasal,

trans-dermal, aerosol inhalation, sublingual tablets, pellet implants and

ophthalmic, as well as injectable formulations (other than intra-venous, intra-

arterial and intra-cardiac), e.g., intra-muscular, subcutaneous, subdural,

epidural, intra-amniotic, intra-cerebral, in the cerebro-spinal fluid and intra-

cavernosal. Therefore, the %FA for non-oral administration routes is relevant,

in particular for those drugs that have significant side-effects and long plasma

half-life; unfortunately, it is also subject to significantly fewer experimental and

modeling studies. This is, in no small part, because an overwhelming majority of

drugs are developed for oral formulation – which, in turn, is dictated by patient

preference as the option of choice for drug delivery. Therefore, unsurprisingly,

R05 and most ADME/Tmodeling tools are focused on oral permeability and on

those properties that influence oral delivery. Consequently, for the remainder of

this chapter, we discuss ADME/T in the context of oral drug delivery.

For lead molecules with poor %FA, one is usually interested in under-

standing the underlying molecular determinants and modifications of the

chemical structure that are required to improve it. Intestinal permeability can

be guided either by passive or active transport. Caco-2 cells derived from col-

orectal carcinoma cells99,100 or Madin-Darby Canin Kidney (MDCK) cells

have been used to evaluate the intestinal permeability of drugs. Active trans-

port includes absorptive carriers (such as peptide and amino acid transporters),

while ATP-Binding Cassette (ABC) transporters such as ABCB1 (also known

as P-gp, P-glycoprotein, or MDR1, multi-drug resistance protein 1) are

responsible for drug efflux.

8.5.1.1 Data

Bioavailability, Fraction Absorbed and Human Intestinal Absorption (HIA).

The dataset of Abraham and colleagues,101 which contains data for 241 com-

pounds, is one of the most used. The authors not only collected the data but

also classified the drugs in several categories, i.e., GOOD, OK, Questionable,

and Dose-Dependent (DP), according to the original work and protocols used.

The dataset of Klopman et al contained 467 drugs102 while a larger set of 647

molecules were collected by Ho et al.103 The latter database is available from

http://modem.ucsd.edu/adme. A bigger dataset of 1290 compounds, consisting
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of structures and their human oral pharmacokinetic data, including bioavail-

ability and/or absorption and/or radio-labeled studies, was used in ref. 104.

Human Jejune Permeability. Lennernäs105 has reported data on 38 molecules,

some of which were collected from the literature. A larger set of 51 molecules

(45 drugs and six amino acids) was used by SimulationsPlus to develop their

commercially available model from the previous publication of the same

author106 and other literature sources.

Caco-2/MDCK. The dataset of Yazdanian et al.107 of 38 structurally diverse

compounds is frequently used by other authors to develop methods or/and to

test their approaches. Yamashita et al.108,109 collected a larger set (87 com-

pounds). This dataset was extended to 100 molecules by Hou et al.110 The

amount of data for this in vitromodel of intestinal absorption remains low. The

number of measurements for MDCK cells, 55, is even lower.111

8.5.1.2 Models

The QSAR paradigm for structure–permeability correlations, used to evaluate

oral absorption, was summarized by Van der Waterbeemd et al.112 as follows:

oral permeability ¼ f ðlogD7:4; molecular size; H-bond capacityÞ ð8:6Þ

where log D7.4 is the octanol–water partition coefficient at pH 7.4, molecular

size is a measure related (among other properties) to the mass, volume and

surface of the input molecule, and H-bond capacity relates to the number and

strength of the hydrogen bonds that can be donated or accepted by the same

molecule. The seminal R05 paper from Pfizer selected four criteria governing

oral permeability for drugs according to the QSAR paradigm (Equation 8.6),

which are easily calculated, and which have a direct physicochemical inter-

pretation. However, R05 criteria do not necessarily allow one to rapidly

evaluate oral bioavailability. More to the point, oral permeability reflects the

ability of a molecule to pass the intestinal barrier, as estimated by %FA

(Equation 8.5), or by the HIA (human intestinal absorption) parameter.

These estimates look at the concentration of the parent drug in the portal

vein, i.e., before the drug is exposed to metabolizing enzymes in the liver, and

typically ignoring the metabolism that may occur in the intestine. Indeed,

Caco-2 models for permeability where the apparent apical to basal (A-B)

drug permeability is approximately equal to the reverse (B-A; basal to

apical) permeability serve as in vitro surrogates for this property.99 However,

oral bioavailability (%oral) reflects both the fraction of the parent drug that is

absorbed intact through the intestinal barrier (%FA) and the fraction of the

parent drug that survives first-pass metabolism. In other words, it evaluates
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how much of the parent drug is systemically available, i.e., able to reach its

intended drug target(s). Systemic availability is further influenced by other

ADME parameters, e.g., volume of distribution at steady-state (VDss), sys-

temic clearance (CL), plasma protein binding (PPB) and plasma half-life (t1/2),

among others. Some drugs have good %FA but are significantly metabolized

during first-pass: felodipine (100% HIA, 15.5% oral) and labetalol (95%

HIA, 20% oral) are such examples. These drugs are sometimes ‘‘first in class’’,

and can be replaced by ‘‘best in class’’ drugs, e.g., amlodipine (74% oral)

enjoys a higher financial success than felodipine, for the same therapeutic

indications. In rarer cases, drugs have lower %FA but higher %oral, due to

transporter effects: Cefuroxime axetil (38% HIA, 460% oral) is such an

example. In Caco-2 models, transporter effects may be inferred when A-B is

significantly different to B-A. Of course, from an ADME/T perspective, it is

more important to capture %oral, not %HIA.

Many models for absorption parameters include log P as one of the

important parameters – as reflected in Equation (8.6). For example, TPSA,

log D6.5, the number of R05 violations and the number of H-bond donors

were used by Hou et al.103 to model simple hierarchical rules that classify

compounds into ‘‘poor’’ (%FA o30%) and ‘‘good’’ (%FA430%) intestinal

absorption categories. These authors used the largest database, 579 molecules,

which were considered by them as transported by passive phenomena.

Quantitative predictions were also developed by Hall et al.,113 using more

complex methods, such as neural networks and E-state indices; again PSA

and log P were found as the dominant properties. The high relevance of

TPSA for HIA was confirmed by its selection (out of 2929 descriptors) using

Support Vector Machines (SVM).114 Konovalov et al. found that only one

descriptor, log P predicted using ALOGP program, was sufficient to predict

HIA using Monte Carlo variable selection.115 The use of other descriptors did

not improve the results. A training set of 77 structurally diverse organic

molecules was used to construct significant QSAR models110 for Caco-2 cell

permeation: cellular permeation was found to depend primarily upon the

experimental distribution coefficient log D7.4, the High Charged Polar Surface

Area (HCPSA) – a factor related to H-bond capacity, and the radius of

gyration (rgyr) – a size-related parameter, for 77 structurally diverse drugs.

Other studies found that measured or computed log P are useful for esti-

mating this property using smaller datasets.116,117 Finally, one study modeled

two Caco-2 permeability measurements, as well as HIA, simultaneously.118

This nonlinear model, built on a training set of 16 drugs, was based on H-

bond capacity (donors, acceptors, and polar surface area), hydrophobic

transferability (multiple log P and log D7.4 estimates), and less so on size

(total surface area). This model had good external predictivity: 11 out of 16

compounds (68.7%) in the Caco-2 permeability external set were predicted

within 0.6 log-units error, whereas 46 out of the 69 drugs (66.7%) in the HIA

external test were predicted within 23% HIA unit error. In summary, most of

the surveyed models reflect the QSAR permeability paradigm (Equation 8.6),

and all depend critically on log P.
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8.5.1.3 Prediction of Active Transport and Efflux

Datasets for the modeling of ABCB1 (P-gp) compounds in the literature

typically include 200 substrates119–121 and up to 400 inhibitors.122 These sets are

extensions of the Seelig123 dataset of 100 molecules. The purpose of these

studies is usually to predict whether the input drugs will be ABCB1 substrates.

Efflux pumps such as ABCB1 can be important for the therapeutic effect of

CNS drugs and for the blood–brain barrier permeability. Other efflux pumps,

e.g., ABCC1 (MRP1), ABCC2 (MRP2, cMOAT) and ABCG2 (BCRP, MXR,

ABCP), have been shown to influence the oral absorption and disposition of a

wide variety of drugs. Naturally occurring polymorphisms of drug transporters

are also responsible for individual differences in response to drug regimens. In

one study, eleven different SNP (Single Nucleotide Polymorphism) ABCB1

variants were compared to wild-type, with respect to substrate specificity for 40

drugs; it was found that the nonsynonymous polymorphisms of 2677G 4 T, A

or C in the ABCB1 gene, corresponding to amino acid 893, Ala 4 Ser, Thr or

Pro, respectively, in P-gp, greatly impact ABCB1 substrate specificity and

activity.124

Furthermore, elevated expression levels of ABCB1, ABCC1, ABCG2 and

perhaps other ABC efflux transporters (48 known members) in human cancer

cells have been found to lead to multi-drug resistance,125 which in turn corre-

lates with patient outcome in several cancers.126 The appropriate study of ABC

transporters allows us not only to better understand drug absorption, but also

to evaluate cancer patients with respect to their responsiveness to chemother-

apy, and their susceptibility to certain side effects. High-throughput assays that

simultaneously evaluate drug transporter inhibitors for, e.g., ABCB1, ABCC1

and ABCG2, are beginning to emerge.127 Co-administration of ABCB1 inhi-

bitors such as mometasone furoate with other chemotherapeutic agents is

expected to lead to improved anti-cancer drug regimens.128

8.5.2 Distribution

Distribution parameters that are subject to computational methods include the

BBB permeability, PPB, tissue partitioning (Kp) and the volume of distribution

at steady state (VDss). These parameters are critically important for under-

standing drug pharmacokinetics. For example, BBB permeability is an essential

property for those drugs targeting the CNS (Central Nervous System), such as

antidepressants or anxiolytics. Conversely, CNS penetration (and positive BBB

permeability) is, for example, not desired for anti-allergic drugs that target the

peripheral histaminic H1 receptor (which may cause drowsiness when binding

to the central H1 receptors). The volume of distribution defined as:

VDss ¼ dose=C0 ð8:7Þ

where ‘‘dose’’ is the administered dose and C0 is the initial concentration of

drug in plasma, which increases with tissue partitioning (high Kp) and decreases

255Early ADME/T Predictions: Toy or Tool?



with plasma binding (high PPB). The binding of small molecules to the Human

Serum Albumin (HSA), which is the most abundant protein in human plasma

(600mM), determines to the largest extent the plasma binding.129

8.5.2.1 Data

Blood–Brain Barrier. The largest dataset, 328 molecules, was discussed by

Abraham et al.,130 who collected data for in vivo distribution of drugs from

blood, plasma, or serum to rat brain. The authors showed that these data could

be effectively combined into the single data set with enhanced accuracy. The

experimental accuracy of BBB data was estimated to be 0.3 log-units.130

Qualitative data for human BBB permeability (+ or –) is available for 278

(BBB+) and 172 (BBB–) drugs in WOMBAT-PK.131

Plasma Protein Binding (PPB). The fraction bound to plasma proteins

(%PPB) can be easily calculated from binding affinity to HSA under the

assumption that binding occurs mainly to the Human Serum Albumin (HSA).

Thus we can ignore differentiation of both these properties. A dataset of 94

molecules with binding to HSA was collected by Colmenarejo.132,133 Larger

datasets of 138 and 154 molecules were collected by Kratochwil134 (HSA) and

by Saiakhov135 (%PPB), respectively. The dataset of Yamazaki136 (%PPB)

contained the protein binding percentages of 346 drugs. For comparison,

commercial SimulationsPlus and ChemSilico predictors were developed with

data for 388 and 345 molecules, respectively.

Volume of Distribution. A dataset of 120 compounds with VDss data was

published by Lombardo et al.137 Later on the same authors collected a larger

set of 384 compounds from the literature.138

8.5.2.2 Models

Again, log P was one of the critical descriptors to describe these properties. For

example, Lombardo et al. showed that successful prediction of the VDss

depended on two experimentally determined physicochemical parameters, log

D7.4 and the fraction of compound ionized at pH 7.4, as well as on the fraction

of free drug in plasma.137 A more advanced model by the authors had more

descriptors, but also included lipophilicity as one of the major descriptors.138

Saiakhov et al.135 did not find a reliable correlation between log P and %PPB

of all 154 analyzed molecules. However, following a structural analysis they

identified eight main biophores, i.e., structures appearing with high frequency,

in compounds with different degrees of binding activity. The local QSAR

models were developed for seven of eight of these biophores and the partition

coefficients were found to be important for almost all these local models.

256 Chapter 8



Several authors including, for example, Colmenarejo,133 Kratochwil134 or

Valko139 found log P as one of the important parameters for their models.

However, additional structure-based parameters, such as PSA, number of

hydrogen bonds, topological pharmacophores, etc., were required to derive

statistically significant models. We reevaluated the importance of these

descriptors to predict %PPB. Based on 851 drugs with known %PPB from

WOMBAT-PK, we used several simple descriptors, log P, number of hydrogen

donors and acceptors, number of Rotatable Bonds (RBONDS), Topological

Surface Area (TPSA), molecular weight in multiple linear regression. The

regression equation was as follows:

%PPB ¼ 34þ 0:15ð0:02ÞTPSAþ 12:6ð0:6Þ logP� 1:3ð0:3ÞRTB ð8:8Þ

R2 ¼ 0:41; RMSE ¼ 25:5%; MAE ¼ 20:6%; N ¼ 851; F ¼ 85

Equation (8.8) confirms the strong dependency of %PPB on both log P and

TPSA; surprisingly, it shows an inverse relationship between %PPB and RTB,

the number of non-terminal rotatable (single) bonds.

Many models estimate BBB permeability, as reviewed by Clark140 and Luco

and Marchevsky.141 These studies highlight lipophilicity, as measured by the

octanol–water or other partition coefficients (e.g., oil–water,142 air–water,143)

or their differences (e.g., Dlog P between octanol–water and cyclohexane–

water144,145) or by the distribution coefficient logD7.4,
146 as important in pre-

dicting this property. Using the Monte Carlo variable selection, only one

descriptor, TPSA(NO), which is the topological polar surface area using the

N,O polar contributions, was selected by Konovalov et al.115 as significant for

the prediction of the log BB from a set of more than 3000 descriptors calculated

using PCLIENT.147 The simplest, most efficient rules for BBB permeability

were formulated by Norinder and Haeberlein, in a R05-like manner:148

� Rule 1: if the sum of nitrogen and oxygen atoms (N+O) in a molecule is

less than or equal to five that molecule has a high chance of entering the

brain.

