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FOREWORD 
 
 

This book on "Strategic Applications of Named Reactions in Organic Synthesis" 

is destined to become unusually useful, valuable, and influential for advanced students 

and researchers in the field. It breaks new ground in many ways and sets an admirable 

standard for the next generation of texts and reference works. Its virtues are so 

numerous there is a problem in deciding where to begin. My first impression upon 

opening the book was that the appearance of its pages is uniformly elegant and pleasing 

– from the formula graphics, to the print, to the layout, and to the logical organization and 

format. The authors employ four-color graphics in a thoughtful and effective way. All the 

chemical formulas are exquisitely drawn. 

The book covers many varied and useful reactions for the synthesis of complex 

molecules, and in a remarkably clear, authoritative and balanced way, considering that 

only two pages are allocated for each. This is done with unusual rigor and attention to 

detail. Packed within each two-page section are historical background, a concise 

exposition of reaction mechanism and salient and/or recent applications. The context of 

each example is made crystal clear by the inclusion of the structure of the final synthetic 

target. The referencing is eclectic but extensive and up to date; important reviews are 

included. 

The amount of information that is important for chemists working at the frontiers 

of synthesis to know is truly enormous, and also constantly growing. For a young chemist 

in this field, there is so much to learn that the subject is at the very least daunting. It 

would be well neigh impossible were it not for the efforts of countless authors of 

textbooks and reviews. This book represents a very efficient and attractive way forward 

and a model for future authors. If I were a student of synthetic chemistry, I would read 

this volume section by section and keep it close at hand for reference and further study. 

I extend congratulations to László Kürti and Barbara Czakó for a truly fine 

accomplishment and a massive amount of work that made it possible. The scholarship 

and care that they brought to this task will be widely appreciated because they leap out of 

each page. I hope that this wonderful team will consider extending their joint venture to 

other regions of synthetic chemical space. Job well done! 

 

E. J. Corey 
January, 2005 
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INTRODUCTION 
 

The field of chemical synthesis continues to amaze with its growing and 

impressive power to construct increasingly complex and diverse molecular architectures. 

Being the precise science that it is, this discipline often extends not only into the realms 

of technology, but also into the domains of the fine arts, for it engenders unparallel 

potential for creativity and imagination in its practice. Enterprises in chemical synthesis 

encompass both the discovery and development of powerful reactions and the invention 

of synthetic strategies for the construction of defined target molecules, natural or 

designed, more or less complex. While studies in the former area –synthetic 

methodology– fuel and enable studies in the latter –target synthesis– the latter field offers 

a testing ground for the former. Blending the two areas provides for an exciting endeavor 

to contemplate, experience, and watch. The enduring art of total synthesis, in particular, 

affords the most stringent test of chemical reactions, old and new, named and unnamed, 

while its overall reach and efficiency provides a measure of its condition at any given 

time. The interplay of total synthesis and its tools, the chemical reactions, is a fascinating 

subject whether it is written, read, or practiced. 

This superb volume by László Kürti and Barbara Czakó demonstrates clearly the 

power and beauty of this blend of science and art. The authors have developed a 

standard two-page format for discussing each of their 250 selections whereby each 

named reaction is concisely introduced, mechanistically explained, and appropriately 

exemplified with highlights of constructions of natural products, key intermediates and 

other important molecules. These literature highlights are a real treasure trove of 

information and a joy to read, bringing each named reaction to life and conveying a 

strong sense of its utility and dynamism. The inclusion of an up-to-date reference listing 

offers a complete overview of each reaction at one’s fingertips. 

The vast wealth of information so effectively compiled in this colorful text will not 

only prove to be extraordinarily useful to students and practitioners of the art of chemical 

synthesis, but will also help facilitate the shaping of its future as it moves forward into 

ever higher levels of complexity, diversity and efficiency. The vitality of the enduring field 

of total synthesis exudes from this book, captivating the attention of the reader 

throughout. The authors are to be congratulated for the rich and lively style they 

developed and which they so effectively employed in their didactic and aesthetically 

pleasing presentations. The essence of the art and science of synthesis comes alive from 

the pages of this wonderful text, which should earn its rightful place in the synthetic 

chemist’s library and serve as an inspiration to today’s students to discover, invent and 

apply their own future named reactions. Our thanks are certainly due to László Kürti and 

Barbara Czakó for a splendid contribution to our science. 

K.C. Nicolaou 
January, 2005 
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PREFACE 
 

Today’s organic chemist is faced with the challenge of navigating his or her way 

through the vast body of literature generated daily. Papers and review articles are full of 

scientific jargon involving the description of methods, reactions and processes defined by 

the names of the inventors or by a well-accepted phrase. The use of so-called “named 

reactions” plays an important role in organic chemistry. Recognizing these named 

reactions and understanding their scientific content is essential for graduate students and 

practicing organic chemists.  

This book includes some of the most frequently used named reactions in organic 

synthesis. The reactions were chosen on the basis of importance and utility in synthetic 

organic chemistry. Our goal is to provide the reader with an introduction that includes a 

detailed mechanism to a given reaction, and to present its use in recent synthetic 

examples. This manuscript is not a textbook in the classical sense: it does not include 

exercises or chapter summaries. However, by describing 250 named organic reactions 

and methods with an extensive list of leading references, the book is well-suited for 

independent or classroom study. On one hand, the compiled information for these 

indispensable reactions can be used for finding important articles or reviews on a given 

subject. On the other hand, it can also serve as supplementary material for the study of 

organic reaction mechanisms and synthesis.  

This book places great emphasis on the presentation of the material. Drawings 

are presented accurately and with uniformity. Reactions are listed alphabetically and 

each named reaction is presented in a convenient two-page layout. On the first page, a 

brief introduction summarizes the use and importance of the reaction, including 

references to original literature and to all major reviews published after the primary 

reference. When applicable, leading references to modifications and theoretical studies 

are also given. The introduction is followed by a general scheme of the reaction and by a 

detailed mechanism drawn using a four-color code (red, blue, green and black) to ensure 

easy understanding. The mechanisms always reflect the latest evidence available for the 

given reaction. If the mechanism is unknown or debatable, references to the relevant 

studies are included. The second page contains 3 or 4 recent synthetic examples utilizing 

the pertinent named reaction. In most cases the examples are taken from a synthetic 

sequence leading to the total synthesis of an important molecule or a natural product. 

Some examples are taken from articles describing novel methodologies. The synthetic 

sequences are drawn using the four-color code, and the procedures are described briefly 

in 2-3 sentences. If a particular named reaction involves a complex rearrangement or the 

formation of a polycyclic ring system, numbering of the carbon-skeleton is included in 

addition to the four-color code. In the depicted examples, the reaction conditions as well 

as the ratio of observed isomers (if any) and the reported yields are shown. The target of  
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the particular synthetic effort is also illustrated with colors indicating where the 

intermediates reside in the final product. 

The approach used in this book is also unique in that it emphasizes the clever 

use of many reactions that might otherwise have been overlooked. 

The almost 10,000 references are indexed at the end of the book and include the 

title of the cited book, book section, chapter, journal or review article. The titles of seminal 

papers written in a foreign language were translated to English. The name of the author 

of a specific synthetic example was chosen as the one having an asterisk in the 

reference. 

In order to make the book as user-friendly as possible, we have included a 

comprehensive list of abbreviations used in the text or drawings along with the structure 

of the protecting groups and reagents. Also in an appendix, the named organic reactions 

are grouped on the basis of their use in contemporary synthesis. Thus the reader can 

readily ascertain which named organic reactions effect the same synthetic 

transformations or which functional groups are affected by the use of a particular named 

reaction. Finally, an index is provided to allow rapid access to desired information based 

on keywords found in the text or the drawings. 
 

     László Kürti  &  Barbara Czakó 
University of Pennsylvania  

Philadelphia, PA 

January 2005 
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IV. EXPLANATION OF THE USE OF COLORS  
IN THE SCHEMES AND TEXT 

 
The book uses four colors (black, red, blue, and green) to depict the synthetic and mechanistic schemes and highlight 

certain parts of the text. In the “Introduction” and “Mechanism” sections of the text, the title named reaction/process 

is highlighted in blue and typed in italics:  

“The preparation of ketones via the C-alkylation of esters of 3-oxobutanoic acid 
(acetoacetic esters) is called the acetoacetic ester synthesis. Acetoacetic esters 
can be deprotonated at either the C2 or at both the C2 and C4 carbons, 
depending on the amount of base used.” 

 
All other named reactions/processes that are mentioned are typed in italics: 

“Dilute acid hydrolyzes the ester group, and the resulting β-keto acid undergoes 
decarboxylation to give a ketone (mono- or disubstituted acetone derivative), 
while aqueous base induces a retro-Claisen reaction to afford acids after 
protonation.” 

 
In the “Synthetic Applications” section, the name of the target molecule is highlighted in blue: 

“During the highly stereoselective total synthesis of epothilone B by J.D. White 
and co-workers, the stereochemistry of the alcohol portion of the macrolactone 
was established by applying Davis’s oxaziridine oxidation of a sodium enolate.” 

 
In the schemes, colors are applied to highlight the changes in a given molecule or intermediate (formation and 

breaking of bonds). It is important to note that due to the immense diversity of reactions, it is impossible to implement 

a strictly unified use of colors. Therefore, each scheme has a unique use of colors specifically addressing the 
given transformation. By utilizing four different colors the authors’ goal is to facilitate understanding. The authors 

hope that the readers will look up the cited articles and examine the details of a given synthesis.  The following 

sample schemes should help the readers to understand how colors are used in this book. 

 
• In most (but not all) schemes the starting molecule is colored blue, while the reagent or the reaction partner may 

be of any of the remaining two colors (red and green). The newly formed bonds are always black. 

• The general schemes follow the same principle of coloring, and where applicable the same type of key reagents 

are depicted using the same color. (In this example the two different metal-derived reagents are colored green.) 
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• The mechanistic schemes benefit the most from the use of four colors. These schemes also include extensive 
arrow-pushing. The following two schemes demonstrate this point very well. 

 
• The catalytic cycle for the Suzuki cross-coupling: 

 

 

• The mechanism of the Swern oxidation: 
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• In the case of complex rearrangements, numbering of the initial carbon skeleton has been applied in addition to 

the colors to facilitate understanding. Again, the newly formed bonds are black. 

 

 

 

• In most instances, the product of a given named reaction/process will be part of a larger structure (e.g., natural 

product) at the end of the described synthetic effort. For pedagogical reasons, the authors decided to indicate 

where the building block appears in the target structure. It is the authors’ hope that the reader will be able to put 

the named reaction/process in context and the provided synthetic example will not be just an abstract one. 

 

• The references at the end of the book are listed in alphabetical order, and the named reaction for which the 

references are listed is typed in blue and with boldface (see Dakin oxidation). Important: the references are 
listed in chronological order when they appear as superscript numbers in the text (e.g., reference 10 is a 

more recent paper than reference 12, but it received a smaller reference number because it was cited in the text 

earlier). 

 

Mechanism: 12,10,15-17 
 

The mechanism of the Dakin oxidation is very similar to the mechanism of the Baeyer-Villiger oxidation.  
  
 
• For the Dakin oxidation example, the references at the end of the book will be printed in the order they have 

been cited, but within a group of references (e.g., 15-17) they appear in chronological order. 

 
Dakin oxidation 
 
10. Hocking, M. B. Dakin oxidation of o-hydroxyacetophenone and some benzophenones. Rate enhancement and mechanistic aspects. 
Can. J. Chem. 1973, 51, 2384-2392. 
11. Matsumoto, M., Kobayashi, K., Hotta, Y. Acid-catalyzed oxidation of benzaldehydes to phenols by hydrogen peroxide. J. Org. Chem. 
1984, 49, 4740-4741. 
12. Ogata, Y., Sawaki, Y. Kinetics of the Baeyer-Villiger reaction of benzaldehydes with perbenzoic acid in aquo-organic solvents. J. Org. 
Chem. 1969, 34, 3985-3991. 
13. Boeseken, J., Coden, W. D., Kip, C. J. The synthesis of sesamol and of its β-glucoside. The Baudouin reaction. Rec. trav. chim. 1936, 
55, 815-820. 
14. Kabalka, G. W., Reddy, N. K., Narayana, C. Sodium percarbonate: a convenient reagent for the Dakin reaction. Tetrahedron Lett. 1992, 
33, 865-866. 
15. Hocking, M. B., Ong, J. H. Kinetic studies of Dakin oxidation of o- and p-hydroxyacetophenones. Can. J. Chem. 1977, 55, 102-110. 
16. Hocking, M. B., Ko, M., Smyth, T. A. Detection of intermediates and isolation of hydroquinone monoacetate in the Dakin oxidation of p-
hydroxyacetophenone. Can. J. Chem. 1978, 56, 2646-2649. 
17. Hocking, M. B., Bhandari, K., Shell, B., Smyth, T. A. Steric and pH effects on the rate of Dakin oxidation of acylphenols. J. Org. Chem. 
1982, 47, 4208-4215. 
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V. LIST OF ABBREVIATIONS 

Abbreviation Chemical Name Chemical Structure 

18-Cr-6 18-crown-6 
O

O
O

O

O
O

Ac acetyl O

acac acetylacetonyl O O

AA asymmetric aminohydroxylation NA

AD asymmetric dihydroxylation NA

ad adamantyl 

ADDP 1,1'-(azodicarbonyl)dipiperidine N N
N

O

O
N

ADMET acyclic diene metathesis polymerization NA

acaen N,N’-bis(1-methyl-3-oxobutylidene)ethylenediamine N
N

O

O

AIBN 2,2'-azo bisisobutyronitrile N NN N

Alloc allyloxycarbonyl 
OO

Am amyl (n-pentyl) 

An p-anisyl O

ANRORC anionic ring-opening ring-closing NA

aq aqueous NA

AQN anthraquinone 

O

O

Ar aryl (substituted aromatic ring) NA



xviii

Abbreviation Chemical Name Chemical Structure 

ATD aluminum tris(2,6-di-tert-butyl-4-methylphenoxide) OAl

3
atm 1 atmosphere = 105 Pa (pressure) NA

ATPH aluminum tris(2,6-diphenylphenoxide) 
O

Ph

Ph

Al

3

BBN (9-BBN) 9-borabicyclo[3.3.1]nonane (9-BBN) 
B

H

B 9-borabicyclo[3.3.1]nonyl 
B

BCME bis(chloromethyl)ether OCl Cl

BCN N-benzyloxycarbonyloxy-5-norbornene-2,3-
dicarboximide O

N

O

O

O
O

BDPP (2R, 4R) or (2S, 4S) bis(diphenylphosphino)pentane 
(R) (R)

Ph2P PPh2

BER borohydride exchange resin NA

BHT 2,6-di-t-butyl-p-cresol (butylated hydroxytoluene) 

OH

BICP 2(R)-2’(R)-bis(dipenylphosphino)-1(R),1’(R)-
dicyclopentane 

(R)

(R) (R)

(R)

Ph2P PPh2

BINAL-H 2,2'-dihydroxy-1,1'-binaphthyl lithium aluminum 
hydride

O
O

Al
H

H
Li

BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl PPh2

PPh2
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Abbreviation Chemical Name Chemical Structure 

BINOL 1,1'-bi-2,2'-naphthol
OH
OH

Bip biphenyl-4-sulfonyl S

O

O

bipy 2,2'-bipyridyl N N

BLA Brönsted acid assisted chiral Lewis acid NA

bmin 1-butyl-3-methylimidazolium cation N N

BMS Borane-dimethyl sulfide complex H3B SMe2

Bn benzyl 

BNAH 1-benzyl-1,4-dihydronicotinamide N

O

NH2

BOB 4-benzyloxybutyryl O
O

Boc t-butoxycarbonyl 
O O

BOM benzyloxymethyl O

BOP-Cl bis(2-oxo-3-oxazolidinyl)phosphinic chloride 
P

O Cl

O
N

O

O
N

O

bp boiling point NA

BPD bis(pinacolato)diboron 
O
O

BB
O
O

BPO benzoyl peroxide 
O

O
Ph

O

Ph

O

BPS (TBDPS) t-butyldiphenylsilyl Si



xx

Abbreviation Chemical Name Chemical Structure 

BQ benzoquinone O O

Bs brosyl = 
(4-bromobenzenesulfonyl) 

S Br
O

O

BSA N,O-bis(trimethylsilyl)acetamide 
O

N SiSi

BSA Bovine serum albumin NA

Bt 1- or 2-benzotriazolyl N
N

N

BTAF benzyltrimethylammonium fluoride N
F

BTEA benzyltriethylammonium N

BTEAC benzyltriethylammonium chloride N
Cl

BTFP 3-bromo-1,1,1-trifluoro-propan-2-one 
O F

F
F

Br

BTMA benzyltrimethylammonium N

BTMSA bis(trimethylsilyl) acetylene Si Si

BTS bis(trimethylsilyl) sulfate 
S

O

O

O
O

Si Si

BTSA benzothiazole 2-sulfonic acid 
S

N
S
O

O
HO

BTSP bis(trimethylsilyl) peroxide 
O

OSi
Si

Bz benzoyl O

Bu (nBu) n-butyl 

c cyclo NA



xxi

Abbreviation Chemical Name Chemical Structure 
ca circa

(approximately) 
NA

CA chloroacetyl O
Cl

CAN 
cerium(IV) ammonium nitrate (cericammonium 

nitrate) Ce(NH4)2(NO3)6

cat. catalytic NA

CB catecholborane 
O

HB
O

CBS Corey-Bakshi-Shibata reagent 
N B

O

H Ph
Ph

R

R = H, alkyl

Cbz (Z) benzyloxycarbonyl 
O

O

cc. or conc. concentrated NA

CCE constant current electrolysis NA

CDI carbonyl diimidazole 

O

N NNN

CHD 1,3 or 1,4-cyclohexadiene 
1,3-CHD 1,4-CHD

CHIRAPHOS 2,3-bis(diphenylphosphino)butane 
(S)

(S)P
Ph

Ph

P
Ph

Ph

Chx (Cy) cyclohexyl 

CIP 2-chloro-1,3-dimethylimidazolidinium 
hexafluorophosphate 

NHN

Cl

PF6

CM (XMET) cross metathesis NA

CMMP cyanomethylenetrimethyl phosphorane P
N

COD 1,5-cyclooctadiene 

COT 1,3,5-cyclooctatriene 

Cp cyclopentadienyl 

CPTS collidinium-p-toluenesulfonate 
NHS

O

O
O
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Abbreviation Chemical Name Chemical Structure 

CRA complex reducing agent NA

Cr-PILC chromium-pillared clay catalyst NA

CSA camphorsufonic acid 

O SO3H

CSI chlorosulfonyl isocyanate 
Cl

S
O

O

N
C

O

CTAB cetyl trimethylammonium bromide 
N Br

CTACl cetyl trimethylammonium chloride 
N

C15H31

Cl

CTAP cetyl trimethylammonium permanganate 
N

C15H31

MnO4

Δ heat NA

d days (length of reaction time) NA

DABCO 1,4-diazabicyclo[2.2.2]octane 

N

N

N
N

DAST diethylaminosulfur trifluoride S N
F

F
F

DATMP diethylaluminum 2,2,6,6-tetramethylpiperidide N
AlEt2

DBA (dba) dibenzylideneacetone 
O

Ph
Ph

DBAD di-tert-butylazodicarboxylate N
NO

O

O

O

DBI dibromoisocyanuric acid N
O

N
O

NH

OBr

Br
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Abbreviation Chemical Name Chemical Structure 

DBM dibenzoylmethane 

O O

DBN 1,5-diazabicyclo[4.3.0]non-5-ene 
N

N

1
2

3

4

5
67

8

9

DBS dibenzosuberyl 

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene 
N

N

1
2

3

4

5
6

7
8

9

10

11

DCA 9,10-dicyanoanthracene 

CN

CN

DCB 1,2-dichlorobenzene Cl

Cl

DCC dicyclohexylcarbodiimide 
N

C
N

DCE 1,1-dichloroethane 
Cl

Cl

DCM dichloromethane CH2Cl2

DCN 1,4-dicyanonaphthalene 

CN

CN

Dcpm dicyclopropylmethyl 

DCU N,N’-dicyclohexylurea 
N
H

O

N
H

DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone 

O

O
NC

NC Cl

Cl

de diastereomeric excess NA



xxiv

Abbreviation Chemical Name Chemical Structure 

DEAD diethyl azodicarboxylate N
N

O

O
O

O

DEIPS diethylisopropylsilyl Si

DEPBT 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin- 
4(3H)-one

N
N

N

O
O

P

OEt
EtO

O

DET diethyl tartrate 

OH

HO

(R) (R)

O

O
O

O

DHP 3,4-dihydro-2H-pyran 
O

DHQ dihydroquinine 

N

N
H OH

OMe

H

(DHQ)2PHAL bis(dihydroquinino)phthalazine 

N

MeO

N
Et

H
O

NN
O

N
H

Et

H

N

OMe

H

DHQD dihydroquinidine 

N

OMe

H
OH

NH

(DHQD)2PHAL bis(dihydroquinidino)phthalazine 

N

OMe

N

H
O

N N
O

N
H

H

N

MeO

H

Et Et

DIAD diisopropyl azodicarboxylate N
N O

O

O

O

DIB
 (BAIB or PIDA) 

(diacetoxyiodo)benzene 
I

O

O

O
O



xxv

Abbreviation Chemical Name Chemical Structure 

DIBAL (DIBAH) 
DIBAL-H 

diisobutylaluminum hydride 
Al
H

DIC diisopropyl carbodiimide 
N

C
N

diop 4,5-bis-[(diphenylphosphanyl)methyl]-2,2-dimethyl-
[1,3]dioxolane 

(R)

(R)O

O PPh2

PPh2

DIPAMP 1,2-bis(o-anisylphenylphosphino)ethane P

O

P

O

DIPEA 
(Hünig's base) 

diisopropylethylamine N

DIPT diisopropyl tartrate 

OH

HO

(R) (R)

O

O
O

O

DLP dilauroyl peroxide O
O C10H21

O

C10H21

O

DMA (DMAC) N,N-dimethylacetamide 

O

N

DMAD dimethyl acetylene dicarboxylate 
O

OO

O

DMAP N,N-4-dimethylaminopyridine N N

DMB m-dimethoxybenzene 
O O

DMDO dimethyl dioxirane O
O

DME 1,2-dimethoxyethane O
O



xxvi

Abbreviation Chemical Name Chemical Structure 

DMF N,N-dimethylformamide 
O N

H

DMI 1,3-dimethylimidazolidin-2-one NN

O

DMP Dess-Martin periodinane 
I

O

O

AcO OAc
OAc

DMPS dimethylphenylsilyl Si

DMPU
1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidone 

(N,N-dimethyl propylene urea) 
N

N

O

DMTSF dimethyl(methylthio)sulfonium tetrafluoroborate Me
S

S
Me

Me
BF4

DMS dimethylsulfide S

DMSO dimethylsulfoxide S
O

DMT 4,4’-dimethoxytrityl 

O O

DMTMM
4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-

methylmorpholinium chloride N O

N

N

N

O

O

Cl

DMTr 4,4’-dimethyltrityl 

DMTST (dimethylthio)methylsulfonium 
trifluoromethanesulfonate 

S
S

S
S
O

O
O

F
F

F

DNA deoxyribonucleic acid NA



xxvii

Abbreviation Chemical Name Chemical Structure 

DPA (DIPA) diisopropylamine 
N
H

DPBP 2,2'-bis(diphenylphosphino)biphenyl (S)

Ph2P PPh2

DPDC diisopropyl peroxydicarbonate O
O O

O

O

O

DPDM diphenyl diazomethane 

N+

N-

DPEDA 1,2-diamino-1,2-diphenylethane (R) (R)

H2N NH2

DPIBF diphenylisobenzofuran O

Ph

Ph

DPPA diphenylphosphoryl azide (diphenylphosphorazidate) 
P

O

O O

N N+ N-

Dppb (ddpb) 1,4-bis(diphenylphosphino)butane Ph2P
PPh2

dppe 1,2-bis(diphenylphosphino)ethane PPh2

Ph2P

dppf 1,1'-bis(diphenylphosphino)ferrocene Fe
PPh2

PPh2

dppm bis(diphenylphosphino)methane Ph2P PPh2

dppp 1,3-bis(diphenylphosphino)propane Ph2P PPh2

DPS
(also TBDPS or 

BPS)
t-butyldiphenylsilyl Si



xxviii

Abbreviation Chemical Name Chemical Structure 

DPTC O,O’-di(2’-pyridyl)thiocarbonate 
S

OO NN

dr diastereomeric ratio NA

DTBAD (DBAD) di-tert-butyl azodicarboxylate N
NO

O

O

O

DTBB 4,4’-di-tert-butylbiphenyl 

DTBP 2,6-di-tert-butylpyridine N

DTBMP 2,6-di-tert-butyl-4-methylpyridine 
N

DTE 1,4-dithioerythritol SH
OH

OH

SH

DVS 1,3-divinyl-1,1,3,3-tetramethyldisiloxane 
Si

O
Si

Me

Me

Me

Me

E+ electrophile (denotes any electrophile in general) NA

E2 bimolecular elimination NA

ED effective dosage NA

EDA ethyl diazoacetate O

O
N+

N-

EDDA ethylenediamine diacetate 
NH3

H3N
OAc

OAc

EDC (EDAC) 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 
(ethyldimethylaminopropylcarbodiimide) N

C
N

N

EDCI 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 
hydrochloride N

C
N NH Cl

EDCP 2,3-bis-phosphonopentanedioic acid                
(ethylene dicarboxylic 2,3-diphosphonic acid) 

HOOC COOH

PO3H2

PO3H2

EDG electron-donating group NA

EDTA ethylenediamine tetraacetic acid 
N

N
COOH

HOOC HOOC

COOH



xxix

Abbreviation Chemical Name Chemical Structure 
ee enantiomeric excess NA

EE
ethoxyethyl 

O

Ei intramolecular syn elimination NA

en ethylenediamine H2N NH2

EOM ethoxymethyl O

ESR electron spin resonance (spectroscopy) NA

Et ethyl 

ETSA ethyl trimethylsilylacetate O

O
Si

EVE ethyl vinyl ether O

EWG electron-withdrawing group NA

Fc ferrocenyl Fe

FDP fructose-1,6-diphosphate 
CH2OPO3H2

OH

H

H2O3POH2C

HO H

H HO
O

FDPP pentafluorophenyl diphenylphosphinate 

P O
O

Ph
Ph

F
F

F

F
F

Fl fluorenyl 

FMO frontier molecular orbital (theory) NA

Fmoc 9-fluorenylmethoxycarbonyl 

O

O

fod 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-
octanedione 

OOF

F
F

F F

FF

fp flash point NA

FSM Mesoporous silica NA

FTT 1-fluoro-2,4,6-trimethylpyridinium triflate N F S
O

O
O

F
F

F



xxx

Abbreviation Chemical Name Chemical Structure 
FVP flash vacuum pyrolysis NA

GEBC gel entrapped base catalyst NA

h hours (length of reaction time) NA

hν irradiation with light NA

HATU O-(7-azabenzotriazol-1-yl)-N,N,N’,N’-
tetramethyluronium hexafluorophosphate 

N

N

O+

N
N N

N
PF6

Het heterocycle NA

hfacac hexafluoroacetylacetone F3C

O O

CF3

HFIP 1,1,1,3,3,3-hexafluoro-2-propanol 
(hexafluoroisopropanol) OH

F F

FF

F F

HGK 4-hydroxy-2-ketoglutarate 
O

OO
O

O

HO

Hgmm millimeter of mercury (760 Hgmm = 1 atm = 760 Torr) NA

HLE horse liver esterase NA

Hmb 2-hydroxy-4-methoxybenzyl O OH

HMDS 1,1,1,3,3,3-hexamethyldisilazane 
Si

H
N

Si

HMPA hexamethylphosphoric acid triamide 
(hexamethylphosphoramide) 

P
O

N
N

N

HMPT hexamethylphosphorous triamide PN

N

N

HOAt 1-hydroxy-7-azabenzotriazole N
N

N

N
OH

HOBt (HOBT) 1-hydroxybenzotriazole N
N

N

OH

HOMO highest occupied molecular orbital NA

HOSu N-hydroxysuccinimide 
OO N

OH

HPLC high-pressure liquid chromatography NA

HWE Horner-Wadsworth-Emmons NA

i iso NA
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Abbreviation Chemical Name Chemical Structure 

IBA 2-iodosobenzoic acid O

HO

I
O

IBX o-iodoxybenzoic acid 
I

O

O

OHO

IDCP bis(2,4,6-collidine)iodonium perchlorate 
N I+ N ClO4-

Imid (Im) imidazole 
N

HN

INOC intramolecular nitrile oxide cycloaddition NA

IPA isopropyl alcohol HO

Ipc isopinocamphenyl 
H

IR infrared spectroscopy NA

K-10 a type of Montmorillonite clay NA

KDA potassium diisopropylamide KN

KHMDS potassium bis(trimethylsilyl)amide 

K
N

Si Si

KSF a type of Montmorillonite clay NA

L ligand NA

L.R.
Lawesson’s reagent (2,4-bis-(4-methoxyphenyl)-

[1,3,2,4]dithiadiphosphetane 2,4-dithion) S
P S

P

S

S
OMe

MeO

LA Lewis acid NA

LAB lithium amidotrihydroborate LiH2NBH3

LAH lithium aluminum hydride LiAlH4

LD50 dose that is lethal to 50% of the test subjects (cells, 
animals, humans etc.) NA

LDA lithium diisopropylamide 
LiN

LDBB lithium 4,4’-t-butylbiphenylide Li



xxxii

Abbreviation Chemical Name Chemical Structure 

LDE lithium diethylamide LiN

LDPE lithium perchlorate-diethyl etherate LiClO4 - Et2O

LHMDS
(LiHMDS)

lithium bis(trimethylsilyl)amide 

Li
N

Si Si

LICA lithium isopropylcyclohexylamide 

Li

N

LICKOR (super 
base) 

butyllithium-potassium tert-butoxide  BuLi - KOt-Bu

liq. liquid NA

LiTMP
(LTMP)

lithium 2,2,6,6-tetramethylpiperidide 
N Li

LPT lithium pyrrolidotrihydroborate 
(lithium pyrrolidide-borane) 

Li(CH2)4NBH3

L-selectride lithium tri-sec-butylborohydride LiBH

LTA lead tetraacetate Pb(OAc)4

LUMO lowest unoccupied molecular orbital NA

lut 2,6-lutidine N

m meta NA

MA maleic anhydride O OO

MAD methyl aluminum bis(2,6-di-t-butyl-4-
methylphenoxide) 

O AlMe

2

MAT methyl aluminum  bis(2,4,6-tri-t-butylphenoxide) O AlMe

2



xxxiii

Abbreviation Chemical Name Chemical Structure 

MBT 2-mercaptobenzothiazole 

S

N
HS

m-CPBA meta chloroperbenzoic acid 

Cl

COOOH

Me methyl CH3

MEM (2-methoxyethoxy)methyl O
O

MEPY methyl 2-pyrrolidone-5(S)-carboxylate 

H
N O

O

O

Mes mesityl 

mesal N-methylsalicylaldimine 

HO

N

MIC methyl isocyanate NCO

MMPP
(MMPT)

magnesium monoperoxyphthalate 
Mg2+ O

O
O

O
O

MOM methoxymethyl O

MoOPH
oxodiperoxomolybdenum(pyridine)-

(hexamethylphosphoric triamide) 
NA

mp melting point NA

MPa megapascal = 106 Pa  = 10 atm (pressure) 

MPD
(NMP)

N-methyl-2-pyrrolidinone N

O

MPM methoxy(phenylthio)methyl S
O

MPM
(PMB)

p-methoxybenzyl 
O



xxxiv

Abbreviation Chemical Name Chemical Structure 

MPPC N-methyl piperidinium chlorochromate OCr
O

O
Cl

NH

Ms mesyl (methanesulfonyl) S
O

O
CH3

MS mass spectrometry  NA

MS molecular sieves NA

MSA methanesulfonic acid S
O

O
CH3HO

MSH o-mesitylenesulfonyl hydroxylamine 

H
N

HO S
O

O

MSTFA N-methyl-N-(trimethylsilyl) trifluoroacetamide 

O

N
F

F

F

Si

MTAD N-methyltriazolinedione N
NN

O

O

MTEE
(MTBE)

methyl t-butyl ether O

MTM methylthiomethyl S

MTO methyltrioxorhenium Re
O

O
O

CH3

Mtr (4-methoxy-2,3,6-trimethylphenyl)sulfonyl OMe

MeMe

Me

S
O

O

MVK methyl vinyl ketone 
O

mw microwave NA

n normal (e.g. unbranched alkyl chain) NA

NADPH nicotinamide adenine dinucleotide phosphate 

N

H H

NH2

O

O

OHOH

O

O

OOH

O

P
O

OH
OH

N

N N

N

NH2

P
O

OH
OP

O

OH
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Abbreviation Chemical Name Chemical Structure 

NaHMDS sodium bis(trimethylsilyl)amide 

Na

N
Si Si

Naph  
(Np)

naphthyl 

NBA N-bromoacetamide 

O

N
H

Br

NBD
(nbd)

norbornadiene 

NBS N-bromosuccinimide 

O

O

N Br

NCS N-chlorosuccinimide 
O

O

N Cl

Nf nonafluorobutanesulfonyl S
O

O

F F

F F

FF

F F

F

NHPI N-hydroxyphthalimide 

O

O

N OH

NIS N-iodosuccinimide OO N
I

NMM N-methylmorpholine N O

NMO N-methylmorpholine oxide 
NO

O

NMP N-methyl-2-pyrrolidinone N

O

NMR nuclear magnetic resonance NA

NORPHOS bis(diphenylphosphino)bicyclo[2.2.1]-hept-5-ene 
Ph2P PPh2

Nos 4-nitrobenzenesulfonyl S

O

O

N
O

O



xxxvi

Abbreviation Chemical Name Chemical Structure 

NPM N-phenylmaleimide 

O

O

N

NR no reaction NA

Ns 2-nitrobenzenesulfonyl 

S
O

O

NO
O

NSAID non steroidal anti-inflammatory drug NA

Nuc nucleophile (general) NA

o ortho NA

Oxone potassium peroxymonosulfate KHSO5

p para NA

PAP 2,8,9-trialkyl-2,5,8,9-tetraaza- 
1-phospha-bicyclo[3.3.3]undecane 

P
N

N
N

N

R R
R

PBP pyridinium bromide perbromide N
H

Br3

PCC pyridinium chlorochromate N
H

O
Cr

O

OCl

PDC pyridinium dichromate 
N
H

Cr
OO

OO
Cr

O

O ON
H

PEG polyethylene glycol NA

Pf 9-phenylfluorenyl 

Ph

pfb perfluorobutyrate 
O

O

FF

F F

FF

F

Ph phenyl 

PHAL phthalazine N
N

phen 9,10-phenanthroline 
NN
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Abbreviation Chemical Name Chemical Structure 

Phth phthaloyl 
C

C

O

O

pic 2-pyridinecarboxylate 

NO

O

PIDA 
(BAIB or DIB) 

phenyliodonium diacetate 
I

O

O

O
O

PIFA phenyliodonium bis(trifluoroacetate) 
I
O

O
F3C

O
O

CF3

Piv pivaloyl O

PLE pig liver esterase NA

PMB
(MPM)

p-methoxybenzyl O

PMP 4-methoxyphenyl O

PMP 1,2,2,6,6-pentamethylpiperidine N
Me

Me

Me

Me

Me

PNB p-nitrobenzyl N
O

O

PNZ p-nitrobenzyloxycarbonyl 

O
O

N
O

O

PPA polyphosphoric acid NA

PPI 2-phenyl-2-(2-pyridyl)-2H-imidazole 
N

N

N

PPL pig pancreatic lipase NA

PPO 4-(3-phenylpropyl)pyridine-N-oxide N PhO

PPSE polyphosphoric acid trimethylsilyl ester NA
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Abbreviation Chemical Name Chemical Structure 

PPTS pyridinium p-toluenesulfonate 
N
H

S
O

O
O

Pr propyl 
psi pounds per square inch NA

PT 1-phenyl-1H-tetrazol-yl N
NN

N
Ph

P.T. proton transfer NA

PTAB phenyltrimethylammonium perbromide N Br3

PTC Phase transfer catalyst NA

PTMSE (2-phenyl-2-trimethylsilyl)ethyl 
Si

PTSA 
(or TsOH) p-toluenesulfonic acid CH3HO3S

PVP poly(4-vinylpyridine) NA

Py  
(pyr) 

pyridine N

r.t. room temperature NA

rac racemic NA

RAMP (R)-1-amino-2-(methoxymethyl)pyrrolidine N
(R) O

NH2

RaNi Raney nickel NA

RB Rose Bengal See Rose bengal 

RCAM ring-closing alkyne metathesis NA

RCM ring-closing metathesis NA

Rds (or RDS) rate-determining step NA

Red-Al sodium bis(2-methoxyethoxy) aluminum hydride 
AlO

O
O

O

H
H

Na

Rham rhamnosyl O
O H

O H
MeO

H

Rf perfluoroalkyl group CnF2n+1

Rf retention factor in chromatography NA

ROM ring-opening metathesis NA

ROMP ring-opening metathesis polymerization NA
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Abbreviation Chemical Name Chemical Structure 

Rose Bengal 
(RB)

2,4,5,7-tetraiodo-3',4',5',6'-tetrachlorofluorescein 
disodium salt 

 (a photosensitizer) 

O
I

O

I I

O
I

Cl

Cl
Cl

Cl

COO
2 Na

s seconds (length of reaction time) NA

S,S,-chiraphos (S,S)-2,3-bis(diphenylphosphino)butane (S) (S)

PPh2

PPh2

Salen N,N’-ethylenebis(salicylideneiminato) 
bis(salicylidene)ethylenediamine 

N N

OH HO

salophen o-phenylenebis(salicylideneiminato) N N

OH HO

SAMP (S)-1-amino-2-(methoxymethyl)pyrrolidine N
O

NH2

SC CO2 supercritical carbon-dioxide NA

SDS sodium dodecylsulfate 
Na

SO O
O

O

sec secondary NA

SEM 2-(trimethylsilyl)ethoxymethyl O
Si

SES 2-[(trimethylsilyl)ethyl]sulfonyl Si
S
O

O

SET single electron transfer NA

Sia 1,2-dimethylpropyl (secondary isoamyl) 

SPB sodium perborate Na BO3
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Abbreviation Chemical Name Chemical Structure 

TADDOL 2,2-dimethyl-α,α,α1, α1-tetraaryl-1,3-dioxolane-4,5-
dimethanol 

O

O
(R)
(R)

OH

OH

Ar

Ar

Ar

Ar

H

H

TASF tris(diethylamino)sulfonium difluorotrimethylsilicate S
NEt2

Et2N

NEt2

SiMe3F2

TBAB tetra-n-butylammonium bromide 
N Br

TBAF tetra-n-butylammonium fluoride FBu4N

TBAI tetra-n-butylammonium iodide IBu4N

TBCO tetrabromocyclohexadienone Br

Br
O

Br

Br

TBDMS
(TBS)

t-butyldimethylsilyl Si

TBDPS
(BPS)

t-butyldiphenylsilyl Si

TBH tert-butyl hypochlorite Cl
O

TBHP tert-butyl hydroperoxide O
OH

TBP tributylphosphine 
P

TBT 1-tert-butyl-1H-tetrazol-5-yl N
NN

N
t-Bu

TBTH tributyltin hydride 
Sn

H

TBTSP t-butyl trimethylsilyl peroxide 
O

OSi
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Abbreviation Chemical Name Chemical Structure 

TCCA trichloroisocyanuric acid N

O
N

O
N

O

Cl

Cl

Cl

TCDI thiocarbonyl diimidazole 

S

N

N

N

N

TCNE tetracyanoethylene 

N N

NN

TCNQ 7,7,8,8-tetracyano-para-quinodimethane 
NC

NC CN

CN

TDS dimethyl thexylsilyl 
Si

TEA triethylamine N

TEBACl benzyl trimethylammonium chloride N

Cl

TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy free radical 
O•
N

Teoc 2-(trimethylsilyl)ethoxycarbonyl 
O O

Si

TEP triethylphosphite 
P

O

O
O

TES triethylsilyl Si

Tf trifluoromethanesulfonyl S
O

OF
F

F

TFA trifluoroacetic acid 
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ACETOACETIC ESTER SYNTHESIS 
(References are on page 531) 

Importance:

[Seminal Publications1-4; Reviews5-9; Modifications & Improvements10-19]

The preparation of ketones via the C-alkylation of esters of 3-oxobutanoic acid (acetoacetic esters) is called the 
acetoacetic ester synthesis. Acetoacetic esters can be deprotonated at either the C2 or at both the C2 and C4 
carbons, depending on the amount of base used. The C-H bonds on the C2 carbon atom are activated by the 
electron-withdrawing effect of the two neighboring carbonyl groups. These protons are fairly acidic (pKa ~11 for C2 
and pKa ~24 for C4), so the C2 position is deprotonated first in the presence of one equivalent of base (sodium 
alkoxide, LDA, NaHMDS or LiHMDS, etc.). The resulting anion can be trapped with various alkylating agents. A 
second alkylation at C2 is also possible with another equivalent of base and alkylating agent. When an acetoacetic 
ester is subjected to excess base, the corresponding dianion (extended enolate) is formed.13-15,18,19 When an 
electrophile (e.g., alkyl halide) is added to the dianion, alkylation occurs first at the most nucleophilic (reactive) C4 
position. The resulting alkylated acetoacetic ester derivatives can be subjected to two types of hydrolytic cleavage, 
depending on the conditions: 1) dilute acid hydrolyzes the ester group, and the resulting β-keto acid undergoes 
decarboxylation to give a ketone (mono- or disubstituted acetone derivative); 2) aqueous base induces a retro-
Claisen reaction to afford acids after protonation. The hydrolysis by dilute acid is most commonly used, since the 
reaction mixture is not contaminated with by-products derived from ketonic scission. More recently the use of the 
Krapcho decarboxylation allows neutral decarboxylation conditions.11,12 As with malonic ester, monoalkyl derivatives 
of acetoacetic ester undergo a base-catalyzed coupling reaction in the presence of iodine. Hydrolysis and 
decarboxylation of the coupled products produce γ-diketones. The starting acetoacetic esters are most often obtained 
via the Claisen condensation of the corresponding esters, but other methods are also available for their 
preparation.5,8

Mechanism: 3,20

The first step is the deprotonation of acetoacetic ester at the C2 position with one equivalent of base. The resulting 
enolate is nucleophilic and reacts with the electrophilic alkyl halide in an SN2 reaction to afford the C2 substituted 
acetoacetic ester, which can be isolated. The ester is hydrolyzed by treatment with aqueous acid to the 
corresponding β-keto acid, which is thermally unstable and undergoes decarboxylation via a six-membered transition 
state.
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ACETOACETIC ESTER SYNTHESIS 

Synthetic Applications:

In the laboratory of H. Hiemstra, the synthesis of the bicyclo[2.1.1]hexane substructure of solanoeclepin A was 
undertaken utilizing the intramolecular photochemical dioxenone-alkene [2+2] cycloaddition reaction.21 The 
dioxenone precursor was prepared from the commercially available tert-butyl acetoacetate using the acetoacetic 
ester synthesis. When this dioxenone precursor was subjected to irradiation at 300 nm, complete conversion of the 
starting material was observed after about 4h, and the expected cycloadduct was formed in acceptable yield. 

R. Neier et al. synthesized substituted 2-hydroxy-3-acetylfurans by the alkylation of tert-butylacetoacetate with an α-
haloketone, followed by treatment of the intermediate with trifluoroacetic acid.22 When furans are prepared from β-
ketoesters and α-haloketones, the reaction is known as the Feist-Bénary reaction. A second alkylation of the C2 
alkylated intermediate with various bromoalkanes yielded 2,2-disubstituted products, which upon treatment with TFA, 
provided access to trisubstituted furans. 

M. Nakada and co-workers developed a novel synthesis of tetrahydrofuran and tetrahydropyran derivatives by 
reacting dianions of acetoacetic esters with epibromohydrin derivatives.23 The selective formation of the 
tetrahydrofuran derivatives was achieved by the use of LiClO4 as an additive. 

A synthetic strategy was developed for the typical core structure of the Stemona alkaloids in the laboratory of C.H. 
Heathcock.24 The precursor for the 1-azabicyclo[5.3.0]decane ring system was prepared via the successive double 
alkylation of the dianion of ethyl acetoacetate. 
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ACYLOIN CONDENSATION 
(References are on page 531) 

Importance:

[Seminal Publications 1-4; Reviews 5-9; Modifications & Improvements10-22]

The acyloin condensation affords acyloins (α-hydroxy ketones) by treating aliphatic esters with molten, highly 
dispersed sodium in hot xylene.8 The resulting disodium acyloin derivatives are acidified to liberate the corresponding 
acyloins, which are valuable synthetic intermediates. Aliphatic monoesters give symmetrical compounds, while 
diesters lead to cyclic acyloins. The intramolecular acyloin condensation is one of the best ways of closing rings of 10 
members or more (up to 34 membered rings were synthesized).6 For the preparation of aromatic acyloins (R=Ar), the 
benzoin condensation between two aromatic aldehydes is applied. The acyloin condensation is performed in an inert 
atmosphere, since the acyloins and their anions are readily oxidized. For small rings (ring size: 4-6), yields are greatly 
improved in the presence of TMSCl and by the use of ultrasound.11,13 The addition of TMSCl increases the scope of 
this reaction by preventing base-catalyzed side reactions such as β-elimination, Claisen or Dieckmann 
condensations. The resulting bis-silyloxyalkenes are either isolated or converted into acyloins by simple hydrolysis or 
alcoholysis.   

Mechanism: 5,6,23

There are currently two proposed mechanisms for the acyloin ester condensation reaction. In mechanism A the 
sodium reacts with the ester in a single electron transfer (SET) process to give a radical anion species, which can 
dimerize to a dialkoxy dianion.5,6 Elimination of two alkoxide anions gives a diketone. Further reduction (electron 
transfer from the sodium metal to the diketone) leads to a new dianion, which upon acidic work-up yields an enediol 
that tautomerizes to an acyloin. In mechanism B an epoxide intermediate is proposed.23
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ACYLOIN CONDENSATION 

Synthetic Applications:

J. Salaün and co-workers studied the ultrasound-promoted acyloin condensation and cyclization of carboxylic 
esters.13 They found that the acyloin coupling of 1,4-, 1,5-, and 1,6-diesters afforded 4-, 5- and 6-membered ring 
products. The cyclization of β-chloroesters to 3-membered ring products in the presence of TMSCl, which previously 
required highly dispersed sodium, was simplified and improved under sonochemical activation. 

The diterpene alkaloids of the Anopterus species, of which anopterine (R=tigloyl) is a major constituent, are 
associated with a high level of antitumor activity. All of these alkaloids contain the tricyclo[3.3.21,4.0]decane
substructure. S. Sieburth et al. utilized the acyloin condensation as a key step in the short construction of this tricyclic 
framework.24

D.J. Burnell et al. synthesized bicyclic diketones by Lewis acid-promoted geminal acylation involving cyclic acyloins 
tethered to an acetal. The required bis-silyloxyalkenes were prepared by using the standard acyloin condensation
conditions.25
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ALDER (ENE) REACTION  
(HYDRO-ALLYL ADDITION) 
(References are on page 532)

Importance:

[Seminal Publications1-6; Reviews7-33; Theoretical Studies34-44]

In 1943, K. Alder systematically studied reactions that involved the activation of an allylic C-H bond and the allylic 
transposition of the C=C bond of readily available alkenes.4-6 This reaction is known as the ene reaction. Formally it is 
the addition of alkenes to double bonds (C=C or C=O), and it is one of the simplest ways to form C-C bonds. The ene 
reaction of an olefin bearing an allylic hydrogen atom is called “carba-ene reaction”. For the reaction to proceed 
without a catalyst, the alkene must have an electron-withdrawing (EWG) substituent. This electrophilic compound is 
called the enophile. The ene reaction has a vast number of variants in terms of the enophile used.7-9,11,12,45,14-16,46,18-

20,24,47,27-30 Olefins are relatively unreactive as enophiles, whereas acetylenes are more enophilic. For example, under 
high pressure acetylene reacts with a variety of simple alkenes to form 1,4-dienes. When the enophile is a carbonyl 
compound, the ene reaction leads exclusively to the corresponding alcohol instead of the ether (carbonyl-ene
reaction). However, thiocarbonyl compounds react mainly to give allylic sulfides rather than homoallylic thiols. Schiff 
bases derived from aldehydes afford homoallylic amines (aza-ene, imino-ene or hetero-ene reaction).19 Metallo-ene
reactions with Pd, Pt, and Ni-catalyzed versions have been successful in intramolecular systems. The ene reaction is 
compatible with a variety of functional groups that can be appended to the ene and enophile. The ene reaction can be 
highly stereoselective and by adding Lewis acids (RAlX2, Sc(OTf)3, LiClO4, etc.), less reactive enophiles can also be 
used. The regioselectivity of the reaction is determined by the steric accessibility of the hydrogen. Usually primary 
hydrogens are abstracted faster than secondary hydrogens and tertiary hydrogens are abstracted last. 
Functionalization of the reacting components by introduction of a silyl, alkoxy, or amino group, thus changing the 
steric and electronic properties, affords more control over the regioselectivity of the reaction. 

Mechanism: 48-52,31

The ene reaction is mechanistically related to the better-known Diels-Alder reaction and is believed to proceed via a 
six-membered aromatic transition state.50,51 Thermal intermolecular ene reactions have high negative entropies of 
activation, and for this reason the ene reaction requires higher temperatures than the Diels-Alder reaction. The 
forcing conditions were responsible for the initial paucity of ene reactions. However, intramolecular ene reactions are 
more facile. The enophile reacts with the ene component in a ”syn-fashion” and this observation suggests a 
concerted mechanism. There is a frontier orbital interaction between the HOMO of the ene component and the LUMO 
of the enophile. The ene-reaction is favored by electron-withdrawing substituents on the enophile, by strain in the ene 
component and by geometrical alignments that position the components in a favorable arrangement. Some thermal 
ene reactions, such as the ene reaction between cyclopentene and diethyl azodicarboxylate (DEAD), are catalyzed 
by free radical initiators, so for these processes a stepwise biradical pathway had been suggested.48,49 The 
mechanism of the Lewis acid-promoted ene reaction is believed to involve both a concerted and a cationic pathway.53

Whether the mechanism is concerted or stepwise, a partial or full positive charge is developed at the ene component 
in Lewis acid-promoted reactions. 
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ALDER (ENE) REACTION  
(HYDRO-ALLYL ADDITION) 

Synthetic Applications:    

The aza-ene reaction recently found application in the synthesis of imidazo[1,2-a]pyridine and imidazo[1,2,3-
ij][1,8]naphthyridine derivatives in the laboratory of Z.-T. Huang.54 The reaction of heterocyclic ketene aminals with 
enones such as MVK proceeded via an aza-ene addition, followed by intramolecular cyclization to afford the 
products. The aroyl-substituted heterocyclic ketene aminals (Ar=Ph, 2-furyl, 2-thienyl) underwent two subsequent 
aza-ene reactions when excess MVK was used.  

B. Ganem and co-workers accomplished the asymmetric total synthesis of (–)-α-kainic acid using an 
enantioselective, metal-promoted ene cyclization.52 The chiral bis-oxazoline-magnesium perchlorate system strongly 
favored the formation of the cis-diastereomer in the cyclization. Enantiomerically pure kainic acid was synthesized 
from readily available starting materials on a 1-2 g scale in six steps in an overall yield of greater than 20%.  

The first total synthesis of (+)-arteannuin M was completed by L. Barriault et al. using a tandem oxy-
Cope/transannular ene reaction as the key step to construct the bicyclic core of the natural product.55 The tandem 
reaction proceeded with high diastereo- and enantioselectivity.  
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ALDOL REACTION 
(References are on page 533)

Importance:

[Seminal Publications1,2; Reviews3-46; Theoretical Studies47-74]

The aldol reaction involves the addition of the enol/enolate of a carbonyl compound (nucleophile) to an aldehyde or 
ketone (electrophile). The initial product of the reaction is a β-hydroxycarbonyl compound that under certain 
conditions undergoes dehydration to generate the corresponding α,β-unsaturated carbonyl compound. The 
transformation takes its name from 3-hydroxybutanal, the acid-catalyzed self-condensation product of acetaldehyde, 
which is commonly called aldol. Originally the aldol reaction was carried out with Brönsted acid1,2 or Brönsted base 
catalysis,75,76 but these processes were compromised by side reactions such as self-condensation, polycondensation, 
and dehydration followed by Michael addition. Development of methods for the formation and application of 
preformed enolates was a breakthrough in the aldol methodology.  Most commonly applied enolates in the aldol 
reaction are the lithium-,12 boron-,14 titanium-,15 and silyl enol ethers, but several other enolate derivatives have been 
studied such as magnesium-,12 aluminum-,14 zirconium-,15 rhodium-,15 cerium-,15 tungsten-,15 molybdenum-,15

rhenium-,15 cobalt-,15 iron-,15 and zinc enolates.16 Enolate formation can be accomplished in a highly regio- and 
stereoselective manner. The aldol reaction of stereodefined enolates is highly diastereoselective.3,13 (E)-Enolates 
generally yield the anti product, while (Z)-enolates lead to the syn product as the major diastereomer. Lewis acid 
mediated aldol reaction of silyl enol ethers (Mukaiyama aldol reaction) usually provides the anti product.77,78 Control 
of the absolute stereochemical outcome of the reaction can be achieved through the use of enantiopure starting 
materials (reagent control) or asymmetric catalysis.6,7,79,8,9,22,41 Reagent control can be realized by: 1) utilizing chiral 
auxiliaries in the enol component, such as oxazolidinones (also see Evans aldol), bornanesultams,  pyrrolidinones, 
arylsulfonamido indanols, norephedrines and bis(isopropylphenyl)-3,5-dimethylphenol derivatives;80 2) applying chiral 
ligands on boron enolates such as isopinocampheyl ligands, menthone derived ligands, tartrate derived boronates, 
and C2-symmetric borolanes;24,25,80  3) using chiral aldehydes.7,17,29,41 Direct asymmetric catalytic aldol reactions can 
be achieved via 1) biochemical catalysis applying enzymes or catalytic antibodies;11,18,20,81,27  2) chiral metal complex 
mediated catalysis; and 3) organocatalysis utilizing small organic molecules.21,28,29,33,82,35-37,39

Mechanism: 7,12,13

The mechanism of the classical acid catalyzed aldol reaction involves the equilibrium formation of an enol, which 
functions as a nucleophile. The carbonyl group of the electrophile is activated toward nucleophilic attack by 
protonation. In the base catalyzed reaction, the enolate is formed by deprotonation followed by the addition of the 
enolate to the carbonyl group. In both cases, the reaction goes through a number of equilibria, and the formation of 
the product is reversible. Aldol reaction of preformed enolates generally provides the products with high 
diastereoselectivity, (Z)-enolates yielding the syn product, (E)-enolates forming the anti product as the major 
diastereomer. The stereochemical outcome of the reaction can be rationalized based on the Zimmerman-Traxler 
model, according to which the reaction proceeds through a six-membered chairlike transition state. The controlling 
factor according to this model is the avoidance of destabilizing 1,3-diaxial interactions in the cyclic transition state.  
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ALDOL REACTION 

Synthetic Applications:

The first enantioselective total synthesis of (–)-denticulatin A was accomplished by W. Oppolzer.83 The key step in 
their approach was based on enantiotopic group differentiation in a meso dialdehyde by an aldol reaction.  In the 
aldol reaction they utilized a bornanesultam chiral auxiliary. The enolization of N-propionylbornane-10,2-sultam 
provided the (Z)-borylenolate derivative, which underwent an aldol reaction with the meso dialdehyde to afford the 
product with high yield and enantiopurity. In the final stages of the synthesis they utilized a second, double-
diastereodifferentiating aldol reaction. Aldol reaction of the (Z)-titanium enolate gave the anti-Felkin syn product. The 
stereochemical outcome of the reaction was determined by the α-chiral center in the aldehyde component. 

During the total synthesis of rhizoxin D by J.D. White et al., an asymmetric aldol reaction was utilized to achieve the 
coupling of two key fragments.84 The aldol reaction of the aldehyde and the chiral enolate derived from (+)-
chlorodiisopinocampheylborane afforded the product with a diastereomeric ratio of 17-20:1 at the C13 stereocenter. 
During their studies, White and co-workers also showed that the stereochemical induction of the chiral boron 
substituent and the stereocenters present in the enolate reinforce each other thus representing a “matched” aldol 
reaction.

A possible way to induce enantioselectivity in the aldol reaction is to employ a chiral catalyst. M. Shibasaki and co-
workers developed a bifunctional catalyst, (S)-LLB (L=lanthanum; LB=lithium binaphthoxide), which could be 
successfully applied in direct catalytic asymmetric aldol reactions.85 An improved version of this catalyst derived from 
(S)-LLB by the addition of water and KOH was utilized in the formal total synthesis of fostriecin.86
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ALKENE (OLEFIN) METATHESIS 
(References are on page 534)

Importance:

[Seminal Publications1,2; Reviews3-61; Modifications & Improvements62-70; Theoretical Studies71-76]

The metal-catalyzed redistribution of carbon-carbon double bonds is called alkene (olefin) metathesis. The first report 
of double-bond scrambling was published in 19551 but the term  “olefin metathesis” was introduced only thirteen 
years later by N. Calderon2 and co-workers. There are several different olefin metathesis reactions: ring-opening 
metathesis polymerization (ROMP), ring-closing metathesis (RCM), acyclic diene metathesis polymerization
(ADMET), ring-opening metathesis (ROM), and cross-metathesis (CM or XMET). These various olefin metathesis 
reactions give access to molecules and polymers that would be difficult to obtain by other means. ROMP makes it 
possible to prepare functionalized polymers, while the application of RCM provides easy entry into medium and large 
carbocycles as well as heterocyclic compounds. The application of olefin metathesis for the synthesis of complex 
organic molecules did not appear until the beginning of the 1990s because the available catalysts had low 
performance and little functional group tolerance. In the past 10 years olefin metathesis has become a reliable and 
widely used synthetic method. The currently used L(L')X2Ru=CHR catalyst system is highly active, and it has 
sufficient functional group tolerance for most applications. However, new catalysts are still needed, because the 
current ones do not always perform well in several demanding transformations. Some of the problems still 
encountered are: 1) incompatibility with basic functional groups (nitriles and amines); 2) cross metathesis to form 
tetrasubstituted olefins; and 3) low stereoselectivity in CM and macrocyclic RCM reactions. 

Mechanism: 77-86

Crystal structures of the L2X2Ru=CHR carbene complexes reveal that they have a distorted square pyramidal 
geometry with the alkylidene in the axial position and the trans phosphines and halides in the equatorial plane.87,88 R. 
H. Grubbs and co-workers have conducted extensive kinetic studies on L2X2Ru=CHR complexes and proposed a 
mechanism that is consistent with the observed activity trends.89 There are two possible mechanistic pathways (I & 
II):
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ALKENE (OLEFIN) METATHESIS 

Synthetic Applications:

A.B. Smith and co-workers have devised an efficient strategy for the synthesis of the cylindrocyclophane family of 
natural products.90,91 Olefin ring-closing metathesis was used for the assembly of the [7,7]-paracyclophane skeleton. 
During their investigations they discovered a remarkably efficient CM dimerization process, that culminated in the 
total synthesis of both (–)-cylindrocyclophane A and (–)-cylindrocyclophane F. They established that the cross 
metathesis dimerization process selectively led to the thermodynamically most stable member of a set of structurally 
related isomers. Out of three commonly used RCM catalysts, Schrock’s catalyst proved to be the most efficient for 
this transformation. 

The streptogramin antibiotics are a family of compounds that were isolated from a variety of soil organisms belonging 
to the genus Streptomyces. They are active against bacteria resistant to vancomycin. In the laboratory of A.I. Meyers 
the first total synthesis of streptogramin antibiotics, (–)-griseoviridin and its C8 epimer, featuring a 23-membered 
unsaturated ring, was accomplished using a novel RCM that involved a highly diastereoselective triene to diene 
macrocyclic ring formation.92 The metathesis was performed in 37-42% yield using 30 mol% of Grubbs catalyst. The 
natural product was obtained as a single diastereomer; no other olefin isomers were formed in the ring-closing step. 

The first enantioselective total synthesis of (+)-prelaureatin was achieved by M.T. Crimmins et al.93 The oxocene core 
of the natural product was constructed in high yield by a RCM reaction using the first generation Grubbs catalyst. 
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ALKYNE METATHESIS 
(References are on page 536)

Importance:
[Seminal Publications1-3; Reviews4-11]

The metal-catalyzed redistribution of carbon-carbon triple bonds is called alkyne metathesis. In the beginning of the 
1970s, A. Mortreux and co-workers were the first to achieve the homogeneously catalyzed metathesis reaction of a 
C-C triple bond in which they statistically disproportionated p-tolylphenylacetylene to tolan (diphenyl acetylene) with 
an in situ formed [Mo(CO)6]/resorcinol catalyst at 110 °C.1 However, all attempts to convert terminal alkynes by 
metathesis failed with this catalyst. Cyclotrimers and complex polymers were isolated instead. A decade later, in the 
1980s, the well-defined Schrock tungsten carbyne complex [(t-BuO)3W≡C-t-Bu] was shown to catalyze the 
metathesis of terminal alkynes accompanied by the evolution of gaseous acetylene.12 This reaction also suffered from 
substantial polymerization of the substrate to polyacetylenes. In the 1990s research efforts intensified to find suitable 
catalysts. M. Mori and co-workers successfully cross-metathesized internal alkynes in the presence of a Mortreux-
type catalyst,13,14 while in the laboratory of A. Fürstner the conditions for RCAM (ring-closing alkyne metathesis) were 
developed.15 The cycloalkynes obtained by the RCAM can be stereoselectively converted into the corresponding (Z)- 
or (E)-alkenes by catalytic hydrogenation,16-18 hydroboration, and subsequent protonation, as well as by other 
methods.19 In the years to come alkyne metathesis will probably become a useful tool for organic synthesis as well as 
for the synthesis of polymers. 

Mechanism: 20-27

The alkyne cross metathesis and metathesis polymerization can be carried out both thermally and photochemically. 
The nature of the catalytically active species in the thermally and photochemically activated systems is unknown. The 
mechanism shown below accounts for the formation of the alkyne cross metathesis products, but none of the 
currently proposed mechanisms are supported by solid experimental evidence. 
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ALKYNE METATHESIS 

Synthetic Applications:

The total synthesis of the recently discovered azamacrolides was undertaken in the laboratory of A. Fürstner.16 These 
compounds are the defense secretions of the pupae of the Mexican beetle Epilachnar varivestis, and they are the first 
examples of naturally occurring macrolactones containing a basic nitrogen atom in the tether that do not ring-contract 
to the corresponding amides. RCAM followed by Lindlar reduction provided a convenient, high-yielding, and 
stereoselective way to introduce the (Z)-double bond. (The usual RCM approach using Grubbs carbene only yielded  
a mixture of alkenes (Z) : (E) = 1:2.) 

A. Fürstner and co-workers also showed that RCAM is indeed a very mild method, because during their 
stereoselective total synthesis of prostaglandin E2-1,15-lactone, the Mo[N-(t-Bu)(Ar)3]-derived catalyst tolerated a 
preexisting double bond and a ketone functionality.17 Chromatographic inspection of the reaction mixture revealed 
that no racemization took place before or after the ring closure, and the ee of the substrate and the product were 
virtually identical.  

The first total synthesis of three naturally occurring cyclophane derivatives belonging to the turriane family of natural 
products was also described by A. Fürstner et al.28 These natural products have a sterically hindered biaryl moiety 
and saturated as well as unsaturated macrocyclic tethers. Stereoselective entry to this class of compounds is 
possible using RCAM followed by Lindlar reduction of the resulting cycloalkynes. 
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AMADORI REACTION / REARRANGEMENT 
(References are on page 537)

Importance:

[Seminal Publications1,2; Reviews3-9]

The acid- or base-catalyzed isomerization of N-glycosides (glycosylamines) of aldoses to 1-amino-1-deoxyketoses is 
called the Amadori reaction/rearrangement. Both the substrates and the products are referred to as “Amadori 
compounds”. A variety of Lewis acids (CuCl2, MgCl2, HgBr2, CdCl2, AlCl3, SnCl4, etc.) have been employed as 
catalysts to induce this rearrangement. The rearrangement takes place if an aldose is reacted with an amine in the 
presence of a catalytic amount of acid. The amine component can be primary, secondary, aliphatic, or aromatic. 
Glycosylamine derivatives are implicated in the complex Maillard reaction, whereby sugars, amines, and amino acids 
(proteins) condense, rearrange, and degrade often during cooking or preservation of food.10 The dark-colored 
products formed in this reaction are responsible for the non-enzymatic browning observed with various foodstuffs. 

Mechanism: 11,12

The first step of the mechanism is the coordination of the Lewis acid (proton in the scheme) to the ring oxygen atom 
of the N-glycoside. Subsequently the ring is opened, and the loss of a proton gives rise to an enolic intermediate, 
which in turn undergoes tautomerization to the corresponding 1-amino-1-deoxyketose. 

Synthetic Applications:

C. Blonski and co-workers utilized the Amadori rearrangement in the synthesis of various D-fructose analogs that 
were modified at C1, C2, or C6 positions.13 The key intermediate, 1-deoxy-1-toluidinofructose, was obtained from D-
glucose quantitatively by reacting D-glucose with p-toluidine in acetic acid. 
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AMADORI REACTION / REARRANGEMENT 

Synthetic Applications:

The synthesis of novel DNA topoisomerase II (topo II) inhibitors  was undertaken in the laboratory of T.L. 
Macdonald.14 Their research program dealt with the synthesis of piperidin-3-one derivatives, which were needed as 
synthetic intermediates for a variety of potential topo II-directed agents. The key step in their approach was the 
Amadori reaction for the preparation of highly functionalized piperidin-3-ones under mild conditions. Upon treatment 
with a catalytic amount of p-toluenesulfonic acid in toluene at reflux, the desired rearrangement took place in high 
yield. 

S. Horvat and co-workers conducted studies on the intramolecular Amadori rearrangement of the monosaccharide 
esters of the opioid pentapeptide leucine-enkephaline.15 The esters were prepared from either D-glucose, D-mannose 
or D-galactose by linking their C6 hydroxy group to the C-terminal carboxy group of the endogenous opioid 
pentapeptide leucine-enkephaline (H-Tyr-Gly-Gly-Phe-Leu-OH). Exposure of these monosaccharide esters to dry 
pyridine-acetic acid (1:1) mixture for 24h at room temperature, resulted in the desired Amadori rearrangement to 
afford novel bicyclic ketoses that are related to the furanose tautomers of 1-deoxy-D-fructose (I) and 1-deoxy–D-
tagatose (II).
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ARBUZOV REACTION  
(MICHAELIS-ARBUZOV REACTION) 

(References are on page 537) 
Importance:

[Seminal Publications1-4; Reviews5-14; Modifications & Improvements15-22]

In 1898, A. Michaelis and R. Kaehne reported that, upon heating, trialkyl phosphites reacted with primary alkyl 
iodides to afford dialkyl phosphonates.2 A few years later, A.E. Arbuzov investigated the reaction in great detail and 
determined its scope and limitations.3 The synthesis of pentavalent alkyl phosphoric acid esters from trivalent 
phosphoric acid esters and alkyl halides is known as the Arbuzov reaction (also known as Michaelis-Arbuzov 
reaction). The general features of this transformation are:9 1) it usually proceeds well with primary alkyl halides 
(mainly iodides and bromides); 2) certain secondary alkyl halides such as i-PrI or ethyl α-bromopropionate do react, 
but with most secondary and tertiary alkyl halides the reaction does not take place or alkenes are formed; 3) besides 
simple alkyl halides, other organic halides are also good substrates for the reaction including benzyl halides, 
halogenated esters, acyl halides, and chloroformic acid esters; 4) aryl and alkenyl halides do not undergo SN2
substitution, so they are unreactive under the reaction conditions; 5) activated aryl halides (e.g., heteroaryl halides: 
isoxazole, acridine, coumarin) do react; 6) the alkyl halides may not contain ketone or nitro functional groups, since 
these usually cause side reactions; 7) α-chloro- and bromo ketones undergo the Perkow reaction with trialkyl 
phosphites to afford dialkyl vinyl phosphates, but α-iodo ketones give rise to the expected Arbuzov products; 8) the 
trivalent phosphorous reactant can be both cyclic and acyclic; 9) in most cases the reaction takes place in the 
absence of a catalyst, but for certain substrates the presence of a catalyst is needed; and 10) catalysts can be 
various metals, metal salts, and complexes (e.g., Cu-powder, Ni-halides, PdCl2, CoCl2), protic acids (e.g., AcOH), or 
light. Phosphonates are of great importance in organic synthesis, agriculture, and chemical warfare. 
Organophosphoric acid esters are produced on the multiton scale and used as insecticides (e.g., methidathion, 
methyl-parathion, etc.). Organophosphonates also found application in chemical warfare (nerve gases such as VX, 
Sarin, etc.). They are potent inhibitors of the enzyme acetyl cholinesterase via phosphorylation and therefore 
extremely toxic to the parasympathetic nervous system. The Horner-Emmons-Wadsworth modification of the Wittig 
reaction (synthesis of alkenes from carbonyl compounds) utilizes phosphonates instead of phosphoranes. 
Phosphonates are easily deprotonated to yield ylides that are more reactive than the corresponding phosphoranes 
(phosphorous ylides). Phosphonates react with ketones that are unreactive toward phosphoranes.  

Mechanism: 23-30,15,18

The first step of the mechanism is the nucleophilic attack (SN2) of the alkyl halide by the phosphorous to form a 
phosphonium salt A. Under the reaction conditions (heat) the phosphonium salt A is unstable and undergoes a C-O 
bond cleavage (the halide ion (X-) acts as a nucleophile and attacks one of the alkyl groups in an SN2 reaction) to 
afford the phosphonate ester. 
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ARBUZOV REACTION  
(MICHAELIS-ARBUZOV REACTION) 

Synthetic Applications:

The phosphonic acid analog of NSAID (Non-Steroidal Anti-Inflammatory Drug) diclofenac® was successfully 
synthesized in the laboratory of B. Mugrage using a novel acid catalyzed Arbuzov reaction as the key step followed 
by a TMSBr promoted dealkylation.31 It needs to be pointed out that the nucleophilic attack takes place on the ortho-
quinonoid intermediate in a non-SN2 process. 

R.R. Schmidt and co-workers designed and synthesized a novel class of glycosyltransferase inhibitors.32 The key 
synthetic steps involve an Arbuzov reaction followed by a coupling with uridine-5’-morpholidophosphate as the 
activated derivative.

A novel enantioselective synthesis of an antagonist of the NMDA receptor, cis-perhydroisoquinoline LY235959, was 
achieved in 13% overall yield and 17 steps from (R)-pantolactone in the laboratory of M.M. Hansen.33 The phosphoric 
acid portion of the target was introduced by a high-yielding Arbuzov reaction.
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ARNDT-EISTERT HOMOLOGATION / SYNTHESIS 
(References are on page 538) 

Importance:

[Seminal Publication1; Reviews2-4; Modifications & Improvements5-10]

The conversion of a carboxylic acid to its homolog (one CH2 group longer) in three stages is called the Arndt-Eistert 
synthesis. This homologation is the best preparative method for the chain elongation of carboxylic acids. In the first 
stage of the process the acid is converted to the corresponding acid chloride. The second stage involves the 
formation of a α-diazo methylketone, followed by a Wolff rearrangement in the third stage.4 The third stage is 
conducted either in the presence of solid silver oxide/water or silver benzoate/triethylamine solution. The yields are 
usually good (50-80%). If the reaction is conducted in the presence of an alcohol (ROH) or amine (RNHR’), the 
corresponding homologated ester or amide is formed. Other metals (Pt, Cu) also catalyze the decomposition of the 
diazo ketones. An alternative method is to heat or photolyze the diazo ketone in the presence of a nucleophilic 
solvent (H2O, ROH, or RNH2), and in these cases no catalyst is required. The reaction tolerates a wide range of non-
acidic functional groups (alkyl, aryl, double bonds). Acidic functional groups would react with diazomethane or diazo 
ketones.

Mechanism: 2,11,4

Since hydrogen chloride (HCl) is the by-product of the reaction between the acid chloride and diazomethane, two 
equivalents of diazomethane are needed so that the presence of HCl does not give side products (e.g. 
chloroketones). The HCl reacts with the second equivalent of diazomethane to form methyl chloride and dinitrogen. 
The role of the catalyst is not well understood. The diazo ketone can exist in two conformations, namely the s-(E) and 
s-(Z) conformations, which arise from the rotation about the C-C single bond. It has been shown that the Wolff
rearrangement takes place preferentially from the s-(Z) conformation. With the loss of a molecule of nitrogen, the 
decomposition of the diazo ketone involves the formation of a carbene, followed by a carbene rearrangement with the 
intermediacy of an oxirene. The carbene undergoes a rapid [1,2]-shift to afford a ketene that reacts with the 
nucleophilic solvent to give the homologated acid derivative. 
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ARNDT-EISTERT HOMOLOGATION / SYNTHESIS 

Synthetic Applications:

The oligomers of β-amino acids, as opposed to α-peptides, show a remarkable ability to fold into well-defined 
secondary structures in solution as well as in the solid state. The β-amino acid building blocks were synthesized from 
α-amino acids using the Arndt-Eistert homologation reaction in the laboratory of D. Seebach.12

During the total synthesis of the CP molecules, K.C. Nicolaou et al. homologated a sterically hindered carboxylic acid, 
which was part of an advanced intermediate.13 Due to the sensitive nature of this intermediate, the diazo ketone was 
prepared via the acyl mesylate rather than the acid chloride. The diazo ketone then was immediately dissolved in 
DMF:H2O (2:1) and heated to 120 °C in the presence of excess Ag2O for one minute to generate the homologated 
acid in 35% yield. 

A.T. Russell and co-workers synthesized (R)-(–)-homocitric acid-γ-lactone in multigram quantities starting from a citric 
acid derivative and using the Arndt-Eistert homologation as the key step.14

In the laboratory of B.M. Stolz, the first total synthesis of the bis-indole alkaloid (±)-dragmacidin D was 
accomplished.15 During the endgame, a carboxylic acid was homologated to the corresponding α-bromo ketone by 
treating the diazo ketone intermediate with hydrobromic acid. 
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AZA-CLAISEN REARRANGEMENT  
(3-AZA-COPE REARRANGEMENT)

(References are on page 538) 
Importance:

[Seminal Publications1; Reviews2,3; Modifications & Improvements4-11; Theoretical Studies12]

The thermal [3,3]-sigmatropic rearrangement of allyl vinyl ethers is called the Claisen rearrangement.13,14 Its variant, 
the thermal [3,3]-sigmatropic rearrangement of N-allyl enamines, is called the aza-Claisen rearrangement (3-aza-
Cope or amino-Claisen rearrangement). There are several known variations of the aza-Claisen rearrangement, and 
each one belongs to a subclass of this type of reaction. The rates of the rearrangement depend mainly on the 
structural features of the specific system, which can be: 1) 3-aza-1,5-hexadienes; 2) 3-azonia-1,5-hexadienes; and 3) 
3-aza-1,2,5-hexatrienes. The observed temperature trend for these reactions is that milder temperatures are required 
as one progresses from the “neutral” to the “charged” and finally to the keteneimine rearrangement. The 
rearrangement generally occurs between 170-250 °C for the neutral species, and between room temperature and 
110 °C for the Lewis acid coordinated or quaternized molecules. 

Mechanism:

The aza-Claisen rearrangement is a concerted process, and it usually takes place via a chairlike transition state 
where the substituents are arranged in quasi-equatorial positions. (See more details in Claisen rearrangement.)

Synthetic Applications:

S. Ito et al. utilized the aza-Claisen rearrangement of carboxamide enolates for the enantioselective total synthesis of 
(–)-isoiridomyrmecin, which is a constituent of Actinidia polygama and exhibits unique bioactivity.2 The rearrangement 
of the (S,S) stereoisomer was conducted under standard conditions, and the product was isolated as a single (R,R)
stereoisomer in 77% yield.  
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AZA-CLAISEN REARRANGEMENT  
(3-AZA-COPE REARRANGEMENT) 

Synthetic Applications:

The first asymmetric synthesis of fluvirucinine A1 was accomplished in the laboratory of Y.-G. Suh.15  Key steps of the 
synthesis involved a diastereoselective vinyl addition to the amide carbonyl group as well as an amide enolate 
induced aza-Claisen rearrangement.15

T. Tsunoda and co-workers synthesized the antipode of natural antibiotic antimycin A3b starting from (R)-(+)-
methylbenzylamine and utilizing the asymmetric aza-Claisen rearrangement.16 The amide precursor was 
deprotonated with LiHMDS at low temperature then the reaction mixture was refluxed for several hours to bring about 
the sigmatropic rearrangement. 

U. Nubbemeyer et al. achieved the enantioselective total synthesis of the bicyclic tetrahydrofuran natural product (+)-
dihydrocanadensolide via a key step utilizing the diastereoselective zwitterionic aza-Claisen rearrangement of an N-
allylpyrrolidine.17
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AZA-COPE REARRANGEMENT
(References are on page 538) 

Importance:

[Seminal Publications1-3; Reviews4-6; Modifications & Improvements7-28; Theoretical Studies18,21,29]

When 1,5-dienes are heated, they isomerize via a [3,3]-sigmatropic rearrangement known as the Cope 
rearrangement. The rearrangement of N-substituted 1,5-dienes is called the aza-Cope rearrangement. This reaction 
has many variants, namely 1-aza-, 2-aza-, 3-aza- and 1,3-, 2,3-, 2,5-, 3,4- diaza-Cope rearrangements.7,8 The 3-aza-
Cope rearrangement is also known as the aza-Claisen rearrangement. The rearrangement of cis-2-vinylcyclopropyl 
isocyanates to 1-azacyclohepta-4,6-dien-2-ones (2-aza-divinylcyclopropane rearrangement) is analogous to the well-
known and highly stereospecific cis-divinylcyclopropane rearrangement. It is well established that the presence of an 
oxygen atom adjacent to the π-bond accelerates the Cope rearrangement. When there is a group attached to C3 or 
C4 with which the newly formed double bond can conjugate, the reaction takes place at a lower temperature than in 
the unsubstituted case. As with all [3,3]-sigmatropic rearrangements, the activation energies are significantly lowered 
when the starting diene is charged.  

Mechanism: 30-35,18,36,21,37,38,29

The aza-Cope rearrangement is a concerted process, and it usually takes place via a chairlike transition state where 
the substituents are arranged in a quasi-equatorial position. (See more detail in Cope rearrangement.)

Synthetic Applications:

The tandem cationic aza-Cope rearrangement followed by a Mannich cyclization was applied in the synthesis of the 
novel tricyclic core structure of the powerful immunosupressant FR901483 in the laboratory of K. Brummond.39 Their 
approach was the first synthetic example in which this tandem reaction passes through a bridgehead iminium ion. 
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AZA-COPE REARRANGEMENT

Synthetic Applications:

D.J. Bennett et al. developed a facile synthesis of N-benzylallylglycine based on a tandem 2-aza-Cope/iminium ion 
solvolysis reaction.40 N-Benzylallylglycine can be prepared in good yield through a one-pot reaction of N-
benzylhomoallylamine with glyoxylic acid monohydrate in methanol. 

L.E. Overman and co-workers accomplished a total synthesis of (±)-gelsemine by a sequence where the key strategic 
steps are a sequential anionic 2-aza-Cope rearrangement and Mannich cyclization, an intramolecular Heck reaction,
and a complex base-promoted molecular reorganization to generate the hexacyclic ring system.41 The exposure of 
the bicyclic substrate to potassium hydride in the presence of 18-crown-6 initiated the anionic aza-Cope 
rearrangement of the bicyclic formaldehyde-imine alkoxide. The rearrangement product was quenched with excess 
methyl chloroformate then was treated with base to afford the desired cis-hexahydroisoquinolinone. 

During the enantioselective total syntheses of (–)- and (+)-strychnine and the Wieland-Gumlich aldehyde, L.E. 
Overman and co-workers used the tandem aza-Cope rearrangement/Mannich reaction as a key step.42 This central 
aza-Cope/Mannich reorganization step proceeded in 98% yield. 
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AZA-WITTIG REACTION  
(References are on page 539)

Importance:

[Seminal Publications1; Reviews2-11; Theoretical Studies12-17]

In 1919, H. Staudinger and J. Meyer prepared PhN=PPh3, an aza-ylide which was the first example of an aza-Wittig 
reagent.1 By definition an ylide is “a substance in which a carbanion is attached directly to a heteroatom carrying a 
substantial degree of positive charge and in which the positive charge is created by the sigma bonding of substituents 
to the heteroatom”.4 The reaction of aza-ylides (iminophosphoranes) with various carbonyl compounds is called the 
aza-Wittig reaction. The product of the reaction is a Schiff base. Just as in the regular Wittig reaction, the by-product 
is triphenylphosphine oxide. Over the last decade, the aza-Wittig methodology has received considerable attention 
because of its utility in the synthesis of C=N double bond containing compounds, in particular, nitrogen heterocycles. 
The intramolecular aza-Wittig reaction is a powerful tool for the synthesis of 5-, 6-, 7-, and 8 membered heterocycles. 

Mechanism: 18,15

In the first step, the triphenylphosphine reacts with an alkyl azide to form an iminophosphorane with loss of nitrogen 
(Staudinger reaction). In the second step, the nucleophilic nitrogen of the iminophosphorane attacks the carbonyl 
group to form a four-membered intermediate (oxazaphosphetane) from which the product Schiff base and the by-
product triphenylphosphine oxide are released. 

Synthetic Applications:

The solid phase synthesis of trisubstituted guanidines was achieved in the research group of D.H. Drewery by 
utilizing the aza-Wittig reaction. The reaction of solid-supported alkyl iminophosphorane and aryl or alkyl 
isothiocyanates afforded carbodiimides, which upon treatment with primary or secondary amines provided the 
trisubstituted guanidines.19
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AZA-WITTIG REACTION  

Synthetic Applications:

D.R. Williams and co-workers have accomplished the stereocontrolled total synthesis of the polycyclic Stemona
alkaloid, (–)-stemospironine.20 Key transformations included the use of a Staudinger reaction leading to the aza-Wittig 
ring closure of the perhydroazepine system. The Staudinger reaction was initiated by the addition of 
triphenylphosphine, leading to an aza-ylide for intramolecular condensation providing a seven-membered imine. An in 
situ reduction yielded the azepine system. Finally, (–)-stemospironine was produced by the iodine-induced double 
cyclization reaction in which the vicinal pyrrolidine butyrolactone was formed via the stereoselective intramolecular 
capture of an intermediate aziridinium salt. 

The first total synthesis of (–)-benzomalvin A, which possesses a 4(3H)-quinazolinone and 1,4-benzodiazepin-5-one 
moiety, was accomplished in the laboratory of S. Eguchi.21 Both 6- and 7-membered ring skeletons were efficiently 
constructed by the intramolecular aza-Wittig reaction. The precursors were prepared from L-phenylalanine. The 
reaction of the azide derivative with tributylphosphine formed the corresponding iminophosphorane intermediate, 
which spontaneously underwent the aza-Wittig cyclization to give the 7-membered ring. Finally the 6-membered ring 
of (–)-benzomalvin A was constructed by another intramolecular aza-Wittig cyclization reaction.

In the total synthesis of antitumor antibiotic (±)-phloeodictine A1 by B.B. Snider and co-workers, the key step was an 
aza-Wittig reaction followed by a retro-Diels-Alder reaction to afford the desired bicyclic amidine.22 The polystyrene-
supported PPh3 made it easy to separate the product from by-products with a simple filtration. 

O
O

H
H3C

CH3

CO2Me

O

MeO N3

PPh3, THF then
O

O

H
H3C

NH

MeO
H

CO2CH3

CH3

I2

DCM, Et2O
r.t., 48h; 

30%

O
O

H
H3C

N

MeO
H

H

H O
O

CH3
CH3

I

O
O

H
H3C

N

MeO
H

O O

CH3

H

H

(−)-Stemospironine
aziridinium salt intermediate

H

NaBH4, MeOH, r.t.;
60%

N3

N

O

CO2Me

Ph

Me

n-Bu3P (1.1 equiv)

toluene, r.t., 2.5h
   then reflux, 5h

N

N

O Me

OMe

Ph
TFA:H2O:THF

(1:1:12.5)

N
H

N

O Me

O

Ph

87%, >99.7% ee

1. KHMDS (1.0 equiv)
   THF, -78 °C, 1h

2. 2-azidobenzoylchloride,
 -78 °C, 30 min then r.t.

N

N

O Me

O

Ph

O

N3

PPh3 (1.1 equiv)

N

N

O
Me

Ph

N
O

(−)-Benzomalvin A

toluene, r.t., 12h
then reflux for 8h

98%

r.t., 7h

O

N

O

O

N3
PPh3

toluene, 25 °C

30 min, reflux 4h

O

N

N

O
aza-Wittig rxn

retro D.A.
N

N

O

43%

steps N
N

HO

( )10

HN
NH2

NH2

( )5

(±)-Phloeodictine A1



26

AZA-[2,3]-WITTIG REARRANGEMENT
(References are on page 540) 

Importance:

[Seminal Publications1,2; Review3; Modifications & Improvements4-14; Theoretical Studies9,15]

The highly stereoselective rearrangement of α-metalated ethers to metal alkoxides is called the Wittig rearrangement
and was first reported by G. Wittig and L. Löhmann in 1942.16 The product is a secondary or tertiary alcohol after 
hydrolytic work-up. The nitrogen analog of this reaction is the isoelectronic aza-Wittig rearrangement that involves the 
isomerization of α-metalated tertiary amines to skeletally rearranged metal amides. The corresponding homoallylic 
secondary amines are obtained upon work-up. It was shown that the aza-[2,3]-Wittig rearrangement proceeds with 
the inversion of configuration of the lithium bearing carbon17 as it occurs in the oxygen series. The aza-Wittig 
rearrangement should not be confused with the Stevens or Sommelet-Hauser rearrangement that both require 
quaternary ammonium salts as starting materials. These two rearrangements may lead to side products (e.g., when a 
quaternary ammonium salt is treated with a strong base, a rearranged tertiary amine may be formed by the Stevens 
rearrangement through a vicinal alkyl migration). In the case of a benzyltrialkylammonium salt the Sommelet-Hauser 
rearrangement may also compete; it is favored at low temperatures and yields an o-substituted benzyldialkylamine 
through a [2,3]-sigmatropic rearrangement.3 In general, the aza-[2,3]-Wittig rearrangement of α-metalated amines is 
considerably slower (due to the lack of a thermodynamic driving force) and less selective than that of α-metalated
ethers. Exceptions are noted when the rate of rearrangement is increased due to the relief of ring strain.  

Mechanism: 18-22,9

The aza-[2,3]-Wittig rearrangement proceeds by a concerted process through a six-electron, five-membered cyclic 
transition state of envelope-like geometry. According to the Woodward-Hoffmann rules, the [2,3]-sigmatropic
rearrangement is a thermally allowed, concerted sigmatropic rearrangement that proceeds in a suprafacial fashion 
with respect to both fragments. Therefore, the aza-[2,3]-Wittig rearrangement is a one-step SNi-reaction, which results 
in a regiospecific carbon-carbon bond formation by suprafacial allyl inversion in which the heteroatom function gets 
transposed from allylic to homoallylic. The driving force for these rearrangements is the transfer of a formal negative 
charge from the less electronegative α-carbon to the more electronegative heteroatom. 

Synthetic Applications:

In the laboratory of J.C. Anderson, the total synthesis of (±)-kainic acid was accomplished relying on a route that 
utilized an aza-[2,3]-Wittig rearrangement as the key step to install the correct relative stereochemistry between C2 
and C3.23 The C4 stereocenter was established via an iodolactonization reaction.
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AZA-[2,3]-WITTIG REARRANGEMENT

Synthetic Applications:

The aza-Wittig rearrangement of appropriately substituted vinylaziridines leads to the stereoselective formation of 
tetrahydropyridines, which are key intermediates in the synthesis of piperidines. A one-pot, two-step synthesis of 
unsaturated piperidines from 2-ketoaziridines utilizing the aza-[2,3]-Wittig rearrangement was reported by I. Coldham 
and co-workers.24 Treatment of 2-ketoaziridines with two equivalents of a phosphonium ylide generates 
vinylaziridines that rearrange by a [2,3]-sigmatropic shift with the concomitant ring opening of the aziridines to give 
unsaturated piperidines.

Research by J.C. Anderson et al. has shown that the inclusion of a C2 trialkylsilyl substituent into allylic amine 
precursors allows the base-induced aza-[2,3]-sigmatropic rearrangement to proceed in excellent yield and 
diastereoselectivity.14 The rearrangement precursors require a carbonyl-based nitrogen protecting group that must be 
stable to the excess strong base required for the reaction. The N-Boc and N-benzoyl groups are very good at 
stabilizing the product anion and initiating deprotonation. The migrating groups need to stabilize the initial anion by 
resonance and a pKa>22 is required for the rearrangement to occur. Products are formed with high anti
diastereoselectivity (10:1-20:1). 

Tertiary amines are generally reluctant to undergo the [2,3]-aza-Wittig rearrangement and promotion of the 
rearrangement leads to unreacted starting material or [1,2]-rearranged products. However, in certain cases the 
addition of Lewis acids can lead to successful aza-[2,3]-Wittig rearrangements. In the laboratory of I. Coldham, the 
aza-[2,3]-Wittig rearrangement of N-alkyl-N-allyl- -amino esters to N-alkyl-C-allyl glycine esters was investigated in 
detail.25 It was reported that instead of using Lewis acids, the addition of iodomethane or benzyl bromide to tertiary 
amines promoted quaternary ammonium salt formation. In situ, these salts underwent spontaneous [2,3]-sigmatropic 
rearrangement when DMF was used as the solvent along with K2CO3 and DBU at 40 °C. In all cases when R=Me, a 
60:40 anti:syn ratio of diastereomers was obtained. 
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BAEYER-VILLIGER OXIDATION/REARRANGEMENT 
(References are on page 540)

Importance:

[Seminal Publication1; Reviews2-25; Modifications & Improvements26-36; Theoretical Studies37-48]

The transformation of ketones into esters and cyclic ketones into lactones or hydroxy acids by peroxyacids was 
discovered as early as 1899 by A. Baeyer and V. Villiger when they were investigating the ring cleavage of cyclic 
ketones. This reaction was later named after them as the Baeyer-Villiger oxidation.  The oxidation of ketones using 
this method has the following features: 1) it tolerates the presence of many functional groups in the molecule, for 
example, even with α,β-unsaturated ketones, the oxidation with peroxyacids generally occurs at the carbonyl group 
and not at the C=C double bond; 2) the regiochemistry depends on the migratory aptitude of different alkyl groups. 
For acyclic compounds, R’ must usually be secondary, tertiary, or vinylic. For unsymmetrical ketones the approximate 
order of migration is tertiary alkyl > secondary alkyl > aryl > primary alkyl > methyl, and there are cases (e.g., bicyclic 
systems) in which various stereoelectronic aspects can influence which group migrates; 3) the rearrangement step 
occurs with retention of the stereochemistry at the migrating center; 4) a wide variety of peroxyacids can be used as 
oxidants for the reaction; and 5) the oxidation can also be performed asymmetrically on racemic or prochiral ketones 
using enzymes or chiral transition metal catalysts. A wide range of oxidizing agents can be used to perform the 
Baeyer-Villiger oxidations and their activity is ranked as follows: CF3CO3H > monopermaleic acid > monoperphthalic 
acid > 3,5-dinitroperbenzoic acid > p-nitroperbenzoic acid > mCPBA ~ performic acid > perbenzoic acid > peracetic 
acid » H2O2 > t-BuOOH.34 Recently there has been considerable effort to make the B.-V. oxidation catalytic and at the 
same time preserve the high regio- and stereoselectivity of the reaction. Some of the most promising catalysts are 
substituted seleninic acids that are usually generated in situ from diaryl diselenides with H2O2 (Syper method of 
activation).28,34

Mechanism: 49-61

In 1953 Doering and Dorfman clarified the mechanism by performing a labeling experiment. Their experimental 
results confirmed Criegee’s hypothesis, which he presented in 1948. In the first step, the carbonyl group is protonated 
to increase its electrophilicity, then the peroxyacid adds to this cationic species to form the so-called Criegee 
intermediate (adduct). When the carboxylic acid (R1COOH) departs from this intermediate, an electron-deficient 
oxygen substituent is formed, which immediately undergoes an alkyl migration. This alkyl migration and the loss of 
the carboxylic acid both take place in a concerted process. It is assumed that the migrating group has to be in a 
position antiperiplanar to the dissociating oxygen-oxygen single bond of the peroxide. The FMO (frontier molecular 
orbital) theory states that this antiperiplanar arrangement allows the best overlap of the C-R2 σ bond with the O-O σ*
orbital (primary stereoelectronic effect). In 1998, Y. Kishi and co-workers showed that in allylic hydroperoxides the 
bond antiperiplanar to the dissociating peroxide bond is always and exclusively the bond that migrates, even when 
this migration is electronically disfavored.57 Despite the numerous investigations of the mechanism of the Baeyer-
Villiger oxidation, the factors that control the migratory aptitude are still not completely understood. Electron density 
and steric bulk strongly influence the migration ability, but the exact nature of these influences remains obscure. 
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BAEYER-VILLIGER OXIDATION/REARRANGEMENT 

Synthetic Applications:

Investigations by J. Oh showed that the cycloaddition of dichloroketene to glucal followed by Baeyer-Villiger oxidation
afforded a bicyclic γ-lactone, an α-D-C-glucoside, which was further transformed to a C1-methyl glucitol derivative.62

In the laboratory of T.K.M. Shing, the functionalized CD-ring of Taxol® was synthesized in 21 steps starting out from 
(S)-(+)-carvone.63 The key steps were Baeyer-Villiger oxidation, Oppenhauer oxidation, Meerwein-Ponndorf-Verley 
reduction, a stereospecific Grignard addition, and an intramolecular SN2 reaction. 

Only a few methods are known for the preparation of cage-annulated ethers. A.P. Marchand and co-workers have 
used the Baeyer-Villiger oxidation for the synthesis of novel cage heterocycles and developed a general procedure 
that can be used to synthesize cage ethers by replacing the carbonyl group in a cage ketone by a ring oxygen atom 
or by a CH2O group.64

An unexpected rearrangement was observed in the peroxytrifluoroacetic acid-mediated Baeyer-Villiger oxidation of 
trans-3β-hydroxy-4,4,10β-trimethyl-9-decalone by F.W.J. Demnitz and co-workers.65 The initially formed ring-
expanded lactone product underwent a trifluoroacetic acid-catalyzed cleavage of the lactone C-O bond, and the 
resulting tertiary carbocation was trapped by the free hydroxyl group to afford a 7-oxabicyclo[2.2.1]heptane derivative. 
This compound was then used for the total synthesis and structure proof of the sesquiterpene (±)-farnesiferol C.
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BAKER-VENKATARAMAN REARRANGEMENT 
(References are on page 542)

Importance:

[Seminal Publications1-4; Reviews5-7; Modifications & Improvements8-17]

The base-catalyzed rearrangement of aromatic ortho-acyloxyketones to the corresponding aromatic β-diketones is 
known as the Baker-Venkataraman rearrangement. β-Diketones are important synthetic intermediates, and they are 
widely used for the synthesis of chromones, flavones, isoflavones, and coumarins. The most commonly used bases 
are the following: KOH, potassium tert-butoxide in DMSO, Na metal in toluene, sodium or potassium hydride, 
pyridine, and triphenylmethylsodium.  

Mechanism: 18-22

In the first step of the mechanism, the aromatic ketone is deprotonated at the α-carbon and an enolate is formed. 
This nucleophile attacks the carbonyl group of the acyloxy moiety intramolecularly to form a tetrahedral intermediate 
that subsequently breaks down to form the aromatic β-diketone. 

Synthetic Applications:

In the laboratory of K. Krohn, the total synthesis of aklanonic acid and its derivatives was undertaken, utilizing the 
Baker-Venkataraman rearrangement of ortho-acetyl anthraquinone esters in the presence of lithium hydride.23 Using 
this method, it was possible to introduce ketide side-chains on anthraquinones in a facile manner. 
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BAKER-VENKATARAMAN REARRANGEMENT 

Synthetic Applications:

V. Snieckus and co-workers developed a new carbamoyl Baker-Venkataraman rearrangement, which allowed a 
general synthesis of substituted 4-hydroxycoumarins in moderate to good overall yields.16 The intermediate 
arylketones were efficiently prepared from arylcarbamates via directed ortho metallation and Negishi cross coupling.
The overall sequence provided a regiospecific anionic Friedel-Crafts complement for the construction of ortho-acyl 
phenols and coumarins. 

Stigmatellin A is a powerful inhibitor of electron transport in mitochondria and chloroplasts. During the diastereo- and 
enantioselective total synthesis of this important natural product, D. Enders et al. utilized the Baker-Venkataraman 
rearrangement for the construction of the chromone system in good yield.24

A highly efficient and operationally simple domino reaction was developed in the laboratory of S. Ruchiwarat for the 
synthesis of benz[b]indeno[2,1-e]pyran-10,11-diones.25 The initial aroyl-transfer was achieved by the Baker-
Venkataraman rearrangement by subjecting the starting material to KOH in pyridine under reflux for 30 minutes. 
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BALDWIN’S RULES / GUIDELINES FOR RING-CLOSING REACTIONS 
(References are on page 542)

Importance:

[Seminal Publication1; Reviews2,3; Related Publications4-14]

In 1976, J.E. Baldwin formulated a set of rules/guidelines governing the ease of intramolecular ring-closing reactions, 
the so-called Baldwin’s rules or Baldwin's guidelines.1  Baldwin used these rules/guidelines to gain valuable insight 
into the role of stereoelectronic effects in organic reactions and predict the feasibility of these reactions in synthetic 
sequences. A few years later in 1983, J.D. Dunitz and co-workers demonstrated that there are favored trajectories for 
the approach of one reactant molecule toward another.15 We must note, however, that there is substantial limitation 
on these rules/guidelines; a large number of examples are known for which they do not apply.  

Summary of most important ring closures:
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BALDWIN’S RULES / GUIDELINES FOR RING-CLOSING REACTIONS 

Synthetic Applications:

D.L Boger and co-workers reported an asymmetric total synthesis of ent-(–)-roseophilin, the unnatural enantiomer of 
a naturally occurring antitumor antibiotic.16 Their approach featured a 5-exo-trig acyl radical-alkene cyclization to 
construct the fused cyclopentanone unit. To this end, the hindered methyl ester functionality was hydrolyzed and the 
resulting acid was transformed to the corresponding phenyl selenoester via a two-step sequence. The 5-exo-trig acyl 
radical-alkene cyclization was achieved by using AIBN and Bu3SnH to provide the tricyclic ansa-bridged azafulvene 
core.

The total synthesis of balanol, a fungal metabolite was accomplished by K.C. Nicolaou et al.17 For the construction of 
the central hexahydroazepine ring, they have utilized a 7-exo-tet cyclization. The substitution reaction between the 
mesylate of the primary alcohol and the Cbz-protected amine was effected by a slight excess of base to produce the 
desired 7-membered ring in high yield. 

The total synthesis of pyrrolidinol alkaloid, (+)-preussin was achieved in five efficient transformations from 
commercially available tert-Boc-(S)-phenylalanine in the laboratory of S.M. Hecht.18 The key step involved the Hg(II)-
mediated 5-endo-dig cyclization of ynone substrate affording the desired pyrrolidinone which, in two more steps, was 
converted into the natural product. 

In the laboratory of K. Nacro, a cyclization process leading stereoselectively to six- and/or five-membered ring 
lactones and lactone ethers from optically active epoxy- or diepoxy β-hydroxyesters or diastereomeric epoxy lactones 
was developed.19 The diastereomeric lactones were prepared from nerol and geraniol. The acid catalyzed cyclization 
of epoxyalcohols is one of the most effective methods for constructing cyclic ethers. The cyclization proceeds in the 
exo mode giving cyclic ethers with a hydroxyl group in the side chain. The regioselectivity of the cyclization is 
predicted by the Baldwin’s rules; in the case shown below the ether formation takes place via a 5-exo-tet cyclization. 
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BALZ-SCHIEMANN REACTION  
(SCHIEMANN REACTION) 
(References are on page 543) 

Importance:

[Seminal Publication1; Reviews2-6; Modifications & Improvements7-14]

The thermal decomposition of aromatic diazonium tetrafluoroborates (ArN2
+BF4

-) to give aromatic fluorides is called 
the Balz-Schiemann reaction. Normally diazonium salts are unstable but diazonium tetrafluoroborates are fairly stable 
and may be obtained in high yields. Aromatic heterocyclic diazonium tetrafluoroborates may also be used. The 
diazonium salts are obtained from the diazotization of aromatic amines in the presence of hydrogen tetrafluoroborate 
(HBF4). Improved yields of aryl fluorides may be achieved when instead of tetrafluoroborates, hexafluorophosphates 
(PF6

-) or hexafluoroantimonates (SbF6
-) are used as counterions.7,8 One drawback of the reaction is the potential 

danger of explosion when large-scale thermal decomposition of the aromatic diazonium tetrafluoroborates is 
attempted. However, when the decomposition is carried out, either thermally or photolytically, in pyridine·HF solution, 
the reaction proceeds smoothly even on a larger scale. This approach is especially useful for the preparation of aryl 
fluorides having polar substituents (OH, OMe, CF3, etc.).15

Mechanism: 16-24

The mechanism involves a positively charged intermediate,21 which is attacked by BF4
- rather than the fluoride ion.20

Both the thermal and photochemical decomposition of diazonium tetrafluoroborates afford the same product ratio, 
which suggests the intermediacy of the aryl cation. The decomposition follows a first-order rate law, so it is probably 
of SN1 type.  

Synthetic Applications:

In the laboratory of D.A. Holt, the synthesis of a new class of steroid 5 -reductase inhibitors was undertaken.25 They 
found that unlike the steroidal acrylates, steroidal A ring aryl carboxylic acids exhibit greatly reduced affinity for rat 
liver steroid 5 -reductase. The tested steroidal A ring carboxylic acids were synthesized from estrone; in one 
example, fluorine was incorporated into the 4-position of estrone via the Balz-Schiemann reaction.
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BALZ-SCHIEMANN REACTION  
(SCHIEMANN REACTION) 

Synthetic Applications:

C. Wiese and co-workers have synthesized 5-fluoro-D/L-dopa and the corresponding [18F]5-Fluoro-L-dopa starting 
from 5-nitrovanillin via malonic ester synthesis, the Balz-Schiemann reaction, and the separation of the racemic 
mixture [18F]5-fluoro-D/L-dopa utilizing a chiral HPLC system.26 The inactive 5-fluoro-D/L-dopa was obtained in an 
eight-step synthesis with an overall yield of 10%. 

D.R. Thakker synthesized K-region monofluoro- and difluorobenzo[c]phenanthrenes using the Balz-Schiemann 
reaction in order to elucidate the metabolic activation and detoxification of polycyclic aromatic compounds.27

Dibenzo[a,d]cycloalkenimines were synthesized and pharmacologically evaluated as N-methyl-D-aspartate 
antagonists by P.S. Anderson et al.28 A symmetrical 3,7-difluoro derivative was accessed by applying the Balz-
Schiemann reaction on the corresponding 3,7-diamino analog. 

The synthesis of 7-azaindoles is a challenging task and there are few efficient routes to substituted derivatives. In the 
laboratory of C. Thibault, the concise and efficient synthesis of 4-fluoro-1H-pyrrolo[2,3-b]pyridine was achieved.29 The 
fluorination was carried out using the Balz-Schiemann reaction. The aromatic amine precursor was prepared via the 
Buchwald-Hartwig coupling of the aryl chloride with N-allylamine followed by deallylation. The diazonium 
tetrafluoroborate intermediate was generated at 0 C and it decomposed spontaneously in 48% HBF4 solution to 
afford the desired aromatic fluoride. 
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BAMFORD-STEVENS-SHAPIRO OLEFINATION
(References are on page 543) 

Importance:

[Seminal Publication1; Reviews2-4; Modifications & Improvemens5-18]

The base catalyzed decomposition of arylsulfonylhydrazones of aldehydes and ketones to provide alkenes is called 
the Bamford-Stevens reaction. When an organolithium compound is used as the base, the reaction is termed the 
Shapiro reaction. The most synthetically useful protocol involves treatment of the substrate with at least two 
equivalents of an organolithium compound (usually MeLi or BuLi) in ether, hexane, or tetramethylenediamine. The in
situ formed alkenyllithium is then protonated to give the alkene. The above procedure provides good yields of alkenes 
without side reactions and where there is a choice, the less highly substituted alkene is predominantly formed. Under 
these reaction conditions tosylhydrazones of α,β-unsaturated ketones give rise to conjugated dienes. It is also 
possible to trap the alkenyllithium with electrophiles other than a proton. 

Mechanism: 19,7,20

The reaction mechanism depends on the reaction conditions used. The reaction of tosylhydrazone with a strong base 
(usually metal-alkoxides) in protic solvents results in the formation of a diazo compound that in some cases can be 
isolated.20 The diazo compound gives rise to a carbocation that may lose a proton or undergo a Wagner-Meerwein 
rearrangement. Therefore, a complex mixture of products may be isolated. When aprotic conditions are used, the 
initially formed diazo compound loses a molecule of nitrogen and a carbene intermediate is formed, which either 
undergoes a [1,2]-H shift or various carbene insertion reactions. In the case of the Shapiro reaction, two equivalents 
of alkyllithium reagent deprotonate the tosylhydrazone both at the nitrogen and the α-carbon and an alkenyllithium 
intermediate is formed via a carbanion mechanism. Subsequently, the protonation of the alkenyllithium gives rise to 
the alkene. 

Synthetic Applications:

The first enantioselective total synthesis of (–)-myltaylenol was achieved in the laboratory of E. Winterfeldt.21 The 
authors used an intramolecular Diels-Alder cycloaddition and the Shapiro reaction as key transformations to construct 
the unusual carbon framework of this sesquiterpenoid alcohol natural product, which contains three consecutive 
quaternary carbon atoms. 
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BAMFORD-STEVENS-SHAPIRO OLEFINATION

Synthetic Applications:

In the laboratory of K. Mori the task of determining the absolute configuration of the phytocassane group of 
phytoalexins was undertaken. To this end, the naturally occurring (–)-phytocassane D was synthesized from (R)-
Wieland-Miescher ketone.22  During the synthesis, a tricyclic ketone intermediate was subjected to the Shapiro 
olefination reaction to give the desired cyclic alkene in good yield. 

L. Somsák et al. developed a one-pot reaction to prepare exo-glycals from glycosyl cyanides.23 In this one-pot 
reaction, acylated glycosyl cyanides were first converted to the corresponding aldehydes with Raney nickel-sodium 
hypophosphite, and then converted into 2,5- and 2,6-anhydroaldose tosylhydrazones to give exo-glycals under 
aprotic Bamford-Stevens conditions. During the reaction C-glycosylmethylene carbenes are formed and 
spontaneously rearrange to give the observed exo-glycals. 

A novel class of chiral indenes (verbindenes) was prepared from enantiopure verbenone by K.C. Rupert and co-
workers who utilized the Shapiro reaction and the Nazarov cyclization as the key transformations.24 The bicyclic 
ketone substrate was treated with triisopropylbenzenesulfonyl hydrazide to prepare the trisyl hydrazone that was then 
exposed to n-BuLi. The resulting vinyllithium intermediate was reacted with various aromatic aldehydes to afford the 
corresponding allylic alcohols. 

During the total synthesis of (–)-isoclavukerin A by B.M. Trost et al., the introduction of the diene moiety was 
achieved by the use of the Bamford-Stevens reaction on a bicyclic trisylhydrazone compound.25 Interestingly, the 
strongly basic Shapiro conditions (e.g., alkyllithiums or LDA) led only to uncharacterizable decomposition products. 
However, heating of the trisylhydrazone with KH in toluene in the presence of diglyme gave good yield of the desired 
diene. It was also shown that the olefin formation and the following decarboxylation could be conducted in one pot. 
According to this procedure, excess NaI was added and the temperature was elevated to bring about the Krapcho 
decarboxylation.
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BARBIER COUPLING REACTION 
(References are on page 544) 

Importance:

[Seminal Publication1; Reviews2-16; Modifications & Improvements17-22; Theoretical Studies23]

In the case of unstable organometallic reagents, it is convenient to generate the reagent in the presence of the 
carbonyl compound, to produce an immediate reaction. This procedure is referred to as the Barbier reaction. The 
original protocol with magnesium metal was described by P. Barbier and later resulted in the development of the well-
known Grignard reaction. Most recently other metals (e.g., Sn, In, Zn, etc.) in aqueous solvents have been used 
under similar conditions with good results. The obvious advantages of these procedures are their safety and 
simplicity, as well as the ability to treat unprotected sugars with organometallic reagents. 

Mechanism: 24-29

The mechanism of the formation of the organometallic reagent is identical to the formation of a Grignard reagent,
presumably involving a single electron transfer (SET) mechanism from the metal surface to the alkyl halide. The 
mechanism of the addition of Grignard reagents to carbonyl compounds is not understood, but it is thought to take 
place mainly via either a concerted process or a radical pathway (stepwise).30-32

Synthetic Applications:

B.M. Trost and co-workers conducted studies toward the total synthesis of saponaceolide B, an antitumor agent 
active against 60 human cancer cell lines.33,34 One of the challenging structural features of this compound was the cis
2,4-disubstituted 1-methylene-3,3-dimethylcyclohexane ring. The key steps to construct this highly substituted 
cyclohexane ring were a diastereoselective Barbier reaction to install a vinyl bromide moiety followed by an 
intramolecular Heck cyclization reaction.

M M(I)R X R X+ + R M X

O
R2

R1

R MX

O
R2

R1

R MX

OMX

R2R1
R

O
R2

R1

RXM

O
R2

R1

RXM

SET

cyclic transition 
state

Concerted pathway: Radical (stepwise) pathway:

1°, 2°, 3°
Alkoxides

+

SET SET

OTBS

HO

H
TBDPSO

Br
Br

Sn, HBr, 
Et2O, H2O, r.t.
80%, 100% de

OH

HO

H
TBDPSO

Br

2. Pd(OAc)2 (10 mol%)
(o-C7H9)3P (20 mol%)

K2CO3, CH3CN
, 78%

CHO
H

TBDPSO

TBSO

cis : trans = 2.4:1
(54% isolated cis)

1. TBSOTf, 2,6-lutidine,
DCM, 0 °C

steps

O
O

OH

O

H
O

O

Saponaceolide B

R1 R2

O

carbonyl
compounds

1. R3 X + M

2. work-up
R1 R2

OH

R3

1°, 2°, or 3° Alcohols

R1, R2 = H, alkyl, aryl; R3 = alkyl, aryl, allyl, benzyl; X = Cl, Br, I; M = Mg, Sm, Zn, Li, etc.



39

BARBIER COUPLING REACTION 

Synthetic Applications:

During the enantioselective total synthesis of the sarpagine-related indole alkaloids talpinine and talcarpine, J.M. 
Cook and co-workers prepared an important allylic alcohol precursor for an anionic oxy-Cope rearrangement.35

However, the desired allylic carbanion was expected to undergo an undesired allylic rearrangement when stabilized 
as either a magnesium or lithium species. This problem was overcome by using the Barbier reaction conditions,
which was a modification of the allylbarium chemistry of Yamamoto.36,37 The mixture of the allylic bromide and the 
aldehyde was added to freshly prepared barium metal at -78 °C to generate the desired allylic carbanion. The 
resulting barium-stabilized species then added to the aldehyde, affording the 1,2-addition product in high yield, 
without allylic rearrangement. 

Stypodiol, epistypodiol and stypotriol are secondary diterpene metabolites produced by the tropical brown algae 
Stypopodium zonale. These compounds display diverse biological properties, including strong toxic, narcotic, and 
hyperactive effects upon the reef-dwelling fish. In the laboratory of A. Abad an efficient stereoselective synthesis of 
stypodiol and its C14 epimer, epistypodiol, was accomplished from (S)-(+)-carvone.38 The key transformations in the 
synthesis of these epimeric compounds were an intramolecular Diels-Alder reaction, a sonochemical Barbier reaction
and an acid-catalyzed quinol-tertiary alcohol cyclization.
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BARTOLI INDOLE SYNTHESIS
(References are on page 545)

Importance:

 [Seminal Publications1-3; Reviews4-7; Modifications & Improvements8-11]

In 1989, G. Bartoli et al. described the reaction of substituted nitroarenes with excess vinyl Grignard reagents at low 
temperature to afford substituted indoles upon aqueous work-up.2 The authors found that the highest yields were 
obtained with ortho-substituted nitroarenes. According to their procedure three equivalents of vinylmagnesium 
bromide were added to the cold solution of the nitroarene, which was stirred for 20 minutes, then quenched with a 
saturated NH4Cl solution, followed by extraction of the product with diethyl ether. The formation of 7-substituted 
indoles from ortho-substituted nitroarenes (or nitrosoarenes) and alkenyl Grignard reagents is known as the Bartoli 
indole synthesis. The general features of this transformation are: 1) when the nitroarene does not have a substituent 
ortho to the nitro group, the reaction gives low or no yield of the desired indole; 2) the size of the ortho substituent 
also has an effect on the yield of the reaction and the sterically more demanding groups usually give higher yield of 
the product; 3) most often simple vinylmagnesium bromide is used but substituted alkenyl Grignard reagents can also 
be applied and they give rise to the corresponding indoles with substituents at the C2 or C3 positions; and 4) when 
nitrosoarenes are the substrates, only two equivalents of the Grignard reagent are necessary. 

Mechanism: 12,7

The mechanism of the Bartoli indole synthesis is not clear in every detail, but G. Bartoli and co-workers successfully 
elucidated the main steps in the process. The first step is the addition of Grignard reagent to the oxygen atom of the 
nitro group followed by the rapid decomposition of the resulting O-alkenylated product to give a nitrosoarene. The 
nitrosoarene is much more reactive than the starting nitroarene, and it is attacked by the second equivalent of 
Grignard reagent to give an O-alkenyl hydroxylamine derivative, which rearranges in a facile [3,3]-sigmatropic 
process. The rearranged product then undergoes intramolecular nucleophilic attack, and the proton in the ring 
junction is removed by the third equivalent of the Grignard reagent. Finally, acidic work-up affords the indole. 
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BARTOLI INDOLE SYNTHESIS

Synthetic Applications:

In the laboratory of T. Wang a general method for the preparation of 4- and 6-azaindoles from substituted 
nitropyridines based on the Bartoli indole synthesis was developed.13 The substrates were treated with excess 
vinylmagnesium bromide according to the original procedure described by Bartoli et al. The yields were usually 
moderate and similarly to the simple nitroarenes, the larger the ortho substituent was, the higher yields were 
obtained. Interestingly, it was noted that the presence of a halogen atom at the 4-position of the pyridine ring resulted 
in significantly improved product yields. 

The short synthesis of the pyrrolophenanthridone alkaloid hippadine was accomplished by D.C. Harrowven and co-
workers.14 The key step of the synthetic sequence was the Ziegler modified intramolecular Ullmann biaryl coupling
between two aryl bromides. One of the aryl halides was 7-bromoindole which was prepared using the Bartoli indole 
synthesis. The second aryl bromide was connected to 7-bromoindole via a simple N-alkylation. 

The research team of T.A. Engler and J.R. Henry identified and synthesized a series of potent and selective glycogen 
synthase kinase-3 (GSK3) inhibitors.15 One of the targets required the preparation of 5-fluoro-7-formylindole, which 
was achieved by the Bartoli indole synthesis. Since the unprotected formyl group is incompatible with the Grignard 
reagent, a two-step protocol was implemented. First, the formyl group of 5-fluoro-2-nitrobenzaldehyde was protected 
as the corresponding di-n-butyl acetal, then excess Grignard reagent was added at low temperature, and finally the 
acetal protecting group was removed by treatment with aqueous HCl. 

Several heterocycles were prepared from dehydroabietic acid, and their antiviral properties were evaluated in the 
laboratory of B. Gigante.16 Dehydroabietic acid was first esterified, then brominated. Nitrodeisopropylation was 
achieved using a mixture of nitric acid and sulfuric acid. The resulting o-bromo nitroarene was treated with excess 
vinyl Grignard reagent to obtain the corresponding methyl-12-bromo-13,14b-pyrrolyl-deisopropyl dehydroabietate.
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BARTON NITRITE ESTER REACTION 
(References are on page 545) 

Importance:

[Seminal Publications1-7; Reviews8-12; Theoretical Studies13,14]

The Barton nitrite ester reaction (Barton reaction) is a method for achieving remote functionalization on an unreactive 
aliphatic site of a nitrite ester under thermal or photolytic conditions via oxygen-centered radicals. The nitrite esters 
are converted to the corresponding γ-hydroxy oximes in the reaction. The most common way to generate an oxygen-
centered radical is by the thermolysis or photolysis of nitrite, hypochlorite, or hypoiodite esters. Nitrogen-centered 
radicals are generated by heating the appropriate N-haloamines with sulfuric acid to give pyrrolidines or piperidines 
(Hofmann-Löffler-Freytag reaction). The Barton nitrite ester reaction was a landmark in the development of free 
radicals as valuable intermediates for organic synthesis. Most of the synthetic examples are from the steroid field 
because the Barton reaction occurs readily in rigid molecules. Usually skeletons with several fused rings are well-
suited for remote functionalizations. 

Mechanism: 15,16

The first step in the mechanism is the homolysis of the O-N bond to form an oxygen-centered radical and a nitrogen-
centered free radical. Next, the highly reactive alkoxyl radical abstracts a hydrogen atom from the δ-position (5-
position) via a quasi chair-like six-atom transition state to generate a new carbon-centered radical that is captured by 
the initially formed NO free radical. If a competing radical source such as iodine is present, the reaction leads to an 
iodohydrin, which can cyclize to form a tetrahydrofuran derivative. Occasionally, tetrahydropyran derivatives are 
obtained in low yields.  

Synthetic Applications:

In the partial synthesis of myriceric acid A by T. Konoike and co-workers, the Barton nitrite ester reaction was utilized 
in a large-scale preparation of one of the intermediates.17

Cephalosporins are important β-lactams, but a number of pathogenic microorganisms have developed resistance to 
these antibiotic compounds. In order to prepare novel antibiotic cephalosporin analogs, I. Chao and co-workers 
synthesized 1-dethia-3-aza-1-carba-2-oxacephem, which is not a substrate of the inducible β-lactamase enzyme.18

The key step of the synthetic sequence was the Barton nitrite ester reaction in which regioisomeric oximino β-lactams 
were generated and transformed into the desired product. 
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BARTON NITRITE ESTER REACTION 

Synthetic Applications:

The Barton reaction was utilized during the synthesis of various terpenes and has played a crucial role in the 
elucidation of terpene structures. The Barton nitrite ester reaction was a key step in E.J. Corey’s synthesis of 
azadiradione19 and perhydrohistrionicotoxin20. Even though the yields were low, other ways to access the same 
intermediates would have been tedious, and afforded lower overall yields than in the applied Barton reactions.

The Barton reaction does not always afford only a single major product. J. Sejbal and co-workers isolated two 
products in a Barton reaction on triterpene substrates.21 In this example, reaction at either (or both) the C4 and C10 
methyl groups was expected, but oxidation of the C8 methyl group was not. This remote functionalization occured via
two consecutive [1,5]- H-atom transfers.

The carbon-centered radical at the δ-position can be reacted by various trapping agents other than the nitrosyl 
radical. Z. ekovi  and co-workers used electron-deficient olefins (Michael acceptors) such as acrylonitrile to trap the 
δ-carbon radial and obtain functionalized alkyl chains.22 In order to maximize the yield of the desired chain-elongated 
product, a high concentration of the acrylonitrile had to be used. The final radical was trapped by the nitrosyl radical. 
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BARTON RADICAL DECARBOXYLATION REACTION
(References are on page 546) 

Importance:

[Seminal Publications1-3; Reviews4; Modifications & Improvements5-12]

Conversion of a carboxylic acid to a thiohydroxamate ester, followed by heating the product in the presence of a 
suitable hydrogen donor such as tri-n-butyltin hydride, produces a reductive decarboxylation. This sequence of 
reactions is called the Barton decarboxylation reaction and may be used to remove a carboxylic acid and replace it 
with other functional groups. 

Mechanism: 13

The first step of the reaction is the homolytic cleavage of the radical initiator AIBN upon heating. This initiation step 
generates the first radical to start the chain reaction. The initial radical abstracts a hydrogen atom from the tri-n-
butyltin hydride to afford a tri-n-butyltin radical that attacks the sulfur atom of the thiohydroxamate ester, forming a 
strong Sn-S bond. Next, carbon dioxide is lost, and the released alkyl radical (R⋅) gets reduced to the product (R-H) 
by abstracting a hydrogen atom from a tri-n-butyltin hydride molecule. The tin radical generated in this last step 
enters another reaction cycle until all of the starting thiohydroxamate ester is consumed. 

Synthetic Applications:

The Barton decarboxylation procedure was used in the total synthesis of (–)-verrucarol by K. Tadano et al. The 
initially formed thiohydroxamic ester was decarboxylated to leave a methylene radical on the cyclopentyl ring, which 
was then trapped by molecular oxygen. Reductive work-up in the presence of t-BuSH finally provided the 
hydroxylated product.14
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BARTON RADICAL DECARBOXYLATION REACTION

Synthetic Applications:

(–)-Quinocarcin exhibits notable antitumor activity against several strains of solid mammalian carcinomas. In the 
laboratory of S. Terashima, synthetic studies on quinocarcin and its related compounds were conducted.15 In an effort 
to establish structure-activity relationships, the synthesis and in vitro cyctotoxicity of C10 substituted quinocarcin 
congeners was carried out. To prepare 10-decarboxyquinocarcin, the Barton decarboxylation protocol was employed. 
The corresponding acid was esterified with 2-mercaptopyridine-N-oxide, and the resulting thiohydroxamate ester was 
immediately subjected to Barton radical decarboxylation using AIBN and tributyltin hydride giving rise to the C10 
decarboxylated derivative in 65% overall yield. 

B. Zwanenburg and co-workers synthesized 6-functionalized tricyclodecadienones (endo-tricyclo[5.2.1.02,6]deca-4,8-
dien-3-ones) using Barton’s radical decarboxylation reaction from the corresponding tricyclic carboxylic acid.16 Their 
work expanded the chemical scope of the tricyclodecadienone system as a synthetic equivalent of 
cyclopentadienone. The synthesis of functionalized cage compounds was also undertaken beginning with 1,3-
bishomocubanone carboxylic acid, obtained by irradiating the tricyclic ester. After the bromodecarboxylation and 
phenylselenodecarboxylation of 1,3-bishomocubanone carboxylic acid under the conditions of the Barton reaction,
the corresponding bridgehead bromide and phenylselenide were obtained in high yield. 

A double Barton radical decarboxylation was utilized during the one-step total synthesis of tyromycin A and its 
analogs by M. Samadi et al.17 The bis-thiohydroxamic ester was irradiated in the presence of citraconic anhydride, 
and the resulting product was stirred for two days at room temperature to ensure complete elimination. 
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BARTON-McCOMBIE RADICAL DEOXYGENATION REACTION 
(References are on page 546)

Importance:

[Seminal Publications1-6; Reviews7-12; Modifications & Improvements13-24]

In the Barton-McCombie radical deoxygenation reaction the hydroxyl group of an alcohol is replaced with a hydrogen 
atom. Even hindered secondary and tertiary alcohols may be deoxygenated by this method. In a typical procedure 
the alcohol is first converted to a thioxoester derivative, which is then exposed to tri-n-butyltin hydride in refluxing 
toluene.  

Mechanism: 25,13,26

Synthetic Applications:

In the asymmetric synthesis of the C1-C19 fragment of kabiramide C, to complete the stereochemical array, J. Panek 
and co-workers used, among other methods, the Barton-McCombie deoxygenation protocol.27

(n-Bu)3SnH
PhCH3, reflux

AIBN

R3

R2
OHR1

 alcohol

R3

R2 O
R1

S

Y

Y

S

X , base

or
NaH, CS2 then MeI

R3

R2
R1 H

Y = SMe, imidazolyl, OPh, OMe; X = Cl, imidazolyl; base: NaH

thioxoester Alkane

S
R1

R2 R3

S

O Y

Sn(n-Bu)3

+

+

N N
H3C

H3C
CN CN

CH3
CH3

AIBN

heat
N2 +

CN
CH3

CH3

2

Initiation step:

(n-Bu)3Sn H
CN

CH3

CH3

+
CN

CH3

CH3

H

Propagation step:

Sn(n-Bu)3H

(this radical enters
another cycle...)

(n-Bu)3Sn

Sn(n-Bu)3

Sn(n-Bu)3

YOR1

R3
R2

S

YOR1

R3
R2

Sn(n-Bu)3

H
R1

R3

R2

tributyltin 
radical

O
Si

O

Bu-t t-Bu

O

Me
OH

S

SMe

(n-Bu)3SnH
toluene, reflux

97 %
O

Si
O

Bu-t t-Bu

Me
OH

H

AIBN
O

Si
O

t-Bu t-Bu

Me S S

Me

OMe

O
N

ON

O

N

TBDPSO

C1-C19 fragment of
Kabiramide C

O
Si

O

Bu-t t-Bu

OH

Me
Me

1. NaH / CS2 / MeI
2. OsO4 / TMANO

3. Pb(OAc)4
4. NaBH4
72 % overall

steps



47

BARTON-McCOMBIE RADICAL DEOXYGENATION REACTION 

Synthetic Applications:

S.J. Danishefsky and co-workers developed a synthetic route to the neurotrophic illicinones and a total synthesis of 
the natural product tricycloillicinone.28  Illicinones were found to enhance the action of choline acetyltransferase, 
which catalyzes the synthesis of acetylcholine from its precursors. The application of Corey-Snider oxidative 
cyclization and the Barton-McCombie radical deoxygenation provided a direct route to tricycloillicinone. 

In the laboratory of V. Singh a novel and efficient stereospecific synthesis of the marine natural product (±)-Δ9(12)-
capnellene from p-cresol was developed.29 After rapidly assembling the desired carbon framework, it was necessary 
to remove the carbonyl group from the tricyclic intermediate which was accomplished using Barton’s deoxygenation 
procedure.

F. Luzzio and co-workers devised a total synthesis for both antipodes of the (–)-Kishi lactam, which is a versatile 
intermediate for the synthesis of the perhydrohistrionicotoxin (pHTX) alkaloids.30 In the final stages of the synthesis of 
the (-)-Kishi lactam, it was necessary to remove one of the secondary alcohol groups. The Barton radical 
deoxygenation protocol was utilized for this operation. 

R.H. Schlessinger et al. have successfully synthesized the α,β-unsaturated octenoic acid side chain of zaragozic 
acid, which contains acyclic “skip” 1,3 dimethyl stereocenters.31 Their approach utilized the Barton radical 
deoxygenation reaction in the last step of the total synthesis for the removal of the unnecessary hydroxyl group.  
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BAYLIS-HILLMAN REACTION 
(References are on page 547)

Importance:

[Seminal Publications1,2; Reviews3-13; Modifications & Improvements14-31]

In 1968, K. Morita reported the reaction of acetaldehyde with ethyl acrylate to give α-hydroxyethylated products in the 
presence of tertiary phosphines.1 Four years later A.B. Baylis and M.E.D. Hillman carried out the same transformation 
by using the cheaper and less toxic DABCO as the catalyst.2 The Baylis-Hillman reaction involves the formation of a 
C-C single bond between the α-position of conjugated carbonyl compounds, such as esters and amides, and carbon 
electrophiles, such as aldehydes and activated ketones in the presence of a suitable nucleophilic catalyst, particularly 
a tertiary amine. The most frequently used catalysts are DABCO, quinuclidine, cinchona derived alkaloids and 
trialkylphosphines. The asymmetric Baylis-Hillman reaction can be mediated efficiently by hydroxylated chiral amines 
derived from cinchona alkaloids. The reaction works with both aliphatic and aromatic aldehydes and results in high 
enantioselectivities.7 A catalytic amount of BINAP was also shown to promote the reaction with selected aldehydes.17

The major drawbacks of the organocatalytic Baylis-Hillman reaction are the slow reaction rate (days and weeks) and 
the limited scope of substrates. However, these shortcomings may be partly overcome by using metal-derived Lewis 
acids.15,16

Mechanism: 32-34,17,35-38

The currently accepted mechanism of the Baylis-Hillman reaction involves a Michael addition of the catalyst (tertiary 
amine) at the β-position of the activated alkene to form a zwitterionic enolate. This enolate reacts with the aldehyde to 
give another zwitterion that is deprotonated, and the catalyst is released. Proton transfer affords the final product.  

Synthetic Applications:

S. Hatekayama and co-workers developed a highly enantio- and stereocontrolled route to the key precursor of  the 
novel plant cell inhibitor epopromycin B, using a cinchona-alkaloid catalyzed Baylis-Hillman reaction of N-Fmoc 
leucinal.39
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BAYLIS-HILLMAN REACTION 

Synthetic Applications:

It was shown in the laboratory of P.T. Kaye that the reactions of 2-hydroxybenzaldehydes and 2-hydroxy-1-
naphthaldehydes with various activated alkenes proceeded with regioselective cyclization under Baylis-Hillman 
conditions to afford the corresponding 3-substituted 2H-chromene derivatives in high yields.40 Previous attempts to 
prepare 2H-chromenes chemoselectively via the cyclization of 2-hydroxybenzaldehyde-derived Baylis-Hillman 
products had proven unsuccessful. Complex mixtures containing coumarin and chromene derivatives were obtained. 
Good results were observed after the careful and systematic study of the various reactants and reaction conditions. 

D. Basavaiah and co-workers achieved the simple and convenient stereoselective synthesis of (E)-α-methylcinnamic 
acids via the nucleophilic addition of hydride ion from sodium borohydride to acetates of Baylis-Hillman adducts 
(methyl 3-acetoxy-3-aryl-2-methylenepropanoates), followed by hydrolysis and crystallization.41 The potential of this 
methodology was demonstrated in the synthesis of (E)-p-(myristyloxy)-α-methylcinnamic acid, which is an active 
hypolipidemic agent. 

Research by J. Jauch showed that in the case of highly base-sensitive substrates the Baylis-Hillmann reaction can be 
carried out by using lithium phenylselenide, which is a strong nucleophile but only weakly basic. This variant of the 
reaction is highly diastereoselective and was successfully applied to the total synthesis of kuehneromycin A.42

In the simple stereoselective total synthesis of salinosporamide A, E.J. Corey and co-workers applied the 
intramolecular Baylis-Hillman reaction to a ketoamide substrate.43 The reaction was catalyzed by quinuclidine and the 
γ-lactam product was formed as a 9:1 mixture of diastereomers favoring the desired stereoisomer. 
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BECKMANN REARRANGEMENT 
(References are on page 548)

Importance:

[Seminal Publication1; Reviews2-5; Modifications & Improvements6-17; Theoretical Studies18-27]

The conversion of aldoximes and ketoximes to the corresponding amides in acidic medium is known as the 
Beckmann rearrangement. It is especially important in the industrial production of ε-caprolactam, which is used as a 
monomer for polymerization to a polyamide for the production of synthetic fibers. The reaction is usually carried out 
under forcing conditions (high temperatures >130 °C, large amounts of strong Brönsted acids) and it is non-catalytic. 
The applied Brönsted acids are: H2SO4, HCl/Ac2O/AcOH, etc., which means that sensitive substrates cannot be used 
in this process. The stereochemical outcome of this rearrangement is predictable: the R group anti to the leaving 
group on the nitrogen will migrate. If the oxime isomerizes under the reaction conditions, a mixture of the two possible 
amides is obtained. The hydrogen atom never migrates, so this method cannot be used for the synthesis of N-
unsubstituted amides. 

Mechanism: 28,19,22-24,29-31

In the first step of the mechanism the X group is converted to a leaving group by reaction with an electrophile. The 
departure of the leaving group is accompanied by the [1,2]-shift of the R group, which is anti to the leaving group. The 
resulting carbocation reacts with a nucleophile (a water molecule or the leaving group) to afford the amide after 
tautomerization. 

Synthetic Applications:

N.S. Mani and co-workers utilized the organoaluminum promoted modified Beckmann rearrangement during their 
efficient synthetic route to chiral 4-alkyl-1,2,3,4-tetrahydroquinoline. (4R)-4-Ethyl-1,2,3,4-tetrahydroquinoline was 
obtained by rearrangement of the ketoxime sulfonate of (3R)-3-ethylindan-1-one.32 The resulting six-membered 
lactam product was reduced to the corresponding cyclic secondary amine with diisobutylaluminum hydride. 
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BECKMANN REARRANGEMENT 

Synthetic Applications:

In the laboratory of J.D. White, the asymmetric total synthesis of the non-natural (+)-codeine was accomplished via
intramolecular carbenoid insertion.33 In the late stages of the total synthesis it was necessary to install a 6-membered 
piperidine moiety. This transformation was accomplished utilizing a Beckmann rearrangement of the cyclopentanone 
oxime portion of one of the intermediates. Later the 6-membered lactam was reduced to the corresponding amine 
with LAH. To this end, an oxime brosylate (Bs) was prepared, which underwent a smooth Beckmann rearrangement
in acetic acid to provide a 69% yield of two isomeric lactams in an 11:1 ratio in favor of the desired isomer. 

J.D. White et al. reported the total synthesis of (–)-ibogamine via the catalytic asymmetric Diels-Alder reaction of 
benzoquinone.34 The azatricyclic framework of the molecule was established by converting the bicyclic ketone to the 
anti oxime and then subjecting it to a Beckmann rearrangement in the presence of p-toluenesulfonyl chloride to afford 
the 7-membered lactam. Elaboration of this lactam into the azatricyclic core of ibogamine and later to the natural 
product itself was accomplished in a few additional steps. 

A novel variant of the photo-Beckmann rearrangement was utilized by J. Aubé and co-workers in the endgame of the 
total synthesis of (+)-sparteine.35 The hydroxylamine was generated in situ, and reacted intramolecularly with the 
ketone to form a nitrone . Photolysis of the nitrone afforded the desired lactam in good yield.  
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BENZILIC ACID REARRANGEMENT 
(References are on page 548)

Importance:

[Seminal Publications1,2; Reviews3-6; Modifications & Improvements7-10; Theoretical Studies11]

Upon treatment with base (e.g., NaOH), α-diketones rearrange to give salts of α-hydroxy acids. This process is called 
the benzilic acid rearrangement. The reaction takes place with both aliphatic and aromatic α-diketones and α-keto
aldehydes. Usually diaryl diketones undergo benzilic acid rearrangements in excellent yields, but aliphatic α-
diketones that have enolizable α-protons give low yields due to competing aldol condensation reactions. Cyclic α-
diketones undergo the synthetically useful ring-contraction benzilic acid rearrangement reaction under these 
conditions. When alkoxides or amide anions are used in place of hydroxides, the corresponding esters and amides 
are formed. This process is called the benzilic ester rearrangement. Alkoxides that are readily oxidized such as 
ethoxide (EtO-) or isopropoxide (Me2CHO-) are not synthetically useful, since these species reduce the α-diketones to 
the corresponding α-hydroxy ketones. Aryl groups tend to migrate more rapidly than alkyl groups. When two different 
aryl groups are available, the major product usually results from migration of the aromatic ring with the more powerful 
electron-withdrawing group(s).  

Mechanism: 12-16,11,17,18,8,6

The benzilic acid rearrangement is an irreversible process. The first step of the mechanism is the addition of the 
nucleophile (HO-, alkoxide, or amide ion) across the C=O bond to give a tetrahedral intermediate. The next step is 
aryl or alkyl migration to form the corresponding α-hydroxy acid salt. 

Synthetic Applications:

J.L. Wood et al. were able to convert a pyranosylated indolocarbazole to the carbohydrate moiety of (+)-K252a
utilizing the stereoselective ring-contraction benzilic acid rearrangement.19 This reaction suggested a possible 
biosynthetic link between furanosylated and pyranosylated indolocarbazoles. 
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BENZILIC ACID REARRANGEMENT 

Synthetic Applications:

In an attempt to isolate 16α,17α-dihydroxyprogesterone by the stereoselective cis-dihydroxylation of 16-
dehydroprogesterone using cetyltrimethylammonium permanganate (CTAP) as an oxidant, J.A. Katzenellenbogen 
and co-workers isolated a novel 5-ring D-homosteroid instead of the desired diol.20 The mechanism of the final step 
was similar to the benzilic acid rearrangement. Under reaction conditions in which the permanganate concentration 
was high, the C21 enolate of the diketone attacked the aldehyde to form the 5-membered ketolactol. The final ring 
contraction was accomplished by the benzilic acid rearrangement.

H. Takeshita and co-workers devised a short synthesis of (±)-hinesol and (±)-agarospirol via a mild base-catalyzed 
retro-benzilic acid rearrangement of proto-[2+2] photocycloadducts to the desired spiro[4,5]decanedione framework.21

P.A. Grieco et al. accomplished the total synthesis of (±)-shinjudilactone and (±)-13-epi-shinjudilactone via a benzilic 
acid-type rearrangement.22 The substrate was exposed to basic conditions and the two desired products were 
obtained as a 1:1 mixture. Interestingly, when the C1 position was methoxy substituted, the rearrangement failed to 
take place under a variety of acidic and basic conditions. 
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BENZOIN AND RETRO-BENZOIN CONDENSATION 
(References are on page 549)

Importance:

[Seminal Publication1-3; Reviews4-8; Modifications & Improvements9-16; Theoretical Studies17,18]

Upon treating certain (but not all) aromatic aldehydes or glyoxals (α-keto aldehydes) with cyanide ion (CN-), benzoins 
(α-hydroxy-ketones or acyloins) are produced in a reaction called the benzoin condensation. The reverse process is 
called the retro-benzoin condensation, and it is frequently used for the preparation of ketones. The condensation 
involves the addition of one molecule of aldehyde to the C=O group of another. One of the aldehydes serves as the 
donor and the other serves as the acceptor. Some aldehydes can only be donors (e.g. p-
dimethylaminobenzaldehyde) or acceptors, so they are not able to self-condense, while other aldehydes 
(benzaldehyde) can perform both functions and are capable of self-condensation. Certain thiazolium salts can also 
catalyze the reaction in the presence of a mild base.11,12,19 This version of the benzoin condensation is more 
synthetically useful than the original procedure because it works with enolizable and non-enolizable aldehydes and 
asymmetric catalysts may be used. Aliphatic aldehydes can also be used and mixtures of aliphatic and aromatic 
aldehydes give mixed benzoins. Recently, it was also shown that thiazolium-ion based organic ionic liquids (OILs) 
promote the benzoin condensation in the presence of small amounts of triethylamine.12 The stereoselective synthesis 
of benzoins has been achieved using chiral thiazolium salts as catalysts.11

Mechanism: 20,21,17,22-24,18,25-30,19,31

All the steps of the cyanide ion catalyzed benzoin condensation are completely reversible, and the widely accepted 
mechanism involves the loss of the aldehydic proton in the key step. This deprotonation is possible due to the 
increased acidity of this C-H bond caused by the electron-withdrawing effect of the CN group. The cyanide ion is a 
very specific catalyst of the reaction. Cyanide is a good nucleophile, a good leaving group, and its electron-
withdrawing effect enhances the acidity of the aldehyde hydrogen. 

The generally accepted mechanism of the thiazolium salt-catalyzed benzoin condensation was first proposed by R. 
Breslow.26
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BENZOIN AND RETRO-BENZOIN CONDENSATION 

Synthetic Applications:

A. Miyashita and co-workers have developed a new method for the synthesis of ketones based on the concept that 
the benzoin condensation is reversible (retro-benzoin condensation) and affords the most stable product.32 When α-
benzylbenzoin was treated with KCN in DMF, the C-C bond was cleaved, resulting in the formation of deoxybenzoin 
and benzaldehyde. This method of synthesizing ketones has been applied to several α-substituted benzoins, and the 
corresponding ketones were formed in good yields. The authors also realized, based on the known analogy between 
the chemical behavior of the C=O double bond of ketones and the C=N double bond of nitrogen-containing 
heteroarenes, that a cyanide ion catalyzed retro-benzoin condensation of α-hydroxybenzylheteroarenes would also 
be possible.33

The retro-benzoin condensation methodology was used to synthesize 2-substituted quinazolines in good overall yield 
from 2,4-dichloroquinazoline. 2-Substituted quinazolines are obtained by substitution of 2-chloroquinazoline with 
nucleophiles, though it is difficult to prepare the starting 2-chloroquinazoline. These results indicate that the aroyl 
group, which may be introduced onto nitrogen-containing heteroarenes at the α-position, can be used as a protecting 
group. Later it can be easily removed by conversion to an α-hydroxybenzyl group, followed by a retro-benzoin 
condensation.33

In the laboratory of K. Suzuki, a catalytic crossed aldehyde-ketone benzoin condensation was developed and applied 
to the synthesis of stereochemically defined functionalized preanthraquinones.15

The benzoin condensation was the key carbon-carbon bond forming step during the synthesis of anti-inflammatory 
4,5-diarylimidazoles by T.E. Barta and co-workers.34 The benzaldehyde was first converted to the cyanohydrin using 
TMSCN. Deprotonation was followed by the addition of 4-(MeS)-benzaldehyde to afford the benzoin. 
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BERGMAN CYCLOAROMATIZATION REACTION 
(References are on page 550)

Importance:

[Seminal Publications1,2; Reviews3-14; Modifications & Improvements15-18; Theoretical Studies19-33]

The thermal cycloaromatization of enediynes, which proceeds via the formation of benzenoid diradicals, is known as 
the Bergman cycloaromatization reaction.  It received little attention in the 1970s when it was first reported, but it 
became the subject of intense research in the 1990s when certain marine natural products containing the enediyne 
moiety showed remarkable antitumor activity via the cleavage of double stranded DNA. Synthetically the Bergman 
cyclization was exploited to prepare fused ring systems by tethering alkenes to an enediyne unit and allowing the 
alkenes to react with the cycloaromatized species to form additional saturated rings. It is also possible to make fused 
aromatic ring systems, such as acenaphthenes or perylene derivatives. The Bergman cyclization tolerates a wide 
range of functional groups, many of which also increase the yield of the cycloaromatization reaction.34 The distance 
between the triple bonds is crucial: the further away the triple bonds are, the higher the temperature required for the 
cyclization to occur. In order to observe cyclization at physiological temperatures, the enediyne unit should be part of 
a 10-membered ring. 

Mechanism: 35-40,26-28

Synthetic Applications:

To make the Bergman cyclization synthetically more appealing, the reaction temperature had to be lowered 
significantly. J.M. Zaleski and co-workers developed a Mg2+-induced thermal Bergman cyclization at ambient 
temperature.29
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BERGMAN CYCLOAROMATIZATION REACTION 

Synthetic Applications:

In the laboratory of K.C. Russell novel 10-membered pyrimidine enediynes were synthesized in seven and eight 
steps, respectively.41 These compounds were tested for their ability to undergo the Bergman cyclization both 
thermally and photochemically. Where X=OH, the enediynol readily cyclizes both thermally and photochemically in 
isopropanol, while when X=O, the enediynone only cyclizes under thermal conditions to give excellent yield of the 
corresponding aromatic compound. The difference in reactivity between the alcohol and the ketone was assumed to 
arise from different excited states. Ketones are well-known to possess different excited states and different reactivity 
from triplet excited states that can undergo hydrogen- and electron-abstraction processes. If the photochemical 
Bergman cyclization is favored by a singlet excited state, then a triplet state ketone could interfere with the normal 
cyclization process and result in poor yield and conversion. 

Porphyrin chromophores have received much attention, particularly as photoelectric devices and molecular wires. 
Efficient π-electronic communication between porphyrin macrocycles is pivotal in various complex functions. K.M. 
Smith et al. showed that neighboring acetylenic units on porphyrins provide a means for the efficient construction of 
aromatic superstructures triggered by the Bergman cyclization reaction conditions and give rise to novel 
[n]phenacenoporphyrins, which belong to a new class of highly π-extended porphyrins.42

Research by S.J. Danishefsky et al. has shown that calicheamicin/esperamicin antibiotics containing an allylic 
trisulfide trigger can undergo a mild Bergman cyclization when treated with benzyl mercaptan.43

When the enediyne substrate has functional groups that can trap the initially formed Bergman diradical, the rapid 
construction of complex fused ring systems becomes feasible. J.E. Anthony and co-workers prepared an 
acenaphthene derivative as well as a substituted perylene using this concept.34
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BIGINELLI REACTION 
(References are on page 551)

Importance:

[Seminal Publications1,2; Reviews3-14; Modifications & Improvements;15-38 Theoretical Studies39,40]

In 1893, P. Biginelli was the first to synthesize functionalized 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) by the one-
pot three-component condensation reaction of an aromatic aldehyde, urea, and ethyl acetoacetate in the presence of 
catalytic HCl in refluxing ethanol.2  This process is called the Biginelli reaction and the products are referred to as 
Biginelli compounds.5 The Biginelli reaction was not utilized widely until the early 1990s when the growing demand for 
biologically active compounds made multicomponent reactions attractive.8 The general features of the reaction are: 1) 
it is usually carried out in alcohols as solvents containing a small amount of catalyst; 2) several Lewis and Brönsted 
acids catalyze the process: HCl, H2SO4, TsOH,31 TMSI,36 LiBr,35, InBr3,30 BF3·OEt2, FeCl3,21 Yb(OTf)3, Bi(OTf)3,26,37

VCl341 and PPE;19 3) the structure of all three components can be widely varied; 4) aliphatic, aromatic, or 
heteroaromatic aldehydes are used but with aliphatic or hindered aromatic aldehydes (ortho-substituted) the yields 
are moderate; 5) a variety of β-keto esters, including ones with chiral centers at R2 as well as tertiary 
acetoacetamides have been utilized; 6) monosubstituted ureas and thioureas give exclusively N-1 substituted 
dihydropyrimidines while N-3 alkylated products are never formed; 7) N,N’-disubstituted ureas do not react under the 
standard Biginelli reaction conditions; and 8) the preparation of enantiomerically pure Biginelli compounds is currently 
easiest via resolution, and a true intermolecular asymmetric version does not yet exist.42 There are several variations 
of the Biginelli reaction: 1) the most significant variant is called the Atwal modification in which an enone is reacted 
with a protected urea or thiourea derivative under neutral conditions to first give a 1,4-dihydropyrimidine, which is 
converted to the corresponding DHPM upon deprotection with acid;15-17 2) in the Shutalev modification α-tosyl 
substituted ureas and thioureas are reacted with enolates of 1,3-dicarbonyl compounds to afford 
hexahydropyrimidines, that are readily converted to DHPMs;20 3) solid phase synthesis with Wang resin-bound urea 
derivatives or with PEG-bound acetoacetate allows the preparation of DHPMs in high yield and high purity;43,44 4) a 
fluorous phase variant was developed using a fluorous urea derivative;18 and 5) microwave-assisted and solvent-free 
conditions were also successfully implemented.23,25,32

Mechanism: 45-50,40,9

The first step in the mechanism of the Biginelli reaction is the acid-catalyzed condensation of the urea with the 
aldehyde affording an aminal, which dehydrates to an N-acyliminium ion intermediate. Subsequently, the enol form of 
the β-keto ester attacks the N-acyliminium ion to generate an open chain ureide, which readily cyclizes to a 
hexahydropyrimidine derivative.
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BIGINELLI REACTION 

Synthetic Applications:

The only way to realize an enantioselective Biginelli reaction is to conduct it intramolecularly where the enantiopure 
urea and aldehyde portions are tethered.51 This reaction was the key step in L.E. Overman’s total synthesis of 
guanidine alkaloid 13,14,15-Isocrambescidin 800.52 An optically active guanidine aminal was reacted with an 
enantiopure β-keto ester in trifluoroethanol to afford 1-iminohexahydropyrrolo[1,2-c]pyrimidine carboxylic ester with a 
7:1 trans selectivity between C10 and C13 positions.  

The traditional intermolecular three-component version of the Biginelli reaction was utilized for the improved synthesis 
of racemic monastrol by A. Dondoni and co-workers.28 The one-pot Yb(OTf)3 catalyzed reaction took place between 
3-hydroxybenzaldehyde, ethyl acetoacetate, and thiourea. Racemic monastrol was isolated in 95% yield and was 
resolved on a preparative scale using diastereomeric N-3-ribofuranosyl amides. 

The first total synthesis of batzelladine F was accomplished using the tethered version of the Biginelli reaction in the 
laboratory of L.E. Overman.53 The assembly of complex bisguanidines was achieved by reacting an enantiopure β-
keto ester with 3 equivalents of a guanidine derivative in trifluoroethanol in the presence of morpholinium acetate. 
The product pentacyclic bisguanidine was isolated in 59% yield after HPLC purification. To complete the total 
synthesis, the trifluoroacetate counterions were exchanged for BF4

-, the final ring was closed by converting the 
secondary alcohol to the corresponding mesylate followed by treatment with base, and the vinylogous amide was 
reduced by catalytic hydrogenation. Interestingly, the choice of counterion was crucial since model studies indicated 
the formation of complex product mixtures when the counterion was formate, acetate or chloride. 
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BIRCH REDUCTION 
(References are on page 552)

Importance:

[Seminal Publication1; Reviews2-15; Modifications & Improvements16-21; Theoretical Studies22-33]

The 1,4-reduction of aromatic rings to the corresponding unconjugated cyclohexadienes and heterocycles by alkali 
metals (Li, Na, K) dissolved in liquid ammonia in the presence of an alcohol is called the Birch reduction.
Heterocycles, such as pyridines, pyrroles, and furans, are also reduced under these conditions. When the aromatic 
compound is substituted, the regioselectivity of the reduction depends on the nature of the substituent. If the 
substituent is electron-donating, the rate of the reduction is lower compared to the unsubstituted compound and the 
substituent is found on the non-reduced portion of the new product. In the case of electron-withdrawing substituents, 
the result is the opposite. Ordinary alkenes are not affected by the Birch reduction conditions, and double bonds may 
be present in the molecule if they are not conjugated with an aromatic ring. However, conjugated alkenes, α,β-
unsaturated carbonyl compounds, internal alkynes, and styrene derivatives are reduced under these conditions. 
There are some limitations to the Birch reduction: electron-rich heterocycles need to have at least one electron-
withdrawing substituent, so furans and thiophenes are not reduced unless electron-withdrawing substituents are 
present. 

Mechanism: 34-38

Synthetic Applications:

In the first example (I) T.J. Donohoe et al. utilized the Birch reduction to reduce then alkylate electron-deficient 2- and 
3-substituted pyrroles.39,40 This reductive alkylation method proved to be very efficient for the synthesis of substituted 
3- and 2-pyrrolines, respectively. An alcohol as a proton source was not necessary for the reduction to occur. In the 
second example (II) the same researchers performed a stereoselective Birch reduction on a substituted furan during 
the enantioselective total synthesis of (+)-nemorensic acid.41
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BIRCH REDUCTION 

Synthetic Applications:

During the enantioselective total synthesis of (–)-taxol, I. Kuwajima and co-workers used the Birch reduction to 
elaborate an array of functional groups on the C-ring of the natural product.42 The originally 1,2-disubstituted benzene 
ring was subjected to typical Birch reduction conditions (K/liquid ammonia/t-BuOH), and the resulting 1,3- 
cyclohexadiene (I) was oxygenated by singlet oxygen from the convex β-face to give the desired C4β-C7β diol. The 
side product benzyl alcohol (II) was recycled as starting material via Swern oxidation in excellent yield providing a 
total conversion that was acceptable for synthetic purposes. 

In the laboratory of A.G. Schultz during the asymmetric total synthesis of two vincane type alkaloids, (+)-
apovincamine and (+)-vincamine, it was necessary to construct a crucial cis-fused pentacyclic diene intermediate.43

The synthesis began by the Birch reduction-alkylation of a chiral benzamide to give 6-ethyl-1-methoxy-4-methyl-1,4-
cyclohexadiene in a >100:1 diastereomeric purity. This cyclohexadiene was first converted to an enantiopure 
butyrolactone which after several steps was converted to (+)-apovincamine. 

The total synthesis of galbulimima alkaloid GB 13 was accomplished by L.N. Mander and co-workers. The Birch 
reduction of a complex intermediate was necessary in order to prepare a cyclic α,β-unsaturated ketone.44 The 
treatment of the substrate with lithium metal in liquid ammonia first resulted in a quantitative reductive decyanation of 
the C6a cyano group. The addition of excess ethanol to the reaction mixture reduced the aromatic ring to the 
corresponding enol ether that was hydrolyzed in a subsequent step to afford the unsaturated ketone. 
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BISCHLER-NAPIERALSKI ISOQUINOLINE SYNTHESIS 
(References are on page 553)

Importance:

[Seminal Publication1; Reviews2-4; Modifications & Improvements5-15]

One of the Friedel-Crafts acylation routes toward the synthesis of isoquinolines is the Bischler-Napieralski synthesis.
When an acyl derivative of a phenylethylamine is treated with a dehydrating agent (POCl3, P2O5, PPA, TFAA, or 
Tf2O)6 a cyclodehydration reaction takes place to form a 3,4-dihydroisoquinoline derivative.  If the starting compound 
contains a hydroxyl group in the α-position, an additional dehydration takes place yielding an isoquinoline.  

Mechanism: 16,5

Synthetic Applications:

In the laboratory of J. Bonjoch the first total syntheses of the pentacyclic (±)-strychnoxanthine and (±)-melinonine-E
alkaloids were accomplished using a radical carbocyclization via α-carbamoyldichloromethyl radical followed by the 
Bischler-Napieralski cyclization, as the two key cyclization steps.17
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BISCHLER-NAPIERALSKI ISOQUINOLINE SYNTHESIS 

Synthetic Applications:

The first total synthesis of annoretine, an alkaloid containing the 1,2,3,4-tetrahydronaphtho [2,1-f]isoquinoline moiety 
was achieved by J.C. Estevez and co-workers.18 The total synthesis had two key steps: first a Bischler-Napieralski 
reaction to form the 5-styrylisoquinoline unit followed by a photocyclization to provide the desired naphthoisoquinoline 
skeleton.

The asymmetric total synthesis of rauwolfia alkaloids (–)-yohimbane and (–)-alloyohimbane was carried out by S.C. 
Bergmeier et al. by utilizing a novel aziridine-allylsilane cyclization and the Bischler-Napieralski isoquinoline synthesis
as key steps.19 These alkaloids have a characteristic pentacyclic ring framework and exhibit a wide range of 
interesting biological activities such as antihypertensive and antipsychotic properties. 

The first enantioselective total synthesis of the 7,3’-linked naphthylisoquinoline alkaloid (–)-ancistrocladidine was 
accomplished by J.C. Morris and co-workers.20 The key steps of the synthesis were the Pinhey-Barton ortho-arylation
and the Bischler-Napieralski cyclization. The natural product was isolated from the 1:1 mixture of atropisomers by 
recrystallization from toluene/petroleum ether. 
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BROOK REARRANGEMENT 
(References are on page 553)

Importance:

[Seminal Publications1-4; Reviews5-12; Modifications & Improvements13-19; Theoretical Studies20-25]

In the late 1950s, A.G. Brook observed the intramolecular anionic migration of silyl groups from a carbon to an 
oxygen atom.1,2 This migratory aptitude of the silyl group was later found to be more general. Therefore, all the [1,n]-
carbon to oxygen silyl migrations are referred to as Brook rearrangements. The reaction is based on the great 
susceptibility of silicon toward a nucleophilic attack and the formation of a strong silicon-oxygen bond (Si-O) from the 
relatively weak silicon-carbon bond. The reverse process is called the retro-Brook rearrangement and was first 
reported by J.L. Speier.26,27

Mechanism: 28,29,13,30-32,25

The mechanism is believed to involve a pentacoordinate-silicon atom.30

Synthetic Applications:

In the laboratory of K. Takeda, a new synthetic strategy was developed for the stereoselective construction of eight-
membered carbocycles utilizing a Brook rearrangement-mediated [3+4] annulation.33 The unique feature of this 
methodology is the generation, in two steps, of eight-membered ring systems containing useful functionalities from 
readily available compounds containing three- and four-carbon atoms. 
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BROOK REARRANGEMENT 

Synthetic Applications:

W.H. Moser and co-workers developed a new and efficient method for the stereocontrolled construction of spirocyclic 
compounds, including the spirocyclic core of the antitumor agent fredericamycin A.34 The strategy involved a one-pot 
aldol addition/Brook rearrangement/cyclization sequence beginning from arene chromium tricarbonyl complexes and 
can formally be described as a [3+2] annulation. 

Cyathins, isolated from bird nest fungi, are interesting compounds because of their unusual 5-6-7 tricyclic ring system 
and their important biological activities. K. Takeda and co-workers synthesized the tricyclic core of the cyathins using 
a Brook rearrangement mediated-[4+3] annulation reaction.35 The seven-membered ring was formed via the oxy-
Cope rearrangement of a divinylcyclopropane intermediate. 

The total synthesis of (+)- -onocerin via four-component coupling and tetracyclization steps was achieved in the 
laboratory of E.J. Corey.36 The farnesyl acetate-derived acyl silane was treated with vinyllithium, which brought about 
the stereospecific formation of a (Z)-silyl enol ether as a result of a spontaneous Brook rearrangement. In the same 
pot, the solution of I2 was added to obtain the desired diepoxide via oxidative dimerization.
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BROWN HYDROBORATION REACTION 
(References are on page 554)

Importance:

[Seminal Publication1; Reviews2-21; Modifications & Improvements22-28; Theoretical Studies29-34]

The addition of a B-H bond across a carbon-carbon double or triple bond is called the Brown hydroboration reaction.
This process is highly regioselective and stereospecific (syn). The boron becomes bonded primarily to the less 
substituted carbon atom of the alkene (anti-Markovnikoff product). The resulting organoboranes are very useful 
intermediates in organic synthesis. The boron can be replaced for hydroxyl (hydroboration/oxidation), halogen, or 
amino groups (hydroboration/amination). If BH3 is used in the hydroboration reaction, it will react with three molecules 
of alkenes to yield a trialkylborane (R3B). Transition metal complexes catalyze the addition of borane to alkenes and 
alkynes and significantly enhance the rate of the reaction. This variant may alter the chemo-, regio-, and 
diastereoselectivity compared to the uncatalyzed hydroboration.27 In the presence of a chiral transition metal 
complex, enantioselectivity can be achieved.25

Mechanism: 35-43

Boron has only three electrons in the valence shell, and therefore its compounds are electron deficient and there is a 
vacant p-orbital on the boron atom. Borane (BH3) exists as a mixture of B2H6/BH3, as dimerization partially alleviates 
the electron deficiency of the boron. This equilibrium is fast, and most reactions occur with BH3. The addition of 
borane to a double bond is a concerted process going through a four-centered transition state. The formation of the 
C-B bond precedes the formation of the C-H bond so that the boron and the carbon atoms are partially charged in the 
four-centered transition state. 

In the Cp2TiMe2-catalyzed hydroboration of alkenes, a titanocene bis(borane) complex is responsible for the 
catalysis.43 This bis(borane) complex initially dissociates to give a monoborane intermediate. Coordination of the 
alkene gives rise to the alkene-borane complex, which is likely to be a resonance hybrid between an alkene borane 
complex and a β-boroalkyl hydride. An intramolecular reaction extrudes the trialkylborane product, and coordination 
of a new HBR2 regenerates the monoborane intermediate. 
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BROWN HYDROBORATION REACTION 

Synthetic Applications:

In the enantiospecific total synthesis of the indole alkaloid trinervine, J.M. Cook and co-workers used the 
hydroboration/oxidation sequence to functionalize the C19-C20 exo double bond with excellent regioselectivity.44

During the enantioselective synthesis of (3aR,4R,7aS)-4-hydroxy-7a-methylperhydro-1-indenone, a suitable CD-ring 
fragment for vitamin D-analogs, M. Vandewalle et al. realized that the hydroboration/oxidation of (1,1)-ethylenedioxy-
8a-methyl-1,2,3,4,6,7,8,8a-octahydronaphtalene led to a cis-decalin structure instead of the literature reported trans-
fusion.45

P. Knochel and co-workers used diphosphines as ligands in the rhodium-catalyzed asymmetric hydroboration of 
styrene derivatives.46 The best results were obtained with the very electron rich diphosphane, and (S)-1-
phenylethanol was obtained in 92% ee at –35 °C, with a regioselectivity greater than 99:1 (Markovnikoff product). A 
lower reaction temperature resulted in no reaction, while a higher temperature resulted in lower enantioselectivity and 
regioselectivity. The regioselectivity was excellent in all cases. Irrespective of the electronic nature of the 
substituents, their position and size had a profound effect on the enantioselectivity. 

The enantioselective total synthesis of (–)-cassine was accomplished in the laboratory of H. Makabe.47 The synthetic 
sequence involved a key, highly diastereoselective PdCl2-catalyzed cyclization of an amino allylic alcohol. The cyclic 
product was then subjected to hydroboration with 9-BBN followed by oxidation to afford the desired primary alcohol, 
which was converted to (–)-cassine. 
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BUCHNER METHOD OF RING EXPANSION 
(References are on page 555)

Importance:

[Seminal Publications1-3; Reviews4-9; Modifications & Improvements10-20]

The thermal or photochemical reaction of ethyl diazoacetate with benzene and its homologs to give the 
corresponding isomeric esters of cycloheptatriene carboxylic acid (via the corresponding esters of norcaradienic acid) 
is called the Buchner reaction. This transformation was first reported by E. Buchner and T. Curtius in 1885, when they 
synthesized cycloheptatrienes from thermal and photochemical reactions of ethyl diazoacetate with benzene via
arene cyclopropanation, followed by the electrocyclic ring opening of the intermediate norcaradiene.1 The reaction 
offers a convenient entry to seven-membered carbocycles both inter- and intramolecularly. The complexity of the 
product mixture was significantly reduced or completely eliminated with the advent of modern transition metal 
catalysts: at first it was copper-based, and then in the 1980s it became almost exclusively rhodium-based (e.g., 
RhCl3.3H2O, Rh2(OAc)4, Rh(II)-trifluoroacetate). For example, rhodium(II)-trifluoroacetate catalysis provides a single 
isomer of the cycloheptatriene in 98% yield.11 Synthetically, it is convenient that chromium tricarbonyl-complexed 
aromatic rings do not undergo the Buchner ring expansion either inter- or intramolecularly.20

Mechanism: 21-23

In the first step of the Buchner reaction, one of the π-bonds of the aromatic ring undergoes cyclopropanation 
catalyzed by a metal-carbenoid complex, which is the reactive intermediate. Metal carbenoids are formed when 
transition-metal catalysts [e.g., Rh2(OCOR)4] react with diazo compounds to generate transient electrophilic metal 
carbenes. The catalytic activity of the transition-metal complexes depends on the coordinative unsaturation at their 
metal center that allows them to react with diazo compounds as electrophiles. Electrophilic addition causes the loss 
of N2 and the formation of the metal-stabilized carbene. Transfer of the carbene to electron-rich substrates completes 
the catalytic cycle. There are two possible scenarios for the first step: a) the intermediate can be represented as a 
metal-stabilized carbocation where the carbenoid α-carbon atom is the electrophilic center, that undergoes 
nucleophilic attack by the electron-rich double bond of olefins on route to cyclopropane; and b) the metal-carbenoid 
intermediate forms a rhodium-based metallocycle resulting from the nucleophilic attack of the negative charge on the 
rhodium atom onto one of the carbon atoms of the double bond. In the second step, the norcaradiene derivative 
undergoes an electrocyclization to afford the corresponding cycloheptatriene. 
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BUCHNER METHOD OF RING EXPANSION 

Synthetic Applications:

R.L. Danheiser and co-workers developed a new strategy for the synthesis of substituted azulenes, which is based 
on the reaction of β-bromo-α-diazo ketones with rhodium carboxylates.24 The key transformation involves the 
following steps: intramolecular addition of rhodium carbenoid to an arene double bond, electrocyclic ring opening, β-
elimination, tautomerization, and trapping to produce 1-hydroxyazulene derivatives. The advantage of this method 
over previous approaches is the ability to prepare a variety of azulenes substituted on both the five- and seven-
membered rings from readily available benzene starting materials. The synthetic utility of the method was 
demonstrated in the total synthesis of the antiulcer drug egualen sodium (KT1-32).

The need to prepare fullerene derivatives for possible applications to medicine and material sciences resulted in the 
development of novel synthetic methods for the functionalization of C60. R. Pellicciari et al. reacted C60 with 
carboalkoxycarbenoids generated by the Rh2(OAc)4-catalyzed decomposition of α-diazoester precursors.25 This 
reaction was the first example of a transition metal carbenoid reacting with a fullerene and the observed yields and 
product ratios were better than those obtained by previously reported methods. The reaction conditions were mild 
and the specificity was high for the synthesis of carboalkoxy-substituted[6,6]-methanofullerenes. When the same 
reaction was carried out thermally, the rearranged product (the [6,5]-open fullerene) was the major product. 

The total synthesis of the diterpenoid tropone, harringtonolide was accomplished in the laboratory of L.N. Mander.26

The key step to form the seven-membered ring was the Buchner reaction of a complex polycyclic diazo ketone 
intermediate. Upon treatment with rhodium mandelate, an unstable adduct was formed and was immediately treated 
with DBU to afford the less labile cycloheptatriene. 
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BUCHWALD-HARTWIG CROSS-COUPLING 
(References are on page 556)

Importance:

[Seminal Publications1-4; Reviews5-15]

The direct Pd-catalyzed C-N and C-O bond formation between aryl halides or trifluoromethanesulfonates and amines 
(1° and 2° aliphatic or aromatic amines; imides, amides, sulfonamides, sulfoximines) or between aryl halides or 
triflates and alcohols (aliphatic alcohols and phenols) in the presence of a stoichiometric amount of base is known as 
the Buchwald-Hartwig cross-coupling. The coupling can be both inter- and intramolecular. The first palladium-
catalyzed formation of aryl C-N bonds was reported by T. Migita and co-workers in 1983.1 More than a decade later, 
in the laboratory of S. Buchwald, a new catalytic procedure was developed based on Migita’s amination procedure.2
The great disadvantage of these early methods was that both procedures called for the use of stoichiometric amounts 
of heat- and moisture-sensitive tributyltin amides as coupling partners. In 1995, S. Buchwald16 and J. Hartwig17

concurrently discovered that the aminotin species can be replaced with the free amine if one uses a strong base 
(e.g., sodium tert-butoxide or LHMDS), which generates the corresponding sodium amide in situ by deprotonating the 
Pd-coordinated amine. The typical procedure calls for either an aryl bromide or iodide, while the Pd(0)-catalyst is 
usually complexed with chelating phosphine type ligands such as BINAP, DPPF, XANTPHOS, and DPBP or 
bidentate ligands such as DBA (trans,trans-dibenzylideneacetone). The base has to be present in stoichiometric 
amounts and the temperature for the reaction can be sometimes as low as 25 °C. Since the mid-1990s the reaction 
conditions for this coupling have gradually become milder, and by applying the appropriate ligand, even the otherwise 
unreactive aryl chlorides can be coupled with amines or alcohols.9

Mechanism: 3,17,4,7,9,11,14

The first step in the catalytic cycle is the oxidative addition of Pd(0) to the aryl halide (or sulfonate). In the second step 
the Pd(II)-aryl amide can be formed either by direct displacement of the halide (or sulfonate) by the amide via a Pd(II)-
alkoxide intermediate. Finally, reductive elimination results in the formation of the desired C-N bond and the Pd(0)

catalyst is regenerated. Below is the catalytic cycle for the formation of an arylamine. 
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BUCHWALD-HARTWIG CROSS-COUPLING 

Synthetic Applications:

The opioid (±)-cyclazocine is known to be an analgesic and in the 1970s it was thought to prevent relapse in post-
addicts of heroin. Unfortunately cyclazocine is O-glucuronidated in humans, and therefore it has a short duration of 
action. M.P. Wentland and co-workers synthesized analogues by replacing the prototypic 8-OH substituent of 
cyclazocine by amino and substituted amino groups using the Buchwald-Hartwig cross-coupling reaction.18

In the laboratory of G.A. Sulikowski, an enantioselective synthesis of a 1,2-aziridinomitosene, a key substructure of 
the mitomycin antitumor antibiotics, was developed.19 Key transformations in the synthesis involved the Buchwald-
Hartwig cross-coupling and chemoselective intramolecular carbon-hydrogen metal-carbenoid insertion reaction.

Naturally occurring phenazines have interesting biological activities but the available methods for their preparation 
offer only poor yields. T. Kamikawa et al. prepared polysubstituted phenazines by a new route involving two 
subsequent Pd(II)-catalyzed aminations of aryl bromides using the conditions developed by Buchwald and Hartwig.20
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BURGESS DEHYDRATION REACTION 
(References are on page 556)

Importance:

[Seminal Publications1,2; Reviews3,4; Modifications & Improvements5-17]

In the early 1970s, E.M. Burgess and co-workers discovered that secondary and tertiary alcohols could be 
dehydrated with the inner salt of (methoxycarbonylsulfamoyl)triethylammonium hydroxide to afford the corresponding 
olefins.1 This process is now known as the Burgess dehydration reaction and the reagent is called the Burgess 
reagent. The Burgess dehydration reaction offers an advantage over other dehydration methods, namely it takes 
place under mild conditions (low temperature and neutral medium). Therefore, excellent yields can be achieved even 
with acid-sensitive substrates that are prone to rearrange. The elimination is syn-selective, but the syn-selectivity is 
higher for secondary alcohols. Tertiary alcohols tend to react faster and under milder conditions; E1 elimination 
products are observed when stabilized carbocations are formed. In most cases the elimination leads to the formation 
of the conjugated product, if conjugation with other C=C or C=O double bonds is possible. Primary alcohols are 
converted to the corresponding carbamates, which in turn give primary amines after hydrolysis.5 The Burgess reagent 
is compatible with a wide range of functional groups, such as epoxides, alkenes, alkynes, aldehydes, ketones, alkyl 
halides, acetals, amides, and esters, and this enables the efficient dehydration of highly functionalized molecules. In 
the second half of the 1980s, the Burgess reagent was also used for dehydrating primary amides6 and oximes13 to 
the corresponding nitriles at room temperature. Other functional groups can also be dehydrated, so formamides give 
isonitriles,10 ureas are converted to carbodiimides,8 and primary nitro alkanes yield nitrile oxides9 upon treatment with 
the Burgess reagent.  

Mechanism: 1,2

The mechanism involves a stereospecific syn-elimination via ion-pair formation from the intermediate sulfamate ester 
(comparable to the Chugaev elimination of xanthate esters). Kinetic and spectroscopical data are consistent with an 
initial rate-limiting formation of an ion-pair followed by a fast cis-β-proton transfer to the departing anion. 
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BURGESS DEHYDRATION REACTION 

Synthetic Applications:

During the first total synthesis of taxol®, R. Holton and co-workers installed an exo-methylene group on the C ring in 
order to set the stage for the D ring (oxetane) formation.18 The Burgess dehydration reaction was applied to a 
complex tricyclic tertiary alcohol intermediate (ABC rings) and the desired exocyclic alkene was isolated in 63% yield. 

In the laboratory of A.I. Meyers, the first enantioselective total synthesis of the streptogramin antibiotic (–)-madumycin 
II was achieved.19 The natural product contains an oxazole moiety, which may be considered a masked 
dehydropeptide. The oxazole moiety was introduced in two steps: by the Burgess cyclodehydration reaction followed 
by oxidation of the resulting oxazoline to the corresponding oxazole.  

The first total synthesis of the nucleoside antibiotic herbicidin B was achieved by A. Matsuda et al. using a SmI2
promoted novel aldol-type C-glycosidation reaction as the key step.20 After the key step, the resulting secondary 
alcohol functionality was removed with the Burgess reagent. The corresponding α,β-unsaturated ketone was isolated 
in good yield. Hydrogenation of the enone double bond followed by the removal of protecting groups and cyclic ketal 
formation afforded herbicidin B. 
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CANNIZZARO REACTION 
(References are on page 557)

Importance:

[Seminal Publication1,2; Reviews3; Modifications & Improvements4-14; Theoretical Studies15,16]

When reacted with concentrated NaOH (50 wt%) or other strong bases (e.g., alkoxides), aliphatic and aromatic 
aldehydes with no α-hydrogen undergo an intermolecular hydride-transfer reaction known as the Cannizzaro 
reaction. In this disproportionation reaction, one molecule of aldehyde oxidizes another to the corresponding 
carboxylic acid and is reduced to the corresponding primary alcohol in a maximum 50% yield. If the aldehyde has α-
hydrogens, the aldol reaction will take place faster than the Cannizzaro reaction. Alternatively, high yields of alcohol 
can be obtained from almost any aldehyde when the reaction is performed in the presence of an excess of 
formaldehyde. This process is called the crossed Cannizzaro reaction. α-Keto aldehydes undergo an intramolecular 
Cannizzaro reaction. This method, however, has been rendered obsolete by the emergence of hydride reducing 
agents in 1946. In the presence of an appropriate Lewis acid catalyst, the intramolecular Cannizzaro reaction takes 
place with stereocontrol, yielding synthetically useful α-hydroxy esters directly from readily available glyoxals under 
neutral conditions.9 It has also been shown that the reaction rates are enhanced significantly when the Cannizzaro 
reaction is performed under solvent-free conditions.10

Mechanism: 17-23

A variety of mechanisms have been proposed for this reaction, but the generally accepted mechanism of the 
Cannizzaro reaction involves a hydride transfer. First, OH- adds across the carbonyl group, and the resulting species 
is deprotonated under the applied basic conditions to give the corresponding dianion. This dianion facilitates the 
ability of the aldehydic hydrogen to leave as a hydride ion. This leaving hydride ion attacks another aldehyde 
molecule in the rate-determining step (RDS) to afford the alkoxide of a primary alcohol, which gets protonated by the 
solvent (H2O).  By running the reaction in the presence of D2O, it was shown that the reducing hydride ion came from 
another aldehyde and not the reaction medium, since the resulting primary alcohol did not contain a deuterium. 
Ashby and co-workers using resolved ESR spectra demonstrated that substituted benzaldehyde radical anions were 
formed in the reactions of substituted benzaldehydes with either NaOH or KOt-Bu. This observation suggested that 
the reaction proceeded by a single-electron transfer (SET) mechanism.22

Synthetic Applications:

G. Mehta and co-workers unexpectedly encountered a novel transannular Cannizzaro reaction when 1,4-bishomo-6-
seco[7]prismane dialdehyde derivative was subjected to basic conditions to yield a novel octacyclic lactone.24 The 
transannular Cannizzaro reaction is the result of the proximity of the two reacting aldehyde groups induced by the 
rigid caged structure. 
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CANNIZZARO REACTION 

Synthetic Applications:

J. Rebek et al. synthesized novel dibenzoheptalene bislactones via a double intramolecular Cannizzaro reaction for 
condensation polymerization and remote catalysis studies.25 These bislactones are chiral, atropisomeric molecules.  

During the large-scale, high-yield, one-pot synthesis of 4-chloro-3-(hydroxymethyl)pyridine, a starting material for the 
preparation of several polyfunctionalized molecules that can be linked to cephalosporines, M. Penso and co-workers 
utilized the combination of direct regioselective lithiation/formylation and crossed-Cannizzaro reduction of 4-
chloropyridine.26

An efficient atropo-enantioselective total synthesis of the axially chiral bicoumarin (+)-isokotanin was accomplished by 
J. Bringmann and co-workers.27 The key steps in this synthetic approach were the formation of a configurationally 
stable seven-membered biaryl lactone by the Cannizzaro reaction of the corresponding biaryl dialdehyde followed by 
a kinetic resolution by atroposelective ring cleavage.
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CARROLL REARRANGEMENT  
(KIMEL-COPE REARRANGEMENT)

(References are on page 557)
Importance:

[Seminal Publications1,2; Reviews3,4; Modifications & Improvements5-12]

The [3,3]-sigmatropic rearrangement of allylic β-keto esters to γ,δ-unsaturated ketones is known as the Carroll 
rearrangement (Kimel-Cope rearrangement or decarboxylative Claisen rearrangement). Although discovered in 1940, 
this reaction was not applied in drug synthesis until the early 1990s.6 The reaction has found limited use in synthetic 
organic chemistry, since harsh conditions (130-220 °C) were needed to induce the [3,3]-sigmatropic rearrangement.
However, these thermal barriers were lowered through modifications of the precursor β-keto ester.6-12 Many different 
variations of the Carroll rearrangement are known, but most of them proceed with decarboxylation of the initially 
formed β-keto acid. The decarboxylation can be avoided by esterification or intramolecular lactonization of the β-keto 
acids at low temperatures, leading to the rearranged products with excellent syn/anti selectivities. 

Mechanism: 13,14

Synthetic Applications:

D. Enders and co-workers have achieved the enantioselective total synthesis of antibiotic (–)-malyngolide by using 
the asymmetric Carroll rearrangement as the key step.11

OR1

R2

R3

R4 R5 O O

R6

R7

heat

R7
C OOloss of

β
R4

R5

R3

R1 R2 O

R6

[3,3]-sigmatropic shift γ
δ

β−keto allylic ester γ,δ−Unsaturated ketone

O O

O

    RAMP, toluene
    pTsOH

N O

O

N
OCH3

1. LiTMP (2.4 equiv)
toluene, -100 °C N O

N
O

O

Li

2. warm to r.t.

N O

OH

N
OCH3

[3,3] 1. LAH/Et2O

2.  O3, pentane, -78 °C
(removal of auxiliary)

OH

O

57%

78% de> 96%

steps
O

O
H3C

OH

C9H19

(−)-Malyngolide

1
2

3
45

6

CH3

6

5
4

1
2

3

molecular sieves

O

O O
heattautomerization

O

OH O
O

OH O

O

O O
H

C OOloss of
decarboxylation

OH
tautomerization

O

γ,δ−Unsaturated ketone

Claisen 
rearrangement

γ
δ



77

CARROLL REARRANGEMENT  
(KIMEL-COPE REARRANGEMENT) 

Synthetic Applications:

In the laboratory of A.M. Echavarren, the total synthesis of the antibiotic (±)-4-epi-acetomycin was completed by 
using the stereoselective ester enolate Carroll rearrangement of (E)-butenyl-2-methylacetoacetate as the key step, 
followed by ozonolysis and acetylation. The stereochemistry of the major isomer resulted from the rearrangement of 
the (E)-enolate through a chair-like transition state.6

J. Rodriguez et al. have investigated the stereoselective ester dienolate Carroll rearrangement of (E)- and (Z)-allylic 
β-keto esters and found a new, attractive approach to the synthesis of the Prelog-Djerassi lactone and related 
compounds.7

K.L. Sorgi and co-workers prepared acetoacetates from substituted p-quinols and found that they underwent the 
Carroll rearrangement at room temperature to afford substituted arylacetones and related derivatives in moderate to 
good yields.10
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CASTRO-STEPHENS COUPLING 
(References are on page 558)

Importance:

[Seminal Publications1,2; Reviews3-8; Modifications & Improvements9-13]

The copper(I) mediated coupling of aryl or vinyl halides with aryl- or alkyl-substituted alkynes is known as the Castro-
Stephens coupling. In the early 1960s, R.D. Stephens and C.E. Castro discovered that disubstituted (diaryl or 
arylalkyl) acetylenes were produced in good yield upon treatment of aryl iodides with stoichiometric amounts of 
copper(I) acetylides under a nitrogen atmosphere in refluxing pyridine (a).1 The best results are obtained with 
electron-poor aryl halides. When aryl iodides bear a nucleophilic substituent in the ortho position, cyclization to the 
corresponding heterocycles occurs exclusively (b).2 Vinyl iodides and bromides are also suitable partners affording 
enynes. Traditional copper-mediated aryl coupling reactions have several drawbacks compared to the currently used 
Pd-catalyzed reactions (e.g., Sonogashira coupling). The problems encountered are: 1) most copper(I) salts are 
insoluble in organic solvents, so the reactions are often heterogeneous and require high reaction temperatures; and  
2) the reactions are sensitive to functional groups on the aryl halides, and the yields are often irreproducible. Recent 
modifications allow the use of catalytic amounts of copper(I) complexes and milder conditions for the couplings.11,13

Mechanism: 4

The reaction is believed to proceed via a four-centered transition state. 

Synthetic Applications:

In the laboratory of M. Nilsson, a facile one-pot synthesis of isocumestans (6H-benzofuro[2,3-c][1]benzopyran-6-
ones) was developed via a novel extension of the Castro-Stephens coupling utilizing ortho-iodophenols and ethyl 
propiolate.14 The reaction can be regarded as an extended Castro-Stephens coupling where an intermediate 
cuprated benzofuran couples with a second equivalent of ortho-iodophenol, and the product lactonizes to 
isocumestan.
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CASTRO-STEPHENS COUPLING 

Synthetic Applications:

Tribenzocyclotriyne (TBC) is a planar, anti-aromatic, annelated dehydroannulene. The cavity of TBC is of sufficient 
size to form complexes with low oxidation state first-row transition metals. When the complex of Ni(TBC) is partially 
reduced with alkali metals, the complex increases its conductivity by four orders of magnitude. This remarkable 
property was the reason for the synthesis of cyclotriynes by W.J. Youngs et al. as precursors to conducting 
systems.15 The synthesis of a methoxy-substituted tribenzocyclotriyne was accomplished starting from (2-iodo-3,6-
dimethoxyphenyl)ethyne using the Castro-Stephens coupling. The copper acetylide was prepared by dissolving the 
alkyne in ethanol and adding it to an equal volume of CuCl in ammonium hydroxide. Refluxing the copper acetylide in 
pyridine under anaerobic conditions produced the cyclotriyne in 80% yield. 

R.S. Coleman and co-workers have developed a stereoselective synthesis of the 12-membered diene and triene 
lactones characteristic of the antitumor agent oximidines I and II, based on an intramolecular Castro-Stephens 
coupling.16 The effectiveness of this protocol rivals the efficiency of standard macrolactonization. The stereoselective 
reduction of the internal alkyne afforded the 12-membered (E,Z)-diene lactone in good yield. 

During the total synthesis of epothilone B, J.D. White et al. used the modified Castro-Stephens reaction instead of a 
Wittig reaction for the coupling of two important subunits (A & B) to avoid strongly basic conditions.17
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CHICHIBABIN AMINATION REACTION 
(References are on page 558)

Importance:

[Seminal Publications1,2; Reviews3-8 ; Modifications & Improvements9,10]

In the early 1900s, A.E. Chichibabin reacted pyridine with sodium amide (NaNH2) in dimethylamine at high 
temperature (110 °C). After aqueous work-up, he isolated 2-aminopyridine in 80% yield.1 A decade later, he added 
pyridine to powdered KOH at 320 °C, and after aqueous work-up 2-hydroxypyridine was isolated.2  Similar reactions 
take place when pyridine or its derivatives are treated with strong nucleophiles such as alkyl- and aryllithiums to give 
2-alkyl and 2-arylpyridines.11 The direct amination of pyridine and its derivatives at their electron-deficient positions 
via nucleophilic aromatic substitution (SNAr) is known as the Chichibabin reaction. This reaction is also widely used 
for the direct introduction of an amino group into the electron-deficient positions of many azines and azoles (e.g., 
quinoline is aminated at C2 & C4, isoquinoline at C1, acridine at C9, phenanthridine at C6, quinazoline at C4). Both 
inter- and intramolecular12-14 versions are available, but investigations have mainly focused on intermolecular 
reactions. There are two procedures for conducting the Chichibabin reaction: A) the reaction is carried out at high 
temperature in a solvent that is inert toward NaNH2 (e.g., N,N-dialkylamines, arenes, mineral oil, etc.) or without any 
solvent; or B) the reaction is run at low temperature in liquid ammonia with KNH2 (more soluble than NaNH2).
Procedure A proceeds in a heterogeneous medium and the reactions effected under these conditions show strong 
dependence on substrate basicity, while procedure B proceeds in a homogeneous medium and there is no substrate 
dependence. Frequently, an oxidant such as KNO3 or KMnO4 is added during procedure B to facilitate the amination 
by oxidizing the hydride ion (poor leaving group) in the intermediate σ-complex.9,6 The low temperature conditions 
make it possible to aminate substrates such as diazines, triazines, and tetrazines, which are destroyed at high 
temperatures, but pyridine itself does not undergo amination in liquid ammonia because it is not sufficiently electron-
deficient. 