� Rule 2: if Clog P 4 (N+O), then the log BB is positive, i.e., the con-

centration of the molecule in the brain is higher than in the blood.

This simple two-rule approach can be used in particular when one is selecting

scaffolds following primary screening. More exact methods should be used

when deciding whether to test the compound’s ability to pass the blood–brain

barrier.

Based on 450 drugs with qualitative BBB data from WOMBAT-PK, we find

that 83% of molecules with (N+O)o5 and only 30% of molecules with

(N+O) 45 were annotated in the database as passing the blood–brain barrier.

The percentage of drugs passing the barrier linearly decreased with sum of

(N+O) atoms up to 6 atoms followed by drastic decrease in percentage of
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molecules for (N+O)Z 7 atoms (Figure 8.4). Thus, it seems logical to increase

the limit of atoms in this rule by one. The modified Norinder–Haeberlein rule,

(N+O)o7, correctly predicts 81% of all molecules as passing barrier. Given

our limited dataset, we conclude that molecules with (N+O)Z 7 have a one-in-

five probability (19%) to pass the BBB by passive phenomena.

8.6 The Usefulness of ADME/T Models is Limited
by the Available Data

The amount of experimental data available to develop ADME/T models for

biological properties is rarely above 1000 molecules. Indeed, the number of

publicly available measurements is 1–2 orders of magnitude, compared to the

(much larger) number of measurements, 104–105, that are available for physi-

cochemical ADME/T properties, i.e., log P and solubility. All the above esti-

mates of available experimental data are significantly smaller than any of the

numbers of molecules estimated by the Virtual/Tangible/Real (VTR) descrip-

tion framework for compounds;149 indeed, the Tangible collection (small

molecules one could buy) is already above 30 million, and is already significantly

under-sampled with respect to accurate predictions (see also Figure 8.3). By the

same token, the Virtual collection is a number in excess of 1060, and thus is

already prohibitively undersampled. Consequently, when selecting new mole-

cules by means of virtual screening, and estimating their ADME/T properties,

we will always face the issue of extrapolation by extending our knowledge from

hundreds to millions of molecules. Perhaps global models, such as ChemGPS,150

which has been validated in extenso on various ADME/T properties151 could
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Figure 8.4 Percentage of molecules passing through the blood–brain barrier as a
function of the number of (N+O) atoms (using data from the WOMBAT-
PK database131).
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become more relevant if the applicability domain indicates these models are well

validated. Indeed, simultaneous optimization of receptor binding affinity and

ADME/T properties seems feasible152 using the VolSurf paradigm.153 VolSurf

has been established as suitable for ADME/T property prediction, and appears

to perform reasonably well on various complex (biological) ADME/T

properties.

Considering that even simple physicochemical properties, such as log P, can

reliably be predicted (at the level of experimental accuracy) for just a small

fraction of the compounds found in commercial databases, our expectations for

accuracy with respect to complex ADME/T property prediction is indeed less

than optimistic. Assuming that the chemical diversity sampling per novel mole-

cule is similar to that observed in estimating log P, we anticipate that only 0.020–

0.2% of the compounds within large, diverse VTR sets will be predicted at the

level of experimental accuracy. It is perhaps better to rely on relatively simple

rule-based systems rooted in physicochemical property filters when scanning large

chemical spaces for the ADME/T friendly regions, as discussed elsewhere.154

The process of drug discovery amounts to the search for optimality in a

hyper-dimensional, multi-response surface area, and thus is a complex process.

As discussed earlier, log P and the other R05 parameters, together with other

properties such as PSA, and the number of flexible bonds, are significant

contributors to a large number of models for different ADME/T properties.

The open question is whether the use of such models provides an added value,

compared to the simple and easily interpretable R05 criteria or the recent trends

for the drug-likeness formulated by Gleeson.155 But can these models provide

added value?

Firstly, such models are developed with fewer training set molecules than are

used to derive simple qualitative rules. Secondly, when predictions are insuffi-

ciently accurate even for simple properties such as log P and aqueous solubility

for over 95% of the molecules, why should one attempt to apply more complex

models that in turn rely explicitly, or perhaps implicitly, on these simple

properties? Naturally, some of these predictions will prove accurate simply by

chance, but most will fail. Thus, we suggest that given the present paucity of

data there is no rational reason to trust that complex ADME/T models can lead

to any improvement compared to simple qualitative rules. Indeed, those

ADME/T models that lack a clear indication of their AD are a toy suitable for

Horrobin’s internally self-consistent universe, Castalia.156 We posit that such

ADME/T models are not a scientific tool for virtual screening, since they do not

provide a metric for the accuracy of predictions. However, even using such

models, human reasoning may prevail and decisions made by experienced

medicinal chemists may lead to adequate progress. Last but not least, most

ADME/T modeling tools continue to ignore the influence of ATP-binding

cassette transporters (Section 8.5.1.3), as well as other carriers, and their impact

on pharmacodynamics.

On the other hand, the adequate use of applicability domains will enable the

user to identify those scaffolds for which reliable predictions have been made,

which can further be progressed in lead optimization. Additional experiments
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could then be used to enhance or replace the existing ADME/T models, to

increase their reliability in guiding the lead optimization process. This strategy

known as ‘‘in combo’’ is gaining more attention in drug discovery.75

The development of models by data integration represents another potentially

useful approach for ADME/T studies. Indeed, considering that some of the

ADME/T properties are interrelated, and hence depend on the same physico-

chemical properties, the simultaneous development of models for multiple

properties can be advantageous for each of the analyzed properties – an aspect

that is clearly used in the VolSurf paradigm.8 The practical advantages of such

approaches were also demonstrated for the prediction of different physico-

chemical properties of alkanes by Baskin et al.,157 log P/aqueous solubility pre-

diction by Livingstone et al.158 and for air–tissue prediction by Gaudin et al.159

8.7 Conclusions

The development of good models for ADME/T properties is rendered difficult

by the paucity of reliable experimental data. Without proper consideration of

the applicability domain, the developed models are of limited practical value

for virtual screening, in particular for large and undersampled VTR spaces.149

The success of such limited models critically depends on, and is limited by, the

depth of expert knowledge of the human users, who may in fact call upon their

past experience to decide whether the results of these models can be trusted. By

reporting the accuracy of prediction for ADME/T models, by constantly

refining the models with novel, complementary experimental data, as well by

performing simultaneous data integration, better approaches with clearly

defined applicability domains can be established. Furthermore, only by

understanding and adequately modeling transporter-mediated phenomena are

we going to witness dramatic improvements in the ADME/T property pre-

diction sector. These advancements are likely to transform such methods from

toys into scientific tools for drug discovery.
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9.1 Introduction

Despite the development of HTS (High-throughput Screening) capabilities and

readily available chemical libraries, making all possible compounds and

screening them all in biological assays are still very costly and difficult. Thus, it

is of critical importance to be able to rationally select chemicals for specific

biological targets to increase the efficiency of drug discovery and chemical

genomics research. This process of rationally selecting compounds for chemical

synthesis or biological screening is called compound library design.

Many factors need to be considered in designing compound libraries. These

include factors related to the biological activity against a target or a family of

targets and the factors related to drug developability, drug-likeness and other

ADMET (Absorption, Distribution, Metabolism, Elimination and Toxicity)

properties. In this chapter we discuss various computational approaches to

compound library design, from similarity-guided methods, to diversity-based

compound selection and compound collection comparison, to pharmacophore

and QSAR model guided methods as well as protein structure-based methods.

We also review how ADMET alerts, models and filters are being used in

compound library design. Finally, we discuss the importance and broad

applicability of combinatorial optimization methods in next-generation multi-

objective and multi-target library design.

Chemoinformatics Approaches to Virtual Screening
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9.1.1 Compound Library Design

Drug discovery and chemical genomics research involve making compounds

and testing them in specific biological assays. Over the past 20 years, the cycle

time for making and testing compounds has been dramatically reduced owing

to the development of High-Throughput Screening (HTS) and combinatorial/

parallel synthesis technologies. It is now common practice for many research

laboratories to test compounds in 384-well and higher density plate format

under robotic control. Chemicals from natural sources, combinatorial/parallel

synthesis as well as historic synthetic efforts are becoming readily available due

to the rise of chemical vendors and Contract Research Organizations (CRO),

such as Asinex, ChemDiv and WuXi Pharma. Combinatorial synthetic tech-

nologies are now powerful tools in the daily life of the medicinal chemist.

Despite these HTS capabilities and readily available chemical libraries, it is still

very costly and ineffective to make all possible compounds and screen them all

against biological assays. Consequently, to increase the efficiency of drug dis-

covery and chemical genomics research, it is of critical importance to be able to

rationally select chemicals for specific biological targets.

This chapter defines the process of rationally selecting compounds for che-

mical synthesis or biological screening as compound library design. The whole

purpose of compound library design is to obtain a maximum amount of

information while making and testing a minimum number of compounds. For

designing and making new chemical libraries, this means the rational selection

of a subset of building blocks (or reagents) from available reagent pools to

obtain the best chemical libraries for a particular design goal. For compound

acquisition or screening set design, this means the rational selection of a subset

of compounds from commercially available or proprietary databases under

some constraints or criteria. Thus, we broadly use the term compound library

design to mean compound collection design or screening set design for a par-

ticular project, or the design of new chemical libraries for synthesis (Figure 9.1).

Figure 9.1 Compound library design.
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When designing new chemical libraries that will be made using combinatorial

or parallel synthetic methods, we note two possible design scenarios. The first is

to make the new library in a combinatorial fashion, where each selected

building block will react with all the building blocks selected for the other

substituent positions (Figure 9.2). This method has the highest chemical effi-

ciency in that the least number of reagents are needed to make a certain desired

number of compounds in the library. Logistically, this is also a better way to

conduct combinatorial synthesis. The second scenario is to selectively pick

library members to make. This approach is often called cherry-picking method

(Figure 9.2), where no combinatorial constraints are placed on the selection of

building blocks for making the desired molecules. Thus, depending on how the

chemical synthesis will be conducted, in combinatorial fashion or cherry-

picking fashion, different design approaches should be adopted. To design

libraries in a combinatorial fashion, Monomer Frequency Analysis (MFA)1,2 or

combinatorial optimization methods3–6 should be used; to design cherry-pick-

ing libraries, one should just score and rank the compounds in a virtual library

based on certain criteria (e.g., highest predicted activity, or optimal drug-like-

ness) so that the top ranking compounds are selected for synthesis and testing.

In certain compound acquisition or screening projects, the selection of

compounds may only be conducted at the plate level, where a whole plate of

compounds is either selected or not selected. This is due to reasons of logistical

considerations and concerns of compound stability during freeze–thaw cycles.

Thus, compound library design or screening set design should take this con-

straint into consideration.7

To best tackle compound library design problems, one needs to consider the

screening platform adopted for a specific project. For example, in a screening

project where one specific biological target is used, large numbers of com-

pounds can often be screened in HTS format. In a gene family focused

screening (i.e., chemogenomics) project, several members of a particular gene

family are often the targets and a Medium-Throughput Screening (MTS) for-

mat is often adopted. This often involves testing tens of thousands of com-

pounds against a panel of several tens of biological targets. In this case, any

Figure 9.2 Combinatorial and cherry-picking libraries.
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compound that is appropriate for any member of the gene family should be

considered. In a chemical genomics project, the whole genome can be the

target, where hypothesis-free, high content, phenotypic assays are often

adopted.8–10 In this case, tens of thousands of compounds are tested against the

cellular proteome, leading to observations of certain phenotype changes. Since

all of these strategies co-exist in pharmaceutical R&D environment, strategies

for compound library design should be adopted appropriately according to a

particular screening project. However, certain fundamental design factors and

their computational models are applicable to all screening platforms.

Factors that need to be considered in designing compound libraries can be

broadly classified into two groups: (i) factors related to the biological activity

against a target or a family of targets and (ii) factors related to drug develop-

ability, drug-likeness and other ADMET (absorption, distribution, metabolism,

elimination and toxicity) properties. In the former case, any ligand-based or

protein structure-based computational design methods can be employed when

appropriate to help guide a library towards the target or family of targets under

study. Methods such as similarity to lead molecules, molecular diversity,

pharmacophore models derived from a set of active analogs or protein binding

site structure, machine learning models and structure-based docking can all be

employed. In the latter case, Lipinski’s rule of five11 has become an important

factor, as are various drug-likeness, developability properties such as solubility,

membrane permeability (Caco-2 or artificial members surrogate), cytochrome

P450 inhibition and P-PGP substrates.12 Also included in the latter case are

substructure filters, such as toxicity-causing substructures,13 common chemical

frameworks14,15 and certain promiscuous substructures.16

In this chapter we discuss various computational approaches to compound

library design, which include similarity-guided targeted library design, diver-

sity-based compound selection, pharmacophore-guided and statistical model

guided methods, as well as protein structure-based methods. We also review

how ADMET alerts, models and filters are being used in the design strategy. In

each section we first present the fundamental concepts and methods, and then

discuss some literature examples.

9.2 Methods for Compound Library Design

9.2.1 Design for Specific Biological Activities

In a targeted screening project, compound library design involves the selection

of a subset of compounds from an available pool of chemicals. This subset of

selected compounds affords a limited compound library with a high percentage

of compounds that are likely to be active against a target or a family of targets.

The prediction of biological activity can be based on different types of

computational models. As mentioned earlier, similarity to a lead molecule,

pharmacophore models, QSAR models or structure-based docking models

can all be employed to help drive the library towards desired biological
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activities. When designing new chemical libraries for synthesis, one needs to

select building blocks (or reagents) such that the resulting library can have a

high percentage of compounds that are predicted to be active by the compu-

tational model.

9.2.1.1 Similarity Guided Design of Targeted Libraries

If we know the chemical structure of a biologically active compound, and want

to design a set of compounds that may be active against the same target, we

may be interested in selecting or designing compounds that are chemically

similar to the known active molecule. This is based on the similarity principle

that implies that similar compounds are likely to have similar biological

activity. Operationally, this involves several steps: (i) electronically represent

the structure of the lead molecule as a connection table; (ii) calculate molecular

descriptors for the lead molecular structure; (iii) calculate the same descriptors

for every molecule in a database or a virtual compound library; (iv) calculate

the similarity values between each member of the database or virtual library

and the lead molecule; (v) sort the library members according to their similarity

to the lead molecule; (vi) compounds ranked at the top should be considered as

having a higher priority; (vii) if a new chemical library is being designed for

synthesis in combinatorial fashion, a frequency analysis of the building blocks

(reagents) that occur in the top ranking compounds should be conducted. More

frequently occurring reagents should be proposed as reagents of choice for the

synthesis of the combinatorial library; if a cherry-picking library is being

designed, the top-ranking compounds should simply be selected for synthesis.

Several papers have been published on this topic. Brown et al. reported a

method for designing combinatorial library mixtures using a genetic algo-

rithm.17 Sheridan et al. also reported a method for designing targeted libraries

with genetic algorithms.2 Agrafiotis has published a method on combinatorial

library design.3,18 Zheng and Tropsha also discussed a method (Focus2D) and

its application in the design of a focused library.1 Here, we use Focus2D as an

example to illustrate the similarity guided method for the design of a new

combinatorial chemical library.

Focus-2D employs several different strategies for the effective sampling of

virtual chemical libraries to prioritize compounds. The reported implementa-

tion uses a modified Euclidean distance as the measure of chemical similarity to

a lead molecule and a Simulated Annealing (SA) algorithm19 for sampling the

combinatorial chemical space. The virtual library is generated by random

combinations of available building blocks based on the underlying chemical

reaction; and the resulting virtual compounds are represented by Kier–Hall

topological descriptors.20,21 Although the authors used topological descriptors,

other descriptors can certainly be implemented as well. Focus-2D then samples

the structural space of virtual libraries using Simulated Annealing (SA) and

attempts to maximize similarity between virtual molecules and the lead mole-

cule. Finally, frequency distribution analysis of building blocks found in the
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molecules with the highest similarity to a lead molecule is conducted, and the

building blocks found more frequently than random expectation are suggested

as the reagents for combinatorial synthesis.

This method was applied to the design of a tripeptoid library. Experimental

work on that library had been described by Zuckermann et al.,22 who had

shown that a few members of the library had high affinities for a1-adrenergic or

m-opiate receptors. The results of that published work were used as a retro-

spective test case to evaluate the effectiveness of Focus-2D.

The results indicate that Focus-2D proposed 12 building blocks on a rational

basis (when both lead compounds were used as probes), which included all five

building blocks found in the three reported active opioid peptoids.22 Simple

evaluation shows that if all combinations of building blocks (24 of them)

described in the original publication were explored in a true sense of combi-

natorial chemical synthesis as many as 243¼ 13 824 compounds would have to

be made and tested. However, if the experiments were limited to using only

12 building blocks, as suggested by Focus-2D, only 123¼ 1728 compounds

would have to be synthesized. These results show that the same active com-

pounds would be a part of this smaller library. Thus, if the suggestions made

by Focus-2D were accepted prior to the synthesis and testing, the total number

of compounds that need to be screened would be reduced by almost an order

of magnitude. This simple example demonstrates the potential effectiveness of

similarity guided design of combinatorial libraries.

Similarity methods and their applications in virtual screening and compound

collection design (i.e., cherry-picking) have been widely reviewed and interested

readers are referred to these publications.23,24

9.2.1.2 Diversity-based Design of General Screening Libraries

In a general screening project, compound library design or virtual screening

involves the selection of a subset of compounds that are optimally diverse and

representative of available classes of compounds, leading to a non-redundant

chemical library or a set of non-redundant compounds for biological testing.

Reported methods can be generally classified into several categories: (i) cluster

sampling methods, which first identify a set of compound clusters, followed

then by the selection of several compounds from each cluster;25 (ii) cell-based

sampling, which places all the compounds into a low-dimensional descriptor

space divided into many cells, and then chooses a few compounds from each

cell;26 (iii) direct sampling methods, which try to obtain a subset of optimally

diverse compounds from an available pool by directly analyzing the diversity of

the selected molecules.3,27

Many reports have been published addressing various aspects of diversity

analysis in the context of chemical library design and database mining.

Methods have also been published to map molecules from a high-dimensional

chemical space to 2D/3D space so that direct visualization of chemical simi-

larity and diversity becomes feasible.28,29 Low-dimensional diversity space also
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has the intrinsic advantage over high-dimensional space in that the low-

dimensional space can be used to compare different compound collections to

illustrate compound collection overlaps.

Mason et al. have described an interesting method for library design26 using

BCUT chemistry-space descriptors and multiple four-point pharmacophore

fingerprints. The results demonstrated the feasibility of a simulated annealing

process for combinatorial reagent selection that concurrently optimizes product

diversity in BCUT chemistry-space and in terms of unique four-point phar-

macophores. Flower described a widely cited method for chemical diversity

analysis called DISSIM.30 It addresses the problem of selecting diverse subsets

from larger collections of chemical compounds, combining a maximum dis-

similarity search algorithm and a general measure of chemical similarity based

on the combination of different molecular descriptors. Zheng et al. reported a

method called SAGE that optimizes the selection of compounds based on a

designed diversity function27 that adequately measures the diversity of a subset

of selected molecules.

Since each molecule is represented by a vector of molecular descriptors,

geometrically it is mapped to a point in a multidimensional space. The distance

between two points, such as Euclidean distance, then measures the dissimilarity

between the two molecules. Thus, the diversity function should be based on

pair-wise distances between molecules in the subset. Another requirement for

the diversity function is that, after the diversity value has been maximized by

choosing different subsets of molecules, the final subset that corresponds to the

maximum function value is most diverse. An objective function was proposed

in SAGE. In a related publication, an S-optimal function was used as the

diversity function.4 Then, SA optimization techniques were used to optimize

the diversity function by choosing different combinations of compounds or

building blocks.

To evaluate the effectiveness of SAGE in terms of diversity selection and

chemical space coverage, several simulated datasets were used. For instance, in

a geometrical space (2D or 100D), a certain number of cluster centers were

generated, which were more than a preset distance away from each other. Some

99 cluster centers were then generated in a 2D space, and 95 cluster centers were

generated in a 100D space. Then, a random number (between 1 and 100) of

points for each cluster were generated around each cluster center within a cutoff

distance, so that no members from two different clusters could overlap. This led

to two simulated data sets: one with 951 points distributed in 99 clusters in 2D

space, and second with 950 points distributed in 95 clusters in 100D space.

Simulation was conducted to determine how many clusters of points

(molecules) SAGE could cover in comparison with random selection. When the

number of sampled points was much smaller than that of clusters that exist in

the data set, there was virtually no difference between the rational and random

selection. This implies that when the number of sampled compounds was very

small compared to that of the natural clusters, rational sampling could not

provide any advantages over random sampling. As the number of sampled

points increases, SAGE begins to cover more clusters than the corresponding
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random sampling. For instance, when 50 points were sampled, SAGE covered

50 different clusters (100% of what could maximally be obtained) for both data

sets, while random sampling covered less than 40 clusters (o80% of maximal

coverage). When 95 points were sampled, SAGE covered 90 clusters (roughly

95% of maximal coverage) while random sampling covered only 58–63 clusters

(61–66% of maximal coverage).

To test the ability of diversity sampling to improve the hit rates vs. random

sampling, an experiment was also conducted on simulated datasets containing

varying percentages of active compounds. If the percentage of active compounds

increases, the number of active compounds obtained by random sampling

increases proportionally. This suggests that when the percentage of active com-

pounds in the library is very high, SAGE (or any other cluster sampling) performs

no better than random sampling in terms of the individual compound hit rate.

There is a common view that the worse performance of cluster sampling strategies

is due to non-ideal descriptors. On the contrary, this simulation indicates that it is

the nature of this kind of strategies regardless of what descriptors are used, since

ideal simulated data sets were used. Nevertheless, when a cluster hit rate (i.e., one

hit is counted even though multiple points from the same cluster are found) was

considered as the criterion, the SAGE method performed much better than

random sampling in all tested cases. This indicated that information content

obtained by SAGE (diversity sampling) was always better than random sampling.

Another aspect of diversity-guided design is the visualization and compar-

ison of compound collections. Compound sets comparison can be conducted by

employing efficient dimensionality reduction methods. One interesting method,

which is called Stochastic Proximity Embedding (SPE), was described by

Agrafiotis et al.29 Let us illustrate its application to the comparison of com-

pound collections. In Figure 9.3(a–c) we use the SPE method to map a set of

compounds in a proprietary collection onto a 2D space. Two commercially

available compound collections are also described by the same set of descrip-

tors and mapped onto the same 2D space. The points in black are internal

compound collection. Red points represent compounds from vendor A and

green points are for compounds from vendor B. One can see that the internal

compound collection has the highest diversity. The green collection covers a

little more space than the red collection. This is a simple technique for visual

evaluation of compound collections, which is very useful for making practical

decisions on compound collection acquisition.

9.2.1.3 Pharmacophore-guided Design of Focused

Compound Libraries

The pharmacophore concept has been widely accepted and used in medicinal

chemistry as well as in computational molecular modeling. Two closely related

definitions of pharmacophore have been employed by both medicinal chemists

and molecular modelers, and the root of this concept can be traced back to

more than 100 years ago.31
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Figure 9.3 Compound collection comparison: black points are proprietary collection;
red and green points are from two chemical vendors.
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The very first definition of a pharmacophore was offered by Paul Ehrlich

in the early 1900s: ‘‘a molecular framework that carries the essential features

responsible for a drug’s biological activity’’.31 It is still used today mostly

by medicinal chemists. For example, a chemist may refer to a series of com-

pounds derived from the benzodiazepine scaffold as derivatives of the benzo-

diazepine pharmacophore. The software tool LeadScope (www.leadscope.com)

capitalizes on this concept and attempts to automate the perception of

molecular frameworks by comparing sets of structures to a predefined set of

chemical substructures in the system, and thus categorizes any set of chemical

structures into many pharmacophore series. The automated categori-

zation allows the medicinal chemist to analyze large sets of screening data and

hunt for interesting chemical series for the follow-up design of compound

libraries.

Ehrlich’s definition does not consider the fact that different series of mole-

cules may share important chemical features in three-dimensional (3D) space

and therefore present similar biological activities, even though they may belong

to different molecular frameworks. In the 1970s, Peter Gund defined a phar-

macophore as ‘‘a set of structural features in a molecule that is recognized at a

receptor site and is responsible for that molecule’s biological activity’’.31 This

definition is subtly different from Ehrlich’s definition in that it implies the 3D

nature of the pharmacophore, and it is more consistent with the present-day

knowledge of the ligand–receptor interaction revealed by X-ray structures of

ligand–receptor complexes. By this definition, a pharmacophore can be a set of

disconnected features in 3D space that are required and recognized by the

receptor and could be held together by different molecular frameworks. It was

this definition that laid the foundation for many of the state-of-the-art phar-

macophore perception algorithms that automate the identification of chemical

features shared by active molecules.

Since Gund’s definition of a pharmacophore and their first publication on a

computer program for pharmacophore research,32 several pharmacophore

perception algorithms have been developed in the past 20 years. The best

examples include the commercial package Catalyst distributed by Accelrys

(www.accelrys.com) and GASP developed by Willett’s group.33 These tools

have made computerized pharmacophore modeling a standard practice in

modern rational drug design.

Catalyst has two related techniques for pharmacophore analysis: HipHop

and HypoGen. The former identifies feature-based alignments for a collection

of molecules without considering activity values, and the latter generates 3D

pharmacophore hypotheses that can explain the variations of the activity with

the chemical structures. In Catalyst, a pharmacophore consists of a 3D

arrangement of chemical functions surrounded by tolerance spheres. Each

sphere defines a space that is occupied by a particular chemical feature. The

commonly seen features include hydrophobic groups, hydrogen bond acceptors

and donors, aromatic fragments, charged groups, and so on. The GASP soft-

ware was developed by Jones and Willett.33 Using the Genetic Algorithm (GA),

GASP automatically allows for conformational flexibility and maps features
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among the training set molecules to determine the correspondence between the

features in different molecules.

Various examples of pharmacophore-guided virtual screening for compound

library design are summarized in a recent book edited by Guner,31 as well as in

several other papers,34,35 where pre-constructed pharmacophore models were

used to filter or score members of virtual libraries or compound collections. The

use of Catalyst pharmacophore models for screening large combinatorial

libraries was reported by Hecker et al.36 In this report, the two best pharma-

cophore models were derived from literature compounds and structure–activity

data for cyclin dependent kinase 2. Then the models were used in retrospective

virtual screening of ten databases containing over 1 000 000 compounds

represented by their 3D coordinates. The results were then analyzed in terms of

the screening efficiency for compound or library prioritization, and library

design. For compound prioritization, one of the models selected active com-

pounds at a rate nearly eleven times that of random compound selection.

In library design experiments, most of the key building blocks were over-

represented in the hits from at least one of the pharmacophore models. In

library prioritization experiments, the two known active libraries both pro-

duced a significant number of hits with both pharmacophore models, while

none of the eight inactive libraries produced a significant number of hits for

both models. This work clearly demonstrates the potential of Catalyst phar-

macophore models in the design of compounds or compound libraries.

The past decade has also seen the development of non-classical pharmaco-

phore methods such as the pharmacophore key technique made popular by

Mason et al. Mason’s group applied this technique extensively to diversity

assessment, similarity searching, and combinatorial library design.26,37–39 Other

groups have applied the Recursive Partitioning (RP) technique to discover criti-

cal features that distinguish the active molecules from the inactive ones. For

example, Chen and Young applied RP to analyze the MAO dataset to discover

atom pair features as the critical pharmacophores for the MAO inhibitors.40 In

a more recent interesting work, Schneider et al. reported a ligand-based com-

binatorial design method using self-organizing maps.41 It is based on topological

pharmacophore similarity metric and Self-organizing Maps (SOM). They

applied this method to optimize combinatorial products functioning as P(1)

purinergic receptor antagonists. A SOM map was developed using a set of

known molecules to establish a structure–activity relationship. A combinatorial

library design was performed by projecting virtually assembled new molecules

onto the SOM map. A small focused library of 17 combinatorial products was

synthesized and tested. On average, the designed structures yielded a three-fold

smaller binding constant and 3.5-fold higher selectivity than the initial library.

This result demonstrated that it was possible to design a small, activity-enriched

focused library with an improved property profile using the SOM approach.