Mechanism: 15-26,7

The Chichibabin reaction is formally the nucleophilic aromatic substitution of hydride ion (H-) by the amide ion (NH2
-).

In the first step, an adsorption complex is formed with a weak coordination bond between the nitrogen atom in the 
heterocycle and the sodium ion (Na+); this coordination increases the positive charge on the ring α-carbon atom, and 
thus facilitates the formation of an anionic σ-complex that can be observed by NMR in liquid ammonia solution. This 
σ-complex is then aromatized to the corresponding sodium salt while hydrogen gas (H2) is evolved (a proton from an 
amino group reacts with the leaving group hydride ion). It is possible to monitor the progress of the reaction by the 
volume of the hydrogen gas evolved. However, this mechanism may not be the only one operating, since indirect 
evidence (formation of heterocyclic dimers) suggests that under heterogeneous conditions there is a single-electron-
transfer (SET) from the amide nucleophile to the substrate. 
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CHICHIBABIN AMINATION REACTION 

Synthetic Applications:

In the laboratory of J.S. Felton, the synthesis of 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PHIP), a 
mutagenic compound isolated from cooked beef, and its 3-methyl isomer have been accomplished.27 The synthesis 
of PHIP began with the commercially available 3-phenylpyridine, which was aminated at the 6-position with sodium 
amide in toluene by the Chichibabin reaction in 58% yield. 

M. Palucki and co-workers synthesized 2-[3-aminopropyl]-5,6,7,8-tetrahydronaphthyridine in large quantities for 
clinical studies via a one-pot double Suzuki reaction followed by deprotection and a highly regioselective 
intramolecular Chichibabin cyclization.14 This approach was amenable to scale-up unlike the traditional methods such 
as the Skraup and Friedländer reactions that involve carbon-carbon bond forming steps. The Chichibabin reaction
was optimized and afforded the desired product in high yield, excellent regioselectivity, and a significant reduction in 
reaction time compared to literature precedent. 

T.R. Kelly et al. have synthesized bisubstrate reaction templates utilizing the Chichibabin amination reaction during 
the preparation of one precursor.28 This reaction template was designed to use hydrogen bonding to bind two 
substrates simultaneously but transiently, giving rise to a ternary complex, which positions the substrates in an 
orientation that facilitates their reaction. 

A.N. Vedernikov and co-workers designed and synthesized tridentate facially chelating ligands of the [2.n.1]-(2,6)-
pyridinophane family.29 The key step in their synthesis of these tripyridine macrocycles was a double Chichibabin-
type condensation of 1,2-bis(2-pyridyl)ethanes with lithiated 2,6-dimethylpyridines. 
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CHUGAEV ELIMINATION REACTION  
(XANTHATE ESTER PYROLYSIS)

(References are on page 559)
Importance:

[Seminal Publications1,2; Reviews3,4; Modifications & Improvements5-7]

The formation of olefins by pyrolysis (100-250 °C) of the corresponding xanthates (containing at least one β-hydrogen 
atom) via cis-elimination is known as the Chugaev elimination reaction. This transformation was discovered by L. 
Chugaev in connection with his studies on the optical properties of xanthates1 in 1899. Xanthates are prepared from 
the corresponding alcohols (1°, 2°, and 3°) by first deprotonating the alcohol with a base (e.g., NaH, NaOH, or KOH) 
and reacting the resulting alkoxide with carbon disulfide. The metal xanthate is then trapped with an alkyl iodide 
(often methyl iodide). Primary xanthates are usually more thermally stable than secondary and tertiary xanthates and 
therefore undergo elimination at much higher temperatures (>200 °C). The Chugaev elimination reaction of xanthates 
is very similar to the ester (acetate) pyrolysis, but xanthates eliminate at lower temperatures than esters and the 
possible isomerization of alkenes is minimized. The by-products (COS, R4-SH) of the Chugaev reaction are very 
stable, thus making the elimination irreversible. The reaction is especially valuable for the conversion of sensitive 
alcohols to the corresponding olefins without rearrangement of the carbon skeleton. If the elimination of the xanthate 
can occur in two directions, when more than one β-hydrogen is available on each carbon atom, the utility of the 
Chugaev reaction is greatly diminished by the formation of complex mixtures of olefins. 

Mechanism: 8-12

The Chugaev reaction is an intramolecular syn elimination (Ei), and it proceeds through a six-membered transition 
state involving a cis-β-hydrogen atom of the alcohol moiety and the thione sulfur atom of the xanthate. Isotopic 
studies involving 34S and 13C showed that the C=S, and not the thiol sulfur atom, closes the ring in the transition 
state.12 The β-hydrogen and the xanthate group must be coplanar in the cyclic transition state. 

Synthetic Applications:

A concise route to (–)-kainic acid was developed by K. Ogasawara and co-workers by employing sequentially a 
Chugaev syn-elimination and an intramolecular ene reaction as the key steps.13 After preparing the xanthate under 
standard conditions, the compound was heated to reflux in diphenyl ether in the presence of sodium bicarbonate. The 
desired tricyclic product bearing the trisubstituted pyrrolidine framework was formed as a single diastereomer in 72% 
yield. 
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CHUGAEV ELIMINATION REACTION  
(XANTHATE ESTER PYROLYSIS) 

Synthetic Applications:

In the late stages of the total synthesis of dihydroclerodin, A. Groot and co-workers used the Chugaev elimination 
reaction to install an exocyclic double bond on ring A.14 Before employing the xanthate ester pyrolysis, the authors 
tried several methods that failed to convert the primary alcohol to the exocyclic methylene functionality. The 
corresponding xanthate ester was prepared followed by heating to 216 °C in n-dodecane for 2 days to afford the 
desired alkene in 74% yield. 

During the first total synthesis of (–)-solanapyrone E by H. Hagiwara et al., it was necessary to install the C3-C4 
double bond in the decalin ring of the natural product by eliminating the C4 secondary alcohol.15 Since the 
stereochemistry of the xanthate pyrolysis is syn, it was possible to install this double bond regioselectively, without 
observing any of the undesired C4-C5 double bond. The C4 alcohol was first converted to the xanthate in 91% yield 
using t-BuOK as a base. The double bond at C3 was then selectively introduced by heating the xanthate at 190 °C in 
1-methylnaphthalene. 

J.M. Cook and co-workers accomplished the total synthesis of ellacene (1,10-cyclododecanotriquinancene) by 
utilizing the Weiss reaction and the Chugaev elimination as key steps.16 The elimination of the tris-xanthate was 
performed in HMPA at 220-230 °C in very high yield. This pyrolysis was superior to the elimination conducted under 
neat conditions. 

Synthetic studies on kinamycin antibiotics in the laboratory of T. Ishikawa resulted in the elaboration of the highly 
oxygenated D ring with all the required stereocenters for the kinamycin skeletons.17 The tricyclic tertiary alcohol was 
converted to the corresponding xanthate and then smoothly pyrolyzed under reduced pressure to yield the desired 
tetrahydrofluorenone system. 
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CIAMICIAN-DENNSTEDT REARRANGEMENT 
(References are on page 559)

Importance:

[Seminal Publications1-4; Theoretical Studies5]

The rearrangement of pyrroles to 3-halo-pyridines upon treatment with haloforms (CHX3 where X = Cl, Br, I) in the 
presence of a strong base was first described by G.L. Ciamician.1 Its synthetic utility was later extended by M. 
Dennstedt to the sodium methoxide catalyzed reaction of pyrrole with methylene iodide to give pyridine.6 Soon after 
the initial discovery, the methodology was also extended for the indole series to prepare substituted quinolines.7-9

The reaction is known as the Ciamician-Dennstedt rearrangement, but it is also referred to as the “abnormal” Reimer-
Tiemann reaction.

Mechanism: 10-19

The mechanism starts with the generation of a dihalocarbene via an α-elimination, followed by insertion into the most 
electron rich π-bond of the pyrrole. The 6,6-dihalo-2-azabicyclo[3.1.0]hexane intermediate then undergoes a ring 
expansion to give the 3-halogen-substituted pyridine derivative triggered by the deprotonation of the pyrrole nitrogen. 
In the case of indoles the dihalocyclopropane intermediate interconverts with an open-ring indolyldihalomethyl anion, 
and therefore two different products, 3H-indole and quinoline, are formed.19

Synthetic Applications:

In an effort to expand the available synthetic tools for the preparation of various metacyclophanes and 
pyridinophanes, C.B. Reese and co-workers prepared [6](2,4)pyridinophane derivatives by treating 4,5,6,7,8,9-
hexahydro-1H-cyclo-octa[b]pyrrole with dichloro- and dibromocarbene respectively.20 The dihalocarbenes 
predominantly inserted into the most substituted (more electron rich) double bond of the pyrrole ring in modest to 
poor yields. 
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CIAMICIAN-DENNSTEDT REARRANGEMENT 

Synthetic Applications:

For a long time heterocyclic analogues of calix[4]arene such as calix[4]pyridines were unknown. In the laboratory of 
J.L. Sessler, a universal and easy synthetic protocol was devised for the preparation of calix[m]pyridine-[n]pyrrole 
(m+n=4) and calix[4]pyridine systems based on the nonmetal mediated ring expansion of pyrrole.21 The reaction of 
dichlorocarbene with meso-octamethyl-calix[4]pyrrole brought about a pyrrole ring expansion to give 
chlorocalixpyridinopyrroles and chlorocalixpyridines. Using 15 equivalents of sodium trichloroacetate as the carbene 
source and 1,2-dimethoxyethane as the solvent afforded a 1:1:1 ratio of calix[3]pyridine[1]pyrrole : calix[4]pyridine : 
calix[2]pyridine[2]pyrrole. Only monochlorinated pyridines were formed but each pyridine ring gave rise to two 
regioisomers. Yields were between 26-65%. 

The first example for the insertion of an electrogenerated dichlorocarbene into substituted indoles was described by 
F. De Angelis and co-workers.19 The dichlorocarbene was generated by reduction of CCl4, followed by fragmentation 
of the resulting trichloromethyl anion. Under these conditions, 2,3-dimethylindole was converted to 3-chloro-2,4-
dimethylquinoline and 3-(dichloromethyl)-2,3-dimethyl-3H-indole in moderate yield. The study revealed that the 
reaction mechanism and product formation are determined by the acidity of the solvent. 

N
H

CH3

CH3

CCl2

N

CH3

Cl

CH3
N

H3C
CHCl2

CH3

3-(dichloromethyl)-2,3-
dimethyl-3H-indole3-chloro-2,4-dimethylquinoline

N
H

R2

R1

CCl2

N R2

R1

C
Cl

Cl

N R2

R1
CCl2

2,3-dimethyl-1H-indole

N

C

R2

Cl
R1

+

HH
N R2

R1
CCl2

H

32% 46%

+

H
N

NH

N
H

HN

 Cl3CCO2Na 
 (15 equiv)

1,2-dimethoxyethane

+

meso-octamethylcalix
[4]pyrrole

+

calix[2]pyridine[2]pyrrolecalix[2]pyridine[2]pyrrole

calix[3]pyridine[1]pyrrole calix[4]pyridine

26-65%

NH HN

N

N

Cla Clb

Clb Cla

NH

N

Cla Clb

N

H
N

Cla

Clb

NH

N

N

Cla Clb

Clb Cla

N

Clb

Cla N

N

Cla Clb

Clb Cla

N

Clb

Cla

N

Clb

Cla



86

CLAISEN CONDENSATION / CLAISEN REACTION 
(References are on page 559)

Importance:

[Seminal Publication1; Reviews2-8; Modifications & Improvements9-11; Theoretical Studies12-14]

The base mediated condensation of an ester containing an α-hydrogen atom with a molecule of the same ester to 
give a β-keto ester is known as the Claisen condensation. If the two reacting ester functional groups are tethered, 
then a Dieckmann condensation takes place. The reaction between two different esters under the same conditions is 
called crossed (mixed) Claisen condensation. Since the crossed Claisen condensation can potentially give rise to at 
least four different condensation products, it is a general practice to choose one ester with no α-protons (e.g., esters 
of aromatic acids, formic acid and oxalic acid). The ester with no α-proton reacts exclusively as the acceptor and this 
way only a single product is formed. A full equivalent of the base (usually an alkoxide, LDA or NaH) is needed and 
when an alkoxide is used as the base, it must be the same as the alcohol portion of the ester to prevent product 
mixtures resulting from ester interchange. There are two other variants of this process:  a) an ester enolate reacts 
with a ketone or aldehyde to give an β-hydroxyester, and b) a ketone or aldehyde enolate reacts with an ester to give 
a 1,3-diketone, both of these are referred to as the Claisen reaction. A useful alternative to the Claisen condensation
is the reaction of an ester enolate with an acid chloride to generate a β-ketoester. 

Mechanism: 15-23

In the first step the base (usually an alkoxide, LDA, or NaH) deprotonates the α-proton of the ester to generate an 
ester enolate that will serve as the nucleophile in the reaction. Next, the enolate attacks the carbonyl group of the 
other ester (or acyl halide or anhydride) to form a tetrahedral intermediate, which breaks down in the third step by 
ejecting a leaving group (alkoxide or halide). Since it is adjacent to two carbonyls, the α-proton in the product β-keto
ester is more acidic than in the precursor ester. Under the basic reaction conditions this proton is removed to give rise 
to a resonance stabilized anion, which is much less reactive than the ester enolate generated in the first step. 
Therefore, the β-keto ester product does not react further. 
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CLAISEN CONDENSATION / CLAISEN REACTION  

Synthetic Applications:

C.H. Heathcock and co-workers devised a highly convergent asymmetric total synthesis of (–)-secodaphniphylline,
where the key step was a mixed Claisen condensation.24 In the final stage of the total synthesis, the two major 
fragments were coupled using the mixed Claisen condensation; the lithium enolate of (–)-methyl 
homosecodaphniphyllate was reacted with the 2,8-dioxabicyclo[3.2.1]octane acid chloride. The resulting crude 
mixture of β-keto esters was subjected to the Krapcho decarboxylation procedure to afford the natural product in 43% 
yield for two steps. 

The short total syntheses of justicidin B and retrojusticidin B were achieved in the laboratory of D.C. Harrowven.25 A 
novel tandem Horner-Emmons olefination/Claisen condensation sequence was used between an aldehyde and a 
phosphonate tetraester to prepare the highly substituted naphthalene core of the natural products. Simultaneous 
addition of the aromatic ketoaldehyde and phosphonate to a cooled solution of sodium ethoxide in THF-ethanol 
effected the desired annulation in 73% yield. The resulting diester was then converted to justicidin B and 
retrojusticidin B. 

T. Nakata et al. developed a simple and efficient synthetic approach to prepare (+)-methyl-7-benzoylpederate, a key 
intermediate toward the synthesis of mycalamides.26 The key steps were the Evans asymmetric aldol reaction,
stereoselective Claisen condensation and the Takai-Nozaki olefination. The diastereoselective Claisen condensation
took place between a δ-lactone and the lithium enolate of a glycolate ester. 
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CLAISEN REARRANGEMENT 
(References are on page 560)

Importance:

[Seminal Publications1,2; Reviews3-32; Modifications & Variants33-48; Theoretical Studies49-55]

In 1912, L. Claisen described the rearrangement of allyl phenyl ethers to the corresponding C-allyl phenols and also 
described the transformation of O-allylated acetoacetic ester to its C-allylated isomer in the presence of ammonium 
chloride upon distillation.1 Named after its discoverer, the thermal [3,3]-sigmatropic rearrangement of allyl vinyl ethers 
to the corresponding γ,δ-unsaturated carbonyl compounds is called the Claisen rearrangement. The allyl vinyl ethers 
can be prepared in several different ways: 1) from allylic alcohols by mercuric ion–catalyzed exchange with ethyl vinyl 
ether;56,57  2) from allylic alcohols and vinyl ethers by acid catalyzed exchange;58,59  3) thermal elimination;60,61  4) 
Wittig olefination of allyl formates and carbonyl compounds;62,63 and 5) Tebbe olefination of unsaturated esters;64,65. It 
is usually not necessary to isolate the allyl vinyl ethers, since they are prepared under conditions that will induce their 
rearrangement.  

Mechanism: 66,67,6,68-70,18,20,31

Mechanistically the reaction can be described as a suprafacial, concerted, nonsynchronous [3,3]-sigmatropic 
rearrangement. The Claisen rearrangement is a unimolecular process with activation parameters (negative entropy 
and volume of activation) that suggest a constrained transition state.20 Studies revealed that the stereochemical 
information is transferred from the double bonds to the newly formed σ-bond. Based on this observation, an early six-
membered chairlike transition state is believed to be involved. There are several transition state extremes possible. 
The actual transition state depends on the nature of substituents at the various positions of the starting allyl vinyl 
ether. If a chiral allylic alcohol is used to prepare the starting allyl vinyl ether, then the chirality is transferred to the 
products; the stereoselectivity will depend on the energy difference between diastereomeric chairlike transition states. 
In acyclic systems, the observed stereoselectivity can usually be rationalized by assuming that the unfavorable 1,3-
diaxial interactions are minimized in the chairlike transition state with the large groups adopting an equatorial position. 
When the geometry of the ring or other steric effects preclude or disfavor a chairlike structure, the reaction can 
proceed through a boatlike transition state.71,72
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CLAISEN REARRANGEMENT 

Synthetic Applications:

The asymmetric total synthesis of the putative structure of the cytotoxic diterpenoid (–)-sclerophytin A was realized 
via a Tebbe-Claisen rearrangement of a tricyclic lactone precursor in the laboratory of L.A. Paquette.73 The tricyclic 
lactone was subjected to the Tebbe methylenation protocol to provide the allyl vinyl ether that was then heated to 
130-140 °C in p-cymene to undergo the Claisen rearrangement in good yield. 

In the enantioselective total synthesis of (+)- and (–)-saudin, the core of the synthetic strategy was a Lewis acid 
mediated stereoselective Claisen rearrangement to establish the correct relative stereochemistry between the C1 and 
C6 stereocenters.74 R.K. Boeckman Jr. and co-workers had to overcome the stereochemical preference of the 
thermal rearrangement by using a bidentate Lewis acid promoter (TiCl4) that coordinated to both the oxygen of the 
vinyl ether and the ester. This coordination enforced a boatlike conformation for the existing six-membered ring in the 
transition state. The rearrangement itself took place via a chairlike transition state. 

In K.C. Nicolaou’s biomimetic synthesis of 1-O-methylforbesione, the construction of the 4-oxatricyclo[4.3.1.0]decan-
2-one framework was achieved by using a double Claisen rearrangement that was followed by an intramolecular 
Diels-Alder reaction.75 This one-pot biomimetic double Claisen rearrangement/intramolecular Diels-Alder reaction 
cascade afforded the natural product in 63% yield. 
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CLAISEN-IRELAND REARRANGEMENT  
(References are on page 561)

Importance:

[Seminal Publications1-8; Reviews9-20; Modifications & Improvements21-25; Theoretical Studies26]

The [3,3]-sigmatropic rearrangement of O-trialkylsilylketene acetals to γ,δ-unsaturated carboxylic acids was first 
reported by R.E. Ireland in 1972, and it is referred to as the Claisen-Ireland rearrangement or ester enolate Claisen 
rearrangement.6  Silylketene acetals are readily available by preparing the lithium enolate of allylic esters and 
trapping the enolate with a trialkylsilyl halide. The Claisen-Ireland rearrangement takes place under much milder 
conditions (room temperature and above) than the regular Claisen rearrangement. The ease of rearrangement is 
attributed to the highly nucleophilic enolate that generally accelerates sigmatropic processes (see oxy-Cope
rearrangement). The reaction is very versatile, since it allows the assembly of highly functionalized structures. The 
conversion of a carbon-oxygen bond into a carbon-carbon bond affords a convenient way to assemble contiguous 
quaternary centers. Due to the highly ordered cyclic transition state, high levels of stereocontrol can be achieved. The 
high product stereoselectivities can be realized by efficient control of the ketene acetal geometry; deprotonation with 
LDA/THF leads to the kinetically favored (Z)-ester enolates, whereas the (E)-ester enolates are formed in the 
presence of THF/HMPA.27,28 The rearrangement of the (Z)-ester enolates of (E)-allyl esters affords anti-products, 
whereas syn-products are obtained by the rearrangement of the (E)-ester enolates of (E)-allyl esters. The first 
asymmetric enantioselective version of the Claisen-Ireland rearrangement using a chiral boron reagent was reported 
by E.J. Corey et al.21,23 It is also possible to achieve high levels of enantioselectivity by using chiral auxiliaries or 
chiral catalysts.15,25

Mechanism: 29,27,28,25

In acyclic systems the Claisen-Ireland rearrangement proceeds via a chairlike transition state (TS*). However, in 
cyclic systems conformational constraints can override the inherent preference for chairlike TS* and the boatlike TS*

becomes dominant. One explanation for the preference of boatlike transition states in cyclic systems is the 
destabilizing steric interactions of the silyloxy substituent and the ring atoms in a chairlike TS*.

O

O

O
R1

R2

acyclic allyl ester

LDA/THF/ -78 °C

then add TMSCl

O
R2

R1

OTMS
COOH

R2

R1

[3,3]

HOOC R1

R2

chairlike TS* anti
γ,δ -unsaturated acid

H
H

H
H

O

O

R1

R2

cyclic allyl ester

LDA/THF/ -78 °C

then add TMSCl

R1

R2

OTMS

boatlike TS*

[3,3]
HOOC

R1

R2

O

O
R1

R2
LDA / THF

O

OTMS

R1

R2

add TMSCl

(E)-silyl ketene 
acetal

1. warm to r.t.

2. NaOH/H2O

LDA / -78 °C

HMPA/THF

anti
γ,δ -Unsaturated 

acid
allyl ester

O

OTMS
R1

R2
1. warm to r.t.

2. NaOH/H2O
O

O
R1

R2

allyl ester (Z)-silyl ketene 
acetal

O

OLi

R1

R2

(Z)-ester enolate

O

OLi
R1

R2

add TMSCl

(E)-ester enolate

[3,3]

[3,3]

-78 °C
COOH

R2

R1

syn
γ,δ -Unsaturated 

acid

COOH
R2

R1



91

CLAISEN-IRELAND REARRANGEMENT  

Synthetic Applications:

In the enantioselective total synthesis of β-lactone enzyme inhibitor (–)-ebelactone A and B, I. Paterson and co-
workers constructed seven stereocenters and a trisubstituted alkene plus a very sensitive β-lactone ring.30 The 
backbone of their strategy applied an aldol reaction / Ireland-Claisen rearrangement sequence and used minimal 
functional group manipulation. The Ireland-Claisen rearrangement was performed in the presence of an unprotected 
ketone moiety and set a precedent for this protocol. The diastereoselectivity was 96:4, indicating highly (E)-selective 
silylketene acetal formation. 

It was nearly a quarter century after the structure determination of aspidophytine that its first convergent 
enantioselective total synthesis was accomplished in the laboratory of E.J. Corey.31 The Claisen-Ireland 
rearrangement was used to construct one of the key intermediates.  

The first chemical synthesis of an optically active trichodiene, (–)-trichodiene involved a Claisen-Ireland 
rearrangement as the key step to connect the vicinal quaternary centers.32 J.C. Gilbert and co-workers found that the 
rearrangement occurred with complete facial selectivity and excellent diastereoselectivity to afford an advanced 
intermediate that was directly converted to (–)-trichodiene. 
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CLEMMENSEN REDUCTION 
(References are on page 562)

Importance:

[Seminal Publications1-3; Reviews4-9; Modifications & Improvements10-13]

In 1913, E. Clemmensen reported that simple ketones and aldehydes were converted to the corresponding alkanes 
upon refluxing for several hours with 40% aqueous hydrochloric acid, amalgamated zinc (Zn/Hg), and a hydrophobic 
organic co-solvent such as toluene.1 This method of converting a carbonyl group to the corresponding methylene 
group is known as the Clemmensen reduction. The original procedure is rather harsh so not surprisingly the 
Clemmensen reduction of acid-sensitive substrates and polyfunctional ketones is rarely successful in yielding the 
expected alkanes. The Clemmensen reduction has been widely used in synthesis and several modifications were 
developed to improve its synthetic utility by increasing the functional group tolerance. Yamamura and co-workers 
have developed a milder procedure which uses organic solvents (THF, Et2O, Ac2O, benzene) saturated with dry 
hydrogen-halides (HCl or HBr) and activated zinc dust at ice-bath temperature.10-13 Compared to the original 
Clemmensen procedure1 these modified reductions are complete within an hour at 0 °C and are appropriate for acid- 
and heat-sensitive compounds. Certain carbonyl compounds, however, have very low solubility in the usual solvents 
used for the Clemmensen reduction, so in these cases a second solvent (acetic acid, ethanol, or dioxane) is added to 
the reaction mixture to increase the solubility of the substrate and allow the reduction to take place. The Clemmensen 
reduction of polyfunctional ketones such as 1,2-, 1,3-, 1,4-, 1,5-diketones, α,β-unsaturated ketones and ketones with 
α-heteroatom substituents is less straightforward than the reduction of monofunctional substrates.6 Usually complex 
mixtures are formed in these reactions, which contain a substantial amount of rearranged products. 

Mechanism: 14-20,6,21-25,8,26,27

The mechanism of the Clemmensen reduction is not well understood. The lack of a unifying mechanism can be 
explained by the fact that the products formed in the various reductions are different when the reaction conditions 
(e.g., concentration of the acid, concentration of zinc in the amalgam) are changed. It was shown that the reduction 
occurs with zinc but not with other metals of comparable reduction potential. The early mechanistic papers came to 
the conclusion that the Clemmensen reduction occurs stepwise involving organozinc intermediates.15-17 It was also 
established that simple aliphatic alcohols are not intermediates of these reductions, since they do not give alkanes 
under the usual Clemmensen conditions. However, allylic and benzylic alcohols undergo the Clemmensen 
reduction.14,21 Currently, there are two proposed mechanisms for the Clemmensen reduction, and they are somewhat 
contradictory. In one of the mechanisms the rate determining step involves the attack of zinc and chloride ion on the 
carbonyl group17 and the key intermediates are carbanions, whereas in the other heterogeneous process, the 
formation of a radical intermediate and then a zinc carbenoid species is proposed.20,22
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CLEMMENSEN REDUCTION 

Synthetic Applications:

Numerous heterocyclic 1,3-dicarbonyl compounds possessing alkyl substituents at the electronegative 2-position 
exhibit interesting biological properties. The synthesis of these compounds is either cumbersome or calls for 
expensive starting materials. T. Kappe and co-workers have found a simple and effective method for the reduction of 
acyl substituted 1,3-dicarbonyl compounds to the corresponding alkyl derivatives.28 For example, 3-acyl-4-hydroxy-
2(1H)-quinolones and 3-acyl-4-hydroxy-6-methypyran-2-ones were reduced in good yields to 3-alkyl-4-hydroxy-
2(1H)-quinolinones and 3-alkyl-4-hydroxy-6-methylpyran-2-ones, respectively, using zinc powder in acetic 
acid/hydrochloric acid. 

During the enantioselective total synthesis of denrobatid alkaloid (–)-pumiliotoxin C by C. Kibayashi et al., an 
aqueous acylnitroso Diels-Alder cycloaddition was used as the key step.29 In the endgame of the total synthesis, the 
cis-fused decahydroquinolone was subjected to the Clemmensen reduction conditions to give a 2:1 epimeric mixture 
of deoxygenated products in 57% yield. Subsequent debenzylation converted the major isomer into 5-epi-pumiliotoxin 
C.

S.M. Weinreb and co-workers were surprised to find that the convergent stereoselective synthesis of marine alkaloid 
lepadiformine resulted in a product that gave a totally different NMR spectra than the natural product.30 This finding 
led to the revision of the proposed structure of lepadiformine. In the final stages of the synthesis, they exposed a 
tricyclic piperidone intermediate to Clemmensen conditions to remove the ketone functionality. Under these 
conditions the otherwise minor elimination product (alkene) was formed predominantly; however, it was possible to 
hydrogenate the double bond to give the desired alkane.  

In the laboratory of F.J.C. Martins the synthesis of novel tetracyclic undecane derivatives was undertaken. In one of 
the synthetic sequences the Clemmensen reduction was used to remove a ketone functionality in good yield.31
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COMBES QUINOLINE SYNTHESIS 
(References are on page 563)

Importance:

[Seminal Publication1; Reviews2-4; Modifications & Improvements5]

The formation of quinolines and benzoquinolines by the condensation of primary aryl amines with β-diketones 
followed by an acid catalyzed ring closure of the Schiff base intermediate is known as the Combes quinoline 
synthesis. The closely related reaction of primary aryl amines with β-ketoesters followed by the cyclization of the 
Schiff base intermediate is called the Conrad-Limpach reaction and it gives 4-hydroxyquinolines as products.6-8

Mechanism: 9

The first step in the Combes reaction is the acid-catalyzed condensation of the diketone with the aromatic amine to 
form a Schiff base (imine), which then isomerizes to the corresponding enamine. In the second step, the carbonyl 
oxygen atom of the enamine is protonated to give a carbocation that undergoes an electrophilic aromatic substitution. 
Subsequent proton transfer, elimination of water and deprotonation of the ring nitrogen atom gives rise to the neutral 
substituted quinoline system. 
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COMBES QUINOLINE SYNTHESIS 

Synthetic Applications:

In the laboratory of S. Gupta, the synthesis of novel heterocyclic ring systems was accomplished utilizing the Combes 
reaction.10 The condensation of 1-naphthylamine with 2-acylindan-1,3-diones produced the corresponding anils in 
good yield. The anils were cyclodehydrated to benz[h]indeno[2,1-c]quinoline-7-ones in the presence of 
polyphosphoric acid. Subsequent Wolff-Kishner reduction gave rise to the novel 7H-benzo[h]indeno[2,1-c]quinolines.

During a study of the reactivity of 4(7)-aminobenzimidazole as a bidentate nucleophile, C. Avendano and co-workers 
obtained 7H-imidazo[1,5,4-e,f][1,5]benzodiazepine-4-ones by using β-ketoesters as electrophiles.11 The reactions 
were regioselective and took place with equimolar amounts of the β-ketoesters without the use of a catalyst. Isolated 
yields were around 50%. However, when the benzimidazole was treated with 2,4-pentanedione in a 1:5 ratio in the 
presence of an acid catalyst, an 1H-imidazo[4,5-h]quinoline was formed and no traces of imidazobenzodiazepines 
were observed. 

In the attempted synthesis of twisted polycycle 1,2,3,4-tetraphenylfluoreno[1,9-gh]quinoline, R.A. Pascal Jr. et al. 
used the Combes quinoline synthesis to assemble the azaaceanthrene core.12 Oxidation with DDQ was followed by a 
Diels-Alder reaction with tetracyclone (tetraphenylcyclopentadienone) to afford the corresponding cycloadduct.  
However, the last decarbonylation step of the sequence failed to work even under forcing conditions, presumably due 
to steric hindrance. 
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COPE ELIMINATION / COPE REACTION 
(References are on page 563)

Importance:

[Seminal Publications1-3; Reviews4-6; Modifcations & Improvements7-11; Theoretical Studies12,13]

In 1949, A.C. Cope and co-workers discovered that by heating trialkylamine-N-oxides having hydrogens in the β-
position, an olefin and N,N-dialkylhydroxylamine are formed.1 The transformation involving the stereoselective syn
elimination of tertiary amine oxides is now referred to as the Cope elimination or Cope reaction. The substrates, 
tertiary amine oxides, are easily prepared by the oxidation of the corresponding tertiary amine with hydrogen peroxide 
or peroxycarboxylic acids such as mCPBA. Isolation of the N-oxides is usually not necessary; the amine is mixed with 
the oxidizing agent and heated. Amine oxides are very polar compounds and the oxygen serves as a base to remove 
the β-hydrogen atom via a syn conformation. The synthetic utility of the Cope elimination is comparable to the 
Hofmann elimination of quaternary ammonium hydroxides, but it takes place at lower temperatures (100-150 °C). The 
Cope elimination is almost free of side reactions due to the intramolecular nature of the elimination (the base is part 
of the molecule). However, in certain cases, the product alkene may isomerize14 to the more stable conjugated 
system, and allyl- or benzyl migration2 is sometimes observed to give O-allyl or benzyl-substituted hydroxylamines. 
Cyclic amine oxides (5, 7-10-membered rings, where the nitrogen is part of the ring) can also be pyrolysed but with 6-
membered rings the reaction is usually low-yielding or does not occur.15,16 The direction of the Cope elimination is 
governed almost entirely by the number of hydrogen atoms at the various β-positions, and therefore there is no 
preference for the formation of the least substituted alkene unlike in the Hofmann elimination reaction. Upon 
pyrolysis, N-cycloalkyl-substituted amine oxides give mainly the thermodynamically more stable endocyclic olefins. 
Cyclohexyl derivatives, however, form predominantly exocyclic olefins, since the formation of the endocyclic double 
bond would require the cyclohexane ring to be almost planar in the transition state. 

Mechanism: 17,16,5,18-21

The Cope elimination is a stereoselective syn elimination and the mechanism involves a planar 5-membered cyclic 
transition state. There is strong resemblance to the mechanism of ester pyrolysis and the Chugaev elimination. The 
first evidence of the stereochemistry of the elimination was the thermal decomposition of the threo and erythro
derivatives of N,N-dimethyl-2-amino-3-phenylbutane.17 The erythro isomer gives predominantly the (Z)-alkene (20:1), 
while the threo isomer forms the (E)-olefin almost exclusively (400:1). Two decades later deuterium-labeling evidence 
confirmed the mechanism of the Cope elimination to be 100% syn.18
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COPE ELIMINATION / COPE REACTION 

Synthetic Applications:

In their search for conformationally biased mimics of mannopyranosylamines, A. Vasella and co-workers planned to 
synthesize compounds that would inhibit β-mannosidases.22 In order to construct the bicyclo[3.1.0]hexane framework, 
a five-membered O-silylated N,N-dimethyl-amino alcohol was synthesized. Oxidation of the tertiary amine with 
mCPBA yielded 83% of the N-oxide, which was subsequently subjected to the Cope elimination to give 69% of the 
desired benzyl enol ether. Cyclopropanation of this enol ether gave rise to the highly functionalized bicyclic skeleton. 

A convenient synthesis of secondary hydroxylamines using secondary amines as starting material was developed in 
the laboratory of I.A. O’Neil.10 Secondary amines were treated with a Michael acceptor such as acrylonitrile in 
methanol to give tertiary β-cyanoethyl amines in excellent yield. These tertiary amines were then oxidized with 
mCPBA to give the corresponding N-oxides, which underwent the Cope elimination in situ to generate the 
hydroxylamine in excellent yield. The great advantage of this method is that it works for both cyclic and acyclic 
systems.    

A new enantiospecific synthesis of taxoid intermediate (1S)-10-methylenecamphor was described by A.G. Martinez 
utilizing the Cope elimination to generate the vinyl group at the bridgehead norbornane position.23 (1R)-3,3-Dimethyl-
2-methylenenorbornan-1-ol was treated with Eschenmoser’s salt, to initiate  a tandem electrophilic carbon-carbon 
double bond addition/Wagner-Meerwein rearrangement to give (1S)-10-dimethylaminomethylcamphor. This tertiary 
amine was oxidized to the corresponding N-oxide in 95% yield, and subsequent Cope elimination gave the desired 
taxoid intermediate in 80% yield. 
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COPE REARRANGEMENT  
(References are on page 564)

Importance:

[Seminal Publications1; Reviews2-14; Theoretical Studies15-28]

In 1940, A.C. Cope observed the rearrangement of (1-methylpropenyl)allylcyanoacetate into the isomeric (1,2-
dimethyl)-4-pentylidinecyanoacetate upon distillation, and he recognized that this rearrangement was similar in type 
to the known Claisen rearrangement.1 The thermal [3,3]-sigmatropic rearrangement of 1,5-dienes to the isomeric 1,5-
dienes is called the Cope rearrangement, and it can only be detected when the 1,5-diene substrate is substituted. 
The rearrangement is reversible because there are no changes in the number or types of bonds, and the position of 
the equilibrium is determined by the relative stability of the starting material and the product. When the product is 
stabilized by conjugation or the resulting double bond is more highly substituted, the equilibrium will be shifted toward 
the formation of the product. The reaction is both stereospecific and stereoselective as a result of a cyclic chairlike 
transition state. The typical temperature required to induce Cope rearrangement in acyclic dienes is 150-260 °C. The 
required temperature is significantly lower (room temp. or below) when: 1) the dienes are substituted in positions C3 
or C4;  2) the dienes are cyclic and ring strain is relieved; or 3) the Cope rearrangement is catalyzed by transition 
metal complexes.4 The Cope rearrangement of strained 1,2-divinyl cycloalkanes (cyclopropane and cyclobutane) 
gives convenient access to synthetically useful seven- and eight-membered carbocycles. 

Mechanism: 29-43

Soon after its discovery, the Cope rearrangement was investigated in great detail in order to establish its mechanism. 
In the classical sense, [3,3] sigmatropic rearrangements do not have observable intermediates. Therefore, in the 
1960s these rearrangements were dubbed “no mechanism reactions”.29 The Cope rearrangement predominantly 
proceeds via a chairlike transition state where there is minimal steric interaction between the substituents.29,32 The 
exact nature of the transition state depends on the substituents and varies between two extreme forms: from two 
independent allyl radicals to a cyclohexane-1,4-diradical depending on whether the bond making or bond breaking is 
more advanced. In most cases the reactions are concerted with a relatively late transition state where the bond 
between C1 and C6 is well-developed. 

heat1

2

3

4

5
6

1

2

3

4

5
6

1

2

3
4

5
6

R

R

heat
(E)

R

(Z)

R

[3,3]

[3,3]

1

2

3

4
5

6

1

2

3
4

5
6

R

R

heat

[3,3]
(E)

(E)
1

2

3

4
5

6R

R

1

2
3

4 6

heat

[3,3]
5

1

6

54

3
2

1
2

3

4
5

6

heat

[3,3]

1

6

54

3 2

R
R

R
R

(Z)

(E)
R

R

meso

R
R

R
R

(Z)

(E)
R

R
racemic

1,4-diyl

 allyl radicals
chairlike TS*

chairlike TS*

boatlike TS*



99

COPE REARRANGEMENT  

Synthetic Applications:

The enantioselective total synthesis of (+)- and (–)-asteriscanolide was accomplished in the laboratory of M.L. 
Snapper utilizing a sequential intramolecular cyclobutadiene cycloaddition, ring-opening metathesis and Cope 
rearrangement.44 The key cycloadduct was treated with Grubbs’s catalyst under an ethylene atmosphere to generate 
a divinylcyclobutane intermediate in a selective ring-opening metathesis of a strained trisubstituted cyclobutene. The 
divinylcyclobutane intermediate subsequently underwent a facile Cope rearrangement under mild conditions to afford 
the 8-membered carbocycle of (+)-asteriscanolide. 

The Cope rearrangement of a divinylcyclopropane intermediate was the key step in the total synthesis of (±)-
tremulenolide A by H.M.L. Davies et al.45 The divinylcyclopropane intermediate was obtained by a Rh-catalyzed 
stereoselective cyclopropanation of a hexadiene. Usually the Cope rearrangement of divinylcyclopropanes occurs at 
or below room temperature, In this case, a congested boat transition state was required for the rearrangement so 
forcing conditions were necessary. The product cycloheptadiene was obtained by Kugelrohr distillation at 140 °C as a 
single regioisomer in 49% yield.  

A tricyclic ring system containing all the stereogenic centers of the nonaromatic portion of (–)-morphine was prepared 
by T. Hudlicky and co-workers using an intramolecular Diels-Alder cycloaddition followed by a Cope rearrangement.46

Interestingly, the initial Diels-Alder cycloadduct did not undergo the Cope rearrangement even under forcing 
conditions. However, when the hydroxyl group was oxidized to the corresponding ketone, the [3,3]-sigmatropic shift 
took place at 250 °C in a sealed tube. The driving force of the reaction was the formation of an α,β-unsaturated 
ketone.
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COREY-BAKSHI-SHIBATA REDUCTION (CBS REDUCTION) 
(References are on page 565)

Importance:

[Seminal Publications1-4; Reviews5-12; Modifications & Improvements13,14; Theoretical Studies15-23]

In 1981, S. Itsuno and co-workers were the first to report that stoichiometric mixtures of chiral amino alcohols and 
borane-tetrahydrofuran complex (BH3·THF) reduced achiral ketones to the corresponding chiral secondary alcohols 
enantioselectively and in high yield.1 Several years later, E.J. Corey and co-workers showed that the reaction of 
borane (BH3) and chiral amino alcohols leads to the formation of oxazaborolidines, which were found to catalyze the 
rapid and highly enantioselective reduction of achiral ketones in the presence of BH3·THF.2,3 The enantioselective 
reduction of ketones using catalytic oxazaborolidine is called the Corey-Bakshi-Shibata reduction or CBS reduction.
Research in the Corey group showed that the methyl-substituted oxazaborolidines (B-Me) were more stable and 
easier to prepare than the extremely air and moisture-sensitive original B-H analogs. The systematic study of 
oxazaborolidine-catalyzed reductions revealed that high enantiomeric excess (ee) is achieved when the 
oxazaborolidine has a rigid bicyclic (proline based) or tricyclic structure. More flexible ring systems resulted in lower 
enantioselectivities. The advantages of the CBS catalysts are: 1) ease of preparation; 2) air and moisture stability; 3) 
short reaction times (high catalyst turnover); 4) high enantioselectivity; 5) typically high yields; 6) recovery of catalyst 
precursor by precipitation as the HCl salt; and 7) prediction of the absolute configuration from the relative steric bulk 
of the two substituents attached to the carbonyl group.  

Mechanism: 2-4,24-27

The first step of the mechanism is the coordination of BH3 (Lewis acid) to the tertiary nitrogen atom (Lewis base) of 
the CBS catalyst from the -face.27 This coordination enhances the Lewis acidity of the endocyclic boron atom and 
activates the BH3 to become a strong hydride donor. The CBS catalyst-borane complex then binds to the ketone at 
the sterically more accessible lone pair (the lone pair closer to the smaller substituent) via the endocyclic boron atom. 
At this point the ketone and the coordinated borane in the vicinal position are cis to each other and the unfavorable 
steric interactions between the ketone and the CBS catalyst are minimal. The face-selective hydride transfer takes 
place via a six-membered transition state.24,26 The last step (regeneration of the catalyst) may take place by two 
different pathways (Path I or II).25,19,21
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COREY-BAKSHI-SHIBATA REDUCTION (CBS REDUCTION) 

Synthetic Applications:

The asymmetric total synthesis of prostaglandin E1 utilizing a two-component coupling process was achieved in the 
laboratory of B.W. Spur.28 The hydroxylated side-chain of the target was prepared via the catalytic asymmetric 
reduction of a γ-iodo vinyl ketone with catecholborane in the presence of Corey’s CBS catalyst. The reduction 
proceeded in 95% yield and >96% ee. The best results were obtained at low temperature and with the use of the B-n-
butyl catalyst. The B-methyl catalyst afforded lower enantiomeric excess and at higher temperatures the ee dropped 
due to competing non-catalyzed reduction. 

E.J. Corey and co-workers synthesized the cdc25A protein phosphatase inhibitor dysidiolide enantioselectively.29 In 
the last phase of the total synthesis, the secondary alcohol functionality of the side-chain was established with a 
highly diastereoselective oxazaborolidine-catalyzed reduction using borane-dimethylsulfide complex in the presence 
of the (S)-B-methyl CBS catalyst. Finally, a photochemical oxidation generated the γ-hydroxybutenolide functionality. 
This total synthesis confirmed the absolute stereochemistry of dysidiolide. 

In the final stages of the total synthesis of okadaic acid by C.J. Forsyth et al., the central 1,6-dioxaspiro[4,5]decane 
ring system was introduced by the enantioselective reduction of the C16 carbonyl group using (S)-CBS/BH3, followed 
by acid-catalyzed spiroketalization.30
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COREY-CHAYKOVSKY EPOXIDATION AND CYCLOPROPANATION 
(References are on page 565)

Importance:

[Seminal Publications1,2; Reviews3-11; Modifications & Improvements12-14; Theoretical Studies15-17]

In 1962, E.J. Corey and M. Chaykovsky deprotonated trimethylsulfoxonium halides using powdered sodium hydride 
under nitrogen at room temperature to form a reactive compound, dimethylsulfoxonium methylide (I).1 When simple 
aldehydes and ketones were mixed with I, the formation of epoxides was observed. Likewise, the reaction of 
dimethylsulfonium methylide (II) with aldehydes and ketones also resulted in epoxide formation.2 Compounds I and II
are both sulfur ylides and are prepared by the deprotonation of the corresponding sulfonium salts. The preparation of 
epoxides (oxiranes) from aldehydes and ketones using sulfur ylides is known as the Corey-Chaykovsky epoxidation.
When I is reacted with α,β-unsaturated carbonyl compounds, a conjugate addition takes place to produce a 
cyclopropane as the major product. This reaction is known as the Corey-Chaykovsky cyclopropanation.1 Sulfur ylide 
II is more reactive and less stable than I, so it is generated and used at low temperature. The reaction of substituted 
sulfur ylides with aldehydes is stereoselective, leading predominantly to trans epoxides. Asymmetric epoxidations are 
also possible using chiral sulfides.12,6 The use of various substituted sulfur ylides allows the transfer of substituted 
methylene units to carbonyl compounds (isopropylidene or cyclopropylidene fragments) to prepare highly substituted 
epoxides. Since the S-alkylation of sulfoxides is not a general reaction, it is not practical to obtain the precursor salts 
in the trialkylsulfoxonium series. This shortcoming limits the corresponding sulfur ylides to the unsubstituted 
methylide. However, sulfur ylide reagents derived from sulfoximines offer a versatile way to transfer substituted 
methylene units to carbonyl compounds to prepare oxiranes and cyclopropanes.12

Mechanism: 18-25
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COREY-CHAYKOVSKY EPOXIDATION AND CYCLOPROPANATION 

Synthetic Applications:

During the total synthesis of (+)-phyllanthocin, A.B. Smith and co-workers installed the epoxide functionality chemo-
and stereoselectively at the C7 carbonyl group of the intermediate diketone by using dimethylsulfoxonium-methylide 
in a 1:1 solvent mixture of DMSO-THF at 0 °C.26 The success of this chemoselective methylenation was attributed to 
the two α-alkoxy substituents, which render the C7 carbonyl group much more electrophilic than C10. 

A short enantiospecific total synthesis of (+)-aphanamol I and II from limonene was achieved and the absolute 
stereochemistry of I and II established in the laboratory of B. Wickberg.27 The key steps were a de Mayo 
photocycloaddition, a Corey-Chaykovsky epoxidation and finally a base-catalyzed fragmentation of the γ,δ-
epoxyalcohol intermediate. Upon treating the photocycloadduct with dimethylsulfoxonium methylide, only the endo
epoxide diastereomer was formed due to the steric hindrance provided by the methyl and isopropyl groups. 

The conversion of a bicyclo[2.2.1]octenone derivative to the corresponding bicyclo[3.3.0]octenone, a common 
intermediate in the total synthesis of several iridoid monoterpenes, was achieved by N.C. Chang et al. The target was 
obtained by sequential application of the Corey-Chaykovsky epoxidation, Demjanov rearrangement and a 
photochemical [1,3]-acyl shift. 28

One of the steps in the highly stereoselective total synthesis of (±)-isovelleral involved the cyclopropanation of an α,β-
unsaturated ketone using dimethylsulfoxonium methylide.29 C.H. Heathcock and co-workers studied this 
transformation under various conditions and they found that THF at ambient temperature gave superior results to 
DMSO, which is the most common solvent for the Corey-Chaykovsky cyclopropanation.
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COREY-FUCHS ALKYNE SYNTHESIS 
(References are on page 566)

Importance:

[Seminal Publication1; Reviews2; Modifications and Improvements3-5]

The one-carbon homologation of aldehydes to the corresponding terminal alkynes using carbon tetrabromide and 
triphenylphosphine is known as the Corey-Fuchs alkyne synthesis. In 1972, E.J. Corey and P.L. Fuchs examined the 
synthetic possibility of transforming aldehydes to the corresponding one-carbon chain-extended alkynes.1 The first 
step of their procedure involved the conversion of the aldehyde to the corresponding homologated dibromoolefin in 
two possible ways: I) addition of the aldehyde (1 equivalent) to a mixture of triphenylphosphine (4 equivalents) and 
carbon tetrabromide (2 equivalents) in CH2Cl2, at 0 °C in 5 minutes;6 or II) addition of the aldehyde to a reagent, 
which is prepared by mixing zinc dust (2 equivalents) with Ph3P (2 equivalents) and CBr4 (2 equivalents) in CH2Cl2 at 
23 °C for 24-30h (the reaction time to form the alkyne is 1-2h). Yields are typically 80-90% for this first Wittig-type 
step. Procedure II, using zinc dust and less Ph3P, tends to give higher yields of dibromoolefins and simplifies the 
isolation procedure. In the second step, the conversion of the prepared dibromoolefins to the corresponding terminal 
alkynes is accomplished by treatment with 2 equivalents of n-butyllithium at -78 °C (lithium-halogen exchange and 
elimination), followed by simple hydrolysis. The intermediate is a lithium acetylide, which can be treated with a 
number of electrophiles to produce a wide variety of useful derivatives. Recently, a one-pot modified procedure using 
t-BuOK/(Ph3PCHBr2)Br followed by the addition of excess n-BuLi was published.5

Mechanism: 6,1

The mechanism of dibromoolefin formation from the aldehyde is similar to the mechanism of the Wittig reaction.
However, there is very little known about the formation of the alkyne from the dibromoolefin. The mechanism below is 
one possible pathway to the observed product. 
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COREY-FUCHS ALKYNE SYNTHESIS 

Synthetic Applications:

In the laboratory of J.H. van Boom, the synthesis of highly functionalized cis- and trans-fused polycyclic ethers of 
various ring sizes via radical cyclization of carbohydrate-derived β-(alkynyloxy)acrylates was developed.7 The radical 
cyclization precursors were prepared iteratively and the terminal alkyne moieties were installed using the Corey-
Fuchs procedure.

The total synthesis of Galubulimima alkaloid 4,4a-didehydrohimandravine, using an intramolecular Diels-Alder 
reaction and a Stille coupling as the key steps, was accomplished in the laboratory of M.S. Sherburn.8 The required 
vinylstannane intermediate for the Stille coupling was prepared via the one-pot Corey-Fuchs reaction,5 followed by 
radical hydrostannylation.

W.J. Kerr and co-workers carried out the total synthesis of (+)-taylorione starting from readily available (+)-2-carene 
and using a modified Pauson-Khand annulation with ethylene gas as the key step.9 The key terminal alkyne 
intermediate was prepared by the Corey-Fuchs reaction. Interestingly, the ketal protecting group was sensitive to the 
excess of CBr4, so the addition of this reagent had to be monitored carefully to cleanly transform the aldehyde to the 
desired dibromoolefin. 

W. Oppolzer et al. utilized the Corey-Fuchs alkyne synthesis for the preparation of a key acyclic enynyl carbonate 
during the total synthesis of (±)-hirsutene.10
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COREY-KIM OXIDATION 
(References are on page 566)

Importance:

[Seminal Publications1-3; Modifications & Improvements4,5]

In 1972, E.J. Corey and C.U. Kim developed a new process for the efficient conversion of alcohols to aldehydes and 
ketones using N-chlorosuccinimide (NCS), dimethylsulfide (DMS) and triethylamine (TEA).2 The oxidation of primary 
and secondary alcohols with NCS/DMS is known as the Corey-Kim oxidation. The active reagent, S,S-
dimethylsuccinimidosulfonium chloride, is formed in situ when NCS and DMS are reacted and is called the Corey-Kim
reagent.1 This protocol can be used for the oxidation of a wide variety of primary and secondary alcohols except for 
allylic and benzylic alcohols, where the substrates are predominantly converted to the allylic and benzylic halides. In 
polar solvents, a side-reaction may occur in which the alcohol forms the corresponding methylthiomethyl ether 
(ROCH2SCH3). The reaction conditions for the Corey-Kim oxidation are mild and tolerate most functional and 
protecting groups. Therefore, the protocol can be applied to the oxidation of polyfunctionalized molecules. Recent 
modifications of the original procedure led to the development of the fluorous4 and odorless5 Corey-Kim oxidations. In 
addition to being an effective oxidant for alcohols, the Corey-Kim reagent has also been used to dehydrate aldoximes 
to nitriles,6 convert 3-hydroxycarbonyl compounds to 1,3-dicarbonyls,7 synthesize stable sulfur ylides from active 
methylene compounds8 and to prepare 3(H)-indoles from 1(H)-indoles.9

Mechanism: 2,4

The first step of the mechanism of the Corey-Kim oxidation is the reaction of dimethylsulfide with N-chlorosuccinimide 
to generate the electrophilic active species, S,S-dimethylsuccinimidosulfonium chloride (Corey-Kim reagent) via
dimethylsulfonium chloride. The sulfonium salt is then attacked by the nucleophilic alcohol to afford an 
alkoxysulfonium salt. This alkoxysulfonium salt is deprotonated by triethylamine and the desired carbonyl compound 
is formed. The dimethylsulfide is regenerated, and it is easily removed from the reaction mixture in vacuo. In the 
odorless Corey-Kim oxidation5 instead of dimethylsulfide, dodecylmethylsulfide is used. This sulfide lacks the 
unpleasant odor of DMS due to its low volatility.  
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COREY-KIM OXIDATION 

Synthetic Applications:

During the total synthesis of (±)-ingenol by I. Kuwajima and co-workers, an advanced tricyclic diol intermediate was 
selectively converted to the corresponding α-ketol utilizing the Corey-Kim oxidation.10 The diol was oxidized only at 
the less hindered C6 hydroxyl group. 

In the laboratory of L.S. Hegedus, the total synthesis of (±)-epi-jatrophone was accomplished using a palladium-
catalyzed carbonylative coupling as the key step.11 In the endgame of the synthesis, a β-hydroxy ketone moiety was 
oxidized in excellent yield to the corresponding 1,3-dione using the mild Corey-Kim protocol.

In the final stages of the total synthesis of (±)-cephalotaxine by M.E. Kuehne et al., a tetracyclic cis-vicinal diol was 
oxidized to the α-diketone.12 Using PCC, pyridine/SO3 or the Swern protocol did not yield the desired product. 
However, by applying the Corey-Kim protocol, NCS-DMS in dichloromethane at -42 °C, afforded the diketone in 89% 
yield. 

The serotonin antagonist LY426965 was synthesized using catalytic enantioselective allylation with a chiral 
biphosphoramide in the laboratory of S.E. Denmark.13 In order to prepare the necessary 3,3-disubstituted 
allyltrichlorosilane reagent, the (E)-allylic alcohol was first converted by the Corey-Kim procedure to the 
corresponding chloride. 
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COREY-NICOLAOU MACROLACTONIZATION
(References are on page 567)

Importance:

 [Seminal Publications1,2; Reviews3-13; Modifications & Improvements14-16; Theoretical Studies17]

Before the 1970s there was no general way to efficiently prepare medium- and large-ring lactones from highly 
functionalized hydroxy acids under mild conditions. When the ring size of the target lactone is large, the probability of 
the hydroxyl group reacting with the carboxylic acid moiety within the same molecule is very low, and mainly 
intermolecular coupling occurs unless the concentration of the substrate is very low (high-dilution conditions). In 
1974, E.J. Corey and K.C. Nicolaou reported a novel and mild method for the formation of macrolactones from 
complex hydroxy acid precursors.1 A series of ω-hydroxy acids were lactonized by first converting them to the 
corresponding 2-pyridinethiol esters, which were then slowly added to xylene at reflux. The formation of lactones from 
hydroxy acids via their 2-pyridinethiol esters is known as the Corey-Nicolaou macrolactonization. The power of the 
method was first demonstrated by the total synthesis of (±)-zearalenone in which the functionalized hydroxy acid was 
first treated with 2,2'-dipyridyl disulfide and the resulting 2-pyridinethiol ester was heated to reflux in benzene.1
Removal of the protecting groups furnished the natural product. The general features of this macrolactonization 
strategy are: 1) the reaction is conducted under neutral and aprotic conditions, so substrates containing acid- and 
base-labile functional groups are tolerated; 2) the formation of the 2-pyridinethiol ester is conducted in the presence 
of a slight excess of PPh3 and 2,2-dipyridyl disulfide;18 3) the actual cyclization is usually conducted in refluxing 
benzene or toluene under high-dilution conditions to keep the undesired intermolecular ester formation at a minimum; 
4) the lactonization is not catalyzed by acids, bases, or by-products; and 5) lactones with ring sizes 7-48 have been 
successfully prepared, but reaction rates strongly depend on ring-size and the functionality of the substrate. Over the 
past three decades several modifications of the method were introduced: 1) the use of silver perchlorate (or AgBF4)
to activate the 2-pyridinethiol esters by complexation; significant reduction of reaction time is observed (Gerlach-
Thalmann modification);14 and 2) the development of other bis-heterocyclic disulfide reagents by Corey et al.15

Mechanism: 19,5,20

The 2-pyridinethiol ester undergoes an intramolecular proton transfer to give rise to a dipolar intermediate in which 
the carbonyl group is part of a six-membered ring held by hydrogen bonding. In this dipolar intermediate both the 
carbonyl group and the oxygen atom of the alcohol are activated because the carbonyl group is more electrophilic but 
the oxygen is more nucleophilic than before. The intramolecular attack of the alkoxide ion onto the carbonyl group is 
electrostatically driven and the tetrahedral intermediate collapses to yield the desired lactone as well as 2-
pyridinethione. This mechanistic picture is supported by the observation that thiolesters in which the intramolecular 
hydrogen bonding was not possible did not undergo lactonization upon heating. 
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COREY-NICOLAOU MACROLACTONIZATION

Synthetic Applications:

The modified Corey-Nicolaou macrolactonization was applied for the construction of the BCD ring system of
brevetoxin A by K.C. Nicolaou and co-workers.21 The dihydroxy dicarboxylic acid substrate was subjected to a one-
pot bis-lactonization. After the formation of the bis-2-pyridinethiol ester, the lactonization was conducted at low 
substrate concentration (0.013 M) in toluene at reflux temperature. 

The research team of M. Hirama conducted synthetic studies toward the C-1027 chromophore, which contains a 
highly unsaturated 17-membered macrolactone.22 The authors investigated several macrolactonization protocols 
including the Mukaiyama-, Corey-Nicolaou-, and Yamaguchi protocols. The Mukaiyama and Yamaguchi 
macrolactonization conditions gave dimers as the major product, but the Corey-Nicolaou procedure yielded the 
desired macrolactone as the only product, albeit in modest yield. The modification of the protecting groups in the 
hydroxy acid precursor helped to optimize the yield of the macrolactone which was obtained as a 1:1.1 mixture of 
inseparable atropisomers. 

The first total synthesis of the ichthyotoxic marine natural product (–)-aplyolide A was accomplished by Y. Stenstrøm 
and co-workers.23 The compound has a 16-membered lactone ring, four (Z)-double bonds, as well as a stereogenic 
center. Numerous macrolactonization protocols were tested, but most of them gave the diolide (dimer) except for the 
Corey-Nicolaou procedure.

M.B. Andrus and T.-L. Shi achieved the total synthesis of the 10-membered lactone (–)-tuckolide (decarestrictine D),
which potentially inhibits cholesterol biosynthesis.24 The lactonization was only successful under the Corey-Nicolaou 
conditions. Interestingly, the unsubstituted 9-hydroxynonanoic acid did not lactonize under these conditions. 
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COREY-WINTER OLEFINATION 
(References are on page 567)

Importance:

[Seminal Publications1,2; Review3]

In 1963, E.J. Corey and R.A.E. Winter described a new two-step method for the stereospecific synthesis of alkenes 
from 1,2-diols via cyclic 1,2-thionocarbonates and 1,2-trithiocarbonates.1,2,4 This method of alkene synthesis is called 
the Corey-Winter olefination. In the first step, the 1,2-diol is converted quantitatively to the corresponding cyclic 
thionocarbonate derivative using thiocarbonyldiimidazole. In the second step, the thionocarbonate is treated with 
excess trialkylphosphite [P(OR')3, where R'=Me, Et or alkyl] at reflux, and a cis-elimination reaction takes place to 
yield the alkene and by-products [CO2 and (OR)3P=S]. The reaction is completely stereospecific and high-yielding. 
Even highly substituted and strained olefins (e.g., trans-cycloheptene)2 can be prepared. However, no elimination is 
observed in those cases in which the cis-elimination would lead to an extremely strained structure (e.g., trans-
cyclohexene). The stereochemistry of the product olefin is only determined by the stereochemistry of the starting 1,2-
diol (cis or trans) and usually under the reaction conditions, no isomerization of the product is observed. A cis olefin, 
may be converted to trans-1,2-diol and subjected to the Corey-Winter procedure to afford the corresponding trans
olefin. Similarly, trans olefins can be converted to the corresponding cis olefins. 

Mechanism: 2,5-7

The exact mechanism of the reaction between the thionocarbonate and the trialkylphosphite is not known. There are 
two possible pathways (I and II) and both of them are presented. In pathway I, the formation of an ylide intermediate 
is postulated based on inhibition studies,4 while in pathway II the generation of a carbenoid intermediate is assumed. 
There is direct experimental evidence that the elimination of the cyclic 1,2-thionocarbonate involves the formation of a 
carbenoid intermediate.6
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COREY-WINTER OLEFINATION 

Synthetic Applications:

The enantiospecific synthesis of naturally occurring cyclohexane epoxides such as (+)-crotepoxide and (+)-
boesenoxide was accomplished by T.K.M. Shing et al.8 The key intermediate 1,3-cyclohexadiene was prepared using 
the Corey-Winter protocol on a cis-vicinal diol. The resulting diene was then converted to the natural product after 
several steps. 

The absolute configuration of radiosumin, a novel potent trypsin inhibitory dipeptide, was determined by T. Shioiri and 
co-workers by carrying out the first enantioselective total synthesis of the natural product.9 The s-trans 1,3-diene in 
one of the key synthetic intermediates was installed by the Corey-Winter olefination using the Corey-Hopkins reagent 
(1,3-dimethyl-2-phenyl-1,3,2-diazaphospholidine). 

In the laboratory of J.H. Rigby, synthetic studies were undertaken on the ingenane diterpenes.10 During these studies, 
it was necessary to investigate the ring opening reactions of a structurally complex allylic epoxide intermediate. This 
allylic epoxide was prepared from a 1,3-diene in three steps: dihydroxylation, epoxidation  and Corey-Winter 
olefination.

G.W.J. Fleet and co-workers synthesized L-(+)-swainsonine and other more highly oxygenated monocyclic structures 
that exhibited inhibitory activity toward naringinase (L-rhamnosidase).11  In order to remove a cis-vicinal diol moiety in 
the endgame of the synthesis, the Corey-Winter olefination was utilized. 
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CORNFORTH REARRANGEMENT 
(References are on page 567)

Importance:

[Seminal Publication1; Reviews2-7; Modifications8; Theoretical Studies9-11]

In 1949 J.W. Cornforth observed that upon heating, 2-phenyl-5-ethoxyoxazole-4-carboxamide (R1=Ph, R2=OEt, and 
R3=NH2) rearranged to ethyl 2-phenyl-5-aminooxazole-4-carboxylate.1 The thermal rearrangement of 4-carbonyl 
substituted oxazoles to their isomeric oxazoles is known as the Cornforth rearrangement. The extent of the 
rearrangement depends on the thermodynamic stability of the starting material versus the product. When R2=R3, the 
Cornforth rearrangement is degenerate and leads to a 1:1 equilibrium mixture.12 In the early 1970s, the scope and 
limitations of the reaction were investigated in depth by M.J.S. Dewar and co-workers.13,12 They found that the 
rearrangement was general and that secondary and tertiary alkyl and aryl oxazole-4-carboxamides were converted to 
the corresponding secondary and tertiary 5-aminooxazoles.13 When the amide nitrogen is part of a heterocycle 
(R3=N-heterocycle), the rearrangement occurs in typically excellent (>90%) yield. The Cornforth rearrangement was 
also found to be a general method for the synthesis of 5-thiooxazole-4-carboxylic esters from 5-alkoxyoxazole-4-
thiocarboxylates (R3=SAr). A special case of the rearrangement is the base-induced or pyrolytic isomerization of 4-
hydroxymethylene-5-oxazolones or their potassium salts to the corresponding oxazole-4-carboxylic acids.14

Mechanism: 15,13,3

The mechanism involves the electrocyclic opening of the oxazole ring to a dicarbonylnitrile ylide intermediate, which 
undergoes a [1,5]-dipolar electrocyclization3,11 to give the rearranged oxazole. The intermediate nitrile ylide cannot be 
isolated. To prove that the mechanism involves this intermediate, G. Höfle and W. Steglich generated carbonylnitrile 
ylides by a thermally induced [1,3]-dipolar cycloreversion reaction of 4-acyl-2-oxazolin-5-ones and found that the 
resulting ylides readily cyclized to oxazoles in preparatively useful yields.16 Whether or not the rearrangement occurs 
depends solely on the free energy difference between the starting material and product, or more precisely on the 
nature of R2 and R3 substituents.13,12 In aprotic solvents the rate of isomerization increases with increasing solvent 
polarity suggesting that only a small positive charge builds up in the transition state.15 However, there is a substantial 
rate increase when the solvent is changed from an aprotic (PhNO2) to a protic solvent (PhCH2OH), suggesting that 
the negative charge in the transition state is stabilized via hydrogen bonding.13

N

O

O
R3

R1 R2

heat

R3

R2

C

O

O

NCR1
N

O

O
R2

R1 R3

4-carbonyl-substituted
oxazole

Isomeric 
4-carbonyl-substituted

oxazoledicarbonylnitrile ylide

N

O

O

R3

R1 R2

heat R3

R2
C

O

O

NCR1

R3

R2
C

O

O

NCR1

R2

R3

C

O

O

NCR1

N

O

O

R2

R1 R3

O

N

Preparation of carbonylnitrile ylide:

O

R1

R2

O

R3

- CO2 R3
C

O

NCR1

R2

200-230 °C

R1 = alkyl, R2 = alkyl or Ph
R3 = Ph, Me, OMe, CO2Et

carbonylnitrile ylide

N

OR1 R3

R2

71-95%



113

CORNFORTH REARRANGEMENT 

Synthetic Applications:

Substituted oxazoles are attractive starting materials for a variety of heterocyclic ring transformations due to their 
reactivity toward acids, bases, heat, dienophiles, and dipolarophiles. Despite the numerous ring transformations of 
oxazoles, the oxazole to thiazole interconversion was mainly unexplored until I.J. Turchi and co-workers examined 
the thermal Cornforth rearrangement of 4-(aminothiocarbonyl)-5-ethoxyoxazoles to 5-aminothiazoles.17 The reaction 
turned out to be a simple and relatively general route to thiazoles from readily available starting materials, and the 
procedure is applicable to the synthesis of any 2-alkyl- or 2-aryl-4-(alkoxycarbonyl)-5-aminothiazoles. 

In the laboratory of D.R. Williams, a carbanion methodology for the alkylations and acylations of substituted oxazoles 
was investigated.8 The study showed that the monoalkylation of the dianion generated from 2-(5-oxazolyl)-1,3-
dithiane exclusively led to the substitution of the carbon adjacent to sulfur. However, acylation reactions of the dianion 
afforded 4,5-disubstituted oxazoles. These new products presumably arose from carbonylnitrile ylide intermediates, 
which were generated by the selective C-acylation of a ring-opened dianion tautomer. This is the first example of a 
base-induced, low-temperature Cornforth rearrangement.

During the investigation of the scope and limitations of the Cornforth rearrangement, M.J.S. Dewar and co-workers 
treated 2-phenyl-5-ethoxyoxazole-4-aziridinylcarboxamide with sodium iodide in acetone (Heine reaction) to prepare 
2-(2-phenyl-5-ethoxyoxazolyl)- 2-oxazoline in 60% yield.12 This oxazoline was a Cornforth rearrangement precursor, 
which upon thermolysis in boiling toluene gave 5-phenyl-7-carboethoxyimidazo[5,1-b]-2,3-dihydrooxazole in 97% 
yield.  
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CRIEGEE OXIDATION 
(References are on page 568)

Importance:

[Seminal Publication1; Reviews2-5; Modifications & Improvements6-8]

The cleavage of 1,2-diols (glycols) to the corresponding carbonyl compounds by lead tetraacetate [Pb(OAc)4, LTA] in 
an organic solvent is known as the Criegee oxidation. Glycols are cleaved with ease under mild conditions and in 
good yield with periodic acid (HIO4) or LTA. Other functional groups, such as β-amino alcohols, 1,2-diamines, α-
hydroxy aldehydes and ketones, α-diketones and α-keto aldehydes undergo similar cleavage upon treatment with 
LTA. Several oxidizing agents (e.g., sodium bismuthate, manganese(III) pyrophosphate, PIDA, cerium(IV) salts, 
vanadium(V) salts, chromic acid, nickel peroxide, silver(I) salts, etc.) also cleave glycols, but these oxidizing agents 
are synthetically much less efficient. Cis-vicinal diols and threo diols are cleaved much faster than the corresponding 
trans-vicinal diols and erythro diols. Cis diols can be titrated using LTA without the interference of aliphatic glycols 
and trans-glycols on five-membered rings.9 The Criegee oxidation is complementary to the ozonolysis of double 
bonds, since alkenes are easily dihydroxylated and then cleaved to afford the desired carbonyl compounds. During 
the past decade, the oxidative cleavage of bicyclic unsaturated diols led to the development of a new ring-
expansion/rearrangement methodology for the preparation of densely functionalized six- and seven-membered rings 
from simple and well-known building blocks.6-8

Mechanism: 10-20,8

The mechanism of the Criegee oxidation most likely involves the formation of a bidentate metal - 1,2-glycol five-
membered complex (Path I), which then breaks down to products via a two-electron process. The breakdown of the 
cyclic intermediate is the rate-determining step and the driving force is the electronegativity of Pb(IV), which abstracts 
the bonded electron pair of one of the O-atoms adjacent to the C-C bond and is reduced to Pb(II). The kinetics of the 
reaction is overall second order, first order in each reactant. It was found that the addition of acetic acid retards the 
reaction by shifting the equilibrium to the left. For substrates where the formation of the cyclic five-membered 
intermediate is not possible (e.g., bicyclic trans diols), an alternative concerted electron displacement is proposed 
(Path II) involving one of the acetate groups attached to the metal.13
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CRIEGEE OXIDATION 

Synthetic Applications:

G.S.R. Rao and co-workers described the conversion of aromatic compounds to linear and angular triquinanes, which 
involved a 5-exo-trig allyl radical cyclization as the key step.21 To install the third five-membered ring of the linear 
triquinane, the tricyclic 1,2-diol intermediate was cleaved using the Criegee oxidation to afford a diketone. The 
remaining double bond was cleaved by ozonolysis and the resulting triketone was treated with PTSA in refluxing 
benzene to give the desired linear triquinane. 

In the laboratory of Y. Takemoto, the asymmetric total synthesis of the marine metabolite, halicholactone was 
accomplished.22 One advanced intermediate contained a 1,2-vicinal diol moiety which was cleaved under mild 
conditions to afford the corresponding aldehyde. The Criegee oxidation was chosen to effect this transformation at 
low temperature, followed by the stereoselective allylation of the resulting aldehyde with tetraallyltin. 

M. Hesse and co-workers synthesized ( )-pyrenolide B, a macrocyclic natural product isolated from a 
phytopathogenic fungus.23 The key transformation of the synthesis was the ring enlargement reaction of a bicyclic 
enol ether intermediate to the corresponding oxolactone. The ring enlargement was performed using a two-step 
procedure: dihydroxylation of the enol ether double bond, followed by oxidation of the resulting diol with Pb(OAc)4 to 
quantitatively afford the ring-expanded product. 

In the synthesis of angular triquinane ( )-silphinene by S. Yamamura et al., the Criegee oxidation was used to obtain 
a key bicyclic intermediate.24
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CURTIUS REARRANGEMENT 
(References are on page 568)

Importance:

[Seminal Publications1-5; Reviews6-10; Modifications & Improvements11-14; Theoretical Studies15-17]

The thermal decomposition (pyrolysis) of acyl azides to the corresponding isocyanates is known as the Curtius 
rearrangement. The rearrangement is catalyzed by both protic18 and Lewis acids and the decomposition temperature 
is significantly lowered compared to the uncatalyzed reaction.19 Acyl azides can be prepared in several different 
ways: 1) reacting acid chlorides or mixed anhydrides11 with alkali azide13 or trimethylsilyl azide;20 2) treating 
acylhydrazines with nitrous acid or nitrosonium tetrafluoroborate;21 and 3) treating carboxylic acids with diphenyl 
phosphoryl azide (DPPA).12 The product isocyanate can be isolated if the pyrolysis is conducted in the absence of 
nucleophilic solvents. If the reaction is carried out in the presence of water, amines (R-NH2), or alcohols (R-OH), the 
corresponding amines, ureas, and carbamates are formed. The Curtius rearrangement is a very general reaction and 
can be applied to carboxylic acids containing a wide range of functional groups. It is also possible to induce a Curtius 
rearrangement under photochemical conditions, but this pathway gives rise to several side-products in addition to the 
desired isocyanate.22 The photochemical Curtius rearrangement of phosphinic azides is also known as the Harger 
reaction.23-25

Mechanism: 26-30

Nitrene intermediates are formed in the pyrolysis of most alkyl azides, aryl azides, sulfonyl azides, and 
azidoformates. However, the mechanism of the Curtius rearrangement under thermal conditions is most likely a 
concerted process.27 This hypothesis is based on the lack of any evidence indicating the formation of a free acyl 
nitrene species.15 For example, neither insertion, addition, nor amide products are isolated in the thermal Curtius 
rearrangement, which would be expected if a nitrene intermediate is involved.6 The values of the entropy of activation 
are also in good agreement with a synchronous mechanism.28 The photochemical Curtius rearrangement on the 
other hand proceeds by the formation of nitrenes, which undergo typical nitrene reactions. This is not surprising, 
since the energy of the photon is high enough to break the N-N2 bond without alkyl or aryl participation.  
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CURTIUS REARRANGEMENT 

Synthetic Applications:

The enantioselective total synthesis of the cytokine modulator (–)-cytoxazone using a syn-stereoselective aldol 
addition and a Curtius rearrangement as key steps was described by J.A. Marco et al.31 The key intermediate acid 
was treated with DPPA and triethylamine in toluene at reflux. This step furnished the oxazolidinone directly and in 
good yield through an in situ capture of the isocyanate group by the free secondary alcohol functionality. Removal of 
the protecting group led to the formation of the natural product. 

The first total synthesis of streptonigrone utilizing an inverse electron demand Diels-Alder reaction was accomplished 
in the laboratory of D.L. Boger.32 In order to introduce the C5 pyridone amine functionality, the carboxylic acid was 
exposed to the Shioiri-Yamada reagent (DPPA) in benzene-water. Subsequent hydrolysis with lithium hydroxide in 
THF/water was necessary to complete the conversion to the primary amine. 

The antimuscarinic alkaloid (±)-TAN1251A possesses a unique tricyclic skeleton that consists of a 1,4-
diazabicyclo[3.2.1]octane ring and a cyclohexanone ring bonded through a spiro carbon atom. K. Murashige and co-
workers introduced the nitrogen connected to the spiro carbon atom by applying the Curtius rearrangement.33

A key carbamate intermediate during the total synthesis of pancratistatin was prepared via the Curtius rearrangement
of the corresponding carboxylic acid by S. Kim et al.34 The isocyanate intermediate was rather stable and was 
converted to the desired carbamate in 82% overall yield by treatment with NaOMe/MeOH. 
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DAKIN OXIDATION 
(References are on page 569)

Importance:

[Seminal Publications1,2; Reviews3-7; Modifcations & Improvements8,9]

When treated with organic peracids (RCO3H) or hydrogen peroxide (H2O2), aliphatic aldehydes are smoothly oxidized 
to carboxylic acids. Aromatic aldehydes, however, undergo a more complex reaction in which the aldehyde group is 
converted to the acylated phenolic hydroxyl group. In 1909, H.D. Dakin obtained high yields of pyrocatechol (1,2-
dihydrohybenzene) when he oxidized ortho-hydroxybenzaldehyde with perbenzoic acid.1 The oxidation of aromatic 
aldehydes and ketones to the corresponding phenols is known as the Dakin oxidation, and this transformation is very 
similar to the well-known Baeyer-Villiger oxidation. The reaction works best if the aromatic aldehyde or ketone is 
electron rich (-R, -OH, -OR, -NH2, or -NHR substituents in the ortho or para positions). When the aromatic ring is 
substituted with electron-withdrawing groups, the product of the oxidation is usually the carboxylic acid. The Dakin 
oxidation is usually performed using the following reagents: alkaline H2O2,5,10  acidic H2O2,11 peroxybenzoic acid,12

peroxyacetic acid,13 sodium percarbonate,14 30% H2O2 with arylselenium compounds as activators (Syper process),8
and urea-H2O2 (UHP) adduct.9

Mechanism: 12,10,15-17

The mechanism of the Dakin oxidation is very similar to the mechanism of the Baeyer-Villiger oxidation. Under basic 
conditions (H2O2/NaOH) the hydrogen-peroxide is deprotonated to give the hydroperoxide anion (HO2

-), which adds 
across the carbonyl group of the substituted aromatic aldehyde or ketone. The resulting tetrahedral intermediate 
undergoes a [1,2]-aryl shift to afford an O-acylphenol, which is hydrolyzed to the corresponding phenolate anion 
under the reaction conditions. Finally, the work-up liberates the substituted phenol from the phenolate salt. 
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DAKIN OXIDATION 

Synthetic Applications:

The total synthesis of vineomycinone B2 methyl ester was accomplished in the laboratory of C. Mioskowski using a 
double Bradsher cyclization, a modified Dakin oxidation, and a singlet oxygen oxidation as key steps.18 The 
substituted anthracene-dialdehyde derivative was treated under modified Dakin oxidation conditions, that is, with 
phenylselenic acid and hydrogen peroxide at 20 °C for 20h, to introduce the phenolic oxygens. This was followed by 
a singlet oxygen addition across the central aromatic ring with reductive work-up and air oxidation to generate the 
desired anthraquinone functionality. 

M.E. Jung and co-workers have developed a synthesis of selectively protected L-Dopa derivatives from L-tyrosine via
a Reimer-Tiemann reaction followed by the modified Dakin oxidation.19 The formyl group introduced by the Reimer-
Tiemann reaction had to be converted to the corresponding phenol. After trying many sets of conditions, the Syper 
process was chosen, which uses arylselenium compounds as activators for the oxidation. Treatment of the aromatic 
aldehyde with 2.5 equivalents of 30% hydrogen peroxide in the presence of 4% diphenyl diselenide in 
dichloromethane for 18h gave the aryl formate in excellent yield. This ester was cleaved by treatment with methanolic 
ammonia for 1h to afford the desired phenol in good yield. 

Carboxy-functionalized fluorescein dyes are important as conjugated fluorescent markers of biologically active 
compounds. M.H. Lyttle et al. have used the Dakin oxidation on 4-methoxy-3-hydroxy-2-chloro-benzaldehyde to 
obtain the desired resorcinol derivative that served as an intermediate in their improved synthesis.20
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DAKIN-WEST REACTION
(References are on page 569)

Importance:

 [Seminal Publications1-3; Reviews4-6; Modifications & Improvements7-10]

The conversion of carboxylic acids to ketones has been known for centuries.6 It is therefore interesting that since the 
mid-1800s several chemists have claimed to have discovered this transformation (e.g., W.H. Perkin, Sr., W. Heintz, 
etc.).1 In 1928, H.D. Dakin and R. West reported that when certain amino acids, such as aspartic acid and histidine, 
were heated in acetic anhydride in the presence of pyridine, the corresponding α-acetamido methyl ketones were 
formed in high yield.2,3 The formation of α-acylamino alkyl ketones from α-amino acids and symmetrical carboxylic 
acid anhydrides in the presence of a base is known as the Dakin-West reaction. The general features of this 
transformation are: 1) both primary and secondary α-amino acids undergo this transformation, but β-amino acids only 
afford the corresponding N-acylated derivatives; 2) the α-amino acids need to have a proton at their α-position, 
otherwise they simply undergo N-acylation; 3) the anhydride component is most often acetic anhydride, but other 
anhydrides such as propionic anhydride can also be used; 4) when acetic anhydride is used, the product is an α-
acetylamino methyl ketone, whereas with propionic anhydride the corresponding α-propionylamino ethyl ketone is 
obtained; 5) the base is usually pyridine, but various alkylpyridines and sodium acetate have been successfully 
employed; 6) primary α-amino acids react with anhydrides at around 100 °C, but secondary α-amino acids require 
significantly higher reaction temperatures; and 7) the addition of a nucleophilic catalyst such as DMAP allows the 
reaction to take place at room temperature.8

Mechanism: 11-26,6
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DAKIN-WEST REACTION

Synthetic Applications:

In the laboratory of E.B. Pedersen, several 2-methylsulfanyl-1H-imidazoles were prepared and tested for their activity 
against HIV-1.27 These compounds can be regarded as novel non-nucleoside reverse transcriptase inhibitors. The 
required α-aminoketone hydrochloride building blocks were prepared using the Dakin-West reaction. L-
Cyclohexylalanine was dissolved in excess pyridine and propionic anhydride and was kept at reflux overnight. The 
resulting α-propionylamino ethyl ketone was hydrolyzed with concentrated hydrochloric acid and the α-aminoketone 
hydrochloride was heated with one equivalent of potassium thiocyanate in water to afford 4-cyclohexylmethyl-5-ethyl-
1,3-dihydroimidazole-2-thione. This material was then advanced to 4-cyclohexylmethyl-1-ethoxymethyl-5-ethyl-2-
methylsulfanyl-1H-imidazole. 

The synthesis of ketomethylene pseudopeptide analogues was accomplished by L. Cheng et al., and their biological 
activity as thrombin inhibitors was tested.28 These analogues were prepared through a modified Dakin-West reaction
under mild conditions and in almost quantitative yield. The required anhydride was prepared from monomethyl 
succinate, and a large excess of it was mixed with the tripeptide substrate in pyridine in addition to triethylamine and 
catalytic amounts of DMAP. The reaction mixture was heated for one hour at 40-50 °C.

The efficient solution and solid phase synthesis of a 3,9-diazabicyclo[3.3.1]non-6-en-2-one scaffold was developed by 
R. Giger and co-workers from L-tryptophan using a novel sequential Dakin-West/intramolecular Pictet-Spengler 
reaction.10

An improved method for the preparation of a series of oxazole-containing dual PPARα/γ agonists was reported by 
A.G. Godfrey et al.29 The synthesis utilized the Dakin-West reaction which allowed the introduction of a phenyl ketone 
moiety. This ketone was subsequently converted to the corresponding oxazole using POCl3/DMF.
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DANHEISER BENZANNULATION 
(References are on page 570)

Importance:

[Seminal Publication1; Modifications & Improvements2]

In 1984, R.L. Danheiser and co-workers developed a new, one-step method for the regiocontrolled synthesis of highly 
substituted aromatic compounds by heating cyclobutenone derivatives with activated (heterosubstituted)1,3-5 or 
unactivated acetylenes. This convergent annulation process is referred to as the Danheiser benzannulation, and it 
proceeds via a vinylketene intermediate. Alkoxyacetylenes were found to be the best partners for this annulation, but 
the relatively harsh conditions required to cleave the aryl ether moiety in the products led to the use of 
trialkylsilyloxyalkynes instead.4 In the typical annulation procedure, the solution of the cyclobutenone component (in 
CHCl3, benzene, or toluene) in the presence of a slight excess of the heterosubstituted acetylene is heated to 80-160
°C in a sealed Pyrex tube.1 Modification of the original strategy involves the generation of the vinyl- or arylketene 
intermediate via the photochemical Wolff-rearrangement of an unsaturated (vinyl or aryl) α-diazo ketone.2 This new 
two-step modified Danheiser benzannulation allows the synthesis of polycyclic aromatic and heteroaromatic systems 
(e.g., substituted naphthalenes, benzofurans, benzothiophenes, indoles, carbazoles, etc.), which cannot be accessed 
using the original methodology. The advantage of this new procedure is that the various functionalized aryl and vinyl 
α-diazo ketones are easily accessible from a wide range of available simple ketones and carboxylic acid derivatives. 
The best yields are obtained when 3-alkoxy phenol derivatives are formed, and in this respect the modified Danheiser 
benzannulation complements the Dötz benzannulation reaction, which results in the formation of 4-alkoxy phenol 
derivatives. 

Mechanism: 1,2

In the original version of the annulation, the vinylketene6 intermediate is generated in a reversible 4π electrocyclic ring 
opening of the cyclobutenone followed by a cascade of three more pericyclic reactions. The ketenophilic alkyne 
reacts with the vinylketene in a regiospecific [2+2] cycloaddition. The resulting 2-vinylcyclobutenone then undergoes 
a reversible 4π electrocyclic cleavage to give a dienylketene, which immediately rearranges in a six-electron 
electrocyclization to afford a cyclohexadienone. The highly substituted phenol is formed after tautomerization. The 
photochemical Wolff rearrangement of the unsaturated α-diazoketone also yields the vinylketene, and most likely 
proceeds via carbene and oxirene intermediates.7
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DANHEISER BENZANNULATION 

Synthetic Applications:

R.L. Danheiser and co-workers have used the modified Danheiser benzannulation for the synthesis of the marine 
carbazole alkaloid hyellazole.2 The required diazoketone was prepared from the N-Boc derivative of 3-acetylindole 
using a diazo transfer reaction. The diazoketone was irradiated in the presence of the alkyne to afford the desired 
carbazole annulation product in 56% yield. Finally, in order to install the phenyl group of hyellazole at C1, the 
phenolic hydroxyl group was converted to the corresponding triflate and a Stille cross-coupling was performed. 

The use of substituted alkoxyacetylenes in synthesis is fairly limited due to the lack of simple, general methods for 
their preparation. However, silyloxyacetylenes are easier to make and can be prepared from esters in a one-pot 
operation.8 In the laboratory of C.J. Kowalski, research has shown that silyloxyacetylenes could be successfully used 
in the Danheiser benzannulation.5 This modification was used in the total synthesis of Δ-6-tetrahydrocannabinol.

During the total synthesis of (–)-cylindrocyclophane F, A.B. Smith et al. used the Danheiser benzannulation to 
construct the advanced aromatic intermediate for an olefin metathesis dimerization reaction.9 The starting material 
triisopropylsilyloxyalkyne was synthesized from the corresponding ethyl ester using the Kowalski two-step chain 
homologation.8
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DANHEISER CYCLOPENTENE ANNULATION 
(References are on page 570)

Importance:

[Seminal Publications1,2; Modifications and Improvements3-8]

The one-step regio- and stereoselective [3+2] annulation of (trimethylsilyl)allenes and electron-deficient alkenes 
(allenophiles) in the presence of titanium tetrachloride (TiCl4) to produce highly substituted cyclopentene derivatives 
is referred to as the Danheiser cyclopentene annulation. The typical annulation involves rapid addition of 1.5 
equivalents of distilled TiCl4 to a methylene chloride solution containing the allenophile and 1.0-1.5 equivalents of 
(trimethylsilyl)allene at -78°C.1,2 The required (trimethylsilyl)allenes are relatively easy to prepare, and the 
allenophiles are usually readily available α,β-unsaturated ketones. Both cyclic and acyclic enones are good reaction 
partners. However, other allenophiles such as α-nitro olefins only react with allenes in a Michael type process. α,β-
Unsaturated aldehydes give complex reaction mixtures, whereas α,β-unsaturated esters react sluggishly to afford the 
desired cyclopentene derivative in moderate yields. The annulation works most efficiently using 1-substituted 
(trimethylsilyl)allenes. The addition of the allene to the allenophile is predominantly suprafacial, and as a result, the 
annulation is highly stereoselective. The reaction of allenylsilanes with other electrophiles results in the formation of 
heterocycles.4,5,8

Mechanism: 1,2

The first step of the mechanism involves the initial complexation of titanium tetrachloride to the carbonyl group of the 
electron-deficient alkene (enone) to give an alkoxy-substituted allylic carbocation. The allylic carbocation attacks the 
(trimethylsilyl)allene regiospecifically at C3 to generate vinyl cation I,9 which is stabilized by the interaction of the 
adjacent C-Si bond. The allylic π-bond is only coplanar with the C-Si bond in (trimethylsilyl)allenes, so only a C3 
substitution can lead to the formation of a stabilized cation.1 A [1,2]-shift of the silyl group follows to afford an isomeric 
vinyl cation (II), which is intercepted by the titanium enolate to produce the highly substituted five-membered ring.10,11

Side products (III – V) may be formed from vinyl cation I.
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DANHEISER CYCLOPENTENE ANNULATION 

Synthetic Applications:

Disilanyl groups are considered the synthetic equivalent of the hydroxyl group. These groups can be easily converted 
in a one-pot reaction to the corresponding hydroxyl group by treatment with TBAF in THF followed by H2O2/KHCO3
oxidation.12 Y. Ito and co-workers have demonstrated the synthetic usefulness of the disilanyl groups in the disilane 
version of the Danheiser cyclopentene annulation. In the presence of 1.5 equivalents of TiCl4, allenyldisilanes reacted 
with 1-acetylcycloalkenes to give bicyclic alkenyldisilanes in moderate to good yields. Then the bicyclic 
alkenyldisilanes were converted to the corresponding bicyclic ketones via oxidation. 

H.J. Schäfer et al. achieved the formal total synthesis of the trinorguaiane sesquiterpenes (±)-clavukerin and (±)-
isoclavukerin by using the Danheiser cyclopentene annulation as the key step.13 Racemic 4-methylcyclohept-2-en-1-
one was reacted with (trimethylsilyl)allene in the presence of 1.7 equivalents of TiCl4 in dichloromethane at -78 °C to 
afford a 1:1 mixture of the cis-fused diastereomers, which were easily separated by HPLC. The diastereomers were 
then converted to key fragments of earlier total syntheses of the above mentioned natural products. 

Research in the laboratory of R.L. Danheiser has shown that allenylsilanes can be reacted with electrophiles other 
than enones, such as aldehydes and N-acyl iminium ions to generate oxygen and nitrogen heterocycles.4  Aldehydes 
can function as heteroallenophiles and the reaction of C3 substituted allenylsilane with the achiral cyclohexane 
carbaldehyde afforded predominantly cis-substituted dihydrofurans. 
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DANISHEFSKY’S DIENE CYCLOADDITION 
(References are on page 570)

Importance:

[Seminal Publication1; Reviews2-5; Modifications and Improvements6-16]

Following the discovery of the Diels-Alder cycloaddition reaction in 1928, a wide variety of functional groups were 
incorporated into the dienophile component, while the variation of substituents on the diene component was fairly 
limited. In 1974, S.J. Danishefsky et al. prepared an electron-rich heteroatom substituted diene, (E)-1-methoxy-3-
(trimethylsilyloxy)-1,3-diene, which was later successfully used in normal and hetero Diels-Alder cycloaddition
reactions.1 Cycloaddition reactions involving this particular diene are referred to as Danishefsky’s diene 
cycloadditions. Danishefsky’s diene readily reacts with imines,6,16 aldehydes,4,11,14 alkenes, alkynes, and even with 
certain electron-deficient aromatic rings17 to afford the corresponding heterocyclic and carbocyclic rings. In general, 
heteroatom substituents with lone pairs of electrons have the following effects on the diene component: 1) the diene 
becomes more electron-rich, making it more reactive toward dienophiles; 2) regioselectivity of the cycloaddition is 
improved when unsymmetrical dienophiles are used; and 3) the heteroatom serves as a handle for post-cycloaddition 
modifications (e.g., the β-alkoxy enol silyl ether is converted to the corresponding enone under acidic conditions).18

The increase in reactivity can be explained by the FMO theory, namely that the electron-rich heteroatom increases 
the HOMO energy level of the diene thereby decreasing the energy difference between the diene’s HOMO and the 
dienophile’s LUMO. As a result, the transition state is stabilized, and the reaction rate is increased. Over the years, 
structural modifications to Danishefsky’s diene improved the reactivity and selectivity as well as the acid and heat 
sensitivity of these electron-rich dienes.7,9,10,12 The Danishefsky’s diene cycloaddition reactions are catalyzed by 
various Lewis acids, and asymmetric versions have also been developed.11,13-15

Mechanism: 19,11,20,13

There are two different modes of cyclizations in hetero [4+2] cycloadditions involving Danishefsky’s diene: 1) 
concerted (pericyclic) and 2) stepwise. When carbonyl compounds are reacted with Danishefsky’s diene, the 
stepwise pathway is often referred to as the Mukaiyama aldol reaction pathway. The concerted process is called the 
Diels-Alder pathway. The mode of cyclization in the case of Lewis acid catalyzed reactions depends on the Lewis 
acid itself and whether it is present in stoichiometric or catalytic amounts.19 The Mukaiyama aldol pathway has been 
observed only with titanium21 and boron22,23 complexes, while the Diels-Alder pathway occurred when aluminum,11

chromium,24 europium,25 rhodium,14 zinc,19 and ytterbium26 complexes were used. The scheme below shows that the 
intermediates of both mechanistic pathways give the same product upon treatment with acid. 
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DANISHEFSKY’S DIENE CYCLOADDITION 

Synthetic Applications:

The first total synthesis of the marine furanosesquiterpenoid tubipofuran was accomplished in the laboratory of K. 
Kanematsu.27 The cis-fused furanodecalin system was constructed by the regioselective Diels-Alder cycloaddition
reaction of benzofuran quinone and Danishefsky’s diene in refluxing toluene. The reaction gave an 11:1 mixture of 
the desired ortho-endo adduct versus the undesired para-endo product in 98% isolated yield. The major isomer then 
was subjected to sequential radical deoxygenation reactions before it was finally converted to the natural product.  

The enantioselective total synthesis of the Securienega alkaloid (–)-phyllanthine by S.M. Weinreb et al. involved a 
stereoselective Yb(OTf)3-promoted hetero Diels-Alder reaction between a cyclic imine dienophile and Danishefsky’s 
diene.26 This was the first example of using an unactivated cyclic imine in this type of cycloaddition. Commonly used 
Lewis acid catalysts (e.g., SnCl2, TiCl4, etc.) produced only low yields of the desired cycloadduct. However, it was 
discovered that ytterbium triflate catalyzed the cycloaddition and afforded the product in 84% yield. Later they also 
found that the cyclization could occur at high pressure and in the absence of the catalyst, although a slightly lower 
yield (71%) of the product was obtained. 

(±)-A80915G is a member of the napyradiomycin family of antibiotics. Its concise total synthesis was published by M. 
Nakata and co-workers using sequential Stille cross-coupling of aryl halides with allyltins and the Diels-Alder reaction
of a chloroquinone with the Danishefsky-Brassard diene.28

A versatile C4-building block, difluorinated Danishefsky’s diene, was developed for the construction of fluorinated six-
membered rings in the laboratory of K. Uneyama. The diene was prepared by the selective C-F bond cleavage of 
trifluoromethyl ketones. The reaction of this novel diene with benzaldehyde afforded the corresponding difluoro 
dihydropyrone in 92% ee in the presence of equimolar Ti(IV)-(R)-BINOL.12
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DARZENS GLYCIDIC ESTER CONDENSATION 
(References are on page 571)

Importance:

[Seminal Publications1-3; Reviews4-7; Modifications and Improvements8-16]

The formation of α,β-epoxy esters (glycidic esters) from aldehydes and ketones and α-halo esters under basic 
conditions is known as the Darzens glycidic ester condensation. The first report of this transformation was published 
by E. Erlenmeyer, and he described the condensation of benzaldehyde with ethyl chloroacetate in the presence of 
sodium metal.1 During the early 1900s G. Darzens developed and generalized the reaction and found that sodium 
ethoxide (NaOEt) was a very efficient condensing agent.3 Sodium amide2 and other bases such as N-ethyl-N-
(tributylstannyl)carbamate17 can also be used to bring about the Darzens condensation. The reaction is general, since 
aromatic aldehydes and ketones, aliphatic ketones as well as α,β-unsaturated and cyclic ketones react smoothly and 
give good yields of the expected glycidic esters. Aliphatic aldehydes usually give lower yields, but the deprotonation 
of the α-halo ester with a strong kinetic base prior to the addition of the aldehyde results in acceptable yields.18 α-
Chloro esters are preferable to bromo or iodo esters, since they give higher yields. In addition to α-halo esters, α-halo 
sulfones,19,15 nitriles,20,16 ketones,17 ketimines,21 thiol esters,22 or amides14,16 can also be used to obtain the 
corresponding glycidic derivatives. A useful extension of the reaction is the Darzens aziridine synthesis (aza-Darzens 
reaction) when the α-halo esters are condensed with imines.8 Newer versions of the aza-Darzens reaction allow the 
preparation of aziridines in optically pure form.11,12  Glycidic esters are versatile synthetic intermediates: the epoxide 
functionality can be opened with various nucleophiles and upon thermolysis the intermediates undergo 
decarboxylation to afford the corresponding one carbon homologue of the starting aldehyde or ketone.23

Mechanism: 24-26,6,27-29

The first step of the mechanism is an aldol reaction: the base deprotonates the α-halo ester in a rate-determining step 
and the resulting carbanion (enolate) attacks the carbonyl group of the reactant aldehyde or ketone. The resulting 
intermediate is a halohydrin that undergoes an SNi reaction in the second step to form the epoxide ring. The 
strereochemical outcome of the Darzens condensation is usually in favor of the trans glycidic derivative. However, 
changing the solvents, bases, and the substituents can give either the cis or trans diastereomers. The 
stereochemistry of the product is determined by the initial enolate geometry and the steric requirements of the 
transition state.29
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DARZENS GLYCIDIC ESTER CONDENSATION 

Synthetic Applications:

During the enantioselective total synthesis of (–)-coriolin, I. Kuwajima and co-workers used a Darzens-type reaction
to construct the spiro epoxide moiety on the triquinane skeleton.30 Interestingly, the usual Darzens condensation
where the α-bromoketone was condensed with paraformaldehyde yielded a bromohydrin in which the hydroxymethyl 
group was introduced from the concave face of the molecule. This bromohydrin upon treatment with DBU gave the 
undesired stereochemistry at C3 (found in 3-epi-coriolin). To obtain the correct stereochemistry at C3, the 
substituents were introduced in a reverse manner. It was also necessary to enhance the reactivity of the enolate with 
potassium pinacolate by generating a labile potassium enolate in the presence of NIS. The in situ formed iodohydrin, 
then cyclized to the spiro epoxide having the desired stereochemistry at C3. 

In the laboratory of P.G. Steel, a five-step synthesis of (±)-epiasarinin from piperonal was developed.31 The key steps 
in the sequence involved the Darzens condensation, alkenyl epoxide-dihydrofuran rearrangement and a Lewis acid 
mediated cyclization. The desired vinyl epoxide intermediate was prepared by treating the solution of (E)-methyl-4-
bromocrotonate and piperonal with LDA,  then quenching the reaction mixture with mild acid (NH4Cl).

A. Schwartz et al. synthesized several calcium channel blockers of the diltiazem group enantioselectively by using an 
auxiliary-induced asymmetric Darzens glycidic ester condensation.32 The condensation of p-anisaldehyde with an 
enantiopure α-chloro ester afforded a pair of diastereomeric glycidic esters that possessed significantly different 
solubility. The major product was crystallized directly from the reaction mixture in 54% yield and in essentially 
enantiopure form. This major glycidic ester was then converted to diltiazem in a few more steps. 
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DAVIS’ OXAZIRIDINE OXIDATIONS 
(References are on page 572)

Importance:

[Seminal Publications1-9; Reviews10-17; Modifications & Improvements18-22; Theoretical Studies23-25]

Three-membered heterocyclic compounds containing oxygen, nitrogen, and carbon atoms are called oxaziridines. 
The first oxaziridines were prepared by treating imines with peroxyacids in the second half of the 1950s.26,27

Oxaziridines are highly reactive compounds due to the ring strain and the relatively weak N-O bond, and they can 
serve as both aminating and oxygenating agents. Nucleophiles attack at the nitrogen atom if the substituent attached 
to the aziridine nitrogen is small (R1 = H, Me). However, in the case of larger substituents, the nucleophilic attack 
takes place at the oxygen atom instead. In the late 1970s, F.A. Davis prepared N-sulfonyloxaziridines, which act 
exclusively as oxidizing agents with nucleophiles and their rate of oxidation is comparable to peracids.2 The oxidation 
reactions involving 2-arylsulfonyl-3-aryloxaziridines (Davis’ reagents) are called Davis’ oxaziridine oxidations. N-
sulfonyloxaziridines offer two major advantages: they are highly chemoselective and also neutral, aprotic oxidizing 
agents. The following oxidative transformations are easily carried out: 1) sulfides and selenides to sulfoxides28,29 and 
selenoxides7 without overoxidation; 2) alkenes to epoxides;4,6,22 3) amines to hydroxylamines and amine oxides;30

and 4) organometallic compounds to alcohols or phenols.31 The most widespread application of N-
sulfonyloxaziridines is the oxidation of enolates to α-hydroxy carbonyl compounds (acyloins).13 Recently, the 
synthetic utility of a new class of oxaziridines, perfluorinated oxaziridines, is being investigated due to the unique 
reactivity profile of these oxidizing agents.19

Mechanism: 6,9,32-34,13,20,35   

The mechanism of oxygen transfer from oxaziridines to nucleophiles is believed to involve an SN2 type reaction and 
this assumption is supported by theoretical23-25 and experimental9 studies. When sulfides are oxidized to the 
corresponding sulfoxides and sulfones, the molecular recognition is steric in origin, and it is determined by the 
substituents on both the substrate and the oxaziridine.9 For the oxidation of enolates, the molecular recognition is 
explained with an SN2 mechanism as well as by an open (non-chelated) transition state where the nonbonded 
interactions are minimized.33,36,20 The mechanism of oxygen transfer to an enolate to form the corresponding acyloin 
is shown below.13
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DAVIS’ OXAZIRIDINE OXIDATIONS 

Synthetic Applications:

During the highly stereoselective total synthesis of epothilone B by J.D. White and co-workers, the stereochemistry of 
the alcohol portion of the macrolactone was established by applying Davis’ oxaziridine oxidation of a sodium 
enolate.37 The sodium enolate was generated from the corresponding chiral oxazolidinone derivative, which upon 
oxidation gave 71% yield of α-hydroxylated compound. 

An abbreviated synthesis of a substituted 1,7-dioxaspiro[5.5]undec-3-ene system constituting the C3-C14 portion of 
okadaic acid was developed in the laboratory of C.J. Forsyth.38 The C3-C8 fragment, a substituted valerolactone, was 
prepared in three steps. The diastereoselective α-hydroxylation of this lactone was accomplished by using Davis’ 
chiral camphorsulphonyl oxaziridine on the corresponding lithium enolate at -78 °C. The isolated yield was 61% and 
the ratio of diastereomers was 10:1. 

The first total synthesis of (–)-fumiquinazoline A and B was accomplished by B.B. Snider and co-workers using a 
Buchwald-Hartwig Pd-catalyzed cyclization of an iodoindole carbamate to construct the imidazoindolone moiety.39 In 
order to set up the stereochemistry at the benzylic position of the indole fragment, the double bond was oxidized with 
the saccharine-derived Davis’ oxaziridine in the presence of methanol to give the major diastereomer in 65% yield. 
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DE MAYO CYCLOADDITION (ENONE-ALKENE [2+2] PHOTOCYCLOADDITION)
(References are on page 573)

Importance:

[Seminal Publications1-4; Reviews5-14; Modifications & Improvements15-18]

The photochemical [2+2] cycloaddition of enones (α,β-unsaturated carbonyl compounds) with alkenes is known as 
the de Mayo cycloaddition. A substituted cyclobutane is formed in the process. The first example of this 
transformation was the "Italian sunlight-induced" intramolecular photoisomerization of carvone to carvoncamphor 
published by G.L. Ciamician in 1908.19 Ciamician’s finding was verified by G. Büchi 50 years later.20 It was not until 
the early 1960s when P. de Mayo, P.E. Eaton, and E.J. Corey demonstrated that the intermolecular enone-alkene 
photocycloaddition was possible as well.1-4 De Mayo’s first paper described the intermolecular [2+2] cycloaddition of 
enolized 1,3-diketones (enone) and olefins. The cycloadducts (β-hydroxy ketones) underwent a spontaneous retro-
aldol reaction to afford 1,5-diketones.1 The alkene (olefin) and enone reaction partners can vary widely; 
cycloadditions with enol esters of β-diketones, dioxolenones, vinylogous esters and amides, and with cycloalkenones 
have been successfully carried out. The de Mayo cycloaddition is highly stereo- and regioselective, but there are no 
simple rules available to predict the stereo- and regiochemistry of the products. In intermolecular processes, the 
stereochemical information carried by the alkene component is often scrambled in the product indicating that the 
mechanism of the cycloaddition is not concerted.12 The cycloadducts of cyclic enones are most often cis-fused.4 The 
regiochemical outcome of intermolecular reactions is determined by orbital coefficients. In intramolecular processes, 
the number of atoms connecting the two double bonds (the enone and alkene double bonds) also has an effect: two-
atom tethers give rise to a mixture of regiosiomers, while tethers of three or more atoms generally yield single 
products.10

Mechanism: 2,4,21,7,22-26,12,27,28,14

The mechanism of the enone-alkene [2+2] photocycloaddition presumably follows the scheme below. Upon 
irradiation: 1) a triplet exciplex is irreversibly formed from the triplet enone and ground state alkene; 2) the triplet 
exciplex collapses to one or more 1,4-biradicals.; 3) the biradicals either cyclize to the cyclobutane or revert to 
starting materials; and 4) the biradical reversion decreases the overall efficiency of the process. 

R1 R3

O O

R2

acyclic or cyclic 
1,3-diketone

tauto-
merization

R1 R3

O OH

R2

acyclic or cyclic
enone

hν
λ > 300 nm

R5

R4 R6

R7

R4

R5

R6

R7

R2

OH
R3

O

R1

β−hydroxy ketone

retro-aldol

R3 R1

OO

R6 R7

R5 R4

R2

1,5-diketone

O

R4

R1

R2

R3

hν
λ > 300 nm

R5R6

R7 R8

R5

R6

R7

R8

R2

R4
R3

O

R1+

acyclic or cyclic
enone

alkene Substituted cyclobutane

Enone Alkene+

hν

k1
d

1[Enone]*+ Alkene
3[Enone]*

(triplet)(singlet)

+ Alkene

krk-r

3[Enone.......Alkene]*
(triplet exciplex)

3[1,4-biradical]*

(triplet biradical)

kintersystem crossing

kspin inversion1,4-biradical

R4

R5

R6

R7

R2

R4
R3

O

R1

Substituted cyclobutane

START HERE

(irreversible)

kspin inversion

k
spin inversion



133

DE MAYO CYCLOADDITION (ENONE-ALKENE [2+2] PHOTOCYCLOADDITION)

Synthetic Applications:

During the early 1990s, the research group of M. Fetizon was developing novel methods for the synthesis of taxane 
diterpenes.29 Their goal was to construct the AB ring skeleton of taxol. The construction of the bicyclo[5.2.1]decane 
system was realized by the intermolecular de Mayo cycloaddition of an enolized bicyclic 1,3-dione and vinyl acetate 
followed by a Lewis acid catalyzed ring opening reaction. The methanolic solution of the β-diketone and vinyl acetate 
was irradiated (λ>245 nm) at 0 °C and a mixture of diastereomers was formed in excellent yield. The retro-aldol
reaction was effected by treatment with BF3 etherate in dichloromethane to afford good yields of the desired bicyclic 
ring system. 

E.J. Sorensen and co-workers have synthesized the tricyclic carbon framework of guanacastepenes by applying an 
intramolecular [2+2] photocycloaddition followed by a SmI2-induced fragmentation as key steps.30 The enone was 
irradiated to effect an intramolecular enone-olefin [2+2] cycloaddition to afford the desired cyclobutyl ketone in 76% 
yield. The cyclobutane fragmentation was achieved by treatment with SmI2 and the resulting Sm(III) enolate was 
trapped with a selenium electrophile. The double bond in the seven-membered ring was introduced by the oxidation 
of the selenium with mCPBA.  

The first total synthesis of (±)-ingenol was accomplished in the laboratory of J.D. Winkler.31 In order to establish the 
highly unusual C8 / C10 trans (“inside-outside”) intrabridgehead stereochemistry of the BC ring system of the natural 
product, a dioxenone-alkene intramolecular [2+2] photocycloaddition-fragmentation sequence was employed. The 
photocycloaddition of the allylic chloride with the tethered dioxenone proceeded in 60% yield. The fragmentation was 
induced by methanolic potassium carbonate, followed by LAH reduction of the ester, elimination of the chloride with 
DBU, and silylation of the primary alcohol with TBSCl. The yield was 35% over four steps and the product was a 7:1 
mixture of epimers at C6. 

The total synthesis of the naturally occurring guaiane (±)-alismol was accomplished by G.L. Lange and co-workers 
using a free radical fragmentation/elimination sequence of an initial [2+2] de Mayo photocycloadduct.32
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DEMJANOV AND TIFFENEAU-DEMJANOV REARRANGEMENT 
(References are on page 573)

Importance:

[Seminal Publications1-3; Reviews4-6; Modifications & Improvements7]

The ring enlargement of aminomethylcycloalkanes upon treatment with nitrous acid (HNO2) to the corresponding 
homologous cycloalkanols is called the Demjanov rearrangement. This name is also given to the rearrangement of 
acyclic primary amines with nitrous acid. The first rearrangement of this type was observed and reported in the early 
1900s.1,2 Synthetically, the Demjanov rearrangement is best applied for the preparation of five-, six-, and seven-
membered rings, but it is not well-suited for the preparation of smaller or larger rings due to low yields.  In 1937, M. 
Tiffeneau observed that the treatment of 1-aminomethyl cycloalkanols (β-aminoalcohols) with nitrous acid led to the 
formation of the ring-enlarged homolog ketones.3 This transformation can be regarded as a variant of the pinacol 
rearrangement (semipinacol rearrangement) and is known as the Tiffeneau-Demjanov rearrangement. This 
transformation can be carried out on four- to eight-membered rings, and the yields of the ring-enlarged products are 
always better than for the Demjanov rearrangement. However, the yields tend to decrease with increasing ring 
size.8,9,6 If the aminomethyl carbon atom is substituted, the Demjanov rearrangement is significantly retarded and 
mostly unrearranged alcohols are formed, but the Tiffeneau-Demjanov rearrangement readily occurs. Substrates with 
substitution on the ring carbon atom to which the aminomethyl group is attached undergo facile Demjanov 
rearrangement.

Mechanism: 10-12

The mechanism of both the Demjanov and Tiffeneau-Demjanov rearrangements is essentially the same. The first 
step is the formation of the nitrosonium ion or its precursor (N2O3) from nitrous acid. This electrophile is attacked by 
the primary amino group and in a series of proton transfers the diazonium ion is formed. This diazonium ion is very 
labile due to the lack of stabilization and it readily undergoes a [1,2]-alkyl shift accompanied by the loss of nitrogen.  
The rearrangement is competitive with the substitution of the diazonium leaving group by the solvent (e.g., water) or 
with the formation of carbocations that may undergo other rearrangements (e.g., hydride shift). The ring expansion is 
favored in the Demjanov rearrangement, since the entropy of activation for hydride shift is higher. 
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DEMJANOV AND TIFFENEAU-DEMJANOV REARRANGEMENT 

Synthetic Applications:

In the laboratory of A. Nickon, the syntheses of brexan-2-one (tricyclo[4.3.0.03,7]nonane-2-one) and the ring-
expanded homolog (homobrexan-2-one) were undertaken.13  Brexanes are frequently used in mechanistic studies, so 
an efficient and versatile method for the preparation of these molecules was necessary. The key step leading to the 
brexane-2-one parent molecule was an endo-selective intramolecular Diels-Alder cycloaddition, while the ring-
expansion to the homolog was achieved using the Tiffeneau-Demjanov rearrangement. Toward this end the tricyclic 
ketone was efficiently converted to the corresponding aminoalcohol by treatment with TMSCN followed by LAH 
reduction. Upon treatment with HNO2, the rearrangement proceeded in excellent yield to afford homobrexan-2-one. 

To explore the biological activity of spectinomycin analogs, E. Fritzen and co-workers prepared the ring-expanded 
homospectinomycins containing a seven-membered carbohydrate ring.14 The Tiffeneau-Demjanov ring expansion 
was attempted on two epimeric aminoalcohols. Surprisingly, only the (R)-epimer gave the desired ring-expanded 
ketone, while the (S)-epimer afforded the corresponding epoxide as the only product. Upon treatment with nitrous 
acid, the (R)-epimer gave rise to three products in equal amounts. Only one of the products was the desired ring-
expanded ketone, whereas the other two products were the (R)-epoxide and the corresponding vicinal diol. 

The stereochemistry of cyclic primary amines or aminoalcohols dramatically influences the product distribution of their 
respective Demjanov and Tiffeneau-Demjanov rearrangements. P. Vogel and co-workers have studied the ring-
expansion of 2-aminomethyl-7-oxabicyclo[2.2.1]heptane derivatives upon treatment with nitrous acid. Some of their 
findings are shown below.6
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DESS-MARTIN OXIDATION 
(References are on page 574)

Importance:

[Seminal Publication1; Reviews2-8; Modifications & Improvements9-15]

Since the early 1980s, hypervalent iodine reagents have emerged as selective, mild, and environmentally friendly 
oxidizing agents in organic synthesis.7 One class of these reagents encompasses the organic derivatives of 
pentacoordinate iodine(V), which are called periodinanes.16,17 The best-known members of this class are 2-
iodoxybenzoic acid (IBX)18 and Dess-Martin periodinane (DMP).1 IBX has been known since 1893, but its almost 
complete insolubility in most organic solvents prevented its widespread use in organic synthesis.19 In 1983, D.B. Dess 
and J.C. Martin reported the preparation of 1,1,1-tris(acetoxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one (DMP) via the 
acylation of IBX.19 This new periodinane is far more soluble in organic solvents than IBX; since its discovery it has 
emerged as the reagent of choice for the oxidation of alcohols to the corresponding carbonyl compounds.2 Oxidations 
using DMP are called Dess-Martin oxidations. Currently, DMP is commercially available, but it is rather expensive. 
Therefore, it is usually prepared by the oxidation of 2-iodobenzoic acid to IBX, followed by the acylation of IBX to 
DMP. The oxidation of 2-iodobenzoic acid can be done with potassium bromate (KBrO3)1,10,12 in aqueous sulfuric acid 
or with Oxone (2KHSO5-KHSO4-K2SO4)13 in water. During the 1990s, modifications10,13 to the original procedure were 
necessary because the morphology12 and purity of the IBX strongly influenced the quality of DMP and therefore the 
reproducibility of DMP oxidations. The advantages of the Dess-Martin oxidation over the conventional oxidation of 
alcohols are: 1) mild reaction conditions (room temperature, neutral pH); 2) high chemoselectivity; 3) tolerance of 
sensitive functional groups on complex substrates; and 4) long shelf-life and thermal stability (unlike IBX, which has 
been found to be explosive20). Besides the conversion of alcohols to carbonyl compounds, the DMP oxidation was 
also successfully utilized for the oxidation of functional groups for which traditional mild oxidants failed to work: 1) 
allylic alcohols to α,β-unsaturated carbonyls;21 2) cleavage of aldoximes and ketoximes to aldehydes and ketones;22

3) N-acyl hydroxylamines to acyl nitroso compounds;23 4) 4-substituted anilides to p-quinones;24 5) β-amino alcohols 
to α-amino aldehydes without epimerization;25 and 6) γ,δ-unsaturated aromatic amides to complex heterocycles.26

Mechanism: 9,11,27,28

It has been shown by 1H-NMR that DMP reacts rapidly with 1 equivalent of alcohol (1° or 2°) to give 
diacetoxyalkoxyperiodinanes, while in the presence of 2 equivalents of alcohol (or diol) a double displacement takes 
place to produce acetoxydialkoxyperiodinanes. Next, the α-proton of the alcohol is removed by a base (acetate), and 
the carbonyl compound is released along with a molecule of iodinane. When excess alcohol is present, the oxidation 
is much faster due to the especially labile nature of acetoxydialkoxyperiodinanes.9 It has also been shown that added 
water accelerates DMP oxidations.11
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Synthetic Applications:

In the final stages of the total synthesis of ustiloxin D, M.M. Joullié and co-workers had to install the amide side-chain 
onto the already assembled macrocycle.29 To achieve this goal, the macrocyclic primary alcohol was treated with the 
Dess-Martin periodinane to generate the corresponding aldehyde, which was subsequently treated with sodium 
chlorite to afford the carboxylic acid. The carboxylic acid was then coupled with the benzyl ester of glycine to 
complete the installation of the side-chain in 66% yield for three steps. 

A novel one-pot Dess-Martin oxidation was developed for the construction of the γ-hydroxy lactone moiety of the CP-
molecules in the laboratory of K.C. Nicolaou.30 Bicyclic 1,4-diol was treated with 10 equivalents of DMP in 
dichloromethane for 16h to promote a tandem reaction: first, the bridgehead secondary alcohol was selectively 
oxidized to the ketone, followed by a ring closure to afford the isolable hemiketal, which was further oxidized by DMP 
to give a keto aldehyde. Trace amounts of water terminated the cascade to give a stable diol, which was not further 
oxidized with DMP. Subsequent TEMPO oxidation furnished the desired γ-hydroxy lactone. 

For the elaboration of the dienyl side-chain of the E-F fragment of (+)-spongistatin 2, A.B. Smith et al. oxidized the 
sensitive primary allylic alcohol moiety using the Dess-Martin oxidation.31 The resulting α,β-unsaturated aldehyde was 
treated with a Wittig reagent to obtain the desired 1,3-dienyl side chain. 
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DIECKMANN CONDENSATION 
(References are on page 574)

Importance:

[Seminal Publications1,2; Reviews3-8; Modifications & Improvements9-17]

The base mediated condensation of an ester, containing an α-hydrogen atom, with a molecule of the same ester to 
give a β-keto ester is known as the Claisen condensation. When the two reacting ester functional groups are tethered 
the reaction is called the Dieckmann condensation, and a cyclic β-keto ester is formed. In the related Thorpe-Ziegler 
condensation the intramolecular base-catalyzed cyclization of dinitriles affords enaminonitriles.18,19 The commonly 
used procedure involves prolonged treatment of the diesters with at least one equivalent of a strong base (alkoxide, 
sodium amide, or alkali metal hydrides)20 in dry solvent under reflux in an inert atmosphere. The Dieckmann 
condensation forms 5-, 6-, 7-, and 8-membered rings in high yield but gives very low yields for larger rings.21,4 It is 
possible, however, to effect the cyclization at high-dilution so the intramolecular reaction dominates and in certain 
cases the preparation of large rings (>12) is possible.22,23 If the product β-keto ester does not have an acidic α-
hydrogen, the reaction is sluggish and the retro-Dieckmann cyclization predominates; the equilibrium is shifted to the 
right if one equivalent of an alcohol-free base is used. With the Thorpe-Ziegler cyclization it is possible to assemble 5- 
to 33-membered rings and this method is superior to the Dieckmann condensation for the formation of 7- and 8-
membered rings. Modifications of the original Dieckmann procedure made it possible to use mild reaction conditions: 
1) dithiols (dithioesters) are treated with sodium hydride so the cyclizations take place in only 2h at room 
temperature;9 2) environmentally friendly solvent-free conditions allow the presence of air and the reaction proceeds 
in high yield at room temperature in 1h;16 and 3) the use of TiCl4/Bu3N with catalytic amounts of TMSOTf in toluene 
gives high yields in 2-3h at room temperature.14,24,17

Mechanism: 25-31

Each step of the Dieckmann condensation is completely reversible. The driving force of the reaction is the generation 
of the resonance-stabilized enolate of the product β-keto ester. As stated above, the condensation usually fails if it is 
not possible to generate this stable intermediate. The mechanism of the Dieckmann condensation is almost identical 
to the mechanism of the Claisen condensation. The rate-determining step, however, is the ring formation in which the 
ester enolate attacks the carbonyl group of the second ester functional group.25,26 The resulting tetrahedral 
intermediate then rapidly breaks down to the enolate of the β-keto ester. Protonation of the enolate affords the final 
product. 
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Synthetic Applications:

Mycophenolic acid is one of the highly substituted phthalide natural products and possesses many in vitro and in vivo
biological activities. The synthetic strategy toward its convergent total synthesis by A. Covarrubias-Zúñiga was based 
on a ring annulation sequence involving a Michael addition and a Dieckmann condensation as key steps.32 The 
deprotonation of 2-geranyl 1,3-acetonedicarboxylate with sodium hydride was followed by the addition of a protected 
alkynal to give rise to the enolate in situ, which cyclized to the hexasubstituted aromatic ring of the natural product in 
33% yield. 

The 14-membered macrocyclic ring of (–)-galbonolide B was formed utilizing a novel macro-Dieckmann cyclization
which was developed in the laboratory of B. Tse.33 In order to bring about the desired macrolactonization, the 
secondary acetate was treated with LiHMDS in refluxing THF under high-dilution conditions to afford the desired 
lactone in 75% yield. It is important to note, however, that the analogous secondary propionate failed to cyclize under 
identical conditions.  

The naturally occurring clerodane diterpenoid (±)-sacacarin has been synthesized by R.B. Grossman and co-workers 
in only 10 steps using a double annulation of a tethered diacid and 3-butyn-2-one.34 The second ring of sacacarin 
was prepared by an intramolecular Dieckmann condensation of an ester and a methyl ketone in excellent yield. The 
resulting enol was then immediately converted to the corresponding ethyl enol ether using ethanol and an acid 
catalyst. 
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DIELS-ALDER CYCLOADDITION 
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Importance:

[Seminal Publications1-4; Reviews5-47; Theoretical Studies48-66]

The [4π + 2π] cyclization of a diene and alkene to form a cyclohexene derivative is known as the Diels-Alder 
cycloaddition (D-A cycloaddition). Reports of such cyclizations were made by H. Wieland,67 W. Albrecht,68 Thiele, H. 
Staudinger, and H.V. Euler69 in the early 1900s, but the structures of the products were misassigned. It was not until 
1928 when O. Diels and K. Alder established the correct structure of the cycloadduct of p-quinone and 
cyclopentadiene.2 Since its discovery, the D-A cycloaddition has become one of the most widely used synthetic tools. 
The diene component is usually electron rich, while the alkene (dieneophile) is usually electron poor and the reaction 
between them is called the normal electron-demand D-A reaction. When the diene is electron poor and the dienophile 
is electron rich then an inverse electron demand D-A cyclization takes place. Besides alkenes, substituted alkynes, 
benzynes, and allenes are also good dienophiles. If one or more of the atoms in either component is other than 
carbon, then the reaction is known as the hetero-D-A reaction.70 In the retro-D-A reaction unsaturated six-membered 
rings break down to yield dienes and dienophiles.8 The synthetic value of the D-A cycloaddition is due to the following 
features: 1) it can potentially set four stereocenters in one step; 2) if unsymmetrical dienes and dienophiles react it is 
highly regioselective and stereospecific; 3) the regioisomers are predominantly the “ortho” and “para” products over 
the “meta” product; 4) if a disubstituted cis (Z) alkene is used, the stereochemistry of the two substituents in the 
product will be cis and when an (E) alkene is used, the stereochemistry in the product will be trans; 5) the 
stereochemical information (E or Z) in the diene is also transferred to the product; 6) the predominant product is the 
endo cycloadduct; 7) by using appropriate chiral catalysts the cycloaddition can be made enantioselective;71-73,41 and 
8) multiple rings can be created in one step with defined stereochemistry. 

Mechanism: 23,74-78,29,79-82,38,83-85,44,86

Mechanistically the D-A reaction is considered a concerted, pericyclic reaction with an aromatic transition state. The 
driving force is the formation of two new σ-bonds. The endo product is the kinetic product and its formation is 
explained by secondary orbital interactions.80 Some of the mechanistic studies suggested that a diradical79 or a di-ion 
mechanism may be operational in certain cases.82 It was also shown that solvents and salts can influence reaction 
kinetics.38
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Synthetic Applications:

The intramolecular Diels-Alder cycloaddition is a very powerful synthetic tool, since it can generate molecular 
complexity in a single step. S. Antus and co-workers obtained reactive cyclohexa-2,4-dienones by dearomatizing o-
methoxyphenols with hypervalent iodine reagents (e.g., PIDA). These dienones rapidly dimerized to give heavily 
substituted complex tricyclic compounds. The dearomatization of 2,6-dimethoxy-4-allyllphenol with PIDA/methanol 
resulted in the formation of the natural product asatone in a single step.87

The total synthesis of the rubrolone aglycon was accomplished in the laboratory of D.L. Boger as part of the ongoing 
research to explore the cycloaddition reaction of cyclopropenone ketals.88 The key step in the production of the 
seven-membered C-ring was the intermolecular Diels-Alder reaction of an electron-rich diene with the very strained 
dienophile. The cycloaddition took place in excellent yield (97%) and with complete disastereoselectivity. 

The critical step in the enantioselective and stereocontrolled total synthesis of eunicenone A by E.J. Corey et al. was 
the highly efficient chiral Lewis acid catalyzed intermolecular Diels-Alder cycloaddition reaction.89 The diene 
component was mixed with 5 equivalents of 2-bromoacrolein and 0.5 equivalents of the chiral oxazaborolidine 
catalyst in CH2Cl2 at -78 °C for 48h. The reaction gave 80% of the desired cycloadduct in 97% ee and the endo/exo
selectivity was 98:2.  

Certain functional groups can direct through hydrogen-bonding the outcome of the intermolecular Diels-Alder 
cycloaddition.  This was the case in the key Diels-Alder cycloaddition step during the total synthesis of ( )-rishirilide B 
in the laboratory of S.J. Danishefsky.90 The diene was thermally generated in situ.

OH
MeO OMe

PhI(OAc)2
MeOH

O
OMe

OMe
MeO

2
2

intermolecular
Diels-Alder

cycloaddition

22% O

OMe

OMe

OMe

O

MeO OMe

MeO

Asatone

N
OMeMeO

O
O

O

O
N

OMeMeO

r.t., 45 min
97%

(2.5 equiv)

O O

H

H
O

O
steps

N

OH
O

OH

O

A B A B
A B

C

Rubrolone aglycon

R
Si

OMe

R = (E,E)-farnesyl

CHO

Br
(5 equiv)

chiral 
oxazaborolidine

(0.5 equiv)
DCM, -78 °C

80%

R
Si

OMe

CHO
Br

steps

98:2 = endo/exo

R
CO2Me

O

OH

Eunicenone A

OR1

OR1

OR1

90 °C

toluene
12h; 90%

R1 = TBS

O

O

Me

CO2R2

OH

+

R2 = TSE

O

O

H

H

OR1

OR1OR1

Me

CO2R2 steps

OH

O

R3HO
OH

CO2H

OH

(±)-Rishirilide B

R3 = isoamyl



142

DIENONE-PHENOL REARRANGEMENT 
(References are on page 577)

Importance:

[Seminal Publications1-3; Reviews4-8; Modifications & Improvements9-11; Theoretical Studies12]

The acid- and base-catalyzed or photochemically-induced migration of alkyl groups in cyclohexadienones is known 
as the dienone-phenol rearrangement, and is widely used for the preparation of highly substituted phenols. In 1893, 
A. Andreocci described the rearrangement of santonin to desmotroposantonin upon acidic treatment, but it was only 
in 1930 that the starting material and the product of this rearrangement were carefully characterized.1,3 The term 
“dienone-phenol rearrangement” was introduced by  A.L. Wilds and C. Djerassi.13 Cyclohexadienones (both ortho and 
para) can be considered as “blocked aromatic molecules” in which the migration of an alkyl group converts the non-
aromatic substrate into an aromatic one.6 Dienone-phenol rearrangements require only moderately strong acidic 
media (e.g., H2SO4 in acetic acid, acetic anhydride, Lewis acidic clay,9 etc.), and they are considerably exothermic 
due to the formation of very stable aromatic compounds.  

Mechanism: 14-28

Most dienone-phenol rearrangements involve acid catalysis and the products appear to be the result of sigmatropic 
[1,3]-migrations of C-C bonds. The [1,3]-alkyl migrations are actually the result of two subsequent [1,2]-alkyl shifts as 
was demonstrated by 14C isotope labeling studies.14,15 Depending on the nature of the migrating groups, other 
rearrangements such as [1,2], [1,3], [1,4], [1,5], [3,3], [3,4], and [3,5] can also take place.6,7 When the migrating group 
is benzyl, the products predominantly arise from [1,5]-migrations, and the rate of these rearrangements is several 
orders of magnitude greater than for simple alkyl groups. If the migrating group is allyl, crotyl, or propargyl, then the 
main course of the rearrangement takes place via [3,3]-shifts rather than [1,2]-shifts. The scheme below depicts the 
mechanism of the acid-catalyzed rearrangement of p-cyclohexadienone to the corresponding 3,4-disubstituted phenol 
as well as the rearrangement of a bicyclic dienone via two subsequent [1,2]-shifts.
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DIENONE-PHENOL REARRANGEMENT 

Synthetic Applications:

An efficient synthetic route to tetra- and pentasubstituted phenols was developed in the laboratory of A.G. Schultz by 
the photochemical dienone-phenol rearrangement of 4,4-disubstituted 2-phenyl-2,5-cyclohexadienones.29 The 
photorearrangement substrates were conveniently prepared by the Birch reduction-alkylation of the corresponding 
aromatic compounds followed by the bis allylic oxidation of the initial diene products using t-butyl hydroperoxide and 
catalytic amounts of PDC. Upon irradiation with 366 nm light, the dienones underwent a regioselective dienone-
phenol rearrangement to afford the phenols in high yield. 

During model studies toward kidamycins, K.A. Parker and co-workers developed a methodology for the synthesis of 
bis C-aryl glycosides.30 Phenolic bis glycosides were synthesized using the regiocontrolled Lewis acid mediated 
dienone-phenol type rearrangement as the key step in which a glycal undergoes a [1,2] shift. The resulting bis C-aryl 
glycal was first hydrogenated over PtO2 to give the bis glycoside followed by global desilylation to afford the desired 
kidamycin model. 

Rearrangement of spirodienones under a variety of conditions (both acidic and basic) afforded substituted 6H-
dibenzo[b,d]pyran-6-ones.31 D.J. Hart et al. showed that rearrangements in aqueous sulfuric acid gave products of 
formal O-migration, whereas rearrangements in trifluoroacetic anhydride (TFAA)/trifluoroacetic acid (TFA)/sulfuric 
acid mostly resulted in C-migration products. The dienone-phenol rearrangement also worked well for highly 
substituted spirodienone systems and afforded either the C- or O-migration products depending on the applied 
reaction conditions. 

PhMeO2C
1. Li /NH3/THF/t-BuOH

then Br-(CH2)3-N3
N3-(CH2)3

MeO2C

2. PDC, t-BuOOH, Celite
benzene; 

63% for 2 steps
O

hν (366 nm)
benzene
75-82% OH

Ph
Ph

(CH2)3-N3

MeO2C

Tetrasubstituted phenol

OTBS
O

OH
O

OTBS

H3C

TBSO

OTBS

H3C

TBSO

ZnCl2 / Et2O

-78 to 0 °C
92%

OTBS

O

O

H3C

OTBS
TBSO

H3C OTBS
OTBS

1. H2 / PtO2
EtOAc; 61%

2. MeOH / HCl
69%

OH

O

O

H3C

OH
HO

H3C OH
OH

H

H

Bis C-aryl glycoside

O

O

MeO

O-Migration product

1. 50% H2SO4, Δ

O

O

O

spirodienone

1. 10% NaOH, Δ
2. K2CO3, Me2SO4
   42% for 2 steps

or
1. TFAA-TFA-H2SO4, Δ

2. K2CO3, MeOH
3. K2CO3, Me2SO4; 86%

O

O

OMe

12

3
4

5

61
2 3

4
5

6 12

4 5
6

3

C-Migration product

2. K2CO3, Me2SO4
88 % for 2 steps

O

O

O

12

3
4

5

6

CH3

OMe

1. TFAA-TFA-H2SO4, Δ
2. K2CO3, MeOH

3. K2CO3, Me2SO4;
 86% for 3 steps

O

O

OMe

12

4 5
6

3

CH3

OMe

C-Migration product



144

DIMROTH REARRANGEMENT 
(References are on page 578)

Importance:

[Seminal Publications1-3; Reviews4-10; Theoretical Studies11]

The isomerization of heterocycles in which endocyclic or exocyclic heteroatoms and their attached substituents are 
translocated via a ring-opening-ring-closure sequence is known as the Dimroth rearrangement. The first observation 
of this type of rearrangement was made by B. Rathke on a triazine derivative but no rationalization was provided to 
explain the findings.1 In 1909, O. Dimroth proposed the correct mechanism for the rearrangement of a triazole 
derivative.2 The generality of the process was first recognized in the pyrimidine series12,13 in the mid-1950s and later 
proved to be even more general; it was shown to occur in many nitrogen-containing heterocyclic systems.10 It was in 
1963 when the term Dimroth rearrangement was coined by D.J. Brown and J.S. Harper.14 The rearrangement may be 
divided into two types: 1) translocation of heteroatoms within rings of fused systems (Type I) and 2) translocation of 
exo- and endocyclic heteroatoms in a heterocyclic ring (Type II). The second type of rearrangement is more common 
than the first. The Dimroth rearrangement can be catalyzed by acids,15,16 bases (alkali),17,18 heat, or light.19,20

Numerous factors influence the course of the Dimroth rearrangement in heterocyclic systems: 1) degree of aza 
substitution in the rings (more nitrogen atoms in the ring lead to more facile nucleophilic attack);21 2) pH of the 
reaction medium (affects the rate of the rearrangement);22 3) presence of electron-withdrawing groups (give rise to 
more facile ring-opening); and 4) the relative thermodynamic stability of the starting material and the product.  

Mechanism: 23,24

The exact pathway by which the Dimroth rearrangement takes place in a given heterocycle depends on many factors 
(see above). However, in general there are three distinct steps: 1) attack of the heterocyclic ring by a nucleophile; 2) 
electrocyclic ring opening followed by rotation about a single bond; and 3) ring closure. These steps are known 
collectively as the ANRORC mechanism. If the rearrangement takes place as a result of heat or irradiation, then the 
first step is the electrocyclic ring opening followed by the ring closure. The mechanism illustrates the rearrangement 
of 2-amino-5-nitropyridine to 2-methylamino-5-nitropyridine. 
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DIMROTH REARRANGEMENT 

Synthetic Applications:

The marine ascidian metabolite purine aplidiamine-9-β-D-ribofuranoside was prepared by T. Itaya et al. by alkylation 
of 8-oxoadenosine with 4-benzyloxy-3,5-dibromobenzyl bromide followed by a Dimroth rearrangement and acid 
hydrolysis.25 The rearrangement was induced by treating the nucleoside in boiling 1N NaOH for 1h. The desired 
rearranged nucleoside was formed in 58% overall yield. 

In the laboratory of R.A. Jones, N1-methoxy derivatives of adenosine and 2’-deoxyadenosine were found to undergo 
a facile Dimroth rearrangement.26 The high-yielding process allowed the efficient synthesis of [1,7-15N2]- and [1,7, 
NH2-15N3] adenosine and 2’-deoxyadenosine that are important tools in the NMR studies of nucleic acid structure 
and interactions. The rearrangement was carried out in weakly acidic refluxing methanol. 

A new synthetic approach to tricyclic 1,3,6-thiadiazepines was developed by V.A. Bakulev and co-workers.27 The 
synthetic sequence involved a base-catalyzed Smiles rearrangement followed by an in situ Dimroth rearrangement.
The starting substituted 1,2,3-thiadiazole was treated with triethylamine in refluxing ethanol. In the first step, the 
thiadiazole ring was transposed from the sulfur to the nitrogen atom (Smiles rearrangement). In the second step, the 
5-amino-1,2,3-thiadiazole underwent a Dimroth rearrangement to form the bis(triazole) intermediate, which 
immediately formed the tricyclic 1,3,6-thiadiazepine accompanied by the loss of hydrogen sulfide anion. 
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DOERING-LAFLAMME ALLENE SYNTHESIS 
(References are on page 578)

Importance:

[Seminal Publications1-3; Reviews4-7; Modifications & Improvements8,9]

In 1958, W. Doering and P.M. LaFlamme developed a two-step one-carbon homologation procedure to prepare 
allenes from alkenes.3 The first step of the synthesis involves the addition of dibromocarbene to an olefin. Then, in 
the second step, the 1,1-dibromocyclopropane derivative is reduced with an active metal (high surface area Na or 
Mg) to afford the allene in moderate to good yield. The method was shown to be general and today the preparation of 
allenes from olefins via dihalocyclopropanes is known as the Doering-LaFlamme allene synthesis. Geminal 
dihalocyclopropanes are readily available from the reaction of dihalocarbene with an olefin, as described by Doering 
and Hoffmann in 1954.1 Drawbacks of the original allene synthesis are: 1) isomerization of unsaturated compounds is 
common with sodium metal; 2) sluggish reaction and the formation of allene-cyclopropane mixtures with magnesium 
metal; and 3) dichlorocyclopropanes are less reactive than the dibromo analogs.  The modification of the original 
procedure by reacting the dihalocarbene with alkyllithiums8,9 or Grignard reagents10 results in higher yields of allenes. 
For example ethyl- and isopropylmagnesium bromide can be used at room temperature to convert 
dibromocyclopropanes into aliphatic and non-strained cyclic allenes.10

Mechanism: 3,11-14,10

The first step of the Doering-LaFlamme allene synthesis is the generation of a dihalocarbene that reacts with the 
olefin in situ. First, the haloform is deprotonated by a strong base to form an unstable trihalomethyl carbanion, which 
undergoes a facile -elimination to the dihalocarbene. The dihalocarbene then quickly inserts into the double bond of 
the olefin to afford a geminal dihalocyclopropane. In the second step, the alkyllithium performs a lithium-halogen 
exchange with the dihalocyclopropane to form lithiobromocyclopropane, which in turn loses lithium halide to generate 
a cyclopropylidene or a related carbenoid. The cyclopropylidene undergoes rearrangement to the corresponding 
allene. 
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DOERING-LAFLAMME ALLENE SYNTHESIS 

Synthetic Applications:

The synthesis of novel 4α-substituted sterols was undertaken in the laboratory of C.H. Robinson.15 These 
compounds are potential inhibitors of sterol 4-demethylation. To prepare the desired 4-allenyl-5α-cholestan-3β-ol, the 
exocyclic olefin precursor was first reacted with bromoform/potassium t-butoxide to afford the geminal dibromo-
substituted cyclopropane derivative. Next, methyllithium was used to bring about the rearrangement to afford the 
allene, and finally acidic conditions were applied for the removal of the THP protecting group.  

During studies of the preparation and chemical behavior of spirocyclopropanated bicyclopropylidenes, A. de Meijere 
and co-workers successfully synthesized a branched [8]triangulane from 7-cyclopropylidenespiro[2.0.2.1]heptane.16

The key transformation in their approach was the Doering-LaFlamme allene synthesis. The 7-cyclopropylidene 
spiro[2.0.2.1]heptane was first dibromocyclopropanated and then treated with methyllithium to afford the key 
intermediate allene in good yield. Upon reaction with diazocyclopropane (generated in situ from N-nitroso-N-
cyclopropylurea), the allene gave the desired branched [8]triangulane in modest yield. 

M. Santelli et al. developed a general synthesis of β-silylallenes from allylsilanes utilizing the Doering-LaFlamme 
allene synthesis.17

The synthesis and thermal rearrangement of π and heteroatom bridged diallenes was investigated by S. Braverman 
and co-workers.18 Bis(γ,γ-dimethylallenyl)ether was generated by the addition of dibromocarbene to diisobutenyl ether 
and treating the resulting dibromocyclopropane derivative with methyllithium. However, the allene proved to be 
impossible to isolate, since it underwent spontaneous cyclization to give 3-isopropenyl-4-isopropylfuran in high yield. 
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DÖTZ BENZANNULATION REACTION 
(References are on page 579)

Importance:

[Seminal Publications1,2; Reviews3-20; Modifications & Improvements21-24; Theoretical Studies25-28]

In 1975, K.H. Dötz reported the formal [3+2+1] cycloaddition of a chromium phenylmethoxycarbene complex with 
diphenylethyne that yielded primarily a chromium tricarbonyl-complexed 4-methoxy-1-naphthol upon heating in 
dibutyl ether at 45 °C.1 The reaction of an α,β-unsaturated pentacarbonyl chromium carbene complex (Fischer-type 
carbene) with an alkyne to afford a substituted hydroquinone (1,4-dihydroxybenzene) derivative is called the Dötz 
benzannulation reaction. Since its initial discovery, the transformation has become one of the most studied reactions 
of chromium complexes. The nature of the products depends largely on the nature of the substituents on the carbene 
and the reaction conditions (solvents, temperature, concentration, etc.).29,30 The required Fischer chromium carbenes 
can be prepared with ease by treating Cr(CO)6 with an organolithium nucleophile followed by the O-alkylation of the 
resulting acyl metalate with a strong alkylating agent (e.g., Meerwein’s salt, alkyl triflates, etc.). This process allows 
the preparation of a wide variety of unsaturated chromium-carbenes and is limited only by the availability of the 
organolithium reagent. Advantages of the Dötz benzannulation reaction are: 1) access to densely functionalized 
aromatic compounds with excellent chemo- and regioselectivity (the large alkyne substituent, RL, always ends up 
ortho to the phenolic OH group); 2) compatibility with a variety of substituents on both the alkyne and the unsaturated 
carbene side chain; 3) aryl carbene complexes with electron-withdrawing or electron-donating substituents work as 
well as unsubstituted aryl- or heteroaryl carbenes; 4) alkynes bearing electron-donating groups give moderate to 
excellent yields; 5) the hydroquinone products can be oxidized to give highly substituted quinones; and 6) the 
annulation is also possible intramolecularly with a reversal of the regioselectivity. The disadvantages are: 1) toxicity of 
chromium complexes; 2) alkynes with electron-withdrawing groups give poor yields or do not react at all; 3) 
heterosubstituted alkynes generally give low yields; and 4) the benzannulation is often accompanied by the formation 
of indenes and cyclobutenones. 

Mechanism: 31-34,17,35

The mechanism of the Dötz benzannulation reaction has not been fully elucidated. The first step is the rate-
determining dissociation of one carbonyl ligand from the Fischer carbene complex, which is cis to the carbene moiety. 
Subsequently, the alkyne component coordinates to the coordinatively unsaturated carbene complex, and then it 
inserts into the metal-carbon bond. After the alkyne insertion, a vinylcarbene is formed that can lead to the product by 
two different pathways (Path A or Path B).36-39
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DÖTZ BENZANNULATION REACTION 

Synthetic Applications:

The architecturally interesting and biologically significant protein kinase C inhibitor calphostins (A-D), and their 
analogs were synthesized in the laboratory of C.A. Merlic.40 The key steps in their approach were a Dötz 
aminobenzannulation utilizing an enantiopure Fischer carbene complex to prepare a pentasubstituted naphthylamine, 
followed by a biomimetic oxidative dimerization to produce the perylenequinone skeleton.  

P. Quayle and co-workers utilized the Dötz benzannulation reaction for the synthesis of diterpenoid quinones.41 The 
authors developed a novel synthetic approach to 12-O-methyl royleanone using a simple vinyl chromium carbene 
complex along with a disubstituted oxygenated acetylene. The bicyclic hydrazone was converted to the 
corresponding vinyllithium derivative by the Shapiro reaction and then functionalized to give the desired crude Fischer 
chromium carbene complex. The benzannulation took place in refluxing THF with excellent regioselectivity, and the 
natural product was obtained in 37% overall yield from the hydrazone.  

C-Arylglycosides possess a stable C-C glycosidic linkage and exhibit a broad range of useful antitumor, antifungal 
and antibiotic properties. S.R. Pulley et al. developed a novel method for the synthesis of this important class of 
compounds by using the Dötz benzannulation reaction between alkynyl glycosides and alkoxy phenyl chromium 
carbenes.42

An exceptionally mild Dötz benzannulation was used by W.J. Kerr and co-workers for the total synthesis of a natural 
insecticide, 2-(1,1-dimethyl-2-propenyl)-3-hydroxy-1,4-naphthalenedione, by utilizing dry adsorption (DSA) 
techniques.24
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ENDERS SAMP/RAMP HYDRAZONE ALKYLATION 
(References are on page 579)

Importance:

[Seminal Publications1-5; Reviews6-15; Modifications & Improvements16-18]

In 1976, D. Enders reported the asymmetric α-alkylation of ketones via the corresponding (S)-1-amino-2-
methoxymethylpyrrolidine (SAMP) hydrazone derivatives.1 According to the general procedure, the SAMP hydrazone 
was deprotonated with lithium diisopropylamide in tetrahydrofuran, and the corresponding lithium derivative was 
reacted with an alkyl halide. The product was ozonized to provide the α-alkylated ketone with high enantioselectivity. 
The opposite enantiomer can be obtained by using (R)-1-amino-2-methoxymethylpyrrolidine (RAMP) as the chiral 
auxiliary. This transformation can also be carried out on aldehydes.2,3 The asymmetric alkylation of ketones and 
aldehydes via their SAMP/RAMP hydrazone derivatives is referred to as the Enders SAMP/RAMP hydrazone 
alkylation.  General features of the reaction are: 1) the SAMP/RAMP hydrazones of aldehydes can be formed by 
mixing the aldehyde with the hydrazone derivative at 0 °C, while ketones need to be heated to reflux in the presence 
of a catalytic amount of acid in benzene or cyclohexane under Dean-Stark conditions;1,2 2) the hydrazones can be 
purified by distillation or chromatography, although purification is not always necessary, and they can be stored at -20 
°C under inert atmosphere without decomposition;1,2 3) cyclic and acyclic ketones and aldehydes undergo the 
transformation;1,2,14 4) deprotonation can be effected with lithium bases, most commonly with lithium 
diisopropylamide;1,2,14 5) the alkylating reagents are alkyl-, benzyl-, and allyl bromides and iodides; 6) upon 
completion of the alkylation, the ketone can be regenerated by ozonolysis or methylation with methyl iodide and 
subsequent acidic hydrolysis;1,2 and 7) the hydrazones can be transformed into various functionalities such as 
nitrile,19,20 dithiane,21 or amine.19,13 The SAMP chiral auxiliary can be obtained from (S)-proline in four steps in a 58% 
overall yield, while RAMP is available from (R)-glutamic acid in six steps in 35%.22-24 Several related chiral auxiliaries 
were also developed such as SADP, SAEP, SAPP, and RAMBO.16-18 In addition to alkyl halides, the deprotonated 
SAMP/RAMP hydrazones react with Michael acceptors, ketones, α-halogen substituted esters, oxiranes, and 
aziridines.14

Mechanism:25,1,2,26,3,22,27,5,28

The deprotonation of the SAMP/RAMP hydrazone derivatives leads to the formation of azaenolates that can be 
trapped by the alkyl halide. In theory, four isomeric azaenolates can form in the deprotonation step, but it was shown 
that around the C-C double bond E stereochemistry is dominant, while around the C-N bond Z stereochemistry 
(ECCZCN) is dominant for cyclic- and acyclic ketones. This observation was confirmed by trapping experiments,1,2,22,27,5

MNDO calculations,25 spectroscopic investigations,26,3 and X-ray analysis.28 It was also shown by freezing point 
depression experiments that the lithiated SAMP hydrazones exist in a monomeric form.29 Electrophilic attack by the 
electrophile on this system proceeds from the sterically more accessible face with high diastereoselectivity. 
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ENDERS SAMP/RAMP HYDRAZONE ALKYLATION

Synthetic Applications:

The synthesis of (−)-C10-desmethyl arteannuin B, a structural analog of the antimalarial artemisinin, was developed 
by D. Little et al.30 In their approach, the absolute stereochemistry was introduced early in the synthesis utilizing the 
Enders SAMP/RAMP hydrazone alkylation method. The sequence begins with the conversion of 3-
methylcyclohexenone to the corresponding (S)-(−)-1-amino-2-(methoxymethyl)pyrrolidine (SAMP) hydrazone. 
Deprotonation with lithium diisopropylamide, followed by alkylation in the presence of lithium chloride at -95 °C 
afforded the product as a single diastereomer. The SAMP chiral auxiliary was removed by ozonolysis. 

The total synthesis of (−)-denticulatin A, a polypropionate metabolite, was accomplished in the laboratory of F.E. 
Ziegler.31 To establish the absolute stereochemistry at C12, they utilized the Enders SAMP/RAMP hydrazone 
alkylation. To this end, the RAMP hydrazone of 3-pentanone was successfully alkylated with 1-bromo-2-methyl-2(E)-
pentene. Hydrolysis of the hydrazone under standard acidic conditions led to loss of the enantiomeric purity. This 
problem was avoided by using cupric acetate for the cleavage.  

The first asymmetric total synthesis of (+)-maritimol, a diterpenoid natural product that possesses a unique tetracyclic 
stemodane framework was accomplished by P. Deslongchamps.32 To introduce the C12 stereocenter, the Enders 
SAMP/RAMP hydrazone alkylation was used. This stereocenter played a crucial role in controlling the 
diastereoselectivity of the key transannular Diels-Alder reaction later in the synthesis. The required SAMP hydrazone 
was formed under standard conditions using catalytic p-toluenesulfonic acid. Subsequent protection of the free 
alcohol as a t-butyldiphenylsilyl ether, deprotonation of the hydrazone with LDA and alkylation provided the product in 
high yield and excellent diastereoselectivity. The hydrazone was converted to the corresponding nitrile by oxidation 
with magnesium monoperoxyphthalate. 

Application of the Enders SAMP/RAMP hydrazone alkylation method on 1,3-dioxan-5-one derivatives leads to 
versatile C3 building blocks.33 To demonstrate the usefulness of the above method, the research group of D. Enders 
applied it during the first asymmetric total synthesis of both enantiomers of streptenol A.34 To obtain the natural 
isomer, the RAMP hydrazone of 2,2-dimethyl-1,3-dioxan-5-one was used as starting material. This compound was 
deprotonated with t-butyllithium and alkylated with 2-bromo-1-tert-butyldimethylsilyloxyethane. The chiral auxiliary 
could be hydrolyzed under mildly acidic conditions to provide the ketone in excellent yield and enantioselectivity.  
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ENYNE METATHESIS 
(References are on page 580)

Importance:

[Seminal Publications1-5; Reviews6-16; Modifications & Improvements17-23; Theoretical Studies24,25]

In 1985, T.J. Katz reported an intriguing methylene migration reaction when a biaryl 1,7-enyne was exposed to 1 
mol% of a tungsten Fischer carbene complex to give a 1,3-diene as the product in 31% yield.1 This was the first 
example of the metal carbene catalyzed intramolecular redistribution of carbon-carbon multiple bonds between an 
alkene and an alkyne. The transition metal catalyzed cycloisomerization of 1,n-enynes to the corresponding 1,3-
dienes is known as the intramolecular ring-closing enyne metathesis. Another variant is the cross enyne metathesis
between independent molecules of an alkene and an alkyne.26 Soon after Katz’s report, molybdenum, and chromium 
Fischer carbene complexes were also successfully utilized, but the catalysts were often required in stoichiometric 
amounts, and the yields were generally low due to side reactions. Besides metal carbene complexes, the enyne 
metathesis can be catalyzed by the following low-valent transition metals: Pd(II),7 Pt(II),27 Ru(II),28 and Ir(I)29

complexes.15 The most widely used and most efficient enyne metathesis catalysts are ruthenium benzylidene 
complexes such as Grubbs first and second generation catalysts, which were originally developed for olefin 
metathesis reactions. The general features of the ring-closing enyne metathesis are: 1) the substituents of the olefin 
have a profound influence on the reaction rate, the number of different products, and their distributions;30,31 2) 
monosubstituted alkenes react faster than di- or trisubstituted ones; 3) enynes with monosubstituted olefins form 
exclusively the smallest possible ring size; 4) the substitution of the alkyne partner also has an influence on the 
reaction rate: terminal alkynes react slower than internal ones; 5) alkyl substituents on the alkyne tend to give high 
yields, whereas electron-withdrawing substituents usually result in lower yields; 6) the presence of ethylene gas 
(instead of the usual argon) may substantially increase the rate of the reaction in certain cases;32,33 7) reactions are 
usually conducted in dichloromethane, toluene, or benzene either at ambient temperature or at reflux; 8) a wide range 
of functional groups (esters, amides, ethers, ketones, acetals, etc.) are tolerated under the reaction conditions, but 
amines and alcohols need to be protected to obtain high yields; 9) the formation of a five- and six-membered ring is 
easily achieved, whereas 7-, 8-, and 9-membered carbocycles are not formed as readily unless the enyne tether 
contains a heteroatom;12 and 10) the enyne metathesis in combination with other metathesis reactions and 
cycloadditions leads to powerful tandem reactions. 

Mechanism: 34-36,17,37-39,30,27,40,31,41

The mechanism of the enyne metathesis depends on the type of catalyst used while the fine details of the process 
are much less understood than in the case of olefin metathesis. Since the most widely used catalyst is the Grubbs's 
second-generation ruthenium carbene complex, the reaction mechanism of a ring-closing enyne metathesis
employing this carbene is discussed. Two different mechanistic pathways may operate depending on whether the 
metal carbene first reacts with the alkene or alkyne. In Path I the alkene forms a metallacyclobutane intermediate that 
subsequently undergoes several ring openings and closures to give the final diene product. However, in Path II the 
metal carbene first reacts with the alkyne and two different dienes can be formed via two regioisomeric 
metallacyclobutenes (only one is shown). 
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ENYNE METATHESIS 

Synthetic Applications:

The short total synthesis of (±)-differolide based on a tandem enyne metathesis / [4+2] cycloaddition was 
accomplished by T.R. Hoye et al.42 The enyne metathesis was carried out on allyl propynoate using Grubbs's first-
generation metathesis catalyst. The catalyst was added to the substrate slowly to maintain high substrate and low 
ruthenium carbene concentrations. The initially formed 2-vinylbutenolide readily dimerized via a Diels-Alder 
cycloaddition in which the vinyl group participated as the dienophile to afford the natural product.  

The total synthesis of polycyclic alkaloid (–)-stemoamide was achieved in the laboratory of M. Mori via a ruthenium 
carbene catalyzed enyne metathesis.43 The cyclization was effected by 5 mol% of catalyst in benzene at 50 °C. After 
11h of stirring under these conditions, 87% of the 5,7-fused bicyclic system was formed. 

A platinum- and Lewis acid catalyzed enyne metathesis was used as the key step in the formal total synthesis of 
antibiotics streptorubin B and metacycloprodigiosin by A. Fürstner.37 The electron-deficient enyne was cyclized with 
either a platinum halide or a hard Lewis acid (e.g., BF3·OEt2) to the desired meta-pyrrolophane core of the target 
molecules. A few more steps completed the formal synthesis. 

M. Shair and co-workers were the first to apply the enyne metathesis for macrocyclization during the biomimetic 
synthesis of (–)-longithorone A.44 The two 16-membered paracyclophane building blocks, one diene and one 
dienophile component, were prepared using 50 mol% Grubbs's first-generation catalyst under 1 atm ethylene gas 
pressure. These components, after several additional steps, underwent two facile Diels-Alder cycloaddition reactions 
to afford the natural product.
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ESCHENMOSER METHENYLATION 
(References are on page 581)

Importance:

[Seminal Publications1; Reviews2; Modifications & Improvements3,4]

The introduction of a (dimethylamino)methyl group (-CH2NMe2) into the α-position of a carbonyl group (ketone, ester, 
lactone, etc.) using dimethyl(methylene)ammonium iodide, [CH2=NMe2]+I- (Eschenmoser’s salt), followed by an 
elimination to the corresponding α-methylene carbonyl compound is known as the Eschenmoser methenylation. The 
first step of the methenylation procedure can be regarded as a modified Mannich reaction, in which the enolizable 
carbonyl compound is reacted with a preformed iminium ion (Eschenmoser’s salt). Next, the resulting α-
(dimethylamino)methyl carbonyl compound can be eliminated by using one of the following methods: 1) heat; 2) 
conversion to the corresponding quaternary ammonium salt, which is then heated (Hoffmann elimination);5 3) 
conversion to the corresponding N-oxide to induce a Cope elimination upon heating;6 or 4) treatment with base.7 The 
methenylation process is most efficient when the substrates are symmetrical ketones or ketones that have only one 
available enolizable α-position. In the case of unsymmetrical ketones (in which both the α and α’ positions are 
available), regioselective methenylation is possible by the use of modified versions of Eschenmoser’s salt.3,4   

Mechanism:

The first step of the mechanism of the Eschenmoser methenylation is the deprotonation of the substrate at the α-
position. The resulting enolate ion then reacts with the electrophilic iminium salt to afford the α-(dimethylamino)methyl 
carbonyl compound. In a second operation, the elimination is carried out in one of four ways as mentioned above. 
The scheme shown below depicts the Cope elimination of the tertiary amine N-oxide.  
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ESCHENMOSER METHENYLATION 

Synthetic Applications:

S.J. Danishefsky and co-workers identified an exo-methylene hydroazulenone as a versatile intermediate in efforts 
directed toward the total synthesis of guanacastepene.6 The exo-methylene group was introduced on the 
hydroazulene by the two-step Eschenmoser methenylation procedure. The substrate was deprotonated with LiHMDS 
followed by the addition of 3 equivalents of Eschenmoser’s salt. The resulting α-(dimethylamino)methyl ketone was 
treated with mCPBA to form the N-oxide, which spontaneously underwent a Cope elimination to afford the desired 
exo-methylene hydroazulenone. 

In the laboratory of J.L. Wood, an expeditious approach to the densely functionalized isotwistane core of CP-263,114
was developed.7 For the proposed radical cyclization, an exo-methylene group was installed on a five-membered 
lactone ring. It was discovered that both the formation of the lactone ring and the Eschenmoser methenylation could 
be conducted in a one-pot operation by simply treating the α-acetoxy ketone with excess amounts of LiTMP and then 
with Eschenmoser’s salt. 

The total synthesis of the cembranoid diterpene (±)-crassin acetate methyl ether was accomplished by W.G. Dauben 
et al.8 In the final stages of the total synthesis, the sensitive α-methylene group was introduced onto the six-
membered lactone by using the Eschenmoser methenylation procedure. The lactone was deprotonated with LDA and 
then treated with Eschenmoser’s salt. In the second step, the dimethylamino group was exhaustively methylated and 
the quaternary ammonium salt underwent a smooth Hofmann elimination upon deprotonation with DBU. 

During the early stages of the total synthesis of (±)-gelsemine, S.J. Danishefsky et al. wanted to install a key oxetane 
ring on a bicyclic ketone intermediate.9 The Eschenmoser methenylation was chosen to prepare the required bicyclic 
α-methylene ketone which was later converted to the oxetane in a few steps. 
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ESCHENMOSER-CLAISEN REARRANGEMENT  
(References are on page 581)

Importance:

[Seminal Publications1,2; Reviews3,4; Modifications & Improvements5]

In 1964, A. Eschenmoser reported a reaction in which allylic or benzylic alcohols underwent a Claisen-type 
rearrangement when heated with N,N-dimethylacetamide dimethyl acetal in xylenes.1 The rearrangement took place 
with a high degree of sterospecificity and generated a γ,δ-unsaturated amide as the product. Today this 
transformation is referred to as the Eschenmoser-Claisen rearrangement. The rearrangement is more (E)-selective 
and usually takes place at lower temperature (100-150 °C) than the other variants such as the Claisen and Johnson-
Claisen rearrangements. Allylic alcohols substituted at the 2-position afford trisubstituted alkene products with 
significant levels of diastereoselection, just as in the case of the Johnson-Claisen rearrangement.6 This selectivity is 
explained by 1,3-diaxial nonbonding interactions in the chairlike transition state. 

Mechanism: 6

The reaction does not require the presence of an acid catalyst, the allylic alcohol readily exchanges one of the alkoxy 
groups of N,N-dimethylacetamide dimethyl acetal. The resulting mixed acetal loses methanol and the ketene aminal 
intermediate undergoes a [3,3]-sigmatropic shift via a chairlike transition state in acyclic systems. In certain cases, 
cyclic systems may prefer a boatlike transition state due to conformational constraints. The ratio of the products will 
depend on the energy difference between the transition states. Generally the Eschenmoser-Claisen rearrangement of 
secondary allylic alcohols proceeds with very high (E)-selectivity due to destabilizing 1,3-diaxial interactions in the 
transition state that would lead to the (Z)-isomer.6
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ESCHENMOSER-CLAISEN REARRANGEMENT  

Synthetic Applications:

The first total synthesis of (±)-stenine has been accomplished in the laboratory of D.J. Hart.7 The key steps were an 
intramolecular Diels-Alder reaction, an amidine variant of the Curtius rearrangement, an Eschenmoser-Claisen 
rearrangement, a halolactonization, and a Keck allylation. The allylic alcohol precursor and N,N-dimethylacetamide 
dimethyl acetal was heated to reflux in xylenes for 4h to afford the desired amide in 93% isolated yield. The transition 
state most likely adopted a boatlike conformation. 

During the asymmetric total synthesis of (+)-pravastatin by A.R. Daniewski et al., one of the stereocenters was 
introduced with the Eschenmoser-Claisen rearrangement.8 The tertiary alcohol intermediate was heated in neat N,N-
dimethylacetamide dimethyl acetal at 130 °C for 48h, during which time the by-product methanol was distilled out of 
the reaction mixture to afford the desired amide in 92% yield. 

In order to construct the sterically congested C7a quaternary chiral center in the natural product anisatin, T.P. Loh 
and co-workers developed an efficient strategy by way of an Eschenmoser-Claisen rearrangement.9 The resulting 
amide was converted to an ε-lactone (reported by A.S. Kende) in four steps, thereby completing a concise formal 
synthesis of (±)-8-deoxyanisatin. Other attempted [3,3]-sigmatropic rearrangements to construct C7a stereocenter 
resulted in re-aromatized products. 

D.R. Williams et al. successfully synthesized the AB ring system of norzoanthamine by the intramolecular Diels-Alder 
cyclization of an (E)-1-nitro-1,7,9-decatriene.10 The key transformation for establishing the quaternary stereocenter at 
C12 in the cycloaddition precursor was the Eschenmoser-Claisen rearrangement.
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ESCHENMOSER-TANABE FRAGMENTATION 
(References are on page 582)

Importance:

[Seminal Publications1-4; Reviews5,6; Modifications & Improvements7-12]

In 1967, A. Eschenmoser was the first to describe the fragmentation of the tosylhydrazone of an α,β-epoxy ketone to 
the corresponding acetylenic ketone (alkynone).1 Soon after this initial report, M. Tanabe and J. Schreiber published 
their independent findings of the same fragmentation generating medium-sized cyclic alkynones.2-4 Today, the 
preparation of cyclic alkynones, acyclic alkynals, and alkynones via cyclic epoxy ketone hydrazones is known as the 
Eschenmoser-Tanabe fragmentation. Although the fragmentation readily occurs on acyclic epoxy ketone hydrazones, 
from a synthetic point of view one needs to start from a cyclic epoxy ketone in order to isolate the desired cyclic or 
acyclic alkynones. The starting cyclic epoxy ketones are not always easy to synthesize, especially when they are 
sterically hindered. They are usually prepared by the epoxidation of the corresponding α,β-unsaturated ketones.13

Next, the epoxy ketone hydrazones are exposed to base (or acid in certain cases) or heated to bring about the 
fragmentation, which is accompanied by the evolution of nitrogen gas. Acyclic acetylenic aldehydes can be efficiently 
prepared by using the 2,4-dinitrophenylhydrazone derivatives of the epoxy ketones.10 When the preparation of the 
epoxy ketone is not possible or has to be avoided, treatment of the unsaturated hydrazones with excess NBS in 
methanol leads directly to the desired alkynones.12  Over the last few decades, the scope of the reaction was 
extended, and improvements have been implemented by the use of the following epoxy ketone derivatives: 1) 
oximes;14 2) aminoaziridines;8,9 3) 2,4-dinitrobenzenesulfonyl hydrazones;10 4) 1,3,4-oxadiazolines;11 and 5) 
diazirines.7 Advantages of the Eschenmoser-Tanabe fragmentation are the following: 1) easy access to medium-
sized cyclic ketones; 2) both terminal and disubstituted alkynes can be prepared; and 3) the fragmentation is not 
limited to the use of aromatic sulfonylhydrazones. Besides the fragmentation of epoxy ketone derivatives, there are 
only very few examples in the literature for the “nitrogen- and carbon-analogue” of the Eschenmoser-Tanabe 
fragmentation.15-17

Mechanism: 1,3,6,18,19

The Eschenmoser-Tanabe fragmentation is basically a seven-center Grob-type fragmentation in which the starting 
molecule breaks into three fragments. The mechanism is concerted for epoxy ketone hydrazones and 
oxadiazolinones, while the thermal decomposition of epoxy-diazirines involves a free oxiranylcarbene 
intermediate.18,19 The deprotonation of the starting epoxy ketone arylhydrazone leads to the formation of an alkoxide, 
which rapidly undergoes fragmentation to give an alkyne, ketone, nitrogen gas, and a leaving group (usually 
arylsulfinate).  

R = tosyl, 2,4-dinitrophenyl; R1-2 = H, alkyl; when R2 = H, then the product is an alkynal, and when R2 = alkyl, then it is an alkynone
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ESCHENMOSER-TANABE FRAGMENTATION 

Synthetic Applications:

The first total synthesis of the Galbulimima alkaloid GB 13 was accomplished in the laboratory of L.N. Mander.20 In 
the late stages of the synthesis, the plan was to convert the pentacyclic α,β-unsaturated ketone to the corresponding 
tetracyclic alkynone using the Eschenmoser-Tanabe fragmentation. Interestingly, the direct epoxidation of the enone 
was unsuccessful. Therefore, a sequence of reduction-epoxidation-oxidation gave the desired epoxy ketone in 77% 
yield. The treatment of this epoxy ketone with p-nitrobenzenesulfonylhydrazide afforded the alkynone in good yield. 

J.A. Katzenellenbogen et al. developed an efficient method for the synthesis of alkyl-substituted enol lactones that 
are potent inhibitors of the serine protease elastase.21 The precursors for the enol lactones were α- and β-alkyl-
substituted 5-hexynoic acids, which were prepared by the bromoform reaction of the corresponding alkynoic methyl 
ketones. These alkynones were synthesized by an Eschenmoser-Tanabe fragmentation of suitably substituted 
cyclohexenones.  

During model studies for the synthesis of botrydiane sesquiterpene antibiotics, B.M. Trost and co-workers prepared a 
complex 1,6-enyne precursor for transition metal catalyzed enyne metathesis reactions.22 The 1,6-enyne was 
prepared from a heavily substituted alkynal, which was synthesized via the Eschenmoser-Tanabe fragmentation of  
an epoxy ketone. The resulting alkynal was unstable, so it was immediately subjected to a Wittig olefination to afford 
the desired 1,6-enyne. 

In the laboratory of S.J. Danishefsky, the synthesis of antibiotics containing the benz[a]anthracene core structure was 
investigated using the Dötz benzannulation of a cycloalkynone.23 The required cycloalkynone was prepared from 
azulenone using the Eschenmoser-Tanabe fragmentation.
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ESCHWEILER-CLARKE METHYLATION  
(REDUCTIVE ALKYLATION)

(References are on page 582)
Importance:

[Seminal Publications1-4; Reviews5-7; Modifications & Improvements8-13]

The one-pot reductive methylation of primary and secondary amines to the corresponding tertiary amines is known as 
the Eschweiler-Clarke methylation. This reaction falls into the category of reductive alkylation of amines by carbonyl 
compounds (aldehydes and ketones), and it is considered as a modification of the Leuckart-Wallach reaction.14 The 
first reductive alkylation of an amine was reported by R. Leuckart in 1885, and a few years later the scope of the 
reaction was explored by Wallach and co-workers.15,16 In 1905, W. Eschweiler and then in 1933, H.T. Clarke 
demonstrated that formaldehyde could be used along with formic acid to introduce methyl groups to primary and 
secondary amines to obtain tertiary amines.1,2 Formic acid serves as a reducing agent (hydride donor), which 
reduces the Schiff base intermediate to the corresponding amine. Today, other reducing agents, such as sodium 
borohydride, sodium cyanoborohydride,8 sodium cyanoborohydride-titanium(IV)isopropoxide [NaBH3CN-Ti(Oi-Pr)4)],17

sodium triacetoxyborohydride [NaBH(OAc)3],18 borohydride exchange resin (BER),19 formic acid derivatives 
(formamide, ammonium formate, etc.), or hydrogen gas/catalyst20 are used in place of formic acid. When the amine 
substrate is unsaturated, it is possible to obtain a cyclic amine product under the Eschweiler-Clarke methylation
conditions, and the process is referred to as the Eschweiler-Clarke cyclization.3,4

Mechanism: 21-26,13

The mechanism of all of the above mentioned reactions is essentially the same. However, some steps in the 
mechanism are still not fully understood. The following steps are believed to be involved in the Eschweiler-Clarke 
methylation: 1) formation of a Schiff-base (imine) from the starting primary or secondary amine and formaldehyde via
an aminoalcohol (aminal) intermediate; 2) hydride transfer from the reducing agent (e.g., formic acid, 
cyanoborohydride, etc.) to the imine to get the corresponding N-methylated amine along with the loss of CO2; and 3) 
if the starting amine was primary, then steps 1 and 2 are repeated. 
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ESCHWEILER-CLARKE METHYLATION  
(REDUCTIVE ALKYLATION)

Synthetic Applications:

During the total synthesis of (–)-calyculin A and B, A.B. Smith and co-workers utilized a modified Eschweiler-Clarke 
methylation to convert a complex primary amine to the corresponding N,N-dimethylamino derivative.27 The N-Boc 
protected primary amine was first deprotected using TMSOTf, followed by introduction of the two methyl groups using 
HCHO/NaBH3CN in AcOH/CH3CN solvent mixture. The acetonide protecting group was subsequently removed, and 
the resulting diol was silylated. 

The enantioselective total syntheses of several piperidine and pyrrolidine alkaloids of tobacco were accomplished in 
the laboratory of J. Lebreton.20 In the final stage of the total synthesis of (S)-N-methylanabasine, a one-pot Cbz-
deprotection-hydrogenation-Eschweiler-Clarke methylation was carried out using a HCHO/MeOH/Pd(C)/H2 system at 
room temperature with an overall 88% yield. 

The oxindole alkaloid (–)-horsfiline was synthesized by K. Fuji et al. using an asymmetric nitroolefination as the key 
step.28 During the endgame of the total synthesis, an N-methylation was performed on the five-membered secondary 
amine using the original Eschweiler-Clarke methylation conditions (HCO2H/HCHO/reflux). Unfortunately, these harsh 
methylation conditions led to the racemization of the quaternary stereocenter. Therefore, milder modified conditions
were applied (NaBH3CN as the reducing agent) to retain the optical activity of the substrate.  

C.L. Gibson and co-workers developed an efficient synthesis for chiral ring annulet 2,6-disubstituted 1,4,7-trimethyl-
1,4,7-triazamacrocycles. This class of molecules is capable of stabilizing transition metals in their high oxidation 
states and therefore can be used as oxidation catalysts.29 The N-methylation of the three nitrogens in the last step 
was conducted using the original Eschweiler-Clarke methylation conditions.
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EVANS ALDOL REACTION 
(References are on page 583)

Importance:

[Seminal Publication1; Reviews2-10; Modifications & Improvements11-22; Theoretical Studies23-28]

The boron mediated aldol reaction is a powerful method for highly stereoselective carbon-carbon bond formation. The 
high diastereoselectivity of this process can be attributed to the relatively short boron-oxygen bond length (1.36-1.47 
Å) in the boron enolate,29 which upon reacting with an aldehyde leads to a tight, six-membered chairlike transition 
state. Reaction of (Z)-boron enolates with aldehydes gives the syn aldol product while, (E)-boron enolates lead to 
formation of the anti aldol product with high diastereoselectivity.30,31 Control of the absolute stereochemistry can be 
achieved through the application of covalently attached chiral auxiliaries in the enol component. D.A Evans and his 
co-workers developed a pair of oxazolidinone based chiral auxiliaries, which could be obtained from (S)-valinol and 
(1S,2R)-norephedrine with excellent enantiopurity.1 Asymmetric aldol reactions relying on the application of these 
chiral auxiliaries are called the Evans aldol reaction. General features of the Evans aldol reaction are: 1) enolization 
of the N-acyl oxazolidinones under standard conditions (1.1 equiv Bu2BOTf, 1.2 equiv diisopropylamine, 0 oC, 30 min) 
affords the (Z)-enolates with excellent selectivity;1 2) aldol reaction of the resulting (Z)-boron enolates with a wide 
variety of aldehydes yields the syn aldol product with very high diastereo- and enantioselectivity;1 3) when a chiral 
aldehyde is used, the facial bias of the enolate overrides the π-facial selectivity of the chiral aldehyde;32 4) aldol 
reaction of boron enolates derived from N-acetyloxazolidinone (R1=H) provide the products with low stereoselectivity, 
but this can be overcome by the incorporation of a heteroatom substituent in the α-position, such as a thioalkyl group 
(R1=SR), which can be reductively removed;1 and 5) there are several methods for the nondestructive removal and 
recovery of the chiral auxiliary: hydrolysis and transesterification (LiOH, LiOOH, LiOR, LiSEt),33-35 reductive removal 
(LiAlH4),33,36 and transamination to Weinreb amide (Me(OMe)NH, Me3Al).37 Since the introduction (S)-4-isopropyl-
oxazolidin-2-one and (1S,2R)-4-methyl-5-phenyl-oxazolidin-2-one chiral auxiliaries by D.A. Evans, several 
modifications have been reported.11-22 Besides the aldol reaction, the Evans chiral auxiliaries were successfully 
applied in enolate alkylation,33 enolate acylation,33 enolate amination,38-41 and hydroxylation42 processes. 

Mechanism: 2

The observed stereoselectivity in the Evans aldol reaction can be explained by the Zimmerman-Traxler transition 
state model.2 There are eight possible transition states, four of which would lead to the anti aldol product. These, 
however, are disfavored due to the presence of unfavorable 1,3-diaxial interactions (not depicted below). The 
possible transition states leading to the syn aldol product are shown below. The preferred transition state leading to 
the product is transition state A, where the dipoles of the enolate oxygen and the carbonyl group are opposed, and 
there is the least number of unfavored steric interactions. 
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EVANS ALDOL REACTION 

Synthetic Applications:

Glucolipsin A, a glycolipid possessing glycokinase-activating properties, was discovered at Bristol-Myers Squibb, but 
the absolute stereochemistry of the natural product remained elusive.  A. Fürstner and co-workers elucidated the 
absolute stereochemistry via synthesis and spectroscopic analysis of the natural macrolide and its C2-symmetric 
stereoisomers.43 In their approach, they utilized the Evans aldol reaction that provided the syn aldol product with good 
yield and excellent diastereoselectivity. 

D.L Boger et al. reported the total synthesis of bleomycin A2. They devised an efficient synthesis for the construction 
of the tripeptide S, tetrapeptide S, and pentapeptide S subunits of the natural product.44,45 In their strategy, they 
utilized an Evans aldol reaction between the (Z)-enolate derived from (S)-4-isopropyl-3-propionyl-oxazolidin-2-one 
and N-Boc-D-alaninal. In order to synthesize one of the diastereomers of the pentapeptide S subunit, they carried out 
an Evans aldol reaction between the same aldehyde and the (Z)-enolate of (R)-4-isopropyl-3-propionyl-oxazolidin-2-
one. The formation of the diastereomeric syn aldol product in this reaction clearly shows that the stereochemical 
outcome of the transformation is determined by the chiral auxiliary. 

The asymmetric total synthesis of cytotoxic natural product (–)-FR182877 was accomplished by D.A. Evans and co-
workers.46,47 To establish the absolute stereochemistry, a boron mediated aldol reaction was utilized applying (R)-4-
benzyl-N-propionyl-2-oxazolidinone48 as a chiral auxiliary to yield the syn aldol product.  
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FAVORSKII AND HOMO-FAVORSKII REARRANGEMENT 
(References are on page 584)

Importance:

[Seminal Publications1,2; Reviews3-8; Modifications & Improvements9-12; Theoretical Studies13,14]

Treatment of α-halo ketones possessing at least one α-hydrogen with base in the presence of a nucleophile (alcohol, 
amine, or water) results in a skeletal rearrangement via a cyclopropanone intermediate to give carboxylic acids or 
carboxylic acid derivatives (esters or amides). This reaction is known as the Favorskii rearrangement, and it is widely 
used for the synthesis of highly branched carboxylic acids. The halogen substituent can be a chlorine, bromine or 
iodine, while the base is usually an alkoxide or hydroxide. Upon rearrangement, acyclic α-halo ketones give acyclic 
carboxylic acid derivatives, while cyclic α-halo ketone substrates undergo a ring-contraction reaction to afford one-
carbon smaller cyclic carboxylic acid derivatives. The reaction is both regio- and stereoselective.15,16,12 The 
rearrangement of unsymmetrical α-halo ketones leads to the product, which is formed through the cleavage of the 
cyclopropanone intermediate to usually give the thermodynamically more stable of the two possible carbanions. 
Besides α-halo ketones, other α-substituted ketones such as α-hydroxy,9 α-tosyloxy,17 and α,β-epoxy ketones18,19

can undergo the rearrangement upon treatment with base. When the starting ketone is α,α’-dihalogenated, the 
product is an α,β-unsaturated carboxylic acid derivative and in analogous fashion trihaloketones give rise to α,β-
unsaturated-α-halo acids. α-Halo ketimines are also suitable substrates for the Favorskii rearrangement, although 
they are less reactive than the corresponding α-halo ketones.10,11 General features of the Favorskii rearrangement 
are: 1) sensitivity to structural factors (bulkiness of substituents, degree of alkyl substitution) and reaction conditions 
(base, solvent, temperature); 2) alkyl or aryl substitution on the halogen-bearing carbon increases the rate of 
rearrangement; 3) in cyclic α-halo ketones, the rearrangement is general in rings from 6-10; and 4) yields are widely 
varied from moderate to good. There are two important variations of the Favorskii rearrangement: 1) when β-halo 
ketones are treated with base in the presence of a nucleophile, the homo-Favorskii rearrangement takes place via a 
cyclobutanone intermediate;20,21 and 2) if the α-halo ketone does not have any enolizable hydrogens (R3-5≠H), then 
the quasi-Favorskii rearrangement is operational. 

Mechanism: 22-26,9,27-31,10,11

During the last century there have been numerous proposals for the mechanism of the Favorskii rearrangement.
Currently the widely accepted mechanism involves the following steps: 1) deprotonation at the α-carbon and 
formation of an enolate; 2) intramolecular attack by the enolate on the α’-carbon bearing the leaving group to form a 
cyclopropanone intermediate; 3) regioselective opening of the intermediate to give the most stable carbanion; and 4) 
proton transfer to the carbanion to afford the product. 
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FAVORSKII AND HOMO-FAVORSKII REARRANGEMENT 

Synthetic Aplications:

The total synthesis of the symmetrical cage compound hexacyclo[6.4.2.02,7.03,11.06,10.09,12]tetradecene was 
accomplished in the laboratory of H. Takeshita by using sequential Diels-Alder cycloaddition, Favorskii rearrange-
ment and [2π+2π] photocycloaddition as key steps.32 The Favorskii rearrangement of a bridgehead α-halo ketone 
afforded the anticipated bridgehead carboxylic acid in 88% yield. Next, the acid was converted to the corresponding 
tert-butyl peroxy ester, which was subsequently photocyclized. The final step was the removal of the bridgehead 
carboxylic acid functionality by heating the perester in p-diisopropylbenzene for 2h at 150 °C. 

E. Lee and co-workers demonstrated that the chlorohydrin derived from (+)-carvone undergoes a stereoselective 
Favorskii rearrangement to afford a highly substituted cyclopentane carboxylic acid derivative.33 This intermediate 
was then converted to (+)-dihydronepetalactone. When the THP-protected chlorohydrin was treated with sodium 
methoxide in methanol at room temperature, the rearrangement took place with excellent stereoselectivity (10:1) and 
high yield. Interestingly, the major product was the thermodynamically less stable cyclopentanecarboxylate.  

The key step in the stereocontrolled total synthesis of the tricyclic (±)-kelsoene by M. Koreeda et al. was a base-
catalyzed homo-Favorskii rearrangement of a γ-keto tosylate to elaborate the 4-5 fused ring portion of the target 
molecule.34 The bicyclic 5-6 fused γ-keto tosylate was treated with excess potassium tert-butoxide, which effected the 
desired rearrangement in less than 2 minutes at room temperature. The nucleophilic solvent was too bulky to effect 
the opening of the cyclobutanone intermediates, making their isolation possible. The mixture of isomeric 
cyclobutanones was converted to a separable 1:1 mixture of cyclobutanones with p-TsOH, and the ketone 
functionality was then removed via the corresponding tosylhydrazone. 
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FEIST-BÉNARY FURAN SYNTHESIS 
(References are on page 585)

Importance:

[Seminal Publications1,2; Reviews3; Modifications & Improvements4-6]

The synthesis of furans from β-keto esters and α-halogenated carbonyl compounds (aldehydes and ketones) under 
basic conditions is known as the Feist-Bénary furan synthesis. The general features of this reaction are: 1) the yields 
are strongly dependent on the substrates and are often moderate; 2) the initially isolated product of the reaction is 
usually the substituted dihydrofuranol (“interrupted Feist-Bénary reaction”), which is dehydrated under acid-catalyzed 
conditions to isolate the substituted furan;7 3) the regiochemical outcome depends on the reactivity of the α-
halogenated carbonyl compound: α-halogenated aldehydes (R1=H) tend to first undergo an aldol reaction followed by 
an O-alkylation, while α-halogenated ketones (R1=alkyl) first C-alkylate the β-keto ester and then acid treatment is 
necessary to obtain the substituted furan;8 4) the following bases are often used to deprotonate the β-keto esters: 
NaH, NaOMe, NaOEt, aqueous NaOH, or Et3N; 5) the reaction is general with respect to the nature of the β-
dicarbonyl compound: in addition to β-keto esters, β-oxopropionates, β-diketones and β-dialdehydes can also be 
used;7 and 6) the diastereoselectivity of the interrupted Feist-Bénary reaction depends on the basicity of the 
nucleophile: mainly the cis isomer is formed when nucleophiles derived from moderately acidic β-dicarbonyl 
compounds are used, while nucleophiles derived from highly acidic β-dicarbonyl compounds mainly yield the trans
isomer.7 There are several modifications of the original Feist-Bénary synthesis and they use more complex α-
halogenated carbonyl compounds as reaction partners: 1) β-keto esters were condensed with 1,2-dibromoacetate to 
afford high yields of 2,3-disubstituted furans;5 2) alkylation of the sodium salts of β-keto esters with 3-halogenated 
alkynes (propargyl halides) in the presence of Cu(II)-salts yielded alkylidenefurans, which were isomerized to 
tetrasubstituted furans upon treatment with acid;9 and 3) heating of β-keto esters with 5-hydroxy-5H-furan-2-one in 
the presence of Et3N gave 3-alkoxy carbonylfurans.10

Mechanism: 11,12

The first step of the Feist-Bénary furan synthesis is the deprotonation of the β-keto ester at the α-carbon atom. The 
resulting stabilized enolate undergoes an aldol reaction with the α-halogenated carbonyl compound by attacking the 
carbonyl group. Subsequent proton transfer generates a stable enolate anion that displaces the α-halogen atom in an 
intramolecular SN2 reaction. The resulting dihydrofuranol, which often can be isolated, is treated with aqueous acid to 
generate the substituted furan. 
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 FEIST-BÉNARY FURAN SYNTHESIS 

Synthetic Applications:

An efficient synthesis of the 7-deoxy zaragozic acid core was developed by M.A. Calter and co-workers.13 The 
assembly of this complex structure was based on the “interrupted” Feist-Bénary reaction, which produces highly 
oxygenated dihydrofuranols that can be isolated. To this end, the sodium enolate of malondialdehyde was reacted 
with 2-bromo-3-oxo-diethyl succinate in benzene at room temperature to afford 29% of the cis-dihydrofuranol. This 
product was converted to the zaragozic acid core in four steps. 

An efficient synthetic sequence for the preparation of 2,4-bis(trifluoromethyl)furan was developed by R. Filler and co-
workers.14 The potassium enolate of ethyl 4,4,4-trifluoroacetate was reacted with 3-bromo-1,1,1-trifluoroacetate in 
DMSO to afford 2,4-bis (trifluormethyl)-4-hydroxydihydro-3-furoate as a result of O-alkylation. Interestingly, under 
these conditions usually C-alkylation is preferred. Next, dehydration was performed to give the corresponding 2,4-bis
(trifluoromethyl)-3-furoate in good yield. Finally, decarboxylation by heating with quinoline and CuSO4 yielded the 
target furan in excellent yield. 

Research by P. Xinfu et al. has shown that the Feist-Bénary furan synthesis is well-suited for the construction of 
furolignans having two different aryl groups.15 3,4-Dimethyl-2-piperonyl-5-veratrylfuran was prepared by first reacting 
the sodium enolate of a -keto ester derived from piperonal  with an -bromo -keto ester derived from vanillin. The 
resulting 1,4-diketone was then subjected to acid-catalyzed cyclization with TsOH to the corresponding 
tetrasubstituted furan. The desired furolignan was obtained in two more steps. 

The mycotoxin patulin was synthesized via the oxidation of a disubstituted furan in the laboratory of M. Tada.16 The 
required 2,3-disubstituted furan was conveniently prepared via the Feist-Bénary reaction of acetonedicarboxylic acid 
dimethyl ester and chloroacetaldehyde in the presence of pyridine. Subsequent functional group modification and 
oxidation of this furan finally gave the natural product. 
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FERRIER REACTION / REARRANGEMENT 
(References are on page 585)

Importance:

[Seminal Publications1-5; Reviews6-16; Modifications & Improvements17-24]

The Lewis acid promoted rearrangement of unsaturated carbohydrates is known as the Ferrier reaction/ 
rearrangement. The first report was made in 1914 by E. Fischer when he observed the allylic rearrangement of tri-O-
acetyl-D-glucal to the corresponding 2,3-unsaturated hemiacetal upon heating with water.1,25 The synthetic utility of 
this transformation was recognized by R.J. Ferrier during the early 1960s  when he successfully prepared  O-, S-, and 
N-linked unsaturated glycosyl compounds from 1,2-glycals and nucleophiles in the presence of  Lewis acids.2-4 This 
reaction is the Type I Ferrier reaction and its general features are: 1) substrates with good leaving groups, for 
example, acyloxy groups, in the 3-position (sugar nomenclature) successfully undergo the rearrangement upon 
heating in the presence of strong nucleophiles, such as alcohols and phenols, even in the absence of a catalyst; 2) 
commonly used Lewis acids are: BF3·OEt2, SnCl4, I2,21 FeCl3,24 TMSOTf-AgClO4

23; 3) the hydroxyl group at C3 in the 
glycal can be activated under Mitsunobu reaction conditions without the use of a Lewis or protic acid;20 and 4) the 
stereochemistry of the 2,3-unsaturated glycosyl product at the anomeric center depends on the relative 
stereochemistry of the groups at C3 and C4 in the starting material, but the α-anomer is usually predominant. The 
Type II Ferrier rearrangement was first reported in 1979 when exocyclic enol ethers were converted to substituted 
cyclohexanones upon treatment with mercury(II) salts.5 The Type II rearrangements also became synthetically 
significant for the following reasons: 1) the precursors are readily available from carbohydrates, so the synthesis of 
chiral, highly-substituted cyclohexanone derivatives is possible; 2) in most reactions, single diastereomers are 
isolated in high yield;7 and 3) the Lewis acid can be used in catalytic amounts and complex targets having acid 
sensitive functionalities can be prepared.18 It was established that there is a strong correlation between the 
stereochemistry of the group at C3 and the stereochemistry of the group β to it: the newly generated OH groups and 
the C3 substituents are generally trans disposed in the product.26

Mechanism:27-33,15

The first step of the mechanism in the Type I Ferrier reaction is the departure of the leaving group from the C3 
position of the glycal to give an allyloxocarbenium ion upon treatment with Lewis acid. The allyloxycarbenium ion is 
then captured by the nucleophile to give the corresponding glycoside. In the Type II Ferrier rearrangement, the enol 
ether first undergoes regiospecific hydroxymercuration to give a ketoaldehyde. This ketoaldehyde intermediate then 
undergoes an aldol-like intramolecular cyclization to afford the product cyclohexanone. 
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FERRIER REACTION / REARRANGEMENT 

Synthetic Applications:

Research in the laboratory of H.M.I. Osborn showed that the use of cyclohexene derivatives as nucleophiles in the 
Lewis acid-mediated Type I carbon-Ferrier reaction of 3-O-acetylated glycals can be used to prepare unsaturated β-
linked C-disaccharides.34  The incorporation of the alkene took place with one equivalent of glucal in the presence of 
boron-trifluoride etherate in 33% yield. The desired C-disaccharide was obtained by selective hydrogenation of the 
exocyclic double bond in the presence of an endocyclic one. 

D.R. Williams and co-workers accomplished the first total synthesis of marine dolabellane diterpene (+)-4,5-
deoxyneodolabelline.35 The Type I carbon-Ferrier reaction was utilized to assemble the key trans-2,6-disubstituted 
dihydropyran with complete stereoselectivity (α-anomer). The macrocyclization was carried out with a vanadium-
based pinacol coupling.

The highly oxygenated sesquiterpene paniculide A was synthesized by N. Chida et al. starting from D-glucose.36 The 
key step to construct the substituted cyclohexane subunit of the natural product involved the Type II Ferrier 
rearrangement.

The stereoselective total synthesis of antimitotic alkaloid (+)-lycoricidine was accomplished by S. Ogawa and co-
workers by utilizing the catalytic version of the Type II Ferrier rearrangement for the synthesis of the optically active 
substituted cyclohexenone fragment.37  The rearrangement was effected with 1 mol% of mercuric(II)trifluoroacetate in 
acetone-water solvent system. 
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FINKELSTEIN REACTION 
(References are on page 586)

Importance:

[Seminal Publication1; Review2; Modifications & Improvements3-9; Theoretical Studies10-14]

The equilibrium exchange of the halogen atom in alkyl halides for another halogen atom is known as the Finkelstein 
reaction. The first example of a halogen-exchange reaction was reported in the mid 1800s by W.H. Perkin,15 but the 
systematic study of the reaction was conducted several decades later by H. Finkelstein in 1910.1 Finkelstein 
observed that when various alkyl chlorides and bromides (1°, 2°, 3°, benzylic, etc.) were boiled with a 15 wt% solution 
of NaI in acetone, the corresponding alkyl iodides were formed in good yield. He also noted that the reaction time 
varied greatly, being the shortest for primary, allylic, and benzylic halides and the longest for tertiary alkyl halides. 
The Finkelstein reaction is an equilibrium process and capitalizes on the substantial solubility difference of sodium-
halides in organic solvents (acetone, 2-butanone, etc.). While NaI dissolves readily in acetone, the solubility of NaBr 
and NaCl in organic solvents is very low. Therefore, the equilibrium can be shifted toward the direction of halogen-
exchange according to the Le Chatelier principle: the formed NaBr and NaCl precipitates from the solution. Even 
today, the preparatively most important Finkelstein reactions are the conversion of alkyl bromides, chlorides, 
tosylates and mesylates to the corresponding alkyl iodides which are often difficult to prepare by other methods. 
Other halogenated compounds such as α-halogenated ketones and acids also undergo the Finkelstein reaction with 
ease. There are numerous modifications of the reaction: 1) solid-phase supported KI avoids the use of large excess 
of the reagent;5 2) microwave irradiation at high pressure considerably increases the rate of the reaction; 6,8 3) alkyl 
fluorides can be prepared from other alkyl halides with lipophilic quaternary ammonium fluorides (TBAF) even in 
aprotic solvents of low polarity;7 4) the alkyl halide to alkyl fluoride conversion can also be done by using KF/18-
crown-6 in dipolar aprotic solvents;16  5) the displacement of fluorine in alkyl fluorides with iodide is possible with the 
use of TMSI;4 and 6) sterically hindered secondary and tertiary alkyl halides can be converted to the alkyl iodides by 
treatment with NaI/CS2 in the presence of various Lewis acids (AlMe3, ZnCl2 FeCl3, etc.).3

Mechanism: 17-27

The mechanism of the Finkelstein reaction is often described as a typical SN2 reaction where the filled orbital of the 
nucleophile (halide ion) interacts with the σ* orbital of the carbon-halogen bond, and the reaction proceeds with an 
overall inversion of configuration. This mechanistic picture depicts most transformations involving primary and 
secondary alkyl, allylic or benzylic halides. The driving force for the reaction is the removal of one of the nucleophiles 
from the equilibrium as an insoluble salt. Usually alkyl fluorides are very stable, and therefore they are sluggish to 
participate in nucleophilic displacement reactions unless the fluoride ion can be tied up in a stronger bond (such as 
Si-F) to compensate for the cleavage of the strong C-F bond. In certain cases, however, the Finkelstein reaction gave 
rise to dimeric and rearranged products, which were isolated and characterized; detailed mechanistic studies 
concluded that a sequential cation-free radical mechanism was operational.22
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FINKELSTEIN REACTION 

Synthetic Applications:

During the endgame of the total synthesis of the stemona alkaloid (–)-stenine, Y. Morimoto and co-workers utilized 
the Finkelstein reaction to prepare a primary alkyl iodide from a primary alkyl mesylate.28 The mesylate was prepared 
from the corresponding primary alcohol with MsCl/Et3N. The resulting primary alkyl iodide was used in the 
subsequent intramolecular N-alkylation to construct the final perhydroazepine C-ring of the natural product. 

In the laboratory of J. Zhu, the synthesis of the fully functionalized 15-membered biaryl-containing macrocycle of RP 
66453 was accomplished.29 One of the key steps in their approach was Corey’s enantioselective alkylation of a 
glycine template with a structurally complex biaryl benzyl bromide. This benzyl bromide was prepared from the 
corresponding benzyl mesylate via the Finkelstein reaction using lithium bromide in acetone. 

The marine sesquiterpene nakijiquinones were synthesized and biologically evaluated by H. Waldmann et al.30 The 
core structure of the natural product was assembled via a reductive alkylation of a bicyclic enone with 
tetramethoxybenzyl iodide. This aryl iodide was obtained in a two-step procedure: treatment of the corresponding 
1,2,4,5-tetramethoxybenzene with HBr/paraformaldehyde/AcOH followed by the Finkelstein reaction to replace the 
bromide with iodide. 

The key step in D. Kim’s total synthesis of (–)-brefeldin A was an intramolecular nitrile-oxide cycloaddition.31 In order 
to prepare the substrate for this cycloaddition, a double Finkelstein reaction was performed; first an alkyl tosylate was 
replaced with iodide; then the iodide was exchanged with a nitrite ion to afford the desired alkyl nitro compound. 
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FISCHER INDOLE SYNTHESIS 
(References are on page 587)

Importance:

[Seminal Publications1,2; Reviews3-9; Modifications & Improvements10-13; Theoretical Studies14-21]

In 1883, E. Fischer and F. Jourdan1 treated pyruvic acid 1-methylphenylhydrazone with alcoholic hydrogen chloride, 
and the product of this reaction was later identified as 1-methylindole-2-carboxylic acid.2 The preparation of indoles 
by heating arylhydrazones of ketones or aldehydes in the presence of a protic acid or a Lewis acid catalyst is known 
as the Fischer indole synthesis. Since its discovery, it has become the most important method to prepare substituted 
indoles. The catalysts that successfully lead to indolization are: 1) strong acids (e.g., PTSA, PPA, HCl, H2SO4); 2) 
weak acids (e.g., pyridinium chloride, AcOH); 3) solid acids (e.g., montmorillonite KSF clay, Mordenite, Zelotite Y, ion-
exchange resins); and 4) Lewis acids (PCl3, polyphosphoric acid trimethylsilyl ester, ZnCl2). The Lewis acid catalyzed 
reactions often proceed under milder conditions (room temperature rather than high temperature) than the reactions 
catalyzed by protic acids. In the case of heteroaromatic arylhydrazones, however, the use of any acid is problematic 
(due to the protonation of the heteroatom), and for these compounds simple heating at high temperatures (thermal 
non-catalytic method) can also lead to indolization. The acid catalyzed cyclizations are usually 7 to 30 times faster 
than the thermal reactions. The main features of the Fischer indole synthesis are the following: 1) it is not necessary 
to isolate the arylhydrazones, the indole formation can be conducted by mixing the aldehyde and hydrazine and 
carrying out the indolization in one-pot; 2) unsymmetrical ketones give two regioisomeric 2,3-disubstituted indoles, 
and the regioselectivity depends on a combination of factors: acidity of the medium, substitution of the hydrazine, 
steric effects in the ketone and in the ene-hydrazines; 3) with unsymmetrical ketones indolization usually occurs at 
the least substituted α-carbon atom in strongly acidic medium, whereas weak acids give rise to the other regioisomer; 
4) indolization of α,β-unsaturated ketones is generally unsuccessful due to the formation of unreactive pyrazolines; 5) 
1,2-diketones can give both mono- and bis-indoles and the mono-indoles are usually formed with strong acid 
catalysts in refluxing alcohols; 6) 1,3-diketones and β-keto esters are not ideal substrates, since their arylhydrazones 
form pyrazoles and pyrazol-3-ones, respectively; 7) due to their sensitivity, aldehydes are used in their protected 
forms (acetal, aminal, or bisulfite addition product), and they give rise to 3-substituted indoles; 8) hydrazines are often 
used as their HCl salt or in their Boc protected form (they are not very stable in their free base form); 9) electron-
withdrawing substituents on the aromatic ring of the hydrazine causes the indolization to become low-yielding and 
slow; 10) ortho-substituted arylhydrazines generally react much slower than the meta-substituted ones; and 11) the 
Japp-Klingemann reaction provides an easy way to obtain the starting arylhydrazones from β-dicarbonyls and 
arenediazonium salts. 

Mechanism: 22-39

The currently accepted mechanism of the Fischer indole synthesis was originally proposed by R. Robinson in 1924.22

There are five distinct steps: 1) coordination of the Lewis acid (e.g., proton) to the imine nitrogen; 2) tautomerization 
of the hydrazone to the corresponding ene-hydrazine; 3) disruption of the aromatic ring by a [3,3]-sigmatropic 
rearrangement; 4) rearomatization via a proton shift and formation of the 5-membered ring by a favored 5-exo-trig
cyclization; and 5) the loss of a molecule of ammonia  to finally give rise to the indole system. 
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FISCHER INDOLE SYNTHESIS 

Synthetic Applications:

The total synthesis of (±)-deethylibophyllidine was accomplished by J. Bonjoch and co-workers, who applied a 
regioselective Fischer indole synthesis as one of the key steps to obtain octahydropyrrolo[3,2-c]carbazoles.40 The 
indole formation was followed by a tandem Pummerer rearrangement-thionium ion cyclization to generate the 
quaternary spiro stereocenter.  

During the total synthesis of (+)-aspidospermidine by J. Aubé et al., the final steps involved an efficient Fischer 
indolization of a complex tricyclic ketone.41 This ketone was unsymmetrical and the indole formation occurred 
regioselectively at the most substituted α-carbon in a weakly acidic medium (glacial AcOH).  

The unusual 6-azabicyclo[3.2.1]oct-3-ene core of the alkaloid (±)-peduncularine was assembled using the [3+2] 
annulation of an allylic silane with chlorosulfonyl isocyanate by K.A. Woerpel and co-workers.42 In the endgame of the 
total synthesis, the bicyclic aldehyde was masked as the acetal, and an efficient Fischer indole synthesis was 
performed using phenylhydrazine hydrochloride along with 4% H2SO4. Several subsequent steps led to the natural 
product. 

J.M. Cook et al. accomplished the enantiospecific total synthesis of the indole alkaloid tryprostatin A.43 The 
substituted indole nucleus was assembled at the beginning of the synthesis, and the necessary arylhydrazone was 
prepared via the Japp-Klingemann reaction using the diazonium salt derived from m-anisidine and the anion of ethyl-
α-ethylacetoacetate. The regioselectivity of the Fischer indole synthesis favored the 6-methoxy-3-methylindole-2-
carboxylate regioisomer in a 10:1 ratio. 
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FLEMING-TAMAO OXIDATION 
(References are on page 588)

Importance:

[Seminal Publications1-7; Reviews8-12; Modifications & Improvements13-17; Theoretical Studies18,19]

In 1983, K. Tamao and M. Kumada reported that silicon-carbon bonds can be cleaved by hydrogen peroxide, under 
basic conditions in the presence of bicarbonate salts, to afford the corresponding alcohols, provided that the silicon 
atom had at least one electron-withdrawing substituent.3 A year later, I. Fleming and co-workers discovered that the 
dimethylphenylsilyl-carbon bond (PhMe2Si-C) can be oxidatively cleaved in two steps to the corresponding alcohol 
with retention of configuration at the carbon atom to which the silicon is attached.5 The two steps were: 1) 
protodesilylation of the phenyl ring using HBF4 or BF3·AcOH complex; and 2) treatment of the resulting silyl fluoride 
with a peracid (e.g., mCPBA, AcOOH). These early discoveries paved the way to the development of a large number 
of silicon-based reagents and the use of various silyl groups as the masked form of the hydroxyl group.16 The mild, 
stereospecific oxidation of silicon-carbon bonds to yield the corresponding carbon-oxygen bonds (alcohols) is called 
the Fleming-Tamao oxidation. In terms of laboratory execution of the oxidation, the following facts are noteworthy: 1) 
phenylsilanes are more robust than alkoxysilanes, so they can be removed at the end of a long synthetic sequence; 
2) aryl, heteroaryl and allyl substituents on the silicon atom behave the same way as the phenyl group, and they are 
all replaced by the fluoride in the first step of the oxidation; 3) in the second step fluoride additives are often needed 
in addition to the oxidizing agent; and 4) usually more than one equivalent of oxidizing agent is necessary for each 
silicon-carbon bond. Advantages of the Fleming-Tamao oxidation are: 1) carbon-silicon bonds can be introduced 
stereospecifically, and therefore the preparation of substrates is straightforward (e.g., via the regioselective transition 
metal catalyzed hydrosilylation of olefins); 2) by carefully choosing the substituents on the silicon atom, the oxidation 
of a specific silyl group is possible in the presence of other silyl groups; 3) unlike the oxygen atom, the silicon does 
not have lone pairs of electrons, so it does not coordinate to electrophiles or Lewis acids; 4) in the case of optically 
active substrates, the reaction is stereospecific, that is, there is a retention of configuration; 5) the oxidation 
conditions are mild enough to tolerate a wide range of functional groups even in complex substrates; 6) the two-step 
reaction can also be conducted in one-pot by using Hg2+ or Br+ as electrophiles;7 and 7) the isolation of the product 
alcohol is straightforward, since the by-products of the oxidation are usually water-soluble. There are some 
disadvantages as well: 1) the oxidation of silyl groups attached to tertiary carbons of cyclic systems do not always 
proceed with ease;14 and 2) in the presence of tertiary amines, special conditions are required to avoid N-oxide 
formation.19

Mechanism: 1,11,18

The mechanism of the Fleming-Tamao oxidation has four distinct steps when the silyl group is -SiMe2Ph: 1) SEAr by 
the electrophile on the phenyl ring in the ipso position affords the heteroatom-substituted silane (-SiMe2X) derivative; 
2) attack of the heterosilane by the peroxide to give tetracoordinated silyl peroxide; 3) [1,2]-alkyl shift to give a 
dialkoxy silane (analogous to the step in Baeyer-Villiger oxidation), followed by conversion to a siloxane; and 4) 
hydrolysis of the siloxane to the desired alcohol. 
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FLEMING-TAMAO OXIDATION 

Synthetic Applications:

In the laboratory of F.G. West, the stereoselective silyl-directed [1,2]-Stevens rearrangement of ammonium ylides 
was investigated as a potential key step toward the enantioselective synthesis of various hydroxylated 
quinolizidines.19 The dimethylphenylsilyl group served as a surrogate for one of the hydroxyl groups in the product. 
The Fleming-Tamao oxidation was performed under Denmark’s conditions to avoid oxidation of the tertiary amine to 
the corresponding N-oxide, and the desired quinolizidine diol was obtained in 81% yield.17

During the total synthesis of the marine alkaloid (±)-lepadiformine by S.M. Weinreb et al., one of the key bicyclic N-
acyliminium salt intermediates was subjected to a nucleophilic attack by an organocuprate.20 The resulting 
allyldimethylsilyl derivative was then treated under the Fleming-Tamao oxidation conditions to afford the 
corresponding hydroxymethyl compound in excellent yield. 

M. Shibasaki and co-workers reported a concise stereocontrolled synthesis of the 18-epi-tricyclic core of garsubellin 
A.21 In the endgame, the unmasking of an α,β-unsaturated ketone became necessary just prior to the cyclization of 
the third ring. The latent β-hydroxyl group was best carried through several steps as a pentamethyldisilyl substituent, 
which was removed by a modified Fleming-Tamao oxidation.15

The synthesis of the C1-C21 subunit of the protein phosphatase inhibitor tautomycin was accomplished by J.A. 
Marshall et al.22 During the last steps of the synthetic sequence, the hydrosilylation of a terminal alkyne afforded a 
five-membered siloxane that was oxidized by the Fleming-Tamao oxidation. The initially formed enol tautomerized to 
the corresponding methyl ketone. 
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FRIEDEL-CRAFTS ACYLATION 
(References are on page 588)

Importance:

[Seminal Publications1,2; Reviews3-18; Modifications & Improvements19-29; Theoretical Studies30-40]

The introduction of a keto group into an aromatic or aliphatic substrate by using an acyl halide or anhydride in the 
presence of a Lewis acid catalyst is called the Friedel-Crafts acylation. The reaction is closely related to the Friedel-
Crafts alkylation, which introduces alkyl groups into aromatic and aliphatic substrates. General features of the Friedel-
Crafts acylations are the following: 1) substrates that undergo the Friedel-Crafts alkylation are also easily acylated 
and in most cases electron-rich substrates (R1 = -OH, -NR2, alkyl, etc.) are needed to obtain the desired ketone in 
good yield; 2) aromatic substrates with strongly electron-withdrawing groups (R1 = -NO2, -CX3, etc.) and certain 
heteroaromatic compounds (e.g., quinolines, pyridines) do not undergo the acylation at all, and they may be used as 
solvents (these unreactive substrates, however, are efficiently acylated by the Minisci reaction); 3) acylating agents 
besides acyl halides are: aromatic and aliphatic carboxylic acids, anhydrides, ketenes and esters, as well as 
polyfunctional acylating agents (oxalyl halides); 4) acyl iodides are usually the most reactive, while acyl fluorides are 
the least reactive (I > Br > Cl > F); 5) unlike in the alkylations, Friedel-Crafts acylations require substantial amounts of 
catalyst (slightly more than one equivalent), since the acylating agent itself coordinates one equivalent of Lewis acid, 
and therefore excess is needed to observe catalysis; 6) most often used catalysts are: AlX3, lanthanide triflates, 
zeolites, protic acids (e.g., H2SO4, H3PO4), FeCl3, ZnCl2, PPA; 7) in the case of very reactive acylating agents (e.g., 
acyloxy triflates)  or very electron-rich substrates there is little or no catalyst required;8 8) no polyacylated products 
are observed, since, after the introduction of the first acyl group, the substrate becomes deactivated; 9) 
rearrangement of the acylating agent under the reaction conditions is rarely observed and this feature allows the 
preparation of straight chain alkylated aromatic compounds in a two-step process (acylation followed by reduction); 
10) unprotected Lewis basic functional groups (e.g., amines) are poor substrates, since the acylation will 
preferentially take place on these functional groups instead of the aromatic ring; 11) the intramolecular Friedel-Crafts 
acylation is well-suited for the closure of 5-, 6- and 7-membered rings with a tendency for the formation of the 6-
membered ring. One drawback of the Friedel-Crafts acylation is that the Lewis acid catalyst usually cannot be 
recovered at the end of the reaction, since it is destroyed in the work-up step. However, recent studies showed that 
the use of heterogeneous catalysts (mainly zeolites) makes this important reaction more feasible on an industrial 
scale.41

Mechanism: 4,42-47

The initial step of the mechanism is the coordination of the first equivalent of the Lewis acid to the carbonyl group of 
the acylating agent. Next, the second equivalent of Lewis acid ionizes the initial complex to form a second donor-
acceptor complex which can dissociate to an acylium ion in ionizing solvents. The typical SEAr reaction gives rise to 
an aromatic ketone-Lewis acid complex that has to be hydrolyzed to the desired aromatic ketone. 
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FRIEDEL-CRAFTS ACYLATION 

Synthetic Applications:

L.E. Overman et al. accomplished the enantioselective total synthesis of (–)-hispidospermidin by utilizing an aliphatic 
intramolecular Friedel-Crafts acylation as the key step to assemble the rigid tricyclic core.48 The bicyclic acid 
precursor was first converted to the corresponding acid halide followed by treatment with one equivalent of titanium 
tetrahalide (TiX4). Interestingly, upon cyclization with TiCl4, the acid chloride gave substantial quantities of a side-
product arising from a facile [1,2]-hydride shift. The extent of this unwanted hydride shift was greatly suppressed by 
first preparing the acid bromide followed by a TiBr4 mediated cyclization. The authors attributed this improvement to 
the increased nucleophilicity of the bromide ion vs. chloride ion. 

During the total synthesis of phomazarin, D.L. Boger and co-workers closed the B ring of the natural product with a 
Friedel-Crafts acylation reaction.49 This key step provided the fully functionalized phomazarin skeleton. The 
carboxylic acid precursor was exposed to trifluoroacetic anhydride at 50 °C for 72h. The initial product was a C5 
trifluoroacetate, which was subsequently hydrolyzed in the presence of air, which oxidized the phenol to the 
corresponding B-ring quinone. 

In the laboratory of K. Krohn, the total synthesis of phytoalexine (±)-lacinilene C methyl ether was completed.50 In 
order to prepare the core of the natural product, an intermolecular Friedel-Crafts acylation was carried out between 
succinic anhydride and an aromatic substrate, followed by an intramolecular acylation. After the first acylation, the 4-
keto arylbutyric acid was reduced under Clemmensen reduction conditions (to activate the aromatic ring for the 
intramolecular acylation).  

The first synthesis of the macrotricyclic core of roseophilin was carried out by A. Fürstner and co-workers.51 An 
intramolecular Friedel-Crafts acylation was used to close the third ring of the macrotricycle. 
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FRIEDEL-CRAFTS ALKYLATION 
(References are on page 589)

Importance:

[Seminal Publications1,2; Reviews3-13; Modifications & Improvements14-36; Theoretical Studies37-45]

In 1877, C. Friedel and J.M. Crafts treated amyl chloride with thin aluminum strips in benzene and observed the 
formation of amylbenzene.1,2 The reaction of alkyl halides with benzene was found to be general, and aluminum 
chloride (AlCl3) was identified as the catalyst. Since their discovery, the substitution of aromatic and aliphatic 
substrates with various alkylating agents (alkyl halides, alkenes, alkynes, alcohols, etc.) in the presence of catalytic 
amounts of Lewis acid is called the Friedel-Crafts alkylation. Until the 1940s the alkylation of aromatic compounds 
was the predominant reaction, but later the alkylation of aliphatic systems also gained considerable importance (e.g., 
isomerization of alkanes, polymerization of alkenes and the reformation of gasoline). In addition to aluminum chloride 
other Lewis acids are also used for Friedel-Crafts alkylations: BeCl2, CdCl2, BF3, BBr3, GaCl3, AlBr3, FeCl3, TiCl4,
SnCl4, SbCl5, lanthanide trihalides, and alkylaluminum halides (AlRX2). The most widely employed catalysts are AlCl3
and BF3 for alkylations with alkyl halides. When the alkylating agent is an alkene or an alkyne, in addition to the 
catalyst, a cocatalyst (usually a proton-releasing substance such as water, an alcohol, or a protic acid) is also 
necessary for the reaction to occur. Other efficient catalysts are: 1) aluminum trialkyls (e.g., AlR3) and alkoxides 
[Al(OPh)3]; 2) acidic oxides and sulfides; 3) modified zeolites; 4) acidic cation-exchange resins (e.g., Dowex 50); 5) 
Brönsted acids (e.g., HF, H2SO4, H3PO4); 6) Brönsted and Lewis superacids (e.g., HF·SbF5, HSO3F·SbF5); 7) clay-
supported metal halides;18 and 8) enzymes.22 The general features of the Friedel-Crafts alkylations are: 1) the 
reactivity of alkyl halides is the highest for alkyl fluorides and the lowest for alkyl iodides (F > Cl > Br > I);  2) the 
branching of the alkyl group has a dramatic influence, since tertiary alkyl halides are the most reactive: tertiary, 
benzyl > secondary > primary; 3) if the alkyl halide is polyfunctional (it has more than one halogen atom (e.g., 
RCHX2) or has a double bond besides the halogen), a wide range of products can be formed, and the product ratio 
mainly depends on the type of catalyst used; 4) 1° and 2° alkyl groups tend to rearrange and therefore product 
mixtures are formed; 5) if the aromatic substrate is substituted, electron-donating substituents are required, and 
electron-poor substrates do not undergo the alkylation (e.g., C6H5NO2); and 6) the orientation of substitution is 
catalyst dependent; in addition to the expected o- and p-disubstituted products, substantial amounts of meta-
derivatives can be obtained under harsh conditions (e.g., with AlCl3 at high temperature). The reaction also has 
disadvantages: 1) only electron-rich (usually alkyl substituted) aromatic rings can be used as substrates; 2) after the 
first alkyl group is introduced, the aromatic ring becomes more reactive and polyalkylation often occurs; 3) catalysts 
and alkylating agents that are too reactive may degrade the substrate; 4) nucleophilic functional groups (-OH, -OR, -
NH2) coordinate to the Lewis acid catalyst, thereby deactivating it; and 5) the Friedel-Crafts alkylation reaction is 
reversible, and therefore alkyl groups that are already in the substrate may migrate, rearrange, or be removed under 
the reaction conditions. 

Mechanism: 46-54

The first step of the Friedel-Crafts alkylation is the coordination of the Lewis acid to the alkylating agent (e.g., alkyl 
halide) to give a polar addition complex. The extent of polarization in this complex depends on the branching of the 
alkyl group and almost total dissociation is observed in the case of tertiary and benzylic compounds. The rate 
determining step is the formation of the -complex by the reaction of the initial complex (electrophile) and the 
aromatic ring; this step disrupts the aromaticity of the substrate. In the last step of the mechanism a proton is lost and 
the aromaticity is reestablished. 
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FRIEDEL-CRAFTS ALKYLATION 

Synthetic Applications:

S. L. Schreiber et al. carried out the total synthesis of the potent cytotoxin (±)-tri-O-methyl dynemicin A methyl ester.55

The key step was a regioselective Friedel-Crafts alkylation of an extremely sensitive aromatic enediyne with 3-bromo-
4,7-dimethoxyphthalide. The coupling of these two fragments took place in the presence of silver triflate at 0 °C in 1 
minute, and after methylation, gave a 1:1 mixture of diastereomers in 57% yield.   

In the laboratory of G.A. Posner, semisynthetic antimalarial trioxanes in the artemisinin family were prepared via an
efficient Friedel-Crafts alkylation using a pyranosyl fluoride derived from the natural trioxane lactone artemisinin.56

The alkylating agent, pyranosyl fluoride, was prepared from the lactone in two steps: reduction to the lactol followed 
by treatment with diethylaminosulfur trifluoride. The highly chemoselective alkylation was promoted by BF3·OEt2 and 
several electron-rich aromatic and heteroaromatic compounds were alkylated in moderate to high yield using this 
method.

The first total synthesis of (±)-brasiliquinone B was accomplished by V.H. Deshpande and co-workers starting from 7-
methoxy-1-tetralone.57 The key step of their synthesis was the Friedel-Crafts alkylation of 2-ethyl-7-methoxytetralin 
with 3-bromo-4-methoxyphthalide in the presence of tin tetrachloride.  

During the synthesis of anti-HIV cosalane analogues, M. Cushman et al. attached substituted benzoic acid rings to 
the pharmacophore through methylene and amide linkers.58 In order to assemble a complex highly substituted 
benzophenone derivative, 3-chlorosalicylic acid had to be benzylated. A substituted benzyl alcohol was chosen as the 
alkylating agent and the benzylation proceeded smoothly in methanol using sulfuric acid as the catalyst. 
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FRIES-, PHOTO-FRIES, AND ANIONIC ORTHO-FRIES REARRANGEMENT 
(References are on page 590)

Importance:

[Seminal Publications1-4; Reviews5-14; Modifications & Improvements15-31; Theoretical Studies32-38]

In the early 1900s, K. Fries and co-workers reacted phenolic esters of acetic and chloroacetic acid with aluminum 
chloride and isolated a mixture of ortho- and para-acetyl- and chloroacetyl phenols.3,4 Reports in the literature 
described similar rearrangements in the presence of Lewis acids during the late 1800s,1,2 but Fries was the one who 
recognized that the rearrangement of phenolic esters was general. In his honor the conversion of phenolic esters to 
the corresponding ortho and/or para substituted phenolic ketones and aldehydes, in the presence of Lewis or 
Brönsted acids is called the Fries rearrangement. The Fries rearrangement has the following general features: 1) 
usually it is carried out by heating the phenolic ester to high temperatures (80-180 °C) in the presence of at least one 
equivalent of Lewis acid or Brönsted acid (e.g., HF, HClO4, PPA); 2) the reaction time can vary between a few 
minutes and several hours; 3) Lewis acids that catalyze the Friedel-Crafts acylation are all active but recently solid 
acid catalysts (e.g., zeolites, mesoporous molecular sieves) and metal triflates have also been used;12,30 4) the 
rearrangement is general for a wide range of structural variation in both the acid and phenol component of phenolic 
esters; 5) yields are the highest when there are electron-donating substituents on the phenol, while electron-
withdrawing substituents result in very low yields or no reaction; 6) with polyalkylated phenols alkyl migration is often 
observed under the reaction conditions; 7) the Friedel-Crafts acylation of phenols is usually a two-step process: 
formation of a phenolic ester followed by a Fries rearrangement; 8) the selectivity of the rearrangement to give ortho-
or para- substituted products largely depends on the reaction conditions (temperature, type, and amount of catalyst, 
solvent polarity, etc.); 9) at high temperatures without any solvent the ortho-acylated product dominates while low 
temperatures favor the formation of the para-acylated product; 10) with increasing solvent polarity the ratio of the 
para-acylated product increases; and 11) optically active phenolic esters rearrange to optically active phenolic 
ketones. There are two main variants of the Fries rearrangement: 1) upon irradiation with light phenolic esters 
undergo the same transformation, which is known as the photo-Fries rearrangement;8,11 and 2) an anionic ortho-Fries 
rearrangement takes place when ortho-lithiated O-aryl carbamates undergo a facile intramolecular [1,3]-acyl
migration to give substituted salicylamides at room temperature.17,27

Mechanism: 39-49,11,50

The Fries rearrangement proceeds via ionic intermediates but the exact mechanistic pathway (whether it is inter- or 
intramolecular) is still under debate. There are many reports in the literature that present evidence to support either of 
the pathways, but it appears that the exact route depends on the structure of the substrates and the reaction 
conditions. The scheme depicts the formation of an ortho-acylated phenol from a substituted phenolic ester in the 
presence of aluminum trihalide catalyst. The photo-Fries rearrangement proceeds via radical intermediates.11,50,13
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Synthetic Applications:

The first atropo-enantioselective total synthesis of a phenylanthraquinone natural product (M)-knipholone was 
reported by G. Bringmann et al.51 In the late stages of the synthesis, an acetyl group had to be introduced under mild 
conditions. The advanced substituted anthraquinone intermediate was first deprotected with TiCl4 and then acylated 
with Ac2O in the presence of TiCl4. A spontaneous Fries-rearrangement took place to afford the ortho-acylated 
product in high yield. The natural product was obtained by a mono O-demethylation at C6 with AlBr3.

The total synthesis of the potent protein kinase C inhibitor (–)-balanol was accomplished by J.W. Lampe and co-
workers.52 They took advantage of the anionic homo-Fries rearrangement to prepare the sterically congested 
benzophenone subunit. To this end, 2-bromo-3-benzyloxy benzyl alcohol was first acylated with a 1,3,5-trisubstituted 
benzoyl chloride to obtain the ester precursor in 84% yield. Next, the ester was treated with n-BuLi at -78 °C to 
perform a metal-halogen exchange. The resulting aryllithium rapidly underwent the anionic homo-Fries rearrange-
ment to afford the desired tetra ortho-substituted benzophenone in 51% yield.  

Research in the laboratory of P. Magnus showed that the macrocyclic skeleton of diazonamide could be synthesized 
with the use of macrolactonization followed by a photo-Fries rearrangement.53 First, the aromatic carboxylic acid and 
the phenol were coupled with EDCI to form the macrolactone (phenolic ester), which was then exposed to light at 
high-dilution to cleanly afford the macrocyclic ortho-acylated phenol skeleton of diazonamide. 
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GABRIEL SYNTHESIS 
(References are on page 592)

Importance:

[Seminal Publication1; Reviews2-4; Modifications & Improvements5-16]

The mild, two-step preparation of primary amines from the corresponding alkyl halides, in which potassium 
phthalimide is first alkylated and the resulting N-alkylphthalimide is subsequently hydrolyzed, is known as the Gabriel 
synthesis. Alkylation of phthalimide with simple alkyl halides was first reported in 1884,17 but it was not until 1887 
when S. Gabriel recognized the generality of the process and came up with the two-step procedure for the synthesis 
of primary amines.1 The alkylation reaction can be conducted in the absence or in the presence of a solvent.2 The 
best solvent is DMF (good for SN2 reactions), but DMSO, HMPA, chlorobenzene, acetonitrile, and ethylene glycol can 
also be used. The following alkylating agents give good to excellent yields during the preparation of the required N-
alkylphthalimides: 1) sterically unhindered 1°and 2° alkyl halides give the best results with alkyl iodides being the 
most reactive (I > Br > Cl) followed by allylic, benzylic, and propargylic halides; 2) alkyl sulfonates (mesylates, 
tosylates) often give higher yields than the alkyl halides and are easier to obtain;  3) α-halo ketones, esters, nitriles, 
and β-keto esters (e.g., diethyl bromomalonate);18,19 4) O-alkylisoureas;20 5) alkoxy- and alkylthiophosphonium 
salts;21 6) 1°and 2° alcohols under the Mitsunobu reaction conditions (DEAD/Ph3P/phthalimide);12 6) aryl halides with 
several electron-withdrawing groups (SNAr reaction to prepare 1° arylamines); 7) aryl halides in the presence of Cu(I) 
catalysts;6,9 8) epoxides and aziridines (preparation of amino alcohols and diamines);22,23 and 9) α,β-unsaturated 
compounds undergo facile Michael-addition by the phthalimide anion.24 The original Gabriel synthesis had the 
following problems that limited its widespread application: 1) when the potassium phtalimide and the alkyl halide 
required high temperatures (120-240 °C) without a solvent, heat sensitive substrates could not be used; 2) the 
hydrolysis was usually carried out with a strong acid (e.g., H2SO4, HBr, HI) at high temperatures therefore substrates 
containing acid-sensitive functionalities were excluded; and 3) strong alkaline hydrolysis was also used and was 
incompatible with base-sensitive functional groups. In 1926, H.R. Ing and R.H.F. Manske came up with a modification 
by introducing hydrazine hydrate in refluxing ethanol for the cleavage of the N-alkylphthalimide under mild and neutral 
conditions (Ing-Manske procedure).5 During the past century, several other modifications of the original procedure 
were introduced: 1) novel Gabriel reagents (replacement of phthalimide with other nitrogen sources) to achieve milder 
deprotection conditions;4  2) addition of catalytic amounts of a crown ether or a cryptand to the reaction mixture of 
alkyl halides with potassium phthalimide gives almost quantitative yields;8,10 and 3) the use of NaBH4 in isopropanol 
for the exceptionally mild cleavage of the phthalimide.11 A related process is the Gabriel-malonic ester synthesis in 
which the anion of diethyl phthalimidomalonate is alkylated and after hydrolysis/decarboxylation an amino acid is 
obtained.19

Mechanism: 2,15

The first step of the Gabriel synthesis, the alkylation of potassium phthalimide with alkyl halides, proceeds via an SN2
reaction. The second step, the hydrazinolysis of the N-alkylphthalimide, proceeds by a nucleophilic addition of 
hydrazine across one of the carbonyl groups of the phthalimide. Subsequently, the following steps occur: ring-
opening then proton-transfer followed by an intramolecular SNAc reaction, another proton-transfer and finally, the 
breakdown of the tetrahedral intermediate to give the desired primary amine and the side product phthalyl hydrazide. 
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Synthetic Examples:

The total synthesis of the insect feeding deterrent peramine was accomplished by D.J. Dumas at du Pont 
laboratories.25 The Gabriel synthesis was successfully employed in the last steps of the synthesis. The primary alkyl 
chloride was treated with potassium phthalimide in DMF at 77-82 °C for 1.5h. The resulting N-alkylphthalimide was 
cleaved in high yield using the Ing-Manske procedure.

During the synthesis of swainsonine- and castanospermine analogues (amino sugars), K. Burgess et al. introduced 
the nitrogen atom by replacing a primary hydroxyl group using phthalimide under the Mitsunobu reaction conditions.26

The phthalyl group was not immediately removed but carried over several steps. Interestingly, deprotection with 
hydrazine was not compatible with the terminal alkene functionality due to significant hydrogenation of the double 
bond by the in situ formed diimide. Using methylamine instead of hydrazine cleanly afforded the deprotected primary 
amine that readily displaced a secondary mesylate to form a substituted pyrrolidine ring. 

A dynamic kinetic resolution was utilized for the highly stereoselective Gabriel synthesis of -amino acids by K. 
Nunami and co-workers.27 The substrate, t-butyl-(4S)-1-methyl-3-2-(bromoalkanoyl)-2-oxoimidazolidine-4-
carboxylate, smoothly reacted with potassium phthalimide at room temperature to give only one diastereomer in good 
yield. The removal of the chiral auxiliary afforded an N-phthaloyl-L- -amino acid. 

The preparation of vicinal diamines in an enantioselective fashion is a challenging task. F.M. Rossi et al. undertook 
the synthesis of a -benzoylamino-phenylalanine (2,3-diamino acid), which is an analogue of the taxol side chain.28

During their synthetic studies, the secondary alcohol of an enantiopure oxazolidinone was mesylated and displaced 
by potassium phthalimide in DMF. Interestingly, there was a net retention of configuration due to neighboring group 
participation by the oxazolidinone nitrogen atom. For this reason, the authors later decided to displace the mesylate 
with NaN3 and to protect the oxazolidinone nitrogen with a TMS group to avoid participation. 
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GATTERMANN AND GATTERMANN-KOCH FORMYLATION 
(References are on page 592)

Importance:

[Seminal Publications1-3; Reviews4-8; Modifications & Improvements9-13; Theoretical Studies14,15]

In 1897, L. Gattermann and J.A. Koch successfully introduced a formyl group (CHO) on toluene by using formyl 
chloride (HCOCl) as the acylating agent under Friedel-Crafts acylation conditions.1 Although the researchers were 
not able to prepare the acid chloride, they assumed that by reacting carbon monoxide (CO) with hydrogen chloride 
(HCl), formyl chloride would be formed in situ, and in the presence of catalytic amounts of AlCl3-Cu2Cl2 formylation of 
the aromatic ring would occur. The introduction of a formyl group into electron rich aromatic rings by applying 
CO/HCl/Lewis acid catalyst (AlX3, FeX3, where X = Cl, Br, I) to prepare aromatic aldehydes is known as the 
Gattermann-Koch formylation. The general features of this formylation reaction are: 1) at atmospheric pressure 
activated aromatic compounds can be used as substrates (e.g., alkylbenzenes); 2) at high CO pressure (100-250 
atm) the reaction rate increases significantly and even non-activated aromatics (chlorobenzene, benzene) can be 
formylated; 3) deactivated aromatic compounds (having meta-directing substituents) cannot be formylated with this 
method; 4) a carrier/activator (Cu2Cl2, TiCl4 or NiCl2) for the catalyst is necessary at atmospheric pressure; however, 
no activator is needed at high pressure; 5) the amount and purity of the catalyst is very important and often a full 
equivalent of catalyst is needed; 6) monosubstituted substrates are formylated almost exclusively at the para position, 
but when there is already a para substituent present in the substrate, the formyl group is introduced at the ortho
position; 7) just as in the Friedel-Crafts reactions, alkyl migration occurs with highly alkylated aromatic substrates; 
and 8) the need for high pressures renders this method mainly useful to industrial applications. The scope of the 
Gattermann-Koch reaction in terms of suitable substrates is also limited, since it is mostly restricted to alkylbenzenes. 
Gattermann introduced a modification where HCN is mixed with HCl in the presence of ZnCl2 to formylate phenols, 
phenolic ethers and heteroaromatic compounds (e.g., pyrroles and indoles). This modification is called the 
Gattermann formylation (or Gattermann synthesis).2,3 The main drawback of the Gattermann formylation was that it 
called for the use of anhydrous HCN, which is a very toxic compound. To avoid the handling of HCN, R. Adams 
generated it in situ along with ZnCl2 by reacting Zn(CN)2 with HCl in the presence of the aromatic substrate (Adams 
modification).10 This method has since become the most widely used variant in organic synthesis. Other modifications 
used NaCN and CNBr successfully instead of HCN.9 A serious limitation of both title reactions is that they cannot be 
used for the formylation of aromatic amines due to numerous side reactions. 

Mechanism: 16-23

The mechanisms of the Gattermann and Gattermann-Koch formylation belong to the category of electrophilic 
aromatic substitution (SEAr) but are not known in detail, since they have a tendency to vary from one substrate to 
another, and the reaction conditions may also play a role. When carbon monoxide is used, the electrophilic species is 
believed to be the formyl cation, which is attacked by the aromatic ring to form a -complex. This -complex is then 
converted to the aromatic aldehyde upon losing a proton. When HCN is used, the initial product after the SEAr 
reaction is an imine hydrochloride, which is subsequently hydrolyzed to the product aldehyde. 
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Synthetic Applications:

The benzofuran-derived natural product caleprunin A was synthesized by R. Stevenson et al. using the Gattermann 
formylation as the key step.24 The starting 3,4,5-trimethoxyphenol was suspended with Zn(CN)2 in ether and dry HCl 
gas was bubbled through the reaction mixture at room temperature for 2h. The solvent was decanted, water was 
added and the mixture was heated for 15 minutes. The natural product was obtained by reacting the benzaldehyde 
derivative with chloroacetone in DMF in the presence of anhydrous K2CO3.

The regiospecific introduction of the formyl group into the C3 postion of 2,5-dialkyl-7-methoxy-benzo[b]furans was 
achieved by H.N.C. Wong and co-workers by using the Adam’s modification of the Gattermann formylation.25 A 
potential ligand for adenosine A1 receptors was prepared from 2-cyclopentyl-5-(3-hydroxypropyl)-7-methoxy-
benzo[b]furan in 50% yield by bubbling HCl gas through its etheral solution containing Zn(CN)2 at -10 °C for 1h. The 
resulting imine hydrochloride was hydrolyzed with a water-ethanol mixture at 50 °C. 

Compounds containing the pyridocarbazole ring are known to have DNA intercalating properties and therefore they 
are potent antitumor agents. For example, several syntheses of pyrido[2,3-a]carbazole derivatives have been 
published, but these methods are often lengthy and low-yielding. R. Prasad and co-workers synthesized 2-
hydroxypyrido[2,3-a]carbazoles starting from 1-hydroxycarbazoles.26 The key transformation was the Gattermann 
formylation of 1-hydroxycarbazoles to obtain 1-hydroxycarbazole-2-carbaldehydes, from which the target compounds 
could be obtained via a Perkin reaction.

Certain aromatic analogues of natural amino acids can be used as potential fluorescent probes of peptide structure 
and dynamics in complex environments. The research team of M.L. McLaughlin undertook the gram scale synthesis 
of racemic 1- and 2-naphthol analogues of tyrosine.27 The synthesis of the 1-naphthol tyrosine analogue started with 
the Gattermann formylation of 1-naphthol using the Adams modification to afford the formylated product 4-hydroxy-1-
naphthaldehyde in 67% yield. 

OMe
MeO

MeO OH

CHO

OMe
MeO

MeO OH

Zn(CN)2 (2 equiv)
HCl (gas)

Et2O, r.t., 2h
69%

O
Cl

K2CO3 (anhydrous)
DMF

OMe
MeO

MeO O

CH

O
Caleprunin A

AcO

OMe

O

Zn(CN)2
HCl (gas)

Et2O, KCl 
-10 to -5 °C 

1h

(  )
3

AcO

OMe

O

(  )
3

NH2Cl
H

EtOH / H2O
50 °C, 40 min

50%

AcO

OMe

O

(  )
3

CHO

Potential ligand for
adenosine A1 receptors

N
H

H3C

OH

1. Zn(CN)2 , HCl (dry)

dry Et2O, 0 to -5 °C 
3-4h

2. H2O, reflux, 1h; 85%
N
H

H3C

OH
CHO

1-hydroxycarbazole-
2-carbaldehyde

N
H

H3C

N
CH

OH

1. Ac2O
NaOAc
170 °C

2. MeOH
NH3

2-Hydroxypyrido[2,3-a]
carbazole

dry Et2O, r.t.
2-3h

OH
Zn(CN)2 (1.5 equiv) HCl

(dry)

OH

CHO

steps

HC NH2·HCl

COOH

OH

(±)-1-Naphthol analogue
of tyrosine

OH

CH

EtOH 
H2O

reflux
67%

ClH2N



186

GLASER COUPLING 
(References are on page 593)

Importance:

[Seminal Publication1; Reviews2-9; Modifications & Improvements10-16]

In 1869, C. Glaser discovered that when phenylacetylene was treated with a copper(I)-salt in the presence of 
aqueous ammonia, a precipitate formed, which after air oxidation yielded a symmetrical compound, 1,4-diphenyl-1,3-
butadiyne (diphenyldiacetylene).1 The preparation of symmetrical conjugated diynes and polyynes (linear or cyclic) by 
the oxidative homocoupling of terminal alkynes in the presence of copper salts is known as the Glaser coupling.
There are numerous versions of the original procedure developed by Glaser, and these differ mainly in the type and 
amount of oxidants used: 1) besides oxygen and air, CuCl2 and K3Fe(CN)6  are used most often as oxidizing agents; 
2) Glaser’s procedure was heterogeneous and slow, but G. Eglinton and A.R. Galbraith showed that using Cu(OAc)2
in methanolic pyridine made the process homogeneous and faster (Eglinton procedure). This method was 
successfully applied to the synthesis of macrocyclic diynes;10 and 3) A.S. Hay used tertiary amines such as pyridine 
or the bidentate ligand TMEDA as complexing agents to solubilize the Cu(I)-salt. Next, oxygen gas was passed 
through this solution to give the homocoupled product in a few minutes at room temperature in almost quantitative 
yield (Hay coupling conditions).11,12 General features of the Glaser coupling and related methods are: 1) it works well 
for acidic terminal alkynes, but the yield tends to drop when the alkyne is less acidic (e.g., alkyl- or silicon-substituted 
terminal alkynes);  2) the reaction rate is often increased when a small amount of DBU, which most likely serves as a 
strong base to deprotonate the alkyne, is added to the reaction mixture;7 3) the reaction conditions tolerate a wide 
range of functional groups as the oxidation is mostly restricted to the triple bond; 4) if the reactants or the product is 
oxygen sensitive, side reactions can be minimized by either running the reaction for shorter periods of time or 
applying an inert atmosphere and using large amounts of the Cu(II)-salt; 5) the yield of the coupling of heterocyclic 
alkynes strongly depends on the solvent used, and DME was found to be the best; 6) for oligomerization reactions,  
o-dichlorobenzene is the best solvent; and 7) besides using common solvents, recent modifications employed 
supercritical CO2 and ionic liquids for the couplings.13,16 The Glaser coupling is not well-suited for the preparation of 
unsymmetrical diynes. Therefore, other methods were developed using both oxidative and non-oxidative conditions: 
1) the Chodkiewitz-Cadiot reaction couples a terminal alkyne with a 1-bromoalkyne in the presence of a copper(I)-salt 
and an aliphatic amine (e.g., EtNH2);17-19 2) copper(I)- and cobalt(I)-salts are efficient catalysts for the coupling of 
alkynyl Grignard derivatives with 1-haloalkynes;4 and 3) Pd(0)-catalyzed coupling of terminal alkynes with 1-
iodoalkynes in the presence of a Cu(I)-salt is also successful.20

Mechanism: 21-29

The mechanism of the Glaser coupling and related methods is very complex and is not fully understood. Studies 
revealed that the mechanism is highly dependent on the experimental conditions. The early proposal involving a 
radical mechanism has been rejected. The currently accepted mechanism involves dimeric copper(II)acetylide 
complexes.  
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GLASER COUPLING 

Synthetic Applications:

Novel polymerizable phosphatidylcholines were successfully synthesized by the research team of G. Just.30 To 
prepare a 32-membered macrocyclic diyne, the Eglinton modification of the Glaser coupling was utilized. The diester-
diyne starting material was slowly added to a refluxing solution containing 10 equivalents of cupric acetate in dry 
pyridine. The macrocycle was isolated in 54% yield after column chromatography. 

During the biomimetic total synthesis of endiandric acids A-G by K.C. Nicolaou and co-workers, the key 
polyunsaturated precursor was assembled via the Glaser coupling of two different terminal alkynes.31-34 One of the 
alkynes was used in excess so the yield of the heterocoupled diyne could be maximized. In a solvent mixture of 
pyridine:methanol (1:1), the two reactant alkynes were treated with Cu(OAc)2 at 25 °C to provide the desired diyne in 
70% yield.  

C.S. Wilcox and his research team designed and synthesized chiral water-soluble cyclophanes based on 
carbohydrate precursors.35 These compounds are also dubbed as “glycophanes” and they are potentially valuable 
enzyme models. The key macrocyclization step utilized the Glaser coupling and the reaction was carried out in a 
thermal flow reactor at 80 °C in 67% yield. 

Nucleoside dimers linked by the butadiynediyl group were prepared by A. Burger et al. using the Eglinton modification
of the Glaser coupling via dimerization of 3' -C-ethynyl nucleosides.36
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GRIGNARD REACTION 
(References are on page 593)

Importance:

[Seminal Publications1,2; Reviews3-17; Modifications and Improvements;18-20 Theoretical Studies21-26]

In 1900, V. Grignard reported that an alkyl halide (RX) reacts with magnesium metal (Mg) in diethyl ether to give a 
cloudy solution of an organomagnesium compound (RMgX), which upon reaction with aldehydes and ketones 
afforded secondary and tertiary alcohols, respectively.1 These organomagnesium compounds are called Grignard 
reagents, and their addition across carbon-heteroatom multiple bonds is referred to as the Grignard reaction. Soon 
after its discovery, the Grignard reaction became one of the most versatile C-C bond forming tools. The general 
features of Grignard reagents and their reactions are: 1) the reagents are predominantly prepared by reacting alkyl, 
aryl, or vinyl halides with magnesium metal in aprotic nucleophilic solvents (e.g., ethers, tertiary amines); 2) the 
reagents are usually thermodynamically stable but air and moisture sensitive and incompatible with acidic functional 
groups (e.g., alcohols, thiols, phenols, carboxylic acids, 1°, 2° amines, terminal alkynes); 3) the C-Mg bond is very 
polar and the partial negative charge resides on the carbon atom, so Grignard reagents are excellent carbon 
nucleophiles (in the precursor halides the carbon has a partial positive charge so overall a reversal of polarity known 
as umpolung takes place upon formation of the reagent); 4) in most carbon-heteroatom multiple bonds the carbon 
atom is partially positively charged so the formation of C-C bonds with the nucleophilic Grignard reagents is 
straightforward; 5) addition of one equivalent of Grignard reagent followed by a work-up converts aldehydes to 
secondary alcohols (formaldehyde to primary alcohols), ketones to tertiary alcohols, nitriles to ketones and carbon-
dioxide to acids; 6) acid derivatives react with two equivalents of Grignard reagent: esters and acyl halides (RCOX) 
are converted to tertiary alcohols; 7) prochiral aldehydes and ketones give rise to racemic mixtures of the 
corresponding alcohols upon reacting with achiral Grignard reagents, since the addition takes place on both faces of 
the carbonyl group; 8) chiral substrates, however, lead to diastereomeric mixtures with the predominant formation of 
one diastereomer as predicted by the Felkin-Anh or chelation-control models; and 9) alkyl halides can couple with 
Grignard reagents in a Wurtz reaction to give alkanes, while epoxides are opened in an SN2 reaction at the less 
substituted carbon to give two-carbon homologated alcohols. Grignard reactions are often accompanied by certain 
side-reactions: 1) the generation of the Grignard reagent from alkyl halides can lead to undesired Wurtz coupling
products; 2) the presence of oxygen (air) and moisture can consume some of the reagent to give alkoxides and 
alkanes, respectively; 3) if the carbonyl compound has a proton at the α-position, the Grignard reagent can act as a 
base and enolize the substrate (alkyllithium or organocerium reagents offer a solution to this problem, because they 
are more covalent and therefore less basic); and 4) if the reagent has a β-hydrogen and the substrate is hindered, 
reduction of the carbonyl group may occur by an intermolecular hydride transfer. 

Mechanism: 5,27-33,18,34

The mechanism of the formation of the Grignard reagent is most likely a single-electron-transfer (SET) process, and it 
takes place on the metal surface.33 The mechanism of the addition of Grignard reagents to carbonyl compounds is 
not fully understood, but it is thought to take place mainly via either a concerted process or a radical pathway 
(stepwise).5,27,29 It was found that substrates with low electron affinity react in a concerted fashion passing through a 
cyclic transition state. On the other hand, sterically demanding substrates and bulky Grignard reagents with weak C-
Mg bonds tend to react through a radical pathway, which commences with an electron-transfer (ET) from RMgBr to 
the substrate.34
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GRIGNARD REACTION 

Synthetic Applications:

The stereoselective total synthesis of (±)-lepadiformine was accomplished in the laboratory of S.M. Weinreb.35 The 
introduction of the hexyl chain in a stereoselective fashion was achieved by a Grignard reaction to an iminium salt 
during the last steps of the synthetic sequence. The iminium salt was generated in situ from an α-amino nitrile with 
boron trifluoride etherate, and the addition of hexylmagnesium bromide gave a 3:1 mixture of alkylated products 
favoring the desired stereoisomer. Removal of the benzyl group completed the total synthesis. 

The conjugate addition of Grignard reagents to cyclic α,β-unsaturated ketones can be efficiently directed by an alkoxy 
substituent in the γ-position. This was the case in J.D. White’s total synthesis of sesquiterpenoid polyol (±)-
euonyminol in which an isopropenyl group was introduced to a bicyclic substrate via a chelation-controlled conjugate 
Grignard addition.36 The γ-hydroxy unsaturated cyclic ketone was first treated with LDA and 15-crown-5 and then with 
isopropenylmagnesium bromide, which led to the formation of a reactive ate complex through a Schlenk equilibrium.
From the ate complex, the isopropenyl group was intramolecularly transferred to the β-carbon of the enone. 

The addition of Grignard reagents to complex molecules sometimes results in side reactions that may destroy the 
substrate. These side reactions are often attributed to the basicity of the reagent. Therefore, more nucleophilic 
derivatives must be prepared. This was the case during the total synthesis of (–)-lochneridine by M.E. Kuehne et al., 
when the attempted conversion of a pentacyclic ketone to the corresponding tertiary alcohol with ethylmagnesium 
bromide failed.37 However, the formation of an organocerium reagent by adding the Grignard reagent to anhydrous 
CeCl3 increased its nucleophilicity, therefore the reaction afforded the desired tertiary alcohol in 73% yield with 
complete diastereoselection. 

During the synthesis of natural and modified cyclotetrapeptide trapoxins, S.L. Schreiber and co-workers prepared a 
fully functionalized nonproteinogenic amino acid surrogate via the ring-opening of Cbz serine β-lactone with an 
organocuprate derived from a Grignard reagent.38
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GROB FRAGMENTATION 
(References are on page 594)

Importance:

[Seminal Publications1-3; Reviews4-6; Theoretical Studies7-9]

In the 1950s, C.A. Grob was the first to systematically investigate the regulated heterolytic cleavage reactions of 
molecules containing certain combinations of carbon and heteroatoms (e.g., B, O, N, S, P, halogens). Cleavage 
reactions of this type are referred to as Grob fragmentations, and as a result, three fragments (products) are formed. 
The general formula of “a-b-c-d-X” represents three embedded components: 1) “a-b” is the electrofuge, which leaves 
without the bonding electron pair and becomes the electrofugal fragment; 2) “c-d” will become the unsaturated 
fragment at the end of the reaction; and 3) “X” is the nucleofuge, which leaves with a bonding electron pair. Typical 
electrofugal fragments are carbonyl compounds, carbon dioxide, imonium-, carbonium- and acylium ions, olefins, and 
dinitrogen. Stabilization of the incipient positive charge on atom “b” and the inductive effect of atom “a” together 
determine how facile the formation of the electrofugal fragment is. The unsaturated fragment is usually an olefin, 
alkyne, imine, or nitrile while the nucleofugal fragment is often a halide, carboxylate, or sulfonate ion. The nucleofuge 
can have a charge (e.g., diazonium ion) before the fragmentation occurs, and that can accelerate the cleavage of the 
b-c and d-X bonds. The Grob fragmentation is often accompanied by side reactions such as substitution, elimination, 
or ring closure. It is most synthetically useful when it takes place in rigid bi- or polycyclic systems in a concerted and 
highly stereoselective fashion, so the stereochemical outcome of the product is predictable. 

Mechanism: 10,5,11-13

Heterolytic cleavage reactions such as the Grob fragmentation can take place by several different mechanisms, and 
the exact pathway depends on the structural, steric and electronic factors present in the substrate. There are three 
main mechanistic pathways: 1) one-step synchronous (concerted) cleavage in which the a=b and X fragments depart 
from the middle c=d group simultaneously; 2) two-step cleavage starting with the loss of X and the departure of the 
a=b fragment from the carbocationic intermediate; and 3) two-step cleavage starting with the departure of a=b and 
the loss of X from the carbanionic intermediate (this is rare). The synchronous mechanism has very strict structural 
and stereochemical requirements, since five atoms are involved in the transition state: all five atomic orbitals need to 
overlap. These requirements are best met in rigid polycyclic systems and the Grob fragmentation of these rigid 
molecules exhibits a significant increase in reaction rates compared to the non-concerted fragmentations 
(frangomeric effect). When the stereochemical arrangement for the concerted process cannot be achieved due to 
strain, then the so-called syn fragmentation or side reactions (e.g., elimination) take place.6
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GROB FRAGMENTATION 

Synthetic Applications:

L.A. Paquette and co-workers accomplished the first total synthesis of the antileukemic agent jatrophatrione.14 This 
natural product has a [5.9.5] fused tricyclic skeleton with a trans-B/C ring fusion. The key step in their approach was 
the Grob fragmentation to obtain the tricyclo[5.9.5] skeleton. The tetracyclic 1,3-diol was monomesylated on the less 
hindered hydroxyl group and then treated with potassium tert-butoxide, triggering the concerted fragmentation to 
afford the desired tricyclic product in almost quantitative yield. 

In the laboratory of J.D. Winkler, the synthesis of the carbon framework of the eleutherobin aglycon was developed 
using a tandem Diels-Alder reaction and a Grob fragmentation as key steps.15 The tricyclic fragmentation precursor 
was subjected to potassium carbonate in DMF at 75 °C to afford the fragmentation product in 68% yield via a dianion 
intermediate that underwent a spontaneous hemiketalization.  

G.A. Molander et al. used samarium(II) iodide to prepare highly functionalized stereodefined medium sized (8-, 9-, 
and 10-membered) carbocycles via a domino reaction composed of a cyclization/fragmentation process.16 The 
method involved the reduction of substituted keto mesylates bearing iodoalkyl, allyl, or benzyl side chains under 
Barbier-type conditions. The intramolecular Barbier reaction occurred between the iodoalkyl chain and the ketone of 
the cycloalkanone and generated a bicyclic alkoxide that underwent Grob fragmentation. The reaction proceeded in a 
stereoselective manner with high yields under mild conditions. The cyclization of cycloalkanediones under similar 
conditions was also observed, yielding functionalized polycyclic hydroxyl ketones in high yields with complete 
diastereoselectivity.  
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HAJOS-PARRISH REACTION 
(References are on page 595)

Importance:

[Seminal Publications1-4; Reviews5-12; Modifications & Improvements13-18; Theoretical Studies19-22]

In the early 1970s, two industrial groups independently examined the asymmetric intramolecular aldol reaction  of 2-
alkyl-2-(3-oxoalkyl)-cyclopentane-1,3-diones using amino acids. Z.G. Hajos and D.R. Parrish at Hoffmann-LaRoche 
found that a catalytic quantity of (S)-(–)-proline was sufficient to furnish the cyclization of 2-methyl-2-(3-oxobutyl)-
cyclopentane-1,3-dione and induce enantioselectivity.3,4 Best results were obtained when the reaction was carried out 
in polar aprotic solvents such as DMF at room temperature in the presence of 3 mol% (S)-(–)-proline yielding the 
product quantitatively with 93.4% ee. p-Toluenesulfonic acid catalyzed dehydration to the corresponding bicyclic 
enone (Hajos-Parrish ketone) could be realized without the loss of optical purity. R. Wiechert and co-workers showed 
that the enone product could be formed directly when the cyclization was performed in the presence of (S)-(–)-proline
(10-200 mol%) and an acid co-catalyst such as HClO4.1,2 The amino acid catalyzed intramolecular aldol reaction of
prochiral 2-alkyl-2-(3-oxoalkyl)-cyclopentane-1,3-diones is known as the Hajos-Parrish reaction, but it is also referred 
to as the Hajos-Parrish-Eder-Sauer-Wiechert reaction. (S)-(–)-Proline catalyzed intramolecular aldol reaction of 2-
methyl-2-(3-oxobutyl)-cyclohexane-1,3-dione leading to 8a-methyl-3,4,8,8a-tetrahydro-2H,7H-naphthalene-1,6-dione 
(Wieland-Miescher ketone) could also be realized in high yields, although the optical purity of the product was 
moderate (70%) and further recrystallization was required to obtain the product in optically pure form.23 Since its 
invention, the Hajos-Parrish reaction was applied to the synthesis of several differently substituted hexahydroindene-
1,5-dione-, 2,3,7,7a-tetrahydro-6H-indene-1,5-dione- and 3,4,8,8a-tetrahydro-2H,7H-naphthalene-1,6-dione 
derivatives.1-5,16,18 The most general catalyst is (S)-(–)-proline, but in certain cases (S)-(–)-phenylalanine proved to be 
more efficient.24 The reaction was also studied applying polymer bound (S)-(–)-proline as catalyst.15 Precursors for 
the Hajos-Parrish reaction can be easily obtained by the Michael addition of cyclopentane-1,3-dione and 
cyclohexane-1,3-dione derivatives to α,β-unsaturated ketones. 

Mechanism:4,25-28,20-22

The originally proposed stereochemical model by Hajos and Parrish4 was rejected by M.E. Jung25 and A. 
Eschenmoser.26 They proposed a one-proline aldolase-type mechanism involving a side chain enamine. The most 
widely accepted transition state model to account for the observed stereochemistry was proposed by C. Agami et al. 
suggesting the involvement of two (S)-(–)-proline molecules.14,27-29 Recently, K.N. Houk and co-workers reexamined 
the mechanism of the intra- and intermolecular (S)-(–)-proline catalyzed aldol reactions. Their theoretical studies, 
kinetic, stereochemical and dilution experiments support a one-proline mechanism where the reaction goes through a 
six-membered chairlike transition state.19-22
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HAJOS-PARRISH REACTION 

Synthetic Applications:

A short, enantioselective total synthesis of (+)-desogestrel, the most prescribed third-generation oral contraceptive, 
was accomplished by E.J. Corey et al.30 They started out from a Hajos-Parrish ketone analogue (S)-(+)-7a-ethyl-
2,3,7,7a-tetrahydro-6H-indene-1,5-dione, which was readily available by the original procedure by Hajos and 
Parrish.4 The desired enone could be synthesized starting out from 2-ethylcyclopentane-1,3-dione that underwent 
Michael addition with methyl vinyl ketone. Intramolecular aldol reaction in the presence of 30 mol% (S)-(–)-proline
followed by dehydration gave the product in high yield and excellent enantioselectivity. The product enone could be 
converted to desogestrel in 16 consecutive steps.

The first enantioselective total synthesis of tetracyclic sesquiterpenoid (+)-cyclomyltaylan-5α-ol, isolated from a 
Taiwanese liverwort, was accomplished by H. Hagiwara and co-workers.31 They started out from Hajos-Parrish 
ketone analogue, (S)-(+)-4,7a-dimethyl-2,3,7,7a-tetrahydro-6H-indene-1,5-dione, that could be synthesized from 2-
methylcyclopentane-1,3-dione and ethyl vinyl ketone in an acetic acid-catalyzed Michael addition followed by an 
intramolecular aldol reaction. The intramolecular aldol reaction was carried out in the presence of one equivalent (S)-
(–)-phenylalanine and 0.5 equivalent D-camphorsulfonic acid. The resulting enone was recrystallized from hexane-
diethyl ether to yield the product in 43% yield and 98% ee. Since the absolute stereochemistry of the natural product 
was unknown, the total synthesis also served to establish the absolute stereochemistry. 

J. Wicha and co-workers reported the enantioselective synthesis of the CD side-chain portion of ent-vitamine D3.18

The key step in their approach was the amino acid mediated asymmetric Robinson annulation between 2-methyl- 
cyclopentane-1,3-dione and 1-phenylsulfanyl-but-3-en-2-one. During their optimization studies they found that the 
annulation is most efficient if the reaction is carried out in the presence of (S)-(–)-phenylalanine and D-
camphorsulfonic acid, giving the product in 69% yield and 86.2% ee. The optical purity of the enone could be 
improved to 95.6% by recrystallization from methanol. 

The first total synthesis of barbacenic acid, a bisnorditerpene containing five contiguous stereocenters, was achieved 
by A. Kanazawa et. al.32,33 They started out from a Wieland-Miescher ketone analogue that could be synthesized with 
high yield and excellent enantioselectivity by the procedure of S. Takahashi. According to this procedure, the Michael 
addition product 2-methyl-2-(3-oxo-pentyl)-cyclohexane-1,3-dione was cyclized in the presence of (S)-(–)-
phenylalanine and D-camphorsulfonic acid.  
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HANTZSCH DIHYDROPYRIDINE SYNTHESIS 
(References are on page 595)

Importance:

[Seminal Publication1; Reviews2-13; Modifications & Improvements14-22]

In 1882, A. Hantzsch condensed two moles of ethyl acetoacetate with one mole of acetaldehyde and ammonia to 
obtain a fully substituted symmetrical dihydropyridine.1 He initially assigned the structure as a 2,3-dihydropyridine, but 
it was later shown to be a 1,4-dihydropyridine. The one-pot condensation of a β-keto ester or a 1,3-dicarbonyl 
compound with an aldehyde and ammonia to prepare 1,4-dihydropyridines is known as the Hantzsch dihydropyridine 
synthesis. Frequently, the 1,4-dihydropyridine products are spontaneously oxidized to the corresponding substituted 
pyridines, but in the case of stable dihydropyridines, the use of an oxidizing agent [e.g., HNO2, HNO3,
(NH4)2Ce(NO3)6, MnO2, Cu(NO3)2] is necessary.23-30 General features of the reaction are: 1) aliphatic, aromatic, 
heterocyclic, and α,β-unsaturated aldehydes can be used as the aldehyde component; 2) ammonia or primary 
amines are suitable as the amine component; 3) the dicarbonyl component is usually an acyclic or cyclic β-keto ester, 
β-keto aldehyde, or a 1,3-diketone; 4) the product of the reaction is a symmetrical dihydropyridine, which is formed in 
good or excellent yield; 5) if the C3 and C5 substituents are electron-withdrawing (e.g., acyl, nitro, sulfonyl) the 
dihydropyridine is stable enough to be isolated; 6) the reaction conditions can range from basic media all the way to 
strongly acidic solutions, and the choice of conditions needs to be optimized for the given system; 7) good yields are 
obtained with substrates having electron-withdrawing groups; and 8) sterically congested aldehydes generally give 
low yields (e.g., o-substituted benzaldehyde). The original procedure only affords symmetrical products, but there are 
several modifications that allow the preparation of unsymmerical dihydropyridines: 1) one equivalent of a β-keto ester 
is condensed with an aldehyde of choice to give an α,β-unsaturated carbonyl compound (alkylidene), which in turn is 
treated with another β-keto ester and a nitrogen source; 2) an α,β-unsaturated carbonyl compound (derived from the 
condensation of active methylene compounds and aldehydes) is condensed with an enamine;31-33 and 3) in the 
Knoevenagel modification various substituted 1,5-dicarbonyl compounds can be prepared  (e.g., Michael addition of a 
1,3-dicarbonyl compound to an α,β-unsaturated carbonyl compound under basic conditions) and reacted with a 
nitrogen source (usually ammonium acetate-acetic acid).34,35

Mechanism: 36-38

There have been many studies aiming to determine the exact mechanistic pathway of the Hantzsch dihydropyridine 
synthesis, but the 13C and 15N-NMR experiments conducted by A.R. Katritzky et al. were the only ones that confirmed 
the existence of certain intermediates.37 All of the investigated reactions had two common intermediates: an enamine 
and an α,β-unsaturated carbonyl compound. The initial steps of the reaction involve a Knoevenagel condensation of 
the 1,3-dicarbonyl compound with the aldehyde to give an α,β-unsaturated carbonyl compound and a condensation 
of ammonia with another equivalent of the 1,3-dicarbonyl compound to give an enamine. The rate determining step is 
the Michael addition of the enamine to the α,β-unsaturated carbonyl compound. Subsequently, the addition product 
undergoes an intramolecular condensation of the amino and carbonyl groups to afford the desired substituted 1,4-
dihydropyridine. 
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HANTZSCH DIHYDROPYRIDINE SYNTHESIS 

Synthetic Applications:

F. Dollé and co-workers synthesized (–)-S12968, an optically active 1,4-dihydropyridine that is a calcium channel 
antagonist.39 The key step in their synthetic approach was a modified Hantzsch dihydropyridine synthesis and the 
resulting racemic mixture was separated by chiral HPLC. The starting β-keto ester was condensed with 2,3-
dichlorobenzaldehyde under slightly acidic conditions to obtain the corresponding benzylidene derivative in 50% 
yield. Next, the second β-keto ester was heated in ethanol along with ammonium formate, which was the source of 
ammonia, to give the racemic 1,4-dihydropyridine. Finally, HPLC separation of the enantiomers followed by 
deprotection and esterification gave (–)-S12968.

A new strategy for the synthesis of heterocyclic α-amino acids utilizing the Hantzsch dihydropyridine synthesis was 
developed in the laboratory of A. Dondoni.40 The enantiopure oxazolidinyl keto ester was condensed with 
benzaldehyde and tert-butyl amino crotonate in the presence of molecular sieves in 2-methyl-2-propanol to give a 
85% yield of diastereomeric 1,4-dihydropyridines. The acetonide protecting group was removed and the resulting 
amino alcohol was oxidized to the target 2-pyridyl α-alanine derivative.

Lipophilic 1,4-dihydropyridines, such as 4-aryl-1,4-dihydropyridines, exhibit significant calcium channel antagonist 
activity. N.R. Natale et al. have synthesized a series of 4-isoxazolyl-1,4-dihydropyridines bearing lipophilic side chains 
at the C5 position of the isoxazole ring.41 The Hantzsch synthesis was carried out in an aerosol dispersion tube at 
110 °C in ethanol in the presence of 2 equivalents of ethyl acetoacetate and aqueous ammonia solution. 

M. Baley reported the first synthesis of an unsymmetrical 2,2'-6'2''-terpyridine containing two carboxylic acids using 
the Hantzsch dihydropyridine synthesis followed by an oxidation.42 The furan ring served as a latent carboxylic acid 
functional group. 
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HECK REACTION 
(References are on page 596)

Importance:

[Seminal Publications1-4; Reviews5-39; Modifications & Improvements40-47; Theoretical Studies48-54]

In the early 1970s, T. Mizoroki and R.F. Heck independently discovered that aryl, benzyl and styryl halides react with 
olefinic compounds at elevated temperatures in the presence of a hindered amine base and catalytic amount of Pd(0)

to form aryl-, benzyl-, and styryl-substituted olefins.1-3 Today, the palladium-catalyzed arylation or alkenylation of 
olefins is referred to as the Heck reaction. Since its discovery, the Heck reaction has become one of the most widely 
used catalytic carbon-carbon bond forming tools in organic synthesis. The general features of the reaction are: 1) it is 
best applied for the preparation of disubstituted olefins from monosubstituted ones; 2) the electronic nature of the 
substituents on the olefin only has limited influence on the outcome of the reaction; it can be either electron-donating 
or electron-withdrawing but usually the electron poor olefins give higher yields; 3) the reaction conditions tolerate a 
wide range of functional groups on the olefin component: esters, ethers, carboxylic acids, nitriles, phenols, dienes, 
etc., are all well-suited for the coupling, but allylic alcohols tend to rearrange; 4) the reaction rate is strongly 
influenced by the degree of substitution of the olefin and usually the more substituted olefin undergoes a slower Heck 
reaction; 5) unsymmetrical olefins (e.g., terminal alkenes) predominantly undergo substitution at the least substituted 
olefinic carbon; 6) the nature of the X group on the aryl or vinyl component is very important and the reaction rates 
change in the following order: I > Br ~ OTf >> Cl;  7) the R1 group in most cases is aryl, heteroaryl, alkenyl, benzyl, 
and rarely alkyl (provided that the alkyl group possesses no hydrogen atoms in the β-position), and these groups can 
be either electron-donating or electron-withdrawing; 8) the active palladium catalyst is generated in situ from suitable 
precatalysts (e.g., Pd(OAc)2, Pd(PPh3)4) and the reaction is usually conducted in the presence of monodentate or 
bidentate phosphine ligands and a base; 9) the reaction is not sensitive to water, and the solvents need not be 
thoroughly deoxygenated; and 10) the Heck reaction is stereospecific as the migratory insertion of the palladium 
complex into the olefin and the β-hydride elimination both proceed with syn stereochemistry. There are a couple of 
drawbacks of the Heck reaction: 1) the substrates cannot have hydrogen atoms on their β-carbons, because their 
corresponding organopalladium derivatives tend to undergo rapid β-hydride elimination to give olefins; and 2) aryl 
chlorides are not always good substrates because they react very slowly. Several modifications were introduced 
during the past decade: 1) asymmetric versions;23,36 2) generation of quaternary stereocenters in the intramolecular 
Heck reaction;17,55,34 3) using water as the solvent with water-soluble catalysts;56,57,47 and 4) heterogeneous palladium 
on carbon catalysis.40

Mechanism: 58,59,21,22,51,53

The mechanism of the Heck reaction is not fully understood and the exact mechanistic pathway appears to vary 
subtly with changing reaction conditions. The scheme shows a simplified sequence of events beginning with the 
generation of the active Pd(0) catalyst. The rate-determining step is the oxidative addition of Pd(0) into the C-X bond. 
To account for various experimental observations, refined and more detailed catalytic cycles passing through anionic, 
cationic or neutral active species  have been proposed.21,36
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HECK REACTION 

Synthetic Applications:

Ecteinascidin 743 is a potent antitumor agent that was isolated from a marine tunicate. T. Fukuyama et al. applied the 
intramolecular Heck reaction as the key step in the assembly of the central bicyclo[3.3.1] ring system.60 Toward this 
end, the cyclic enamide precursor was exposed to 5 mol% of palladium catalyst and 20 mol% of a phosphine ligand 
in refluxing acetonitrile to afford the desired tricyclic intermediate in 83% isolated yield.  

The introduction of the C3 quaternary center was the major challenge during the total synthesis of asperazine by L.E. 
Overman and co-workers.61 To address this synthetic problem, a diastereoselective intramolecular Heck reaction was 
used. The α,β-unsaturated amide precursor was efficiently coupled with the tethered aryl iodide moiety in the 
presence of 20 mol% Pd2(dba)3⋅CHCl3 and one equivalent of (2-furyl)3P ligand. The desired hexacyclic product was 
obtained as a single diastereomer in 66% yield. 

The total synthesis of the potent anticancer macrocyclic natural product lasiodiplodin was achieved in the laboratory 
of A. Fürstner.62 The key macrocyclization step was carried out by the alkene metathesis of a styrene derivative, 
which was prepared in excellent yield via an intermolecular Heck reaction between an aryl triflate and high-pressure 
ethylene gas.  
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HEINE REACTION 
(References are on page 597)

Importance:

[Seminal Publications1-4; Reviews5-9]

In 1959, H.W. Heine described the isomerization of 1-aroylaziridines to the corresponding 2-aryl-2-oxazolines in the 
presence of excess sodium iodide in acetone at room temperature or at reflux.1 The isomerizations took place in 
almost quantitative yields. The intramolecular ring expansion of substituted N-acylaziridines by nucleophilic reagents 
(e.g., NaI or KSCN) to the corresponding substituted oxazolines is known as the Heine reaction. The isomerization of 
various substituted aziridines to oxazolines under acidic and thermal conditions are very well known, but the Heine 
reaction is the only reaction that induces these isomerizations under mild and neutral conditions.5,6,9 The main 
features of the Heine reaction are: 1) iodide ion and thiocyanate ion were found to be the only nucleophiles to induce 
isomerizations;2 2) the course of the reaction is greatly influenced by the choice of solvent and acetone, acetonitrile, 
and 2-propanol give the best results;2 3) the Heine reaction is stereospecific; when non-racemic aziridines are used 
as substrates, the stereochemical outcome is a net retention of configuration; 4) 3-aryl substituted N-acyl 
aziridinecarboxylic esters (R2 = aryl) or aryl disubstituted C2-symmetric N-acyl aziridines are the best substrates, 
since it is essential to open the aziridine ring regiospecifically; 5) substrates for which the aziridine ring-opening is not 
regiospecific give rise to a mixture of products; and 6) aziridines that are substituted at C1 with electron-withdrawing 
groups often undergo dimerization when treated with sodium iodide.5,6 The ring expansion of N-substituted aziridines 
(X = O, S, N) with iodide or thiocyanate ions is quite general and can lead to other five-membered heterocycles such 
as thiazolines, imidazolines and triazolines. 

Mechanism: 5,6,9

The first step of the Heine reaction is the regiospecific SN2 attack of the iodide ion at the C3 carbon resulting in the 
ring-opening of the aziridine and the inversion of stereochemistry at C3. Next, the secondary alkyl iodide is attacked 
by the negatively charged oxygen atom in an SN2 reaction causing the stereochemistry to invert once again at C3. 
Since two consecutive inversions (double inversion) take place at C3, the stereochemical outcome of the Heine 
reaction is a net retention. 

N

O R1

R2 R3

N

O R1

R2 R3

or
NaI or KSCN  / solvent

NO

R1

R2 R3

NO

R1

R2 R3

or

Oxazolines

N

X R1

R2 R2

NaI

solvent

NX

R1

R2 R2 N

N

R4 R5

N
R

NaI

solvent

N
N

NR

N-acylaziridines

R4 R5

X = O  oxazoline
X = S  thiazoline
X = N  imidazoline

Substituted
N-aryl

triazoline
substituted

1-arylazoaziridine

R1 = alkyl, aryl, O-alkyl, O-aryl, N,N-dialkyl, N,N-diaryl; R2 = aryl; R3 = CO2-alkyl, CO2-aryl; R4 = aryl; R5 = aryl, H; X = O, S, NH, NR;
solvent = 2-propanol, acetone, acetonitrile

N

O R1

R2 R3

I

O N

R1

R3I

R2

SN2 SN2 NO

R1

R2 R3

alkyl iodide 
intermediate

Oxazoline



199

HEINE REACTION 

Synthetic Applications:

The synthesis of ferrocenyl oxazolines was accomplished in the laboratory of B. Zwanenburg using the Heine 
reaction as the key step to form the oxazoline rings.10 N-Ferrocenoyl-aziridine-2-carboxylic esters were prepared by 
the acylation of optically active aziridines with either ferrocenecarbonyl chloride or ferrocene-1,1'-dicarbonyl dichloride 
and treated with catalytic amounts of NaI in boiling acetonitrile. The ring expansions proceeded in good yields 
affording the expected ferrocenyl oxazolines and ferrocenyl bis-oxazolines. The ester functionality provided a 
convenient handle for further modifications of the ligands by the addition of a Grignard reagent to form the 
corresponding ferrocenyl oxazoline carbinols. 

J.M.J. Tronchet and co-workers prepared functionalized octenopyranoses to investigate the synthetic utility of 
glycosylaziridine derivatives.11 The authors found that by treating bromoenoses with methanolic ammonia at room 
temperature, the corresponding disubstituted glycosylaziridines were formed with an E/Z ratio of 16:5.  The aziridines 
were acylated, and the resulting N-acyl glycosylaziridines were subjected to a nucleophilic ring-expansion to afford 
oxazolines in excellent yield. As expected, the overall stereochemical outcome was a net retention of configuration. 

The synthesis of proline containing tripeptides constrained with phenylalanine-like aziridine and 
dehydrophenylalanine residues was accomplished in the laboratory of J. Iqbal.12  These tripeptides show -turn 
structure in solution and are good models for studying the mechanism of HIV protease. The aziridine rings in these 
tripeptides were stereoselectively transformed via the Heine reaction in two steps to the corresponding 
dehydrophenylalanine containing tripeptides, which also prefer to form -turn structures in solution. 
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HELL-VOLHARD-ZELINSKY REACTION 
(References are on page 598)

Importance:

[Seminal Publications1-3; Reviews4-6; Modifications & Improvements7-11]

The preparation of α-halo carboxylic acids by treating the corresponding carboxylic acid with elemental halogen (Cl2
or Br2) at elevated temperatures in the presence of catalytic amounts of red phosphorous (P) or phosphorous trihalide 
(PCl3 or PBr3) is known as the Hell-Volhard-Zelinsky reaction (HVZ reaction). The reaction was first described by C. 
Hell1 and was slightly modified by J. Volhard2 and N. Zelinsky3 a few years later. The initial product of the HVZ 
reaction is an α-halo acyl halide, which usually is hydrolyzed to the corresponding α-halo acid during the aqueous 
work-up. However, when the work-up is conducted in the presence of nucleophiles such as alcohols, thiols, and 
amines, the corresponding α-halo esters, thioesters, and amides are formed, respectively. General features of the 
HVZ reaction are: 1) reaction conditions are relatively harsh, involving high temperatures (usually above 100 °C) and 
extended reaction times; 2) usually less than one equivalent of P or PX3 catalyst is needed; 3) certain activated 
carboxylic acids and acid derivatives (e.g. anhydrides, acyl halides, 1,3-diesters) that are readily enolized can be 
halogenated in the absence of a catalyst; 4) α-bromination of substrates with long alkyl chains is completely selective; 
however, α-chlorination competes with random free radical chlorination processes so a mixture of mono- and 
polychlorinated products are obtained;12,13 5) attempts to bring about the fluorination or iodination of carboxylic acids 
under HVZ conditions have not been successful (however, there are other means of introducing these elements 
directly into carboxylic acids);14 and 6) conducting the reaction at too high a temperature may result in the elimination 
of hydrogen halide from the product resulting in the formation of α,β-unsaturated carboxylic acids.12 To improve the 
low selectivity of chlorination, certain modifications were introduced: 1) passing chlorine gas through the neat 
aliphatic acid (chains are no longer than C8) at 140 °C in the presence of a strong acid catalyst and a free radical 
inhibitor;7,8 2) using TCNQ as the radical initiator gives monochlorinated products of acids of any chain length;9 and 3) 
treatment of  acylphosphonates with SO2Cl2 and subsequent hydrolysis of the α-chloro acylphosphonates to the 
corresponding α-halo acids.10,11

Mechanism: 15-17,4,18,19

The first part of the mechanism includes the conversion of the carboxylic acid functionality to the acyl halide by the 
phosphorous trihalide. The acyl halide easily tautomerizes to the corresponding enol in the presence of a catalytic 
amount of acid.15,4  The halogen subsequently reacts with the enol to afford the α-halo acyl halide, accompanied by 
the loss of a hydrogen halide. The halogen atoms in the PX3 catalyst/reagent are not incorporated in the α-position of 
the acid.
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HELL-VOLHARD-ZELINSKY REACTION 

Synthetic Applications:

A convenient one-pot procedure for the preparation of α-bromo thioesters from carboxylic acids based on the HVZ 
reaction was developed by H.-J. Liu and co-workers.20 The neat carboxylic acid was mixed with 0.4 equivalents of 
PBr3, the resulting mixture was heated to 100-120 °C in an oil bath and 1.2 equivalents of liquid bromine was added 
in 1.5h. In the same flask, now containing the α-bromo acyl bromide, the solution of the thiol in dichloromethane was 
added to give the desired α-bromo thioesters in high yield. 

The preparation of C2-symmetric 2,5-disubstituted pyrrolidines (utilized as chiral auxiliaries) often calls for meso-2,5-
dibromoadipic esters as starting materials. An improvement in the synthesis of the meso stereoisomer was published 
by T. O’Neill and co-workers.21 The authors began with the α-bromination of adipoyl chloride followed by esterification 
with ethanol to obtain a complex mixture of dibromo adipates (racemic + meso) in quantitative yield. The racemic and 
meso-dibromoadipates have very different crystalline properties, and these stereoisomers were found to be in 
equilibrium in an alcohol solution. Crystallizing the higher melting meso isomer and removing it from the equilibrium 
caused the remaining racemic mixture to convert to the meso isomer by shifting the equilibrium to the right, according 
to Le Chatelier’s principle.

In order to determine the structure of the photochemical rearrangement product of carvone camphor in methanol, and 
to prove its structure, the research team of T. Gibson subjected the bicyclic carboxylic acid product to a degradation 
sequence, which commenced with the HVZ reaction, followed by dehydrohalogenation, dihydroxylation and glycol 
cleavage.22
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HENRY REACTION 
(References are on page 598)

Importance:

[Seminal Publications1,2; Reviews3-18; Modifications & Improvements19-38; Theoretical Studies39]

In 1895, L. Henry discovered that nitroalkanes were easily combined with aldehydes and ketones to give β-nitro 
alcohols in the presence of a base.1,2 Since its discovery, the aldol condensation between nitroalkanes and carbonyl 
compounds (nitro-aldol reaction) has become a significant tool in the formation of C-C bonds and is referred to as the 
Henry reaction. The β-nitro alcohols are easily converted to other useful synthetic intermediates: 1) upon dehydration, 
nitroalkenes are formed that may be used as:  a) dienes and dienophiles;40-42 b) Michael acceptors;43 or c) masked 
ketones (since the Nef reaction converts them to the corresponding ketones); 2) oxidation of the secondary alcohol 
functionality affords α-nitro ketones; 3) reduction of the nitro group gives β-amino alcohols; and 4) radical denitration 
affords secondary alcohols. General features of the Henry reaction are: 1) only a catalytic amount of base is 
necessary; 2) both ionic and nonionic bases may be used such as alkali metal hydroxides, alkoxides, carbonates, 
sources of fluoride ion (e.g., TBAF,44 KF,45 Al2O3-supported KF46), solid supported bases,47 rare earth metal salts,48

transition metal complexes31,33,34 and nonionic organic nitrogen bases (e.g., amines,49 TMG,50 DBU,51 DBN,52 PAP27); 
3) the solvents and bases do not have significant influence on the outcome of the reaction; 4) the steric properties of 
the reactants play an important role: hindered substrates (usually ketones) react slowly and side reactions often 
occur; 5) usually the β-nitro alcohols are formed as a mixture of diastereomers (syn and anti) but by modification of 
the reaction conditions high levels of diastereoselectivity can be achieved;6,17 and 6) the stereocenter to which the 
nitro group is attached to is easy to epimerize. The Henry reaction is often accompanied by side reactions: 1) the β-
nitro alcohols undergo dehydration, especially when aromatic aldehydes are used as substrates; however, by 
carefully chosen conditions this can be supressed; 2) with sterically hindered carbonyl compounds, a base-catalyzed 
self-condensation or Cannizzaro reaction may take place; and 3) the retro-Henry reaction may prevent the reaction 
from going to completion.  Several modifications have been developed: 1) unreactive alkyl nitro compounds are 
converted to their corresponding dianions which react faster with carbonyl compounds;19,20 2) reactions of ketones 
are accelerated by using PAP as the base;27 3) high-pressure and solvent-free conditions improve chemo- and 
regioselectivity; 4) aldehydes react with α,α-doubly deprotonated nitroalkanes to give nitronate alkoxides that afford 
mainly syn-nitro alcohols upon kinetic protonation;6 5) nitronate anions on which the alcohol oxygen atom is silyl-
protected give predominantly anti-β-nitro alcohols upon kinetic protonation;6 6) nitronate anions in which one oxygen 
atom of the nitro group is silyl-protected give mainly anti-β-nitro alcohols when reacted with aldehydes in the 
presence of catalytic amounts of fluoride ion;6 7) in the presence of chiral catalysts the asymmetric Henry reaction
can be realized;13,15,17,18,34 and 8) when imines are used instead of carbonyl compounds as substrates, the aza-Henry 
reaction  takes place to afford nitroamines; upon the reduction of nitroamines, vicinal diamines are obtained.28,37

Mechanism: 53,51

All the steps in the Henry reaction are completely reversible. The first step of the mechanism is the deprotonation of 
the nitroalkane by the base at the α-position to form the corresponding resonance stabilized anion. Next, an aldol 
reaction (C-alkylation of the nitroalkane) takes place with the carbonyl compound to form diastereomeric β-nitro
alkoxides. Finally the β-nitro alkoxides are protonated to give the expected β-nitro alcohols.  
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HENRY REACTION 

Synthetic Applications:

R.J. Estévez and co-workers utilized the intramolecular Henry reaction in their synthetic strategy to convert 
nitroheptofuranoses into deoxyhydroxymethylinositols.54 The starting nitroheptofuranoses were prepared as a mixture 
of diastereomers from a D-glucose derivative and 2-nitroethanol using the intermolecular Henry reaction. The key 
intramolecular Henry reaction was brought about by treating this diastereomeric mixture with 2% aqueous sodium 
bicarbonate solution to afford an enantiomerically pure six-membered carbocycle. Removal of the nitro group and 
cleavage of the protecting groups gave the desired 1D-3-deoxy-3-hydroxymethyl-myo-inositol.

The first total synthesis of the 14-membered para ansa cyclopeptide alkaloid (–)-nummularine F was accomplished in 
the laboratory of M.M. Joullié.55 The N3 nitrogen atom was introduced by using the Henry reaction between the 4-
formylphenoxy group and the anion of nitromethane, followed by reduction of the nitro group to the corresponding 
amine. The epimeric benzyl alcohols did not pose a problem since they were dehydrated at the end of the synthetic 
sequence to give the C1-C2 double bond.  

The bone collagen cross-link (+)-deoxypyrrololine has potential clinical utility in the diagnosis of osteoporosis and 
other metabolic bone diseases. Intrigued by its novel structure and its promise to allow the early discovery of various 
bone diseases, the research team of M. Adamczyk developed a convergent total synthesis for this 1,3,4-trisubstituted 
pyrrole amino acid.56 The key step of the synthesis was the union of the nitroalkane and aldehyde fragments to obtain 
a diastereomeric mixture of the expected -nitro alcohol in good yield. This new functionality served as a handle to 
install the pyrrole ring. 

The total synthesis of (+)-cyclophellitol containing a fully oxygenated cyclohexane ring was accomplished by T. 
Ishikawa and co-workers.57 The synthetic strategy was based on the intramolecular silyl nitronate [3+2] cycloaddition
reaction. The cycloaddition precursor was prepared by the Henry reaction starting from a D-glucose-derived 
aldehyde. 
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HETERO DIELS-ALDER CYCLOADDITION 
(References are on page 599)

Importance:

[Seminal Publications1-3; Reviews4-43; Theoretical Studies44-59]

The [4π + 2π] cyclization of a diene and a dienophile to form a cyclohexene derivative is known as the Diels-Alder 
cycloaddition (D-A cycloaddition), but if one or more of the atoms in either component is other than carbon, then the 
reaction is referred to as the hetero D-A cycloaddition (HDA). The first example of an imine participating as a 
heterodienophile was reported by K. Alder in 1943.1 Since this initial report, the utilization of the HDA reaction in the 
synthesis of heterocyclic compounds has become pervasive. The general features of these reactions are: 1) high 
levels of regio- and diastereocontrol are observed and the outcome of the reaction can be predicted to the same 
extent as in the case of the all-carbon D-A reaction; 2) when the diene component does not contain a heteroatom and 
the heterodienophile is electron-deficient because of the heteroatom(s), the cycloaddition proceeds as a normal 
electron-demand D-A reaction (diene HOMO interacts with the LUMO of the heterodienophile); 3) when the diene 
contains one or more heteroatoms and/or electron-withdrawing substituents, it becomes electron-deficient, and 
therefore an electron-rich dienophile is needed and the reaction proceeds as an inverse electron-demand D-A 
reaction (heterodiene LUMO interacts with the HOMO of the dienophile); 4) when the heterodiene is substituted with 
one or more strongly electron-donating groups, the electron-deficient nature of the diene can be reversed and a 
normal electron-demand hetero D-A reaction can take place with a suitably electron-deficient dienophile; 5) HDA 
reactions can be catalyzed by Lewis acids, usually exhibiting higher regio- and stereoselectivities than uncatalyzed 
processes; and 6) by using a chiral auxiliary or catalyst the asymmetric HDA reaction can be realized.22,31,38

Mechanism: 60-69,51,53

Mechanistically the all-carbon Diels-Alder reaction is generally considered a concerted, pericyclic reaction with an 
aromatic transition state, but there is also evidence for a stepwise (diradical or diion) process. For HDA reactions,
theoretical studies revealed that the transition states are usually concerted, but less symmetrical. Depending on the 
reaction conditions and the number and type of substituents on the reactants, the HDA reaction can become 
stepwise, exhibiting a polar transition state. 
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HETERO DIELS-ALDER CYCLOADDITION 

Synthetic Applications:

The enantioselective total synthesis of the epidermal growth factor inhibitor (–)-reveromycin B was completed by M.A. 
Rizzacasa and co-workers.70 The key step to assemble the 6,6-spiroketal moiety was the HDA reaction between an 
α,β-unsaturated aldehyde (butylacrolein) and an enantiopure methylene pyran. The desired 6,6-spiroketal was 
obtained as a single enantiomer after heating the neat reactants in the absence of solvents at 110 °C for 2 days.  

In the laboratory of S.F. Martin, a biomimetic approach toward the total synthesis of (±)-strychnine was developed  by 
using tandem vinylogous Mannich addition and HDA reaction to construct the pentacyclic heteroyohimboid core of 
the natural product.71 The commercially available 4,9-dihydro-3H-β-carboline was first converted to the corresponding 
N-acylium ion and then reacted with 1-trimethylsilyloxybutadiene in a vinylogous Mannich reaction. The resulting 
cycloaddition precursor readily underwent the expected HDA reaction in 85% yield. 

The first total synthesis of the decahydroquinoline alkaloid (–)-lepadin A was reported by C. Kibayashi et al.72 The 
authors’ approach was based on the intramolecular HDA reaction of an in situ generated acylnitroso compound. The 
precursor hydroxamic acid was oxidized with Pr4N(IO4) in water-DMF (50:1) to form an acylnitroso compound that 
smoothly underwent the [4+2] cycloaddition. The trans bicyclic oxazino lactam product was formed as a 6.6:1 mixture 
of  diastereomers; a result of the hydrophobic effect.  

C.H. Swindell and co-workers enantioselectively prepared the Taxol A-ring side chain by using a thermal inverse 
electron-demand HDA reaction as the key step.73 The (Z)-ketene acetal was attached to a chiral auxiliary and reacted 
with the N-benzoylaldimine to give the desired dihydrooxazine in 75% yield with good diastereoselectivity. 
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HOFMANN ELIMINATION 
(References are on page 601)

Importance:

[Seminal Publications1-4; Reviews5-9; Modifications & Improvements10,11; Theoretical Studies12]

In 1851, A.W. Hofmann discovered that when trimethylpropylammonium hydroxide is heated, it decomposes to form 
a tertiary amine (trimethylamine), an olefin (propene), and water.1,2 Widespread use of this transformation did not 
occur until 1881, when Hofmann applied this method to the study of the structure of piperidines and nitrogen-
containing natural products (e.g., alkaloids).3,4 The pyrolytic degradation of quaternary ammonium hydroxides to give 
a tertiary amine, an olefin and water is known as the Hofmann elimination. The process involves three steps: 1) 
exhaustive methylation of the primary, secondary or tertiary amine with excess methyl iodide to yield the 
corresponding quaternary ammonium iodide; 2) treatment with silver oxide and water (the iodide counterion is 
exchanged with hydroxide ion); and 3) the aqueous or alcoholic solution of the quaternary ammonium hydroxide is 
concentrated under reduced pressure and heated between 100-200 °C to bring about the elimination. Under reduced 
pressure, the elimination tends to take place at lower temperatures with higher yields. When the substrate is 
heterocyclic or the nitrogen is at a ring junction or at the bridgehead, the above steps need to be repeated multiple 
times to completely eliminate the nitrogen from the molecule. In the old days the number of repetitions indicated the 
position of the nitrogen atom in the original molecule and gave valuable structural clues about the unknown 
substance. The Hofmann elimination is a β-elimination, that is, the hydrogen is abstracted by the base (hydroxide ion) 
from the β-carbon atom. In the case of unsymmetrical compounds (in which more than one alkyl group attached to 
the nitrogen has β-hydrogen atoms), the β-hydrogen located at the least substituted carbon is abstracted by the base 
to form the less substituted alkene (Hofmann’s rule).1 The Hofmann elimination has few side reactions: occasionally 
the base can act as a nucleophile and substitution products are isolated. When the substrate does not have any alkyl 
groups with β-hydrogen, the main product of the pyrolysis is the substitution product (alcohol when water is the 
solvent or ether when no solvent is used).13 An important variant of the Hofmann elimination is the Wittig modification
in which the quaternary ammonium halide is treated with strong bases (alkylithiums, KNH2/liquid NH3, etc.) to afford 
an olefin and tertiary amine via an Ei mechanism.11

Mechanism: 14-27,11,28-30,12,31-34

Generally the mechanism of the Hofmann elimination is E2, and it is an anti elimination (the leaving groups have to 
be trans-diaxial/antiperiplanar). However, in the case of certain substrates, the mechanism can be shifted in the 
carbanionic E1cb direction when the trans elimination process is unfavorable and the compounds contain sufficiently 
acidic allylic or benzylic β-hydrogen atoms. In acyclic substrates, the elimination gives rise to the least substituted 
alkene (Hofmann product). There are three factors which play a role in determining the outcome of the elimination: 1) 
the extent to which the double bond is developed in the transition state; 2) the acidity of the β-hydrogen atom; and 3) 
the influence of steric interactions in the transition state (this is the most widely accepted argument). In cycloalkyl 
ammonium salts, the most important factor in the elimination process is the availability of the trans β-hydrogen atoms. 
When both the β and β’ trans hydrogens atoms are available in cyclic substrates, the elimination gives the most 
substituted alkene (Saytzeff’s rule).
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HOFMANN ELIMINATION 

Synthetic Applications:

The enantioselective formal total synthesis of 4-demethoxydaunomycin was accomplished in the laboratory of M. 
Shibasaki.35 The key intermediate was prepared from an enantiomerically enriched trans-β-amino alcohol, which was 
first exhaustively methylated to the corresponding quaternary ammonium salt. This salt was then treated with excess 
n-BuLi to afford the desired allylic alcohol in moderate yield. 

During the total synthesis of fungal metabolite (–)-cryptosporin, R.W. Franck and co-workers developed an efficient 
method for the regiospecific synthesis of naturally occurring naphtho[2,3-b]pyrano- and [2,3-b]furanoquinones using 
the Bradscher cycloaddition as the key step.36 The Hofmann elimination of a primary amine located at the benzylic 
position, was carried out in the last steps of the synthesis. Interestingly, exhaustive methylation of the primary amine 
with excess MeI in MeOH/K2CO3 resulted in spontaneous elimination of the quaternary ammonium salt at room 
temperature.  

The ABCD ring system of the diterpene alkaloid atisine was constructed by T. Kametani et al using an intramolecular 
Diels-Alder cycloaddition reaction as the key step.37 The dienophile was obtained by the traditional Hofmann 
degradation of the corresponding dimethylamino precursor. The diene was prepared by the kinetic enolization of the 
cyclohexenone system with LDA. 

In the laboratory of D.S. Watt, the enantioselective total synthesis of (+)-picrasin B was achieved from (–)-Wieland-
Miescher ketone.38 At the early stages of the synthetic effort, an exocyclic double bond was introduced in a two-step 
procedure by first alkylating the bicyclic conjugated TMS enol ether with Eschenmoser’s salt at the γ-position, 
followed by Hofmann elimination of the dimethylamino group. 
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HOFMANN-LÖFFLER-FREYTAG REACTION 
(REMOTE FUNCTIONALIZATION) 

(References are on page 602)
Importance:

[Seminal Publications1-4; Reviews5-14; Modifications & Improvements15-22; Theoretical Studies23]

In the early 1880s, A.W. Hofmann was trying to determine if piperidine, whose structure was unknown at the time, 
was unsaturated by exposing it to hydrohalic acids or bromine. During these investigations he prepared various N-
haloamines and N-haloamides and studied their reactions under acidic and basic conditions. The treatment of 1-
bromo-2-propylpiperidine with hot sulfuric acid, followed by basic work-up, yielded octahydroindolizine, a bicyclic 
tertiary amine.1-3 In 1909, K. Löffler and C. Freytag applied this transformation to simple secondary amines and 
realized that it was a general method for the preparation of pyrrolidines.4 The formation of cyclic amines from N-
halogenated amines via an intramolecular 1,5-hydrogen atom transfer to a nitrogen radical is known as the Hofmann-
Löffler-Freytag reaction (HLF reaction). General features of the reactions are: 1) it may be carried out in acidic 
solutions, but neutral and even weakly basic reaction conditions have been applied successfully;24,25 2) it can be 
conducted under milder conditions if the intermediate alkyl radical is stabilized by a heteroatom (e.g., nitrogen);24 3) 
initiation of the radical process can be done by heating, irradiation with light or with radical initiators (e.g., dialkyl 
peroxides, metal salts); 4) the initially formed nitrogen-centered radical abstracts a H-atom mostly from the δ-position 
(or 5-position) and predominantly 5-membered rings are formed; and 5) rarely, in rigid cyclic systems, the formation 
of 6-membered rings is possible.24,15 The original strongly acidic reaction conditions are often not compatible with the 
sensitive functional and protecting groups of complex substrates, therefore several modifications were introduced: 1) 
photolysis of N-bromoamides proceeds under neutral conditions;26 2) in the presence of persulfates and metal salts, 
sulfonamides undergo remote γ- and δ-halogenation under neutral  conditions;27 3) the most important variant of this 
reaction is the Suárez modification in which N-nitroamides,20 N-cyanamides,18 and N-phosphoramidates22 react with 
hypervalent iodine reagents in the presence of iodine (I2) under neutral conditions to generate nitrogen-centered 
radicals via the hypothetical iodoamide intermediate. The HLF reaction is closely related to the well-known Barton 
nitrite ester reaction, which proceeds via alkoxyl radicals and has been extensively used for remote functionalization 
in steroid synthesis.  

Mechanism: 28-31

The mechanism of the HLF reaction is a radical chain reaction. When the reaction is conducted in acidic medium, the 
first step is the protonation of the N-halogenated amine to afford the corresponding N-halogenated ammonium salt. 
Heat, irradiation with light or treatment with radical initiators generates the nitrogen-centered radical, via the homolytic 
cleavage of the N-halogen bond, which readily undergoes an intramolecular 1,5-hydrogen abstraction. Next, the 
newly formed alkyl radical abstracts a halogen atom intermolecularly. Treatment of the δ-halogenated amine with 
base gives rise to the desired cyclic amine product. 
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HOFMANN-LÖFFLER-FREYTAG REACTION 
(REMOTE FUNCTIONALIZATION) 

Synthetic Applications:

In the laboratory of Y. Shibanuma, a novel synthetic approach was developed to construct the bridged azabicyclic 
ring system of the diterpene alkaloid kobusine.32 The bridged nitrogen structure of the target (±)-6,15,16-imino-
podocarpane-8,11,13-triene was synthesized by means of a Hofmann-Löffler-Freytag reaction from a bicyclic 
chloroamine. First the bicyclic amine was converted to the corresponding N-chloro derivative in good yield by 
treatment with NCS in dichloromethane. The solution of the bicyclic N-chloroamine in trifluoroacetic acid was then 
irradiated with a 400 W high pressure Hg-lamp under nitrogen atmosphere at r.t. for several hours to afford a 
moderate yield of the product. 

E. Suárez and co-workers prepared chiral 7-oxa-2-azabicyclo[3.2.1]octane and 8-oxa-6-azabicyclo[3.2.1]octane ring 
systems derived from carbohydrates via an intramolecular hydrogen abstraction reaction promoted by N-centered 
radicals.22 The N-centered radicals were obtained under mild conditions (Suárez modification) from phenyl and 
benzyl amidophosphates and alkyl and benzyl carbamate derivatives of aminoalditols by treatment with PIDA/I2 or
PhIO/I2. The initial N-radical undergoes a 1,5-hydrogen abstraction to form an alkyl radical, which is oxidized to the 
corresponding stabilized carbocation (oxocarbenium ion) under the reaction conditions. The overall transformation 
may be considered as an intramolecular N-glycosidation reaction.  

The Suárez modification of the HLF reaction was the basis of the new synthetic method developed by H. Togo et al.33

The authors prepared N-alkyl-1,2-benzisothiazoline-3-one-1,1-dioxides (N-alkylsaccharins) from N-alkyl(o-methyl)-
arenesulfonamides using (diacetoxyiodo)arenes in the presence of iodine via sulfonamidyl radicals. The 
transformations did not work in the dark, indicating the radical nature of the reaction. The yields varied from moderate 
to excellent and the nature of the aromatic substituents on both the substrate and the (diacetoxyiodo)arenes were 
important. It should be noted that the oxygen atom at the C3 position most likely arises from the hydrolysis of a C3 
diiodo intermediate (not isolated). 

N H

H3C CH3

bicyclic amine

NCS, DCM, 
0 °C
85%

1. Hg-lamp 
CF3CO2H

5h, r.t.

bicyclic N-chloroamine

2. 5% KOH, EtOH
reflux, 2hα

β
γ

δ

N Cl

H3C CH3

α
β

γ

δ

N

CH3

α
βγ

δ

38.7% (±)-6,15,16-iminopodocarpane-
8,11-13-triene

O
NH

Boc

MeO
OMe

OMe

O

MeO
OMe

OMe

N
Boc

PIDA 
(2 equiv)

I2
(0.75 equiv)

DCM, r.t. 
W-lamp

1.5h
87%

O
O

O
H

HN
(PhO)2(O)P

O O

PhIO 
(2 equiv)

I2
(1.2 equiv)

DCM, C6H12
 r.t., W-lamp

1h; 96%

O
O

O

N

O O

P(O)(OPh)2

8-Oxa-6-aza- 
bicyclo[3.2.1]octane

7-Oxa-2-aza-
bicyclo[3.2.1]heptane

CH3

CH3

S
N

O O

1. PhI(OAc)2 (3 equiv)
I2 (1 equiv)

ClCH2CH2Cl, reflux
W-lamp, 2hCH3

H

CH3

CH3

S
N

O O
CH3

CH3

2. H2O

S
N

I I

CH3 99%

O O

CH3

S
N CH3

O O

O

N-methyl-(o-methyl)- 
benzenesulfonamide sulfonamidyl radical

Saccharin derivative

CH3

CH2

S
N

O O
CH3

I

H

CH3

CI3

S
N

O O
CH3

H

triiodomethyl 
intermediate

3

C3 diiodo intermediate



210

HOFMANN REARRANGEMENT 
(References are on page 602)

Importance:

[Seminal Publications1-5; Reviews6-15; Modifications & Improvements16-30]

In 1881, A.W Hofmann found that by treating acetamide with one equivalent of bromine (Br2) and sodium or 
potassium hydroxide it afforded N-bromoacetamide. Upon further deprotonation and heating, N-bromoacetamide 
gave an unstable salt that in the absence of water readily rearranged to methyl isocyanate.1 However, in the 
presence of water and excess base the product was methylamine. The conversion of primary carboxamides to the 
corresponding one-carbon shorter amines is known as the Hofmann rearrangement (also known as the Hofmann 
reaction). According to the standard procedure, the amide is dissolved in a cold solution of an alkali hypobromite or 
hypochlorite and the resulting solution is heated to ~70-80 °C to bring about the rearrangement. The general features 
of this transformation are: 1) the hypohalite reagents are freshly prepared by the addition of chlorine gas or bromine 
to an aqueous solution of KOH or NaOH; 2) the amides cannot contain base-sensitive functional groups under the 
traditional basic reaction conditions, but acid-sensitive groups (e.g., acetals) remain unchanged; 3) the isocyanate 
intermediate is not isolated, since under the reaction conditions it is readily hydrolyzed (or solvolyzed) to the 
corresponding one-carbon shorter amine via the unstable carbamic acid; 4) when the reaction is conducted under 
phase-transfer catalysis conditions, the isocyanates may be isolated;31,25 5) if the starting amide is enantiopure (the 
carbonyl group is directly attached to the stereocenter), there is a complete retention of configuration in the product 
amine; 6) the Hofmann rearrangement gives high yields for a wide variety of aliphatic and aromatic amides but the 
best yields for aliphatic amides are obtained if the substrate has no more than 8 carbons (hydrophilic amides); and 7) 
α,β-unsaturated amides and amides of α-hydroxyacids rearrange to give aldehydes or ketones.32,33 Since the 
discovery of the Hofmann rearrangement, several modifications were introduced: 1) for hydrophobic amides, the use 
of methanolic sodium hypobromite (bromine added to sodium methoxide in methanol) results in high yields of the 
corresponding methylurethanes;6 2) for acid- and base-sensitive substrates the use of neutral electrochemically 
induced Hofmann rearrangement was developed;18,26,28 3) in order to extend the scope of the reaction for base-
sensitive substrates, the oxidative Hofmann rearrangement may be carried out with LTA or hypervalent iodine 
reagents (PIDA, PIFA, PhI(OH)OTs, etc.) under mildly acidic conditions;16,23,14,29 and 4) when hypervalent iodine 
reagents or LTA are used in the presence of an amine or an alcohol, the generated isocyanate is in situ converted to 
the corresponding carbamate or urea derivative.17

Mechanism: 34-40,19,41

The mechanism of the Hofmann rearrangement is closely related to the Curtius, Lossen and Schmidt
rearrangements. The first step is the formation of an N-halogen substituted amide. Next, the N-haloamide is 
deprotonated by the base to the corresponding alkali salt that is quite unstable and quickly undergoes a concerted 
rearrangement to the isocyanate via a bridged anion. This mechanistic picture is strongly supported by kinetic 
evidence.36-39 As a result, the Hofmann rearrangement proceeds with complete retention of configuration. 
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HOFMANN REARRANGEMENT 

Synthetic Applications:

The enantioselective total synthesis of (–)-epibatidine was accomplished in the laboratory of D.A. Evans.42 The key 
steps in the synthetic sequence included a hetero Diels-Alder reaction and a modified Hofmann rearrangement. The 
primary carboxamide was subjected to lead tetraacetate in tert-butyl alcohol that brought about the rearrangement 
and gave the corresponding N-Boc protected primary amine in good yield. A few more steps from this intermediate 
led to the completion of the total synthesis. 

The first asymmetric total synthesis of the hasubanan alkaloid (+)-cepharamine was completed by A.G. Schultz et 
al.43 In order to construct the cis-fused N-methylpyrrolidine ring, the advanced tetracyclic lactone was first converted 
to the primary carboxamide by treatment with sodium amide in liquid ammonia. Next the Hofmann rearrangement
was induced with sodium hypobromite in methanol initially affording the isocyanate, which upon reacting with the free 
secondary alcohol intramolecularly gave the corresponding cyclic carbamate in excellent yield. 

R. Verma and co-workers developed a silicon-controlled total synthesis of the antifungal agent (+)-preussin using a 
modified Hofmann rearrangement as one of the key steps in the final stages of the synthetic sequence.44 The primary 
carboxamide was exposed to LTA in DMF in the presence of benzyl alcohol, which resulted in an efficient Hofmann 
rearrangement to afford the Cbz-protected primary amine. As expected, there was no loss of optical activity in the 
product. The silicon group was finally converted to the corresponding secondary alcohol by the Fleming-Tamao 
oxidation.

During the late stages of the asymmetric total synthesis of capreomycidine IB it was necessary to transform an 
asparagine residue into a diaminopropanoic acid residue.45 R.M. Williams et al. employed a chemoselective Hofmann 
rearrangement, thereby avoiding protection and deprotection steps that would have been necessary had the 
diaminopropanoic acid been introduced directly. The complex pentapeptide was treated with PIFA and pyridine in the 
presence of water to afford the primary amine in high yield. 
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HORNER-WADSWORTH-EMMONS OLEFINATION 
(References are on page 603)

Importance:

[Seminal Publications1-4; Reviews5-24; Modifications & Improvements25-39; Theoretical Studies40-46]

In 1958, L. Horner utilized the carbanions of alkyl diphenyl phosphine oxides (R1=Ph) to prepare alkenes from 
aldehydes and ketones.1,2 This modification of the Wittig reaction is known as the Horner-Wittig reaction (or Horner 
reaction) but its widespread use in organic synthesis became a reality only in the early 1960s when W.S. Wadsworth 
and W.D. Emmons studied the synthetic utility of phosphonate carbanions (R1=O-alkyl) for the preparation of olefins.3
In this detailed study, Wadsworth and Emmons revealed the significant advantages these phosphonate carbanions 
had over the traditional triphenyl phosphorous ylides used in Wittig reactions. The stereoselective olefination of 
aldehydes and ketones using phosphoryl-stabilized carbanions (most often R1=O-alkyl and R2=CO2-alkyl) is referred 
to as the Horner-Wadsworth-Emmons olefination (or HWE olefination). The HWE olefination has the following 
advantages over the traditional Wittig olefination: 1) the preparation of the starting alkyl phosphonates is easier 
(usually the Arbuzov reaction is used) and cheaper than the preparation of phosphonium salts; 2) the phosphonate 
carbanions are more nucleophilic than the corresponding phosphorous ylides, so they readily react with practically all 
aldehydes and ketones under milder reaction conditions; 3) hindered ketones that are unreactive in Wittig reactions
react readily in HWE olefinations; 4) the α-carbon of the phosphonate anions can be further functionalized with 
various electrophiles (e.g., alkyl halides) prior to the olefination, but phosphorous ylides usually do not undergo 
smooth alkylation; 5) the by-product dialkyl phosphates are water-soluble, so it is much easier to separate them from 
the alkene products than from the water-insoluble triphenylphosphine oxide. General features of the HWE olefination
are: 1) high (E)-selectivity for disubstituted alkenes under much milder conditions than normally used in Wittig
reactions (R2 needs to be able to conjugate with the incipient double bond); 2) the (E)-selectivity is maximized by 
increasing the size of the alkyl group of the R1 or R2 substituents (e.g., R=isopropyl is best); and 3) the 
stereoselectivity is strongly substrate dependent but can be reversed to form predominantly (Z)-olefins by using 
smaller alkyl groups (e.g., methyl) in the R1 and R2 substituents and a strongly dissociating base (e.g., KOt-Bu).
There are a couple of important modifications of the HWE olefination: 1) in the Still-Gennari modification
R1=OCH2CF3 and the reaction affords (Z)-olefins exclusively;27 2) for base-sensitive substrates, the use of a metal 
salt (LiCl or NaI) and a weak amine base (e.g., DBU) has proven effective to avoid epimerization;28,30,35 3) 
asymmetric HWE olefinations;29,36,23 4) the Corey-Kwiatkowski modification uses phosphoric acid bisamides to 
prepare (Z)-alkenes stereoselectively, (Me2N)2P(O)CH2R, where R=aryl.25,26

Mechanism: 47,9,48,11
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HORNER-WADSWORTH-EMMONS OLEFINATION 

Synthetic Applications:

In the laboratory of T.R. Hoye, a HWE macrocyclic head-to-tail dimerization was used to construct the C2-symmetric 
macrocyclic core of (–)-cylindrocyclophane A. 49 The monomer phosphono ester aldehyde was subjected to sodium 
hydride in benzene containing a catalytic amount of 15-crown-5 ether and 55% of the (E,E)-macrocyclized product 
was obtained. None of the (Z,Z) stereoisomer was observed. Macrocyclization reactions usually require high-dilution 
conditions but even relatively concentrated solutions (0.02M) did not decrease the yield of the product in this case.  

A short, asymmetric total synthesis of an important 3-(hydroxymethyl)carbacephalosporin antibiotic was achieved by 
M.J. Miller and co-workers.50 The β-lactam ring was formed via a Mitsunobu cyclization, while the six-membered 
unsaturated ring was constructed by a HWE cyclization. This intramolecular olefination afforded a single 
diastereomer in 85% yield. 

In order to assign the absolute stereochemistry and relative configuration of callipeltoside A, B.M. Trost et al. devised 
a highly convergent total synthesis by which several stereoisomers were prepared.51 The key steps in the synthetic 
sequence were a ruthenium-catalyzed Alder-ene alkene-alkyne coupling, a Pd-catalyzed asymmetric allylic alkylation
and  a late-stage coupling of the side chain by the HWE olefination. The olefination step gave the coupled product in 
a moderate yield and with moderate stereoselectivity (E:Z = 4:1).  

CHO
(S)

OMe

OMe

n-Bu

P

phosphono ester aldehyde

NaH (4 equiv) 
benzene

15-crown-5 (cat.) OMe
(S)

(E)

(E)

MeO
(S)

CO2Me

CO2Me

MeO

OMe

n-Bu

n-Bu

O

0.02M
r.t., 5h; 55%

MeO2C

MeO
OMe

(E,E)-macrocycle

steps OH

HO

CH3

CH3

HO

OH

n-Bu

n-Bu

OH

HO

(−)-Cylindrocyclophane A

N
O

P(O)(OEt)2

CO2t-Bu

N
O

OR
O

O

NaH, THF
85%

N
O

N

O

O

CO2t-Bu

OR

R = TBDMS

N
O

N

CO2t-Bu

OHO

Ph

BocNH

H

steps

3-(Hydroxymethyl)
carbacephalosporin

O

O

O

OR

OR

MeO

R = TBS

CHO

P

Cl
O

MeO
MeO

+

1. LiHMDS, THF, -78 °C
then -40 °C then 25 °C
2. HF-pyridine, MeOH 
                0 °C

50% for 2 steps 
(E:Z = 4:1)

3. TMSOTf, 4Å, 1,2-DCE
-30 °C

4. TBAF, AcOH, THF, r.t.
70% for 2 steps

O

NTBS
O

O

MeO

O

Cl3C

HN

O O

O

O

MeO

Cl

(E)

O

NH
O

O

MeO

H OH

Callipeltoside A



214

HORNER-WADSWORTH-EMMONS OLEFINATION – STILL-GENNARI MODIFICATION 
(References are on page 604)

Importance:

[Seminal Publication1; Reviews2,3; Modifications & Improvements4-10; Theoretical Studies11]

The Horner-Wadsworth-Emmons olefination and the Wittig reaction of stabilized ylides with aldehydes are the two 
most widely used methods for the preparation of (E)-alkenes. The HWE olefination gives rise to (E)-α,β-unsaturated 
ketones and esters, while the trans-selective Wittig reaction affords simple, unconjugated (E)-alkenes. In 1983, W.C. 
Still and C. Gennari introduced the first general way to prepare (Z)-olefins from aldehydes by the modification of the 
phosphonate reagent used in the HWE olefination.1 The preparation of (Z)-α,β-unsaturated ketones and esters by 
coupling electrophilic bis(trifluoroalkyl) phosphonoesters in the presence of strong bases with aldehydes is known as 
the Still-Gennari modification of the HWE olefination. General features of this process are: 1) the necessary 
bis(trifluoroethyl)phosphonoesters are easily prepared from the commercially available trialkylphosphonoesters and 
trifluoroethanol; 2) (Z)-stereoselectivity is observed not only for 1,2-disubstituted but for trisubstituted alkenes as well; 
3) the phosphonate reagent must have an electron-withdrawing (carbanion-stabilizing) group at its α-position, 
otherwise the phosphonate carbanion decomposes; 4) a well-dissociating base must be used in which the metal 
cation is not coordinating (this is usually achieved by adding 18-crown-6 into the reaction mixture); and 5) when 
R2=CN, the (Z)-selectivity is high as opposed to the poor (E)-selectivity of α-cyano-stabilized regular phosphonates. 

Mechanism: 12

The mechanism of the HWE olefination is not fully understood. In the Still-Gennari modified HWE olefination the 
phosphorous has two electron-withdrawing trifluoroalkoxy groups. In this case the rearrangement from the chelated 
adduct to form the oxaphosphetane is favored and the elimination step is faster than the initial addition, which 
essentially becomes irreversible (unlike in the case of the regular HWE olefination). As a result, the formation of the 
(Z)-stereoisomer is predominant.  
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HORNER-WADSWORTH-EMMONS OLEFINATION – STILL-GENNARI MODIFICATION 

Synthetic Applications:

In C.J. Forsyth’s total synthesis of phorboxazole A, the intramolecular version of the Still-Gennari modified HWE 
olefination was used to affect the macrocyclization of a complex bis(trifluoroethoxy) phosphonate-aldehyde 
precursor.13 The precursor was dissolved in toluene and was exposed to K2CO3 in the presence of 18-crown-6. The 
desired C1-C3 (Z)-acrylate moiety was formed in 77% yield with a 4:1 (Z:E) ratio. Interestingly, when the same 
cyclization was carried out with the regular bis(dimethoxy) phosphonate, the macrocyclization was markedly slower, 
but the stereoselectivity was the same (4:1). 

In the laboratory of S.V. Ley, the total synthesis of the β-lactone cholesterol synthase inhibitor 1233A was achieved 
by using the oxidative decomplexation of a (π-allyl)tricarbonyliron lactone as the key step.14 The (Z)-alkene present in 
the target was introduced using the S-G modified HWE olefination of an aldehyde with bis(2,2,2-trifluoroethyl) 
(methoxycarbonylmethyl)phosphonate to give the desired α,β-unsaturated methyl ester in excellent yield. 

The stereoselective synthesis of the anti-ulcer 3,4-dihydroisocoumarin AI-77B was accomplished by E.J. Thomas and 
co-workers.15 The key transformation was the stereoselective dihydroxylation of 4-(Z)-alkenylazetidinones that were 
prepared from 4-formylazetidinone via the Still modified HWE olefination. The benzyl bis(trifluoroethyl) phospho-
noacetate was prepared from phosphonic dichloride and 2,2,2-trifluoroethanol and was alkylated using benzyl 
bromoacetate. 

The key tricyclic intermediate toward the total synthesis of spinosyn A was assembled by W.R. Roush et al. featuring 
a one-pot tandem intramolecular Diels-Alder reaction and an intramolecular vinylogous Baylis-Hillman cyclization.16

The cyclization precursor was prepared via the S-G modified HWE reaction.
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HOUBEN-HOESCH REACTION / SYNTHESIS 
(References are on page 605)

Importance:

[Seminal Publications1-5; Reviews6-10; Modifications & Improvements;11-17 Theoretical Studies18]

By the early 1900s the Friedel-Crafts acylation and the Gattermann formylation were widely used to prepare aromatic 
ketones and aldehydes, respectively. The preparation of monoacylated derivatives of highly activated (electron rich) 
substrates (e.g., polyphenols) was not possible, since usually more than one acyl group was introduced using the 
standard Friedel-Crafts acylation conditions. In 1915, K. Hoesch reported the extension of the Gattermann reaction
for the preparation of aromatic ketones by using nitriles instead of hydrogen cyanide and replaced the aluminum 
chloride with the milder zinc chloride.1,2 A decade later the scope and the limitation of this novel ketone synthesis was 
examined in great detail by J. Houben, who showed that the procedure principally worked for polyphenols or 
polyphenolic ethers.3 The condensation of nitriles with polyhydroxy- or polyalkoxyphenols  to prepare the 
corresponding polyhydroxy- or polyalkoxyacyloxyphenones is known as the Houben-Hoesch reaction. The general 
features of this reaction are: 1) only highly activated disubstituted aromatic compounds undergo the transformation 
(at least one of the substituents should be a hydroxy or an alkoxy group); 2) the aromatic compound can be 
heterocyclic so pyrroles, indoles, and furans are also substrates of this transformation; 3) the structure of the nitrile is 
freely variable: alkyl, aryl, and substituted alkyl groups (e.g., α-halogenonitriles, α-hydroxynitriles, and their ethers 
and esters) are all compatible with the reaction conditions; 4) aliphatic nitriles tend to give higher yields than aromatic 
nitriles; 5) the aromatic nitrile cannot have a strongly electron-withdrawing group in its ortho-position (no reaction is 
observed), but these groups in the meta-position have no effect on the reactivity of the aromatic nitrile; 6) the nitriles 
are often introduced as their hydrochloride salts;11 7) zinc chloride is the most widely used Lewis acid but for very 
electron rich substrates (e.g., phloroglucinol) no Lewis acid is needed; and 8) the initial product of the reaction is the 
imine hydrochloride that is hydrolyzed to afford the final product aromatic ketone. The most important modifications of 
the Houben-Hoesch reaction are: 1) by using trichloroacetonitrile, even non-activated aromatics can be acylated; and 
2) switching the Lewis acid to BCl3 the acylation of aromatic amines can be realized with high ortho regioselectivity.13

Mechanism: 19,15,20,21

The mechanism is not fully understood, but it is very similar to the mechanism of the Gattermann-Koch formylation.
The first step is the formation of a nitrilium chloride that is subsequently transformed to an imino chloride from which 
the reactive species, the iminium ion is generated. 
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HOUBEN-HOESCH REACTION / SYNTHESIS 

Synthetic Applications:

In the laboratory of D.W. Cameron the total synthesis of the azaanthraquinone natural product bostrycoidin was 
undertaken using the Minisci reaction and the intramolecular Houben-Hoesch reaction as the key steps.22 It is worth 
noting that the synthesis of specific di- and trihydroxyazaanthraquinones by the Friedel-Crafts acylation is very limited 
due to the lack of orientational specificity and the lack of reactivity of pyridine derivatives in acylation reactions.  

Genistein (4',5,7-trihydroxyflavone) is an important nutraceutical molecule found in soybean seeds, and it has a wide 
range of pharmacological effects.23 The two-step total synthesis of genistein was achieved by M.G. Nair et al. using 
the Houben-Hoesch reaction to acylate phloroglucinol with p-hydroxyacetonitrile.24 The resulting deoxybenzoin was 
treated with DMF/PCl5 in the presence of BF3·OEt2 to give genistein in 90% yield. The DMF/PCl5 mixture was the 
source of the [(Me2N=CHCl)+]Cl- reagent. This synthetic sequence was suitable for the large scale (~1 metric ton) 
one-pot preparation of the natural product. 

Nitriles having electrophilic or leaving groups in their - or -postions often lead to so-called “abnormal” Houben-
Hoesch products besides the expected “normal” acylation products. Especially notorious is the reaction of -
oxonitriles with phenols that afford exclusively 2H-1-benzopyran-2-one derivatives instead of the expected 1,2-
diketones. -Halogenonitriles react with phenols to give the expected 3-benzofuranone and also the abnormal 2-
benzofuranone. R. Kawecki and co-workers found that the condensation of phenols with aromatic -
hydroxyiminonitriles or -oxonitriles under the Hoesch conditions leads to benzofuro[2,3-b]benzofuran derivatives.25

The synthesis of 11-hydroxy O-methylsterigmatocystin (HOMST) was carried out in the laboratory of C.A. Townsend 
by utilizing the alkylnitrilium ion variant of the Houben-Hoesch reaction.17 The alkylnitrilium salt was prepared by 
reacting the aryl nitrile with 2-chloropropene in the presence of SbCl5. Next, the phenol was added in a 2.5:1 excess. 
Alkaline hydrolysis then afforded the xanthone, which was subsequently converted to HOMST in few more steps. 
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HUNSDIECKER REACTION
(References are on page 605)

Importance:

[Seminal Publications1-3; Reviews4-7; Modifications & Improvements8-30]

In 1939, H. Hunsdiecker reported that when the dry silver salts of aliphatic carboxylic acids were treated with 
bromine, the corresponding one-carbon shorter alkyl bromides were obtained.2,3 The halogenative decarboxylation of  
aliphatic-, α,β-unsaturated-, and certain aromatic carboxylic acids to prepare the one-carbon shorter alkyl halides is 
referred to as the Hunsdiecker reaction. The general features of this transformation are: 1) the silver salts are 
prepared from the corresponding carboxylic acids with silver oxide; 2) the slurry of the silver salt in carbon 
tetrachloride is treated with one equivalent of the halogen, and carbon-dioxide is evolved as rapidly as the halogen is 
added; 3) in order to obtain high yields, the silver salts must be pure and scrupulously dry, which is not easy to 
achieve, since the silver salt is often heat sensitive; 3) aliphatic carboxylic acids are the best substrates, but aromatic 
carboxylic acids with electron-withdrawing substituents are also suitable; 4) electron-rich (activated) aromatic 
carboxylic acids undergo electrophilic aromatic substitution under the reaction conditions; 5) instead of silver salts, 
the much more stable thallium(I)- and mercury(I)-salts can be used;13 6) functional groups that react with halogens 
are incompatible (e.g., alkenes, alkynes) under the reaction conditions; and 7) if optically active silver carboxylates 
are used, there is a significant loss of optical activity in the product alkyl halides. Due to the technical difficulties with 
the preparation of the silver carboxylates, numerous modifications were introduced to simplify the procedure: 1) the 
preparation of the silver carboxylate is avoided and higher yields are observed if one adds the solution of the acid 
chloride to a slurry of dry silver oxide/CCl4/bromine at reflux temperature;8,9 2) the use of crystallizable thallium(I)-
carboxylates instead of silver salts improve the yield;13 3) the Cristol-Firth modification uses excess red HgO and one 
equivalent of halogen in one-pot;10 4) in the Suárez modification, the acid is treated with a hypervalent iodine reagent 
in CCl4 with remarkable functional group tolerance;20 5) LTA can be used directly with iodine or with lithium halides 
(chlorides and bromides) to produce the corresponding alkyl halides (Kochi modification);11,6 6) the Barton 
modification exploits the thermal or photolytic decomposition of thiohydroxamate esters in halogen donor solvents 
(e.g., BrCCl3, CHI3) and this modification is compatible with almost all functional groups;17,19 7) if AIBN is used in the 
Barton modification, any kind of aromatic acid (both activated and deactivated) can be decarboxylated in high yield;31

and 8) the reaction can be made metal-free and catalytic, but this reaction probably follows a non-radical mechanistic 
pathway.24,27,29

Mechanism: 4,32-37,29
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HUNSDIECKER REACTION

Synthetic Applications:

There are a few efficient methods for the stereoselective synthesis of vinyl halides, and this transformation remains a 
synthetic challenge. Research by S. Roy showed that the Hunsdiecker reaction can be made metal free and catalytic 
(catalytic Hunsdiecker reaction) and can be used to prepare (E)-vinyl halides from aromatic α,β-unsaturated 
carboxylic acids.27 The unsaturated aromatic acids were mixed with catalytic amounts of TBATFA and the N-halo-
succinimide was added in portions over time at ambient temperature. The yields are good to excellent even for 
activated aromatic rings which do not undergo the classical Hunsdiecker reaction. The fastest halodecarboxylation
occurs with NBS, but NCS and NIS are considerably slower. The nature of the applied solvents is absolutely critical, 
and DCE proved to be the best. This strategy was extended and applied in the form of a one-pot tandem Hunsdiecker 
reaction-Heck coupling to prepare aryl substituted (2E,4E)-dienoic acids, esters, and amides.

The classical Hunsdiecker reaction was utilized in the laboratory of P.J. Chenier for the preparation of a highly 
strained cyclopropene, tricyclo[3.2.2.02,4]non-2(4)-ene.38 The Diels-Alder cycloaddition was used to prepare the 
bicyclic 1,2-diacid, which surprisingly failed to undergo the Cristol-Firth modified Hunsdiecker reaction, most likely 
due to the unreactive nature of the diacid mercuric salt. However, the classical conditions proved to work better to 
afford the bicyclic 1,2-dibromide in modest yield. Treatment of this dibromide with t-BuLi generated the desired 
strained cyclopropene, which was trapped with diphenylisobenzofuran (DPIBF). 

During the final stages of the asymmetric total synthesis of antimitotic agents (+)- and (-)-spirotryprostatin B, the C8-
C9 double bond had to be installed, and at the same time the carboxylic acid moiety removed from C8. R.M. Williams 
et al. found that the Kochi- and Suárez modified Hunsdiecker reaction using LTA or PIDA failed and eventually the 
Barton modification proved to be the only way to achieve this goal.39 After the introduction of the bromine substituent 
at C8, the C8-C9 double bond was formed by exposing the compound to sodium methoxide in methanol. This step 
not only accomplished the expected elimination but also epimerized the C12 position to afford the desired natural 
product as a 2:1 mixture of diastereomers at C12. The two diastereomers were easily separated by column 
chromatography. 
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JACOBSEN HYDROLYTIC KINETIC RESOLUTION
(References are on page 606)

Importance:

[Seminal Publications1-5; Reviews6-15; Modifications & Improvements16-24]

In 1995, a few years after the discovery of the enantioselective epoxidation of unfunctionalized olefins (Jacobsen-
Katsuki epoxidation), E.N. Jacobsen and co-workers discovered that meso epoxides undergo asymmetric ring-
opening (ARO) by various nucleophiles (e.g., TMSN3) in the presence of catalytic amounts of chiral Cr(III)(salen) 
complexes.3 Although several enantioselective ring-opening reactions of epoxides were known at the time,1,2 it was 
shown that the chromium(III)-salen complex catalyzed these ring-opening reactions with an unprecedented high level 
of enantioselectivity. In 1997, it was discovered that Co(III)salen complexes catalyzed the reaction of racemic 
terminal epoxides with water to afford highly enantiomerically enriched terminal epoxides and diols. This method is 
known as the Jacobsen hydrolytic kinetic resolution (HKR).5 The general features of this reaction are: 1) racemic 
terminal epoxides are readily available and inexpensive substrates; 2) water is the most environmentally benign 
reactant possible; 3) catalyst loadings are low (0.5-5 mol%); 4) both enantiomers of the catalyst are readily available; 
5) the scale of the reaction has no effect on the yield and enantiomeric excess (mg to ton scale); 6) the 
enantioselectivity of the ring-opening is extremely high (krel = >100); 7) the scope of substrates is completely general 
and practically every terminal epoxide undergoes HKR; 8) both products of the HKR are isolated in a highly enantio-
enriched form (>99% ee); 9) separation of the products is straightforward based on the large difference of boiling 
points and solubility of epoxides and diols; 10) the yields are generally high considering that the theoretical maximum 
yield for each of the products is 50%; 11) solvent-free conditions can be achieved in many cases (unless the epoxide 
is too hydrophobic) and generally the volumetric productivity is very high; and 12) the catalyst can be recovered and 
reused many times without noticeable decrease of its activity.  

Mechanism: 25-28

The mechanism of the Jacobsen HKR and ARO are analogous. There is a second order dependence on the catalyst 
and a cooperative bimetallic mechanism is most likely. Both epoxide enantiomers bind to the catalyst equally well so 
the enantioselectivity depends on the selective reaction of one of the epoxide complexes. The active species is the 
Co(III)salen-OH complex, which is generated from a complex where L OH. The enantioselectivity is counterion 
dependent: when L is only weakly nucleophilic, the resolution proceeds with very high levels of enantioselectivity.  
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JACOBSEN HYDROLYTIC KINETIC RESOLUTION

Synthetic Applications:

In the laboratory of J. Mulzer, the total synthesis of laulimalide, a microtubule stabilizing antitumor agent, was 
accomplished.29 The C9 stereochemistry of the natural product was introduced using the Jacobsen HKR on a 
diastereomeric mixture of a terminal epoxide. The epoxide mixture was prepared via the Corey-Chaykovsky 
epoxidation of citronellal. The HKR proceeded in high yield and high selectivity at room temperature, and the 
products were easily separated by flash chromatography. The diol was converted into the diastereomerically pure 
epoxide in three steps.  

The highly convergent total synthesis of the antitumor agent fostriecin (CI-920) was achieved by E.N. Jacobsen and 
co-workers.30 The goal was to make the synthetic route flexible enough to prepare structural analogs of the natural 
product. One of the key building block terminal epoxides was prepared in enantio-enriched form by the Jacobsen 
HKR. The racemic epoxide was readily available by the epoxidation of the inexpensive methyl vinyl ketone. However, 
the HKR catalyst was easily reduced to its Co(II) form and precipitated with low substrate conversion. This problem 
was resolved by carrying out the reaction in the presence of oxygen, which reoxidized the inactive Co(II)salen 
complex to the catalytically active Co(III)salen complex. The enantiopure epoxide was the source for the C9 
stereocenter of the product. 

Annonaceous acetogenins have shown potent activity as inhibitors of certain tumor cells. The (4R)-hydroxylated 
analogue of the naturally occurring annonaceous acetogenin bullatacin was synthesized by Z.-J. Yao et al., and it 
showed enhanced cytotoxicity compared to other analogues.31 This compound combines the advantages of 
bullatacin, one of the most potent naturally occurring acetogenins, and the previous analogues. The (4R)-
hydroxylated butenolide subunit was introduced by the ring opening of a diastereomerically pure epoxide, which was 
prepared by the Jacobsen HKR in high yield and with almost perfect diastereoselectivity. This approach will allow the 
synthesis of other (4R)-hydroxylated analogs of annonaceous acetogenins. 

O

H

[Me3S]+I-
KOH

MeCN, H2O
60 °C, 2h

93%

O
H2C

1:1 mixture of
diastereomers

CH2

+

HO

HO

(R,R)-salen
Co(III)OAc
(1 mol%)

MTBE, H2O
36h, r.t.

then 
chromatography

O
H2C

42% 41%

Laulimalide

3 steps (84%)

citronellal

O

OH
O

O

HO
O

H2C H

H

O

H

9

steps

Me

O

O

+ H2O

0.7 equiv

(S,S)Co(III)-salen
(2 mol%)

AcOH (4 mol%)

O2 balloon
5-25 °C, 48h

40% yield, 99% ee

Me

O

O steps

1,2-diol

OO
Me OH

NaHO3PO OH

OH

Fostriecin (CI-920)+

9

OO

O

(S,S)Co(III)(OAc)
(0.5 mol%)

H2O (0.55 equiv)

4 °C
43% yield, 99% de

OO

O

steps

( )5

OH
O

O

OH

( )5

O

O

OH

+ 1,2-diol
(4R)-Hydroxy analogue of annonaceous acetogenins

4



222

JACOBSEN-KATSUKI EPOXIDATION
(References are on page 607)

Importance:

[Seminal Publications1-5; Reviews6-26; Modifications & Improvements27-31; Theoretical Studies32-40]

In the early 1990s, E.N. Jacobsen and T. Katsuki independently reported that chiral (salen)manganese(III)-complexes 
were effective catalysts for the enantioselective epoxidation of unfunctionalized alkyl- and aryl-substituted olefins.2-4

This novel catalytic asymmetric method is known as the Jacobsen-Katsuki epoxidation, and it was based on the initial 
study by J.K. Kochi and co-workers, who described the racemic epoxidation of unfunctionalized olefins using achiral 
cationic (salen)Mn(III)-complexes as catalysts.1 The chiral salen complexes show a strong structural resemblance to 
porphyrin-metal complexes that are well-known oxidizing agents in biological systems.7 The general features of the J-
K epoxidation are: 1) the chiral Schiff-base salen ligands are easily prepared by the condensation of readily available 
C2-symmetric chiral diamines [e.g., (R,R)- or (S,S)-1,2-diamino-1,2-diphenylethane] and a substituted 
salicylaldehyde; 2) the degree of enantioselectivity is dependent on several factors: the structure of the olefinic 
substrate, the nature of the axial donor ligand on the active oxomanganese species and the reaction temperature; 3) 
conjugated alkenes are better epoxidation substrates than nonconjugated ones; 4) cyclic and acyclic (Z)-1,2-
disubstituted olefins are epoxidized with almost 100% enantioselectivity, whereas terminal alkenes are not as good 
substrates; 5) (E)-1,2-disubstituted olefins are usually poor substrates for Jacobsen’s catalysts but give higher 
enantioselectivities when Katsuki’s catalysts are used; 6) the choice of stoichiometric oxidant is usually dependent on 
the reaction temperature: iodosobenzene (PhIO) and sodium hypochlorite (NaOCl) are used at room temperature 
while mCPBA is used at -78 °C; 7) other possible stoichiometric oxidants are: hydroperoxides, peroxy acids, amine-
N-oxides, oxaziridines, Oxone, H2O2, and MMPP; 8) addition of Lewis basic compounds (e.g., pyridine, imidazole) to 
the reaction mixture increases the catalyst turnover rate and number as well as the yield of the product epoxide; 9) 
with “good” substrates the enantioselectivities are high (90-95% ee); and 10) styrene derivatives often lead to the 
formation of stereoisomeric epoxides at room temperature but at lower temperatures using mCPBA and in the 
presence of donor ligands the enantioselectivity is usually high. 

Mechanism: 41,42,10,43-47,35,48-50

The mechanism of the J-K epoxidation is not fully understood, but most likely a manganese(V)-species is the reactive 
intermediate, which is formed upon the oxidation of the Mn(III)-salen complex. The enantioselectivity is explained by 
either a “top-on” approach (Jacobsen) or by a “side-on” approach (Katsuki) of the olefin. The three major mechanistic 
pathways are shown below. The radical intermediate accounts for the formation of mixed epoxides when conjugated 
olefins are used as substrates. 
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JACOBSEN-KATSUKI EPOXIDATION

Synthetic Applications:

The synthesis of the tetrasubstituted dihydroquinoline portion of siomycin D1, which belongs to the thiostrepton family 
of peptide antibiotics, was achieved in the laboratory of K. Hashimoto.51 The Jacobsen epoxidation was utilized to 
introduce the epoxide enantioselectively at the C7-C8 position. The olefin was treated with 5 mol% of Jacobsen’s 
manganese(III)-salen complex (R1=t-Bu) and 4% aqueous NaOCl solution in dichloromethane. To enhance the 
catalyst turnover, 50 mol% of 4-phenylpyridine-N-oxide was added to the reaction mixture. The desired epoxide was 
obtained in 43% yield and with 91% ee.

The short asymmetric synthesis of the CBI alkylation subunit of CC-1065 and duocarmycin analogs was 
accomplished by D.L. Boger and co-workers.52 The tricyclic alkene substrate was exposed to mCPBA at -78 °C in 
dichloromethane in the presence of 5 mol% of Jacobsen’s (S,S)-salen-Mn(III) catalyst (R1=t-Bu). A nucleophilic 
additive, NMO, was also added to increase the yield and the enantioselectivity. Reductive opening of the epoxide with 
Dibal-H to the corresponding secondary alcohol was followed by the hydrogenolysis of the benzyl ether and a 
transannular spirocyclization upon Mitsunobu activation of the secondary alcohol.  

The catalytic asymmetric synthesis of (2S,3S)-3-hydroxy-2-phenylpiperidine was developed by J. Lee et al. using an 
intramolecular epoxide opening (5-exo-tet) followed by ring expansion. The acyclic cis-epoxide substrate was 
prepared in good yield and in greater than 94% ee by the Jacobsen epoxidation from the corresponding (Z)-alkene.53

J.E. Lynch and co-workers reported the asymmetric total synthesis of the PDE IV inhibitor CDP840 in which they 
utilized the Jacobsen epoxidation to introduce the only stereocenter of the target.54 The triaryl (Z)-olefin substrate was 
epoxidized with significantly higher enantiomeric excess than the triaryl (E)-olefin. This finding was interpreted with 
Jacobsen’s “skewed side-on” approach model.  
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JAPP-KLINGEMANN REACTION
(References are on page 608)

Importance:

[Seminal Publications1-4; Reviews5-7; Modifications & Improvements8-11]

In 1887, F.R. Japp and F. Klingemann attempted to prepare an azo ester by coupling benzenediazonium chloride 
with the sodium salt of ethyl-2-methylacetoacetate.1 However, the isolated product turned out to be the 
phenylhydrazone of ethyl pyruvate, which contained two carbon atoms less than the expected azo ester.2-4

Subsequent experiments showed that the reaction was general and the initial coupling product was the azo ester, 
which was unstable under the reaction conditions and it rapidly rearranged to the phenylhydrazone with loss of the 
aliphatic acyl group. The coupling reaction between aryldiazonium salts and 1,3-dicarbonyl compounds to yield 
arylhydrazones is known as the Japp-Klingemann reaction. The general features of the reaction are: 1) the 
substituted arenediazonium salts are prepared from the corresponding o-, m-, and p-substituted anilines via
diazotization (treatment with HNO2);  2) the reaction works for compounds having an acidic C-H bond between two or 
three electron-withdrawing groups (e.g., substituted β-diketones, β-keto esters, malonic esters, cyanoacetic esters, or 
alkali salts of their corresponding acids); 3) if the coupling is carried out with the alkali metal salt of a β-keto acid, the 
carboxylate anion will undergo decarboxylation (CO2 is lost) to give the arylhydrazone of the corresponding 1,2-
diketone; 4) when a mixed β-diketone (having both an aliphatic and an aromatic acyl group) is used, the aliphatic acyl 
group will be cleaved preferentially; 5) when acyl derivatives of acetoacetic esters are used (R2=acyl), the products 
are the monoarylhydrazones of α,β-diketo esters; 6) cyclic β-keto esters undergo ring-opening in the second stage of 
the reaction; 7) alkali metal salts of cyclic β-keto acids are not opened, but rather they undergo decarboxylation to 
give 1,2-diketone monoarylhydrazones; 8) the coupling is usually carried out in acidic or basic aqueous medium at 0 
°C and if solubility of the substrate is poor, ethanol or methanol is added; 9) under basic conditions both stages of the 
reaction take place, whereas under acidic conditions the azo compound can be isolated, and it has to be treated with 
a mild base to bring about the rearrangement; 10) the rate of the reaction depends on the C-H acidity of the 1,3-
dicarbonyl compound and the more activated compounds tend to react faster; 11) excess diazonium salt leads to 
numerous decomposition products, so the use of one equivalent is advised; 12) the reaction is easy to monitor 
visually, since the intermediate azo compounds are more highly colored than the product arylhydrazones; and 13) the 
main use of arylhydrazones is as substrates for the Fischer indole synthesis as well as for the synthesis of 
enantiopure amino acids. 

Mechanism: 12-21
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JAPP-KLINGEMANN REACTION

Synthetic Applications:

The first enantioselective total synthesis of (–)-gilbertine was accomplished by S. Blechert and co-workers using a 
cationic cascade cyclization as the key step.22 The indole moiety was introduced by first applying the modified Japp-
Klingemann reaction on a substituted formylcyclohexanone precursor followed by the Fischer indole synthesis of the 
resulting phenylhydrazone. The benzenediazonium chloride was prepared prior to the reaction by treating aniline with 
concentrated HCl/ aqueous NaNO2. Then the strongly acidic solution was buffered by the addition of NaOAc before 
the formylcyclohexanone derivative was added. The buffering increased the yield of the phenylhydrazone from 10% 
to 90%! 

The Japp-Klingemann reaction was the key step during the first synthesis of the pentacyclic pyridoacridine marine 
cytotoxic alkaloid arnoamine A by E. Delfourne et al.23 The diazonium salt was added to a vigorously stirred solution 
of ethyl-2-methyl-3-oxobutyrate in ethanol containing KOH, NaOAc and water. The resulting hydrazone was exposed 
to polyphosphoric acid to form the indole ring. 

The macrolide soraphen A was shown to exhibit potent fungicidal activity against a variety of plant pathogenic fungi. 
In the laboratory of J.-L. Sinnes, a new approach was undertaken in which the natural product was degraded to a key 
lactone, which was used to build several simplified analogs of soraphen A.24 The key degradation step was the Japp-
Klingemann reaction of the macrocyclic β-keto ester in its enol form. Treatment of this enol with 4-(methoxy-
phenyl)diazonium tetrafluoroborate under mildly basic conditions resulted in the quantitative cleavage of the C-C 
bond of the macrocycle. Since the natural product was very sensitive to strong acids and bases, this approach was a 
mild alternative to a retro-Claisen reaction, which would have required the use of strongly acidic or basic conditions. 

A new heterocyclic ring system, 5H,12H-[1]Benzoxepino[4,3-b]indol-6-one, was prepared by the Fischer indole 
cyclization of a substituted benzoxepin-5b-one phenylhydrazone by G. Primofiore and co-workers.25 The 
phenylhydrazone precursor was prepared via the Japp-Klingemann reaction of the corresponding 3,4-dihydro-4-
hydroxymethylene[1]benzoxepin-5(2H)-one. 
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JOHNSON-CLAISEN REARRANGEMENT  
(References are on page 609)

Importance:

[Seminal Publication1; Reviews2-6]

In 1970, W.S. Johnson reported a reaction in which allylic alcohols were heated in the presence of excess triethyl 
orthoacetate under weakly acidic conditions (e.g., catalytic amounts of propionic acid).1 The initial product was a 
ketene acetal that underwent a facile [3,3]-sigmatropic rearrangement to afford γ,δ-unsaturated esters. This method is 
a modification of the original Claisen rearrangement, and is referred to as the Johnson-Claisen- or ortho ester Claisen 
rearrangement. The reaction is highly stereoselective and is well-suited for the synthesis of trans-disubstituted olefinic 
bonds. The temperature required for the transformation is usually 100-180 °C. The rearrangement can be significantly 
accelerated by clay-catalyzed microwave thermolysis.7  While the traditional Claisen rearrangement has excellent 
acyclic stereocontrol, the Johnson-Claisen rearrangement exhibits only modest levels of acyclic stereoselection when 
the double bond is disubstituted. However, using allylic alcohols substituted at the 2-position affords trisubstituted 
alkene products with significant levels of diastereoselection.8 This is explained by 1,3-diaxial nonbonding interactions 
in the chairlike transition state. Therefore, the Johnson-Claisen rearrangement of (E)-allylic alcohols mainly give syn
products while (Z)-allylic alcohols predominantly give anti products. 

Mechanism: 1,8

The reaction starts with the exchange one of the alkoxy groups of the ortho ester for the allylic alcohol under acid 
catalysis. The resulting mixed ortho ester then eliminates a molecule of alcohol to afford an unstable ketene acetal, 
which undergoes a [3,3]-sigmatropic shift. In all of the known Claisen rearrangements, acyclic systems prefer 
chairlike transition states, whereas cyclic systems may prefer boatlike transition states due to conformational 
constraints. The ratio of the products will depend on the energy difference between the transition states. The 
Johnson-Claisen rearrangements of secondary allylic alcohols proceed with high (E)-selectivity due to the 
destabilizing 1,3-diaxial interactions in the transition state, which would lead to the (Z)-isomer.

HO

R1

R2
H3C

OR
OR

OR
+

allylic alcohol

propionic acid
140-180 °C

(xs)

trialkyl orthoacetate

O

R1

R2RO

ketene acetal

[3,3]
O

OR

R2

1

2

3

4

5

6

3

2
1

4
5

6

γ,δ−Unsaturated ester

or
clay, microwave R1

H3C
OR

OR
OR

H H3C
OR

OR
OR

H

H3C

OR

OR

- ROH

HO

R1

R2 O

R1

R2

RO
H3C
RO

H

proton transfer

O

R1

R2

RO
C
H2

RO

H

- ROH

O

R1

R2RO

ketene acetal

1

2

3

4

5

6

[3,3]

γ,δ−Unsaturated ester

O

ORH

R1
R2

[3,3] COOR
R1

R2

(E)-alkene

O

ORR1

HR2

Destabilizing 
1,3-diaxial interaction

COOR
R1

R2

(Z)-alkene

[3,3]

No destabilizing 
1,3-diaxial interaction

O

OR

R2
3

2
1

4
5

6

R1

H

RHO



227

JOHNSON-CLAISEN REARRANGEMENT  

Synthetic Applications:

The potent antitumor agent halomon has a tertiary chlorinated carbon stereocenter at C3, which also contains an α-
chlorovinyl group. C. Mioskowski and co-workers developed a strategy that enabled them to prepare a wide range of 
analogs and establish the correct stereochemistry at C3.9 These operations were achieved by using a Johnson-
Claisen rearrangement of a trans-dichlorinated allylic alcohol. The reaction was carried out in trimethyl orthoacetate 
as the solvent and using p-toluenesulfonic acid instead of the usual propionic acid as the catalyst. Interestingly, no 
other [3,3]-sigmatropic rearrangements (Cope, Stevens, Claisen or Ireland-Claisen) were successful to bring about 
the same transformation. Halomon was synthesized in 13 steps starting from 2-butyne-1,4-diol with an overall yield of 
13%.

During the total synthesis of the pentacyclic sesquiterpene dilactone (±)-merrilactone A by S.J. Danishefsky et al., a 
two-carbon unit was introduced at C9 by a Johnson-Claisen rearrangement.10 This high yielding transformation was 
carried out in the presence of catalytic 2,2-dimethyl propanoic acid at 135 °C using mesitylene as the solvent. A 
mixture of diastereomeric esters were formed, which were later hydrolyzed and subjected to iodolactonization to form 
the second lactone ring present in merrilactone A. The natural product was synthesized in 20 steps with an overall  
yield of 10.7%. 

The enantioselective total synthesis of the 13-membered macrolide fungal metabolite (+)-brefeldin A was 
accomplished using a triple chirality transfer process and intramolecular nitrile oxide cycloaddition in the laboratory of 
D. Kim.11 To set the correct stereochemistry at C9, the stereoselective ortho ester Claisen rearrangement was 
applied on a chiral allylic alcohol precursor. The rearrangement was catalyzed by phenol and it took place at 125 °C 
in triethyl orthoacetate to give 84% isolated yield of the desired diester. 

The C7 quaternary stereocenter of (±)-gelsemine was established utilizing a Johnson-Claisen rearrangement by S.J. 
Danishefsky and co-workers.12 The starting stereoisomeric allylic alcohols were individually subjected to the 
rearrangement conditions, and each gave rise to the same γ,δ-unsaturated ester. 
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JONES OXIDATION / OXIDATION OF ALCOHOLS BY CHROMIUM REAGENTS
(References are on page 609)

Importance:

[Seminal Publications1,2; Reviews3-7; Modifications & Improvements8-20]

In 1946, E.R.H. Jones and co-workers successfully converted alkynyl carbinols with chromic acid (CrO3 mixed with 
dilute sulfuric acid) to the corresponding alkynyl ketones without oxidizing the sensitive triple bond.1 The reaction was 
carried out in acetone by slowly adding the aqueous chromic acid to the substrate at ambient temperature, and the 
product was isolated in high yield. The oxidation of primary and secondary alcohols with chromic acid is referred to as 
the Jones oxidation. The general features of the reaction are: 1) the chromic acid (H2CrO4) can be prepared by 
dissolving chromic trioxide (CrO3) or a dichromate salt (Cr2O7

2-) in acetic acid or in dilute sulfuric acid; 2) the oxidation 
is usually carried out in acetone, which serves a dual purpose: it dissolves most organic substrates, and it reacts with 
any excess oxidant so it protects the product from overoxidation; 3) in practice the alcohol substrate is titrated with 
the aqueous solution of the oxidant; 4) excess of the reagent should be avoided because other functional groups of 
the substrate may be oxidized; 5) the process is amenable to large-scale oxidations; 6) primary alcohols are 
converted to carboxylic acids with the intermediacy of aldehydes that sometimes can be isolated by distillation if the 
aldehyde is volatile; 7) secondary alcohols are converted to the corresponding ketones; 8) allylic and benzylic 
alcohols are efficiently oxidized to the corresponding aldehydes with little or no over-oxidation; 9) glycols and acyloins 
often suffer C-C bond cleavage under the reaction conditions, but in certain cases the addition of Mn2+ or Ce3+ salts 
prevents this side reaction;10 10) isolated double and triple bonds remain unchanged, but α,β-unsaturated aldehyde 
products may undergo double bond isomerization; 11) in rigid cyclic systems axial alcohols tend to react faster than 
the equatorial alcohols; 12) acid sensitive protecting groups are easily removed under the reaction conditions; and 
13) free amines are often incompatible with the Jones oxidation, and they need to be protected as the corresponding 
perchlorate salts prior to the oxidation. For particularly acid sensitive or otherwise delicate substrates the use of the 
strongly acidic Jones reagent is clearly not the best method of oxidation, so several mildly acidic CrO3-derived 
oxidizing agents were developed: 1) Sarett prepared CrO3-(pyridine)2 and carried out the oxidations in pyridine as the 
solvent;8 2) due to difficulties during work-up and with the isolation of products, the Sarett oxidation was modified by 
Collins by using the macrocrystalline form of the reagent that was soluble in dichloromethane and made the 
oxidations very fast at room temperature (Collins oxidation) and highly tolerant toward a wide range of functional 
groups;11 3) Corey et al. developed the mildly acidic pyridinium chlorochromate (PCC) and the neutral pyridinium-
dichromate (PDC) reagents that rapidly oxidize 1° and 2° alcohols, as well as allylic and benzylic alcohols in 
dichloromethane to the corresponding aldehydes and ketones;12,16 and 4) a large number of other very mild CrO3-
amine reagents have been developed.5,7

Mechanism: 21,9,22-24

The concentration and the pH determines the form of Cr(VI) in aqueous solutions: in dilute solution the monomoeric 
form (HCrO4

-) dominates while in concentrated solution the dimeric form (HCr2O7
-) is prevalent. The alcohol substrate 

is first converted to the corresponding chromate ester, which suffers a rate-determining deprotonation by a base to 
release the Cr(IV) species. This mechanism is supported by a large kinetic isotope effect observed during the oxidation 
of an α-deuterated alcohol substrate.21
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JONES OXIDATION / OXIDATION OF ALCOHOLS BY CHROMIUM REAGENTS

Synthetic Applications:

The Jones oxidation was used during the endgame of the total synthesis of (–)-CP-263,114 (Phomoidride B) by T. 
Fukuyama and co-workers.25 The secondary alcohol functionality of the side chain on the fully elaborated carbon 
skeleton was exposed to excess CrO3 in H2SO4 for 20 minutes to afford the corresponding ketone in quantitative 
yield. The last step was the removal of the tert-butyl ester with formic acid to give the natural product in 96% yield. 

The total synthesis of (±)-bilobalide, a C15 ginkgolide, was accomplished in the laboratory of M.T. Crimmins using a 
[2+2] photocycloaddition as the key step to secure most of the stereocenters.26 In the final stages of the total 
synthesis the Jones oxidation was used twice. First, the five-membered acetal moiety was oxidized with Jones 
reagent to the corresponding lactone in refluxing acetone. Next, the five-membered enol ether was epoxidized with 
excess DMDO and the resulting epoxide was treated with Jones reagent to afford the natural product. 

An -carbonyl radical cyclization was the key step in C.-K. Sha’s enantioselective total synthesis of the alkaloid (–)-
dendrobine.27 The five-membered nitrogen heterocycle was installed during the final stages of the synthetic effort. 
The bicyclic azido alcohol intermediate was oxidized using the Jones reagent to give the corresponding azido ketone, 
which was converted in three steps to the natural product. 

In the laboratory of H. Hagiwara, the first total synthesis of the polyketide natural product (–)-solanapyrone E was 
achieved.28 The installation of the pyrone moiety required the addition of the bis(trimethylsilyl) enol ether of methyl 
acetoacetate to a bicyclic aldehyde precursor in the presence of titanium tetrachloride. The resulting -hydroxy- -
ketoester was oxidized with the Jones reagent to afford the corresponding -diketoester in good yield.  
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JULIA-LYTHGOE OLEFINATION 
(References are on page 610)

Importance:

[Seminal Publication1; Reviews2-9; Modifications & Improvements10-22]

In 1973, M. Julia and J.-M. Paris reported a novel olefin synthesis in which β-acyloxysulfones were reductively 
eliminated to the corresponding di-, tri-, or tetrasubstituted alkenes.1 This olefin synthesis requires the following steps: 
1) addition of an α-metalated phenylsulfone to an aldehyde or ketone; 2) acylation of the resulting β-alkoxysulfone; 
and 3) reductive elimination of the β-acyloxysulfone with a single-electron donor to yield the desired alkene. Not long 
after the seminal publication, B. Lythgoe and P.J. Kocienski explored the scope and limitation, and today this 
olefination method is known as the Julia-Lythgoe olefination.10-13 The classical Julia-Lythgoe olefination has the 
following general features: 1) high (E)-stereoselectivity; 2) the (E)-selectivity is increased with increasing chain 
branching around the newly formed double bond; and 3) the relative stereochemistry in the intermediate β-
acyloxysulfones does not influence the geometry of the alkene product. Since the classical procedure was quite 
tedious (3 steps) to carry out in the laboratory, a more convenient one-pot modification was developed by S.A. Julia 
and co-workers who added α-metalated heteroarylsulfones to carbonyl compounds instead of the traditional 
phenylsulfones.15 The initial intermediate β-alkoxy heteroarylsulfone is very labile, and it quickly undergoes the 
Smiles rearrangement in which the heterocycle is transferred from the sulfur to the oxygen atom to afford yet another 
unstable intermediate, a sulfinate salt. This sulfinate salt readily decomposes to the desired (E)-alkene, sulfur dioxide 
and the metal salt of benzothiazol-2-ol. Several heteroaromatic activators were examined, and it was revealed that 
not all heteroarylsulfones worked equally well in terms of product yield and stereoselectivity.8 The BT-sulfones react 
with α,β-unsaturated or aromatic aldehydes to give conjugated 1,2-disubstituted (E)-alkenes. Kocienski found that the 
PT-sulfone (1-phenyl-1H-tetrazol-5-yl sulfone) provides nonconjugated 1,2-disubstituted alkenes with high (E)-
selectivity if no significant electronic or steric bias is present (Kocienski-modified Julia olefination).17 For the  
preparation of conjugated 1,2-disubstituted (Z)-alkenes, the use of allylic or benzylic TBT-sulfones (1-t-butyl-1H-
tetrazol-5-yl sulfones) is recommended.18

Mechanism: 11,13,3,16

The exact mechanistic pathway of the classical J-L olefination is unknown. Deuterium-labeling studies showed that 
the nature of the reducing agent (sodium amalgam or SmI2) determines what type of intermediate (vinyl radical or 
secondary alkyl radical) is involved.16 Both intermediates are able to equilibrate to the more stable isomer before 
conversion to the product. The high (E)-selectivity of the Kocienski-modified reaction is the result of kinetically 
controlled irreversible diastereoselective addition of metalated PT-sulfones to nonconjugated aldehydes to yield anti-
β-alkoxysulfones which stereospecifically decompose to the (E)-alkenes.
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JULIA-LYTHGOE OLEFINATION 

Synthetic Applications:

The first total synthesis of racemic indolizomycin was accomplished by S.J. Danishefsky et al.23  The natural 
product’s trienyl side chain was elaborated using the classical J-L olefination. The macrocyclic α,β-unsaturated 
aldehyde was treated with an (E)-allylic lithiated sulfone to give epimeric acetoxy sulfones upon acetylation. The 
mixture of epimers was exposed to excess sodium amalgam in methanol to afford the desired (E,E,E) triene 
stereospecifically. 

In the asymmetric total synthesis of (–)-callystatin A by A.B. Smith and co-workers, two separate Julia olefinations
were used to install two (E)-alkene moieties.24 The C6-C7 (E)-alkene was installed using the Kocienski-modified 
process in which the PT-sulfone was dissolved along with the α,β-unsaturated aldehyde in DME and treated with 
NaHMDS in the presence of HMPA. The (E)-olefin was the only product but due to the relative instability of the 
starting PT-sulfone, the isolated yield of the product was only modest. 

The novel antifungal agent (+)-ambruticin was synthesized in the laboratory of E.N. Jacobsen.25 The key coupling 
step in this convergent synthesis was the formation of the C8-C9 (E)-alkene via the Kocienski modified Julia 
olefination. Interestingly, the coupling showed great selectivity for either the (E)- or (Z)-stereoisomers depending on 
the base or solvent used. When NaHMDS was used in THF, the (Z)-olefin was formed predominantly (8:1), whereas 
when LiHMDS was used in DMF/DMPU, the (E)-olefin was formed with very high stereoselectivity. 
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KAGAN-MOLANDER SAMARIUM DIIODIDE-MEDIATED COUPLING 
(References are on page 610)

Importance:

[Seminal Publications1-3; Reviews4-26]

During the late 1970s, H. Kagan systematically examined the reducing properties of lanthanide(II) iodides. During his 
studies he found that in the presence of two equivalents of samarium diiodide, alkyl bromides, iodides and tosylates 
react with aldehydes and ketones to provide the corresponding alcohols.2 The original transformation was carried out 
in tetrahydrofuran at room temperature for 24 hours or at reflux for a few hours. Kagan also noted that the addition of 
catalytic amounts of ferric choride significantly decreased the reaction time. This method was later extensively 
studied by G.A. Molander. In 1984, he reported the first intramolecular version of this transformation.3,27 He also 
discovered that ω-iodoesters undergo intramolecular acyl substitution in the presence of samarium diiodide and 
catalytic amounts of iron(III) salts.28 Tandem reactions leading to complex carbocycles were also developed.29 Today, 
these transformations are referred to as the Kagan-Molander samarium diiodide-mediated coupling. The reaction can 
be performed in two different ways: 1) adding the ketone to a preformed solution of the organosamarium that is 
prepared by treating the alkyl halide with two equivalents of samarium diiodide (samarium Grignard reaction); and 2) 
reacting the alkyl halide with samarium diiodide in the presence of the ketone (samarium Barbier reaction). The most 
common method for the preparation samarium diiodide is to react the finely ground samarium metal with 
diiodomethane, diiodoethane or iodine in tetrahydrofuran.30,5,10 The general features of the reaction are:19 1) it is 
usually carried out in tetrahydrofuran by employing two equivalents of samarium diiodide in the presence of additives 
or catalysts; 2) in some cases, tetrahydropyran, alkylnitriles, and benzene were used as solvents; 3) under standard 
conditions, alkyl bromides and iodides undergo the transformation, but alkyl chlorides are unreactive; 4) reaction of 
alkyl choride under visible light irradiation was reported; 5) the substrate scope of organic bromides and iodides is 
wide: primary alkyl-, secondary alkyl, allylic and benzylic halides, iodoalkynes, α-heterosubstituted alkyl halides, and 
α-halogeno carbonyl compounds (samarium Reformatsky reaction) undergo the reaction; 6) aryl, vinyl, and tertiary 
halides are not viable substrates; they are reduced to the radical stage but are usually not reduced further by 
samarium diiodide; they instead abstract a hydrogen atom from tetrahydrofuran; and 7) the reaction of aryl chlorides 
with ketones was reported in benzene as a solvent, where hydrogen abstraction is not feasible. The reactions in most 
cases are relatively slow in tetrahydrofuran, and the addition of co-solvents or catalysts is necessary. The most 
commonly used co-solvent is HMPA, which dramatically improves the reducing ability of samarium diiodide 
(E°(Sm(II)/Sm(III) in THF) = -1.33V; E°(Sm(II)/Sm(III)/4 equiv HMPA in THF) = -2.05V).31 DMPU is also often used as an additive.19

Several transition metal salts proved to be efficient catalysts for this transformation: iron(III) salts, copper(I)- and 
copper(II) salts, nickel(II) salts, vanadium trichloride, silver(I) halides, cobalt dibromide, zirconium tetrachloride, and 
Cp2ZrCl2.19

Mechanism:32-34,7,35-37,31,38-45

Samarium diiodide is a one electron reductant that is capable of reducing both alkyl halides and carbonyl compounds. 
The rate of the reduction depends on the nature of the substrate and the reaction conditions. The mechanism of the 
addition of alkyl halides to carbonyls was extensively studied.33,7,35 In case of the samarium Grignard processes, it 
was concluded that the reaction proceeds through an organosamarium intermediate. However, the mechanism of the 
samarium Barbier processes is not fully understood and there is no unambiguous evidence in favor of any of the 
possible pathways. 
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KAGAN-MOLANDER SAMARIUM DIIODIDE-MEDIATED COUPLING

Synthetic Applications:

The ABC ring system of the carbocyclic skeleton of variecolin, a sesterterpenoid natural product was accomplished 
by G.A. Molander and co-workers.46 In their approach, they utilized two samarium diiodide mediated processes. First, 
a primary alkyl iodide was reacted with a ketone substrate in the presence of two equivalents of samarium diiodide 
and catalytic nickel(II) iodide under samarium Grignard conditions. Subsequent oxidation and lactone formation 
provided the chlorolactone substrate. As alkyl chlorides are less reactive than alkyl bromides and iodides, the second 
samarium diiodide mediated process, an intramolecular nucleophilic acyl substitution, required visible light irradiation. 

Vinigrol is a tricyclic diterpene with interesting biological activity such as antihypertensive activity and platelet 
aggregation inhibition property. The eight-membered framework of this natural product was synthesized by F. 
Matsuda et al. utilizing an intramolecular Kagan-Molander coupling reaction.47 The substrate for the cyclization was 
prepared starting out from chlorodihydrocarvone in six steps. The samarium diiodide mediated cyclization took place 
within minutes in tetrahydrofuran using HMPA as the co-solvent. 

The research group of T. Nakata developed a convergent synthesis for the construction of a trans-fused 6-6-6-6-
membered tetracyclic ether ring system, a subunit, which is present in several polycyclic marine ether natural 
products.48 Late in their synthesis, they utilized a samarium diiodide mediated nucleophilic acyl substitution as the key 
step to form one of the tetrahydropyran rings.  

The total synthesis of pederin, a potent insect toxin was achieved by T. Takemura and co-workers.49 One of the key 
steps of the synthesis was an intramolecular samarium diiodide induced Reformatsky reaction to construct the 
lactone subunit of the molecule. The transformation was carried out in tetrahydrofuran at 0 °C without the use of 
additives or catalysts. 
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KAHNE GLYCOSIDATION
(References are on page 611)

Importance:

 [Seminal Publications1; Reviews2-9; Modifications & Improvements10-19; Theoretical Studies20,21]

The efficient preparation of glycosides from sterically hindered or otherwise unreactive substrates using standard 
glycosidation methods (e.g., Koenigs-Knorr glycosidation, thioglycoside method, etc.) was a significant challenge until 
the late 1980s. In 1989, D. Kahne and co-workers developed a novel glycosidation method in which they treated 
glycosyl sulfoxides with trifluoromethanesulfonic anhydride in toluene at low temperature and to the resulting reaction 
mixture they added the solution of the nucleophile (alcohols, phenols, or amides) and a base also in toluene.1 The 
products were the corresponding O- or N-glycosides with predominantly α-stereochemistry in the absence of 
neighboring group participation and with predominantly β-stereochemistry when anchimeric assistance was involved. 
The highly stereoselective preparation of O-, S-, or N-glycosides via the activation of glycosyl sulfoxides is known as 
the Kahne glycosidation (sulfoxide method). The general features of this transformation are:8 1) the sulfoxides are 
usually prepared via the oxidation of the corresponding thioglycosides (axial thioglycosides are oxidized to give a 
single sulfoxide diastereomer while equatorial thioglycosides give rise to a mixture of diastereomeric sulfoxides);22-24

2) the most common oxidizing agents are mCPBA and MMPP; 3) both alkyl and aryl sulfoxides can be used as 
substrates; 4) the reactivity of aryl glycosyl sulfoxides can be modulated by placing electron-donating or electron-
withdrawing substituents on the aromatic ring (multicomponent couplings are possible this way25); 5) primary-, 
secondary and tertiary alcohols, phenols, trialkylstannylated phenols, silylated amides can be used as nucleophiles; 
6) the method is especially well-suited for the glycosidation of sterically hindered alcohols, which are unreactive under 
other glycosidation methods; 7) the most common activating agent is triflic anhydride (Tf2O) and trimethylsilyl triflate 
(TMSOTf), but occasionally Lewis acids (e.g., Cp2ZrCl2/AgClO4)16 and mineral acids14,15 can be used as activating 
agents; 8) since triflic acid or phenylsulfenyl triflate is generated in the reaction, the use of a hindered, non-
nucleophilic base to buffer the reaction mixture is recommended (sometimes the use of a base results in the 
formation of an orthoester instead of a glycoside, a problem that is resolved by simply omitting the base); 9) the 
reaction is conducted at low temperatures and is usually complete in a matter of minutes or a few hours; and 10) the 
stereochemical outcome of the coupling is a function of the solvent and the protecting groups in both the glycosyl 
donor and acceptor. 

Mechanism: 26,20,27,21,8

The precise mechanism of the glycosidic bond formation in the Kahne glycosidation is not known. NMR studies have 
revealed that when the activating agent is a triflate, glycosyl triflates are formed and act as glycosyl donors.26 It is not 
clear whether the nucleophile displaces the leaving group in an SN2 reaction or oxocarbenium/triflate contact ion pairs 
trap it stereoselectively. There is no structural information on the active species, which are generated upon activation 
by Lewis acids. 

Kahne (1994):

OH
H3C CH3

O

S
O

Ph
R

R R

R

R = OBn
(2 equiv)

Tf2O (2 equiv)

toluene, -78 °C
O

R

R R

R

+

(1 equiv)

DTBMP
toluene

O

R
R R

R

O
CH3

CH3

α

-78 to -24 °C
70%

α:β = 2:1

α-O-aryl glycoside

Kahne glycosidation (sulfoxide method):

O
R1

R1

R1
R1

S

OTf
α-O-triflyl glycoside

R2

O

R1 = O-alkyl, O-aryl, O-acyl; R2 = alkyl, aryl; triflate activator: Tf2O, TMSOTf, TfOH; solvent: toluene, CH2Cl2, Et2O, EtOAc, EtCN; 
base: DTBMP, DTBP, TTBP; acid scavenger: methyl propiolate, allyl-1,2-dimethoxybenzene, P(OMe)3, P(OEt)3;
Nucleophile: 1°, 2° and 3° alcohols, phenols, thiols, silylated amides, O-trialkylstannyl phenols

activating agent 
(≥ 1 equiv)

solvent
low temperature

O
R1

R1

R1
R1

OTf

Nucleophile
base (≥ 1 equiv) or

acid scavenger

O
R1

R1

R1
R1

Nuc

solvent
low temperature

glycosyl triflateglycosyl sulfoxide
α- or β−O- or N-

 glycoside

O
R1

R1

R1
R1

S
R2

O

glycosyl sulfoxide

S

O

O
O

R

S O
O

R
- OTf O

R1

R1

R1
R1

S
R2

O
S
O

O
CF3

+ OTf

O
R1

R1

R1
R1

OTf

glycosyl triflate

loss of

S
R2

OTf

R = CF3

O
R1

R1

R1
R1

Nuc+ Nuc-H
+ base

- TfOH·base



235

KAHNE GLYCOSIDATION

Synthetic Applications:

The first enantioselective total synthesis of the potent antiulcerogenic glycoside (–)-cassioside was accomplished in 
the laboratory of R.K. Boeckman Jr.28 The natural product features a β-glycosidic bond to the extremely hindered 
neopentyl alcohol functionality of the aglycon. The Kahne glycosidation proved to be well-suited for the challenging 
glycosidation step at the final stages of the synthetic effort. The choice of the protecting groups proved to be 
important, since the authors found that after the coupling the removal of the benzyl groups failed in the presence of 
the unsaturations present in the coupled product. The tetrakis(MPM)glucosylphenyl sulfoxide was activated with Tf2O
at -90 °C. The resulting reactive intermediate was unstable at -78 °C, so the addition of the nucleophile was 
performed at -90 °C.

When the alkyl or aryl sulfoxide functionality is placed on the aglycon, a useful variant of the Kahne glycosidation
arises which is known as the reverse Kahne glycosidation. D.B. Berkowitz and co-workers utilized this method for the 
total synthesis of etoposide, a semisynthetic glucoconjugate of epipodophyllotoxin, which has been used as an 
antineoplastic agent.12 The activation of the phenyl sulfoxide occurred at low temperature, and after the addition of 
excess glycosyl acceptor, the reaction mixture was warmed to -40 °C in 5 hours and quenched. The coupled product 
was exclusively the β anomer, which was isolated in good yield. The final step was the removal of the benzyl and Cbz 
groups. 

D. Kahne et al. developed a one-pot multicomponent stereoselective synthesis for the trisaccharide portion of 
cyclamycin 0 using the Kahne glycosidation.25,29  The reactivity of the glycosyl donor was tuned (the rate limiting step 
is the triflation of the sulfoxide) and the p-methoxyphenyl sulfoxide was activated first. The trisaccharide was obtained 
in an overall 25% yield with complete α-selectivity. 
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KECK ASYMMETRIC ALLYLATION 
(References are on page 612)

Importance:

[Seminal Publication1-3; Reviews4-11; Modifications & Improvements12-19]

The formation of chiral secondary homoallylic alcohols via the enantioselective addition of allylic nucleophiles to 
aldehydes is an important tool in organic synthesis. An efficient way to achieve this transformation is to use allylic 
organometallic reagents in the presence of chiral Lewis acid catalysts. The most widely studied catalysts in the area 
are the 1,1'-binaphthalene-2,2'-diol (BINOL) complexes of titanium(IV). The first application of a Ti(IV)-BINOL complex 
for enantioselective allylation was reported by K. Mikami in 1993.20 According to this procedure, the catalyst was 
prepared from TiCl2(Oi-Pr)2 and (S)-BINOL in the presence of 4Å molecular sieves in situ. The addition of allylsilanes 
and allylstannanes to glyoxylate in the presence of 10% of the catalyst provided the products with low enantio- and 
diastereoselectivity. The same year, G.E. Keck independently reported the application of the BINOL/Ti(IV) catalyst 
system for asymmetric allylation.1-3 He utilized allyltributylstannane as the nucleophile, and reacted it with aliphatic, 
aromatic, and unsaturated aldehydes in the presence of 10 mol% catalyst.  The catalyst was prepared by combining 
two equivalents of the (R)- or (S)-BINOL ligand with one equivalent of Ti(Oi-Pr)4 in dichloromethane, and the mixture 
was kept at room temperature for five minutes to an hour. The reaction of unbranched aliphatic, aromatic and 
unsaturated aldehydes with allyltributylstannane in the presence of 10% catalyst provided the homoallylic alcohols 
with high yields and enantioselectivity; α-branched aldehydes gave the products with lower yields and 
enantioselectivity. Today, this reaction is referred to as the Keck asymmetric allylation. About the same time, the 
research group of E. Tagliavini reported similar results using BINOL/Ti(IV) complexes for asymmetric allylation.21 His 
procedure for the preparation of the catalyst system was similar to Mikami’s original method, except that they used a 
slight excess of the BINOL ligand. The high selectivity and wide applicability of the above method stimulated further 
studies and several modifications of the original catalyst system were reported: 1) instead of the original BINOL 
ligand, derivatives of BINOL were utilized;16,17 2) dendritic BINOL ligands were applied for easy separation of the 
reaction mixture from the catalyst;15 3) racemic BINOL and enantiopure diisopropyl tartrate was combined to prepare 
the catalyst;12 4) bidentate catalysts prepared by mixing Ti(Oi-Pr)4, BINOL, and aromatic diamines showed improved 
reactivity and selectivity;18,19 and 6) rate enhancement could be achieved by the addition of stoichiometric amounts of 
additives such as i-PrSSiMe, i-PrSBEt2, i-PrSAlEt2, and B(OMe)3.13,14 The scope of the reaction was extended to β-
substituted allylic stannanes.22-25

Mechanism:2,26,12,27

The exact course of the mechanism of the allylation is not fully understood. The chiral Lewis acid presumably 
activates the aldehyde toward nucleophilic attack by the allyltributyltin. After loss of the tributyltin group, the 
homoallylic titanium(IV) alkoxide forms. Subsequently, the Ti(IV) Lewis acid is regenerated through transmetallation. 
This process can be facilitated by additives such as i-PrSSiMe3.13 Investigation of the mechanism of the 
enantioselective process revealed a positive nonlinear effect that suggests the involvement of a dimeric titanium 
complex (BINOL)2Ti2X4.2,12 To account for the absolute stereochemistry, a stereochemical model was proposed by 
E.J. Corey and co-workers. They postulated that a C-H…O hydrogen bond in the transition state assembly is a key 
factor in determining the absolute stereochemistry.27
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KECK ASYMMETRIC ALLYLATION 

Synthetic Applications:

A. Fürstner and co-workers devised an efficient synthesis of (–)-gloeosporone, a fungal germination inhibitor.28 They 
utilized the Keck asymmetric allylation method to create the 7(R)-homoallylic alcohol subunit. The reaction of the 
substrate aldehyde in the presence of the in situ generated catalyst provided the product with high yield and as the 
only diastereomer. It is important to note that it was essential to use freshly distilled Ti(i-OPr)4 for the preparation of 
the catalyst in order to get high enantioselectivity and reproducible results.  