Renner et al. also reported a fuzzy pharmacophore modeling method based on

molecular alignment of active molecules.42 It integrates information from 3D

molecular alignments into correlation vectors. The pharmacophore model is

represented by a number of spheres of Gaussian-distributed feature densities.
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Different degrees of ‘‘fuzziness’’ can be introduced to influence the model’s

resolution. Transformation of this pharmacophore representation into a cor-

relation vector results in a vector of feature probabilities. These feature prob-

abilities are utilized for rapid virtual screening of compound databases or virtual

libraries. The approach was validated by retrospective screening for cycloox-

ygenase 2 (COX-2) and thrombin ligands. Best performance was obtained with

pharmacophore models reflecting an intermediate degree of fuzziness, yielding

an enrichment factor of up to 39 for the first 1% of the ranked database.

9.2.1.4 QSAR-based Targeted Library Design

Many different approaches to QSAR have been developed since Hansch’s

seminal work. These include both 2D (two-dimensional) and 3D (three-dimen-

sional) QSAR methods. Most of the 2D QSAR methods employ graph theoretic

indices to characterize molecular structures, which have been extensively studied

by Radic, Kier and Hall.20–21,43–49 Similarly, ADAPT system employs topo-

logical indices as well as other structural parameters (e.g., steric and quantum

mechanical parameters) for QSAR analysis.50–53 The examples of 3D QSAR

include Molecular Shape Analysis (MSA),54–57 distance geometry and Voronoi

techniques.58–60 These methods have been applied to study structure–activity

relationships of many datasets by Hopfinger and by Crippen. Perhaps the most

popular example of the 3D QSAR is the Comparative Molecular Field Analysis

(CoMFA) developed by Cramer et al., which has elegantly combined the power

of molecular graphics and Partial Least-squares (PLS) technique and has found

wide applications in medicinal chemistry.61More recent development in both 2D

and 3D QSAR studies has focused on the development of optimal QSAR

models through variable selection. These methods employ either generalized

simulated annealing or genetic algorithms as the stochastic optimization tool.

It has since been demonstrated that these algorithms combined with various

statistical and machine learning tools have effectively improved the QSAR

models compared to those without variable selection.

For illustrative purposes, we describe here the kNN QSAR method, which is

conceptually simple and quite effective in various applications. Formally, the

kNN QSAR technique implements the active analog principle that is used

widely by the medicinal chemist. In the original kNN method, an unknown

object (molecule) is classified according to the majority of the class member-

ships of its k nearest neighbors in the training set. The nearness is measured by

an appropriate distance metric (a molecular similarity measure as applied to the

classification of molecular structures). Many variations of the kNN method

have been proposed in the past, and new and fast algorithms have continued to

appear in recent years. The automated variable selection kNN QSAR technique

optimizes the selection of descriptors to obtain the best models.62 More

recently, this technique has been successfully applied to the development of

rigorously validated QSAR models and virtual screening of large databases for

anticonvulsant agents.63,64 Model validation was based on several critical sta-

tistical criteria, including the randomization of the target property, independent
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assessment of the predictive power using external test sets, and the establish-

ment of the models’ applicability domain. All successful models were employed

in database mining concurrently. When these models were applied to search

databases containing ca. 250 000 compounds, 22 compounds were selected as

consensus hits. Nine compounds were synthesized and tested (of these nine,

four were exact database hits and five were derived from the hits by minor

chemical modifications). Seven of these nine compounds were later confirmed

to be active, indicating an exceptionally high hit rate.

Thus, highly validated QSAR models can be used to search and prioritize

either large compound collections or new virtual combinatorial chemical

libraries. Every molecule in the compound set (real or virtual) will be predicted

for its biological activity using the QSAR models. Compound collections can

be designed by selecting only the molecules that are predicted to be active. In

the case of designing new chemical libraries for synthesis, building blocks can

be further prioritized via frequency analysis of top ranking molecules.65

9.2.1.5 Protein Structure Based Methods for Compound

Library Design

Structure-based docking programs have been developed since Kuntz’ seminal

work on structure-based docking algorithm.66 These programs are now

available as part of popular software packages from companies like Tripos

(St. Louis, USA), Accelrys (San Diego, USA), Chemical Computing Group

(Montreal, Canada), OpenEye (NM, USA) and Schroedinger (NY, USA) to

name a few. It has been well known and demonstrated that many of the generic

docking functions do not work well for all protein targets.67 Many researchers

adopted ‘‘consensus’’ scoring schemes to help the accuracy of predictions for

both docking poses and binding affinity.68,69 External validation and consensus

scoring are critically important to the success of a docking project, especially

when docking tools are applied in a high-throughput fashion. Molecular

docking and its application to virtual screening have been well reviewed.70

Most recently, empirical structure-based pharmacophore tools and geometric

shape comparison technologies have proved to be effective when combined with

HTStechnologies. These tools are very appealing to the chemist because of their

intuitive nature. Most notable ones are LigandScout and ROCS.71,72

LigandScout is a structure-based pharmacophore program that generates

pharmacophore centers based on the structure of a given ligand–receptor

complex. The pharmacophore model(s) can then be used to virtually screen

compound libraries or design new combinatorial libraries.73 As an example,

LigandScout was applied to identify pharmacophore patterns from 3D crystal

structures of inhibitors bound to human factor Xa. The resulting chemical-

feature based pharmacophores were used for virtual screening of molecular

databases such as the WDI database. LigandScout can be used for virtual

screening with selective pharmacophore models and de novo design molecular

scaffolds that were able to adequately satisfy the pharmacophore criteria.
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Steindl et al. used LigandScout for parallel pharmacophore-based virtual

screening74 to assess bioactivity profiles for organic molecules. In a proof of

principle study, they built a set of 50 structure-based pharmacophore models

for various viral targets and 100 antiviral compounds. The latter were screened

against all pharmacophore models to determine if their known biological

targets could be correctly predicted via an enrichment of corresponding

pharmacophore matches. The results demonstrate that the desired enrichment

was achieved for approximately 90% of all input molecules.

ROCS (Rapid Overlay of Chemical Structures) is a shape-based, ligand-

centric method that ranks molecules on the basis of their similarity to a known

active molecule in three-dimensional shape space, using atom-centered Gaussian

functions to allow rapid maximization of molecular overlap. In a recent study

that compares the performance of molecular docking and ROCS in virtual

screening experiments, the authors use the receptor-bound ligand conformation

as the query for ROCS. Fundamentally, they use the bound ligand to represent

the protein binding site and search compound collection for molecules that are

similar in shape to the query ligand. Direct comparisons between virtual

screening results from a significant number of docking programs show that the

shape-based ranking method (ROCS) performs at least as well as and often

better than docking. Seven different docking programs were compared to ROCS

across 21 different protein systems. ROCS provided superior performance even

when a bioactive conformation of the ligand was not known. Given the speed,

ease of use and predictability, this approach should be considered where com-

pound library design or screening set design is needed.

Similarly, Schuller et al. reported a pseudo-ligand approach to compound

library design.75 Based on a receptor-derived pharmacophore model (a pseudo-

ligand), which represents an idealized constellation of potential ligand sites that

interact with residues of the binding pocket, compound libraries are examined

for the potential pharmacophore point matches between the pseudo ligand and

the candidate molecule. The method was successfully applied to retrieving

factor Xa inhibitors from a Ugi three-component compound library, and

yielded high enrichment of actives in a retrospective search for cyclooxygenase-

2 (COX-2) inhibitors.

9.2.2 Design for Developability or Drug-likeness

With the much publicized decline in the drug approval rate by the FDA,

according to Biomedtracker (www.BioMedTracker.com), there has been a

significant effort in the pharmaceutical industry to reduce attrition rates by

advancing higher quality candidates to the clinic. As part of the paradigm shift

of considering pharmacokinetic and toxicology issues earlier in discovery, the

number of computational tools intended to address ADMET related properties

has grown markedly. In many ways, library design and compound acquisition

processes are ideal venues to utilize these tools. In each of these processes, there

exists an opportunity to acquire or make many different compounds.
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As discussed above, many methods18,76–79 have been developed to optimize

many properties simultaneously, including ADMET filters.

9.2.2.1 Rule & Alert Based Approaches

Despite the explosion of literature on ADMET modeling, most reported library

design efforts80–83 have relied on simple rule-based methods like the well-known

Rule of Five from Lipinski11 or the flexibility and polar surface area guidelines

championed by Veber et al.84 These approaches are somewhat more physico-

chemical property based, as opposed to being tailored to specific ADMET

activities such as solubility. It is difficult to know if this outcome is dictated more

by computational cost, the perceived quality of the ADMET models, or simply

reflects a barrier to publishing detailed reports of such designs. Lipinski has

suggested that the Rule of Five has been so successful because one rarely finds

more than a handful of independent factors that relate to oral absorption.85

The Rule of Five specifies that compounds that violate two or more of the

following guidelines can be expected to have poor absorption: MWr 500, clog

Pr 5, ten or fewer hydrogen bond acceptors, and five or fewer hydrogen bond

donors. These rules were developed by determining the 90th percentile values

for each of the properties among orally delivered drugs. Veber et al. performed

an analysis of rat oral bioavailability data and determined that bioavailability

appeared to be greater in compounds with ten or fewer rotatable bonds,

regardless of the MW, and a polar surface area below 140 Å2. This focus on

molecular flexibility is not without controversy,86 however. The more recent

focus on lead-like libraries have lead some to use even stricter bounds than

those pioneered by Lipinski. A recent review summarizes many of the more

common rule-based filtering criteria.12

Samiulla et al.81 report the design of natural product scaffolds that were then

used in a small library of vasicinone derivatives. A key aspect of the design was

the incorporation of parameters intended to result in improved ADME prop-

erties by including the filters proposed by Lipinski11 and Veber et al.84 BCUTs

were used to optimize the diversity of the scaffolds while Unity fingerprints

were used in the diversity optimization of the vasicinone library. The measured

solubility, permeability in MDCK cells and CYP inhibition were measured for

the scaffolds. The resulting libraries demonstrated favorable distributions of

each of the measured ADME properties.

A genetic algorithm was utilized to optimize a library design by combining

diversity, structure-based docking, and a modified Rule of Five. The method

uses scores from DOCK4.0 as a measure of binding affinity coupled with a

diversity metric87 and drug-likeness score88 that are combined using linear

equation with user-defined weights. The drug-likeness methodology employed

is a derivative of the Rule of Five. In the initial report,82 example libraries of

Cox-2 inhibitors and PRAR-g inhibitors were designed. For PPAR-g, the

resulting compounds proved more potent than published ligands for this target.

A second report using the same methodology83 discusses a library for human
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cyclophilin. A inhibitors, a potential target for immunological disorders.

Fragments from previously reported inhibitors were used to build a targeted

library of 16 compounds. These compounds showed a KD value as low as 76 nM

and an IC50 as low as 250 nM. Unfortunately, no experimental verification of

the ADME properties was reported.

It is also worth highlighting a recent report of the medicinal chemistry space of

oncology targeted compounds.89 In this report, the authors utilize compounds in

the ZINC,WOMBAT, and NCI databases to describe ‘‘oncology space’’ and how

it compares with the drug-like space resulting from Rule-of-Five-like filters. The

authors demonstrate that applying such cheminformatic filters without careful

consideration of the target could dramatically limit the realm of exploration

available for library design. This, indeed, is an important consideration when

applying filters with the intention of improving ADMET properties.

9.2.2.2 QSAR-based ADMET Models

While most reports in the literature employ a modified version of Lipinski’s

Rule-of-Five criteria, a few have used models that are more sophisticated as

part of the design. Many QSAR models have been reported in the literature for

many different ADMET related properties, from solubility90–95 to perme-

ability96–98 to hERG inhibition99–102 to metabolic stability.103–105 Several recent

reviews106–109 and perspectives110,111 have also been contributed that nicely

summarize the state of the art of ADMET modeling.

A focused library of 320 ketopiperazides was designed by a team at Zentaris

GmbH to inhibit tubulin.112 Several parameters were considered for the design:

the similarity of the ‘‘best’’ docked pose to a pose for a known lead,

library diversity, and the predicted solubility, CNS activity and log P from

the program QikProp.113 The design appears to have been done manually.

Several compounds in the resulting library were shown to have superior acti-

vity compared to the initial lead, while also having favorable calculated

ADMET profiles.

Werner et al. utilized QikProp in the design of a pyrrolecarboxamide com-

binatorial library intended for general screening.114 The factors considered in

the design of the library included regioselective reactivity, avoidance of dia-

stereoselective mixtures, MW, clog P, functional group diversity, cost, and

several calculated parameters from QikProp. Of the compounds in the

final library, 95% had a calculated permeability within the range of mar-

keted drugs. The authors noted that the solubility was somewhat below the

range of marketed drugs. Again, based on the manuscript, it appears that the

library design was done manually as opposed to employing a computational

optimization method.

The predictive models included in the program Volsurf115 were utilized as

part of a library designed to identify non-benzodiazepine ligands for the

GABA-A receptor.116 A virtual library of 500 compounds was enumerated

using Accord for Excel. The virtual library was filtered to remove compounds

283Compound Library Design – Principles and Applications



that did not meet the Rule-of-Five. Predicted Caco-2 permeability and blood–

brain barrier penetration (BBB) values were generated using Volsurf. Com-

pounds meeting defined thresholds for these properties were then filtered again

to contain a particular pharmacophore using Catalyst. The resulting 20 com-

pounds failed to show significant inhibitory activity.

While the number of reports in the literature applying ADMET activity

models is fairly limited, we believe that the actual usage of these models is larger

in practice. There are several hurdles to publishing library designs from an

industrial setting, including the ability to publish activity and ADMET data for

a large number of compounds in the project due to competitive considerations.

Typically, by the time such publication is possible the individual library designs

have faded from memory and the SAR of the lead series seem to take priority.

Nonetheless, with the shift to smaller, targeted, libraries we believe ADMET

models will become more common. These libraries typically are generated from

smaller virtual libraries, making the more expensive computations of most

ADMET models well within acceptable burdens.

9.2.2.3 Undesirable Functionality Filters

Many authors have pointed out the importance of filtering out undesirable

functional groups during library design, screening collection design, or com-

pound acquisition.16 Pearce et al. discuss in detail the derivation of 180 sub-

structure filters based on compound promiscuity and reactivity. They have

developed a Promiscuity Ratio Index (PRI) that identifies functional groups

that display activity more frequently than expected based on historical norms.