A convergent, stereocontrolled total synthesis of the microtubule-stabilizing macrolides, epothilones A and B was 
achieved in the laboratory of S.J. Danishefsky.29 During their investigations, they examined several approaches to 
construct these natural products. One possible strategy to introduce the C15-hydroxyl group in an enantioselective 
fashion was to use Keck’s asymmetric allylation method. Under standard conditions, the reaction provided the 
desired homoallylic alcohol in good yield and excellent enantioselectivity.  

The spongistatins are a family of architecturally complex bisspiroketal macrolides, which display extraordinary 
cytotoxicity. During the second generation synthesis of the ABCD subunit of spongistatin 1, A.B. Smith and co-
workers utilized the Keck allylation to construct the Kishi epoxide.30 The allylation was carried out under standard 
conditions, using tributyl-(2-ethylallyl)-stannane as the allylstannane reactant. The desired product was formed in high 
yield and a diastereomeric ratio greater than 10:1.  

Rhizoxin is a macrocyclic natural product possessing antibiotic and antifungal properties, and it also exhibits 
antitumor activity. G.E. Keck and co-workers described a synthetic approach for the construction of this natural 
product, where they utilized the catalytic asymmetric allylation method as a key strategic element to establish the C13 
stereochemistry.31
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KECK MACROLACTONIZATION
(References are on page 613)

Importance:

 [Seminal Publications1; Reviews2,3; Modifications & Improvements4]

The introduction of the Corey-Nicolaou macrolactonization in the mid-1970s had a tremendous impact in the field of 
natural product total synthesis, and it was followed by numerous other macrolactonization procedures.2 By the early 
1980s the total synthesis of several very complex macrolide antibiotics was achieved. In 1985, G.E. Keck and E.P. 
Boden were trying to develop a new macrolactonization protocol in which the activated ester derived from the hydroxy 
acid substrate is generated in situ and does not need to be isolated.1 At the outset of their studies they attempted to 
use the conditions of the Steglich esterification (DMAP/DCC)5 for the formation of macrolactones, but even in the 
presence of excess reagents the experiments failed. However, when a proton source such as the hydrochloride salt 
of dimethylamino pyridine (DMAP·HCl) was added to mediate the crucial proton-transfer step, the macrocyclizations 
occurred in good to excellent yields. The formation of medium- and large-ring lactones from hydroxy acids using a 
combination of a dialkyl carbodiimide, an amine hydrochloride, and an amine base is known as the Keck
macrolactonization. The general features of this transformation are: 1) as with other macrolactonization procedures 
the reaction requires high-dilution conditions (≤ 0.03 M); 2) the substrate is usually dissolved in an aprotic solvent and 
added to the refluxing solution of the reagents via a syringe pump over several hours; 3) the activating agent is a 
N,N'-dialkyl carbodiimide (DCC or EDCI) that prevents small amounts of water from destroying the activated acyl 
derivative; the process is essentially self-drying; 4) the carbodiimide reagent is typically used in several fold excess to 
ensure high conversion of the starting material; and 5) the use of DMAP·HCl prolongs the lifetime of the activated 
acyl intermediate and suppresses the formation of the undesired N-acyl urea by-product. The main disadvantage of 
the method is the need to use excess amounts of the carbodiimide reagent. At the end of the reaction, the excess 
carbodiimide must be destroyed with AcOH/MeOH and the product has to be separated from large amounts of 
dialkylurea. The most important modification of the Keck macrolactonization utilizes polymer-bound DCC to simplify 
the work-up.4
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KECK MACROLACTONIZATION

Synthetic Applications:

The total synthesis of a novel fungicidal natural product, (–)-hectochlorin, was accomplished by J.R.P. Cetusic and 
co-workers.6 The final step in their synthetic route was the Keck macrolactonization under the original conditions 
developed by Keck et al. The substrate hydroxy acid was dissolved in ethanol-free CHCl3 and was slowly added to a 
chloroform solution of DCC, DMAP and DMAP·HCl at reflux temperature. 

The 16-membered tetraenic macrolactone (–)-bafilomycin A1 was synthesized in the laboratory of S. Hanessian.7 The 
key macrolactonization step was conducted under the modified Keck conditions using EDCI instead of DCC. 
Interestingly, model studies on the macrocyclization of the hydroxy acid containing the entire bafilomycin A1 carbon 
framework yielded a mixture of products. However, if the hydroxy acid did not contain the pseudosugar moiety, the 
macrolactonization took place uneventfully, and the thermodynamically more stable 16-membered lactone ring (with 
the C15 hydroxyl group) was formed exclusively. 

The Keck macrolactonization was used by R.J.K. Taylor et al. to close the 10-membered ring of (+)-apicularen A.8
The lactonization was attempted using both the Yamaguchi and Mitsunobu procedures and neither gave even a trace 
of the cyclic product. However, when the Keck conditions were applied, the desired lactone was isolated in moderate 
yield. 

The total synthesis of the microtubule stabilizing antitumor drug epothilone B was achieved by J. Mulzer et al. who 
cyclized the 16-membered macrocycle using the Keck macrolactonization.9
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KECK RADICAL ALLYLATION 
(References are on page 613)

Importance:

[Seminal Publications1-4; Reviews5-8]

During the total synthesis of perhydrohistrionicotoxin, G.E. Keck and co-workers faced a challenge to replace a 
halogen with an allyl moiety.9 They solved this problem by applying a free radical chain process, namely reacting an 
alkyl halide with allyltributyltin. The reaction was carried out in benzene, at 80 °C in the presence of catalytic amounts 
of AIBN as a radical initiator. Since this report, the coupling of an alkyl halide with allyltributyltin under radical 
conditions to introduce the allyl functionality is referred to as the Keck radical allylation. Keck examined the scope of 
the reaction and he found the following:4 1) the reaction is general for primary-, secondary-, and tertiary alkyl 
bromides: 2) it tolerates a wide range of functional groups such as free hydroxyl groups, esters, ethers, epoxides, 
acetals, ketals, and sulfonate esters; 3) the reaction is highly chemoselective: aldehydes that readily undergo 
allylation with allyltributyltin under acidic conditions, were not affected under the reaction conditions; 4) the process is 
tolerant of steric hindrance; 5) in addition to alkyl bromides, alkyl chlorides, phenylselenides, and thioacylimidazole 
derivatives also react; and 6) to initiate the process, a catalytic amount of AIBN proved to be the most efficient, but 
photoinitiation can also be used. Although this transformation was studied and extended by Keck, it should be noted 
that the first example of such a reaction was reported independently by M. Kosugi2 and J. Grignon1,3 in 1973. For the 
initiation, they utilized benzoyl peroxide, pyrolysis, or photoinitiation, and the isolated yields of the products were low 
to moderate.

Mechanism:1-3

The mechanism of this transformation was examined by M. Kosugi.2 He found that the reaction was promoted by 
benzoyl peroxide, a radical initiator and was retarded by p-quinone, a radical scavenger. These results are in 
accordance with a free radical chain mechanism. The initiation of the reaction may take place via a variety of possible 
pathways, one possibility is depicted below. 
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Grignon's procedure (1973, 1975):
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 4-40h; 10-80%

R2 = -CCl3, -CHCl2, - CH2Cl, -CH2CO2Et, -CCl2CO2Et, -
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t-Bu, allyl, t-butylcyclohexyl, aryl; X = Cl, Br
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KECK RADICAL ALLYLATION 

Synthetic Applications:

S.J. Danishefsky and co-workers reported the total synthesis of pentacyclic sesquiterpene dilactone, merrilactone
A.10 In their approach, they utilized Keck’s radical allylation method to achieve the required chain extension. This 
sidechain was later used to construct one of the cyclopentane rings of the natural product. 

The total synthesis of Stemona alkaloid (–)-tuberostemonine was accomplished by P. Wipf.11 Late in the synthesis, 
the introduction of an ethyl sidechain was required. This could be achieved in a novel four-step sequence. First, the 
allyl sidechain was introduced by the Keck radical allylation. To this end, the secondary alkyl phenylselenide 
substrate was treated with allyltriphenyltin in the presence of catalytic amounts of AIBN. This was followed by the 
introduction of a methyl group onto the lactone moiety. The allyl group then was transformed into the desired ethyl 
group as follows: the terminal double bond was isomerized to the internal double bond by the method of R. Roy. This 
was followed by ethylene cross metathesis and catalytic hydrogenation to provide the desired ethyl sidechain. 

Oligosaccharides are structurally diverse biopolymers that play an important role in many biological processes. To 
examine the biological function of these compounds and develop therapeutic agents, the construction of synthetic 
polysaccharides is essential. Carbon-linked glycosides, called C-glycosides, are hydrolytically stable carbohydrate 
mimetics that were widely studied for their biological activity. C.R. Bertozzi and co-workers reported the synthesis of 
-C-glycosides of N-acetylglucosamine via the Keck radical allylation.12 This transformation was carried out on the 

corresponding bromide- and chloride derivatives, using a large excess of allyltributyltin. In case of the chloride 
substrate, higher temperature (110 °C) was required to effect the transformation. 

Manzamine A is an alkaloid that was shown to inhibit the growth of P-388 mouse leukemia cells. The synthesis of the 
tetracyclic substructure of this natural product was reported by D.J. Hart.13 For the construction of the 
perhydroisoquinoline moiety, he utilized the Keck radical allylation. This transformation was carried out under 
standard conditions, reacting a secondary alkyl iodide with allyltributyltin.  
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KNOEVENAGEL CONDENSATION
(References are on page 613)

Importance:

 [Seminal Publications1,2; Reviews3-10; Modifications & Improvements11-41]

In 1894, E. Knoevenagel reported the diethylamine-catalyzed condensation of diethyl malonate with formaldehyde in 
which he isolated the bis adduct.1 He found the same type of bis adduct when formaldehyde and other aldehydes 
were condensed with ethyl benzoylacetate or acetylacetone in the presence of primary and secondary amines. Two 
years later in 1896, Knoevenagel carried out the reaction of benzaldehyde with ethyl acetoacetate at 0 °C using 
piperidine as the catalyst and obtained ethyl benzylidene acetoacetate as the sole product.2 The reaction of 
aldehydes and ketones with active methylene compounds in the presence of a weak base to afford α,β-unsaturated 
dicarbonyl or related compounds is known as the Knoevenagel condensation. The general features of the reaction 
are: 1) aldehydes react much faster than ketones; 2) active methylene compounds need to have two electron-
withdrawing groups and typical examples are malonic esters, acetoacetic esters, malonodinitrile, acetylacetone, etc.; 
3) the nature of the catalyst is important, usually primary, secondary, and tertiary amines and their corresponding 
ammonium salts, certain Lewis acids combined with a tertiary amine (e.g., TiCl4/Et3N), potassium fluoride, or other 
inorganic compounds such as aluminum phosphate are used; 4) the by-product of the reaction is water and its 
removal from the reaction mixture by means of azeotropic distillation, the addition of molecular sieves, or other 
dehydrating agents shifts the equilibrium toward the formation of the product; 5) the choice of solvent is crucial and 
the use of dipolar aprotic solvents (e.g., DMF) is advantageous, since protic solvents inhibit the last 1,2-elimination 
step; 6) the dicarbonyl product can be hydrolyzed and decarboxylated to afford the corresponding α,β-unsaturated 
carbonyl compounds; 7) when R3 and R4  or R5 and R6 are different, the product is obtained as a mixture of 
geometrical isomers, and the selectivity is dictated by steric effects; and 8) usually the thermodynamically more 
stable compound is formed as the major product. 

Mechanism: 42,4,43-49,7,50-55

The Knoevenagel condensation is a base-catalyzed aldol-type reaction, and the exact mechanism depends on the 
substrates and the type of catalyst used. The first proposal for the mechanism was set forth by A.C.O. Hann and A. 
Lapworth (Hann-Lapworth mechanism) in 1904.42 When tertiary amines are used as catalysts, the formation of a β-
hydroxydicarbonyl intermediate is expected, which undergoes dehydration to afford the product. On the other hand, 
when secondary or primary amines are used as catalyst, the aldehyde and the amine condense to form an iminium 
salt that then reacts with the enolate. Finally, a 1,2-elimination gives rise to the desired α,β-unsaturated dicarbonyl or 
related compounds. The final product may undergo a Michael addition with the excess enolate to give a bis adduct. 
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KNOEVENAGEL CONDENSATION

Synthetic Applications:

The total synthesis of the marine-derived diterpenoid sarcodictyin A was accomplished in the laboratory of K.C. 
Nicolaou.56 The most challenging part of the synthesis was the construction of the tricyclic core, which contains a 10-
membered ring. This macrocycle was obtained by the intramolecular 1,2-addition of an acetylide anion to an α,β-
unsaturated aldehyde. This unsaturated aldehyde moiety was installed by utilizing the Knoevenagel condensation
catalyzed by β-alanine. The Knoevenagel product was exclusively the (E)-cyanoester. 

The domino Knoevenagel condensation/hetero-Diels-Alder reaction was used for the enantioselective total synthesis 
of the active anti-influenza A virus indole alkaloid hirsutine and related compounds by L.F. Tietze and co-workers.57

The Knoevenagel condensation was carried out between an enantiopure aldehyde and Meldrum's acid in the 
presence of ethylenediamine diacetate. The resulting highly reactive 1-oxa-1,3-butadiene underwent a hetero-Diels-
Alder reaction with 4-methoxybenzyl butenyl ether (E/Z = 1:1) in situ. The product exhibited a 1,3-asymmetric 
induction greater than 20:1.  

During the total synthesis of (±)-leporin A, a tandem Knoevenagel condensation/inverse electron demand 
intramolecular hetero-Diels-Alder reaction was employed by B.B. Snider et al. to construct the key tricyclic 
intermediate.58 The condensation of pyridone with the enantiopure acyclic aldehyde in the presence of triethylamine 
as catalyst afforded an intermediate that underwent a [4+2] cycloaddition to afford the tricyclic core of the target. 

The stereocontrolled total synthesis of (±)-gelsemine was accomplished by T. Fukuyama and co-workers using the 
Knoevenagel condensation to prepare a precursor for the key divinylcyclopropane-cycloheptadiene rearrangement.59

The use of 4-iodooxindole as the active methylene component allowed the preparation of the (Z)-alkylidene 
indolinone product as a single stereoisomer. 
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KNORR PYRROLE SYNTHESIS
(References are on page 614)

Importance:

 [Seminal Publications1,2; Reviews3-8; Modifications & Improvements9-17]

In 1886, L. Knorr reported that by heating the mixture of α-nitroso ethyl acetoacetate and ethyl acetoacetate in glacial 
acetic acid with zinc dust, a tetrasubstituted pyrrole is formed. The nitroso compound underwent reduction under the 
reaction conditions, and the resulting α-amino-β-ketoester reacted with the acetoacetic ester to afford the highly 
substituted pyrrole product. The condensation of an α-amino ketone or an α-amino-β-ketoester with an active 
methylene compound is known as the Knorr pyrrole synthesis. The general features of the transformation are: 1) the 
reaction can be conducted under both acidic and basic conditions; 2) α-amino ketones are often quite labile and tend 
to undergo self-condensation (to form the corresponding pyrazines), so it is common to prepare them by first 
nitrosating the ketone and then reducing the resulting α-nitroso ketone in situ; 3) the reduction of the α-nitroso ketone 
(or α-oximino ketone in its tautomerized form) is conducted using zinc powder in acetic acid, aqueous solution of 
sodium dithionate (Na2S2O4), or catalytic hydrogenation under which conditions ketones and esters are not reduced; 
4) the hydrochloride salts of α-amino ketones are stable, and they can be used directly and the HCl can be 
neutralized in situ; 5) carbonyl-protected (e.g., acetal) derivatives of α-amino ketones are often utilized to avoid self-
condensation; 6) alternatively the required α-amino ketones can be prepared by the Neber rearrangement of O-
acylated ketoximes; 7) N-substituted pyrroles are formed when a secondary amino ketone is used; 8) the active 
methylene component is usually a 1,3-diketone, β-ketoester or a β-cyanoester; 9) if the active methylene compound 
is not reactive enough, the formation of the pyrrole will be slow and the self-condensation of the α-amino ketone 
becomes predominant; and 10) when non-symmetrical ketones are used, there is a modest regioselectivity favoring 
the regioisomer in which the bulkier group is part of the acyl substituent at C4.  

Mechanism: 18-20
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KNORR PYRROLE SYNTHESIS

Synthetic Applications:

A new anti-inflammatory/analgesic agent, 4,5,8,9-tetrahydro-8-methyl-9-oxothieno[3',3':5,6]cyclohepta[1,2-b]-pyrrole-
7-acetic acid, was synthesized by H.E. Rosenberg and R.W. Ward et al. using the Knorr pyrrole synthesis for the 
construction of the highly substituted pyrrole ring.21 The starting β-ketoamide was first nitrosated under standard 
conditions in acetic acid/water to afford the corresponding α-oximino ketone. This was followed by the addition of 
diethyl acetone-1,3-dicarboxylate, zinc powder, and sodium acetate, and the resulting mixture was heated at reflux. 
The cyclization to obtain the desired tricyclic ketone was achieved under Vilsmeier-Haack conditions using POCl3.

A useful modification of the Knorr pyrrole synthesis was developed in the laboratory of J.M. Hamby for the 
construction of tetrasubstituted pyrroles. The necessary α-amino ketones were prepared from N-methoxy-N-
methylamides of amino acids (Weinreb amides).13 These Weinreb amides were prepared by the mixed anhydride 
method and treated with excess methylmagnesium bromide in ether to afford the corresponding Cbz-protected α-
amino ketones in excellent yield. The Cbz group is removed by catalytic hydrogenation in the presence of the active 
methylene compound (e.g., acetoacetic ester), the catalyst is then filtered and the resulting solution is heated to reflux 
to bring about the condensation. 

The large-scale synthesis of a potent δ-opioid antagonist, SB-342219, was accomplished by the research team of 
J.S. Carey.22 The route developed by medicinal chemists could not be fully adapted for the large-scale preparation, 
since it required the addition of finely divided zinc powder in portions to a hot and flammable solvent containing a 
phenylhydrazone and a low concentration of the resulting α-amino ketone had to be maintained. Therefore, a 
procedure was sought that avoided the use of zinc metal altogether. The tricyclic ketone was mixed with an excess of 
the amino ketone hydrochloride in acetic acid and heated. Only one regioisomer of the pyrrole was formed in good 
yield, which was then converted to the final compound in a few steps. 

The two-step one-pot total synthesis of Ro 22-1319, an antipsychotic agent featuring a rigid pyrrolo[2,3-g]isoquinoline 
skeleton, was accomplished by D.L. Coffen and co-workers.23 The cyclic 1,3-diketone precursor was prepared from 
arecoline and dimethyl malonate, and in the same reaction vessel an amino ketone hydrochloride was added. The pH 
of the reaction mixture was adjusted to 4 in order to initiate the formation of the pyrrole. 

NaNO2
(1.3 equiv)

AcOH:H2O
(10:1)

0 °C to r.t.
3h

O

N

O

O

N

O
N

HO

S S

O O O

CO2EtEtO2C
N

O

S

O

H
N

CO2Et

CO2Et(1 equiv)

AcOH:H2O (10:1)
Zn (xs), NaOAc
reflux, 1h; 54%

steps

α-oximino ketone

O

S

N Me

HOOC

Thienocyclohepta[1,2-b]
pyrrole acid

n-Bu

NH
N

O

Cbz

OMe

Me

MeMgBr
(2.45 equiv)

Et2O
0 °C to r.t.

95%

n-Bu

NH
Me

O

Cbz

Pd(C)
H2 (20 psi) n-Bu

N
Me

O

H H

Me

O
CO2Et

AcOH
(1.5 equiv)

80 °C, 1h; 64%
N
H

Me

n-Bu

CO2Et

Me

Tetrasubstituted
pyrrole

N
OH

Me

O

+

Me
O

NH2

N
O

i-Pr

·HCl

Ph
AcOH

NaOAc

(2.5-3.0 equiv)

100 °C, 2h
68%

N
OH

Me

N
H

Me
N

O

i-Pr

Ph

steps

NH
OH

N
H

Me
N

O

i-Pr

Ph·HCl

SB-342219

N
Me

O·HBr
MeO2C

MeO2C
+

1. NaOMe
MeOH

2. KOH/H2O
3. HCl, heat

N
Me

O

O

H

H

O
NH2·HCl

pH 4, heat, 95 °C
8h; 88%

N
Me

O
H

H
N
H

Ro 22-1319



246

KOENIGS-KNORR GLYCOSIDATION
(References are on page 615)

Importance:

 [Seminal Publications1,2; Reviews3-21; Modifications & Improvements22-34; Theoretical Studies35-37]

The first synthesis of a glycoside was reported by A. Michael in 1879, when he treated 2,3,4,6-tetra-O-acetyl-α-D-
glucopyranosyl chloride with the potassium salt of 4-methoxy phenol in absolute ethanol.1 The product was the 
corresponding β-D-O-phenyl glycoside, but the acetyl groups were hydrolyzed under the strongly basic reaction 
conditions. This procedure could only be used for the synthesis of aryl glycosides, and the integrity of the acetyl 
functionality could not be preserved. Two decades later, in 1901, W. Koenigs and E. Knorr modified the procedure 
and by taking tetra-O-acetyl-α-D-glucopyranosyl bromide and treating it with excess silver carbonate in methanol they 
isolated the corresponding β-D-O-methyl glycoside with all the acetyl groups intact.2 The synthesis of alkyl- and aryl 
O-glycosides from glycosyl halides and alcohols or phenols in the presence of heavy metals salts or Lewis acids is 
known as the Koenigs-Knorr glycosidation. The general features of this transformation are: 1) the preparation of 
glycosyl halides can be achieved typically by the exchange of the anomeric hydroxyl group with halogenating agents; 
2) the various glycosyl halide substrates may have very different reactivities and stabilities, and these mainly depend 
on the nature of the halogen atom and the substituents on the carbohydrate scaffold: chlorides are more stable than 
bromides, while iodides are usually very unstable and electron-withdrawing protecting groups tend to increase the 
stability; 3) the reactivity of the glycosyl halide is also influenced by the choice of solvent, the temperature and the 
nature of the coactivator (Lewis acid or heavy metal salt); 4) the reaction is regiospecific, since the substitution 
always takes place at the anomeric carbon (C1) and can be highly diastereoselective; 5) formation of α-O-glycosides 
can be aided by the anomeric effect when neighboring group participation is not operational (if R4=O-alkyl); 6) 
formation of β-O-glycosides is usually achieved from α-glycosyl halides when neighboring group participation is 
operational (e.g., R4=O-acyl); 7) the coactivator or catalyst is typically a silver- or mercury salt dissolved in an aprotic 
solvent and the by-product acid is usually trapped by a base (e.g., Ag2CO3, collidine); and 8) due to the relatively low 
thermodynamic stability of glycosyl halides, reactions are conducted at or below room temperature. Disadvantages of 
the procedure are: 1) harsh conditions are needed for the preparation of the glycosyl halides, which are thermally not 
very stable; 2) glycosyl halides can undergo hydrolysis or 1,2-elimination; and 3) the coactivators are usually required 
in equimolar quantities, and they are often toxic and sometimes explosive. Numerous significant modifications and 
variants of the reaction exist.22-34

Mechanism: 38-42

In order to achieve high levels of diastereoselectivity, the attack of the nucleophile should proceed via an SN2 type 
mechanism. This is the case when the acyloxy group at C2 forms a dioxolanium ion with the oxocarbenium ion.  
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KOENIGS-KNORR GLYCOSIDATION

Synthetic Applications:

The first total synthesis of the major component of the microbial biosurfactant sophorolipid, sophorolipid lactone, was 
accomplished in the laboratory of A. Fürstner.43 The natural product features a 26-membered ring, a (Z)-double bond, 
and two β-glycosidic linkages. The macrocyclization was achieved via ring-closing alkyne metathesis followed by 
hydrogenation of the alkyne in the presence of Lindlar's catalyst and finally the glycosidic linkages were installed 
using a modified Koenigs-Knorr glycosidation. In order to preserve the labile p-methoxybenzaldehyde  dimethylacetal 
functionality, the anomeric hydroxyl group was converted to the corresponding glycosyl bromide under neutral 
conditions. The glycosidation was performed in the presence of excess silver triflate and base to afford an excellent 
yield of the desired β-O-glycoside. Interestingly, coactivators other than AgOTf gave inferior results. 

The macrolide insecticide (+)-lepicidin A (or (+)-A83543A) was first synthesized by D.A. Evans and co-workers. In the 
final stages of the total synthesis, the β-selective glycosidation of the C17 alcohol was required. The task was made 
even more difficult by the fact that a 2''-deoxy-β-glycosidic linkage had to be formed. The strategy was to take an α-
glycosyl halide and its SN2 inversion would afford the desired β-glycoside. The glycosyl bromide was generated prior 
to the reaction from the corresponding glycosyl acetate, but it was not purified due to its instability. NMR spectra 
confirmed that it was exclusively the α-anomer. The α:β selectivity was poor, and the yield could only be improved by 
using as much as 4 equivalents of the glycosyl bromide. The reaction was conducted several times and the anomers 
were separated providing enough β-glycoside to complete the total synthesis. The last two steps were the removal of 
the Fmoc protecting group under mildly basic conditions (Et2NH) and reductive alkylation of the free amino group 
under the Eschweiler-Clarke methylation conditions. 

The naturally occurring noncyanogenic cyanoglucoside (–)-lithospermoside was prepared by C. Le Drian et al.44 The 
key Koenigs-Knorr glycosidation step was very sensitive to steric hindrance, so the protecting groups on the aglycon 
had to be carefully chosen to obtain a reasonable yield. 
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KOLBE-SCHMITT REACTION
(References are on page 616)

Importance:

 [Seminal Publications1-4; Reviews5,6; Modifications & Improvements7-15; Theoretical Studies16,17]

In 1860, J. Kolbe and E. Lautemann reported the successful synthesis of salicylic acid (2-hydroxybenzoic acid) by 
heating phenol and sodium metal in an atmosphere of carbon dioxide.1-3 The same year, they published similar 
transformation of p-cresol and thymol to obtain the corresponding p-cresotinic acid and o-thymotic acid, respectively.4
This initial procedure was capricious and the yields varied greatly. In 1884, R. Schmitt found that exposing dry 
sodium phenoxide to a high-pressure of CO2 in a sealed tube and heating it above 100 °C gave quantitative yields of 
the corresponding salicylic acid derivatives.7,8 These conditions worked equally well for substituted phenols and 
naphthols. The preparation of ortho- or para-substituted aromatic hydroxy acids from the corresponding phenols 
under basic conditions using gaseous CO2 is referred to as the Kolbe-Schmitt reaction. The general features of this 
transformation are: 1) phenols, substituted phenols, naphthols, and electron-rich heteroaromatic compounds (e.g., 
hydroxypyridine, carbazole, etc.) are good substrates; 2) monohydric phenols are first converted to the corresponding 
alkali or alkali earth phenoxides (e.g., Na, K, Mg, Ca, Ba), dried and then heated in the presence of pressurized CO2
(5-100 atm); 3) di- or polyhydric phenols (with more than two hydroxyl groups) can be carboxylated with carbon 
dioxide at atmospheric pressure; 4) simple acidification of the reaction mixture affords the desired aromatic hydroxy 
acid; 5) the size of the alkali metals greatly influences the position of attack, the use of large alkali metal ions such as 
Rb+ or Cs+ gives rise to p-hydroxybenzoic acid derivatives, whereas smaller alkali metal ions (Na+ or K+) afford 
salicylic acid derivatives;14 and 6) the presence of even trace amounts of water significantly decreases the yield of the 
product, so the reactants, reagents, and the solvents should be thoroughly dried before use.  

Mechanism: 8,18,5,19-24,15

The mechanism of the Kolbe-Schmitt reaction was investigated since the late 1800s, but the mechanism of the 
carboxylation could not be elucidated for more than 100 years. For a long time, the accepted mechanism was that the 
carbon dioxide initially forms an alkali metal phenoxide-CO2 complex, which is then converted to the aromatic 
carboxylate at elevated temperature.8,18 The detailed mechanistic study conducted by Y. Kosugi et al. revealed that 
this complex is actually not an intermediate in the reaction, since the carefully prepared phenoxide-CO2 complex 
started to decompose to afford phenoxide above 90 °C.17 They also demonstrated that the carboxylated products 
were thermally stable even at around 200 °C.17 The CO2 electrophile attacks the ring directly to afford the 
corresponding ortho- or para-substituted products. (When the counterion is large (e.g., cesium) the attack of CO2 at 
the ortho-position is hindered; therefore, the para-substituted product is the major product.) 
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KOLBE-SCHMITT REACTION

Synthetic Applications:

In the laboratory of S. Blechert, the large-scale synthesis of a new and highly efficient alkene metathesis catalyst was 
achieved.25 The catalyst was a biphenyl-based ruthenium alkylidene complex, and it was ideal for the ring-opening 
cross-metathesis of substrates that contain unprotected chelating atoms. The starting material 2-hydroxybiphenyl was 
first deprotonated, and the resulting dry sodium salt subjected to the Kolbe-Schmitt reaction conditions. The crude 
carboxylation product was alkylated with excess isopropyl bromide to afford the corresponding isopropyl ester that in 
three steps was converted to a vinyl derivative and finally to the desired ruthenium alkylidene complex. 

Phenols that have more than one hydroxyl group may be carboxylated with CO2 at atmospheric pressure under basic 
conditions. The research team of Y.-C. Gao synthesized 3,5-di-tert-butyl-γ-resorcylic acid from 4,6-di-tert-butyl 
resorcinol using the Kolbe-Schmitt reaction under these conditions.26 The resorcylic acid derivative was needed in 
order to prepare ternary complexes of lanthanide(III)-3,5-di-tert-butyl-γ-resorcylate with substituted pyridine-N-oxide. 

B.S. Green and co-workers developed an improved preparation of the clathrate host compound tri-o-thymotide (TOT)
and other trisalicylide derivatives.27 The synthesis began with the preparation of ortho-thymotic acid from thymol 
using the Kolbe-Schmitt reaction. The authors found that the yield of the product was dramatically increased when 
the reactants, solvents, and reagents were dried before use. Thus, thymol was dissolved in dry xylene, sodium metal 
was added and the temperature was kept at 130 °C for 20h in a dry carbon dioxide atmosphere. The desired 
carboxylated product was isolated in good yield. Finally, cyclodehydration with POCl3 afforded TOT in almost 
quantitative yield. 

The first enantioselective total synthesis of the fungal metabolite (+)-pulvilloric acid was accomplished by H. Gerlach 
et al.28 At the final stages of the synthetic effort the carboxylic acid moiety was installed via the Kolbe-Schmitt reaction 
using CO2 at atmospheric pressure. The final formylation and ring-closure were achieved with triethyl orthoformate. 

NaO
CO2 (20 atm)
190 °C, 24h

40%

HO
CO2Na

i-PrBr (xs)

K2CO3, 50 °C
12h; 100%

i-PrO
CO2i-Pr

steps

i-PrO

Ph

CRu
HCl

Cl

NMesMesN

Biphenyl-based alkene 
metathesis catalyst

HO OH CO2
(1 atm)

165-180 °C

KO OK HO OH
COOH

K2CO3
DMA

then
work-up

3,5-Di-tert-butyl-γ-
resorcylic acid3,5-di-tert-butyl-

resorinol

steps

Ternary complexes
of lanthanide (III)-3,5-

di-tert-butyl-γ-resorcylate
with substituted 
pyridine-N-oxide

CH3

CH3CH3

OH

Na metal
CO2 (1 atm)

xylene
130 °C, 20h;
then HCl/H2O

74%

CH3

CH3CH3

OH

CO2H POCl3 (neat)

50 °C, 2h; 93%

CH3

i-Pr
O

O

i-Pr
O

O

CH3

O
i-Pr

H3C

O

Tri-o-thymotide (TOT)

HO

OH

OH

KHCO3
(5 equiv)

CO2 (1 atm)

glycerol
145-150 °C, 5h
then HCl; 64%

HO

OH

OH
HO2C

HC(OEt)3

O

OH
HO2C

O

n-Bu

H
(+)-Pulvilloric acid

r.t., 15min
61%



250

 KORNBLUM OXIDATION
(References are on page 616)

Importance:

[Seminal Publications1,2; Reviews3-8; Modifications & Improvements9-16]

In 1957, N. Kornblum and co-workers discovered that activated primary benzyl bromides and α-bromo aromatic 
ketones are efficiently oxidized to the corresponding aldehydes and phenylglyoxals by simply dissolving the 
substrates in dimethyl sulfoxide (DMSO).1 The drawback of this procedure was that it gave low yields for benzyl 
bromides having no electron-withdrawing groups, and less reactive halides, such as aliphatic alkyl halides, did not get 
oxidized at all. It was quickly recognized that the unreactive alkyl halides first had to be converted to the more 
reactive tosylates, which were oxidized readily in hot DMSO in the presence of a base (e.g., Na2CO3).2 The oxidation 
of alkyl halides to the corresponding carbonyl compounds using DMSO as the oxidant is known as the Kornblum 
oxidation. The general features of the reaction are: 1) the typical procedure calls for the heating of the activated 
primary or secondary alkyl halide in DMSO in the presence of a base; 2) for unactivated alkyl halides the process 
requires two steps: first the addition of silver tosylate forms the tosylate, which is heated in DMSO in the presence of 
a base; 3) for primary alkyl halides the oxidation usually gives high yield of the carbonyl product, but with secondary 
alkyl halides, elimination of HX to form olefins is often a side reaction; 4) for sterically hindered substrates the yields 
are only moderate; 5) tertiary alkyl halides do not react; 6) the relative reactivity of the substrates is the following: 
tosylate>iodide>bromide>chloride; 7) the base plays a dual role: it neutralizes the hydrogen halide to avoid the 
oxidation of HX by DMSO (X2 can lead to side reactions), as well as facilitates the deprotonation of the 
alkoxysulfonium intermediate; and 7) for substrates that dissolve poorly in DMSO a co-solvent is needed (e.g., DME). 
There are a number of variants and alternatives of the Kornblum oxidation: 1) silver-assisted DMSO oxidations;11 2) 
the use of amine oxides as oxidants (occasionally called the Ganem oxidation);13 3) the use of pyridine N-oxide or 2-
picoline N-oxide and a base;17,18 4) the use of metal nitrates;19,9,20,21 5) Sommelet oxidation;22 and 6) Kröhnke 
oxidation.23

Mechanism: 4,6-8

With alkyl halide substrates, the first step of the oxidation is the SN2 displacement of the halide with tosylate anion. 
Next the alkyl tosylate undergoes a second SN2 reaction with the nucleophilic oxygen atom of the DMSO to form the 
alkoxysulfonium salt that undergoes deprotonation to give the alkoxysulfonium ylide, which upon a [2,3]-sigmatropic
shift affords the carbonyl compound. In the case of α-halo carbonyl substrates, the deprotonation takes place at the 
more acidic α-carbon instead of the methyl group attached to the sulfur atom of the alkoxysulfonium salt. 
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KORNBLUM OXIDATION

Synthetic Applications:

A tandem Kornblum oxidation/imidazole formation reaction was used during the preparation of new fluorescent 
nucleotides by B. Fischer and co-workers.24 The adenosine monophosphate free acid was mixed with 10 equivalents 
of 2-bromo-(p-nitro)-acetophenone and dissolved in DMSO. The required pH value was maintained with the addition 
of DBU which also served as a base. The Kornblum oxidation of the alkyl halide yielded the glyoxal, which reacted in 
situ with the aromatic amine to form the desired imidazole derivative. 

The first total synthesis of the clerodane alkaloid solidago alcohol was achieved in the laboratory of H.-S. Liu, using a 
highly diastereoselective Diels-Alder cycloaddition as the key step.25 The installation of the 3-furyl side chain required 
the conversion of the bicyclic primary alkyl bromide to the corresponding aldehyde. This was accomplished by the 
modified Kornblum oxidation, which employed silver tetrafluoroborate to activate the substrate.  

A number of simple analogs of the antipsoriatic agent anthralin (dithranol) were prepared by K. Müller and co-workers 
by changing the positions of the hydroxyl groups as well as adding new functional groups into various positions of the 
anthracenone nucleus.26 The benzyl bromide functionality was converted to the corresponding aldehyde by the 
Kornblum oxidation in fair yield.  

A novel synthetic approach was developed by R.E. Taylor et al. for the preparation of the triene portion of the 
biologically active polyketide apoptolidin.27 The allylic chloride substrate was prepared from an allylic alcohol via a 
thionyl chloride mediated rearrangement.  Next, the allylic chloride was subjected to the Ganem oxidation by treating 
it with five equivalents of trimethylamine N-oxide (TMANO) in DMSO at room temperature to obtain the desired α,β-
unsaturated aldehyde. Interestingly, the original Kornblum oxidation conditions were not well suited for this system 
because of the required high reaction temperature. 

O
RO

HO OH

N

N

N
N

NH2

R = H2PO3

O
Br

NO2

+

(10 equivalents)

DMSO (solvent)
DBU, pH 4.5

12h, r.t.
62%

O
RO

HO OH

N

N

N
N

N
NO2

8-(Aryl)-3-β-D-ribofuranosylimidazo[2,1-i]purine 
5'-phosphate

BzO

H3C
H

CH3

CH3

Br
BzO

H3C
H

CH3
CH3

O

H

AgBF4, DMSO
100 °C, 10h

then
r.t., Et3N, 30 min

60%

steps
HO

H3C
H

CH3
CH3

O

(±)-Solidago alcohol

OMeO

O

OMe

Br
DMSO (solvent)

NaHCO3 (5 equiv)

40 °C, 1h 
60%

OMeO

O

OMe

O

H

steps

O
C

OHOH
N

Analogue of anthralin

TMS

CH3CH3

TBSO
(H3C)3N O

(5 equiv)

DMSO (solvent)
63%H3C

Cl

TMS

CH3CH3

TBSO

H3C
O

H
TMS

CH3CH3

TBSO

H3C
steps

CO2EtH3C

C1-C11 Fragment of Apoptolidin



252

KRAPCHO DEALKOXYCARBONYLATION (KRAPCHO REACTION) 
(References are on page 617)

Importance:

 [Seminal Publications1-6; Reviews7-9; Modifications & Improvements10-15]

In 1967, A.P. Krapcho reported that upon heating geminal dicarbethoxy compounds with sodium cyanide in dimethyl 
sulfoxide, the corresponding ethyl esters were obtained in high yield.5 The products could be purified by distillation 
following an aqueous work-up. The discovery of this transformation happened serendipitously during an attempted 
conversion of a ditosylate to the corresponding dinitrile with potassium cyanide in hot DMSO, and the product of the 
reaction was the demethoxycarbonylated dinitrile (this result was reported only in 1970).6 The dealkoxycarbonylation 
of β-keto esters, α-cyano esters, malonate esters, and α-alkyl- or arylsulfonyl esters to the corresponding ketones, 
nitriles, esters, and alkyl- or arylsulfones is known as the Krapcho dealkoxycarbonylation (also Krapcho reaction or
Krapcho decarboxylation). The general features of this reaction are:8,9 1) this nucleophilic dealkoxycarbonylation 
process is general for methyl- or ethyl esters of carboxylic acids, which have an electron-withdrawing group (CO2-
alkyl, CN, CO-alkyl, SO2-alkyl, etc.) at their α-position; 2) this one-pot procedure obviates the need to perform the 
multistep decarboxylation of geminal diesters to the corresponding monoesters, which involves the following steps: 
basic or acidic hydrolysis of the ester followed by the decarboxylation of the resulting diacid and the esterification of 
the final carboxylic acid to obtain the desired monoester; 3) the reaction conditions are essentially neutral, so both 
acid- and base-sensitive substrates can be used and the otherwise frequent acid-catalyzed rearrangements are 
avoided; 4) the chemoselectivity and the functional group tolerance of the method is very high; 5) double bonds are 
not isomerized and in the overwhelming majority of cases labile stereocenters are not racemized; 6) the choice of 
specific reaction conditions is always dependent on the substitution pattern of the substrate; 7) monosubstituted 
malonic esters are dealkoxycarbonylated in hot dipolar aprotic solvent containing at least one equivalent of water; 8) 
as a rule of thumb when the substrate has at least one proton at the α-position, the dealkoxycarbonylation can be 
achieved with wet DMSO at reflux in the absence of a salt; 9) disubstituted malonic esters, however, are 
dealkoxycarbonylated only in the presence of at least one equivalent of a salt (e.g., KCN, LiCl, etc.) in wet DMSO at 
reflux; 10) the presence of a salt tends to accelerate the rate of the dealkoxycarbonylation of many (but not all) 
substrates; 11) besides DMSO, other dipolar aprotic solvents can be used such as dimethylacetamide, HMPT and 
DMF; 12) methyl esters are dealkoxycarbonylated faster than ethyl esters; and 13) vinylogous β-keto esters are also 
dealkoxycarbonylated in high yield.  

Mechanism: 16,17,9,18,19

The mechanism of the Krapcho dealkoxycarbonylation is dependent on the structure of the substrate ester and the 
type of anion used. In the case of α,α-disubstituted diesters (especially the methyl esters), the anion from the salt 
(cyanide ion in the scheme) attacks the alkyl group of the ester in an SN2 fashion and the decarboxylation results in 
the formation of a carbanionic intermediate that is quenched by the water. In the case of α-monosubstituted diesters 
the cyanide attacks the carbonyl group to form a tetrahedral intermediate, which breaks down to give the same 
carbanionic intermediate and a cyanoformate, which is hydrolyzed to give carbon dioxide and an alcohol. 
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KRAPCHO DEALKOXYCARBONYLATION (KRAPCHO REACTION)

Synthetic Applications:

In the laboratory of A. Fürstner, a practical synthesis of the immunosuppressive alkaloid metacycloprodigiosin and its 
functional derivatives was developed.20 Toward the end of the synthetic sequence a meta-pyrrolophane β-keto ester 
was decarboxylated under standard Krapcho conditions. The substrate was dissolved in wet DMSO, and two 
equivalents of sodium chloride were added and the reaction mixture was heated to 180 °C to afford the desired meta-
pyrrolophane ketone in excellent yield. This ketone functionality was first converted to an ethyl group and then the 
product was advanced to metacycloprodigiosin. 

A highly exo-selective asymmetric hetero Diels-Alder reaction was the key step in D.A. Evans' total synthesis of (–)-
epibatidine.21 The bicyclic cycloadduct was then subjected to a fluoride-promoted fragmentation that afforded a β-keto
ester, which was isolated exclusively as its enol tautomer. The removal of the ethoxycarbonyl functionality was 
achieved using the Krapcho decarboxylation. Interestingly, the presence of a metal salt was not necessary in this 
transformation. Simply heating the substrate in wet DMSO gave rise to the decarboxylated product in quantitative 
yield. 

A general synthetic route toward the marine metabolite eunicellin diterpenes was developed by G.A. Molander and 
co-workers.22 The power of this method was demonstrated by the completion of the asymmetric total synthesis of 
deacetoxyalcyonin acetate. A tricyclic β-keto ester intermediate was methylated in the γ-position with complete 
diastereoselectivity using dianion chemistry and the crude product was subjected to the Krapcho decarboxylation.
This was one of the rare cases when the transformation did not only remove the methoxycarbonyl group, but at the 
same time epimerized the newly formed stereocenter to yield a separable mixture of methyl ketones.  

The first enantioselective formal total synthesis of paeonilactone A was reported by J.E. Bäckvall who used a 
palladium(II)-catalyzed 1,4-oxylactonization of a conjugated diene as the key step.23 The lactonization precursor 
diene acid was obtained from an enantiopure dimethyl malonate derivative via sequential Krapcho decarboxylation
and ester hydrolysis. 
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KRÖHNKE PYRIDINE SYNTHESIS
(References are on page 617)

Importance:

 [Seminal Publications1,2; Reviews3; Modifications and Improvements4,5]

In 1961, F. Kröhnke and W. Zeher reported that phenacyl isoquinolinium bromide reacted with benzalacetophenone 
under basic conditions to afford an isoquinolinium betaine, which upon treatment with ammonium acetate in acetic 
acid at reflux temperature yielded 2,4,6-triphenylpyridine in moderate yield.1,2 This synthetic sequence was a new and 
efficient way to access highly substituted pyridines. The condensation of acylmethylpyridinium salts with α,β-
unsaturated ketones and ammonia to give substituted pyridines is known as the Kröhnke pyridine synthesis. The 
general features of the transformation are:3 1) α-haloketones are prepared from the corresponding methyl ketones 
using standard halogenation conditions (e.g., Br2, Bu4NBr3, etc.); 2) α-haloketones are mixed with pyridine to afford 
the required acylmethylpyridinium salts that are considered 1,3-diketone equivalents; 3) treatment of the 
acylmethylpyridinium salt with ammonium acetate (or other ammonia equivalents) in acetic acid in the presence of an  
α,β-unsaturated ketone gives rise to a Michael adduct (a 1,5-diketone), which undergoes cyclization with ammonia to 
produce the substituted pyridine; 4) the great advantage of the method is that unlike in the Hantzsch dihydropyridine 
synthesis, oxidation (dehydrogenation) is not necessary, since the pyridine is formed directly; 5) the substitution 
pattern of the two components can be varied widely ranging from simple alkyl all to way to substituted aryl and 
heteroaryl groups; 6) the α,β-unsaturated ketones can be used directly or in the form of the corresponding Mannich 
bases, which undergo cleavage under the reaction conditions to afford the α,β-unsaturated ketones; 7) in most cases 
the reaction is used to prepare 2,4,6-trisubstituted pyridines, but occasionally higher substitution (at C3 and C5) can 
be achieved; 8) if R4=CO2H, 2-carboxypyridines are formed that can be decarboxylated thermally to afford 2,4-
disubstituted pyridines; and 9) the preparation of symmetrically or unsymmetrically substituted bi- and oligopyridines 
(up to seven pyridine units) is accomplished with ease unlike with other methods that are less straightforward and 
require many steps.  

Mechanism: 6-9

Kröhnke (1961):

Kröhnke pyridine synthesis:
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KRÖHNKE PYRIDINE SYNTHESIS

Synthetic Applications:

In the laboratory of P. Ko ovský, novel pyridine-type P,N-ligands were prepared from various monoterpenes.10 The 
key step was the Kröhnke pyridine synthesis, and the chirality was introduced by the α,β-unsaturated ketone 
component, which was derived from enantiopure monoterpenes. One of these ligands was synthesized from (+)-
pinocarvone which was condensed with the acylmethylpyridinium salt under standard conditions to give good yield of 
the trisubstituted pyridine product. The benzylic position of this compound was deprotonated with butyllithium, and 
upon addition of methyl iodide the stereoselective methylation was achieved. The subsequent nucleophilic aromatic 
substitution (SNAr) gave rise to the desired ligand.  

The synthesis of cyclo-2,2':4',4'':2'',2''':4''',4'''':2'''',2''''':4'''''-sexipyridine was accomplished by T.R. Kelly and co-workers 
by using multiple Stille cross-couplings and the Kröhnke pyridine synthesis for the final macrocyclization.11 The 
bromination of the quinquepyridine was conducted with wet N-bromosuccinimide in THF, and the resulting α-
bromoketone was immediately converted to the corresponding acylmethylpyridinium salt by strirring it with excess 
pyridine in acetone overnight. The crucial macrocyclization took place in the presence of excess ammonium acetate 
in acetic acid at reflux. Interestingly, other macrocyclization attempts using the Ullmann biaryl coupling or the Glaser 
coupling all failed. 

The research team of E.-S. Lee synthesized and evaluated several 2,4,6-trisubstituted pyridine derivatives as 
potential topoisomerase I inhibitors.12 One of these compounds, 4-furan-2-yl-2-(2-furan-2-yl-vinyl)-6-thiophen-2-yl-
pyridine, was prepared by the Kröhnke pyridine synthesis and showed strong topoisomerase I inhibitory activity. 

Novel, tetrahydroquinoline-based N,S-type ligands were prepared by the Kröhnke pyridine synthesis and their 
catalytic activity was assessed by G. Chelucci et al.13 The acylmethylpyridinium iodide was reacted with a cyclic α,β-
unsaturated ketone derived from 2-(+)-carene. 
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KULINKOVICH REACTION 
(References are on page 618)

Importance:

[Seminal Publications1,2; Reviews3-15; Modifications & Improvements16-23; Theoretical Studies24]

In 1989, O.G. Kulinkovich reported that 1-alkylcyclopropanols were formed when an excess of ethylmagnesium 
bromide was added to simple carboxylic esters in the presence of one equivalent of titanium tetraisopropoxide.1 The 
reaction could also be carried out with catalytic amounts of Ti(Oi-Pr)4 and only two equivalents of Grignard reagent 
was necessary. The titanium(II)-mediated one-pot conversion of carboxylic esters and amides to the corresponding 1-
alkylcyclopropanols and 1-alkylcyclopropylamines is known as the Kulinkovich reaction. The general features of the 
reaction are: 1) the active species is a titanacyclopropane intermediate that acts as a 1,2-dicarbanion equivalent and 
doubly alkylates the carbonyl group; 2) more complex Grignard reagents yield 1,2-cis disubstituted cyclopropanols 
with good diastereoselectivity; 3) the observed cis-selectivity is lower for the formation of 1,2-disubstituted 
cyclopropylamines from amides; 4) the reaction is sensitive to the nature of the R1 group (aromatic esters do not 
react) and steric crowding (α-branched R1 groups and too bulky R2 groups) give lower yields); 5) when terminal 
alkenes are added into the reaction mixture, these are incorporated into the cyclopropane products. There are 
several important modifications of the procedure, which helped to expand the scope of the reaction.16-23

Mechanism: 25-28

The catalytic cycle of the Kulinkovich reaction begins with the dialkylation of the Ti(Oi-Pr)4 with two equivalents of 
ethylmagnesium bromide to form the thermally unstable diethyltitanium intermediate, which quickly undergoes a β-
hydride elimination to give ethane and titanacyclopropane. This titanacyclopropane acts as a 1,2-dicarbanion 
equivalent when it reacts with the carboxylic ester, and it performs a double alkylation. The addition of 
ethylmagnesium bromide to the titanium in the titanacyclopropane-ester complex triggers the formation of the first C-
C bond formation and leads to the oxatitanacyclopentane ate-complex. At this point, the alkoxy group of the original 
ester is eliminated as its magnesium salt and the second C-C bond is formed to generate the cyclopropane ring. The 
resulting titanium cyclopropoxide undergoes alkylation at the titanium by ethylmagnesium bromide, and thus the 
diethyltitanium intermediate is regenerated and the product magnesium cyclopropoxide is formed. Upon 
aqueous/acidic work-up, the 1-cyclopropanol is isolated. For carboxylic amides the mechanism is slightly different. 

Ti(Oi-Pr)4

2 EtMgBr

2 i-PrOMgBr

(i-PrO)2Ti
Et

Et

H3C CH3

(i-PrO)2Ti

(i-PrO)2Ti
R1CO2R2

(i-PrO)2Ti

O

OR2

R1
EtMgBr

(i-PrO)2Ti
O

O

R1

Et MgBr

R2

R2OMgBr

(i-PrO)2Ti
O R1

Et

(i-PrO)2Ti
O R1

Et
O

R1
(i-PrO)2Ti

EtR1BrMgO
work-up

R1HO

1-Cyclo-
propanol

EtMgBr

titanacyclopropane

diethyltitanium intermediate

β-hydride 
elimination

titanacyclopropane-ester
complex

oxatitanacyclopentane
ate-complex

titanium cyclopropoxide

O

OR2R1

1. EtMgBr (3 equiv)
Ti(Oi-Pr)4 (1 equiv)

Et2O, -78 to -40 °C, 1h

2. 5% H2SO4

R1 OH

1-Alkyl 
cyclopropanol

O

OR2R1

1. R3CH2CH2MgBr
(2 equiv)

2. acidic work-up

R1 OH

Ti(Oi-Pr)4 (5-10 mol%)
Et2O, 18-20 °C, 1h

R3

cis-1,2-
Disubstituted
cyclopropanol

O

NR1

1. R3CH2CH2MgBr
(1 equiv)

2. acidic work-up

R1 N(R2)2

MeTi(Oi-Pr)3 (1 equiv)
Et2O, 18-20 °C, 1h

R3
cis-1,2-

Disubstituted
cyclopropylamine

R2

R2

carboxylic 
ester

carboxylic 
amide

carboxylic 
ester

O

N(R2)2R1

carboxylic 
amide 

(or ester)
2. acidic work-up

1. XTi(Oi-Pr)3 (5-10 mol%)
Et2O, 18-20 °C, 1h

R3MgBr
R5

(1 equiv)

X = O-iPr, Cl, Me
R3 = i-Pr, c-pentyl

R1 N(R2)2

R5

cis-1,2-
Disubstituted
cyclopropane

R1 = alkyl, alkenyl
R2 = alkyl, aryl



257

KULINKOVICH REACTION 

Synthetic Applications:

The key component of the antitumor antibiotic cleomycin, (S)-cleonin, was prepared from (R)-serine using the 
Kulinkovich reaction as the key step in the laboratory of M. Taddei.29 The methyl ester of N-Cbz serine acetonide was 
exposed to freshly prepared ethylmagnesium bromide in the presence of substoichiometric amounts of titanium 
tetraisopropoxide to afford the desired cyclopropylamine in good yield. Subsequent functional group manipulations 
gave (S)-cleonin.

Cyclopropylamines and their substituted derivatives are important building blocks in a large number of biologically 
active compounds. The synthesis of potentially biologically active N,N-dimethyl bicyclic cyclopropylamines from N-
allylamino acid dimethylamides by the intramolecular variant of the Kulinkovich reaction was accomplished by M.M. 
Joullié and co-workers.30

J.K. Cha et al. developed a stereocontrolled synthesis of  bicyclo[5.3.0]decan-3-ones from readily available acyclic 
substrates.31 Acyclic olefin-tethered amides were first subjected to the intramolecular Kulinkovich reaction to prepare 
bicyclic aminocyclopropanes. This was followed by a tandem ring-expansion-cyclization sequence triggered by 
aerobic oxidation. The reactive intermediates in this tandem process were aminium radicals (radical cations). The p-
anisidine group was chosen to lower the amine oxidation potential. This substituent was crucial for the generation of 
the aminium radical (if Ar = phenyl, the ring aerobic oxidation is not feasible). 

A general diastereoselective synthesis of fused bicyclic compounds using a sequential Kulinkovich cyclopropanation
and an oxy-Cope rearrangement was achieved by J.K. Cha and co-workers.32 cis-1,2-Divinylcyclopropanes have 
found significant synthetic utility as substrates for [3,3]-sigmatropic rearrangements. The Kulinkovich reaction offered 
a straightforward and facile synthesis of cis-1,2-dialkenylcyclopropanols that gave fused bicyclic carbocycles upon 
oxy-Cope rearrangement.
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KUMADA CROSS-COUPLING
(References are on page 619)

Importance:

[Seminal Publications1-4; Reviews5-18; Modifications & Improvements19-30;]

During the 1970s a great deal of research effort was focused on the transition metal-catalyzed carbon-carbon bond 
forming reactions of unreactive alkenyl and aryl halides.31,32 In 1972, M. Kumada and R.J.P. Corriu independently 
discovered the stereoselective cross-coupling reaction between aryl- or alkenyl halides and Grignard reagents in the 
presence of a catalytic amount of a nickel-phosphine complex. In the following years, Kumada explored the scope 
and limitation of the reaction. Consequently, this transformation is now referred to as the Kumada cross-coupling.
Nickel catalysis only worked for Grignard reagents and excluded the highly versatile organolithium reagents. 
Therefore, the use of alternative catalysts such as various palladium complexes was explored.19-24,26 The 
characteristic features of the Kumada cross-coupling are: 1) in the Ni-catalyzed process the catalytic activity depends 
largely on the nature of the phosphine ligand, and the following reactivity trend is observed: Ni(dppp)Cl2 > Ni(dppe)Cl2
> Ni(PR3)2Cl2 ~ Ni(dppb)Cl2; 2) even alkyl (sp3) Grignard reagents having β-hydrogens can selectively undergo cross-
coupling reactions without any undesired β-hydride elimination; 3) with sec-alkyl Grignard reagents the alkyl group 
tends to isomerize to the corresponding primary alkyl group, and this isomerization is dependent on the basicity of the 
phosphine ligand and the nature of the aromatic halide; 4) the use of the dppf ligand slows the β-hydride elimination 
considerably and accelerates the reductive elimination, thereby allowing the coupling of sec-Grignard reagents 
without isomerization;24 5) chlorinated aromatic compounds react with ease and even fluorobenzene can undergo Ni-
catalyzed cross-coupling;16 6) the coupling is stereoselective and the stereochemistry of the starting vinyl halides is 
preserved; 7) the Pd-catalyzed process is more chemo- and stereoselective and has a much broader scope with 
carbanions than the Ni-catalyzed reaction. However, the coupling does not take place with aryl chlorides, only with 
aryl bromides and iodides; 8) organomagnesium and organolithium reagents are used most often. However, the 
coupling will take place with organosodium (RNa), organocopper (R2CuLi), organoaluminum, organozinc, organotin, 
organozirconium, and organoboron compounds;14 9) organolithiums are by far the most versatile, since these 
reagents can be prepared in many different ways including the direct lithiation of hydrocarbons;9 and 10) functional 
groups that are base-sensitive are not tolerated because of the polar nature of the organomagnesium and 
organolithium compounds (this tolerance is greatly improved in the Negishi cross-coupling by using much less basic 
organozinc compounds). There are not many side-reactions except for the occasional isolation of homocoupled and 
reduction products that can be avoided by observing the following precautions: 1) the organolithium should be added 
slowly because fast addition produces α-bromo alkenyllithiums that undergo rearrangement to give lithium acetylides, 
thus lowering the overall yield; 2) the Pd(0) catalyst should be clean to ensure high activity; and 3) no reagents should 
be added in excess.33,14

Mechanism: 34-38
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KUMADA CROSS-COUPLING 

Synthetic Applications:

The enantioselective total synthesis of (+)-ambruticin was accomplished in the laboratory of E.N. Jacobsen. The 
Kumada cross-coupling was utilized to convert an (E)-vinyl iodide intermediate to the corresponding conjugate diene 
in good yield.39 The stereochemistry of the vinyl iodide was completely preserved. 

The highly concise synthesis of [18]dehydrodesoxyepothilone B, the 18-membered ring homologue of 10,11-dehydro-
12,13-desoxyepothilone B, was based on a convergent RCM strategy.40 S.J. Danishefsky et al. assembled the 
metathesis precursor by first converting a (Z)-vinyl iodide precursor to the corresponding 1,5-diene via the Kumada 
cross-coupling.

Enol phosphates were used as substrates for the Kumada cross-coupling during the final stages of the total synthesis 
of tetrahydrocannabinol and several of its analogs.41 Y. Kobayashi and co-workers developed an indirect three-step 
1,4-addition strategy to functionalize -iodinated cyclohexanones with the addition of cuprates. The resulting enolates 
were trapped as corresponding phosphates, which underwent facile Kumada cross-coupling with methylmagnesium 
chloride in the presence of Ni(acac)2.

Research by M. Ikunaka showed that C2-symmetrical chiral quaternary ammonium salts can serve as asymmetric 
phase-transfer catalysts.42 To prepare significant quantities of (R)-3,5-dihydro-4H-dinaphth[2,1-c:1',2'-e]azepine, a 
novel short and scalable synthetic approach was undertaken. The synthesis commenced with the triflation of (R)-binol
to give the bis-O-triflate. The Kumada cross-coupling was used to install two methyl groups in good yield.  
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LAROCK INDOLE SYNTHESIS
(References are on page 620)

Importance:

 [Seminal Publications1; Reviews2-11; Modifications & Improvements12-20]

In 1991, R.C. Larock reported the synthesis of indoles via the Pd-catalyzed coupling of 2-iodo anilines and 
disubstituted alkynes.1 In the following years, the scope and limitation of the method were further explored by Larock 
and co-workers.21 The one-pot Pd-catalyzed heteroannulation of o-iodoanilines and internal alkynes to give 2,3-
disubstituted indoles is known as the Larock indole synthesis (Larock heteroannulation). The general features of the 
reaction are: 1) a wide variety of disubstituted alkynes can be used as coupling partners, and the substitution pattern 
of R2 and R3 groups does not have a marked effect on the efficiency of the reaction; 2) the nitrogen atom on the 
aniline can also be diversely substituted; 3) only o-iodoanilines are good substrates for the coupling and o-
bromoanilines were found to be unreactive under the reaction conditions; 4) the coupling is highly regioselective: the 
larger alkyne substituent (R2) almost always becomes located at the 2-position of the indole;17 5) when R2=SiR3, 2-
silylindoles are obtained that can be protodesilylated, halogenated, or coupled with alkenes via a Pd-catalyzed 
reaction; 6) usually an excess (1.5-2 equivalents) of the alkyne coupling partner is needed. However, in the case of 
volatile alkynes, multiple equivalents are needed to achieve high yields; 7) the use of a full equivalent of LiCl and 
excess base was found to be necessary for the reproducibility of the reaction; and 8) typically DMF is used as the 
solvent at 100 °C. There are several modifications of the Larock indole synthesis: 1) the coupling of imines derived 
from o-iodoanilines with disubstituted alkynes gives rise to isoindolo[2,1-a]indoles;14,15 2) the o-iodoanilines can be 
replaced with vicinal iodo-substituted heterocyclic amines to prepare 5-,6- or 7-azaindoles,13 pyrrolo[3,2-c]quinolines, 
tetrahydroindoles and 5-(triazolylmethyl)tryptamine analogs;5 and 3) the coupling partner alkynes can be replaced 
with substituted allenes to synthesize 3-methyleneindolines.12

Mechanism: 21
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LAROCK INDOLE SYNTHESIS

Synthetic Applications:

The total synthesis of (–)-fuchsiaefoline was accomplished in the laboratory of J.M. Cook using the Larock indole 
synthesis to prepare the key precursor 7-methoxy-D-tryptophan in enantiopure form.22 The propargyl-substituted 
Schöllkopf chiral auxiliary was reacted with 2-iodo-6-methoxyaniline in the presence of 2 mol% Pd(OAc)2 to give the 
expected indole in good yield. Interestingly, the Bartoli indole synthesis gives 7-substituted indoles only in moderate 
yield. 

T.F. Walsh and co-workers synthesized two (S)-β-methyl-2-aryltryptamine based gonadotropin hormone antagonists 
via a consecutive Larock indole synthesis and Suzuki cross-coupling. The required (S)-β-methyltryptophol derivatives 
were prepared by coupling 4-substituted o-iodoanilines with optically active internal alkynes under standard 
conditions. The resulting 2-trialkylsilyl substituted indoles were then subjected to a silver-assisted iododesilylation 
reaction to afford the 2-iodo-substituted indoles that served as coupling partners for the Suzuki cross-coupling step. 

The preparation of diversely substituted azaindoles is fairly difficult, and there are no generally applicable strategies 
in the literature. Research by L. Xu et al. showed that 2-substituted-5-azaindoles could be synthesized by the Pd-
catalyzed coupling of aminopyridyl iodides with terminal alkynes.13 The coupling reaction proceeded in good yield 
under the conditions originally developed by Larock. Therefore, this example can be considered an extension of the 
Larock indole synthesis. By stopping the reaction early it was shown that the intermediate was an internal alkyne. 

A complete reversal of regioselectivity was observed by M. Isobe and co-workers during the Larock heteroannulation
of o-iodoaniline with α-C-glucosylpropargyl glycine in an attempt to prepare C-glycosyltryptophan.14
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LEY OXIDATION
(References are on page 620)

Importance:

 [Seminal Publications1,2; Reviews3-12; Modifications & Improvements13-18]

There are only two elements in the periodic table, ruthenium (Ru), and osmium (Os), which can sustain the uniquely 
high +8 oxidation state in their complexes containing strongly σ- and π-donating oxo (O2-) ligands. Both metals can 
have eleven different oxidation states (d0 to d10), and any of these oxidation states can be stabilized with the 
appropriate choice of ligands. At any given oxidation state ruthenium complexes are more potent oxidizing agents 
than the corresponding osmium complexes (e.g., OsO4 does not cleave double bonds, while RuO4 does).6 The 
greater lability of ruthenium complexes makes it possible to participate in catalytic processes. Despite the unselective 
nature of RuO4 as an oxidant, it was possible to design ruthenium complexes with lower oxidation states which were 
less reactive and therefore more selective toward organic substrates containing several different functional groups.5
The organic salts of perruthenate ion with large cations, R[RuO4], (R=Pr4N+ or Bu4N+) are soluble in organic solvents 
and are milder oxidizing agents than RuO4.1,2,13 In 1987, S.V. Ley and co-workers introduced tetrapropylammonium 
perruthenate (TPAP) as a selective and mild oxidant of primary and secondary alcohols without the undesired 
cleavage of double bonds. The oxidation takes place with catalytic amounts (5-10 mol%) of TPAP when a co-oxidant 
such as N-methylmorpholine N-oxide (NMO) is used. The catalytic process to convert primary and secondary 
alcohols to the corresponding aldehydes and ketones with TPAP/NMO is referred to as the Ley oxidation. The 
general features of the reagent and  reaction are: 1) TPAP is an air stable and non-volatile dark green solid and can 
be stored indefinitely when kept in the freezer (it decomposes when heated over 150 °C); 2) TPAP is soluble in a 
wide range of organic solvents, but in practice dichloromethane or acetonitrile (or their mixture) are used almost 
exclusively; 3) in a typical procedure, 5 mol% of TPAP is added to the solution of the substrate alcohol (1 equivalent) 
and NMO (1.5 equivalent) in CH2Cl2/MeCN in the presence of finely ground 4Å molecular sieves (0.5 g/mmol of 
substrate); 4) oxidations take place at room temperature in a few minutes or a couple of hours and the isolated yield 
of products is usually good or excellent (the catalyst turnover number is ~250); 5) the oxidations are vigorous, 
especially when the co-oxidant is not NMO (e.g., TMAO) and in these cases the TPAP should be added slowly to the 
reaction mixture in small portions; 6) the process works well on both small and large scale (e.g., Swern oxidation is 
difficult to run on a scale of a few milligrams); 7) due to the rapid nature of this oxidation, there is a danger of a 
runaway reaction (explosion) on multigram scale, so adequate cooling is necessary and the TPAP should be added 
to the reaction mixture slowly and portionwise; 8) the reaction rate and efficiency is improved when finely ground 4Å 
molecular sieves are added to the reaction mixture; 9) if pure CH2Cl2 is used as the solvent, the oxidations may not 
go to completion on a large scale but the addition of 10% (by volume) acetonitrile to the reaction mixture drives the 
oxidation to full conversion; 10) the work-up is very simple when the solvent is pure dichloromethane: the reaction 
mixture is filtered through a pad of silica-gel (or a short column), the silica-gel is washed with EtOAc and the filtrate is 
evaporated in vacuo; and 11) when the reaction is carried out in a mixture of CH2Cl2/acetonitrile, the solvent is first 
removed on a rotary evaporator, the residue is dissolved in dichloromethane or EtOAc and filtered through a pad of 
silica-gel (this is necessary, since acetonitrile can co-elute some residual TPAP, which contaminates the product). 

Mechanism: 19,6,20-25

The mechanism of the Ley oxidation is complex and the exact nature of the species involved in the catalytic cycle is 
unknown. The difficulty in establishing an exact mechanism arises from the fact that the complexes of Ru(VIII), Ru(VII),
Ru(VI), Ru(V) and Ru(IV) are all capable of stoichiometrically oxidizing alcohols to carbonyl compounds.6 The TPAP 
reagent can oxidize alcohols stoichiometrically as a three-electron oxidant and can also be used as a catalyst when a 
co-oxidant is present (e.g., NMO, TMAO, or hydroperoxides). Data suggests that the oxidation proceeds via the 
formation of a complex between the alcohol and TPAP (ruthenate ester).21 It was also found that the stoichiometric 
oxidation of isopropyl alcohol with TPAP is autocatalytic and the catalyst is suspected to be colloidal RuO2. Small 
amounts of water decrease the degree of autocatalysis. This observation is supported by the finding that the addition 
of molecular sieves improves the efficiency of the reaction. 
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LEY OXIDATION

Synthetic Applications:

The total synthesis of the immunosuppressant (–)-pironetin (PA48153C) was accomplished by G.E. Keck and co-
workers.26 The six-membered α,β-unsaturated lactone moiety was installed using a lactone annulation reaction by 
reacting the advanced aldehyde intermediate with the lithium enolate of methyl acetate. The aldehyde was prepared 
by the Ley oxidation of the corresponding primary alcohol and was used without purification in the subsequent 
annulation step. 

D.E. Ward et al. reported a general approach to cyathin diterpenes and the total synthesis of allocyathin B3. The 
tetracyclic secondary alcohol was converted to the corresponding ketone using TPAP/NMO in good yield.27

In the laboratory of D. Tanner, a novel method was developed for the stereoselective synthesis of (E)-tributylstannyl-
α,β-unsaturated ketones in two steps from secondary propargylic alcohols.28 The first step was the highly regio- and 
stereoselective Pd-catalyzed hydrostannylation of the triple bond followed by a mild Ley oxidation. This method was 
utilized for the construction of a key intermediate for the total synthesis of zoanthamine.

During the total synthesis of (–)-motuporin by J.S. Panek et al., the modified Ley oxidation was utilized in the 
preparation of the key N-Boc-valine-Adda fragment.29 In order to obtain the carboxylic acid, the TPAP and NMO were 
administered twice, and the second portion of TPAP/NMO was accompanied by the addition of water. The water 
formed aldehyde hydrate which was oxidized to the carboxylic acid. The oxidation is so mild that the labile α-
stereocenter was left intact. 
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LIEBEN HALOFORM REACTION
(References are on page 621)

Importance:

 [Seminal Publications1-3; Reviews4-8; Modifications & Improvements9-13]

In 1822, Serullas discovered that when iodine crystals were added to the mixture of an alkali and ethyl alcohol, a 
yellow precipitate was formed that he identified as "hydroiodide of carbon", but it was actually iodoform (CHI3).1 The 
discovery of chloroform (CHCl3) came a decade later, when J. Liebig reacted chloral (trichloroacetaldehyde) with 
aqueous calcium hydroxide solution.2 The reaction did not attract attention until 1870 when A. Lieben studied the 
action of iodine and alkali on many carbonyl compounds and formulated the rules that provide the basis of the so-
called iodoform test.3 Before spectroscopic methods became widely available for structural elucidation, the use of the 
iodoform test provided crucial information regarding the structure of organic compounds.14 Presently, the reaction is 
more useful as a method of synthesizing carboxylic acids with one less carbon atom. The formation of haloforms from 
organic compounds upon treatment with hypohalites is known as the Lieben haloform reaction (or haloform reaction). 
The general features of this reaction are: 1) compounds containing the methyl ketone (CH3-CO) functional group or 
compounds that get oxidized under the reaction conditions to methyl ketones will undergo the transformation; 2) in 
addition to methyl ketones and methyl carbinols, mono-, di-, and trihalogenated methyl ketones also give rise to 
haloforms; 3) the reaction is usually conducted in aqueous alkali, but for compounds that are insoluble in water the 
addition of a co-solvent such as dioxane or THF is necessary; 4) the halogen can be chlorine, bromine, and iodine, 
but elemental fluorine gas cannot be used due to its immense reactivity; 5) the reaction is sensitive to steric 
hindrance, so when the R1 group is bulky, the hydrolysis of the trihalomethyl ketone usually does not take place, and 
the reaction stops; 6) certain side reactions such as the α-halogenation and subsequent cleavage of the other alkyl 
group is possible. 

Mechanism: 15,4,16,5,17

The mechanism of the haloform reaction has been extensively studied, and it can be concluded that it is a very 
complex process. The exact mechanistic pathway is dependent on the structure of the substrate and the specific 
reaction conditions.17 The scheme depicts the oxidation of a methyl carbinol to the corresponding methyl ketone via
an organic hypohalite. The methyl ketone then undergoes deprotonation, and three sequential α-halogenations take 
place to afford the trihalomethyl ketone. This compound undergoes rapid hydrolysis to afford the haloform and a 
carboxylate. 

H3C R1

O

Oxidation of the carbinol to the methyl ketone:

OH

H
- HOH

H3C R1

O
X X

H3C R1

O
X

- X

H
OH

- HOH

- X
H3C R1

O

methyl ketone
organic hypohalite

methyl carbinol

Sequential halogenation of the methyl group:

C
H2

R1

O
H

OH

- HOH
CH2R1

O

CH2R1

O

X X
- X

CR1

O

X

H

H OH

- HOH

enolate

CHR1

O

X X

X

- X
CR1

O

X

H

X OH

- HOH
CR1

O

X
X

X X - X
CX3R1

O

Hydrolysis of the trihalomethyl ketone:

CX3

R1
O OH

CX3

R1O

HO + OH

- H2O

CX3

R1O

O
R1

O

O
carboxylate

+
+ H2O

- OH

X3C H

Haloform
X3C

H3C R1

O

X3C R1

OX2 or halogen source
MOH

solvent

methyl ketone trihalomethyl
ketone

X3C H

Haloform

+
R1

O

MO
MOH

Carboxylic
acid salt

Lieben haloform reaction:

Lieben (1831):

or
H3C R1

OH

Cl3C H

O Ca(OH)2

H2O
Cl3C H

chloral chloroform

+
O H

O

calcium formate

Serullas (1822):

CH3 OH
I2/NaOH

H2O
I3C H

iodoform

NaO H

O

sodium formate

+

ethanol

methyl carbinol

R1 = H, alkyl, aryl; X2 = Cl2, Br2, I2; halogen source: NaOCl, NaOBr, NaOI, ICN; X3C = F3C, Cl3C,Br3C, I3C; MOH =  NaOH, KOH; 
solvent: H2O, dioxane/H2O, THF/MeOH



265

LIEBEN HALOFORM REACTION

Synthetic Applications:

The blossoms of many flowers contain methyl jasmonates that are frequently used as ingredients in perfumes. It is 
noteworthy that the methyl epi-isomers have greater biological activity, and they play a role in inducing gene 
expression, mediate plant defense mechanisms, and signal transmission. The total synthesis of (±)-methyl
epijasmonate was undertaken by H.C. Hailes and co-workers, who used a highly regioselective Diels-Alder reaction
to install the required 2,3-cis stereochemistry.18 After the ozonolysis of the cyclohexene double bond, the resulting 
methyl ketone moiety had to be transformed to a methyl ester, which was accomplished by using the Lieben haloform 
reaction. The aqueous solution of sodium hypobromite (prepared by adding Br2 to sodium hydroxide) was slowly 
added to the solution of substrate in dioxane. The resulting carboxylate salt was converted to the methyl ester using 
Fischer esterification conditions under which the silyl protecting group was also removed. A final Dess-Martin
oxidation furnished the natural product. 

A novel synthetic route for the preparation of unsymmetrically substituted benzophenones was developed in the 
laboratory of C.-M. Andersson utilizing an iron-mediated aromatic substitution as one of the key steps.19 The power of 
this method was demonstrated by the formal synthesis of the benzophenone moiety of the protein kinase C inhibitor 
balanol. In the late stages of the synthesis, it became necessary to convert the aromatic methyl ketone functionality of 
the highly substituted benzophenone substrate to the corresponding carboxylic acid. Bromine was added to sodium 
hydroxide solution, and the resulting sodium hypobromite solution was slowly added to the substrate at low 
temperature. Upon acidification the desired carboxylic acid was obtained in fair yield. 

The biomimetic total synthesis of (±)-20-epiervatamine was accomplished by J. Bosch et al.20 The authors used the 
addition of 2-acetylindole enolate to a 3-acylpyridinium salt as akey step to connect the two main fragments. The in 
situ formed 1,4-dihydropyridine was trapped with trichloroacetic anhydride to afford the corresponding trichloroacetyl-
substituted 1,4-dihydropyridine derivative. The conversion of the trichloroacetyl group to a methyl ester was achieved 
by treatment with sodium methoxide. This transformation can be regarded as the second step of the haloform 
reaction.

During the total synthesis of (±)-anthoplalone by K. Fukumoto et al. one of the intermediates was a cyclopropyl 
methyl ketone, and the synthetic sequence required the conversion of this functionality to the corresponding 
cyclopropane carboxylic acid methyl ester.21 This transformation was accomplished via the haloform reaction using 
bleach in methanol. The methyl ester and some carboxylic acid was obtained after this step, so the product mixture 
was treated with diazomethane to convert the acid side product to the methyl ester. 
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LOSSEN REARRANGEMENT
(References are on page 621)

Importance:

 [Seminal Publications1-3; Reviews4-9; Modifications & Improvements10-19]

In 1872, W. Lossen reported that the pyrolysis of benzoyl benzohydroxamate (the mixed anhydride derived from 
phenylhydroxamic acid and benzoic acid) gave phenyl isocyanate and benzoic acid.2 A few years later, he observed 
that the potassium salt of anisoyl benzohydroxamate was readily converted to diphenylurea, potassium anisoate, and 
carbon dioxide in boiling water. In this latter transformation the initial product was phenyl isocyanate, half of which 
reacted with water to afford aniline and carbon dioxide, and the other half reacted with aniline to form diphenylurea. 
The conversion of O-acyl hydroxamic acids to the corresponding isocyanates is known as the Lossen rearrangement.
The general features of the reaction are: 1) hydroxamic acids can be readily prepared in several different ways:4,5,7 a) 
from the corresponding carboxylic acids by first conversion to acid chlorides or mixed anhydrides then reaction with 
hydroxylamine; b) from esters with hydroxylamine; c) from aliphatic and aromatic carboxamides with 
hydroxylammonium chloride; 2) the free hydroxamic acids do not undergo the Lossen rearrangement under any 
condition, so the activation of the oxygen atom is necessary for the rearrangement to take place; 3) the acylation of 
the hydroxyl group of hydroxamic acids can be carried out with the following types of reagents: anhydrides,4,5 acyl 
halides,4,5 SOCl2, SO3·Et3N,11 dialkylcarbodiimides,10 activated aromatic halides14 (e.g., 2,4-dinitrochlorobenzene), 
under Mitsunobu reaction conditions12 (PPh3, DEAD, ROH) and silylation;13 4)  the rearrangement is usually initiated 
by heating the O-activated hydroxamic acids with bases (e.g., NaOH, DBU) in the presence of water or other 
nucleophiles (e.g., amines, alcohols); 5) the more active O-sulfonyl and O-phosphoryl derivatives, however, tend to 
rearrange spontaneously; 6) the initial product of the rearrangement is an isocyanate that after reacting with water 
gives an unstable carbamic acid, which breaks down to give a primary amine and carbon dioxide; 7) when an amine 
is present as the nucleophile, the product of the reaction is a substituted urea; 8) when there is a neighboring 
nucleophilic functional group (e.g., NH2, OH, COOH) within the molecule, it will react with the isocyanate; and 9) the 
stereocenter adjacent to the hydroxamic acid functional group remains intact during the rearrangement (optical 
activity is unchanged). The Lossen rearrangement is closely related to the Hofmann and Curtius rearrangements, but 
its main advantage over the other methods is the mild reaction conditions, since it does not require the use of 
concentrated strong bases or intense heat.  

Mechanism: 20,10,21-23

The mechanism of the Lossen rearrangement is closely related to the Curtius-, Hofmann-, and Schmidt 
rearrangements. The first step is the deprotonation of the O-acyl hydroxamate at the nitrogen atom by the base to the 
corresponding alkali salt, which is quite unstable and quickly undergoes a concerted rearrangement to the isocyanate 
via a bridged anion. The rate of the rearrangement strongly depends on the electronic nature of the substituents: the 
more electron-withdrawing R3 is and the more electron-donating R1 and R2 are, the higher the rate is. 
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LOSSEN REARRANGEMENT

Synthetic Applications:

An improved synthesis of ONO-6818, a new nonpeptidic inhibitor of human neutrophil elastase, was developed by K. 
Ohmoto and co-workers.24 The main difference between this new synthesis and the previous ones is that a 
dangerous (explosive) Curtius rearrangement of an acyl azide was replaced with a safer Lossen rearrangement. The 
required hydroxamic acid was prepared from a carboxylic acid by first converting it to the mixed anhydride with 
isobutyl chloroformate followed by the addition of hydroxylamine. The hydroxamic acid then was acetylated using 
acetic anhydride and the resulting O-acetyl hydroxamate was exposed to DBU in the presence of water. The 
intermediate isocyanate reacted with water to give the corresponding amine and CO2.

5,6-Disubstituted benz[cd]indoles have been shown to be effective inhibitors of the enzyme thymidylate synthase. 
The improved large scale synthesis of 5-methylbenz[cd]indol-2(1H)-one was accomplished by G. Marzoni et al.25 The 
Lossen rearrangement was the key step to set up the ring system of the target compound. The cyclic hydroxamic 
acid (N-hydroxynaphthalimide) was deprotonated and used in a nucleophilic aromatic substitution with 2,4-
dinitrochlorobenzene to afford N-(2,4-dinitrophenoxy)naphthalimide. The rearrangement took place under basic 
conditions with complete regioselectivity so that the amine was formed on the more electron rich aromatic ring. The 
cyclization of the resulting γ-amino acid to the amide was achieved by adjusting the pH to 3 with concentrated sulfuric 
acid.

Pectins are important in cell wall assembly and detailed information of their structure will help to elucidate the 
relationship between the structures and physical properties. One possible approach is the chemical degradation of 
pectins. The specific degradation of the methyl esterified galacturonic acid residues of pectin to the corresponding 
oligogalacturonic acids bearing an arabitol residue was carried out in the laboratory of P.W. Needs.26 The esters were 
first converted to the hydroxamic acids then reacted with EDC to give isoureas that upon the Lossen rearrangement
and hydrolysis afforded 5-aminoarabinopyranose derivatives. 
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LUCHE REDUCTION
(References are on page 622)

Importance:

 [Seminal Publications1-4; Reviews5-11; Modifications & Improvements12-15; Theoretical Studies16]

In 1978, J.L. Luche reported the selective conversion of α,β-unsaturated ketones to allylic alcohols using a mixture of 
lanthanide chlorides and sodium borohydride (NaBH4).1,2 Later the scope and limitation of the reaction was 
determined, and it was found that the 1,2-reduction of enones was best achieved by the use of CeCl3.7H2O/NaBH4 in 
ethanol or methanol.4 The transformation of enones to the corresponding allylic alcohols using the combination of 
cerium chloride/sodium borohydride is known as the Luche reduction. The discovery by Luche was a breakthrough in 
the reduction of unsaturated carbonyl compounds, since metal hydrides usually give a mixture of 1,2- and 1,4-
reduction products, and it was rare to obtain the 1,2-reduction product exclusively and in good yield. Usually hard 
metal hydrides (containing more ionic metal-H bonds) deliver the hydride mostly to the carbonyl group (1,2-addition), 
whereas soft metal hydrides (containing a more covalent metal-H bonds) favor conjugate addition. Alkali metal 
borohydrides are softer reducing agents than aluminum hydrides, so they are expected to favor the conjugate 
reduction of enones. Borohydrides can be made harder by the replacement of some of the hydride ligands with 
alkoxy groups so that the 1,2-selectivity will be larger. The general features of the Luche reduction are: 1) both acyclic 
and cyclic enones are reduced to the corresponding allylic alcohols in high yield with no or little 1,4-reduction by-
product; 2) among various lanthanide salts, the heptahydrate of CeCl3 was found to give the highest 1,2-selectivity; 3) 
under the reaction conditions most functional groups (such as carboxylic acids, esters, amides, alkyl halides, 
tosylates, acetals, sulfides, azides, epoxides, nitriles, nitro compounds) are unaffected; 4) the reactions are usually 
conducted at or below room temperature, and the reduction is complete within 5-10 minutes; 5) the reaction vessel 
and the solvents do not need to be dried, the regioselectivity and the yield is unaffected by water content up to 5% by 
volume; 6) the cerium chloride can be used directly as its heptahydrate and no drying is needed; 7) no inert 
atmosphere is required as the reaction is not sensitive to the presence of oxygen; 7) the best solvent is methanol, 
since the reaction rates are the highest, but occasionally ethanol and isopropanol are used, even though the 
reduction is slower in these solvents; 8) steric hindrance has little or no effect on the regioselectivity; 8) the 
combination of CeCl3/NaBH4 is excellent for the chemoselective reduction of ketones in the presence of aldehydes, 
since under these conditions aldehydes undergo rapid acetalization, which prevents their reduction; 9) substituted 
cyclohexenones undergo mainly an axial attack of hydride, so equatorial alcohols are obtained; 10) in rigid cyclic or 
polycyclic systems the hydride delivery occurs from the least hindered face of the carbonyl group; 11) conjugated or 
aromatic aldehydes are reduced preferentially in the presence of isolated aliphatic aldehydes; and 12) the lowering of 
the reaction temperature well below zero (e.g., -78 °C) usually increases the diastereoselectivity of the reduction of 
chiral substrates. 

Mechanism: 17,4,18

As mentioned above, NaBH4 is a soft reducing agent and it has a tendency to reduce enones at the β-position of the 
double bond. The active species during the Luche reduction is believed to be an alkoxy borohydride, which in 
combination with the hard cerium cation acts as a hard reducing agent. The involvement of cerium borohydrides have 
been discounted based on experimental evidence.19 The mechanism is complicated by the fact that more than one 
type of borohydride is formed. The role of the cerium is twofold: 1) catalysis of the formation of alkoxyborohydrides; 
and 2) increasing the electrophilicity of the carbonyl carbon atom. By coordinating to the oxygen atom of the solvent, 
cerium increases the acidity of the medium and helps activating the carbonyl of the enone indirectly (lanthanoid ions 
were shown to preferentially coordinate to alcohols rather than carbonyl groups by NMR spectroscopy).20
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LUCHE REDUCTION

Synthetic Applications:

The total synthesis of several amaryllidaceae alkaloids including that of narciclasine was accomplished in the 
laboratory of T. Hudlicky.21 The C2 stereochemistry was established by a two-step sequence: Luche reduction of the 
α,β-unsaturated cyclic ketone followed by a Mitsunobu reaction. The ketone was first mixed with over one equivalent 
of CeCl3 in methanol and then the resulting solution was cooled to 0 °C, and the sodium borohydride was added. In 
30 minutes the reaction was done, and the excess NaBH4 was quenched with AcOH. The delivery of the hydride 
occurred from the less hindered face of the ketone and the allylic alcohol was obtained as a single diastereomer. 

During the final stages of the total synthesis of (–)-subergorgic acid  by L.A. Paquette and co-workers, the 
transposition of a tricyclic enone was needed.22 The enone was exposed to the Luche conditions and an 85:15 
mixture of diastereomers was obtained. In order to achieve this level of diastereoselectivity, the reaction temperature 
had to be lowered to -50 °C instead of the usual 0 °C. The major product was formed via the exo attack of the 
carbonyl group by the hydride. The allylic alcohol was later converted to the corresponding sulfoxide followed by a 
Mislow-Evans rearrangement to the isomeric allylic alcohol. 

A general synthetic route to several polyhydroxylated agarofurans was developed by J.D. White and co-workers and 
the total synthesis of (±)-euonyminol was achieved.23 The key intermediate was prepared via a Diels-Alder reaction
between a diene and a substituted benzoquinone. The resulting bicyclic homoannular diene was reduced under the 
Luche conditions with excellent regio- and stereoselectivity at C6. The substrate was mainly in the boat conformation 
and the β-face of the ketone was more exposed to hydride attack. The C6 ketone was also more sterically accessible 
and more basic than the C9 ketone functionality. 

The deoxygenation of the C6 position of an advanced intermediate was accomplished in a two-step procedure by Y. 
Kishi et al. in their synthesis of (±)-batrachotoxinin A.24 The Luche reduction was followed by the formation of the C6 
pyridylthioether, which was desulfurized using Raney nickel. 
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MADELUNG INDOLE SYNTHESIS
(References are on page 622)

Importance:

 [Seminal Publications1,2; Reviews3-7; Modifications & Improvements8-20]

In 1912, W. Madelung reported that N-benzoyl-o-toluidine was converted to the corresponding 2-phenylindole when 
heated with two equivalents of sodium ethoxide at high temperatures in the absence of air.2 Madelung also showed 
that the yields could be improved by using the alkoxides of higher aliphatic alcohols such as n-amyl alcohol. The 
intramolecular cyclization of N-acylated-o-alkylanilines to the corresponding substituted indoles in the presence of a 
strong base is known as the Madelung indole synthesis. A decade later in 1924, A. Verley demonstrated that sodium 
amide (NaNH2) was a more general reagent and a wide range of N-acylated-o-toluidines could be converted to the 
corresponding 2-substituted indoles.8,9 The general features of the transformation are: 1) when NaNH2 or sodium 
alkoxides are used as bases, usually temperatures over 250 °C are required; 2) the use of alkyllithiums allows the 
reaction to take place at ambient or slightly higher temperatures; 3) high yields are observed when the aromatic ring 
has electron-donating substituents, while electron-withdrawing substituents tend to give lower yields; 4) the efficiency 
of the reaction is dependent of the steric bulk of the R2 substituent; and 5) when the methyl group is substituted with 
an electron-withdrawing group (e.g., CN), the cyclization takes place at lower temperatures.13 One of the most 
important modifications of the Madelung indole synthesis was introduced by A.B. Smith et al. who metalated 
substituted N-TMS-o-toluidines with n-BuLi. The resulting benzylic anion was reacted with non-enolizable esters or 
lactones to afford N-lithioketamine intermediates that first underwent intramolecular heteroatom Peterson olefination
to give indolinines, and then tautomerized to the corresponding 2-substituted indoles. This modification is referred to 
as the Smith indole synthesis.6

Mechanism: 4,11
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MADELUNG INDOLE SYNTHESIS

Synthetic Applications:

In the laboratory of A.B. Smith, the total synthesis of (–)-penitrem D, one of the most architecturally complex indole 
alkaloids, was accomplished.21 The Smith-modified Madelung indole synthesis was utilized for the coupling of the two 
main fragments to form the desired 2-substituted indole ring. The o-toluidine derivative was first N-silylated and then 
treated with 2.1 equivalents of sec-BuLi. In the same pot, the addition of the lactone furnished an initial coupled 
product. In order to facilitate the final heteroatom Peterson olefination, exposure to silica gel was necessary and the 
indole was formed in high yield. It is worth noting that the use of large excess of the lithiated o-toluidine fragment was 
necessary to achieve the full conversion of the lactone. 

The synthesis of a novel indacene (2,6-diphenyl-1,5-diaza-1,5-dihydro-s-indacene) was completed by H.J. Geise and 
co-workers.22 This compound had a great potential to be used as an organic light-emitting diode based on its optical 
and electroluminescent properties. The authors chose the conditions of the original high-temperature Madelung 
indole synthesis. First, 2,5-dimethyl-4-amino aniline was benzoylated then mixed with a large excess of potassium-
tert-butoxide and heated to high temperatures in a preheated oven. 

The solid-phase version of the Madelung indole synthesis was developed by D.A. Wacker et al. for the preparation of 
2,3-disubstituted indoles.20 The ortho-substituted aniline substrate was first attached to the Bal resin using reductive 
amination. The resin-bound aniline was then acylated and the cyclization was brought about with a variety of bases to 
afford high yields of the disubstituted indoles. The products were quantitatively removed from the resin with 
TFA:Et3SiH (95:5). 

A practical synthetic route to the spiro analogues of triketinins was devised by V. Kouznetsov and co-workers utilizing 
the Madelung indole synthesis in the final step.23 The starting N-acetylated spiroquinolines were rearranged to 4-N-
acetylaminoindanes, which were finally converted to the desired indoles. 
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MALONIC ESTER SYNTHESIS
(References are on page 623)

Importance:

 [Seminal Publications1,2; Reviews3-6; Modifications & Improvements7-16]

In 1863, Geuther was the first investigator to perform the C-alkylation of an enolate derived from an active methylene 
compound (a methylene or methine group with two electron-withdrawing groups attached to it). Namely, he 
deprotonated ethyl acetoacetate and reacted the resulting sodium enolate with ethyl iodide and isolated the 
corresponding ethyl α-ethyl acetoacetate.17 More than a decade later, J. Wislicenus investigated the reaction 
between the sodium enolates of malonic esters and primary and secondary alkyl halides and made the observation 
that primary alkyl halides reacted faster than secondary ones.1,2 The alkylation of malonic ester enolates with various 
organic halides and the subsequent decarboxylation of the alkylated products to yield substituted acetic acid 
derivatives is known as the malonic ester synthesis. The general features of the transformation are:4 1) the alcohol 
component of the malonic ester substrates is primarily derived from aliphatic alcohols (e.g., OMe, OEt, Ot-Bu); 2) the 
pKa of the methylene group is usually between 9-11, so relatively weak bases are sufficient for the generation of the 
reactive ester enolate; 3) the base most often corresponds to the alcohol component of the substrate to avoid the 
generation of mixtures of esters (e.g., dimethyl malonate is deprotonated with NaOMe in MeOH); 4) the applied 
solvent can vary from hydroxylic solvents (e.g., alcohols) all the way to dipolar aprotic solvents (e.g., DMF) and 
nonpolar aprotic solvents (e.g., benzene); 5) the reaction is bimolecular (SN2) for 1° and 2° alkyl halides, especially in 
dipolar aprotic solvents, so high concentration of both the enolate and the organic halide results in faster alkylation; 6) 
allylic and benzylic halides may also react in a monomolecular fashion (SN1); 7) 1° and 2° alkyl halides and allylic and 
benzylic halides react the fastest, while tertiary alkyl halides mainly give elimination products; 8) the order of reactivity 
of the halides is I ~ OTs > Br > Cl; 9) C-monoalkyl malonic esters are less acidic than unsubstituted ones, so the use 
of a stronger base is needed to effect the second deprotonation, and the alkylation of the corresponding enolates is 
slower; 10) when α,ω-dihalides are used as the alkylating agents, cycloalkanes are obtained and the formation of 
five-, six-, and seven-membered rings is favored; and 11) saponification of the mono- or disubstituted malonic ester 
with base affords a 1,3-diacid, which undergoes decarboxylation upon heating with an acid to give substituted acetic 
acids.
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MALONIC ESTER SYNTHESIS

Synthetic Applications:

The first enantioselective total synthesis of (+)-macbecin I was accomplished by R. Baker and co-workers.19 A key 
vinyl iodide precursor was prepared stereoselectively using the malonic ester synthesis. Diethyl methylmalonate was 
treated with in situ generated diiodocarbene in ether at reflux to afford diiodomethylmethylmalonate in good yield. 
This dialkylated malonic ester then was converted to (E)-3-iodo-2-methyl-2-propenoic acid by reacting it with aqueous 
KOH. The saponification was accompanied by a concomitant decarboxylation. 

The novel humulane-type sesquiterpene (+)-bicyclohumulenone was synthesized for the first time in the laboratory of 
M. Kodama.20 The natural product features a cyclodecenone ring fused to a cyclopropane ring, having two 
stereocenters at the ring junction. The cyclopropane moiety was installed using a stereoselective Simmons-Smith 
cyclopropanation reaction, while the 10-membered ring was formed via an intramolecular alkylation of an α-sulfenyl 
carbanion with an epoxide. The two main fragments were united by the malonic ester synthesis in which the 
monosubstituted dimethyl malonate was alkylated with an allylic chloride. 

The structural elucidation of the secondary metabolites of Dictyostellium cellular slime molds was achieved by Y. 
Oshima et al.21 The total synthesis of a novel compound, dictyopyrone A, which possesses a unique α-pyrone moiety 
with a side-chain at the C3 position, was successfully carried out using the malonic ester synthesis. Meldrum's acid 
was acylated and the product was subjected to transesterification with an optically active diol. Specific rotation of the 
final product was identical with that of the natural product, so the absolute configuration was established as (S). 

The key step in total synthesis of (+)-juvabione by G. Helmchen and co-workers was the Pd-catalyzed allylic 
substitution with the anion of (pivaloyloxy)malonate.22 The substitution proceeded with very high regio- and 
stereoselectivity. 
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MANNICH REACTION
(References are on page 623)

Importance:

 [Seminal Publications1-3; Reviews4-23; Modifications & Improvements24-36; Theoretical Studies37-49]

In 1903, B. Tollens and von Marle made the observation that the reaction of acetophenone with formaldehyde and 
ammonium chloride led to the formation of a tertiary amine.1 In 1917, C. Mannich also isolated a tertiary amine by 
exposing antipyrine to identical conditions and recognized the generality of this reaction.2,3 The condensation of a 
CH-activated compound (usually an aldehyde or ketone) with a primary or secondary amine (or ammonia) and a non-
enolizable aldehyde (or ketone) to afford aminoalkylated derivatives is known as the Mannich reaction. More 
generally, it is the addition of resonance-stabilized carbon nucleophiles to iminium salts and imines. The product of 
the reaction is a substituted β-amino carbonyl compound, which is often referred to as the Mannich base. The general 
features of the reaction are: 1) the CH-activated component (activated at their α-position) is usually an aliphatic or 
aromatic aldehyde or ketone, carboxylic acid derivatives, β-dicarbonyl compounds, nitroalkanes, electron-rich 
aromatic compounds12 such as phenols (activated at their ortho position) and terminal alkynes;13 2) only primary and 
secondary aliphatic amines or their hydrochloride salts can be used since aromatic amines tend not to react; 3) the 
non-enolizable carbonyl compound is most often formaldehyde; 4) when the amine component is a primary amine, 
the initially formed β-amino carbonyl compound can undergo further reaction to eventually yield a N,N-dialkyl 
derivative (a tertiary amine); however, with secondary amines overalkylation is not an issue; 5) the reaction medium 
is usually a protic solvent such as ethanol, methanol, water, or acetic acid to ensure sufficiently high concentration of 
the electrophilic iminium ion, which is responsible for the aminoalkylation; 6) unsymmetrical ketones usually give rise 
to regioisomeric Mannich bases, but the product derived from the aminoalkylation of the more substituted α-position 
tends to be dominant; and 7) Mannich bases are useful synthetic intermediates, since they can undergo a variety of 
transformations: β-elimination to afford α,β-unsaturated carbonyl compounds (Michael acceptors), reaction with 
organolithium, or Grignard reagents to yield β-amino alcohols and substitution of the dialkylamino group with 
nucleophiles to generate functionalized carbonyl compounds. There have been several improvements to the original 
three-component Mannich reaction. The use of preformed iminium salts is the most significant modification because it 
allows faster, more regioselective, and even stereoselective transformations under very mild conditions.18

Mechanism: 6,50,12-14

The mechanism of the Mannich reaction has been extensively investigated. The reaction can proceed under both 
acidic and basic conditions, but acidic conditions are more common. Under acidic conditions the first step is the 
reaction of the amine component with the protonated non-enolizable carbonyl compound to give a hemiaminal, which 
after proton transfer loses a molecule of water to give the electrophilic iminium ion.50 This iminium ion then reacts with 
the enolized carbonyl compound (nucleophile) at its α-carbon in an aldol-type reaction to give rise to the Mannich 
base.
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MANNICH REACTION

Synthetic Applications:

The total synthesis of (±)-aspidospermidine was accomplished by C.H. Heathcock and co-workers.51 The synthetic 
strategy relied on an intramolecular cascade reaction, which simultaneously formed the B, C, and D rings of the 
natural product. As we mentioned previously, the CH-activated component of the Mannich reaction can also be an 
electron-rich aromatic ring such as an indole. The starting material was subjected to TFA in dichloromethane which 
first resulted in the formation of an indole (B ring) and an acylammonium ion (D ring) that in situ underwent an 
intramolecular Mannich-type cyclization giving rise to the C ring. 

When preformed iminium salts are utilized in Mannich reactions, the reaction medium no longer needs to be a protic 
solvent, so the use of aprotic solvents allows the transformation of sensitive intermediates such as metal enolates. 
L.A. Paquette et al. carried out the highly regioselective introduction of an exo-methylene functionality during the total 
synthesis of (–)-O-methylshikoccin by reacting a potassium enolate with the Eschenmoser salt.52 The resulting β-N,N-
dimethylamino ketone was converted to the corresponding quaternary ammonium salt and elimination afforded the 
desired α,β-unsaturated ketone (Eschenmoser methenylation).

One of the most well-known applications of the Mannich reaction is its use in a tandem fashion with the aza-Cope 
rearrangement to form heterocycles. This reaction was the cornerstone of the strategy in the research group of  L.E. 
Overman during the total synthesis of (±)-didehydrostemofoline (asparagamine A).53 The bicyclic amine hydrogen 
iodide salt was exposed to excess paraformaldehyde, which led to the formation of the first iminium ion intermediate 
that underwent a facile [3,3]-sigmatropic rearrangement. The resulting isomeric iminium ion spontanaeously reacted 
with the enol in an intramolecular Mannich cyclization.

In the laboratory of S.F. Martin, the vinylogous Mannich reaction (VMR) of a 2-silyloxyfuran with a regioselectively 
generated iminium ion was utilized as the key step in the enantioselective construction of (+)-croomine.54,55 The 
carboxylic acid moiety of the starting material was converted to the acid chloride which spontaneously underwent 
decarbonylation to give the corresponding iminium ion. Reaction of this iminium ion with the 2-silyloxyfuran afforded 
the desired threo butenolide isomer as the major product. 
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McMURRY COUPLING 
(References are on page 624)

Importance:

[Seminal Publications1-5; Reviews6-19; Modifications & Improvements20-28; Theoretical Studies29]

In the early 1970s, the research groups of T. Mukaiyama,3 S. Tyrlik,4 and J.E. McMurry5 independently discovered 
that the treatment of carbonyl compounds with low-valent titanium led to olefinic coupled products. In the following 
years, McMurry investigated the scope and limitation of the process,20 and today the reductive coupling of carbonyl 
compounds using low-valent titanium complexes to form the corresponding alkenes is known as the McMurry 
coupling. The general features of this coupling reaction are: 1) it is used most often for the homocoupling of 
aldehydes and ketones to afford alkenes. However, mixed coupling is feasible if one component is used in excess or 
one of the coupling partners is a diaryl ketone; 2) the low-valent titanium reducing agent can be prepared in many 
ways but the most common is the reduction of TiCl3 with a zinc-copper couple (Zn-Cu) in DME;20 3) if the reaction is 
conducted at low temperature, the pinacol intermediate may be isolated; 4) at high temperature the alkenes are 
formed directly; 5) sterically hindered and/or strained olefins, which cannot be prepared by other means, are formed 
in high yield; 6) even sterically hindered tetrasubstituted alkenes can be prepared; 7) macrocyclization under high-
dilution conditions is successful for the synthesis of medium and large rings and the yields are independent of the ring 
size unlike in other macrocyclizations (e.g., acyloin condensation); 8) intramolecular reactions are the fastest for the 
formation of five- and six-membered rings and the formation of eight- or higher-membered rings is considerably 
slower; 9) the reaction conditions do not tolerate the presence of easily reducible functional groups (e.g., epoxides, α-
halo ketones, unprotected 1,2-diols; allylic and benzylic alcohols, quinones, halohydrins, aromatic and aliphatic nitro 
compounds, oximes, and sulfoxides), but most other functional groups are compatible; 10) aldehydes react much 
faster than ketones so the coupling of two aldehydes in the presence of a ketone can be performed chemoselectively; 
11) the alkene product is formed with poor stereoselectivity, although there is a slight preference for the formation of 
(E)-alkenes in intermolecular reactions; and 12) in the presence of a chlorosilane the McMurry reaction becomes 
catalytic.18

Mechanism: 30,20,31-38,13,39,40

The mechanism of the McMurry coupling is not entirely clear, but it is composed of two distinct steps: 1) pinacol 
formation and 2) deoxygenation to the alkene. Extensive research showed that the low-valent titanium is most likely a 
mixture of Ti(II) and Ti(0), and the ratio of these species depends on the method of preparation (solvent, temperature, 
reducing agent, etc.). Recent findings suggest that the reaction possibly involves the formation of a carbene or a 
metal carbenoid.34-36,13 The nature of the intermediates is strongly dependent on the structure of the carbonyl 
substrate and the reaction conditions, which is why the reaction is “tricky” and yields are difficult to reproduce in the 
laboratory.  
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McMURRY COUPLING 

Synthetic Applications:

The first enantioselective total synthesis of (–)-13-hydroxyneocembrene using an intramolecular McMurry coupling as 
the key macrocyclization step was accomplished by Y. Li and co-workers.41 To avoid any intermolecular coupling, 
high-dilution conditions were used. The cyclization precursor was added slowly via a syringe pump to a suspension of 
low-valent titanium reagent (TiCl4/Zn) in refluxing DME. The reaction favored the formation of the (E)-olefin, the E/Z
ratio was 2.5:1. The final step was the removal of the silyl protecting group with TBAF. 

In the laboratory of T. Nakai, the asymmetric tandem Claisen-rearrangement-ene reaction sequence followed by a 
modified McMurry coupling was used to access (+)-9(11)-dehydroestrone methyl ether.42 The Claisen-ene product 
was subjected to ozonolysis and epimerization to the 8,14-anti configuration. The C-ring was constructed by treating 
the tricyclic diketo aldehyde  with TiCl3-Zn(Ag) in DME to afford the desired final product in 56% yield. 

Several ADAM (alkenyldiarylmethane) II non-nucleoside reverse transcriptase inhibitors were prepared by M. 
Cushman and co-workers.43 The McMurry reaction was the key transformation that enabled the coupling of the diaryl 
ketone with a variety of aldehydes in good yield. The commercially available TiCl4-THF (2:1) and zinc dust was used 
to prepare the low-valent titanium reagent in refluxing THF. To this suspension was added the diaryl ketone and the 
aldehyde successively. 

The impressive synthetic power of the McMurry coupling was demonstrated by K. Kakinuma et al. when they 
synthesized archaeal 72-membered macrocyclic lipids.44 The final macrocyclization between the dialdehyde 
proceeded in 66% yield, giving rise to a single diastereomer. 
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MEERWEIN ARYLATION
(References are on page 625)

Importance:

 [Seminal Publications1; Reviews2-7; Modifications & Improvements8-18; Theoretical Studies19-21]

In 1939, H. Meerwein and co-workers reported in an extensive study that aromatic diazo compounds reacted with 
α,β-unsaturated carbonyl compounds in which the aryl group added across the double bond and a molecule of 
nitrogen was lost.1 In one experiment, coumarin was reacted with p-chlorodiazonium chloride in the presence of 
catalytic amounts of copper(II)chloride, and the corresponding 3-(p-chlorophenyl)coumarin was isolated in moderate 
yield. When the unsaturated reaction partner was cinnamic acid, a molecule of carbon dioxide was lost in addition to 
nitrogen and the product was the corresponding styrene derivative. The arylation of substituted alkenes with 
aryldiazonium halides (formally the addition of an aryl halide to a carbon-carbon double bond) in the presence of a 
metal salt catalyst is known as the Meerwein arylation. The general features of this reaction are: 1) the procedure is 
simple; no special laboratory equipment is needed; 2) the aryldiazonium halides are prepared by the diazotization of 
aromatic amines using sodium nitrite and aqueous hydrohalic acids and are not isolated, rather immediately reacted 
with the alkenes in the presence of an organic solvent (e.g., acetone, acetonitrile); 3) the presence of electron-
withdrawing substituents on the aromatic ring tends to increase the yield, whereas electron-donating groups often 
give lower yields; 4) the alkene component usually has an electron-withdrawing substituent and mostly α,β-
unsaturated carbonyl compounds are used; 5) if there are two electron-withdrawing substituents on the double bond, 
and they are attached to the same carbon and then the aryl group will add to the other sp2 hydbridized carbon atom; 
6) when each of the olefin carbon atoms has an electron-withdrawing substituent, regioisomeric products may be 
formed; however, the major product will arise from the most resonance stabilized radical intermediate; 7) cinnamic 
acids and maleic acids are arylated at the α-carbon, and the reaction is accompanied by decarboxylation which is a 
pH-dependent process; 8) alkynes with electron-withdrawing substituents also react, but the yields are often poor; 9) 
furan derivatives are arylated with ease under the reaction conditions; and 10) the initial product of the reaction is a 
substitution product (alkyl halide), which can be dehydrohalogenated under basic conditions to afford the 
corresponding aryl substituted olefin. The Meerwein arylation is not free of side reactions (e.g., Sandmeyer reaction, 
formation of azo compounds, etc.), which are the primary cause of the often moderate product yields. 

Mechanism: 22-24,4,21

The mechanism of the Meerwein arylation is not completely understood. In his seminal paper, Meerwein proposed 
the involvement of aryl cations, however, this hypothesis was soon eliminated when J.K. Kochi suggested that aryl 
radicals are formed under the reaction conditions.22 The actual catalyst is a copper(I) species, which is formed in situ
from copper(II) salts and carbonyl compounds (e.g., acetone which is often used as a solvent).23
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MEERWEIN ARYLATION

Synthetic Applications:

In the laboratory of R. Bihovsky, a series of peptide mimetic aldehyde inhibitors of calpain I was prepared in which the 
P2 and P3 amino acids were replaced with substituted 3,4-dihydro-1,2-benzothiazine-3-carboxylate-1,1-dioxides.25

The synthesis began with the diazotization of the substituted aniline substrate using sodium nitrite and hydrochloric 
acid. The aqueous solution of the corresponding diazonium chloride product was added dropwise to the solution of 
acrylonitrile in a water-acetone mixture, which contained catalytic amounts of copper(II) chloride. This Meerwein 
arylation step afforded the chloronitrile derivative, which was subjected to sulfonation with chlorosulfonic acid, and the  
resulting sulfonyl chloride was treated with the solution of ammonia in dioxane to give the desired 3,4-dihydro-1,2-
benzothiazine-2-carboxamide. 

The research team of J.E. Baldwin developed the first synthetic sequence for the preparation of N(5)-ergolines.26 The 
key step was a hetero-Diels-Alder reaction of a substituted phenyl butadiene to form the piperidine ring. The phenyl 
butadiene substrate was prepared via the Meerwein arylation of 1,4-butadiene and a diazonium salt derived from 2,6-
dinitrotoluene. The initially formed chlorinated product was subjected to dehydrochlorination using DBU as the base. 

The synthesis of the aglycone of the antibiotic gilvocarcin-M was accomplished by T.C. McKenzie et al. by a 
sequential Meerwein arylation-Diels-Alder cycloaddition.27 The anthranilic methyl ester substrate was first subjected 
to diazotization and then the resulting diazonium chloride was coupled to 2,6-dichlorobenzoquinone in water to afford 
the quinone product in moderate yield. It is important to mention that the Meerwein arylation was conducted in water 
at 80 C in the absence of a catalyst. 

T. Sohda and co-workers prepared a series of novel thiazolidinedione derivatives of the potent antidiabetic 
pioglitazone (AD-4833, U-72, 107).28  The para-substituted aniline was diazotized with NaNO2/HBr, and the 
diazonium bromide was used to arylate methyl acrylate in the presence of copper(II) oxide. The bromopropionate 
product was first treated with thiourea, and the resulting iminothiazolidinone hydrolyzed with aqueous hydrochloric 
acid to afford the desired thiazolidinedione derivative. 
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MEERWEIN-PONNDORF-VERLEY REDUCTION
(References are on page 626)

Importance:

 [Seminal Publications1-3; Reviews4-18; Modifications & Improvements19-31; Theoretical Studies32,33]

In the mid-1920s, three researchers independently described reduction of carbonyl compounds with the use of 
aluminum alkoxides: 1) in 1925, H. Meerwein successfully reduced aldehydes with ethanol in the presence of 
aluminum ethoxide;1 2) during the same year, A. Verley reduced ketones with aluminum ethoxide as well as 
aluminum isopropoxide but found that sterically hindered ketones (e.g., camphor) reacted very slowly;2 and 3) in 
1926, W. Ponndorf demonstrated that the reduction of aldehydes and ketones was general for a variety of metal 
alkoxides (e.g., alkali metal and aluminum alkoxides) derived from secondary alcohols, and he found the process 
completely reversible.3 The reduction of aldehydes and ketones by metal alkoxides (mainly by aluminum 
isopropoxide) is known as the Meerwein-Ponndorf-Verley reduction (MPV reduction).34 The reverse reaction, the 
oxidation of alcohols to aldehydes and ketones, is referred to as the Oppenauer oxidation. The general features of 
the MPV reduction are: 1) the reaction is completely reversible and the removal of the low boiling ketone or the 
addition of excess isopropyl alcohol shifts the equilibrium to the right according to Le Chatelier's principle; 2) the 
reduction takes place in boiling isopropanol under mild conditions, and it is very chemoselective for aldehydes and 
ketones, whereas other functional groups (e.g., double bond, esters, acetals, etc.) remain unchanged, and this is the 
greatest advantage over the use of metal hydride reducing agents; 3) the most popular metal alkoxides are aluminum 
alkoxides, and these are often used in stoichiometric amounts (one or more equivalents for ketones), but Ln(III) 
alkoxides (e.g., Sm(Ot-Bu)I2) can be applied in catalytic amounts;21,22 4) aluminum alkoxides are readily soluble in 
both alcohols and hydrocarbon solvents, whereas other metal alkoxides have limited solubility; 5) aldehydes react 
faster than ketones; 6) keto aldehydes are reduced to hydroxy ketones, whereas α,β-unsaturated aldehydes and 
ketones give the corresponding allylic alcohols; 7) cyclic diketones usually give rise to hydroxyl ketones unless an 
aromatic ring can be formed via hydrogen transfer; 8) β-diketones or β-keto esters cannot be reduced due to the 
formation of stable β-enolate chelate complexes with metal alkoxides, but when these compounds do not have 
enolizable hydrogens at the α-position, the reduction proceeds smoothly; 9) the method is sensitive to steric 
hindrance, so sterically hindered ketones and aldehydes are reduced more slowly than unhindered ones; 10) to 
increase the rate of reduction for slow reactions, the alcohol solvents may be mixed with higher boiling solvents (e.g., 
toluene, xylene) or multiple equivalents of aluminum alkoxide should be applied; 11) the reaction rate is significantly 
increased by the addition of protic acids (e.g., TFA, HCl, propionic acid);19,24,25 12) in rigid cyclic substrates, the 
reduction proceeds with high diastereoselectivity; 13) catalytic asymmetric versions are known, but currently only the 
intramolecular asymmetric MVP reduction gives high ee's;15 and 14) both small-, and large-scale reduction can be 
carried out with ease (few milligrams to several hundred grams). The most important side reactions are: 1) aldol 
condensation of aldehyde substrates, which have an α-hydrogen atom to form β-hydroxy aldehydes and/or α,β-
unsaturated aldehydes, but with ketones this side reaction is not common; 2) Tishchenko reaction of aldehyde 
substrates with no α-hydrogen atom, but this can be suppressed by the use of anhydrous solvents; 3) dehydration of 
the product alcohol to an olefin, especially at high temperature; and 4) the migration of the double bond during the 
reduction of α,β-unsaturated ketones. 

Mechanism: 35-40,19,41-48

The currently accepted concerted mechanism that goes through a chairlike six-membered transition state was first 
proposed by Woodward.35 The special activity of aluminum alkoxides for the MVP reduction can be explained as a 
result of the activation of both the hydride donor and the hydride acceptor. For aromatic ketones the involvement of 
radicals was suggested, but for aliphatic carbonyl compounds there is no evidence for a SET mechanism.44
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MEERWEIN-PONNDORF-VERLEY REDUCTION

Synthetic Applications:

The highly stereoselective formal total synthesis of GA111 and GA112 methyl esters was accomplished using the 
combination of a Pd-catalyzed cycloalkenylation reaction and inverse-electron demand Diels-Alder cycloaddition in 
the laboratory of M. Ihara.49 The final step of the synthesis was the reduction of the tetracyclic ketone to obtain both 
diastereomers of the corresponding secondary alcohols. It was found, however, that the hydride reduction of this 
ketone gave GA112 methyl ester exclusively as a single diastereomer. When the reduction was carried out in the 
presence of large excess of aluminum isopropoxide, both diastereomers were formed, but the GA111 methyl ester was 
the major product. 

The MPV reduction was used in a highly stereoselective fashion during the final stages of the total synthesis of dl-
coccuvinine and dl-coccolinine by T. Sano et al.50 The α,β-unsaturated ketone moiety was selectively reduced in the 
presence of an α,β-unsaturated lactam to give the β-allylic alcohol in good yield. The methylation of the allylic alcohol 
under phase-transfer conditions (Williamson ether synthesis) was followed by the reduction of the lactam carbonyl 
group to the corresponding methylene group with excess allane to afford the natural product. 

The absolute stereochemistry of the rutamycin antibiotics was established through asymmetric synthesis of the 
known bicyclic degradation product by D.A. Evans and co-workers.51 The introduction of the equatorial secondary 
alcohol functionality turned out to be problematic when traditional metal hydrides were used for the reduction of the 
ketone. For example, LiAlH4 gave only a 1:1 mixture of axial and equatorial diastereomers. The use of the 
samarium(II)-catalyzed MVP reduction gave a 98:1 mixture of diastereomers favoring the equatorial alcohol. 
Subsequent examination of this highly stereoselective reduction revealed that the reaction operated under kinetic 
control, and the observed product was formed due to the coordination of the reducing agent to the axial spiroketal 
oxygen atom. 

The synthesis of the rare furochromone ammiol was achieved by R.B. Gammill starting from 
(methylthio)furochromone in four steps.52 The last step was the selective conversion of the aldehyde moiety of a six-
membered 1,4-dicarbonyl compound using the MVP reduction.
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MEISENHEIMER REARRANGEMENT
(References are on page 627)

Importance:

 [Seminal Publications1,2; Reviews3-5; Modifications & Improvements6-13; Theoretical Studies14-17]

In 1919, J. Meisenheimer reported that upon heating in an aqueous sodium hydroxide solution, N-benzyl-N-methyl
aniline-N-oxide underwent a facile isomerization to afford O-benzyl-N-methyl-N-phenyl hydroxylamine.1 Three 
decades later, A.C. Cope and co-workers reinvestigated the rearrangement to explore its mechanism.18 They 
discovered that the isomerization of N-crotyl-N-methyl aniline N-oxide occurred with the inversion of the allylic system 
to give N-methyl-O-(1-methyl-allyl)-N-phenylhydroxylamine. This result suggested that the isomerization occurred via
a five-membered cyclic transition state analogous to the mechanism of the Claisen rearrangement. The thermal 
rearrangement of certain tertiary amine N-oxides to the corresponding O-substituted-N,N-disubstituted 
hydroxylamines is known as the Meisenheimer rearrangement. The general features of the reaction are: 1) the 
rearrangement takes place in both open-chain and cyclic systems; 2) the [1,2]- and [2,3]-shift of substituents are the 
two different modes of the transformation; 3) the [1,2]-shift occurs when one of the substituents is capable of 
stabilizing radicals (R1 = benzyl, diphenylmethyl, etc.); 4) the [2,3]-shift is common when one of the substituents is 
allylic; 5) during the [1,2]-shift, the stereocenter on the migrating group suffers extensive racemization;3 6) the [2,3]-
shift usually takes place much faster than the [1,2]-shift and the transfer of chirality of the migrating group is possible; 
7) when any of the R2,R3 or R6,R7 are alkyl groups that have a hydrogen atom at their β-position, the Cope 
elimination becomes competitive; 8) the N-oxides of N-benzyl and N-allyl cyclic amines mainly undergo [1,2]-shifts to 
afford the corresponding O-benzyl and O-allyl hydroxylamines, respectively; 9) the N-oxides of 2-aryl-, 2-heteroaryl, 
and 2-vinyl cyclic amines predominantly undergo ring-enlargement to give 1,2-oxazaheterocycles; and10) the ring-
enlargement is general for four- to ten-membered cyclic amine N-oxides.5

Mechanism: 18,3,19,20,6,13

The [1,2]-Meisenheimer rearrangement most likely proceeds via a homolytic dissociation-recombination
mechanism,19 whereas the [2,3]-Meisenheimer rearrangement is a concerted sigmatropic process that goes through 
a five-membered envelopelike transition state. 
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 MEISENHEIMER REARRANGEMENT

Synthetic Applications:

The natural product (R)-sulcatol is a male-produced aggregation pheromone of the ambrosia beetle. This insect can 
devastate entire forests when its population is out of control.21 Various studies revealed that different species respond 
to the compound in different enantiomeric excess. The asymmetric synthesis of (R)-sulcatol was accomplished in the 
laboratory of S.G. Davies using a stereospecific [2,3]-Meisenheimer rearrangement as the key step. The treatment of 
the allylic amine substrate with mCPBA followed by the filtration of the reaction mixture through deactivated basic 
alumina afforded the desired hydroxylamine as a single diastereomer. 

A new route to the 12(S)carba-eudistomin skeleton was developed by T. Kurihara et al.22 The key substrate for this 
new route was a 1,2-cis-2-ethenylazetopyridoindole, which was readily oxidized at 0 °C to afford the corresponding 
N-oxide. This N-oxide spontaneously underwent a [2,3]-Meisenheimer rearrangement to afford the desired oxazepine 
derivative. Interestingly, when the 1,2-trans-2-ethenylazetopyridoindole was subjected to identical conditions, the 
[1,2]-Meisenheimer rearrangement occurred exclusively and gave rise to an isoxazolidine derivative. 

In the laboratory of H. Kondo, various prodrugs of the clinically effective antibacterial agent norfloxacin (NFLX) were 
synthesized.23 The N-masked derivatives of NFLX were efficiently unmasked in vivo, and they exhibited equal or 
higher activity than NFLX itself. In order to reveal the mode of action of these prodrugs, the N-allylic derivative of 
NFLX was subjected to mCPBA at low temperatures. The resulting N-oxide was then heated to bring about a [2,3]-
Meisenheimer rearrangement to afford the corresponding O-allyl-hydroxylamine derivative. This hydroxylamine 
derivative also acted as a prodrug, since it liberated a higher concentration of NFLX in plasma and had a higher 
activity than NFLX itself. 

The [1,2]-Meisenheimer rearrangement and a Heck cyclization were the key steps in T. Kurihara's synthesis of 
magallanesine.24 The azetidine was exposed to H2O2, and the resulting azetidine N-oxide was refluxed in THF to 
afford the desired azocine derivative. Other usual oxidants such as mCPBA or MMPP gave rise to complex mixtures. 
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MEYER-SCHUSTER AND RUPE REARRANGEMENT
(References are on page 627)

Importance:

 [Seminal Publications1-7; Reviews8; Modifications & Improvements9-15; Theoretical Studies16-21]

In 1922, K.H. Meyer and K. Schuster reported that the attempted conversion of 1,1,3-triphenyl-2-propynol to the 
corresponding ethyl ether with concentrated sulfuric acid and ethanol afforded 1,3,3-triphenyl propenone, an α,β-
unsaturated ketone.1 The authors showed that the use of other reagents such as acetic anhydride and acetyl chloride 
also brought about the same reaction. A few years later, H. Rupe and co-workers investigated the acid-catalyzed 
rearrangement of a large number of α-acetylenic (propargylic) alcohols.2-7 The acid-catalyzed isomerization of 
secondary and tertiary propargylic alcohols, via a [1,3]-shift of the hydroxyl group, to the corresponding α,β-
unsaturated aldehydes or ketones is known as the Meyer-Schuster rearrangement. The general features of this 
transformation are: 1) when the substrate contains a terminal alkyne, the product is an aldehyde, whereas substrates 
containing disubstituted alkynes yield ketones; 2) the substrates, 2° or 3° propargylic alcohols, may not have a proton 
at their α-position so that the initial propargylic cation can isomerize to an allenyl cation, which provides the product 
carbonyl compound; 3) the rearrangement can be catalyzed by both protic and Lewis acids under anhydrous or 
aqueous conditions. The related acid-catalyzed rearrangement of tertiary propargylic alcohols, via a formal [1,2]-shift
of the hydroxyl group, yielding the corresponding α,β-unsaturated ketones is called the Rupe rearrangement. The 
most important features of this reaction are: 1) the product is always the α,β-unsaturated ketone regardless of the 
substitution of the triple bond; 2) the substrates are tertiary propargylic alcohols that have hydrogen atoms available 
at their α-position; 3) most often strong protic acids mixed with alcohol solvents are used to bring about the 
rearrangement, but certain Lewis acid such as mercury(II)-salts and even dehydrating agents (SOCl2, P2O5, etc.) 
were shown to be effective; 4) the nature of the acid catalyst does not affect the course of the rearrangement. The 
disadvantages of the above two rearrangements are: 1) certain substrates may give rise to a mixture of Rupe and 
Meyer-Schuster rearrangement products; 2) low yields are observed when the product (especially aldehydes) 
undergoes self-condensation, or is readily oxidized under the reaction conditions; 3) acid-sensitive functionalities in 
the substrate may give undesired elimination products; and 4) the initial propargylic cation occasionally undergoes 
Wagner-Meerwein or Nametkin rearrangement.

Mechanism: 22,8,23
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MEYER-SCHUSTER AND RUPE REARRANGEMENT

Synthetic Applications:

The first fully stereoselective total synthesis of the linear triquinane sesquiterpene (±)-capnellene was achieved by 
L.A. Paquette et al.24 The C-ring is a fused cyclopentenone moiety, and the authors tried to assemble it using the 
Nazarov cyclization. However, the dienone precursor failed to undergo the cyclization under a variety of conditions, 
so an alternative strategy was sought that was based on the Rupe rearrangement. The treatment of the bicyclic 
tertiary propargylic alcohol substrate with formic acid and trace amounts of sulfuric acid afforded high yield of the α,β-
unsaturated methyl ketone product. Interestingly, the double bond of the enone did not end up in the most substituted 
position as it is expected in most cases. 

H. Stark and co-workers prepared novel histamine H3-receptor antagonists with carbonyl-substituted 4-[(3-
phenoxy)propyl]-1H-imidazole structures.25 The Meyer-Schuster rearrangement was used for the synthesis of one of 
the compounds. The p-hydroxybenzaldehyde derivative was reacted with ethynylmagnesium bromide to afford a 
secondary propargylic alcohol. Upon hydrolysis with 2N HCl in a refluxing ethanol/acetone mixture, the corresponding 
p-hydroxy cinnamaldehyde was obtained.  

One of the disadvantages of the Rupe rearrangement is the harsh reaction conditions needed, making it very difficult 
to adapt the reaction to large-scale synthesis of unsaturated ketones. The research team of H. Weinmann 
investigated the rearrangement of a steroidal tertiary propargylic alcohol using a variety of acid catalysts.15 They 
found that the macroporous Amberlyst-type resin A-252C in refluxing ethyl acetate containing 2 equivalents of water 
were ideal for the rearrangement in a pilot plant on a 64 kg scale.  

In the laboratory of S.C. Welch, the Meyer-Schuster rearrangement was the key step in the stereoselective total 
synthesis of the antifungal mold metabolite (±)-LL-Z1271α.26 A tricyclic enone acetal was treated with lithium 
ethoxyacetylide, and the crude product was exposed to H2SO4 in anhydrous methanol, which brought about the 
rearrangement and afforded the desired product in 30% yield along with 12% of an epimer. 
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MICHAEL ADDITION/REACTION
(References are on page 628)

Importance:

 [Seminal Publications1-4; Reviews5-26; Modifications & Improvements27-46; Theoretical Studies47-66]

The first example of a carbon nucleophile adding to an electron-deficient double bond was published in 1883 by T. 
Komnenos, who observed the facile addition of the anion of diethyl malonate to ethylidene malonate.1 However, it 
was not until 1887 that A. Michael systematically investigated the reaction of stabilized anions with α,β-unsaturated 
systems; during this study he found that diethyl malonate added across the double bond of ethyl cinnamate in the 
presence of sodium ethoxide to afford a substituted pentanedioic acid diester.2 A few years later, in 1894, he 
demonstrated that not only electron-deficient double bonds but also triple bonds can serve as reaction partners for 
carbon nucleophiles.4 This method of forming new carbon-carbon bonds became exceedingly popular by the early 
1900s and today the addition of stabilized carbon nucleophiles to activated π-systems is known as the Michael
addition (or Michael reaction) and the products are called Michael adducts. Currently, however, all reactions that 
involve the 1,4-addition (conjugate addition) of virtually any nucleophile to activated π-systems are also referred to as 
the Michael addition. The general features of this reaction are: 1) the nucleophile (Michael donor) can be derived by 
the deprotonation of CH-activated compounds such as aldehydes, ketones, nitriles, β-dicarbonyl compounds, etc. as 
well as by the deprotonation of heteroatoms; 2) depending on the type and strength of the electron-withdrawing group 
(negative charge stabilizing group), the use of even relatively weak bases is possible (e.g., NEt3); 3) it is possible to 
carry out the reaction using only catalytic amount of base, so when a full equivalent base is used, the product is an 
anion that can be reacted further with various electrophiles; 4) the structure of the activated alkene or alkyne (Michael 
acceptor) can be varied greatly; virtually any electron-withdrawing group could be used; 5) the reaction may be 
conducted in both protic and aprotic solvents; 6) both inter- and intramolecular versions exist; 7) the reaction can be 
highly diastereoselective when both the Michael donor and acceptor have defined stereochemistry; and 8) 
asymmetric versions have been developed.28,30,31,41,25 The main drawback of the Michael addition is that other 
processes may compete with the desired 1,4-addition such as 1,2-addition and self-condensation of the carbon 
nucleophile, but the careful choice of reaction medium and the use of additives can suppress these undesired 
reactions. 

Mechanism: 9,11,67,17

The mechanism is illustrated with the addition of a malonate anion across the double bond of ethyl cinnamate. The 
reaction is reversible in protic solvents and the thermodynamically most stable product usually predominates. When 
organometallic reagents are used as Michael donors (e.g., copper-catalyzed organomagnesium additions) SET-type 
mechanisms may be operational.
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MICHAEL ADDITION/REACTION

Synthetic Applications:

A unique class of steroidal alkaloids, the batrachotoxinins, is isolated in small quantities from the skins of poison 
arrow frogs and also from the feather of a New Guinea bird. One of the key steps during the total synthesis of (±)-
batrachotoxinin A by Y. Kishi et al. was a Michael addition to form a seven-membered oxazapane ring.68 The removal 
of the primary TBS protecting group was achieved by treatment with TASF and the resulting alkoxide attacked the 
enone at the β-position to afford an enolate as the Michael adduct. The enolate was trapped with phenyl triflimide as 
the enol triflate. 

The synthesis of both enantiomers of the antitumor-antibiotic fredericamycin A was achieved in the laboratory of D.L. 
Boger.69 The DE ring system of the natural product was assembled via a tandem Michael addition-Dieckmann 
condensation. The highly substituted 4-methylpyridine precursor was treated with excess LDA followed by the 
addition of the Michael acceptor cyclopentenone. The Michael adduct underwent an intramolecular acylation with the 
ester functionality in situ to afford the desired DEF tricycle.  

M. Ihara and co-workers utilized an intramolecular double Michael addition for the efficient and completely 
stereoselective construction of the tricyclo[6.3.0.03,9]undecan-10-one framework during the total synthesis of (±)-
longiborneol.70 The substituted cyclopentenone precursor was exposed to several different reaction conditions, and 
the highest yield was obtained when LHMDS was used as the base. The first deprotonation took place at C11; the 
resulting enolate added to C9, and the ester enolate (negative charge located at C10) in turn added to the 
cyclopentenone at C3. 

The potent neurotoxin (–)-dysiherbaine was synthesized by S. Hatekayama et al. who assembled the central pyran 
ring via an intramolecular Michael addition of a primary alcohol to an α,β-unsaturated ester.71 The sole product of this 
key cyclization was a tricyclic lactone, which was isolated in good yield. 

RO
H

Me

OR

O

O

O

N
Ac

MOMO

R = TBS

TASF
(1.2 equiv)
THF/DMF

1h, r.t.

then
Et3N (5 equiv)

PhNTf2 (10 equiv)
95%

RO
H

Me

OR

O

O

OTf

N
Ac

MOMO
O steps

HO
H

Me

O

N
Me

HO

O

OH
Me

(±)-Batrachotoxinin A

OR

N

CH3

R

REtO

1. LDA (9.6 equiv)
THF, -78 °C, <1 min
2. cyclopentenone

(11 equiv), THF
-78 °C, <1 min

3. EtOH (xs), 
-78 to 25 °C

85% for 3 steps N

CH2

EtO2C

REtO

O

R = CO2Et N

CH2

REtO

HO

O
steps

D

E

F

HN

R'

O
HO

D
E

F

R' =

OO

OO

OHHO

OMe

Fredericamycin A

O

CO2Me( )3

LiHMDS
(2 equiv)

THF

-78 °C,1h
 then

0 °C, 3h; 
94%

O

CO2Me

12

3
4

8
9

11
10

10

O

CO2Me
10

11

9
3

ester enolate

4 4

3

11 9
8

1
2

steps

10

4

3

11 9
8

1

2

OH
(±)-Longiborneol

EtO2C
OTBS

TBSO O
HN

O
HF

MeCN
70 °C
then 

NaHCO3
71%

O
HN

O

O

O
O

steps OH

NH2Me

O

O

OOC

NH3
OOC

(−)-DysiherbaineCO2Et

HO O
HN

O

O

tricyclic lactone



288

MIDLAND ALPINE-BORANE® REDUCTION (MIDLAND REDUCTION)
(References are on page 630)

Importance:

 [Seminal Publications1-7; Reviews8-14; Modifications & Improvements15-20; Theoretical Studies21]

In the late 1970s, M.M. Midland and co-workers reported a surprising observation that certain B-alkyl-9-
borabicyclo[3.3.1]nonanes reduced benzaldehyde to benzyl alcohol in THF solution at reflux.3 The rate of the reaction 
was strongly dependent on the structure of the B-alkyl group, and it was found that increasing substitution at the β-
position significantly increased the rate of reduction. Soon after this initial communication, the asymmetric version 
was developed by the same authors using B-3α-pinanyl-9-BBN as the reducing agent, which was easily available by 
reacting (+)-α-pinene with 9-BBN.2  The asymmetric induction was comparable to that of an enzyme catalyzed 
reduction. This new reducing agent was later commercialized by Aldrich Co. under the name Alpine-Borane®. The 
asymmetric reduction of carbonyl compounds (mostly ketones) using either enantiomer of Alpine-Borane®  is known 
as the Midland reduction (or Midland Alpine-Borane reduction). The general features of this transformation are: 1) 
since both enantiomers of α-pinene are available, the corresponding chiral reducing agents are readily available by 
reaction with 9-BBN; 2) suitable substrates are prochiral ketones and aldehydes (e.g., deutero aldehydes); 3) by 
using one enantiomer of Alpine-Borane® the carbonyl compounds are reduced consistently to give the same absolute 
configuration of the corresponding alcohol; 4) alcohols of the opposite absolute configuration may be obtained by 
using the other enantiomer of Alpine-Borane®; 5) the reduction takes place under mild conditions at room 
temperature or slightly above using 40-100% excess of the reducing agent; 6) the rate of reduction is the greatest for 
aldehydes, whereas ketones are reduced at significantly slower rates depending on the steric bulk of the substituents; 
7) when the reaction is conducted under high-pressure conditions, the rate is increased as well as the level of 
asymmetric induction; 8) the level of asymmetric induction is usually very high (>90% ee), and existing stereocenters 
in the substrates usually do not influence the outcome of the reduction; 9) Alpine-Borane® exhibits a remarkable 
degree of chemoselectivity for aldehydes and ketones. Other functional groups remain unchanged unless forcing 
condition induce a dehydroboration process to form 9-BBN and α-pinene. 

Mechanism: 22,23,9,24,25

Kinetic studies of the Midland reduction confirmed that the reduction of aldehydes is a bimolecular process and the 
changes in ketone structure have a marked influence on the rate of the reaction (e.g., the presence of an EWG in the 
para position of aryl ketones increases the rate compared to an EDG in the same position).23 However, when the 
carbonyl compound is sterically hindered, the rate becomes independent of the ketone concentration and the 
structure of the substrate. The mechanism with sterically unhindered substrates involves a cyclic boatlike transition 
structure (similar to what occurs in the Meerwein-Ponndorf-Verley reduction). The favored transition structure has the 
larger substituent (RL) in the equatorial position, and this model correctly predicts the absolute stereochemistry of the 
product. 
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MIDLAND ALPINE-BORANE® REDUCTION (MIDLAND REDUCTION)

Synthetic Applications:

The first total synthesis of the neuritogenic spongean polyacetylene lembehyne A was accomplished by M. 
Kobayashi and co-workers.26 The single stereocenter of the molecule was introduced via the Midland reduction of a 
propargylic ketone using an Alpine-Borane®, which was prepared from (+)-α-pinene and 9-BBN. 

Chirally deuterated sugars are useful in elucidating mechanisms of biosynthesis and chemical reactions. In the 
laboratory of N.P.J. Price, the stereoselective synthesis of chirally deuterated (S)-D-(6-2H1)glucose was achieved 
utilizing (R)-(+)-Alpine-Borane to reduce a deutero aldehyde precursor stereoselectively.27 The substrate was 
dissolved in dichloromethane, and at room temperature the solution of the reducing agent was added in THF in 
excess. When all the starting material was consumed, the excess reagent was destroyed with acetaldehyde and the 
reaction mixture was worked-up oxidatively using NaOH/H2O2.

The cyclic peroxide natural product (+)-chondrillin was prepared by P.H. Dussault and co-workers using a singlet 
oxygenation/radical rearrangement sequence as the key step.28 The first stereocenter was introduced via the Midland 
reduction of an ynone substrate.  

Stable, isotope-labeled amino acids are often utilized in the elucidation of protein structures and in probing the 
mechanism of enzyme catalyzed processes as well as revealing the metabolic pathways of amino acids. When 
deuterium is introduced, the protein in which the labeled amino acids are incorporated can be studied by NMR 
techniques. For instance, the absence of signal in the 1H-NMR spectrum simplifies the assignment of peaks. An 
improved synthesis of the doubly labeled (R)-glycine-d-15N was developed by R.W. Curley Jr. et al.29 The current 
synthetic sequence introduced chirality by reducing a deutero aldehyde with (R)-(+)-Alpine-Borane. The resulting 
benzyl alcohol was subjected to a Mitsunobu reaction using 15N-phthalimide, which inverted the stereochemistry and 
introduced the labeled nitrogen atom (overall a Gabriel synthesis).
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MINISCI REACTION 
(References are on page 630)

Importance:

[Seminal Publications1-11; Reviews12-16]

The substitution of protonated heteroaromatic bases by nucleophilic carbon-centered radicals is known as the Minisci
reaction, named after its discoverer F. Minisci. In the late 1960s, radical processes were generally not considered 
selective, and their synthetic use was limited to simple molecules. In 1968, Minisci demonstrated that selective 
substitutions could be realized by reacting nucleophilic carbon-centered radicals with electron-deficient substrates 
(olefin conjugated with EWG, protonated heteroaromatic bases, quinines, etc.).1 This transformation was especially 
important because it resembled the Friedel-Crafts aromatic substitution, but with opposite reactivity and selectivity. 
The Minisci reaction introduces acyl groups directly into heteroaromatic rings, a reaction that would be impossible 
under the ususal Friedel-Crafts reaction conditions. Pyridines,5,17,18 pyrazines,19 quinolines,4,5 diazines,20

imidazoles,21 benzothiazoles22 and purines were shown to selectively react with a wide range of nucleophilic radicals, 
at the positions α- and γ to the nitrogen. All heteroaromatic bases in which at least one α- or γ position is free undergo 
this reaction. The reactivity and the selectivity generally increase with the number of heteroatoms in the aromatic 
rings or polycyclic heterocycles. The observed high selectivity is due to polar effects, and is strictly related to the 
nucleophilic character of carbon-centered radicals. The radicals may be generated from a wide range of compounds 
(alkanes, alkenes, alkylbenzenes, alcohols, ethers, aldehydes, ketones, carboxylic acids, esters, amides, amines, 
alkyl halides, peroxides, N-chloroamines, oxaziridines, etc.), making the reaction synthetically useful.1,23-26,15,27,16,28,29

Most of the Minisci substitution reactions occur in aqueous or mixed aqueous media (e.g., methanol-water) under 
acidic conditions at room temperature. The reactions are immediate, and isolation of the organic products is 
convenient.   

Mechanism: 1,5,6,23,30-33,24,34-36

In the first step, the carbon centered radical is generated. The second step involves the addition of this radical to the 
protonated ring. The third step consists of the rearomatization of the radical adduct by oxidation. The rates of addition 
of alkyl and acyl radicals to protonated heteroaromatic bases are much higher than those of possible competitive 
reactions, particularly those with solvents. Polar effects influence the rates of the radical additions to the 
heteroaromatic ring by decreasing the activation energy as the electron deficiency of the heterocyclic ring increases.  
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MINISCI REACTION

Synthetic Applications:

F. Minisci and co-workers generated alkyl radicals from alkyl iodides under simple conditions (thermal decomposition 
of dibenzoyl peroxide) and used it for selective C-C bond formation on protonated heterocycles.37 The method was 
successfully applied to complex substrates, such as 6-iodo-1,2,3,4-diisopropylidene-α-galactose, which was reacted 
with protonated 2-methylquinoline to give the corresponding C-nucleoside in excellent yield. 

In the course of synthetic and pharmacological investigations, some non-natural azaergoline analogs were efficiently 
synthesized in the laboratory of M.K.H Doll.38 Previous syntheses of these analogs were too long to be practical. 
Therefore, an intramolecular tandem decarboxylation-cyclization Minisci reaction was developed to achieve a short 
synthesis of the 8-azaergoline ring system. Starting from simple, commercially available precursors, the target 
tetracycle was obtained in four steps with an overall yield of 28%. 

In order to evaluate fluoroheteroaromatic compounds as intracellular pH probes, R.A.J. Smith and co-workers 
prepared monofunctionalized polymethylated pyridines.28 To this end, radical Minisci-type substitution reactions were 
used on substituted pyridines. Reaction of hydroxymethyl radicals with N-methoxy 2,4- and 2,6-dimethylpyridinium 
salts gave 2,4,6-substituted hydroxymethylpyridines. Similar reactions with 2,3,5,6-tetramethylpyridine and 
derivatives failed, but substitution at the 4-position could be achieved using a carbamoyl radical to yield 2,3,5,6-
tetramethyl isonicotinamide, which suggested that steric and reactivity restrictions can be overcome by appropriate 
choice of the reactive radical intermediate. 

Commercially available glycine derivatives were used by C.J. Cowden to generate 1-amidoalkyl radicals for the 
alkylation of 3,6-dichloropyridazine in moderate to good yields.39
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MISLOW-EVANS REARRANGEMENT
(References are on page 631)

Importance:

 [Seminal Publications1-3; Reviews4-8; Modifications & Improvements9-12; Theoretical Studies13,14]

In 1968, K. Mislow and co-workers reported that upon heating, enantiomerically pure allylic sulfoxides underwent 
facile thermal racemization, while enantiopure allylic sulfenates afforded optically active sulfoxides.1 Mechanistic 
studies revealed that these transformations were closely related, reversible, and concerted intramolecular processes 
that could be classified as [2,3]-sigmatropic rearrangements.2 Soon after this discovery, D.A. Evans et al. recognized 
the synthetic potential of this rearrangement by converting allylic sulfoxides to allylic alcohols in the presence of a 
sulfenate ester trapping agent (thiophile) and demonstrated that it was general for a wide range of substrates.3 The 
reversible 1,3-transposition of allylic sulfoxide and allylic alcohol functionalities is known as the Mislow-Evans 
rearrangement. The general features of the reaction are: 1) it is used mainly for the stereoselective synthesis of allylic 
alcohols from sulfoxides; 2) sulfoxides can be synthesized in variety of ways for example from the corresponding 
sulfides via oxidation or by the thermal rearrangement of sulfenate esters and can be obtained in enantiomerically 
pure form;3 3) allylic sulfoxides are regioselectively deprotonated at the α-position, and the resulting sulfoxide-
stabilized allylic carbanion can be alkylated regioselectively α to the sulfur; 4) the formation of the allylic carbanion is 
achieved by the use of a strong base such as n-BuLi or LDA at low temperatures; 5) the alkylation of the allylic 
carbanion is conducted also at low temperatures with a variety of alkyl, allylic, and benzylic halides; 6) in the 
presence of a thiophile the allylic sulfoxides are cleanly transformed into the rearranged allylic alcohol products; 7) 
when heated in the absence of a thiophile, α,α'-disubstituted allylic sulfoxides may undergo rearrangement to afford 
the thermodynamically more stable isomers;4 8) the reaction is stereoselective, the chirality of the sulfur atom can be 
transferred to the carbon and vice versa allowing the preparation of allylic alcohols with defined double bond 
geometries; 9) the choice of thiophile can alter the stereochemical outcome of the rearrangement depending on the 
relative rates of the sulfoxide-sulfenate ester rearrangement and sulfenate ester cleavage by the thiophile;15 10) 
phosphite and amine thiophiles favor the almost exclusive formation of the (E) stereoisomer; 11) usually no 
purification of the intermediate products is required; after work-up the allylic alcohol product is isolated in good to 
excellent yield; and 12) propargyl sulfenates also undergo the rearrangement to give allenic sulfoxides.6

Mechanism: 1,2,15,5,16
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MISLOW-EVANS REARRANGEMENT

Synthetic Applications:

Prostaglandin E2 is one of the most important members of the mammalian hormone prostaglandins that exhibit a 
wide range of biological activity. The quantification of the total amount of prostaglandin E2 produced in humans is 
best achieved by assessing the accumulation of the major urinary metabolite PGE2Um. Since the supply of this 
material for assays has been depleted, the total synthesis of the ethyl ester of the major urinary metabolite of 
prostaglandin E2 (PGE2Um) was undertaken by D.F. Taber et al.17 In order to ensure the (E) stereochemistry of the 
double bond, the Mislow-Evans rearrangement was utilized. The phenyl sulfide substrate was first oxidized to the 
corresponding sulfoxide with mCPBA, and without purification, it was treated with trimethyl phosphite to produce the 
desired (E)-allylic alcohol in excellent yield. 

The first asymmetric total synthesis of the macrocyclic lactone metabolite (+)-pyrenolide D was accomplished in the 
laboratory of D.Y. Gin.18 The natural product has a densely functionalized polycyclic structure and its absolute 
configuration had to be established. The key step of the synthesis was a stereoselective oxidative ring-contraction of 
a 6-deoxy-D-gulal, which was prepared from anomeric allylic sulfoxide via the Mislow-Evans rearrangement.

In the stereoselective total synthesis of (±)-14-deoxyisoamijiol by G. Majetich et al., the last step was the 
epimerization of the C2 secondary allylic alcohol functionality.19 The Mitsunobu reaction resulted only in a poor yield 
(30%) of the inverted product, so the well-established sulfoxide-sulfenate rearrangement was utilized. The allyic 
alcohol was first treated with benzenesulfenyl chloride, which afforded the thermodynamically more stable epimeric 
sulfenate ester via an allylic sulfoxide intermediate. The addition of trimethyl phosphite shifted the equilibrium to the 
right by consuming the desired epimeric sulfenate ester and produced the natural product. 

The Mislow-Evans rearrangement was chosen by T. Tanaka and co-workers to create the C12 stereocenter of 
halicholactone and ensure the (E) stereochemistry of the C9-C11 double bond.20
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MITSUNOBU REACTION
(References are on page 632)

Importance:

 [Seminal Publications1,2; Reviews3-12; Modifications & Improvements13-24]

In 1967, O. Mitsunobu et al. reported that secondary alcohols could be efficiently acylated with carboxylic acids in the 
presence of diethyl azodicarboxylate (DEAD) and triphenylphosphine.1,2 A few years later it was shown that optically 
active secondary alcohols underwent complete inversion of configuration under the reaction conditions. Later the 
procedure was found to be general for the synthesis of optically active amines, azides, ethers, thioethers, and even 
alkanes. The substitution of primary and secondary alcohols with nucleophiles in the presence of a dialkyl 
azodicarboxylate and a trialkyl- or triaryl phosphine is known as the Mitsunobu reaction. The general features of this 
transformation are:3-5 1) primary and secondary alcohols are the best substrates and secondary alcohols undergo 
complete inversion of configuration; 2) tertiary alcohols do not undergo the reaction, but certain tertiary propargylic 
alcohols have been successfully converted; 3) the nucleophile is a relatively acidic compound (pKa ≤ 15); 4) among 
oxygen nucleophiles carboxylic acids give rise to esters, alcohols, and phenols to ethers, while thiols and thiophenols 
afford thioethers; 5) common nitrogen nucleophiles include imides, hydroxamates, nitrogen heterocycles, and 
hydrazoic acid; 6) the formation of carbon-carbon bonds is also possible, but the nucleophiles in this case are mainly 
active methylene compounds (β-diketones, β-keto esters, etc.); however, β-diesters are not reactive enough; 7) the 
reaction is also feasible intramolecularly, 3-,4-,5-,6-, and 7-membered cyclic ethers and cyclic amines can be 
prepared; 8) when halide ion sources (e.g., alkyl and acyl halides, zinc halides) are used along with DEAD/PPh3, the 
alcohol substrates are converted to the corresponding primary and secondary alkyl halides;4 9) the reaction is usually 
conducted in THF, but dioxane and DCM are also used; 10) PPh3 or P(n-Bu)3 are the most commonly used 
phosphines; 11) the azodicarboxylate reagents are most often DEAD and DIAD, which can be used interchangeably; 
11) the reaction temperature is usually between 0 °C and 25 °C, but certain sterically hindered substrates may 
require higher temperatures; and 12) in the typical procedure the mixture of the phosphine, alcohol, and the 
nucleophile are dissolved and the solution of the azodicarboxylate is added dropwise; alternatively, the 
azodicarboxylate is first reacted with the phopshine, and the solution of the alcohol and the nucleophile is added 
drowpwise. An important variant of the Mitsunobu reaction was developed by T. Mukaiyama, who described the 
preparation of inverted tert-alkyl carboxylates from chiral tertiary alcohols via alkoxydiphenylphosphines formed in situ
using 2,6-dimethyl-1,4-benzoquinone.20,23

Mechanism: 25-45
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MITSUNOBU REACTION

Synthetic Applications:

The architecturally novel macrolide (+)-zampanolide was synthesized in the laboratory of A.B. Smith.46 The C8-C9 
(E)-olefin moiety was constructed using the Kocienski-modified Julia olefination. The required PT-sulfone was 
prepared from the corresponding primary alcohol via a two-step protocol employing sequential Mitsunobu reaction
and sulfide-sulfone oxidation. The primary alcohol and two equivalents of 1-phenyl-1H-tetrazolo-5-thiol was dissolved 
in anhydrous THF at 0 °C and treated sequentially with triphenylphosphine and DEAD. The desired tetrazolo sulfide 
was isolated in nearly quantitative yield. 

The enantioselective total synthesis of the complex bioactive indole alkaloid ent-WIN 64821 was accomplished by 
L.E. Overman and co-workers.47 This natural product is a representative member of the family of the C2-symmetric 
bispyrrolidinoindoline diketopiperazine alkaloids. The stereospecific incorporation of two C-N bonds was achieved 
using the Mitsunobu reaction to convert two secondary alcohol functionalities to the corresponding alkyl azides with 
inversion of configuration. The azides subsequently were reduced to the primary amines and cyclized to the desired 
bis-amidine functionality. 

The naturally occurring potent antitumor antibiotic (+)-duocarmycin A, its epimer, and unnatural enantiomers were 
prepared by D.L. Boger et al.48 The last step of the synthesis was the elaboration of the reactive cyclopropane 
moiety, which was carried out via a transannular spirocyclization using Mitsunobu conditions. This is a special case 
when the Mitsunobu reaction is utilized to create new carbon-carbon bonds. 

The first total synthesis of the tricyclic marine alkaloid (±)-fasicularin was completed by the research team of C. 
Kibayashi.49 The secondary alcohol functionality was inverted using the Mitsunobu protocol. The resulting p-nitro 
benzoate was readily hydrolyzed under basic conditions. 
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 MIYAURA BORATION
(References are on page 633)

Importance:

 [Seminal Publications1,2; Reviews3-12; Modifications & Improvements13-31; Theoretical Studies32]

In 1993, N. Miyaura and co-workers found that alkynes could be efficiently cis-diborated with the pinacol ester of 
diboronic acid (abbreviated as B2pin2 or pinB-Bpin) in the presence of catalytic amounts of platinum 
tetrakistriphenylphosphine.1 Later, in 1995, the same authors discovered that tetraalkoxydiboron compounds could be 
coupled with aromatic halides in the presence of catalytic amounts of PdCl2(dppf) to afford arylboronic esters, which 
are important substrates for the Suzuki cross-coupling and Ullmann biaryl ether synthesis.2 Surprisingly, only Pd-
based catalysts were effective; other metal complexes did not catalyze the reaction at all. The palladium-catalyzed 
cross-coupling reaction of aromatic and heteroaromatic halides or triflates with tetraalkoxyboron compounds to give 
arylboronic and heteroarylboronic esters is referred to as the Miyaura boration. The general features of this 
transformation are: 1) the one-pot coupling proceeds under mild conditions, which is a significant improvement over 
the traditional synthesis of arylboronic esters and acids (the reaction between trialkyl borates and arylmagnesium 
halides or aryllithiums); 2) most functional groups are tolerated under the mildly basic reaction conditions; 3) the best 
substrates are aryl bromides and iodides, but recently aryl triflates15,3 and aryldiazonium tetrafluoroborates21 have 
also been used; 4) the aryl group may have either electron-donating or electron-withdrawing substitutents; 5) 
electron-rich aryl bromides tend to react slower than electron-rich aryl iodides, and the chemoselective boration of an 
aryl iodide in the presence of an aryl bromide can be achieved in high yield; 6) the use of palladium(0)-
tricyclohexylphosphine as the catalyst allows the coupling of the much less reactive aryl chlorides;23 and 7) the 
presence of potassium acetate (KOAc) as the base in the reaction mixture is critical for the successful coupling of aryl 
halides, and it not only accelerates the reaction but also prevents the formation of biaryl by-products (Suzuki cross-
coupling). A number of synthetically useful variants of this reaction have been developed.13-31

Mechanism: 2,32

The first step of the Miyaura boration is the oxidative addition of the Pd(0)-complex into the C-X bond of the aryl 
halide. Next, a transmetallation takes place, the exact mechanism of which depends on the nature of the substrate, 
and finally the reductive elimination affords the product. 
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MIYAURA BORATION

Synthetic Applications:

The total synthesis of the proteasome inhibitor cyclic peptide TMC-95A was accomplished by. S.J. Danishefsky and 
co-workers.33 The biaryl linkage in the natural product was constructed by a Suzuki cross-coupling between an aryl 
iodide and an arylboronic ester derived from L-tyrosine. The required arylboronic pinacolate substrate was prepared 
using the Miyaura boration. The aryl iodide was exposed to bis(pinacolato)diboron in the presence of a palladium 
catalyst and potassium acetate in DMSO. The coupling proceeded in high yield and no symmetrical biaryl by-product 
was observed. 

A novel macrocyclization reaction was developed based on a domino Miyaura boration/intramolecular Suzuki cross-
coupling sequence in the laboratory of J. Zhu.34 This strategy was applied in the synthesis of biaryl-containing 
macrocycles. The diiodide substrate was dissolved in degassed DMSO, and then the catalyst and the base were 
added. Successful macrocyclization required extensive experimentation, and the authors determined that the 
concentration and the nature of the base were the two most important factors. Interestingly, potassium carbonate is 
not suitable as a base in the Miyaura boration, since it tends to give biaryl by-products, but in this particular 
macrocyclization reaction it proved to be completely ineffective because the reaction failed to take place. 

The first total synthesis of the potent antibiotic marine natural product ( )-spiroxin C was completed by T. Imanishi et 
al., who employed a TBAF-activated Suzuki cross-coupling as the key step to form the biaryl linkage.35 The coupling 
partner naphthylborate ester was prepared using the Miyaura boration.

The efficient synthesis of a potent topoisomerase I poison terbenzimidazole was developed in the laboratory of P.J. 
Smith.36 The desired aryl-aryl bonds were created via iterative Suzuki-cross couplings. The arylboronic ester was 
derived from 1-benzyl-5-iodo-1H-benzimidazole using the Miyaura boration.
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MUKAIYAMA ALDOL REACTION 
(References are on page 633)

Importance:

[Seminal Publications1,2; Reviews3-22; Theoretical Studies23]

The crossed aldol reaction between preformed enolates and carbonyl compounds is among the most important 
carbon-carbon bond forming reactions. A powerful version of this transformation is the Lewis acid mediated addition 
of enol silanes to carbonyl compounds, a process that was discovered by T. Mukaiyama in the early 1970's1,2 and 
today is referred to as the Mukaiyama aldol reaction. The general features of the reaction are: 1) according to the 
original procedure, stoichiometric quantities of the Lewis acid such as TiCl4, SnCl4, AlCl3, BCl3·OEt2, and ZnCl2 were 
required to effect the transformation;1,2 2) lately, several catalytic versions were developed utilizing Lewis acids such 
as Sn(IV), Sn(II), Mg(II), Zn(II), Li(I), Bi(III), In(III), Ln(III), Pd(II), Ti(IV), Zr(IV), Ru(II), Rh(II), Fe(II), Al(III), Cu(II), Au(I), R3SiX, Ar3C+,
and clay as catalyst;6,10,11,13,14,16 3) several Lewis base catalyzed transformations were also developed;24-27 4) the 
enol silane component can be derived from aldehydes, ketones, esters, and thioesters;4 5) the reactions of 
unsubstituted, mono- and disubstituted enol silanes were examined;4 and 6) the most commonly used carbonyl 
reactants are aldehydes, but ketones and acetals also react under appropriate reaction conditions.4 The 
diastereoselectivity of the Mukaiyama aldol reaction can be controlled if substrates and conditions are carefully 
chosen. The diastereochemical outcome of monosubstituted enol silanes is usually as follows: 1) when R2 is small 
and R3 is bulky, the reaction leads to the anti product independent of the double bond geometry; 2) when R2 is large, 
syn diastereoselection predominates independent of the enol silane geometry; and 3) when the aldehyde is capable 
of chelation, the formation of the syn-diastereomer is preferred.14 Control of the absolute stereoselectivity can be 
achieved by utilizing chiral enol silanes or chiral aldehydes.14 The fastest-growing area in the Mukaiyama aldol
methodology is the development of asymmetric catalytic processes, utilizing chiral Lewis acid complexes and Lewis 
bases.13

Mechanism:3,28-39,14

The mechanism of the Mukaiyama aldol reaction largely depends on the reaction conditions, substrates, and Lewis 
acids. Under the classical conditions, where TiCl4 is used in equimolar quantities, it was shown that the Lewis acid 
activates the aldehyde component by coordination30,31,35 followed by rapid carbon-carbon bond formation. Silyl 
transfer may occur in an intra- or intermolecular fashion. The stereochemical outcome of the reaction is generally 
explained by the open transition state model, and it is based on steric- and dipolar effects.14 For Z-enol silanes, 
transition states A, D, and F are close in energy. When substituent R2 is small and R3 is large, transition state A is the 
most favored and it leads to the formation of the anti-diastereomer.34 In contrast, when R2 is bulky and R3 is small, 
transition state D is favored giving the syn-diastereomer as the major product. When the aldehyde is capable of 
chelation, the reaction yields the syn product, presumably via transition state H.29,32,36
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MUKAIYAMA ALDOL REACTION 

Synthetic Applications:

The asymmetric total syntheses of rutamycin B and oligomycin C was accomplished by J.S. Panek et al.40 In the 
synthesis of the C3-C17 subunit, they utilized a Mukaiyama aldol reaction to establish the C12-C13 stereocenters. 
During their studies, they surveyed a variety of Lewis acids and examined different trialkyl silyl groups in the silyl enol 
ether component. They found that the use of BF3·OEt2 and the sterically bulky TBS group was ideal with respect to 
the level of diastereoselectivity. The stereochemical outcome was rationalized by the open transition state model, 
where the orientation of the reacting species was anti to each other, and the absolute stereochemistry was 
determined by the chiral aldehyde leading to the anti diastereomeric Felkin aldol product. 

Tin(II) mediated asymmetric aldol reactions are among the first chiral Lewis acid controlled Mukaiyama aldol 
reactions.41,42 A catalytic version of this method was utilized during the total syntheses of sphingofungins B and F by 
S. Kobayashi.43 The asymmetric tin catalyzed Mukaiyama aldol reaction provided the two main fragments of the 
molecule with excellent enantio- and diastereoselectivities. Combination of the two fragments and subsequent steps 
led to the total synthesis of sphingofungins B and F. 

A convergent total synthesis of polyene macrolide roflamycoin was achieved by S.D. Rychnovsky and co-workers.44

In their approach, they introduced the C25 stereocenter via an asymmetric catalytic Mukaiyama aldol reaction utilizing 
Carreira’s chiral titanium catalyst.45
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 MYERS ASYMMETRIC ALKYLATION
(References are on page 634)

Importance:

 [Seminal Publications1-4; Reviews5-7; Modifications & Improvements8]

In 1978, M. Larcheveque and co-workers reported that the N-acylation of commercially available D- or L-ephedrine 
led to highly crystalline N,N-disubstituted amides that could be alkylated in high yield and with good 
diastereoselectivity.1,2 The alkylated products were easily converted to the corresponding optically active α-
substituted ketones and carboxylic acids. Almost two decades later, A.G. Myers et al. developed an efficient 
alkylation of N-acylated pseudoephedrines (the diastereomers of ephedrine) to obtain enantiomerically enriched α-
alkylated, aldehydes, ketones, carboxylic acids, and alcohols.3 This transformation is known as the Myers asymmetric 
alkylation. The general features of this alkylation are:4 1) both enantiomers of pseudoephedrine are inexpensive and 
commercially available commodity chemicals; 2) the N-acylation can be achieved in almost quantitative yields using 
symmetrical and mixed anhydrides or acid chlorides and the N-acyl derivatives (tertiary amides) are usually highly 
crystalline materials; 3) the alkylation of these tertiary amides is achieved by first deprotonation with lithium 
diisopropylamide and the resulting (Z)-enolate undergoes highly diastereoselective alkylation at the α-position; 4) 
allylic, benzylic, as well as the less reactive alkyl halides (including β-branched alkyl iodides and β-oxygenated n-alkyl 
halides) are all good alkylating agents, since the enolates are highly nucleophilic (unlike imide enolates that react only 
with highly reactive halides); 5) the α-alkylated products are often crystalline and can be enriched by recrystallization 
to get >99% de; 6) there are two general procedures to conduct the alkylation: in the first the alkylating agent is used 
in slight excess, while in the second the enolate is used in excess; 7) in order to obtain high yields and high levels of 
diastereoselectivity, the use of a large excess (6-10 equivalents) of anhydrous lithium chloride is necessary; 8) the 
role of the LiCl is twofold: it accelerates the rate of the alkylation and suppresses the O-alkylation of the 
pseudoephedrine hydroxyl group; 9) when β-branched alkyl iodides are used as alkylating agents the transformation 
leads to 1,3-dialkyl substituted alkyl chains (syn or anti), a common motif in a large number of natural products; 10) 
the 1,3-syn products represent matched cases demonstrating that the diastereofacial bias exerted by this chiral 
auxiliary overrides the secondary effects originating from the existing stereocenter in the alkyl iodide; 11) substrates 
that are both β-alkyl branched and β-alkoxy substituted react very slowly, albeit the diastereoselectivity of the 
alkylation remains high; and12) the removal of the chiral auxiliary from the alkylated tertiary amide products gives rise 
to the following useful functionalities: simple acidic, basic or Lewis acid catalyzed hydrolysis affords carboxylic acids, 
reduction with lithium pyrrolidide-borane (LPT) or with lithium amidotrihydroborate (LAB) gives primary alcohols, 
reduction with lithium triethoxyaluminum hydride results in aldehydes, while the addition of alkyllithium reagents 
followed by an aqueous work-up leads to ketones. 

Mechanism: 4

The origin of the high diastereoselectivity in this alkylation is not fully understood. The stereochemical outcome is 
consistent with a model in which the (Z)-enolate is alkylated from the α-face while the β-face is blocked by the 
solvated lithium alkoxide. 
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MYERS ASYMMETRIC ALKYLATION

Synthetic Applications:

The enantioselective total synthesis of borrelidin, a structurally unique macrolide with angiogenesis inhibitory activity, 
was completed by J.P. Morken and co-workers.9 The Myers asymmetric alkylation was used to set the C8 
stereocenter. N-Propionyl pseudoephedrine was deprotonated with LDA in the presence of excess lithium chloride. It 
is well known that when excess enolate is used and the alkyl halide is the limiting reagent, yields tend to be higher 
than in those cases where the enolates are used as the limiting reagent. The authors used twice as much enolate as 
the alkyl iodide, and the product was isolated in excellent yield and with complete diastereoselectivity. Subsequently, 
the auxiliary was removed reductively using LAB as the reducing agent. 

In the laboratory of T.F. Jamison, the synthesis of amphidinolide T1 was accomplished utilizing a catalytic and 
stereoselective macrocyclization as the key step.10 The Myers asymmetric alkylation was chosen to establish the 
correct stereochemistry at the C2 position. In the procedure, the alkyl halide was used as the limiting reagent and 
almost two equivalents of the lithium enolate of the N-propionyl pseudoephedrine chiral auxiliary was used. The 
alkylated product was purified by column chromatography and then subjected to basic hydrolysis to remove the chiral 
auxiliary. 

The total synthesis of the potent cytotoxic macrolide ( )-dictyostatin was accomplished by I. Paterson et al.11 This 
natural product exhibits a powerful growth-inhibitory activity against a number of human cancer cell lines at 
nanomolar concentrations and it is active against Taxol-resistant cancer cells that express active P-glycoprotein. In 
order to create the C16 stereocenter, the Myers asymmetric alkylation was chosen as the method that achieved the 
desired three-carbon homologation of the -branched alkyl iodide substrate. The alkylated product was removed 
reductively using LAB and the resulting primary alcohol was oxidized to the corresponding aldehyde by the Dess-
Martin oxidation.

The neurotoxic lipopeptide (+)-kalkitoxin was prepared by J.D. White et al., who installed one of the stereocenters via
the Myers asymmetric alkylation followed by reductive workup to obtain the enantiopure primary alcohol.12
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NAGATA HYDROCYANATION
(References are on page 635)

Importance:

 [Seminal Publications1-6; Reviews7; Modifications & Improvements8,9]

In 1873, A. Claus reported that tricarballic acid (1,2,3-propanetricarboxylic acid) was isolated when an ethanolic 
solution of 2,3-dichloropropene was heated with excess potassium cyanide in a sealed tube.1 Although Claus did not 
realize at that time, this observation was the first example of a 1,4-addition of hydrogen cyanide to an activated 
alkene. Two decades later in 1896, J. Bredt and J. Kallen observed that the treatment of benzalmalonate with KCN 
and sulfuric acid followed by hydrolysis and decarboxylation (see malonic ester synthesis) gave rise to 2-
phenylsuccinic acid.2 In the first half of the 1900s, many research groups used the conjugate hydrocyanation in 
organic synthesis, but the method was far from being efficient, and it was plagued by numerous side reactions. A 
breakthrough in efficiency occurred in 1962, when W. Nagata and co-workers developed a new hydrocyanation 
method in which they added α,β-unsaturated ketones to a mixture of triethylaluminum and HCN in THF and observed 
that the reaction took place considerably faster and with much higher selectivity than under the original reaction 
conditions.3 Later it was found that dialkylaluminum cyanides were even better reagents for conjugate 
hydrocyanations. The formation of β-cyano ketones and esters from α,β-unsaturated ketones and esters using 
dialkylaluminum cyanides (or HCN with Al-based Lewis acids) is known as the Nagata hydrocyanation. The general 
features of this transformation are: 1) in the overwhelming majority of cases the carbonyl compound is a ketone and 
rarely the aldehyde (since it undergoes 1,2-addition); 2) α,β-unsaturated esters and nitriles are also good substrates; 
3) when HCN is used in conjunction with aluminum trialkyls or with alkylaluminum halides, the order of reactivity is as 
follows: EtAlCl2>Me3Al>Et3Al>Et2AlCl; 4) the reaction is almost exclusively conducted in a dipolar aprotic solvent such 
as THF, hydrocarbon solvents are not suitable, since the HCN reacts with AlX3 immediately in nonpolar media; 5) a 
small amount of water in the reaction medium accelerates the hydrocyanation when HCN/AlMe3 is used (substrates 
with free hydroxyl groups have the same effect); 6) in the case of less reactive substrates, the trialkylaluminum and 
the HCN are both used in excess, but always more of the aluminum reagent is applied to prevent the polymerization 
of HCN; 7)  the reactivity of the dialkylaluminum cyanide reagent is strongly dependent on the basicity of the solvent 
and increases with decreasing solvent basicity: THF>dioxane>i-Pr2O>benzene>toluene; and 8) the rate of 
hydrocyanation is much faster with the dialkylaluminum cyanide than with the other reagent combination (HCN/AlX3).

Mechanism:
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NAGATA HYDROCYANATION

Synthetic Applications:

The total synthesis of (±)-scopadulcic acid B was completed by L.E. Overman et al. who used a double-Heck 
cyclization as the key step.10 In the endgame of the synthetic effort, the stereoselective introduction of the quaternary 
methyl group at the C10 position was required. The authors anticipated that the pentacyclic β,β-disubstituted enone 
would be a poor Michael acceptor. However, they were surprised that virtually none of the standard conjugate 
addition procedures worked, giving rise only to 1,2-adducts and large amounts of recovered starting material. 
Fortunately, the Nagata hydrocyanation protocol using diethylaluminum cyanide was able to effect the desired 
conjugate addition. Since in rigid bicyclic systems the cyano group is usually delivered from the axial position, the 
stereochemical outcome of the Nagata hydrocyanation was first assigned tentatively. Later it was confirmed that 
indeed the addition occurred from the axial position. Subsequently, the cyano group was reduced to the 
corresponding methyl group in two steps. 

Termite soldiers produce a large number of different chemical defense agents. Several of these molecules are 
unusual bioactive terpenoids such as the secotrinervitanes that have been isolated and their structure elucidated. In 
the laboratory of T. Kato, the total synthesis of (±)-3α-acetoxy-7,16-secotrinervita-7,11-dien-15β-ol was accom-
plished.11 The Nagata hydrocyanation was used to introduce a carbon at the β-position of a macrocyclic enone 
intermediate. The substrate was treated with excess diethylaluminum cyanide in dry toluene and the addition resulted 
in the formation of a 1:1 mixture of diastereomers, which could be readily separated by column chromatography. The 
cyano group was later converted to the corresponding methyl ester. 

The highly stereoselective synthesis of the tricyclic diterpene moiety of radarins was achieved by K. Fukumoto and 
co-workers, who utilized an intramolecular Diels-Alder cycloaddition to construct the B and C rings simultanaeously.12

Radarins are indole alkaloids that exhibit potent cytotoxicity against solid tumor cells. The preparation of the Diels-
Alder cycloaddition precursor commenced with the Nagata hydrocyanation of a known bicyclic enone. The ring fusion 
of the decalin system had to be trans, so the hydrocyanation was conducted under thermodynamic conditions using 
diethylaluminum cyanide. The choice of the cyano group at the ring junction was strategic for two reasons: 1) a cyano 
group can be easily converted to the corresponding methyl group, which is actually required in the natural product; 
and 2) in the cycloaddition, the small steric bulk of the cyano group avoids the substantial 1,3-diaxial interactions that 
would have occurred if a methyl group was present. The enolate formed in the hydrocyanation step was trapped as 
the silyl enol ether, and was subsequently halogenated at the α-position with NBS. The resulting α-bromo ketone was 
converted to the corresponding α-hydroxy ketone, which was subsequently cleaved in a Criegee-type oxidation.
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NAZAROV CYCLIZATION
(References are on page 635)

Importance:

 [Seminal Publications1-6; Reviews7-11; Modifications & Improvements12-28; Theoretical Studies29-31]

In 1903, D. Vorländer and co-workers found that treatment of dibenzylideneacetone with concentrated sulfuric acid 
and acetic anhydride followed by hydrolysis by sodium hydroxide yielded a cyclic ketol, the structure of which was 
unknown at the time.1 In the 1930s, the research group of C.S. Marvel examined the acid-catalyzed hydration of 
dienynes.2,3 Later, in the 1940s and 1950s, I.N. Nazarov et al. revisited the topic and extensively studied the 
cyclization of the intermediate allyl vinyl ketones to the corresponding 2-cyclopentenones.4-6 The protic- or Lewis acid 
catalyzed ring-closure of divinyl ketones (and their acid-labile precursors) via pentadienylic cations is known as the 
Nazarov cyclization. The general features of the reaction are:8,10 1) in a broader sense, any compound that affords 
the key pentadienylic cation or its equivalent is a viable substrate for the transformation; 2) allyl vinyl ketones are 
isomerized in situ to the corresponding divinyl ketones; 3) electron-donating substituents in the α and α' positions 
accelerate the cyclization, whereas rate retardation is observed when they are in the β and β'-positions; 4) fused 
cyclic systems are formed when one or both of the groups attached to the ketone are cyclic; and 5) the introduction of 
trialkylsilyl (or trialkylstannyl) groups in the β or β'-position ensures the controlled collapse of the cyclopentenylic 
cation thus undesired Wagner-Meerwein rearrangements are avoided, the final double bond is formed 
regioselectively, and the stereocenters at the ring fusion are preserved (silicon-directed Nazarov cyclization).13

Mechanism: 32-37,15,10

The mechanism of the Nazarov cyclization was not clarified until 1952, when it was realized that the cyclization 
proceeded via carbocation intermediates.32  The Nazarov cyclization is a pericyclic reaction that belongs to the class 
of 4π electrocyclizations. The first step is the coordination of the Lewis acid to the carbonyl group of the substrate and 
the formation of the pentadienylic cation, which undergoes a conrotatory ring closure to give a cyclic carbocation that 
may be captured by a nucleophile, may undergo deprotonation, or further rearrangement may take place. The 
electrocyclization step may proceed in a clockwise or counterclockwise fashion (torquoselectivity) generating two 
diastereomers when the divinyl ketone substrate is chiral. The sense of torquoselection is primarily controlled by 
steric factors such as the torsional and nonbonding interactions between the substituents in the vicinity of the newly 
forming bond. Under photochemical conditions the cyclization proceeds in a disrotatory fashion. 
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NAZAROV CYCLIZATION

Synthetic Applications:

The stereoselective synthesis of (±)-trichodiene was accomplished by K.E. Harding and co-workers.38 The synthesis 
of this natural product posed a challenge, since it contains two adjacent quaternary stereocenters. For this reason, 
they chose a stereospecific electrocyclic reaction, the Nazarov cyclization, as the key ring-forming step to control the 
stereochemistry. The cyclization precursor was prepared by the Friedel-Crafts acylation of 1,4-dimethyl-1-
cyclohexene with the appropriate acid chloride using SnCl4 as the catalyst. The Nazarov cyclization was not efficient 
under protic acid catalysis (e.g., TFA), but in the presence of excess boron trifluoride etherate high yield of the 
cyclized products was obtained. It is important to note that the mildness of the reaction conditions accounts for the 
fact that both of the products had an intact stereocenter at C2. Under harsher conditions, the formation of the C2-C3 
enone was also observed. 

In the laboratory of M. Miesch, the silicon-directed Nazarov cyclization was utilized in the synthesis of the angular 
triquinane (±)-silphinene.39 The cyclization precursor was prepared by the addition of a Grignard reagent derived from 
bromovinylsilane to the α,β-unsaturated aldehyde on the A ring, followed by MnO2 oxidation of the resulting allylic 
alcohol. The addition of large excess of boron trifluoride etherate in refluxing ethylbenzene brought about the Nazarov 
cyclization to form the C ring of the natural product. The benzyloxy group on the B ring was also eliminated during the 
cyclization step. 

The six-step synthesis of (±)-desepoxy-4,5-didehydromethylenomycin A methyl ester from diethyl methane-
phosphonate was reported by M. Mikolajczyk et al.40 The key ring-forming step was the Nazarov cyclization of an α-
phosphoryl dienone to afford the corresponding cyclopentenone in high yield. In the product, the phosphoryl and 
carboxymethyl groups were exclusively trans disposed to each other. The double bond was found to be also 
exclusively at the C2 and C3 positions. The final step of the synthetic sequence was the introduction of the exo-
methylene functionality by using the Horner-Wittig reaction.

The naturally occurring bis-indole yuehchukene is considered the dimer of 3-didehydroprenylindole and exhibits 
potent anti-implantation activity in rats. Part of an SAR study, K.-F. Cheng and co-workers synthesized inverto-
yuehchukene, which can be considered as the dimer of 2-didehydroprenylindole.41 The five-membered ring of the 
target was constructed by the Nazarov cyclization of the corresponding divinyl ketone in a refluxing dioxane solution 
containing concentrated hydrocholoric acid. 
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NEBER REARRANGEMENT
(References are on page 636)

Importance:

 [Seminal Publications1-5; Reviews6-11; Modifications & Improvements12-19]

In 1926, during the investigation of the Beckmann rearrangement, P.W. Neber and A. Friedolsheim reported that the 
successive treatment of ketoxime tosylates with potassium ethoxide, acetic acid, and hydrochloric acid yielded the 
hydrochloride salts of α-amino ketones.1 The base-induced rearrangement of O-acylated ketoximes to the 
corresponding α-amino ketones is known as the Neber rearrangement. Since its discovery, the rearrangement has 
become an important synthetic tool in the synthesis of heterocycles in which amino ketones are used as key 
intermediates. The general features of the reaction are: 1) acylated ketoximes derived from both acyclic and cyclic 
ketones can be used; 2) the required oximes are readily prepared from the ketones by reacting them with 
hydroxylamine under acidic conditions; 3) O-acylation of the oximes is conducted using acyl halides or anhydrides in 
the presence of a mild base (e.g., pyridine); 4) the rearrangement is usually carried out in an alcohol solution 
containing equimolar quantities of an alkali alkoxide; 5) when two methylene groups are available at the α- and α'-
positions, the rearrangement mainly gives rise to a product in which the amino group is located on the more 
electrophilic carbon; 6) the rearrangement is not stereospecific, since the stereochemistry of the substrate (syn or 
anti) usually does not influence the outcome of the reaction, and this is in sharp contrast with the stereospecificity of 
the Beckmann rearrangement; and 7) the product amino ketones have a tendency to dimerize, so they often need to 
be prepared in a protected form as their amino acetals or hydrochloride salts (e.g., the amino acetals are prepared 
from the 2H-azirine intermediates by treatment with acidic alcohols). There are a few limitations to the Neber 
rearrangement: 1) O-acylated aldoximes do not yield α-amino ketones upon treatment with base, but rather undergo 
E2 elimination to afford the corresponding nitriles or isonitriles; and 2) the substrate must have a methylene group in 
the α-position in the overwhelming majority of the cases. Other types of compounds having at least one α-hydrogen 
atom also undergo the Neber rearrangement upon treatment with base: 1) ketone dimethylhydrazonium halides;20 2) 
N,N-dichloro-sec-alkyl amines;21,22 3) N-chloroimines;12 and 4) N-chloroimidates.13,23

Mechanism: 24,25,22,26-28,19

The first step of the mechanism is the deprotonation of the O-acylated ketoxime at its α-position, which gives rise to 
the corresponding enolate. This enolate then can react via two possible pathways: 1) a concerted anionic pathway in 
which the leaving group is directly displaced to give the isolable 2H-azirine or 2) a nitrene pathway that leads to the 
same 2H-azirine intermediate via nitrene insertion. The nitrene pathway has not been disproved experimentally. 
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NEBER REARRANGEMENT

Synthetic Applications:

The chemoenzymatic synthesis of a β3 adrenergic receptor agonist was developed by J.Y.L. Chung and co-
workers.29 The key chiral 3-pyridylethanolamine intermediate was prepared via the Neber rearrangement of the 
ketoxime tosylate derived from 3-acetylpyridine. The oxime formation and the tosylation were carried out in a one-pot 
process using pyridine as the solvent. The solution of the ketoxime tosylate in ethanol was then cooled to 10 °C and 
potassium ethoxide was added. After the TsOK salt was removed from the reaction mixture, HCl gas was bubbled 
through the solution until the pH reached ~2 and the 3-pyridylaminomethyl ketal was isolated as its di-HCl salt. 

In the laboratory of M. Rubiralta, the general synthesis of the potential substance P antagonist 3-aminopiperidines
was accomplished.30 The (E)-oxime of 2-phenyl-2-piperidone was first tosylated and the resulting ketoxime tosylate 
was immediately subjected to KOEt/EtOH in the presence of anhydrous MgSO4. The resulting regioisomeric 
aminopiperidines were formed in a 4:1 ratio. The major regioisomer was identified as the 2,3-cis diastereomer. 
Interestingly, when the (Z)-oxime was rearranged under identical conditions, the other regioisomer was the major 
product. This finding suggested that the intermediate 2H-azirine was formed via the anti displacement of the tosyl 
group. 

The short synthesis of L- and D-vinylglycine was achieved by D.H.G. Crout and co-workers using the Neber 
rearrangement of an N-chloroimidate prepared from but-3-enenitrile.23 The synthesis started with the Pinner reaction,
which gave rise to the imino ether in quantitative yield. Oxidation of the imino ether with sodium hypochlorite afforded 
the N-chloroimidate, which was then exposed to aqueous NaOH to induce the Neber rearrangement. The racemic 
vinylglycine was isolated in 53% yield using a cation exchange resin. The resolution of this racemic product was 
carried out by a papain-catalyzed enantioselective esterification in a two-phase system. 