PRI values below 1 indicate a substructure that is present in active compounds

less frequently than expected, while those greater than 1 indicate a higher hit

rate. The authors also calculate a 95% confidence interval of the ratio to give

context to the potential promiscuity for the functional group. Figure 9.4 shows

example substructures and the PRI.
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Not N,O,S

Not N,O,SNot N,O,S

Not N,O,S

Quinone methide
PRI: 6.91

OH

Cl,Br,I

Cl,Br,I
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Polyhalo phenold
PRI: 9.84

A

A
A

A

A
A

A
A

A
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A

A AA
A

A A
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A
A

Branched polyciclic aromatic
PRI: 3.73

Figure 9.4 Example substructures with high hit rates.16 PRI¼Promiscuity Ratio
Index (see text for explanation). ‘‘A’’ represents any atom that can form
part of an aromatic structure.
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Once identified, these functional groups can be optionally excluded from

future compound acquisitions or library designs unless a competing interest

encourages their use. A report117 on the compound acquisition process at

Novartis discusses how compounds are prioritized or eliminated for acquisition

based on similarity to the historical collection, as well as physicochemical

properties and undesirable functionality. Many of the same themes are pre-

sented in other reports on compound selection.118

Two recent reports present substructures that show a high likelihood of

reacting with thiol groups (Figure 9.5).119,120 The original work included an

analysis performed manually on data from ALARM NMR119 to identify

several interesting substructures. The follow-up paper described a more auto-

mated system using Pipeline Pilot that is capable of continually updating the

collection of reactive structures as additional data becomes available. In any

event, the substructures contained in the publications represent an additional

source of reactive substructures that should be considered for use in library

design and compound acquisition.

9.2.3 Design for Multiple Objectives and Targets

Simultaneously

As described in previous sections, similarity to leads, molecular diversity, phar-

macophore models, QSAR models and structure-based docking or pharmaco-

phore models can all be used to guide compound library design for biological

activities. Drug-likeness parameters (Lipinski’s Rule-of-Five), liabilities against

P450 enzymes, aqueous solubility, cell permeability and other ADMET models

should be used to select the best quality molecules for consideration, in addition

to the activity concerns. To optimally design combinatorial libraries that have

balanced activity and ADMET properties, researchers have developed library

design tools that employ Multi-objective Optimization (MOO) methods.3,4,77

The combinatorial space is huge when the number of reagents increases. For

example, a reaction that involves amine and carboxylic acids could generate

2500 compounds if we have 50 available amines and 50 carboxylic acids. The

total number of solutions for an 8� 12 library, however, would be on the order

of 1019. Thus, Simulated Annealing (SA) is used to sample the space.

S

OO

2-oxo-1,3-oxathiolane
85%

N

O
N

Benzofurazan
48%

N

N

O

F

Quinoxaline
47%

Figure 9.5 Example substructures with high rates of reactivity against protein thiol
groups.120 The percentage reflects the percentage of cases with experi-
mentally confirmed reactivity as determined in ref. 120.
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In the Piccolo method,4 the objective function combines all possible penalty

functions in a weighted fashion:

EðSÞ ¼
X

wi
EiðSÞ

where, Ei can be Tanimoto ‘‘distances’’ between all the compounds in a given

library and the lead, averaged over the size of the library; it can be reagent

diversity measured as an S-optimal function; product novelty with respect to an

existing compound collection, which can be measured by counting how many

of the new library compounds fall into the neighborhood of compounds in the

existing collection; developability penalty scores such as the percentage of

compounds that violate the Lipinski’s rule of five. The term wi is an adjustable

weight that controls the contribution of an objective factor to the penalty score.

Libraries designed using the multi-objective optimization procedure tend to

have more balanced properties than those designed using only one type of

computational models.
In a similar method, Agrafiotis described an algorithm rooted in the principles

of multi-objective optimization. They employ an objective function that encodes

all of the desired selection criteria, and then use a simulated annealing or evo-

lutionary approach to identify the optimal (or a nearly optimal) subset from

among the vast number of possibilities. Many design criteria can be accom-

modated, including diversity, similarity to known actives, predicted activity and/

or selectivity determined by quantitative structure–activity relationship (QSAR)

models or receptor binding models, enforcement of certain property distribu-

tions, reagent cost and availability, and many others. The method offers the user

full control over the relative significance of the various objectives in the final

design, and permits the simultaneous selection of compounds from multiple

libraries in combinatorial-array or cherry-picking format.

Gillet et al. described the program MoSELECT for multi-objective library

design that is based on a multi-objective genetic algorithm (MOGA).77

MoSELECT searches the product-space of a virtual combinatorial library to

generate a family of equivalent solutions where each solution represents a

combinatorial subset of the virtual library optimized over multiple objectives.

The family of solutions allows the relationships between the objectives to be

explored and thus enables the library designer to make an informed choice on

an appropriate compromise solution.

With the development of chemogenomics strategies to drug discovery, library

designers often need to consider modeling multiple targets in the same gene

family, such as NHR (nuclear hormone receptors), GPCR (G-protein coupled

receptors), kinases, and proteases. Multi-objective optimization methods

should be adopted when multiple computational models for the target activities

have been developed. Schnur et al. have described knowledge-based approa-

ches to target class combinatorial library design.121 Lowrie et al. have described

different strategies for designing GPCR and kinase targeted libraries.122 The

tools that have proven to be the most useful are those that can extract trends

from the computational data from docking and clustering or data mining of
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large amounts of structure–activity data. They reported tools to extract the

relevant patterns from all available information for a family of targets and tools

to efficiently apply models for all targets in the family.

Ideally, when ligand-based or structure-based models are developed for all

members of a gene family, the validated models can be used as part of the multi-

objective function in a comprehensive chemical library design environment.

Like other factors discussed earlier, the predicted activities can be used in the

weighted objective function. Compound library design or virtual screening can

be achieved by optimizing the total objective function.

9.3 Concluding Remarks

We have reviewed various aspects of compound library design, from back-

ground, rationale and significance to its definition to various computational

approaches to library design. Table 9.1 lists the various design factors we have

discussed in this chapter versus three common screening platforms, namely,

monolithic screening where one biological target is screened against, platform

screening where a panel of targets from a gene family are being screened against,

and chemical biology screening where cellular phenotypic screening is conducted.

Proper design factors should be considered according to the project goals.

We also discussed factors and models that need to be employed for the design

against specific biological activities, and then introduced the importance of

ADMET models. We have also reviewed ways to conduct comprehensive,

balanced, multi-objective compound library design. These multi-objective

methods should be applicable to gene family oriented library design as well, so

Table 9.1 Design factors vs. screening platforms.

Design factors
Monolithic
screening

Platform
screening

Chemical
biology

Similarity Single lead or
leads

Leads across members
of family

Leads with
desired
phenotype

Diversity Maximum
diversity

Family directed
diversity

Bioactive
diversity

Pharmacophore
models

Single target
pharmacophore

Union pharmacophore
or intersection
pharmacophore

QSAR models Single assay
QSAR

Joint QSAR across
family

Phenotypic
assay QSAR

Docking models Single target
docking

Multi target docking Structural
genome panel
docking

Drug-likeness/
developability
models

ADMET ADMET ADMET
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long as individual models can be developed and used in the multi-objective

function.

With the recent development of the NIH chemical genomics initiative

(Molecular Library Initiative, MLI), development of comprehensive library

design methods are crucial for its long-term success. Since all targets, not just

the ‘‘drugable genome’’, should be considered for their roles in biological

pathways and networks, we need to design and continue to expand the NIH

library collection in a biologically relevant fashion. This means developing and

validating models for the PubChem assay database, and feedback to iterative

compound collection design. Using known biologically active compounds of

some sort as the seeds to expand the compound collection around biologically

active compounds is a good approach to chemical genomics library design.

Constructing multiple binding site shapes, pharmacophores and assembling

them into a reference panel to profile biologically relevant diversity would be a

complementary approach to the above methods.

Although most applications were of the ‘‘cherry-picking’’ type design, the

combinatorial design of new chemical libraries should also be feasible. In this

case, the scores obtained with the various models can be used to sort the virtual

library, followed by building block frequency analysis (cf. Focus2D) to determine

which reagents should be used in chemical synthesis. Alternatively, combinatorial

optimization approaches, such as those in described in ref. 4, can be applied where

the model-predicted scores are used as the objective function for optimization.

With continuing development of chemical library design or compound col-

lection design methods, better understanding and modeling of ADMET

properties, as well as better validated computational models of individual

biological targets in the human genome, we expect to see further improvement

in the efficiency of drug discovery and chemical probe development in the

foreseeable future.
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CHAPTER 10

Integrated Chemo- and
Bioinformatics Approaches
to Virtual Screening

ALEXANDER TROPSHA

Laboratory for Molecular Modeling and Carolina Center for Exploratory

Cheminformatics Research, CB # 7360 School of Pharmacy, University of

North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

10.1 Introduction

Virtual screening is typically considered an area of computer-aided drug dis-

covery where three-dimensional protein structures are used to discover small

molecules that fit into the active site (docking) and have high predicted binding

affinity (scoring). Traditional docking protocols and scoring functions rely on

explicitly defined three-dimensional (3D) coordinates and standard definitions

of atom types of both receptors and ligands. Albeit reasonably accurate in

many cases, conventional structure-based virtual screening approaches are

relatively computationally inefficient, which typically precludes their applica-

tion towards screening of very large compound collections. Yet millions of

compounds in chemical databases and billions of compounds in synthetically

feasible virtual chemical libraries are available for virtual screening, calling for

the development of approaches that are both fast and accurate in their ability to

identify a small number of viable computational hits.

This chapter discusses the use of structure-based cheminformatics approaches as

a powerful alternative virtual screening methodology that is also complementary

to traditional approaches. The concepts discussed in this chapter extend

cheminformatics approaches typically reserved for ligand-based computational
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drug discovery studies towards novel applications for structure-based virtual

screening of very large available collections of chemical compounds. Previous

chapters of this book have discussed several major cheminformatics concepts that

are employed in ligand-based virtual screening. Methodologies presented in this

chapter rely on these important cheminformatics concepts such as representation

of molecules using multiple descriptors of chemical structures, advanced chemical

similarity calculations in multidimensional descriptor spaces, and machine learn-

ing and data-mining approaches.

We consider the emerging use of cheminformatics principles in devising novel

protocols for structure-based virtual screening, including scoring of bound

ligands and database mining. To set the stage, we begin by describing briefly the

major principles of the conventional structure-based approaches. To make a

bridge between traditional cheminformatics approaches and the structure-

based concepts introduced in the later parts of the chapter we then discuss the

use of predictive QSAR (Quantitative Structure–Activity Relationship) models

for screening chemical libraries. We stress that cheminformatics methodologies

discussed in this chapter are very distinct from conventional structure-based

methods. Nevertheless, they should not be viewed by any means as substitutes

for those approaches. On the contrary, as we discuss in the final section, chem-

informatics-based and conventional 3D structure-based virtual screening

methods form a natural symbiotic methodological continuum. We argue that

cheminformatics approaches that are discussed in this chapter should serve to

enrich and broaden the available repertoire of computational molecular

modeling methodologies that are used for prioritizing subsets of available

chemical databases and libraries for experimental biological assays.

10.2 Availability of Large Compound Collections
for Virtual Screening

The early stages of modern drug discovery often involve screening small

molecules for their effects on a selected protein target or a model of a biological

pathway. In the past 15 years, innovative technologies that enable rapid

synthesis and high-throughput screening of large libraries of compounds have

been adopted in almost all major pharmaceutical and biotech companies. As a

result, there has been a huge increase in the number of compounds available on

a routine basis to quickly screen for novel drug candidates against new targets/

pathways. In contrast, such technologies have rarely become available to the

academic research community, thus limiting its ability to conduct large-scale

chemical genomics research. The NIHMolecular Libraries Roadmap Initiative1

has changed this situation by forming multiple Chemical Library and Screening

Centers. These efforts promise to enhance the academic community’s ability

to perform large-scale chemistry and biological screening against hundreds

of biological targets or pathways, emphasizing tool and probe development in

areas frequently disregarded by pharmaceutical industry such as rare diseases.
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Overall, numerous compounds are available in many databases, as discussed in

a recent review.2 Since the availability of such datasets is critical to make virtual

screening technologies practical, we discuss some of them below.

10.2.1 NIH Molecular Libraries Roadmap Initiative

and the PubChem Database

As an essential component of NIH’s Molecular Libraries Roadmap Initiative,

PubChem is the largest chemical database in the public domain. As of October

2007 it contains 19 600 000 substance records for the Substance database and

10 900 000 unique compound records for the Compound database, with links to

bioassay description, literature, references, and assay data for each entry. Its

BioAssay Database provides searchable descriptions of nearly 600 bioassays,

including descriptions of the conditions and readouts specific to a screening

protocol.

10.2.2 Other Chemical Databases in the Public Domain

ZINC3 is a free database of commercially-available compounds. The 2007 ZINC

release (ZINC7) is the current default version, with ca. 7 000 000 compounds.

Among them, over 4.6 million compounds are in ready-to-dock, 3D formats.

ChemNavigator4 contains the iResearch Library, an up-to-date compilation of

commercially accessible screening compounds from international chemistry

suppliers. This database currently tracks over 39.8 million chemical samples,

with over one million sample record updates per month. ChemSpider5 is deliv-

ered via a web site and allows one to search a chemical database containing

millions of chemical structures and various associated property information. It

includes approximately 20 million unique chemical compounds as of October of

2007. The SureChem database6 allows one to search from more than 5.4 million

unique chemical structures extracted from the full text of US, European and

World Intellectual Property Organization (WO) patent documents, including

prophetic and excluded compounds not found in manually curated databases.

New patents and applications are available for structure search within days of

publication. The database covers over 164 million chemical occurrences in over

7.3 million applications and granted patents. Several smaller databases, both

commercial and publicly available, are described in a recent survey.2 The

availability of these databases with the content frequently linked to the com-

mercial sources of compounds underscores the importance of virtual screening

technologies as enabling tools capable of discovering novel drug candidates.

10.3 Structure-based Virtual Screening

Structure-based virtual screening is fundamental to the field of computer-aided

drug design.7 It entails docking and scoring of libraries of small molecules to
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find compounds that fit into the binding site and bind tightly to the receptor.

Since the first seminal paper was published in 1982 by the Kuntz group,8 this

approach has been used successfully in numerous studies, resulting in many

cases in the design of approved drugs.9 Numerous algorithms and programs

have been introduced (for reviews see refs. 10–12). Some examples of widely

used docking programs include Dock,13 FlexE,14 and Gold.15 We briefly dis-

cuss some of the underlying technologies and challenges faced by the current

approaches.