The synthesis of optically active 3-amino-2H-azirines was carried out using a modified Neber rearrangement in the 
laboratory of I.P. Piskunova.16 The optically active amidoximes were acylated using mesyl chloride to give O-mesyl 
derivatives that upon treatment with sodium methoxide afforded the desired product with high diastereoselectivity. 
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 NEF REACTION
(References are on page 636)

Importance:

 [Seminal Publications1,2; Reviews3-9; Modifications & Improvements10-30]

In 1893, M. Konovalov observed that the treatment of the potassium salt of 1-phenylnitroethane with dilute acid 
(AcOH, H2SO4) led to the formation of 1-phenylnitroethane and acetophenone.1 In 1894, J.U. Nef systematically 
studied the acidic hydrolysis of several nitroparaffin sodium salts, while he was completely unaware of Konovalov's 
experiments, and showed that the major product of all these reactions were the corresponding carbonyl compounds.2
Since Nef demonstrated the generality of this transformation, which he discovered independently, the conversion of 
nitroalkanes into the corresponding carbonyl compounds is known as the Nef reaction. The general features of the 
reaction are: 1) the product distribution is strongly influenced by the acid concentration, and for best results the pH 
need to be smaller than unity; 2) when the pH>1, a number of by-products such as oximes and hydroxynitroso 
compounds can be formed; and 3) original reaction conditions required the addition of the nitronate salt to the 
solution of the acid to avoid the formation of undesired products. To make the reaction more chemoselective and 
tolerant toward many functional groups, several modifications have been developed during the past three decades: 1) 
oxidative methods allow the conversion of primary nitroalkanes into aldehydes or carboxylic acids, while secondary 
nitroalkanes are converted to ketones;11,13,21,23,24,27 2) reductive methods are available for the direct preparation of 
nitroalkanes to aldehydes, ketones, or oximes;10,12,17,26 3) carbonyl compounds and oximes can also be prepared 
from nitroolefins (nitroalkenes) using various reducing agents.14,15,18,25

Mechanism: 31-39,4,5,40,41

The mechanism of the Nef reaction has been extensively studied. Under the original reaction conditions, the nitronate 
salt is first protonated to give the nitronic acid, which after further protonation is attacked by a molecule of water. The 
process is strongly dependent on the pH of the reaction medium. Weakly acidic conditions favor the regeneration of 
the nitro compound and by-product formation (oximes and hydroxynitroso compounds), whereas strongly acidic 
medium (pH 1) promotes the formation of the carbonyl compound. The most popular reductive method (TiCl3)
proceeds via a nitroso compound that tautomerizes to form an oxime and finally upon work-up the desired product is 
obtained. 
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NEF REACTION

Synthetic Applications:

The synthesis of the bisbenzannelated spiroketal core of the γ-rubromycins was achieved by the research team of 
C.B. de Koning.42 The key step was the Nef reaction of a nitroolefin, which was prepared by the Henry reaction
between an aromatic aldehyde and a nitroalkane. The nitroolefin was a mixture of two stereoisomers, and it was 
subjected to catalytic hydrogenation in the presence of hydrochloric acid. The hydrogenation accomplished two 
different tasks: it first converted the nitroalkene to the corresponding oxime and removed the benzyl protecting 
groups. The oxime intermediate was hydrolyzed to a ketone that underwent spontaneous spirocyclization to afford 
the desired spiroketal product. 

The total synthesis of spirotryprostatin B was accomplished by K. Fuji et al using an asymmetric nitroolefination to 
establish the quaternary stereocenter.43 The conversion of the nitroolefin to the corresponding aldehyde was carried 
out under reductive conditions using excess titanium(III) chloride in aqueous solution. The initially formed aldehyde 
oxime was hydrolyzed in situ by the excess ammonium acetate.  

In the laboratory of B.M. Trost, the second generation asymmetric synthesis of the potent glycosidase inhibitor (–)-
cyclophellitol was completed using a Tsuji-Trost allylation as the key step.44 The synthetic plan called for the 
conversion of the α-nitrosulfone allylation product to the corresponding carboxylic acid or ester. Numerous oxidative 
Nef reaction conditions were tested, but most of them caused extensive decomposition of the starting material or no 
reaction at all. Luckily, the nitrosulfone could be efficiently oxidized with dimethyldioxirane under basic conditions 
(TMG) to afford the desired carboxylic acid in high yield. 

In order to treat influenza infections, the development of neuraminidase inhibitors is required. The currently available 
compounds are not potent enough, and they have a number of side effects. The stereoselective total synthesis of one 
potent inhibitor, BXC-1812 (RWJ-270201), was achieved by M.J. Müller and co-workers.45 The key intermediate 
substituted nitromethane was prepared via a Pd-catalyzed allylation of nitromethane under basic conditions. The 
transformation of this nitroalkane to the corresponding carboxylic acid methyl ester was carried out in two steps. The 
Nef reaction was conducted in DMF instead of the usual DMSO because DMSO as the solvent caused extensive 
epimerization of the product. The initially formed carboxylic acid was then esterified. 
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NEGISHI CROSS-COUPLING
(References are on page 637)

Importance:

[Seminal Publications1-6; Reviews7-24; Modifications & Improvements25-32]

In 1972, after the discovery of Ni-catalyzed coupling of alkenyl and aryl halides with Grignard reagents (Kumada
cross-coupling), it became apparent that in order to improve the functional group tolerance of the process, the 
organometallic coupling partners should contain less electropositive metals than lithium and magnesium. In 1976, E. 
Negishi and co-workers reported the first stereospecific Ni-catalyzed alkenyl-alkenyl and alkenyl-aryl cross-coupling 
of alkenylalanes (organoaluminums) with alkenyl- or aryl halides.1,2 Extensive research by Negishi showed that the 
best results (reaction rate, yield, and stereoselectivity) are obtained when organozincs are coupled in the presence of 
Pd(0)-catalysts.3,4,7 The Pd- or Ni-catalyzed stereoselective cross-coupling of organozincs and aryl-, alkenyl-, or 
alkynyl halides is known as the Negishi cross-coupling. The general features of the reaction are: 1) both Ni- and Pd-
phosphine complexes work well as catalysts. However, the Pd-catalysts tend to give somewhat higher yields and 
better stereoselectivity, and their functional group tolerance is better; 2) the active catalysts are relatively unstable 
Ni(0)- and Pd(0)-complexes but these can be generated in situ from more stable Ni(II)- and Pd(II)-complexes with a 
reducing agent (e.g., 2 equivalents of DIBAL-H or n-BuLi); 3) in the absence of the transition metal catalyst, the 
organozinc reagents do not react with the alkenyl halides to any appreciable extent; 4) the most widely used ligand is 
PPh3, but other achiral and chiral phosphine ligands have been successfully used;  5) the various organozinc 
reagents can be prepared by either direct reaction of the organic halide with zinc metal or activated zinc metal or by 
transmetallation of the corresponding organolithium or Grignard reagent with a zinc halide (ZnX2);33,34 6) the use of 
organozinc reagents allows for a much greater functional group tolerance in both coupling partners than in the 
Kumada cross-coupling where organolithiums and Grignard reagents are utilized as coupling partners; 7) other 
advantages of the use of organozincs include: high reactivity, high regio-, and stereoselectivity, wide scope and 
applicability, few side reactions and almost no toxicity; 8) the reaction is mostly used for the coupling of two C(sp2)
carbons but C(sp2)-C(sp) as well as C(sp2)-C(sp3) couplings are well-known; 9) besides organozincs, compounds of 
Al and Zr can also be utilized; 10) if the organoaluminum and organozirconium derivatives are not sufficiently 
reactive, they can be transmetallated by the addition of zinc salts, and this protocol is referred to as the double metal 
catalysis;35 and 11) of all the various organometals (Al, Zr, B, Sn, Cu, Zn), organozincs are usually the most reactive 
in Pd-catalyzed cross-coupling reactions and do not require the use of additives (e.g., bases as in Suzuki cross-
couplings) to boost the reactivity;20 Some of the limitations of the Negishi cross-coupling are: 1) propargylzincs do not 
couple well but homopropargylzincs do; 2) secondary and tertiary alkylzincs may undergo isomerization, but cross-
couplings of primary alkyl- and benzylzincs give satisfactory results; and 3) due to the high reactivity or organozincs, 
CO insertion usually does not happen unlike in the case of less reactive organotins (see carbonylative Stille cross-
coupling).

Mechanism: 10
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NEGISHI CROSS-COUPLING 

Synthetic Applications:

The Negishi cross-coupling was utilized during the final stages of the total synthesis of caerulomycin C for the 
preparation of the bipyridyl system by T. Sammakia et al.36 The highly substituted 6-bromopyridine was coupled, in 
the presence of Pd2(dba)3/PPh3 catalyst system, with 2-lithiopyridine, which was transmetallated by ZnCl2 in situ to 
the corresponding organozinc reagent. Interestingly, the analogous Stille cross-coupling using 2-tributylstannyl 
pyridine was far less efficient and gave a low yield of the desired product. 

The modified Negishi protocol was used in J.S. Panek’s total synthesis of (–)-motuporin to couple the left-hand 
subunit organozinc compound with the right-hand subunit (E)-vinyl iodide.37 The left-hand subunit was prepared by 
the Schwartz hydrozirconation of a disubstituted alkyne to give an (E)-trisubstituted zirconate, which was 
subsequently transmetalated with anhydrous ZnCl2. The resulting vinylzinc species was immediately treated with one 
equivalent of the (E)-vinyl iodide in the presence of 5 mol% Pd(PPh3)4 to afford the (E,E)-diene coupled product with 
complete stereoselectivity. 

The convergent and stereocontrolled synthesis of (+)-amphidinolide J was achieved in the laboratory of D.R. 
Williams.38 To install the (E)- C7-C8 double bond stereoselectively, a homoallylic alkylzinc reagent was coupled with 
an (E)-vinyl iodide using the Negishi reaction. The very stable homoallylic alkylzinc species was prepared in one pot 
from the corresponding homoallylic iodide by treatment with two equivalents of t-BuLi followed by transmetallation 
with ZnCl2. The addition of the (E)-vinyl iodide in the presence of catalytic amounts Pd(PPh3)4 gave the coupled 1,5-
diene product in high yield.  
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NENITZESCU INDOLE SYNTHESIS
(References are on page 638)

Importance:

 [Seminal Publications1; Reviews2-6; Modifications & Improvements7-20]

In 1929, C.D. Nenitzescu described the reaction of p-benzoquinone with 3-aminocrotonate in acetone at reflux 
temperature from which he isolated a 2-methyl-5-hydroxyindole derivative.1 For the next two decades, the reaction 
was not explored further, but during the 1950s the scope and limitation of the transformation was thoroughly 
investigated and applied to the synthesis of melanin-related compounds. The condensation of a 1,4-benzoquinone 
with enamines to afford substituted 5-hydroxyindole derivatives is known as the Nenitzescu indole synthesis. The 
general features of the reaction are:3 1) the benzoquinone component can be unsubstituted, mono-, di-, or 
trisubstituted; 2) the degree of substitution does not have a significant effect on the rate of the reaction; 3) the 
structure of the enamine component may be varied widely: β-aminocrotonates (R3=Me and R4=O-alkyl), β-
aminoacrylates, β-aminoacrylamides (R4=NH2 or NR2), and even β-amino-α,β-unsaturated ketones can be used; 4) 
when R4=O-alkyl, the resulting 3-alkoxycarbonyl indoles can be easily decarboxylated; 5) in most instances the R3

substituent should be other than hydrogen; 6) yields can be very high, but occasionally low yields are observed 
(varies from substrate to substrate); 7) the reaction is regioselective, and the regioselectivity is strongly influenced by 
the nature of the substituents on the quinone component; 8) an electron-donating group (e.g., R1=OH, O-alkyl) at the 
C2 position deactivates the C3 position and directs the attack of the nucleophile to C5; 9) an electron-withdrawing 
group (e.g., R1=CO2-alkyl, CF3) at C2 directs the attack of the nucleophile preferentially to the C3 position; 10) a small 
substituent at C2, which is moderately electron-donating (e.g., R1=Me, Cl) results in possible nucleophilic attack at 
either C5 or C6 and the formation of a mixture of regioisomeric indoles is expected; 11) when the C2 substituent is 
sterically demanding (e.g., R1=t-Bu), the nucleophile is expected to attack at C5 preferentially; 12) besides 5-
hydroxyindoles, other heterocycles such as benzofurans can be prepared using the Nenitzescu reaction between 
N,N-dialkylaminocrotonates  and benzoquinones;17 and 13) instead of the p-benzoquinone, the corresponding 
quinone imides and quinone diimides can also be used.7,9

Mechanism: 21-27

The mechanism of the Nenitzescu indole synthesis is not fully understood. The most likely first step is a Michael
addition of the enamine to the p-quinone. In the resulting Michael adduct, the imine nitrogen attacks the proximal 
carbonyl group of the quinone and the bicyclic hemiaminal and then undergoes dehydration to give the 5-
hydroxyindole product. In an alternative mechanism, an oxidation-reduction mechanism is proposed: the Michael 
adduct tautomerizes to the corresponding hydroquinone, which is oxidized by the starting p-quinone to another p-
quinone, which undergoes intramolecular cyclization to qive a quinonimmonium intermediate. This intermediate in 
turn is a viable oxidant of the hydroquinone and itself gets reduced to give the 5-hydroxyindole product.27
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NENITZESCU INDOLE SYNTHESIS

Synthetic Applications:

A facile synthesis of the key intermediate of EO 9, a novel and fully synthetic bioreductive alkylating indolequinone, 
was accomplished by M. Kasai et al.28 The authors' goal was to develop a short and efficient synthesis in order to 
prepare large quantities of the target. The highly functionalized indole nucleus was constructed in one step using the 
Nenitzescu indole synthesis. The benzoquinone and the enamine were dissolved in the solvent mixture and heated to 
afford the desired methyl-5-hydroxy-2-methoxymethylindole-3-carboxylate in moderate yield. In the work-up step, the 
excess benzoquinone was destroyed with sodium dithionate (Na2S2O4) and the product was crystallized thus 
obviating the need for chromatographic separation. 

The synthesis of the first potent and selective secretory phospholipase A2 (s-PLA2) inhibitor, LY311727, was carried 
out in the laboratory of M.J. Martinelli.29 The indole core of the target was prepared by the Nenitzescu indole 
synthesis, which proceeded in high yield. The enamine component was readily prepared from methyl 
propionylacetate (3-oxo-pentanoic acid methyl ester) and benzylamine in the presence of catalytic amounts of TsOH. 
A thorough screening of various solvents pinpointed nitromethane as the optimal solvent for the transformation, since 
the product crystallized from the reaction mixture and was easily removed by filtration. 

The Nenitzescu indole synthesis can be formally regarded as a one-pot three-component condensation where all the 
components are readily available: -keto esters, primary amines, and p-benzoquinones. This observation prompted 
the research team of D.M. Ketcha to develop the solid-phase version of the Nenitzescu indole synthesis for the 
preparation of 5-hydroxyindole-3-carboxamides.30 The process began with the acetoacetylation of ArgoPore -Rink-
NH2 resin with diketene to obtain a polymer-bound acetoacetamide, which was then converted to the corresponding 
enamine upon condensation with primary amines and in the presence of trimethyl orthoformate (dehydrating agent). 
The indole formation generally took place in nitromethane much more efficiently than in acetone, and it was 
completely regioselective, giving rise exclusively to the C6 regioisomer. 

An interesting variant of the Nenitzescu indole synthesis, involving the Lewis acid-directed coupling of enol ethers 
with benzoquinone mono- and bis-imides, was developed by T.A. Engler et al. for the synthesis of substituted - and 
-tetrahydrocarbolines.31
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NICHOLAS REACTION
(References are on page 639)

Importance:

 [Seminal Publications1-4; Reviews5-14; Modifications & Improvements15-19; Theoretical Studies20,21]

In 1972, K.M. Nicholas and R. Pettit reported that dicobalt hexacarbonyl-complexed propargylic alcohols were easily 
dehydrated upon treatment with acid to form the corresponding 1,3-enynes. However, uncomplexed propargylic 
alcohols did not react under identical conditions.2 This finding suggested that the intermediates of these reactions 
were the dicobalt hexacarbonyl-stabilized propargylic cations, which in fact could be isolated and were shown to have 
significant stability.3 The trapping of dicobalt hexacarbonyl-stabilized propargylic cations with various nucleophiles is 
known as the Nicholas reaction. The alkyne functionality of the resulting substituted products can be regenerated by 
a mild oxidation. The general features of the Nicholas reaction are: 1) propargylic alcohols are easily prepared by the 
addition of acetylides to ketones and aldehydes and readily converted to various derivatives; 2) the alkyne complexes 
are obtained in almost quantitative yields by reacting the propargyl derivatives with Co2(CO)8 in an appropriate 
solvent (ether, pentane, hexane, benzene, etc.);1 3) the cobalt-alkyne complexes are red, brown, or purple solids or 
oils that are moderately air stable and can be purified with flash chromatography; 4) the stabilized propargylic cations 
are either generated by the addition of Brönsted or Lewis acids to propargylic derivatives or by the addition of 
electrophiles to 1,3-enyne-cobalt hexacarbonyl complexes; 5) a wide range of nucleophiles reacts with the resulting 
propargylic cations including C-, O-, N-, and S-nucleophiles (see scheme); 6) after the substitution the cobalt 
complexes can be decomplexed either oxidatively (most common) or reductively; 7) oxidative decomplexation
regenerates the triple bond, while reductive decomplexation (e.g., Li/liquid ammonia, H2/Rh-catalyst, or Wilkinson 
catalyst) yields the corresponding alkene; 8) when the cobalt complex is not removed, it can be used in a subsequent 
Pauson-Khand reaction; 9) the reaction can be both inter- and intramolecular, and even macrocyclization can be 
achieved; and 10) there are no allene side products that often complicates the reactions of uncomplexed propargylic 
substrates.

Mechanism: 2,22,20,23

Nicholas & Pettit (1972):
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NICHOLAS REACTION

Synthetic Applications:

The Nicholas reaction was used to synthesize the β-lactam precursor of thienamycin in the laboratory of P.A. Jacobi 
and thereby accomplish its formal total synthesis.24 The necessary β-amino acid was prepared by the condensation 
of a boron enolate (derived from an acylated oxazolidinone) with the cobalt complex of an enantiopure propargylic 
ether. The resulting adduct was oxidized with ceric ammonium nitrate (CAN) to remove the cobalt protecting group 
from the triple bond, and the product was obtained with a 17:1 anti:syn selectivity and in good yield.  

The total syntheses of (+)-secosyrins 1 and 2 was achieved and their relative and absolute stereochemistry was 
unambiguously established by C. Mukai and co-workers.25 To construct the spiro skeleton of these natural products, 
the intramolecular Nicholas reaction was utilized. The alkyne substrate was first converted to the dicobalt 
hexacarbonyl complex by treatment with Co2(CO)8 in ether. Exposure of the resulting complex to boron trifluoride 
etherate at room temperature brought about the ring closure with inversion of configuration at C5 to afford the 
expected tetrahydrofuran derivative. The minor product was the C5 epimer which was formed only in 15% yield. 

The tandem use of the intramolecular Nicholas reaction and the Pauson-Khand reaction was featured in S.L. 
Schreiber's total synthesis of (+)-epoxydictymene.26 The propargylic acetal, a 1:1 mixture of diastereomers at the 
acetal carbon, was readily converted to the Co2(CO)6-complex in excellent yield. The treatment of this complex with a 
stoichiometric amount of Et2AlCl afforded the 5-8 fused bicyclic ring system of the natural product as a single 
diastereomer in 91% yield. The allylsilane served as the nucleophile to capture the stabilized propargylic cation. The 
alkyne protecting group was not removed as later this cobalt-alkyne complex was utilized in the Pauson-Khand 
reaction.

The application of the intramolecular Nicholas reaction by C. Mukai et al. made it possible to develop a novel 
procedure for the construction of oxocane derivatives.27 Interestingly, several Lewis and Brönsted acids gave rise to 
complex mixtures. However, the use of mesyl chloride/triethylamine in refluxing DCM afforded the desired oxocane 
as the sole product. 
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NOYORI ASYMMETRIC HYDROGENATION
(References are on page 640)

Importance:

 [Seminal Publications1-4; Reviews5-32; Modifications & Improvements33-37; Theoretical Studies38,39]

In 1980, T.S.R. Noyori and co-workers reported that cationic BINAP-Rh complexes catalyzed the asymmetric 
hydrogenation of α-(acylamino) acrylic acids or esters to give the corresponding amino acid derivatives in high 
enantiomeric excess.1 However, these rhodium catalysts could be used only for the synthesis of amino acids, the rate 
of hydrogenation was very slow, and the reaction conditions had to be chosen very carefully for each substrate to 
achieve high enantioselectivity. A few years later, the preparation of BINAP-Ru(II) dicarboxylate complexes proved to 
be generally applicable for the asymmetric hydrogenation of a wide range of functionalized olefins.2 Oligomeric 
halogen-containing BINAP-Ru(II) complexes were found to be efficient catalysts for the asymmetric hydrogenation of 
functionalized ketones in which coordinative nitrogen, oxygen, and halogen atoms near the C=O functionality direct 
the reactivity and the absolute stereochemistry of the product.3,4 The reduction of functionalized olefins and ketones 
with hydrogen gas (H2) using BINAP-Ru(II) complexes as catalyst is known as the Noyori asymmetric hydrogenation.
The general features of the reaction are: 1) BINAP, a conformationally flexible atropisomeric C2-symmetric 
diphosphane ligand is available in both enantiomeric forms;40,41 2) the various BINAP-Ru(II) complexes are easily 
prepared and the catalyst loadings are small; 3) hydrogenation of α,β-unsaturated and β,γ-unsaturated carboxylic 
acids takes place in alcohol solvents, where the sign and degree of enantioselection are highly dependent on the 
substitution pattern and hydrogen pressure;42 4) allylic and homoallylic alcohols are hydrogenated with high 
enantioselectivity;43 5) substituted enamides give rise to enantio-enriched α- or β-amino acids;44,45 6) the sense of 
chirality is predictable in the hydrogenation of functionalized ketones and preexisting stereogenic centers in the 
substrate significantly influence the outcome;3 7) the double hydrogenation of 1,3-diones via chiral β-hydroxy ketones 
give rise to anti 1,3-diols in almost 100% ee;3 8) β-keto esters are the best substrates for asymmetric 
hydrogenation;46 and 9) racemic β-keto esters with a configurationally labile α-stereocenter can be transformed into a 
single stereoisomer with high selectivity by undergoing an in situ inversion of configuration in the presence of a base 
(dynamic kinetic resolution).47,48

Mechanism: 1,49-64
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NOYORI ASYMMETRIC HYDROGENATION

Synthetic Applications:

The total synthesis of pentacyclic alkaloid (–)-haliclonadiamine was accomplished by D.F. Taber and co-workers.65

The Noyori asymmetric hydrogenation was used to prepare a bicyclic β-hydroxy ester intermediate in enantiopure 
form from a racemic bicyclic β-keto ester via kinetic resolution. It was found that the hydrogenation only took place in 
the presence of added HCl and by optimizing the amount of HCl added, the proportion of the total reduced ketone 
could be controlled. About 87% of the "matched" ketone was reduced, while the other β-keto ester enantiomer was 
not significantly converted to the reduced product. Interestingly, the diastereoselectivity of the hydrogenation 
depended on the nature of the added acid: with HCl, the trans diastereomer was the major product, while with AcOH 
the cis diastereomer was dominant. 

The convergent and stereocontrolled synthesis of the C17-C28 fragment (CD spiroketal unit) of spongistatin 1 was 
achieved in the laboratory of W.R. Roush.66 One of the building blocks was prepared by using the Noyori asymmetric 
hydrogenation of a readily available β-keto ester, which gave rise to the corresponding β-hydroxy ester in 81% yield 
and 95% ee.

A pronounced enhancement of stereoselectivity was observed in the asymmetric hydrogenation of 2-substituted 2-
propen-1-ols by transient acylation in the laboratory of O. Mitsunobu.67 The aroylation of the allylic alcohol hydroxyl 
group prior to the hydrogenation gave the best results. 

The Noyori asymmetric transfer hydrogenation was utilized in the synthesis of the chiral 1,2,3,4-
tetrahydroisoquinolines by R.A. Sheldon et al.68 These compounds are important intermediates in the Rice and 
Beyerman routes to morphine. The "Rice imine" was exposed to a series of chiral Ru(II) complexes, which was 
prepared from η6-arene-Ru(II) chloride dimeric complexes and N-sulfonated 1,2-diphenylethylenediamines along with 
the azeotropic mixture of HCOOH/NEt3. With the best catalyst the desired tetrahydroisoquinoline was isolated in 73% 
yield and the enantiomeric excess was 99%. 
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NOZAKI-HIYAMA-KISHI REACTION 
(References are on page 641)

Importance:

[Seminal Publications1-7; Reviews8-16; Modifications & Improvements17-30]

In 1977, H. Nozaki and T. Hiyama et al. reacted aldehydes and ketones with organochromium(III) reagents, which 
were generated in situ from allyl and vinyl halides upon treatment with CrCl2 under aprotic and oxygen-free 
conditions, and obtained the corresponding allylic and homoallylic alcohols with high chemospecificity and 
stereoselectivity.1,2 In 1986, Y. Kishi and H. Nozaki independently discovered that traces of nickel salts catalyzed the 
formation of carbon-chromium(III) bonds, even from otherwise less reactive substrates (e.g., vinyl and aryl halides). 
This modification helped to make the process more reliable.6,7 The one-pot Barbier-type addition of alkenyl, alkynyl, 
aryl, allyl, or vinylchromium compounds to aldehydes or ketones is known as the Nozaki-Hiyama-Kishi (NHK) 
reaction. Since its discovery, the NHK reaction has become a powerful synthetic tool for the chemoselective 
formation of carbon-carbon bonds under very mild conditions and has been applied to the total synthesis of a number 
of complex natural products. The general features of the reaction are: 1) the CrCl2 is either purchased commercially 
or prepared by the reduction of CrCl3 prior to the reaction; 2) Cr(II) is a one-electron donor, and therefore two moles of 
the chromium(II) salt are required to reduce one mol of organic halide to the corresponding organochromium(III) 
reagent; 3) it can take place both inter- and intramolecularly, and the thermodynamic driving force is the formation of 
a strong O-Cr(III) bond; 4) aldehydes react markedly faster than ketones, so when both functional groups are present, 
the reaction of the organochromium species with aldehydes proceeds with complete chemoselectivity; 5) because of 
their low basicity, organochromium reagents are compatible with a wide range of sensitive functional groups; 6) it is 
possible to maintain the integrity of the various electrophilic functional groups within polyfunctional organochromium 
reagents; and 7) the addition of crotylchromium(III) reagents to aldehydes is highly diastereoselective and 
stereoconvergent: in all cases, the anti homoallylic alcohol is favored, independent of the configuration of the starting 
crotyl halide. The drawbacks of the NHK reaction are: 1) the nickel and chromium salts are very toxic; 2) the redox 
potential of Cr(II) shows a significant dependence on the solvents used as the reaction medium and solvent mixtures 
need to be used for optimum results; 3) usually a large excess of CrCl2 is required, especially in macrocyclization 
reactions; and 4) the Lewis acidic salts formed during the preparation of CrCl2 may alter the stereochemical outcome 
of the reaction for polyfunctional substrates where chelation control determines the stereochemical course.  

Mechanism: 6,18,19,9,10,13

In the nickel(II)-catalyzed NHK reaction, the first step is the reduction of Ni(II) to Ni(0) that inserts into the halogen-
carbon bond via an oxidative addition. The organonickel species transmetallates with Cr(III) to form the 
organochromium(III) nucleophile, which then reacts with the carbonyl compound. To make the process 
environmentally benign, a chromium-catalyzed version was developed where a chlorosilane was used as an additive 
to silylate the chromium alkoxide species in order to release the metal salt from the product.18,19 The released Cr(III) is 
reduced to Cr(II) with manganese powder.  
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NOZAKI-HIYAMA-KISHI REACTION 

Synthetic Applications:

In the laboratory of G.A. Molander, a general route for the synthesis of eunicellin diterpenes was developed and was 
applied for the asymmetric total synthesis of deacetoxyalcyonin acetate.31 One of the key steps was an inramolecular 
NHK coupling reaction between an enol triflate and an aldehyde. The cyclopentenol product was formed in high yield 
as a 2:1 mixture of diastereomers. The undesired diastereomer could be transformed to the desired one using a 
Mitsunobu reaction.

The C1-C19 fragment of (-)-mycalolide was assembled by J.S. Panek et al. via the NHK coupling between the C1-C6 
vinyl iodide and C7-C19 aldehyde subunits.32 The desired allylic alcohol was obtained as a 1:1 mixture of 
stereoisomers and was oxidized to the corresponding ketone using Dess-Martin periodinane. The synthesis of the 
C1-C19 fragment was completed in three more steps. 

One of the key steps during the first total synthesis of (–)-aspinolide B by A. de Meijere and co-workers was the NHK 
reaction to form the ten membered lactone ring.33 The precursor for this key macrocyclization step was prepared by 
forming an ester from a three-carbon monoprotected diol fragment and a seven-carbon vinyl iodide fragment. 
Deprotection of the primary alcohol and its subsequent oxidation afforded the desired vinyl iodide aldehyde precursor. 
Exposure of this precursor to 15 equivalents of CrCl2 doped with 0.5% of NiCl2 at high dilution in DMF afforded the 
desired diastereomer in a 1.5:1 ratio. 

A novel approach to the elaboration of the C12-C13 trisubstituted olefin portion of epothilone D was developed by 
R.E. Taylor et al.34 The authors used sequential NHK coupling and a thionyl chloride induced allylic rearrangement
followed by the reductive removal of the chiral auxiliary. 
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OPPENAUER OXIDATION
(References are on page 642)

Importance:

 [Seminal Publications1; Reviews2-7; Modifications & Improvements8-17; Theoretical Studies18,17]

In 1937, R.V. Oppenauer oxidized steroids with secondary alcohol functionality to the corresponding ketones using 
acetone in benzene in the presence of catalytic amounts of aluminum tert-butoxide.1 This oxidation proved to be high 
yielding and superior to other existing oxidation methods due to its mildness. Oppenauer's method came more than a 
decade after three researchers independently described reduction of carbonyl compounds with the use of aluminum 
alkoxides: 1) in 1925, H. Meerwein successfully reduced aldehydes with ethanol in the presence of aluminum 
ethoxide;19 2) during the same year A. Verley reduced ketones with aluminum ethoxide as well as aluminum 
isopropoxide but found that sterically hindered ketones (e.g., camphor) reacted very slowly;20 and 3) in 1926, W. 
Ponndorf demonstrated that the reduction of aldehydes and ketones was general for a variety of metal alkoxides 
(e.g., alkali metal and aluminum alkoxides) derived from secondary alcohols, and he found the process completely 
reversible.21 The oxidation of primary and secondary alcohols with ketones in the presence of metal alkoxides (e.g., 
aluminum isopropoxide) to the corresponding aldehydes and ketones is known as the Oppenauer oxidation.22 The 
reverse reaction, the reduction of aldehydes and ketones to alcohols, is referred to as the Meerwein-Ponndorf-Verley 
reduction. The general features of the Oppenauer oxidation are: 1) the reaction is completely reversible and can be 
driven to completion according to Le Chatelier's principle by adding large excess of the ketone (e.g., acetone) to the 
reaction mixture; 2) the reaction conditions are mild, since the substrates are usually heated in acetone/benzene 
mixtures; 3) most functional groups are tolerated (alkenes, alkynes, esters, amides, etc.), but if the substrate contains 
basic nitrogen atoms, the use of alkali metal alkoxides is necessary in place of aluminum alkoxides;23 4) in order to 
achieve reasonable reaction rates, stoichiometric amounts of the aluminum alkoxide needs to be used; 5) most 
commonly aluminum isopropoxide, t-butoxide, and phenoxide are used; 6) a wide range of primary and secondary 
alcohols are oxidized under the reaction conditions; 6) secondary alcohols are oxidized much faster than primary 
alcohols, so complete chemoselectivity can be achieved (this feature makes the Oppenauer oxidation unique 
compared to other oxidations); 7) overoxidation of aldehydes to carboxylic acids never happens; 8) the oxidation of 
1,4- and 1,5-diols usually yields lactones; 9) acetone is used most often as the oxidant, but aromatic and aliphatic 
aldehydes are suitable as oxidants due to their low reduction potentials; 10) addition of protic acids dramatically 
increases the rate of oxidation;9 and 11) the oxidation can be conducted using heterogeneous catalysts (e.g., 
alumina, zeolites), which has one great advantage over the traditional homogeneous variant: the catalyst can be 
easily separated from the reaction mixture.12,5  The most important side reactions are: 1) aldol condensation of 
aldehyde products, which have an α-hydrogen atom to form β-hydroxy aldehydes and/or α,β-unsaturated aldehydes, 
but with ketones this side reaction is not common; 2) Tishchenko reaction of aldehyde products with no α-hydrogen 
atom, but this can be suppressed by the use of anhydrous solvents; and 3) the migration of the double bond during 
the oxidation of allylic and homoallylic alcohol substrates.4

Mechanism: 24-29

Both the oxidant carbonyl compound (acetone) and the substrate alcohol are bound to the metal ion (aluminum). The 
alcohol is bound as the alkoxide, whereas the acetone is coordinated to the aluminum which activates it for the 
hydride transfer from the alkoxide. The hydride transfer occurs via a six-membered chairlike transition state. The 
alkoxide product may leave the coordination sphere of the aluminum via alcoholysis, but if the product alkoxide has a 
strong affinity to the metal, it results in a slow ligand exchange, so a catalytic process is not possible. That is why 
often stoichiometric amounts of aluminum alkoxide is used in these oxidations.  

R1 = alkyl, aryl, alkenyl; R2 = H, alkyl, aryl, alkenyl
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OPPENAUER OXIDATION

Synthetic Applications:

The modified Oppenauer oxidation was used in the synthesis of estrone by P. Ko ovský et al.30 The tetracyclic diol 
was exposed to aluminum isopropoxide and N-methyl-piperidine-4-one (oxidizing agent)8 to obtain the corresponding 
enone in good yield. The formation of the enone involved the migration of the initial β,γ-double bond. The treatment of 
this enone with TsOH overnight in ether led to the formation of estrone by aromatization. 

An intramolecular Diels-Alder reaction was the key step in D.D. Sternbach's total synthesis of the linearly fused 
triquinane (±)-hirsutene.31 The cycloaddition took place between a cyclopentadiene ring and an α,β-unsaturated 
ketone that was generated in situ by using the Oppenauer oxidation.

The total synthesis of several lycopodium alkaloids was accomplished by C.H. Heathcock and co-workers.32 At the 
final stages of the synthesis of (±)-lycodoline, a modified Oppenauer oxidation was planned to carry out the 
transformation of a primary alcohol to the corresponding aldehyde. However, when the substrate was treated with 
potassium t-butoxide  and benzophenone in refluxing benzene, the only product was an N-dealkylated tricyclic amino 
ketone (via retro Michael reaction). This problem was resolved by substituting the KOt-Bu with potassium hydride 
which efficiently removed the protons from both the primary and tertiary alcohols, thereby preventing the retro 
Michael reaction. The oxidation product aldehyde quickly underwent a facile aldol condensation to form the tricyclic 
enone. 

The tricyclic ring system containing the fully functionalized CD ring of taxol was prepared from (S)-(+)-carvone by 
T.K.M. Shing et al.33 The bicyclic α-hydroxy ketone (4-hydroxy-5-one) was isomerized by an intramolecular redox 
reaction in the presence of catalytic amounts of aluminum isopropoxide. This example was a special case where both 
reactants were in the same molecule: the ketone was the oxidant for the Oppenauer oxidation, whereas the 
secondary alcohol was the hydride donor for the MVP reduction. The conversion to the thermodynamically more 
stable 5-hydroxy-4-one proceeded in good yield. 
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OVERMAN REARRANGEMENT
(References are on page 643)

Importance:

 [Seminal Publications1-3; Reviews4-8; Modifications & Improvements9-20; Theoretical Studies21]

In 1937, O. Mumm and F. Möller, while investigating the mechanism of the Claisen rearrangement, observed that the  
thermal rearrangement of N-phenyl-benzimidic acid allyl ester afforded N-allyl-N-phenyl-benzamide in quantitative 
yield.1 They also showed that the termini of the allyl group were switched as a result of the transformation. For the 
next few decades, several research groups reported similar rearrangements of allylic imidates, but the preparation of 
the substrates were low yielding, and the relatively harsh conditions did not allow these reactions to become 
synthetically useful.4 In 1974, L.E. Overman described the facile thermal and mercuric ion catalyzed rearrangement 
of allylic trichloroacetimidates to afford the corresponding trichloroacetamides.2 The 1,3-transposition of alcohol and 
amine functionalities via the [3,3]-sigmatropic rearrangement of allylic trichloroacetimidates is known as the Overman
rearrangement. The general features of the reaction are: 1) the allylic trichloroacetimidates are easily prepared in 
almost quantitative yield by reacting allylic alcohols with trichloroacetonitrile in the presence of catalytic amounts of 
base (e.g., NaOR, KOR, DBU);22,23 2) heating the crude trichloroacetimidates in a solvent (e.g., xylenes) usually 
between 25-140 °C for several hours or exposure to certain metal catalysts results in a [3,3]-sigmatropic
rearrangement;23,15,18-20 3) isolated yield of the allylic trichloroacetamides is usually high; 4) the allylic 
trichloroacetamides can be hydrolyzed under basic conditions (3M NaOH solution at room temperature) to afford the 
corresponding allylic amines; 5) the rearrangement is completely regiospecific, therefore no trichloroacetamide 
product with an unrearranged carbon skeleton is formed; 6) the rearrangement of trichloroacetimidates derived from 
secondary allylic alcohols proceeds with a high level of stereoselectivity and preferentially the (E)-alkenes are formed; 
7) the metal catalysts are usually Hg(II)-salts, which are used in 10-20 mol% quantities; 8) the mercury(II)-salts can be 
removed from the product by flash chromatography or by complexation with pyridine or PPh3; 9) the metal catalysis, 
however, usually works well only for imidates derived from 3-substituted primary allylic alcohols and in all other cases 
the thermal conditions are preferred; 10) the imidates of certain cyclohexenyl allylic alcohols may undergo a 
competitive elimination;3 11) propargylic trichloroacetimidates rearrange to give trichloroacetamido-1,3-dienes;9 and 
12) the trichloroacetamide functionality can be used as a radical precursor or transformed into acylureas or guanidine 
derivatives.24,25

Mechanism: 2,3,26,27

Similarly to the mechanism of the Claisen rearrangement, the Overman rearrangement is a suprafacial, concerted, 
nonsynchronous [3,3]-sigmatropic rearrangement. The reaction is irreversible, which is the result of the significant 
driving force associated with the formation of the amide functionality. The mechanism of the metal catalyzed reaction 
is believed to proceed via an iminomercuration-deoxymercuration sequence and it is only formally a [3,3]-sigmatropic 
shift.
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OVERMAN REARRANGEMENT

Synthetic Applications:

The total synthesis of sphingofungin E from D-glucose was described by N. Chida and co-workers.28 The 
stereocenter at C5 was constructed using the Overman rearrangement of an allylic trichloroacetimidate derived from 
diacetone-D-glucose. The (Z)-allylic alcohol was reacted with trichloroacetonitrile in the presence of DBU and the 
resulting crude trichloroacetimidate was heated in xylenes for six days to afford a 4.3:1 ratio of C5 epimers. 
Interestingly, the rearrangement of the trichloracetimidate derived from the (E)-allylic alcohol gave only moderate 
yield of the C5 epimers in a 1:4 ratio. 

The Overman rearrangement was used by S.J. Danishefsky et al. to introduce the nitrogen atom stereoselectively at 
the C4a position of (±)-pancratistatin.29 The cyclic allylic alcohol was converted to the trichloroacetimidate in the 
presence of sodium hydride. The compound was heated as a neat liquid under high vacuum, which afforded the 
desired rearranged product in reasonable yield. 

The transition metal catalyzed Overman rearrangement allows the reaction to take place at or around room 
temperature, so thermally sensitive substrates can be used. In the laboratory of M. Mehmandoust, this approach was 
applied for the synthesis of enantiomerically pure (E)-β,γ-unsaturated α-amino acids, which are potent enzyme 
inhibitors.30 The trichloroimidate substrates were derived from optically pure monoprotected diallylalcohols and were 
exposed to 10 mol% of Pd(II)-salt. The rearrangements took place rapidly at room temperature with complete transfer 
of chirality. 

The asymmetric total synthesis of the phenanthroquinolizidine alkaloid (–)-cryptopleurine was reported by S. Kim et 
al.31 One of the key steps in the sequence was the thermal Overman rearrangement which took place in refluxing 
toluene in nearly quantitative yield and without any loss of the optical purity of the allyl trichloroimidate substrate. 
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OXY-COPE REARRANGEMENT AND ANIONIC OXY-COPE REARRANGEMENT  
(References are on page 643)

Importance:

[Seminal Publications1,2; Reviews3-14; Modifcations & Improvements15,16; Theoretical Studies17,18]

The thermal [3,3]-sigmatropic rearrangement  of 1,5-dienes is known as the Cope rearrangement. When 1,5-dienes 
are substituted with a hydroxyl group at the C3 position, they undergo a similar rearrangement to first give enols that 
are subsequently converted to the corresponding δ,ε-unsaturated carbonyl compounds. The formation of the carbonyl 
compound is the driving force for the reaction.19 The [3,3]-sigmatropic rearrangement of 1,5-diene-3-ols is called the 
oxy-Cope rearrangement, a term coined by J.A. Berson in 1964.2   A decade later in 1975, a major improvement in 
the oxy-Cope rearrangement was made when it was found that conversion of the 1,5-diene alcohol to the 
corresponding potassium alkoxides resulted in 1010-1017 rate acceleration of the rearrangement.15 The base 
accelerated oxy-Cope rearrangements are called anionic-oxy-Cope rearrangements. Besides the enormous rate 
acceleration, there was a considerable drop in the temperature required to bring about the rearrangements. In this 
anionic rearrangement an enolate anion is first formed, which renders the process irreversible. Potassium bases are 
used most often along with 18-crown-6 to effect greater charge separation and the maximization of the acceleration. 
The preparation of the 1,5-diene-3-ol substrates usually involves the 1,2-addition of vinyl organometallics to β,γ-
unsaturated aldehydes or ketones or the 1,2-addition of allyl anions to α,β-unsaturated carbonyl compounds. Just as 
in the parent Cope rearrangement, the oxy-Cope and anionic-oxy-Cope rearrangements are both stereospecific and 
stereoselective as a result of a cyclic highly ordered transition state. It is worth noting that the use of the anionic-oxy-
Cope rearrangement in synthesis is advantageous over the Cope rearrangement because it does not require high 
temperature at which side reactions more frequently occur.  

Mechanism: 1,5,9,12,20

The oxy-Cope and anionic-oxy-Cope rearrangements involve highly ordered cyclic transition states, so the 
asymmetry is almost completely transferred from the substrate to the product. Most commonly in acyclic systems as 
in other [3,3]-sigmatropic rearrangements, the transition states are chairlike and the substituents adopt a 
quasiequatorial position to minimize unfavorable steric interactions. In unsubstituted substrates the diastereoselection 
is low, but the introduction of an alkyl substituent at C4 improves the diastereoselectivity. In (Z)-1-substituted alkenes 
there is preference for the oxyanionic bond to be pseudo-equatorial, whereas in (E)-1-substituted alkenes it tends to 
be pseudo-axial.21 Due to conformational constraints in some cyclic substrates, a boatlike transition state may be 
preferred.  
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OXY-COPE REARRANGEMENT AND ANIONIC OXY-COPE REARRANGEMENT  

Synthetic Applications:

The enantioselective construction of a key tricyclic intermediate of spinosyn A utilizing a highly stereocontrolled 
anionic oxy-Cope rearrangement was accomplished in the laboratory of L.A. Paquette.22  The precursor tertiary 
alcohol was treated with potassium hydride in THF and the oxy-Cope rearrangement was complete within 3 hours at 
room temperature. Interestingly, the yield varied between 77 and 91% depending on the source of KH. 

The 1,2-addition of vinyllithium to the carbonyl group of dialkyl squarate-derived bicycloheptenones initiates a low-
temperature anion-accelerated oxy-Cope rearrangement to afford bicyclo[6.3.0]undecadienone. H.W. Moore and co-
workers accomplished the total synthesis of (±)-precapnelladiene using this methodology.23

Helicenes are helical compounds consisting of ortho-fused aromatic rings. These compounds are potentially useful as 
catalysts or as platforms for molecular recognition. The currently used syntheses are not practical and do not allow 
the preparation of helicenes on large scale. M. Karikomi et al. have developed a sequential double aromatic oxy-
Cope rearrangement strategy for the synthesis of 2-acetoxy[5]helicene.24 First, 3-phenanthrylmagnesium bromide 
was synthesized using an aromatic oxy-Cope rearrangement. The Grignard reagent was then used to obtain 3-
(phenanthrenyl)bicyclo[2.2.2]octanol, which underwent a second aromatic oxy-Cope rearrangement upon treatment 
with KH and one equivalent of 18-crown-6 in THF at 0 °C.  
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PAAL-KNORR FURAN SYNTHESIS
(References are on page 644)

Importance:

 [Seminal Publications1-3; Reviews4-6; Modifications & Improvements7,8]

In 1884, C. Paal and L. Knorr almost simultaneously reported that 1,4-diketones upon treatment with strong mineral 
acids underwent dehydration to form substituted furans.1,2 This transformation soon became widely used and now it 
is referred to as the Paal-Knorr furan synthesis. The general features of the method are:5 1) virtually any 1,4-
dicarbonyl compound (mainly aldehydes and ketones) or their surrogates9-12 are suitable substrates; 2) the 
dehydration is affected by strong mineral acids such as hydrochloric acid or sulfuric acid, but often Lewis acids and 
dehydrating agents (e.g., phosphorous pentoxide, acetic anhydride, etc.) can be used; and 3) the yields are usually 
moderate to good. The two major drawbacks of the reaction are the relative difficulty to obtain the 1,4-dicarbonyl 
substrates, and the sensitivity of many functionalities to acidic conditions. 

Mechanism: 13,5

Even though the Paal-Knorr furan synthesis has been around for 120 years, its precise mechanism was not known 
until 1995 when V. Amarnath et al. investigated the intermediates of the reaction and determined the most likely 
mechanistic pathway.13 The formation of furans was studied on various racemic and meso-3,4-diethyl-2,5-hexane-
diones. The authors found that the rate of cyclization was different for the racemic and meso compounds and that the 
configuration of the unreacted dione was not affected. This observation strongly suggested that the widely accepted 
mechanism, involving the ring-closure of a monoenol followed by the loss of water, is incorrect. The most likely 
pathway involves the rapid protonation of one of the carbonyl groups followed by the attack of the forming enol at the 
other carbonyl group (rate-determining step). This pathway accounts for the difference in reaction rates for the 
substrate diastereomers. 
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PAAL-KNORR FURAN SYNTHESIS

Synthetic Applications:

In the laboratory of H. Hart, the synthesis of various furan macrocycles was accomplished.14 The preparation of a 
bisfuran macrocycle, which also contained two naphthalene rings, began with the Diels-Alder cycloaddition of the 
tetraketone substrate with excess benzyne. The benzyne was generated in situ from benzenediazonium carboxylate 
hydrochloride, and it reacted with the two furan rings to afford the corresponding oxabicyclic derivative. The double 
bond in the newly formed ring was saturated by catalytic hydrogenation. The formation of the desired furan rings was 
achieved with the Paal-Knorr furan synthesis in the presence of p-toluenesulfonic acid. Under the reaction conditions 
the oxabicycles were converted to the naphthalene rings. 

The synthesis of a soluble nonacenetriquinone based on the well-known Diels-Alder reaction of 1,3-diarylisoben-
zofurans was developed by L.L. Miller and co-workers.15 The preparation of the 1,3-diarylisobenzofuran commenced 
with the Paal-Knorr furan synthesis. The substrate was an aromatic 1,4-diketone, which was treated with excess neat 
boron trifluoride etherate for almost two days to afford the desired 2,5-diarylfuran in almost quantitative yield. 
Interestingly, this cyclization could not be achieved efficiently by using the more traditional acid catalysts such as 
H2SO4 or PPA. 

The first furan-isoannelated [14]annulene was prepared by Y.-H. Lai et al.16 The furan moiety was installed by the 
Paal-Knorr furan synthesis. The 1,4-diketone substrate was synthesized via an oxidative coupling using MnO2/AcOH.
The dehydration to the furan was effected by phosphorous pentoxide in ethanol. 

C.S. Cooper and co-workers synthesized several quinolones containing five- and six-membered heterocyclic 
substituents at the 7-position and tested their antibacterial activities.17 The 1,4-diketone substrate was prepared via 
the oxidative coupling of isopropenyl acetate and an acetophenone derivative. The Paal-Knorr furan synthesis was 
conducted in the presence of p-TsOH. 
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PAAL-KNORR PYRROLE SYNTHESIS
(References are on page 644)

Importance:

 [Seminal Publications1,2; Reviews3-8; Modifications & Improvements9-20]

In 1884, C. Paal and L. Knorr almost simultaneously reported that the treatment of 1,4-diketones with concentrated 
aqueous ammonia or ammonium acetate in glacial acetic acid gave rise to 2,5-disubstituted pyrroles in good yield.1,2

It was also shown that besides ammonia, primary amines also react with 1,4-diketones to afford N-alkyl substituted 
pyrroles. The preparation of substituted pyrroles by the condensation of 1,4-dicarbonyl compounds with ammonia or 
primary amines is known as the Paal-Knorr pyrrole synthesis. The general features of the transformation are: 1) 
practically any 1,4-dicarbonyl compound (mainly 1,4-diketones) or their surrogates are good substrates for the 
reaction; 2) 1,4-dialdehydes or keto aldehydes are used less often mainly because of their relative instability and the 
lack of general methods for their preparation; 3) the structure of the amine component can be varied widely, since 
ammonia, aliphatic primary amines, both electron-rich and electron-poor aromatic amines, and heterocyclic amines 
(e.g., aminopyridines, aminothoazoles, etc.) can be used; 4) α,ω-diamines afford dipyrryl derivatives tethered via their 
nitrogen atoms; 5) ammonia can be introduced either as a concentrated aqueous solution, as ammonium acetate in 
an alcohol solvent or ammonium carbonate in DMF at high temperature; 6) the relatively basic alkylamines do not 
react if the acidity of the reaction medium is below pH 5.5, while aromatic amines usually undergo cyclization only 
when pH<8.2 and the highest yields are observed between pH 4.5 and 5.5; 7) besides protic acids, certain Lewis 
acids such as Ti(Oi-Pr)4, as well as layered zirconium phosphate also catalyze the reaction; 8) the solvent of choice 
depends on the type of amine used, and it can range from polar protic to dipolar aprotic all the way to nonpolar 
solvents; and 9) yields range from good to excellent and occasionally can be close to quantitative. 

Mechanism: 21,22

Even though the Paal-Knorr pyrrole synthesis has been around for 120 years, its precise mechanism was the subject 
of debate. In 1991, V. Amarnath et al. investigated the intermediates of the reaction and determined the most likely 
mechanistic pathway.23 The formation of pyrroles was studied on various racemic and meso-3,4-diethyl-2,5-
hexanediones. The authors found that the rate of cyclization was different for the racemic and meso compounds and 
the racemic isomers reacted considerably faster than the meso isomers. There were two crucial observations: 1) the 
stereoisomers did not interconvert under the reaction conditions; and 2) there was no primary kinetic isotope effect for 
the hydrogen atoms at the C3 and C4 positions. These observations led to the conclusion that the cyclization of the 
hemiaminal intermediate is the rate-determining (slow) step. 
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PAAL-KNORR PYRROLE SYNTHESIS

Synthetic Applications:

F.H. Kohnke and co-workers prepared novel heterocyclophanes from cyclic poly-1,4-diketones, which were obtained 
by the oxidation of calix[6]furan and calix[4]furan.24 One of the heterocyclophanes, calix[6]pyrrole, was prepared by 
the Paal-Knorr pyrrole synthesis from the corresponding dodecaketone. The substrate was heated with excess 
ammonium acetate in absolute ethanol. Interestingly, the analogous synthesis of calix[4]pyrrole under identical 
conditions failed, while calix[5]pyrrole is obtained only in 1% yield.25,26

The formal total synthesis of roseophilin was accomplished by B.M. Trost et al. who used the Paal-Knorr pyrrole 
synthesis to install the trisubstituted pyrrole moiety.27 The 1,4-diketone substrate was reacted with various primary 
amines to obtain N-substituted pyrroles. The best yield was obtained when benzylamine was used as the amine 
component, but the N-deprotection of the product proved to be problematic. This forced the researchers to prepare 
the otherwise unstable N-unprotected pyrrole under carefully controlled conditions and protect it immediately with 
SEM-chloride. 

In the laboratory of D.F. Taber, the large-scale preparation of a tetrasubstituted pyrrole, a key precursor for the 
preparation of hemes and porphyrins, was achieved.28 The 1,4-dicarbonyl substrate was generated from a ketal via
hydrolysis and was immediately subjected to the Paal-Knorr pyrrole synthesis by heating it with ammonium carbonate 
in DMF. The resulting 1H-pyrrole was formylated with trimethyl orthoformate in trifluoroacetic acid. 

The titanium isopropoxide mediated Paal-Knorr pyrrole synthesis was used as the key step in the first total synthesis 
of magnolamide by W. Le Quesne et al.29
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PASSERINI MULTICOMPONENT REACTION 
(References are on page 645)

Importance:

[Seminal Publications1; Reviews2-12; Modifications & Improvements13-28]

Isocyanides, also known as isonitriles, are a unique class of organic compounds. The carbon center of the isocyanide 
group is formally divalent, and it can react with electrophiles and nucleophiles. The first synthetically useful reaction of 
isocyanides was described by M. Passerini, who reported that isocyanides react with carboxylic acids and carbonyl 
compounds in one step to provide α-acyloxycarboxamides.1 This transformation is known today as the Passerini
multicomponent reaction (MCR). The synthetic power of the Passerini reaction is that three reaction partners are 
combined in one pot under mild conditions (three component reaction or P-3CR) and the product incorporates most 
atoms of all three starting materials. These types of transformations coupled with combinatorial chemistry and parallel 
synthesis techniques allow the quick assembly of a wide array of compounds from simple starting materials.7,9,10 The 
general features of the classical Passerini reaction are: 1) it is carried out at high concentrations of the starting 
materials in inert solvents at or below room temperature;1 2) it is accelerated in apolar solvents;2 3) a wide variety of 
aldehydes and ketones undergo the reaction; 4) there are rare limitations to the carbonyl component, only sterically 
hindered ketones and α,β-unsaturated ketones are unreactive;29,16 5) in addition to C-isocyanides, trimethylsilyl 
isocyanide also undergoes the reaction;18 6) when water is used as the nucleophilic component instead of carboxylic 
acid, the reaction gives the corresponding α-hydroxycarboxamide under acid catalyzed conditions;13,15 7) when 
hydrazoic acid is combined with the isocyanide and the carbonyl compound under acidic conditions, α-
hydroxyalkyltetrazole is the product;15-17 and 8) catalytic asymmetric variants of the reaction were also developed.26-28

By choosing the proper starting materials, the Passerini reaction often does not stop at the α-acyloxycarboxamide 
product and it leads to the formation of heterocycles:20-22,24,25 1) the reaction of α-oxoaldehydes with carboxylic acids 
and isocyanides leads to the formation of oxazoles;20 2) when cyanoacetic acid is used as the acid component along 
with α-oxoaldehydes and isocyanides, 2-hydroxyfurans form;21 and 3) the reaction of β-oxothioamide with 
isocyanides leads to benzo[c]thiophenes.22 When bifunctional starting materials incorporating the carbonyl and the 
carboxylic acid functionality are used, lactones of various ring sizes can be formed.14 The reaction of α-chloroketones 
with carboxylic acids and isocyanides under basic conditions leads to the formation of β-lactams.19,23 In the absence 
of the carboxylic acid component, this transformation leads to the formation of α-epoxylactones.19

Mechanism:13,30,31,2,32-37

The mechanism of the Passerini reaction was widely examined. A plausible mechanism that is consistent with 
experimental data is as follows: First, the carbonyl compound and the carboxylic acid forms a hydrogen bonded 
adduct. Subsequently, the carbon atom of the isocyanide group attacks the electrophilic carbonyl carbon, and also 
reacts with the nucleophilic oxygen atom of the carboxylic acid. The resulting intermediate cannot be isolated as it 
rearranges to the more stable α-acyloxycarboxamide in an intramolecular transacylation. 
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PASSERINI MULTICOMPONENT REACTION

Synthetic Applications:

Eurystatin A is a 13-membered macrocyclic natural product featuring a leucine, ornithine, and an α-ketoalanine amide 
subunit. This compound exhibits serine protease prolyl endopeptidase inhibition. The total synthesis of this compound 
was accomplished by E. Semple et al.38 The key reaction in their approach was the Passerini reaction between an N-
protected ornithine fragment, N-α-Fmoc alaninal and a protected leucine isonitrile to give the desired α-
acyloxycarboxamide under mild, neutral conditions in high yield and multigram quantities, and as 1:1.2 mixture of 
diastereomers. Subsequent Fmoc deprotection led to a smooth O- to N- acyl migration providing the entire acyclic 
skeleton of the natural product.  

L. Banfi and co-workers utilized the Passerini three component reaction to prepare a 9600 member hit generation 
library of nor-statines.39,40 These compounds are potential transition state mimetics for the inhibitors of aspartyl 
proteases. The authors produced the library by starting out from eight N-Boc-α-aminoaldehydes, twenty isocyanides 
and sixty carboxylic acids. The key Passerini reaction occurred under mild conditions. This transformation was 
followed by removal of the Boc protecting group and acyl transfer. Three representative examples of the library are 
shown. 

R. Bossio and co-workers developed a novel method for the synthesis of tetrasubstituted furan derivatives.21 The 
Passerini reaction between arylglyoxals, isocyanides, and cyanoacetic acids led to the formation of N-substituted 3-
aryl-2-cyanoacetoxy-3-oxopropionamides, which in the presence of amine bases underwent a Knoevenagel 
condensation providing N-substituted 3-aryl-cyano-2,5-dihydro-5-oxofuran-2-carboxamides. 
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PATERNO-BÜCHI REACTION
(References are on page 646)

Importance:

 [Seminal Publications1-4; Reviews5-18; Theoretical Studies19-26]

In 1909, E. Paterno and G. Chieffi reported an interesting reaction that took place between benzaldehyde and 2-
methyl-2-butene upon exposure to sunlight.2 The authors isolated two isomeric compounds that they characterized as 
trimethylene oxides (oxetanes). The reaction went largely unnoticed until 1954, when G. Büchi decided to 
reinvestigate Paterno's findings and determine the exact structure of the products.4 The photochemical cycloaddition 
between aldehydes and alkenes to form oxetanes is known as the Paterno-Büchi reaction. The general features of 
this transformation are:7,10 1) the carbonyl substrate is the energy-absorbing component in the process, and it 
becomes excited upon irradiation; 2) the carbonyl compound can be either an aldehyde or a ketone; 3) the alkene 
substrate is most often electron-rich by virtue of one or more electron-donating substituents (e.g., alkoxy, thioalkyl, or 
alkylamino); 4) the reaction is highly regio- and stereoselective, and the regiochemical outcome can be predicted 
based on the most stable 1,4-biradical intermediate, which is formed when the excited carbonyl compound adds 
across the carbon-carbon double bond; 5) the degree of regioselectivity depends on the nature and the position of the 
substituents on the alkene and, for example, alkenyl sulfides afford the oxetane products with higher regioselectivity 
than the corresponding enol ethers27 and also 1,1-disubstituted alkenes give rise to highly regiochemically pure 
products; 6) when stereochemically pure (E) or (Z) alkenes are used, the stereochemical information is usually lost 
and the conformational preference in the 1,4-biradical intermediate results in the predominant formation of the trans
oxetane product; 7) when cyclic alkenes are used, only the cis oxetanes are formed in the case of five- and six-
membered alkenes, whereas larger cyclic olefins give rise to a mixture of cis- and trans oxetanes; 8) conjugated 
dienes (1,3-dienes and styrenes) and certain five-membered heterocycles (e.g., furans, pyrroles, imidazoles, and 
indoles) also react to give the corresponding oxetanes; and 9) the facial diastereoselectivity can be induced either 
with chiral auxiliaries attached to the carbonyl compounds or with the use of chiral alkenes. 

Mechanism: 28-51

The mechanism of the Paterno-Büchi reaction has been extensively studied. The current understanding of the 
process involves the following steps: 1) the carbonyl functionality (S0) is excited by a UV photon via n *-absorption to 
afford the corresponding singlet state (S1); 2) the carbonyl singlet state can be converted to the carbonyl triplet state 
(T1) via intersystem crossing (ISC); 3) when the carbonyl singlet reacts with the alkene (mostly in the case of aliphatic 
aldehydes and ketones and a very high alkene concentration is required in order to quench the singlet state 
efficiently) the photocycloaddition is stereospecific and the stereochemical information of the alkene substrate is 
translated into the oxetane product; 4) in the overwhelming majority of the Paterno-Büchi reactions, however, the 
intersystem crossing gives rise to the carbonyl triplet state, which upon addition to the alkene affords a 1,4-biradical 
(these species have been studied spectroscopically);33 and 5) finally the most stable 1,4-biradical conformer 
collapses to the oxetane product. 
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PATERNO-BÜCHI REACTION

Synthetic Applications:

In the laboratory of T. Bach, the Paterno-Büchi reaction of chiral 2-substituted 2,3-dihydropyrroles with benzaldehyde 
was used in the total synthesis of the antifungal agent (+)-preussin.52,53 Benzaldehyde was mixed with excess 
dihydropyrrole substrate in acetonitrile and was irradiated at room temperature at 350 nm UV light. Once all the 
benzaldehyde was consumed, half an equivalent of benzaldehyde was added and the irradiation continued for 
another two hours. The addition of the photoexcited benzaldehyde proceeded in a syn fashion and the 
thermodynamically less stable endo oxetane was formed as the major product. The oxetane ring was then cleaved 
under catalytic hydrogenation conditions in the presence of Pearlman's catalyst to form the all-cis pyrrolidinol. Finally 
the reduction of the N-carboxymethyl group to the corresponding N-methyl group was achieved using lithium 
aluminum hydride. 

A unique intramolecular Paterno-Büchi reaction/fragmentation sequence was utilized during the short total synthesis 
of the angular triquinane (±)-oxosilphiperfol-6-ene by V.H. Rawal et al.54  The photocycloaddition substrate was 
prepared via a highly regio-, endo-, and diastereofacially selective Diels-Alder cycloaddition between 1,3-dimethyl-
cyclopentadiene and 1-acetyl-3-methylcyclopentene. The cycloadduct was then irradiated with Corex-filtered light to 
obtain the strained cage-like product. Reductive cleavage of the oxetane ring with LDBB yielded an allylic alcohol, 
which was oxidized to the desired α,β-unsaturated ketone with PDC. 

The first total synthesis of the cytotoxic agent (±)-euplotin A was completed by the research team of R.L. Funk.55 The 
key step of the synthetic effort was the intramolecular hetero Diels-Alder cycloaddition of a 3-acyl oxadiene 
(generated from 5-acyl-4H-1,3-dioxins via thermal retrocycloaddition) with a substituted dihydrofuran to afford the 
tricyclic skeleton of the natural product. The correct relative stereochemistry of the required dihydrofuran substrate 
was established using the Paterno-Büchi reaction between ethyl glyoxylate and furan. Subsequently, the oxetane ring 
was opened stereoselectively under Lewis acid catalysis. 

The Paterno-Büchi reaction of furan and various aldehydes was shown to be a highly stereoselective photochemical 
version of the aldol reaction by S.L. Schreiber and co-workers in which the furan serves as an enolate equivalent.56

This strategy was applied to the total synthesis of the antifungal metabolite (±)-avenaciolide.57 The photocyclo-
addition of nonanal with excess furan proceeded in nearly quantitative yield, and the two out of the three required 
stereocenters were created in a single step. The photocycloadduct was first hydrogenated then hydrolyzed under 
acidic conditions. 
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PAUSON-KHAND REACTION
(References are on page 647)

Importance:

 [Seminal Publication1; Reviews2-31; Modifications & Improvements32-35; Theoretical Studies36-47]

In 1973, I.U. Khand and P.L. Pauson reported that various acetylenehexacarbonyl dicobalt complexes reacted with 
alkenes in hydrocarbon or ether solvents to give cyclopentenones in good yield.1 The scope and limitation of this 
reaction was determined by the research group of P.L. Pauson in the 1970s. The transition metal (cobalt) catalyzed 
formal [2+2+1] cycloaddition of alkynes, alkenes, and carbon-monoxide to form substituted cyclopentenones is 
referred to as the Pauson-Khand reaction. The general features of this process are: 1) the reaction is feasible both 
inter- and intramolecularly; 2) acetylene and terminal as well as internal alkynes are all substrates for the reaction. 
However, derivatives of propynoic acid do not react; 3) the required alkyne-cobalt complexes are easily prepared by 
reacting alkynes with dicobalt octacarbonyl; 4) internal alkynes tend to give lower yields of the product than terminal 
alkynes; 5) a wide range of alkenes are feasible reaction partners and, generally, strained cyclic alkenes react the 
fastest; 6) the order of reactivity is significantly influenced by the substitution pattern of the alkene substrate: strained 
cyclic alkene > terminal alkene > disubstituted alkene >> trisubstituted alkene, and tetrasubstituted alkenes do not 
react; 7) alkenes with strongly electron-withdrawing groups give poor or no reaction; 8) the reaction is highly 
regioselective: the larger alkyne substituent (R1) ends up next to the carbonyl group in the product, but the 
regioselectivity with respect to the alkene is less predictable in intermolecular reactions; 9) with cyclic alkenes the 
reaction is highly stereoselective and the exo product is formed preferentially; 10) intramolecular reactions proceed 
with excellent regio- and stereoselectivity; 11) with the use of chiral auxiliaries the reaction conditions are compatible 
with a large number of different functional groups. However there are certain functionalities that are only partially 
tolerated: alkyl and aryl halides, vinyl ethers, and vinyl esters; 12) the reaction can be accelerated by the addition of 
various promoters (such as tertiary amine oxides, high-intensity light, etc.), which help to open a coordination site at 
one of the cobalt atoms for the alkene to coordinate; 13) it is possible to run the cyclization catalytically but only in the 
presence of a high pressure atmosphere of CO; and 14) besides Co2(CO)8, other transition metal complexes also 
efficiently catalyze the cyclization (e.g. Fe(CO)5, Ru2(CO)12, etc.) 

Mechanism: 48-62

The mechanism of the Pauson-Khand reaction has not been fully elucidated. However, based on the regio- and 
stereochemical outcome in a large number of examples, a reasonable hypothesis has been inferred. 
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PAUSON-KHAND REACTION

Synthetic Applications:

The total synthesis of the sesquiterpene (+)-taylorione was achieved in the laboratory of J.G. Donkervoort who used 
the modified Pauson-Khand reaction to prepare the five-membered ring of the natural product.63 The preformed 
alkyne-cobalt complex was exposed to excess triethylamine-N-oxide, which oxidized off two CO ligands to free up a 
coordination site for the ethylene. The optimum pressure of the ethylene gas had to be at 25 atm, and the reaction 
was conducted in an autoclave.  

During the synthetic studies toward the natural product kalmanol, L.A. Paquette and co-workers prepared the CD
diquinane substructure by using an intramolecular Pauson-Khand reaction.64 The use of an N-oxide promoter for the 
cyclization resulted in very mild conditions and afforded the desired triquinane in good yield and as a single 
diastereomer. 

In the laboratory of S.L. Schreiber, the total synthesis of (+)-epoxydictymene was accomplished by the tandem use of 
cobalt-mediated reactions as key steps.65 The eight-membered carbocycle was formed via a Nicholas reaction, while 
the five-membered ring was annulated by the Pauson-Khand reaction. Several P.-K. conditions were explored and 
the best diastereoselectivity was observed when NMO was used as a promoter. The annulated product was isolated 
as an 11:1 mixture of diastereomers. 

The key bicyclo[4.3.0]nonenone intermediate in the total synthesis of ( )-13-deoxyserratine was prepared by a highly 
diastereoselective intramolecular Pauson-Khand reaction of a functionalized enyne-cobalt complex in the laboratory 
of S.Z. Zard.66 The reactive conformation of this complex is one in which the OTBS group occupies the 
pseudoequatorial position. The observed diastereoselectivity was high as the alternative conformer was significantly 
higher in energy. The concave shape of the bicyclic product was exploited in controlling the introduction of the 
remaining three stereocenters. 
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PAYNE REARRANGEMENT
(References are on page 649)

Importance:

 [Seminal Publications1-4; Reviews5-8; Modifications & Improvements9-12; Theoretical Studies13-15]

In 1935, E.P. Kohler and C.L. Bickel described the unusual properties of certain 2,3-epoxy alcohols (β-oxanols), 
which underwent a rearrangement in the presence of catalytic amounts of a strong base (e.g., alkali hydroxides, 
barium oxide, magnesium methylate, etc.) to give isomeric 2,3-epoxy alcohols.1 Three decades later in 1962, G.B. 
Payne reported that aqueous sodium hydroxide at room temperature was sufficient to bring about the isomerization-
equilibration of 2,3-epoxy alcohols, a transformation, which he found to be general and termed as "epoxide 
migration".4 The base-catalyzed intramolecular nucleophilic displacement of 2,3-epoxy alcohols to give the isomeric 
2,3-epoxy alcohols is known as the Payne rearrangement. The general features of the reaction are:7 1) enantiopure 
epoxide substrates are accessible most conveniently by the Sharpless asymmetric epoxidation of allylic alcohols; 2) 
the stereochemistry at C2 undergoes inversion; 3) the base needs to be strong and in most cases the use of a protic 
solvent such as water or an alcohol is necessary; 4) the direction of epoxide equilibration is influenced by both steric 
and electronic effects; 5) the most substituted epoxide isomer is favored; 6) trans epoxides are more stable than cis
epoxides; 7) vinylyl and phenyl substituents on the oxirane have a stabilizing effect, while EWG are destabilizing; 8) 
the epoxide isomer with a primary hydroxyl group is favored; and 9) in cyclic systems the favored epoxide is the one 
that has more pseudoequatorial groups. The two main variants of the reaction are the aza- and thia-Payne 
rearrangement in which aziridines and thiiranes are formed, respectively.10,5

Mechanism: 5,7

The currently accepted mechanism was first proposed by S.J. Angyal and P.T. Gilham in 1957.3 The first step of the 
process is the deprotonation of the hydroxyl group at C1 by the strong base and the resulting alkoxide undergoes an 
SNi reaction (3-exo-tet process) to open the adjacent epoxide at C2. As a result, a new epoxide is formed at C1 and 
C2 in which the C2 stereochemistry is inverted. The alkoxide anion at C3 is protonated by the solvent to afford the 
product. It is worth noting that the success of the rearrangement in most cases depends on the nature of the solvent. 
Generally, strong bases in aprotic solvents (e.g., NaH/THF) do not affect the reaction, but strong bases in protic 
solvents (e.g., NaOH/H2O) do. According to theoretical studies, the product of the Payne rearrangement is formed 
under kinetic control, since the thermodynamically most stable species would be an oxetane, which has never been 
observed in solution-phase reaction mixtures (only in the mass spectrometer).13,14  When the reaction is conducted in 
the presence of a nucleophile so that the equilibrating epoxides are opened in situ with a nucleophile (slow step), the 
product distribution is governed by the Curtin-Hammett principle and exclusive ring-opening at the least substituted 
carbon of the less substituted epoxide can be achieved. The mechanism of the aza-Payne rearrangement is more 
complex and the outcome is influenced both by the structure of the substrate and the nature of the base or Lewis 
acid.5
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PAYNE REARRANGEMENT

Synthetic Applications:

The Lewis acid-catalyzed aza-Payne rearrangement was utilized in the total synthesis of epi-7-deoxypancratistatin by 
T. Hudlicky and co-workers.16 The 2,3-aziridino alcohol was treated with t-BuLi, to generate the epoxy amide that was 
trapped with piperonyl bromide. 

A novel neuroexcitotoxic amino acid, (–)-dysiherbaine, was synthesized starting from a carbohydrate precursor in the 
laboratory of M. Sasaki.17 Under benzylation conditions, the cyclic 2,3-epoxy alcohol underwent a facile Payne 
rearrangement and the rearranged alkoxide was trapped with benzyl bromide.  

I. Kvarnström et al. prepared novel nucleosides with potential HIV-1 inhibitor acitivity using the thia-Payne 
rearrangement to install the sulfur atom stereoselectively. The 2,3-epoxy alcohol was first converted to the 
corresponding thioacetate then treated with methanolic ammonia solution to effect the rearrangement to afford the 
thiirane in excellent yield. As expected, inversion of configuration at C2 occured. The authors also found, that under 
mild acidic conditions (silica gel), the thioacetate yielded a thiirane with a net retention of configuration at the C2 
stereocenter. This result can be explained with the neighboring group participation of the acetate, which opened the 
protonated epoxide (with inversion at C2) to give a 1,3-oxathiolan-2-ylium ion. This carbocation then rearranged to 
the more stable 1,3-dioxolan-2-ylium ion. Subsequently, the sulfur nucleophile at C1 attacked C2 for the second time 
with inversion of configuration to afford the thiirane with a net retention of configuration. 

The total synthesis of (±)-merrilactone A was accomplished by S.J. Danishefsky and co-workers.18 The last step of 
the sequence was an acid-induced homo-Payne rearrangement. The tetracyclic homoallylic alcohol precursor was 
first epoxidized using mCPBA. The epoxidation was expected to occur from the same face as the C7 hydroxyl group, 
but due to the congested nature of the C1-C2 double bond at its β-face, the epoxide was formed predominantly on 
the α-face. The epoxide substrate then was exposed to p-toluenesulfonic acid at room temperature to afford the 
desired oxetane ring of the natural product. 
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PERKIN REACTION
(References are on page 649)

Importance:

 [Seminal Publications1,2; Reviews3,4; Modifications & Improvements5-22]

In 1868, W.H. Perkin described the one-pot synthesis of coumarin by heating the sodium salt of salicylaldehyde in 
acetic anhydride.1 After this initial report, Perkin investigated the scope and limitation of the process and found that it 
was well-suited for the efficient synthesis of cinnamic acids.2 The condensation of aromatic aldehydes with the 
anhydrides of aliphatic carboxylic acids in the presence of a weak base to afford α,β-unsaturated carboxylic acids is 
known as the Perkin reaction (or Perkin condensation). The general features of the transformation are:3,4 1) the 
aldehyde component is most often aromatic, but aliphatic aldehydes with no α-hydrogens as well as certain α,β-
unsaturated aldehydes can also be used;17 2) the reaction is more facile and gives higher yield of the product when 
the aromatic aldehyde has one or more electron-withdrawing substituents; 3) aliphatic aldehydes are not suitable for 
the reaction, since they often give enol acetates and diacetates when heated with acetic anhydride; 4) the anhydride 
should be derived from an aliphatic carboxylic acid, which has at least two hydrogen atoms at their α-position (if there 
is only one α-hydrogen atom, a β-hydroxy carboxylic acid is obtained); 5) the weak base is most often the alkali metal 
salt of the carboxylic acid corresponding to the applied anhydride or a tertiary amine (e.g., Et3N); 6) the usual 
procedure requires heating of the aldehyde in the anhydride (often used as the solvent) at or above 150 °C; and 7) 
the stereochemistry of the newly formed double bond is typically (E). There are two important modifications of the 
Perkin reaction: 1) the condensation of an aromatic aldehyde or ketone with an N-acyl glycine in acetic anhydride in 
the presence of NaOAc to obtain azlactones (oxazolones), which are important intermediates for the synthesis of α-
amino acids (Erlenmeyer-Plöchl azlactone synthesis);6-9,15,22 and 2) the condensation of aromatic aldehydes with α-
arylacetic acids in acetic anhydride and in the presence of a weak base (proceeding via mixed anhydrides generated
in situ) to obtain α-arylcinnamic acids (Oglialoro modification).5

Mechanism: 23,3,24-31,4,32-35
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PERKIN REACTION

Synthetic Applications:

The combretastatins are a group of antimitotic agents isolated from the bark of the South African tree Combretum 
caffrum. A novel and highly stereoselective total synthesis of both the cis and trans isomers of combretastatin A-4
was developed by J.A. Hadfield and co-workers.36 The (Z)-stereoisomer was prepared using the Perkin reaction as 
the key step in which 3,4,5-trimethoxyphenylacetic acid and 3-hydroxy-4-methoxbenzaldehyde was heated with 
triethylamine and acetic anhydride at reflux for several hours. The α,β-unsaturated acid was isolated in good yield 
after acidification and had the expected (E) stereochemistry. Decarboxylation of this acid was effected by heating it 
with copper powder in quinoline to afford the natural product (Z)-combretastatin A-4.

In the laboratory of D. Ma, the asymmetric synthesis of several metabotropic glutamate receptor antagonists derived 
from α-alkylated phenylglycines was undertaken.37 The preparation of (S)-1-aminoindan-1,5-dicarboxylic acid (AIDA) 
started with the Perkin reaction of 3-bromobenzaldehyde and malonic acid. The resulting (E)-cinnamic acid derivative 
was hydrogenated and the following intramolecular Friedel-Crafts acylation afforded the corresponding indanone, 
which was then converted to (S)-AIDA.

The large-scale pilot plant preparation of the chiral aminochroman antidepressant ebalzotan (also known as NAE-
086) was developed by H.J. Federsel and co-workers.38 The structural features of the target included a disubstituted 
chroman skeleton, a stereocenter, as well as a non-symmetrical tertiary amine moiety at the C3 position and a 
secondary carboxamide group at C5. The backbone of the target molecule was constructed using the Perkin 
condensation of 2-hydroxy-6-methoxybenzaldehyde with hippuric acid under mild conditions. 

Fluorinated analogs of naturally occurring biologically active compounds, such as amino acids, often exhibit unique 
physiological properties, and therefore there is substantial interest in their convenient and high-yielding preparation. 
The research team of K.L. Kirk synthesized 6-fluoro-meta-tyrosine and several of its metabolites employing the
Erlenmeyer-Plöchl azlactone synthesis.39 Hippuric acid and 2-benzyloxy-5-fluorobenzaldehyde were condensed in 
the presence of sodium acetate in acetic anhydride to isolate the corresponding azlactone, which was converted to 
the target fluorinated amino acid in three steps. 
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PETASIS BORONIC ACID-MANNICH REACTION 
(References are on page 650)

Importance:

[Seminal Publications1; Reviews2-7; Modifications & Improvements8-16]

Allylic amines are synthetically useful building blocks and several derivatives possess diverse biological properties. In 
1993, N.A. Petasis and co-workers reported an efficient synthesis of these compounds based on a modified Mannich 
reaction where vinylboronic acids served as the nucleophilic component. This transformation is referred to as the 
Petasis boronic acid-Mannich reaction. The general features of the reaction are: 1) according to the original 
procedure, the reaction is convenient to carry out: the mixture of paraformaldehyde and a secondary amine are 
heated to 90 °C in toluene or dioxane for ten minutes followed by the addition of the vinylboronic acid and stirring the 
reaction mixture at room temperature for several hours or heating to 90 °C for 30 minutes; 2) the work-up procedure 
includes an acid-base extraction to remove the unreacted vinylboronic acid; 3) the addition of the boronic acid to the 
amine-paraformaldehyde adduct occurs with complete retention of the geometry of the double bond; 4) the resulting 
allylamines form with high stereoselectivity; 4) originally, formaldehyde was used as the aldehyde component, but 
other aldehydes and ketones also undergo the transformation;8,9 5) when glyoxylic acid or α-keto acids are used as 
the carbonyl component, α-amino acids are obtained;8,9 5) the boronic acids can be prepared by the condensation of 
catecholborane with terminal alkynes and subsequent hydrolysis of the vinylboronate esters; 6) vinylboronate esters 
can also participate in the reaction, but purification of the product is more difficult;1 7) arylboronate esters8 and 
potassium organotrifluoroborates15,16  are also viable substrates; 8) in addition to secondary amines, tertiary aromatic 
amines,14 substituted hydrazines,12 substituted hydroxylamines, and sulfinamides13 undergo the transformation; and 
9) upon Lewis acid activation, 2-hydroxy- and 2-alkoxy derivatives of N-protected pyrrolidines and piperidines also 
react.10 A solid phase version of the reaction was also developed.11

Mechanism:1

The mechanism of the Petasis boronic acid-Mannich reaction is not fully understood. In the first step of the reaction, 
upon mixing the carbonyl and the amine components, three possible products can form: iminium salt A, diamine B,
and α-hydroxy amine C. It was shown that preformed iminium salts do not react with boronic acids. This observation 
suggests that the reaction does not go through intermediate A. Both intermediate B and C can promote the formation 
of the product. Most likely, the reaction proceeds through intermediate C, where the hydroxyl group attacks the 
electrophilic boron leading to an “ate”-complex. Subsequent vinyl transfer provides the allylic amine along with the 
boronic acid sideproduct. 
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PETASIS BORONIC ACID-MANNICH REACTION 

Synthetic Applications:

(–)-Cytoxazone is a novel cytokine modulator. The total synthesis of this natural product and its enantiomer was 
accomplished by S. Sugiyama.17 The 3-amino-1,2-propanediol moiety was synthesized by a Petasis boronic acid-
Mannich reaction between DL-glyceraldehyde, (R)-1-(1-naphthyl)ethylamine and 4-methoxyphenylboronic acid to 
provide a 1:1 mixture of the diastereomeric products. The diastereomers could be separated at a later stage in the 
synthesis and transformed into (–)- and (+)-cytoxazone. 

In the laboratory of A. Golebiowski, the high throughput synthesis of diketopiperazines was accomplished.18 These 
compounds can serve as β-turn mimetics. The key step in this approach was a Petasis boronic acid-Mannich reaction
between the Merrifield resin-bound piperazine-2-carboxylic acid, glyoxylic acid, and a wide range of commercially 
available boronic acids to provide a 1:1 mixture of the products. A specific example is shown below. 

M.G. Finn and co-workers developed a procedure for the preparation of 2H-chromene derivatives that includes a 
Petasis three-component reaction between salicylaldehyde, vinylic- and aromatic boronic acids, and dibenzylamine.19

The hydroxyl group of the salicylic aldehyde is essential for the activation of the boronic acid. The initially formed 
allylic amine undergoes a cyclization upon ejecting the dibenzylamine, thus rendering the process catalytic in the 
amine.

R.A. Batey and co-workers developed a modification of the Petasis-boronic acid-Mannich reaction that occurs via N-
acyliminium ions derived from N-protected-2,3-dihydroxypyrrolidine and 2,3-dihydroxypiperidine derivatives.10 This 
method was utilized in the total synthesis of (±)-deoxycastanospermine. The formation of the N-acyliminium ion was 
achieved by treating N-Cbz-2,3-pyrrolidine with BF3·OEt2.20 Subsequent vinyl transfer from the alkenylboronic ester 
provided the product with excellent yield and diastereoselectivity. 
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  PETASIS-FERRIER REARRANGEMENT 
(References are on page 650)

Importance:

[Seminal Publications1,2; Modifications & Improvements3,4]

In 1995, N.A. Petasis reported the Lewis acid-promoted rearrangement of five-membered enol acetals to substituted 
tetrahydrofurans and in 1996, the similar rearrangement of six-membered enol acetals to the corresponding 
substituted tetrahydropyrans.1,2 The rearrangement proceeds via an oxocarbenium ion intermediate similar to the one 
which is involved in a Type II Ferrier rearrangement. Therefore, the stereocontrolled Lewis acid-promoted 
rearrangement of cyclic enol acetals to the corresponding substituted tetrahydrofurans and tetrahydropyrans is called 
the Petasis-Ferrier rearrangement. In laboratory practice, the rearrangement is a three-step procedure: 1) highly 
stereoselective preparation of 1,3-dioxolane-4-ones and 1,3-dioxane-4-ones from α- and β-hydroxy acids and 
aldehydes, respectively; 2) methenylation of the carbonyl group with dimethyl titanocene (Cp2TiMe2) to afford the enol 
acetals; and 3) treatment of the enol acetals with an aluminum-based Lewis acid to bring about the transposition of 
an O-atom with a C-atom on the ring. It  was not until 1999 that this rearrangement was modified and utilized for the 
total synthesis of complex natural products by A.B. Smith and co-workers.3-7 The general features of the Petasis-
Ferrier rearrangement are: 1) the straightforward construction of the substrate enol acetals allows the 
stereocontrolled assembly of complex fragments in a linchpin fashion; 2) the configuration of the acetal carbon is 
retained or enhanced during the rearrangement; 3) the rearrangement of five-membered enol acetals takes place at a 
much higher temperature than for the six-membered substrates; 4) trialkylaluminums were found to be the most 
effective reagents to mediate the rearrangement (i-Bu3Al, Me3Al, Me2AlCl being the most common); 5) the 
stereoselectivity of the aluminum-mediated carbonyl reduction (very last step) depends on the substitution pattern 
and occurs when i-Bu3Al is used (the reduction does not take place with Me2AlCl); and 6) a drawback of the 
procedure is that the olefination step can lead to a mixture of olefin stereoisomers when the applied titanocene is 
other than dimethyl titanocene. 

Mechanism: 1,2

The aluminum-mediated Petasis-Ferrier rearrangement is a stepwise [1,3]-sigmatropic process. The first step is the 
coordination of the Lewis-acid to the O-atom of the enol. Coordination to the ether O-atom is reversible and non-
productive. Cleavage of the adjacent C-O-bond, assisted by the antiperiplanar lone pair of the etheral O-atom, 
stereospecifically gives rise to an oxocarbenium enolate species, which cyclizes to the desired oxacycle. The rate 
difference in the rearrangement for the five- versus six-membered series can be explained by the more facile 6-
(enolendo)-endo-trig cyclization.8,9 The last step is the intramolecular equatorial hydride delivery. 
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PETASIS-FERRIER REARRANGEMENT 

Synthetic Applications:

During the total synthesis of (+)-phorboxazole A by A.B. Smith and co-workers, the modified Petasis-Ferrier 
rearrangement was successfully employed for the preparation of the C11-C15 and C22-C26 cis-tetrahydropyran 
rings.5 The rearrangement using the conditions prescribed by Petasis (with i-Bu3Al) failed to produce the desired 2,6-
cis-tetrahydropyran, so Me2AlCl was investigated. Treatment of the substrate with Me2AlCl at ambient temperature 
provided the C3-C19 subtarget of phorboxazole as a single isomer in 89% yield. 

Similarly, the C22-C26 fully substituted central tetrahydropyran ring of phorboxazole was prepared using the modified
Petasis-Ferrier rearrangement.5 Based on the known mechanistic model, the enol acetal moiety of the rearrangement 
substrate required the (Z)-configuration. The synthesis of this enol ether was not possible with either the Takai- or 
Petasis-Tebbe olefinations. Utilization of the Type-II Julia olefination afforded the desired enol acetal, but with no E/Z
selectivity. Upon treatment of these enol ethers with Me2AlCl, the rearrangement afforded only the desired 
tetrahydropyran in excellent yield. 

The first total synthesis of (+)-zampanolide and (+)-dactylolide was achieved in the laboratory of A.B. Smith.6,7 The 
key step of these syntheses was the application of the modified Petasis-Ferrier rearrangement to construct the 
central cis-2,6-disubstituted tetrahydropyran moiety in a stereocontrolled fashion. The treatment of the enol acetal 
with 1 equivalent of Me2AlCl at -78 °C effected the rearrangement to furnish the desired cis-tetrahydropyranone in 
59% yield.  
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PETERSON OLEFINATION 
(References are on page 650)

Importance:

[Seminal Publications1-3; Reviews4-23; Modifications & Improvements24-30; Theoretical Studies31-34]

In 1968, D.J. Peterson demonstrated in a detailed study that α-trimethylsilyl-substituted organometallic compounds 
could be used to convert carbonyl compounds via β-silylcarbinols to the corresponding olefins.3 Similar 
transformations prior to Peterson’s publication were reported but the scope of the reaction was not investigated.1,2

The preparation of alkenes from α-silyl carbanions and carbonyl compounds is known as the Peterson olefination and
it is considered to be the silicon-variant of the Wittig-type reactions. The general features of the reaction are: 1) the α-
silyl carbanions are prepared in a variety of ways, including metal-halogen exchange of the α-halogenated 
alkylsilanes or the direct deprotonation of alkylsilanes at the α-position; 2) the addition of the α-silyl carbanions to 
carbonyl compounds gives rise to a mixture of diastereomeric β-silylcarbinols, which can be isolated and separated 
only if the R2 substituent in the α-silyl carbanion is not electron-withdrawing; 3) when the R2 substituent is an electron-
donating group (e.g., alkyl) the intermediate β-silylcarbinols can be isolated and the diastereomers can be separated 
by means of chromatography; 4) upon treatment with base (NaH, KH, KOt-Bu), the β-silylcarbinols undergo a 
stereospecific syn-elimination, while treatment with dilute acid or a Lewis acid (AcOH, H2SO4, BF3·OEt2) results in a 
stereospecific anti-elimination; and 5) either the (E) or (Z)-alkene can be obtained from a diastereomerically pure β-
silylcarbinol by choosing acidic or basic conditions, so the stereoselectivity of the reaction depends on the availability 
of the diastereomerically pure β-silylcarbinol. Since the preparation of a specific α-silyl carbanion is not always 
possible, a variety of methods were developed to access α-silylcarbinols in a diastereomerically pure form: 1) the 
stereoselective addition of nucleophiles to α-silyl ketones, aldehydes, and esters;35,36 2) ring-opening of α,β-
epoxysilanes with nucleophiles;37,38,22 3) aldol reaction of enolates derived from α-silyl ketones with aldehydes and 
ketones;39 and 4) stereoselective dihydroxylation of vinylsilanes.40,17 Related reactions in which the silicon group 
(SiR3) has been replaced with groups containing other elements (SbR2, AsR2, SnR3, HgR, etc.) also form alkenes, 
but usually the corresponding α-carbanions are harder to prepare and the elimination requires special and often 
harsh conditions.9

Mechanism: 41-44,9,45-50,21

The exact pathway of the Peterson reaction is still not clear despite the intensive research effort.9,21 Most of the 
mechanistic studies suggest that both the stepwise and concerted pathways are feasible under basic conditions. In 
the concerted pathway a pentacoordinate 1,2-oxasiletanide is formed. The stepwise pathway is expected when 
chelation control operates in the reaction. The driving force is the formation of a very strong Si-O bond. Under acidic 
conditions the β-hydroxysilane undergoes an E2 elimination to afford the other alkene isomer. 
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PETERSON OLEFINATION 

Synthetic Applications:

In the laboratory of P. Deslongchamps, the first asymmetric total synthesis of (+)-maritimol, a member of the 
stemodane diterpenoids, was accomplished using the Peterson olefination as the key step.51 Close to the end of the 
synthetic sequence, the D ring of the natural product had to be installed via the Thorpe-Ziegler annulation of the 
corresponding 1,5-dinitrile. This dinitrile was prepared using the Peterson olefination. The tricyclic aldehyde was 
treated with the solution of an α-silyl boronate derived from trimethylsilylacetonitrile. The resulting 6:1 mixture of cis-
and trans-enenitriles was reduced to the desired saturated 1,5-dinitrile. 

M.A. Tius et al. reported a formal total synthesis of the macrocyclic core of roseophilin.52 The aliphatic five-membered 
ring of this core was prepared via a variant of the Nazarov cyclization. The precursor for this cyclopentannelation 
reaction is an (E)-α,β-unsaturated aldehyde, which was prepared using the Peterson olefination on the t-butylimine of 
5-hexenal. First the α-TMS derivative of the imine was generated; then after a second deprotonation, the additon of 
isobutyraldehyde gave the (E)-α,β-unsaturated imine upon aqueous work-up. Acidic hydrolysis of this imine gave the 
desired (E)-α,β-unsaturated aldehyde in good yield. 

In the final stages of the total synthesis of (+)-brasilenyne by S.E. Denmark and co-workers, the introduction of the 
(Z)-enyne side chain was accomplished with the Peterson olefination.53 The aldehyde was treated with lithiated 1,3-
bis(triisopropylsilyl)propyne at low temperature followed by slow warming of the reaction mixture to ambient 
temperature to give a 6:1 (Z:E) ratio of the desired enyne.  

A (Z)-selective Peterson olefination was the key step in the first enantioselective total synthesis of both enantiomers 
of lancifolol in the laboratory of H. Monti.54 This synthetic approach allowed the correlation of the relationship between 
absolute configuration and specific rotation. It is important to mention that no other olefination method could be 
applied successfully in installing this (Z)-alkene moiety. 
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PFITZNER-MOFFATT OXIDATION
(References are on page 652)

Importance:

[Seminal Publications1-3; Reviews4-9; Modifications & Improvements10-18]

In 1963, J.G. Moffatt and K.E. Pfitzner observed that primary and secondary alcohols were efficiently oxidized to the 
corresponding aldehydes and ketones in a solution of dimethyl sulfoxide (DMSO) upon the addition of dicyclohexyl 
carbodiimide (DCC) and catalytic amounts of anhydrous phosphoric acid (H3PO4).1 This transformation is known as 
the Pfitzner-Moffatt oxidation (Moffatt oxidation) and falls into the general category of activated dimethyl sulfoxide 
mediated oxidations.8,9 The scope and limitation of the P-M oxidation was quickly established, and it was clear that 
this procedure was a good alternative to chromium(VI)-based oxidations (using PCC and PDC) to oxidize sensitive 
alcohol substrates under mild and weakly acidic condition.2,3 The general features of the reactions are: 1) the 
necessary reagents are all inexpensive and easy to handle, and the execution of the oxidation does not require 
special equipment; 2) the yield of the product is generally high on both small and large scale; 3) there are only a few 
side reactions: the occasional formation of methylthiomethyl ether by-products and the isomerization of β,γ-
unsaturated carbonyl compounds under the reaction conditions; 4) most functional groups are tolerated, but 
unprotected tertiary alcohols are often eliminated; 5) DCC is the most widely used activating agent that needs to be 
applied in excess (usually 3 equivalents or more); 5) the DMSO can serve as the solvent, but inert co-solvents (e.g., 
EtOAc, benzene) can also be used to make the isolation of the product easier; 6) the oxidation only works with 
catalysts that are only moderately acidic compounds such as ortho-phosphoric acid (H3PO4), dichloroacetic acid and 
the pyridinium salts of strong acids; and 7) in the presence of strong organic and mineral acids, the oxidation is very 
slow or it does not take place at all. The main drawbacks of the P-M oxidation are: 1) the by-product dialkyl urea is 
often difficult to remove from the product completely, but the use of water soluble or polymer-bound carbodiimides 
resolves any purification problem;15 and 2) the excess DCC has to be removed from the product as well, but this 
issue can be resolved by the addition of oxalic acid during the work-up. Other well-known ways to activate DMSO 
involve the use of: 1) acetic anhydride (Albright and Goldman procedure);13 2) pyridine-SO3 complex (Parikh-Doering 
oxidation);14 and 3) oxalyl chloride or trifluoroacetic anhydride (Swern oxidation).16,17

Mechanism: 2,19,20,6,21,8,9

The mechanism of the P-M oxidation consists of three distinct steps: 1) activation of the DMSO by a protonated 
dialkyl carbodiimide; 2) activation of the alcohol substrate and the formation of the key alkoxysulfonium ylide 
intermediate; and 3) the intramolecular decomposition of the alkoxysulfonium ylide to afford the product ketone or 
aldehyde and the dialkyl urea by-product (established by isotopic labeling studies). The alkoxysulfonium ylide is a 
common intermediate in all other oxidations using activated DMSO.  
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PFITZNER-MOFFATT OXIDATION

Synthetic Applications:

The first total synthesis of the nucleoside antibiotic herbicidin B was accomplished in the laboratory of A. Matsuda.22

The key step was a novel aldol-type C-glycosidation reaction promoted by SmI2 between a 1-phenylthio-2-ulose 
derivative and a 1-β-D-xylosyladenine-5'-aldehyde derivative. During the preparation of the phenylthio sugar subunit, 
the Moffatt oxidation was applied to convert the primary alcohol to the corresponding aldehyde, which was 
immediately oxidized with PDC in DMF/MeOH to the methyl ester. The reaction conditions were completely 
compatible with the silyl protecting group as well as the thioacetal functionality. 

The Moffatt oxidation was utilized in the endgame of the total synthesis of (+)-paspalicine by A.B. Smith et al.23 The 
advanced intermediate hexacyclic homoallylic alcohol was subjected to the Moffatt oxidation conditions using 
pyridinium trifluoroacetate as the acid catalyst. Under these conditions, the desired β,γ-unsaturated ketone and the 
rearranged α,β-unsaturated ketone (paspalicine) were formed in a 5:1 ratio. The final step was the Rh-catalyzed 
isomerization of the β,γ-unsaturated ketone to the natural product. 

The complex polyene hydroxyl-substituted tetrahydrofuran metabolite (±)-citreoviral was synthesized by G. Pattenden 
and co-workers.24 All four carbons on the tetrahydrofuran ring are chiral, and in the final stages of the synthetic effort 
the stereochemistry of the C3 secondary homoallylic alcohol had to be inverted. This step was best achieved by a 
Moffatt oxidation/NaBH4 reduction sequence. 

The total synthesis of the antimicrobial drimane-type sesquiterpene (–)-pereniporin A was achieved by the research 
team of K. Mori.25 The advanced intermediate bicyclic primary alcohol was first oxidized to the corresponding 
aldehyde using the Moffatt oxidation. Interestingly, the sensitive α-hydroxy aldehyde moiety in the product remained 
unchanged. The final step was a global deprotection followed by a spontaneous lactol formation. 
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PICTET-SPENGLER TETRAHYDROISOQUINOLINE SYNTHESIS
(References are on page 652)

Importance:

 [Seminal Publications1; Reviews2-13; Modifications & Improvements14-27; Theoretical Studies28]

In 1911, A. Pictet and T. Spengler reported the condensation of phenylethylamine and methylal (dimethoxymethane) 
in concentrated hydrochloric acid to afford 1,2,3,4-tetrahydroisoquinoline in moderate yield.1 The authors observed a 
similar transformation when tyrosine and phenylalanine were subjected to identical conditions. The condensation of a 
β-arylethylamine with a carbonyl compound in the presence of a protic or Lewis acid to give rise to a substituted 
tetrahydroisoquinoline is known as the Pictet-Spengler tetrahydroisoquinoline synthesis (or Pictet-Spengler reaction). 
The general features of the transformation are: 1) only β-arylethylamines with electron-donating substituents afford 
high yields; 2) the carbonyl compound can be an aldehyde or a ketone or any acid-labile surrogate; 3) the most 
frequently used aldehyde is formaldehyde or its dimethyl acetal; 4) the number of electron-donating groups on the 
aromatic ring influences the ease of the reaction, and, for example, the presence of two alkoxy groups allows the 
Pictet-Spengler reaction to proceed under physiological conditions (this is important in the biosynthesis of alkaloids); 
5) the reaction is usually carried out with a slight excess of the carbonyl compound (to ensure the complete 
consumption of the amine) in either protic or aprotic medium; and 6) since the reaction goes through the intermediacy 
of a Schiff base, the Schiff base can be prepared separately and subjected to a protic or Lewis acid to afford the 
cyclized tetrahydroisoquinoline product. 

Mechanism: 2,9

The first step of the Pictet-Spengler reaction is the formation of a Schiff base. The amine and aldehyde give rise to an 
aminal, which is dehydrated under acidic conditions to afford the corresponding imine. Protonation of the imine 
results in the formation of an iminium ion, which reacts with the electron-rich aromatic ring in a 6-endo-trig cyclization 
to afford the six-membered heterocycle. The same type of reactive intermediate is involved in the Bischler-Napieralski 
isoquinoline synthesis, but that cationic species is more electrophilic and the aromatic ring does not need to be 
activated to achieve cyclization. The loss of proton restores the aromatic ring, thus giving rise to the product. 
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PICTET-SPENGLER TETRAHYDROISOQUINOLINE SYNTHESIS

Synthetic Applications:

An important variant of the Pictet-Spengler reaction occurs when the aromatic substrate is an indole. In the laboratory 
of P.D. Bailey the enantioselective total synthesis of the indole alkaloid (–)-suaveoline was accomplished. The 
authors utilized a cis-selective Pictet-Spengler reaction.29 The indole substrate was mixed with an aliphatic aldehyde 
in dichloromethane in the presence of molecular sieves and stirred for more than two days. Once the formation of the 
Schiff base was complete, TFA was added at low temperature to bring about the cyclization. Interestingly, no trans
isomer of the carboline was generated and the cis isomer was isolated in high yield. Presumably the aromatic rings of 
the TBDPS protecting group interacted with the indole ring (π-stacking) during the cyclization causing the high 
observed cis-selectivity. 

The formal total synthesis of the pyranonaphthoquinone natural product (±)-deoxyfrenolicin was achieved by Y.-C. Xu 
and co-workers.30 The naphthopyran intermediate was prepared via the oxa-Pictet-Spengler reaction between a 
substituted naphthalene and dimethoxymethane in the presence of BF3·OEt2. The natural product has a 1,3-trans
relationship between the two substituents of the pyran ring, and surprisingly the use of an aliphatic aldehyde only 
gave rise to the 1,3-cis naphthopyran product. For this reason, the stereoselective introduction of the three carbon 
side chain was accomplished by a DDQ-induced oxidative carbon-carbon bond formation using allyltriphenyltin as the 
source of the allyl group. 

One of the key steps during the enantioselective total synthesis of the montanine-type alkaloid (+)-coccinine by W.H. 
Pearson et al. was the Pictet-Spengler reaction of a highly substituted perhydroindole intermediate.31 The substrate 
was exposed to the aqueous solution of formaldehyde in methanol in the presence of 6N hydrochloric acid. The 
cyclization took place overnight at reflux temperature to afford the pentacyclic product in moderate yield. It is worth 
noting that under the cyclization conditions the benzyl protecting group was removed. 

The research group of S.J. Danishefsky investigated model systems in an effort directed toward the total synthesis of 
ET 743 and its analogues.32 The stereoselective formation of the spiro stereocenter of the ABFGH subunit of ET 743 
was installed via a Pictet-Spengler reaction. The electron-rich phenylethylamine was mixed with a slight excess of the 
ketone substrate and the cyclization took place at room temperature in the presence of silica gel. 
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PINACOL AND SEMIPINACOL REARRANGEMENT
(References are on page 653)

Importance:

 [Seminal Publications1,2; Reviews3-15; Modifications & Improvements16-32; Theoretical Studies33-38]

In 1860, R. Fittig reported that treatment of pinacol (2,3-dimethylbutane-2,3-diol) with sulfuric acid gave pinacolone 
(3,3-dimethylbutane-2-one).1,39 The reaction was shown to be general for acyclic and cyclic vicinal diols (also known 
as glycols or 1,2-diols), which, upon treatment with catalytic amounts of acid, undergo dehydration with concomitant 
[1,2]-alkyl,- aryl- or hydride shift to afford ketones or aldehydes. This acid-catalyzed transformation of vicinal diols is 
known as the pinacol rearrangement. The general features of the reaction are: 1) virtually any cyclic or acyclic vicinal 
glycol can undergo the rearrangement, and, depending on the substitution pattern, aldehydes and/or ketones are 
formed; 2) when all four substituents are identical, the rearrangement yields a single product; 3) when the four 
substituents are not identical, product mixtures are formed; 4) the product is usually formed via the most stable 
carbocation intermediate when the glycol substrate is unsymmetrical; 5) the reaction can be highly regioselective and 
the regioselectivity is determined by the relative migratory aptitudes of the substituents attached to the carbon 
adjacent the carbocation center; 6) the substituent that is able to stabilize a positive charge better (better electron 
donor) tends to migrate preferentially; 7) the relative migratory aptitudes are: aryl ~ H ~ vinyl (alkenyl) > t-Bu >> 
cyclopropyl > 2° alkyl > 1° alkyl; 8) the pinacol rearrangement can also be stereoselective especially when complex 
cyclic vicinal diols are involved; 9) cyclic systems may rearrange via both ring-expansion and ring-contraction and the 
course of the rearrangement is strongly influenced by the ring size; 10) most often a cold aqueous solution of sulfuric 
acid (25% H2SO4) is used to effect the rearrangement; however, other acids such as perchloric acid and phosphoric 
acid have also been utilized;10 and 11) besides protic acids, Lewis acids (e.g., BF3·OEt2, TMSOTf) are also used. The 
drawbacks of the pinacol rearrangement are: 1) it is generally not easy to prepare complex vicinal diols; 2) in the case 
of unsymmetrical substrates, the regioselective formation of only one carbocation is usually not trivial, so product 
mixtures are obtained; 3) side reactions such as β-eliminations yielding dienes and allylic alcohols are often 
observed; 4) the intermediate carbocations may undergo equilibration; and 5) various conformational effects and 
neighboring group participation in cyclic systems are complicating factors. When one of the hydroxyl groups is 
converted to a good leaving group, the regioselective generation of the carbocation intermediate is possible. Similarly 
selective generation of carbocations can be realized when 2-heterosubstituted alcohols (e.g., halohydrins, 2-amino 
alcohols, 2-hydroxy sulfides, etc.) are used as substrates. The pinacol-type rearrangement of these compounds is 
referred to as the semipinacol rearrangement, a term first coined by M. Tiffeneau.2 Owing to its predictability and the 
mild reaction conditions, the semipinacol rearrangement is almost exclusively utilized in complex molecule synthesis. 

Mechanism: 40-54

The first step of the process is the protonation of one of the hydroxyl groups, which results in the loss of a water 
molecule to give a carbocation intermediate. This intermediate undergoes a [1,2]-shift to give a more stable 
carbocation that upon the loss of proton gives the product. The pinacol rearrangement was shown to be exclusively 
intramolecular, and both inversion and retention were observed at the migrating center. 
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PINACOL AND SEMIPINACOL REARRANGEMENT

Synthetic Applications:

The total synthesis of (±)-furoscrobiculin B, a lactarane sesquiterpene isolated from basidiomycetes of mushrooms, 
was accomplished in the laboratory of H. Suemune and K. Kanematsu using a furan ring transfer reaction and a 
semipinacol rearrangement as key steps.55 The secondary hydroxyl group of the tricyclic cis-vicinal diol substrate was 
converted to the corresponding tosylate that in situ underwent a ring-expansion reaction to afford an azulenofuran in 
good yield.  

G.R. Pettit and co-workers converted a highly substituted trans-stilbene derivative to the strong cancer cell growth 
inhibitor and antimitotic agent hydroxyphenstatin.56 The key step of the synthesis was a BF3·OEt2-catalyzed pinacol 
rearrangement of an optically active vicinal diol to afford a substituted diphenylacetaldehyde in racemic form. From 
this key intermediate, several derivatives were prepared in addition to the target molecule. 

During the total synthesis of (±)-fredericamycin A, the spiro 1,3-dione center was introduced by R.D. Bach et al. 
utilizing a mild mercury-mediated semipinacol rearrangement that involved a [1,2]-acyl shift.57 The indanone 
dithioacetal was reacted with 1,2-bis[(trimethylsilyl)oxy]cyclobut-1-ene in the presence of mercuric trifluoroacetate 
and the rearrangement took place in situ.

The stereocontrolled asymmetric total synthesis of protomycinolide IV was achieved, based on the organoaluminum-
promoted stereospecific semipinacol rearrangement, by K. Suzuki and co-workers.58 The excess DIBALH reduced 
the C2 carbonyl group to the corresponding aluminum alkoxide, which was immediately treated with one equivalent of 
Et3Al to bring about the [1,2]-alkenyl shift. The initially formed aldehyde was reduced by the excess reducing agent to 
afford the primary alcohol upon work-up. There was no E/Z isomerization of the alkenyl group. 
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PINNER REACTION
(References are on page 654)

Importance:

 [Seminal Publications1-3; Reviews4-8; Modifications & Improvements9-15]

In 1877, A. Pinner and Fr. Klein reported that when dry hydrogen chloride gas was bubbled through the mixture of 
benzonitrile and isobutanol, a crystalline compound was formed that was characterized as the addition product of all 
three reactants.1 A year later in 1878, a similar addition product was isolated by reacting hydrogen cyanide with 
absolute ethanol and HCl.2 The condensation of nitriles with alcohols and phenols in the presence of anhydrous 
hydrogen chloride or hydrogen bromide to afford imino ethers (also referred to as imidates or imino esters) is known 
as the Pinner reaction (or Pinner synthesis). The general features of this transformation are:4-8 1) the reactants are 
usually dissolved in an anhydrous solvent (e.g., benzene, chloroform, nitrobenzene, dioxane, etc.), and dry hydrogen 
chloride gas is bubbled through the solution at 0 C°; 2) if the reaction is conducted at higher than 0 C°, the product 
imino ether salt may decompose to give an amide and an alkyl halide; 3) in some cases the use of solvent tends to 
lower the yield of the product, so the neat reactants are simply mixed and treated with dry HCl gas; 4) the structure of 
the nitrile can vary widely so aliphatic, aromatic, and heteroaromatic nitriles are all good substrates; 5) when the 
nitrile is sterically hindered (e.g., ortho-substituted benzonitrile) the Pinner reaction may not take place; 6) the alcohol 
component is usually methanol and ethanol, but many primary and secondary alcohols have been used successfully; 
7) monohydric phenols also react, however, dihydric- or polyhydric phenols may undergo the Houben-Hoesch 
reaction  to afford aromatic ketones; 8) thiols and thiophenols also react with nitriles in an analogous fashion to form 
imino thioethers (thioimidates); 9) the initial product is usually the imino ether hydrohalide salt, which can be easily 
converted to the corresponding free imino ether by treatment with a weak base; 10) imino ethers are generally not 
very stable compounds, they undergo rapid hydrolysis to form esters when treated with water and acid (this is 
especially true for imino ethers generated by the reaction of aliphatic nitriles); 11) if the nitrile and alcohol are treated 
with aqueous hydrochloric acid, the esters are formed directly; 12) upon treatment with excess alcohol, imino ethers 
are converted to ortho esters (this can be a side reaction during the preparation when excess alcohol is used); and 
13) imino ether hydrohalide salts can be transformed into an amidine hydrohalide salt by treatment with ammonia. 

Mechanism: 16,17,6,18

Pinner (1877):

CN
+

HO
HCl (dry)
(2 equiv)

2d
C

O

N
H H Cl

·HCl

Pinner (1878):

H C N
+

EtOH
(excess)

HCl (dry)

H
C

O

N
H H Cl

Pinner reaction:

R1 C N + R2 OH
HX (dry)

solvent R1 C
O

N
H H

R2

X

Imino ether
hydrohalide salt

nitrile alcohol or
phenol

R1 C N + R2 SH
HX (dry)

solvent R1 C
S

N
H H

R2

X

Imino thioether
hydrohalide salt

nitrile thiol or
thiophenol

weak base/H2O
R1 C

O

NH
R2

Imino ether

R1 C
O

O
R2

Ester

weak
base
H2O

Imino thioether
R1 C

NH2

N
H H X

acid
H2O

Amidine hydrohalide salt

NH3/solvent

benzonitrile isobutanol

R1 = H, alkyl, aryl; R2 = Me, Et, 1° and 2° alkyl, aryl; HX = HCl, HBr; solvent: CHCl3, benzne, nitrobenzene, dioxane, (EtOH, 
MeOH); base: NaHCO3, Na2CO3; acid: HCl, H2SO4

R1 C
S

NH
R2

C NR1 H X C NR1 H C NR1 H

nitrilium ion
nitrile

C NR1 H

X
imino halideiminium ion

- X + X

C
N

R1

H
R2

OH R1 C
O

N
H

R2

H

P.T.C NR1 H

X
imino halide

- X

+ X R1 C
O

N
H H

R2

X



353

PINNER REACTION

Synthetic Applications:

The first stereoselective total synthesis of AI-77B, a gastroprotective substance, was accomplished by Y. Hamada 
and co-workers.19 In the final stages of the synthetic effort, the intramolecular Pinner reaction was utilized to convert 
the cyano group into the corresponding carboxylic acid. The nitrile substrate was dissolved in 5% HCl in methanol, 
and excess trimethyl orthoformate was added at 5 °C and the reaction mixture was stirred at this temperature for 
almost two days. Next, the cyclic imino ether hydrochloride salt was treated with water at room temperature followed 
by basic hydrolysis. Finally, the pH was adjusted with HCl to obtain the natural product. 

In the laboratory of R.B. Grossman both the putative and the actual structure of the naturally occurring clerodane 
diterpenoid (±)-sacacarin was prepared.20 A cyclic geminal dinitrile intermediate was subjected to the conditions of 
the Pinner reaction by passing dry HCl gas through the solution of the substrate in absolute ethanol at room 
temperature. Under these conditions, only the equatorial cyano group was converted to the imino ethyl ether 
hydrochloride salt. Most likely the axial cyano group was too sterically hindered, therefore it did not react. The imino 
ether then was hydrolyzed with concentrated aqueous hydrochloric acid to give the corresponding ethyl ester. 

The synthesis of enantiomerically pure nonpeptidic inhibitors of thrombin, a key serine protease in the blood-
coagulation cascade, was carried out by F. Diederich et al.21 These ligands have a conformationally rigid tricyclic 
core, and the appended substituents fill the major binding pockets at the thrombin active site. The required amidine 
functionality on the aromatic ring of one of these inhibitors was prepared from the corresponding aromatic nitrile via
the Pinner reaction. The substrate was dissolved in a mixture of dry methanol and chloroform, and dry HCl gas 
bubbled through the solution for 10 minutes until saturation. The reaction mixture then was stored at 4 °C for one day, 
and then the imino ether was isolated by filtration. The methanolic solution of ammonia was added to the solution of 
the imino ether in methanol, and the resulting solution was heated at 65 °C for a few hours to achieve complete 
conversion to the amidinium salt. 
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PINNICK OXIDATION
(References are on page 655)

Importance:

 [Seminal Publications1-4; Reviews5; Modifications & Improvements6,5,7]

The oxidation of aldehydes to the corresponding carboxylic acids is a very important transformation in organic 
synthesis. Until the early 1970s most methods required expensive reagents and complex reaction conditions, the 
functional group tolerance was limited, and the selectivities were low. In 1973, B.O. Lindgren was the first to apply  
the inexpensive sodium chlorite (NaClO2) in combination with hypochlorous acid (HClO) and scavengers (e.g., 
sulfamic acid, resorcinol) to convert vanillin to the corresponding vanillic acid under mild conditions.1 The HClO is 
formed as a by-product of the oxidation process, and it can cause side reactions such as consumption of the NaClO2
to form chlorine oxide (ClO2) or reacting with C=C double bonds. A few years later, G.A. Kraus and co-workers were 
the first to use 2-methyl-2-butene as a scavenger under buffered conditions for the oxidation of an aliphatic- and an 
α,β-unsaturated aldehyde.2,3 In 1981, H.W. Pinnick showed that the NaClO2/2-methyl-2-butene system was generally 
applicable to the oxidation for a wide range of α,β-unsaturated aldehydes without affecting any of the double bonds 
present. Today, this transformation of aldehydes (aliphatic, aromatic, saturated, or unsaturated) to the corresponding 
carboxylic acids is referred to as the Pinnick oxidation.4 The general features of the reaction are: 1) in a typical 
procedure, the aldehyde is dissolved in tert-butanol (often in combination with another solvent such as THF) along 
with the large excess of the scavenger followed by the dropwise addition of the aqueous solution of sodium 
dihydrogen phosphate buffer (NaH2PO4) and NaClO2 at room temperature; 2) the scavenger is most often 2-methyl-
2-butene, which has to be added in large excess (caution: the boiling point is low therefore the container should be 
cold before opening); 3) to ensure a constant pH value, the use of several equivalents of NaH2PO4 is recommended; 
4) usually slightly more than one equivalent of NaClO2 is necessary, which should be dissolved in water (by itself or 
together with the phosphate buffer) only prior to the oxidation, since exposure to light or the presence of impurities 
(e.g., Fe2+ and Fe3+ complexes) tend to decompose the reagent;8 5) with certain substrates the purity of the reagents 
is crucial, and the oxidation sometimes stops after a few percent of conversion:9 a) due to the sensitivity/instability of 
the NaClO2 in acidic medium in the presence of transition metal complexes the use of a steel needle for the addition 
of the oxidant should be avoided (use a Pasteur pipette instead); b) neat 2-methyl-2-butene or 2M solution in THF 
should be used instead of the 90% technical grade reagent; 6) when 2-methyl-2-butene is used as the scavenger, 
none of the double bonds in the substrate will be chlorinated, but with other scavengers, such as H2O2, side reactions 
involving isolated double bonds do occur; 7) stereocenters at the α-position of aldehydes are unaffected; and 8) 
functional group tolerance is excellent, and hydroxyl groups do not need to be protected. 

Mechanism: 10,6
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PINNICK OXIDATION

Synthetic Applications:

The total synthesis of the complex bioactive indole alkaloid ditryptophenaline, having two contiguous quaternary 
stereocenters related by C2 symmetry, was accomplished in the laboratory of L.E Overman.11 In the late stages of the 
synthetic effort the complex diol substrate was oxidized to the dicarboxylic acid using a two-step procedure: first, a 
Dess-Martin oxidation to the dialdehyde followed by the Pinnick oxidation. The mild reaction condition ensured that 
the integrity of the stereocenters at the α-positions was preserved. 

A novel triple oxidation procedure was applied by A. Armstrong et al. to install the tricarboxylic acid moiety during the 
total synthesis of (+)-zaragozic acid C.12 The bicyclic triol substrate was first exposed to the Swern oxidation
conditions to afford the corresponding trialdehyde. Several different oxidations (e.g., Jones oxidation, modified Ley 
oxidation) were tried on the crude trialdehyde to convert it to the triacid, but all of these attempts resulted in a 
complex mixture of products. A clean and high-yielding solution to this problem was to use the Pinnick oxidation that 
gave rise to the desired triacid. Esterification to the tri-tert-butyl ester was conducted by using N,N-diisopropyl-O-tert-
butylisourea in dichloromethane. 

The formal total synthesis of the selective muscarinic receptor antagonist (+)-himbacine was accomplished by M.S. 
Sherburn and co-workers using an intramolecular Diels-Alder reaction, a Stille cross-coupling, and a 6-exo-trig acyl 
radical cyclization as the key steps.13 In order to prepare the selenoate ester precursor for the radical cyclization step, 
the aldehyde-enyne substrate was converted to the carboxylic acid via the Pinnick oxidation without affecting the 
delicate enyne moiety. 
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POLONOVSKI REACTION
(References are on page 655)

Importance:

 [Seminal Publications1,2; Reviews3-9; Modifications & Improvements10-16]

In 1927, the Polonovski brothers reported that certain alkaloid N-oxides, upon treatment with acetic anhydride or 
acetyl chloride, underwent a rearrangement in which one of the alkyl groups attached to the nitrogen was cleaved 
and the N-acetyl derivative of the alkaloid was obtained.1 For several decades, the procedure was used, almost 
exclusively, for the N-demethylation of tertiary amines because it took place under much milder conditions than other 
methods available at the time. The activation of tertiary amine N-oxides with acyl halides or anhydrides to form the 
corresponding iminium ion intermediates is known as the Polonovski reaction. The general features of the reaction 
are: 1) the N-oxide substrates are usually prepared from the corresponding tertiary amines by oxidation; 2) the 
activation of N-oxides is effected by acyl halides or anhydrides, but in the majority of the cases acetic anhydride 
(Ac2O) is used; 3) when trifluoroacetic anhydride (TFAA) is used, the reaction proceeds under mild reaction 
conditions (Polonovski-Potier reaction) and the reaction can be stopped at the iminium ion stage;10,6 4) besides 
anhydrides, various iron salts and sulfur dioxide can be used as activating agents;11,12 5) when formic-acetic or 
formic-pivalic anhydride is employed as the acylating agent, the N-oxide is simply reduced to the amine;17,18 6) the 
initially formed iminium ions are versatile intermediates (e.g., Mannich and Pictet-Spengler reactions), which can be 
converted to other important classes of compounds such as enamines, tertiary amides and/or secondary amines, and 
aldehydes;8,9 7) depending on the nature of the activating agent and the reaction conditions, there are two main 
reaction pathways available for the iminium ions: A) reaction with a nucleophile at the α carbon or B) Grob-type Cα-Cβ
cleavage to afford alkenes and new iminium ions (only when it is activated by an adjacent electron-donating center 
and the Cα-Cβ bond is antiperiplanar with the N-O bond);8,9 8) when more than one group attached to the nitrogen has 
a hydrogen at the α position, regioisomeric iminium ions are formed; however, the regioselectivity can be controlled, 
and the thermodynamically more stable iminium ion is formed with TFAA, while with Ac2O the kinetically more acidic 
α position is deprotonated; 9) the acidity of the α C-H bond is increased if R1=EWG; 10) when the 3° amine N-oxide 
is cyclic, the reaction takes place only for five- and six-membered rings, and the endocyclic iminium ions are formed 
in preference to exocyclic ones; and 11) when the iminium ion is too reactive, the corresponding α-cyanoamines 
(iminium ion equivalents) can be prepared in high yield.13,16

Mechanism: 19-22,8,9,23,24

The conversion of the O-acylimonium salt to the imine proceeds via an E2-type elimination. The hydrogen that is 
antiperiplanar to the N-O bond is usually removed preferentially. When the N-oxide is activated with iron salts, a SET 
mechanism is operational, while with SO2 an intramolecular ionic mechanism is most likely.11,12
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POLONOVSKI REACTION

Synthetic Applications:

In the laboratory of J. Kobayashi, the biomimetic one-pot transformation of serratinine into serratezomine A was 
accomplished using the Polonovski-Potier reaction.25 Serratinine was first treated with m-chloroperbenzoic acid to 
obtain the N-oxide, and then excess TFAA was added. The iminium ion was formed in the following fashion: the C13 
hydroxyl group formed a hemiacetal with the C5 carbonyl group and simultaneously with the formation of the C5-C13 
lactone the C4-C5 bond was broken. The iminium ion was then reduced with sodium cyanoborohydride to afford the 
tertiary amine functionality. Besides serratezomine A, another lactone (between the C8 hydroxyl and C5 carbonyl) 
was formed in 27% yield. 

The total synthesis of (±)-dynemicin A was achieved by S.J. Danishefsky et al.26 As part of the synthetic studies, 
highly sensitive enediyne containing quinone imine systems were prepared, and their biological properties were 
evaluated. The first step in the sequence leading to one such quinone imine began with the oxidation of the nitrogen 
of the phenanthridine substrate, and the resulting N-oxide was heated in neat acetic anhydride to induce the 
Polonovski reaction.

The naturally occurring sulfonamide (–)-altemicidin is the first 6-azaindene monoterpene alkaloid isolated as a 
metabolite of microorganisms. A.S. Kende utilized the Polonovski-Potier reaction in the key step to introduce the 
carbamoyl enamine functionality.27 The tertiary amine was oxidized to the N-oxide by H2O2 followed by treatment with 
excess TFAA to afford the desired vinylogous trifluoromethyl amide. 

The core nucleus of the mitomycinlike antitumor agent FR-900482 was synthesized by F.E. Ziegler and co-workers.28

The selective oxygenation of the C9a position was achieved by the Polonovski reaction.
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POMERANZ-FRITSCH REACTION
(References are on page 655)

Importance:

 [Seminal Publications1-5; Reviews6-11; Modifications & Improvements12-19]

In 1893, C. Pomeranz and P. Fritsch independently reported a new synthesis of isoquinoline by heating a 
benzalaminoacetal, prepared by the condensation of benzaldehyde and 2,2-diethoxyethylamine, in concentrated 
sulfuric acid.1,2 During the 1890s, these authors successfully prepared a wide range of structurally diverse 
isoquinolines.3-5 The acid-catalyzed cyclization of benzalaminoacetals (these are Schiff bases) to give substituted 
isoquinolines is known as the Pomeranz-Fritsch reaction. The general features of the transformation are: 1) the 
benzalaminoacetals are prepared by reacting 2,2-dialkoxyethylamines with substituted aromatic aldehydes or rarely 
with aromatic ketones; 2) the structural variation of the 2,2-dialkoxyethylamines is very restricted, and, in the 
overwhelming majority of the cases, the dimethyl or diethyl acetals are used without any substituents on the C1 
carbon (C1-substituted analogues tend to fail to undergo the reaction); 3) aromatic aldehydes give rise to C1-
unsubstituted isoquinolines, usually in good yield, while aromatic ketones afford C1-substituted isoquinolines albeit in 
low yield; 4) the highest yields are obtained when the substituents on the aromatic ring are electron-donating; 5) 
strongly electron-withdrawing substituents (e.g., NO2) on the aromatic ring prevent the formation of isoquinolines and 
the corresponding oxazoles are obtained instead;20 6) when both of the ortho-positions (relative to the carbonyl 
group) are unoccupied, a regioisomeric mixture of isoquinolines is obtained; 7) the most commonly used protic acids 
are sulfuric acid and hydrochloric acid, but Lewis acids such as BF3·OEt2, trifluoroacetic anhydride and lanthanide 
triflates have been used occasionally;15,17 8) unless the aromatic ring is highly electron-rich, heating of the reaction 
mixture is required in order to achieve cyclization. Two of the most important modifications are: 1) when a substituted 
benzylamine is condensed with glyoxal hemiacetal, the resulting Schiff base is efficiently cyclized to give the 
corresponding C1-substituted isoquinoline (Schlittler-Müller modification);12 2) hydrogenation of the benzal-
aminoacetal and the acid-catalyzed cyclization of the resulting amine gives rise to a tetrahydroisoquinoline (Bobbitt-
modification).13,21,19

Mechanism: 20,7
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POMERANZ-FRITSCH REACTION

Synthetic Applications:

The Bobbitt modified Pomeranz-Fritsch reaction allows the preparation of enantiopure tetrahydroisoquinolines. During 
the studies directed toward the total synthesis of ET 743 and its analogues, S.J. Danishefsky and co-workers utilized 
this transformation for the preparation of a key tetrahydroisoquinoline intermediate.22 The cyclization precursor was 
efficiently synthesized from the enantiopure benzylamine derivative by N-alkylation with excess diethylbromoacetal. 
The resulting compound was subjected to 6N hydrochloric acid at 0 °C and slowly warmed to ambient temperature 
overnight. The desired tetrahydroisoquinoline was formed as a 4:1 mixture of diastereomers. 

The total synthesis of (±)-4-hydroxycrebanine was accomplished by J.-I. Kunitomo et al., who used the Bobbitt 
modification of the Pomeranz-Fritsch reaction as the key ring-forming step.23 The aromatic ketone substrate was first 
condensed with aminoacetaldehyde diethylacetal to afford a Schiff base that was immediately reduced to the 
corresponding amino compound in high yield. Exposure of this intermediate to concentrated HCl for several days 
gave rise to the tetrahydroisoquinoline as a mixture of two diastereomers.  

The shortest synthesis of papaverine was achieved in the laboratory of R. Hirsenkorn starting from racemic stilbene 
oxide and using a modified Pomeranz-Fritsch reaction.24 The aminolysis of the stilbene oxide led to the formation of 
the cyclization precursor, which upon treatment with excess benzoyl chloride, underwent cyclization to give the N-
benzoyl 1,2-dihydroisoquinoline derivative. Reduction under Wolff-Kishner conditions afforded papaverine. 

The asymmetric variant of the Pomeranz-Fritsch reaction was used by D. Rozwadowska and co-workers in the total 
synthesis of (–)-salsolidine.21
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PRÉVOST REACTION 
(References are on page 656)

Importance:

 [Seminal Publications1-3; Reviews4-7; Modifications & Improvements8-16]

In 1933, C. Prévost reported that the treatment of styrene with silver benzoate and iodine (I2) in dry benzene gave the 
dibenzoate ester of the corresponding glycol that upon hydrolysis afforded the 1,2-diol.1 This two-step transformation 
of olefins leads to 1,2-trans diols, and it is referred to as the Prévost reaction. The general features of this reaction 
are: 1) both acyclic and cyclic alkenes are good substrates; 2) the initial products are diastereomeric trans-1,2-
dicarboxylates, which are hydrolyzed under basic conditions to the trans-1,2-diols (anti products); 3) in rigid cyclic 
systems the reaction is highly diastereoselective; 4) the most commonly used reagent is silver benzoate (R=Ph), but 
this can be replaced with other silver carboxylates or thallium(I)acetate;11 5) when conjugated and isolated double 
bonds are both present in the molecule, the dihydroxylation usually takes place on the isolated double bond. The 
most important modification of the Prévost reaction was introduced by Woodward and Brutcher, who used wet acetic 
acid to obtain cis-1,2-diols. This modification was based on the observation by Winstein et al., who reported the 
erosion of trans selectivity of the Prévost reaction by small amounts of water.17,18

Mechanism: 17-20

The first step of the Prévost reaction is the reaction of the alkene with iodine to form the cyclic iodonium ion. Next, the 
iodonium ion is stereospecifically opened by the silver carboxylate to form the corresponding trans-1,2-iodo 
carboxylate. The iodine is displaced intramolecularly by the carbonyl group of the carboxylate (anchimeric assistance) 
to form a cyclic cationic intermediate. In the absence of water, this cation is opened with the inversion of configuration 
by the second equivalent of silver carboxylate to afford the trans-1,2-dicarboxylate. However, in the presence of water 
(Woodward-Brutcher modification) the common intermediate is converted to a cis-orthocarboxylate which is 
hydrolyzed to the corresponding cis-1,2-diol. 
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PRÉVOST REACTION

Synthetic Applications:

In the laboratory of S. Kumar, the synthesis of phenolic derivatives of trans-7,8-dihydroxy -7,8-
dihydrobenzo[a]pyrene, a highly tumorigenic compound, was accomplished.21 The trans-vicinal diol functionality was 
introduced by using the "dry" Prévost conditions. The alkene was subjected to a mixture of iodine and silver benzoate 
in dry refluxing benzene to give a good yield of the corresponding trans-7,8-dibenzoate derivative.

The total synthesis of (–)-SS20846A, a 2-alkyl-4-hydroxypiperidine natural product exhibiting antibacterial and 
anticonvulsant properties, was achieved by C.R. Johnson and co-workers.22 The key transformations included an 
alkene metathesis for the preparation of the piperidine ring and the Prévost reaction for the installation of the 4-
hydroxy substituent. 

The key steps in the first total synthesis of (±)-momilactone A by P. Deslongchamps et al. were a highly 
diastereoselective transannular Diels-Alder cycloaddition and the Prévost reaction.23 The β-ketolactone moiety was 
installed by first treating the tricyclic alkene with N-bromo acetamide and silver acetate to obtain the trans
bromoacetate with excellent diastereoselectivity. The cis stereochemistry of the lactone was achieved a few steps 
later by the intramolecular nucleophilic displacement of the bromide with the carboxylate ion on the adjacent six-
membered ring. 

The Woodward-Brutcher modification of the Prévost reaction was used by P.T. Lansbury to install the cis vicinal diol 
moiety of (±)-2,3-dihydrofastigilin C.24 The cis vicinal diacetate was formed in high yield and with good 
diastereoselectivity (5:1) when the reaction was conducted in wet acetic acid. 
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PRILEZHAEV REACTION
(References are on page 656)

Importance:

[Seminal Publications1-3; Reviews4-12; Modifications & Improvements13-23; Theoretical Studies24-33]

In 1909, N. Prilezhaev was the first to use peroxycarboxylic acids to oxidize isolated double bonds to the 
corresponding oxiranes (epoxides).1 This transformation is referred to as the Prilezhaev reaction. The use of 
peroxyacids for the preparation of epoxides is one of the most widely used methods unless the epoxide is needed in 
an enantiomerically pure form for which other methods are available (e.g., Sharpless, Jacobsen, and Shi asymmetric 
epoxidation). The general features of the Prilezhaev reaction are: 1) the reaction is stereospecific, since the 
stereochemistry of the alkene substrate is retained in the epoxide product (trans alkene yields the trans epoxide, 
while cis alkene affords cis epoxide); 2) the reaction rate increases if the substituents on the alkene are electron-
donating and decreases if they are electron-withdrawing; 3) an electron-withdrawing substituent (R5) on the 
peroxyacid increases the rate of epoxidation; 4) substrates with multiple isolated double bonds can be epoxidized 
regioselectively, since the more electron-rich double bond reacts faster with the peracid (terminal alkenes are the 
least reactive, so a disubstituted alkene is selectively epoxidized in the presence of a terminal one); 5) alkenes that 
have preexisting chiral centers theoretically give rise to two diastereomeric epoxides, but in practice high diastereo-
selectivities may be achieved by preferentially epoxidizing the less sterically hindered face of the alkene (substrate-
directed synthesis);34 6) alkenes with no chiral centers give rise to a 1:1 mixture of enantiomeric epoxides (racemic 
mixture); 7) the steric demand of the peroxyacid is almost negligible, so even very sterically hindered substrates may 
be epoxidized; 8) cup-shaped molecules are usually epoxidized from the less hindered convex side; 9) if a functional 
group adjacent to the double bond can coordinate to the peroxyacid, the natural steric bias will be overridden and the 
epoxidation will occur from that face of the double bond where the coordinating functional group is located (e.g., 
OH>CO2H>CO2R>OCOR) and this phenomenon is called the neighboring group effect; 10) the reagent peroxyacids 
can be prepared (by reacting carboxylic acids with hydrogen peroxide) or purchased from commercial sources; 11) 
most widely used peroxyacid is mCPBA, which is a relatively stable solid with good solubility in most organic 
solvents; 12) less frequently used (and not very stable) peroxyacids are generated in situ (e.g., peroxyacetic and 
performic acid); 13) the peroxyacids are much less acidic than the carboxylic acids, so acid-catalyzed side reactions 
(e.g., epoxide ring-opening) are rare; 14) when the product is very acid sensitive, the reaction mixture needs to be 
buffered since the by-product is a strong carboxylic acid; 15) epoxidations with mCPBA are usually carried out at or 
below ambient temperature, and a mildly basic work-up ensures the removal of the benzoic acid by-product from the 
epoxide product; 16) the reaction tolerates most functional groups, but free amines are readily oxidized, so they must 
be protected; 17) ketones may undergo a competing Baeyer-Villiger oxidation; 18) α,β-unsaturated esters are 
epoxidized, while α,β-unsaturated ketones remain unchanged under the reaction conditions; and 19) alkynes react 
103 times slower than alkenes, so alkenes are selectively epoxidized in the presence of alkynes. When the use of 
peroxyacids is not suitable for the substrates or the products, alternative epoxidizing agents may be applied:11 1) 
peroxycarboximidic acids (by mixing nitriles with H2O2);13,19 2) magnesium monoperoxyphthalate hexahydrate 
(MMPP);16 3) dimethyldioxirane or dialkyldioxiranes;17,23 4) alkyl hydroperoxides in the presence of a transition metal 
catalyst;35 5) molecular oxygen and light (photoepoxidation);15 and 6) inorganic peroxo acids (e.g., peroxoselenic 
acid).10,11

Mechanism: 36,7,37-47

The Prilezhaev reaction is stereospecific, and a syn addition of the oxygen to the double bond is observed in all 
cases. This observation supports the assumption that the epoxidation of alkenes by peroxyacids is a concerted 
process. The reaction takes place at the terminal oxygen atom of the peroxyacid, and the π HOMO of the olefin 
approaches the σ* LUMO of the O-O bond at an angle of 180° (butterfly transition structure).  
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PRILEZHAEV REACTION

Synthetic Applications:

A diastereoselective epoxidation of a tetrasubstituted double bond was accomplished with mCPBA in the total 
synthesis of (–)-21-isopentenylpaxilline by A.B. Smith et al.48 The tetracyclic lactone substrate containing the 
tetrasubstituted double bond was exposed to mCPBA in toluene at room temperature. The reaction mixture also 
contained sodium bicarbonate to neutralize the by-product m-chloro benzoic acid. The epoxidation exclusively took 
place from the less hindered α-face of the molecule. At a later stage, this epoxide was converted to the γ-hydroxy 
enone moiety present in the natural product. 

During the first total synthesis of briarellin diterpenes, briarellins E and F, L.E. Overman and co-workers utilized the 
large reactivity difference between a triple and a double bond in peroxyacid oxidations to selectively epoxidize a 
trisubstituted double bond in the presence of a terminal alkyne.49 The epoxidation with mCPBA was carried out in 
DCM in the presence of a base to afford the α-epoxide in a 9:1 diastereomeric ratio. 

The hydroxyl group-directed epoxidation was utilized by M. Isobe et al. in their total synthesis of 11-
deoxytetrodotoxin.50 The six-membered cyclic allylic alcohol was treated with mCPBA in the presence of a phosphate 
buffer to afford an almost quantitative yield of the desired β-epoxide.  

The final step in J. Mulzer's total syntheses of epothilones B and D was the oxidation of the C12-C13 double bond of 
epothilone D via a highly diastereoselective Prilezhaev reaction to obtain epothilone B.51  The same mCPBA 
oxidation endgame was chosen by R. E. Taylor et al. in the total synthesis of these two natural products.52
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PRINS REACTION
(References are on page 658)

Importance:

 [Seminal Publications1-4; Reviews5-8; Modifications & Improvements9-14; Theoretical Studies15]

In 1899, O. Kriewitz reported that upon heating with paraformaldehyde in a sealed tube, β-pinene gave rise to an 
unsaturated alcohol (nopol).1,2 It was not until two decades later that H.J. Prins conducted the first comprehensive 
study on the sulfuric acid-catalyzed reactions of various alkenes (e.g., styrene, pinene, camphene) with 
formaldehyde.3,4 In his honor, the acid-catalyzed condensation of alkenes with aldehydes is referred to as the Prins
reaction. The general features of the reaction are: 1) potentially a large number of different products can be formed; 
however, the careful control of the reaction conditions allows the formation of a given product with good selectivity; 2) 
besides allylic alcohol products, the formation of 3-substituted alcohols, 1,3-diols, and 1,3-dioxanes is possible, 
depending on what type of nucleophilic species are present in the reaction mixture; 3) a variety of protic and Lewis 
acids may be employed to catalyze the reaction: H2SO4, HCl, HOCl, HNO3, p-TsOH, BF3, AlCl3, ZnCl2, TiCl4, etc.; 4) 
when the reaction is conducted under anhydrous conditions, the carbonyl ene reaction takes place (See Ene
reaction), and the corresponding homoallylic alcohols are formed exclusively; 5) the reaction is fastest with 
formaldehyde and with highly substituted alkenes; 6) both acyclic and cyclic alkenes are substrates for the 
transformation; 7) the addition of the protonated aldehyde across the double bond of the alkene follows 
Marknovnikoff's rule, and the fate of the resulting carbocation determines what type of products are formed; and 8) 
with cyclic alkenes, the products often have anti stereochemistry due to neighboring group participation. 
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PRINS REACTION

Synthetic Applications:

Studies toward the biomimetic total synthesis of (+)-chatancin were conducted by P. Deslongchamps et al.30 The 
authors planned to use a transannular Diels-Alder reaction of a pyranophane intermediate as the key ring forming 
step. The cyclic dienedione precursor for this transformation was prepared using the Prins reaction on a substrate 
derived from trans-trans farnesol. 

The tandem Mukaiyama aldol reaction-Prins cyclization was utilized during the formal total synthesis of 
leucascandrolide A by S.D Rychnovsky.31 The addition of the activated aldehyde to the enol ether resulted in the 
formation of an oxocarbenium ion, which was captured intramolecularly by the allylsilane moiety to form a new 
tetrahydropyran ring. The reduction of the crude reaction mixture with NaBH4 was performed to remove the unreacted 
aldehyde starting material, thereby facilitating the chromatographic purification of the product. The product was 
isolated as a 5.5:1 mixture of epimers at C9.  

In the laboratory of R.D. Rychnovsky, the segment-coupling Prins cyclization was utilized for the total synthesis of (–)-
centrolobine.32 This approach avoided the common side reactions, such as side-chain exchange and partial 
racemization by reversible 2-oxonia Cope rearrangement, associated with other Prins cyclization reactions. The 
substrate -acetoxy ether was subjected to SnBr4 in DCM, which brought about the formation of the all-equatorial 
tetrahydropyran in good yield.  

The stereoselective total synthesis of ( )-isocycloseychellene was achieved by S.C. Welch and co-workers.33 One of 
the key ring forming reactions was an oxidative Prins reaction that took place without the need of a catalyst (carbonyl 
ene reaction) to afford the desired tricyclic ketone. 
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PRINS-PINACOL REARRANGEMENT
(References are on page 658)

Importance:

 [Seminal Publications1-6; Reviews7-9; Modifications & Improvements10-14]

In 1969, G. Mousset and co-workers attempted to prepare the acetonide of a meso allylic 1,2-diol by refluxing it with 
acetone in the presence of an acidic clay catalyst.1 To their surprise, instead of the expected acetal, they isolated a 
highly substituted tetrahydrofuran derivative. The authors proposed that the acetone condensed with the diol to give 
an oxocarbenium ion that underwent a Prins cyclization to afford a β-hydroxy carbenium ion intermediate, which gave 
rise to the tetrahydrofuran derivative via a pinacol rearrangement. Almost two decades later in 1987, L.E. Overman et 
al. investigated the Lewis acid mediated rearrangement of 4-alkenyl-1,3-dioxolanes (allylic acetals) to afford 3-
acyltetrahydrofurans.3 Subsequent studies conducted by the Overman group demonstrated that the transformation 
was general and had a broad scope.9 The formation of oxacyclic and carbocyclic ring systems by terminating Prins 
cyclizations with the pinacol rearrangement in a tandem fashion is known as the Prins-pinacol rearrangement. The 
general features of the reaction are:9 1) it is completely stereoselective and results in the formation of two C-C bonds, 
one C-O bond, and two new stereocenters; 2) protic and Lewis acids are the most common in promoting the reaction; 
3) most widely used solvents are nitromethane and dichloromethane; 4) alkenyl-substituted cyclic acetals derived 
from 1,2-diols give rise to highly substituted 3-acyltetrahydrofurans; 5) 1-alkenylcycloalkane-1,2-diols condense with 
aldehydes and ketones and afford annulated 3-acyltetrahydrofurans accompanied by ring-enlargement; 6) when the 
double bond of the starting alkenyl diol is part of a ring, a variety of differently annulated polycyclic ethers can be 
prepared upon condensation with aldehydes and ketones; 7) in the majority of cases, both the syn and anti acetal 
stereoisomers afford the same tetrahydrofuran adduct; 8) the acyl substituent at C3 will be preferentially cis-disposed 
to both the C2 and C5 substituents; 9) if the oxocarbenium ion intermediate is external to the ring formed in the Prins 
cyclization step, the formation of a carbocyclic ring takes place;13 and 10) besides substituted alkenes, terminal 
alkynes also participate in the rearrangement.9

Mechanism: 10-12,15,16,9

Originally, the reaction was thought to proceed by an oxonia-Cope rearrangement followed by aldol cyclization, but 
this hypothesis was rejected based on the observation that enantiomerically enriched acetals gave rise to 
tetrahydrofurans of high enantiomeric purity and not a racemic mixture as was expected.9
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PRINS-PINACOL REARRANGEMENT

Synthetic Applications:

The Prins-pinacol rearrangement was utilized during the first enantioselective total synthesis of briarellin diterpenes
by L.E. Overman and co-workers.17 The cyclohexadienyl diol substrate was condensed with a (Z)-α,β-unsaturated 
aldehyde at low temperature in the presence of catalytic amounts of acid and MgSO4 as dehydrating agent. The 
initially formed acetal was then exposed to 10 mol% of SnCl4 to afford the desired tetrahydroisobenzofuran as a 
single stereoisomer that was later converted to briarellin F.

The first total synthesis of lycopodium alkaloids of the magellanane group was achieved in the laboratory of L.E. 
Overman.18 The angularly fused all-carbon tetracyclic framework of (–)-magellaninone was constructed using the 
ring-enlargement Prins-pinacol rearrangement as the key step. The dienyl acetal substrate was treated with 1.1 
equivalents of SnCl4, which gave rise to the desired tetracycle as a mixture of methoxy epimers at C5. The Prins 
cyclization of the oxocarbenium ion took place from the less hindered convex face of the cis-bicyclooctadiene moiety 
and the subsequent pinacol rearrangement installed the quaternary stereocenter at C2. 

The enantioselective total synthesis of the polysubstituted tetrahydrofuran (–)-citreoviral, the unnatural enantiomer, 
was synthesized by L.E. Overman et al.15 The Prins-pinacol rearrangement of an allylic 1,2-diol with an 
unsymmetrical ketone proceeded with high stereoselectivity. The bis(trimethylsilyl)-1,2-diol was condensed with the 
dimethyl acetal of the unsymmetrical ketone in the presence of catalytic amounts of TMSOTf, which yielded a nearly 
1:1 mixture of the corresponding acetal and rearrangement product. The acetal was converted to the desired 
tetrahydrofuran product upon exposure to tin tetrachloride. 

The thio-Prins-pinacol rearrangement was the key transformation in L.E. Overman's enantioselective total synthesis 
of (+)-shahamin K.19 Treatment of the dithioacetal substrate with DMTSF brought about the rearrangement, which 
gave rise to the cis-hydroazulene core of the natural product. 
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PUMMERER REARRANGEMENT
(References are on page 659)

Importance:

 [Seminal Publications1,2; Reviews3-25; Modifications & Improvements26-36; Theoretical Studies37]

In 1909, R. Pummerer observed that by heating phenylsulfinylacetic acid with mineral acids (e.g., HCl, H2SO4),
thiophenol and glyoxylic acid were formed.1 Later this transformation was shown to be general, and today the 
formation of α-substituted sulfides from the corresponding sulfoxides is referred to as the Pummerer 
rearrangement.38 The general features of the reaction are: 1) the sulfoxide substrates must have at least one 
hydrogen atom at their α-position; 2) acetic anhydride (Ac2O) is the most widely used activating reagent for the 
rearrangement, and it is often applied as the solvent in combination with other solvents such as benzene or ethyl 
acetate; 3) the use of acid co-catalysts (e.g., TsOH, AcOH, TFAA) is common to minimize side reactions and 
increase the product yields; 4) Ac2O can be replaced with TFAA, which is a stronger reagent and allows for milder 
reaction conditions;26 5) the most common product of the reaction is an α-acetoxy sulfide; 6) upon acidic hydrolysis, 
the α-acetoxy sulfide affords a thiol and a carbonyl compound that can be easily separated; 7) upon treatment with 
base, vinyl sulfides are formed via a β-elimination;  8) the rearrangement is regioselective when the sulfoxide has 
hydrogens at both the α- and α'-positions and the more acidic position will get preferentially substituted; 9) the 
regioselectivity can be altered by steric factors especially in cyclic systems: isomeric sulfoxides often give rise to 
different products; and 10) the rearrangement can take place both inter- and intramolecularly. Drawbacks of the 
reaction are: 1) substrates with unprotected hydroxyl or amino groups result in side rections with the activating 
reagent; 2) unreactive substrates may undergo undesired sulfenic acid elimination if harsh conditions are necessary; 
3) fragmentation products are observed when stable carbocations (e.g., allylic, benzylic) can be formed by the 
heterolytic cleavage of the C-S bond; 4) when the nucleophile is a primary or secondary alcohol, reduction of the 
sulfoxide to the sulfide may occur along with the oxidation of the alcohol (see Swern oxidation). There are several 
variants of the rearrangement:12 1) when selenoxides are the substrates, the seleno-Pummerer rearrangement takes 
place; 2) sila-Pummerer rearrangement occurs with sulfoxides bearing a TMS group on the α-carbon, which 
spontaneously rearrange to α-silyloxy sulfides, and no activating reagents are needed;39 3) vinyl sulfoxide substrates 
may undergo the additive- and vinylogous Pummerer rearrangement; 4) chirality transfer from enantiopure sulfoxides 
to the α-carbon is possible, and it constitutes the asymmetric Pummerer rearrangement, but this process is limited in 
scope.15

Mechanism: 9,15,21

The mechanism of the Pummerer rearrangement consists of four steps: 1) acylation of the sulfoxide oxygen to form 
an acyloxysulfonium salt; 2) loss of a proton from the α-carbon to afford an acylsulfonium ylide; 3) cleavage of the 
sulfur-oxygen bond to give sulfur-substituted carbocation (RDS); and 4) capture of the nucleophile by the carbocation. 
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PUMMERER REARRANGEMENT

Synthetic Applications:

An enantioselective approach to polyhydroxylated compounds using chiral sulfoxides was developed in the laboratory 
of G. Solladié and was applied for the synthesis of enantiomerically pure myo-inositol and pyrrolidine derivatives.40

The presence of the chiral sulfoxide directed the reduction of two carbonyl groups in one of the intermediates. In 
order to form the six-membered ring of myo-inositol, the removal of these sulfoxides under mild conditions was 
necessary. To this end, a one-pot Pummerer rearrangement-sodium borohydride reduction was performed using 
TFAA as the activating reagent. The initially formed thioacetal was reduced with NaBH4 at pH 7 to afford the 
corresponding diol. 

Quartromicins are complex C2 symmetric macrocyclic natural products that have significant activity against a number 
of human viral targets.41 The diastereoselective synthesis of the endo- and exo-spirotetronate subunits of the 
quartromicins was accomplished by W.R. Roush and co-workers. The preparation of the exo-α-acetoxy aldehyde 
involved the Pummerer rearrangement of a sulfoxide using acetic anhydride as the activating reagent and NaOAc as 
the co-catalyst. The yield of this transformation was modest and all attempts to improve its efficiency failed. 

The total synthesis of (±)-deethylibophyllidine was achieved by J. Bonjoch et al. using a tandem Pummerer 
rearrangement/thionium ion cyclization to generate the quaternary spiro center.42 The sulfoxide was exposed to an 
equimolar mixture of TFA/TFAA and heated for 2h to form the quaternary stereocenter at C7 with the desired 
stereochemistry, but at C6 a mixture of epimers were formed. Reductive desulfurization with Raney-Ni followed by 
photochemical rearrangement afforded the natural product. 

The Pummerer rearrangement was utilized to introduce the formyl group into the pyrone ring during H. Hagiwara's 
total synthesis of solanopyrone D.43 Extensive screening revealed that the best way to activate the sulfoxide was to 
use the combination of TMSOTf as the O-silylating agent and TMSNEt2 as a mild base. The addition of TBAF in THF 
afforded the formylated pyrone ring. 
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QUASI-FAVORSKII REARRANGEMENT 
(References are on page 660)

Importance:

[Seminal Publications1-3; Review4]

In 1939, B. Tchoubar et al. reported that upon treatment with powdered sodium hydroxide in ether, α-
chlorocyclohexyl phenyl ketone gave a 40% yield of 1-phenylcyclohexanecarboxylic acid via a semibenzilic type 
rearrangement.1 In 1952, C.L. Stevens and E. Farkas obtained a higher yield when they repeated the same reaction 
in refluxing xylene. They predicted that the stereochemistry of the rearrangement would involve an inversion at the 
halogen-bearing carbon.3 Upon treatment with certain nucleophiles, α-halo ketones with no hydrogen atom at the α’-
position or bicyclic α-halo ketones with an α’-hydrogen atom at the bridgehead carbon atom undergo a skeletal 
rearrangement known as the quasi-Favorskii rearrangement. The product of the rearrangement is a carboxylic acid or 
a carboxylic acid derivative, depending on the nature of the nucleophile. Probably the most well-known example of 
the quasi-Favorksii rearrangement is the key step in the synthesis of cubane by P.E. Eaton et al.5,6 In addition to 
nucleophiles, the rearrangement can be initiated by the ionization of the α-halo ketones upon treatment with salts of 
heavy metals (e.g., AgNO3, AgSBF6, etc.).2,7 Substrate preparation is primarily carried out in the following three ways: 
1) direct α-halogenation of substituted acyclic and cyclic ketones; 2) Robinson annulation of cyclic α-halo ketones 
with methyl vinyl ketone (MVK);8,9 and 3) [4+3] cycloaddition of cyclic α,α’-dihalo ketones with cyclic dienes.10,11  The 
analogous reaction of α-halo ketones (having at least one enolizable hydrogen atom in the α’-position) with base in 
the presence of a nucleophile is called the Favorskii rearrangement. The general features of the quasi-Favorskii 
rearrangement are: 1) acyclic and monocyclic α-halo ketones that do not have hydrogens in their α’-positions are 
good substrates; 2) the reaction is stereospecific (inversion at the carbon to which the halogen is attached); and 3) 
monocyclic and bicyclic substrates undergo ring-contraction to give the corresponding cyclic or bicyclic homologue.  

Mechanism: 12,13,7,14,15

The mechanism of the quasi-Favorskii rearrangement involves the following steps: 1) attack of the nucleophile on the 
carbonyl carbon atom to form a tetrahedral intermediate; 2) next, this anionic intermediate undergoes a facile 1,2-
alkyl shift, similar to the mechanism of the benzilic acid rearrangement, and as a result, the halogen attached to the 
α-carbon is displaced with the inversion of configuration.  When the substrate is bicyclic and there is a hydrogen in 
the α’-position, enolization is not possible because the double bond of the enol would be incorporated in the 
bridgehead and this reaction would violate Bredt’s rule. The cyclopropanone intermediate of the Favorskii 
rearrangement would be highly strained (and sterically congested) and therefore its formation is highly disfavored. 
(This is valid for bicyclic systems in which the trans double bond would be part of a ring having less than 8 carbons; 
however, systems with rings larger than 8 carbons could be enolized.) 
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QUASI-FAVORSKII REARRANGEMENT 

Synthetic Applications:

G.A. Kraus and co-workers utilized the quasi-Favorskii rearrangement of a bicyclic bridgehead bromide as the key 
step in their formal total synthesis of epi-modhephene.8,9 The required bicyclo[3.3.1]nonenone bridgehead bromide 
precursor was prepared by a Robinson annulation reaction between 3-bromo-2-oxocyclohexanecarboxylate and 
MVK. Upon treatment with lithiated dimethyl methylphosphonate, the bicyclic bromo ketone underwent a facile quasi-
Favorskii rearrangement to afford the key intermediate bicyclo[3.3.0]octane derivative. 

In the laboratory of M. Harmata, a novel methodology utilizing a sequential [4+3] cycloaddition–quasi-Favorskii 
rearrangement was developed for the rapid construction of polycyclic ring systems.11 The intramolecular [4+3] 
cycloaddition of a halogenated allylic alcohol gave 65% of the expected tricyclic bridgehead α-bromo ketone 
precursor as a single diastereomer. Upon treating this bromo ketone with LAH in THF, a quasi-Favorskii 
rearrangement took place in nearly quantitative yield to afford a 5-6-5 fused tricyclic product. 

A formal total synthesis of racemic spatol was accomplished by M. Harmata et al. using an intermolecular [4+3] 
cycloaddition of a halogenated cyclopentenyl cation with cyclopentadiene followed by a quasi-Favorskii rearrange-
ment as the key steps.16

M. Harmata and co-workers successfully synthesized racemic sterpurene using an intermolecular [4+3] cycloaddition
to prepare the key quasi-Favorskii rearrangement precursor.17 The tricyclic bridgehead α-bromo ketone was first 
treated with LAH at 0 °C to get the corresponding secondary alcohol. Treatment of this alcohol with KH triggered the 
expected ring-contraction to afford the 5-6-4 fused tricyclic aldehyde, which was then reduced to the primary alcohol 
with LAH. 
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RAMBERG-BÄCKLUND REARRANGEMENT
(References are on page 660)

Importance:

 [Seminal Publications1; Reviews2-9; Modifications & Improvements10-20]

In 1940, L. Ramberg and B. Bäcklund described an interesting reaction in which 1-bromo-1-ethanesulfonyl ethane 
(an α-bromo sulfone) was predominantly converted to (Z)-2-butene when treated with a boiling aqueous KOH 
solution.1 There was no work published on this transformation until the early 1950s, when F.G. Bordwell and co-
workers conducted a thorough kinetic investigation and elucidated the reaction mechanism.21,22 The base-induced 
rearrangement of α-halogenated sulfones via episulfone intermediates to produce alkenes is referred to as the 
Ramberg-Bäcklund rearrangement. The general features of the reaction are:5,6,8 1) the precursor halogenated 
sulfones can be easily prepared by the halogenation of the corresponding sulfones and the sulfones themselves are 
usually prepared by the oxidation of sulfides; 2) the reaction is well-suited for the preparation of 1,1- or 1,2-di, tri-, and 
tetrasubstituted alkenes; 3) the position of the newly formed double bond is unambiguous and under the reaction 
conditions no double bond migration takes place; 4) both acyclic and cyclic substrates can be used and the reaction 
is especially useful for the preparation of strained cycloalkenes via ring-contraction; 5) the stereochemical outcome of 
the rearrangement depends on both the base and the solvent, but the temperature is not decisive; 6) aqueous base 
(e.g., KOH) favors the formation of (Z)-alkenes but strong bases in aprotic solvents (e.g., KOt-Bu/DMSO)
predominantly give rise to (E)-alkenes; and 7) base-sensitive functional groups need to be protected.  

Mechanism: 21,22,3,23-31

The mechanistic details of the rearrangement were investigated in detail predominantly by the research groups of 
F.G. Bordwell and L.A. Paquette who established that the transformation consists of three distinct steps:3 1) the first 
step of the process is the deprotonation of the sulfone at the α- or α'-position, which undergoes rapid equilibration; 2) 
only the carbanion at the α'-position results in an intramolecular displacement reaction (SNi attack) on the carbon 
bearing the X group to give the reactive intermediate episulfones (thiirane 1,1-dioxides), which are generally formed 
as mixtures of cis- and trans stereoisomers (slow step); and 3) the final step is the loss of SO2 either thermally or 
under base catalysis to give a mixture of alkene stereoisomers. The overall stereochemical outcome of the reaction is 
determined in the second step.  

Ramberg and Bäcklund (1940):
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RAMBERG-BÄCKLUND REARRANGEMENT

Synthetic Applications:

A concise convergent synthetic strategy was developed by B.M. Trost and co-workers for the synthesis of 
acetogenins, a class of compounds with a wide breadth of biological activity.32 The authors chose (+)-solamin as the 
target to demonstrate the utility of their strategy, which relied on the Meyers modification of the Ramberg-Bäcklund 
rearrangement as the key step. As the chlorination of the sulfone failed, the in situ chlorination-rearrangement was 
attempted and led to the successful conversion of the oxasulfone precursor to the desired 2,5-dihydrofuran core. 

In the laboratory of R.K. Boeckman, the total synthesis of (+)-eremantholide A was accomplished using the Ramberg-
Bäcklund rearrangement for the crucial ring-contraction step at the end of the synthetic sequence.33 The nine-
membered macrocyclic core of the natural product is highly strained since the C4-C5 double bond is twisted 88° out 
of the plane of the 3(2H)-furanone ring. The ring-contraction precursor 10-membered macrocyclic sulfide was 
sequentially treated with 6N HCl, Oxone and Amberlyst 15 resin to afford the corresponding sulfone. The chlorination 
of this sulfone took place exclusively at the more substituted α-position, and upon treatment with a strong base, the 
rearrangement yielded the desired product in good yield. 

A novel benzannulation strategy featuring a [6+4] cycloaddition followed by Ramberg-Bäcklund rearrangement was 
employed for the total synthesis of (+)-estradiol by J.H. Rigby et al.34 The higher-order cycloaddition took place 
between a seven-membered TMS-substituted η6-thiepin 1,1-dioxide (CO)3Cr-complex and a highly substituted diene 
to afford directly the bicyclic sulfone rearrangement precursor. The ring-contraction was induced by the sequential 
treatment with t-BuOK and N-chlorosuccinimide at very low temperatures followed by the addition of another 
equivalent of the base.  

The Ramberg-Bäcklund rearrangement was the key step in the total synthesis of the marine alkaloid manzamine C
by D.I. MaGee and E.J. Beck.35 The azacycloundecene ring was stereoselectively formed by exposing the α-chloro 
sulfone to a strong base. The use of weaker bases either resulted in no reaction or gave rise to mixtures of (E)- and 
(Z)-alkenes.
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REFORMATSKY REACTION 
(References are on page 661)

Importance:

[Seminal Publication1; Reviews2-19; Modifications & Improvements20-37; Theoretical Studies38-40]

In 1887, S. Reformatsky, reported that in the presence of zinc metal, iodoacetic acid ethyl ester reacted with acetone 
to yield 3-hydroxy-3-methylbutyric acid ethyl ester.1  Since this initial report, the classical Reformatsky reaction was 
defined as the zinc-induced reaction between an α-halo ester and an aldehyde or ketone. The scope of the reaction, 
however, extends far beyond this original definition, and today, the metal-induced reaction of α-carbonyl halides with 
a wide range of electrophiles are referred to as the Reformatsky reaction. The reaction is a two stage process: first 
the activated zinc metal inserts into the carbon-halogen bond, and this is followed by the reaction of the zinc enolate 
(Reformatsky reagent) with the carbonyl compound in an aldol reaction. The general features of the Reformatsky 
reaction are:5,7,9 1) the reaction is most commonly carried out in a single step by addition of the α-halo ester and the 
carbonyl compound to the suspension of the activated zinc, but preforming the organozinc reagent prior to the 
addition of the electrophile is also possible; 2) most often ether solvents are used such as diethyl ether, 
tetrahydrofuran, 1,4-dioxane and dimethoxyethane, but mixtures of these solvents with aromatic hydrocarbons and 
more polar solvents such as acetonitrile, dimethyl formamide, dimethyl sulphoxide, and hexamethylphosphoric 
triamide are also used; 3) organozinc reagents can be formed from 2-bromoalkanoates, α-bromo ketones, alkyl 2-
bromomethyl-2-alkenoates,41 and alkyl 4-bromo-2-alkenoates42; and 4) in addition to aldehydes and ketones, 
Reformatsky reagents also react with esters,43 acid chlorides,44 epoxides,43 nitrones,45 aziridines,46 imines,47 and 
nitriles48 (Blaise reaction). The scope of the Reformatsky reaction was considerably extended by the development 
zinc-activation procedures. Activated zinc metal can be formed in two ways:7 1) by removal of the deactivating zinc 
oxide layer from the metal surface employing reagents such as iodine, 1,2-dibromoethane, copper(I) halides, 
mercuric halides or by using zinc-copper or zinc-silver couple;2,5,7,9,12 and 2) by reduction of zinc halides in solution by 
various reducing agents such as potassium49 (Rieke zinc), sodium-50 or lithium naphthalide51 and potassium-graphite 
laminate52 (C8K) to form finely dispersed zinc metal. Metals other than zinc were also used including lithium,22

magnesium,20 cadmium,28 barium,37 indium,21,34 germanium,36 nickel,31 cobalt,35 and cerium.24 A major breakthrough 
in the Reformatsky reaction was the application of metal salts with favorable reduction potentials, the most important 
ones being samarium(II) iodide,23,32,33 chromium(II) chloride,29 and titanium(II) chloride.25 These reactions often can 
be carried out under mild conditions and afford the products with high stereoselectivity. In addition to these metal 
salts, cerium(III) halides,30 disodium telluride,30 trialkylantimony/iodine,26,27 and diethylaluminum chloride26,27 can also 
be employed. The main advantages of the Reformatsky reaction over the classical aldol reaction are the following: 1) 
the reaction succeeds even with highly substituted ketone substrates; 2) the ester enolate can be formed in the 
presence of highly enolizable aldehyde and ketone functionalities; and 3) the reaction is uniquely suited for 
intramolecular reactions. 

Mechanism: 53-57

Spectroscopic53,56 and crystallographic54,55 studies of Reformatsky reagents derived from α-halo esters showed that 
the enolate is present in the C-enolate form and in ether solvents they form dimers. Enolates derived from α-halo 
ketones prefer the O-metal enolate form.57 It is assumed, based on theoretical calculation,38 that the zinc enolate 
dimers are dissociated by the action of the carbonyl compound and converted to the corresponding O-zinc enolates. 
Subsequently, the reaction goes through six-membered chairlike transition state. 

X = Cl, Br, I; R1 = alkyl; R2 = H, alkyl, aryl; R3, R4 = H, alkyl, aryl; R5 = alkyl, aryl; solvent: Et2O, THF, 1,4-dioxane, DME, benzene, 
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R3Sb/I2, Et2AlCl;
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REFORMATSKY REACTION 

Synthetic Applications:

Cytochalasins are macrocyclic natural products possessing a broad range of biological activity. During the synthesis 
of C16, C18-bis-epi-cytochalasin D, E. Vedejs and co-workers utilized the Reformatsky reaction to close the twelve- 
membered macrocyclic ring.58 The reaction was induced by finely dispersed zinc metal, which was formed by the 
reduction of ZnCl2 by sodium naphthalide. The cyclization was carried out at room temperature by the slow addition 
of the substrate to the above metal suspension. To effect full elimination of the hydroxyl group and hydrolyze the 
methyl enol ether subunit, the product was treated with 10% H2SO4 upon work-up. Subsequent steps led to the 
formation of C(16),C(18)-bis-epi-cytochalasin D, the structure of which was proven by spectroscopic methods and X-
ray crystallography. 

Ciguatoxin and its congeners are naturally occurring polycyclic ethers, which exhibit high affinity binding to voltage-
sensitive sodium channels (VSSC). The scarcity of these compounds from natural sources and their structural 
complexity necessitated the construction of more accessible model systems in order to investigate their interaction 
with VSSC and conduct structure-activity relationship studies. In the laboratory of M Sakasi, a highly convergent 
synthesis of the decacyclic ciguatoxin model containing the F-M ring framework was accomplished.59 To construct the 
fused oxononane ring system, a SmI2-mediated intramolecular Reformatsky reaction was utilized. The reaction was 
carried out at -78 °C in THF to give the desired oxacyclic ring with high yield and as a single diastereomer. The 
resulting hydroxyl group was protected in situ as an acetate ester. 

L. Wessjohn and co-workers successfully applied the CrCl2-mediated Reformatsky reaction for the synthesis of C1-
C6 fragment of epothilones.60 In their approach, they utilized the Evans (R)-4-benzyl-oxazolidinone chiral auxiliary to 
control the absolute stereochemistry. The chromium-Reformatsky reaction between the (R)-4-benzyl-3-(2-
bromoacetyl)-oxazolidinone and 2,2-dimethyl-3-oxo-pentanal occurred with complete chemoselection providing the 
product with 63% yield and as a single diastereomer. 

G.R. Pettit and co-workers used a novel tetrakis(triphenylphosphine)cobalt(0)-promoted Reformatsky reaction for the 
synthesis of a dolastatin 10 unit, dolaproine in a Boc-protected form.61
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REGITZ DIAZO TRANSFER
(References are on page 662)

Importance:

 [Seminal Publications1-6; Reviews7-13; Modifications & Improvements14-32]

In 1910, O. Dimroth reported that the treatment of malonamic acid methyl ester with phenyl azide yielded the 
corresponding 2-diazomalonamic acid methyl ester.1 This reaction remained largely unnoticed for more than fifty 
years until 1964, when M. Regitz et al. investigated the reaction of arylsulfonyl azides with 1,3-diketones to afford α-
diazo-β-dicarbonyl compounds.2 The transfer of a diazo group to active methylene compounds using alkyl- or 
arylsulfonyl azides is known as the Regitz diazo transfer. The general features of the transformation are: 1) both 
cyclic and acyclic 1,3-diketones and β-keto esters undergo the diazo transfer in the presence of weak bases such as 
triethylamine, diethylamine, or piperidine, but if the acidity of the methylene group is not sufficient, the use of stronger 
bases (e.g., NaOEt, KOH) becomes necessary; 2) the azide reagent most often is an arylsulfonyl azide such as p-
toluenesulfonyl azide, and these reagents can be easily prepared from the corresponding arylsulfonyl halides via
halogen-azide exchange; 3) simple cyclic and acyclic ketones usually do not react directly with sulfonyl azides, so 
they need to be activated by formylation (Claisen reaction), and the resulting α-formyl ketone is treated with the 
sulfonyl azide in the presence of a base to give the corresponding α-diazo ketones (deformylative diazo transfer);15 4) 
when the substrate is base-sensitive, instead of formylation, trifluoroacetylation can be used, which improves the 
yield of the diazo ketone considerably;19 and 5) the side product of the reaction is a sulfonamide which in some cases 
is fairly difficult to remove from the reaction mixture (especially p-TsNH2), so several water-soluble and lipophilic 
analogues have been developed.14 The product α-diazo carbonyl compounds are versatile intermediates and can be 
used in the following applications:19 1) Wolff rearrangement of α-diazo ketones to give ketenes and products derived 
from ketenes; and 2) transition metal catalyzed C-H, N-H, O-H insertion reactions and cyclopropanations. 

Mechanism: 7,9,33
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REGITZ DIAZO TRANSFER

Synthetic Applications:

In the laboratory of A. Padwa, a novel synthetic approach to the fully functionalized core of lysergic acid was 
developed utilizing an intramolecular isomünchone cycloaddition pathway.34 The key cycloaddition precursor diazo 
imide was prepared using the standard Regitz diazo tranfer conditions. The diazo imide then was heated with 
catalytic amouts of rhodium(II)-perfluorobutyrate in dichloromethane to afford the desired cycloadduct as a single 
diastereomer and in excellent yield. The only reason the authors were not able to complete the total synthesis of 
lysergic acid was that they could not affect the isomerization of the double bond between the two six-membered 
rings.

A versatile stereoselective synthesis of endo,exo-furofuranones was accomplished by R.C.D. Brown and co-
workers.35 One of the key steps was a Rh(II)-catalyzed C-H insertion reaction and the required diazo lactone was 
prepared via the Regitz diazo transfer reaction. The 2-acetyl substituted lactone substrate proved to be recalcitrant 
toward the deacylative diazo transfer under standard conditions. Eventually the authors decided to use the very 
reactive triflyl azide (TfN3), which was generated in situ under phase-transfer conditions to afford the desired α-diazo 
lactone. The C-H insertion product was then converted to (+)-methylxanthoxylol.

The carbocyclic [6-7] core of guanacastepenes was prepared by. D. Trauner et al. using the intramolecular reaction 
between carbenoids derived from diazo carbonyl compounds and furans.36 The required diazo carbonyl substrate 
was synthesized using p-acetamidobenzenesulfonyl azide (p-ABSA) as the diazo-donor component in the Regitz 
diazo transfer reaction.

N-Alkyl substituted pyridones are known to exhibit both antibacterial and antifungal activity. The pyridone acid 
A58365A is a potent angiotensin-converting enzyme inhibitor and it was synthesized in the laboratory of A. Padwa 
using a [3+2] cycloaddition of a phenylsulfonyl substituted isomünchone intermediate with methyl vinyl ketone.37 The 
isomünchone intermediate was generated from the corresponding diazo imide which was prepared via a Regitz diazo 
transfer reaction. 
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REIMER-TIEMANN REACTION
(References are on page 663)

Importance:

 [Seminal Publications1-3; Reviews4-7; Modifications & Improvements8-20; Theoretical Studies21,22]

In 1876, K. Reimer and F. Tiemann discovered that the treatment of phenol with chloroform in 10% NaOH solution 
led to the formation of the corresponding o-hydroxy benzaldehyde as the major product.1-3 The formylation of phenols 
and heterocyclic phenols using chloroform in an aqueous alkaline medium is known as the Reimer-Tiemann reaction.
Soon after the disclosure of these seminal findings, several research groups investigated the effect of the same 
reaction conditions on substituted phenols and electron-rich heterocycles.6 In the 1880s, K. Auwers reported the 
isolation of chlorine-containing substituted cyclohexadienones that were generated in the formylation of various 
alkylphenols.23,24 These cyclohexadienones were later coined as abnormal Reimer-Tiemann products. Also in the 
early 1880s, G.L. Ciamician and M. Dennstedt found that under the original Reimer-Tiemann conditions the 
potassium salt of pyrrole underwent ring-expansion to afford 3-chloropyridine, a transformation known today as the 
Ciamician-Dennstedt rearrangement (also called as the abnormal Reimer-Tiemann reaction). The general features of 
the Reimer-Tiemann reaction are: 1) it is the only electrophilic aromatic substitution reaction that occurs under basic 
conditions in a protic solvent; 2) phenols, naphthols, alkyl-, alkoxy-, and halogenated phenols, salicylic acid 
derivatives, heterocyclic phenols such as hydroxyquinolines and hydroxypyrimidines, as well as pyrroles and indoles 
undergo formylation under the reaction conditions; 3) typically the substrate (phenol) is dissolved in 10-40% alkali 
hydroxide, excess chloroform is added, and the biphasic solution is vigorously stirred at elevated temperatures; 4) 
besides CHCl3, other dichlorocarbene precursors such as chloral, trichloronitromethane, etc. can be used; 5) yields 
are usually moderate; 6) the regioselectivity is not high, but ortho-formyl products tend to predominate; 7) when the 
ortho-position is already substituted, para-formyl phenols are obtained;  8) in the case of pyrroles, when the ortho
substituent is a CO2H or CO2R group, decarboxylation is observed and the o-formyl product is formed (similar 
findings were reported for an o-alkoxy phenol where the alkoxy group was eliminated to give an o-formyl phenol);11,12

and 9) when the reaction is conducted in the presence of cyclodextrins, the p-formyl product is formed predominantly. 

Mechanism: 4,25,6,7
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REIMER-TIEMANN REACTION
Synthetic Applications:

The total synthesis of the tricyclic sesquiterpene (±)-β-copaene was accomplished by E. Wenkert and co-workers. 
The required bicyclic starting material was prepared in three steps from carvacrol. In the first step, carvacrol was 
subjected to typical Reimer-Tiemann conditions. The abnormal Reimer-Tiemann product, 6-dichloromethyl-3-
isopropyl-6-methyl-cyclohexa-2,4-dienone, was obtained, and upon treatment with sodium carbonate in DMSO, 
cyclization occurred to afford a bicyclic halo ketone. The double bonds were then hydrogenated in the presence of 
Pd(C) catalyst.  

S.C. Zimmermann et al. developed an efficient synthesis of 2-amino-1,8-naphthyridines that can serve as  building 
blocks for host-guest and self-assembling systems. The synthesis commenced with the Reimer-Tiemann formylation
of 2,6-diaminopyridine to afford 2,6-diaminopyridine-3-carbaldehyde in modest yield. Next, the Friedländer reaction
using activated ketones gave rise to the target compounds. 

A series of indatraline derivatives containing methoxy groups were synthesized and their monoamine transporter 
binding site affinities were measured in the laboratory of K.C. Rice.26 The synthetic effort began with the preparation 
of the required substituted benzaldehydes. The Reimer-Tiemann formylation of 2,3-dichlorophenol was carried out by 
treating the phenol with excess base and chloroform in water, and heating the mixture at reflux for several hours. 
Upon acidification of the reaction mixture the product was isolated as a single regioisomer. 

The development of a novel hapten for radioimmunoassay of the lignan, enterolactone in plasma (serum) was 
accomplished by T. Mäkelä et al.27 The essay utilized enterolactone derivatives that have a carboxylic acid moiety for 
the production of antiserum and tracer. The preparation of (±)-trans-5-carboxytrimethylenoxyenterolactone utilized the 
Reimer-Tiemann reaction for the formylation of 2-benzyloxyphenol. 
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RILEY SELENIUM DIOXIDE OXIDATION
(References are on page 663)

Importance:

 [Seminal Publications1,2; Reviews3-9; Modifications & Improvements10-22; Theoretical Studies23]

In 1932, H.L. Riley and co-workers reported the first general synthetic use of selenium dioxide (SeO2) as an oxidant 
of aldehydes and ketones.1 The various ketones and aldehydes having an α-methylene group were converted to the 
corresponding 1,2-dicarbonyl compounds in moderate to good yield. Since this initial discovery, the use of SeO2
rapidly expanded, and it was shown that besides carbonyl compounds, olefinic substrates were oxidized at the allylic 
position (allylic oxidation) to the corresponding allylic alcohols or enones.2 The oxidation of the methylene group 
adjacent to a carbonyl group or the double bond of olefins (allylic or benzylic position) with selenium-dioxide is 
collectively referred to as the Riley oxidation. The general features of these transformations are: 1) ketones and 
aldehydes with low molecular weights are more reactive than the higher homologs; 2) ketones with available α- and 
α'-positions will give rise to a mixture of regioisomers; 3) the sterically less hindered α-position is oxidized faster, 
therefore the methyl group of methyl ketones (R1=H) is preferentially oxidized over the other available α-position; 4) 
the allylic positions in acyclic olefins are oxidized at very different rates and the reactivity depends on the substitution 
pattern of the substrate: a) in 1,2-disubstituted alkenes the trend is: CH > CH2 > CH3; b) in geminally disubstituted 
alkenes the trend is: CH > CH2 > CH3; c) in trisubstituted alkenes the oxidation takes place at the more substituted 
end of the double bond and the trend is CH2 > CH3 > CH; d) terminal olefins yield primary allylic alcohols due to the 
allylic rearrangement of the double bond; 5) the oxidation of acyclic olefins primarily gives rise to (E)-allylic alcohols; 
6) the oxidation of cyclic olefins occur in the ring and α to the more substituted carbon of the double bond rather than 
in the side chain; 7) in cyclic olefins where the double bond is unsubstituted the reactivity trend is: CH2 > CH; 8) for 
bicyclic olefins in which none of the rings contain more than 7 carbon atoms, the oxidation will not take place at the 
bridgehead position (Bredt's rule); 9) gem-dimethyl olefins exclusively give rise to the (E)-allylic alcohols or (E)-α,β-
unsaturated aldehydes; and 10) rearrangement may occur if the preferred allylic position is adjacent to a quaternary 
carbon or a cyclopropyl ring. 

Mechanism: 24-41
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RILEY SELENIUM DIOXIDE OXIDATION

Synthetic Applications:

The antiviral natural product hamigeran B has a unique tricarbocyclic skeleton in which the aromatic nucleus is fused 
to a hydrindane framework bearing three stereogenic centers. G. Mehta and co-workers accomplished the total 
synthesis of 6-epi-hamigeran B by using an intramolecular Heck reaction as the key step to form the six-membered 
middle ring.42 At the final stages of the synthesis, the introduction of the 1,2-diketone moiety was performed by using 
the Riley oxidation. The cyclohexanone had only one available α-position, so the oxidation proceeded cleanly and in 
high yield. 

In the laboratory of T.-J. Lu, a highly stereoselective method for the asymmetric synthesis of α-amino acids was 
developed by the alkylation of a chiral tricyclic iminolactone derived from (+)-camphor.43 The iminolactone can be 
considered a glycine equivalent. The synthesis commenced with the Riley oxidation of (+)-camphor to obtain the 
corresponding (+)-camphorquinone. Amino acids are obtained by first alkylating the α-position of the lactone with 
various alkyl halides and then hydrolyzing the monosubstituted products. The advantage of this technique was that 
the chiral auxiliary could be fully recovered without the loss of any optical activity. 

The first total syntesis of cristatic acid, a potent antibiotic against Gram-positive bacteria, was reported by A. Fürstner 
et al.44 The prenylated aromatic substrate (trisubstituted gem-dimethyl alkene) was subjected to a SeO2-catalyzed 
allylic oxidation to obtain stereospecifically the (E)-allylic alcohol.  

During the enantioselective total synthesis of miroestrol by E.J. Corey and co-workers, the introduction of a hydroxyl 
group was required at one of the bridgehead positions.45 This position was α to a ketone and was also the allylic 
position to a double bond. The oxidation was effected by selenium dioxide/tert-butyl hydroperoxide at 25 °C.
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RITTER REACTION
(References are on page 664)

Importance:

 [Seminal Publications1,2; Reviews3-10; Modifications & Improvements11-26; Theoretical Studies27,28]

In 1948, J.J. Ritter and P.P. Minieri reported that treatment of nitriles with alkenes or tertiary alcohols under acidic 
conditions resulted in the formation of N-tert-alkylamides.1,2 When hydrogen cyanide was used as the nitrile 
component, N-tert-alkyl formamides were obtained, which could be easily hydrolyzed with base to give the 
corresponding tert-alkylamines.1 The formation of N-alkyl carboxamides from aliphatic- or aromatic nitriles and 
carbocations is known as the Ritter reaction. Since its discovery the Ritter reaction has enjoyed an enormous 
success, and it is widely used for the preparation of acyclic amides as well as heterocycles (e.g., lactams, oxazolines, 
dihydroisoquinolines, etc.). The general features of this transformation are:5,8 1) the carbocation can be generated in 
a variety of ways from tertiary-, secondary, or benzylic alcohols, alkenes or alkyl halides; 2) the classical reaction 
conditions involve the dissolution of the nitrile substrate in the mixture of acetic acid and concentrated sulfuric acid 
followed by the addition of the alcohol or alkene at slightly elevated temperatures (50-100 °C); 3) alcohols that are 
easily ionized (e.g., 2° and 3° alcohols, benzylic alcohols) give the best results; 4) 1,1-disubstituted alkenes give rise 
to regioisomerically pure products, but with 1,2-disubstituted alkenes a mixture of regioisomers may be formed; 5) the 
initially formed carbocation (which can be obtained from a large number of different functionalities)5,8 may undergo a 
Wagner-Meerwein rearrangement to give rise to the most stable carbocation before reacting with the nitrile; 6) 
besides protic acids, Lewis acids (e.g., SnCl4, BF3·OEt2, AlCl3, etc.) have been successfully employed in the Ritter
reaction to generate the required carbocations; 7) the structure of the nitrile component can be varied widely and 
most substrates containing a cyano group will undergo the reaction, so, for example, besides aliphatic and aromatic 
nitriles, compounds like cyanogen and cyanamide will also react; and 8) the nitrile substrate may not contain acid-
sensitive functional groups that would be destroyed under the strongly acidic reaction conditions, but modifications 
(Ritter-type reactions) that proceed under neutral conditions expanded the scope of the substrates. 

Mechanism: 29-40

The mechanism of the Ritter reaction has been intensely studied. When alcohols are used to generate the 
carbocation, the hydroxyl group is protonated then under the reaction conditions the C-O bond is heterolytically 
cleaved to generate a carbocation. This cation is then attacked by the nitrogen atom of the nitrile to form a nitrilium 
ion, which upon reacting with the conjugate base of the acid (hydrogen sulfate anion in the scheme) gives rise to an 
imidate. Finally, hydrolysis produces the desired N-alkyl carboxamide. 
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RITTER REACTION

Synthetic Applications:

The enantioselective biomimetic total synthesis of the alkaloid (+)-aristotelone was accomplished by C.H. Heathcock 
and co-workers.41 The synthetic sequence commenced with a Hg(NO3)2-mediated Ritter reaction between (1S)-(–)-β-
pinene and 3-indolylacetonitrile. Upon protonation, the pinene underwent a Wagner-Meerwein rearrangement to 
generate a tertiary carbocation which reacted with the cyano group. The initially formed imine product was reduced to 
the corresponding amine by sodium borohydride in methanol.  

In the laboratory of T.-L. Ho, the total synthesis of the novel marine sesquiterpene (±)-isocyanoallopupukeanane was 
completed.42 In the endgame of the synthesis, it was necessary to install the isocyano group onto the tricyclic 
trisubstituted alkene substrate so that it will occupy the more substituted carbon atom (according to Markovnikov's 
rule). The Ritter reaction was chosen to form the required carbon-nitrogen bond. The alkene substrate was dissolved 
in glacial acetic acid and first excess sodium cyanide followed by concentrated sulfuric acid was added at 0 °C. The 
reaction mixture was stirred at ambient temperature for one day and then was subjected to aqueous work-up. The 
product N-alkyl formamide was subsequently dehydrated with tosyl chloride in pyridine to give rise to the desired 
tertiary isocyanide which indeed was identical with the natural product. 

A modified Ritter reaction was used by Y.L. Janin et al. for the preparation of electron rich 1-aryl-3-
carboxylisoquinolines, which are considered to be the electron-rich analogues of PK 11195, a falcipain-2 inhibitor.26

Interestingly, the standard Ritter reaction conditions (strong acid) led to extensive decomposition of both starting 
materials, but the use of HBF4 in ether gave rise to the desired dihydroisoquinoline, albeit in poor yield. 

The intramolecular Ritter reaction was utilized by F. Compernolle and co-workers for the synthesis of a potential 
dopamine receptor ligand.43 The six-membered lactam ring was formed upon treatment of the tertiary benzylic alcohol 
substrate with methansulfonic acid. The benzylic carbocation was captured by the nitrogen of the cyano group. 
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ROBINSON ANNULATION
(References are on page 665)

Importance:

 [Seminal Publications1,2; Reviews3-9; Modifications & Improvements10-36]

In 1935, R. Robinson and W.S. Rapson were preparing substances related to the sterols when they found that the 
sodium enolate of cyclohexanone reacted with various acyclic and cyclic α,β-unsaturated ketones to afford 
substituted cyclohexenones.1 Robinson recognized the generality of this transformation, which was quickly adapted 
by the synthetic community, and today it is widely used in the synthesis of complex natural products. The reaction of 
a ketone (most often a cyclic one) with an α,β-unsaturated ketone to give a substituted cyclohexenone derivative is 
known as the Robinson annulation. The general features of the reaction are: 1) it is a combination of three reactions: 
Michael addition, intramolecular aldol reaction, and dehydration; 2) it can be both acid- and base-catalyzed, but 
predominantly the reaction is conducted under basic conditions; 3) acyclic enones and cyclic ketones afford bicyclic 
enones, whereas cyclic enones and cyclic ketones give rise to polycyclic fused enones; 4) methyl vinyl ketone (MVK) 
and its various derivatives and surrogates are used most often as the enone component; 5) can be conducted as a 
one-pot process, but yields tend to be higher when the Michael adduct is isolated and then subjected to the aldol 
reaction; 6) the alkylation of an unsymmetrical ketone occurs regioselectively at the most substituted α-position 
unless severe steric interference dictates otherwise; 7) regioselective cyclization can also be achieved by using pre-
formed enolates or enamines under non-equilibrium conditions; 8) the annulation can generate as many as five 
stereocenters, but in the dehydration step two of these chiral centers are lost; 9) the relative stereochemistry between 
R3 and R7  (cis or trans) is dependent on the reaction conditions (e.g., solvent);11 and 10) the enantioselective version 
is known as the Hajos-Parrish reaction.10,13

Mechanism: 11,15,4

The Robinson annulation has three distinct steps: the Michael addition of the enol or enolate across the double bond 
of the α,β-unsaturated ketone to produce a 1,5-diketone (Michael adduct), followed by an intramolecular aldol 
reaction, which affords a cyclic β-hydroxy ketone (keto alcohol), and finally a base-catalyzed dehydration which gives 
rise to the substituted cyclohexenone. An alternative mechanism via disrotatory electrocyclic ring closure is 
possible.11
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ROBINSON ANNULATION

Synthetic Applications:

A conjugate cuprate addition-Robinson annulation sequence was utilized in the highly stereoselective total synthesis 
of hispidospermidin by S.J. Danishefsky et al.37 It is a well-known fact that the MVK has a great tendency to 
polymerize under aprotic basic conditions that are used when the integrity of the enolate reaction partner has to be 
maintained. In order to avoid complications arising from the likely polymerization of MVK, α-trimethylsilyl methyl vinyl 
ketone (a base-stable surrogate of MVK developed by G. Stork and co-workers12,14) was chosen as the reaction 
partner. The 2-substituted cylopentenone was treated with lithium dimethyl cuprate, and the resulting enolate was 
trapped with α-trimethylsilyl MVK in a Michael addition. The crude Michael adduct was refluxed with aqueous KOH in 
methanol, which resulted in the desired hydrindenone as a single diastereomer.

In the laboratory of J.D. White, the asymmetric total synthesis of (+)-codeine was accomplished.38 The Robinson 
annulation was the method of choice to build a phenanthrenone precursor starting from a substituted tetralone 
derivative. As it is usually the case, the isolation of the Michael adduct allowed the intramolecular aldol reaction to 
proceed cleanly and to afford a higher yield of the annulated product. 

The Hajos-Parrish reaction can be regarded as the enantioselective version of the Robinson annulation. In the early 
stages of the synthetic effort targeting the mixed polyketide-terpenoid metabolite (–)-austalide B, L.A. Paquette and 
co-workers used this transformation to prepare the key bicyclic precursor in enantiopure form.39 Ethyl vinyl ketone 
was reacted with 2-methyl-1,3-cyclopentanedione in the presence of catalytic amounts of L-valine to afford the 
bicyclic diketone with a 75% ee.

A novel variant of the Stork-Jung modified Robinson annulation was developed and applied to the formal total 
synthesis of (±)-guanacastepene A by the research group of B.B. Snider.40 Instead of using MVK directly, they 
prepared the necessary 1,5-diketone by alkylating the ketone with an allylsilane and generating the ketone 
functionality via a Fleming-Tamao oxidation.
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ROUSH ASYMMETRIC ALLYLATION  
(References are on page 666)

Importance:

[Seminal Publications1-5; Reviews6-11; Modifications & Improvements12-22;Theoretical studies23-27]

The first example of the enantioselective synthesis of homoallylic alcohols via chiral nonracemic allylboronic esters 
was reported by R. W. Hoffmann in 1978.1 He studied the reaction between (+)-camphor derived allylboronic ester 
and a series of aliphatic aldehydes. The resulting homoallylic alcohols formed with excellent yield but moderate 
enantioselectivity. A few years later, W.R. Roush examined the reaction of allylboronates with aldehydes and he 
found that diisopropyltartrate ester derived allylboronates reacted with aldehydes to give the products in good yield 
and enantioselectivity.2-5 This reaction is referred to as the Roush asymmetric allylation. The synthesis of these 
allylboronates may be achieved by esterification of allylboronic acid or by transesterification of triisopropyl-
allylboronate with the appropriate tartrate ester. The general features of the allylation reaction are: 1) the reaction is 
typically carried out in toluene, in the presence of 4Å molecular sieves at -78 °C; 2) this method provides access to 
both enantiomers of the homoallylic alcohol product by selecting the proper enantiomer of the diisopropyltartrate ester 
for the preparation of the reagent; 3) this reaction exhibits high levels of matched and mismatched diastereoselection 
in the case of chiral aldehydes; 4) both aliphatic and aromatic aldehydes are suitable substrates; 5) (E)-
crotylboronate derivatives lead to the formation of the anti diastereomer as the major product, while (Z)-
crotylboronates give the syn product; and 6) (E)-crotylboronates usually exhibit higher enantioselectivities than (Z)-
crotylboronates. In addition to the Roush asymmetric allylation, several other methods were developed for the 
asymmetric synthesis of homoallylic alcohols utilizing chiral allylboranes and allylboronates: 1) H.C. Brown reported 
the application of B-allyldiisopinocampheylborane;13,16,19,21,22 2) E.J. Corey described the application of 1,2-diamino-
1,2-diphenylethane derived allylboranes;18,20 3) S. Masamune developed a method where he utilized (E)- and (Z)-
crotyl-2,5-dimethylborolanes;15 and 4) chiral nonracemic allenylboronates were also utilized to form the corresponding 
propargyl alcohols enantioselectively.12,14,20

Mechanism:2

According to Roush, the asymmetric induction can be explained by an unfavorable electronic repulsive interaction 
between the nonbonding electron pair of the aldehyde and ester that destabilizes transition state B relative to A.2
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ROUSH ASYMMETRIC ALLYLATION 

Synthetic Applications:

The total synthesis of the 20-membered macrolide (+)-lasonolide-A was undertaken by S.H. Kang and co-workers.28

During the construction of the C15-C25 subunit, they utilized the Roush asymmetric allylation reaction to introduce 
the C21 and C23 stereocenters. First, (R,R)-diisopropyltartrate derived allylboronate was used to provide the (S)-
homoallylic alcohol with 78% ee. A second asymmetric allylation was achieved utilizing the (S,S)-diisopropyltartrate-
derived allylboronate to form the (R)-homoallylic alcohol with a 91% ee.

Y. Kishi and coworkers accomplished the total synthesis of spongistatin 1.29 In their approach, they applied the Roush 
asymmetric allylation reaction twice during the synthesis of the C38-C51 fragment of the natural product to construct 
the C39, C40 and C41 stereocenters. In the first allylation, they utilized (S,S)-diisopropyltartrate-derived (E)-
crotylboronate, while in the second reaction they used the (R,R)-diisopropyltartrate-modified allyl boronate. During 
their studies, they compared Roush’s method with the allylation developed by H.C. Brown utilizing the corresponding 
crotyl- and allyldiisopinocampheylboranes. They concluded that Brown’s method proceeded with higher 
enantioselectivity, but the ratio of the syn and anti diastereomers was higher in the Roush asymmetric allylation.

Stevastelins are depsipeptides exhibiting immunosuppressant activity. The first total synthesis of stevastelin B was 
described by Y. Yamamoto and co-workers.30 To construct four consecutive stereocenters, the Evans aldol reaction 
and the Roush asymmetric allylation were utilized. In the allylation step, the authors used (S,S)-diisopropyltartrate-
derived (E)-crotyl boronate. The anti homoallylic alcohol product formed as the only diastereomer.  

E.A. Theodorakis and co-workers reported the total synthesis of clerocidin, a diterpenoid antibiotic.31 To form the C12 
stereocenter and the diene moiety, they applied an asymmetric homoallenylboration method.32 The reaction of the 
aldehyde and (S,S)-diisopropyltartrate-derived homoallenyl boronate provided the alcohol with a 6:1 
diastereoselectivity and 83% yield.  
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RUBOTTOM OXIDATION
(References are on page 667)

Importance:

 [Seminal Publications1-3; Modifications & Improvements4-14]

In 1974, the research groups of G.M. Rubottom and A. Hassner independently developed a general and high-yielding 
preparation of α-hydroxy ketones (acyloins) and α-hydroxy aldehydes by the oxidation of silyl enol ethers with 
mCPBA.2,3 The first observation of this transformation, however, was made by A.G. Brook and co-workers the same 
year.1 Today the α-hydroxylation of carbonyl compounds via the peroxyacid oxidation of the corresponding silyl enol 
ethers is known as the Rubottom oxidation. The general features of this reaction are: 1) the silyl enol ether substrates 
can be prepared efficiently and regioselectively from ketones and aldehydes;15,16 2) both acyclic and cyclic enol 
ethers undergo the oxidation; 3) the oxidation readily takes place at or below room temperature (predominantly using 
dichloromethane as the solvent) and the reaction mixture is worked up with either acid or base to afford the α-hydroxy 
carbonyl compounds in good yield; 4) the silyl enol ethers derived from α,β-unsaturated ketones (2-trimethylsilyloxy-
1,3-dienes) are regioselectively oxidized at the more electron-rich double bond to afford α-hydroxy or α-acyloxy 
enones depending on the workup conditions;4 5) often the initial product of the oxidation is the α-silyloxy carbonyl 
compound, which is readily hydrolyzed to the corresponding α-hydroxy derivative; 6) in the case of bicyclic silyl enol 
ethers, the reaction has to be buffered and the use of a completely non-polar solvent (e.g., pentane, toluene) is 
required to avoid the extensive hydrolysis of the starting material;8 and 7) the introduction of the α-hydroxyl 
functionality is stereoselective in the case of bicyclic and polycyclic substrates.8 There are a number of modifications 
of the Rubottom oxidation, and they mainly differ in the applied oxidizing agent: 1) the use of chiral oxidants such as 
Davis' chiral oxaziridines,5 Shi's D-fructose-derived chiral ketone in combination with Oxone9,12 or manganese(III)-
(Salen)complexes10 gives rise to enantiomerically enriched α-hydroxy ketones; 2) hydrogen peroxide efficiently 
oxidizes silyl enol ethers in the presence of MTO (methyltrioxorhenium) to give high yields of the corresponding α-
hydroxy and α-silyloxy ketones;11 and 3) HOF-acetonitrile complex (made directly from F2 and aqueous acetonitrile) 
not only oxidizes silyl enol ethers but also silyl ketene acetals (derived from esters) to afford α-hydroxy ketones and 
esters, respectively.17

Mechanism: 18,1,19

The Rubottom oxidation proceeds through the intermediacy of a silyloxy epoxide. The epoxide ring opens under the 
acidic conditions to afford a stable oxocarbenium ion, which undergoes a 1,4-silyl migration (Brook rearrangement)1

to give an α-silyloxy ketone. The α-silyloxy ketone is readily hydrolyzed to the product. Until recently the silyloxy 
epoxide could not be isolated or observed but when the oxidation was conducted with neutral epoxidizing agents, the 
silyloxy epoxide intermediate could be isolated. 
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RUBOTTOM OXIDATION

Synthetic Applications:

The highly potent antithrombotic (±)-rishirilide B was synthesized in the laboratory of S.J. Danishefsky.20 One of the 
tertiary alcohol functionalities was introduced via the Rubottom oxidation of a six-membered silyl dienol ether with 
dimethyl dioxirane (DMDO). The oxidation was completely stereoselective, and it was guided by the proximal 
secondary methyl group. Subsequently, the enone was converted to the enedione, which was used as a dienophile in 
the key intermolecular Diels-Alder cycloaddition step. 

The total synthesis of the antitumor antibiotic FR901464 was accomplished by E.N. Jacobsen et al.21 The preparation 
of the central six-membered fragment was achieved via a highly enantioselective hetero Diels-Alder reaction between 
a diene and an aldehyde. The resulting silyl enol ether was subjected to a modified Rubottom oxidation condition 
(buffer and nonpolar solvent) with mCPBA to afford the desired α-hydroxy ketone with complete diastereoselectivity. 

The key step in the total synthesis of the furanoditerpene d,l-isospongiadiol by P.A. Zoretic and co-workers was an 
oxidative free-radical cyclization, which gave rise to the tricyclic skeleton of the natural product.22 The last 
stereocenter at C2 was introduced using the Rubottom oxidation on the fully elaborated tetracyclic intermediate. The 
product was a mixture of α-hydroxy and silyloxy ketone and the last step was a global deprotection with TBAF to 
afford the natural product. 

In the highly stereoselective synthesis of hispidospermidin, the oxygenation of the C10 position was achieved via a 
Rubottom oxidation by S.J. Danishefsky et al.23 The tricyclic ketone was first converted to the TES enol ether, which 
was readily oxidized with mCPBA to give the corresponding α-hydroxy ketone as a single diastereomer. 
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SAEGUSA OXIDATION
(References are on page 667)

Importance:

 [Seminal Publications1,2; Reviews3-7; Modifications & Improvements8-11]

In 1978, T. Saegusa and co-workers reported that silyl enol ethers reacted with substoichiometric amounts of 
Pd(OAc)2 and p-benzoquinone in acetonitrile at room temperature to afford the corresponding α,β-unsaturated 
carbonyl compounds.2 The regioselective introduction of the α,β carbon-carbon double bond to cyclic and acyclic 
ketones via the Pd-mediated oxidation of the corresponding silyl enol ethers is known as the Saegusa oxidation. The 
general features of the transformation are: 1) the reaction is usually carried out using 0.5 equivalents of Pd(OAc)2 and 
0.5 equivalents of p-benzoquinone (co-oxidant) at room temperature; 2) when stoichiometric amounts of Pd(OAc)2
are used, no co-oxidant is needed. However, less than 0.25 equivalents of Pd(OAc)2 results in a substantial decrease 
in the reaction rate as well as isolated yield of the product; 3) the starting silyl enol ethers are easily obtained by 
trapping metal enolates with TMSCl (the metal enolates are either obtained by the regioselective deprotonation of 
ketones and aldehydes with LiHMDS or LDA or by the conjugate addition of carbon nucleophiles to α,β-unsaturated 
carbonyl compounds);12,13 4) both acyclic and cyclic silyl enol ethers undergo the transformation; 5) the oxidation 
proceeds with high stereoselectivity, because in acyclic systems the stereochemistry of the newly formed double 
bond is predominantly (E) even if the starting silyl enol ether was a mixture of (E) and (Z) stereoisomers; and 6) cyclic 
silyl enol ethers (n=1-7) are efficiently oxidized, and when the ring size allows, the newly introduced double bond will 
have the (E) stereochemistry. The main drawback of the Saegusa oxidation is the high cost of the palladium acetate. 
However, methods employing truly catalytic amounts of Pd(II)- and Pd(0) complexes have been developed.11 There are 
several modifications of the process: 1) an environmentally friendly catalytic version using only 10 mol% of Pd(OAc)2
and oxygen atmosphere in DMSO (Larock modification);11 2) instead of silyl enol ethers, enol acetates can also be 
used when they are heated with allyl methyl carbonate, catalytic amounts of Pd(OAc)2 and MeOSnBu3;10 and 3) allyl 
enol carbonates also undergo oxidation with catalytic amounts of Pd(OAc)2/dppe.8,7  Alternatively, silyl enol ethers 
can be efficiently oxidized by IBX and IBX-N-oxides to the corresponding enones (Nicolaou oxidation).14

Mechanism: 15,7
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SAEGUSA OXIDATION

Synthetic Applications:

The first total synthesis of the marine polycyclic ether toxin (–)-gambierol was accomplished in the laboratory of M. 
Sasaki.16 The introduction of the α,β-unsaturation into the seven-membered H ring of the FGH tricyclic subunit proved 
to be problematic, because both the conventional selenium-based method and the Nicolaou oxidation with IBX failed. 
However, when the seven-membered ketone was treated with LiHMDS in the presence of TMSCl and Et3N, the 
corresponding silyl enol ether was formed, which was oxidized under Saegusa conditions to give the desired cyclic 
enone in high yield. Because of the small scale of the reaction, a large excess of Pd(OAc)2 was used in acetonitrile 
so the presence of a co-oxidant was not necessary. 

A.G.M. Barrett and co-workers reported the first total synthesis of (–)-preussomerin G.17 In the late stages of the 
synthesis, the introduction of the desired cyclohexenone moiety was achieved using the Saegusa oxidation. The 
ketone was first converted to the silyl enol ether with trimethylsilyl triflate, and then it was treated with stoichiometric 
amounts of Pd(OAc)2.

The Larock modified Saegusa oxidation conditions were utilized in the total synthesis of (±)-8,14-cedranoxide by M. 
Ihara et al.18 The main strategy was to apply an intramolecular double Michael addition reaction to assemble the 
tricyclic cedranoid skeleton. The precursor five-membered enone was prepared in high yield from the corresponding 
substituted cyclopentanone in two steps. 

A stereodivergent synthesis was developed by H. Nemoto and co-workers for the preparation of cis-fused 2,5-
disubstituted octahydroquinolines, which constitute the core structure of certain dendrobatid alkaloids.19 The 
installation of the C5 methyl group was achieved by 1,4-cuprate addition and the resulting enolate was trapped with 
TMSCl. The silyl enol ether was then oxidized to the enone with Pd(OAc)2.
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SAKURAI ALLYLATION 
(References are on page 668)

Importance:

[Seminal Publications1,2; Reviews3-9; Modifications & Improvements10-23; Theoretical Studies24,25]

In 1976, H. Sakurai reported that allylsilanes react with a wide variety of aldehydes and ketones in the presence of 
stoichiometric quantities of TiCl4 to form the corresponding homoallylic alcohols. Today, this transformation is referred 
to as the Sakurai allylation, and it is one of the most important carbon-carbon bond forming reactions. The general 
features of the reaction are: 1) typically, it is carried out in dichloromethane under nitrogen atmosphere at a 
temperature range between -78 °C and 25 °C; 2) in addition to TiCl4, several other Lewis acids can be used such as 
AlCl3, BF3·OEt2, SnCl4, EtAlCl2;1,2 3) most commonly trimethylallylsilanes and phenyldimethylallylsilanes are utilized 
as the allylsilane reactant;4,6 4) the reaction is highly regioselective, the electrophile attacking at the C3 terminus of 
the allylsilane;1,2,4 5) C1 substituted allylsilanes give the (E)-alkene product;26 6) allenyl-,27 propargyl-,28 vinyl-,29 and 
ethynylsilanes29 also undergo the reaction in the presence of Lewis acids; 7) the most commonly used electrophiles 
are aldehydes and ketones, but acetals and ketals30 are also often utilized; 8) dithioacetals,31 monothioacetals,32

alkoxymethyl-,33 and phenylthiomethyl chlorides34 undergo the allylation reaction; 9) α,β-unsaturated aldehydes react 
at the carbonyl group, while  α,β-unsaturated ketones undergo conjugate addition;35,36 10) intramolecular reactions 
are also feasible;37 and 11) C3 monosubstituted allysilanes give the syn-diastereomer as the major product.38

Common side reactions in the Sakurai allylation are the following: 1) protodesilylation;39 2) allylic alcohol products, 
especially tertiary allylic alcohols can undergo ionization;40 and 3) in the case of 1,1-disubstituted allylsilanes, the 
trisubstituted alkene product may react further.41 Side reactions usually can be avoided by carefully controlled 
conditions or utilizing acetal or ketal substrates. Catalytic versions of the Sakurai allylation are known as well, utilizing 
TMSOTf,10 TMSI,11 Ph3CClO4,12 Cp2Ti(CF3SO3)2,14 TMSOMs,19 and InCl3/TMSCl20 as catalysts. Recently, catalytic 
asymmetric versions were developed.15,22,23

Mechanism:42,43,38,44-46

The reaction starts with the activation of the carbonyl group by the Lewis acid. Subsequent carbon-carbon bond 
formation leads to a silyl-stabilized carbocation,45 which after loss of the trimethylsilyl group, gives the double bond. 
From studies conducted on chiral allylsilanes, it was concluded that the incoming electrophile attacks the double bond 
on the surface opposite to the silyl group.42 The reaction of aldehydes with C3 substituted allylsilanes leads to the 
syn-diastereomer as the major product, and (E)-allylsilanes give higher diastereoselectivities than (Z)-allylsilanes. 
The reaction presumably goes through an open transition state.38 The possible transition states leading to the syn-
diastereomer are depicted below.43,44
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SAKURAI ALLYLATION 

Synthetic Applications:

In the laboratory of B.M. Trost, a modular approach toward the total syntheses of furaquinocins was developed.47 To 
introduce the homoallylic side chain in a diastereoselective fashion, they utilized the Sakurai allylation reaction.
During their studies they found that the highest diastereoselectivity can be achieved using 1 equivalent of TiCl4 at 
room temperature. Application of other Lewis acids such as BF3·OEt2 gave the product with lower selectivity. 
Attempts to perform the allylation using catalytic amounts of Lewis acids such as FeCl3 or Sc(OTf)3 led to no 
conversion. The resulting homoallylic alcohol served as a common intermediate toward the syntheses of both 
furaquinocin A and B. 

A convergent total synthesis of 15-membered macrolactone, (–)-amphidinolide P was reported by D.R. Williams and 
coworkers.48 In their approach, they utilized the Sakurai allylation to introduce the C7 hydroxyl group and the 
homoallylic side chain. The transformation was effected by BF3·OEt2 at -78 °C to provide the homoallylic alcohol as a 
2:1 mixture of diastereomers. The desired alcohol proved to be the major diastereomer, as it resulted from the Felkin-
Ahn controlled addition of the allylsilane to the aldehyde. The minor diastereomer was converted into the desired 
stereoisomer via a Mitsunobu reaction.

A highly convergent, enantioselective total synthesis of structurally novel, cancer therapeutic lead, (–)-laulimalide was 
achieved by P.A. Wender and co-workers.49 During the synthesis, they performed an unprecedented complex 
asymmetric Sakurai allylation reaction as a key step to form the C14-C15 carbon-carbon bond. In this transformation, 
they utilized a chiral, nonracemic (acyloxy)borane Lewis acid that was developed by H. Yamamoto.15 According to 
Yamamoto’s original procedure, only a catalytic amount (10-20 mol%) of the Lewis acid was needed to bring about 
the desired transformation with high yield and enantioselectivity. However, in this case, one equivalent of the Lewis 
acid was necessary to effect the allylation. The reaction was carried out in propionitrile at -78 °C, and the product was 
obtained in high yield and as the only detectable diastereomer by spectroscopic methods. 
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SANDMEYER REACTION
(References are on page 669)

Importance:

 [Seminal Publications1-4; Reviews5-11; Modifications & Improvements12-19]

In 1884, T. Sandmeyer intended to prepare phenylacetylene by reacting benzenediazonium chloride with copper(I) 
acetylide, but the major product of the reaction was chlorobenzene, and no trace of the desired product was 
detected.3 Careful examination of the reaction conditions revealed that copper(I) chloride was formed in situ and it 
catalyzed the replacement of the diazonium group with a chlorine atom.4 Sandmeyer also showed that 
bromobenzene was formed by using copper(I) bromide, and copper(I) cyanide led to benzonitrile. The substitution of 
aryldiazonium salts with halides or pesudohalides is known as the Sandmeyer reaction. The general features of this 
transformation are: 1) the required aryldiazonium halides are usually prepared from arylamines via diazotization using 
either NaNO2/hydrohalic acid in water or alkyl nitrites (e.g., tert-butyl nitrite) under anhydrous conditions; 2) the 
aryldiazonium halides are not isolated but reacted in the same pot with copper(I) chloride, bromide or cyanide to 
obtain the corresponding aryl chloride, aryl bromide, and aryl nitrile, respectively; 3) the counterion of the copper(I) 
salt has to match the conjugate base of the hydrohalic acid otherwise product mixtures are formed; 4) the preparation 
of aryl iodides does not require the use of a copper(I) salts; simply adding potassium iodide brings about the 
substitution accompanied by the loss of dinitrogen; and 5) the substitution pattern on the aromatic amine can be 
widely varied, both electron-donating and electron-withdrawing groups are tolerated. There are other useful 
substitution reactions of aryldiazonium salts, but these are referred to with different names (or with no specific 
name):8 1) when the aryldiazonium halides are treated with hydrogen chloride or hydrogen bromide in the presence 
of copper metal to afford aryl chlorides and bromides, the process is called the Gattermann reaction; 2) the thermal 
decomposition of aryldiazonium tetrafluoroborates to give aryl fluorides is known as the Balz-Schiemann reaction; 3) 
aryldiazonium tetrafluoroborates react with sodium nitrite in the presence of catalytic amounts of copper(I) salt to give 
nitroarenes;20,21 and 4) aryldiazonium salts can also be converted to phenols by heating with trifluoroacetic acid, 
aqueous sulfuric acid, or with aqueous solution of copper salts (occasionally called the Sandmeyer hydroxylation).22-

24

Mechanism: 25-32,9,33,34,16,35,36,19,24

The mechanism of the Sandmeyer reaction is not completely understood. For a long time it was believed to proceed 
via aryl cations, but later W.A. Waters and then later J.K. Kochi proposed a radical mechanism which was catalytic for 
the copper(I) salt.25,26 In a single electron-transfer event the diazonium halide is reduced to a diazonium radical which 
quickly loses dinitrogen to afford an aryl radical. A final ligand transfer from the copper(II) salt completes the catalytic 
cycle and regenerates the copper(I) species. 
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SANDMEYER REACTION

Synthetic Applications:

In the laboratory of D.A. Evans the total synthesis of the teicoplanin aglycon was accomplished.37 In the endgame of 
the synthetic effort the introduction of the required chloro substituent on ring-2 under mild conditions was necessary. 
The authors chose the Sandmeyer reaction to bring about the desired transformation of the aromatic amine moiety. 
First the substrate was diazotized with t-butyl nitrite and HBF4 in acetonitrile and then in the same pot a mixture of 
copper(I) chloride and copper(II) chloride in large excess was added at low temperature. The desired aryl chloride 
was isolated in moderate yield. To complete the synthesis, the following steps had to be carried out: 1) deprotection 
of the carboxy-terminal N-methylamide with N2O4 followed by a pH neutral hydrolysis; and 2) global demethylation at 
room temperature using AlBr3/EtSH with concomitant N-terminal trifluoroacetamide hydrolysis. 

The neurotoxic quaterpyridine natural product nemertelline was successfully synthesized by S. Rault et al. using a 
Suzuki cross-coupling as the key step. The boronic acid coupling partner, required for the Suzuki reaction, was 
prepared by first subjecting 3-amino-2-chloropyridine to the conditions of the Sandmeyer reaction followed by a 
lithium-halogen exchange and trapping the lithiopyridine derivative with triisopropylborate. 

M. Nakata and co-workers completed the concise total synthesis of ( )-A80915G, which belongs to the 
napyradiomycin family of antibiotics.38 There were two key carbon-carbon bond forming reactions in the synthetic 
sequence: a Stille cross-coupling between an aromatic trihalide and geranyl tributyltin and a Diels-Alder cycloaddition
employing the Danishefsky-Brassard diene. A Sandmeyer reaction was used to introduce the iodine substituent to the 
2-bromo-4-chloro-3,6-dimethoxy-aniline substrate in order to obtain the required trihalogenated 1,4-dimethoxy-
benzene precursor.  
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SCHMIDT REACTION
(References are on page 670)

Importance:

 [Seminal Publications1,2; Reviews3-10; Modifications & Improvements11-17; Theoretical Studies18-21]

In 1923, K.F. Schmidt reported that heating hydrazoic acid (HN3) with benzophenone in the presence of sulfuric acid, 
afforded benzanilide in quantitative yield.1 Later this transformation was shown to be general for ketones, aldehydes, 
and carboxylic acids that underwent similar reactions with HN3 to give amides, nitriles, and amines, respectively. The 
reaction of carbonyl compounds with hydrazoic acid or alkyl azides in the presence of acid catalysts is known as the 
Schmidt reaction. The general features of the Schmidt reaction are: 1) the transformation occurs in a single stage 
from carboxylic acids unlike the related Curtius and Hoffmann rearrangements; 2) the reaction conditions are mild, 
the reagents are readily available, the procedure is simple, and does not require special equipment; 3) protic acids 
are used as acid catalysts (e.g., H2SO4, PPA, trichloroacetic acid/H2SO4, TFA, TFAA), and sulfuric acid is by far the 
most  widely used; 4) hydrogen azide is handled either as a solution in an inert solvent (e.g., CHCl3) or generated in 
situ by adding NaN3 to the acidic reaction mixture; 5) HN3 is known to be toxic and explosive (especially on large 
scale); 6) in the case of carboxylic acids, the best results are obtained with aliphatic and sterically hindered aromatic 
substrates; 7) the product amines are one-carbon shorter homologs of the substrates due the loss of CO2; 8) 
aromatic acids with electron-withdrawing groups require the use of very strong acid catalysts (e.g., conc. H2SO4 or 
oleum) and very electron-poor heterocyclic acids usually do not react; 9) the α-stereocenter remains unaffected and 
the product amine is obtained with retention of configuration; 10) carboxylic acids that are fully alkyl or aryl substituted 
at the α-position (have no α hydrogen atom) may undergo side reactions due to the decarboxylation of the acid to a 
stable carbocation; 11) 1,3-dicarboxylic acids react at only one of the carboxylic acid fuctional groups; 12) α-amino 
acids do not react; 13) α,β-unsaturated carboxylic acids are not good substrates, since they give rise to complex 
reaction mixtures; 14) aldehydes and ketones react with hydrazoic acid faster than carboxylic acids so good 
chemoselectivity can be achieved with keto acids; 15) aliphatic aldehydes are unstable in sulfuric acid, so mainly 
aromatic aldehydes are used; 16) the main product with aldehydes is the corresponding nitrile, but the formation of 
formamides is often a side reaction; 17) symmetrical ketones give rise to N-substituted amides; 18) in unsymmetrical 
ketones such as alkyl aryl ketones, the aryl group migrates preferentially so N-aryl amides are obtained; 19) cyclic 
ketones undergo ring-enlargement to afford cyclic amides; 20) Lewis acids are effective catalysts when alkyl azides 
are employed; and 21) the reaction works efficiently intramolecularly and affords N-substituted lactams. The 
disadvantages of the Schmidt reaction are: 1) carbonyl compounds and carboxylic acids that are unstable in aqueous 
acid cannot be used as substrates; 2) the reaction medium has to be fairly acidic to achieve high yields; 3) when 
ketones are reacted with excess HN3, tetrazoles are formed in significant amounts; and 4) in addition to the carbonyl 
group, several other functional groups such as nitriles, imines, diimides, certain alkenes, and alcohols (which are 
dehydrated to alkenes in the acidic medium) react with HN3.

Mechanism: 22-25,7,26-28
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Synthetic Applications:
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SCHOTTEN-BAUMANN REACTION
(References are on page 670)

Importance:

 [Seminal Publications1,2; Reviews3,4; Modifications & Improvements5-21; Theoretical Studies22]

In 1884, C. Schotten reported an efficient method for the preparation of N-benzoyl piperidine from piperidine and 
benzoyl chloride in water and in the presence of sodium hydroxide.1 In 1886, E. Baumann showed that the same 
reaction conditions were suitable for the preparation of benzoic acid esters from alcohols and benzoyl chloride.2 The 
neat alcohol and benzoyl chloride were mixed in water, then the resulting mixture was treated with aqueous sodium 
hydroxide. The product esters were frequently crystalline and could be isolated in high yield. Baumann demonstrated 
the power of this method by benzoylating several polyhydroxy compounds such as glucose and glycerol. The 
synthesis of esters from alcohols and amides from amines with acyl halides or anhydrides in the presence of aqueous 
base is known as the Schotten-Baumann reaction. The general features of these transformations are: 1) the reaction 
is especially well-suited for the preparation of simple amides; 2) in the typical procedure the alcohol or ester is mixed 
with excess acyl halide or anhydride in the presence of aqueous sodium hydroxide or saturated aqueous sodium 
bicarbonate while the reaction mixture is stirred vigorously; 3) the order of reactivity for alcohols is: 1°>2°>3°, which 
means that sterically hindered secondary and tertiary alcohols are usually acylated sluggishly; 4) the order of 
reactivity of the amines is determined by their basicity and generally the more basic amine is acylated faster; 5) the 
success of the process depends on the reactivity of the acyl halide, and in general acyl halides that are less reactive 
give higher yields of the product (since less reactive acyl halides do not undergo rapid hydrolysis by water); 6) 
aromatic acyl halides are more stable under aqueous conditions than aliphatic acyl halides, so they are more suitable 
for acylation under the Schotten-Baumann conditions; 7) in the acylation of primary alcohols the presence of a base 
is not always necessary (but it is recommended to achieve high yields), since the by-product hydrogen halide in 
certain cases does not hydrolyze the product ester; 8) the use of a base is required during the acylation of secondary 
and tertiary alcohols; and 9) during the acylation of amines the presence of a base is crucial, since the substrate 
amine is rendered unreactive upon protonation by the acid by-product (the base applied must be stronger than the 
substrate amine). Several modifications were developed for the acylation of sterically hindered substrates. Today, the 
majority of acylation reactions is conducted in aprotic organic solvents in the presence of organic bases (e.g., 
pyridine, DMAP, etc.) and/or Lewis acids, and they can all be considered as modifications of the original Schotten-
Baumann conditions. 

Mechanism: 23,24,4,25-27
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SCHOTTEN-BAUMANN REACTION

Synthetic Applications:

The first enantioselective total synthesis of (–)-tejedine was completed by P.E. Georghiou using a chiral auxiliary-
assisted diastereoselective Bischler-Napieralski cyclization as one of the key steps.28 The chiral auxiliary was the 
commercially available (S)-α-methylbenzylamine, which was coupled to the substrate using the original Schotten-
Baumann acylation conditions. The acid chloride was reacted with the chiral amine in a solvent mixture containing 
aqueous sodium hydroxide and dichloromethane and the desired amide was isolated in excellent yield. 

In the laboratory of A. Ganesan the short biomimetic total synthesis of the fumiquinazoline alkaloid fumiquinazoline G
was accomplished.29 The key step in the synthetic sequence was the dehydration of the anthranilamide residue in a 
linear tripeptide to the corresponding benzoxazine by reacting it with triphenylphosphine, iodine and Hünig's base. 
The authors initially prepared the linear tripeptide by condensing Fmoc-D-alanine with PyBroP as the acylating agent, 
but the product was formed only in a poor yield. When the peptide bond was formed under two-phase Schotten-
Baumann conditions using sodium carbonate as the base, the desired tripeptide was isolated in high yield. 

One of the intermediates in sphingolipid biosynthesis and degradation is ceramide, which influences certain cellular 
processes such as apoptosis and cell differentiation. The research team of P. Herdwijn prepared several ceramide 
analogues with substituted aromatic rings in the sphingoid moiety and evaluated their biological activity in 
hippocampal neurons.30 The ceramide analogue with a thiophenyl sphingoid moiety was prepared by the Schotten-
Baumann acylation of an amino diol with hexanoyl chloride. Since the nucleophilicity of the amino group is far greater 
than that of the hydroxyl groups, the acylation took place selectively to form the corresponding amide. 

The first asymmetric synthesis of (+)-cannabisativine was achived by D.L. Comins et al. using the addition of metallo 
enolates to a chiral 1-acylpyridinium salt as one of the key steps.31 The amide bond was created under the Schotten-
Baumann conditions from a bicyclic acid chloride and a 1,4-amino alcohol. 
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SCHWARTZ HYDROZIRCONATION
(References are on page 671)

Importance:

 [Seminal Publications1-4; Reviews5-18; Modifications & Improvements19-22; Theoretical Studies23-29]

In 1970, P.C. Wailes and H. Weigold were the first to prepare zirconocene hydrochloride2 (Cp2ZrHCl) by the reduction 
of Cp2ZrCl2, but it was J. Schwartz who examined its reactions with a wide range of substrates and developed it as a 
useful reagent for organic synthesis.3 The reaction of Cp2ZrHCl (Schwartz reagent) with multiple bonds to form alkyl- 
and alkenylzirconium compounds is called the Schwartz hydrozirconation. The general features of the reaction are: 1) 
the hydrozirconation of alkenes and alkynes takes place at room temperature; 2) the reaction rate is orders of 
magnitude faster in ether solvents (e.g., THF, oxetane) than in hydrocarbon solvents such as hexanes and benzene; 
3) under thermodynamic control, terminal or internal alkenes all give the terminal alkylzirconium compound because a 
rapid "chain walk" takes place to relieve the steric crowding;12 3) the order of reactivity for alkenes and alkynes are: 
terminal alkyne > terminal monosubstituted alkene ≈ internal alkyne > internal disubstituted alkene ≈ 2,2-disubstituted 
terminal alkene ≈ conjugated polyene > trisubstituted alkene; 4) tetrasubstituted alkenes generally do not react; 5) 
internal alkynes react regioselectively to give an alkenylzirconium compound in which the zirconium is located on the 
carbon closer to the smaller substituent; 6) conjugated dienes are hydrozirconated at the sterically less hindered 
double bond; and 7) the alkyl- and alkenylzirconium compounds are easily transmetallated to other useful 
organometallic compounds that can be used in various coupling reactions (e.g., Negishi cross-coupling) or can be 
trapped with small electrophiles (e.g., halogens, CO, isonitrile, H+, etc.) with retention of configuration at carbon. 

Mechanism: 30-32,25,33,34,12,35

The Schwartz hydrozirconation is closely related to the Brown hydroboration reaction, but its mechanistic details are 
poorly understood mainly because of the oligomeric character of the Schwartz reagent, which makes the elucidation 
of the reaction kinetics very difficult. The fact that solvents with donor heteroatoms (e.g., THF, oxetane) accelerate 
hydrozirconations suggests that there is a rate-limiting dissociation of the oligomer before the addition to the multiple 
bond takes place. In THF the reaction is zero order in Schwartz reagent, while in oxetane it is first order both in the 
reagent and the alkene (or alkyne) substrate. The hydrozirconation proceeds via a four-atom concerted transition 
state (formally symmetry allowed due to the vacant d-orbitals on Zr), while the hydroboration is formally symmetry-
forbidden.25 The insertion into C-C multiple bonds takes place with syn stereochemistry. The ab initio study of 
hydrozirconation revealed that the attack of alkene at Zr is the most favorable between the Cl and H ligands. The 
alkene-Zr 18-electron π-complex is not stabilized by metal to olefin back-donation, because the zirconium has no d-
electrons. Interestingly, the 16-electron alkylzirconium σ-complex is thermodynamically more stable (~10 kcal/mol) 
than the alkene-Zr complex, which is the driving force for hydrozirconation. (The alkene complexes of late-transition 
metals, however, are more thermodynamically stable. Therefore, they rarely undergo hydrometallation reactions.)  
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SCHWARTZ HYDROZIRCONATION

Synthetic Applications:

The hydrozirconation of polyunsaturated substrates can be plagued by extensive isomerization of double bonds. 
However, under carefully controlled reaction conditions, synthetically useful functionalization of conjugated polyenes 
can be realized. During the total synthesis of curacin A by P. Wipf and co-workers, a one-carbon homologation of 
conjugated triene substrate was achieved by hydrozirconation followed by an electrophile-trapping step.36 The rate of 
formation of the desired terminal alkylzirconocene derivative was slow but was accomplished by heating the reaction 
mixture at 40 °C overnight. The treatment of the alkylzirconocene with n-butyl isocyanide and subsequent hydrolysis 
of the corresponding iminoylzirconocene with HCl gave the expected aldehyde in 54% yield. 

The total synthesis of apoptolidin was accomplished in the laboratory of K.C. Nicolaou.37 The key C12-C28 vinyl 
iodide fragment was prepared using the Schwartz hydrozirconation of an internal alkyne followed by trapping of the 
alkenylzirconium intermediate with iodine (I2). The vinyl iodide was formed as a 6:1 mixture of regioisomers. Under 
the reaction conditions, the methyl orthoester was converted to the methyl glycoside moiety at C21, which was 
presumably facilitated by the complexation of Zr with the pyranoside oxygen atom. 

J. Montgomery and co-workers established the stereochemistry of isodomoic acid G through its first total synthesis.38

The key step to construct the pyrrolidine ring was the nickel-catalyzed coupling of an alkynyl enone with an in situ
formed alkenylzirconium. The terminal alkyne was then exposed to the Schwartz reagent, and subsequently the 
alkynyl enone was added along with catalytic amounts of Ni(COD)2 and ZnCl2. The initial alkenylzirconium 
regioselectively added across the internal alkyne and was first transmetallated to an organozinc and subsequently to 
an organonickel intermediate. This organonickel compound underwent an intramolecular 1,4-addition with the enone 
to form the pyrrolidine ring. This one-pot operation set all the necessary stereocenters of the natural product including 
the stereoselective formation of the highly substituted 1,3-diene side-chain. 
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 SEYFERTH-GILBERT HOMOLOGATION
(References are on page 672)

Importance:

 [Seminal Publications1-7; Reviews8-10; Modifications & Improvements11-17]

In 1973, E.W. Colvin and B.J. Hamill reported a convenient one-step conversion of aldehydes and ketones to 
acetylenes using trimethylsilyldiazomethane or dimethylphosphonodiazomethane (a compound first synthesized by 
D. Seyferth2) under basic conditions. In a subsequent paper, the authors noted that the transformation worked well 
only for non-enolizable carbonyl compounds such as diaryl ketones and aromatic aldehydes with electron-
withdrawing groups. In 1979, J.C. Gilbert and U. Weerasooriya disclosed an improved procedure that dramatically 
increased the scope of the reaction.6 The one-pot conversion of carbonyl compounds to the corresponding terminal 
or internal alkynes using α-diazophosphonates under basic conditions is known as the Seyferth-Gilbert homologation.
The general features of this transformation are: 1) the phosphonate reagents are not commercially available, but they 
can be prepared readily;18 2) in the original procedure developed by Gilbert, the dialkylphosphonodiazomethane 
(DAMP) was deprotonated with a strong base such as an alkyllithium or potassium tert-butoxide, and the carbonyl 
compound was added at low temperature under an inert atmosphere. The product alkyne was isolated upon a simple 
aqueous work-up (this procedure is only rarely used, since base-sensitive substrates do not tolerate the strongly 
basic conditions); 3) in the Ohira-Bestmann modification the dimethyl-1-diazo-2-oxopropylphosphonate is added to a 
solution of K2CO3 and the aldehyde in methanol at room temperature. After several hours of stirring, the product is 
isolated upon aqueous work-up in excellent yield (this modified procedure is by far the most popular). The key 
features of the Ohira-Bestmann protocol are: 1) the reaction conditions are mild, and most functional groups are 
tolerated; 2) highly sensitive enantiopure α-alkoxy aldehydes do not undergo racemization; 3) aliphatic, aromatic, as 
well as arylalkyl aldehydes are homologated to the corresponding terminal alkynes in excellent yields; 4) substrates 
containing highly C-H acidic bonds are homologated in high yields; and 5) α,β-unsaturated aldehydes do not undergo 
the transformation and the expected enynes are not formed (rather the homopropargylic methyl esters are obtained). 

Mechanism: 7

In the Ohira-Bestmann modified procedure the first step is the deacylation of the reagent by a methoxide ion. The 
resulting carbanion (nucleophile) attacks the carbonyl group of the aldehyde or ketone and an oxaphosphetane-type 
intermediate is formed (just like in the HWE olefination), which breaks down to afford a thermally unstable 
diazoalkene. The diazoalkene loses dinitrogen (α-elimination) and the resulting alkylidenecarbene undergoes a 1,2-
shift to give rise to the alkyne. 
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SEYFERTH-GILBERT HOMOLOGATION

Synthetic Applications:

The total synthesis of the marine toxin polycavernoside A was achieved by J.D. White and co-workers.19 In order to 
couple the central pyran moiety in a Nozaki-Hiyama-Kishi reaction, the aldehyde side chain had to be first 
homologated to the corresponding terminal alkyne and subsequently transformed into a vinyl bromide. The aldehyde 
substrate was treated under the Ohira-Bestmann protocol, and the desired alkyne product was obtained in high yield. 

The tetraacetylenic compound (–)-minquartynoic acid was synthesized in the laboratory of B.W. Gung from 
commercially available azelaic acid monomethyl ester using a one-pot three-component Cadiot-Chodkiewitz reaction
as the key step.20 This natural product shows strong anti-cancer and anti-HIV activity. One of the alkyne components 
was prepared using the modified Seyferth-Gilbert homologation.

The stereoselective synthesis of the C5-C20 subunit of the aplyronine family of polyketide marine macrolides was 
accomplished by J.A. Marshall and co-workers.21 The C15-C20 moiety was prepared using the original Seyferth-
Gilbert homologation conditions. The diazophosphonate was deprotonated with potassium tert-butoxide at low 
temperature, and then the solution of the aldehyde was added slowly also at low temperature. Interestingly, the 
alternative Corey-Fuchs alkyne synthesis was unsuccessful on this substrate, since extensive decomposition was 
observed. 

A structurally novel cancer therapeutic agent, (–)-laulimalide, was isolated from Pacific marine sponges in trace 
amounts, and it was shown to promote abnormal tubulin polymerization. P.A. Wender et al. applied the modified 
Seyfert-Gilbert homologation on a complex substrate in the endgame of the total synthesis to obtain the desired 
terminal alkyne.22
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SHARPLESS ASYMMETRIC AMINOHYDROXYLATION
(References are on page 673)

Importance:

[Seminal Publications1; Reviews2-8; Modifications & Improvements9-21; Theoretical Studies22]

In 1996, K.B. Sharpless et al. reported the one-pot enantioselective synthesis of protected vicinal amino alcohols 
from simple alkenes.1 This transformation is known as the Sharpless asymmetric aminohydroxylation (SAA), which 
complements the other asymmetric methods such as the Sharpless asymmetric epoxidation (SAE) and 
dihydroxylation (SAD) using olefins as substrates. The SAA is closely related to the SAD, since it uses the same 
chiral tertiary amine ligands and the factors that determine the enantioselectivity are similar. The β-amino alcohol 
moiety is an important pharmacophore, since it is a common structural motif in many biologically active compounds. 
This fact alone makes the SAA extremely valuable as a synthetic tool to access such compounds in good yield and 
with high enantioselectivity. The general features of the SAA are: 1) most olefins are substrates for the reaction: the 
best substrates have an electron-withdrawing group (e.g., CO2R, P(O)(OR)2, CONR2) and tetrasubstituted alkenes do 
not react; 2) unlike in the SAD, there is no preformed reagent mixture (such as the AD-mixes) available, but the 
necessary components are the same except for the nitrogen source; 3) generally the nitrogen source is the alkali 
metal salt of an N-halogenated sulfonamide (X = Ms, Ns, Ts),1,23 alkyl carbamate (X = Cbz, Boc, Teoc),10,13,14 or 
amide (X = Ac);9,24 4) in the case of sulfonamides and acetamides, the N-haloamine salt is prepared from the 
corresponding N-haloamides while carbamates are prepared in situ by using t-BuOCl/NaOH; 5) the smaller the 
substituent (X) on the nitrogen source, the higher is the enantiopurity of the product; 6) to achieve the highest 
possible yield, a large excess (~3-6 equivalents) of the nitrogen source should be applied; 7) when sulfonamides are 
used, the substrate scope is limited to alkenes with electron-withdrawing groups, but the use of carbamates increases 
the substrate scope considerably; 8) just as in the SAD, the use of chiral bidentate tertiary amine ligands (DHQ- and 
DHQD-derived) give enantio-complementary results; 9) the absolute stereochemistry can be predicted with the 
“mnemonic device” proposed for the SAD and the asymmetric induction is of the same sense and similar magnitude 
for structurally related substrates; 10) the regioselectivity is hard to predict, since it is influenced by many factors but 
in the case of unsymmetrical alkenes the nitrogen generally adds to the less substituted carbon, while cinnamate 
esters react to give preferentially the β-amino ester product; 11) the nature of the ligand and the solvent system 
usually has a dramatic effect on the regioselectivity for styrene substrates;14 12) diols are often side-products in the 
SAA reactions, but there are several ways to reduce the extent of the dihydroxylation.14,24,25

Mechanism: 23,18,24-26

The mechanisms of the SAD and SAA are similar. The first step in mechanism of the SAA is the formal [2+2] or [3+2] 
cycloaddition of the imidotrioxoosmium(VIII) species with the olefin in a syn-stereospecific fashion to give eventually 
an osmium(VI) azaglycolate intermediate. This azaglycolate is then oxidized by the nitrogen source, while the ligand 
is lost and subsequent hydrolysis affords the 1,2-cis amino alcohol product and the imidotrioxoosmium(VIII) species 
which reenters the catalytic cycle. 
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SHARPLESS ASYMMETRIC AMINOHYDROXYLATION 

Synthetic Applications:

The Sharpless regioreversed asymmetric aminohydroxylation protocol was used as a key step in the total synthesis 
of ustiloxin D by M.M. Joullié and co-workers.27 The (E)-ethyl cinnamate derivative was subjected to in situ generated 
sodium salt of the N-Cbz chloroamine in the presence of catalytic amounts of the anthraquinone-based chiral ligand 
to afford the desired N-Cbz protected (2S,3R)-β-hydroxy amino ester in good yield and with good diastereoselectivity. 

Research by B. Jiang et al. showed that the asymmetric aminohydroxylation of vinyl indoles can afford (S)-N-Boc 
protected α-indol-3-ylglycinols in moderate to good yield and with up to 94% ee.28 The use of these enantiopure 
intermediates allowed the short enantioselective total synthesis of bisindole alkaloids, such as dragmacidin A, which 
contains a piperazine moiety between the indole rings.  

During the total synthesis of the teicoplanin aglycon, the Sharpless asymmetric aminohydroxylation was used twice to 
prepare the required G- and F-ring phenylglycine precursors by D.L. Boger and co-workers.29 For the G-ring 
precursor the (DHQD)2PHAL ligand was used to obtain the N-Boc protected (R)-phenylglycinol, while the use of the 
pseudo enantiomer (DHQ)2PHAL ligand afforded the N-Cbz protected (S)-phenylglycinol. 

The stereocontrolled total synthesis of (–)-ephedradine A was accomplished by the research group of T. Fukuyama.30

The highly stereoselective incorporation of the nitrogen atom at the benzylic position was achieved by using the SAA.
Subsequently, the hydroxyl group was removed in two steps: first by conversion to the corresponding alkyl chloride, 
and then by subjecting the alkyl chloride to transfer hydrogenation to afford the β-amino ester. 
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SHARPLESS ASYMMETRIC DIHYDROXYLATION
(References are on page 673)

Importance:

[Seminal Publications1,2; Reviews3-21; Modifications & Improvements22-33; Theoretical Studies34-49]

The reaction of osmium tetroxide (OsO4) with olefins to give cis vicinal diols was discovered in the early 1900s50 and 
since then it has undergone substantial developement.51 At the beginning of the 1980s, the research group of K.B. 
Sharpless reported the first asymmetric dihydroxylation reaction of olefins with osmium tetroxide in the presence of 
dihydroquinine acetate, a chiral tertiary amine ligand that belongs to the family of Chinchona alkaloids. Today, this 
transformation is known as the Sharpless asymmetric dihydroxylation (SAD).1 Sharpless’s experiment was based on 
the observation of Criegee that certain tertiary amines (e.g., pyridine) accelerated the reaction of OsO4 with olefins.52

At this point the reaction was catalytic for OsO4 but stoichiometric amount of the ligand was needed. When chiral 
tertiary diamines (e.g., (DHQ)2PHAL and (DHQD)2PHAL) were introduced as ligands, it became feasible to use only 
sub-stoichiometric amounts of them, since these ligands considerably accelerated the rate of dihydroxylation 
compared to the monodentate chiral amines.2 The phenomenon of rate acceleration caused by ligands is known as 
the ligand accelerated catalysis (LAC). The general features of the SAD are: 1) practically all alkenes are substrates 
for the reaction, but no other functional groups are affected; 2) electron-rich alkenes tend to react faster than electron-
deficient ones; 3) the enantioselectivity is moderate for cis-disubstituted olefins having substituents that are similar in 
size (facial differentiation by the catalyst becomes very difficult); 4) all the reagents are solids, and they are 
commercially available as preformulated mixtures: AD-mix α and AD-mix β containing the necessary bidentate chiral 
ligand, stoichiometric oxidant, and the osmium tetroxide in the form of dipotassium osmate dihydrate (K2OsO4(OH)4);
5) to predict the absolute configuration of the product, an empirical model (mnemonic device) was developed by 
Sharpless et al.24 in which one has to examine the substrate and rank the substituents (RS = small, RM = medium and 
RL = large) and place the large substituent in the southwestern corner (SW); to dihydroxylate from the bottom face (α-
face) one should use AD-mix α and to dihydroxylate from the top face (β-face) AD-mix β should be used; and 6) the 
reaction is usually conducted in tert-butanol/water = 1:1 at room temperature and 1.4g of the necessary AD-mix is 
added for each mmol of the olefinic substrate. 

Mechanism: 53-77
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SHARPLESS ASYMMETRIC DIHYDROXYLATION 

Synthetic Applications:

The total synthesis of (+)-zaragozic acid C was accomplished in the laboratory of A. Armstrong using a double 
Sharpless asymmetric dihydroxylation of a diene as the key step.78 The stereochemistry of four contiguous 
stereocenters (C3 to C6) were controlled this way. Interestingly, the double dihydroxylation could not be performed 
efficiently (low yield, low ee) in one-pot, so it was conducted in two separate steps. In the first step, the diene was 
subjected to Super AD-mix β (commericial AD-mix supplemented with extra ligand and osmium tetroxide) for 4 days 
to afford regioisomeric triols in 78% yield. In the second step NMO was used as the stoichiometric oxidant, which 
afforded the desired pentaol with good diastereoselectivity. This two-step procedure was conducted on multigram 
scale, which allowed the completion of the total synthesis. 

The key component of the cell wall lipopolysaccharide of Gram-negative bacteria, KDO (3-deoxy-D-manno-2-
octulosonic acid), was synthesized by S.D. Burke and co-workers.79  One of the key transformations in the synthetic 
sequence was a double SAD of a 6-vinyldihydropyran-2-carboxylate template. This 1,4-diene was cleanly converted 
to a mixture of two C7 epimeric tetraols in a 20:1 ratio. The endocyclic olefin had an intrinsic preference for 
dihydroxylation from the β-face and not from the desired α-face. This stereofacial bias was impossible to override with 
any ligand normally used in the SAD, so later in the synthesis these two stereocenters had to be inverted in order to 
give the required stereochemistry at C4 and C5. 

The total synthesis of (+)-1-epiaustraline, a tetrahydroxypyrrolizidine alkaloid, was achieved by S.E. Denmark et al. 
who used a tandem intramolecular [4+2] / intermolecular [3+2] nitroalkene cycloaddition as the key ring forming 
reaction.80 During the endgame of the synthesis, the last stereocenter was installed by the SAD of the terminal olefin 
moiety on the tricyclic intermediate. It was found that most ligands in the dihydroxylation gave the undesired 
stereoisomer as the major product. Eventually, after exhaustive screening, a DHQD ligand with a phenanthracene 
spacer (DHQD-PHN) was found to produce the desired stereoisomer with good selectivity.  
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SHARPLESS ASYMMETRIC EPOXIDATION
(References are on page 675)

Importance:

[Seminal Publications1; Reviews2-24; Modifications & Improvements25-27; Theoretical Studies28-33]

In 1980, K.B. Sharpless and T. Katsuki reported the first practical method for asymmetric epoxidation.1 They 
discovered that the combination of Ti(IV) tetraisopropoxide, optically active diethyl tartrate (DET) and tert-butyl 
hydroperoxide (TBHP) was capable of epoxidizing a wide variety of allylic alcohols in high yield and with excellent 
enantiomeric excess (>90% ee). The Ti(IV) alkoxide-catalyzed epoxidation of prochiral and chiral allylic alcohols in the 
presence of a chiral tartrate ester and an alkyl hydroperoxide to give enantiopure 2,3-epoxy alcohols is known as the 
Sharpless asymmetric epoxidation (SAE). The general features of this method are: 1) only allylic alcohols are good 
substrates for this method, since the presence of the hydroxyl group is essential; 2) allylic alcohols are epoxidized 
with high chemoselectivity in the presence of other olefins; 3) the epoxidation is totally reagent controlled: by using 
either (+)- or (-)-DET the corresponding enantiomer of the product 2,3-epoxy alcohol can be obtained; 4) the inherent 
diastereofacial bias of chiral allylic alcohols is overridden: in the “matched case” the reagent reinforces the inherent 
selectivity of the substrate and the epoxidation proceeds with extremely high stereoselectivity, while in the 
“mismatched case” the diastereofacial preference of the substrate and the reagent is opposite and the level 
stereoselectivity for the epoxidation is lower than in the matched case, but it is synthetically still useful;34,35 5) the 
enantiofacial selectivity of the SAE can be predicted for all prochiral allylic alcohols (no exceptions found to date!) 
using the scheme below; 6) if there is a chiral center at C1 (attached to OH group) the SAE will proceed with 
substantially different rates for the two enantiomers, so it can be used for the kinetic resolution of a racemic allylic 
alcohols; 7) the addition of catalytic amounts of molecular sieves to the reaction mixture allows the use of only 
catalytic amounts (5-10 mol%) of the Ti-tartrate complex; in the absence of molecular sieves, a full equivalent of this 
complex is needed;25 8) if the product is too reactive or its solubility properties make it difficult to isolate, the in situ
derivatization (conversion to the corresponding ester) can be used to preserve the integrity of the epoxide and make 
the isolation easier;26 9) the reaction conditions tolerate most functional groups except for free amines; carboxylic 
acids, thiols, and phosphines; 10) in order to achieve high yield and enantiomeric excess, it is crucial to prepare the 
catalyst fresh by mixing the solutions of Ti(Oi-Pr)4 and DET followed by the addition of TBHP at -20 °C and age the 
resulting mixture for 20-30 minutes prior to adding the allylic alcohol substrate; 11) the solvent of choice is alcohol-
free dichloromethane; 12) most often DET is used, but occasionally DMT and DIPT are utilized; 13) titanium tetra t-
butoxide is applied if the product epoxy alcohol (e.g., 2-substituted epoxy alcohols) is sensitive to ring-opening by the 
alkoxide; and 14) the molecular sieves must be activated (heat at 200 °C for 3h) and generally 3-5 Å molecular sieves 
are sufficient to remove any interfering amounts water.  

Mechanism: 36,3,37-39,18

The first step is the rapid ligand exchange of Ti(Oi-Pr)4 with DET. The resulting complex undergoes further ligand 
exchange with the allylic alcohol substrate and then TBHP. The exact structure of the active catalyst is difficult to 
determine due to the rapid ligand exchange but it is likely to have a dimeric structure. The hydroperoxide and the 
allylic alcohol occupy the axial coordination site on the titanium and this model accounts for the enantiofacial 
selectivity.  
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SHARPLESS ASYMMETRIC EPOXIDATION 

Synthetic Applications:

The enantioselective total synthesis of the annonacenous acetogenin (+)-parviflorin was accomplished by T.R. Hoye 
and co-workers.40 The bis-tetrahydrofuran backbone of the natural product was constructed using a sequential double 
Sharpless asymmetric epoxidation and Sharpless asymmetric dihydroxylation. The bis allylic alcohol was epoxidized 
using L-(+)-DET to give the essentially enantiopure bis epoxide in 87% yield.   

In the laboratory of D.P. Curran, the asymmetric total synthesis of (20R)-homocamptothecin was achieved using the 
Stille coupling and the SAE as key steps.41  The SAE was used to install the key C20 stereocenter. The (E)-allylic 
alcohol was epoxidized rapidly in the presence of stoichiometric amounts of L-(+)-DET and TBHP at -20 °C to afford 
the corresponding epoxide in 93% ee. Interestingly, the (Z)-allylic alcohol reacted with D-(-)-DET sluggishly and gave 
the epoxide in very low yield and with only 31% ee.  

The last and key step during the total synthesis of (–)-laulimalide by I. Paterson et al. was the Sharpless asymmetric 
epoxidation.42 The success of the total synthesis relied on the efficient kinetic differentiation of the C15 and C20 allylic 
alcohols during the epoxidation step. When the macrocyclic diol was oxidized in the presence of (+)-DIPT at -27 °C
for 15h, only the C16-C17 epoxide was formed.  

(+)-Madindoline A and (–)-madindoline B are potent and selective inhibitors of interleukin 6. The relative and absolute 
configuration of these natural products was determined by means of their total synthesis by A.B. Smith and S. 
Omura.43 The key step was the SAE of the indole double bond, which led to the formation of the hydroxyfuroindole 
ring of both compounds.      
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SHI ASYMMETRIC EPOXIDATION
(References are on page 676)

Importance:

[Seminal Publications1-4; Reviews5-15; Modifications & Improvements16-28; Theoretical Studies29,30]

When ketones are treated with Oxone (potassium peroxymonosulfate, KHSO5), dioxiranes are formed that are 
capable of transferring an oxygen atom to a wide variety of substrates, and the ketones are regenerated after the 
oxygen-transfer.13 For this reason dioxiranes are considered to be environmentally friendly and versatile oxidizing 
agents. Recently, dioxiranes have found use in asymmetric oxidation reactions such as epoxidation of alkenes. In 
1984, R. Curci and co-workers reported the first chiral ketone-catalyzed asymmetric epoxidation of unfunctionalized 
olefins.1 During the following decade several new chiral ketones (mainly biphenyl and binaphthyl-based ketones) 
were developed and tested as catalysts in asymmetric epoxidations.8 In 1996, a fructose-derived ketone catalyst was 
prepared by Y. Shi and co-workers that showed very high enantioselectivities in epoxidation reactions.2 Today, this 
transformation is known as the Shi asymmetric epoxidation. The general features of the reaction are: 1) either 
enantiomer of the catalyst can be prepared easily from D- or L-fructose in two steps;31,2,4 2) the pH of the reaction 
medium has a crucial effect on the outcome of the reaction: at high pH the oxidant (Oxone) decomposes rapidly, 
while at lower pH values the catalyst is decomposed via a Baeyer-Villiger oxidation, and this neccesitates the use of 
large amounts of catalyst;3 3) by keeping the pH at an optimum (~10.5), the epoxidation usually takes place with high 
enantiomeric excess at low catalyst loadings (20-30 mol%) without the need to use large excess of Oxone; 4) at the 
optimum pH the epoxide products are more stable than at lower pH values; 5) a wide variety of alkene substrates are 
epoxidized efficiently with high ee: homoallylic and bishomoallylic alcohols,32 unsymmetrical dienes are epoxidized 
regioselectively to give vinyl epoxides,16 conjugated enynes yield propargylic epoxides,22 silyl enol ethers give α-
hydroxy ketones;19 and 6) trans-disubstituted  and trisubstituted olefins give high enantioselectivities, whereas for cis-
disubstituted and terminal olefins the ee's are lower.4

Mechanism: 2,33,4,34,20,8

There are two possible transition states: spiro and planar. Nearly every example of trans-disubstituted and 
trisubstituted olefins which were studied with Shi's catalyst is consistent with the spiro transition state.8 The extent of 
the involvement of the competing planar transition state depends on the nature of the substituents on the olefins. 
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SHI ASYMMETRIC EPOXIDATION

Synthetic Applications:

The synthesis of cryptophycin 52 was accomplished by E.D. Moher et al. using the Shi epoxidation as the key step to 
install the epoxide moiety diastereoselectively.35 In the previous syntheses of this molecule, the epoxide moiety was 
always introduced in the last step, using common oxidants such as mCPBA or DMD, and with poor 
diastereoselectivity. Interestingly, the usual alkene precursor was a very poor substrate for the Shi epoxidation, so an 
earlier intermediate was subjected to the epoxidation conditions in which the pH was very carefully controlled. The 
desired epoxide was obtained as a 6.5:1 mixture of diastereomers. 

The Shi epoxidation employing the L-fructose derived catalyst was used during the total syntheses of (+)-murisolin
and a library containing 15 of its diastereoisomers by D.P. Curran and co-workers.36 The 4-mix/4-split strategy relied 
on the solution phase technique of fluorous mixture synthesis.  One of the (E)-alkene substrates was subjected to the 
Shi epoxidation conditions to give 88% yield of the corresponding epoxide followed by ring-closure to the 
tetrahydrofuran by CSA. At the end of the synthesis, the four murisolin diastereomers were demixed by using 
FluoroFlash silica gel followed by detagging. 

A novel asymmetric epoxidation-ring expansion strategy was used for the total synthesis of (+)-equilenin in the 
laboratory of M. Ihara.37 This strategy involved the Shi asymmetric epoxidation of an aryl-substituted cyclopropylidene 
derivative to form a chiral oxaspiropentane followed by its enantiospecific rearrangement to the corresponding chiral 
cyclobutanone. The D-fructose-derived catalyst had to be used in large excess because the optimum yield and ee 
could be reached only at pH ~9 where the catalyst decomposed fairly rapidly. The authors also showed that by using 
the Jacobsen epoxidation, the enantiomeric excess could be slightly increased along with a slight decrease in the 
yield.  

The Shi epoxidation was the key step in E.J. Corey's total synthesis of the chiral C2-symmetric pentacyclic 
oxasqualenoid glabrescol.38,39 Four epoxides were introduced in one step with an (R):(S) selectivity of 20:1. 
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SIMMONS-SMITH CYCLOPROPANATION
(References are on page 677)

Importance:

 [Seminal Publications1,2; Reviews3-16; Modifications & Improvements17-33; Theoretical Studies34-45]

In 1958, H.E. Simmons and R.D. Smith were the first to utilize diiodomethane (CH2I2) in the presence of zinc-copper 
couple (Zn-Cu) to convert unfunctionalized alkenes (e.g., cyclohexene, styrene) to cyclopropanes stereospecifically.1
This transformation proved to be general and has become the most powerful method of cyclopropane formation: it 
bears the name of its discoverers and is referred to as the Simmons-Smith cyclopropanation. The most important 
features of the reaction are: 1) a wide range of alkenes can be used: simple alkenes, α,β-unsaturates ketones and 
aldehydes, electron rich alkenes (enol ethers, enamines, etc.); 2) due to the electrophilic nature of the reagent, the 
rate of cyclopropanation is faster with more electron rich alkenes. However, highly substituted alkenes may react 
slower due to the increased steric hindrance; 3) the cyclopropanation is stereospecific, so the stereochemical 
information in the alkene substrates is translated to the products; 4) when a substituted methylene group is 
transferred to the alkene (R5≠H) a preference for syn stereochemistry is typically observed;17 5) in case of chiral 
substrates, the cyclopropanation is highly diastereoselective and occurs from the less hindered face of the double 
bond; 6) when the alkene has functional groups containing heteroatoms (e.g., OH, OAc, OMe, OBn, NHR), a strong 
directing effect is observed and the delivery of the alkylidene occurs from the face of the double bond having the 
closer proximity of the functional group; 7) in cycloalkenols, the stereochemical outcome depends on the ring size: 5-, 
6-, and 7-membered rings give rise to high cis-diastereoselectivity, while large ring cycloalkenols exhibit high levels of 
anti diastereoselectivity; 8) usually no serious side reactions are observed (e.g., C-H insertion), and the reaction 
conditions are tolerant of most functional groups; and 9) non-coordinating solvents (e.g., DCM, DCE) are 
recommended, because the use of basic solvents decrease the rate of the reaction. Today the preparation of the 
zinc-copper couple is more convenient (treatment of zinc powder with CuSO4 solution) than described in the original 
procedure. However, there have been several modifications to generate the active reagent: 1) zinc-silver couple 
tends to give higher yields and shorter reaction times;18 2) the use of diethylzinc with CH2I2 gives very reproducible 
results (Furukawa modification);17 3) iodo- or chloromethylsamarium iodide (Sm/Hg/CH2I2) is the reagent of choice for 
the chemoselective cyclopropanation of allylic alcohols in the presence of other olefins (Molander modification);21 and 
4)  dialkyl(iodomethyl)aluminum (i-Bu3Al/CH2I2) exclusively cyclopropanates unfunctionalized olefins in the presence 
of allylic alcohols.46 Asymmetric Simmons-Smith cyclopropanations can be achieved several different ways:11 1) the 
use of cleavable chiral auxiliaries (e.g., chiral allylic ethers, acetals, boronates); 2) by the addition of stoichiometric 
amounts of chiral additives, such as dioxaborolane prepared from tetramethyltartaric acid diamide and butylboronic 
acid (Charette asymmetric modification). However, this method is only applicable to allylic alcohols;25 and 3) the use 
of chiral catalysts, such as the chiral disulfonamide ligand derived from trans-cyclohexanediamine, gives high ee's for 
allylic alcohols.26,27

Mechanism: 47,11,48,13,15,33

The Simmons-Smith cyclopropanation is a concerted process, and it proceeds via a three-centered "butterfly-type" 
transition state. This is in agreement with the result of theoretical studies as well as the stereochemical outcome of a 
large number of reactions. 
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SIMMONS-SMITH CYCLOPROPANATION

Synthetic Applications:

The highly stereocontrolled total synthesis of the antimitotic agent (+)-curacin A was achieved by S. Iwasaki and co-
workers.49 The main structural feature of this natural product is a disubstituted thiazoline ring bearing a cyclopropane 
ring and an aliphatic side chain. Diethyl L-tartrate was converted to a (Z,Z)-diene in several steps, which was 
subjected to a double directed Simmons-Smith cyclopropanation reaction. The dicyclopropane was obtained as a 
single diastereomer in good yield. Subsequent periodate cleavage of the diol moiety followed by oxidation led to the 
desired 2-methylcyclopropanecarboxylic acid, which was used to form the thiazoline portion of curacin A. 

The secondary marine metabolite (+)-acetoxycrenulide has unprecedented structural features which prompted L.A. 
Paquette et al. to embark on its total synthesis.50 The eight-membered carbocycle of the target was constructed via a 
Claisen rearrangement. The bicyclic β,γ-unsaturated lactone was subjected to Simmons-Smith conditions, that 
delivered the cyclopropyl ring exclusively from the β-face of the molecule as a result of the predominant ground-state 
conformation. 

The asymmetric Simmons-Smith cyclopropanation (Charette modification) was used for the ethylidenation of an allylic 
alcohol moiety during the total synthesis of (+)-ambruticin in the laboratory of E.N. Jacobsen.51 Diethylzinc was added 
to the solution of 1,1-diiodoethane to form the active reagent Zn(CH3CH2I)2·DME, which was transferred to a solution 
of the substrate containing dioxaborolane (chiral ligand). The central cyclopropane ring was installed with high 
diastereoselectivity. 

The lactone-directed intramolecular Diels-Alder cycloaddition was the key step in D.F. Taber's synthesis of trans-
dihydroconfertifolin.52 During the endgame, the Simmons-Smith cyclopropanation was utilized to install the gem-
dimethyl group at C4. The trisubstituted alkene was cyclopropanated in excellent yield and the resulting cyclopropane 
was subjected to catalytic hydrogenation. 
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SKRAUP AND DOEBNER-MILLER QUINOLINE SYNTHESIS 
(References are on page 678)

Importance:

[Seminal Publications1-3; Reviews4,5; Modifications & Improvements6,7]

In 1880, Z.H. Skraup reported the formation of quinoline by heating aniline with glycerol (1,2,3-propanetriol), sulfuric 
acid and an oxidizing agent (As2O5, ArNO2, m-NO2C6H5SO3H, etc.).2 Shortly after Skraup’s discovery, O. Doebner 
and W. Miller successfully modified and generalized Skraup’s method by using α,β-unsaturated aldehydes, ketones 
or 1,2-diols instead of glycerol.3 In addition, the sulfuric acid component was replaced by HCl and zinc chloride. This 
modification allowed the preparation of substituted quinolines. Today these methods are known as the Skraup and
Doebner-Miller quinoline synthesis. The Skraup procedure gives easy access to quinolines substituted on the 
benzene ring (containing only those substituents which were on the aniline component), while the Doebner-Miller 
modification can introduce substituents on the pyridine ring as well. A great advantage of these methods is that 
structurally complex quinoline derivatives can be prepared in a simple operation. However, there are a few 
drawbacks: 1) the carbonyl component undergoes polymerization under the strongly Lewis acidic conditions; 
consequently the yields are often moderate; 2) the rate of addition of the aldehyde influences the yield; 3) isolation of 
the product from the complex reaction mixtures is often tedious; and 4) large-scale reactions are usually impractical. 
A recent modification of the Doebner-Miller synthesis in a two-phase solvent system allows the clean preparation of 
the desired quinoline derivative on a large scale.6 If the aniline substrate is unsubstituted, the oxidizing agent is 
usually nitrobenzene, since it is conveniently converted to aniline in the process. There are two related well-known 
quinoline syntheses: 1) Friedländer synthesis, which is the condensation of o-aminobenzaldehydes with α-methylene 
ketones to give 3-substituted quinolines;8,9 and 2) Combes quinoline synthesis, which is the condensation of primary 
arylamines with β-diketones followed by the acid catalyzed ring-closure of the resulting Schiff base. 

Mechanism: 10-15

The detailed mechanism of the Skraup and Doebner-Miller quinoline synthesis has not been fully explored.15  The two 
reactions are closely related, and it is assumed that the glycerol in the Skraup procedure is dehydrated to form 
acrylaldehyde (α,β-unsaturated aldehyde) or the 1,2-diol is first dehydrated to acetaldehyde, which undergoes an 
aldol condensation to afford crotonaldehyde in the Doebner-Miller reaction. The mechanism most likely involves the 
following steps: 1) condensation of the carbonyl component with the arylamine to form a Schiff-base (anil) (this step is 
not shown); 2) formation of a labile 1,3-diazetidinium cation intermediate from two anils; 3) ring-opening of the 1,3-
diazetidinium ion to form a carbocation, which undergoes an SEAr reaction with the aromatic ring; 4) formation of a 
substituted-1,2-dihydroquinoline; 5) hydride transfer (oxidation) to give a substituted quinoline. 
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SKRAUP AND DOEBNER-MILLER QUINOLINE SYNTHESIS 

Synthetic Applications:

A new synthesis was developed by Y. Kashman et al. for the preparation of the parent pyrido[2,3,4-kl]acridine
skeleton utilizing the Doebner-Miller synthesis.16  In the first step, 3-aminoacetanilide was reacted with vinyl phenyl 
ketone in the presence of m-nitrobenzenesulfonic acid sodium salt and acetic acid to afford the corresponding 4-
phenylquinolines. The acetamido group was then converted to the corresponding aryl azide, which underwent
intramolecular nitrene insertion upon thermolysis to give the desired heterocyclic skeleton. 

The synthesis of the antimalarial 5-fluoroprimaquine by P.M. O’Neil and co-workers involved a Doebner-Miller 
reaction of 5-fluoro-4-methoxy-2-nitroaniline with acrolein.17 In this modified procedure 80% phosphoric acid, acrolein 
and arsenic acid were employed to allow a shorter reaction time and lower temperature than in the original 
procedure.  

The short and convenient synthesis of novel naphthopyranoquinolines from naphthopyran chloroaldehydes via the 
Doebner-Miller synthesis was developed in the laboratory of J.K. Ray.18 The chloroaldehydes were treated with 2.5 
equivalents of a substituted aniline in ethanol in the presence of 2N HCl to afford enaminoimine hydrochlorides in 
good yield. These hydrochloride salts were exposed to heat at a temperature slightly above their melting point, 
resulting in ring-closure and elimination of one equivalent of arylamine hydrochloride. 

A 3,8-dialkyl phenanthroline-based asymmetric transfer hydrogenation catalyst was prepared by S. Gladiali and co-
workers using two consecutive Doebner-Miller reactions.19 The synthesis of the ligand commenced with the reaction 
between 2-nitro aniline and enantiomerically pure 2-sec-butylacrolein. The resulting nitroquinoline was hydrogenated 
to give the corresponding aminoquinoline which was subjected to the second Doebner-Miller reaction to afford the 
enantiopure phenanhroline catalyst. 
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SMILES REARRANGEMENT
(References are on page 678)

Importance:

 [Seminal Publications1-8; Reviews9-17; Modifications & Improvements18-26; Theoretical Studies27-31]

In 1894, R. Henriques reported that the base treatment of bis-(2-hydroxy-1-naphthyl) sulfide afforded an isomeric 
compound, 2-hydroxy-2'-mercapto-bis-(1-naphthyl) ether.1 Two decades later, O. Hinsberg carried out similar 
experiments with the corresponding sulfones,2,3 but it was S. Smiles and co-workers who established the structure of 
the products.5-8 Smiles recognized that the transformations belonged to a new type of intramolecular nucleophilic 
aromatic rearrangement, which is known as the Smiles rearrangement. The general features of the reaction are:11 1) 
the aromatic ring needs to be activated by electron-withdrawing groups at the ortho- or para positions (e.g. NO2,
SO2R); 2) if there is more than one activating group (when R2=EWG), the rate of the rearrangement increases; 3) 
electron-withdrawing groups in the meta position usually do not activate the aromatic ring sufficiently; 4) in the 
absence of activating groups or when R1 and R2 are electron-donating, the rearrangement is slow or does not occur; 
5) besides substituted benzene rings, the aromatic ring can also be heteroaromatic such as pyridine or pyrimidine; 6) 
in the presence of a strong base, when Y=SO2 and XH=CH3, no activating group is necessary and the process is 
called Smiles-Truce rearrangement);18 7) the nucleophilicity of the XH group and the ability of the Y group to function 
as a good leaving group are two factors that are interconnected and their combined effect have a dramatic influence 
on the rate of the rearrangement; 8) when XH=NH2, usually no base is required and Y does not have to be a good 
leaving group for the reaction to take place; 9) the more stabilization of the negative charge is possible on Y, the 
faster the reaction will proceed (e.g., Y = SO2 > SO > S); 10) when the Z groups are part of an aromatic ring (e.g., 
biaryl systems), electron-withdrawing substituents on this second ring tend to accelerate the reaction; 11)  
substituents at the 6-position of the second ring (ortho to Y) also accelerate the reaction because it forces the 
substrate to be predominantly in the reactive conformation, where the migrating ring is perpendicular to the plane of 
the other aromatic ring; 12) when the Y and the XH groups have very similar negative charge stabilizing abilities, the 
Smiles rearrangement becomes a reversible process. There are several modifications of the transformation: 1) the 
Smiles-Truce rearrangement utilizes a carbon-centered anion as the nucleophile and that can be generated by using 
a strong base (e.g., alkyllithium, KOt-Bu) is necessary;18,11 2) photochemical Smiles rearrangement;21,32 and 3) 
rearrangement of phosphonium zwitterions, generated by the addition of an aryne to an alkylidene triarylphos-
phorane, affords P-substituted aromatic compounds.19,20

Mechanism: 33-47

The first step of the reaction is the formation of the nucleophile by deprotonation. The substrate then has to adopt the 
reactive conformation in which the plane of the migrating ring is perpendicular to the Z-Z bond. The nucleophile 
attacks the ring in an ipso fashion to form a five-membered transition state that affords the product. 
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SMILES REARRANGEMENT

Synthetic Applications:

Frequently, the anionic product of the Smiles rearrangement can undergo further reaction if there are electrophilic 
functional groups on the aromatic ring. This approach was utilized by T. Hirota to prepare complex fused N-
heterocyclic compounds such as the [1]benzothieno[3,2-d]furo[2,3-b]pyridine skeleton.48 The substrate, 
cyanopropoxy-substituted benzo[b]thiophene, was exposed to sodium hydride in refluxing dioxane that induced the 
Smiles rearrangement. The resulting alkoxide attacked the cyano group to form an imine salt, which in turn added 
across the nitrile at the 2-position.  

The total synthesis of the lichen diphenyl ether epiphorellic acid 1 was achieved in the laboratory of J.A. Elix using the 
Smiles rearrangement as the key step.49 The diaryl phenolic ester substrate was heated in dry DMSO in the presence 
of potassium carbonate, which brought about the rearrangement. The resulting carboxylic acid was converted to the 
methyl ester with diazomethane and was debenzylated under catalytic hydrogenation conditions.  

Novel non-nucleoside inhibitors of HIV-1 reverse transcriptase, dipyrido[2,3-b]diazepinones, were prepared by J.R. 
Proudfoot and co-workers.50 These compounds are isomeric to the potent inhibitor nevirapine and available via the 
Smiles rearrangement of substrates that are intermediates used for the synthesis of nevarpine analogs. The 
deprotonated amide functionality in the rearrangement products displaces the chlorine at the 2-position to give the 
desired heterocycles in moderate to good yield. 

A one-pot procedure was developed for the preparation of aromatic amines from phenols via a one-pot Smiles 
rearrangement by N.P. Peet et al.51 This new approach can be considered as an alternative of the Bucherer reaction
which only works well for naphthalene derivatives and gives very poor yields for substituted benzene derivatives. In 
the current procedure, the phenol was reacted with 2-bromo-2-methylpropionamide to give 2-aryloxy-2-
methylpropionamide which upon treatment with base underwent the Smiles rearrangement. The hydrolysis of the 
resulting N-aryl-2-hydroxypropionamide afforded the aromatic amine. 
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SMITH-TIETZE MULTICOMPONENT DITHIANE LINCHPIN COUPLING 
(References are on page 679)

Importance:

[Seminal Publications1-3; Review4; Modifications & Improvements5-9]

The one-pot multicomponent coupling of 2-silylated-1,3-dithianes with epoxides is referred to as the Smith-Tietze 
coupling. The first application of 2-lithio-1,3-dithianes as “carbonyl anion” equivalents was described by E.J. Corey 
and D. Seebach in the mid-1960s.10 In 1994, L.F. Tietze and co-workers successfully synthesized C2-symmetrical 
enantiopure 1,5-diols, 3-oxo-1,5-diols and 1,3,5-triols by the symmetrical bis-alkylation of lithiated 2-trialkylsilyl-1,3-
dithianes with epoxides.2 Tietze’s protocol began with the deprotonation of the 2-trialkylsilyl-1,3-dithiane with an 
alkyllithium followed by the addition of 2.2 equivalents of epoxide in the presence of one equivalent of crown ether. 
After the opening of the first epoxide, the resulting alkoxide intermediate underwent a spontaneous [1,4]-Brook
rearrangement, thus generating a second dithiane anion that reacted with the remaining excess epoxide. This 
multicomponent coupling protocol, however, had a long reaction time, and it was unsuitable for unsymmetrical 
couplings. A.B. Smith et al. used HMPA or DMPU as an additive in the solvent, which significantly increased the rate 
of the reaction and allowed two different electrophiles (epoxides) to be coupled with the dithiane in a one-pot 
operation.3 The Smith-Tietze coupling has the following advantages: 1) optically active terminal epoxides can be 
readily prepared by known methods; 2) the epoxide ring-opening is completely regioselective, the nucleophile attacks 
on the least substituted carbon; 3) the exact timing of the Brook rearrangement is possible by the addition of HMPA 
or DMPU to the reaction mixture (solvent-controlled Brook rearrangement) and the formation of symmetrical adducts 
can be completely avoided; 4) altering the absolute configuration of the epoxides and the stereoselective reduction of 
the ketone moiety after the removal of the dithiane can give rise to 1,3-polyols of any desired configuration; 5) after 
the second epoxide has reacted, the resulting unsymmetrical adduct has its hydroxyl groups differentiated by one of 
them being silylated; and 6) the use of an enantiopure bis-epoxide as the second epoxide component allows for a 
one-pot five-component linchpin coupling.

Mechanism: 11-13,7

The key step of the mechanism is the solvent-controlled [1,4]-Brook-rearrangement, which proceeds through an 
intermediate having a pentacoordinate-silicon atom. This rearrangement does not take place until HMPA is added to 
the solvent. A similar solvent effect has been observed by K. Oshima, K. Utimoto and co-workers.11,13  The 
rearrangement was found to be completely intramolecular based on the results of a crossover experiment by A.B. 
Smith et.al.7
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SMITH-TIETZE MULTICOMPONENT DITHIANE LINCHPIN COUPLING 

Synthetic Applications:

The stereocontrolled enantioselective synthesis of an advanced B-ring synthon of bryostatin 1 was achieved in the 
laboratory of K.J. Hale.14 The key step was a Smith-Tietze coupling of 2-lithio-2-TBS-1,3-dithiane with a homochiral 
epoxide in the presence of HMPA. The resulting dithiane alkoxide was trapped with TBSCl in situ followed by 
deprotection of the dithiane moiety to give a C2-symmetrical ketone. This ketone was then further elaborated into the 
target B-ring synthon. 

A one-pot five-component dithiane linchpin coupling was applied as the key synthetic transformation in A.B. Smith’s 
approach to Schreiber’s C16-C28 trisacetonide subtarget for mycoticins A and B.7 To prevent a premature Brook 
rearrangement, ether was used instead of THF as a solvent for the initial deprotonation of 2-TBS-1,3-dithiane. The 
third component in the linchpin coupling was (S,S)-diepoxypentane that was added to the reaction mixture along with 
HMPA in THF. 

The three-component dithiane linchpin coupling was the key bond forming reaction during the second-generation 
synthesis of an advanced ABCD intermediate for spongistatins by A.B. Smith et al.15 Both the AB and CD fragments 
were accessed by this multicomponent coupling. Interestingly, one of the epoxide components had to be added into 
the reaction mixture as its lithium alkoxide to avoid the formation of elimination products. Upon deprotection of the 
dithiane moiety, an in situ spiroketalization took place. The target AB fragment was realized in several subsequent 
steps.
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SNIECKUS DIRECTED ORTHO METALATION
(References are on page 680)

Importance:

 [Seminal Publications1,2; Reviews3-27; Modifications & Improvements28-33; Theoretical Studies34-36]

In the late 1930s, the research groups of H. Gilman and G. Wittig independently discovered that the treatment of 
anisole (methoxybenzene) and other heteroatom-substituted aromatic compounds with n-BuLi resulted in the 
exclusive deprotonation at the ortho position to afford the corresponding 2-lithio derivatives.1,2 During the 1970s 
alkyllithiums became commercially available, and this resulted in the widespread use of the ortho metallation protocol 
to functionalize aromatic and heteroaromatic compounds.7 Directed metalation is defined as the deprotonation of an 
sp2 hybridized carbon atom positioned α to a heteroatom-containing substituent on an aromatic or olefinic substrate.8
The contributions by V. Snieckus and co-workers over the last two decades significantly expanded the scope of this 
method, which is often referred to as the Snieckus directed ortho metalation (DoM). Before the advent of DoM, the 
preparation of contiguously substituted (e.g., 1,2-, 1,2,3- or 1,2,3,4-) aromatic compounds, using the directing effect 
of the various substituents in SEAr reactions, was a major challenge and required many steps to accomplish. The 
general features of DoM reaction are: 1) the directed metalation group (Z group) must be resistant to nucleophilic 
attack by the metalating reagent (e.g., alkyllithiums), and it must contain at least one heteroatom, which can 
coordinate with the incipient ortho metal atom forming a 4-, 5-, or 6-membered intermediate; 2) the formation of a 5-
membered intermediate is the most favorable; 3) the best Z groups are sterically demanding or charge deactivated or 
exhibit both of these properties at the same time; 4) the Z groups can be classified depending on the atom through 
which the group is attached to the aromatic ring: there are carbon linked (e.g., CONR2), nitrogen linked (e.g., 
NHCOR), oxygen linked (e.g., OCONR2), sulfur linked (e.g., SO2R) etc. Z groups; 5) the most popular Z groups are 
tertiary amides and O-carbamates; 6) the Z groups can be ranked according to the strength of their directing effects 
(based on competition experiments), but the ranking changes considerably depending on the solvent, temperature 
and the base used to generate the metalated species: SO2t-Bu > CON(i-Pr)2 > OCON(i-Pr)2 > OMOM was the 
hierarchy of metalation when n-BuLi/THF/-78 °C were used;15 6) in a typical procedure, the solution of the substrate 
is treated with the alkyllithium reagent at -78 °C under inert atmosphere followed by the addition of the electrophile; 7) 
substrates with Z groups having an acidic proton require the addition of at least two equivalents of the alkylithium 
reagent; 8) since alkyllithiums exist predominantly as aggregates in hydrocarbon solvents, the addition of basic 
solvents such as ethers and tertiary amines or bidentate ligands (e.g., TMEDA) is necessary to break down the 
aggregates to monomers and dimers to enhance their basicity; and 9) when the Z group is a carbamate (OCONR2), a 
facile 1,3-acyl shift occurs after the ortho lithiation is complete to afford a salicylamide (anionic ortho-Fries 
rearrangement). One shortcoming of the DoM is that the most powerful Z groups require harsh reaction conditions for 
their removal making it unsuitable for sensitive substrates. To address this issue, easily removable Z groups have 
been developed: 1) the CON(Cumyl) group is removed under mildly acidic conditions (TFA) to afford a primary 
amide;31 2) N-cumyl-O-carbamate can also be removed with mild acids.23

Mechanism: 37,27

The directed ortho metalation is fundamentally a complex-induced proximity effect (CIPE) in which the formation of a 
pre-metalation complex brings reactive groups into proximity for directed deprotonation. 
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SNIECKUS DIRECTED ORTHO METALATION

Synthetic Applications:

The synthesis of the aglycons of gilvocarcin V, M and E by V. Snieckus and co-workers involved the use of directed 
o-metalation and remote metalation (anionic ortho-Fries rearrangement).38 The trioxygenated naphthalene ring was 
first o-metalated and the resulting lithiated species was iodinated. The 2-iodo compound was then subjected to a 
Suzuki cross-coupling to obtain a biaryl compound that was treated with excess LDA in refluxing THF to induce the 
remote metalation. Exposure to refluxing acetic acid gave the corresponding lactone, which was subsequently 
converted to the gilvocarcin M aglycone. 

In the laboratory of M. Iwao, the first total synthesis of a new pyrroloiminoquinone marine alkaloid veiutamine was 
accomplished.39 The key step was the selective functionalization of the 1,3,4,5-tetrahydropyrrolo[4,3,2-de]quinoline 
nucleus via an N-Boc directed ortho metalation at the C6 position. The resulting 6-lithiated compound was trapped 
with MOM-protected p-hydroxybenzaldehyde. 

A practical six-step synthesis of (S)-camptothecin was developed by D.L. Comins and co-workers.40 In order to 
prepare the DE ring fragment, 2-methoxypyridine was lithiated at C3 with mesityllithium and treated with N-formyl-
N,N',N'-trimethyl ethylenediamine to form an -amino alkoxide in situ. In the same pot, the addition of n-BuLi brought 
about a directed lithiation at C4 to afford a dianion, which was trapped with iodine and treated with NaBH4/CeCl3 to 
give the desired 4-iodo-2-methoxy-3-hydroxymethyl pyridine in 46% yield. 
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SOMMELET-HAUSER REARRANGEMENT
(References are on page 681)

Importance:

 [Seminal Publications1,2; Reviews3-9; Modifications & Improvements10-17; Theoretical Studies18-20]

In 1937, M. Sommelet reported that benzhydryltrimethylammonium hydroxide rearranged to give (o-
benzylbenzyl)dimethylamine in modest yield when kept in the desiccator over P2O5 exposed to sunlight.1 The same 
result was obtained when the substrate was heated to 145 °C, which suggested that the sunlight only provided the 
heat necessary for the transformation. During the following decade several research groups reported products from 
similar rearrangements which accompanied the well-known Stevens rearrangement of quaternary ammonium salts; 
however, it was C.R. Hauser and co-workers who investigated this new rearrangement extensively. Hauser et al. 
treated benzyltrimethylammonium iodide with NaNH2 in liquid ammonia and isolated dimethyl-(2-methylbenzyl)-amine 
as the sole product in excellent yield.2 They also demonstrated that methyl groups could be successively introduced 
into the aromatic ring by exhaustively methylating the product and exposing it to NaNH2/NH3. The [2,3]-sigmatropic
rearrangement of benzylic quaternary ammonium salts in the presence of a strong base is known as the Sommelet-
Hauser rearrangement (S.-H. rearrangement). The general features of this transformation are: 1) the quaternary 
ammonium salts are easily available by the alkylation of the corresponding tertiary amines with alkyl halides; 2) the 
aromatic ring can be either a substituted benzene ring or a substituted heteroaromatic ring; 3) the deprotonation of 
the quaternary ammonium salt to generate the reactive nitrogen ylide intermediate is most often achieved by 
treatment with alkali metal amides in liquid ammonia, however, there are alternative methods available for the 
generation of the reactive intermediate; 4) when there are two possible sites of deprotonation, usually the more stable 
ylide is formed (derived from the more stable carbanion); 5) when it is not possible to form the ylide by deprotonation 
because the initial benzylic carbanion is significantly stabilized (e.g., R1=EWG group such as CN, NO2, Cl, Br), the 
rearrangement may not occur; 6) when the alkyl groups attached to the nitrogen contain a hydrogen atom at their β-
position, the Hofmann elimination may compete; 7) cyclic quaternary ammonium salts react by ring-expansion; 8) one 
major competing reaction is the Stevens rearrangement; 8) in systems where both the Stevens- and S.-H. 
rearrangements are possible, the choice of reaction conditions allow control over which of these competing 
processes dominate; 9) low temperatures and polar solvents (e.g., NH3, DMSO, HMPA) usually favor the S.-H.
rearrangement, whereas higher temperatures and nonpolar solvents (e.g., hexanes, ether) facilitate the Stevens 
rearrangement; and 10) since most quaternary ammonium salts are insoluble in nonpolar organic solvents, the use of 
alkyllithiums as bases is limited. There are several modifications of the S.-H. rearrangement: 1) when 
benzylsulfonium salts are deprotonated, sulfonium ylides are formed that undergo analogous rearrangement and 
allow an asymmetric version;10 and 2) the generation of nitrogen ylides is possible under neutral conditions by 
fluoride-induced desilylation of (trimethylsilyl)methyl ammonium halides.12,13

Mechanism: 21-25
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SOMMELET-HAUSER REARRANGEMENT

Synthetic Applications:

In the laboratory of S.M. Weinreb, the total synthesis of the potent antibiotic natural product streptonigrin was 
accomplished.26 In order to obtain a fully substituted pyridine moiety under mild conditions, the modified Sommelet-
Hauser rearrangement was utilized. The quaternary ammonium salt was derived from N-(cyanomethyl)pyrrolidine 
which could be efficiently deprotonated using KOt-Bu. Upon deprotonation the expected [2,3]-sigmatropic shift took 
place, and the resulting amino nitrile was immediately hydrolyzed to afford the corresponding aldehyde. 

In the traditional strong base-promoted S.-H. rearrangement, the regioselective deprotonation of the ammonium salts 
is often difficult and other processes become competitive. A nonbasic modification may be accomplished when the 
desired nitrogen ylide is generated regiospecifically by means of fluoride ion-induced desilylation. Y. Sato and co-
workers utilized this method for the ring-expansion of cyclic ammonium salts.27 They showed that the stereochemistry 
of the substrate had a dramatic effect on the course of the reaction. The cis-stereoisomer gave predominantly the 
[2,3]-rearranged product, while the trans-stereoisomer gave exclusively the Stevens rearrangement product. 

P.B. Alper and co-workers developed a practical approach for the synthesis of 4,7-disubstituted indoles based on the 
Sommelet-Hauser rearrangement of aryl sulfilimines.28 The multihundred-gram preparation of methyl 7-chloroindole-
4-carboxylate was achieved. The synthesis commenced with the activation of a sulfide precursor with SOCl2 and 
coupling the intermediate with 3-amino-4-chlorobenzoate to afford an aromatic sulfilimine. This sulfilimine was 
exposed to excess triethylamine and heated to generate the sulfonium ylide that underwent the rearrangement.  

Novel regioisomeric tetrahydrophthalimide-substituted indoline-2(3H)-ones were prepared as potential herbicides by 
G.M. Karp et al. utilizing the sulfonium ylide version of the Sommelet-Hauser rearrangement 29 The unsymmetrical 
aniline substrate was treated with the chlorosulfonium salt of ethyl (methylthio)acetate and triethylamine at low 
temperature. The resulting regioisomeric amino esters were cyclized to the regioisomeric indoline-2(3H)-ones that 
were separated by column chromatography. 
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SONOGASHIRA CROSS-COUPLING
(References are on page 681)

Importance:

[Seminal Publications1-3; Reviews4-30; Modifications & Improvements31-46]

In 1975, K. Sonogashira and co-workers reported that symmetrically substituted alkynes could be prepared under 
mild conditions by reacting acetylene gas with aryl iodides or vinyl bromides in the presence of catalytic amounts of 
Pd(PPh3)Cl2 and cuprous iodide (CuI).3 During the same year the research groups of both R.F. Heck and L. Cassar 
independently disclosed similar Pd-catalyzed processes, but these were not using copper co-catalysis, and the 
reaction conditions were harsh.1,2 The copper-palladium catalyzed coupling of terminal alkynes with aryl and vinyl 
halides to give enynes is known as the Sonogashira cross-coupling and can be considered as the catalytic version of
the Castro-Stephens coupling. The general features of the reaction are: 1) the coupling can usually be conducted at 
or slightly above room temperature, and this is a major advantage over the forcing conditions required for the 
alternative Castro-Stephens coupling; 2) the handling of the shock-sensitive/explosive copper acetylides is avoided 
by the use of a catalytic amounts of copper(I) salt; 3) the copper(I) salt can be the commercially available CuI or CuBr 
and are usually applied in 0.5-5 mol% with respect to the halide or alkyne; 4) the best palladium catalysts are 
Pd(PPh3)2Cl2 or Pd(PPh3)4; 5) the solvents and the reagents do not need to be rigorously dried. However, a thorough 
deoxygenation is essential to maintain the activity of the Pd-catalyst; 6) often the base serves as the solvent but 
occasionally a co-solvent is used; 7) the reaction works well on both very small and large scale (>100g); 8) the 
coupling is stereospecific; the stereochemical information of the substrates is preserved in the products; 9) the order 
of reactivity for the aryl and vinyl halides is I ≈ OTf > Br >> Cl; 10) the difference between the reaction rates of iodides 
and bromides allows selective coupling with the iodides in the presence of bromides; 11) almost all functional groups 
are tolerated on the aromatic and vinyl halide substrates. However, alkynes with conjugated electron-withdrawing 
groups (R2=CO2Me) give Michael addition products and propargylic substrates with electron-withdrawing groups (R2=
CH2CO2Me or NH2) tend to rearrange to allenes under the reaction conditions;5 and 12) the exceptional functional 
group tolerance of the process makes it feasible to use this coupling for complex substrates in the late stages of a 
total synthesis. The coupling of sp2-C halides with sp-C metal derivatives is also possible by using other reactions 
such as the Negishi-, Stille-, Suzuki-, and Kumada cross-couplings. In terms of functional group tolerance, the 
Negishi cross-coupling is the best alternative to the Sonogashira reaction. There are certain limitations on the 
Sonogashira coupling: 1) aryl halides and bulky substrates that are not very reactive require higher reaction 
temperature; and 2) at high temperatures terminal akynes undergo side reactions. 

Mechanism: 47-50,27

The mechanism of the Sonogashira cross-coupling follows the expected oxidative addition-reductive elimination 
pathway. However, the structure of the catalytically active species and the precise role of the CuI catalyst is unknown. 
The reaction commences with the generation of a coordinatively unsaturated Pd(0) species from a Pd(II) complex by  
reduction with the alkyne substrate or with an added phosphine ligand. The Pd(0) then undergoes oxidative addition 
with the aryl or vinyl halide followed by transmetallation by the copper(I)-acetylide. Reductive elimination affords the 
coupled product and the regeneration of the catalyst completes the catalytic cycle. 
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SONOGASHIRA CROSS-COUPLING 

Synthetic Applications:

The novel heliannane-type sesquiterpenoid (–)-heliannuol E was synthesized in the laboratory of K. Shishido.51

Interest in the total synthesis of this natural product was not only spurred by its irregular terpenoid structure and 
significant biological activity but the need to establish the absolute stereochemistry at the C2 and C4 stereocenters. 
The Sonogashira reaction was utilized to prepare the 3-arylpropargyl alcohol by coupling of a heavily substituted aryl 
iodide with an unprotected propargyl alcohol in quantitative yield. 

The concise formal total synthesis of mappicine was accomplished using an intramolecular hetero Diels-Alder 
reaction as the key step by M. Ihara and co-workers.52 Introduction of the necessary acetylenic moiety at the C2 
position was achieved by the Sonogashira cross-coupling of a 2-chloroquinoline derivative with TMS-acetylene. 
Several substituents at the C3 position were investigated, and it was found that the unprotected hydroxymethyl 
substituent gave almost quantitative yield of the desired disubstituted alkyne product. 

A novel member of the highly strained nine-membered enediyne antibiotic family, N1999-A2, exhibits remarkable 
antitumor activity against various tumor cell lines. Because the absolute configuration has not been established, the 
goal of the synthetic effort by M. Hirama et al. was to prove the stereochemistry unambiguously.53 The cyclopentenyl 
iodide fragment was efficiently coupled with the epoxydiyne fragment under the Sonogashira coupling conditions. 
Unfortunately, the spectrum of the final product did not match the spectrum of the natural product so the proposed 
structure needs to be revised. 

The expedient total synthesis of the callipeltoside aglycon was achieved by I. Paterson and co-workers.54 The authors 
utilized a late-stage Sonogashira coupling between a dienyl iodide and an alkynyl cyclopropane derivative. 
Interestingly, the use of Pd(PPh3)4 as a catalyst did not give any of the desired coupling product. However, switching 
the catalyst to Pd(PPh3)2Cl2 afforded the desired dieneyne in excellent yield. 
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STAUDINGER KETENE CYCLOADDITION 
(References are on page 682)

Importance:

[Seminal Publications1-8; Reviews9-33; Theoretical studies34-48]

In 1908, ketene (CH2=C=O) was independently prepared by the research groups of F. Chick and H. Staudinger.3,6 At 
the same time, Staudinger exhaustively studied the reactivity of ketene and ketene derivatives, and he found that 
diphenylketene reacts with alkenes, ketones, and imines.1,2,4-8,49,50 Today, the thermal [2+2] cycloaddition reaction of 
ketenes with carbon-carbon, carbon-oxygen, and carbon-nitrogen double bonds is referred to as the Staudinger 
ketene cycloaddition. The most common methods for the preparation of ketenes are: 1) dehydrohalogenation of acid 
chlorides by trialkylamines;51 2) dehalogenation of α-halo acid chlorides by zinc or zinc-copper alloy to form 
dihaloketenes;52,53  3) thermal54 or photochemical55 opening of cyclobutenones;54 4) Wolff rearrangement of α-
diazoketones;54 5) pyrolysis of anhydrides followed by bulb to bulb distillation;9 6) pyrolysis of esters;56-58 and 7) 
cracking commercially available diketene at atmospheric pressure leads to ketene.9  The general features of the 
reaction of ketenes with alkenes are:24 1) the reaction leads to cyclobutanones; 2) the order of reactivity with simple 
alkenes is trans olefin < cis olefin < cyclic olefin< linear diene < cyclic diene; 3) the stereochemistry around the 
double bond is retained; 4) regiochemistry is determined by the polarization of the double bond; 5) as ketene itself is 
not reactive toward double bonds; usually dichloroketene is used instead, followed by dehalogenation by zinc-copper 
alloy; 6) in case of perfluorinated ketenes and alkoxybutadienes, the reaction may lead to the [4+2] cycloadducts; and 
7) in addition to simple alkenes, allenes, enamines, and enol ethers also undergo the cycloaddition, although the 
yields are generally lower. The general features of the reaction of ketenes with aldehydes and ketones are:24 1) the 
reaction leads to the formation of 2-oxetanones (also called as β-lactones); 2) these reactions usually require Lewis 
acid activation, and the most common Lewis acids are boron trifluoride etherate, aluminum chloride, and zinc 
chloride; 3) amines can also be utilized as catalysts; 4) carbonyls bearing strongly electron-withdrawing substituents 
do not require activation; 4) a wide array of ketene substrates can be used, although aryl- and diarylketenes are 
generally unreactive; and 5) asymmetric versions of the cycloaddition have been developed by utilizing chiral amine 
bases as catalysts. The general features of the reaction of ketenes with imines are:23,29,30,32,33 1) the reaction is of 
particular importance because it leads to the formation of azetidinones (also called as β-lactams); 2) the reaction is 
usually carried out thermally or photochemically using acid chloride and triethylamine or α-diazoketones as the 
ketene precursors; 3) the diastereoselectivity of the resulting β-lactams is generally high; 4) asymmetric versions 
were developed by employing chiral auxiliaries attached to the imine or the ketene; 5) asymmetric catalytic methods 
utilizing chiral amine bases were also developed; and 6) when the reaction is carried out in sulfur dioxide, it leads to 
the formation of 2,3-diphenylthiazolidin-4-one-1,1-dioxide derivatives.59 In addition to the above compounds, 
acetylenes, thiocarbonyls, isocyanates, carbodiimides, N-sulfinylamines, nitroso- and azo compounds also undergo a 
formal [2+2] cycloaddition with ketenes.24

Mechanism:60-67

The reaction of ketenes with alkenes is assumed to occur via a concerted nonsynchronous mechanism, where the 
approach of the reacting partners is orthogonal.60-66 As a consequence, the bulkier substituent of the ketene will end 
up on the sterically more crowded face of the cyclobutanone product. There are two descriptions that explain the 
experimental results: 1) according to the Woodward-Hoffmann rules, the LUMO of the ketene reacts antarafacially 
with the HOMO of the alkene that reacts suprafacially;24 2) the HOMO of the alkene forms a bond with the pz orbital of 
the terminal carbon and the py orbital of the central carbon of the ketene.67 The reaction of ketenes with carbonyls 
and imines follows a stepwise mechanism. 
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STAUDINGER KETENE CYCLOADDITION

Synthetic Applications:

The Staudinger ketene cycloaddition was utilized as the key reaction in the synthesis of a number of bakkane natural 
products in the laboratory of A.E. Greene.68 Dichloroketene was generated in situ from trichloroacetyl chloride by 
zinc-copper alloy in the presence of phosphorous oxychloride. The [2+2] cycloaddition between dichloroketene and 
1,6-dimethylcyclohexene gave the product in high yield and excellent regio- and diastereoselectivity. The cycloadduct 
was successfully converted to (±)-bakkenolide A.

N.C. Chen and co-workers devised an efficient synthesis of the cis-bicyclo[3.3.0]octane ring system that was a key 
intermediate in the synthesis of iridoid monoterpene natural products loganin and sarracenin.69 In their approach, they 
utilized a [2+2] ketene cycloaddition between a fulvene derivative and methylchloroketene that was generated in situ
from 2-choropropanoyl chloride by treatment with triethylamine. The cycloaddition reaction provided the product with 
excellent regioselectivity and as a 8:1 mixture of diastereomers. Subsequent ring expansion and dehalogenation by 
zinc metal in acetic acid gave the key intermediate as a 9:1 mixture of diastereomers.  

Ecteinascidin (ET)-743 is a marine natural product that exhibits potent antitumor activity. R.M. Williams and co-
workers developed an approach for the synthesis of the pentacyclic framework of the molecule.70 At an early stage in 
the synthesis, they used a ketene-imine cycloaddition utilizing a chiral N-protected ketene derivative to control the 
stereoselectivity. Subsequently, the chiral auxiliary was removed and the intermediate β-lactam was converted to the 
target structure. 

(–)-Lipstatin is a natural product that exhibits potent inhibitor activity of the pancreatic lipase, and therefore it is a 
potential lead for the development of antiobesity agents. P.J. Kocienski developed a synthesis for this compound that 
incorporates an aldehyde-ketene cycloaddition as the key step.71 The reaction between the aldehyde and silylketene 
derivative was carried out in the presence of EtAlCl2 that served as the Lewis acid activator. This transformation led 
to the formation of four diastereomers in 91% yield, but after desilylation, the desired stereoisomer could be isolated 
in 64% yield from the mixture. 
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STAUDINGER REACTION
(References are on page 684)

Importance:

 [Seminal Publications1; Reviews2-15; Modifications & Improvements16-32; Theoretical Studies33-35]

In 1919, H. Staudinger and J. Meyer reported the reaction between phenyl azide and triphenylphosphine, which 
afforded a novel compound, phosphinimine (also known as aza-ylide or iminophosphorane), in quantitative yield 
accompanied by the evolution of nitrogen gas.1 It was found that benzoyl azide reacted with triphenylphosphine in an 
analogous fashion to afford the corresponding benzoyl aza-ylide. The authors also investigated the reactivity of 
phosphinimines and demonstrated that the reaction of carbon dioxide with phenyl aza-ylide gave rise to phenyl 
isocyanate and triphenylphosphine oxide, which is the first example of an aza-Wittig reaction. The reaction of organic 
azides with trivalent phosphorous compounds (e.g., trialkyl- or triarylphosphines) to afford the corresponding aza-
ylides is known as the Staudinger reaction. The general features of this transformation are:4,6,9,10 1) the reaction is 
usually very fast and takes place in almost quantitative yield without the formation of side products; 2) virtually any 
trivalent phosphorus compound undergoes the reaction; 3) the structure of the azide component can also be widely 
varied; and 4) the iminophosphorane products derived from alkyl- or arylazides and trialkyl- and triarylphosphines are 
stable compounds that can be isolated, but alkoxy groups on the P atom tend to undergo alkyl migration. The 
iminophosphoranes are versatile synthetic intermediates: 1) hydrolysis with water gives rise to primary amines (this 
reduction of azides is highly chemo- and stereoselective); 2) inter- or intramolecular reaction with carbonyl or 
thiocarbonyl compounds affords imines (aza-Wittig reaction); 3) carboxylic acids convert iminophosphoranes to N-
substituted amides; 4) acyl halides condense to generate imydoyl halides; and 5) ozonolysis produces nitro 
compounds. 

Mechanism: 36-42

The mechanism of the Staudinger reaction has been subject to a number of kinetic and theoretical studies35 and at 
this point the exact mechanism remains unclear. All experimental data shows, however, that free radicals or nitrenes 
are not intermediates in this transformation. The first step of the mechanism is the attack of trivalent phosphorous by 
the unsubstituted nitrogen atom (N ) of the azide to give the corresponding phosphazide (which occasionally can be 
isolated) with retention of configuration at the phosphorous atom. Next, the phosphazide goes through a four-
membered transition state, which upon losing dinitrogen affords the iminophosphorane. A subtle point in the 
mechanism is the exact mode of attack of the phosphorous at N , since the PN N N backbone is not linear. Instead, 
the ANNN angle is approximately 170 . There are two possible trajectories of the phosphorous atom to approach N : 1) 
from the same side of the R1 substituent on N trans attack); and 2) from the opposite side of the R1 substituent on 
N cis attack). Investigations within DFT showed that the reaction prefers a cis TS due to the extra interaction 
between the P atom and N
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STAUDINGER REACTION

Synthetic Applications:

The total synthesis of the antiviral marine natural product (–)-hennoxazole A was accomplished by F. Yokokawa and 
co-workers.43 The mild reduction of a secondary alkyl azide at C9 was carried out using triphenylphosphine in a 
THF/water mixture at slightly elevated temperature. The corresponding primary amine was obtained in good yield and 
was subsequently acylated and converted to one of the oxazole rings of the natural product. 

The marine indole alkaloid (+)-hamacanthin B was prepared by B. Jiang et al. using a tandem Staudinger 
reaction/intramolecular aza-Wittig reaction to convert a secondary azide to the corresponding iminophosphorane, 
which upon prolonged heating cyclized to the central pyrazinone ring.44 The reduction of the azide was conducted 
with a slight excess of tributylphosphine in anhydrous toluene at room temperature while the aza-Wittig cyclization
required the reflux temperature. 

The absolute configuration of the structurally unique fungal metabolite mycosporins was determined in the laboratory 
of J.D. White by means of enantioselective total synthesis.45 In the endgame of the synthetic effort, the Staudinger 
reaction was used to elaborate the side chain. The cyclic vinyl azide was first converted to a stable vinyl 
iminophosphorane, which was subsequently reacted with benzyl glyoxylate to afford the corresponding Schiff base. 
Reduction of the imine was achieved with sodium cyanoborohydride. 

The research team of S.R. Rajski demonstrated that o-carboalkoxy triarylphosphines react with aryl azides to afford 
Staudinger ligation products bearing O-alkyl imidate linkages.27 In comparison, the reaction of alkyl azides with o-
carbalkoxy triarylphosphines usually gives rise to amide linkages.  The importance of this technique lies in its ability to 
couple abiotic reagents under biocompatible conditions.  
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STEPHEN ALDEHYDE SYNTHESIS (STEPHEN REDUCTION) 
(References are on page 685)

Importance:

 [Seminal Publications1; Reviews2-7; Modifications & Improvements8,9; Theoretical Studies10]

In 1925, H. Stephen reported that when aromatic or aliphatic nitriles were added to a solution of stannous chloride 
(SnCl2) in diethyl ether saturated with anhydrous hydrogen chloride gas, imine hydrochlorides were obtained that 
readily underwent hydrolysis in warm water to give the corresponding aldehydes in good yield.1 The preparation of 
aldehydes by the reduction of nitriles with the combination of stannous halide/HCl in an organic solvent is known as 
the Stephen aldehyde synthesis or Stephen reduction. The general features of this transformation are:4 1) the original 
procedure has been modified: first the nitrile is dissolved in an inert solvent and the resulting solution is saturated with 
anhydrous HCl gas at 0 °C, then a solution of SnX2/HCl in the same solvent is added; 2) if the substrate is insoluble 
in a given solvent, the use of a mixture of inert solvents is recommended; 3) most common solvents for the 
transformation are diethyl ether, dioxane, ethyl acetate, and chloroform; 4) the reduction products are aldimine 
hexachlorostannanes which usually precipitate from the reaction mixture as crystalline complexes and are readily 
hydrolyzed to the corresponding aldehydes with warm water; 5) the best substrates are aromatic nitriles that give 
moderate to good yields of the aldehyde; 6) aliphatic nitriles tend to give lower yields primarily due to the formation of 
N,N'-alkylidenbisacylamides, which are trimeric side products; 7) the yield drops sharply for aliphatic nitriles having 
more than six carbon atoms; 8) seldom does the Stephen reduction stop at the aldimine stage, but the reduction 
proceeds all the way to form the primary amine product; 9) yields are also strongly influenced by steric factors, so 
ortho-substituted aromatic nitriles rarely give high yield of the corresponding aldehyde; 10) the functional group 
tolerance is low, which renders this method only useful for robust substrates that do not have acid sensitive functional 
groups; and 11) if a large excess of the stannous halide is used, aromatic nitro groups also undergo reduction to yield 
the corresponding aromatic amines. Alternatively, nitriles can be reduced to the corresponding aldehydes by the 
following methods:11-18 1) catalytic hydrogenation with Raney nickel/H2 in the presence of one equivalent of an acid 
(e.g., H2SO4, HCO2H); and 2) use of metal hydride reagents (e.g., DIBAL-H, LiAlH(OR)3, etc.). 

Mechanism: 4,7
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STEPHEN ALDEHYDE SYNTHESIS (STEPHEN REDUCTION) 

Synthetic Applications:

In the laboratory of N. Suzuki, the synthesis of several heterocyclic condensed 1,8-naphthyridine derivatives with 
potential antimicrobial activity was executed.19 The preparation of pyrazolo[3,4-b][1,8]naphthyridines required 7-
chloro-6-formyl-3-ethyl ester as the precursor that was obtained by the Stephen reduction of the corresponding 
aromatic nitrile. The solution of the aromatic nitrile in chloroform was added to the solution of SnCl2/dry HCl gas in 
ether. After two days of stirring, the aldimine hexachlorostannane product was treated with warm water to obtain the 
desired aromatic aldehyde in modest yield. Heating of the aldehyde with methyl hydrazine afforded the pyrazole 
derivative. 

The stereoselective cyanation of [1,1']-binaphthalenyl-2,2'-diiodide was developed by M. Putala and co-workers using 
zinc cyanide and catalytic amounts of Pd(dppf)2.20 The resulting dinitrile was converted to the corresponding [1,1']-
binaphthalenyl-2,2'-dicarbaldehyde in high yield using the Stephen reduction.

Research by P. Scrimin and U. Tonellato et al. showed that Zn(II) was an allosteric regulator of liposomal membrane 
permeability induced by synthetic template-assembled tripodal polypeptides.21 Several copies of peptide sequences 
from the peptaibol family were connected to tris(2-aminoethyl)amine (TREN), which is a tripodal metal ion ligand. The 
resulting tripodal polypeptides were capable of modifying the permeability of liposomal membranes, and their activity 
was tunable upon metal ion coordination of the TREN subunit. The synthesis of the TREN-based template began with 
the Stephen reduction of 4-cyanomethylbenzoate followed by the reductive amination of the resulting aldehyde with 
TREN. 

L.-M. Yang and co-workers designed and synthesized a new series of trans-stilbene benzenesulfonamide derivatives
as potential antitumor agents.22 A common precursor diethylphosphonate was prepared from commercially available 
sulfanilamide in six steps. The aromatic nitrile-to-aldehyde reduction was affected by the modified Stephen reduction
using Raney nickel alloy in aqueous formic acid. The corresponding aldehyde was obtained in high yield. 
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STETTER REACTION
(References are on page 685)

Importance:

 [Seminal Publications1; Reviews2-9; Modifications & Improvements10-24]

In 1973, H. Stetter and M. Schreckenberg found that in the presence of catalytic amounts of sodium cyanide, 
aromatic aldehydes such as benzaldehyde and p-chlorobenzaldehyde added smoothly to α,β-unsaturated nitriles and 
ketones to afford the corresponding γ-oxo nitriles and and γ-diketones, respectively.1 The method was later expanded 
to aliphatic aldehydes by the use of catalytic amounts of thiazolium salts in the presence of bases. The addition of 
aliphatic and aromatic aldehydes across activated double bonds in the presence of a nucleophilic catalyst is known 
as the Stetter reaction. The general features of this transformation are:2,5 1) when the reaction is catalyzed by 
cyanide ions, dipolar aprotic solvents (e.g., DMF, DMSO) should be used, but with thiazolium salts protic solvents 
(e.g. EtOH) may also be used; 2) the reaction temperature is usually above 30 °C and the reaction time is a few 
hours (~1-4h); 3) the cyanide catalyzed reaction is restricted to aromatic aldehydes, since aliphatic aldehydes 
undergo an undesired aldol condensation; 4) the thiazolium salts are actually precatalysts since the added base (e.g., 
Et3N, NaOAc) deprotonates the highly acidic C-H bond between the nitrogen and sulfur atoms to generate an ylide 
structure in situ (this ylide behaves the same way as cyanide ions do); 5) since the mechanism involves the rapid, 
reversible formation of benzoins from aromatic aldehyde substrates, benzoins can be used instead of the aldehydes 
(aliphatic aldehydes cannot be replaced with acyloins); 6) a wide variety of activated alkene substrates can be used, 
and the yields are especially high with α,β-unsaturated ketones; 7) straight chain aldehydes tend to give higher yields 
than α-branched aldehydes; 8) the aldehyde substrates may also be α,β-unsaturated and may have isolated double 
or triple bonds; and 9) the reaction fails with aromatic aldehydes that have nitro substituents as well as with 2,6-
disubstituted aromatic aldehydes (due to steric hindrance). 

Mechanism: 2,5
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STETTER REACTION

Synthetic Applications:

In the laboratory of A. Millar, the convergent enantioselective synthesis of CI-981, a potent and tissue-selective 
inhibitor of HMG-CoA reductase was achieved.25 The central tetrasubstituted pyrrole ring was prepared via the Paal-
Knorr pyrrole synthesis. The required 1,4-diketone precursor was efficiently prepared by the Stetter reaction between 
p-fluorobenzaldehyde and an unsaturated amide. Interestingly, the N-benzyl thiazolium chloride catalyst afforded only 
the benzoin condensation product and none of the desired diketone. However, when the N-ethyl thiazolium bromide 
catalyst was employed, under anhydrous and concentrated reaction conditions, the 1,4-diketone was formed in good 
yield. The authors also noted that the simple dilution of the reaction mixture resulted in a dramatic increase in the 
formation of the undesired benzoin condensation product. 

The absolute stereochemistry of natural roseophilin was determined by means of asymmetric total synthesis by M.A. 
Tius and co-workers.26 The trisubstituted pyrrole moiety of the natural product was installed using the Paal-Knorr 
pyrrole synthesis starting from a macrocyclic 1,4-diketone. This diketone was prepared by reacting an exocyclic α,β-
unsaturated ketone with excess 6-heptenal in the presence of 3-benzyl-5-(hydroxyethyl)-4-methylthiazolium chloride 
as the catalyst. The major product was the trans diastereomer and the macrocyclization was achieved via alkene 
metathesis. It is worth noting that when the aldehyde was tethered to the cyclopentenone, all attempts to close the 
macrocycle in an intramolecular Stetter reaction failed. 

The short synthesis of (±)-trans-sabinene hydrate, an important flavor chemical found in a variety of essential oils 
from mint and herbs, was developed by C.C. Galopin.27 The key intermediate of the synthetic sequence was 3-
isopropyl-2-cyclopentenone. Initially a Nazarov cyclization of a dienone substrate was attempted for the synthesis of 
this compound, but the cyclization did not take place under a variety of conditions. For this reason, a sequential 
Stetter reaction/intramolecular aldol condensation approach was successfully implemented.  

The concise enantioselective total synthesis of (+)-monomorine I, a 3,5-dialkyl-substituted indolizidine alkaloid, was 
completed by S. Blechert et al. using a sequential cross-metathesis/double reductive cyclization strategy.28 The 
enedione substrate was prepared in two steps. The Stetter reaction between the masked equivalent of acrolein and 
butyl vinyl ketone was followed by a retro Diels-Alder reaction under flash vacuum pyrolysis (FVP) conditions. 
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STEVENS REARRANGEMENT
(References are on page 686)

Importance:

 [Seminal Publications1-5; Reviews6-14; Modifications & Improvements15-25; Theoretical Studies26-34]

In 1928, T.S. Stevens reported that phenacylbenzyldimethylammonium bromide could be converted to 1-benzoyl-2-
benzyldimethylamine upon treatment with aqueous sodium hydroxide.1 A few years later he observed an analogous 
transformation by exposing a sulfonium salt to sodium methoxide that rearranged to the corresponding sulfide.4 The 
base-promoted transformation of sulfonium or quaternary ammonium salts to the corresponding sulfides or tertiary 
amines involving the [1,2]-migration of one of the groups on the nitrogen or sulfur atom is known as the Stevens 
rearrangement. The general features of this reaction are: 1) the quaternary ammonium salts are readily available by 
the alkylation of the corresponding tertiary amines; 2) the sulfonium salts are usually prepared by the direct alkylation 
of the corresponding sulfides; 3) the key intermediate of the rearrangement is the nitrogen- or sulfur ylide; 3) the R1

group has to be able to stabilize carbanions, so it is often an electron-withdrawing group; 4) depending on the nature 
of R1, the acidity of the adjacent C-H bond varies so the type of base used for the deprotonation must be chosen 
accordingly; 5) when R1=aryl or heteroaryl, the Sommelet-Hauser rearrangement becomes competitive; 6) R2 and R3

groups of ammonium salts cannot contain a hydrogen at their β-position, since the Hofmann elimination may 
compete; 7) the migrating group (R4) is usually capable of stabilizing a carbon-centered radical; 8) the migratory 
aptitude of benzyl groups depends on the substituents on the phenyl ring and decrease in the following order: p-
NO2>p-halogen>p-Me>p-OMe; 9) when the migrating group has a stereocenter, it is transferred with retention of 
configuration at the migrating terminus; 10) the degree of the retention of configuration is influenced by the nature of 
substituents present on the migrating group; 11) in the case of sulfonium salts, the retention of configuration at the 
migrating terminus occurs to a lesser extent than in the case of quaternary ammonium salts; and 12) in addition to 
nitrogen to carbon migrations, there are nitrogen to heteroatom migrations as well (when Y=NH).16,35 When the 
regioselective deprotonation of the ammonium and sulfonium salts is problematic, the use of fluoride ion catalyzed 
desilylation of (trimethylsilyl)methyl ammonium- and sulfonium salts under nonbasic conditions gives the required 
ylides directly and with complete regioselectivity.17,18

Mechanism: 36,37,26,38-41,11,42

If the Stevens rearrangement is a concerted reaction, it is a symmetry-forbidden process based on the Woodward-
Hoffmann rules. Indeed, it was shown to occur via an intramolecular homolytic cleavage-radical pair recombination
process, which explains the lack of crossover products and the observed retention of configuration at the migrating 
terminus.41 The radicals are held in a solvent-cage in which there is a lack of rotation, and they recombine quickly. 
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STEVENS REARRANGEMENT

Synthetic Applications:

The nitrogen ylides required for the Stevens rearrangement can be accessed in a direct manner by using the 
transition metal catalyzed decomposition of an α-diazo carbonyl functionality tethered to tertiary amines. This tandem 
ylide formation/Stevens rearrangement strategy was used by A. Padwa et al. as a novel approach toward the 
preparation of isoindolo-benzazepines.43 The diazo ester was added to a refluxing solution of rhodium(II) acetate in 
toluene, generating the nitrogen ylide in situ, which underwent a facile [1,2]-benzyl shift to afford the 5,7-fused 
heterocyclic ring system. 

A new approach to the morphine skeleton was demonstrated by the total synthesis of (±)-desoxycodeine-D by C.-Y. 
Cheng and co-workers.44 The key step was the formation of the B ring by the Stevens rearrangement of a 
tetrahydroisoquinoline-derived quaternary ammonium salt upon treatment with phenyllithium. 

The first synthesis of 1,2-(1,1'-ferrocenediyl)ethene was accomplished in the laboratory of V.K. Aggarwal in six steps 
from ferrocene.45 In order to construct the strained two-carbon bridge, several methods were tested including the 
McMurry coupling and the Ramberg-Bäcklund rearrangement. Unfortunately, under the McMurry conditions only 
intermolecularly coupled products were obtained. The α-chlorination of the sulfide or sulfone failed, therefore the α-
chloro sulfone precursor for the Ramberg-Bäcklund rearrangement could not be prepared. Alternatively, the Stevens 
rearrangement of a sulfonium salt was successful in providing the desired ring-contracted product. 

The transfer of axial chirality to central chirality during the Stevens rearrangement of binaphthyl compounds was 
investigated by I.G. Stará et al.42 They found that the stereochemical course of the Stevens rearrangement of axially 
chiral onium salts is significantly structure-dependent. Their findings were utilized in a novel enantioselective 
synthesis of pentahelicene. The treatment of the optically pure binaphtyl ammonium salt with an excess of 
butyllithium brought about the expected [1,2]- benzyl shift, and the tertiary amine intermediate underwent an in situ
base-induced 1,2-elimination to afford the optically pure pentahelicene. Interestingly, the rearrangement of analogous 
sulfur ylides proceeded with considerably lower stereoselectivity.  
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STILLE CARBONYLATIVE CROSS-COUPLING 
(References are on page 687)

Importance:

[Seminal Publications1-5; Reviews6,7; Modifications & Improvements8,9]

The synthesis of ketones using the Stille cross-coupling initially called for the use of acid chlorides as coupling 
partners. However, acid chlorides are not always readily available, and their preparation is often not compatible with 
sensitive functional groups. To widen the scope of the synthesis of ketones, the transition metal catalyzed 
carbonylative cross-coupling of organic halides and pseudohalides was extensively investigated in the 1980s. The 
Pd(0)-catalyzed coupling between an organostannane, carbon monoxide, and an organic electrophile to form two new 
C-C sigma bonds is called the Stille carbonylative cross-coupling. Advantages of this method are: 1) many organic 
halides are commercially available or easily prepared and indefinitely stable; 2) the coupling occurs not only with 
chemo- and regioselectivity, but also with stereoselectivity, generally retaining the configuration at the substituted 
position of both the vinyl/aryl halide and the organostannane; 3) allyl and benzyl chlorides react, and they give the 
corresponding ketones with inversion of configuration;2 4) the reaction of alkenyl iodides and alkenyltins takes place 
under neutral and mild conditions; and 5) the use of heterostannanes (alkoxy, thioalkoxy, and aminostannanes) 
allows the preparation of the corresponding carboxylic acid derivatives.8 Disadvantages are: 1) direct coupling without 
CO insertion and the need to use high pressures of CO to suppress this side reaction;10 2) the occasional Z/E
isomerization of alkenyl groups from both reaction components, especially with (Z)-alkenyl derivatives;3 and 3) aryl 
chlorides react only slowly compared to aryl bromides and iodides. 

Mechanism: 11

The mechanism of the Stille carbonylative cross-coupling is very similar to the regular Stille cross-coupling. The only 
difference between the two couplings is that a carbon-monoxide (CO) insertion takes place between the oxidative-
addition step and the transmetallation step. The rate determining step is the transmetallation, so transferable groups 
attached to the tin atom may have -hydrogens attached to sp3 carbons, because the steps following the 
transmetallation are very fast and no -hydride elimination is expected. 

+R1 Sn(alkyl)3 R2 X
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STILLE CARBONYLATIVE CROSS-COUPLING 

Synthetic Examples:

The first enantioselective total synhesis of (–)-strychnine was achieved by L.E. Overman and co-workers.12 The 
carbon skeleton of the main precursor for the key aza-Cope rearrangement/Mannich cyclization was assembled by 
applying a Pd(0)-catalyzed carbonylative Stille coupling reaction. Thus, the cyclic vinylstannane was coupled with the 
triazinone-protected ortho-iodoaniline to afford 80% yield of the aromatic enone using Pd2(dba)3 as the catalyst in the 
presence of carbon monoxide. 

C-Disaccharides (C-glycosides) have an advantage over O-glycosides as they resist acidic and enzymatic hydrolysis. 
They can therefore serve as potential glycosidase inhibitors. In the laboratory of P. Vogel, a novel approach was 
developed for the synthesis of C-glycosides by a Stille carbonylative coupling reaction between 1-stannylglucals and 
1-iodoglucals.13

A concise synthesis of photoactivatable 4-benzoyl-L-phenylalanines and related peptides was described by G. Ortar 
et al. using a carbonylative Stille cross-coupling as the key step.14 Surprisingly, when the coupling was attempted with 
tyrosine triflate derivatives, it proved to be unsuccessful. However, 4-iodo-phenylalanine derivatives reacted smoothly 
under standard conditions to give the corresponding 4-benzoyl derivatives. 

Systematic evolution of ligands by exponential enrichment (SELEX) is a procedure that generates nucleic acid 
ligands capable of high-affinity binding to both protein and small molecule targets. In order to synthesize a wide range 
of these ligands, B.E. Eaton and co-workers used the carbonylative Stille coupling to obtain 5-carbonyluridine 
analogues.15
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STILLE CROSS-COUPLING  
(MIGITA-KOSUGI-STILLE COUPLING) 

(References are on page 687)
Importance:

[Seminal Publications1-8 ; Reviews9-27; Modifications28-40]

In 1976, the first palladium catalyzed reaction of organotin compounds (organostannanes) was published by C. 
Eaborn et al.1 A year later in 1977, M. Kosugi and T. Migita reported transition-metal-catalyzed C-C-bond forming 
reactions of organotins with aryl halides2 and acid chlorides.3,4 In 1978, J.K. Stille used organotin compounds for the 
synthesis of ketones under reaction conditions much milder than Kosugi’s and with significantly improved yields.5 In 
the early 1980s, Stille pioneered the use of this method.10 The Pd(0)-catalyzed coupling reaction between an 
organostannane and an organic electrophile  to form a new C-C sigma bond is known as the Stille cross coupling.
The precursor organotin compounds have many advantages because they: 1) tolerate a wide variety of functional 
groups; 2) are not sensitive to moisture or oxygen unlike other reactive organometallic compounds; and 3) are easily 
prepared, isolated, and stored. The main disadvantages are their toxicity and the difficulty to remove the traces of tin 
by-products from the reaction mixture. In the past two decades, the Stille reaction has become one of the most 
powerful synthetic tools in organic chemistry, and it finds many uses in preparative chemistry. The success of the 
Stille coupling is largely attributed to the mild conditions of the method. The reaction conditions are compatible with 
many types of functional groups (carboxylic acid, amide, ester, nitro, ether, amine, hydroxyl, ketone, and formyl 
groups) and high levels of stereochemical complexity can be tolerated by both coupling partners. The only major side 
reaction associated with the Stille coupling is the oxidative homocoupling of the organostannane reagent and under 
harsh conditions allylic and (Z)-alkenyl components may undergo double bond migration and isomerization.41,42

Metals other than palladium such as manganese,33 nickel,29,36 and copper28,30-35,37 have also been found to catalyze 
the reaction and procedures, using only catalytic amounts of tin have been developed.38-40

Mechanism: 6,7,41,43-46,12,47-53,27,54

The catalytic cycle for the Stille coupling reaction was first proposed for the reaction with benzylic and aryl halides in 
1979,6,7 although the detailed mechanism is still a matter of some debate.12,27 The catalytic cycle has three steps: 1) 
oxidative addition; 2) transmetallation; and 3) reductive elimination. The active catalyst is believed to be a 14-electron 
Pd(0)-complex which can be generated in situ. Palladium(0)-catalysts such as Pd(PPh3)4 and Pd(dba)2, with or without 
an added ligand, are often used. Alternatively, Pd(II)-complexes such as Pd(OAc)2, PdCl2(MeCN)2, (PdCl2(PPh3)2,
BnPdCl(PPh3)2, etc. are also used as precursors for the catalytically active Pd(0) species, as these compounds are 
reduced by the organostannane48 or by an added phosphine ligand prior to the main catalytic process. The 
transmetallation step is the rate-determining step in the catalytic cycle.46,47,49,50 Different groups on the tin coupling 
partner transmetallate to the Pd(II) intermediate at different rates and the order of migration is: alkynyl > vinyl > aryl > 
allyl ~ benzyl »» alkyl. The very slow migration rate of the alkyl substituents allows the transfer of aryl or vinyl groups 
when mixed organostannanes containing three methyl or butyl groups are used. 
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STILLE CROSS-COUPLING  
(MIGITA-KOSUGI-STILLE COUPLING) 

Synthetic Applications:

The total synthesis of (+)-mycotrienol was accomplished by J. Panek and co-workers using a Pd(0)-catalyzed Stille 
coupling reaction to incorporate the (E,E,E)-triene unit with simultaneous macrocyclization.55 After macrocyclization, 
the aromatic core was oxidized with CAN and the protecting groups were removed to provide the natural product. 

The enantioselective total synthesis of the manzamine alkaloid ircinal A was completed in the laboratory of S.F. 
Martin utilizing a novel strategy. A domino Stille/Diels-Alder reaction was used to assemble the ABC ring core of the 
natural product.56 The vinyl bromide intermediate reacted with vinyl tributylstannane in the presence of Pd(0) to afford 
the 1,3-diene moiety, which cyclized via an intramolecular Diels-Alder reaction to give the ABC core.

The first total synthesis of quadrigemine C, a higher-order member of the polypyrrolidinoindoline alkaloid family was 
published by L. Overman et al.57 Key steps included a double Stille cross coupling and catalyst-controlled double 
Heck cyclization.
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STILLE-KELLY COUPLING
(References are on page 688)

Importance:

[Seminal Publications1,2; Reviews3-6; Modifications & Improvements7,8]

The Pd-catalyzed synthesis of arylstannes (ArSnR3) from aryl halides with distannanes (R3SnSnR3) was discovered 
by C. Eaborn et al. in 1976. A decade later J.K. Stille reported that aryl triflates (ArOTf) also undergo a Pd-catalyzed 
cross-coupling reaction with distannanes to form the corresponding aryltrialkylstannanes.1 These arylstannanes are 
important substrates for the Stille-cross coupling reaction with aryl halides for the preparation of biaryl compounds. 
The combination of the above mentioned protocols, the intramolecular Pd-catalyzed  tandem stannylation/aryl halide 
coupling, was developed by T.R. Kelly and co-workers for the synthesis of dihydrophenanthrenes in the early 1990s.2
The Pd-catalyzed intramolecular biaryl coupling of aryl halides or aryl triflates in the presence of distannanes is 
known as the Stille-Kelly coupling. The general features of the reaction are: 1) aryl iodides, bromides, and triflates 
work best, but there are no examples for this coupling with aryl chlorides; and 2) usually the newly formed ring is five- 
or six-membered, but there are cases when the formation of larger rings and even macrocycles is possible.9 A useful 
extension of the Stille-Kelly coupling was reported by M. Shibasaki and M. Mori in which they accomplished the 
intramolecular Pd-catalyzed tandem transmetallation-cyclization of an aryl halide and a vinyl triflate using a 
trimethylsilyltributylstannane (Bu3Sn-SiMe3).7

Mechanism: 2,10

The Stille-Kelly coupling consists of two connected catalytic cycles and the following steps: 1) the oxidative addition
of the Pd(0) complex into one of the C-X bond of the aryl halide; 2) transmetallation with the distannane followed by 
reductive elimination to afford the organostannane; 3) oxidative addition of the Pd(0) complex into the C-X bond of the 
organostannane; 4) intramolecular transmetallation; and 5) reductive elimination to give the coupled product. 
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STILLE-KELLY COUPLING

Synthetic Applications:

A novel strategy was developed by T. Sakamoto et al. for the synthesis of carbolines and carbazoles based on Pd-
catalyzed amination (Buchwald-Hartwig coupling) and arylation (Stille-Kelly coupling) reactions.11 The required ortho-
bromo-substituted anilinopyridines were prepared by the Buchwald-Hartwig coupling of iodobenzenes with 
aminopyridines. The Stille-Kelly coupling was only possible when the secondary amine functionality was converted to 
the corresponding N-methanesulfonyl (mesyl) derivative prior to the cyclization. 

J.J. Li and co-workers synthesized all four possible benzo[4,5]furopyridines via two different Pd-catalyzed 
approaches.12 In one of the routes the precursor biaryl compound was prepared by the SNAr reaction of 3-iodo-4-
chloropyridine with ortho-iodophenoxide. The resulting diiodo heterobiaryl ether was cyclized under Stille-Kelly
coupling conditions in refluxing xylene. 

The total synthesis of the pyrrolophenanthridine alkaloid, hippadine, was accomplished in the laboratory of T. 
Sakamoto.13 The last and key step of the synthetic sequence was the Stille-Kelly coupling of the N-benzoylated 
indole precursor in 68% yield. 

The cyclic bis(benzyl) macrocyclic natural product, plagiochin D, was prepared by Y. Fukuyama using the Stille-Kelly 
coupling as the key macrocyclization step.9 The precursor dibromide was subjected to various cross-coupling 
conditions but only under the Stille-Kelly conditions was any coupling product obtained. The yield was low (17%) and 
9% stannylated intermediate was isolated besides the condiderable amount of recovered starting material (45%). The 
stannylated intermediate could be exposed to Pd(0) catalyst to afford 20% of the desired cyclized product. Finally, 
removal of the MOM  protecting groups was affected by concentrated HBr solution in methanol. 
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STOBBE CONDENSATION
(References are on page 689)

Importance:

 [Seminal Publications1; Reviews2,3; Modifications & Improvements4-16]

In 1893, H. Stobbe reported an unexpected reaction between acetone and diethyl succinate in the presence of a full 
equivalent of sodium ethoxide.1 Upon acidification of the reaction mixture the major isolated product was found to be 
tetraconic acid, an α,β-unsaturated carboxylic acid, and its monoethyl ester. This result was surprising since the 
authors expected the formation of a 1,3-diketone via a Claisen reaction. A subsequent extensive study by Stobbe and 
co-workers revealed that the transformation was general for esters of succinic acid with aldehydes and ketones. The 
formation of alkylidene succinic acids or their monoesters by the base-mediated condensation of ketones and 
aldehydes with dialkyl succinates is known as the Stobbe condensation. The general features of the reaction are: 1) 
there is no restriction on the carbonyl component it may have hydrogens at its α-position; 2) aromatic-, α,β-
unsaturated aldehydes and ketones as well as aliphatic ones are commonly used; 3) the diesters are mainly limited to 
succinic esters and their substituted derivatives, but certain α,ω-diesters that do not undergo competitive Dieckmann 
condensation will afford Stobbe products; 4) upon mild acidic work-up the primary product is an alkylidene succinic 
acid monoester; 5) when symmetrical ketones are condensed, only one alkene stereoisomer is formed, but 
unsymmetrical ketones afford a mixture of alkene stereoisomers; and 6) when the carbonyl component has α-
protons, a variety of products may be formed as a result of double bond migration under the reaction conditions. 
There are a few drawbacks of the Stobbe condensation: 1) self-condensation of the aldehyde or ketone substrate; 2) 
Cannizzaro reaction of aromatic aldehydes; 3) if the ketone is highly enolizable under the reaction conditions yields 
tend to be low; 4) too reactive ketones may undergo acylation (Claisen reaction) at their α-position by the dialkyl 
succinate; 5) when NaOEt is used as the base, substantial reduction of the ketone substrate is usually observed due 
to the oxidation of ethoxide to acetaldehyde (this side reaction is minimized by using KOt-Bu).

Mechanism: 17-22

The first step of the Stobbe condensation is the deprotonation of the succinate at the α-carbon to afford an ester 
enolate that in situ undergoes an aldol reaction with the carbonyl compound to form a β-alkoxy ester intermediate. 
The following intramolecular acyl substitution gives rise to a γ-lactone intermediate which undergoes ring-opening and 
concomittant double bond formation upon deprotonation by the alkoxide ion. Under certain conditions the lactone 
intermediate can be isolated. 

H3C CH3

O
+

1. NaOEt (1 equiv)
Stobbe (1893):

acetone diethyl succinate

COOH

COOH

H3C

H3C

tetraconic acid

2. HCl/H2O

CO2Et

COOH

H3C

H3C

tetraconic acid
monoethyl ester

+

R1 R2

O
+

base

aldehyde or 
ketone

dialkyl succinate

Stobbe condensation:

OR3

O
R3O

O

R1-2 = H, alkyl, aryl,alkenyl, acyl, CH(R)CO2alkyl, CH(R)CN; R3 = alkyl, aryl; R4-5 = H, alkyl, aryl, alkylidene; base: NaOR3,
KOt-Bu, NaH, NaOEt, Na metal, NaCPh3; solvent: Et2O, EtOH, t-BuOH

R2

R1

O

OR3

O

O

acidification

Alkylidene succinic acid
monoalkyl ester

R4 R5 R4

R5

R2

R1

O

OR3

O

OHR4

R5

EtO

O

O

OEt

(1 equiv)

solvent

α α

α

Et2O, 7-21d

R3O
O

OR3

O

R4

R5

H
Base - HBase

R3O
O

OR3

O

R4

R5

ester enolate

R1

R2
O

O
O

OR3

O

R4

R5 O

R1

R2

R3
dialkyl 

succinate

O
O

OR3

R1

R2R4

R5

R3 O
aldol

reaction
intramolecular

acyl substitution - OR3

O
O R1

R2

R4

R5

R3
O

γ-lactone

H

OR3
- HOR3

O
O

R4

R5

R3

O

R1

R2

α
α

R2

R1

O

OR3

O

OR4

R5

α H

R2

R1

O

OR3

O

OHR4

R5

α

γ

β

β-alkoxy ester



443

STOBBE CONDENSATION

Synthetic Applications:

The asymmetric total synthesis of (+)-codeine, the unnatural enantiomer, was accomplished by J.D. White and co-
workers using an intramolecular carbenoid insertion as the key step.23 The first stereogenic center that directed all 
subsequent stereochemical events was installed by the asymmetric hydrogenation of an alkylidene succinate that 
was obtained using the Stobbe condensation. Dimethyl succinate and isovanillin were reacted in the presence of 
excess sodium methoxide at reflux and the resulting reaction mixture was acidified to obtain the monomethyl ester. 

The SAR data regarding the potency of various cannabinoids show that one of the most important variables is the 
length and substitution pattern of the alkyl side chain at C3. In order to investigate the effect of side chain 
conformation upon receptor affinity, J.W. Huffman et al. designed and synthesized a conformationally constrained 
analog of Δ8-THC.24 The Stobbe condensation was applied to prepare the tetralin moiety of the target by reacting 
diethyl succinate in tert-butyl alcohol and using KOt-Bu as the base. The initially formed alkylidene compound was 
not purified but immediately subjected to in situ catalytic hydrogenation, and the resulting diacid was cyclized to afford 
a substituted tetralone, which was subsequently converted to the target. 

In the laboratory of J. Liu it was shown unambiguously by single crystal X-ray diffraction, that the Stobbe 
condensation of diphenylmethylenesuccinate with aromatic aldehydes proceeded with perfect (E)-stereoselectivity.25

For many decades, the product of this reaction was believed to have the (Z) stereochemistry on the basis of extreme 
steric crowding. The authors demonstrated that the nature and the position of the substituents on the aromatic rings 
of substituted benzaldehydes had no effect on the stereoselectivity of the reaction. This result was surprising, since 
the product was highly crowded but apparently a noncovalent π stacking interaction was operational between the two 
stacked aromatic rings. The condensation of ethyl methyl diphenylmethylenesuccinate with 3,5-bis(trifluoromethyl) 
benzaldehyde was carried out in benzene using sodium hydride as the base. Upon acidic work-up the corresponding 
diacid was obtained, which was immediately subjected to dehydration employing neat acetyl chloride.  
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STORK ENAMINE SYNTHESIS
(References are on page 689)

Importance:

 [Seminal Publications1-4; Reviews5-11; Modifications & Improvements12-21; Theoretical Studies22]

In 1936, C. Mannich and H. Davidson reported that in the presence of a dehydrating agent (K2CO3 or CaO), 
secondary amines underwent facile condensation with aldehydes or ketones to afford enamines (non-charged 
enolate equivalents).23 At that time the reaction of enamines with electrophiles was not investigated, but it was 
established that enamines were relatively labile compounds that underwent facile hydrolysis upon exposure to dilute 
aqueous acid. Two decades later, in 1954, G. Stork and co-workers discovered that the reaction of enamines with 
alkyl- or acyl halides followed by acidic hydrolysis constituted a novel way for the α-alkylation or α-acylation of 
carbonyl compounds.3,4 The synthesis of α-alkyl- or acyl carbonyl compounds via the alkylation or acylation of the 
corresponding enamines is known as the Stork enamine synthesis. The general features of this method are: 1) the 
enamines are prepared by reacting the aldehyde or ketone with one equivalent of secondary amine (e.g., piperidine, 
morpholine or pyrrolidine) in the presence of a catalyst (or dehydrating agent); 2) with unsymmetrical ketones the 
formation of enamine regioisomers is expected but usually the less substituted regioisomer is favored; 3) the 
preparation of aldehyde enamines is often accompanied by the formation of aminals, which can be converted to the 
desired enamines by destructive distillation;9 4) activated alkyl and acyl halides are the best reaction partners (e.g., 
allyl-, benzyl-, propargylic-, or activated aryl halides); 5) tertiary alkyl halides do not alkylate the enamines but rather 
undergo elimination; 6) other electrophiles such as Michael acceptors and epoxides can also be used; and 7) the 
bulkier the ketone and the amine components, the better the yields of the monoalkylated product, but the reaction 
rates tend to drop. Advantages of the Stork enamine synthesis are: 1) the alkylation of the enamine takes place under 
neutral conditions, which is important when the substrate is base or acid sensitive; 2) polyalkylated products are 
seldom observed; 3) the alkylation takes place on the less substituted side of the ketone; and 4) an asymmetric 
version utilizing chiral enamines is also available.  

Mechanism: 24,25

Stork, Terrell & Szmuszkovicz (1954):
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STORK ENAMINE SYNTHESIS

Synthetic Applications:

The total synthesis of the phenolic sesquiterpene (±)-parviflorine was accomplished by L.A. Maldonado and co-
workers.26 The key step in the synthetic sequence was the reaction of an enamine with acrolein to form a bicyclic 
intermediate, which was subjected to a Grob fragmentation to afford the eight-membered ring of the natural product. 
The bicyclic ketone substrate was refluxed in benzene using a Dean-Stark trap and the resulting enamine was taken 
to the next step as crude material.  

The biomimetic synthesis of the structurally novel bisesquiterpenoid (±)-biatractylolide was reported by J.E. Baldwin 
et al.27 The cornerstone of the synthetic strategy was the radical dimerization of two atractylolide units. The 
atractylolide precursor was prepared from a bicyclic ketone using the Stork enamine synthesis. The pyrrolidine 
enamine was generated using large excess of pyrrolidine in refluxing benzene (the excess pyrrolidine was removed 
under reduced pressure). The alkylation of the crude enamine with ethyl α-bromopropionate took place in refluxing 
dioxane and afforded a mixture of ethyl ester diastereomers. 

In the laboratory of A.B. Smith, the synthesis of (+)-jatropholone A and B was achieved using a high-pressure Diels-
Alder cycloaddition between a tetrasubstituted furan and a homochiral enone. During the preparation of the furan 
component, the Stork enamine synthesis was used. The α-benzyloxy cyclopentanone was converted to the 
corresponding morpholine enamine in quantitative yield. The enamine was isolated as a single regioisomer. In 
contrast, the corresponding piperidine or pyrrolidine enamines were obtained always as a mixture of regioisomers. 
The acylation of the enamine with O-acetoxyacetyl chloride yielded a 1,3-diketone, which was converted to the 
desired tetrasubstituted furan component. 

An intramolecular variant of the Stork enamine synthesis was utilized during the asymmetric total synthesis of (–)-8-
aza-12-oxo-17-desoxoestrone by A.I. Meyers et al.28
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STRECKER REACTION
(References are on page 690)

Importance:

 [Seminal Publications1,2; Reviews3-28; Modifications & Improvements29-42; Theoretical Studies43-46]

In 1850, A. Strecker attempted the synthesis of lactic acid by treating acetaldehyde first with aqueous ammonia 
followed by the addition of hydrogen cyanide and hydrolyzing the resulting amino nitrile intermediate with aqueous 
acid.1 To his surprise he did not isolate any of the desired lactic acid but instead obtained alanine. This discovery 
constituted the first laboratory preparation of an α-amino acid. The condensation of an aldehyde or ketone with a 
primary amine or ammonia and hydrogen cyanide (or their equivalents) to afford the corresponding α-amino nitrile is 
known as the Strecker reaction. The most well-known use of α-amino nitriles is their hydrolysis under acidic or basic 
conditions to obtain α-amino acids (Strecker amino acid synthesis). The general features of the Strecker reaction are: 
1) the transformation is a one-pot three-component coupling; 2) due to the extreme toxicity of HCN, various alkali 
cyanides (e.g., KCN, NaCN) in buffered aqueous media are used; 3) both aldehydes and ketones are good 
substrates; 3) the amine component can be ammonia, primary, or secondary amine; 4) the addition of HCN to 
preformed aldimines and ketimines (even iminium salts) or to oximes and hydrazones leads to N-substituted α-amino
nitriles; 5) hydrolysis of α-amino nitriles gives α-amino acids, reduction with metal hydrides affords 1,2-diamines, 
while strong bases can deprotonate at the α-carbon (if R2=H) and the resulting carbanion can be trapped with a 
variety of electrophiles (umpolung);22 and 6) upon treatment with heavy metal salts (e.g., AgNO3), Brönsted or Lewis 
acids, α-amino nitriles undergo a loss of cyanide ion to form iminium ions, which can be trapped with various 
nucleophiles (if the nucleophile is an organometallic reagent, the transformation is called the Bruylants reaction). It is 
now possible to conduct the Strecker reaction asymmetrically: 1) the use of optically active amines generate chiral 
imines, which give rise to enantio-enriched α-amino nitriles upon the addition of cyanide ions;8,11 and 2) asymmetric 
induction may be achieved by the use of organocatalysts or chiral metal catalysts.25,27

Mechanism: 47-54
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STRECKER REACTION

Synthetic Applications:

The enantioselective total synthesis of (–)-hemiasterlin, a marine tripeptide with cytotoxic and antimitotic activity, was 
achieved by E. Vedejs and co-workers.55 The asymmetric Strecker reaction was used to construct the key 
tetramethyltryptophan subunit. The aldehyde substrate was first converted to the corresponding chiral imine with (R)-
2-phenylglycinol under scandium triflate catalysis. The addition of tributyltin cyanide resulted in the formation of α-
amino nitriles as an 8:1 mixture of diastereomers. Subsequently the cyano group was converted to a primary amide, 
and the chiral auxiliary was removed under catalytic hydrogenation conditions. 

In the laboratory of B. Ganem, the asymmetric total synthesis of (–)-α-kainic acid was accomplished starting from 
very simple precursors. A highly stereoselective zirconium-mediated Strecker reaction was used to install the α-
amino acid moiety of the natural product. The five-membered lactam substrate was treated with excess Schwartz 
reagent at low temperature which generated the corresponding cyclic imine in situ. This cyclic imine was not isolated 
but was immediately reacted with cyanotrimethylsilane to afford the all cis α-amino nitrile. In order to convert this 
intermediate to kainic acid, the cyano group was first converted by the Pinner reaction to a methyl ester. The resulting 
diester was hydrolyzed with aqueous KOH solution to give the corresponding dicarboxylic acid with complete 
epimerization at C2. 

The sulfinimine-mediated asymmetric Strecker reaction was developed by F.A. Davis et al. This method involves the 
addition of ethylaluminumcyanoisopropoxide to functionalized sulfinimines and the resulting diastereomeric α-amino
nitriles are easily separated. Subsequent hydrolysis directly affords the enantiopure α-amino acids. This protocol was 
applied for the synthesis of polyoxamic acid lactone.56

The first total synthesis of amiclenomycin, an inhibitor of biotin biosynthesis, was completed by A. Marquet and co-
workers.57 In order to prove its structure unambiguously, both the cis and trans isomers were prepared. The L-amino 
acid functionality was installed by a Strecker reaction using TMSCN in the presence of catalytic amounts of ZnI2. The 
resulting O-TMS protected cyanohydrin was exposed to saturated methanolic ammonia solution, which gave rise to 
the corresponding α-amino nitrile. Enzymatic hydrolysis with immobilized pronase afforded the desired L-amino acid. 
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SUZUKI CROSS-COUPLING  
(SUZUKI-MIYAURA CROSS-COUPLING) 

(References are on page 691)
Importance:

[Seminal Publications1-3 ; Reviews4-38; Modifications & Improvements39-49]

In 1979, A. Suzuki and N. Miyaura reported the stereoselective synthesis of arylated (E)-alkenes by the reaction of 1-
alkenylboranes with aryl halides in the presence of a palladium catalyst.1 The palladium-catalyzed cross-coupling 
reaction between organoboron compounds and organic halides or triflates provides a powerful and general method 
for the formation of carbon-carbon bonds known as the Suzuki cross-coupling. There are several advantages to this 
method: 1) mild reaction conditions; 2) commercial availability of many boronic acids; 3) the inorganic by-products are 
easily removed from the reaction mixture, making the reaction suitable for industrial processes; 4) boronic acids are 
environmentally safer and much less toxic than organostannanes (see Stille coupling); 5) starting materials tolerate a 
wide variety of functional groups, and they are unaffected by water; 6) the coupling is generally stereo- and 
regioselective; and 7) sp3-hybridized alkyl boranes can also be coupled by the B-alkyl Suzuki-Miyaura cross-coupling.
Some disadvantages are: 1) generally aryl halides react sluggishly; 2) by-products such as self-coupling products are 
formed because of solvent-dissolved oxygen; 3) coupling products of phosphine-bound aryls are often formed; and 4) 
since the reaction does not proceed in the absence of a base, side reactions such as racemization of optically active 
compounds or aldol condensations occur. Improvements of the Suzuki cross-coupling include the development of 
catalysts facilitating coupling of unreactive aryl halides,39,40 the ability to react sp3-hybridized alkyl halides,42,44,50 and 
the use of alkyl, alkenyl, aryl, and alkynyl trifluoroborates in place of boronic acids.45-47

Mechanism: 51-55,24,56,57,50,58-60

The mechanism of the Suzuki cross-coupling is analogous to the catalytic cycle for the other cross-coupling reactions 
and has four distinct steps: 1) oxidative addition of an organic halide to the Pd(0)-species to form Pd(II);  2) exchange 
of the anion attached to the palladium for the anion of the base (metathesis); 3) transmetallation between Pd(II) and 
the alkylborate complex; and 4) reductive elimination to form the C-C sigma bond and regeneration of Pd(0). Although 
organoboronic acids do not transmetallate to the Pd(II)-complexes, the corresponding ate-complexes readily undergo 
transmetallation. The quaternization of the boron atom with an anion increases the nucleophilicity of the alkyl group 
and it accelerates its transfer to the palladium in the transmetallation step. Very bulky and electron-rich ligands (e.g., 
P(t-Bu)3) increase the reactivity of otherwise unreactive aryl chlorides by accelerating the rate of the oxidative 
addition step. 
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+ X B(R)2
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SUZUKI CROSS-COUPLING  
(SUZUKI-MIYAURA CROSS-COUPLING) 

Synthetic Applications:

During the total synthesis of the proteosome inhibitor TMC-95A by S.J. Danishefsky et al., the biaryl moiety of the 
compound was assembled in good yield by the Suzuki cross-coupling of an aryl iodide and an arylboron 
intermediate.61

The antitumor natural product epothilone A was synthesized in the laboratory of J.S. Panek.62 They utilized the B-
alkyl Suzuki cross-coupling between an sp3-hybridized alkylborane and a (Z)-iodoalkene for the construction of the 
main fragment. The alkylborane was prepared by hydroborating the terminal alkene with 9-BBN and the (Z)-
iodoalkene was added along with the palladium catalyst and the base. 

The last and key step in the total synthesis of myxalamide A by C.H. Heathcock et al. was a Suzuki cross-coupling
between an (E)-vinylborane and a (Z)-iodotriene.63 The (E)-vinylborane was prepared prior to the coupling by reacting 
the precursor enyne with 2 equivalents of cathecholborane. Upon completion of the hydroboration, it was combined 
with the (Z)-iodotriene and catalytic amounts of palladium acetate.  

A formal total synthesis of oximidine II was achieved by G.A. Molander et al., using an intramolecular Suzuki-type 
cross-coupling between an alkenyl potassium trifluoroborate and an alkenyl bromide to construct the highly strained, 
polyunsaturated 12-membered macrolactone core of the natural product.64 The stability of potassium trifluoroborates 
was exploited in order to establish the best conditions for the macrocyclization. 
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SWERN OXIDATION
(References are on page 692)

Importance:

[Seminal Publications1-6; Reviews7-10; Modifications & Improvements11-16]

In 1976, D. Swern and co-workers reported that treatment of dimethyl sulfoxide (DMSO) with trifluoroacetic anhydride 
(TFAA) below -50 °C in methylene chloride gave trifluoroacetoxydimethylsulfonium trifluoroacetate, which reacted 
rapidly with primary and secondary alcohols.3 The resulting alkoxydimethylsulfonium trifluoroacetates, upon addition 
of triethylamine, afforded the corresponding aldehydes and ketones in good yield.3 In 1978, oxalyl chloride was found 
to be more effective than TFAA as an activating agent for DMSO in the oxidation of alcohols.5,6 The oxidation of 
primary and secondary alcohols using DMSO and TFAA or oxalyl chloride is referred to as the Swern oxidation. The 
general features of this oxidation are: 1) when no solvent is used, DMSO reacts with TFAA or oxalyl chloride violently 
(explosion!), so great care should be exercised while running the reaction; 2) the most common solvent is DCM; 3) 
when TFAA is used, the initial intermediate is unstable above -30 °C and a side product is formed via the Pummerer 
rearrangement; 4) when oxalyl chloride is used, the initial intermediate is unstable above -60 °C, so the oxidation is 
usually conducted at -78 °C; 5) the typical procedure begins with the reaction of DMSO with TFAA or oxalyl chloride 
at low temperature followed by the slow addition of the alcohol, then a tertiary amine; 6) the addition of a tertiary 
amine (e.g., DIPA, TEA) is necessary to facilitate the decomposition of the alkoxysulfonium salt; 7) the efficiency of 
the oxidation is not influenced by the steric hindrance of the substrate; and 8) the use of TFAA may give rise to 
trifluoroacetate side products, whereas in the case of oxalyl chloride side reactions are extremely rare. 

Mechanism: 6-9
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SWERN OXIDATION

Synthetic Applications:

The first total synthesis of the marine dolabellane diterpene (+)-deoxyneodolabelline was achieved in the laboratory 
of D.R. Williams.17 In the final step of the synthetic sequence, the oxidation of a secondary alcohol functionality of a 
1,2-diol to the corresponding α-hydroxy ketone was required. Such 1,2-diols are known to be unstable under most 
oxidation conditions, and often glycol cleavage is observed. Indeed, when Dess-Martin and Ley oxidations were tried, 
the substrate suffered carbon-carbon bond cleavage. However, under the Swern oxidation conditions, the desired α-
hydroxy ketone was isolated in a 65% yield. Interestingly, the substrate was a mixture of four inseparable 
diastereomeric diols (obtained in a McMurry reaction), which gave two easily separable ketone products, one of 
which was the natural product.  

S.F. Martin and co-workers utilized a double Swern oxidation in their synthesis of ircinal A and related manzamine 
alkaloids.18 The advanced tricyclic diol intermediate was first subjected to the Swern oxidation conditions at -78 °C to 
afford the corresponding dialdehyde in excellent yield. In the next step, the dialdehyde was exposed to excess Wittig 
reagent under salt-free conditions to form the two terminal alkenes. 

The convergent total synthesis of the mytotoxic (+)-asteltoxin was accomplished by J.K. Cha et al.19 The coupling of 
the two main fragments was achieved by the HWE olefination of a bis(tetrahydrofuran) aldehyde with an α-pyrone 
phosphonate. The bis(tetrahydrofuran) aldehyde was prepared by the Swern oxidation of the corresponding 
bis(tetrahydrofuran) primary alcohol. Interestingly, under the oxidation conditions there was no epimerization of the α-
stereocenter, but during the HWE olefination a small amount of C8 epimer was formed. 
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TAKAI-UTIMOTO OLEFINATION (TAKAI REACTION) 
(References are on page 693)

Importance:

[Seminal Publications1,2; Reviews3-8; Modifications & Improvements9-17]

Until the second half of the 1980s there was no general method available for the stereoselective preparation of 
alkenyl halides from carbonyl compounds. In 1987, K. Takai and K. Utimoto introduced a simple and stereoselective 
method for the conversion of aldehydes to the corresponding (E)-alkenyl halides by treating the aldehydes with a 
haloform-chromium(II)-chloride (CHX3-CrCl2) system.1 The chromium(II)-mediated one-carbon homologation of 
aldehydes with haloform to give the corresponding (E)-alkenyl halides is known as the Takai-Utimoto olefination
(Takai reaction). General features of the reaction are: 1) the anhydrous CrCl2 can be dissolved in the solvent just 
prior to the reaction or can be generated by reacting CrCl3 with LiAlH4; 2) aldehydes react much faster than ketones, 
so the chemoselective transformation of aldehydes in the presence of ketones is possible; 3) for aliphatic and 
aromatic aldehydes the major product is the (E)-alkenyl halide but for α,β-unsaturated aldehydes the stereoselectivity 
is usually poor; 4) the rate of the reaction is a function of the haloform used: I>Br>Cl; 5) iodoform reacts rapidly at low 
temperatures (~0 °C), while other haloforms require higher temperatures to react; 6) the (E/Z) ratio is also dependent 
on the haloform used (Cl>Br>I) and the best (E)-selectivity is observed when X=Cl; 7) when CHBr3/CrCl2 is used, a 
mixture of alkenyl chlorides and bromides is obtained due to a Finkelstein reaction of CrCl2 with bromide (Br-). 
However, by preparing CrBr2 from CrBr3/LiAlH4 this problem is eliminated;1,18 8) reducing agents other than Cr(II) give 
unsatisfactory or no yield of the desired alkenyl halides; 9) in certain cases the applied solvent is critical to achieve 
good yield and stereoselectivity; 10) the reaction conditions tolerate almost any functional group; and 11) the reaction 
conditions are mild enough (the reagent is practically nonbasic) that even highly enolizable substrates do not 
racemize at their α-position. There are several important modification of the T-U olefination: 1) instead of haloforms, 
1,1-geminal dihalides are used to afford predominantly (E)-olefins;2 2) instead of 1,1-geminal dihalides, α-acetoxy 
bromides can be used, which are more stable and easier to prepare and handle than 1,1-geminal dihalides;11 and 3) 
one-carbon homologation of aldehydes via chromium enolates to the corresponding methyl ketones using 
TMSCBr3/CrBr2.12 When 1,1-geminal dihalides are used, the following can be expected: 1) the (E)-selectivity is 
especially high for aliphatic substrates, and it increases with the size of R1; 2) only 1,1-geminal diiodoalkanes are 
suitable; the dichlorides and dibromides undergo reduction under the reaction conditions; 3) CH2I2 is the most 
reactive. The higher homologs react slower and give lower yields; 4) aldehydes react faster than ketones; 5) the 
reaction can be carried out with catalytic amounts of CrCl3 in the presence of samarium metal or samarium diiodide;19

and 6) the R2 substituent can contain heteroatoms so the preparation of alkenyl silanes,13,15 -boronates,14 –
stannanes,10 and sulfides9 is possible. The use of  α-acetoxy bromides has the following features: 1) the in situ
preparation of the chromium(II) reagent and donor ligand such as DMF or TMEDA should be present; 2) high (E)-
selectivity; and 3) exclusive reaction with aldehydes.11

Mechanism: 20,21,2,3,15,7

The exact mechanistic pathway is not known. However, it is believed that the T-U olefination proceeds via geminal-
dichromium intermediates that are nucleophilic and attack the carbonyl compound. The (E)-alkene is formed from the 
β-oxychromium species. 
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TAKAI-UTIMOTO OLEFINATION (TAKAI REACTION)
Synthetic Applications:

The first total synthesis of the cytotoxic marine natural product aplysiapyranoid C was accomplished by M.E. Jung et 
al.22 The special structural feature of this natural product is the (E)-vinyl chloride moiety, which was introduced in high 
yield via the Takai reaction in the late stages of the synthetic effort. The removal of the silicon protecting group and 
cyclization of the dichlorodienol with TBCO (tetrabromocyclohexadienone) in nitromethane gave a mixture of four 
products, one of which was the desired product that was isolated in 43% yield. 

Polycephalin C is a bis(trienoyltetramic acid) linked by an unusual asymmetric cyclohexene ring. At the time of 
isolation and structure elucidation the absolute configuration at the C3 and C4 positions was not established. S.V. 
Ley and co-workers carried out the total synthesis of this natural product based on a double Takai olefination followed 
by a double Stille cross-coupling.23 The dialdehyde substrate for the Takai olefination was prepared by the 
asymmetric Diels-Alder cycloaddition of dimenthyl fumarate with butadiene. The double Takai olefination proceeded 
with high (E)-stereoselectivity to afford the bisiodide, albeit in only 40% yield. Subsequent double Stille coupling
proceeded in good yield and after a global deprotection the target compound was obtained. 

In the laboratory of F.R. Kinder Jr., the total synthesis of cytotoxic marine natural product bengamide E was 
completed.24 The Takai-Utimoto olefination was used to introduce the (E)-disubstituted double bond. The aldehyde 
was exposed to a CrCl2 solution in THF in the presence of 1,1-diiodo-2-methylpropane, and the desired olefin was 
obtained in 29% yield. 

The diastereoselective Me3Al-mediated intramolecular Diels-Alder reaction, a highly (E)-selective Takai olefination
and a Suzuki coupling were the key steps in the enantioselective total synthesis of (–)-equisetin by K. Shishido et al.25

It should be noted that the type of T-U olefination utilized allowed the preparation of functionalized heterosubstituted 
(E)-alkenes. 
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TEBBE OLEFINATION / PETASIS-TEBBE OLEFINATION 
(References are on page 693)

Importance:

[Seminal Publications1-3; Reviews4-15; Modifications & Improvements16-20]

In 1976, R.R. Schrock discovered, during his studies of alkene metathesis, that the neopentylidene complex of 
tantalum was structurally analogous to phosphorous ylides (Wittig reagents), and it not only olefinated aldehydes and 
ketones but esters and amides as well.1 In 1978, F.N. Tebbe et al. reported that titanocene dichloride reacted with 
two equivalents of AlMe3 to produce a methylene-bridged titanium-aluminum complex (Tebbe reagent), which 
transferred a methylene group (CH2) efficiently to various carbonyl compounds to afford olefins.2 It was shown early 
on that the Tebbe reagent converted carboxylic esters, lactones, and amides to the corresponding enol ethers and 
enamines in high yield. The one-carbon homologation (methylenation) of carbonyl compounds using the Tebbe 
reagent is known as the Tebbe olefination. The Tebbe reaction has the following general features: 1) the active 
species (titanocene methylidene) is more nucleophilic and much less basic than the corresponding Wittig reagents. 
Consequently, less reactive (bulkier) and enolizable carbonyl compounds can be readily olefinated; 2) the Tebbe 
reagent is stable in solution and reacts at low temperature with the various carbonyl groups in the following order: 
aldehydes>ketones>esters>amides; 3) acid halides and anhydrides do not undergo methenylation. Instead, the 
corresponding titanium enolates are formed, which can be used in subsequent aldol reactions;21 4) only 
methenylations can be performed; higher alkenyl groups cannot be introduced with this method; 5) a wide range of 
functional groups are tolerated. However, the presence of the Lewis acidic aluminum may cause complications with 
certain substrates. The thermal decomposition of dimethyltitanocene also generates titanocene methylidene without 
the Lewis acidic aluminum, and it is capable of olefinating very sensitive substrates such as anhydrides, silyl esters, 
and acylsilanes.18 This method is known as the Petasis-Tebbe olefination or Petasis olefination.3

Mechanism: 4,22,7,23-30

The active species in the Tebbe olefination is believed to be the nucleophilic (Schrock-type) titanocene methylidene, 
which is formed from the Tebbe reagent upon coordination of the aluminum with a Lewis base (e.g., pyridine). This 
methylidene in its uncomplexed form, however, has never been isolated or observed spectroscopically owing to its 
extreme reactivity.  The same intermediate can also be generated by other means.4 The titanocene methylidene 
reacts with the carbonyl group to form an oxatitanacyclobutane intermediate that breaks down to titanocene oxide 
and the desired methenylated compound (alkene). The driving force is the formation of the very strong titanium-
oxygen bond. 
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TEBBE OLEFINATION / PETASIS-TEBBE OLEFINATION 

Synthetic Applications:

The enantioselective total synthesis of the cyclooctanoid natural product (+)-epoxydictymene was accomplished in 
the laboratory of L.A. Paquette.31 The entire tricyclic framework was constructed by the application of a Claisen 
rerrangement via a chairlike transition state. The precursor for this [3,3]-sigmatropic rearrangement was obtained by 
treating a lactone precursor with the solution of the Tebbe reagent in the presence of pyridine. The corresponding 
enol ether was formed in almost quantitative yield, and immediately after isolation it was treated with 
triisobutylaluminum to effect the Claisen rearrangement.

The unsaturated medium ring ether (+)-laurencin was synthesized by A.H. Holmes and co-workers.32 Halfway into the 
synthetic sequence the ethyl side chain had to be introduced at C2. This task was accomplished by using sequential 
Tebbe methenylation, diastereoselective intramolecular hydrosilation, and displacement of a primary tosylate with 
dimethyl cuprate. The eight-membered lactone was exposed to the Tebbe reagent in the presence of DMAP to afford 
the cyclic enol ether in good yield.  

In the final step of the total synthesis of ( )-21-oxogelsemine and ( )-gelsemine by D.J. Hart et al., the introduction of 
the C20 vinyl group was unsuccessful when the cagelike aldehyde was treated with (methylidene)triphenylphos-
phorane (Wittig reaction).33 This failure was attributed to two factors, namely, steric hindrance and neighboring group 
participation of the oxindole carbonyl group. However, when the Petasis reagent was used in refluxing 
tetrahydrofuran, the desired olefin was obtained in 87% yield. Since ( )-21-oxogelsemine has been converted to ( )-
gelsemine before, this synthesis was also a formal total synthesis of ( )-gelsemine.

It is possible to methenylate the carbonyl group of amides and lactams provided that the nitrogen atom is substituted 
with an electron-withdrawing group. This was the case when A.R. Howell and co-workers successfully converted a 
wide range of N-substituted -lactams to the corresponding 2-methyleneazetidines.34 In the two examples it is 
noteworthy that the -lactam carbonyl group reacted preferentially in the presence of the ester carbonyl group. 
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TISHCHENKO REACTION  
(References are on page 694)

Importance:

[Seminal Publications1-9; Reviews10-12; Modifications & Improvements13-27;Theoretical studies28]

In 1887, L. Claisen reported the formation of benzyl benzoate from benzaldehyde in the presence of sodium 
alkoxides.1 Nearly thirty years later, W.E. Tishchenko found that both enolizable and non-enolizable aldehydes can 
be converted to the corresponding esters in the presence of magnesium- or aluminum alkoxides.2-9 The reaction 
involves a hydride shift from one aldehyde to another that leads to the formation of the ester product. This 
transformation is known today as the Tishchenko reaction. The general features of the reaction are: 1) in the 
traditional transformation, the reaction takes place between the same aldehydes;11 2) in the crossed Tishchenko 
reaction, two different aldehydes are reacted to form the ester product;13 3) the reaction can take place in an 
intramolecular fashion, yielding the corresponding lactone;21 and 4) common side reactions are the aldol reaction,
Cannizzaro reaction, Merwein-Ponndorf-Verley reduction, and Oppenauer oxidation.11 The most general catalysts in 
the traditional Tishchenko reaction are aluminum alkoxides, but a wide-variety of catalysts can be used:11  1) alkali- 
and alkali earth metal oxides26  and alkoxides;18 2) transition metal-based catalysts such as ruthenium complexes 
(RuH2(PPh3)4,22 certain rhodium-,18 iridium-,19 and iron complexes,14,15  and metallocenes of group IV metals (Cp2MH2
M = Hf, Zr);22 and 3) lanthanide based catalyst such as lanthanide amides (Ln[NSiMe2)3], Ln = La, Sm, Y),24

organolanthanoid halides (EtLnX, Ln = Pr, Nd, Sm, X = I)16 and SmI2.17 A modification of the Tishchenko reaction is 
the aldol-Tishchenko reaction where the aldehyde first undergoes an aldol reaction followed by the Tishchenko
reaction to form monoesters of 1,3-diols.11,12 In the homo aldol-Tishchenko reaction, the same aldehyde molecules 
react.29 In the hetero aldol-Tishchenko reaction, a ketone or aldehyde reacts with two equivalents of a different 
aldehyde over the catalyst.23,25 The most widely used modification of the Tishchenko reaction is the Evans-
Tishchenko reaction.20 In this transformation, a chiral β-hydroxy ketone reacts with an aldehyde in the presence of 
catalytic SmI2 to provide the anti 1,3-diol monoester product with excellent diastereoselectivity.  

Mechanism:13,30,31,22,11

The mechanism of the Tishchenko reaction was extensively studied and there were three different mechanisms 
proposed. The most commonly accepted mechanism is depicted below.13 According to this proposal, first the 
aluminum alkoxide coordinates to the aldehyde. This is followed by the attack of a second molecule of aldehyde. 
Subsequent hydride shift leads to the regeneration of the catalyst and formation of the product. 
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TISHCHENKO REACTION 
Synthetic Applications:

Sarains A-C are a family of alkaloids isolated from marine sponges. J.K. Cha and co-workers accomplished the 
synthesis of the western macrocyclic ring of sarain A.32 To establish the C3 quaternary stereocenter, they treated the 
aldehyde substrate with formaldehyde in the presence of sodium carbonate. The aldehyde substrate underwent an 
aldol reaction followed by a Tishchenko reaction to provide the formate ester of the 1,3-diol product. This ester was 
hydrolyzed in situ under the reaction conditions and the 1,3-diol was isolated. 

S.L. Schreiber and co-workers accomplished the total synthesis of (−)-rapamycin.33 In their approach, they utilized an 
Evans-Tishchenko reaction of C22-C42 fragment and Boc pipecolinal. The reaction provided the product with 
excellent yield and as a >20:1 mixture of the anti and syn diastereomers. 

Rhizoxin D, a natural product possessing potent antitumor and antifungal activity, was synthesized by J.W. Leahy 
and co-workers.34 To establish the C17 stereocenter, they utilized the Evans-Tishchenko reaction. To this end, the 3-
hydroxyketone substrate was reacted with p-nitrobenzaldehyde in the presence of catalytic SmI2. The reaction 
yielded the monoester of the anti 1,3-diol as a single product. 
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TSUJI-TROST REACTION / ALLYLATION
(References are on page 695)

Importance:

[Seminal Publications1-4; Reviews5-24; Modifications & Improvements25-30; Theoretical Studies31-37]

In 1965, J. Tsuji demonstrated that π-allylpalladium chloride could be substituted with certain nucleophiles such as 
enamines and the anions derived from diethyl malonate and ethyl acetoacetate.1 Soon after this initial report, the 
catalytic version of this transformation was developed.2 In 1973, B.M. Trost reported that alkyl-substituted π-
allylpalladium complexes could be alkylated with soft carbon nucleophiles with complete regio- and stereoselectivity. 
However, hard nucleophiles (e.g., alkylithiums, alkylmagnesium halides) failed to react.4 The Pd-catalyzed allylation 
of carbon nucleophiles with allylic compounds via π-allylpalladium complexes is called the Tsuji-Trost reaction. The 
general features of this transformation are: 1) a wide range of leaving groups (X) can be utilized to form π-
allylpalladium complexes (e.g., halides, acetates, ethers, sulfones, carbonates, carbamates, epoxides, and 
phosphates); 2) there is a marked difference in the reactivity of the various leaving groups with the following trend: Cl 
> OCO2R > OAc >> OH; 3) in the case of most substrates, the use of a stoichiometric amount of base is necessary to 
generate the soft nucleophiles. However, allylic carbonates undergo decarboxylation, and in the process a sufficiently 
basic alkoxide is formed so no extra base is needed; 4) the range of possible soft carbon nucleophiles is also wide: 
active methylene compounds with two electron-withdrawing groups (R3 and R4), enamines and enolates; 5) the 
catalytically active Pd(0) species is introduced in either the form of Pd(0) or by the in situ reduction of Pd(II) complexes; 
6) the addition of the nucleophiles to the unsymmetrical π-allylpalladium complexes is regioselective and favors the 
least substituted allyl terminus regardless of the initial position of the leaving group; 7) occasionally the 
regioselectivity can be influenced by the nature of the ligand and the nucleophile; 8) bis allylic substrates having two 
different leaving groups can be substituted with high regioselectivity; and 9) optically active substrates are substituted 
by soft nucleophiles with an overall retention of configuration (double inversion), while hard nucleophiles give rise to 
products with an overall inversion of configuration (π-allylpalladium complexes are transmetallated). Nitrogen-, 
oxygen-, and sulfur-based soft nucleophiles can also be used in Tsuji-Trost allylation reactions. 

Mechanism: 38,5,39,40
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TSUJI-TROST REACTION / ALLYLATION 

Synthetic Applications:

The scalable total synthesis of the cytotoxic natural product (+)-FR182877 was accomplished in the laboratory of E.J. 
Sorensen.41 The key steps of the synthetis were an intramolecular Tsuji-Trost allylation to prepare the 19-membered 
macrocyclic pentaene followed by a double transannular Diels-Alder cycloaddition to obtain the desired pentacyclic 
structure. The allylic carbonate was exposed to 10 mol% of the Pd-catalyst under high dilution conditions in THF. The 
new bond between C1 and C19 was formed with complete diastereoselectivity and in good yield, although the 
configuration at C19 was not determined. 

The water soluble vitamin (+)-biotin was synthesized by M. Seki and co-workers from L-cysteine in only 11 steps 
using inexpensive reagents and mild reaction conditions.42 The key ring forming step was an intramolecular allylic 
amination (Tsuji-Trost reaction using a nitrogen nucleophile) of a cis allylic carbonate. As expected with a soft 
nucleophile, the allylation took place with an overall retention of configuration. 

The first total synthesis of cristatic acid, a compound of considerable cytotoxic activity, was reported by A. Fürstner et 
al.43 The disubstituted furan moiety was constructed by the Tsuji-Trost allylation of a vinyl epoxide intermediate by 
bis(phenylsulfonyl)methane. The resulting 1,4-diol was obtained in an almost quantitative yield. 

The Tsuji-Trost reaction using an oxygen-based soft nucleophile was applied to the synthesis of cis-2,5-disubstituted-
3-methylenetetrahydrofurans in the laboratory of D.R. Williams.44 This method was the basis for the preparation of the 
C7-C22 core of amphidinolide K. The addition of Me3SnCl served two purposes: it accelerated the reaction and 
insured that the oxygen was strongly nucleophilic during the ring-closure, and it suppressed an undesired acyl 
migration. 
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TSUJI-WILKINSON DECARBONYLATION REACTION
(References are on page 696)

Importance:

 [Seminal Publications1-4; Reviews5-11; Modifications & Improvements12-18]

In 1965, J. Tsuji and K. Ono reported that aldehydes reacted with a stoichiometric amount of chloro-
tris(triphenylphosphine)rhodium (Wilkinson's catalyst) to form chloro-carbonylbis(triphenylphosphine)rhodium and the 
corresponding C-H compound.1 Numerous aliphatic, aromatic, and α,β-unsaturated aldehydes were decarbonylated 
in good yield at or above room temperature. A few years later, the method was extended to the decarbonylation of 
acyl halides that afforded the corresponding halides.3 The decarbonylation of aldehydes and acyl halides using 
Wilkinson's catalyst is known as the Tsuji-Wilkinson decarbonylation reaction. The general features of this 
transformation are:7,10 1) several transition metal complexes (e.g., Pd-complexes)17 are capable of decarbonylating 
aldehydes and acyl halides, but the most efficient complex was found to be Wilkinson's catalyst; 2) the catalyst is 
employed in stoichiometric amounts, but the resulting carbonyl complex can be isolated and the catalyst recovered; 
3) if the reaction temperature is raised above 200 °C, the reaction becomes catalytic because carbon monoxide is 
released from the coordination sphere of the rhodium, and the catalyst is regenerated; 4) the substrate can be an 
aldehyde, acyl halide, acyl cyanide,16 or 1,2-diketone;13 5) for aliphatic substrates the order of reactivity is 
primary>secondary>tertiary; 6) in most cases the reaction takes place under mild conditions and at relatively low 
temperature (room temperature or at reflux temperature of the applied solvent); 7) the decarbonylation is 
stereospecific: the configuration of the stereocenter to which the formyl group is attached to is retained;19 8) the 
decarbonylation of α,β-unsaturated substrates proceeds without interference from the double bond; and 9) if the acyl 
halide contains β-hydrogen atoms the final product is an alkene rather than an alkane due to facile β-elimination. 

Mechanism: 20-27,10
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TSUJI-WILKINSON DECARBONYLATION REACTION 

Synthetic Applications:

In the laboratory of F.E. Ziegler, the synthesis of the core nucleus of FR-900482 was accomplished.28 In the final 
stages of the synthetic effort, the removal of the formyl group from the C7 quaternary center was necessary. The 
authors chose the Tsuji-Wilkinson decarbonylation protocol to effect the transformation. The 1,3-diol functionality was 
protected as the acetonide prior to the decarbonylation. Usually the rate of decarbonylation is slowest for aldehydes 
that have the formyl group attached to a quaternary carbon, so it was necessary to use more than two equivalents of 
the catalyst to effect the decarbonylation at the reflux temperature of xylene. 

The research team of D.F. Covey developed a synthetic route to convert 5β-methyl-3-ketosteroids into 7(S)-methyl 
substituted analogues of neuroactive benz[e]indenes.29 The synthesis began with 19-nortestosterone, in which the 
α,β-unsaturated cyclic ketone moiety was degraded to afford a tricyclic aldehyde. This aldehyde was unstable and 
could not be stored. For this reason it was immediately subjected to the Tsuji-Wilkinson decarbonylation to afford the 
decarbonylated product in high yield.  

The total synthesis of (–)-gomisin J, a biologically active dibenzocyclooctane lignan, was completed by M. Tanaka 
and co-workers.30 At the end of the synthesis, the removal of two aromatic formyl groups was needed. The exposure 
of the dialdehyde substrate to a little more than one equivalent of Wilkinson's catalyst and heating at reflux for two 
days afforded the deformylated product in excellent yield. The removal of the benzyl groups under catalytic 
hydrogenation conditions provided the natural product. Interestingly, the authors found that the decarbonylation could 
also be achieved via a retro-Friedel-Crafts reaction, which is a successful strategy only with electron-rich aromatic 
compounds. 