10.3.1 Major Methodologies

Virtual screening usually includes three types of studies:16 (i) sampling of the

ligand’s positional, conformational and configurational space to predict the

ligand’s pose within the binding site of the receptor; (ii) scoring of the ligand

pose such that the score reflects binding affinity of the ligand; and (iii) hit

identification, i.e., screening compound collections (by means of docking and

scoring) with the goal of identifying the top scoring candidates that are

expected to bind to the receptor. Note that the latter approach does not

necessarily require that the binding affinity is accurately reproduced; the

method efficiency is typically evaluated by its ability to recover known

experimental hits from chemical libraries. Obviously, an accurate scoring

function is critical to the outcome of virtual screening. Generally, scoring

functions can be classified into three types: Force-field-based scoring functions

rely on explicitly computed electrostatic and van der Waals interaction energies

between the ligand and the protein. Empirical scoring functions are defined as

the sum of individual uncorrelated energy terms and regression analysis is used

to reproduce experimental data such as binding energies. Knowledge-based

scoring functions are designed based on various statistical parameters that

could reflect the interaction between ligands and receptors such as the statistics

of pairwise atomic contacts.17 Among the three, knowledge-based scoring

functions are most effective computationally, allowing fast and efficient scoring

of large sets of ligand receptor complexes resulting from docking.

Structure-based cheminformatics virtual screening approaches are probably

closest in spirit to scoring functions. The scoring functions that are discussed

below are judged either by their ability to correlate with experimental binding

affinity or to recover known hits from compound collections.

10.3.2 Challenges and Limitations of Current Approaches

The main challenges in the field of virtual screening include computationally

efficiency of current protocols for mining large chemical databases to identify

putative ligands and the design of accurate and effective scoring functions.

Significant progress has been achieved over many years of research in devel-

oping structure-based virtual screening approaches. However, several recent
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publications comparing many available scoring and docking approaches sug-

gest that their accuracy still needs to be improved considerably to afford their

automated and successful application to solve practical problems in drug

design.10,16,18,19

Scoring functions implemented as part of docking software typically perform

poorly in identifying the correct pose accurately, which is why modern

approaches have converged to separating docking and scoring. Typically,

multiple docking poses are produced initially and then scored independently

using different functions, including in some cases consensus scoring.20–24 Many

robust and accurate algorithms are available to fit the molecule into the binding

site and produce binding poses that position the ligand presumably very close

to its native orientation. However, significant challenges remain in developing

scoring functions that can accurately identify the native binding pose among

many decoys generated using docking. Indeed, the development of accurate

docking and scoring functions continues to be a major limiting factor in

ensuring greater success of structure-based virtual screening.17

A growing number of evaluations of docking programs and scoring functions

have been published in recent years.16,18,25,26 The most recent studies,16 con-

ducted by scientists at GlaxoSmithKline Pharmaceuticals (GSK), characterized

the state of the art for a wide range of docking algorithms and scoring functions

applied to systems of relevance for drug discovery. An evaluation of ten

docking programs and 37 scoring functions was conducted against proteins

from several protein families. Most scoring functions were not successful in

their ability to identify the correct crystallographic conformation from the set

of docked poses. Furthermore, none of the approaches were found to be uni-

versally successful in the accurate prediction of ligand binding affinity,

although reasonable correlations between actual and predicted affinity were

achieved for some protein families. This recent study showed unequivocally

that significant improvements of scoring functions are needed before docking

algorithms can have a consistent major impact on virtual screening and lead

optimization.

Another critical factor in traditional docking calculations is their computa-

tional efficiency. Acceptance or rejection of a ligand must be done efficiently to

screen the large number of candidates. The cheminformatics approaches

we consider below do offer the advantage of computational efficiency

and reasonable accuracy and could supplement or be employed prior to the

theoretically more robust structure-based approaches.

10.4 Implementation of Cheminformatics Concepts
in Structure-based Virtual Screening

This entire book is devoted to cheminformatics and virtual screening – many of

the chapters have discussed major cheminformatics concepts in the context of

virtual screening. The main goal of this chapter is to highlight the applicability
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of common cheminformatics concepts to structure-based virtual screening.

However, before introducing the special methodologies we discuss several

concepts that serve as a theoretical basis for our structure-based cheminfor-

matics techniques. One such concept is chemical similarity, which is discussed

in the Chapter 4 in great detail and therefore will not be discussed here.

Another important concept is the QSAR modeling approach that is intrinsi-

cally based on the chemical similarity principle. Thus, QSAR models can be

regarded as advanced queries for chemical similarity calculations. We discuss

aspects of QSAR modeling that we consider critical to allowing the use of

models for virtual screening, and also introduce important concepts that can be

implemented, in novel ways, as part of structure-based strategies.

10.4.1 Predictive QSAR Models as Virtual Screening Tools

QSAR modeling has been traditionally applied as an evaluative approach, i.e.,

with the focus on developing retrospective and explanatory models of existing

data. Model extrapolation has been considered, if only in a hypothetical sense, in

terms of potential modifications of known biologically active chemicals that

could improve compounds’ activity. Below, we provide arguments and examples

suggesting that current methodologies may afford robust and validated models

capable of accurate prediction of compound properties for molecules not

included in the training sets. We shall discuss a data-analytical modeling

workflow developed in our laboratory that incorporates modules for combina-

torial QSAR model development (i.e., using all possible binary combinations of

available descriptor sets and statistical data modeling techniques), rigorous

model validation, and virtual screening of available chemical databases to

identify novel biologically active compounds. Our approach places particular

emphasis on model validation as well as the need to define model applicability

domains in the chemistry space. We present examples of studies where the

application of rigorously validated QSAR models to virtual screening identified

computational hits that were confirmed by subsequent experimental investiga-

tions. The emerging focus of QSAR modeling on target property forecasting

brings it forward as a predictive, as opposed to evaluative, modeling approach.

Any QSAR method can be generally defined as an application of mathe-

matical and statistical methods to the problem of finding empirical relation-

ships (QSAR models) of the form Pi ¼ k̂ðD1;D2; . . .DnÞ, where Pi are

biological activities (or other properties of interest) of molecules, D1, D2,. . .,Dn

are calculated (or, sometimes, experimentally measured) structural properties

(molecular descriptors) of compounds, and k̂ is some empirically established

mathematical transformation that should be applied to descriptors to calculate

the property values for all molecules. The goal of QSAR modeling is to

establish a trend in the descriptor values, which parallels the trend in biological

activity. In essence, all QSAR approaches imply, directly or indirectly, a simple

similarity principle, which for a long time has provided a foundation for the

experimental medicinal chemistry: compounds with similar structures are

expected to have similar biological activities.
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10.4.1.1 Critical Importance of Model Validation

In our important paper titled ‘‘Beware of q2!’’,27 we have demonstrated the

insufficiency of the training set statistics for developing externally predictive

QSAR models and formulated the main principles of model validation.

Despite the earlier observations of several authors28–30 warning that a high

cross-validated correlation coefficient R2 (q2) is a necessary, but not sufficient,

condition for the model to have high predictive power, many studies continue

to consider q2 as the only parameter characterizing the predictive power of

QSAR models. In ref. 27 we showed that the predictive power of QSAR

models can be claimed only if the model was successfully applied for pre-

diction of the external test set compounds, which were not used in the model

development. We have demonstrated that most models with high q2 values

have poor predictive power when applied for prediction of compounds in the

external test set. Paying attention only to the training set statistics equates to

‘‘narcissistic’’ modeling in the sense that such models appear ‘‘beautiful’’ only

in the eyes of their developers but provide little if any utility to potential users

(‘‘viewers’’) of these models. In a subsequent publication31 the importance of

rigorous validation was again emphasized as a crucial, integral component of

model development. Several examples of published QSPR models with high

fitted accuracy for the training sets, which failed rigorous validation tests,

have been considered. We presented a set of simple guidelines for developing

validated and predictive QSPR models and discussed several validation stra-

tegies such as the randomization of the response variable (Y-randomization)

external validation using rational division of a dataset into training and test

sets. We highlighted the need to establish the domain of model applicability in

the chemical space to flag molecules for which predictions may be unreliable,

and discussed some algorithms that can be used for this purpose. We advo-

cated the broad use of these guidelines in the development of predictive QSPR

models.31–33

At the 37th Joint Meeting of Chemicals Committee and Working Party on

Chemicals, Pesticides & Biotechnology, held in Paris on 17–19 November 2004,

the OECD (Organization for Economic Co-operation and Development)

member countries adopted the following five principles that valid (Q)SAR

models should follow to allow their use in regulatory assessment of chemical

safety: (i) a defined endpoint; (ii) an unambiguous algorithm; (iii) a defined

domain of applicability; (iv) appropriate measures of goodness-of-fit, robust-

ness and predictivity; (v) a mechanistic interpretation, if possible. Since then,

most European authors publishing in the QSAR area include a statement that

their models fully comply with OECD principles (e.g., see refs. 34–37).

Validation of QSAR models is one of the most critical problems of QSAR.

Recently, we have extended our requirements for the validation of multiple

QSAR models selected by acceptable statistics criteria of prediction of the

test set.38 Additional studies in this critical component of QSAR modeling

should establish reliable and commonly accepted ‘‘good practices’’ for model

development.
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10.4.1.2 Applicability Domains and QSAR Model

Acceptability Criteria

One of the most important problems in QSAR analysis is establishing the

domain of applicability for each model. In the absence of the applicability

domain restriction, each model can formally predict the activity of any

compound, even with a completely different structure from those included in

the training set. Thus, the absence of the model applicability domain as a

mandatory component of any QSAR model would lead to the unjustified

extrapolation of the model in the chemistry space and, as a result, a high

likelihood of inaccurate predictions. In our research we have always paid

particular attention to this issue.14,31,39–45 The various definitions of applic-

ability domains have been reviewed in Chapter 8 and we refer interested

readers to this excellent chapter for additional information on this important

subject.

In our earlier publications27,31 we recommended a set of statistical criteria

that must be satisfied by a predictive model. For continuous QSAR, the

criteria we follow in developing activity–property predictors are (i) correlation

coefficient R between the predicted and observed activities; (ii) coefficients of

determination46 (predicted versus observed activities R2
0, and observed versus

predicted activities R02
0 for regressions through the origin); and (iii) slopes k and

k0 of regression lines through the origin. We consider a QSAR model predictive

if the following conditions are satisfied: (i) q2 40.5; (ii) R24 0.6; (iii) [(R2�R2
0)/

R2]o0.1 and 0.85r kr 1.15 or [(R2�R02
0)/R

2]o0.1 and 0.85r k0 r 1.15;

(iv) |R2
0�R02

0|o0.3, where q2 is the cross-validated correlation coefficient

calculated for the training set, but all other criteria are calculated for the

test set.

10.4.1.3 Predictive QSAR Modeling Workflow

Our experience in QSAR model development and validation has led us to

establish a complex strategy that is summarized in Figure 10.1. It describes the

predictive QSAR modeling workflow, which focuses on delivering validated

models and, ultimately, computational hits confirmed by the experimental

validation. We start by randomly selecting a fraction of compounds (typically,

10–15%) as an external validation set. The remaining compounds are

then divided rationally (e.g., using the Sphere Exclusion protocol implemented

in our laboratory33) into multiple training and test sets that are used for model

development and validation, respectively, using criteria discussed in more

detail below. We employ multiple QSAR techniques based on the combina-

torial exploration of all possible pairs of descriptor sets coupled with

various statistical data mining techniques (termed combi-QSAR) and select

models characterized by high accuracy in predicting both training and test sets

data. Validated models are finally tested using the evaluation set. The critical
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step of the external validation is the use of applicability domains. If

external validation demonstrates the significant predictive power of the

models we use all such models for virtual screening of available chemical

databases (e.g., ZINC3) to identify putative active compounds and work with

collaborators who could validate such hits experimentally. The entire

approach is described in detail in several recent papers and reviews (e.g., refs.

31 and 47–49).

In our recent studies we were fortunate to recruit experimental collaborators

who have validated computational hits identified through our modeling of

anticonvulsants,43 D1 antagonists50 and antitumor compounds;51 some of

these studies are described in detail below, preceded by discussion of some

methodological aspects of the workflow development. Thus, models resulting

from this workflow could be used to prioritize the selection of chemicals

for the experimental validation. However, since we can not generally guarantee

that every prediction resulting from our modeling effort will be validated

experimentally we can not include the experimental validation step as a man-

datory part of the workflow on Figure 10.1, which is why we used the

dotted box for this component. We note that our approach shifts the emphasis

on ensuring good (best) statistics for the model that fits known experimental

data towards a focus on generating testable hypothesis about purported

bioactive compounds. Thus, the output of the modeling has exactly same

format as the input, i.e., chemical structures and (predicted) activities, making

model interpretation and utilization completely seamless for medicinal

chemists.

Only accept models
that have a

q2 > 0.6
R2 > 0.6, etc.

Multiple
Training Sets

Validated Predictive
Models with High Internal

& External Accuracy

Original
Dataset

Multiple
Test Sets

Combi-QSAR
Modeling

Split into
Training, Test,
and External

Validation Sets

Activity
Prediction

Y-Randomization

External validation
Using Applicability

Domain

Virtual
Screening
With AD

to Identify Hits

Experimental
Validation of

Hits

Figure 10.1 Flowchart of predictive QSAR modeling framework based on the vali-
dated QSAR models.
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10.4.1.4 Examples of Applications

To illustrate the power of validated QSAR models as virtual screening tools we

discuss the examples of studies that resulted in experimentally confirmed hits.

Such studies could only be performed if there is sufficient data available for a

series of tested compounds such that robust validated models could be devel-

oping using the workflow described in Figure 10.1.

The first example is anticonvulsant compounds. In the first phase of mod-

eling, we applied kNN52 and Simulated Annealing–Partial Least-Squares

(SA-PLS)53 QSAR approaches to a dataset of 48 chemically diverse Functio-

nalized Amino Acids (FAA) with anticonvulsant activity that had been syn-

thesized previously, and, thereby, developed successful QSAR models of FAA

anticonvulsants.14 Both methods utilized multiple descriptors such as mole-

cular connectivity indices or atom pair descriptors, which are derived from two-

dimensional molecular topology. QSAR models with high internal accuracy

were generated, with leave-one-out cross-validated R2 (q2) values ranging

between 0.6 and 0.8. The q2 values for the actual dataset were significantly

higher than those obtained for the same dataset with randomly shuffled activity

values, indicating that the models were statistically significant. The original

dataset was further divided into several training and test sets, and highly pre-

dictive models providing q2 values for the training sets greater than 0.5 and R2

values for the test sets greater than 0.6.

In the second phase of modeling, we applied the validated QSAR models to

mining available chemical databases for new lead FAA anticonvulsant agents.