The isodaucane sesquiterpene (+)-aphanamol I was synthesized in the laboratory of B. Wickberg using the DeMayo
cycloaddition as the key step.31 The required starting material 3(S)-isopropyl-1-methylcyclopentene was prepared by 
the Tsuji-Wilkinson decarbonylation of the corresponding α,β-unsaturated aldehyde. 
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UGI MULTICOMPONENT REACTION 
(References are on page 696)

Importance:

[Seminal Publications1-3; Reviews4-35; Modifications & Improvements36-42,28,29,33,35]

In 1959, I. Ugi reported that isocyanides undergo a four-component reaction (4-CR) in the presence of an amine, 
aldehyde or ketone and a nucleophile to provide a single condensation product.1-3 The most commonly used 
nucleophiles are carboxylic acids, but hydrazoic acid, cyanates, thiocyanates, carbonic acid monoesters, salts of 
secondary amines, water, hydrogen sulfide, and hydrogen selenide can also be used.1-3 Today, this transformation is 
referred to as the Ugi four-component reaction (U-4CR).  The general features of the reaction are:16 1) it is very easy 
to carry out, usually, the isocyanide is added to a stirring and well cooled solution of the other three components; 2) in 
case of less reactive aldehydes and ketones, it is advisable to precondense the carbonyl compounds and the amine 
to form the imine; 3) as the reaction is very exothermic, adequate cooling is necessary; 4) methanol is generally a 
suitable solvent, although many other solvents can be used; 5) the reaction typically is carried out between -80 °C to 
80 °C and it may take from a few minutes to a week to go to completion; 6) the amine component can be any 
compound with a sufficiently nucleophilic NH group such as ammonia, primary and secondary amines, hydrazine and 
derivatives,36-38,40 diaziridines42 as well as hydroxylamine;39 7) diarylamines are usually not nucleophilic enough to 
undergo the reaction; 8) with the exception of diarylketones, almost all aldehydes and ketones are suitable for the U-
4CR; 9) a wide range of C-isocyanides undergo the transformation; and 10) when nonpolar solvents are used, or the 
reacting components are bulky, the Passerini reaction may occur as a side reaction leading to the formation of α-
acyloxycarboxamides.12 The Ugi reaction is a powerful synthetic transformation, where the four reaction partners are 
combined in one pot under mild conditions. One of the earliest and most important application of the U-4CR is 
peptide coupling and α-amino acid synthesis;4,7-14,17-19,23 Several modifications of the original transformation leading 
to the formation of heterocyclic compounds were developed.28,29,33,35 The Ugi reaction also found a widespread 
application in combinatorial chemistry, where the synthetic power of the reaction coupled with modern techniques 
allows the quick assembly of a large number of molecules from simple starting materials.20,27,28,31-33
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UGI MULTICOMPONENT REACTION

Synthetic Applications:

The potential application of the Ugi four-component reaction for amino acid and polypeptide natural product synthesis 
was recognized and utilized early on by M.M. Joullié.46,47 A representative example is the total synthesis of (+)-
furanomycin, a naturally occurring antibiotic. As the exact stereochemistry of the compound was not confirmed, total 
synthesis of the natural product and its stereoisomers was used to elucidate the stereochemistry. 

Ecteinascidin 743 is an extremely potent antitumor agent isolated from a marine tunicate. The total synthesis of this 
natural product was realized in the laboratory of T. Fukuyama.48 To achieve the synthesis of the key dipeptide 
fragment, they utilized the Ugi four-component reaction. The transformation was carried out under mild conditions 
providing the product with excellent yield.  

Ketopiperazines are biologically active molecules, they are antagonists of the platelet glycoprotein IIb-IIIa, and they 
exhibit hypocolesteremic activity.49,50 The solution phase synthesis of ketopiperazine libraries was achieved by C. 
Hulme and co-workers using a Ugi reaction/Boc-deprotection/cyclization strategy. The four-component coupling was 
performed in methanol at room temperature. The deprotection and conversion of the enamide into the corresponding 
methyl ester was effected by acetyl chloride in methanol. Subsequent cyclization in the presence of diethylamine in 
dichloromethane provided the products with a 30-97% yield for the overall process. A representative ketopiperazine 
product is shown below. 
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ULLMANN BIARYL ETHER AND BIARYL AMINE SYNTHESIS / CONDENSATION
(References are on page 697)

Importance:

 [Seminal Publications1-4; Reviews5-11; Modifications & Improvements12-46]

In 1904, F. Ullmann observed that the reaction of aryl halides with phenols to give biaryl ethers was significantly 
improved in the presence of copper powder.2 The copper mediated synthesis of biaryl ethers is known as the 
Ullmann condensation (Ullmann biaryl ether synthesis). In 1906, I. Goldberg disclosed the copper-mediated formation 
of an arylamine by reacting an aryl halide with an amide in the presence of K2CO3/CuI (Goldberg reaction/Goldberg
modified Ullmann condensation). The general features of the Ullmann condensation are: 1) aryl iodides, bromides, 
and chlorides are all good substrates with the following reactivity trend: I > Br > Cl >> F (the opposite trend is 
observed in uncatalyzed SNAr reactions); 2) aryl fluorides usually do not react under the reaction conditions; 3) the 
introduction of several aryloxy groups is possible in a stepwise manner; 4) the aromatic halide can contain many 
different substituents and even reactive functional groups (e.g., OH, NH2, CHO) need not be protected unlike in the 
Ullmann biaryl coupling; 5) electron-withdrawing substituents (e.g., NO2, CO2R, COO-) in the ortho and para positions 
have a marked activating effect and the yields for these substrates are excellent; 6) electron-donating substituents 
anywhere on the aromatic ring do not significantly decrease the reactivity of the aryl halide compared to the 
unsubstituted aryl halide; 7) the required temperature ranges from 100 to 300 °C in the presence of copper metal or a 
copper-derived catalyst and with or without the use of solvents; 8) the catalytic activity of the copper depends on the 
method of preparation; 9) a wide variety of solvents work well and most of them contain a heteroatom with a lone pair 
of electrons; 10) the solvent helps to solubilize the catalytically active copper species by way of complexation; 11) the 
phenol component can be introduced in the form of free phenols or phenolate salts; 12) when free phenols are used, 
a base (K2CO3) is added to the reaction mixture, but other salts proved to be ineffective; 13) if Cu2O or CuO is used 
instead of copper, no base is required, since these substances serve as bases; and 14) since phenols and 
phenolates are sensitive to oxidation, the use of an inert atmosphere is often required. There are few typical side 
reactions of the aryl halide component: 1) reductive dehalogenation especially when the phenol is relatively 
unreactive; 2) Ullmann biaryl homocoupling; and 3) exchange of halogens with the Cu(I)-salt. Several modifications 
have been introduced to improve the somewhat harsh original reaction conditions (high temperatures, often low 
yields and the use of stoichiometric amounts of copper), which primarily utilize coupling partners other than aryl 
halides: 1) arylboronic acids in the presence of Et3N, molecular sieves and Cu(OAc)2 (Chan-Evans-Lam 
modification);23-25 2) potassium aryltrifluoroborates (Batey modification);42,43 3) aryl iodonium salts (Beringer-Kang 
modification);12,29 4) aryl lead compounds (Barton plumbane modification);17 and 5) aryl bismuth compounds (Barton 
modification).15,16,18

Mechanism: 47,16,48,24,49,10

The exact nature (oxidation state) of the Cu-intermediate is not known, but radical mechanisms have been ruled out 
based on radical scavenger experiments. Two possible (speculated) pathways are shown. 
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ULLMANN BIARYL ETHER AND BIARYL AMINE SYNTHESIS / CONDENSATION

Synthetic Applications:

The intramolecular Ullmann condensation was used by D.L. Boger and co-workers to form the 15-membered 
macrocyclic ring of the cytotoxic natural product, combretastatin D-2.50 This compound possesses unusual meta- and 
paracyclophane subunits, which are also found in a range of antitumor antibiotics. The first approach where the final 
step was a macrolactonization was unsuccessful, so the researchers chose to form the biaryl ether moiety as the key 
macrocyclization step. Methylcopper was found to mediate the cyclization and gave moderate yield of the 
corresponding biaryl ether. Finally boron triiodide mediated demethylation afforded the natural product. 

The highly oxygenated antifungal/anticancer natural product (±)-diepoxin σ was prepared in the laboratory of P. 
Wipf.51 The coupling of the two substituted naphthalene rings was achieved via the Ullmann condensation of a 
phenolic compound with 1-iodo-8-methoxynaphthalene. The aryl iodide coupling partner was used in excess and the 
condensation was conducted in refluxing pyridine in the presence of a full equivalent of copper(I)-oxide. 

In the laboratory of K.C. Nicolaou, a novel mild method for the preparation of biaryl ethers was developed.22 The di-
ortho-halogenated aromatic triazenes underwent efficient coupling with phenols in the presence of CuBr. This mild 
modified Ullmann condensation was utilized in the synthesis of the DOE and COD model ring systems of 
vancomycin.

The Ullmann biaryl amine condensation was used in the synthesis of SB-214857, a GPIIb/IIIa receptor antagonist.52

D. Ma and co-workers coupled aryl halides with β-amino acids and esters under relatively mild conditions using CuI 
as a true catalyst. 
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ULLMANN REACTION / COUPLING / BIARYL SYNTHESIS
(References are on page 699)

Importance:

 [Seminal Publications1,2; Reviews3-9; Modifications & Improvements10-21]

In 1901, F. Ullmann reported the reaction of two equivalents of an aryl halide with one equivalent of finely divided 
copper at high temperature (>200 °C) to afford a symmetrical biaryl and copper halide.1 This condensation of two aryl 
halides in the presence of copper to give symmetrical or unsymmetrical biaryls is now referred to as the Ullmann 
reaction (Ullmann biaryl synthesis or Ullmann coupling). Since its discovery, the Ullmann reaction has become a 
general method for the synthesis of numerous symmetrical and unsymmetrical biaryls. The general features of this 
reaction are: 1) halogenated benzene rings as well as halogenated heteroaromatic compounds are substrates for the 
coupling; 2) the order of reactivity is I > Br >> Cl, but aromatic fluorides are totally inert; 3) the reaction can take place 
both inter- and intramolecularly and has been used to form macrocycles (4- to 24-membered rings);6 4) electron-
withdrawing groups (e.g., NO2, CO2Me, CHO) ortho to the halogen substituent increase the reactivity of the aryl 
halide; 5) generally substituents in the ortho position, which have a lone pair increase the reactivity regardless 
whether they are EWG or EDG, but these substituents have no noticeable activating effect in the meta or para
positions;22 6) substrates that are very electron rich (e.g., multiple alkyl or alkoxy groups) tend to give lower yield of 
the biaryl; 7) certain unprotected functional groups (e.g., OH, NH2, CO2H, SO2NH2) open alternative reaction 
pathways therefore inhibit the coupling;23 8) bulky groups located ortho to the halogen tend to retard or inhibit the 
coupling reaction due to steric hindrance; 9) when unsymmetrical biaryls are prepared, the highest yield is obtained 
when one of the aryl halides is activated (more electron rich), while the other is less reactive; 10) in order to achieve 
good results, activated copper (preferably prepared prior to use) must be used;17 11) highly active copper metal can 
be prepared by reducing CuI with lithium naphthalenide or by reducing CuSO4 with Zn powder; 12) usually 
temperatures over 100 °C are necessary to initiate the coupling but the use of highly active Cu-powder allows lower 
temperatures; 13) the most common solvent is DMF, but for higher temperatures PhNO2 or p-NO2C6H4CH3 are 
used;10,11 14) sonication often improves the efficiency of the coupling;18,19 15) Cu(I)-salts (e.g., Cu2O, Cu2S) also 
mediate the coupling although they are less active than the activated copper metal;12 and 16) Cu(I) thiophene 2-
carboxylate (CuTC) was found to be an efficient mediator under mild conditions (usually room temperature) in NMP.21

There are a few modifications: 1) the reaction conditions of the Ullmann coupling become significantly milder when 
Ni(0) complexes are used in place of copper metal;13,9 and 2) for the preparation of highly substituted biaryls the use of 
preformed aryl copper species has been successful (Ziegler modification).16,20

Mechanism: 24-26,14,27-32,9

The exact mechanistic pathway of the Ullmann coupling is not known. There are two main pathways possible: 1) 
formation of aryl radicals or 2) the formation of aryl copper [ArCu(I), ArCu(II) and ArCu(III)] intermediates. Currently the 
most widely accepted mechanism assumes the formation of aryl copper intermediates, since many of these species 
can be isolated and they can react with aryl halides to give biaryls. 
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ULLMANN REACTION / COUPLING / BIARYL SYNTHESIS

Synthetic Applications:

The Ziegler-modified Ullmann reaction was used for the total synthesis of pyrrolophenanthridinium alkaloid tortuosine 
by L.A. Flippin and co-workers.33 First, N-Boc-5-methoxyindoline was lithiated at C7 with s-BuLi in the presence of 
TMEDA, and then it was transmetallated to the corresponding organocopper species that smoothly underwent the 
Ullmann reaction with a 3-iodoaryl imine. The resulting biaryl product was treated with anhydrous HCl in chloroform, 
which promoted the cyclization followed by dehydration to give the natural product. 

In the laboratory of A.I. Meyers, the oxazoline-mediated asymmetric Ullmann coupling was utilized to establish the 
chirality about the biaryl axis of mastigophorenes A and B.34 The key coupling step was conducted in DMF in two 
stages: first the reaction mixture (0.66M) containing freshly prepared activated Cu-powder was heated at 95 °C for 
8h, and then it was diluted with DMF (0.11M) and refluxed for 3 days. Interestingly, during these studies it was 
revealed that smaller chiral auxiliaries lead to higher atroposelection, a fact which was not previously recognized. 

The first total synthesis of taspine was accomplished by T.R. Kelly and co-workers.35 The central biaryl link was 
established by a classical Ullmann coupling using activated copper bronze. It is noteworthy that no other cross-
coupling strategy was successful to make the C-C bond between the aromatic rings due to the severe steric 
hindrance. 

L.S. Liebeskind et al. demonstrated that CuTC could be efficiently used to mediate the Ullmann reaction at room 
temperature under very mild conditions tolerating a wide variety of functional groups.21 One of the examples features 
an intramolecular process while the other demonstrates the coupling of halogenated heteroaromatics. 
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VILSMEIER-HAACK FORMYLATION
(References are on page 699)

Importance:

 [Seminal Publications1,2; Reviews3-16; Modifications & Improvements17-30; Theoretical Studies31-33]

In 1925, A. Vilsmeier and co-workers reported that upon treatment with phosphoryl chloride (POCl3), N-
methylacetanilide gave rise to a mixture of products among which 4-chloro-1,2-dimethylquinolinium chloride was one 
of the major products.1 Further investigation revealed that the reaction between N-methylformanilide and POCl3 gave 
rise to a chloromethyliminium salt (Vilsmeier reagent), which readily reacts with electron-rich aromatic compounds to 
yield substituted benzaldehydes.2 The introduction of a formyl group into electron-rich aromatic compounds using a 
Vilsmeier reagent is known as the Vilsmeier-Haack formylation (Vilsmeier reaction). The general features of this 
transformation are:8,11 1) the Vilsmeier reagent is prepared from any N,N-disubstituted formamide by reacting it with 
an acid chloride (e.g., POCl3, SOCl2, oxalyl chloride); 2) most often the combination of DMF and POCl3 is used and 
the resulting Vilsmeier reagent is usually isolated before use; 3) mostly electron-rich aromatic or heteroaromatic 
compounds8 as well as electron-rich alkenes and 1,3-dienes11 are substrates for the transformation, since the 
Vilsmeier reagent is a weak electrophile; 4) the relative reactivity of five-membered heterocycles is pyrrole > furan > 
thiophene; 5) the solvent is usually a halogenated hydrocarbon, DMF or POCl3 and the nature of the solvent has a 
profound effect on the electrophilicity of the reagent, so it should be carefully chosen; 6) the required reaction 
temperature varies widely depending on the reactivity of the substrate and it ranges from below 0 °C up to 80 °C; 7) 
the initial product is an iminium salt, which can be hydrolyzed with water to the corresponding aldehyde, treated with 
H2S to afford thioaldehydes, reacted with hydroxylamine to afford nitriles, or reduced to give amines; 8) the 
transformation is regioselective favoring the less sterically hindered position (this means the para position on a 
substituted benzene ring); but electronic effects can also influence the product distribution; and 9) vinylogous 
chloromethyliminium salts undergo similar reaction to afford the corresponding α,β-unsaturated carbonyl compounds 
upon hydrolysis. 

Mechanism: 34-41,8,42,11
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VILSMEIER-HAACK FORMYLATION
Synthetic Applications:

The total synthesis of the calophylium coumarin (–)-calanolide A was accomplished by D.C. Baker and co-workers.43

This compound attracted considerable attention because it is a potent inhibitor of HIV-1 reverse transcriptase. In 
order to introduce a formyl group at C8, a regioselective Vilsmeier reaction was employed on a coumarin lactone 
substrate.

In the laboratory of F.E. Ziegler, the cyclization of a chiral aziridinyl radical into an indole nucleus was utilized to 
prepare the core nucleus of the potent antitumor agent FR-900482.44 In the early stages of the synthetic effort, the 
Vilsmeier-Haack formylation was chosen to install an aldehyde functionality at the C3 position of a substituted indole 
substrate. The initial iminium salt was hydrolyzed under very mildly basic conditions to minimize the hydrolysis of the 
methyl ester moiety. Eventually the formyl group was removed from the molecule via decarbonylation using 
Wilkinson's catalyst. 

Since the Vilsmeier-Haack formylation is feasible on electron-rich alkenes such as enol ethers, it was a method of 
choice to prepare an α,β-unsaturated aldehyde during the total synthesis of (±)-illudin C by R.L. Funk et al.45 The TES 
enol ether was treated with several reagent combinations (e.g., PBr3/DMF/DCM), but unfortunately only regioisomeric 
product mixtures were obtained. However, the use of POBr3/DMF/DCM allowed the clean preparation of the desired 
aldehyde regioisomer in good yield.  

The marine sponge pigment homofascaplysin C was synthesized by the research team of G.W. Gribble.46 The natural 
product had a novel 12H-pyrido[1,2-a:3,4-b']diindole ring system and a formyl group at the C13 position. The 
Vilsmeier reaction allowed the introduction of this substituent in excellent yield. 

The total synthesis of (–)-(R)-MEM-protected arthrographol was accomplished by G.L.D. Krupadanam et al.47 The 
authors used sequential Vilsmeier reaction/Dakin oxidation to prepare a 1,2,4-trihydroxybenzene derivative. 
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VINYLCYCLOPROPANE-CYCLOPENTENE REARRANGEMENT
(References are on page 700)

Importance:

 [Seminal Publications1-3; Reviews4-10; Modifications & Improvements9,11,12; Theoretical Studies13-30]

In 1959, N.P. Neureiter investigated the reactivity of 1,1-dichloro-2-vinylcyclopropane, which he prepared by the 
addition of dichlorocarbene to 1,3-butadiene.1 Surprisingly, this compound was very stable and was recovered intact 
after being exposed to a variety of oxidizing and reducing agents. However, under flash vacuum thermolysis 
conditions it cleanly underwent a rearrangement to afford a mixture of five-membered chloroolefins. A year later, C.G. 
Overberger and A.E. Borchert reported a novel thermal rearrangement during the acetate pyrolysis of 2-cyclopropyl 
ethyl acetate, which yielded cyclopentene as the major product. The transformation of substituted vinylcyclopropanes 
to the corresponding substituted cyclopentenes is known as the vinylcyclopropane-cyclopentene rearrangement. The 
general features of the reaction are:4-10 1) thermal-, photochemical-, transition metal-mediated, as well as Lewis acid-
mediated conditions can be applied to affect the transformation; 2) the photochemical process works well only for a 
limited number and type of substrates and is mainly of mechanistic interest; 3) the rearrangement of 
vinylcyclopropanes under thermal conditions is the most important transformation and it may take two major 
pathways: conversion to cyclopentenes or formation of open-chain alkenes or dienes; 4) the pathway taken depends 
on many factors such as the nature of substituents on the cyclopropane ring as well as the orientation of the π-system 
of the vinyl group relative to the cyclopropane ring (e.g., cis-alkylvinylcyclopropanes tend to undergo [1,5]-sigmatropic 
H-shift (retro-ene reaction) rather than forming cyclopentenes); 5) the rearrangement usually requires high 
temperatures (often this means running the reaction in a flash vacuum pyrolysis apparatus), but the degree of 
substitution and the presence of extended  conjugation and heteroatoms lower the activation energy and also the 
required temperature; 6) heteroatom substitution (e.g., O-alkyl, NH2, S-alkyl, etc.) on the cyclopropane moiety has a 
dramatic activation energy-lowering effect, whereas substitution on the vinylic moiety does not have a significant 
influence; 7) the rearrangement can be highly regio- and stereoselective provided that the cyclopropane is opened 
regioselectively; 8) predictions can be made regarding which cyclopropane bond is cleaved preferentially and the 
prediction is based on the donor/acceptor properties of the various substituents on the cyclopropane ring; and 9) the 
stereochemical outcome of the rearrangement is determined by the energetics of the substituted cyclopentene 
product. 

Mechanism: 31-61
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VINYLCYCLOPROPANE-CYCLOPENTENE REARRANGEMENT

Synthetic Applications:

In the laboratory of H.R. Sonawane, both enantiomers of Δ9(12)-capnellene were prepared using the photoinduced 
vinylcyclopropane-cyclopentene rearrangement.62 The conversion of (+)-Δ3-carene to the corresponding enantiopure 
allylic alcohol was achieved by a two-step sequence of a Prilezhaev reaction and base-induced epoxide ring-opening.
The photochemical rearrangement of the cis-alkyl vinylcyclopropane intermediate proceeded without the occurrence 
of the competing retro-ene reaction and gave rise to a diastereomeric mixture of cyclopentene-annulated products. 

The enantioselective total synthesis of (+)-antheridic acid was accomplished by E.J. Corey and co-workers using the 
Lewis-acid-mediated vinylcyclopropane-cyclopentene rearrangement as the key step.63 This key transformation was 
not possible under thermal conditions; however, the use of excess diethylaluminum chloride in DCM gave rise to the 
rearranged product in excellent yield. 

T. Hudlicky et al. achieved the short enantioselective total synthesis of (-)-retigeranic acid.64 The C ring of the natural 
product was assembled via the thermal vinylcyclopropane-cyclopentene rearrangement for which the precursor was 
prepared by the vinylcyclopropanation of a bicyclic enone with a dienolate. The vinylcyclopropane was evaporated at 
585 °C in high vacuum through a Vycor tube conditioned with PbCO3 (flash vacuum pyrolysis) to afford the annulated 
product in good yield. 

The iridoid sesquiterpene (–)-specionin, an antifeedant to the spruce budworm, was synthesized by T. Hudlicky et al. 
using the low-temperature vinylcyclopropane-cyclopentene rearrangement as the key step.65 The substituted 
cyclopentenone precursor was first exposed to the lithium dienolate derived from ethyl 4-(dimethyl-tert-butylsilyloxy)-
2-bromocrotonate at -110 °C to afford silyloxyvinylcyclopropanes as a mixture of exo and endo isomers (with respect 
to the vinyl group). The mixture was not separated but immediately subjected to TMSI/HMDS, and the corresponding 
tricyclic ketones were obtained in good yield. Similar results were obtained when TBAF in THF was used instead of 
TMSI. 
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VON PECHMANN REACTION
(References are on page 702)

Importance:

 [Seminal Publications1,2; Reviews3,4; Modifications & Improvements5-26]

In 1883, H. von Pechmann and C. Duisberg reported that when ethyl acetoacetate was mixed with resorcinol in the 
presence of concentrated sulfuric acid, 4-methyl-7-hydroxycoumarin was formed.1 He obtained a similar result upon 
reacting resorcinol with malic acid and isolated 7-hydroxycoumarin as the major product.2 The condensation of 
phenols with β-keto esters in the presence of protic or Lewis acids to afford substituted coumarins is known as the 
von Pechmann reaction (also as Pechmann reaction or Pechmann condensation). The general features of this 
transformation are: 1) the best substrates are electron-rich mono-, di-, and trihydric phenols having electron-donating 
substituents; 2) phenols with strongly electron-withdrawing substituents (e.g., NO2 or CO2H) often fail to react; 3) the 
position of the substituents on the phenol also has an influence on the reactivity and therefore on the rate of the 
condensation; 4) ortho substituents tend to inhibit the reaction completely, para substituents usually do not interfere 
much, and substituents in the meta position give the best results; 5) both cyclic and acyclic β-keto esters undergo the 
reaction; 6) malic acid, fumaric, and maleic acids also react, but the scope of phenolic substrates is somewhat limited 
with these reactants; 7) β-keto esters yield coumarins that have substituents at the C4 position while malic acid 
affords coumarins which are unsubstituted at C4; 8) the nature of the protic or Lewis acid catalyst has a profound 
effect on the outcome of the reaction: if the reaction does not take place in the presence of one particular catalyst, it 
may proceed in high yield in the presence of another; 9) during the 1900s the most popular catalyst was concentrated 
sulfuric acid, but for highly functionalized and sensitive substrates milder condensation conditions have been 
developed; and 10) for highly reactive phenols heating of the reaction mixture is usually not necessary, but for less 
reactive substrates heating is often required. There are some drawbacks of the von Pechmann reaction: 1) in the 
overwhelming majority of the cases the catalyst has to be used in excess so the process is not catalytic; and 2) 
extended reaction times at high temperatures can lead to side reactions such as to the formation of chromones in 
addition to coumarins. Numerous modifications have been developed and several of them allow the synthesis of 
coumarins under mild conditions and even using truly catalytic amounts of condensing agent.27

Mechanism: 28,29
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VON PECHMANN REACTION

Synthetic Applications:

In the laboratory of J. Moron, the synthesis of two pyridoangelicins, the angular isomers of pyridopsoralens, was 
accomplished. The authors demonstrated in previous publications that pyridopsoralens exhibit high affinity toward 
DNA, so it was a logical next step to prepare the angular isomers and test their affinities. The skeleton of the desired 
compound was assembled by the von Pechmann reaction. The reaction between 2,3-dihydro-4-hydroxybenzofuran 
and 1-benzyl-3-ethoxycarbonylpiperidin-4-one was conducted in glacial acetic acid at room temperature in the 
presence of sulfuric acid and phosphorous oxychloride (POCl3). When only hydrochloric acid was used as the 
condensing agent, the yield was very poor. 

One of the mildest conditions for the von Pechman reaction was developed by D.S. Bose and co-workers who used 
indium(III) chloride as the catalyst.27 A large number of 4-substituted coumarins were prepared in high yield by this 
method. Under the reaction conditions most functional groups are tolerated. In the typical procedure the substrates 
are heated in the presence of 10 mol% of InCl3 and the reaction mixture was poured onto crushed ice which caused 
the product to precipitate. 

Photochemotherapy is an efficient way to treat hyperproliferative diseases. Especially the so-called PUVA therapy 
(psoralen + UVA light) is very common in which the psoralen is irradiated with UVA light to give rise to a covalent 
adduct with the pyrimidine bases of DNA by means of a photoaddition reaction. There are several undesired side 
effects for the patients as a result of this therapy, so the synthesis and photobiological evaluation of novel 
benzosporalen derivatives was undertaken by the research team of L.D. Via.30 The key step in their synthetic 
sequence was the von Pechman reaction of 2-methoxyresorcinol with ethyl 2-oxocyclohexanecarboxylate. 

The short and efficient stereospecific synthesis of the dimer-selective retinoid X receptor modulator was carried out in 
the laboratory of L.G. Hamann.31 The synthetic sequence began with the von Pechmann reaction between 
tetramethyltetrahydronaphthol and ethyl acetoacetate in 75% sulfuric acid solution. The desired coumarin was formed 
regioselectively and isolated in high yield. 

O

OH

+ N
EtO2C

O

Bn
H2SO4/POCl3

(1.05 equiv)

glacial AcOH
r.t., 6d; 30%

O

O

O

N
Bn

steps

O

O

O

N

Pyridoangelicin

OH

NH2

CF3

O

OEt
O

+

InCl3
(10 mol%)

65 °C, 0.5h
85%

H2N

O CF3

O

OH

OH

CH3

O

OEt
O

+

O InCl3
(10 mol%)
65 °C, 2h

55% O CH3

O

OH

O

OH
OMe

HO
+

EtO2C

O
(1.2 equiv)

conc.
H2SO4

0 °C, 10h
93% O

OMe
HO O

steps

O
O

OO

Me

NMe2

Novel benzosporalen derivative

OH
+

O

OEt
O 75% H2SO4

100 °C, 3h
79%

(2.52 equiv)

O O

steps O

CO2H
Dimer-selective retinoid X 

receptor modulator



474

WACKER OXIDATION
(References are on page 702)

Importance:

 [Seminal Publications1-5; Reviews6-24; Modifications & Improvements25-45; Theoretical Studies46-56]

The industrial oxidation of ethylene to ethanal (acetaldehyde) under an atmosphere of oxygen using PdCl2 and CuCl2
as catalysts is known as the Wacker-Smidt process. The first report of the oxidation of ethylene with stoichiometric 
amounts of PdCl2 in an aqueous solution was made by F.C. Phillips in 1894 and later the precipitation of Pd metal 
from a PdCl2 solution was used as a test for the presence of olefins.1 In 1959, J. Smidt et al. (at Wacker Chemie in 
Germany) showed that the Pd(0) metal could be re-oxidized to the active PdCl2 with the use of CuCl2.2,3 This 
discovery first turned the reaction into a commercially feasible process, and it opened the door for applications in 
organic synthesis.4,5,57 The one-pot oxidation of olefins to the corresponding ketones with catalytic amounts of Pd(II)

salts is known as the Wacker oxidation. The general features of this reaction are: 1) the reaction is carried out in an 
aqueous medium in the presence of HCl; 2) terminal alkenes react much faster than internal or 1,1-disubstituted 
alkenes and they are almost exclusively converted to the corresponding methyl ketones; 3) terminal alkenes can be 
viewed as masked ketones for synthetic purposes; 4) under the reaction conditions, internal alkenes are not oxidized 
to any appreciable extent; 5) α,β-unsaturated ketones and esters are oxidized regioselectively to the corresponding 
β-keto compounds using catalytic amounts of Na2PdCl4 and TBHP or H2O2 as co-oxidants; 6) allylic- and homoallylic 
ethers are regioselectively oxidized to give the corresponding β- and γ-alkoxyketones; and 7) when the oxidation is 
carried out in the presence of nucleophiles other than water, the process is called the Wacker-type oxidation, which 
can take place both inter- and intramolecularly. 

Mechanism: 58-75,37,19

Certain steps in the mechanism of the Wacker oxidation are still unclear despite intensive research. One of these 
steps, the attack of the coordinated alkene by the nucleophile (OH- or H2O), could be both intra- or intermolecular as 
the observed rate law is consistent with either possibility. One of the plausible catalytic cycles is presented. 
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WACKER OXIDATION

Synthetic Applications:

The asymmetric total synthesis of the putative structure of the cytotoxic diterpenoid (-)-sclerophytin A was 
accomplished by L.A. Paquette and co-workers.76 At the beginning of the synthesis, a bicyclic intermediate was 
subjected to the Wacker oxidation to oxidize its terminal alkene into the corresponding methyl ketone. The oxidation 
took place in high yield, although the reaction time was long. The spectra obtained for the final product (proposed 
structure) did not match that of the natural product, consequently a structural revision was necessary. 

The antiviral marine natural product, (–)-hennoxazole A, was synthesized in the laboratory of F. Yokokawa.77 The 
highly functionalized tetrahydropyranyl ring moiety was prepared by the sequence of a Mukaiyama aldol reaction,
chelation-controlled 1,3-syn reduction, Wacker oxidation, and an acid catalyzed intramolecular ketalization. The 
terminal olefin functionality was oxidized by the modified Wacker oxidation, which utilized Cu(OAc)2 as a co-oxidant.34

Interestingly, a similar terminal alkene substrate, which had an oxazole moiety, failed to undergo oxidation to the 
corresponding methyl ketone under a variety of conditions. 

The first synthesis of the hexacyclic himandrine skeleton was achieved by L.N. Mander and co-workers.78 The last 
six-membered heterocycle was formed via an intramolecular Wacker-type oxidation in which the terminal alkene side-
chain reacted with the secondary amine functionality. The oxidation was conducted in anhydrous acetonitrile to insure 
that the Pd-alkene complex was substituted exclusively by the internal nucleophile. The resulting six-membered 
enamine was then hydrogenated and the MOM protecting groups removed to give the desired final product. 

Studies in the laboratory of M. Shibasaki toward the total synthesis of garsubellin A led to the stereocontrolled 
synthesis of the 18-epi-tricyclic core of the natural product.79 During the final stages of the synthetic sequence, the 
tetrahydrofuran ring was installed using a Wacker-type process. The reaction conditions insured that the acetonide 
protecting group was first removed and the C18 secondary alcohol moiety served as the internal nucleophile to form 
the tricyclic product.  
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WAGNER-MEERWEIN REARRANGEMENT
(References are on page 704)

Importance:

 [Seminal Publications1-3; Reviews4-18; Modifications & Improvements19-25; Theoretical Studies26-30]

In 1899, G. Wagner and W. Brickner reported the rearrangement of α-pinene to bornyl chloride in the presence of 
hydrogen chloride.1 The transformation baffled chemists at the time, since it contradicted the classical structural 
theory that was based on the postulate of skeletal invariance.31 It was not until 1922, when H. Meerwein and co-
workers revealed the ionic nature of the rearrangement, that an explanation was offered.3 The generation of a 
carbocation followed by the [1,2]-shift of an adjacent carbon-carbon bond to generate a new carbocation is known as 
the Wagner-Meerwein rearrangement. Originally this name referred only to skeletal rearrangements in bicyclic 
systems, but today it is used to describe all [1,2]-shifts of hydrogen, alkyl, and aryl groups. Occasionally the [1,2]-
methyl shift in bridged bicyclic monoterpenoids and related systems is referred to as the Nametkin rearrangement.
The general features of the Wagner-Meerwein rearrangement are: 1) the generation of the initial carbocation can be 
achieved in a variety of ways (e.g., protonation of alkenes, alcohols, epoxides or cyclopropanes, solvolysis of 
secondary and tertiary alkyl halides, or sulfonates in a polar protic solvent (semipinacol rearrangement), deamination 
of amines with nitrous acid (Tiffeneau-Demjanov rearrangement), treatment of an alkyl halide with Lewis acid, etc.; 2) 
the initial carbocation has a tendency to rearrange to a thermodynamically more stable structure, a change that may 
occur in several different ways: e.g., [1,2]-alkyl, -aryl- or hydride shift to afford a more stable carbocation, ring-
expansion of strained small rings such as cyclopropanes and cyclobutanes to give more stable five- or six-membered 
products, collapse by fragmentation, etc.; 3) several consecutive [1,2]-shifts are possible if the substrate contains 
multiple structural elements that allow the formation of gradually more stable structures; 4) the various competing 
rearrangement pathways limit the synthetic utility of the Wagner-Meerwein rearrangement, since one needs to install 
all the structural features that will drive the rearrangement in the desired direction; 5) the final most stable 
carbocation's fate may be the loss of a proton to afford an alkene or capture by a nucleophile present in the reaction 
mixture (solvent or conjugate base of the acid used to promote the rearrangement); and 6) the stereochemistry of the 
migrating group is retained, which is in accordance of the Woodward-Hofmann rules.

Mechanism: 32,13,15-17

The Wagner-Meerwein rearrangement has been the subject of a large number of mechanistic investigations, making 
it probably one of the most thoroughly studied reactions in organic chemistry. Depending on the structure and 
stereochemistry of the substrate, the rearrangement may proceed in a concerted or stepwise fashion. When the 
leaving group and the migrating groups are antiperiplanar to each other, the rearrangement is concerted (especially 
in rigid polycyclic sytems), but in most other cases the formation of a carbocation intermediate is expected. 
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WAGNER-MEERWEIN REARRANGEMENT

Synthetic Applications:

The large-scale synthesis of the potent antitumor agent KW-2189, derived from the antitumor antibiotic duocarmycin 
B2, was accomplished by T. Ogasa and co-workers who utilized the Wagner-Meerwein rearrangement as the key 
step.33 The synthetic strategy avoided the use of protecting groups. The key rearrangement step was investigated in 
detail and the authors found that both protic and Lewis acids were effective. The best results were obtained with 
methanesulfonic acid in dichloroethane. Protonation of the 2° alcohol at C3 resulted in the loss of a water molecule 
and the formation of a secondary carbocation. The adjacent carboxymethyl group at C2 underwent a [1,2]-shift to 
form the more stable tertiary carbocation at C2, which was also stabilized by the lone pair of the nitrogen atom and 
finally the loss of proton afforded the indole nucleus. 

The short enantiospecific synthesis of (1R)-10-hydroxyfenchone from fenchone based on two consecutive Wagner-
Meerwein rearrangements was developed in the laboratory of A.G. Martinez.34 The preparation of this target is of 
great importance, since 10-hydroxyfenchone is a convenient intermediate for C10-O-substituted fenchones. The key 
intermediate in the synthetic sequence is 2-methylenenorbornan-1-ol, obtained from fenchone via a Wagner-
Meerwein rearrangement (steps not shown), which was exposed to mCPBA at room temperature. The initially formed 
epoxide was protonated by mCPBA, generating a tertiary carbocation that underwent a facile [1,2]-alkyl shift to 
produce the more stable oxygen-stabilized carbocation.  

The research team of G. Fráter investigated the acid catalyzed rearrangement of β-monocyclofarnesol for the 
synthesis of tricyclic ketones with sesquiterpene skeleton. The substrate β-monocyclofarnesol, prepared from 
dihydro-β-ionone in two steps, was exposed to concentrated formic acid, which resulted in the formation of a mixture 
of three different formates.

The Wagner-Meerwein rearrangement was one of the key steps in the total synthesis of (+)-quadrone by A.B. Smith 
and co-workers.35 The propellane substrate was treated with 40% sulfuric acid, which resulted in the [1,2]-alkyl shift of 
the initially formed cyclobutylcarbinyl system. 
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WEINREB KETONE SYNTHESIS
(References are on page 705)

Importance:

 [Seminal Publications1; Reviews2-5; Modifications & Improvements6-23]

In 1981, S.M. Weinreb and S. Nahm discovered that the addition of excess Grignard reagent or organolithium 
species to N-methoxy-N-methylamides resulted in the formation of ketones upon acidic work-up. This observation 
was significant because at that time there was no general procedure available for the efficient synthesis of ketones 
from carboxylic acid derivatives and the then existing methods all required carefully controlled reaction conditions, 
and overaddition (to produce tertiary alcohols) was a major side reaction. The synthesis of ketones from N-methoxy-
N-methylamides (Weinreb's amides) with organometallic reagents is known as the Weinreb ketone synthesis. The 
general features of this transformation are: 1) the Weinreb's amides can be easily prepared from activated carboxylic 
acid derivatives (e.g., acid chlorides or anhydrides) and N,O-dimethylhydroxylamine hydrochloride in the presence of 
a base; 2) the conversion of less active carboxylic acid derivatives such as esters and lactones to the corresponding 
Weinreb's amide require the use of several equivalents of trimethylaluminum (Me3Al) or dimethylaluminum chloride 
(Me2AlCl);6,9 3) carboxylic acids can also be converted to Weinreb's amides by the use of standard activating agents 
(DCC, EDCI, CBr4/PPh3, etc.); 4) Weinreb's amides are stable compounds; they do not require special handling, are 
easily purified by flash chromatography or crystallization and can be stored indefinitely; 5) the addition of at least 1.1 
equivalents of Grignard reagent or organolithium species to the solution of Weinreb's amide in an ether solvent at low 
temperatures results in the formation of a strongly chelated metal complex, which prevents the addition of more than 
one equivalent of the reagent; 5) work-up with dilute aqueous acid (HCl) affords the ketone and usually does not 
interfere with other functional groups or protecting groups; 6) virtually any alkyl, alkenyl, alkynyl, aryl, and heteroaryl 
organomagnesium- or organolithium reagent can be used; 7) side reactions such as overaddition of the reagent or 
the epimerization of the stereocenter at the α-position are extremely rare; 8) the treatment of Weinreb's amides with 
excess metal hydride (e.g., LAH, DIBAL-H) results in the formation of aldehydes; and 9) the use of DIBAL-H tends to 
give higher yields than LAH. All the above features render the Weinreb ketone synthesis extraordinarily well-suited for 
use in the synthesis of complex molecules. One important limitation of the procedure occurs when highly basic or 
sterically hindered organometallic reagents are used since these are capable of removing a proton from the O-Me 
group resulting in the formation of N-methylamides. 

Mechanism: 1
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WEINREB KETONE SYNTHESIS

Synthetic Applications:

The first total synthesis of the Stemona alkaloid (–)-tuberostemonine was accomplished by P. Wipf and co-workers.24

The installation of the butyrolactone moiety commenced with the preparation of a Weinreb's amide from a methyl 
ester. The tricyclic methyl ester substrate was exposed to N,O-dimethylhydroxylamine hydrochloride and Me2AlCl
and the tertiary amide was isolated in excellent yield. Next, the bromo ortho ester was treated with LDBB in THF to 
generate the corresponding primary alkyllithium species, which cleanly and efficiently added to the Weinreb's amide 
to afford the desired ketone. 

The preparation of the C1-C21 subunit of the protein phosphatase inhibitor tautomycin was completed by J.A. 
Marshall et al., and it constituted a formal total synthesis of the natural product.25 The spiroketal carbon of the target 
was introduced by the Weinreb ketone synthesis between a lithioalkyne and N-methoxy-N-methylurea (a carbon 
monoxide equivalent). The triple bond of the resulting Weinreb's amide was first reduced under catalytic 
hydrogenation conditions to yield the corresponding saturated amide, which was reacted with another lithium 
acetylide to afford an ynone. 

In the laboratory of E.J. Corey, the first synthesis of nicandrenones (NIC), a structurally complex steroid-derived 
family of natural products, was accomplished.26 The side chain of NIC-1 was constructed from the known six-
membered lactone which was converted to the Weinreb's amide by treating it with excess MeNH(OMe)·HCl and 
trimethyl-aluminum. The resulting primary alcohol was protected as the TBS ether. The ethynylation of this amide 
was carried out by reaction with two equivalents of lithium trimethylsilylacetylide to afford an ynone, which was 
reduced enantioselectively to the corresponding propargylic alcohol using CBS reduction.

The rhodium-catalyzed intramolecular [5+2] cycloaddition of an allene and vinylcyclopropane was the key step in the 
asymmetric total synthesis of the trinorguaiane sesquiterpene (+)-dictamnol by P.A. Wender and co-workers.27 The 
cyclization precursor allene-cyclopropane was assembled starting from commercially available cyclopropane-
carbaldehyde. Using the HWE olefination, the Weinreb's amide moiety was installed and subsequently reacted with a 
primary alkyllithium that was generated via lithium-halogen exchange. 
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WHARTON FRAGMENTATION
(References are on page 705)

Importance:

[Seminal Publications1-5; Reviews;6-11 Modifications & Improvements12-17]

In 1961, P.S. Wharton investigated the potassium-tert-butoxide-induced heterolytic fragmentation of a bicyclic 1,3-diol 
monomesylate ester (functionalized decalin system), to form a 10-membered cyclic alkene stereospecifically.2 The 
base-induced stereospecific fragmentation of cyclic 1,3-diol monosulfonate esters (X=OSO2R; Y=OH)  to form 
medium-sized cyclic alkenes is known as the Wharton fragmentation. Wharton and co-workers contributed to this 
area extensively by uncovering the stereoelectronic requirements for the reaction as well as demonstrating its 
synthetic utility. This fragmentation, however, falls into the category of Grob-type fragmentations in which carbon 
chains with a variety of combinations of nucleophilic atoms (heteroatoms) and leaving groups give rise to three 
fragments.18 The general features of the Wharton fragmentation are the following: 1) synthetically, cyclic 1,3-diol 
derivatives are the most useful substrates, since acyclic precursors often give rise to side-products (e.g., oxetanes, 
Y=O) resulting from an intramolecular displacement; 2) cyclic 1,3-hydroxy monotosylates and monomesylates are the 
most widely used substrates, and they are prepared by treating the unsymmetrical 1,3-diol with one equivalent of 
MsCl or TsCl; 3)  the rate of the fragmentation depends on the concentration of the anion derived from the 1,3-diol 
derivative; 3) strong and less nucleophilic bases favor the fragmentation, whereas more nucleophilic bases favor 
intramolecular substitution and elimination of the leaving group; 4) KOt-Bu/t-BuOH and dimsylsodium/DMSO are the 
most often used base/solvent combination; 5) if the substrate has considerable ring strain (e.g., n=1), even weaker 
bases (e.g., NEt3) will initiate successful fragmentation; 6) when the fragmentation product is labile (e.g., aldehyde), 
LiAlH4 can serve as both a basic initiator and a reducing agent, since it instantly traps (reduces) the initial product 
avoiding undesired side reactions (e.g., aldol condensation); 7) alkenes are generated stereospecifically from cyclic 
substrates in high yield; 8) fragmentations leading to ketones occur more readily than those that give aldehydes; 9) 
more highly substituted alkenes are formed faster than less substituted ones; and 10) substrates with more ring strain 
generally fragment faster. 

Mechanism: 4,19,10

The Wharton fragmentation is a concerted reaction and the stereoelectronic requirement is that the bonds that are 
undergoing the cleavage must be anti to each other. This requirement is easily met in cyclic systems; however, 
acyclic systems have much larger conformational freedom, so side reactions may arise when the conformation of the 
bonds undergoing cleavage is gauche. In cyclic systems the fragmentation becomes slow and complex product 
mixtures are formed when the conformation of the bonds undergoing cleavage is gauche.
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WHARTON FRAGMENTATION

Synthetic Applications:

The Wharton fragmentation was used as a key step in an approach toward the total synthesis of xenicanes by H. 
Pfander et al.20  Two optically active substituted trans-cyclononenes were synthesized starting from (-)-Hajos-Parrish 
ketone. First, the bicyclic 1,3-diol was protected regioselectively on the less sterically hindered hydroxyl group with p-
toluenesulfonyl chloride in quantitative yield. Next, the monosulfonate ester was exposed to dimsylsodium in DMSO, 
which is a strong base, to initiate the desired heterolytic fragmentation.   

A novel synthetic approach was developed for the norbornane-based carbocyclic core of CP-263,114 in the 
laboratory of J.L. Wood.21 Initial attempts to prepare the core using the oxy-Cope rearrangement failed even under 
forcing conditions, so an alternative approach utilizing the Wharton fragmentation was chosen. The tricyclic 1,3-diol 
substrate was prepared by the SmI2-mediated 5-exo-trig ketyl radical cyclization. The resulting tertiary alcohol was 
mesylated and subjected to methanolysis, which afforded the Wharton fragmentation product in an almost 
quantitative yield. 

Research by S. Arseniyadis and co-workers showed that the aldol-annelation-fragmentation strategy could be used 
for the synthesis of complex structures, which are precursors of a variety of taxoid natural products.22 This strategy 
allows the preparation of the twenty-carbon framework of taxanes from inexpensive and simple starting materials. 

The stereocontrolled synthesis of 5 -substituted kainic acids was achieved by A. Rubio et al.23 The C3 and C4 
substituents were introduced by the Wharton fragmentation of a bicyclic monotosylated 1,3-diol. When this secondary 
alcohol was exposed to KOt-Bu, the corresponding fragmentation product was obtained in moderate yield. Jones 
oxidation of the aldehyde to the carboxylic acid followed by hydrolysis of the ester and removal of the Boc group 
resulted in the desired substituted kainic acid. 
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WHARTON OLEFIN SYNTHESIS (WHARTON TRANSPOSITION) 
(References are on page 706)

Importance:

[Seminal Publications1-4; Reviews5; Modifications & Improvements6-8]

In 1913, N. Kishner reported that treating 2-hydroxy-2,6-dimethyloctan-3-one under standard Wolff-Kishner reduction
conditions (N2H4/KOH/glycol/heat) gave the corresponding reductive elimination product 2,6-dimethyl-2-octene.1 This 
transformation is known as the Kishner eliminative reduction. It was shown to work with a wide variety of α-
substituted ketones, so it offers a convenient and regioselective introduction of a double bond into acyclic and cyclic 
ketones.9,10 In 1961, an extension of this method was introduced independently by P.S. Wharton  and Huang-Minlon 
when they described the rearrangement of α,β-epoxyketones to allylic alcohols via the corresponding 
epoxyhydrazones. Today, this transformation is referred to as the Wharton olefin synthesis or Wharton 
transposition.3,4 The general features of this transformation are the following:8 1) the epoxidation of α,β-unsaturated 
ketones is achieved usually by basic hydrogen peroxide solution in high yield; 2) according to the classical Wharton 
conditions, the epoxyketone was treated with 2-3 equivalents of hydrazine hydrate in the presence of 
substoichiometric amounts of acetic acid, and the allylic alcohol product formed in a matter of minutes; 3) the 
classical reaction conditions are not free of water, which is unsuitable for sensitive substrates; 4) stable 
epoxyhydrazones can be prepared by treating the epoxyketones with hydrazyne hydrate in CH2Cl2, and in a separate 
step a strong base (e.g., KDA, KOt-Bu) is added at low temperature to afford the desired products; 5) unstable 
epoxyhydrazones can be prepared and rearranged when the corresponding epoxyketones are added to the solution 
of an in situ generated hydrazine (hydrazine salt + NEt3), which is anhydrous; and 6) in acyclic systems there is no 
marked selectivity for the configuration of the new double bond. 

Mechanism: 4,6,8

The mechanism of the Wharton transposition is very similar to that of the Wolff-Kishner reaction. The 
epoxyhydrazone is first deprotonated, which triggers the facile and irreversible epoxide ring-opening. The C-N bond 
of the resulting vinyl diazene11,12 is broken upon another deprotonation, releasing N2 and a vinyl anion, which in turn 
affords the desired allylic alcohol. Alternatively, the formation of a vinyl radical has been proposed.6
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WHARTON OLEFIN SYNTHESIS (WHARTON TRANSPOSITION) 

Synthetic Applications:

During the total synthesis of the anticancer natural product OSW-1, Z. Jin and co-workers explored several 
approaches to prepare a crucial steroid enone precursor with high stereoselectivity.13 In one of the approaches, the 
commercially available 5-pergnen-16,17-epoxy-3β-ol-20-one was protected with a TBS group and was subjected to 
the Wharton transposition. The epoxyketone was treated with hydrazine hydrate in THF/MeOH under reflux to give 
the expected allylic alcohol in good yield. The desired enone was obtained by the Dess-Martin oxidation of the allylic 
alcohol with a slight preference for the (Z)-stereoisomer. 

The racemic synthesis of decipienin A was accomplished in the laboratory of G.M. Massanet.14 In the late stages of 
the total synthesis, the tricyclic enone lactone was converted to the corresponding α,β-epoxyketone by treatment with 
hydrogen peroxide in the presence of NaOH. The epoxyketone was subjected to the conditions of the Wharton 
transposition to afford the cyclic allylic alcohol in excellent yield. Several subsequent steps completed the total 
synthesis. 

The synthesis of the bioactive natural product warburganal from (-)-sclareol was carried out by A.F. Barrero et al.15

The bicyclic allylic acetate was epoxidized and deacetylated under basic conditions. Next, the solution of the 
ketoepoxide in glacial acetic acid was treated with hydrazine hydrate and the resulting mixture was heated at reflux 
for 30 minutes to afford the bicyclic allylic diol in excellent yield. 

Research by M. Majewski et al. showed that the enantioselective ring opening of tropinone allowed for a novel way to 
synthesize tropane alkaloids such as physoperuvine.16 The treatment of tropinone with a chiral lithium amide base 
resulted in an enantioslective deprotonation, which resulted in the facile opening of the five-membered ring to give a 
substituted cycloheptenone. This enone was subjected to the Wharton transposition by first epoxidation under basic 
conditions followed by addition of anhydrous hydrazine in MeOH in the presence of catalytic amounts of glacial acetic 
acid.
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WILLIAMSON ETHER SYNTHESIS
(References are on page 706)

Importance:

 [Seminal Publications1,2; Reviews3-7; Modifications & Improvements8-19; Theoretical Studies20]

In 1851, W. Williamson was the first to establish the correct formula of diethyl ether, which was first prepared by V. 
Cordus in 1544 by heating ethanol with sulfuric acid.1 Williamson synthesized diethyl ether from sodium ethoxide and 
ethyl chloride. The reaction of aliphatic or aromatic alkoxides with alkyl, allyl, or benzyl halides to afford the 
corresponding ethers is known as the Williamson ether synthesis. The general features of this transformation are: 1) 
alkali metal alkoxides of simple aliphatic primary, secondary and tertiary alcohols are easily prepared by the use of 
strong bases such as NaH, KH, LHMDS, or LDA; 2) preparation of alkali metal salts of phenols (hydroxy-substituted 
aromatic or heteroaromatic compounds) are accomplished by reacting them with weak bases such as sodium- or 
potassium hydroxide or alkali metal carbonates such as potassium- or cesium carbonate, since phenols are more 
acidic than aliphatic alcohols; 3) alternatively, the alcohol can be directly reacted with alkali metals such as sodium or 
potassium at ambient or elevated temperatures in the neat substrate or at low temperature in liquid ammonia; the 
pure alkoxides are obtained by evaporating the excess alcohol or the liquid ammonia; 4) most alkali metal alkoxides 
and phenoxides can be obtained in crystalline form and stored indefinitely under an inert gas atmosphere and in the 
absence of moisture; 5) the reaction is usually carried out in a dipolar aprotic solvent such as DMF or DMSO to 
minimize side products as a result of dehydrohalogenation; 6) the choice of the alkyl halide component is critical to 
the success of the reaction: primary alkyl, methyl, allylic, and benzylic halides give the highest yields, since these 
undergo SN2 type halide displacement by the alkoxide nucleophile; 7) the order of reactivity for the halides regarding 
the alkyl group: Me>allylic~benzylic>1° alkyl>2°alkyl while under standard conditions tertiary alkyl halides undergo E2 
elimination to afford the corresponding alkenes; 8) the order of reactivity is also influenced by the nature of the 
leaving group: OTs~I>OMs>Br>Cl; and 9) when alkyl dihalides containing two different halogen atoms (such as Cl or 
I) are employed in the reaction, the chemoselective displacement of the better leaving group will occur. The 
preparation of diaryl ethers from phenoxides and unactivated aryl halides is not possible under the reaction conditions 
of the Williamson ether synthesis, but in the presence of copper metal or Cu(I)-salt catalysts, diaryl ethers are 
obtained (see Ullmann biaryl ether synthesis). When the aryl halide is activated (strongly electron-withdrawing 
substituents are present) the displacement of the halogen atom by the alkoxide is possible in the absence of catalyst 
(nucleophilic aromatic substitution). There are a few limitations of Williamson ether synthesis: 1) tertiary alkyl halides 
or sterically hindered primary or secondary alkyl halides tend to undergo E2 elimination in the presence of the 
alkoxide that in addition to being a nucleophile also acts as a base; and 2) alkali phenoxides may undergo C-
alkylation in addition to expected O-alkylation. 

Mechanism: 21-24

In the case of most alkoxides and primary or secondary alkyl halides, the mechanism of the Williamson ether 
synthesis proceeds via an SN2 process. When the alkyl halide is secondary (R''=H) with a given absolute 
configuration, the product ether will have a complete inversion of configuration at that particular stererocenter. E.C. 
Ashby demonstrated, however, that the reaction between lithium alkoxides and alkyl iodides proceeds via single-
electron transfer.22
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WILLIAMSON ETHER SYNTHESIS

Synthetic Applications:

The redox-active natural product (±)-methanophenazine (MP) is the first phenazine to be isolated from archea. This 
compound is able to mediate the electron transport between membrane-bound enzymes and was characterized as 
the first phenazine derivative involved in the electron transport of biological systems. The research team of U. Beifuss 
prepared this natural product by using the Williamson ether synthesis in the last step of the synthetic sequence.25 The 
etherification was conducted under phase-transfer conditions in a THF/water system in the presence of methyltrioctyl-
ammonium chloride and using potassium hydroxide as a base. 

The total synthesis of (+)-asimicin, which belongs to the family of Annonaceous acetogenins, was completed by E. 
Keinan and co-workers.26 In order to create one of the tetrahydrofuran rings stereospecifically, an intramolecular 
Williamson ether synthesis was performed between a secondary alcohol and a secondary mesylate using pyridine as 
the base. 

In the laboratory of D. Kim, the asymmetric total synthesis of (–)-fumagillol, the hydrolysis product of fumagillin, was 
accomplished.27 The stereoselective introduction of the sensitive 1,1-disubstituted epoxide moiety took place in the 
final stages of the synthesis. The primary alcohol portion of the vicinal diol functionality was first selectively converted 
to the corresponding tosylate. Upon treatment with K2CO3/MeOH the epoxide formation occurred smoothly. 

The two key ether linkages during the total synthesis of archaeal 36-membered macrocyclic diether lipid by K. 
Kakinuma and co-workers were formed using the Williamson ether synthesis.28 Two equivalents of the enantiopure 
isoprenoid mesylate was added to the dialkoxide derived from 1-O-benzyl-glycerol and the corresponding diether was 
isolated in good yield. Four more steps including a McMurry coupling completed the synthetic sequence. 
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WITTIG REACTION 
(References are on page 707)

Importance:

[Seminal Publications1-5; Reviews6-40; Modifications & Improvements41-54; Theoretical Studies55-70]

In the early 1950s, G. Wittig and G. Geissler investigated the chemistry of pentavalent phosphorous and described 
the reaction between methylenetriphenylphosphorane (Ph3P=CH2) and benzophenone, which gave 1,1-
diphenylethene and triphenylphosphine oxide (Ph3P=O) in quantitative yield.3 Wittig recognized the importance of this 
observation and conducted a systematic study in which several phosphoranes were reacted with various aldehydes 
and ketones to obtain the corresponding olefins.4,5 The formation of carbon-carbon double bonds (olefins) from 
carbonyl compounds and phosphoranes (phosphorous ylides) is known as the Wittig reaction. From a historical point 
of view it is important to note that Wittig was not the first to prepare a phosphorane, since Staudinger and Marvel had 
reported the synthesis of such compounds three decades before.1,2 Since its discovery, the Wittig reaction has 
become one the most important and most effective method for the synthesis of alkenes. The active reagent in this 
transformation is the phosphorous ylide, which is usually prepared from a triaryl- or trialkylphosphine and an alkyl 
halide (1° or 2°) followed by deprotonation with a suitable base (e.g., RLi, NaH, NaOR, etc.). There are three different 
types of ylides depending on the nature of the R2 and R3 substituents: 1) in the “stabilized” ylides the alkyl halide 
component has at least one strong electron-withdrawing group (-CO2R, -SO2R, etc.), which stabilizes the formal 
negative charge on the carbon; 2) “semi-stabilized” ylides have at least one aryl or alkenyl substituents as the R2 or 
R3 groups, which are less stabilizing; and 3) “nonstabilized” ylides usually have only alkyl substituents, which do not 
stabilize the formal negative charge on the carbon. The general features of the Wittig reaction are: 1) the 
phosphonium salts are usually prepared using triphenylphosphine, and the phosphorous ylides are generated before 
the reaction or in situ; 2) the ylides are water as well as oxygen-sensitive; 3) the phosphorous ylides chemoselectively 
react with aldehydes (fast) and ketones (slow), other carbonyl groups (e.g., esters, amides) remain intact during the 
reaction; 4) the stereoselectivity, E-or Z-selectivity, is influenced by many factors: type of ylide, type of carbonyl 
compound, nature of solvent, and the counterion for the ylide formation; 5) “nonstabilized” ylides under salt-free 
conditions in a dipolar aprotic solvent with aldehydes afford olefins with high (Z)-selectivity; 6) “stabilized” ylides give 
predominantly (E)-olefins with aldehydes under the same salt-free conditions; 7) “semi-stabilized” ylides usually give 
alkenes with poorer steroselectivity; and 8) ether solvents such as THF, Et2O, DME, MTBE, or toluene are used. The 
Wittig reaction has several important variants: 1) the Horner-Wittig reaction takes place when the phosphorous ylides 
contain  phosphine oxides in place of triarylphosphines;71 2) the use of stabilized alkyl phosphonate carbanions is 
known as the Horner-Wadsworth-Emmons reaction in which (E)-α,β-unsaturated esters are formed;72 3) in the 
Schlosser modification, “nonstabilized” ylides can give pure (E)-alkenes when two equivalents of Li-halide salt is 
present in the reaction mixture;73 4) asymmetric Wittig reaction were also developed;53 and 5) Wittig reaction on solid 
support allows easy separation of the products from triphenylphosphine oxide.42

Mechanism: 9,23,74-77,28,78-82,37
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WITTIG REACTION 

Synthetic Applications:

In the late stages of the gram-scale synthesis of (+)-discodermolide, A.B. Smith and co-workers utilized the highly Z-
selective Wittig reaction to couple two advanced intermediates, a phosphonium salt and an aldehyde.83 The 
phosphonium salt was prepared using the primary alkyl iodide, triphenylphosphine, Hünig’s base, and high pressure. 
This procedure was necessary because the traditional methods led to the formation of substantial amounts of side-
products and decomposition. The Hünig’s base trapped any HI that was generated during the process and prevented 
the formation of decomposition products. The phosphonium salt was deprotonated with NaHMDS which, upon 
reacting with the aldehyde, afforded the desired C8-C9 alkene with high Z-selectivity. 

The total synthesis of amaryllidaceae alkaloid buflavin was achieved in the laboratory of A. Couture by utilizing a 
Horner-Wittig reaction between a biaryl aldehyde and a metalated carbamate.84 The diphenyl phosphine oxide 
carbamate was deprotonated with n-BuLi. To the resulting metalated carbamate was added the solution of the biaryl 
aldehyde in THF. The reaction afforded the corresponding (Z)- and (E)-enecarbamates in good yield and with high E-
selectivity. 

The iterative Wittig olefination was used to assemble -D-C-(1,6)-linked oligoglucoses and oligogalactoses, which are 
connected through olefinic bridges. The strategy by A. Dondoni et al. involved the coupling of the sugar aldehyde 
building block with a substrate having a phosphorous ylide functionality at C6.85 The yields were good in each step, 
and oligosaccharides up to pentaoses were prepared. The synthesis of a tetraose is illustrated. 

O

O
PMP

TBSO
I

Ph3P (4 equiv)
i-Pr2NEt2 (0.5 equiv)
benzene-toluene (7:3)

12.8 Kbar, 6d
(70%)

O

O
PMP

TBSO PPh3I

1. NaHMDS, THF

2.

O

TBSO

SEt

CHOTBSO

-78 °C to r.t.
76%

Z/E = >49:1 O

O
PMP

TBSO
(Z) OTBS

O

TBSO

SEt

Key intermediate en route to 
(+)-discodermolide

9 8

R
R

O

N

CHO

N

P O
Ph Ph

Me
Boc BuLi 

(1 equiv)
N

P O
Ph Ph

Me
Boc

Li then 
addTHF 

-78 °C

-78 °C
to r.t.

R
R

O

N

(E) N
Boc

Me
85%

E/Z > 9:1
R = OMe

steps N

MeO

MeO

Me

Buflavine

O

(Z)

OTBDPS
R

R

R

O

R
R

R
(Z)

O

R
R

R
OMe

O
R

R

R

(Z)

O
R

R

ROMe

PPh3I

BuLi, 4Å
THF, HMPA

O
R

R

R
CHO

OTBDPS

+

(1.5 equivalent)

-20 °C, 4h
87%

1. Bu4NF
2. I2, PPh3
3. PPh3

O

(Z)

PPh3I
R

R

R

O

R
R

R
(Z)

O

R
R

R
OMe

BuLi, 4Å
THF, HMPA
-20 °C, 4h

O
R

R

R
CHO

OTBDPS

(1.5 equivalent)

82%

O

(Z)

R
R

R

O

R
R

R
(Z)

O

R
R

R
OMe

R = OBn

O

OTBDPS
R

R

R

Tetraose

93%



488

WITTIG REACTION - SCHLOSSER MODIFICATION 
(References are on page 708)

Importance:

[Seminal Publication1; Reviews2-6; Modifications & Improvements7-10]

The one-pot multistep preparation of (E)-alkenes from “nonstabilized” phosphorous ylides and carbonyl compounds 
by the equilibration of the intermediate lithiobetaines is known as the Schlosser modification of the Wittig reaction. In 
the decade following the disclosure of a novel olefin synthesis using phosphorous ylides and carbonyl compounds by 
G. Wittig and G. Geissler,11-13 intensive research was conducted to reveal what intermediates were involved in the 
reaction and what factors influenced the stereoselectivity. It was established early on that the so-called 
oxaphosphetanes (four-membered heterocycles containing a P-O bond) were the key intermediates, and the cis- and 
trans diastereomers decompose via cycloreversion to the corresponding cis and trans alkenes. In 1966, M. Schlosser 
reported that in the presence of excess lithium halide, the P-O bond of the oxaphosphetanes was rapidly cleaved and 
the corresponding diastereomeric lithiobetaines were formed.1 At low temperature the lithiobetaines (pKa = ~20) were 
deprotonated at their α-positions with alkyl- or aryllithiums14 (PhLi, n-BuLi, etc.), and the resulting β-oxido 
phosphorous ylides rapidly equilibrated to give the thermodynamically more stable trans diastereomer. At this point, 
the diastereomerically pure trans β-oxido phosphorous ylide was protonated stereospecifically with one equivalent of 
a proton source (HCl in ether or alcohol) or an electrophile7-10 to afford the pure trans lithiobetaine and the excess 
lithium halide was removed with KOt-Bu. The resulting trans betaine gave the corresponding (E)-alkene via the trans
oxaphosphetane.  

Mechanism: 2,15,14
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WITTIG REACTION - SCHLOSSER MODIFICATION 

Synthetic Applications:

The asymmetric total synthesis of ISP-I (myriocin, thermozymocidin) was accomplished by utilizing the Schlosser 
modified Wittig reaction as one of the key steps in the laboratory of Y. Nagao.16 The phosphonium bromide fragment 
was treated with PhLi at 0 °C to generate the phosphorous ylide which was reacted with the aldehyde at -78 °C. The 
resulting mixture of lithiobetaines was treated with PhLi at 0 °C to afford the desired (E)-alkene with excellent 
stereoselectivity. 

During the stereospecific total synthesis of (7S,15S) and (7R, 15S)-dolatrienoic acid by G.R. Pettit et al., the C7-C10 
and C11-C16 subunits were coupled using the highly (E)-selective Wittig-Schlosser reaction.17  The traditional Wittig 
conditions resulted in a mixture of alkenes in which the (Z)-stereoisomer was predominant. When the Schlosser 
conditions were applied, the stereoselectivity was reversed in favor of the (E)-alkene.

A simple and efficient method was developed by E.A. Couladouros and co-workers for the synthesis of optically pure 
five- or six-membered hydroxylactones.18 The method begins from γ-butyrolactone and uses the following key 
transformations: reduction, Wittig-Schlosser reaction, Sharpless asymmetric dihydroxylation, oxidation, and lactoniza-
tion. The preparation of antitumor agent (–)-muricatacin was achieved in 6 steps and in 43% overall yield. 

In the laboratory of M. Martin-Lomas, a short and enantiodivergent synthetic route was designed and carried out to 
both D-erythro and L-threo-sphingosine I and II.19 The trans double bond was introduced using the Schlosser 
modified Wittig reaction by coupling tetradecyltriphenylphosphonium bromide and a chiral aldehyde. Other olefination 
methods proved inferior: coupling via the traditional Wittig reaction afforded mostly the cis olefin and the Julia-
Lythgoe olefination gave low yield and low selectivity. 
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WITTIG-[1,2]- AND [2,3]-REARRANGEMENT
(References are on page 709)

Importance:

 [Seminal Publications1-4; Reviews5-20; Modifications & Improvements21-25; Theoretical Studies26-40]

In 1942, G. Wittig and L. Löhmann reported that the deprotonation of benzyl methyl ether with phenyllithium afforded 
1-phenylethanol upon work-up.1 Subsequent studies showed that the transformation was general for α-lithiated aryl 
alkyl ethers that undergo a facile rearrangement to give lithio alkoxides in an overall [1,2]-alkyl shift. The 
rearrangement of aryl alkyl ethers to the corresponding secondary or tertiary alcohols in the presence of 
stoichiometric amount of a strong base is known as the [1,2]-Wittig rearrangement.16,18 The most important features 
are: 1) the R1 substituent has to be able to stabilize the carbanion; 2) the chiral center in the migrating group retains 
its configuration; 3) yields are usually moderate due to the harsh reaction conditions and the competing [1,4]-
pathway; 4) at low temperatures, the formation of the [1,4]-product is favored, while at higher temperatures the [1,2]-
product dominates. During the course of early mechanistic studies of this process, the research groups of G. Wittig 
and T.S. Stevens found that upon deprotonation, allylic ethers mainly underwent a [2,3]-sigmatropic shift to afford 
homoallylic alcohols, a process that is now referred to as the [2,3]-Wittig rearrangement.2,4 The general features of 
the [2,3]-rearrangement are: 1) it proceeds under milder conditions and gives higher yields than the [1,2]-
rearrangement; 2) virtually any α-(allyloxy)carbanion can udergo the rearrangement; the only limitation lies with the 
chemist's ability to generate a particular anion with currently available methods; 3) the R4 substituent should be a 
carbanion-stabilizing group; 4) the [1,2]- and [2,3]-shifts often compete, and the amount of each product depends 
strongly on the structure of the substrate and the reaction temperature; 5) by carefully optimizing the reaction 
temperature, the formation of the [1,2]-rearranged product can be avoided; 6) for acyclic and cyclic substrates, the 
anions can be generated by a variety of different methods: with a strong base (e.g., LDA, n-BuLi) at -60 to -85 °C, via
a tin-lithium exchange reaction (Still variant)21 and by reductive lithiation of O,S-acetals; 7) because of the highly 
ordered cyclic transition state, the rearrangement is stereoselective with respect to the stereochemistry of the new 
double bond and the two new stereocenters;15 8) in acyclic substrates, the chirality of the C1 stereocenter of the 
substrate gets transferred to the product in a predictable fashion, consistent with the orbital symmetry conservation 
rules;15,17 9) the newly formed double bond generally has the (E)-stereochemistry, but the Still variant (R4=SnR3)
gives predominantly (Z)-olefins; 10) the highest (E)-selectivity is achieved when the allylic moiety is only 
monosubstituted (R5=alkyl and R6=H); 11) the diastereoselectivity with respect to the newly created vicinal chiral 
centers is high: (Z)-substrates give erythro products with high levels of selectivity, while (E)-substrates afford threo
products with lower selectivity, but the nature of the R4 substituent also has a profound effect on the level of 
diastereoselectivity;17 and 12) five different asymmetric versions of the rearrangement have been identified.17

Mechanism: 41-45,10,26,46,15

The [1,2]-Wittig rearrangement proceeds via a radical-pair dissociation-recombination mechanism, while the [2,3]-
Wittig rearrangement is a concerted, thermally allowed sigmatropic process proceeding via an envelope-like transition 
state in which the substituents are pseudo-equatorial. 
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WITTIG-[1,2]- AND [2,3]-REARRANGEMENT

Synthetic Applications:

The acetal version of the [1,2]-Wittig rearrangement was utilized in the stereoselective total synthesis of zaragozic 
acid A by K. Tomooka and co-workers.47 The acetal-protected bis(ethynyl)methanol was treated with n-BuLi, which 
brought about the sigmatropic [1,2]-shift. Thus, the chiral centers at C5 and C6 were established with high 
diastereoselectivity (95% β at C5 and 84% d.r. at C4). It is worth noting, that the intermediate anomeric radical could 
efficiently discriminate between the enantiotopic faces of prochiral bis(ethynyl)methanol radical (TMS vs. TBDPS) 
during the radical recombination process. 

The first asymmetric total synthesis of (+)-astrophylline was accomplished in the laboratory of S. Blechert.48 The Still 
variant of the [2,3]-Wittig rearrangement was used to generate the 1,2-trans relationship between the substituents of 
the key cyclopentene intermediate. The tributylstannylmethyl ether substrate was transmetalated with n-BuLi, which 
initiated the desired [2,3]-sigmatropic shift to afford the expected homoallylic alcohol as a single enantiomer. 

The last and key step in the total synthesis of both enantiomers of sarcophytols A and T by Y. Fukuyama et al. was a 
stereospecific [2,3]-Wittig rearrangement.49 The deprotonation of the macrocyclic bis-allylic ether precursor occurred 
with complete regioselectivity at the less substituted position. The rearrangement proceeded in excellent yield and 
exhibited an unexpectedly high level of stereospecificity even though the substrate was highly flexible. The reaction 
could occur either via a syn or anti carbanionic intermediate, but the (S)-stereochemistry of the product indicated that 
the anti carbanion was operational. 

A novel approach to the asymmetric synthesis of Stork's prostaglandin intermediate was developed by T. Nakai et 
al.50 This was the first example of an asymmetric [2,3]-Wittig rearrangement, in which three contiguous chiral centers 
were created in a cyclic system. Upon deprotonation, the rearrangement of the allyl propargyl ether substrate took 
place in excellent yield and gave rise to a single stereoisomer. Interestingly, when the TMS group was replaced with 
an amyl group (C5H11), the stereoselectivity diminished to only 3:1. 
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WOHL-ZIEGLER BROMINATION
(References are on page 710)

Importance:

 [Seminal Publications1-3; Reviews4-6; Modifications & Improvements7-12; Theoretical Studies13-15]

In 1919, A. Wohl studied the reaction between 2,3-dimethyl-2-butene and N-bromoacetamide in cold diethyl ether 
and found that the double bond of the substrate remained intact and one of the methyl groups was substituted with a 
single bromine atom.1 This observation was interesting because such a transformation was previously possible only 
by the reaction of alkenes with elemental bromine at high temperature, but it went unnoticed for almost two decades. 
In 1942, K. Ziegler and co-workers conducted a detailed study on the allylic bromination of olefins using N-
bromosuccinimide (NBS) as a new and stable brominating agent and demonstrated the preparative value of such a 
halogenation process. A few years later, P. Karrer found that the addition of 5-10 mol% of dibenzoyl peroxide to the 
reaction mixture results in significant increase in the reaction rate and allowed the bromination of substrates that were 
unreactive under the original reaction conditions.7 The introduction of a bromine substituent at the allylic position of 
olefins or at the benzylic position of alkylated aromatic or heteroaromatic compounds in known as the Wohl-Ziegler 
bromination. The general features of this transformation are: 1) NBS is a commercially available reagent, and it is 
stable when kept in the dark and away from moisture; 2) various other N-bromo amides and N-bromo imides can also 
be used for bromination, but NBS is by far the most effective of all, and its use is accompanied by the least amount of 
side products; 3) when the olefin has two allylic positions, the bromination is regioselective and favors the 
bromination of the more substituted position (the more stable allylic radical); 4) alkylated aromatic and heteroaromatic 
compounds are selectively brominated at their respective benzylic positions (on the carbon directly attached to the 
aromatic ring) and no halogenation on the ring takes place; 5) the best solvents are carbon tetrachloride and benzene 
but recent environmentally friendly modifications use ionic liquids as the reaction medium, and even solvent-free 
conditions have been developed;12 6) the reaction is usually carried out at the boiling point of the solvent in the 
presence of 5-20 mol% of a radical initiator (AIBN or dibenzoyl peroxide); 7) alternatively the bromination can also be 
conducted at lower temperatures while the reaction mixture is irradiated with UV light; and 8) when the formation of 
polybrominated products is a side reaction, the use of a slight excess of the olefin substrate is recommended. 

Mechanism: 16-27

The mechanism of the Wohl-Ziegler bromination involves bromine radicals (and not imidoyl radicals). The radical 
initiator is homolytically cleaved upon irradiation with heat or light, and it reacts with Br2 (which is always present in 
small quantities in NBS) to generate the Br· radical, which abstracts a hydrogen atom from the allylic (or benzylic) 
position. The key to the success of the reaction is to maintain a low concentration of Br2 so that the addition across 
the C=C double bond is avoided. The Br2 is regenerated by the ionic reaction of NBS with the HBr by-product.
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WOHL-ZIEGLER BROMINATION

Synthetic Applications:

The first total synthesis of the novel sesquiterpene (–)-mastigophorene C was completed by G. Bringmann and co-
workers.28 This natural product has a negative effect on the growth of nerve cells. The synthetic strategy relied on the 
Wohl-Ziegler bromination to install the side-chain bromide on herbertenediol dimethyl ether. The substrate was 
dissolved in carbon tetrachloride; one equivalent of NBS and 20 mol% of dibenzoyl peroxide were added and the 
resulting mixture was heated at reflux for a few hours. The crude benzylic bromide was then hydrolyzed to the 
benzylic alcohol with water, which in turn was oxidized with MnO2 to obtain the corresponding benzaldehyde 
derivative. 

The research team of J. Tadanier prepared a series of C8-modified 3-deoxy-β-D-manno-2-octulosonic acid 
analogues as potential inhibitors of CMP-Kdo synthetase.29 One of the derivatives was prepared from a functionalized 
olefinic carbohydrate substrate by means of the Wohl-Ziegler bromination. The stereochemistry of the double bond 
was (Z), however, under the reaction conditions a cis-trans isomerization took place in addition to the bromination at 
the allylic position (no yield was reported for this step). It is worth noting that the authors did not use a radical initiator
for this transformation, the reaction mixture was simply irradiated with a 150W flood lamp. Subsequently the allylic 
bromide was converted to an allylic azide, which was then subjected to the Staudinger reaction to obtain the 
corresponding allylic amine. 

In the laboratory of J.M. Cook, the first enantioselective total synthesis of (–)-tryprostatin A was accomplished.30 This 
natural product was isolated as a secondary metabolite of the marine fungal strain BM939 and was shown to inhibit 
cell cycle progression. The chiral center of the 2-isoprenyltryptophan moiety was introduced by the alkylation of the 
Schöllkopf chiral auxiliary. The alkylating agent was prepared from N-Boc-6-methoxy-3-methylindole using the Wohl-
Ziegler bromination.

Conformationally restricted analogues of lavendustin A were prepared by M. Cushman and co-wokers as cyctotoxic 
inhibitors of tubulin polymerization.31
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WOLFF REARRANGEMENT
(References are on page 711)

Importance:

 [Seminal Publications1-3; Reviews4-15; Modifications & Improvements16-23; Theoretical Studies24-56]

In 1902, L. Wolff was studying the chemistry of α-diazo ketones when he observed that upon treatment with silver 
oxide and water, diazoacetophenone rearranged to give phenylacetic acid.1 When the reaction medium contained 
aqueous ammonia, phenylacetamide was formed. A few years later G. Schröter published similar findings in an 
independent study, but the reaction remained unexplored for the next three decades due to the lack of general 
methods for the preparation of α-diazo ketones.2 The conversion of α-diazo ketones into ketenes and products 
derived from ketenes is known as the Wolff rearrangement. The substrate α-diazo ketones can be prepared by 
various methods: 1) reaction of an acyl halide or anhydride with two equivalents of diazomethane in ether or DCM 
solution at room temperature or below (Arndt-Eistert homologation);4 however, only one equivalent is needed of 
higher diazoalkanes, and low temperatures are necessary due to competing azo coupling; 2) sequential treatment of 
N-acyl-α-amino ketones (prepared by the Dakin-West reaction) with N2O3 and sodium methoxide in methanol affords 
secondary α-diazo ketones, so the cumbersome use of higher diazoalkanes is avoided; 3) transfer of the diazo group 
from an organic azide (e.g., tosyl azide) to a substrate containing an active methylene group (e.g., β-keto ester or β-
keto nitrile) in the presence of a base (Regitz diazo transfer);57-60 4) simple diazo monoketones are synthesized from 
ketones by the introduction of a formyl group at the α-position via a Claisen reaction and then treatment of the 
resulting α-formyl derivative with tosyl azide and a tertiary amine (deformylative diazo-transfer);61,62 5) oxidation of α-
ketoximes with chloramine;63 and 6) hydroxide ion assisted decomposition of tosylhydrazones.64 The general features 
of the Wolff rearrangement are: 1) the reaction can be initiated thermally, photolytically, or by transition metal 
catalysis; 2) thermal conditions are not used frequently, since delicate substrates may degrade and side reactions are 
frequent (e.g., direct displacement of the diazo group without rearrangement); 3) the use of transition metal 
complexes does not only reduce the required reaction temperature considerably compared to the thermal process, 
but also changes the reactivity of the α-keto carbene intermediate by the formation of less reactive metal carbene 
complexes (Rh- and Pd-complexes usually prevent the Wolff rearrangement from taking place); 4) freshly prepared 
silver(I)oxide or silver(I)benzoate are best suited for the reaction; 5) photochemical activation is convenient, and it 
takes place even at low temperatures, but it can be problematic if the product is photolabile; 6) if the migrating group 
has a stereocenter, the stereochemistry remains unchanged (net retention of configuration) after the migration; 7) the 
ketene products are electrophilic and can react with various nucleophiles as well as undergo [2+2] cycloaddition 
reactions with alkenes; 8) cyclic diazo ketones undergo ring-contraction, and the process is well-suited for the 
preparation of strained ring systems; 9) α,β-unsaturated diazo ketones undergo the vinylogous Wolff rearrangement
to give skeletally rearranged γ,δ-unsaturated esters (alternative to Claisen-type rearrangements);16 and 10) since α-
diazo ketones are very reactive compounds, numerous side reactions are possible that can be avoided or minimized 
by the careful choice of reaction conditions.9

Mechanism: 65,9,13
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WOLFF REARRANGEMENT

Synthetic Applications:

The stereoselective total synthesis of (±)-campherenone was accomplished by T. Uyehara and co-workers based on 
a photochemical Wolff rearrangement.66 The bicyclic ketone was treated with 2,4,6-triisopropylbenzenesulfonyl azide 
(trisyl azide) under homogeneous basic conditions and the α-diazo ketone was obtained in excellent yield. The 
photochemical rearrangement of the diazo ketone was conducted in a THF-water mixture using a high-pressure 100 
W mercury lamp. The ring-contracted acid was isolated as a 4:1 mixture of endo and exo products. 

In the laboratory of K. Fukumoto, the stereoselective total synthesis of (±)-Δ9(12)-capnellene was carried out using an 
intramolecular Diels-Alder reaction to obtain a tricyclic 5-5-6 system.67 Since the target molecule was a triquinane, the 
six-membered ring had to be converted to a five-membered one, a transformation achieved by a Wolff
rearrangement. The required α-diazo ketone was prepared via a deformylative diazo transfer reaction and was 
photolyzed in methanol. The ring-contracted methyl ester was isolated as a 3:1 mixture of separable isomers favoring 
the α-isomer.

The natural product (–)-oxetanocin is an unprecedented oxetanosyl-N-glycoside that inhibits the in vitro replication of 
human immunodeficiency virus (HIV). In order to prepare multigram quantities of the compound, D.W. Norbeck et al. 
devised a short and efficient synthetic strategy.68 The cornerstone of the strategy was the Wolff rearrangement of a 
five-membered diazo ketone. The diazo transfer was achieved by first converting the ketone to an enamino ketone 
followed by treatment with triflyl azide. Upon irradiation with a 450 W Pyrex filtered Hanovia lamp, the isomeric 
oxetanes (α:β = 2:1) were obtained in 36% yield. 

R.L. Danheiser and co-workers generated a key vinylketene intermediate via tandem Wolff rearrangement-ketene-
alkyne cycloaddition to utilize it in a photochemical aromatic annulation reaction (Danheiser benzannulation) for the 
total synthesis of the phenalenone diterpene salvilenone. 69
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WOLFF-KISHNER REDUCTION
(References are on page 712)

Importance:

 [Seminal Publications1,2; Reviews3-6; Modifications & Improvements7-20; Theoretical Studies21]

In 1911, N. Kishner reported that by adding a hydrazone dropwise onto a mixture of hot potassium hydroxide and 
platinized porous plate the corresponding hydrocarbon was formed.1 A year later L. Wolff independently showed that 
heating the ethanol solution of semicarbazones and hydrazones in a sealed tube at ~180 °C in the presence of 
sodium ethoxide gives rise to the same result. The deoxygenation of aldehydes and ketones to hydrocarbons via the 
corresponding hydrazones or semicarbazones under basic conditions is known as the Wolff-Kishner reduction (W-K
reduction). Since the seminal reports, the original procedure has been substantially modified to make the reaction 
conditions milder and improve the yields.3,6 The standard procedure for a long time was to mix the carbonyl 
compound with 100% hydrazine in a high-boiling solvent (e.g., ethylene- or triethylene glycol) in the presence of 
excess base (sodium metal, NaOEt, etc.) and keep the reaction mixture at reflux for a couple of days. One of the 
main problems encountered was the temperature-lowering effect of the water generated during the formation of the 
hydrazone, and this resulted in long reaction times (50-100h) and the need to use an excess of the reagents and 
solvents. In the Huang-Minlon modification, the water and the excess hydrazine are removed by distillation (once the 
hydrazone is formed in situ) so the reaction temperature could rise to ~200 °C, which dramatically shortened the 
reaction time (3-6h), increased the yields and also allowed the use of the cheaper hydrazine hydrate along with 
water-soluble bases (KOH or NaOH).9  The general features of the reaction are: 1) the reduction is usually carried out 
in a high boiling solvent (~180-200 °C) so that the use of a sealed tube can be avoided;7,8,17 2) for base-sensitive 
substrates better yields are achieved when the hydrazone is preformed and the base is added to the substrates at 
lower temperatures (e.g., 25 °C) followed by refluxing the reaction mixture; 3) esters, lactones, amides, and lactams 
are hydrolyzed under the reaction conditions; 4) sterically hindered carbonyl compounds are deoxygenated more 
slowly than unhindered ones, so higher reaction temperatures are required (Barton modification);11,14 5) the use of 
DMSO instead of glycols as the reaction medium containing KOt-Bu, followed by the slow addition of preformed 
hydrazones, allows the reduction to take place at room temperature (Cram modification). However, on small scale 
this method is inconvenient, and good results are very substrate dependent;12 6) preformed hydrazones can also be 
mixed with  KOt-Bu and refluxed in toluene (~110 °C) to effect the reduction (Henbest modification);13 7) for α,β-
unsaturated carbonyl compounds, the use of preformed semicarbazones is advised (hydrazine tends to give 
pyrazolines with these substrates), which undergo reduction under the original or most of the modified reaction 
conditions;3 and 8) certain aromatic carbonyl compounds (e.g., benzophenone, benzaldehyde) do not require the use 
of a strong base for reduction, they are reduced when heated with excess hydrazine hydrate.3 A powerful alternative 
of the W-K reduction is the treatment of tosylhydrazones with hydride reagents to obtain the corresponding alkanes 
(Caglioti reaction).22 A few side reactions have been observed: 1) formation of azines; 2) reduction of ketone 
substrates to alcohols when the reaction is unsuccessful; 3) isomerization of double bonds especially in the case of 
α,β-unsaturated carbonyl compounds ; 4) elimination of the α-heteroatom substituent to afford alkenes (Kishner-
Leonard elimination);23,24 and 5) cleavage or rearrangement of strained rings adjacent to the carbonyl group. 

Mechanism: 25-32

The rate-determining step is the proton capture at the carbon terminal. This process takes place in a concerted 
fashion with the solvent-induced proton abstraction at the nitrogen terminus to form a diimide that undergoes a loss of 
N2.
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WOLFF-KISHNER REDUCTION

Synthetic Applications:

The asymmetric syntheses of (-)-methyl kaur-16-en-19-oate and (-)-methyl trachyloban-19-oate was achieved by M. 
Ihara and co-workers.33 One of the last transformations was the deoxygenation of the ketone carbonyl group of the 
tetracyclic intermediate, which was effected by the Wolff-Kishner reduction. Under the strongly basic conditions the 
ester functionality was hydrolyzed, so an esterification using diazomethane was necessary as the final step. The 
major deoxygenated product was (-)-methyl kaur-16-en-19-oate (59%). The minor product was identified as (-)-methyl 
trachyloban-19-oate (16%). 

The total synthesis of (+)-aspidospermidine was accomplished in the laboratory of J.P. Marino using a novel [3,3]-
sigmatropic rearrangement of chiral vinyl sulfoxide with a ketene as the key step.34 During the endgame of the 
synthesis the pentacyclic ketone was deoxygenated using the Wolff-Kishner reduction. Because the ketone was 
sterically hindered, harsh reaction conditions had to be applied: after the formation of the hydrazone, the water and 
the excess hydrazine were removed and the temperature was raised to 210 °C. The final step in the synthetic 
sequence was the reduction of the five-membered lactam to the corresponding tertiary amine with LAH. 

Dysidiolide is the first compound found to be a natural inhibitor of protein phosphatase cdc25A that is essential for 
cell proliferation. Y. Yamada et al. developed a novel total synthesis of this natural product using an intramolecular 
Diels-Alder cycloaddition as the key step.35 Deoxygenation of the advanced bicyclic intermediate at the C24 position 
was achieved under Wolff-Kishner reduction conditions to afford the C24 methyl group. 

A novel two-step one-pot modified Wolff-Kishner reduction protocol was developed in the laboratory of A.G. Myers 
(Myers modification).20 The carbonyl compound was first converted to the N-TBS-hydrazone followed by the addition 
of KOt-Bu/t-BuOH in DMSO at or above room temperature. 
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WURTZ COUPLING
(References are on page 713)

Importance:

 [Seminal Publications1,2; Reviews3-7; Modifications & Improvements8-16]

In 1855, A. Wurtz treated alkyl halides with sodium metal, and he isolated the corresponding symmetrical alkane 
dimers.1,2 The coupling of two sp3-carbon centers by the treatment of alkyl or benzyl halides with sodium metal is 
known as the Wurtz coupling. When metals other than sodium are used, this transformation is referred to as a Wurtz-
type coupling. The coupling of an alkyl and an aryl halide in the presence of sodium metal to get the corresponding 
alkylated aromatic compound is called the Wurtz-Fittig reaction. Today, the synthetic significance of the Wurtz 
coupling is fairly limited and often in widely used reactions (e.g., Grignard reactions) involving highly reactive 
organometals, such as allyl- and benzylmetals, this is the side reaction. The general features of the Wurtz coupling
are: 1) the classical reaction is heterogeneous and relatively low-yielding, because it is plagued by side reactions 
such as elimination and rearrangements; 2) best results are achieved with finely dispersed sodium metal; 3) alkyl 
halides can be coupled both inter- and intramolecularly; 4) the order of reactivity for alkyl halides is: I >> Br >> Cl, and 
by far primary alkyl iodides are the best substrates; 5) secondary alkyl halides are generally poor substrates and 
should be avoided; 6) the method works reasonably well for intermolecular homocouplings, but the heterocoupling of 
two different alkyl halides often results in a statistical mixture of products in low yields; 7) intramolecularly, the 
coupling can give rise to strained rings as well as macrocycles (e.g., cyclopropanes, cyclobutanes, and cyclophanes) 
in moderate to good yield, and it has been applied extensively for the preparation of such compounds;17,4 and 8) the 
Wurtz-Fittig reaction gives high yields of the desired product without significant side reactions mainly because aryl 
halides do not usually dimerize under the reaction conditions. Because of the limited synthetic value of the classical 
reaction conditions, several modifications were introduced: 1) the most widespread reaction condition (Müller
modification) is to treat the alkyl halide with sodium metal in THF at -78 °C in the presence of catalytic amounts of 
tetraphenylethylene (TPE), which solubilizes the sodium and makes the reaction homogeneous; 8 2) metals other 
than sodium18 as well as various metal complexes have been used successfully to improve the yields and suppress 
side reactions: activated Cu,13 Mn2(CO)10,15 Li metal/ultrasound, Na(Hg),10 Na-K alloy, Zn;16 and 3) the use of 
sonication (ultrasound) in general improves the yield, since the metal becomes highly dispersed and as a result its 
reactivity increases.11,12,14

Mechanism: 19-30

The mechanism of the Wurtz coupling is not well understood, and the currently accepted mechanism involves two 
steps: 1) formation of a carbanionic organosodium compound via metal-halogen exchange; and 2) the displacement 
of the halide ion by the organosodium species in an SN2 reaction. Alternatively, a radical process can also be 
envisioned, although to date there has been no experimental evidence to support this assumption. 
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WURTZ COUPLING

Synthetic Applications:

J.W. Morzycki and co-workers described the synthesis of dimeric steroids to be used as components of artificial lipid 
bilayer membranes.31 The key coupling of two steroid derivatives was achieved by the Wurtz reaction. The steroid 
primary alkyl iodide was dissolved in anhydrous toluene and treated with an excess of sodium metal. After 20h of 
reflux, the desired homocoupled product was obtained in moderate yield along with a considerable amount (36%) of 
the reduced compound. 

The total synthesis of the diarylheptanoid garugamblin 1 was achieved by M. Nógrádi et al. using the modified Wurtz 
coupling as the key macrocyclization step.32 The dibromide was treated with sodium metal at room temperature in the 
presence of TPE to afford the desired macrocycle in moderate yield. The N-O bond of the isoxazole ring was cleaved 
under the reaction conditions. 

The structure of the macrocyclic bis(benzylether) natural product marchantin I was confirmed in the laboratory of M. 
Nógrádi.33 The last and key step of the synthesis was the modified Wurtz coupling in which the 18-membered ring 
was formed.  

The classical preparation of cyclobutyl ketones involves the base-catalyzed reaction of 1,3-dihaloalkanes with 
malonate esters. However, the initial product of this reaction is a cyclobutane carboxylic acid. S.D. Van Arnum and 
co-workers showed that cyclobutyl ketones can be efficiently synthesized starting from acyl succinates and using the 
Wurtz reaction as the key cyclization step.34 The cyclization was catalyzed by naphthalene. 
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YAMAGUCHI MACROLACTONIZATION
(References are on page 714)

Importance:

 [Seminal Publications1; Reviews2-4; Modifications & Improvements5,6]

In 1979, M. Yamaguchi and co-workers developed a novel procedure for the rapid preparation of esters and lactones 
under mild conditions via the alcoholysis of the corresponding mixed anhydrides.1 As a result of their thorough study, 
they found that 2,4,6-trichlorobenzoyl chloride/DMAP was the best reagent combination in terms of both the high 
reaction rate as well as the high product yield. The procedure was put to the test and used for the lactonization of a 
very acid sensitive substrate that was known to rapidly decompose on contact with catalytic amounts of HCl. The 
substrate hydroxy acid was treated with 2,4,6-trichlorobenzoyl chloride in the presence of NEt3, and the by-product 
triethylamine hydrochloride was removed. The resulting mixed anhydride was diluted with toluene and slowly added 
to a refluxing solution of DMAP in toluene under high dilution conditions (~0.002 M). The desired macrolactone, (±)-
2,4,6-tridemethyl-3-deoxymethynolide, was obtained without the formation of any decomposition product. The 
formation of medium- and large-ring lactones from hydroxy acids using 2,4,6-trichlorobenzoyl chloride/DMAP is 
known as the Yamaguchi macrolactonization. The general features of this transformation are: 1) the substrate is first 
converted to the corresponding mixed anhydride with 2,4,6-trichlorobenzoyl chloride in the presence of a tertiary 
amine to activate the carboxylic acid functionality; 2) aromatic hydrocarbons such as benzene and toluene are the 
best solvents; 3) the reaction is conducted under high-dilution conditions to minimize intermolecular coupling; 4) the 
mixed anhydride is dissolved and slowly added (via a syringe pump) to a refluxing solution of DMAP in benzene or 
toluene; and 5) usually several equivalents of DMAP, a known catalyst for acyl transfer reactions, is used. The main 
advantages of the Yamaguchi macrolactonization over other existing methods are its operational simplicity, its high 
reaction rate and the lack of by-products. 

Mechanism:
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YAMAGUCHI MACROLACTONIZATION

Synthetic Applications:

The stereocontrolled total synthesis of (–)-macrolactin A, a 24-membered macrolide, was achieved by J.P. Marino 
and co-workers.7 The key macrocyclization step was carried out using the Yonemitsu modification of the Yamaguchi 
macrolactonization.6 In this procedure, the mixed anhydride is added to the highly dilute solution of DMAP rapidly (in 
one portion) at room temperature. The final step of the total synthesis was the removal of the protecting groups under 
acidic condition. 

The convergent enantioselective synthesis of oleandolide, the aglycon of the macrolide antibiotic oleandomycin, was 
reported by J.S. Panek et al.8 The key macrocyclization was carried out by a modified Yamaguchi macrolactonization
protocol. The azeotropically dried dihydroxy acid was first treated with a large excess of 2,4,6-trichlorobenzoyl 
chloride and Hünig's base, and the resulting mixed anhydride was diluted with benzene (~0.001 M). To this dilute 
solution was added in one portion a large excess of DMAP. The desired 14-membered lactone was isolated in nearly 
quantitative yield and no trace of the undesired 12-membered lactone was detected. The unusually high efficiency of 
the cyclization was attributed to the strong conformational preference induced by the large substituent at C9. 

The microtubule-stabilizing and potent antitumor 18-membered macrolide, (–)-laulimalide, was synthesized in the 
laboratory of A.K. Ghosh.9 The macrolactonization of the α,β-unsaturated (Z)-hydroxy acid under Yamaguchi
conditions caused isomerization of the double bond. Presumably this undesired isomerization was due to the 
reversible Michael addition of the DMAP catalyst to the active acylating agent. Unfortunately, no other reaction 
conditions were found that could decrease the extent of the double bond isomerization, so an alternative strategy was 
sought. Therefore, the macrolactonization of a hydroxy alkynoic acid was performed and the triple bond was 
efficiently hydrogenated to the desired (Z)-double bond with Lindlar's catalyst. In order to complete the total synthesis, 
selective removal the MOM protecting group was achieved by treatment with excess PPTS in t-butanol at reflux. The 
epoxide was installed using the Sharpless epoxidation, which afforded the epoxide as a single diastereomer. The 
final step was the removal of the PMB group with DDQ. 
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8.1   Brief explanation of the organization of this section 

 The primary function of this section is to help advanced undergraduate students and first year graduate 

students in organizing the large amount of information available on various chemical transformations. It is important 

to note that the categorization of named reactions is a subjective one and has been addressed differently in other 

textbooks.  

 The categorization of named reactions is mainly based on the mechanism of the various processes. To 

make studying more friendly, we included a brief description of each named reaction and the page number for that 

particular transformation.  

 Because a large number of functional group transformations are affected by the reactions covered in the 

book, we felt that tables showing the interconversion of functional groups should be included.  

 Various functional groups are listed in alphabetical order in the first column and the functionalities that can 

be created from them are shown in the second column. The names of all reactions that can bring about these 

transformations are listed in the third column. 

 In the second table we listed the target functional groups in alphabetical order in the first column and 

showed the substrate functionalities in the second column. In the third column the names of these transformations 

are listed. 

A note of caution: none of these tables were created with the intent to be comprehensive, since that would 

be beyond the scope of this book. The reader should always check the details for each reaction to find out the true 

scope and limitations of a given transformation. We welcome any suggestions on how to make this section more 

effective in future editions. 
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8.2   LIST OF NAMED REACTIONS IN CHRONOLOGICAL ORDER OF 
THEIR DISCOVERY 

YEAR OF  
DISCOVERY

NAME OF THE 
 TRANSFORMATION 

PAGE # 

1822 Lieben Haloform Reaction 264

1838 Benzilic Acid Rearrangement 52

1839 Aldol Reaction 8

1844 Dieckmann Condensation 138

1850 Strecker Reaction 446

1851 Hofmann Elimination 206

1852 Williamson Ether Synthesis 484

1853 Cannizzaro Reaction 74

1855 Wurtz Coupling 498

1860 Kolbe-Schmitt Reaction 248

1860 Pinacol and Semipinacol Rearrangement 350

1861 Acyloin Condensation 4

1861 Hunsdiecker Reaction (Borodin Reaction) 218

1868 Perkin Reaction 338

1869 Glaser Coupling Reaction 186

1869 Lossen Rearrangement 266

1876 Reimer-Tiemann Reaction 378

1877 Friedel-Crafts Acylation 176

1877 Friedel-Crafts Alkylation 178

1877 Malonic Ester Synthesis 272

1877 Pinner Reaction 352

1879 Koenigs-Knorr Glycosidation 246

1880 Skraup and Doebner-Miller Reaction 414

1881 Ciamician-Dennstedt Rearrangement 84

1881 Fries-, Photo-Fries and Anionic Ortho-Fries Rearrangement 180

1881 Hell-Volhard-Zelinsky Reaction 200

1881 Hofmann Rearrangement 210

1882 Hantzsch Dihydropyridine Synthesis 194

1883 Combes Quinoline Synthesis 94

1883 Fischer Indole Synthesis 172

1883 Hofmann-Löffler-Freytag Reaction 208

1883 Michael Addition  286

1883 von Pechmann Reaction 472

1884 Paal-Knorr Furan Synthesis 326

1884 Paal-Knorr Pyrrole Synthesis 328

1884 Sandmeyer Reaction 394

1884 Schotten-Baumann Reaction 398

1885 Buchner Method of Ring Enlargement (Buchner Reaction) 68

1885 Curtius Rearrangement 116

1886 Beckman Rearrangement 50

1886 Knorr Pyrrole Synthesis 244

1887 Claisen Condensation/(Claisen Reaction) 86

1887 Gabriel Synthesis 182

1887 Japp-Klingemann Reaction 224

1887 Reformatsky Reaction 374

1887 Tishchenko Reaction 456

1888 Dimroth Rearrangement 144

1891 Biginelli Reaction 58

1892 Darzens Glycidic Ester Condensation 128

1893 Bischler-Napieralski Isoquinoline Synthesis 62

1893 Dienone-Phenol Rearrangement 142
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YEAR OF  
DISCOVERY

NAME OF THE 
 TRANSFORMATION 

PAGE # 

1893 Pomeranz-Fritsch Reaction 358

1893 Stobbe Condensation 442

1894 Favorskii Rearrangement and Homo-Favorskii Rearrangement 164

1894 Knoevenagel Condensation 242

1894 Nef Reaction 308

1894 Smiles Rearrangement 416

1894 Wacker Oxidation 474

1895 Henry Reaction 202

1897 Arbuzov Reaction (Michaelis-Arbuzov Reaction) 16

1897 Gattermann and Gattermann-Koch Formylation 184

1898 Chugaev Elimination (Xanthate Ester Pyrolysis) 82

1899 Baeyer-Villiger Oxidation/Rearrangement 28

1899 Barbier Coupling Reaction 38

1899 Prins Reaction 364

1899 Wagner-Meerwein Rearrangement 476

1900 Grignard Reaction 188

1901 Demjanov Rearrangement and Tiffeneau-Demjanov Rearrangement 134

1901 Ullmann Reaction/Coupling/Biaryl Synthesis 466

1902 Feist-Bénary Furan Synthesis 166

1902 Wolff Rearrangement 494

1903 Benzoin and Retro-Benzoin Condensation 54

1903 Mannich Reaction 274

1903 Nazarov Cyclization 304

1903 Ullmann Biaryl Ether and Biaryl Amine Synthesis/Condensation 464

1905 Eschweiler-Clarke Methylation 160

1908 Staudinger Ketene Cycloaddition 426

1909 Acetoacetic Ester Synthesis 2

1909 Dakin Oxidation 118

1909 Paterno-Büchi Reaction 332

1909 Prilezhaev Reaction 362

1909 Pummerer Rearrangement 368

1910 Finkelstein Reaction 170

1910 Regitz Diazo-Transfer Reaction 376

1911 Pictet-Spengler Tetrahydroisoquinoline Synthesis 348

1911 Wolff-Kishner Reduction 496

1912 Madelung Indole Synthesis 270

1913 Claisen Rearrangement 88

1913 Clemmensen Reduction 92

1913 Wharton Olefin Synthesis (Wharton Transposition) 482

1914 Chichibabin Amination Reaction (Chichibabin Reaction) 80

1914 Ferrier Reaction/Ferrier Rearrangement 168

1915 Houben-Hoesch Reaction/Synthesis 216

1919 Aza-Wittig Reaction 24

1919 Meisenheimer Rearrangement 282

1919 Staudinger Reaction 428

1919 Wittig Reaction 486

1919 Wohl-Ziegler Bromination 492

1921 Passerini Multicomponent Reaction 330

1922 Meyer-Schuster and Rupe Rearrangement 284

1923 Schmidt Reaction 396

1925 Amadori Reaction/Rearrangement 14

1925 Meerwein-Ponndorf-Verley Reduction 280

1925 Stephen Aldehyde Synthesis 430

1926 Diels-Alder Cycloaddition 140

1926 Neber Rearrangement 306
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YEAR OF  
DISCOVERY

NAME OF THE 
 TRANSFORMATION 

PAGE # 

1927 Balz-Schiemann Reaction (Schiemann Reaction) 34

1928 Dakin-West reaction 120

1928 Stevens Rearrangement 434

1929 Nenitzescu Indole Synthesis 312

1931 Criegee Oxidation 114

1932 Riley Selenium Dioxide Oxidation 380

1933 Baker-Venkataraman Rearrangement 30

1933 Prévost Reaction 360

1935 Arndt-Eistert Homologation/Synthesis 18

1935 Payne Rearrangement 336

1935 Robinson Annulation 384

1937 Claisen-Ireland Rearrangement 90

1937 Oppenauer Oxidation 320

1937 Sommelet-Hauser Rearrangement 422

1939 Meerwein Arylation 278

1939 Quasi-Favorskii Rearrangement 370

1939 Snieckus Directed Ortho Metalation 420

1940 Carrol Rearrangement (Kimel-Cope Rearrangement) 76

1940 Cope Rearrangement 98

1940 Ramberg-Bäcklund Rearrangement 372

1942 Wittig-[1,2]- and [2,3]-Rearrangement 490

1943 Alder (Ene) Reaction 6

1943 Hetero Diels-Alder Reaction (HDA) 204

1944 Birch Reduction 60

1946 Jones Oxidation/Oxidation of Alcohols by Chromium Reagents 228

1947 Peterson Olefination 344

1948 Ritter Reaction 382

1949 Cope Elimination/(Cope Reaction) 96

1949 Cornforth Rearrangement 112

1952 Bamford-Stevens-Shapiro Olefination 36

1952 Grob Fragmentation 190

1952 Wharton Fragmentation 480

1954 Stork Enamine Synthesis 444

1955 Alkene (Olefin) Metathesis 10

1956 Brown Hydroboration Reaction 66

1957 Kornblum Oxidation 250

1958 Brook Rearrangement 64

1958 Doering-LaFlamme Allene Synthesis 146

1958 Horner-Wadsworth-Emmons Olefination 212

1958 Simmons-Smith Cyclopropanation 412

1959 Heine Reaction 198

1959 Ugi Multicomponent Reaction 462

1959 Vilsmeier-Haack Formylation 468

1959 Vinylcyclopropane-Cyclopentene Rearrangement 470

1960 Barton Nitrite Ester Reaction 42

1961 Kröhnke Pyridine Synthesis 254

1962 Barton Radical Decarboxylation Reaction 44

1962 Corey-Chaykovsky Epoxidation and Cyclopropanation 102

1962 DeMayo Cycloaddition (Enone-Alkene [2+2] Photocycloaddition) 132

1962 Nagata Hydrocyanation Reaction 302

1963 Castro-Stevens Coupling 78

1963 Corey-Winter Olefination 110

1963 Pfitzner-Moffatt Oxidation 346

1964 Eschenmoser-Claisen Rearrangement 156

1964 Oxy-Cope Rearrangement/Anionic Oxy-Cope Rearrangement 324
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YEAR OF  
DISCOVERY

NAME OF THE 
 TRANSFORMATION 

PAGE # 

1965 Tsuji-Trost Reaction/(Allylation) 458

1965 Tsuji-Wilkinson Decarbonylation 460

1966 Wittig Reaction-Schlosser Modification 488

1967 Aza-Claisen Rearrangement (3-Aza-Cope Rearrangement) 20

1967 Aza-Cope Rearrangement 22

1967 Eschenmoser-Tanabe Fragmentation 158

1967 Krapcho Dealkoxycarbonylation 252

1967 Mitsunobu Reaction 294

1967 Seyferth-Gilbert Homologation 402

1968 Baylis-Hillman Reaction 48

1968 Heck Reaction 196

1968 Minisci Reaction 290

1968 Mislow-Evans Rearrangement 292

1969 Prins-Pinacol Rearrangement 366

1969 Schwartz Hydrozirconation 400

1970 Burgess Dehydration Reaction 72

1970 Johnson-Claisen Rearrangement 226

1971 Aza-[2,3]-Wittig Rearrangement 26

1971 Corey-Kim Oxidation 106

1971 Eschenmoser Methenylation 154

1971 Hajos-Parrish Reaction 192

1971 Nicholas Reaction 314

1972 Bergman Cycloaromatization Reaction 56

1972 Corey-Fuchs Alkyne Synthesis 104

1972 Kumada Cross Coupling Reaction 258

1972 McMurry Coupling  276

1972 Saegusa Oxidation 390

1973 Julia-Lythgoe Olefination 230

1973 Mukaiyama Aldol Reaction 298

1973 Pauson-Khand Reaction 334

1973 Pinnick Oxidation 354

1973 Polonovski Reaction 356

1973 Stetter Reaction 432

1974 Overman Rearrangement 322

1974 Alkyne Metathesis 12

1974 Corey-Nicolau Macrolactonization 108

1974 Danishefsky’s Diene Cycloaddition 126

1974 Rubottom Oxidation 388

1974 Swern Oxidation 450

1975 Barton-McCombie Radical Deoxygenation Reaction 46

1975 Dötz Benzannulation Reaction 148

1975 Sonogashira Cross-Coupling 424

1976 Enders SAMP/RAMP Hydrazone Alkylation 150

1976 Negishi Cross-Coupling 310

1976 Sakurai Allylation 392

1976 Stille Cross-Coupling (Migita-Kosugi-Stille Coupling) 438

1976 Tebbe Olefination/Petasis-Tebbe Olefination 454

1977 Davis Oxaziridine Oxidation 130

1977 Nozaki-Hiyama-Kishi Coupling 318

1978 Bartoli Indole Synthesis 40

1978 Luche Reduction 268

1978 Roush Asymmetric Allylation 386

1979 Midland Alpine Borane Reduction 288

1979 Suzuki Cross-Coupling (Suzuki-Miyaura Cross-Coupling) 448

1979 Yamaguchi Macrolactonization 500
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YEAR OF  
DISCOVERY

NAME OF THE 
 TRANSFORMATION 

PAGE # 

1980 Kagan-Molander Samarium-Diiodide Coupling 232

1980 Noyori Asymmetric Hydrogenation 316

1980 Sharpless Asymmetric Dihydroxylation Reaction 406

1980 Sharpless Asymmetric Epoxidation Reaction 408

1981 Corey-Bakshi-Shibata (CBS) Reduction 100

1981 Danheiser Cyclopentene Annulation 124

1981 Evans Aldol Reaction 162

1981 Weinreb Ketone Synthesis 478

1983 Buchwald-Hartwig Cross-Coupling 70

1983 Dess-Martin Oxidation 136

1983 Fleming-Tamao Oxidation 174

1983 Horner-Wadsworth-Emmons Olefination (Still-Gennari modification) 214

1984 Danheiser Benzannulation 122

1984 Stille Carbonylative Cross-Coupling 436

1985 Enyne Metathesis 152

1985 Keck Macrolactonization 238

1985 Ley Oxidation 262

1986 Takai-Utimoto Olefination (Takai Reaction) 452

1987 Stille-Kelly Coupling 440

1989 Kahne Glycosidation 234

1989 Kulinkovich Reaction 256

1990 Jacobsen-Katsuki Epoxidation 222

1991 Larock Indole Synthesis 260

1993 Keck Asymmetric Allylation 236

1993 Keck Radical Allylation 240

1993 Petasis Boronic Acid-Mannich reaction 340

1994 Myers Asymmetric Alkylation 300

1994 Smith-Tietze Multicomponent Dithiane Linchpin Coupling 418

1995 Jacobsen Hydrolytic Kinetic Resolution of Epoxides 220

1995 Miyaura Boration Reaction 296

1995 Petasis-Ferrier Rearrangement 342

1996 Sharpless Asymmetric Aminohydroxylation Reaction 404

1996 Shi Asymmetric Epoxidation 410
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8.3   REACTION CATEGORIES 
REACTION 
CATEGORY 

NAME OF 
REACTIONS 

BRIEF DESCRIPTION OF 
SYNTHETIC USE 

Page# 

CARBOCYCLE 
FORMATION

Acyloin condensation Formation of cyclic α-hydroxy ketones from diesters. 4
Alkene metathesis Formation of cyclic alkenes from dienes. 10
Alkyne metathesis Formation of cyclic alkynes from diynes. 12
Danheiser cyclopentene annulation Formation of cyclopentenes from enones and allenes. 124
Danishefsky's diene cycloaddition Formation of six-membered carbocycles using 1-

methoxy-3-trimethylsilyloxy-1,3-butadiene. 
126

Dieckmann condensation Formation of cyclic β-keto esters from diesters. 138
Diels-Alder cycloaddition The [4+2] cycloaddition of alkenes and dienes to afford 

substituted cyclohexenes.  
140

Hajos-Parrish reaction Enantio-enriched bicyclic enones from 1,5-diketones. 192
Nazarov cyclization Cyclopentenones and cyclopentanones from divinyl 

ketones.
304

Pauson-Khand reaction Formation of cyclopentenones from alkenes, alkynes and 
CO.

334

Robinson annulation  Formation of bicyclic enones from 1,5-diketones. 384
CYCLO-

AROMATIZATION 
Bergman cycloaromatization 
reaction

Thermal or photochemical cycloaromatization of 
enediynes to form substituted benzene rings. 

56

Danheiser benzannulation Reaction of cyclobutenones with alkynes to give highly 
substituted benzene rings. 

122

Dötz benzannulation Reaction of Fischer chromium carbenes with alkynes to 
give substituted hydroquinone derivatives. 

148

DEGRADATION
Hofmann rearrangement Conversion of primary carboxamides to one-carbon 

shorter primary amines. 
210

Hunsdiecker reaction Conversion of carboxylic acids to one-carbon shorter 
alkyl, alkenyl or aryl halides. 

218

Lieben haloform reaction Conversion of methyl ketones to one-carbon shorter 
carboxylic acids. 

262

ELECTROPHILIC 
ADDITION TO  C-C 
MULTIPLE BONDS

Addition to 
alkenes

cyclopropanation Simmons-Smith cyclopropanation Formation of cyclopropanes from alkenes. 412
epoxidation Davis' oxaziridine oxidation Formation of epoxides from alkenes using oxaziridines. 130
epoxidation Jacobsen-Katsuki epoxidation Formation of epoxides from alkenes using metal salen 

complexes. 
222

epoxidation Prilezhaev reaction Formation of epoxides from alkenes using peracids. 362
epoxidation Sharpless asymmetric epoxidation Formation of epoxy alcohols from allylic alcohols. 408
epoxidation Shi asymmetric epoxidation Formation of epoxides from alkenes. 410
hydrogenation Noyori asymmetric hydrogenation Formation of enantio-enriched carboxylic acids, alcohols 

and amino acids from unsaturated carboxylic acids, allylic 
alcohols and enamides, respectively. 

316

hydrometalation Brown hydroboration reaction Formation of alkylboranes from alkenes. 66
hydrometalation Schwartz hydrozirconation  Formation of alkylzirconium compounds from alkenes. 400

Addition to 
alkynes

hydrometalation Brown hydroboration reaction Formation of alkenylboranes from alkynes. 66
hydrometalation Schwartz hydrozirconation  Formation of alkenylzirconium compounds from alkynes. 400
ELECTROPHILIC 

AROMATIC 
SUBSTITUTION

Bischler-Napieralski isoquinoline 
synthesis 

Preparation of isoquinolines from acylated 
phenylethylamines. 

62

Combes Quinoline synthesis Preparation of quinolines from aryl amines and 1,3-
diketones.

94

Friedel-Crafts acylation Synthesis of aromatic ketones using acyl halides or 
anhydrides. 

176

Friedel-Crafts alkylation Synthesis of alkylbenzenes using alkyl halides. 178
Fries rearrangement  Synthesis of acylated phenols from O-acyl phenols. 180
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REACTION 
CATEGORY 

NAME OF 
REACTIONS 

BRIEF DESCRIPTION OF 
SYNTHETIC USE 

Page# 

ELECTROPHILIC 
AROMATIC 

SUBSTITUTION
Gattermann and Gattermann-Koch 
formylation 

Synthesis of aromatic aldehydes using HCN or CO. 184

Houben-Hoesch reaction Synthesis of aromatic ketones from activated aromatic 
compounds (e.g. phenols) and nitriles. 

216

Kolbe-Schmitt reaction Synthesis of salicylic acid der. from phenols and CO2. 248
Pictet-Spengler tetrahydro-
isoquinoline synthesis 

Synthesis of tetrahydroisoquinolines and isoquinolines 
from β-arylethylamines. 

348

Pomeranz-Fritsch reaction Synthesis of isoquinolines from aromatic aldehydes and 
2,2-dialkoxyethylamine. 

358

Reimer-Tiemann reaction  Preparation of formylated phenols from substituted 
phenols

378

Vilsmeier-Haack formylation Synthesis of substituted benzaldehydes and 
heteroaromatic aldehydes using chloromethyliminium 
salts.

468

von Pechmann reaction Preparation of coumarins from phenols and β-keto esters. 472
ELIMINATION 
REACTIONS

Burgess dehydration Preparation of alkenes from 2° and 3° alcohols. 72
Chugaev elimination Thermal syn elimination of xanthate esters to form 

alkenes.
82

Cope elimination Thermal syn elimination of 3° amine N-oxides to form 
alkenes.

96

Hofmann elimination Formation of alkenes from quaternary ammonium salts. 206
FRAGMENTATION 

REACTIONS
Eschenmoser-Tanabe 
fragmentation

Formation of alkynals or alkynones from epoxy ketone 
hydrazones. 

158

Grob fragmentation Regulated heterolytic cleavage of certain types of 
molecules to form three different fragments. 

190

Wharton fragmentation Base-induced formation of medium-sized cyclic alkenes 
from 1,3-diol monosulfonates. 

480

HETEROCYCLE 
FORMATION

Bartoli indole synthesis Formation of 7-substituted indoles from ortho-substituted 
nitro- or nitrosoarenes. 

40

Biginelli reaction One-pot three component formation of 3,4-
dihydropyrimidin-2(1H)-ones from aromatic aldehydes, 
keto esters and urea. 

58

Bischler-Napieralski isoquinoline 
synthesis 

Preparation of isoquinolines from acylated 
phenylethylamines. 

62

Ciamician-Dennstedt
rearrangement 

Synthesis of 3-halopyridines from pyrroles and 2-
haloquinolines from indoles. 

84

Combes quinoline synthesis Preparation of quinolines from aryl amines and 1,3-
diketones.

94

Dimroth rearrangement Isomerization of heterocycles in which endocyclic or 
oxocyclic heteroatoms and their attached substituents are 
translocated via a ring-opening-ring-closure sequence. 

144

Feist-Bénary furan synthesis Synthesis of furans from β-keto esters and α-halogenated 
carbonyl compounds under basic conditions. 

166

Fischer indole synthesis  Preparation of indoles from arylhydrazones of ketones 
and aldehydes in the presence of protic or Lewis acid 
catalyst. 

172

Hantzsch dihydropyridine synthesis Preparation of dihydropyridines from 1,3-diketones, 
aldehydes and ammonia. 

194

Heine reaction Intramolecular ring expansion of substituted N-
acylazirdines to the corresponding substituted oxazolines. 

198

Hetero Diels-Alder reaction The [4+2] cyclization of a diene or heterodiene and a 
dienophile or heterodienophile. 

204

Hofmann-Löffler-Freytag reaction Formation of cyclic amines from N-halogenated amines 
via an intramolecular 1,5-hydrogen atom transfer to a 
nitrogen radical. 

208

Knorr pyrrole synthesis Condensation of an α-amino ketone or an α-amino-β-
ketoester with an active methylene compound to afford 
substituted pyrroles. 

244

Kröhnke pyridine synthesis Condensation of an unsaturated ketone with an α-halo
ketone to give highly substituted pyridines. 

254

Larock indole synthesis Preparation of 2,3-disubstituted indoles from ortho-
iodoanilines and disubstituted alkynes. 

258
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REACTION 
CATEGORY 

NAME OF 
REACTIONS 

BRIEF DESCRIPTION OF 
SYNTHETIC USE 

Page# 

HETEROCYCLE 
FORMATION

Madelung indole synthesis The intramolecular cyclization of N-acylated-ortho-
alkylanilines to afford 2,3-disubstituted indoles. 

270

Paal-Knorr furan synthesis Dehydration of 1,4-diketones to the corresponding 
substituted furans. 

326

Paal-Knorr  pyrrole synthesis Condensation of primary amines with 1,4-dicarbonyl 
compounds to form substituted pyrroles. 

328

Paterno-Büchi reaction Formation of oxetanes by the photocycloaddition of 
alkenes and carbonyl compounds. 

332

Pictet-Spengler
tetrahydroisoquinoline synthesis 

Condensation of a β-arylethylamine with carbonyl 
compounds to form tetrahydroisoquinolines. 

348

Pomeranz-Fritsch reaction The acid catalyzed cyclization of benzalaminoacetals to 
form isoquinolines. 

358

Skraup and Doebner-Miller 
quinoline synthesis 

Condensation of enones with substituted anilines to afford 
isoquinolines.

414

von Pechman reaction Condensation of phenols with β-keto esters to give 
substituted coumarins. 

472

HOMOLOGATION
Arndt-Eistert homologation One-carbon homologation of carboxylic acids. 18
Corey-Fuchs alkyne synthesis One-carbon homologation of aldehydes to form the 

corresponding terminal alkynes. 
104

Doering-LaFlamme allene 
synthesis 

Preparation of allenes from olefins. 146

Seyferth-Gilbert homologation Synthesis of alkynes from aldehydes. 402
Takai-Utimoto olefination The chromium(II)-mediated one-carbon homologation of 

aldehydes to the corresponding (E)-alkenyl halides. 
452

Tebbe olefination One-carbon homologation of carbonyl compounds to 
afford the corresponding 1,1-disubstituted alkenes. 

454

METATHESIS
Alkene metathesis Metal catalyzed redistribution of carbon-carbon double 

bonds.
10

Alkyne metathesis Metal catalyzed redistribution of carbon-carbon triple 
bonds.

12

Enyne metathesis Transition metal catalyzed cycloisomerization of [1,n]- 
enynes to the corresponding 1,3-dienes. 

152

NUCLEOPHILIC 
AROMATIC 

SUBSTITUTION
Chichibabin amination reaction Direct amination of pyridine via SNAr reaction. 80
Smiles rearrangement Intramolecular nucleophilic aromatic rearrangement of 

activated aromatic substrates. 
416

NUCLEOPHILIC 
SUBSTITUTION

 Finkelstein reaction Equilibrium exchange of the halogen atom in alkyl halides 
for another halogen atom. 

170

 Gabriel synthesis Two-step preparation of primary amines from the 
corresponding alkyl halides using phthalimide as the 
nitrogen source. 

182

 Heine reaction Intramolecular ring expansion of substituted N-
acylaziridines by nucleophilic reagents to the 
corresponding substituted oxazolines. 

198

 Kahne glycosidation Preparation of O-, S- or N-glycosides via the activation of 
glycosyl sulfoxides. 

234

 Koenigs-Knorr glycosidation Synthesis of alkyl or aryl O-glycosides from glycosyl 
halides and alcohols or phenols, respectively.  

246

 Krapcho dealkoxycarbonylation Decarboxylation of β-keto esters using alkali metal salts. 252
 Mitsunobu reaction Substitution of primary and secondary alcohols with 

nucleophiles in the presence of dialkyl azodicarboxylate 
and trialkyl- or triarylphosphine. 

294

 Myers asymmetric alkylation Alkylation of N-acylated pseudoephedrines to obtain 
enantio-enriched α-alkylated carbonyl compounds. 

300

 Nicholas reaction Trapping of dicobalt hexacarbonyl-stabilized propargylic 
cations with various nucleophiles. 

314

 Payne rearrangement Base-catalyzed intramolecular displacement of 2,3-epoxy 
alcohols to give isomeric 2,3-epoxy alcohols. 

336

 Stork enamine synthesis Alkylation of enamines with alkyl halides to afford α-
alkylated aldehydes or ketones. 

444

 Williamson ether synthesis Alkylation of alkali alkoxides with primary or secondary 
alkyl halides to form ethers. 

484
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REACTION 
CATEGORY 

NAME OF 
REACTIONS 

BRIEF DESCRIPTION OF 
SYNTHETIC USE 

Page# 

OXIDATION
 Baeyer-Villiger oxidation Formation of esters from ketones upon peracid oxidation. 28
 Corey-Chaykovsky epoxidation Preparation of epoxides from aldehydes and ketones. 102
 Corey-Kim oxidation Oxidation of primary and secondary alcohols with 

NCS/DMS to afford aldehydes and ketones, respectively. 
106

 Criegee oxidation Cleavage of 1,2-diols (glycols) to the corresponding 
carbonyl compounds using LTA. 

114

 Dakin oxidation  Conversion of aromatic aldehydes and ketones to the 
corresponding phenols. 

118

 Davis' oxaziridine oxidation Oxidation of electron-rich substrates (e.g. alkenes, 
enolates, enol ethers etc.) with oxaziridines. 

130

 Dess-Martin oxidation Oxidation of alcohols and oximes to afford the 
corresponding carbonyl compounds using DMP. 

136

 Fleming-Tamao oxidation Mild stereospecific oxidation of silicon-carbon bonds to 
the corresponding carbon-oxygen bonds 

174

 Jacobsen-Katsuki epoxidation Enantioselective epoxidation of unfunctionalized alkyl- 
and aryl-substituted olefins. 

222

 Jones oxidation Oxidation of primary and secondary alcohols with chromic 
acid to give the corresponding carboxylic acids and 
ketones.

228

 Kornblum oxidation Oxidation of alkyl halides to the corresponding carbonyl 
compounds using DMSO as the oxidant. 

250

 Ley oxidation Oxidation of primary and secondary alcohols with 
TPAP/NMO to give the corresponding aldehydes and 
ketones.

260

 Oppenauer oxidation Oxidation of primary and secondary alcohols with ketones 
in the presence of metal alkoxides to afford the 
corresponding aldehydes and ketones. 

320

 Pfitzner-Moffatt oxidation Oxidation of primary and secondary alcohols with 
DCC/DMSO to give the corresponding aldehydes and 
ketones.

346

 Pinnick oxidation Mild oxidation of aldehydes directly to the corresponding 
carboxylic acids using NaClO2 as the oxidant. 

354

 Prilezhaev reaction Oxidation of alkenes to epoxides using peroxycarboxylic 
acids.

362

 Riley selenium dioxide oxidation Oxidation of the methylene group adjacent to a carbonyl 
group or the double bond of olefins (allylic or benzylic 
position) with SeO2.

380

 Rubottom oxidation Oxidation of silyl enol ethers with mCPBA to give -
hydroxy ketones or -hydroxy aldehydes. 

388

 Saegusa oxidation Regioselective introduction of the  carbon-carbon 
double bond to cyclic and acylic ketones via Pd-mediated 
oxidation of the corresponding silyl enol ethers. 

390

 Sharpless asymmetric 
aminohydroxylation  

One-pot enantioselective synthesis of protected vicinal 
amino alcohols from simple alkenes. 

404

 Sharpless asymmetric 
dihydroxylation 

One-pot enantioselective synthesis of vicinal diols from 
simple alkenes. 

406

 Sharpless asymmetric epoxidation Ti-alkoxide-catalyzed epoxidation of prochiral and chiral 
allylic alcohols in the presence of a chiral tartrate ester 
and an alkyl hydroperoxide. 

408

 Shi asymmetric epoxidation Chiral-ketone catalyzed epoxidation of unfunctionalized 
olefins.

410

 Swern oxidation Oxidation of primary and secondary alcohols using 
DMSO/TFAA or oxalyl chloride to afford the 
corresponding aldehydes and ketones. 

450

 Tishchenko reaction Conversion of aldehydes to the corresponding esters in 
the presence of metal alkoxides. 

456

 Wacker oxidation One-pot oxidation of olefins to the corresponding ketones 
in the presence of catalytic amounts of Pd(II)-salts 

474

PERICYCLIC
REACTIONS

 Alder (ene) reaction Activation of an allylic C-H bond and the concomitant 
allylic transposition of the C=C double bond of alkenes. 
(Formally the addition of alkenes to C=C and C=O 
bonds.)

6

cycloaddition Danishefsky's diene cycloaddition Formation of six-membered carbocycles and heterocycles 
using 1-methoxy-3-trimethylsilyloxy-1,3-butadiene. 

126

cycloaddition DeMayo cycloaddition Photochemical [2+2] cycloaddition of enones and alkenes 
to give substituted cyclobutanes. 

132

cycloaddition Diels-Alder cycloaddition The [4+2] cycloaddition of alkenes and dienes to afford 
substituted cyclohexenes.  

140
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REACTION 
CATEGORY 

NAME OF 
REACTIONS 

BRIEF DESCRIPTION OF 
SYNTHETIC USE 

Page# 

PERICYCLIC
REACTIONS
cycloaddition Hetero Diels-Alder cycloaddition The [4+2] cyclization of a diene or heterodiene and a 

dienophile or heterodienophile. 
204

cycloaddition Paterno-Büchi reaction Formation of oxetanes by the photocycloaddition of 
alkenes and carbonyl compounds. 

332

cycloaddition Staudinger ketene cycloaddition Formation of cyclobutanones from alkenes and ketenes. 426
electrocyclization Cornforth rearrangement Thermal rearrangement of 4-carbonyl substituted 

oxazoles to their isomeric oxazoles. 
112

electrocyclization Nazarov cyclization Thermal or photochemical ring-closure of divinyl ketones. 304
sigmatropic rearr. Aza-Claisen rearrangement Thermal [3,3]-sigmatropic rearrangement of N-allyl 

enamines.
20

sigmatropic rearr. Aza-Cope rearrangement Thermal [3,3]-sigmatropic rearrangement of N-substituted 
1,5-dienes.

22

sigmatropic rearr. Aza-Wittig rearrangement Thermal [3,3]-sigmatropic rearrangement of allylic tertiary 
amines to give homoallylic secondary amines. 

26

sigmatropic rearr. Carroll rearrangement Thermal [3,3]-sigmatropic rearrangement of allylic β-keto
esters to afford γ,δ-unsaturated ketones. 

76

sigmatropic rearr. Claisen rearrangement Thermal [3,3]-sigmatropic rearrangement of allyl vinyl 
ethers to give γ,δ-unsaturated carbonyl compounds. 

88

sigmatropic rearr. Claisen-Ireland rearrangement Thermal [3,3]-sigmatropic rearrangement of O-
trialkylsilylketene acetals to γ,δ-unsaturated carboxylic 
acids.

90

sigmatropic rearr. Cope rearrangement Thermal [3,3]-sigmatropic rearrangement of 1,5-dienes to 
the isomeric 1,5-dienes. 

98

sigmatropic rearr. Eschenmoser-Claisen 
rearrangement 

Thermal [3,3]-sigmatropic rearrangement  to generate γ,δ-
unsaturated amides from allylic alcohols and N,N-
dimethylacetamide dimethyl acetal. 

156

sigmatropic rearr. Johnson-Claisen rearrangement Thermal [3,3]-sigmatropic rearrangement of allyl ketene 
acetals  to afford  γ,δ-unsaturated esters. 

226

sigmatropic rearr. Meisenheimer rearrangement Thermal rearrangement of certain tertiary amine N-oxides 
to the corresponding O-substituted-N,N-disubstituted
hydroxylamines. 

282

sigmatropic rearr. Mislow-Evans rearrangement Reversible 1,3-transposition of allylic sulfoxide and allylic 
alcohol functionalities. 

292

sigmatropic rearr. Overman rearrangement The 1,3-transposition of alcohol and amine functionalities 
via the [3,3]-sigmatropic rearrangement of allylic 
trichloroacetimidates.

322

sigmatropic rearr. Oxy-Cope rearrangement Thermal [3,3]-sigmatropic rearrangement of 1,5-diene-3-
ols to afford δ,ε-unsaturated carbonyl compounds. 

324

sigmatropic rearr. Sommelet-Hauser rearrangement The thermal [2,3]-sigmatropic rearrangement of benzylic 
quaternary ammonium salts in the presence of a strong 
base.

422

sigmatropic rearr. Wittig rearrangement Thermal [1,2]-rearrangement of aryl alkyl ethers and also 
the thermal [2,3]-rearrangement of allyl alkyl ethers. 

490

PHOTOCHEMICAL 
REACTIONS

 Bergman cycloaromatization 
reaction

Thermal or photochemical cycloaromatization of 
enediynes to form substituted benzene rings. 

56

 Buchner method of ring expansion Thermal or photochemical reaction of ethyl diazoacetate  
with benzenes and its homologs to give the isomeric 
esters of cycloheptatriene carboxylic acid. 

68

 Curtius rearrangement Thermal or photochemical rearrangement of acyl azides 
to give isocyanates. 

116

 DeMayo cycloaddition Photochemical [2+2] cycloaddition of enones and alkenes 
to give substituted cyclobutanes. 

132

 Fries rearrangement Conversion of phenolic esters to the corresponding 
phenolic ketones and aldehydes. 

180

 Nazarov cyclization Thermal or photochemical ring-closure of divinyl ketones. 304
 Paterno-Büchi reaction Formation of oxetanes by the photocycloaddition of 

alkenes and carbonyl compounds. 
332

 Vinylcyclopropane-cyclopentene 
rearrangement 

Thermal or photochemical rearrangement of substituted 
vinylcyclopropanes to substituted cyclopentenes. 

470

 Wolff rearrangement Thermal or photochemical rearrangement of α-diazo 
ketones to form ketenes. 

494

RADICAL 
REACTIONS

alkylation Minisci reaction Substitution of protonated heteroaromatic bases by 
nucleophilic carbon-centered radicals. 

290

allylation Keck radical allylation Coupling of alkyl halides with allyltributyltin in the 
presence of a radical initiator (e.g. AIBN) 

240
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REACTION 
CATEGORY 

NAME OF 
REACTIONS 

BRIEF DESCRIPTION OF 
SYNTHETIC USE 

Page# 

RADICAL 
REACTIONS

arylation Meerwein arylation  Arylation of unsaturated carbonyl compounds using 
diazonium salts. 

278

decarboxylation Barton radical decarboxylation 
reaction

Reductive decarboxylation of thiohydroxamate esters to 
give alkanes. 

44

decarboxylation Hunsdiecker reaction Halogenative decarboxylation of carboxylic acids to give 
one-carbon shorter alkyl halides. 

218

deoxygenation Barton-McCombie radical 
deoxygenation

Reductive deoxygenation of thioxoesters to give the 
corresponding alkanes. 

46

halogenation  Sandmeyer reaction Formation of aryl halides from the corresponding 
diazonium salts via an aryl radical. 

394

halogenation Wohl-Ziegler bromination Bromination of alkenes and alkylbenzenes at the allylic or 
benzylic position. 

492

remote
functionalization 

Barton nitrite ester reaction Thermal or photolytic reaction of nitrite esters to afford γ-
hydroxy oximes. 

42

remote
functionalization 

Hofmann-Löffler-Freytag reaction Thermal or photolytic reaction of N-halogenated amines 
to form cyclic amines. 

208

REACTIONS 
INVOLVING 
CARBENES

 Buchner method of ring expansion Thermal or photochemical reaction of ethyl diazoacetate  
with benzenes and its homologs to give the isomeric 
esters of cycloheptatriene carboxylic acid. 

68

 Ciamician-Dennstedt 
rearrangement 

Synthesis of 3-halopyridines from pyrroles and 2-
haloquinolines from indoles. 

84

 Doering-LaFlamme allene 
synthesis 

Preparation of allenes from olefins. 146

 Reimer-Tiemann reaction  Preparation of formylated phenols from substituted 
phenols

378

 Wolff rearrangement Thermal or photochemical rearrangement of α-diazo 
ketones to form ketenes. 

494

REACTIONS 
INVOLVING 
CARBONYL 

COMPOUNDS
 Aldol reaction Addition of an enol/enolate of a carbonyl compound  to an 

aldehyde or ketone to form a β-hydroxycarbonyl 
compound.

8

 Barbier coupling reaction Metal-mediated addition of alkyl, allyl or benzyl halides to 
carbonyl compounds. 

38

 Baylis-Hillman reaction Formation of a C-C single bond between the α-position of 
conjugated carbonyl compounds or conjugated carboxylic 
acid derivatives and aldehydes or ketones. 

48

 Benzoin and retro-benzoin 
condensation

Reaction of aldehydes to form α-hydroxy ketones in the 
presence of a nucleophilic catalyst (e.g. cyanide ion). 

54

 Corey-Chaykovsky epoxidation Preparation of epoxides from aldehydes and ketones 
using sulfur ylides. 

102

 Corey-Fuchs alkyne synthesis One-carbon homologation of aldehydes to form the 
corresponding terminal alkynes. 

104

 Dakin oxidation  Conversion of aromatic aldehydes and ketones to the 
corresponding phenols. 

118

 Eschweiler-Clarke methylation One-pot reductive methylation of primary and secondary 
amines to the corresponding tertiary amines using 
formaldehyde and a reducing agent. 

160

 Evans aldol reaction Reaction of boron enolates with aldehydes to afford syn
aldol products. 

162

 Grignard reaction Addition of organomagnesium species to aldehydes and 
ketones to form secondary alcohols and tertiary alcohols, 
respectively. 

188

 Hantzsch dihydropyridine synthesis Preparation of dihydropyridines from 1,3-diketones, 
aldehydes and ammonia. 

194

 Henry reaction Aldol condensation between nitroalkanes and carbonyl 
compounds to form β-nitro alcohols. 

202

 HWE olefination Stereoselective olefination of aldehydes and ketones 
using phosphoryl-stabilized carbanions. 

212

 HWE olefination-Still modification Preparation of (Z)-α,β-unsaturated ketones and esters by 
coupling electrophilic bis(trifluoroalkyl) phosphonoesters 
with aldehydes and ketones in the presence of  a strong 
base.

214



514

REACTION 
CATEGORY 

NAME OF 
REACTIONS 
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SYNTHETIC USE 

Page# 

REACTIONS 
INVOLVING 
CARBONYL 

COMPOUNDS
 Kagan-Molander coupling SmI2-mediated addition of alkyl, allyl or benzyl halides to 

carbonyl compounds. 
232

 Keck asymmetric allylation The reaction of aldehydes with allyltributylstannane in the 
presence of Lewis acid catalysts to form homoallylic 
alcohols.

236

 Knoevenagel condensation Condensation of aldehydes and ketones with active 
methylene compounds to afford α,β-unsaturated 
dicarbonyl or related compounds. 

242

 Mannich reaction The condensation of CH activated compound with a 
primary or secondary amine and a non-enolizable 
carbonyl compound to afford aminoalkylated derivatives. 

274

 Mukaiyama aldol reaction Lewis acid mediated addition of enol silanes to carbonyl 
compounds.

298

 Passerini multicomponent reaction Condensation of isocyanides with carboxylic acids and 
carbonyl compounds to afford α-acyloxycarboxamides. 

330

 Perkin reaction Condensation of aromatic aldehydes with the anhydrides 
of aliphatic carboxylic acids to afford α,β-unsaturated 
carboxylic acids. 

338

 Peterson olefination Preparation of alkenes from α-silyl carbanions and 
carbonyl compounds. 

344

 Pictet-Spengler tetrahydro-
isoquinoline synthesis 

Synthesis of tetrahydroisoquinolines and isoquinolines 
from β-arylethylamines. 

348

 Prins reaction Acid-catalyzed condensation of alkenes with aldehydes. 364
 Reformatsky reaction Zinc-induced reaction between an α-halo ester and an 

aldehyde or ketone to afford a β-hydroxy ketone. 
374

 Robinson annulation  Formation of bicyclic enones from 1,5-diketones. 384
 Roush asymmetric allylation Reaction of allylboronates with aldehydes to give 

homoallylic alcohols. 
386

 Sakurai allylation Reaction of allylsilanes with a variety of aldehydes and 
ketones in the presence of a Lewis acid. 

392

 Seyferth-Gilbert homologation Preparation of alkynes from aldehydes and ketones. 402
 Stetter reaction Formation of 1,4-diketones from aldehydes and α,β-

unsaturated carbonyl compounds in the presence of a 
nucleophilic catalyst. 

432

 Stobbe condensation Formation of alkylidene succinic acids or their 
monoesters from dialkyl succinates and carbonyl 
compounds.

442

 Strecker reaction The condensation of carbonyl compounds with amines 
and nitriles to afford α-amino nitriles. 

446

 Takai-Utimoto olefination The chromium(II)-mediated one-carbon homologation of 
aldehydes to the corresponding (E)-alkenyl halides. 

452

 Tebbe olefination One-carbon homologation of carbonyl compounds to 
afford the corresponding 1,1-disubstituted alkenes. 

454

 Wittig reaction Formation of carbon-carbon double bonds from carbonyl 
compounds and phosphorous ylides. 

486

 Wittig reaction-Schlosser 
modification

One-pot multistep preparation of (E)-alkenes from 
"nonstabilized" phosphorous ylides and carbonyl 
compounds by the equilibration of the intermediate 
lithiobetaines.

488

REARRANGE-
MENTS
anionic Baker-Venkataraman 

rearrangement 
Base-catalyzed rearrangement of aromatic ortho-
acyloxyketones to aromatic β-diketones. 

30

anionic Benzilic acid rearrangement Rearrangement of 1,2-diketones to give the salts of α-
hydroxy acids. 

52

anionic Brook rearrangement Intramolecular anionic [1,n]-migration of silyl groups from 
a carbon to an oxygen atom. 

64

anionic Ciamician-Dennstedt 
rearrangement 

Synthesis of 3-halopyridines from pyrroles and 2-
haloquinolines from indoles. 

84

anionic Favorskii rearrangement Skeletal rearrangement of α-halo ketones via a 
cyclopropanone intermediate to give carboxylic acids or 
carboxylic acid derivatives. 

164

anionic Hofmann rearrangement Conversion of primary carboxamides to one-carbon 
shorter primary amines. 

210

anionic Lossen rearrangement Conversion of O-acyl hydroxamic acids to the 
corresponding isocyanates. 

266
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REARRANGE-
MENTS
anionic Payne rearrangement The base-catalyzed intramolecular nucleophilic 

displacement of 2,3-epoxy alcohols to give the isomeric 
2,3-epoxy alcohols. 

336

anionic Quasi-Favorskii rearrangement  Skeletal rearrangement of bicyclic α-halo ketones in 
which the halogen is located at the bridgehead position to 
afford carboxylic acids or carboxylic acid derivatives. 

370

anionic Ramberg-Bäcklund rearrangement Base-induced rearrangement of α-halogenated sulfones 
via episulfone intermediates to produce alkenes. 

372

anionic Smiles rearrangement Intramolecular nucleophilic aromatic rearrangement of 
activated aromatic substrates. 

416

anionic Wittig rearrangement Thermal [1,2]-rearrangement of aryl alkyl ethers and also 
the thermal [2,3]-rearrangement of allyl alkyl ethers. 

490

ANRORC Dimroth rearrangement Isomerization of heterocycles in which endocyclic or 
oxocyclic heteroatoms and their attached substituents are 
translocated via a ring-opening-ring-closure sequence. 

144

biradical or dipolar Vinylcyclopropane-cyclopentene 
rearrangement 

Thermal or photochemical rearrangement of substituted 
vinylcyclopropanes to substituted cyclopentenes. 

470

cationic Amadori reaction/rearrangement The acid- or base-catalyzed isomerization of N-glycosides 
of aldoses to form 1-amino-1-deoxy ketoses. 

14

cationic Beckmann rearrangement Conversion of aldoximes and ketoximes to the 
corresponding amides in acidic medium. 

50

cationic Demjanov and Tiffeneau-Demjanov 
rearrangement 

The ring enlargement of 1-aminomethyl cycloalkanes to 
the corresponding cycloalkanols and the ring-
enlargement of 1-aminomethyl cycloalkanols to the 
corresponding cycloalkanones. 

134

cationic Dienone-phenol rearrangement Acid-catalyzed migration of alkyl groups in 
cyclohexadienones to afford substituted phenols. 

142

cationic Ferrier reaction Lewis acid promoted rearrangement of unsaturated 
carbohydrates (glycals) in the presence of nucleophiles to 
the corresponding 2,3-unsaturated glycosyl compounds. 

168

cationic Fries rearrangement  Synthesis of acylated phenols from O-acyl phenols. 180
cationic Meyer-Schuster and Rupe 

rearrangement 
Acid-catalyzed isomerization of secondary and tertiary 
propargylic alcohols to the corresponding α,β-unsaturated 
aldehydes or ketones. 

284

cationic Petasis-Ferrier rearrangement Lewis acid-promoted rearrangement of cyclic enol acetals 
to the corresponding substituted tetrahydrofurans and 
tetrahydropyrans. 

342

cationic Pinacol rearrangement Acid-catalyzed transformation of 1,2-diols to give the 
corresponding rearranged ketones or aldehydes. 

350

cationic Prins-Pinacol rearrangement Formation of oxacyclic and carbocyclic ring systems by 
terminating Prins cyclizations with the pinacol 
rearrangement in a tandem fashion. 

366

cationic Pummerer rearrangement Formation of α-substituted sulfides from the 
corresponding sulfoxides. 

368

cationic Schmidt reaction Reaction of carboxylic acids and carbonyl compounds 
with hydrazoic acid or alkyl azides to afford the 
corresponding amines, nitriles or amides, respectively. 

396

cationic Wagner-Meerwein rearrangement Generation of a carbocation followed by the [1,2]-shift of 
an adjacent carbon-carbon bond to generate a new 
carbocation.

476

concerted Baeyer-Villiger 
oxidation/rearrangement 

Transformation of ketones to esters and cyclic ketones to 
lactones by peroxyacids. 

28

dipolar Cornforth rearrangement Thermal rearrangement of 4-carbonyl substituted 
oxazoles to their isomeric oxazoles. 

112

neutral Curtius rearrangement Thermal or photochemical rearrangement of acyl azides 
to give isocyanates. 

116

neutral Wolff rearrangement Thermal or photochemical rearrangement of α-diazo 
ketones to form ketenes. 

494

radical pair Stevens rearrangement Base-promoted transformation of sulfonium or quaternary 
ammonium salts to sulfides or tertiary amines. 

434

sigmatropic
(neutral)

Aza-Claisen rearrangement Thermal [3,3]-sigmatropic rearrangement of N-allyl 
enamines.

20

sigmatropic
(neutral)

Aza-Cope rearrangement Thermal [3,3]-sigmatropic rearrangement of N-substituted 
1,5-dienes.

22

sigmatropic
(anionic)

Aza-Wittig rearrangement Thermal [3,3]-sigmatropic rearrangement of allylic tertiary 
amines to give homoallylic secondary amines. 

26

sigmatropic
(neutral)

Carroll rearrangement Thermal [3,3]-sigmatropic rearrangement of allylic β-keto
esters to afford γ,δ-unsaturated ketones. 

76
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REARRANGE-
MENTS

sigmatropic
(neutral)

Claisen rearrangement Thermal [3,3]-sigmatropic rearrangement of allyl vinyl 
ethers to give γ,δ-unsaturated carbonyl compounds. 

88

sigmatropic
(neutral)

Claisen-Ireland rearrangement Thermal [3,3]-sigmatropic rearrangement of O-
trialkylsilylketene acetals to γ,δ-unsaturated carboxylic 
acids.

90

sigmatropic
(neutral)

Cope rearrangement Thermal [3,3]-sigmatropic rearrangement of 1,5-dienes to 
the isomeric 1,5-dienes. 

98

sigmatropic
(neutral)

Eschenmoser-Claisen
rearrangement 

Thermal [3,3]-sigmatropic rearrangement  to generate γ,δ-
unsaturated amides from allylic alcohols and N,N-
dimethylacetamide dimethyl acetal. 

156

sigmatropic
(neutral)

Johnson-Claisen rearrangement Thermal [3,3]-sigmatropic rearrangement of allyl ketene 
acetals  to afford  γ,δ-unsaturated esters. 

226

sigmatropic anionic 
for [2,3]  and radical 

for [1,2] 

Meisenheimer rearrangement Thermal rearrangement of certain tertiary amine N-oxides 
to the corresponding O-substituted-N,N-disubstituted
hydroxylamines. 

282

sigmatropic
(anionic)

Mislow-Evans rearrangement Reversible 1,3-transposition of allylic sulfoxide and allylic 
alcohol functionalities. 

292

sigmatropic
(neutral)

Overman rearrangement The 1,3-transposition of alcohol and amine functionalities 
via the [3,3]-sigmatropic rearrangement of allylic 
trichloroacetimidates.

322

sigmatropic
(anionic)

Oxy-Cope rearrangement Thermal [3,3]-sigmatropic rearrangement of 1,5-diene-3-
ols to afford δ,ε-unsaturated carbonyl compounds. 

324

sigmatropic
(anionic)

Sommelet-Hauser rearrangement The thermal [2,3]-sigmatropic rearrangement of benzylic 
quaternary ammonium salts in the presence of a strong 
base.

422

REDUCTION
 Birch reduction 1,4-Reduction of aromatic rings using alkali metals 

dissolved in liquid ammonia as reducing agents. 
60

 Clemmensen reduction Conversion of a carbonyl group to the corresponding 
methylene group using Zn(Hg)/HCl. 

92

 Corey-Bakshi-Shibata reduction Enantioselective reduction of ketones with BH3 using 
oxazaborolidines as catalysts. 

100

 Eschweiler-Clarke methylation One-pot reductive methylation of primary and secondary 
amines to the corresponding tertiary amines using 
formaldehyde and a reducing agent. 

160

 Luche reduction Reduction of enones to the corresponding allylic alcohols 
using CeCl3/NaBH4.

268

 Meerwein-Ponndorf-Verley 
reduction

The reduction of aldehydes and ketones by metal 
alkoxides to the corresponding alcohols 

280

 Midland Alpine borane reduction Enantioselective reduction of ketones using Alpine 
borane.

288

 Noyori asymmetric hydrogenation Formation of enantio-enriched carboxylic acids, alcohols 
and amino acids from unsaturated carboxylic acids, allylic 
alcohols and enamides, respectively. 

316

 Staudinger reduction Reduction of azides with triphenylphosphine. 428
 Stephen aldehyde synthesis Reduction of nitriles with SnCl2/HCl to give the 

corresponding aldehydes. 
430

 Tishchenko reaction Conversion of aldehydes to the corresponding esters in 
the presence of metal alkoxides. 

456

 Wolff-Kishner reduction Deoxygenation of aldehydes and ketones under basic 
conditions to give hydrocarbons via the corresponding 
hydrazones or semicarbazones. 

496

RING
CONTRACTION

 Benzilic acid rearrangement Rearrangement of 1,2-diketones to give the salts of α-
hydroxy acids. 

52

 Favorskii rearrangement Skeletal rearrangement of α-halo ketones via a 
cyclopropanone intermediate to give carboxylic acids or 
carboxylic acid derivatives. 

164

 Quasi-Favorskii rearrangement  Skeletal rearrangement of bicyclic α-halo ketones in 
which the halogen is located at the bridgehead position to 
afford carboxylic acids or carboxylic acid derivatives. 

370

RING
EXPANSION

 Buchner method of ring expansion Thermal or photochemical reaction of ethyl diazoacetate  
with benzenes and its homologs to give the isomeric 
esters of cycloheptatriene carboxylic acid. 

68
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RING
EXPANSION

 Ciamician-Dennstedt 
rearrangement 

Synthesis of 3-halopyridines from pyrroles and 2-
haloquinolines from indoles. 

84

 Demjanov and Tiffeneau-Demjanov 
rearrangement 

The ring enlargement of 1-aminomethyl cycloalkanes to 
the corresponding cycloalkanols and the ring-
enlargement of 1-aminomethyl cycloalkanols to the 
corresponding cycloalkanones. 

134

TRANSITION 
METAL 

CATALYZED 
COUPLINGS
Cu-catalyzed Castro-Stevens coupling The copper(I)-mediated coupling of aryl or vinyl halides 

with aryl- or alkyl-substituted alkynes to afford 
disubstituted alkynes or enynes. 

78

Cu-catalyzed Glaser coupling Preparation of symmetrical conjugated diynes and 
polyynes by the oxidative homocoupling of terminal 
alkynes in the presence of copper salts. 

186

Cu-catalyzed Ullmann biaryl ether synthesis Cu-mediated synthesis of biaryl ethers by coupling aryl 
halides and phenols. 

464

Cu-catalyzed Ullmann reaction Cu-mediated coupling of two aryl halides to afford 
symmetrical or unsymmetrical biaryls. 

466

Pd-catalyzed Buchwald-Hartwig cross-coupling Direct Pd-catalyzed C-N and C-O bond formation 
between aryl halides and amines or alcohols. 

70

Pd-catalyzed Heck reaction Pd-catalyzed arylation or alkenylation of olefins. 196
Pd- or Ni-catalyzed Kumada cross-coupling Cross-coupling of alkenyl- or aryl halides and Grignard 

reagents or organolithium species. 
258

Pd-catalyzed Larock indole synthesis Preparation of 2,3-disubstituted indoles from ortho-
iodoanilines and disubstituted alkynes. 

260

Pd-catalyzed Miyaura boration Pd-catalyzed cross-coupling of aromatic and 
heteroaromatic halides or triflates with tetraalkoxydiboron 
compounds to give arylboronic and heteroarylboronic 
esters.

296

Pd- or Ni-catalyzed Negishi cross-coupling Pd- or Ni-catalyzed cross-coupling of organozincs and 
aryl- or alkenyl- or alkynyl halides. 

310

Pd and Cu-
catalyzed 

Sonogashira cross-coupling Cu-Pd-catalyzed coupling of terminal alkynes with aryl 
and vinyl halides to give enynes. 

424

Pd-catalyzed Stille carbonylative cross-coupling Pd-catalyzed coupling of organostannanes and alkenyl- 
or aryl halides and CO to form ketones. 

436

Pd-catalyzed Stille cross-coupling Pd-catalyzed coupling of organostannanes and alkenyl- 
or aryl halides. 

438

Pd-catalyzed Stille-Kelly coupling Pd-catalyzed intramolecular biaryl coupling of aryl halides 
or aryl triflates in the presence of distannanes. 

440

Pd-catalyzed Suzuki cross-coupling Pd-catalyzed coupling between organoboron compounds 
and organic halides and triflates. 

448

Pd-catalyzed Tsuji-Trost allylation Pd-catalyzed allylation of carbon nucleophiles with allylic 
compounds via -allylpalladium complexes. 

458
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8.4   AFFECTED FUNCTIONAL GROUPS 

AFFECTED 
FUNCTIONAL 

GROUP

NEWLY FORMED  
FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

ACETAL 
γ,δ-unsaturated amide Eschenmoser-Claisen rearrangement 

ALCOHOL
1° alcohol γ-hydroxy oxime Barton nitrite ester reaction 
1° alcohol aldehyde Corey-Kim oxidation, Dess-Martin oxidation, Ley oxidation, 

Oppenauer oxidation, Pfitzner-Moffatt oxidation, Swern oxidation 
1° alcohol alkane Barton-McCombie radical deoxygenation 
1° alcohol alkene Chugaev elimination 
1° alcohol amine Mitsunobu reaction 
1° alcohol azide Mitsunobu reaction 
1° alcohol carboxylic acid Jones oxidation 
1° alcohol ester  Mitsunobu reaction 
1° alcohol ether Mitsunobu reaction, Williamson ether synthesis 
1° alcohol lactone Corey-Nicolaou macrolactonization, Keck macrolactonization, 

Yamaguchi macrolactonization 
1° alcohol nitrile Mitsunobu reaction 
1° alcohol sulfide Mitsunobu reaction 
2° alcohol γ-hydroxy oxime Barton nitrite ester reaction 
2° alcohol alkane Barton-McCombie radical deoxygenation 
2° alcohol alkene Burgess dehydration, Chugaev elimination 
2° alcohol amine Mitsounobu reaction 
2° alcohol azide Mitsunobu reaction 
2° alcohol ester Mitsunobu reaction, Schotten-Baumann reaction 
2° alcohol ether Mitsunobu reaction, Williamson ether synthesis 
2° alcohol ketone Corey-Kim oxidation, Dess-Martin oxidation, Jones oxidation, Ley 

oxidation, Oppenauer oxidation, Pfitzner-Moffatt oxidation, Swern 
oxidation

2° alcohol lactone Corey-Nicolaou macrolactonization, Keck macrolactonization, 
Yamaguchi macrolactonization 

2° alcohol nitrile Mitsunobu reaction 
2° alcohol sulfide Mitsunobu reaction 
3° alcohol γ-hydroxy oxime Barton nitrite ester reaction 
3° alcohol alkane Barton-McCombie radical deoxygenation 
3° alcohol alkene Burgess dehydration, Chugaev elimination, Grob fragmentation 
3° alcohol amide Ritter reaction 
3° alcohol ester Schotten-Baumann reaction 
3° alcohol ether Williamson ether synthesis
3° alcohol lactone Corey-Nicolaou macrolactonization, Keck macrolactonization, 

Yamaguchi macrolactonization
allylic alcohol γ,δ-unsaturated amide Eschenmoser-Claisen rearrangement 
allylic alcohol γ,δ-unsaturated ester Johnson-Claisen rearrangement 
allylic alcohol allylic amide Overman rearrangement 
allylic alcohol epoxy alcohol Sharpless asymmetric epoxidation 
allylic alcohol saturated enantio-enriched alcohol Noyori asymmetric hydrogenation 
propargylic alcohol α,β-unsaturated ketone Meyer-Schuster and Rupe rearrangement 
propargylic alcohol propargyl-substituted compound Nicholas reaction 

ALDEHYDE
α,β-epoxy ester Darzens glycidic ester condensation
α,β-unsaturated carboxylic acid Perkin reaction
α-amino nitrile Strecker reaction
β-nitro alcohol Henry reaction 
γ-oxo ester Stetter reaction 
γ-oxo nitrile Stetter reaction 
1,3-diol Prins reaction 
1,4,7-triketone Stetter reaction 
1,4-diketone Stetter reaction 
alkane Tsuji-Wilkinson decarbonylation 
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AFFECTED 
FUNCTIONAL 

GROUP

NEWLY FORMED  
FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

ALDEHYDE
alkene McMurry coupling, Wittig reaction, Wittig reaction-Schlosser 

modification, Bamford-Stevens-Shapiro reaction, HWE olefination, 
HWE olefination-Still modification, Julia-Lythgoe olefination, 
Peterson olefination, Takai reaction, Tebbe olefination, Stobbe 
condensation, Perkin reaction, Knoevenagel condensation 

alkyne Corey-Fuchs alkyne synthesis, Seyferth-Gilbert homologation 
allylic alcohol Baylis-Hillman reaction 
amide Passerini reaction, Ugi multicomponent reaction 
amine Eschweiler-Clarke methylation, Baylis-Hillman reaction, Petasis 

boronic acid-Mannich reaction
carboxylic acid Jones oxidation, Cannizzaro reaction, Pinnick oxidation 
epoxide Corey-Chaykovsky epoxidation 
ester Tishchenko reaction, Dakin oxidation (aromatic aldehydes only) 
homoallylic alcohol Sakurai allylation, Roush asymmetric allylation, Keck asymmetric 

allylation 
imine Aza-Wittig reaction 
nitrile Schmidt reaction 
nitroalkene Henry reaction 
primary alcohol Meerwein-Ponndorf-Verley reduction, Cannizzaro reaction 
secondary alcohol Barbier coupling reaction, Grignard reaction, Aldol reaction, Evans 

aldol reaction, Nozaki-Hiyama-Kishi reaction, Sakurai allylation, 
Roush asymmetric allylation, Keck asymmetric allylation 

tetrahydroisoquinoline Pictet-Spengler tetrahydroisoquinoline synthesis 
ALKENE

 1,2-diol Sharpless asymmetric dihydroxylation, Prévost reaction 
 1,3-diene Enyne metathesis, Heck reaction 
 1,3-diol Prins reaction 
 1,5-diketone DeMayo cycloaddition 
 alcohol Brown hydroboration reaction/oxidation 
 alkylborane Brown hydroboration 
 alkylzirconium Schwartz hydrozirconation 
 allene Doering-LaFlamme allene synthesis 
 allylic alcohol Baylis-Hillman reaction 
 allylic alcohol Riley selenium dioxide oxidation, Prins reaction 
 allylic bromide Wohl-Ziegler bromination 
 amide Ritter reaction 
 amino alcohol Sharpless asymmetric aminohydroxylation 
 arylated alkene Heck reaction, Meerwein arylation 
 cyclic alkene Alkene metathesis, Diels-Alder cycloaddition 
 cyclobutane DeMayo cycloaddition 
 cyclobutanone Staudinger ketene cycloaddition 
 cyclopentenone Pauson-Khand reaction 
 cyclopropane Simmons-Smith cyclopropanation 
 epoxide Jacobsen-Katsuki epoxidation, Sharpless asymmetric epoxidation, 

Davis' oxaziridine oxidation, Prilezhaev reaction, Shi asymmetric 
epoxidation

 heteroatom-substituted alkene Wacker oxidation 
 methyl ketone Wacker oxidation 
 oxetane Paterno-Büchi reaction 
 unsymmetrically substituted 

alkene
Alkene metathesis 

ALKYNE
 1,3-diene Enyne metathesis 
 1,3-diyne Glaser coupling 
 2,3-disubstituted indole Larock indole synthesis 
 aldehyde Brown hydroboration/oxidation 
 aryl substituted alkyne Castro-Stephens coupling, Sonogashira cross-coupling 
 cyclopentenone Pauson-Khand reaction 
 disubstituted alkyne Alkyne metathesis 
 enyne Sonogashira cross-coupling 
 highly substituted benzene ring Danheiser benzannulation, Dötz benzannulation 
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AFFECTED 
FUNCTIONAL 

GROUP

NEWLY FORMED  
FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

ALKYNE
 ketone Brown hydroboration/oxidation 
 macrocyclic alkyne Alkyne metathesis 
 substituted 1,4-cyclohexadiene Diels-Alder cycloaddition, Danishefsky's diene cycloaddition 
 vinylborane (alkenylborane) Brown hydroboration 

ALLENE
 substituted cyclopentene Danheiser cyclopentene annulation 

AMIDE
1° amide carbamate Hofmann rearrangement 
1° amide primary amine Hofmann rearrangement 
1° amide substituted amidine Aza-Wittig reaction 
1° amide substituted urea Hofmann rearrangement 
2° amide 2,3-disubstituted indole Madelung indole synthesis 
2° amide 3,4-dihydro isoquinoline Bischler-Napieralski isoquinoline synthesis 
2° amide isoquinoline Bischler-Napieralski isoquinoline synthesis 
2° amide N-substituted enamine Tebbe olefination 
3° amide α,β-unsaturated aldehyde Vilsmeier-Haack formylation 
3° amide α-alkylated aldehyde Myers asymmetric alkylation 
3° amide α-alkylated amide Myers asymmetric alkylation 
3° amide α-alkylated carboxylic acid Myers asymmetric alkylation 
3° amide α-diazo amide Regitz diazo transfer 
3° amide β-hydroxy carbonyl  compound Evans aldol reaction 
3° amide ketone Weinreb ketone synthesis 
3° amide N,N-disubstituted 

cyclopropylamine 
Kulinkovich reaction 

3° amide N,N-disubstituted enamine Tebbe olfination 
3° amide substituted benzaldehyde Vilsmeier-Haack formylation 
3° amide β-alkylated primary alcohol Myers asymmetric alkylation 

AMINE
1° amine α-acylamino carboxamide Ugi multicomponent reaction 
1° amine α-amino carboxamide Ugi muticomponent reaction 
1° amine α-amino nitrile Strecker reaction 
1° amine amide Schotten-Baumann reaction 
1° amine cycloalkanol Demjanov rearrangement 
1° amine cycloalkanone Demjanov and Tiffeneau-Demjanov rearrangement 
1° amine hydantoinimide Ugi multicomponent reaction 
1° amine tetrahydroisoquinoline Pictet-Spengler tetrahydroisoquinoline synthesis 
1° amine Mannich base Mannich reaction 
1° amine secondary aromatic amine Buchwald-Hartwig cross-coupling, Chichibabin amination reaction 
1° amine tetrazole Ugi multicomponent reaction 
1° amine thiohydantoinimide Ugi multicomponent reaction 
2° amine α-acylamino carboxamide Ugi multicomponent reaction 
2° amine α-amino carboxamide Ugi multicomponent reaction 
2° amine α-amino nitrile Strecker reaction 
2° amine allylic amine Petasis boronic acid-Mannich reaction 
2° amine amide  Schotten-Baumann reaction 
2° amine hydroxylamine Davis' oxaziridine oxidation 
2° amine Mannich base Mannich reaction 
2° amine tertiary aromatic amine Buchwald-Hartwig cross-coupling 
2° amine tetrazole Ugi muticomponent reaction 
3° amine alkene Cope elimination 
3° amine homoallylic secondary amine Aza-Wittig rearrangement 
3° amine N,N-dialkyl hydroxylamine Cope elimination 
3° amine N-oxide Davis' oxaziridine oxidation 
3° amine rearranged tertiary amine Stevens rearrangement 
allylic amine 1,2-oxazaheterocycle Meisenheimer rearrangement 
allylic amine homoallylic amine Aza-[2,3]-Wittig rearrangement 
allylic amine imine Aza-Claisen rearrangement 
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AFFECTED 
FUNCTIONAL 

GROUP

NEWLY FORMED  
FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

AMINE
allylic amine O-allyl-N,N-disubstituted 

hydroxylamine 
Meisenheimer rearrangement 

aryl amine amide Ugi multicomponent reaction 
aryl amine aryl bromide Sandmeyer reaction 

aryl amine aryl chloride Sandmeyer reaction 
aryl amine aryl fluoride Balz-Schiemann reaction 
aryl amine aryl iodide Sandmeyer reaction 
aryl amine aryl substituted alkene Meerwein arylation 
aryl amine diaryl amine Buchwald-Hartwig cross-coupling, Ullmann biaryl amine synthesis 
aryl amine N-aryl substituted pyrrole Paal-Knorr pyrrole synthesis 
aryl amine N-methyl aryl amine Eschweiler-Clarke methylation 
aryl amine N-oxide Davis' oxaziridine oxidation 
aryl amine ortho-acyl aryl amine Houben-Hoesch reaction 
aryl amine substituted quinoline Combes quinoline synthesis, Skraup and Doebner-Miller quinoline 

synthesis 
aryl amine thiohydantoinimide Ugi multicomponent reaction 
N-halo amine amine Hofmann-Löffler-Freytag reaction 

ANHYDRIDE
α,β-unsaturated carboxylic acid Perkin reaction 
α-halogenated anhydride Hell-Volhard-Zelinsky reaction 

 aromatic ketone  Friedel-Crafts acylation 
 enol ether Petasis-Tebbe olefination 
 tertiary amide Polonovski reaction 
 titanium enolate Tebbe olefination 

AZIDE
acyl azide isocyanate Curtius rearrangement 
alkyl azide imine Aza-Wittig reaction 
alkyl azide iminophosphorane Staudinger reaction 
aryl azide imine Aza-Wittig reaction 
aryl azide iminophosphorane Staudinger reaction 

CARBONATE
 allylated products Tsuji-Trost allylation 
 ketene acetal Tebbe olefination 

CARBOXYLIC  
ACID

α-acyloxycarboxamide Passerini multicomponent reaction 
α-bromo acid bromide Hell-Volhard-Zelinsky reaction 

 alkane Barton radical decarboxylation reaction 
 alkyl bromide Hunsdiecker reaction 
 homologated carboxylic acid Arndt-Eistert homologation 
 isocyanate Curtius rearrangement 
 lactone Keck macrolactonization, Corey-Nicolaou macrolactonization, 

Yamaguchi macrolactonization 
 primary amine Curtius rearrangement, Schmidt reaction 
CYCLOPROPANE

vinylcyclopropane cyclopentene Vinylcyclopropane-cyclopentene rearrangement 
DIENE

1,5-diene 1,5-diene Cope rearrangement 
1,3-diene aryl substituted diene Heck reaction 
1,3-diene six-membered heterocycle Hetero Diels-Alder cycloaddition 
1,3-diene substituted cyclohexene Diels-Alder reaction, Danishefsky's diene cycloaddition 

ENAMINE
α-alkylated aldehyde Stork enamine synthesis 
α-alkylated ketone Stork enamine synthesis 
β-diketone Stork enamine synthesis 

ENAMIDE
 enantio-enriched amino acid Noyori asymmetric hydrogenation 
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FUNCTIONAL 

GROUP
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FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

ENOL ETHER
α,β-unsaturated ketone Saegusa oxidation 
β-hydroxy carbonyl compound Mukaiyama aldol reaction 
α-hydroxy ketone Rubottom oxidation, Davis' oxaziridine oxidation 

 substituted cyclohexanone Ferrier reaction/rearrangement 
ENONE

 1,3-dicarbonyl compound Wacker oxidation 
 1,4-diketone Stetter reaction 
 allylic alcohol Baylis-Hillman reaction 
 allylic alcohol Luche reduction 
 arylated enone Meerwein arylation 
 cyclopropane Corey-Chaykovsky cyclopropanation 
 Michael adduct Michael addition 
 phenol Dienone-Phenol rearrangement 
 quinoline Skraup and Doebner-Miller quinoline synthesis 
 substituted enone Heck reaction 
 substituted pyridine Kröhnke pyridine synthesis 

ENYNE
 1,3-diene Enyne metathesis 

EPOXIDE
 allylated product Tsuji-Trost allylation 
 enantiomerically pure epoxide Jacobsen hydrolytic kinetic resolution 
 polyol Smith-Tietze multicomponent dithiane coupling 

ESTER
α,β-unsaturated
ester

allylic alcohol Baylis-Hillman reaction 

α-halo ester β-hydroxy ketone Reformatsky reaction 
β-keto ester α-diazo-β-keto ester Regitz diazo transfer 
β-keto ester alkylated β-keto ester Acetoacetic ester synthesis 
β-keto ester ketone Krapcho dealkoxycarbonylation 
β-keto ester substituted coumarin von Pechmann reaction 
β-keto ester substituted furan Feist-Benary furan synthesis 
β-keto ester substituted pyrrole Knorr pyrrole synthesis 
carboxylic acid ester α,β-epoxy ester Darzens glycidic ester condensation 
carboxylic acid ester γ,δ-unsaturated acid Claisen-Ireland rearrangement 
carboxylic acid ester alcohol Kagan-Molander samarium-diiodide coupling 
carboxylic acid ester cyclopropanol Kulinkovich reaction 
carboxylic acid ester enol ether Tebbe olefination, Petasis-Tebbe olefination 
carboxylic acid ester tertiary alcohol Grignard reaction 
diester α-hydroxy ketone Acyloin condensation 
diester β-keto ester Claisen condensation, Dieckmann condensation 
diester substituted malonic ester Malonic ester synthesis 
nitrite ester hydroxy oxime Barton nitrite ester reaction 
phenolic ester acylated phenol Fries rearrangement 
phosphonate ester alkene HWE olefination,  HWE olefination-Still modification 
thiohydroxamate 
ester

alkane Barton radical decarboxylation of thiohydroxamate esters 

xanthate ester alkene Chugaev elimination reaction 
ETHER

 alcohol Wittig rearrangement 
allylic ether γ,δ-unsaturated carbonyl 

compound
Claisen rearrangement 

allylic ether β-alkoxyketone Wacker oxidation 
allylic ether homoallylic alcohol Wittig-[2,3]-rearrangement 

HALIDE
α,ω-dihalide substituted cycloalkane Malonic ester synthesis 
1,1-geminal dihalide alkene Takai-Utimoto olefination 
1,1-geminal dihalide allene Doering-LaFlamme allene synthesis 
acyl halide alkyl halide (one carbon shorter) Tsuji-Wilkinson decarbonylation 



523

AFFECTED 
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GROUP

NEWLY FORMED  
FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

HALIDE
acyl halide amide  Schotten-Baumann reaction 
acyl halide aromatic ketone  Friedel-Crafts acylation 
acyl halide ketone  Negishi cross-coupling 
alkyl halide 1° or 2° alkyl halide Finkelstein reaction 
alkyl halide alcohol Barbier coupling reaction, Molander-Kagan samarium-diiodide 

coupling
alkyl halide aldehyde Kornblum oxidation 
alkyl halide alkane Wurtz coupling 
alkyl halide alkylated β-keto ester Acetoacetic ester synthesis 
alkyl halide alkylated 1,3-diester Malonic ester synthesis 
alkyl halide alkylated aromatic compound Friedel-Crafts alkylation 
alkyl halide alkylated heteroaromatic 

compound
Minisci reaction 

alkyl halide alkylated ketone Stork enamine synthesis 
alkyl halide amine Gabriel synthesis 
alkyl halide ether Williamson ether synthesis 
aryl halide ketone Kornblum oxidation 
aryl halide phosphonate ester Arbuzov reaction 
aryl halide rearranged carbon skeleton Wagner-Meerwein rearrangement 
aryl halide substituted alkene Heck reaction 
aryl halide aryl ether Buchwald-Hartwig cross-coupling 
aryl halide aryl substituted alkene Kumada cross-coupling, Stille cross-coupling, Suzuki cross-

coupling
aryl halide biaryl amine Ullmann biaryl amine synthesis 
aryl halide biaryl ether Ullmann biaryl ether synthesis 
aryl halide biaryls Kumada cross-coupling, Stille cross-coupling, Negishi cross-

coupling, Stille-Kelly coupling, Suzuki cross-coupling, Ullmann 
biaryl synthesis 

allylic halide allyl-substituted products Tsuji-Trost allylation 
allylic halide C-allyl substituted acetoacetic 

ester
Acetoacetic ester synthesis 

allylic halide C-allyl substituted malonic ester Malonic ester synthesis 
allylic halide homoallylic alcohol Barbier coupling reaction, Nozaki-Hiyama-Kishi coupling 

HYDRAZONE
α-alkylated aldehyde Enders SAMP/RAMP hydrazone alkylation 
α-alkylated hydrazone Enders SAMP/RAMP hydrazone alkylation 
α-alkylated ketone Enders SAMP/RAMP hydrazone alkylation 

 alkane Wolff-Kishner reduction 
 alkene Bamford-Stevens-Shapiro reaction 
 allylic alcohol Wharton olefin synthesis 
 substituted indole Fischer indole synthesis 

IMIDE
 cyclic imine Aza-Wittig reaction 
 primary amine Gabriel amine synthesis 

IMINE
α-amino nitrile Strecker reaction 

 quinoline Combes quinoline synthesis 
 six-membered azaheterocycle Hetero Diels-Alder cycloaddition 

ISOCYANATE
 carbodiimide Aza-Wittig reaction 

ISONITRILE
α-acyloxycarboxamide Passerini multicomponent reaction 
α-hydroxycarboxamide Passerini multicomponent reaction 
α-hydroxyalkyltetrazole Passerini multicomponent reaction 

KETONE
α-halo ketone rearranged amide Favorskii rearrangement 
α-halo ketone rearranged ester Favorskii rearrangement 
α-halo ketone ring-contracted ester Favorskii rearrangement, Quasi-Favorskii rearrangement 
α-halo ketone substituted furan Feist-Bénary furan synthesis 
α-halo ketone substituted pyridine Kröhnke pyridine synthesis 
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TRANSFORMATION 

KETONE
1,2-diketone α-hydroxy acid Benzilic acid rearrangement 
1,2-diketone ketone Tsuji-Wilkinson decarbonylation 
1,3-diketone α-diazo-1,3-diketone Regitz diazo transfer 
1,3-diketone quinoline Combes quinoline synthesis 
1,5-diketone substituted 2-cyclohexenone Hajos-Parrish reaction, Robinson annulation 
cyclic ketone lactone Baeyer-Villiger reaction 
diazo ketone carboxylic acid Wolff rearrangement 
diazo ketone highly substituted aromatic ring Danheiser benzannulation 
diazo ketone ketene Wolff rearrangement 
ketone α,β-epoxy ester Darzens glycidic ester condensation 
ketone β-nitro alcohol Henry reaction 
ketone alkene McMurry coupling, Wittig reaction, Wittig reaction-Schlosser 

modification, Bamford-Stevens-Shapiro reaction, HWE olefination, 
HWE olefination-Still modification, Julia-Lythgoe olfination, 
Peterson olefination, Takai-Utimoto olefination, Tebbe olefination 

ketone amide Schmidt reaction 
ketone epoxide Corey-Chaykovsky epoxidation 

LACTONE
 tertiary alcohol Grignard reaction 
 cyclic enol ether Tebbe olefination 

NITRILE
aliphatic nitrile aldehyde Stephen aldehyde synthesis 
aliphatic nitrile aromatic ketone Houben-Hoesch reaction 
aliphatic nitrile ester Pinner reaction 
aliphatic nitrile imino ether Pinner reaction 
aliphatic nitrile imino thioether Pinner reaction 
aliphatic nitrile N-alkyl carboxamide Ritter reaction 
aliphatic nitrile six-membered azaheterocycle Hetero Diels-Alder cycloaddition 
aromatic nitrile aldehyde Stephen aldehyde synthesis 
aromatic nitrile ester Pinner reaction 
aromatic nitrile imino ether Pinner reaction 
aromatic nitrile imino thioether Pinner reaction 
aromatic nitrile N-alkyl carboxamide Ritter reaction 

NITRO 
COMPOUNDS

aliphatic nitro cmpd. β-nitro alcohol Henry reaction 
aliphatic nitro cmpd. 1,2-oxazaheterocycle Hetero Diels-Alder cycloaddition 
aliphatic nitro cmpd. carbonyl compound Nef reaction 
aliphatic nitro cmpd. carboxylic acid Nef reaction 
aliphatic nitro cmpd. oxime Nef reaction 
aromatic nitro cmpd. 7-substituted indole Bartoli indole synthesis 

NITROALKENE
 ketone  Nef reaction 
 oxime Nef reaction 

OXIME
 amide Beckmann rearrangement 

α-amino ketone Neber rearrangement 
PHENOL

 acyl-substituted phenol Fries rearrangement 
 aryl alkyl ether Williamson ether synthesis 
 biaryl ether Ullmann biaryl ether synthesis 

ortho-formyl phenol Reimer-Tiemann reaction 
 substituted coumarin von Pechmann reaction 
 substituted salicylamide anionic ortho-Fries rearrangement 
 substituted salicylic acid Kolbe-Schmitt reaction 

 SILANE
acyl silane O-silylated alcohol Brook rearrangement 
alkyl silane alcohol Fleming-Tamao oxidation 
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 SILANE
allylic silane homoallylic alcohol Sakurai allylation 
aryl silane alcohol Fleming-Tamao oxidation 

SULFIDE
 sulfoxide Davis' oxaziridine oxidation 

SULFONE
α-halo sulfone alkene Ramberg-Bäcklund rearrangement 
aliphatic sulfone alkene Julia-Lythgoe olefination 

SULFOXIDE
α-substituted sulfide Pummerer rearrangement 

 aldehyde Pummerer rearrangement 
 allylic alcohol Mislow-Evans rearrangement 
 glycoside Kahne glycosidation 
 ketone Pummerer rearrangement 
 sulfenate ester Mislow-Evans rearrangement 
allylic sulfoxide allylic alcohol Mislow-Evans rearrangement 
allylic sulfoxide sulfenate ester Mislow-Evans rearrangement 
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8.5   PREPARATION OF FUNCTIONAL GROUPS 
TARGET 

FUNCTIONAL 
GROUP

SUBSTRATE  
FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

ALCOHOL 
α,β-epoxy alcohol Payne rearrangement 
aldehyde Grignard reaction, Barbier coupling reaction, Nozaki-Hiyama-Kishi 

reaction, Baylis-Hillman reaction, Cannizzaro reaction, Henry 
reaction, Keck asymmetric allylation, MPV reduction, Prins 
reaction, Roush asymmetric allylation, Sakurai allylation, Kagan-
Molander coupling 

alkene Sharpless asymmetric aminohydroxylation 
alkenyl halide or triflate Nozaki-Hiyama-Kishi coupling 
aryl alkyl ether Wittig-[1,2]-rearrangement 
enol ether and silyl enol ether Davis' oxaziridine oxidation 
ketone Grignard reaction, Barbier coupling reaction, Nozaki-Hiyama-Kishi 

reaction, Baylis-Hillman reaction, Henry reaction, Keck asymmetric 
allylation, MPV reduction, Prins reaction, Roush asymmetric 
allylation, Sakurai allylation, CBS reduction, Luche reduction, 
Midland Alpine borane reduction, Molander-Kagan coupling, Noyori 
asymmetric hydrogenation 

nitroalkane Henry reaction 
organomagnesium species Grignard reaction 
2° alcohol Mitsunobu reaction 
silane Fleming-Tamao oxidation 

allylic alcohol aldehyde Baylis-Hillman reaction, Grignard reaction, Prins reaction, Nozaki-
Hiyama-Kishi coupling 

allylic alcohol alkene Prins reaction, Riley selenium dioxide oxidation 
allylic alcohol allylic sulfoxide Mislow-Evans rearrangement 
allylic alcohol enone Luche reduction, Baylis-Hillmann reaction 
allylic alcohol epoxyhydrazone Wharton olefin synthesis 
allylic alcohol epoxyketone Wharton olefin synthesis 
allylic alcohol ketone Baylis-Hillman reaction, Grignard reaction, Nozaki-Hiyama-Kishi 

coupling, Wharton olefin synthesis 
homoallylic alcohol aldehyde Grignard reaction, Barbier coupling reaction, Keck asymmetric 

allylation, Roush asymmetric allylation, Sakurai allylation 
homoallylic alcohol alkyl allyl ether Wittig-[2,3]-rearrangement 
homoallylic alcohol ketone Grignard reaction, Barbier coupling reaction, Keck asymmetric 

allylation, Roush asymmetric allylation, Sakurai allylation 
propargylic alcohol aldehyde Barbier reaction, Grignard reaction 
propargylic alcohol ketone Barbier reaction, Grignard reaction 

ALDEHYDE 
aliphatic aliphatic nitro compound Nef reaction 
aliphatic cyclic epoxy hydrazone Eschenmoser-Tanabe fragmentation 
aliphatic cyclic epoxy ketone Eschenmoser-Tanabe fragmentation 
aliphatic 3° amine N-oxide Polonovski reaction 
aliphatic/aromatic 1° or 2° alkyl halide Kornblum oxidation 
aliphatic/aromatic 1,2-diol Criegee oxidation 
aliphatic/aromatic nitrile Stephen aldehyde synthesis 
aliphatic/aromatic 1° alcohol Corey-Kim oxidation, Dess-Martin oxidation, Ley oxidation, Swern 

oxidation, Oppenauer oxidation, Pfitzner-Moffatt oxidation 
aromatic activated benzyl halide Kornblum oxidation 
aromatic electron-rich heteroaromatic ring Vilsmeier-Haack formylation 
aromatic electron-rich substituted benzene Vilsmeier-Haack formylation, Reimer-Tiemann reation 
aromatic N,N-disubstituted formamide Vilsmeier-Haack formylation 
aromatic substituted benzene Gatterman formylation and Gatterman-Koch formylation 

ALKENE
α-halo sulfone Ramberg-Bäcklund rearrangement 
1,2-diol Corey-Winter olefination 
1,3-diol monosulfonate ester Wharton fragmentation, Grob fragmentation 
1,5-diene Cope rearrangement 
2° or 3° alcohol Burgess dehydration, Chugaev elimination 
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GROUP

SUBSTRATE  
FUNCTIONAL GROUP 

NAME OF  
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ALKENE
aldehyde HWE olefination, HWE olefination-Still modification, Wittig reaction, 

Wittig reaction-Schlosser modification, Tebbe olefination, Julia 
olefination, Peterson olefination, Takai-Utimoto olefination 

alkyl phenyl sulfone Julia-Lythgoe olefination 
diene Alkene metathesis 
ketone Bamford-Stevens-Shapiro olefination, HWE olefination, HWE 

olefination-Still modification, Wittig reaction, Wittig reaction-
Schlosser modification, Tebbe olefination, Julia-Lythgoe olefination, 
Peterson olefination, Takai-Utimoto olefination 

nitroalkane Henry reaction 
phosphonate ester HWE olefination, HWE olefination-Still modification 
quaternary ammonium salt Hofmann elimination 
3° amine N-oxide Cope elimination, Polonosvki reaction 
tosylhydrazone Bamford-Stevens-Shapiro olefination 
xanthate ester Chugaev elimination 