Two databases have been thoroughly explored: the National Cancer Institute54

and the Maybridge55 databases, including 237 771 and 55 273 chemical struc-

tures, respectively. Database mining was performed independently using ten

individual QSAR models that have been extensively validated using several

criteria of robustness and accuracy. Each individual model selected some hits as

a result of independent database mining, and the consensus hits (i.e., those

selected by all models) were further explored experimentally for their antic-

onvulsant activity. As a result of computational screening of the NCI database,

22 compounds were selected as potential anticonvulsant agents and submitted

to our experimental collaborators. Of these 22 compounds, our collaborators

chose two for synthesis and evaluation; their choice was based on the ease of

synthesis and the fact that these two compounds had structural features that

would not be expected to be found in active compounds based on prior

experience. Several additional compounds, which were close analogs of these

two were either taken from the literature or designed in our collaborator’s

laboratory. In total, seven compounds were re-synthesized and sent to the NIH

for the Maximum Electroshock test (a standard test for the anticonvulsant

activity, which was used for the training set compounds as well). The biological

results indicated that, upon initial and secondary screening, five out of seven

compounds tested showed anticonvulsant activity with an ED50 less than

100 mg kg–1, which is considered promising by the NIH standard. Interestingly,

all seven compounds were also found to be very active in the same tests
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performed on rats (a complete set of experimental data on rats for the training

set were not available, and therefore no QSAR models for rats were built).

Mining of the Maybridge database yielded two additional promising com-

pounds that were synthesized and sent to NIH for the MES anticonvulsant test.

One of the compounds showed moderate anticonvulsant activity, with an ED50

of 30–100mgkg�1 (in mice), while the other was found to be a very potent

anticonvulsant agent, with an ED50 of 18mgkg�1 in mice (i.p.). In summary,

both compounds were found to be very active in both mice and rats.

Figure 10.2 summarizes the results of using validated QSAR models for virtual

screening as applied to the anticonvulsant dataset. It presents a practical

example of the drug discovery workflow that can be generalized for any dataset

where sufficient data to develop reliable QSAR models are available. Impor-

tantly, none of the compounds identified in external databases as potent

anticonvulsants and validated experimentally belong to the same class of FAA

molecules as the training set. This observation was very stimulating because it

underscored the power of our methodology to identify potent anticonvulsants

of novel chemical classes as compared to the training set compounds, which is

one of the most important goals of virtual screening.

Anticancer Agents. A combined approach of validated QSAR modeling and

virtual screening was successfully applied to the discovery of novel tylophor-

ine derivatives as anticancer agents.51 QSAR models were initially developed

for 52 chemically diverse Phenanthrine-based Tylophorine Derivatives

(PBTs) with known experimental EC50 using chemical topological descriptors

(calculated with the MolConnZ program) and variable selection k nearest

neighbor (kNN) method. Several validation protocols have been applied to

achieve robust QSAR models. The original dataset was divided into multiple

training and test sets, and the models were considered acceptable only if the

leave-one-out cross-validated R2 (q2) values were greater than 0.5 for the

NIH

testing

4334 hits

22 compounds
7 compounds

active

Activity prediction using

QSAR models and

applicability domain 

~ 760 QSAR

models

Model

validation

10 best models and

corresponding descriptor

pharmacophores

48

anticonvulsants

Mining ca. 250,000 chemicals

using active probes and

similarity threshold

9 compounds selected

(4 original, 5 modified)

and synthesized

50 consensus

hits

Figure 10.2 Application of the QSAR modeling workflow to the discovery of novel
anticonvulsants. The workflow emphasizes the importance of model
validation and applicability domain in ensuring high hit rates as a result
of database mining with predictive QSAR models.
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training sets and the correlation coefficient R2 values were greater than 0.6

for the test sets. Furthermore, the q2 values for the actual dataset were

shown to be significantly higher than those obtained for the same dataset

with randomized target properties (Y-randomization test), indicating that

models were statistically significant. The ten best models were then employed

to mine a commercially available ChemDiv Database (ca. 500 k compounds),

resulting in 34 consensus hits with moderate to high predicted activities. Ten

structurally diverse hits were experimentally tested and eight were confirmed

active, with the highest experimental EC50 of 1.8 mM, implying an exception-

ally high hit rate (80%). The same ten models were further applied to predict

EC50 for four new PBTs, and the correlation coefficient (R2) between the

experimental and predicted EC50 for these compounds plus eight active con-

sensus hits was shown to be as high as 0.57.

In summary, our studies have established that QSAR models can be used

successfully as virtual screening tools to discover compounds with the desired

biological activity in chemical databases or virtual libraries.43,48,50,51,56 The

discovery of novel bioactive chemical entities is the primary goal of computa-

tional drug discovery, and the development of validated and predictive QSAR

models is critical to achieve this goal. The implementation of some of the chief

principles underlying QSAR modeling as part of structure-based drug dis-

covery strategy presents another exciting avenue at the interface between che-

minformatics and bioinformatics. Examples of such hybrid approaches are

discussed below.

10.4.2 Structure-based Chemical Descriptors of Protein–Ligand

Interface: The EnTESS Method

The prediction of the protein–ligand binding affinity is a critical component of

computational drug discovery. The rapid growth of the Protein Data Bank57

and derivative databases such as PDBBind,21 MOAD58 or BindingDB59 pro-

vide opportunities to enhance current protocols for molecular docking and

scoring, which are at the core of structure-based drug design and hit identifi-

cation. Accurate estimation of binding affinities, or at least correct relative

ranking of different ligands, has proven difficult due to multiple energetic and

entropic factors that must be accounted for.60 As discussed above, the limited

accuracy of current scoring functions is one of the problems hampering the

broad application of docking and virtual screening in lead optimization.

Structure-based drug design approaches rely on the availability of structural

information about protein–ligand complexes. In contrast, ligand-based

approaches rely only on the experimental structure–activity relationships for

ligands only. As discussed above, QSAR methods are typically used to find

correlations between ligands’ binding affinities and their chemical descriptors. As

an innovative use of QSAR approaches, several so-called receptor-dependent

quantitative structure–activity relationship (RD-QSAR) methods have been
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developed that rely on the receptor structure information to calculate indepen-

dent variables.61,62 Holloway and co-workers63 have derived a highly significant

3D-QSAR model for HIV-1 protease and its peptidomimetic inhibitors and

used it to predict binding affinities for newly designed ligands. Several other

authors64–66 have developed new methodologies by considering all of the

enthalpic and entropic contributions as well as solvation effects of the receptor–

ligand interactions and treated them as independent variables in the RD-QSAR

development.

Recently, we have begun to develop a hybrid methodology to predict the

binding affinities for a highly diverse dataset of protein–ligand complexes using

concepts from both structure- and ligand-based approaches. This methodology

is based on four-body statistical scoring function derived by combined appli-

cation of the Delaunay tessellation of protein–ligand complexes and the defi-

nition of chemical atom types using the fundamental chemical concept of

atomic electronegativity. As described in our publications,67,68 Delaunay tes-

sellation naturally partitions a tertiary structure of a protein or a protein–

ligand complex into an aggregate of space-filling, irregular tetrahedra, or

simplices; the vertices of the simplices are quadruplets of nearest neighbor

residues or atoms (Figure 10.3). Thus, Delaunay tessellation reduces a complex

3D structure to a collection of explicit, elementary atomic quadruplet structural

motifs. Four vertices (atoms) of a simplex form a particular quadruplet com-

position and the chemical properties of the atom types can characterize the type

of the tetrahedron. As we describe below the properties of quadruplet atomic

compositions of the interfacial tetrahedral formed by both ligand and receptor

atoms could be used as a novel type of chemical descriptors for the protein–

ligand interface.

Figure 10.3 Illustration of Voronoi/Delaunay tessellation in 2D space (Voronoi
polyhedra are represented by dashed lines, and Delaunay simplices by
solid lines). For the collection of points with 3D coordinates, such as
atoms of the protein–ligand complex, Delaunay simplices are tetrahedra
whose vertices correspond to the atoms.
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10.4.2.1 Derivation of the EnTESS Descriptors

Using Delaunay tessellation, the protein–ligand interface can be defined by

tetrahedra formed by both protein and ligand atoms. We used a distance cutoff

value of 8 Å to exclude Delaunay simplices with long edges (exceeding the

physically meaningful interaction distance) between vertices. As shown in

Figure 10.4, we could distinguish three classes of interfacial tetrahedra, i.e.,

RRRL, RRLL and RLLL, where each R and L corresponds to a receptor and

ligand atom, respectively. For each class we further defined 554 types of

quadruplet compositions based on our definition of chemical atom types (vide

infra) without taking into account their order in the quadruplet. For example,

all quadruplets with atom types C_L, C_R, S_L and X_L, were assigned to the

same [X_L, S_L, C_L, C_R] composition type.

In principle, quadruplet compositions of different atom types could be used

as simple metrics to distinguish different protein–ligand complexes. However,

we sought some fundamental atomic property that could be attributed to any

chemical atom type of either receptor or ligand and could be useful in

describing interatomic interactions at the ligand–receptor interface. We decided

to use the Pauling electronegativity69 as a parameter to characterize atom types.

Electronegativity is considered to be the main factor determining the atom’s

polarity and its ability to form a hydrogen bond. For example, oxygen has high

electronegativity and a high ability to form hydrogen bonds and it is a polar

atom type in most cases. Thus, electronegativity could be used to describe the

interactions between protein and ligand atoms. For instance, Hall et al. have

introduced electrotopological state (E-state) indices, which are indirectly rela-

ted to electronegativity, and successfully used them in QSAR studies of many

datasets.70 Zefirov and co-workers have used the electronegativity equalization

scheme as a source of electronic descriptors to study some types of chemical

reactivity and obtained good models for thermodynamic and kinetic data such

as proton affinity and Taft’s inductive sigma* constants.71

To distinguish ligand vs. protein atoms, we have classified the protein and

ligand C, N, O and S as different atom types. Hydrogen atoms were not con-

sidered since, usually, they are not defined explicitly in X-ray structures. Thus,

we have defined four atom types for receptor proteins and six atom types for

the ligands. In total, there were 554 possible types of interfacial atomic quad-

ruplet compositions, and each of them gave rise to an independent variable

Figure 10.4 Topological Tetrahedral Types: RRRL: formed by three receptor atoms
and one ligand atom; RRLL: formed by two receptor atoms and two
ligand atoms; RLLL: Formed by one receptor atom and three ligand
atoms.
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(a sum of EN values for composing atom types) for our QSBR studies. Table

10.1 summarizes atom-type definitions.

We have applied this procedure to a training set of 264 protein–ligand

complexes selected from the PDBBind dataset21 and counted the number of

occurrences of each of the 554 atom quadruplet types. If the number of times a

particular type occurred was higher than 50, we considered this quadruplet type

significant. Otherwise, this type was discarded, thereby reducing the number of

independent variables for the subsequent analysis; 132 types of quadruplets

were found to occur with sufficiently high frequency. For each type of the

tetrahedral composition, the EN values of the four composing atoms were

added up, and the resulting sums for all of the tetrahedra belonging to this

composition type were then added up again. The result of these calculations

represented the value of the descriptor (i.e., one of possible 132 descriptors) for

the particular protein–ligand complex (Figure 10.5).

Since we employed the concept of electronegativity combined with Delaunay

tessellation of protein–ligand complexes we termed these unique characteristics of

the protein–ligand interface the EnTess descriptors.38 We have applied the vari-

able selection k-nearest neighbor (kNN) QSAR approach52 to establish correla-

tions between binding affinities and the EnTess descriptors as described below.

Table 10.1 Atom-type definitions used in deriving EnTess.

Ligand atom types EN

O 3.4
N 3.0
C 2.5
S 2.4
X 2.0–2.4, 4.0 (P and halogens)
M 0.6–1.6 (metal and all other rare atom types)
Receptor atom types
O 3.4
N 3.0
C 2.5
S 2.4

∑ ∑=
n

i=1

ENij

4

ENm

S_L

C_R

N_

2.5

2.4

3.0

3.4
S_L

C_R

O_L

N_R

j

Figure 10.5 Calculation of the EnTess descriptors. The same atom type from receptor
and ligand is treated differently. In the formulas, m is the mth quadruplet
composition type, n represents the number of occurrences of this com-
position type in a given protein–ligand complex, and j is the vertex index
within the quadruplet.
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10.4.2.2 Validation of the EnTESS Descriptors for Binding

Affinity Prediction

We have employed the EnTess descriptors as independent variables in multi-

variate correlation analysis of the experimental dataset of 264 diverse protein–

ligand complexes with known binding constants selected from the PDBBind

dataset.21 Following the protocols for developing validated and predictive

QSAR models (Section 10.4.1.3 and Figure 10.1) we divided the modeling

datasets into the training, test, and independent validation sets. We have

obtained statistically significant Quantitative Structure-Binding Affinity Rela-

tionships (QSBR) models capable of predicting the binding affinities of ligands

in the independent validation set with an R2 of 0.85 (see ref. 38 for additional

details).

The results were compared with those obtained earlier using both knowledge-

based and empirical scoring functions (Table 10.2). Since there are no standard

training and test sets used by different groups, precise comparison of results is

impossible. Nevertheless, the results show that, generally, EnTess gives better

or at least comparable prediction accuracy of binding affinity as compared to

other scoring functions. For example, training sets in EnTess and SMoG9672

studies have a comparable number of complexes (122–200), while most of the

EnTess test sets are larger than that used in SMoG96 studies (40–118 vs. 46

complexes). However, EnTess gave significantly higher predictive accuracy for

test sets than SMoG (Table 10.2). The R2 values for the test sets obtained with

EnTess are 0.28–0.35 higher than that for SMoG. Even for a much bigger test

set including 118 complexes EnTess gave R2¼ 0.63. With respect to other

published knowledge-based scoring functions, test sets of comparable size and

much smaller training sets (two to four times less) have been used in EnTess

studies; nevertheless, the R2 values from EnTess were approximately 0.1–0.4

higher. Importantly, EnTess afforded high and stable prediction accuracy for

an external structurally diverse dataset (on average, R2
cons¼ 0.81). Alternative

Table 10.2 Comparison of predictive power of EnTess models with that

obtained with alternative scoring functions.

Methods
Training set
size

Test set
size

R2 for
test sets

Consensus R2 for
external set
(10 best models)

BLEEP95,96 351 90 0.53 –
PMF20 697 77 0.61 –
SMoG9672,97 120 46 0.42 –
SMoG200198 725 111 0.436 –
SCORE74 170 11 0.65 –
XSCORE99 200 30 0.36 –
LUDI100 82 12 0.45 –
VALIDATE64 51 14 0.81 –
ChemScore101 82 20 0.63 –
EnTess38 199–175 41–65 0.70–0.77 0.85
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empirical scoring functions, such as VALIDATE,73 led to worse or comparable

results with relatively smaller training sets (except SCORE74 and XSCORE75),

but those test sets are about half the size of those used in EnTess studies. This

usually causes an increase of R2 values. In summary, the models were rigor-

ously validated with test sets, using the additional external prediction set of 24

compounds to simulate the real application of the model, and by performing a

Y-randomization test. The results demonstrate the high prediction power of

these models and the applicability of the novel geometrical chemical descriptors

to receptor–ligand complex binding affinity prediction.

10.4.3 Structure-based Cheminformatics Approach to Virtual

Screening: The CoLiBRI Method

Ligand-based approaches rely on series of ligands with known binding affinities

to build correlations between ligand chemical structure and target properties of

interest, such as binding constants or specific biological activities (see ref. 76 for

a review). The ligand structures are typically represented by multiple chemical

descriptors,77 and statistical data modeling techniques are used to establish

quantitative correlations between descriptors and binding affinities. Chemical

descriptors and various chemical similarity measures (e.g., Euclidean distances

between compounds in multidimensional descriptor space) are at the core of

chemometric approaches to the analysis of molecular databases.78 Such

approaches afford rapid chemical similarity calculations and are widely used in

database mining or rational library design to discover molecules similar to

available compounds that are likely to have similar biological activity.79 Che-

mical similarity searches are much more computationally efficient than struc-

ture-based virtual screening. However, they are more likely to identify false

positives that are too bulky or simply not stereochemically complementary to

the actual binding site because the binding site information is not typically used

as part of the query. Furthermore, chemometric approaches typically identify

compounds that are highly similar to the training set compounds, making it

difficult to identify novel ligands of a different structural class.

We present below a novel computational drug discovery strategy that com-

bines the strengths of both structure- and ligand-based approaches while

attempting to surpass their individual shortcomings. In developing this strat-

egy, we sought a representation that would allow us to characterize both

receptor active sites and their corresponding ligands in the same universal,

multidimensional, chemical descriptor space. We reasoned that mapping of

both binding pockets and corresponding ligands onto the same multi-

dimensional chemistry space would preserve the complementarity relationships

between binding sites and their respective ligands. Thus, we expected that

similar binding sites (where similarity is described quantitatively using one of

the conventional metrics, such as Manhattan distance in multidimensional

descriptor space) would correspond to similar ligands. This would imply that

the relative location of a novel binding site in this chemistry space with respect

to other binding sites could be used to predict the location of the ligand(s)
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complementary to this site in the ligand chemistry space. This virtual ligand(s)

could then be used as a query in chemical similarity searches to identify putative

ligands of the same receptor in available chemical databases. These con-

siderations formed the basis for the development of the cheminformatics

structure-based drug discovery strategy that we termed CoLiBRI (identification

of Complementary Ligand Based on Receptor Information). As we discuss

below, CoLiBRI relies on the knowledge of the receptor active site to afford

highly computationally efficient and accurate identification of its respective

ligand(s) within a large compound database.

10.4.3.1 Representation of Three-dimensional Active Sites

in Multidimensional Chemistry Space

Several important considerations went into finding the most capable descriptors

in the context of our studies. There are two major classes of traditional chemical

descriptors that are derived from either 2D chemical graphs (e.g., molecular

connectivity indices, charge descriptors, and others80–86) or from 3D molecular

models using relative atomic positions in addition to atom properties. A major

benefit of 2D over 3D chemometric methods is that the former neither requires a

conformational search nor structural alignment of molecules. Accordingly, 2D

methods are more easily automated and adapted to the task of database

searching or virtual screening.87,88 In fact, 2D descriptors have been shown to be

superior to 3D descriptors in database mining.89 However, most 2D chemical

descriptors are typically calculated from only complete molecular graphs. Con-

sequently, they can not be used to characterize active sites that are composed of

fragments or individual atoms of amino acid residues that are involved in specific

contacts with ligands. A notable exception is the TAE descriptors.

The TAE/RECON method, developed by Breneman and co-workers,90 is

based on Bader’s quantum theory of Atoms In Molecules (AIM). The TAE

method of molecular electron density reconstruction utilizes a library of inte-

grated atomic ‘‘basins’’, as defined by the AIM theory, to rapidly reconstruct

representations of molecular electron density distributions and van der Waals

electronic surface properties. RECON is capable of rapidly generating

6-31+G* level electron densities and electronic properties of large molecules,

proteins or molecular databases, using TAE reconstruction. A library of atomic

charge density fragments has been assembled in a form that allows for the rapid

retrieval of the fragments, followed by rapid molecular assembly. Additional

details of the method are described elsewhere.90–92

10.4.3.2 Mapping between Chemistry Spaces of Active Sites

and Ligands

The calculation of TAE/RECON descriptors for the ligands (extracted from

their protein complexes) is straightforward. However, similar calculations for

312 Chapter 10



the binding sites first require the identification of individual atoms or amino

acid fragments involved in specific ligand–receptor interactions. To this end, we

have utilized Delaunay tessellation described above (cf. Section 10.4.2) to

identify protein atoms that make contacts with bound ligands. The RECON/

TAE method was then used to generate a set of descriptors for pseudo-

molecules constructed from the active site atoms. In doing so, we relied on the

unique feature of this method that calculates molecular descriptors from those

for molecular fragments, i.e., in principle, the TAE/RECON method does not

require that fragments are connected.

Multiple descriptors were generated for both the receptor binding sites and

their corresponding ligands so that each chemical entity is represented as a

vector in a multidimensional TAE/RECON chemical space. Each dimension of

this space corresponds to specific structural features of the ligands and active

sites, but not every feature may be important for determining ligand–receptor

complementarity. Thus, special procedures were involved to select the most

significant descriptors (see ref. 93 for additional details).

In brief, the CoLiBRI model is a series of ligand–receptor complexes mapped

into a descriptor space. Ligands for a test receptor’s binding pocket are pre-

dicted by positioning the test receptor pocket in the selected descriptor sub-

space and finding the Kmost similar receptor pockets from the training set. The

known ligands of these K most similar receptor pockets are then used to esti-

mate the position of the test receptor’s virtual ligand in the descriptor space (see

below). All potential ligands are then ranked based on their distance to this

predicted virtual ligand point, and the ligand(s) with the smallest distance are

considered the most probable hits. Identifying a potential receptor target for a

test ligand occurs in the opposite fashion, whereby the K most similar training

set ligands are found and the known receptors of those ligands are used to

interpolate what receptor target is the most likely candidate.

The CoLiBRI models were developed using standard leave-one-out cross-

validation procedure as follows:

(1) Choose a receptor in the training set and select its k nearest neighbors in

the TAE/RECON binding site descriptor space. Identify the ligands of the

kNN receptors in the ligand space and use their coordinates to predict

the coordinates of the chosen receptor’s virtual ligand. The coordinates of

the virtual ligand are calculated from Equation (10.1) for k Z 2 (different

values of k are explored to find the best model as described below):

Xppi
��! ¼

XKBest

k¼1

XL:Rk
���!
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� 1�
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��!� XRPredi

����!	
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where XRPredi is the chosen receptor i, Xppi is the predicted ligand vector for

the receptor i, XRk is the k nearest receptor, and XL’Rk is the ligand of the
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k nearest neighbor receptor. For the case where KBest¼ 1, then Xppj is

simply the position of the nearest receptor’s ligand in the ligand space,

XL’R1.

(2) Rank known ligands based on their chemical similarity to the virtual

ligand. The similarities are evaluated as Euclidean distances (Equation

10.2) using only the subset of descriptors that correspond to the current

Nvar selection:

Disti;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XNvar

d¼1

ðXid � XjdÞ2
v
u
u
t ð10:2Þ

(3) Repeat steps 1 and 2 until every receptor in the training set has been

eliminated once, and the receptor’s virtual ligand and the rank order of

all compounds are predicted.

(4) Calculate the PMR for the model using Equation (10.3), where NLR is

the number of ligand–receptor complexes in the training set, Nvar is the

number of descriptors used to build the correlation, Xjd and Xid are

the d-th selected descriptor for ligands j and i, respectively, and Xppid is

the d-th descriptor of the predicted ligand point.

PMR ¼ 1

NLR

XNLR

i¼1

XNLR

j¼1

1 if
PNvar

d¼1

Xjd � Xppid


 �2

�
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(5) Repeat steps 1–4 for k¼3, 4, 5, etc. Formally, the upper limit of k is the

total number of ligand–receptor pairs in the data set minus one; however,

the best value has been found empirically to lie between two and five. The

k value that leads to the lowest PMR value is chosen as optimal.

10.4.3.3 Application of CoLiBRI to Virtual Screening

A diverse training set of 670 receptor binding pockets was selected from a

modeling set of 800 complexes using the Sphere Exclusion Algorithm,32 as is

typically done in our QSAR studies. This set was used by CoLiBRI to build

models with the lowest PMR (Equation 10.3). The remaining 130 receptors
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were used as a test set to evaluate the ability of the optimized model(s) to

identify the correct ligand of each test receptor out of the original 800 ligands.

Previous studies from our group in the area of QSAR indicated that the most

reliable predictions of the test set data are obtained by using the consensus

prediction approach.43 In this approach, multiple variable selection models are

built for the training set and used for the prediction of the test set ligands con-

currently. To accomplish a consensus prediction, each model ranked all com-

pounds in our ligand database based on the distance of each ligand to a test

receptor’s virtual complementary ligand. We then re-ranked the ligands based on

those that were most similar to the virtual ligand across multiple models. These

studies have shown that the inclusion of variable selection improved the mean

rank of the test set from 37 to 24 out of 800. Furthermore, by using 100 models

for consensus prediction, the mean rank of the test set was improved from 24 to

18.1 out of 800 (Figure 10.6). This increased the CPU time required to predict the

test set by more than two orders of magnitude. Nevertheless, despite the

increased CPU time, the calculations were still completed within 15 minutes.

Since variable selection and consensus modeling vastly improved test set pre-

diction, these methods were used in all subsequent model developments.

To simulate the use of CoLiBRI for screening large chemical databases, we

added the 800 training set ligands to the WDI dataset,94 which contained ca.

54 000 drugs and drug candidates at the time of calculations in 2004. Training

set CoLiBRI models were used in a consensus manner to predict the correct

ligands for each of the 130 test receptors from of the entire combined database.

The results illustrated that, even when searching a large compound database,

CoLiBRI is, on average, able to rank known ligands for a test receptor to
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Figure 10.6 Predictive ability of CoLiBRI to identify ligands of 130 test binding
pockets out of the original 800 ligands.
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within the top 310 ligands out of ca. 54 000, which translates to the top 1% of

all compounds (Figure 10.7).

The entire screening calculation for 130 test receptors took roughly four

hours on a 2.4GHz Pentium 4 machine. Figure 10.7 illustrates that most of the

ligands were correctly identified within the top 12 ranked compounds; however,

there were two distant outliers that made the average rank much higher. These

two outliers (PDB codes 1BM7 and 1G4J) did not contain a receptor–ligand

complex from the same family as those in the training set, which could possibly

explain the inaccuracy of the predictions. The ligands extracted from 1BM7

and 1G4J, flufenamic acid and 4-(aminosulfonyl)-N-[(2,3,4,5,6-penta-

fluorophenyl)methyl]benzamide, respectively, also do not appear to be very

similar to ligands found within the training dataset. This additional dissim-

ilarity may have also played a role in their poor prediction. CoLiBRI appears

to perform best when a receptor of the same family as the test set receptor is

present in the training set. Otherwise, CoLiBRI is best used as a quick, rough

filtering tool that can be used prior to the application of alternative less com-

putationally efficient but perhaps more robust screening methodologies.

10.5 Summary and Conclusions: Integration
of Conventional and Cheminformatics
Structure-based Virtual Screening Approaches

In this chapter, we have considered the use of cheminformatics approaches

towards structure-based virtual screening. (Parenthetically, this terms is
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Figure 10.7 Predictive ability of CoLiBRI to identify ligands of 130 test binding
pockets from the WDI (World Drug Index) and the original 800 ligands.

316 Chapter 10



traditionally reserved for approaches that explicitly utilize the knowledge of 3D

structure of the protein active site; however, the term ‘‘structure’’ applies

equally well to cheminformatics ligand-based approaches as well where the

structure of low molecular weight compounds that are known to bind to a

specific receptor is used for virtual screening using similarity or QSAR based

approaches.) We have reviewed the major tenets and limitations of conven-

tional target structure-based approaches and presented evidence that several

typical cheminformatics constructs (e.g., structure representation using multi-

dimensional chemical descriptor spaces, QSAR models, similarity searches)

could be extended towards novel applications for structure-based design. Both

types of approaches have their natural advantages and limitations. Thus, most

ligand-based methods can not be applied effectively unless the structure and

activity of a series of ligands is known. Conversely, structure-based approaches

can be used in principle even in the case of orphan receptors where no infor-

mation about any ligands is available (although, of course, the knowledge of at
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least a few low molecular weight ligands, especially co-crystallized with the

target protein, is very helpful). On the other hand, cheminformatics approaches

offer the advantage of computational efficiency and in some cases when a

significant number of protein ligands are known could perhaps be as effective as

structure-based methods in identifying potent ligands from chemical libraries as

a result of virtual screening.

As mentioned in the Introduction, the two types of methods should not be

viewed as competing. In fact, the most attractive approach is to use both types

in concert when possible, i.e., when enough data to enable their use is available.

Figure 10.8 illustrates a scenario when both cheminformatics and traditional

structure-based methods could be applied in combination to screen large

compound collections against a target with known 3D structure (and perhaps

known ligands). Thus, one could start using fast cheminformatics approaches

(such as CoLiBRI and if possible QSAR models) to filter out a significant

fraction of the available compound collection. Then, docking methods (such as

FRED or DOCK) could be used to generate poses for the remaining com-

pounds, and scoring approaches (e.g., EnTess or current scoring functions,

possibly in consensus fashion) could help to eliminate further those molecules

that are unlikely to have an appreciably high binding affinity. Finally, most

theoretically robust but relatively inefficient methods such as molecular

dynamics or free energy simulations could be applied to a relatively small

number of computational hits resulting from the previous steps of the work-

flow. In the end, we may arrive at a small number of viable ligands in receptor

bound conformation with high predicted binding affinity that can be tested

experimentally. Strategies that integrate cheminformatics and bioinformatics

approaches to virtual screening may become especially useful as the databases

of available or synthetically feasible compounds continue to grow.
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