ALKYNE
aldehyde Corey-Fuchs alkyne synthesis, Seyferth-Gilbert homologation 
cyclic epoxy ketone Eschenmoser-Tanabe fragmentation 
diyne Alkyne metathesis 
ketone Seyferth-Gilbert homologation 

ALLENE
alkene Doering-LaFlamme allene synthesis 
geminal dihalocyclopropane Doering-LaFlamme allene synthesis 

AMIDE
α-diazo ketone Wolff rearrangement 
3° alcohol Ritter reaction 
3° amine N-oxide Polonovski reaction 
acyl halide Schotten-Baumann reaction 
alcohol Ugi multicomponent reaction 
aldehyde Passerini reaction, Ugi multicomponent reaction 
alkene Ritter reaction 
allylic alcohol Eschenmoser-Claisen rearrangement, Overman rearrangement 
amine Schotten-Baumann reaction, Ugi multicomponent reaction 
anhydride Schotten-Baumann reaction 
carboxylic acid Passerini reaction, Ugi multicomponent reaction 
ketone Passerini reaction, Schmidt reaction, Ugi multicomponent reaction 
nitrile Ritter reaction, Ugi multicomponent reaction 
O-aryl carbamate Fries rearrangement 
oxime Beckmann rearrangement 

AMINE
1° or 2° amine Eschweiler-Clarke methylation 
acyl azide Curtius rearrangement 
alkyl halide Gabriel amine synthesis 
amide Kulinkovich reaction, Hofmann rearrangement 
aryl halide Buchwald-Hartwig cross-coupling, Ullmann diaryl amine synthesis 
3° benzylic amine Sommelet-Hauser rearrangement 
benzylic quarter. ammonium salt Sommelet-Hauser rearrangement 
carboxylic acid Schmidt reaction 
N-halogenated amine Hofmann-Löffler-Freytag reaction 

 quaternary ammonium salt Stevens rearrangement 
allylic amine α,β-unsaturated carboxylic acid 

derivative
Baylis-Hillman reaction 

allylic amine 2° amine Petasis boronic acid-Mannich reaction 
allylic amine aldehyde Petasis boronic acid-Mannich reaction 
allylic amine allylic azide Staudinger reaction 
allylic amine imine Baylis-Hillman reaction 
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FUNCTIONAL 

GROUP

SUBSTRATE  
FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

AMINE
allylic amine ketone Petasis boronic acid-Mannich reaction 
allylic amine vinylboronic acid Petasis boronic acid-Mannich reaction 
homoallylic amine allylic 3° amine Aza-Wittig rearrangement 

AZIDE
alkyl azide 1° or 2° alcohol Mitsunobu reaction 

CARBOXYLIC 
ACID

α-diazo ketone Wolff rearrangement 
aldehyde Cannizzaro reaction, Jones oxidation, Pinnick oxidation 
anhydride Perkin reaction 
carboxylic acid Arndt-Eistert homologation 
methyl ketone Lieben haloform reaction 

CYCLOPROPANE
alkene Simmons-Smith cyclopropanation 
amide Kulinkovich reaction 
enone Corey-Chaykovsky cyclopropanation 
ester Kulinkovich reaction 

DIAZO KETONE
β-keto ester Regitz diazo transfer 
1,3-diketone Regitz diazo transfer 

DIENE
1,5-diene 1,5-diene Cope rearrangement 
cyclic 1,4-diene alkyne Diels-Alder cycloaddition 
cyclic 1,4-diene aromatic compound Birch reduction 
α,ω-diene cyclic alkene Alkene metathesis 
1,3-diene enyne Enyne metathesis 

DIKETONE
α,β-unsaturated ester Wacker oxidation 
α,β-unsaturated ketone Stetter reaction, Wacker oxidation 
aldehyde Stetter reaction 
aromatic ortho-acyloxyketone Baker-Venkataraman rearrangement 
cyclic 1,2-diol Criegee oxidation 
enamine Stork enamine synthesis 
ketone Riley selenium dioxide oxidation 

DIOL
aldehyde Prins reaction 
alkene Prévost reaction, Prins reaction, Sharpless asymmetric 

dihydroxylation 
racemic epoxide Jacobsen hydrolytic kinetic resolution 

DIYNE
terminal alkyne Glaser coupling 

ENAMINE
amide Tebbe olefination 

ENYNE
terminal alkyne Castro-Stephens coupling, Sonogashira cross-coupling 

ENOL ETHER
ester Tebbe olefination 

ENONE
1,5-diketone Hajos-Parrish reaction, Robinson annulation 
alkene Pauson-Khand reaction 
alkyne Pauson-Khand reaction 
divinyl ketone Nazarov cyclization 
enyne Nazarov cyclization 
propargylic alcohol Meyer-Schuster and Rupe rearrangement 
silyl enol ether Saegusa oxidation 
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TARGET 
FUNCTIONAL 

GROUP

SUBSTRATE  
FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

EPOXIDE
α-halo ester Darzens glycidic ester condensation 
aldehyde Corey-Chaykovsky epoxidation 
alkene Prilezhaev reaction, Davis' oxaziridine oxidation, Shi asymmetric 

epoxidation, Jacobsen-Katsuki epoxidation 
allylic alcohol Sharpless asymmetric epoxidation 
ketone Corey-Chaykovsky epoxidation, Darzens glycidic ester 

condensation
ESTER

α-diazo ketone Wolff rearrangement 
1° or 2° alcohol Mitsunobu reaction 
1°, 2° or 3° alcohol Schotten-Baumann reaction 
acyl halide Schotten-Baumann reaction 
aldehyde Stobbe condensation, Tishchenko reaction 
allylic alcohol Johnson-Claisen rearrangement 
anhydride Schotten-Baumann reaction 
ketone Baeyer-Villiger oxidation 
nitrile Pinner reaction 

ETHER
1° or 2° alcohol Mitsunobu reaction 
1° or 2° alkyl halide Williamson ether synthesis 
1° or 2° or 3° alcohol Williamson ether synthesis 
aryl halide Ullmann biaryl ether synthesis, Buchwald-Hartwig cross-coupling 
phenol Williamson ether synthesis, Ullmann biaryl ether synthesis 

HALIDE
alkyl halide 1° or 2° alkyl halide Finkelstein reaction 
alkyl halide acyl chloride Tsuji-Wilkinson decarbonylation 
alkyl halide carboxylic acid Hunsdiecker reaction 
aryl halide aryl amine Sandmeyer reaction 
aryl halide aryldiazonium halide Sandmeyer reaction 
aryl halide aryldiazonium tetrafluoroborate Balz-Schiemann reaction 

HYDROXY
KETONE

α-halo ester Reformatsky reaction 
aldehyde Aldol condensation, Reformatsky reaction, Benzoin condensation 
enol ether Davis' oxaziridine oxidation, Rubottom oxidation 
ester Acyloin condensation 
ketone Aldol condensation, Reformatsky reaction 
metal enolate Davis' oxaziridine oxidation 

IMINE
aldehyde Aza-Wittig reaction 
allyl vinyl amine Aza-Cope rearrangement 
ketone Aza-Wittig reaction 
phenol Houben-Hoesch reaction 

IMINE
nitrile Houben-Hoesch reaction 

ISOCYANATE
acyl azide Curtius rearrangement 
O-acyl hydroxamate Lossen rearrangement 

KETENE
α-diazo ketone Wolff rearrangement 

KETONE
α-amino acid Dakin-West reaction 
1,2-diol Pinacol rearrangement 
1,2-dione Tsuji-Wilkinson decarbonylation 
1,3-diol monosulfonate Wharton fragmentation 
2° alcohol Corey-Kim oxidation, Dess-Martin oxidation, Ley oxidation, Swern 

oxidation, Oppenauer oxidation, Pfitzner-Moffatt oxidation 
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TARGET 
FUNCTIONAL 

GROUP

SUBSTRATE  
FUNCTIONAL GROUP 

NAME OF  
TRANSFORMATION 

KETONE
2-hetero substituted alcohol Semipinacol rearrangement 
alkene Wacker oxidation 
nitroalkane Nef reaction 
N-methoxy-N-methyl amide Weinreb ketone synthesis 
substituted benzene Friedel-Crafts acylation 
sulfoxide Pummerer rearrangement 

KETO ESTER
diester Dieckmann condensation 
ester Claisen condensation 

LACTONE
cyclic ketone Baeyer-Villiger oxidation 
hydroxy acid Corey-Nicolaou macrolactonization, Keck macrolactonization, 

Yamaguchi macrolactonization 
NITRILE

3-aza-1,2,5-hexatriene Aza-Claisen rearrangement 
aldehyde Schmidt reaction 
aldehyde Strecker reaction 
ketone Strecker reaction 

NITROALKENE
aldehyde Henry reaction 
ketone Henry reaction 
nitroalkane  Henry reaction 

OXIME
nitrite ester Barton nitrite ester reaction 

PHENOL
aromatic ketone Dakin oxidation 
chromium carbene Dötz benzannulation 
dienone Dienone-phenol rearrangement 
disubstituted alkyne Dötz benzannulation 
phenolic ester Fries rearrangement 

PHOSPHONATE 
ESTER

alkyl halide Arbuzov reaction 
trialkyl phosphite Arbuzov reaction 

SULFIDE
1  or 2  alcohol Mitsunobu reaction 
1  or 2  alkyl halide Williamson ether synthesis 
1  or 2  or 3  thiol Williamson ether synthesis 

SULFOXIDE
sulfide Davis's oxaziridine oxidation 
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Hajos-Parrish Reaction ....................................................................................................................................................................192 

Related reactions: Robinson annulation;
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Related reactions: Kröhnke pyridine synthesis;
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Related reactions: Meerwein arylation;
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allylic alcohol in moderate 
yield., 207 

allylic alcohol precursor, 39 
allylic alcohol products, 392 
allylic alcohols, 37, 88, 136, 

156, 196, 226, 268, 280, 
292, 322, 336, 350, 380, 
408, 409, 412, 482 

allylic amine, 283, 341, 493 
allylic amines, 322 
allylic and benzylic alcohols, 

276
allylic and benzylic halides, 

272, 292 
allylic and homoallylic 

alcohol, 320 
allylic and homoallylic 

alcohols, 316 
allylic- and homoallylic 

ethers, 474 
allylic azide, 493 
allylic bromide, 39, 493 
allylic bromination, 492 
allylic carbanion, 39, 292 
allylic carbocation, 124 
allylic carbonate, 459 
allylic carbonates, 458 
allylic chloride, 133, 251, 

273
allylic compounds, 458 
allylic epoxide, 111 
allylic esters, 90 
allylic ethers, 490 
allylic hydroperoxides, 28 
allylic imidates, 322 
allylic lithiated sulfone, 231 
allylic moiety, 490 
allylic or benzylic position, 

380
allylic oxidation, 380, 381 
allylic position, 380, 381, 

492, 493 
allylic radical, 492 
allylic rearrangement, 39, 

168, 319, 380 
allylic silane, 173 
allylic stannanes, 236 

allylic substrates, 458 
allylic sulfenates, 292 
allylic sulfides, 6 
allylic sulfoxide intermediate, 

293
allylic sulfoxides, 292 
allylic trichloroacetimidates, 

322
allylic trisulfide trigger, 57 
allyloxocarbenium ion, 168 
allylpalladium chloride, 458 
allylpalladium complexes, 

458
allylsilane, 315, 365, 385 
allylsilane reactant, 392 
allylsilanes, 147, 392 
allylstannanes, 236 
allyltributylstannane, 236 
allyltributyltin, 240, 241 
allyltrichlorosilane, 107 
allyltrimethyltin, 241 
allyltriphenyltin, 349 
ally-phenyl ethers, 88 
allytins, 127 
AlMe3, 170, 454 
Alper, P.B., 423 
Alpine-Borane®, 288, 289 
AlR3, 178 
AlRX2, 178 
altemicidin, 357 
alternative epoxidizing 

agents, 362 
alternative of the W-K 

reduction, 496 
alternative reaction 

pathways, 466 
alumina, 320 
aluminum, 8, 126, 320, 321, 

454
aluminum alkoxide, 351 
aluminum alkoxides, 280, 

320, 456 
aluminum chloride, 180, 216, 

426
aluminum ethoxide, 280, 320 
aluminum hydrides, 268 
aluminum isopropoxide, 280, 

281, 320 
aluminum phosphate, 242 
aluminum strips, 178 
aluminum tert-butoxide, 320 
aluminum trialkyls, 178, 302 
aluminum-based Lewis acid, 

342
AlX3, 176, 184, 302 
Amadori compounds, 14 
Amadori reaction, 14, 15 
amalgam, 92 
amalgamated zinc, 92 
Amarnath, V., 326, 328 
amaryllidacaae alkaloids,

269
amaryllidaceae alkaloid, 487 
Amberlyst 15 resin, 373 
ambient temperature, 228, 

343
ambrosia beetle, 283 
ambruticin, 231, 259, 413 
amiclenomycin, 447 
amide, 18, 52, 267, 352, 464 
amide anions, 52 
amide bond, 399 
amide enolate induced aza-

Claisen rearrangement,
21

amide functionality, 322 
amide ion, 80 
amide linkages, 429 
amides, 48, 50, 52, 70, 72, 

128, 152, 164, 234, 256, 
268, 290, 320, 396, 454, 
455, 486, 496 

amidine, 157, 353 
amidine hydrohalide salt, 

352
amidinium salt, 353 
amidophosphates, 209 
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amidoximes, 307 
aminal, 58, 59, 160, 172, 

348
amination, 70, 71, 80, 81 
amine, 51, 150, 348, 383, 

462
amine base, 238 
amine component, 194, 274, 

444
amine hydrochloride, 238 
amine oxidation potential, 

257
amine oxides, 96, 130, 250 
amine thiophiles, 292 
amine-N-oxides, 222 
amines, 70, 116, 130, 152, 

176, 200, 202, 266, 290, 
396, 426, 468 

aminium radicals, 257 
amino acetals, 306 
amino acid, 182, 183, 267, 

315, 446, 447, 462, 463 
amino acids, 14, 19, 120, 

192, 245, 279, 289, 316, 
323, 338, 381, 396, 397, 
465

amino alcohol moiety, 404 
amino alcohols, 100, 114, 

136, 182, 202, 274, 350 
amino aldehydes, 136 
amino alkoxide, 421 
amino allylic alcohol, 67 
amino butyronitrile, 349 
amino carbonyl compound, 

274
amino compound, 359 
amino diol, 399 
amino ester, 404, 405 
amino esters, 423 
amino group, 306 
amino ketone hydrochloride, 

245
amino ketones, 245, 306 
amino nitrile, 189, 423, 446, 

447
amino sugars, 183 
amino- -unsaturated 

ketones, 312 
amino- -ketoester, 244 
amino-1,8-naphthyridines,

379
amino-1-deoxyketose, 14 
amino-2-chloropyridine, 395 
amino-2-

methoxymethylpyrrolidin
e, 150 

aminoacetaldehyde 
diethylacetal, 359 

aminoacetanilide, 415 
aminoacrylamides, 312 
aminoacrylates, 312 
aminoalcohol, 135, 160 
aminoalcohols, 134, 135 
aminoalditols, 209 
aminoalkylated derivatives, 

274
aminoalkylation, 274 
aminoarabinopyranose 

derivatives, 267 
aminoaziridines, 158 
aminobenzaldehydes, 414 
aminobenzimidazole, 95 
aminochroman, 339 
amino-Claisen 

rearrangement, 20 
aminocrotonate, 312 
aminocrotonates, 312 
aminoindan-1,5-dicarboxylic 

acid, 339 
aminoketone hydrochloride, 

121
aminolysis, 359 
aminomethyl cycloakanols, 

134
aminomethyl-7-

oxabicyclo[2.2.1]heptane 
derivatives, 135 

aminomethylcycloalkanes, 
134

aminooxazole, 112 
aminopiperidines, 307 
aminopyridine, 80 
aminopyridines, 328, 441 
aminopyridyl iodides, 261 
aminothiazoles, 113 
aminothoazoles, 328 
aminotin species, 70 
ammiol, 281 
ammonia, 194, 195, 254, 

279, 328, 352, 446, 462 
ammonia equivalents, 254 
ammonia molecule, 172 
ammonium acetate, 254, 

255, 309, 328, 329 
ammonium carbonate, 328, 

329
ammonium chloride, 88, 274 
ammonium formate, 160, 

195
ammonium hydroxide, 79 
ammonium salts, 242, 422, 

423, 434 
ammonium ylides, 175 
amphidinolide J, 311 
amphidinolide K, 459 
amphidinolide P, 393 
amphidinolide T1, 301 
amyl chloride, 178 
amyl group, 491 
amylbenzene, 178 
analgesic, 71 
analgesic agent, 245 
anchimeric assistance, 234, 

360
ancistrocladidine, 63 
Anderson, J.C., 26, 27 
Anderson, P.S., 35 
Andersson, C.-M., 265 
Andreocci, A., 142 
Andrus, M.B., 109 
angiogenesis inhibitory 

activity, 301 
angiotensin-converting 

enzyme inhibitor, 377 
angular isomers, 473 
angular triquinane, 305, 333 
angular triquinanes, 115 
angularly fused all-carbon 

tetracyclic framework, 
367

Angyal, S.J., 336 
anhydride, 86, 176, 338 
anhydride component, 120 
anhydrides, 176, 200, 266, 

306, 356, 398, 426, 454, 
478

anhydroaldose 
tosylhydrazones, 37 

anhydrous, 482, 483 
anhydrous acetonitrile, 475 
anhydrous CrCl2, 452 
anhydrous HCl, 467 
anhydrous hydrogen 

chloride gas, 430 
anhydrous methanol, 285 
anhydrous solvents, 280, 

320
anhydrous toluene, 429 
anhydrous ZnCl2, 311 
anil, 414 
aniline, 260, 266, 279, 395, 

414, 415, 423 
anilines, 224 
anils, 95 
anionic Friedel-Crafts 

complement, 31 
anionic homo-Fries 

rearrangement, 181 
anionic intermediate, 370 
anionic migration, 64 
anionic ortho-Fries 

rearrangement, 180, 
420, 421 

anionic oxy-Cope 
rearrangement, 39 

anionic product, 417 
anionic-oxy-Cope 

rearrangements, 324 
anisaldehyde, 129 
anisatin, 157 
anisol, 420 
anisoyl benzohydroxamate, 

266
annonacenous acetogenin, 

409
annonaceous acetogenins, 

221
Annonaceous acetogenins, 

485
annoretine, 63 
annulated polycyclic ethers, 

366
annulated product, 335, 471 
annulation, 64, 65, 87, 122, 

123
anomer, 168, 169 
anomeric allylic sulfoxide, 

293
anomeric carbon, 246 
anomeric center, 168 
anomeric effect, 246 
anomeric hydroxyl group, 

246, 247 
anomeric radical, 491 
anopterine, 5 
ANRORC mechanism, 144 
ansa-bridged azafulvene 

core, 33 
antheridic acid, 471 
anthithrombotic, 389 
Anthony, J.E., 57 
anthoplalone, 265 
anthracenone nucleus, 251 
anthralin, 251 
anthranilamide residue, 399 
anthranilic methyl ester, 279 
anthraquinone, 119 
anthraquinone intermediate, 

181
anthraquinone-based chiral 

ligand, 405 
anthraquinones, 30 
anti, 50, 51 
anti aldol product, 162 
anti carbanionic 

intermediate, 491 
anti diastereoselectivity, 27, 

412
anti displacement of the 

tosyl group, 307 
anti elimination, 206 
anti homoallylic alcohol, 318 
anti product, 8 
antibacterial activity, 327 
antibacterial and 

anticonvulsant 
properties, 361 

antibiotic, 149, 213, 381, 423 
antibiotic compounds, 42 
antibiotic marine natural 

product, 297 
antibiotics, 153, 387, 395, 

463
anticancer, 465 
anti-cancer activity, 403 
anticancer natural product 

OSW-1, 483 
antidepressant, 339 
antidiabetic, 279 
antifeedant, 471 
anti-Felkin, 9 
antifungal, 149, 465 
antifungal agent, 211, 231, 

333
antifungal metabolite, 333 
antifungal mold metabolite, 

285
anti-HIV activity, 403 
anti-HIV cosalane 

analogues, 179 

antihypertensive, 63, 233 
anti-implantation activity, 

305
anti-inflammatory agent, 245 
anti-influenza A virus indole 

alkaloid, 243 
antileukemic agent, 191 
antimalarial, 415 
antimalarial trioxanes in the 

artemisinin family, 179 
anti-Markovnikoff product,

66
antimicrobial activity, 431 
antimicrobial drimane-type 

sesquiterpene, 347 
antimitotic activity, 447 
antimitotic agent, 413 
antimitotic agents, 219, 339 
antimitotic alkaloid, 169 
antimuscarinic alkaloid, 117 
antimycin A3b, 21 
antineoplastic agent, 235 
antiobesity, 427 
antiperiplanar, 28 
antiperiplanar lone pair, 342 
antipsoriatic agent, 251 
antipsychotic, 63 
antipsychotic agent, 245 
antipyrine, 274 
antiserum, 379 
antitumor, 56, 149, 463 
antitumor activity, 5, 45, 425, 

427
antitumor agent, 221, 469, 

477, 489 
antitumor agents, 185, 431 
antitumor antibiotic, 25, 33, 

257, 295, 389, 477 
antitumor antibiotics, 71, 465 
antitumor-antibiotic, 287 
anti-ulcer 3,4-

dihydroisocoumarin AI-
77B, 215 

antiulcerogenic glycoside, 
235

antiviral marine natural 
product, 429, 475 

antiviral natural product, 381 
antiviral properties, 41 
Antus, S., 141 
aphanamol I, 103, 461 
apicularen A, 239 
aplidiamine, 145 
aplyolide A, 109 
aplysiapyranoid C, 453 
apolar solvent, 330 
apoptolidin, 401 
apoptosis, 399 
apovincamine, 61 
aprotic, 318 
aprotic conditions, 36, 108 
aprotic nucleophilic solvents, 

188
aprotic organic solvents, 398 
aprotic oxidizing agents, 130 
aprotic solvent, 238, 246 
aprotic solvents, 112, 170, 

192, 275, 286, 372 
aqueous acid, 166, 396, 446 
aqueous alkali, 264 
aqueous alkaline medium, 

378
aqueous ammonia, 186, 

328, 446, 494 
aqueous base, 372, 398 
aqueous chromic acid, 228 
aqueous media, 446 
aqueous medium, 474 
aqueous sulfuric acid, 143 
aqueous workup, 200 
Ar3C+, 298 
arabitol residue, 267 
Arbuzov reaction, 16, 17, 

212
Arbuzov, A.E., 16 
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archaeal 36-membered 
macrocyclic diether lipid,
485

archaeal 72-membered 
macrocyclic lipids, 277 

archea, 485 
arecoline, 245 
arenediazonium salts, 172 
arene-Ru(II) chloride, 317 
arenes, 80 
ArgoPore -Rink-NH2 resin, 

313
aristotelone, 383 
Armstrong, A., 355, 407 
Arndt-Eistert homologation,

19, 494 
Arndt-Eistert synthesis, 18 
ArNO2, 414 
arnoamine A, 225 
ARO, 220 
aromatic, 52 
aromatic 1,4-diketone, 327 
aromatic acid, 218 
aromatic acids, 396 
aromatic acyl group, 224 
aromatic acyl halides, 398 
aromatic aldehyde, 58, 184, 

309, 338, 431 
aromatic aldehydes, 37, 48, 

54, 74, 118, 184, 202, 
230, 268, 338, 358, 386, 
396, 402, 432, 442, 443, 
452

aromatic alkoxides, 484 
aromatic amides, 210 
aromatic amine, 35, 94, 251, 

394, 395 
aromatic amines, 184, 216, 

274, 328, 417, 430 
aromatic and aliphatic 

aldehydes, 320 
aromatic carbonyl 

compounds, 496 
aromatic carboxylate, 248 
aromatic carboxylic acid, 

181
aromatic carboxylic acids, 

218
aromatic diazo compounds, 

278
aromatic diazonium 

tetrafluoroborates, 34 
aromatic enediyne, 179 
aromatic esters, 256 
aromatic fluoride, 35 
aromatic fluorides, 34, 466 
aromatic formyl groups, 461 
aromatic halide, 258 
aromatic halides, 296 
aromatic hydrocarbons, 374, 

500
aromatic hydroxy acids, 248 
aromatic ketone, 359 
aromatic ketone-Lewis acid 

complex, 176 
aromatic ketones, 216, 280, 

352, 358 
aromatic methyl ketone, 265 
aromatic nitrile, 353, 431 
aromatic nitriles, 216, 352, 

382, 430 
aromatic nitro groups, 430 
aromatic nucleus, 381 
aromatic ortho-

acyloxyketones, 30 
aromatic ring, 184, 280, 416, 

417, 492 
aromatic rings, 60, 178 
aromatic substrate, 177 
aromatic substrates, 176, 

396
aromatic sulfilimine, 423 
aromatic 

sulfonylhydrazones, 158 
aromatic superstructures, 57 
aromatic transition state, 6, 

140, 204 

aromatic trihalide, 395 
aromaticity, 178 
aromatization, 321 
ArOTf, 440 
aroyl group, 55 
aroylation, 317 
aroyloylaziridines, 198 
arsenic acid, 415 
Arseniyadis, S., 481 
ArSnR3, 440 
arteannuin M, 7 
artemisinin, 151, 179 
arthrographol, 469 
artificial lipid bilayer 

membranes, 499 
aryl, 196, 197 
aryl alkyl ethers, 490 
aryl azide, 415 
aryl azides, 116, 429 
aryl bismuth compounds, 

464
aryl bromide, 41, 70, 394 
aryl bromides, 258 
aryl bromides and iodides, 

296
aryl carbene complexes, 148 
aryl cation, 34 
aryl cations, 278, 394 
aryl chloride, 35, 232, 394, 

395
aryl chlorides, 196, 296 
aryl copper, 466 
aryl copper intermediates, 

466
aryl coupling, 78 
aryl disubstituted C2-

symmetric N-acyl 
aziridines, 198 

aryl ether, 122 
aryl fluorides, 34, 394, 464 
aryl glycosides, 246 
aryl glycosyl sulfoxides, 234 
aryl group, 278, 396 
aryl groups, 52, 476 
aryl halide, 278, 440, 464, 

466, 484, 498 
aryl halides, 16, 70, 78, 127, 

182, 258, 296, 318, 334, 
424, 438, 440 

aryl iodide, 171, 296, 297, 
425, 449, 465 

aryl iodides, 78, 394, 440, 
464

aryl iodonium salts, 464 
aryl lead compounds, 464 
aryl nitrile, 217, 394 
aryl radical, 394 
aryl radicals, 278, 466 
aryl substituted (2E,4E)-

dienoic acids, esters and 
amides, 219 

aryl sulfilimines, 423 
aryl triflate, 197 
aryl triflates, 296, 440 
aryl-1,4-dihydropyridines, 

195
aryl-2-cyanoacetoxy-3-

oxopropionamide, 331 
aryl-2-oxazolines, 198 
aryl-3-carboxylisoquinolines, 

383
arylacetic acids, 338 
arylacetones, 77 
arylalkyl aldehydes, 402 
arylamine hydrochloride, 415 
arylamines, 94, 182, 394 
aryl-aryl bonds, 297 
arylation, 196, 278, 441 
arylazides, 428 
arylboron, 449 
arylboronate esters, 340 
arylboronic acids, 464 
arylboronic ester, 297 
arylboronic esters, 296 
arylboronic pinacolate, 297 
aryl-bromides, 71 
arylcarbamates, 31 

aryl-chlorides, 70 
arylcinnamic acids, 338 
aryl-cyano-2,5-dihydro-5-

oxofuran-2-carboxamide, 
331

aryldiazonium halides, 278, 
394

aryldiazonium salts, 224, 
394

aryldiazonium 
tetrafluoroborates, 296, 
394

arylethylamine, 348 
arylglyoxal, 331 
arylhydrazone, 173 
arylhydrazones, 224 
arylhydrazones of ketones, 

172
arylketene, 122 
arylketones, 31 
aryllithium, 181 
aryllithiums, 80, 296 
arylmagnesium halides, 296 
aryloxy groups, 464 
aryloxy-2-

methylpropionamide, 
417

arylpropargyl alcohol, 425 
arylpyridines, 80 
arylstannes, 440 
aryl-substituted 

cyclopropylidene 
derivative, 411 

arylsulfinate, 158 
arylsulfonamido indanols, 8 
arylsulfones, 252 
arylsulfonyl azides, 376 
arylsulfonyl esters, 252 
arylsulfonyl halides, 376 
arylsulfonylhydrazones, 36 
aryltrialkylstannanes, 440 
aryne, 416 
As2O5, 414 
asatone, 141 
Ashby, E.C., 74, 484 
asimicin, 485 
asparagamine A, 275 
asparagine residue, 211 
aspartic acid, 120 
aspartyl protease, 331 
asperazine, 197 
aspidophytine, 91 
aspidospermidine, 173, 275, 

497
aspinolide B, 319 
assignment of peaks, 289 
asteltoxin, 451 
asteriscanolide, 99 
astrophylline, 491 
asymmetric -alkylation, 150 
asymmetric aldol reaction, 9 
asymmetric aldol reactions,

162
asymmetric alkylation, 150 
asymmetric allylation, 236, 

387
asymmetric 

aminohydroxylation, 405 
asymmetric aza-Claisen 

rearrangement, 21 
asymmetric Baylis-Hillman

reaction, 48 
asymmetric Carroll 

rearrangement, 76 
asymmetric catalysis, 8 
asymmetric catalytic aldol 

reactions, 8 
asymmetric catalytic 

Mukaiyama aldol 
reaction, 299 

asymmetric cyclohexane 
ring, 453 

asymmetric Diels-Alder 
cycloaddition, 453 

asymmetric Diels-Alder 
reaction, 51 

asymmetric dihydroxylation 
reaction, 406 

asymmetric epoxidation-ring 
expansion, 411 

asymmetric HDA reaction,
204

asymmetric Henry reaction,
202

asymmetric HWE 
olefinations, 212 

asymmetric hydroboration,
67

asymmetric hydrogenation,
316, 317, 443 

asymmetric induction, 243, 
288, 386, 446 

asymmetric intramolecular 
aldol reaction, 192 

asymmetric nitroolefination,
161, 309 

asymmetric oxidation 
reactions, 410 

asymmetric phase-transfer 
catalysts, 259 

asymmetric Pummerer 
rearrangement, 368 

asymmetric reduction, 288 
asymmetric ring-opening,

220
asymmetric Robinson 

annulation, 193 
asymmetric Simmons-Smith 

cyclopropanation, 413 
asymmetric Simmons-Smith 

cyclopropanations, 412 
asymmetric Strecker 

reaction, 447 
asymmetric tin catalyzed 

Mukaiyama aldol 
reaction, 299 

asymmetric total synthesis, 
51, 223 

asymmetric Ullmann 
coupling, 467 

asymmetric variant of the 
Pomeranz-Fritsch 
reaction, 359 

asymmetric version, 196 
asymmetric Wittig reaction,

486
ate complex, 189 
ate-complexes, 448 
atisine, 207 
atmosphere of oxygen, 474 
atmospheric pressure, 184 
atomic orbitals, 190 
atractylolide precursor, 445 
atractylolide units, 445 
atropisomeric C2-symmetric 

diphosphane ligand, 316 
atropisomeric molecules, 75 
atropisomers, 109 
atropo-enantioselective total 

synthesis, 75, 181 
atroposelection, 467 
atroposelective ring 

cleavage, 75 
attack of alkene at Zr, 400 
Atwal modification, 58 
Au(I), 298 
Aubé, J., 51, 173, 397 
austalide B, 385 
autocatalytic, 262 
autoclave, 335 
Auwers, K, 378 
avenaciolide, 333 
Avendano, C., 95 
axial alcohols, 228 
axial donor ligand, 222 
axial position, 303 
axial spiroketal oxygen 

atom, 281 
axial thioglycosides, 234 
axially chiral bicoumarin, 75 
aza- and thia-Payne 

rearrangement, 336 
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aza-[2,3]-Wittig 
rearrangement, 26 

aza-12-oxo-17-
desoxoestrone, 445 

azaaceanthrene, 95 
azaanthraquinone natural 

product, 217 
azabicyclo[3.2.1]oct-3-ene, 

173
azabicyclo[5.3.0]decane 

ring, 3 
aza-Claisen rearrangement,

20, 22 
aza-Cope, 20 
aza-Cope Mannich 

reorganization, 23 
aza-Cope rearrangement,

22, 275, 437 
azacycloundecene ring, 373 
aza-Darzens reaction, 128 
azadiradione, 43 
aza-divinylcyclopropane 

rearrangement, 22 
aza-ene, 6, 7 
azaenolate, 150
azaergoline analogs, 291 
azaergoline ring system, 291 
aza-Henry reaction, 202 
azaindene, 357 
azaindoles, 35, 41, 260, 261 
azamacrolides, 13 
aza-Payne rearrangement,

336, 337 
azatricyclic core, 51 
aza-Wittig cyclization, 25 
aza-Wittig reaction, 24, 25, 

428
aza-Wittig reagent, 24 
aza-Wittig rearrangement,

26, 27 
aza-Wittig ring closure, 25 
aza-ylide, 24, 25, 428 
azelaic acid, 403 
azeotropic distillation, 242 
azeotropic mixture, 317 
azeotropically dried, 501 
azepine, 25 
azetidine, 283 
azetidine N-oxide, 283 
azetidinones, 426 
azide reagent, 376 
azides, 268, 294 
azido ketone, 229, 397 
azidoformates, 116 
azines, 80, 496 
aziridine nitrogen, 130 
aziridine-allylsilane 

cyclization, 63 
aziridinecarboxylic esters, 

198
aziridines, 27, 128, 182, 198, 

199, 336 
aziridinium salt, 25 
aziridino alcohol, 337 
aziridinomitosene, 71 
aziridins, 374 
aziridinylcarboxamide, 113 
azirine intermediates, 306 
azlactone, 339 
azlactones, 338 
azo compound, 224 
azo compounds, 278, 426 
azo coupling, 494 
azo ester, 224 
azocine derivative, 283 
azodicarboxylate reagents, 

294
azoles, 80 
azulenes, 69 
azulenofuran, 351 
azulenone, 159 

B

B, 310 
B(OMe)3, 236 
B2H6, 66 

B2pin2, 296 
B-3�-pinanyl-9-BBN, 288 
Bach, R.D., 351 
Bach, T., 333 
Bäcklund, B., 372 
Bäckvall, J.E., 253 
Baeyer, 28, 29 
Baeyer, A., 28 
Baeyer-Villiger oxidation, 28, 

29, 174, 362, 410 
bafilomycin A1, 239 
bafilomycin A1 carbon 

framework, 239 
Bailey, P.D., 349 
Baker, D.C., 469 
Baker, R., 273 
Baker-Venkataraman 

rearrangement, 30, 31 
bakkane, 427 
bakkenolide A, 427 
Bakulev, V.A., 145 
Bal resin, 271 
balanol, 33, 181 
Baldwin, 33 
Baldwin, J.E., 32, 279, 445 
Baldwin’s rules, 32 
Baley, M., 195 
B-alkyl group, 288 
B-alkyl Suzuki cross-

coupling, 449 
B-alkyl Suzuki-Miyaura 

cross-coupling, 448 
B-alkyl-9-

borabicyclo[3.3.1]nonan
es, 288 

B-
allyldiisopinocampheylbo
rane, 386 

Balz-Schiemann reaction,
34, 35, 394 

Bamford-Stevens conditions, 
37

Bamford-Stevens reaction,
36, 37 

Banfi, L., 331 
barbacenic acid, 193 
Barbier, 38, 39 
Barbier reaction, 38, 39 
Barbier, P., 38 
Barbier-type addition, 318 
Barbier-type conditions, 191 
barium, 374 
barium metal, 39 
barium oxide, 336 
Barrero, A.F., 483 
Barrett, A.G.M., 391 
Barriault, L., 7 
Barta, T.E., 55 
Bartoli indole synthesis, 40, 

41, 261 
Bartoli, G., 40 
Barton decarboxylation 

procedure, 44 
Barton decarboxylation 

reaction, 44 
Barton modification, 218, 

219, 464, 496 
Barton nitrite ester reaction,

42, 43, 208 
Barton plumbane 

modification, 464 
Barton reaction, 42, 43 
Barton’s deoxygenation 

procedure, 47 
Barton-McCombie radical 

deoxygenation, 46, 47 
Basavaiah, D., 49 
base accelerated oxy-Cope 

rearrangements, 324 
base catalyzed reaction, 8 
base-catalyzed coupling 

reaction, 2 
base-catalyzed 

fragmentation, 103 
base-catalyzed reaction, 499 
base-catalyzed self-

condesation, 202 

base-induced, 112, 113 
base-induced epoxide ring-

opening, 471 
base-induced rearrangement 

of α-halogenated 
sulfones, 372 

base-induced stereospecific 
fragmentation, 480 

base-labile functional 
groups, 108 

base-sensitive functional 
groups, 182, 210, 372 

base-sensitive substrates, 
49, 212, 402, 496 

base-stable surrogate of 
MVK, 385 

basic aqueous medium, 224 
basic condition, 344 
basic hydrogen peroxide 

solution, 482 
basic hydrolysis, 301 
basic nitrogen atoms, 320 
basic solvents, 412, 420 
basicity, 80 
basicity of the nucleophile, 

166
basidiomycetes of 

mushrooms, 351 
Batey modification, 464 
Batey, R.A., 341 
batrachotoxinin A, 269, 287 
batrachotoxinins, 287 
batzelladine F, 59 
Baumann, E., 398 
Baylis, A.B., 48 
Baylis-Hillman adducts, 49 
Baylis-Hillman products, 49 
Baylis-Hillman reaction, 48 
Baylis-Hillmann reaction, 49 
BBN, 67, 288, 289 
BBr3, 178 
BCD ring system of

brevetoxin A, 109 
BCl3, 216 
BCl3·OEt2, 298 
Beck, E.J., 373 
Beckmann rearrangement,

50, 51, 306 
BeCl2, 178 
beef, 81 
Beifuss, U., 485 
bengamide E, 453 
Bennett, D.J., 23 
benz[a]anthracene, 159 
benzalacetophenone, 254 
benzalaminoacetal, 358 
benzaldehyde, 54, 55, 127, 

128, 195, 242, 288, 332, 
333, 358, 432, 456, 496 

benzaldehyde derivative, 
185, 493 

benzaldehydes, 468 
benzalmalonate, 302 
benzanilide, 396 
benzannulation, 373 
benzene, 68, 69, 92, 108, 

115, 122, 152, 153, 167, 
178, 184, 213, 272, 302, 
314, 320, 321, 346, 352, 
361, 368, 400, 443, 445, 
501

benzenediazonium 
carboxylate 
hydrochloride, 327 

benzenediazonium chloride, 
224, 225, 394 

benzenesulfenyl chloride, 
293

benzenoid diradical, 56 
benzhydryltrimethylammoniu

m hydroxide, 422 
benzilic acid rearrangement,

52, 53, 370 
benzilic acid-type 

rearrangement, 53 
benzilic ester 

rearrangement, 52 

benzimidazole, 95, 297 
benzo[4,5]furopyridines, 441 
benzo[b]furans, 185 
benzo[b]thiophene, 417 
benzo[c]thiophenes, 330 
benzodiazepin, 25 
benzodiazepine, 95 
benzofuran, 78 
Benzofuran, 185 
benzofuranone, 217 
benzofuran-quinone, 127 
benzofurans, 122, 312 
benzofuro[2,3-b]benzofuran 

derivatives, 217 
benzoic acid, 266, 362 
benzoic acid esters, 398 
benzoic acid rings, 179 
benzoin condensation, 54, 

55, 433 
benzoins, 54, 55, 432 
benzomalvin A, 25 
benzomorphans, 397 
benzonitrile, 352, 394 
benzophenone, 265, 321, 

396, 486, 496 
benzophenone derivative, 

179
benzophenone moiety of the 

protein kinase C inhibitor 
balanol, 265 

benzopyran-2-one 
derivatives, 217 

benzoquinolines, 94 
benzoquinone, 51, 269, 312, 

313
benzoquinone mono- and 

bis-imides, 313 
benzosporalen derivatives,

473
benzothiazine, 279 
benzothiazoles, 290 
benzothieno[3,2-d]furo[2,3-

b]pyridine skeleton, 417 
benzothiophenes, 122 
benzoxazine, 399 
benzoxepin-5-one, 225 
benzoyl aza-ylide, 428 
benzoyl azide, 428 
benzoyl benzohydroxamate, 

266
benzoyl chloride, 359, 398 
benzoyl peroxide, 240 
benzoyl-2-

benzyldimethylamine, 
434

benzoyl-L-phenylalanines,
437

benzyl, 178, 179, 196, 282 
benzyl alcohol, 61, 181, 211, 

288, 289 
benzyl alcohols, 203 
benzyl benzoate, 456 
benzyl bis(trifluoroethyl) 

phosphonoacetate, 215 
benzyl bromide, 337 
benzyl bromides, 250 
benzyl bromoacetate, 215 
benzyl ester of glycine, 137 
benzyl ether, 223 
benzyl glyoxylate, 429 
benzyl group, 189 
benzyl groups, 434 
benzyl halides, 484 
benzyl mercaptan, 57 
benzyl mesylate, 171 
benzyl methyl ether, 490 
benzyl protecting group, 349 
benzyl protecting groups, 

309
benzyl shift, 435 
benzyl side chains, 191 
benzyl-3-(2-bromoacetyl)-

oxazolidinone, 375 
benzyl-5-(hydroxyethyl)-4-

methylthiazolium 
chloride, 433 

benzylamine, 313, 329, 358 
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benzylamine derivative, 359 
benzylation, 179 
benzylbenzoin, 55 
benzylic alcohol, 493 
benzylic alcohols, 106, 156, 

228, 382 
benzylic anion, 270 
benzylic bromide, 493 
benzylic carbanion, 422 
benzylic halides, 106, 170, 

484
benzylic position, 207, 255 
benzylic positions, 492 
benzylic quaternary 

ammonium salts, 422 
benzylidene, 195 
benzyl-N-propionyl-2-

oxazolidinine, 163 
benzyl-oxazolidinone chiral 

auxiliary, 375 
benzyloxy cyclopentanone, 

445
benzyloxy group, 305 
benzyloxy phenol, 379 
benzylsulfonium salts, 422 
benzyltrimethylammonium 

iodide, 422 
benzylzincs, 310 
benzyne, 327 
benzynes, 140 
BER, 160 
Bergman cyclization, 56, 57 
Bergman cycloaromatization 

reaction, 56 
Bergman diradical, 57 
Bergmeier, S.C., 63 
Beringer-Kang modification,

464
Berkowitz, D.B., 235 
Berson, J.A., 324 
Bertozzi C.R., 241 
BF3, 178, 217, 364 
BF3 etherate, 133, 153 
BF3

.AcOH, 174 
BF3

.OEt2, 58, 168, 179, 344, 
350, 351, 382 

BF3·OEt2, 299, 349, 358, 
392, 393, 397 

BF4
-, 34 

B-H bond, 66 
BH3, 66, 100, 101 
bi- and oligopyridines, 254 
Bi(III), 298 
Bi(OTf)3, 58 
biaryl aldehyde, 487 
biaryl axis, 467 
biaryl benzyl bromide, 171 
biaryl by-products, 296 
biaryl compound, 421 
biaryl compounds, 440 
biaryl dialdehyde, 75 
biaryl ether moiety, 465 
biaryl ethers, 464, 465 
biaryl lactone, 75 
biaryl linkage, 297 
biaryl moiety, 13 
biaryl product, 467 
biaryl systems, 416 
biaryl-containing 

macrocycles, 297 
biatractylolide, 445 
bicarbonate salts, 174 
Bickel, C.L., 336 
bicyclic, 100 
bicyclic 1,2-dibromide, 219 
bicyclic 1,3-diol 

monomesylate ester, 
480

bicyclic acid precursor, 177 
bicyclic aldehyde, 173 
bicyclic aldehyde precursor, 

229
bicyclic alkenyldisilanes, 125 
bicyclic alkoxide, 191 
bicyclic allylic acetate, 483 
bicyclic allylic diol, 483 
bicyclic amine, 275 

bicyclic 
aminocyclopropanes, 
257

bicyclic and polycyclic 
substrates, 388 

bicyclic azido alcohol, 229 
bicyclic bromo ketone, 371 
bicyclic carboxylic acid, 201 
bicyclic chloroamine, 209 
bicyclic cycloadduct, 253 
bicyclic degradation product,

281
bicyclic dienone, 142 
bicyclic diketone, 385 
bicyclic diketones, 5 
bicyclic enol ether, 115 
bicyclic enone, 171, 192, 

303, 471 
bicyclic enones, 384 
bicyclic halo ketone, 379 
bicyclic hemiaminal, 312 
bicyclic homologue, 370 
bicyclic intermediate, 475 
bicyclic ketone, 37, 51, 155, 

397, 495 
bicyclic ketone substrate, 

445
bicyclic ketones, 125 
bicyclic ketoses, 15 
bicyclic monotosylated 1,3-

diol, 481 
bicyclic olefins, 380 
bicyclic oxazino lactam, 205 
bicyclic primary alcohol, 347 
bicyclic primary alkyl 

bromide, 251 
bicyclic product, 335 
bicyclic silyl enol ethers, 388 
bicyclic substrate, 189 
bicyclic sulfone, 373 
bicyclic systems, 28, 476 
bicyclic tertiary propargylic 

alcohol, 285 
bicyclic triol, 355 
bicyclic trisylhydrazone, 37 
bicyclic1,2-diacid, 219 
bicyclio[3.3.1]nonenone, 371 
bicyclo[3.3.0]octane, 371, 

427
bicyclo[3.3.0]octenone, 103 
bicyclo[3.3.1] ring system, 

197
bicyclo[4.3.0]nonenone 

intermediate, 335 
bicyclo[5.2.1]decane system,

133
bicyclo[5.3.0]decan-3-ones,

257
bicycloheptenones, 325 
bicyclohumulenone, 273 
bidentate catalysts, 236 
bidentate chiral ligand, 406 
bidentate Lewis acid, 89 
bidentate ligand, 186 
bidentate ligands, 70, 420 
bidentate nucleophile, 95 
bifunctional catalyst, 9 
bifunctional starting 

materials, 330 
Biginelli reaction, 58, 59 
Bihovsky, R., 279 
bilobalide, 229 
BINAP, 48, 70 
binaphthalene-2,2’-diol, 236 
binaphthalenyl-2,2'-

dicarbaldehyde, 431 
binaphtoxide, 9 
binaphtyl ammonium salt, 

435
BINAP-Rh complexes, 316 
BINAP-Ru(II) dicarboxylate 

complexes, 316 
binding pockets, 353 
binol, 259 
BINOL, 127, 236 
BINOL/Ti(IV) complexes, 236 
bioactive indole alkaloid, 355 

bioactive terpenoids, 303 
biochemical catalysis, 8 
biocompatible conditions, 

429
biological activity, 375 
biologically active 

compounds, 58 
biomimetic approach, 205 
biomimetic oxidative 

dimerization, 149 
biomimetic synthesis, 89, 

153, 445 
biomimetic total synthesis, 

187, 265, 383, 399 
biopolymers, 241 
bioreductive alkylating 

indolequinone, 313 
biosynthesis, 289 
biosynthesis of alkaloids, 

348
biosynthetic link, 52 
biotin, 459 
biphasic solution, 378 
biphenyl and binaphthyl-

based ketones, 410 
biphenyl-based ruthenium 

alkylidene complex, 249 
bipyridyl system, 311 
biradical intermediate, 332 
biradicals, 132 
Birch reduction, 60, 61 
Birch reduction-alkylation,

61, 143 
bird nest fungi, 65 
bis (trifluormethyl)-4-

hydroxydihydro-3-
furoate, 167 

bis (trifluoromethyl)-3-
furoate, 167 

bis adduct, 242 
bis allylic alcohol, 409 
bis allylic oxidation, 143 
bis C-aryl glycosides, 143 
bis epoxide, 409 
bis glycosides, 143 
bis((trimethylsilyl)oxy)cyclob

ut-1-ene, 351 
bis(2,2,2-trifluoroethyl) 

(methoxycarbonylmethyl
)phosphonate, 215 

bis-(2-hydroxy-1-naphthyl) 
sulfide, 416 

bis(benzylether), 499 
bis(dimethoxy) phosphonate, 

215
bis(isopropylphenyl)-3,5-

dimethylphenol 
derivatives, 8 

bis(phenylsulfonyl)methane, 
459

bis(pinacolato)diboron, 297 
bis(tetrahydrofuran) 

aldehyde, 451 
bis(tetrahydrofuran) primary 

alcohol, 451 
bis(trienoyltetramic acid), 

453
bis(trifluoroalkyl) 

phosphonoesters, 214 
bis(trifluoromethyl) 

benzaldehyde, 443 
bis(trifluoromethyl)furan, 167 
bis(triisopropyl)propyne, 345 
bis(trimethylsilyl) enol ether, 

229
bis(trimethylsilyl)-1,2-diol, 

367
bis-alkylation of lithiated 2-

trialkylsilyl-1,3-dithianes, 
418

bis-amidine, 295 
Bischler-Napieralski 

cyclization, 62, 63, 399 
Bischler-Napieralski 

isoquinoline synthesis,
348

Bischler-Napieralski 
synthesis, 62 

bis-epi-cytochalasin D, 375 
bisesquiterpenoid, 445 
bisfuran macrocycle, 327 
bisguanidines, 59 
bis-heterocyclic disulfide 

reagents, 108 
bishomocubanone 

carboxylic acid, 45 
bis-indole, 305 
bis-indole alkaloid, 19 
bisindole alkaloids, 405 
bis-indoles, 172 
bisiodide, 453 
bislactones, 75 
bis-lactonization, 109 
bisnorditerpene, 193 
bis-O-triflate, 259 
bis-oxazoline, 7 
bispyrrolidinoindoline 

diketopiperazine 
alkaloids, 295 

bis-silyloxyalkenes, 4 
bis-tetrahydrofuran 

backbone, 409 
bis-thiohydroxamic ester, 45 
bisubstrate reaction 

templates, 81 
bisulfite addition product, 

172
Blaise reaction, 374 
bleach, 265 
Blechert, S., 225, 249, 433, 

491
bleomycin A2, 163 
Blonski, C., 14 
blood-coagulation cascade, 

353
blossoms of flowers, 265 
boat conformation, 269 
boatlike transition state, 88 
boat-like transition structure, 

288
Bobbitt modified Pomeranz-

Fritsch reaction, 359 
Bobbitt-modification, 358 
Boc, 404, 405 
Boc group, 481 
Boc protected form, 172 
Boden, E.P., 238 
Boeckman R.K., 235 
Boeckman, R.K., 89, 373 
boesenoxide, 111 
Boger, D.L., 33, 117, 141, 

163, 177, 223, 287, 295, 
405, 465 

boiling isopropanol, 280 
boiling point, 354 
boiling points, 220 
boiling water, 266 
bone collagen, 203 
bone diseases, 203 
Bonjoch, J., 62, 173, 369 
Boom, J.H., 105 
borane, 66 
borane-dimethylsulfide 

complex, 101 
borane-tetrahydrofuran 

complex, 100 
boration, 296 
Borchert, A.E., 470 
bornanesultams, 8 
bornyl chloride, 476 
boroalkyl hydride, 66 
borohydride exchange resin, 

160
borohydrides, 268 
boron, 8, 66, 126 
boron enolate, 162, 315 
boron enolates, 8 
boron trifluoride etherate, 

189, 305, 315, 327, 426 
boron triiodide mediated 

demethylation, 465 
boronates, 412 



722

boronic acid coupling 
partner, 395 

boronic acids, 341 
boron-oxygen bond, 162 
boron-trifluoride etherate, 

169
borrelidin, 301 
borylenolate derivative, 9 
Bosch, J., 265 
Bose, D.S., 473 
Bossio, R., 331 
bostrycoidin, 217 
botrydianes, 159 
bottom face, 406 
Br, 422 
Br-, 452 
Br+, 174 
Br2, 200, 210, 254, 265, 492 
Bradscher cycloaddition, 207 
Bradsher cyclization, 119 
branched [8]triangulane, 147 
branched alkyl iodides, 300 
branching, 178 
brasilenyne, 345 
brasiliquinone B, 179 
Braverman, S., 147 
BrCCl3, 218 
Bredt, J., 302 
Bredt’s rule, 370 
Bredt's rule, 380 
brefeldin A, 171 
Breslow, R., 54 
brexan-2-one, 135 
Brexanes, 135 
briarellin diterpenes, 363, 

367
briarellin F, 367 
briarellins E and F, 363 
Brickner, W., 476 
bridged anion, 210, 266 
bridged azabicyclic ring 

system, 209 
bridged bicyclic 

monoterpenoids, 476 
bridged nitrogen structure, 

209
bridgehead, 165 
bridgehead bromide, 45, 371 
bridgehead carbon atom, 

370
bridgehead carboxylic acid, 

165
bridgehead iminium ion, 22 
bridgehead position, 380 
bridgehead positions, 381 
Bringmann, G., 181, 493 
Bringmann, J., 75 
Bristol-Myers Squibb, 163 
bromide, 250, 251, 452 
bromides, 218 
bromination, 200, 201, 255, 

492
bromine, 210, 218, 219, 264 
bromine atom, 492 
bromine radicals, 492 
bromo acyl bromide, 201 
bromo alkenyllithiums, 258 
bromo aromatic ketones, 

250
bromo ketone, 19, 303 
bromo ketones, 374 
bromo ortho ester, 479 
bromo sulfone, 372 
bromo thioesters, 201 
bromo-(p-nitro)-

acetophenone, 251 
bromo-1,1,1-trifluoroacetate, 

167
bromo-1-ethanesulfonyl 

ethane, 372 
bromo-2-

methylpropionamide, 
417

bromo-3-oxo-diethyl 
succinate, 167 

bromo-4,7-
dimethoxyphthalide, 179 

bromo-4-methoxyphthalide, 
179

bromoacetate, 361 
bromoacrolein, 141 
bromoalkanes, 3 
bromoalkanoates, 374 
bromoalkyne, 186 
bromobenzaldehyde, 339 
bromobenzene, 394 
bromocrotonate, 129, 471 
bromodecarboxylation, 45 
bromoenoses, 199 
bromoform, 147 
bromoform reaction, 159 
bromohydrin, 129 
bromoindole, 41 
bromoketone, 129, 255 
bromomethyl-2-alkenoates, 

374
bromopropionate, 279, 445 
bromopyridine, 311 
bromovinylsilane, 305 
Brönsted acid, 8, 180 
Brönsted acids, 50, 58, 178, 

315
Brönsted base, 8 
Brönsted or Lewis acids, 

314, 446 
Brook, 64 
Brook rearrangement, 65, 

388, 418 
Brook rearrangement 

mediated-[4+3] 
annulation reaction, 65 

Brook rearrangements, 64 
Brook, A.G., 64, 388 
Brown hydroboration, 400 
Brown hydroboration 

reaction, 66 
Brown, D.J., 144 
Brown, H.C., 386, 387 
Brown, R.C.D., 377 
Brummond, K., 22 
Brutcher, F.V., 360 
Bruylants reaction, 446 
Bs. See brosylate 
BT-sulfones, 230 
Bu2BOTf, 162 
Bu3SnH, 33 
Bu3Sn-SiMe3, 440 
Bu4N+, 262 
Bu4NBr3, 254 
Bucherer reaction, 417 
Büchi, G., 132, 332 
Büchner, 68 
Buchner reaction, 68 
Buchner, E., 68 
Buchwald, 71 
Buchwald, S., 70 
Buchwald-Hartwig coupling,

35, 441 
Buchwald-Hartwig cross-

coupling, 70, 71 
Buchwald-Hartwig Pd-

catalyzed cyclization,
131

buffered conditions, 354 
buffering, 225 
buflavin, 487 
BuLi, 36, 310 
bulky Grignard reagents, 

188
bulky groups, 466 
bullatacin, 221 
Burger, A., 187 
Burgess, 73 
Burgess dehydration 

reaction, 72, 73 
Burgess reagent, 72 
Burgess, E.M., 72 
Burgess, K., 183 
Burke, S.D., 407 
Burnell, D.J., 5 
but-3-enenitrile, 307 
butadiene, 279, 453, 470 
butadiynediyl group, 187 
butanone, 170 

butene, 372 
butenolide, 275 
butterfly transition structure, 

362
butyl vinyl ketone, 433 
butylacrolein, 205 
butylboronic acid, 412 
butyllithium, 255, 435 
butyn-2-one, 139 
butyric acid ethyl ester, 374 
butyrolactone, 61, 489 
butyrolactone moiety, 479 
BXC-1812, 309 
by-product of the oxidation 

process, 354 

C

C(sp2)-C(sp), 310 
C(sp2)-C(sp3) couplings, 310 
C-, O-, N- and S-

nucleophiles, 314 
C=C double bonds, 354 
C1 substituted allylsilanes, 

392
C-1027 chromophore, 109 
C10-O-substituted 

fenchones, 477 
C12-C13 trisubstituted olefin 

portion of epothilone D,
319

C15 ginkgolide, 229 
C1-C19 fragment of (-)-

mycalolide, 319 
C1-C21 subunit of 

tautomycin, 479 
C1-C6 fragment of 

epothilones, 375 
C1-methyl glucitol derivative,

29
C1-substituted isoquinolines, 

358
C2 symmetry, 355 
C22-C26 fully substituted 

central tetrahydropyran 
ring of phorboxazole,
343

C2-symmetric, 201 
C2-symmetric borolanes, 8 
C2-symmetric chiral 

diamines, 222 
C2-symmetric chiral 

quaternary ammonium 
salts, 259 

C2-symmetric macrocyclic 
core, 213 

C2-symmetric pentacyclic 
oxasqualenoid, 411 

C2-symmetric stereoisomers, 
163

C2-symmetrical enantiopure 
1,5-diols, 418 

C2-symmetrical ketone, 419 
C3 diiodo intermediate, 209 
C3 monosubstituted 

allysilanes, 392 
C3-C14 portion of okadaic 

acid, 131 
C3-C19 subtarget of 

phorboxazole, 343 
C4-building block, 127 
C5-C20 subunit of the 

aplyronine family of 
polyketide marine 
macrolides, 403 

C5H11, 491 
C60, 69 
C8K, 374 
C-acylation, 113 
Cadiot-Chodkiewitz reaction,

403
cadmium, 374 
caerulomycin C, 311 
cage compound, 165 
cage ethers, 29 
cage heterocycles, 29 
cage ketone, 29 

cage-annulated ethers, 29 
cagelike aldehyde, 455 
cage-like product, 333 
Caglioti reaction, 496 
calanolide A, 469 
calcium channel antagonist, 

195
calcium channel antagonist 

activity, 195 
calcium channel blockers, 

129
calcium hydroxide, 264 
Calderon, 10 
Calderon, N., 10 
caleprunin A, 185 
calicheamicin/esperamicin 

antibiotics, 57 
calix[2]pyridine[2]pyrrole, 85 
calix[3]pyridine[1]pyrrole, 85 
calix[4]arene, 85 
calix[4]furan, 329 
calix[4]pyridine, 85 
calix[4]pyridines, 85 
calix[4]pyrrole, 329 
calix[5]pyrrole, 329 
calix[6]furan, 329 
calix[6]pyrrole, 329 
calix[m]pyridine-[n]pyrrole, 

85
C-alkylation, 2, 167, 202, 

272, 484 
callipeltoside A, 213 
callipeltoside aglycon, 425 
C-allyl phenols, 88 
callystatin A, 231 
calophylium coumarin, 469 
calphostins (A-D), 149 
Calter, M.A., 167 
calyculin A, 161 
Cameron, D.W., 217 
camphene, 364 
campherenone, 495 
camphor, 280, 320, 381 
camphorquinone, 381 
camptothecin, 421 
CAN, 315 
cancer cell growth inhibitory 

and antimitotic agent, 
351

cancer therapeutic agent, 
403

cancer therapeutic lead, 393 
cannabinoids, 443 
cannabisativine, 399 
Cannizzaro reaction, 74, 75, 

202, 442, 456 
CaO, 444 
capnellene, 47, 285, 471, 

495
capreomycidine IB, 211 
caprolactam, 50 
carbacephalosporin, 213 
carba-ene reaction, 6 
carbamate, 210, 420 
carbamate derivatives, 209 
carbamate intermediate, 117 
carbamates, 72, 116, 458 
carbamic acid, 266 
carbamic acids, 210 
carbamoyl Baker-

Venkataraman 
rearrangement, 31 

carbamoyl enamine, 357 
carbamoyl radical, 291 
carbamoyldichloromethyl 

radical, 62 
carbanion, 24, 128, 446 
carbanionic E1cb 

mechanism, 206 
carbanionic intermediate, 

190, 252 
carbanionic organosodium 

compound, 498 
carbanions, 92, 212, 434 
carbanion-stabilizing group, 

214
carbazole, 248 
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carbazole alkaloid, 123 
carbazoles, 122, 441 
carbene, 10, 18, 122, 276 
carbene insertion reactions, 

36
carbene intermediate, 36 
carbene source, 85 
carbene-carbene 

rearrangement, 18 
carbenoid, 146 
carbenoid insertion reaction,

71
carbenoid intermediate, 110 
carbenoids, 377 
carbocation, 36, 94, 364, 

414, 476 
carbocation center, 350 
carbocation intermediate, 

350
carbocation intremediates, 

304
carbocationic intermediate, 

190
carbocations, 134, 382 
carbocycles, 232 
carbocyclic [6-7] core of 

guanacastepenes, 377 
carbocyclic rings, 126 
carbocylic acid derivatives, 

164
carbodiimide reagent, 238 
carbodiimides, 24, 72, 426 
carbohydrate mimetics, 241 
carbohydrate moiety of (+)-

K252a, 52 
carbohydrate precursor, 337 
carbohydrate precursors, 

187
carbohydrate scaffold, 246 
carbohydrates, 168, 209 
carboline, 205, 349 
carbolines, 441 
carbon dioxide, 190, 248, 

252, 266, 278 
carbon dioxide atmosphere, 

249
carbon electrophiles, 48 
carbon framework of the 

eleutherobin aglycon,
191

carbon monoxide, 184, 460 
carbon monoxide equivalent, 

479
carbon nucleophile, 286 
carbon nucleophiles, 188, 

390
carbon terminal, 496 
carbon tetrachloride, 218, 

492, 493 
carbonates, 202, 458 
carbon-carbon bond 

cleavage, 451 
carbon-carbon bond 

formation, 298, 392 
carbon-carbon double bond, 

278, 390 
carbon-carbon double 

bonds, 486 
carbon-centered radical, 42, 

43, 434 
carbon-centered radicals, 

290
carbon-chromium(III) bonds, 

318
carbon-dioxide, 188, 218, 

428
carbon-disulfide, 82 
carbon-halogen bond, 374 
carbon-heteroatom multiple 

bonds, 188 
carbonic acid monoester, 

462
carbon-linked glycosides, 

241
carbon-monoxide, 184, 334, 

436, 437 
carbon-nitrogen bond, 383 

carbon-oxygen bonds, 174 
carbon-tetrabromide, 104 
carbonyl component, 442 
carbonyl compound, 188, 

284, 302, 318, 330, 348, 
368, 374, 496, 497 

carbonyl compounds, 190, 
250, 262, 264, 276, 278, 
280, 298, 308, 320, 344, 
388, 396, 452, 454, 488 

carbonyl ene reaction, 364, 
365

carbonyl group, 8, 28, 29, 
47, 166, 176, 188, 256, 
360, 454, 455, 496, 497 

carbonyl halides, 374 
carbonyl radical cyclization,

229
carbonyl singlet state, 332 
carbonyl substrate, 276 
carbonyl triplet state, 332 
carbonylative Stille cross-

coupling, 310 
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Fittig, R., 350 
five contiguous 

stereocenters, 193 
five-membered acetal 

moiety, 229 
five-membered cyclic 

transition state, 282 
five-membered enol ether, 

229
five-membered enone, 391 
five-membered envelope-like 

transition state, 282 
five-membered heterocycles, 

198, 332, 468 
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five-membered lactam, 497 
five-membered lactone ring, 

155
five-membered nitrogen 

heterocycle, 229 
five-membered ring, 335 
flammable solvent, 245 
flash chromatography, 221, 

314, 322, 478 
flash vacuum pyrolysis, 433, 

471
flash vacuum pyrolysis 

apparatus, 470 
flash vacuum thermolysis 

conditions, 470 
flavones, 30 
flavor chemical, 433 
Fleet, G.W.J., 111 
Fleming, I., 174 
Fleming-Tamao oxidation,

174, 175, 211, 385 
flexible ring systems, 100 
Flippin, L.A., 467 
fluorescein dyes, 119 
fluorescent nucleotides, 251 
fluorescent probes, 185 
fluoride ion, 34, 170, 202 
fluoride ion catalyzed 

desilylation, 434 
fluoride-induced desilylation, 

422
fluoride-promoted 

fragmentation, 253 
fluorinated six-membered 

rings, 127 
fluorination, 35, 200 
fluorine, 34 
fluorine gas, 264 
fluoro-1H-pyrrolo[2,3-

b]pyridine, 35 
fluoro-2-nitrobenzaldehyde, 

41
fluoro-7-formylindole, 41 
fluorobenzene, 258 
fluoro-D/L-dopa, 35 
FluoroFlash silica gel, 411 
fluoroheteroaromatic 

compounds, 291 
fluoro-meta-tyrosine, 339 
fluoroprimaquine, 415 
fluorous, 106 
fluorous mixture synthesis, 

411
fluorous phase, 58 
fluorous urea derivative, 58 
fluvirucinine A1, 21 
FMO theory, 126 
Fmoc protecting group, 247 
Fmoc-D-alanine, 399 
foodstuffs, 14 
forcing conditions, 424 
forests, 283 
formal [2+2] or [3+2] 

cycloaddition, 404 
formal negative charge, 486 
formal total synthesis, 9, 

153, 345 
formaldehyde, 74, 160, 188, 

242, 274, 348, 349, 364, 
457

formaldehyde dimethyl 
acetal, 348 

formamide, 160 
formamides, 72, 396 
formates, 477 
formic acid, 86, 160, 229, 

285, 431, 477 
formic acid chloride, 184 
formic acid derivatives, 160 
formic-pivalic anhydride, 356 
formyl cation, 184 
formyl chloride, 184 
formyl derivative, 494 
formyl group, 41, 184, 185, 

369, 461, 468, 469, 494 
formyl ketone, 376 
formylated pyrone ring, 369 

formylation, 75, 249, 376, 
378

formylazetidinone, 215 
formylphenoxy group, 203 
Forsyth, C.J., 101, 131, 215 
fostriecin, 9, 221 
four component coupling, 

463
four-atom concerted 

transition state, 400 
four-centered transition 

state, 66, 78 
four-component coupling, 65 
four-component reaction, 

462
four-membered 

heterocycles, 488 
four-membered 

intermediate, 24 
four-membered transition 

state, 428 
FR182877, 163, 459 
FR-900482, 357, 469 
FR901464, 389 
FR901483, 22 
fragmentation, 158, 159, 333 
fragmentation product, 191, 

480, 481 
fragmentation products, 368 
Franck, R.W., 207 
frangomeric effect, 190 
Fráter, G., 477 
fredericamycin A, 65, 287, 

351
free acid, 251 
free amines, 228, 362, 408 
free base form, 172 
free energy difference, 112 
free hydroxamic acids, 266 
free hydroxyl group, 29 
free phenols, 464 
free radical chain 

mechanism, 240 
free radical chlorination, 200 
free radical 

fragmentation/eliminatio
n, 133 

free radical inhibitor, 200 
free radical initiator, 6 
free radicals, 428 
freezer, 262 
Freytag, 208, 209 
Friedel, C., 178 
Friedel-Crafts acylation, 62, 

176, 177, 184, 216, 217, 
305

Friedel-Crafts acylation of 
phenols, 180 

Friedel-Crafts acylations,
180

Friedel-Crafts alkylation,
176, 178, 179 

Friedel-Crafts aromatic 
substitution, 290 

Friedel-Crafts reactions, 184 
Friedländer reaction, 81, 379 
Friedländer synthesis, 414 
Friedolsheim, A., 306 
Fries rearrangement, 180 
Fries, K., 180 
Fries-rearrangement, 181 
Fritsch, P., 358 
Fritzen, E., 135 
frontier orbital interaction, 6 
fructose-derived ketone 

catalyst, 410 
Fuchs, P.L., 104 
fuchsiaefoline, 261 
Fuji, K., 161, 309 
Fukumoto, K., 265, 303, 495 
Fukuyama, T., 197, 229, 

243, 405, 463 
Fukuyama, Y., 441, 491 
fullerene, 69 
fully elaborated carbon 

skeleton, 229 

fully functionalized core of 
lysergic acid, 377 

fully oxygenated 
cyclohexane ring, 203 

fulvene, 427 
fumagillin, 485 
fumagillol, 485 
fumaric acid, 472 
fumiquinazoline A and B,

131
fumiquinazoline alkaloid, 399 
fumiquinazoline G, 399 
functional group tolerance, 

92, 310, 354 
functionalized cage 

compounds, 45 
functionalized decalin 

system, 480 
functionalized enyne-cobalt 

complex, 335 
functionalized ketones, 316 
functionalized 

octenopyranoses, 199 
functionalized olefins, 316 
functionalized olefins and 

ketones, 316 
functionalized 

preanthraquinones, 55 
functionalized 

tricyclodecadienones, 45 
fungal metabolite, 33, 207, 

249, 429 
fungicidal natural product, 

239
Funk, R.L., 333, 469 
furan, 333, 468 
furan derivatives, 278 
furan macrocycles, 327 
furan ring, 195 
furan ring transfer reaction,

351
furan-2-yl-2-(2-furan-2-yl-

vinyl)-6-thiophen-2-yl-
pyridine, 255 

furan-isoannelated 
[14]annulene, 327 

furanodecalin, 127 
furanoditerpene, 389 
furanomycin, 463 
furanone ring, 373 
furanose, 15 
furanosylated, 52 
furans, 3, 60, 166, 216, 326, 

332, 377 
furaquinocin A and B, 393 
furaquinocins, 393 
furochromone, 281 
furolignans, 167 
furoscrobiculin B, 351 
Fürstner, A., 12, 13, 153, 

163, 177, 197, 237, 247, 
253, 381, 459 

Furukawa modification, 412 
furyl side chain, 251 
fused bicyclic carbocycles, 

257
fused bicyclic compounds,

257
fused bicyclic system, 153 
fused cyclic systems, 304 
fused cyclopentanone unit, 

33
fused ring systems, 56 
fused tricyclic skeleton, 191 
FVP, 433 

G

G- and F-ring phenylglycine 
precursors, 405 

GA111, 281 
GA111 methyl ester, 281 
GA112, 281 
GA112 methyl ester, 281 
Gabriel reagents, 182 
Gabriel synthesis, 182, 183, 

289

Gabriel, S., 182 
Gabriel-malonic ester 

synthesis, 182 
GaCl3, 178 
galactose, 291 
galbonolide B, 139 
Galbraith, A.R., 186 
galbulimima alkaloid GB 13,

61
Galbulimima alkaloid GB 13,

159
Galopin, C.C., 433 
Galubulimima alkaloid, 105 
gambierol, 391 
Gammill, R.B., 281 
Ganem oxidation, 250, 251 
Ganem, B., 7, 447 
Ganesan, A., 399 
Gao, Y.-C., 249 
garsubellin A, 475 
garugamblin 1, 499 
gaseous CO2, 248 
gastroprotective substance, 

353
Gattermann formylation,

184, 185, 216 
Gattermann reaction, 216, 

394
Gattermann synthesis, 184 
Gattermann, L., 184 
Gattermann-Koch 

formylation, 184 
Geise, H.J., 271 
Geissler, G., 486, 488 
gelsemine, 23, 155, 243, 

455
gem-dimethyl group, 413 
gem-dimethyl olefins, 380 
geminal acylation, 5 
geminal dicarbethoxy 

compounds, 252 
geminal diesters, 252 
geminal dihalides, 452 
geminal dihalocyclopropane, 

146
geminal diiodoalkanes, 452 
geminal dinitrile, 353 
geminal-dichromium 

intermediates, 452 
geminally disubstituted 

alkenes, 380 
gene expression, 265 
genistein, 217 
Gennari, C., 214 
geometrical isomerization, 

438
geometrical isomers, 242 
Georghiou, P.E., 399 
geraniol, 33 
geranyl tributyltin, 395 
Gerlach, H., 249 
Gerlach-Thalmann

modification, 108 
germanium, 374 
Germany, 474 
Geuther, 272 
Ghosh, A.K., 501 
Gibson, C.L., 161 
Gibson, T., 201 
Gigante, B., 41 
Giger, R., 121 
Gilbert, J.C., 91, 402 
gilbertine, 225 
Gilham, P.T., 336 
Gilman, H., 420 
gilvocarcin M aglycone, 421 
Gin, D.Y., 293 
glabrescol, 411 
glacial acetic acid, 244, 328, 

383, 473 
glacial AcOH, 173 
Glaser coupling, 186, 187, 

255
Glaser, C., 186 
global deprotection, 347, 

389, 453 
gloeosporone, 237 
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glucal, 29 
glucolipsin A, 163 
glucose, 398 
glutamic acid, 150 
glycal, 143 
glycals, 168 
glyceraldehyde, 341 
glycerol, 398, 414 
glycidic esters, 128, 129 
glycine, 446 
glycine equivalent, 381 
glycine-d-15N, 289 
glycogen synthase kinase-3 

inhibitors, 41 
glycokinase-activating 

properties, 163 
glycol, 360, 482 
glycol cleavage, 201, 451 
glycol substrate, 350 
glycolate ester, 87 
glycolipid, 163 
glycols, 114, 228, 350, 496 
glycophanes, 187 
glycosidase inhibitor, 309 
glycosidase inhibitors, 437 
glycoside, 168, 246 
glycosidic bond, 235 
glycosidic bond formation, 

234
glycosidic linkage, 149 
glycosidic linkages, 247 
glycosyl acceptor, 235 
glycosyl acetate, 247 
glycosyl bromide, 247 
glycosyl cyanides, 37 
glycosyl donor, 234 
glycosyl halides, 246 
glycosyl sulfoxides, 234 
glycosylamine derivatives, 

14
glycosylamines, 14 
glycosylaziridine derivatives, 

199
glycosyltransferase, 17 
glyoxal, 251 
glyoxal hemiacetal, 358 
glyoxals, 54, 74 
glyoxylic acid, 23, 340, 341, 

368
Godfrey, A.G., 121 
Goldberg modified Ullmann 

condensation, 464 
Goldberg reaction, 464 
Goldberg, I., 464 
Golebiowski, A., 341 
gomisin J, 461 
gonadotropin hormone 

antagonists, 261 
good leaving group, 350, 

416
good leaving groups, 168 
good nucleophiles, 198 
Gram-negative bacteria, 407 
Gram-positive bacteria, 381 
gram-scale synthesis, 487 
Green, B.S., 249 
Greene, A.E., 427 
Gribble, G.W., 469 
Grieco, P.A., 53 
Grignard addition, 29 
Grignard reaction, 38, 188, 

189
Grignard reactions, 498 
Grignard reagent, 40, 41, 

199, 256, 305, 325, 478 
Grignard reagents, 38, 146, 

188, 189, 258, 274, 310 
Grignard, V., 188 
Grignard-reagent, 38 
Grignon, J., 240 
griseoviridin, 11 
Grob fragmentation, 190, 

191, 445 
Grob fragmentations, 190 
Grob, C.A., 190 
Grob-type fragmentation,

158, 356 

Grob-type fragmentations,
480

Groot, A., 83 
Grossman, R.B., 139, 353 
ground-state conformation, 

413
growth factor inhibitor, 205 
growth of nerve cells, 493 
growth-inhibitory activity, 

301
Grubbs carbene, 13 
Grubbs catalyst, 11 
Grubbs first and second 

generation catalysts, 152 
Grubbs first generation 

catalyst, 153 
Grubbs, R.H., 10 
Grubbs’s catalyst, 99 
GSK3 inhibitors, 41 
guaiane, 133 
guanacastepene, 155 
guanacastepene A, 385 
guanacastepenes, 133 
guanidine alkaloid, 59 
guanidines, 24 
Gung, B.W., 403 
Gupta, S., 95 

H

H shift, 36 
H2, 316 
H2/Rh-catalyst or Wilkinson 

catalyst, 314 
H2CrO4, 228 
H2O, 74, 474 
H2O2, 28, 222, 283, 354, 

357, 362, 474 
H2O2/KHCO3 oxidation, 125 
H2S, 468 
H2SO4, 50, 58, 172, 173, 

176, 178, 182, 229, 285, 
308, 327, 344, 350, 364, 
368, 375, 396, 430 

H3PO4, 176, 178, 346 
Hadfield, J.A., 339 
Hagiwara, H., 83, 193, 229, 

369
Hailes, H.C., 265 
Hajos, Z.G., 192 
Hajos-Parrish ketone, 192, 

193, 481 
Hajos-Parrish reaction, 192, 

384, 385 
Hajos-Parrish-Eder-Sauer-

Wiechert reaction, 192 
Hale, K.J., 419 
halicholactone, 115, 293 
haliclonadiamine, 317 
halide, 86 
halide ion, 170, 498 
halide ion sources, 294 
halides, 394, 458 
halo acid, 200 
halo acid chlorides, 426 
halo acyl halide, 200 
halo carbonyl substrates, 

250
halo carboxylic acids, 200 
halo ester, 374 
halo esters, 128, 200 
Halo ketimines, 164 
halo ketones, 164, 182, 276, 

374
halo sulfones, 128 
haloalkynes, 186 
halodecarboxylation, 219 
haloform, 146, 452 
haloform reaction, 264, 265 
haloform-chromium(II)-

chloride, 452 
haloforms, 84, 264 
halogen atom, 208, 246 
halogen atoms, 200, 316, 

484
halogen donor solvents, 218 
halogenated aldehydes, 166 

halogenated alkylsilanes, 
344

halogenated alkynes, 166 
halogenated benzene rings, 

466
halogenated carbonyl 

compounds, 166 
halogenated cyclopentenyl 

cation, 371 
halogenated heteroaromatic 

compounds, 466 
halogenated

heteroaromatics, 467 
halogenated hydrocarbon, 

468
halogenated ketones, 166, 

170
halogenated sulfones, 372 
halogenating agents, 246 
halogenation, 254, 264, 372 
halogenation process, 492 
halogenative 

decarboxylation, 218 
halogen-azide exchange,

376
halogen-bearing carbon, 

164, 370 
halogen-carbon bond, 318 
halogen-containing BINAP-

Ru(II) complexes, 316 
halogen-exchange reaction, 

170
halogenonitriles, 216, 217 
halogens, 400 
halohydrin, 128 
halohydrins, 276, 350 
haloketone, 3 
haloketones, 3, 254 
halolactonization, 157 
halomon, 227 
hamacanthin B, 429 
Hamada, Y., 353 
Hamann, L.G., 473 
Hamby, J.M., 245 
hamigeran B, 381 
Hamill, B.J., 402 
Hanessian, S., 239 
Hann, A.C.O., 242 
Hann-Lapworth mechanism,

242
Hansen, M.M., 17 
Hantzsch dihydropyridine 

synthesis, 194, 195, 254 
Hantzsch synthesis, 195 
Hantzsch, A., 194 
hapten for 

radioimmunoassay, 379 
hard Lewis acid, 153 
hard metal hydrides, 268 
hard nucleophiles, 458 
hard reducing agent, 268 
Harding, K.E., 305 
Harger reaction, 116 
Harmata, M., 371 
Harper, J.S., 144 
harringtonolide, 69 
Harrowven, D.C., 41, 87 
harsh conditions, 178, 322, 

344
harsh reaction conditions, 

490
Hart, D.J., 143, 157, 241, 

455
Hart, H., 327 
Hartwig, 71 
Hartwig, J., 70 
Hashimoto, K., 223 
Hassner, A., 388 
hasubanan alkaloid, 211 
Hatekayama, S., 48, 287 
H-atom transfers, 43 
Hay coupling conditions, 186 
Hay, A.S., 186 
HBF4, 174, 383, 395 
HBr, 92, 171, 182, 492 
HBr solution in methanol, 

441

HCHO, 161 
HCl, 18, 41, 50, 58, 92, 172, 

184, 185, 225, 244, 280, 
317, 352, 359, 364, 368, 
401, 430, 478, 500 

HCl gas, 307, 430 
HCl salt, 172 
HClO, 354 
HClO4, 180, 192 
HCN, 184, 302, 446 
HCN/AlMe3, 302 
HCO2H, 430 
HCOOH, 317 
HCr2O7

-, 228 
HCrO4

-, 228 
HDA, 204, 205 
heat, 144 
Heathcock, C.H., 3, 87, 103, 

275, 321, 383, 449 
heavy metal salts, 446 
heavy metals salts, 246 
Hecht, S.M., 33 
Heck cyclization, 283 
Heck reaction, 196, 197 
Heck, R.F., 196, 424 
hectochlorin, 239 
Hegedus, L.S., 107 
Heine reaction, 113, 198, 

199
Heine, H.W., 198 
Heintz, W., 120 
heliannane-type 

sesquiterpenoid, 425 
heliannuol E, 425 
Helicenes, 325 
Hell, C., 200 
Hell-Volhard-Zelinsky 

reaction, 200 
Helmchen, G., 273 
hemiacetal, 357 
hemiaminal, 274 
hemiaminal intermediate, 

328
hemiasterlin, 447 
hemiketal, 137 
Henbest modification, 496 
hennoxazole A, 429, 475 
Henriques, R., 416 
Henry reaction, 202, 203, 

309
Henry, J.R., 41 
Henry, L., 202 
heptahydrate of CeCl3, 268 
heptenal, 433 
herbertenediol dimethyl 

ether, 493 
herbicides, 423 
herbicidin B, 73, 347 
Herdwijn, P., 399 
heroin, 71 
Hesse, M., 115 
hetero aldol-Tishchenko 

reaction, 456 
hetero D-A cycloaddition,

204
hetero Diels-Alder 

cycloaddition, 126 
hetero Diels-Alder reaction,

211, 253 
heteroallenophiles, 125 
heteroarenes, 55 
heteroaromatic activators, 

230
heteroaromatic aldehydes, 

58
heteroaromatic 

arylhydrazones, 172 
heteroaromatic compounds, 

176, 179, 184, 420, 468, 
484, 492 

heteroaromatic halides, 296 
heteroaromatic nitriles, 352 
heteroaromatic systems, 122 
heteroaryl, 174, 196 
heteroaryl carbenes, 148 
heteroaryl groups, 254 
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heteroarylboronic esters, 
296

heteroatom, 152, 204, 464 
heteroatom bridged 

diallenes, 147 
heteroatom Peterson 

olefination, 271 
heteroatom substituent, 162, 

496
heteroatom substituted 

diene, 126 
heteroatom substitution, 470 
heteroatom-containing 

substituent, 420 
heteroatoms, 190, 480 
heteroatom-substituted 

aromatic compounds, 
420

heteroatom-substituted 
silane, 174 

heterocoupled diyne, 187 
heterocoupling, 498 
heterocycle, 112, 230, 330 
heterocycles, 78, 124, 125, 

275, 306, 382 
Heterocycles, 60 
heterocyclic alkynes, 186 
heterocyclic amines, 328 
heterocyclic compound, 462 
heterocyclic dimers, 80 
heterocyclic phenols, 378 
heterocyclic ring 

transformations, 113 
hetero-D-A reaction, 140 
hetero-Diels-Alder reaction,

243, 279 
heterodienophile, 204 
hetero-ene, 6 
heterogeneous, 80, 92 
heterogeneous catalysts, 

176, 320 
heterolytic cleavage, 190 
heterolytic cleavage of the 

C-S bond, 368 
heterolytic fragmentation, 

481
heterosilane, 174 
heterostannanes, 436 
heterosubstituted acetylene, 

122
heterosubstituted alcohols, 

350
heterosubstituted alkynes, 

148
hexacyclic homoallylic 

alcohol, 347 
hexafluoroantimonates, 34 
hexafluorophosphates, 34 
hexahydroazepine ring, 33 
hexahydroindene-1,5-dione, 

192
hexahydropyrimidines, 58 
hexamethylphosphoric 

triamide, 374 
hexane, 36, 314 
hexane-diethyl ether, 193 
hexanes, 400, 422 
hexanoyl chloride, 399 
hexasubstituted aromatic 

ring of the natural 
product in 33% yield., 
139

hexyl chain, 189 
hexylmagnesium bromide, 

189
hexynoic acids, 159 
HF, 178, 180 
HF.SbF5, 178 
Hg(II)-mediated 5-endo-dig 

cyclization, 33 
Hg(II)-salts, 322 
Hg(NO3)2, 383 
Hg2+, 174 
HgBr2, 14 
HgO, 218 
HI, 182, 487 
Hiemstra, H., 3 

hierarchy of metalation, 420 
high (E)-selectivity, 452 
high dilution conditions, 459 
high intensity light, 334 
high levels of 

distereoselectivity, 202 
high oxidation states, 161 
high pressure, 170, 487 
high pressure Hg-lamp, 209 
high surface Na, 146 
high temperature, 182, 280 
high temperatures, 180, 470 
high vacuum, 323 
high-boiling solvent, 496 
high-dilution, 181 
high-dilution condition, 500 
high-dilution conditions, 108, 

213, 238, 276, 277 
higher boiling solvents, 280 
higher diazoalkanes, 494 
higher-order cycloaddition, 

373
highly activated disubstituted 

aromatic compounds, 
216

highly alkylated aromatic 
substrates, 184 

highly basic organometallic 
reagent, 478 

highly branched carboxylic 
acids, 164 

highly functionalized
stereodefined  medium 
sized (8-, 9- and 10-
membered) carbocycles,
191

highly ordered cyclic 
transition state, 490 

highly oxygenated 
dihydrofuranols, 167 

highly oxygenated 
sesquiterpene, 169 

highly reactive 
organometals, 498 

highly strained 
cyclopropene, 219 

highly substituted 1,3-diene, 
401

highly substituted alkenes, 
364, 412, 480 

highly substituted aromatic 
compounds, 122 

highly substituted biaryls, 
466

highly substituted 
cyclohexane ring, 38 

highly substituted 
cyclopentene 
derivatives, 124 

highly substituted diene, 373 
highly substituted ketone 

substrates, 374 
highly substituted 

spirodienone, 143 
highly substituted 

tetrahydrofuran, 366 
highly-substituted 

cylohexanone 
derivatives, 168 

high-pressure conditions, 
288

high-pressure Diels-Alder 
cycloaddition, 445 

Hillman, M.E.D., 48 
himandrine skeleton, 475 
himbacine, 355 
hindered amine base, 196 
hindered aromatic 

aldehydes, 58 
hindered ketones, 212 
hindered substrates, 202 
hinesol, 53 
Hinsberg, O., 416 
HIO4, 114 
hippadine, 41, 441 
hippocampal neurons, 399 
hippuric acid, 339 

Hirama, M., 109, 425 
Hirota, T., 417 
Hirsenkorn, R., 359 
hirsutene, 105, 321 
hirsutine, 243 
hispidospermidin, 177, 385, 

389
histidine, 120 
HIV, 495 
HIV protease, 199 
HIV-1, 121 
HIV-1 inhibitor acitivity, 337 
HIV-1 reverse transcriptase, 

417, 469 
Hiyama, T., 318 
HKR, 220, 221 
HKR catalyst, 221 
HLF reaction, 208, 209 
HMDS, 471 
HMG-CoA reductase, 433 
HMPA, 83, 90, 182, 231, 

232, 233, 418, 419, 422 
HMPT, 252 
HN3, 396 
HNO2, 134, 135, 194, 224 
HNO3, 194, 364 
Ho, T.-L., 383 
HOCl, 364 
Hoesch conditions, 217 
Hoesch, K., 216 
HOF-acetonitrile complex, 

388
Hoffmann elimination, 154 
Hoffmann, A.K., 146 
Hoffmann, R.W., 386 
Hoffmann-LaRoche, 192 
Höfle, G., 112 
Hofmann, 209 
Hofmann degradation, 207 
Hofmann elimination, 96, 

206, 207, 422, 434 
Hofmann product, 206 
Hofmann reaction, 210 
Hofmann rearrangement,

210, 211, 266 
Hofmann, A.W., 206, 208, 

210
Hofmann’s rule, 206 
Hofmann-Löffler-Freytag 

reaction, 42 
Hofmann-Löffler-Freytag 

reaction (HLF reaction).,
208

Holmes, A.H., 455 
Holt, D.A., 34 
Holton, R., 73 
HOMO, 204 
homo aldol-Tishchenko 

reaction, 456 
HOMO energy level, 126 
homoallenyl boronate, 387 
homoallenylboration, 387 
homoallylic, 26 
homoallylic alcohol, 237, 

386, 387, 393 
homoallylic alcohols, 236, 

318, 364, 392, 490 
homoallylic alkylzinc 

reagent, 311 
homoallylic amines, 6 
homoallylic and 

bishomoallylic alcohols, 
410

homoallylic iodide, 311 
homoallylic side chain, 393 
homoannular diene, 269 
homobrexan-2-one, 135 
homocamptothecin, 409 
homochiral enone, 445 
homochiral epoxide, 419 
homocitric acid, 19 
homocoupled and reduction 

products, 258 
homocoupled product, 186, 

499
homocoupling of aldehydes 

and ketones, 276 

homocouplings, 498 
homofascaplysin C, 469 
homo-Favorskii 

rearrangement, 164, 165 
homogeneous, 80 
homolog ketones, 134 
homologation of aldehydes, 

104
homologue, 18 
homologue ester, 18 
homolysis, 42 
homolytic cleavage, 208 
homolytic cleavage-radical 

pair recombination, 434 
homolytic dissociation-

recombination
mechanism, 282 

homo-Payne rearrangement,
337

homopropargylic methyl 
esters, 402 

homopropargylzincs, 310 
homospectinomycins, 135 
HOMST, 217 
Horner reaction, 212 
Horner, L., 212 
Horner-Emmons olefination,

87
Horner-Emmons-

Wadsworth, 16 
Horner-Wadsworth-Emmons 

olefination, 212, 214 
Horner-Wadsworth-Emmons 

reaction, 486 
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452, 454, 474, 478, 482, 
486, 496 

Ketopiperazines, 463 
ketosteroids, 461 
ketoxime sulfonate, 50 
ketoxime tosylate, 307 
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enes, 35 

Kriewitz, O., 364 
Krohn, K., 30, 177 
Kröhnke oxidation, 250 
Kröhnke pyridine synthesis,

254, 255 
Kröhnke, F., 254 
Krupadanam, G.L.D., 469 
KSCN, 198 
Kuehne, M.E., 107, 189 
kuehneromycin A, 49 
Kulinkovich 

cyclopropanation, 257 
Kulinkovich reaction, 256, 

257
Kulinkovich, O.G., 256 
Kumada cross-coupling,

258, 259, 310, 424 
Kumada, M., 174, 258 
Kumar, S., 361 
Kunitomo, J.-I., 359 

Kurihara, T., 283 
Kuwajima, I., 61, 107, 129 
Kvarnström, I., 337 
KW-2189, 477 

L

L- and D-vinylglycine, 307 
L-(+)-swainsonine, 111 
LAB, 300, 301 
labeling experiment, 28 
labile stereocenters, 252 
LAC, 406 
lacinilene C methyl ether,

177
lactam, 49, 50, 51, 330, 427 
lactam carbonyl group, 281, 

455
lactam precursor of 

thienamycin, 315 
lactam ring, 213 
lactam substrate, 447 
lactamase, 42 
lactams, 42, 382, 426, 455, 

496
lactarane sesquiterpene, 

351
lactic acid, 446 
lactol, 179 
lactone, 29, 87, 89, 91, 139, 

157, 189, 225, 229, 233, 
271, 330, 357, 361, 381, 
421, 456, 479 

lactone annulation reaction,
263
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Lewis acid-directed coupling, 

313
Lewis acidic salts, 318 
Lewis acid-promoted ene 

reaction, 6 
Lewis acid-promoted 
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Li-halide salt, 486 
LiHMDS, 2, 139, 231, 390, 

391
limiting reagent, 301 
limonene, 103 
Lindgren, B.O., 354 
Lindlar reduction, 13 
Lindlar's catalyst, 247, 501 
linear tripeptide, 399 
linear triquinane, 115 
linear triquinane 

sesquiterpene, 285 
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lithiopyridine, 311 
lithiopyridine derivative, 395 
lithium, 8, 9, 310, 374 
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lithium alkoxides, 484 
lithium aluminum hydride, 

333
lithium amidotrihydroborate, 

300
lithium bromide, 171 
lithium chloride, 151, 300, 

301
lithium dienolate, 471 
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low-temperature 

vinylcyclopropane-
cyclopentene 
rearrangement, 471 

low-valent titanium, 276, 277 
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meta-pyrrolophane ketone, 

253
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methanolic sodium 

hypobromite, 210 
methanolysis, 481 

methanophenazine, 485 
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dione, 193 
methylcyclopropanecarboxyli

c acid, 413 

methylenation, 454 
methylene and amide 

linkers, 179 
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acid, 172 
methyllithium, 147 
methylmagnesium bromide, 

245
methylmagnesium chloride, 

259
methylnaphthalene, 83 
methyl-parathion, 16 
methylperhydro-1-indenone,

67
methylquinoline, 291 
methyl-substituted 

oxazaborolidines, 100 
methylsulfanyl-1H-

imidazoles, 121 
methylthiomethyl ether, 106, 

346
methyltrioctylammonium 

chloride, 485 
methyltrioxorhenium, 388 
methyltryptophol derivatives, 

261
methylurethanes, 210 
methylxanthoxylol, 377 
Mexican beetle, 13 
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Meyer, K.H., 284 
Meyers modification of the 

Ramberg-Bäcklund 
rearrangement, 373 

Meyers, A.I., 11, 73, 445, 
467

Meyers, J., 24 
Meyer-Schuster 

rearrangement, 284, 285 
Mg, 146, 188 
Mg(II), 298 
MgCl2, 14 
MgSO4, 307, 367 
Michael acceptor, 97, 286, 

303
Michael acceptors, 43, 202, 

274, 444 
Michael addition, 8, 139, 

192, 193, 194, 242, 286, 
287, 312, 384, 385, 424, 
501

Michael adduct, 254, 287, 
312, 384 

Michael adducts, 286 
Michael donor, 286 
Michael reaction, 286 
Michael, A., 246, 286 
Michael-addition, 182 
Michaelis, A., 16 
microbial biosurfactant 

sophorolipid, 247 
microorganisms, 357 
microtubule stabilizing 

antitumor agent, 221 
microtubule stabilizing 

antitumor drug, 239 

microtubule-stabilization, 
501

microwave irradiation, 170 
microwave-assisted, 58 
Midland Alpine-Borane 

reduction, 288 
Midland reduction, 288, 289 
Midland, M.M., 288 
Miesch, M., 305 
Migita, T., 70, 438 
migrating center, 28, 350 
migrating group, 28, 282, 

434, 490, 494 
migrating groups, 27, 142 
migrating ring, 416 
migrating terminus, 434 
migration ability, 28 
migration of alkyl groups, 

142
migration of the double 

bond, 280, 320 
migratory aptitude, 28, 64, 

434
migratory insertion, 196 
Mikami, K., 236 
Mikolajczyk, M., 305 
mild base, 54, 306, 369 
mild reaction conditions, 459 
milder deprotection 

conditions, 182 
mildly acidic conditions, 210 
mildly acidic CrO3-derived 

oxidizing agents, 228 
mildly acidic pyridinium-

chlorochromate, 228 
mildly basic conditions, 224, 

225
mildly basic workup, 362 
Millar, A., 433 
Miller, L.L., 327 
Miller, M.J., 213 
Miller, W., 414 
mimetic, 331 
mineral acids, 234, 326, 368 
mineral oil, 80 
Minieri, P.P., 382 
Minisci reaction, 176, 217, 

290, 291 
Minisci, F., 290, 291 
minquartynoic acid, 403 
mint and herbs, 433 
Mioskowski, C., 119, 227 
miroestrol, 381 
Mislow, K., 292 
Mislow-Evans 

rearrangement, 269, 
292, 293 

mismatched case, 408 
mitochondria, 31 
mitomycin, 71 
mitomycin-like antitumor 

agent, 357 
Mitsunobu activation, 223 
Mitsunobu cyclization, 213 
Mitsunobu reaction, 168, 

182, 183, 266, 269, 289, 
293, 294, 295, 319, 393 

Mitsunobu, O., 294, 317 
mixed anhydride, 266, 267, 

501
mixed anhydride method, 

245
mixed anhydrides, 116, 300, 

338, 500 
mixed aqueous media, 290 
mixed benzoins, 54 
mixed coupling, 276 
mixed epoxides, 222 
mixed organostannanes, 

438
mixed ortho ester, 226 
mixture of epimers, 231 
mixture of inert solvents, 430 
Miyashita, A., 55 
Miyaura boration, 296, 297 
Miyaura, N., 296, 448 
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MMPP, 222, 234, 283, 362 
Mn(III)-salen complex, 222 
Mn2(CO)10, 498 
Mn2+, 228 
mnemonic device, 404, 406 
m-nitrobenzenesulfonic acid, 

415
MnO2, 194, 493 
MnO2 oxidation, 305 
MnO2/AcOH, 327 
mode of action, 283 
moderately acidic 

compounds, 346 
modified Corey-Nicolaou 

macrolactonization, 109 
modified Dakin oxidation,

119
modified Dakin-West 

reaction, 121 
modified Danheiser 

benzannulation, 122 
modified Japp-Klingemann 

reaction, 225 
modified Keck conditions,

239
modified Koenigs-Knorr 

glycosidation, 247 
modified Kornblum 

oxidation, 251 
modified Ley oxidation, 263, 

355
modified McMurry coupling,

277
modified Neber 

rearrangement, 307 
modified Negishi protocol,

311
modified Oppenauer 

oxidation, 321 
modified Pauson-Khand 

annulation, 105 
modified Pauson-Khand 

reaction, 335 
modified Pomeranz-Fritsch 

reaction, 359 
modified Ritter reaction, 383 
modified Seyferth-Gilbert 

homologation, 403 
modified Skraup reaction,

415
modified Sommelet-Hauser 

rearrangement, 423 
modified Stephen reduction,

431
modified Ullmann

condensation, 465 
modified Wacker oxidation,

475
modified Wurtz coupling,

499
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macrolactonization, 501 
modified zeolites, 178 
modular approach, 393 
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Moffatt oxidation, 346, 347 
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moisture, 484 
moisture sensitive, 188 
moisture stability, 100 
Molander modification, 412 
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233, 253, 319, 449 
molecular oxygen, 44, 362 
molecular recognition, 130 
molecular recognizition, 325 
molecular sieves, 195, 242, 

262, 349, 408, 464 
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molecule of nitrogen, 18, 

278
Möller, F., 322 
molybdenum, 8, 152 
MOM  protecting groups, 

441
MOM protecting group, 501 
MOM protecting groups, 475 

momilactone A, 361 
MOM-protected p-hydroxy 

benzaldehyde, 421 
monastrol, 59 
mono O-demethylation, 181 
monoacylated derivatives, 

216
monoalkylation, 113 
monoamine transporter 

binding site affinity, 379 
monoarylhydrazones, 224 
monoborane, 66 
monochlorinated pyridines, 

85
monochlorination, 200 
monocyclofarnesol, 477 
monodentate chiral amines, 

406
monoenol, 326 
monoesters, 252 
monofunctional substrates, 

92
monohydric phenols, 248, 

352
mono-indoles, 172 
monolakylated product, 444 
monomer, 50 
monomesylates, 480 
monomethyl succinate, 121 
monomorine I, 433 
monopermaleic acid, 28 
monoperphtalic acid, 28 
monoprotected 

diallylalcohols, 323 
monoprotected diol, 319 
monosaccharide esters, 15 
monosubstituted alkenes, 

152
monosubstituted malonic 

esters, 252 
monosubstituted olefins, 152 
monosubstituted substrates, 

184
monosubstituted ureas, 58 
monosulfonate ester, 481 
monoterpene, 427 
monoterpene alkaloid, 357 
monoterpenes, 255 
monothioacetals, 392 
montanine-type alkaloid, 349 
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montmorillonite KSF clay, 

172
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Mori, K., 37, 347 
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morpholine enamine, 445 
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most stable carbanion, 164 
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mouse leukemia cells, 241 
Mousset, G., 366 
MP, 485 
MPV reduction, 280, 281 
Ms, 404 
MsCl, 480 
MsCl/Et3N, 171 
MTBE, 486 
MTO, 388 
Mugrage, B., 17 
Mukai, C., 315 
Mukaiyama aldol

methodology, 298 

Mukaiyama aldol reaction, 8, 
298, 299, 365, 475 

Mukaiyama aldol reaction 
pathway, 126 

Mukaiyama, T., 276, 294, 
298

Müller modification, 498 
Müller, K., 251 
Müller, M.J., 309 
multicomponent couplings, 

234
multicomponent reactions, 

58
multigram scale, 262 
multiple isolated double 

bonds, 362 
multistep decarboxylation, 

252
Mulzer, J., 221, 239, 363 
Mumm, O., 322 
Murashige, K., 117 
muricatacin, 489 
murisolin, 411 
muscarinic receptor 

antagonist, 355 
mutagenic, 81 
MVK, 370, 371, 384, 385 
MVP reduction, 280, 281, 

321
mycalamides, 87 
mycophenolic acid, 139 
mycosporins, 429 
mycotoxin, 167 
mycotrienol, 439 
Myers asymmetric alkylation,

300, 301 
Myers modification, 497 
Myers, A.G., 300, 497 
myltaylenol, 36 
myo-inositol, 369 
myriceric acid A, 42 
myriocin, 489 
mytotoxic, 451 
myxalamide A, 449 

N

nπ*-absorption, 332 
N-α-Fmoc alaninal, 331 
N-(2,4-

dinitrophenoxy)naphtali
mide, 267 

N(5)-ergolines, 279 
N-(cyanomethyl)pyrrolidine, 

423
N,N’-disubstituted ureas, 58 
N,N'-alkylidenbisacylamides, 

430
N,N'-dialkyl carbodiimide, 

238
N,N-dialkyl derivative, 274 
N,N-dialkylhydroxylamine, 

96
N,N-dichloro-sec-alkyl 

amines, 306 
N,N-diisopropyl-O-tert-

butylisourea, 355 
N,N-dimethyl bicyclic 

cyclopropylamines, 257 
N,N-dimethylacetamide 

dimethyl acetal, 156, 157 
N,N-dimethylamino 

derivative, 161 
N,N-dimethylamino ketone, 

275
N,N-disubstituted amides, 

300
N,N-disubstituted 

formamide, 468 
N,O-dimethylhydroxylamine 

hydrochloride, 478, 479 
N1999-A2, 425 
N2, 482, 496 
N2H4, 482 
N2O3, 134, 494 
N2O4, 395 
Na metal, 30 

Na(Hg), 498 
Na+, 248 
Na2CO3, 250 
Na2PdCl4, 474 
Na2S2O4, 244, 313 
NaBH(OAc)3, 160 
NaBH3CN, 160, 161 
NaBH4, 182, 268, 269, 347, 

365, 369, 421 
NaBr, 170 
N-acetyl derivative, 356 
N-acetylated spiroquinolines, 

271
N-acetylglucosamine, 241 
N-acetyloxazolidinone, 162 
NaCl, 170 
NaClO2, 354 
NaClO2/2-methyl-2-butene 

system, 354 
NaCN, 184, 446 
Nacro, K., 33 
N-acyl derivatives, 300 
N-acyl glycine, 338 
N-acyl glycosylaziridines, 

199
N-acyl hydroxylamines, 136 
N-acyl imminium ions, 125 
N-acyl oxazolidinones, 162 
N-acyl urea by-product, 238 
N-acyl-α-amino ketones, 

494
N-acylated 

pseudoephedrines, 300 
N-acylated-o-alkylanilines, 

270
N-acylation, 120, 300 
N-acylaziridines, 198 
N-acyliminium ion, 58 
N-acyliminium salt, 175 
N-acylium ion, 205 
NAE-086, 339 
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N-alkyl carboxamides, 382 
N-alkyl formamide, 383 
N-alkyl substituted 

pyridones, 377 
N-alkyl substituted pyrroles, 

328
N-alkyl(o-

methyl)arenesulfonamid
es, 209 

N-alkyl-1,2-
benzisothiazoline-3-one-
1,1-dioxides, 209 

N-alkylation, 41, 359 
N-alkyl-C-allyl glycine esters,

27
N-alkylphthalimide, 182, 183 
N-alkylsaccharins, 209 
N-allyl enamines, 20 
N-allylamine, 35 
N-allylamino acid 

dimethylamides, 257 
N-allylic derivative of NFLX, 

283
N-allyl-N-phenyl-benzamide, 

322
N-allylpyrrolidine, 21 
Nametkin rearrangement,

476
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n-amyl alcohol, 270 
NaN3, 183, 396, 397 
NaNH2, 80, 270, 422 
NaNH2/NH3, 422 
NaNO2, 225, 394 
NaNO2/HBr, 279 
NaOAc, 225, 338, 369, 432 
NaOCl, 222, 223 
NaOEt, 128, 166, 376, 442, 

496
NaOH, 74, 166, 210, 266, 

307, 378, 404, 483, 496 
NaOH solution, 322 
NaOH/H2O2, 289 
NaOMe, 166, 272 
NaOR, 322, 486 
naphtalenedione, 149 
naphthaldehydes, 49 
naphthalene, 87, 349, 499 
naphthalene derivatives, 417 
naphthalene rings, 327, 465 
naphthalenes, 122 
naphthalenide, 466 
naphthoisoquinoline, 63 
naphthol analogues of 

tyrosine, 185 
naphthols, 248, 378 
naphthopyran 

chloroaldehydes, 415 
naphthopyran intermediate, 

349
naphthopyran product, 349 
naphthopyranoquinolines,

415
naphthylamine, 95 
naphthylborate ester, 297 
naphthylisoquinoline, 63 
naphthyridine derivatives, 

431
naphtol, 148 
naphtylamine, 149 
napyradiomycin, 395 
napyradiomycin family of 

antibiotics, 127 
narciclasine, 269 
narcotic, 39 
naringinase, 111 
N-aryl amides, 396 
N-aryl-2-

hydroxypropionamide, 
417

Natale, N.R., 195 
natural amino acids, 185 
natural macrolide, 163 
Nazarov cyclization, 37, 285, 

304, 305, 345, 433 
Nazarov, I.N., 304 
N-benzoyl piperidine, 398 
N-benzoylaldimine, 205 
N-benzoylated indole, 441 
N-benzoyl-o-toluidine, 270 
N-benzyl and N-allyl cyclic 

amines, 282 
N-benzyl thiazolium chloride, 

433
N-benzylallylglycine, 23 
N-benzylhomoallylamine, 23 
N-benzyl-N-methyl aniline-N-

oxide, 282 
N-Boc directed ortho 

metalation, 421 
N-Boc protected primary 

amine, 161, 211 
N-Boc- -aminoaldehyde, 

331
N-Boc-5-methoxyindoline, 

467
N-Boc-6-methoxy-3-

methylindole, 493 
N-Boc-D-alaninal, 163 
N-Boc-valine-Adda 

fragment, 263 
N-bromo acetamide, 361 
N-bromo amides, 492 
N-bromo imides, 492 
N-bromoacetamide, 210, 

492

N-bromoamides, 208 
N-bromosuccinimide, 255, 

492
NBS, 158, 219, 303, 492, 

493
n-BuLi, 37, 181, 207, 270, 

292, 420, 421, 487, 490, 
491

n-butyl isocyanide, 401 
n-butyllithium, 104 
N-carboxymethyl group, 333 
N-Cbz protected (S)-

phenylglycinol, 405 
N-Cbz serine acetonide, 257 
N-chloroamines, 290 
N-chloroimidate, 307 
N-chloroimidates, 306 
N-chloroimines, 306 
N-chlorosuccinimide, 106, 

373
N-crotyl-N-methyl aniline N-

oxide, 282 
NCS, 106, 107, 209, 219 
NCS/DMS, 106 
N-cumyl-O-carbamate, 420 
N-cyanamides, 208 
N-dealkylated tricyclic amino 

ketone, 321 
N-demethylation of tertiary 

amines, 356 
N-deprotection, 329 
neat aliphatic acid, 200 
Neber rearrangement, 244, 

306, 307 
Neber, P.W., 306 
Needs, P.W., 267 
Nef reaction, 202, 308, 309 
Nef, J.U., 308 
negative charge stabilizing 

group, 286 
negative entropy, 88 
Negishi cross coupling, 31 
Negishi cross-coupling, 258, 

310, 311, 424 
Negishi, E., 310 
Neier, R., 3 
neighboring group effect,

362
neighboring group 

participation, 183, 234, 
246, 337, 350, 364, 455 

nemertelline, 395 
nemorensic acid, 60 
Nemoto, H., 391 
Nenitzescu indole synthesis,

312, 313 
Nenitzescu reaction, 312 
Nenitzescu, C.D., 312 
neopentyl alcohol, 235 
neopentylidene complex of 

tantalum, 454 
nerol, 33 
nerve gases, 16 
net retention, 198, 199 
NEt3, 286, 317, 480, 482, 

500
N-ethyl thiazolium bromide, 

433
neuraminidase inhibitors, 

309
Neureiter, N.P., 470 
neuroactive benz[e]indenes,

461
neuroexcitotoxic amino acid, 

337
neurotoxic lipopeptide, 301 
neurotoxic quaterpyridine, 

395
neurotoxin, 287 
neurotrophic, 47 
neutral conditions, 198 
neutral epoxidizing agents, 

388
neutral hydrolysis, 395 
nevarpine, 417 
nevarpine analogs, 417 
New Guinea bird, 287 

new heterocyclic ring 
system, 225 

N-ferrocenoyl-aziridine-2-
carboxylic esters, 199 

NFLX, 283 
N-formyl-N,N',N'-trimethyl 

ethylenediamine, 421 
N-glycoside, 14 
N-glycosides, 14 
NH2, 416, 466 
NH3, 422 
NH4Cl, 40, 129 
N-haloamide, 210 
N-haloamides, 208, 404 
N-haloamine salt, 404 
N-haloamines, 42, 208 
N-halogen bond, 208 
N-halogen substituted 

amide, 210 
N-halogenated amine, 208 
N-halogenated amines, 208 
N-halogenated ammonium 

salt, 208 
N-halo-succinimide, 219 
NHCOR, 420 
NHK coupling, 319 
NHK reaction, 318, 319 
N-hydroxynaphthalimide, 

267
Ni(0), 318 
Ni(0)- and Pd(0)-complexes, 

310
Ni(0) complexes, 466 
Ni(acac)2, 259 
Ni(COD)2, 401 
Ni(dppb)Cl2, 258 
Ni(dppe)Cl2, 258 
Ni(dppp)Cl2, 258 
Ni(II), 318 
Ni(II)- and Pd(II)-complexes, 

310
Ni(PR3)2Cl2, 258 
NIC, 479 
NIC-1, 479 
nicandrenones, 479 
Ni-catalyzed coupling of 

alkenyl and aryl halides, 
310

Nicholas reaction, 314, 315, 
335

Nicholas, K.M., 314 
nickel, 374, 438 
nickel catalysis, 258 
nickel peroxide, 114 
nickel salts, 318 
nickel(II), 232 
nickel(II) iodide, 233 
nickel(II)-catalyzed NHK

reaction, 318 
nickel-catalyzed coupling, 

401
nickel-phosphine complex, 

258
Nickon, A., 135 
NiCl2, 184, 319 
Nicolaou oxidation, 390, 391 
Nicolaou, K.C., 19, 33, 89, 

108, 109, 137, 187, 243, 
401, 465 

Nilsson, M., 78 
nine-membered enediyne, 

425
nine-membered macrocyclic 

core, 373 
NIS, 129, 219 
nitrene, 116 
nitrene insertion, 306 
nitrene pathway, 306 
nitrenes, 428 
nitric acid, 41 
nitrile, 150, 190, 353 
nitrile oxides, 72 
nitrile ylide, 112 
nitriles, 72, 106, 182, 188, 

196, 216, 268, 286, 302, 
306, 352, 362, 374, 382, 
396, 430, 468 

nitrile-to-aldehyde reduction, 
431

nitrilium chloride, 216 
nitrilium ion, 382 
nitrite ester, 42, 43 
nitrite ion, 171 
nitro, 194 
nitro alcohols, 202 
nitro alkanes, 72 
nitro compound, 308 
nitro compounds, 268, 428 
nitro group, 40, 202, 203 
nitro ketones, 202 
nitro olefins, 124 
nitro substituents, 432 
nitro-1,7,9-decatriene, 157 
nitro-aldol reaction, 202 
nitroalkane, 202, 203, 308, 

309
nitroalkanes, 202, 274 
nitroalkene, 308 
nitroarenes, 40, 394 
nitrobenzene, 352, 414 
nitrobenzenesulfonylhydrazi

de, 159 
nitrodeisopropylation, 41 
nitroethanol, 203 
nitrogen atmosphere, 392 
nitrogen gas, 158, 428 
nitrogen heterocycles, 24, 

294
nitrogen nucleophile, 459 
nitrogen nucleophiles, 294 
nitrogen- or sulfur ylide, 434 
nitrogen radical, 208 
nitrogen source, 194, 404 
nitrogen sources, 182 
nitrogen terminal, 496 
nitrogen to carbon 

migrations, 434 
nitrogen to heteroatom 

migrations, 434 
nitrogen ylide, 422, 423 
nitrogen ylides, 435 
nitrogen-centered radical, 

208
nitrogen-centered radicals, 

42
nitrogen-containing 

heterocyclic systems, 
144

nitrogen-containing natural 
products, 206 

nitroheptofuranoses, 203 
nitromethane, 203, 309, 313, 

366, 453 
nitronate alkoxides, 202 
nitronate anions, 202 
nitronate salt, 308 
nitrone, 51 
nitrones, 374 
nitronic acid, 308 
nitroolefin, 308, 309 
nitroparaffin sodium salts, 

308
nitropyridine, 144 
nitropyridines, 41 
nitroso, 426 
nitroso compound, 244, 308 
nitroso ethyl acetoacetate, 

244
nitroso ketone, 244 
nitrosoarenes, 40 
nitrosonium ion, 134 
nitrosulfone, 309 
nitrosyl radical, 43 
nitrosyl tetrafluoroborate, 

116
nitrous acid, 116, 134, 135, 

476
nitrovanillin, 35 
N-linked unsaturated 

glycosyl compounds, 
168

N-lithioketamine, 270 
N-masked derivatives of 

NFLX, 283 
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NMDA, 17 
N-methanesulfonyl, 441 
N-methoxy-N-methylamides, 

245, 478 
N-methoxy-N-methylurea, 

479
N-methyl group, 333 
N-methylacetanilide, 468 
N-methylamides, 478 
N-methylanabasine, 161 
N-methylated amine, 160 
N-methyl-D-aspartate 

antagonists, 35 
N-methylformanilide, 468 
N-methylmorpholine N-

oxide, 262 
N-methyl-O-(1-methyl-allyl)-

N-phenyl-hydroxylamine, 
282

N-methyl-piperidine-4-one, 
321

NMO, 223, 262, 263, 335, 
407

NMP, 466 
NMR spectra, 247 
NMR studies, 234 
NMR techniques, 289 
N-nitroamides, 208 
N-nitroso-N-cyclopropylurea, 

147
N-O bond, 356 
no mechanism reactions, 98 
NO2, 416, 422, 466 
Nógrádi, M., 499 
Non Steroidal Anti 

Inflammatory Drug, 17 
non-activated aromatics, 

184, 216 
nonanal, 333 
non-aromatic, 142 
nonaromatic portion of (-)-

morphine, 99 
non-basic conditions, 434 
non-basic modification, 423 
nonbonded interactions, 130 
non-catalyzed reduction, 101 
non-concerted 

fragmentations, 190 
nonconjugated 1,2-

disubstituted alkenes, 
230

nonconjugated aldehydes, 
230

non-coordinating solvents, 
412

noncovalent  stacking 
interaction, 443 

noncyanogenic 
cyanoglucoside, 247 

nondestructive removal, 162 
non-enolizable carbonyl 

compound, 274 
non-enolizable carbonyl 

compounds, 402 
non-enolizable esters, 270 
non-enzymatic browning, 14 
non-equilibrium conditions, 

384
nonionic bases, 202 
nonionic organic nitrogen 

bases, 202 
non-nucleophilic base, 234 
non-nucleoside inhibitors, 

417
non-nucleoside reverse 

transcriptase inhibitors, 
121

non-oxidative conditions, 
186

nonpeptidic inhibitor, 267 
non-peptidic inhibitors of 

thrombin, 353 
nonpolar aprotic solvents, 

272
nonpolar media, 302 
non-polar solvent, 388 
nonpolar solvents, 328 

non-polar solvents, 422 
nonproteinogenic amino acid 

surrogate, 189 
nonracemic (acyloxy)borane 

Lewis acid, 393 
non-racemic aziridines, 198 
non-radical mechanistic 

pathway, 218 
nonstabilized ylides, 486 
non-symmetrical ketones, 

244
nonsynchronous, 88 
nonsynchronous [3,3]-

sigmatropic 
rearrangement, 322 

nopol, 364 
Norbeck, D.W., 495 
norbornadione, 397 
norbornane-based 

carbocyclic core of CP-
263,114, 481 

norcaradiene, 68 
norcaradienic acid, 68 
norephedrine, 162 
norephedrines, 8 
norfloxacin, 283 
normal electron-demand D-A 

reaction, 140, 204 
normal electron-demand 

hetero D-A reaction, 204 
nor-statine, 331 
nortestosterone, 461 
novel 5-ring D-homosteroid,

53
novel histamine H3-receptor 

antagonists, 285 
novel nucleosides, 337 
novel plant cell inhibitor, 48 
novel pyridine-type P,N-

ligands, 255 
novel tetracyclic undecane 

derivatives, 93 
N-oxide, 154, 155, 174, 175, 

356, 357 
N-oxide formation, 174 
N-oxide promoter, 335 
N-oxides, 282 
Noyori asymmetric 

hydrogenation, 316, 317 
Noyori asymmetric transfer 

hydrogenation, 317 
Noyori, T.S.R., 316 
Nozaki, H., 318 
Nozaki-Hiyama-Kishi (NHK) 

reaction, 318 
Nozaki-Hiyama-Kishi 

reaction, 403 
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phloeodictine A1, 25 
phloroglucinol, 216, 217 
PhMe2Si-C, 174 
PhNO2, 466 
phomazarin, 177 
phomazarin skeleton, 177 
phorboxazole A, 215, 343 
phosphate buffer, 363 
phosphates, 458 
phosphazide, 428 
phosphine, 438 
phosphine ligand, 258, 424 
phosphine ligands, 196 
phosphine oxides, 486 
phosphine type ligands, 70 
phosphines, 408 
phosphinic azides, 116 
phosphinimine, 428 
phosphite, 292, 293 
phosphonate, 87 
phosphonate carbanion, 214 
phosphonate carbanions, 

212
phosphonate reagent, 214 
phosphonate reagents, 402 
phosphonic acid analog, 17 
phosphonic dichloride, 215 
phosphonium bromide, 489 
phosphonium salt, 16, 487 
phosphonium salts, 212, 486 
phosphonium ylide, 27 
phosphonium zwitterions, 

416
phosphono ester aldehyde, 

213
phosphoranes, 16, 486 
phosphoric acid, 16, 17, 346, 

350, 415 
phosphoric acid bisamides, 

212
phosphorous oxychloride, 

473
phosphorous pentoxide, 

326, 327 
phosphorous trihalide, 200 
phosphorous ylide, 488, 489 
phosphorous ylides, 16, 212, 

454, 486, 488 
phosphoroxy chloride, 427 
phosphoryl chloride, 468 
phosphoryl dienone, 305 
phosphoryl group, 305 
phosphorylation, 16 
phosphoryl-stabilized 

carbanions, 212 
photoaddition reaction, 473 
photo-Beckmann 

rearrangement, 51, 397 
photobiological evaluation, 

473
photochemical [2+2] 

cycloaddition, 132 
photochemical 1,3-acyl shift,

103
photochemical activation, 

494
photochemical aromatic 

annulation reaction, 495 
photochemical Bergman 

cyclization, 57 
photochemical conditions, 

304
photochemical Curtius 

rearrangement, 116 
photochemical cycloaddition, 

332
photochemical 

decomposition, 34 

photochemical dienone-
phenol rearrangement,
143

photochemical oxidation,
101

photochemical process, 470 
photochemical reaction, 68 
photochemical 

rearrangement, 369, 
471, 495 

photochemical Smiles 
rearrangement, 416 

photochemical version of the 
aldol reaction, 333 

photochemical Wolff 
rearrangement, 495 

photochemical Wolff-
rearrangement, 122 

photochemotherapy, 473 
photocyclization, 63 
photocycloaddition, 165, 

229, 332 
photocycloaddition 

substrate, 333 
photocycloadduct, 103, 333 
photocycloadducts, 53 
photoelectric devices, 57 
photoepoxidation, 362 
photoexcited benzaldehyde, 

333
photo-Fries rearrangement,

180, 181 
photoinduced 

vinylcyclopropane-
cyclopentene 
rearrangement, 471 

photoinitiation, 240 
photolabile product, 494 
photolysis, 51 
photolysis of nitrite, 

hypochlorite or 
hypoiodite esters, 42 

photorearrangement, 143 
phtalide, 139 
phthalimide, 182, 183, 289 
phthalimide anion, 182 
phthalyl group, 183 
phthalyl hydrazide, 182 
p-hydroxyacetonitrile, 217 
p-hydroxybenzaldehyde, 285 
p-hydroxybenzoic acid, 248 
phyllanthine, 127 
phyllanthocin, 103 
physiological conditions, 348 
physiological temperatures, 

56
physoperuvine, 483 
phytoalexine, 177 
phytoalexins, 37 
phytocassane, 37 
phytocassane D, 37 
phytopathogenic fungus, 115 
picoline N-oxide, 250 
picrasin B, 207 
Pictet, A., 348 
Pictet-Spengler reaction,

121, 348, 349, 356 
Pictet-Spengler 

tetrahydroisoquinoline 
synthesis, 348 

PIDA, 114, 141, 209, 210, 
219

PIFA, 210, 211 
pilot plant, 285 
pilot plant preparation, 339 
pinacol, 276, 350 
pinacol coupling, 169 
pinacol ester of diboronic 

acid, 296 
pinacol formation, 276 
pinacol rearrangement, 134, 

350, 351, 366, 367 
pinacolone, 350 
pinacol-type rearrangement,

350
pinB-Bpin, 296 

pinene, 288, 289, 364, 383, 
476

Pinhey-Barton ortho 
arylation, 63 

Pinner reaction, 307, 352, 
447

Pinner synthesis, 352 
Pinner, A., 352 
Pinnick oxidation, 354, 355 
Pinnick, H.W., 354 
pinocarvone, 255 
pioglitazone, 279 
pipecolinal, 457 
piperazine-2-carboxylic acid, 

341
piperidin-3-one derivatives,

15
piperidine, 208, 242, 376, 

398, 444 
piperidine and pyrrolidine 

alkaloids, 161 
piperidine ring, 279, 361 
piperidines, 206 
piperidone, 93 
piperizine moiety, 405 
piperonal, 129, 167 
piperonyl bromide, 337 
pironetin, 263 
Piskunova, I.P., 307 
plagiochin D, 441 
planar transition state, 410 
plant defense mechanisms, 

265
plant pathogenic fungi, 225 
plasma (serum), 379 
platelet glycoprotein IIb-IIIa, 

463
platinized porous plate, 496 
platinum, 153 
platinum halide, 153 
platinum 

tetrakistriphenylphosphin
e, 296 

P-M oxidation, 346 
PMB group, 501 
p-methoxybenzaldehyde  

dimethylacetal, 247 
p-methoxyphenyl sulfoxide, 

235
PN N�N�backbone, 428 
p-nitro benzoate, 295 
p-nitrobenzaldehyde, 457 
p-nitroperbenzoic acid, 28 
p-NO2C6H4CH3, 466 
P-O bond, 488 
POBr3/DMF, 469 
POCl3, 62, 245, 249, 468, 

473
POCl3/DMF, 121 
poison arrow frogs, 287 
polar addition complex, 178 
polar effects, 290 
Polar effects, 290 
polar protic solvent, 476 
polar solvents, 374, 422 
polar substituents, 34 
polar transition state, 204 
polarization, 178 
Polonovski reaction, 356, 

357
Polonovski, M., 356 
Polonovski-Potier reaction,

356, 357 
poly-1,4-diketones, 329 
polyacetylene, 289 
polyacylated products, 176 
polyalkoxyacyloxyphenones, 

216
polyalkoxyphenols, 216 
polyalkylated phenols, 180 
polyalkylated products, 444 
polyalkylation, 178 
polyamide, 50 
polybrominated products, 

492
polycavernoside A, 403 
polycephalin C, 453 
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polychlorinated products, 
200

polycondensation, 8 
polycycle, 95 
polycyclic alkaloid, 153 
polycyclic aromatic, 122 
polycyclic aromatic 

compounds, 35 
polycyclic ethers, 375 
polycyclic fused enones, 384 
polycyclic heterocycles, 290 
polycyclic hydroxyl ketones, 

191
polycyclic N-heterocyclic 

compounds, 417 
polycyclic ring systems, 371 
polycyclic systems, 190 
polyene hydroxyl-substituted 

tetrahydrofuran 
metabolite, 347 

polyene macrolide, 299 
polyfunctional acylating 

agents, 176 
polyfunctional ketones, 92 
polyfunctional 

organochromium
reagents, 318 

polyfunctional substrates, 
318

polyfunctionalized 
molecules, 106 

polyhydric phenols, 248 
polyhydroxy compounds, 

398
polyhydroxylated 

agarofurans, 269 
polyhydroxylated 

compounds, 369 
polyketide natural product, 

229
polyketide-terpenoid 

metabolite, 385 
polymer bound (S)-(-)-

proline, 192 
polymer-bound 

acetoacetamide, 313 
polymer-bound 

carbodiimides, 346 
polymer-bound DCC, 238 
polymerizable 

phosphatidylcholines,
187

polymerization, 12, 50 
polymerization of alkenes, 

178
polymers, 12 
polymethylated pyridines, 

291
polyols, 418 
polyoxamic acid lactone, 447 
polypeptide natural product, 

463
polyphenolic ethers, 216 
polyphenols, 216 
polyphosphoric acid, 95, 225 
polyphosphoric acid 

trimethylsilyl ester, 172 
polypropionate, 151
polypyrrolidinoindoline 

alkaloid, 439 
polysaccharides, 241 
polystyrene-supported PPh3,

25
polysubstituted phenazines,

71
polysubstituted 

tetrahydrofuran, 367 
polyunsaturated, 187 
polyunsaturated 12-

membered
macrolactone, 449 

polyunsaturated substrates, 
401

polyynes, 186 
Pomeranz, C., 358 
Pomeranz-Fritsch reaction,

358

Ponndorf, W., 280, 320 
porphyrin chromophores, 57 
porphyrin macrocycles, 57 
porphyrin-metal complexes, 

222
porphyrins, 57 
positively charged 

intermediate, 34 
Posner, G.A., 179 
post-cycloaddition 

modifications, 126 
postulate of skeletal 

invariance, 476 
potassium, 374 
potassium acetate, 296, 297 
potassium alkoxides, 324 
potassium anisoate, 266 
potassium 

aryltrifluoroborates, 464 
potassium carbonate, 133, 

191, 297, 417 
potassium cyanide, 252, 302 
potassium enolate, 129, 167, 

275
potassium ethoxide, 306, 

307
potassium fluoride, 242 
potassium hydride, 321, 325 
potassium hydroxide, 210, 

484, 485, 496 
potassium iodide, 394 
potassium metal, 484 
potassium 

organotrifluoroborates, 
340

potassium 
peroxymonosulfate, 410 

potassium phthalimide, 182, 
183

potassium pinacolate, 129 
potassium salt, 266 
potassium salt of pyrrole, 

378
potassium salts, 112 
potassium t-butoxide, 321 
potassium tert-butoxide, 

165, 191, 402, 403 
potassium thiocyanate, 121 
potassium-bromate, 136 
potassium-graphite laminate, 

374
potassium-hydride, 30 
potassium-t-butoxide, 147 
potassium-tert-butoxide, 30, 

271
potassium-tert-butoxide-

induced heterolytic 
fragmentation, 480 

potent activity, 221 
potent antitumor agent, 197 
potent fungicidal activity, 225 
potential dopamine receptor 

ligand, 383 
potential inhibitors of CMP-

Kdo synthetase, 493 
potential ligand for 

adenosine A1 receptors,
185

PPA, 62, 172, 176, 180, 327, 
396

PPE, 58 
PPh3, 108, 266, 294, 310, 

311, 322 
PPTS, 501 
p-quinols, 77 
p-quinone, 140, 240, 312 
p-quinones, 136 
PR 66453, 171 
Pr4N(IO4), 205 
Pr4N+, 262 
Prasad, R., 185 
pravastatin, 157 
precapnelladiene, 325 
precatalysts, 196, 432 
precipitate, 186 
precipitation of Pd metal, 

474

preexisting chiral centers, 
362

pre-existing stereogenic 
centers, 316 

preformed alkyne-cobalt 
complex, 335 

preformed aryl copper 
species, 466 

preformed enolates, 8, 298 
pre-formed enolates, 384 
preformed hydrazones, 496 
preformed iminium ion, 154 
preformed iminium salts, 

274, 275 
preformed reagent mixture, 

404
preformed semicarbazones, 

496
preformulated mixtures, 406 
preheated oven, 271 
Prelog-Djerassi lactone, 77 
premature Brook 

rearrangement, 419 
pre-metalation complex, 420 
prenylated aromatic 

substrate, 381 
preparative scale, 59 
preservation of food, 14 
preussin, 33, 211, 333 
preussomerin G, 391 
Prévost conditions, 361 
Prévost reaction, 360, 361 
Prévost, C., 360 
Price, N.P.J., 289 
Prilezhaev reaction, 362, 

363, 471 
Prilezhaev, N., 362 
primary α-amino acids, 120 
primary alcohol, 33, 67, 74, 

83, 137, 171, 295, 301, 
319, 321, 397, 479, 485 

primary alcohols, 72, 188, 
228, 300, 398, 484 

primary alkyl chloride, 183 
primary alkyl halides, 16, 

250, 272 
primary alkyl iodide, 171 
primary alkyl iodides, 498 
primary alkyl mesylate, 171 
primary alkyllithium, 479 
primary alkyllithium species, 

479
primary allylic alcohol, 137 
primary allylic alcohols, 322, 

380
primary amide, 420, 447 
primary amides, 72 
primary amine, 117, 182, 

183, 266, 274, 429, 430, 
446

primary amine group, 207 
primary amines, 72, 135, 

182, 194, 242, 295, 313, 
328, 329, 428 

primary and secondary 
alcohols, 262, 320, 346, 
450

primary and secondary 
aliphatic amines, 274 

primary and secondary 
amines, 462 

primary arylamines, 414 
primary carboxamide, 211 
primary carboxamides, 210 
primary hydroxyl group, 183, 

336
primary kinetic isotope 

effect, 328 
primary or secondary 

alcohol, 368 
primary stereoelectronic 

effect, 28 
primary tosylate, 455 
Primofiore, G., 225 
Prins cyclization, 365, 366, 

367
Prins reaction, 364, 365 

Prins, H.J., 364 
Prins-pinacol 

rearrangement, 366 
prismane, 74 
prochiral 2-alkyl-2-(3-

oxoalkyl)-cyclopentane-
1,3-diones, 192 

prochiral aldehydes, 188 
prochiral 

bis(ethynyl)methanol 
radical, 491 

prochiral ketones, 28, 288 
prodrugs, 283 
proline, 100, 192, 193 
proline containing 

tripeptides, 199 
propanediol, 341 
propanetricarboxylic acid, 

302
propanetriol, 414 
propargyl, 142 
propargyl alcohol, 386 
propargyl derivatives, 314 
propargyl halides, 166 
propargyl sulfenates, 292 
propargylic acetal, 315 
propargylic alcohol, 479 
propargylic alcohols, 263, 

284, 294, 314 
propargylic cation, 284 
propargylic cations, 314 
propargylic epoxides, 410 
propargylic ether, 315 
propargylic halides, 182 
propargylic ketone, 289 
propargylic substrates, 424 
propargylic 

trichloroacetmidates, 
322

propargylzincs, 310 
propellane substrate, 477 
propene, 206 
propionate, 139 
propionic acid, 226, 227, 280 
propionic anhydride, 120, 

121
propionitrile, 393 
propionylamino ethyl ketone, 

120, 121 
proposed structure, 475 
propylpiperidine, 208 
propynoic acid, 334 
prostaglandin E1, 101 
prostaglandin E2, 293 
prostaglandin E2-1,15-

lactone, 13 
prostaglandins, 293 
proteasome inhibitor, 297 
protected urea, 58 
protected vicinal amino 

alcohols, 404 
protein kinase C inhibitor, 

149, 181 
protein phophatase cdc25A, 

497
protein phosphatase 

inhibitor, 101, 479 
protein structures, 289 
proteosome inhibitor, 449 
protic acid, 168, 172, 178 
protic acid catalysis, 305 
protic acids, 176, 280, 320, 

358, 382, 396 
protic or aprotic medium, 

348
protic or Lewis acid, 348 
protic solvent, 112, 274, 275, 

336
protic solvents, 36, 242, 432 
protodesilylation, 174, 392 
protomycinolide IV, 351 
proton capture, 496 
proton shift, 172 
proton source, 238, 488 
proton transfer, 72, 164, 166 
protonated dialkyl 

carbodiimide, 346 
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protonated epoxide, 337 
protonated heteroaromatic 

bases, 290 
protonated heterocycles, 

291
protonation, 8, 12, 208 
protonation of alkenes, 476 
protonation of the 

heteroatom, 172 
proton-releasing substance, 

178
proton-transfer, 182 
proton-transfer step, 238 
Proudfoot, J.R., 417 
pseudo enantiomer, 405 
pseudoaxial, 324 
pseudoephedrine, 300, 301 
pseudoephedrine hydroxyl 

group, 300 
pseudoequatorial, 324 
pseudoequatorial groups, 

336
pseudoequatorial position, 

335
pseudohalides, 436 
pseudosugar moiety, 239 
psoralen, 473 
P-substituted aromatic 

compounds, 416 
Pt, 18 
Pt(II), 152 
p-toluenesulfonic acid, 15, 

151, 227, 327, 337 
p-toluenesulfonyl azide, 376 
p-toluenesulfonyl chloride, 

481
p-toluidine, 14 
PTSA, 115, 172 
p-TsNH2, 376 
p-TsOH, 327, 364 
PT-sulfone, 230, 231, 295 
Pulley, S.R., 149 
pulvilloric acid, 249 
pumiliotoxin C, 93 
Pummerer rearrangement,

368, 369, 450 
Pummerer rearrangement-

thionium ion cyclization,
173

Pummerer, R., 368 
purification problem, 346 
purines, 290 
Putala, M., 431 
PUVA therapy, 473 
PX3, 200 
PyBroP, 399 
pyran moiety, 403 
pyran ring, 287, 349 
pyranonaphthoquinone, 349 
pyranophane, 365 
pyranoside oxygen atom, 

401
pyranosyl fluoride, 179 
pyranosylated, 52 
pyrazines, 244, 290 
pyrazinone ring, 429 
pyrazol-3-ones, 172 
pyrazole derivativ, 431 
pyrazoles, 172 
pyrazolines, 496 
pyrazolo[3,4-

b][1,8]naphthyridines,
431

pyrenolide B, 115 
pyrenolide D, 293 
Pyrex filtered Hanovia lamp, 

495
Pyrex tube, 122 
pyridine, 30, 78, 79, 84, 120, 

167, 186, 187, 211, 222, 
228, 306, 307, 383, 398, 
406, 416, 423, 454, 455, 
465, 485 

pyridine derivatives, 217 
pyridine N-oxide, 250 
pyridine ring, 414 
pyridine/SO3, 107 

pyridine-HF solution, 34 
pyridine-N-oxide, 249 
pyridines, 60, 176, 254 
Pyridines, 290 
pyridine-SO3 complex, 346 
pyridinethiol esters, 108 
pyridinethione, 108 
pyridinium chloride, 172 
pyridinium salts of strong 

acids, 346 
pyridinium trifluoroacetate, 

347
pyridinium-dichromate, 228 
pyridinophane family, 81 
pyridinophanes, 84 
pyrido[1,2-a 

3,4-b']diindole ring 
system, 469 

pyrido[2,3,4-kl]acridine, 415 
pyrido[2,3-a]carbazole, 185 
pyridoangelicins, 473 
pyridocarbazole, 185 
pyridone, 117, 243 
pyridone acid, 377 
pyridopsoralens, 473 
pyridylaminomethyl ketal, 

307
pyridylthioether, 269 
pyrimidine, 57, 144, 416 
pyrimidine bases of DNA, 

473
pyrocatechol, 118 
pyrolysis, 82, 83, 116, 240, 

266, 426 
pyrolytic degradation, 206 
pyrone moiety, 229, 273 
pyrone phosphonate, 451 
pyrone ring, 369 
pyrrole, 84, 244, 245, 468 
pyrrole amino acid, 203 
pyrrole ring, 203, 245, 433 
pyrrole ring expansion, 85 
pyrroles, 60, 184, 216, 328, 

332, 378 
pyrrolidine, 82, 444, 445 
pyrrolidine derivatives, 369 
pyrrolidine enamine, 445 
pyrrolidine enamines, 445 
pyrrolidine ring, 183, 401 
pyrrolidines, 42, 208 
pyrrolidinol, 333 
pyrrolidinol alkaloid, 33 
pyrrolidinone, 33 
pyrrolidinones, 8 
pyrrolines, 60 
pyrrolo[2,3-g]isoquinoline 

skeleton, 245 
pyrrolo[3,2-c]quinolines, 260 
pyrroloiminoquinone marine 

alkaloid, 421 
pyrrolophenanthridine 

alkaloid, 441 
pyrrolophenanthridinium 

alkaloid, 467 
pyrrolophenanthridone 

alkaloid, 41 
pyruvic acid 1-

methylphenylhydrazone, 
172

Q

quadrigemine C, 439 
quadrone, 477 
quartromicins, 369 
quasi chair-like six-atom 

transition state, 42 
quasiequatorial, 20, 324 
quasi-equatorial, 22 
quasi-Favorskii 

rearrangement, 164, 
370, 371 

quaternary ammonium 
hydroxide, 206 

quaternary ammonium 
hydroxides, 96, 206 

quaternary ammonium 
iodide, 206 

quaternary ammonium salt, 
26, 27, 154, 155, 275 

quaternary ammonium salts, 
26, 422, 434 

quaternary carbon, 380, 461 
quaternary carbon atom, 397 
quaternary center, 461 
quaternary chiral center, 157 
quaternary methyl group, 

303
quaternary spiro center, 369 
quaternary spiro 

stereocenter., 173 
quaternary stereocenter, 

161, 309, 367, 369 
quaternary stereocenters, 

196, 355 
quaternary sterocenter, 157 
Quayle, P., 149 
quinazoline, 80 
quinazolinone, 25 
quinocarcin, 45 
quinocarcin congeners, 45 
quinoline, 80, 84, 167, 339 
quinolines, 84, 94, 95, 176, 

290
quinolinones, 93 
quinolizidine diol, 175 
quinolones, 93, 327 
quinone, 177, 279 
quinone component, 312 
quinone diimides, 312 
quinone imides, 312 
quinone imine, 357 
quinones, 276, 290 
quinonimmonium

intermediate, 312 
quinquepyridine, 255 
quinuclidine, 48, 49 

R

R2CuLi, 258 
R3SiX, 298 
R3SnSnR3, 440 
racemic epoxidation, 222 
racemic epoxide, 221 
racemic mixture, 362 
racemic mixtures, 188 
racemic terminal epoxides, 

220
racemization, 161, 282, 402 
radarins, 303 
radical, 232, 240 
radical anion, 4 
radical anions, 74 
radical carbocyclization, 62 
radical cations, 257 
radical chain reaction, 208 
radical cyclization, 105, 155 
radical cyclization step, 355 
radical denitration, 202 
radical deoxygenation 

reactions, 127 
radical dimerization, 445 
radical hydrostannylation,

105
radical initiator, 200, 240, 

492
radical initiators, 208 
radical intermediate, 92, 222 
radical intermediates, 180 
radical mechanism, 186, 394 
radical mechanisms, 464 
radical Minisci-type 

substitution reactions,
291

radical pathway, 38, 188 
radical process, 208, 498 
radical rearrangement, 289 
radical recombination 

process, 491 
radical scavenger, 240 
radical scavenger 

experiments, 464 

radical-pair dissociation-
recombination 
mechanism, 490 

radicals, 280, 282 
radiosumin, 111 
Rajski, S.R., 429 
Ramberg, L., 372 
Ramberg-Bäcklund 

rearrangement, 372, 
373, 435 

RAMP, 150 
RAMP hydrazone, 150 
Raney nickel, 37, 269, 430 
Raney nickel alloy, 431 
Raney-Ni, 369 
Rao, G.S.R., 115 
rapamycin, 457 
Rapson, W.S., 384 
rare earth metal salts, 202 
rate acceleration, 406 
rate determining step, 178 
rate increase, 112 
rate limiting step, 235 
rate of alkylation, 300 
rate of cyclization, 326, 328 
rate of cyclopropanation, 

412
rate of decarbonylation, 461 
rate of epoxidation, 362 
rate of fragmentation, 480 
rate of isomerization, 112 
rate of oxidation, 320 
rate of reduction, 280 
rate of the condensation, 

472
rate of the rearrangement, 

416
rate-determining step, 74, 

196
rate-limiting dissociation, 

400
Rathke, B., 144 
Rault, S., 395 
rauwolfia alkaloids, 63 
Rawal, V.H., 333 
Ray, J.K., 415 
Rb+, 248 
RCAM, 12, 13 
RCM, 10, 11, 13 
RCM strategy, 259 
RCOX. See acyl halides 
RDS. See rate-determining 

step
reaction kinetics, 400 
reaction rate, 280, 310 
reaction rates, 190 
reaction vessel, 268 
reactive conformation, 335, 

416
reactive intermediate, 222 
reagent control, 8 
reagent controlled, 408 
rearomatization, 172, 290 
rearranged products, 170 
rearrangement, 18, 28, 98, 

99, 176 
Rebek, J., 75 
receptor affinity, 443 
recrystallization, 192, 193 
red phosphorous, 200 
redox potential, 318 
redox-active natural product, 

485
reduced ketone, 317 
reduced pressure, 206 
reducing agent, 230, 276, 

310
reducing agents, 268, 374, 

452, 470 
reductant, 232 
reductase inhibitors, 34 
reduction of aldehydes, 288 
reduction of aldehydes and 

ketones, 320 
reduction of azides, 428 
reduction of enones, 268 
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reduction of ketone 
substrates to alcohols, 
496

reduction potentials, 320, 
374

reductive alkylation, 60, 171, 
247

reductive alkylation of 
amines, 160 

reductive amination, 271, 
431

reductive coupling of 
carbonyl compounds, 
276

reductive decarboxylation,
44

reductive decomplexation,
314

reductive decyanation, 61 
reductive dehalogenation,

464
reductive desulfuration, 369 
reductive elimination, 230, 

258, 296, 438, 440, 482 
reductive lithiation of O,S-

acetals, 490 
reductive methylation, 160 
reductive removal, 162 
reductive workup, 44 
reductive work-up, 119 
reef-dwelling fish, 39 
Reese, 84 
reformation of gasoline, 178 
Reformatski reaction, 233 
Reformatsky reaction, 374, 

375
Reformatsky reagent, 374 
Reformatsky, S., 374 
regiochemical outcome, 166 
regioisomeric iminium ions, 

356
regioisomeric Mannich 

bases, 274 
regioisomeric triols, 407 
regioselective, 66, 140 
regioselective cyclization, 

49, 384 
regioselective deprotonation, 

390, 423, 434 
regioselective lithiation, 75 
regioselective 

methenylation, 154 
regioselectively generated 

iminium ion, 275 
regioselectivity, 67 
regiospecific 

hydroxymercuration, 168 
Regitz diazo tranfer, 377 
Regitz diazo transfer, 376, 

494
Regitz, M., 376 
Reimer, K., 378 
Reimer-Tiemann conditions, 

378, 379 
Reimer-Tiemann

formylation, 379 
Reimer-Tiemann reaction,

119, 378 
relief of ring strain, 26 
remote catalysis, 75 
remote functionalization, 42, 

43, 208 
remote metalation, 421 
resin-bound aniline, 271 
resolution, 307 
resonance hybrid, 66 
resonance stabilized anion, 

202
resonance stabilized radical, 

278
resonance-stabilized carbon 

nucleophiles, 274 
resonance-stabilized 

enolate, 138 
resorcinol, 119, 249, 354, 

472
resorcylic acid, 249 

retention of configuration, 
183, 198, 199, 210, 396, 
434

retention of the 
stereochemistry, 28 

retigeranic acid, 471 
retro Diels-Alder reaction,

433
retro Michael reaction, 321 
retro-aldol reaction, 132, 133 
retro-benzilic acid 

rearrangement, 53 
retro-benzoin condensation,

54, 55 
retro-Brook rearrangement,
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retro-Claisen reaction, 2, 
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retro-D-A reaction, 140 
retro-Dieckmann cyclization,
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retro-Diels-Alder reaction, 25 
retro-ene reaction, 470, 471 
retro-Friedel-Crafts reaction,
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retro-Henry reaction, 202 
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reveromycin B, 205 
reversal of regioselectivity, 
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reverse Kahne glycosidation,
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reversible 1,3-transposition, 
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Rh- and Pd-complexes, 494 
Rh(II), 298 
Rh(II)-catalyzed C-H 

insertion reaction, 377 
Rh(II)-trifluoroacetate, 68 
Rh2(OAC)4, 68 
Rh-catalyzed isomerization,
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Rh-catalyzed stereoselective 

cyclopropanation, 99 
RhCl3.3H2O, 68 
rhenium, 8 
Rhizoxin, 237 
rhizoxin D, 9, 457 
rhodium, 8, 126, 456, 460 
rhodium carboxylates, 69 
rhodium mandelate, 69 
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Rice and Beyerman routes 
to morphine, 317 

Rice imine, 317 
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ring closure, 94, 144, 190 
ring contraction, 370 
ring enlargement, 134 
ring enlargement reaction,
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ring expansion, 84, 85, 223 
ring formation, 138 
ring forming step, 459 
ring strain, 130, 480 
ring-closing alkyne 

metathesis, 12, 247 
ring-closing enyne 

metathesis, 152 

ring-closing metathesis, 10, 
11

ring-closure, 411, 415 
ring-contracted acid, 495 
ring-contracted methyl ester, 

495
ring-contracted product, 435 
ring-contraction, 350, 371, 

372, 494 
ring-contraction benzilic acid 

rearrangement, 52 
ring-contractive reaction, 
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ring-enlargement, 282, 366, 

367, 396 
ring-expanded ketone, 135 
ring-expanded lactone 

product, 29 
ring-expansion, 350, 351, 

378, 422, 423 
ring-expansion of strained 

small rings, 476 
ring-expansion reactions, 

397
ring-

expansion/rearrangemen
t, 114 

ring-opened dianion 
tautomer, 113 

ring-opening, 182, 198, 344, 
408

ring-opening cross-
metathesis, 249 

ring-opening metathesis, 10, 
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ring-opening metathesis 
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rishirilide B, 141, 389 
Ritter reaction, 382, 383 
Ritter, J.J., 382 
Ritter-type reactions, 382 
Rizzacasa, M.A., 205 
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RMgX, 188 
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371, 384, 385 
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Roush, W.R., 215, 317, 369, 
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Ru, 262 
Ru(II), 152, 298 
Ru(IV), 262 
Ru(V), 262 
Ru(VI), 262 
Ru(VII), 262 
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Rubiralta, M., 307 
Rubottom oxidation, 388, 

389
Rubottom, G.M., 388 
rubrolone aglycon, 141 
rubromycins, 309 
Ruchiwarat, S., 31 
RuH2(PPh3)4, 456 
runaway reaction, 262 
RuO4, 262 
Rupe rearrangement, 284, 

285
Rupe, H., 284 

Rupert, K.C., 37 
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Russell, K.C., 57 
rutamycin antibiotics, 281 
rutamycin B, 299 
ruthenate ester, 262 
ruthenium, 262 
ruthenium benzylidene 

complexes, 152 
ruthenium complexes, 262, 

456
ruthenium-catalyzed Alder-

ene alkene-alkyne 
coupling, 213 

RWJ-270201, 309 
RX, 188 
Rychnovsky, S.D., 299, 365 

S

S,S-
dimethylsuccinimidosulfo
nium chloride, 106 

S.-H. rearrangement, 422, 
423

S12968, 195 
SAA, 404, 405 
sacacarin, 139, 353 
SAD, 404, 406, 407 
SAE, 404, 408, 409 
Saegusa oxidation, 390, 391 
Saegusa, T., 390 
Sakamoto, T., 441 
Sakasi, M., 375 
Sakurai allylation, 392, 393 
Sakurai, H., 392 
Salaün, J., 5 
salicylaldehyde, 341 
salicylamide, 420 
salicylamides, 180 
salicylic acid, 248 
salicylic acid derivatives, 378 
salinosporamide A, 49 
salsolidine, 359 
salt-free conditions, 451, 486 
salvilenone, 495 
Samadi, M, 45 
samarium Barbier reaction,

232
samarium diiodide, 232, 233 
samarium Grignard, 233 
samarium Grignard reaction,

232
samarium metal, 232, 452 
samarium Reformatski 

reaction, 232 
samarium(II) iodide, 191, 

374
samarium(II)-catalyzed MVP 

reduction, 281 
samarium-diiodide, 452 
Sammakia, T., 311 
SAMP, 150 
SAMP hydrazone, 150 
Sandmeyer hydroxylation,

394
Sandmeyer reaction, 278, 

394, 395 
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Sano, T., 281 
Santelli, M., 147 
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saponaceolide B, 38 
SAR data, 443 
SAR study, 305 
sarains A-C, 457 
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Sarett oxidation, 228 
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Sc(OTf)3, 393 
scalable total synthesis, 459 
scandium triflate catalysis, 

447
scavenger, 354 
Schäfer, H.J., 125 
Schiff base, 24, 94, 348, 

349, 358, 359, 414, 429 
Schiff bases, 6 
Schiff-base, 24 
Schiff-base intermediate, 
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Schlenk equilibrium, 189 
Schlittler-Müller modification,

358
Schlosser, 488, 489 
Schlosser conditions, 489 
Schlosser modification, 486 
Schlosser modification of the 

Wittig reaction, 488 
Schlosser modified Wittig 

reaction, 489 
Schlosser, M., 488 
Schmidt reaction, 396, 397 
Schmidt rearrangement,

210, 266 
Schmidt, K.F., 396 
Schmidt, R.R., 17 
Schmitt, R., 248 
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261, 493 
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Schotten-Baumann 

acylation, 399 
Schotten-Baumann 

conditions, 398 
Schotten-Baumann reaction,

398
Schreckenberg, M., 432 
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Schultz, A.G., 61, 143, 211, 

397
Schuster, K., 284 
Schwartz, 400, 401 
Schwartz hydrozirconation,

311, 400 
Schwartz reagent, 400, 447 
Schwartz, A., 129 
Schwartz, J., 400 
sclareol, 483 
sclerophytin A, 89, 475 
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SEAr, 174, 184 
SEAr reaction, 176 
SEAr reactions, 420 
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sec-BuLi, 271 
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second deprotonation, 272 
secondary -amino acids, 
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secondary -diazo ketones, 

494
secondary alcohol, 47, 59, 
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211, 223, 229, 320, 321, 
481, 485 

secondary alcohol moiety, 
475

secondary alcohols, 72, 100, 
106, 188, 228, 280, 281, 
294, 320, 484 

secondary alkyl halide, 250 
secondary alkyl halides, 484, 

498
secondary alkyl iodide, 241 
secondary alkyl radical, 230 
secondary allylic alcohol 

functionality, 293 
secondary allylic alcohols, 
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secondary amine, 340, 441, 

446, 462 
secondary amine 

functionality, 475 
secondary amines, 26, 242, 

274, 356, 444 
secondary amino ketone, 

244
secondary and tertiary 

alcohols, 398 
secondary carbocation, 477 
secondary diterpene 

metabolites, 39 
secondary homoallylic 

alcohol, 347 
secondary mesylate, 183, 

485
secondary metabolite, 493 
secondary metabolites, 273 
secondary nitroalkanes, 308 
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interactions, 140 
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alcohol, 285 
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secosyrin 1 and 2, 315 
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cleavage, 127 
selective coupling, 424 
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selective oxygenation, 357 
selenides, 130 
seleninic acids, 28 
selenium dioxide, 380, 381 
selenium electrophile, 133 
selenium-based 

methodology, 391 
selenoate ester, 355 
seleno-Pummerer 

rearrangement, 368 
selenoxides, 130, 368 
SELEX, 437 
self condensation, 442 
self-condensation, 8, 54, 

244, 284 
self-drying process, 238 
SEM-chloride, 329 
semibenzilic type 

rearrangement, 370 
semicarbazones, 496 
semipinacol rearrangement,
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semi-stabilized ylides, 486 
semisynthetic, 179 
semisynthetic 

glucoconjugate, 235 
Semple, E., 331 
sense of chirality, 316 
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346
sensitive alcohols, 82 
sensitive protecting groups, 

228
sensitive substrates, 420 
SeO2, 380, 381 
sequential cation-free radical 

mechanism, 170 
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serine protease, 353 

serine protease elastase, 
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serine protease prolyl 
endopeptidase, 331 

serotonin antagonist, 107 
serratezomine A, 357 
serratinine, 357 
Serullas, 264 
sesquiterpene, 29, 171, 335, 

493
sesquiterpene dilactone, 241 
sesquiterpenoid, 36 
sesquiterpenoid polyol, 189 
Sessler, J.L., 85 
sesterterpenoid, 233 
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single-electron transfer 
SET mechanism, 280, 356 
SET-type mechanisms, 286 
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seven-membered lactam, 
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seven-membered ring, 65 
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sexipyridine, 255 
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Sharpless asymmetric 
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Sharpless asymmetric 
epoxidation, 336, 404, 
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Sharpless epoxidation, 501 
Sharpless regioreversed 
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aminohydroxylation, 405 
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epoxidation, 362 
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Shi asymmetric epoxidation,
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Shi epoxidation, 411 
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chiral ketone, 388 
Shishido, K., 425, 453 
shock-sensitive, 424 
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side reactions, 8, 190, 202, 

280, 320, 354, 412, 480 
side-chain exchange, 365 
side-product, 177 
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Si-F, 170 

sigmatropic, 142 
sigmatropic H-shift, 470 
sigmatropic process, 342 
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275, 455, 497 

sigmatropic rearrangements, 
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sigmatropic rearrngements,
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sigmatropic shift, 99, 250 
signal transmission, 265 
sila-Pummerer 

rearrangement, 368 
silica gel, 271, 337, 349 
silicon, 64 
silicon atom, 174 
silicon group, 344 
silicon protecting group, 453 
silicon-based reagents, 174 
silicon-carbon bond, 64 
silicon-carbon bonds, 174 
silicon-controlled, 211 
silicon-directed Nazarov 

cyclization, 304, 305 
silicon-oxygen bond, 64 
silicon-substituted terminal 

alkynes, 186 
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siloxane, 174, 175 
silphinane, 115 
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silver benzoate, 18, 360, 361 
silver carbonate, 246 
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silver oxide, 18, 206, 218, 

494
silver perchlorate, 108 
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silver(I) halides, 232 
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silyl boronate, 345 
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silyl enolates, 8 
silyl esters, 454 
silyl fluoride, 174 
silyl group, 64, 174, 392 
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silyl ketones, 344 
silyl migration, 388 
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silyl protecting group, 265, 
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silyl transfer, 298 
silylallenes, 147 
silylated amides, 234 
silylated-1,3-dithianes, 418 
silylation, 266 
silylcarbinols, 344 
silyl-directed [1,2]-Stevens 

rearrangement, 175 
silylindoles, 260 
silylketene, 427 
silylketene acetals, 90 
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silyloxy epoxide, 388 
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silyloxy sulfides, 368 
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Simmons-Smith 
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simple amides, 398 
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single diastereomer, 281 
single electron transfer, 4, 
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single electron-transfer, 394 
single-electron donor, 230 
single-electron transfer, 74, 
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single-electron-transfer, 80, 
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singlet excited state, 57 
singlet oxygen, 61 
singlet oxygen addition, 119 
singlet oxygen oxidation,

119
singlet oxygenation, 289 
singlet state, 332 
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Si-O bond, 344 
six and/or five membered 
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six-electron 

electrocyclization, 122 
six-membered carbocycle, 

203
six-membered chairlike 

transition state, 162, 192 
six-membered chair-like 

transition state, 320 
six-membered cyclic allylic 

alcohol, 363 
six-membered heterocycle, 

348
six-membered lactone, 155 
six-membered transition 

state, 82, 100 
size of the alkyl group, 212 
skeletal rearrangement, 164, 

370
skeletal rearrangements, 

476
Skraup, 81 
Skraup and Doebner-Miller 

quinoline synthesis, 414 
Skraup procedure, 414 
Skraup, Z.H., 414 
Sm(Ot-Bu)I2, 280 
Sm/Hg/CH2I2, 412 
small electrophiles, 400 
small organic molecules, 8 
SmI2, 73, 230, 347, 456, 

457, 481 
SmI2-mediated 

intramolecular 
Reformatsky reaction,
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Smidt, 474 
Smidt, J., 474 
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230, 416, 417 
Smiles, S., 416 
Smiles-Truce 

rearrangement, 416 
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271, 295, 342, 343, 347, 

363, 409, 418, 419, 445, 
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Smith, K.M., 57 
Smith, P.J., 297 
Smith, R.A.J., 291 
Smith, R.D., 412 
Smith-modified Madelung 

indole synthesis, 271 
Smith-Tietze coupling, 418, 
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Sn, 38, 310 
Sn(II), 298 
Sn(IV), 298 
SN1, 34 
SN2, 16, 17, 272 
SN2 attack, 198 
SN2 displacement, 250 
SN2 process, 484 
SN2 reaction, 29, 170, 234, 

498
SN2 reactions, 182 
SN2 type mechanism, 246 
SN2 type of halide 

displacement, 484 
SN2 type reaction, 130 
Snapper,, M.L., 99 
SNAr, 182, 255, 441, See

nucleophilic aromatic 
substitution 

SNAr reactions, 464 
SnBr4, 365 
SnCl2, 127, 430 
SnCl2/dry HCl gas, 431 
SnCl4, 14, 168, 178, 298, 

305, 367, 382, 392 
SNi attack, 372 
SNi reaction, 128 
Snider, B.B., 25, 131, 243, 

385
Snieckus directed ortho 

metalation, 420 
Snieckus, V., 31, 420, 421 
SNi-reaction, 26 
SnR3, 490 
SnX2/HCl, 430 
SO2, 372 
SO2Cl2, 200 
SO2NH2, 466 
SO2R, 416, 420 
SO2t-Bu, 420 
SO3·Et3N, 266 
SOCl2, 266, 284, 423, 468 
sodium, 4, 5, 210, 374 
sodium acetate, 120, 245, 

339
sodium alkoxide, 2 
sodium alkoxides, 270, 456 
sodium amalgam, 230, 231 
sodium amide, 70, 80, 81, 

138, 211, 270 
Sodium amide, 128 
sodium bicarbonate, 363, 

398
sodium bicarbonate solution, 

203
sodium bismuthate, 114 
sodium borohydride, 49, 

160, 268, 269, 383 
sodium borohydride 

reduction, 369 
sodium carbonate, 379, 399, 

457
sodium chloride, 253 
sodium chlorite, 354 
sodium cyanide, 252, 383, 

432
sodium cyanoborohydride, 

160, 357, 429 
sodium dithionate, 244, 313 
sodium enolate, 131, 167, 

272
sodium enolate of 

cyclohexanone, 384 
sodium enolate of 

malondialdehyde, 167 
sodium enolates of malonic 

esters, 272 

sodium ethoxide, 87, 128, 
270, 286, 442, 484, 496 

sodium hydride, 102, 138, 
139, 213, 323, 417, 443 

sodium hydrogen carbonate, 
82

sodium hydroxide, 265, 304, 
336, 370, 398, 399, 434 

sodium hydroxide solution, 
282

sodium hypobromite, 211, 
265

sodium hypochlorite, 222, 
307

sodium hypophosphite, 37 
sodium iodide, 113, 198 
sodium ion, 80 
sodium metal, 128, 146, 

248, 249, 484, 496, 498, 
499

sodium methoxide, 84, 210, 
219, 265, 307, 434, 443, 
494

sodium naphthalide, 375 
sodium nitrite, 278, 279, 394 
sodium percarbonate, 118 
sodium phenoxide, 248 
sodium salt of ethyl-2-

methylacetoacetate, 224 
sodium salt of 

salicylaldehyde, 338 
sodium 

triacetoxyborohydride, 
160

sodium trichloroacetate, 85 
sodium-chlorite, 137 
sodium-dihydrogen 

phosphate buffer, 354 
sodium-methoxide, 165 
sodium-tert-butoxide, 70 
soft carbon nucleophiles, 

458
soft metal hydrides, 268 
soft nucleophiles, 458 
Sohda, T., 279 
solamin, 373 
solanapyrone E, 83, 229 
solanoeclepin A, 3 
solanopyrone D, 369 
solid acid catalysts, 180 
solid acids, 172 
solid phase, 340 
solid phase synthesis, 24, 

58, 121 
solid state, 19 
solid supported bases, 202 
solid tumor cells, 303 
solidago alcohol, 251 
solid-phase supported KI, 

170
solid-phase version of the 

Madelung indole 
synthesis, 271 

solid-phase version of the
Nenitzescu indole 
synthesis, 313 

Solladié, G., 369 
solubility difference of 

sodium-halides, 170 
solubility of epoxides and 

diols, 220 
soluble nonacenetriquinone,

327
solvent, 276 
solvent basicity, 302 
solvent effect, 418 
solvent mixtures, 318 
solvent polarity, 112, 180 
solvent system, 404 
solvent-cage, 434 
solvent-controlled Brook 

rearrangement, 418 
solvent-free conditions, 58, 

74, 138, 202, 220, 492 
solvent-induced proton 

abstraction, 496 
Sommelet oxidation, 250 

Sommelet, M., 422 
Sommelet-Hauser 

rearrangement, 26, 422, 
423, 434 

Somsák, L., 37 
Sonawane, H.R., 471 
sonication, 466, 498 
sonochemical, 39 
Sonogashira coupling, 78, 

424, 425 
Sonogashira cross-coupling,

424, 425 
Sonogashira reaction, 424, 

425
Sonogashira, K., 424 
sophorolipid lactone, 247 
soraphen A, 225 
Sorensen, E.J., 133, 459 
Sorgi, K.L., 77 
South African tree, 339 
soybean seeds, 217 
sp2-C halides, 424 
sp3-carbon centers, 498 
sparteine, 51, 397 
spatol, 371 
sp-C metal derivatives, 424 
special equipment, 346 
special handling, 478 
specific rotation, 273, 345 
specionin, 471 
spectinomycin analogs, 135 
spectroscopic analysis, 163 
spectroscopic methods, 264, 

375, 393 
Speier, J.L., 64 
Spengler, T., 348 
sphingofungin B, 299 
sphingofungin E, 323 
sphingolipid biosynthesis, 

399
spinosyn A, 215, 325 
spiro, 53 
spiro 1,3-dione center, 351 
spiro analogues of 

triketinins, 271 
spiro carbon, 117 
spiro epoxide, 129 
spiro skeleton, 315 
spiro stereocenter, 349 
spiro transition state, 410 
spirocyclic compounds, 65 
spirocyclization, 309 
spirocyclopropanated 

bicyclopropylidenes, 147 
spirodienones, 143 
spiroketal, 205, 309 
spiroketal carbon, 479 
spiroketal core of the -

rubromycins, 309 
spiroketalization, 419 
spirotryprostatin B, 219, 309 
spiroxin C, 297 
s-PLA2, 313 
spongistatin, 237 
spongistatin 1, 317, 387 
spontanaeous lactol 

formation, 347 
spontaneous cyclization, 147 
spontaneous 

hemiketalization, 191 
spruce budworm, 471 
Spur, B.W., 101 
SS20846A, 361 
stabilized carbaionic alkyl 

phosphonates, 486 
stabilized carbocation, 209 
stabilized carbocations, 72 
stabilized enolate, 166 
stabilized propargylic 

cations, 314 
stabilized ylides, 214, 486 
stable carbanion, 422 
stable carbocation, 396, 476 
stable carbocations, 368 
stable dihydropyridines, 194 
stable enolate anion, 166 
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stable epoxyhydrazones, 
482

stacked aromatic rings, 443 
standard glycosidation 

methods, 234 
stannous chloride, 430 
stannous halide, 430 
stannylated intermediate, 

441
stannylglucals, 437 
Stará, I.G., 435 
Stark, H., 285 
statistical mixture of 

products, 498 
Staudinger ketene 

cycloaddition, 426, 427 
Staudinger ligation, 429 
Staudinger reaction, 24, 25, 

428, 429, 493 
Staudinger, H., 24, 140, 426, 

428, 486 
steel needle, 354 
Steel, P.G., 129 
Steglich esterification, 238 
Steglich, W., 112 
stemoamide, 153 
stemodane, 151
stemodane diterpenoids, 

345
stemona alkaloid, 171 
Stemona alkaloid, 25, 241, 

479
Stemona alkaloids, 3 
stemospironine, 25 
stenine, 157, 171 
Stenstrøm, Y., 109 
Stephen aldehyde synthesis,

430
Stephen reduction, 430, 431 
Stephen, H., 430 
Stephens, 78, 79 
Stephens, R.D., 78 
stepwise, 204 
stepwise and concerted 

pathways, 344 
stepwise biradical pathway,

6
stepwise pathway, 126 
stereocenter, 266 
stereochemical information, 

412
stereochemical outcome, 

190, 318 
stereochemical 

requirements, 190 
stereoconvergent, 318 
stereodefined enolates, 8 
stereodivergent synthesis, 

391
stereoelectronic, 28 
stereoelectronic effects, 32 
stereoelectronic 

requirements, 480 
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tosyl chloride, 383 
-tosyl substituted ureas, 58 
tosylate, 250, 307, 485 
tosylates, 170, 182, 250, 268 
tosylation, 307 
tosylhydrazone, 158, 165 
tosylhydrazones, 494, 496 
Tosylhydrazones, 36 
TOT, 249 
Townsend, C.A., 217 
toxic, 318 
toxicity, 148, 310 
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TPE, 498, 499 
tracer, 379 
trans alkene, 362 
trans betaine, 488 
trans diols, 360 
trans double bond, 489 
trans elimination, 206 
trans epoxide, 362 
trans epoxides, 102, 336 
trans glycidic derivative, 128 
trans lithiobetaine, 488 
trans olefin, 110 
trans selectivity, 59, 360 
trans-1,2-dicarboxylate, 360 
trans-1,2-dicarboxylates, 

360
trans-1,2-iodo carboxylate, 

360
trans-2,6-disubstituted 

dihydropyran, 169 
trans-2-

ethenylazetopyridoindole
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transacylation, 330 
transamination, 162 
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transannular Diels-Alder 

cycloaddition, 361, 459 
transannular Diels-Alder 
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transannular ene reaction, 7 
transannular 
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295

trans-cycloheptene, 110 
trans-cyclohexanediamine, 

412
trans-cyclohexene, 110 
trans-cyclononenes, 481 
trans-diaxial, 206 
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alcohol, 227 
trans-dihydroconfertifolin,
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trans-disubstituted olefinic 
bonds, 226 
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transesterification, 162, 273, 
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transfer hydrogenation, 405 
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transition metal, 435 
transition metal catalysis, 
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transition metal catalyst, 
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transition metal catalysts, 68 
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transition metal complexes, 
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Transition metal complexes, 
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transition metal salts, 232 
transition metals, 161 
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transposition of an O-atom 
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functionality, 361 
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trapoxins, 189 
trapping agents, 43 
Trauner, D., 377 
tremulenolide A, 99 
TREN, 431 
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428
trialkyl silyl groups, 299 
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trialkylphosphine, 486 
trialkylphosphines, 48 
trialkylphosphite, 110 
trialkylphosphonoesters, 214 
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trialkylsilyl groups, 304 
trialkylsilyl halide, 90 
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trialkylstannyl groups, 304 
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triaryl (Z)-olefin, 223 
triaryl phosphine, 294 
triarylphosphines, 486 
triazine, 144 
triazines, 80 
triazole, 144, 145 
triazolines, 198 
tribenzocyclotriyne, 79 
tributylphosphine, 25, 429 
tributylstannyl pyridine, 311 
tributylstannylmethyl ether, 
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tributyltin, 236 

tributyltin cyanide, 447 
tributyltin-amides, 70 
tricarballic acid, 302 
tricarbocyclic skeleton, 381 
tricarboxylic acid moiety, 355 
trichloroacetaldehyde, 264 
trichloroacetamides, 322 
trichloroacetamido-1,3-

dienes, 322 
trichloroacetic acid, 396 
trichloroacetic anhydride, 
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trichloroacetimidates, 322 
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trichloroacetyl group, 265 
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1,4-dihydropyridine 
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trichloromethyl anion, 85 
trichloronitromethane, 378 
trichodiene, 91, 305 
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tricyclic, 100 
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tricyclic 1,3,6-thiadiazepines,

145
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tricyclic aldehyde, 345, 461 
tricyclic alkene, 223, 361 
tricyclic carboxylic acid, 45 
tricyclic cedranoid skeleton, 

391
tricyclic cis-vicinal diol, 351 
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tricyclic core, 177, 243, 353 
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A, 175 
tricyclic diketo aldehyde, 277 
tricyclic diol, 107, 451 
tricyclic diterpene moiety of 
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tricyclic enone lactone, 483 
tricyclic ester, 45 
tricyclic framework, 455 
tricyclic intermediate, 197, 

215, 407 
tricyclic ketone, 135, 245, 

365, 389 
tricyclic ketones, 471 
tricyclic ketones with 

sesquiterpene skeleton,
477

tricyclic lactone, 287 
tricyclic marine alkaloid, 295 
tricyclic methyl ester, 479 
tricyclic product, 191, 475 
tricyclic ring system, 65 
tricyclic sesquiterpene, 379 
tricyclic skeleton, 389 
tricyclic subunit, 391 
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tricyclo[3.2.2.02,4]non-2(4)-

ene, 219 
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one, 135 
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tricyclo[6.3.0.03,9]undecan-

10-one, 287 
tricyclodecadienone, 45 
tricycloillicinone, 47 
tridemethyl-3-

deoxymethynolide, 500 
tridentate facially chelating 

ligands, 81 
triene, 231 
triene lactones, 79 
triene portion of the 

biologically active 
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251

trienyl side chain, 231 

triethyl orthoacetate, 226, 
227

triethyl orthoformate, 249 
triethylaluminum, 302 
triethylamine, 18, 54, 106, 

117, 121, 145, 243, 315, 
339, 376, 423, 450 

triethylamine hydrochloride, 
500

triethylamine-N-oxide, 335 
triethylene glycol, 496 
triflate, 123 
triflates, 296 
triflation, 235, 259 
triflic acid, 234 
triflic anhydride, 234 
trifluoroacetamide 

hydrolysis, 395 
trifluoroacetate, 177 
trifluoroacetate side 

products, 450 
trifluoroacetic acid, 143, 209, 

329, 394 
trifluoroacetic acid-catalyzed 

cleavage, 29 
trifluoroacetic anhydride, 

143, 177, 346, 358, 450 
trifluoroacetoxydimethylsulfo

nium trifluoroacetate, 
450

trifluoroacetylation, 376 
trifluoroalkoxy groups, 214 
trifluoroethanol, 59, 214, 215 
trifluoromethanesulfonates, 

70
trifluoromethanesulfonic 

anhydride, 234 
trifluoromethyl ketones, 127 
triflyl azide, 377, 495 
trihalogenated 1,4-

dimethoxybenzene, 395 
trihalogenated methyl 

ketones, 264 
trihaloketones, 164 
trihalomethyl ketone, 264 
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trihydric phenols, 472 
trihydroxyazaanthraquinones

, 217 
trihydroxybenzene 

derivative, 469 
trihydroxyflavone, 217 
triisobutylaluminum, 455 
triisopropylallylboronate, 386 
triisopropylbenzenesulfonyl 

azide, 495 
triisopropylbenzenesulfonyl 

hydrazide, 37 
triisopropylborate, 395 
triisopropylsilyloxyalkyne, 

123
triluoroacetic anhydride, 356 
trimeric side products, 430 
trimethoxyphenol, 185 
trimethoxyphenylacetic acid, 

339
trimethyl orthoformate, 313, 

329, 353 
trimethyl phosphite, 293 
trimethylallylsilanes, 392 
trimethylaluminum, 478, 479 
trimethylamine, 206 
trimethylamine N-oxide, 251 
trimethylene oxides, 332 
trimethyl-orthoacetate, 227 
trimethylpropylammonium 

hydroxide, 206 
trimethylsilyl azide, 116 
trimethylsilyl group, 392 
trimethylsilyl isocyanide, 330 
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ketone, 385 
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391
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trimethylsilyloxy-1,3-dienes, 
388

trimethylsilyloxybutadiene, 
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organometallic 
compounds, 344 
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tri-n-butyltin hydride, 46 
tri-n-butyltinhydride, 44 
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479
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sesquiterpenes, 125 
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tri-o-thymotide, 249 
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ring, 421 
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triphenyl phosphorous 

ylides, 212 
triphenyl propenone, 284 
triphenyl-2-propynol, 284 
triphenylmethylsodium, 30 
triphenylphosphine, 24, 25, 

104, 294, 295, 399, 428, 
429, 486, 487 

triphenylphosphine oxide, 
24, 212, 428, 486 

triphenyl-phosphine oxide, 
24

triphenylphosphorane, 455 
triphenylpyridine, 254 
triple bond, 12, 66, 228, 263, 

284, 314, 315, 479, 501 
triple bonds, 56, 228 
triple oxidation, 355 
triplet enone, 132 
triplet exciplex, 132 
triplet excited states, 57 
tripodal metal ion ligand, 431 
tripodal polypeptides, 431 
tripyridine macrocycles, 81 
triquinane, 129, 335, 495 
tris(2-aminoethyl)amine, 

431, See TREN 
trisaccharide, 235 
trisalicylide derivatives, 249 
trisubstituted alkene, 156, 

226, 334, 383, 392, 400, 
413

trisubstituted alkenes, 214, 
380

trisubstituted benzoyl 
chloride, 181 

trisubstituted double bond, 
363

trisubstituted furans, 3 
trisubstituted gem-dimethyl 

alkene, 381 
trisubstituted guanidines, 24 
trisubstituted olefins, 410 
trisubstituted pyridine, 255 
trisubstituted pyridines, 254 
trisubstituted pyrrole moiety, 

433
trisubstituted zirconate, 311 
tris-xanthate, 83 
trisyl azide, 495 
trisyl hydrazone, 37 
triterpene, 43 
tri-tert-butyl ester, 355 
trithiocarbonates, 110 
trivalent phosphoric acid 

esters, 16 
trivalent phosphorous 

compounds, 428 
Tronchet, J.M.J., 199 
tropane alkaloids, 483 
tropinone, 483 

Trost, B.M., 37, 38, 159, 
213, 309, 329, 373, 393, 
458

tryprostatin A, 173, 493 
trypsin, 111 
tryptamine analogs, 260 
Ts, 404 
TSCl, 480 
Tse, B., 139 
TsOH, 58, 313, 321, 368 
TsOK, 307 
Tsuji, J., 458, 460 
Tsuji-Trost allylation, 309 
Tsuji-Trost reaction, 458, 

459
Tsuji-Wilkinson 

decarbonylation, 461 
Tsuji-Wilkinson 

decarbonylation 
reaction, 460 

Tsunoda, T., 21 
T-U olefination, 452, 453 
tuberostemonine, 241, 479 
tubipofuran, 127 
tubulin polymerization, 403 
tuckolide, 109 
tumor cell lines, 425 
tumor cells, 221 
tumorigenic compound, 361 
tungsten, 8 
tungsten carbyne complex, 

12
tungsten Fischer carbene 

complex, 152 
Turchi, I.J., 113 
turriane family, 13 
twelve- membered 

macrocyclic ring, 375 
twenty-carbon framework of 

taxanes, 481 
two-carbon homologated 

alcohols, 188 
two-component coupling 

process, 101 
two-electron process, 114 
two-phase Schotten-

Baumann conditions,
399

two-phase system, 307 
two-step cleavage, 190 
Type I carbon-Ferrier 

reaction, 169 
Type I Ferrier reaction, 168 
Type II Ferrier 

rearrangement, 168, 
169, 342 

Type-II Julia olefination, 343 
Tyrlik, S., 276 
tyromycin A, 45 
tyrosine, 348 

U

U-72, 279 
Ugi four-component 

reaction, 462, 463 
Ugi, I., 462 
Ullmann biaryl amine 

condensation, 465 
Ullmann biaryl coupling, 255, 

464
Ullmann biaryl ether 

synthesis, 296, 464, 484 
Ullmann biaryl 

homocoupling, 464 
Ullmann biaryl synthesis,

466
Ullmann condensation, 464, 

465
Ullmann coupling, 466, 467 
Ullmann reaction, 466, 467 
Ullmann, F., 464, 466 
ultrasound, 4, 5, 498 
umpolung, 188, 446 
unactivated aryl halides, 484 
uncomplexed propargylic 

alcohols, 314 

uncomplexed propargylic 
substrates, 314 

unconjugated (E)-alkenes, 
214

undecadienone, 325 
undesired stereoisomer, 407 
unexpected rearrangement, 

29
Uneyama, K., 127 
unfavorable 1,3-diaxial 

interactions, 162 
unfavored steric interactions, 

162
unfunctionalized alkenes, 

412
unfunctionalized alkyl- and 

aryl-substituted olefins, 
222

unfunctionalized olefins, 
220, 222 

unimolecular, 88 
unnatural enantiomer, 443 
unprotected 1,2-diols, 276 
unprotected functional 

groups, 466 
unprotected hydroxyl or 

amino groups, 368 
unprotected propargyl 

alcohol, 425 
unprotected sugars, 38 
unreactive alkyl halides, 250 
unreactive pyrazolines, 172 
unreactive substrates, 368 
unsaturated (Z)-hydroxy 

acid, 501 
unsaturated acid, 339 
unsaturated alcohol, 364 
unsaturated aldehyde, 137, 

205, 228, 243, 251, 305, 
345, 354, 367, 461, 469 

unsaturated aldehydes, 124, 
194, 280, 324, 338, 380, 
392, 402, 414, 442, 452, 
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unsaturated aldehydes or 
ketones, 284 

unsaturated amide, 156, 
197, 433 

unsaturated amides, 210 
unsaturated aromatic 

amides, 136 
unsaturated carbohydrates, 

168
unsaturated carbonyl, 468 
unsaturated carbonyl 

compound, 8, 88 
unsaturated carbonyl 

compounds, 242, 268, 
274, 278, 324, 346, 390, 
496

unsaturated carbonyls, 136 
unsaturated carboxylic, 90 
unsaturated carboxylic acid, 

442
unsaturated carboxylic acid 

derivative, 164 
unsaturated carboxylic 

acids, 200, 219, 316, 
338, 396 

unsaturated compounds, 
182

unsaturated cyclic ketone, 
269, 461 

unsaturated diazo ketones, 
494

unsaturated dicarbonyl 
compound, 242 

unsaturated ester, 287 
unsaturated esters, 88, 124, 

226, 302, 362, 486, 494 
unsaturated fragment, 190 
unsaturated glycosyl 

product, 168 
unsaturated hemiacetal, 168 
unsaturated hydrazones, 

158
unsaturated imine, 345 

unsaturated ketone, 61, 99, 
103, 255, 275, 284, 321, 
330, 333, 347, 433 

unsaturated ketone moiety, 
281

unsaturated ketones, 28, 36, 
76, 92, 124, 158, 172, 
192, 254, 268, 280, 285, 
302, 362, 388, 392, 432 

unsaturated ketones and 
esters, 214, 474 

unsaturated lactam, 281 
unsaturated lactone, 263, 

413
unsaturated methyl ester, 

215
unsaturated methyl ketone, 

285
unsaturated nitriles, 432 
unsaturated piperidines, 27 
unsaturates ketones and 

aldehydes, 412 
unsaturation, 208 
unstable epoxyhydrazones, 
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unstable intermediate, 230 
unstable organometallic 

reagents, 38 
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unsymmerical 

dihydropyridines, 194 
unsymmetrical, 172, 173 
unsymmetrical 1,3-diol, 480 
unsymmetrical alkenes, 404 
unsymmetrical biaryls, 466 
unsymmetrical compounds, 

206
unsymmetrical couplings, 

418
unsymmetrical dienes, 140, 

410
unsymmetrical diynes, 186 
unsymmetrical ketone, 367, 

384
unsymmetrical ketones, 154, 

274, 396, 442, 444 
unsymmetrical olefins, 196 
unsymmetrically substituted 

benzophenones, 265 
unwanted hydride shift, 177 
urea, 58, 59, 266 
urea derivative, 210 
urea-H2O2, 118, See UHP 
ureas, 72, 116 
ureide, 58 
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morpholidophosphate, 
17
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Utimoto, K., 418, 452 
UV light, 333, 492 
UV photon, 332 
UVA light, 473 
Uyehara, T., 495 
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vacant d-orbitals, 400 
vacant p-orbital, 66 
valence shell, 66 
valerolactone, 131 
valinol, 162 
Van Arnum, S.D., 499 
vanadium, 169 
vanadium trichloride, 232 
vanadium(V) salts, 114 
vancomycin, 11 
Vandewalle, 67 
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Vedejs, E., 375, 447 
Vedernikov, A.N., 81 
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Verley, A., 270, 280, 320 
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substrates, 362 
Via, L.D., 473 
vicinal diamines, 202 
vicinal diol, 135, 485 
vicinal diols, 350 
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heterocyclic amines, 260 
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Villiger, 28, 29 
Villiger, V., 28 
Vilsmeier reaction, 468, 469 
Vilsmeier reagent, 468 
Vilsmeier, A., 468 
Vilsmeier-Haack conditions, 

245
Vilsmeier-Haack formylation,

468, 469 
vincamine, 61 
vincane type alkaloids, 61 
vineomycinone B2 methyl 

ester, 119 
Vinigrol, 233 
vinyl addition, 21 
vinyl anion, 482 
vinyl boronate esters, 340 
vinyl bromide, 403 
vinyl cation, 124 
vinyl chloride moiety, 453 
vinyl chromium carbene 

complex, 149 
vinyl cyclic amines, 282 
vinyl diazene, 482 
vinyl epoxide, 129, 459 
vinyl epoxides, 410 
vinyl esters, 334 
vinyl ethers, 334 
vinyl Grignard reagents, 40 
vinyl group, 455, 470 
vinyl halide, 259 
vinyl halides, 78, 188, 219, 

258, 318, 424 
vinyl iminophosphorane, 429 
vinyl indoles, 405 
vinyl iodide, 259, 273, 311, 

319
vinyl iodide fragment, 401 
vinyl iodides, 78 
vinyl organometallics, 324 
vinyl radical, 230, 482 
vinyl sulfides, 368 
vinyl sulfoxide substrates, 
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vinyl transfer, 340 
vinyl triflate, 440 
vinylaziridines, 27 
vinylboronic acids, 340 
vinyl-bromide moiety, 38 
vinylbutenolide, 153 
vinylcarbene, 148 
vinylchromium compounds, 

318
vinylcyclobutenone, 122 
vinylcyclopropanation, 471 
vinylcyclopropane, 479 
vinylcyclopropane-

cyclopenetene 
rearrangement, 470 

vinylcyclopropanes, 470 
vinyldihydropyran-2-

carboxylate, 407 
vinylglycine, 307 
vinylic moiety, 470 
vinylketene, 122, 495 
vinyllithium, 37, 65, 149, 325 
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40, 41 
vinylogous -keto esters, 

252
vinylogous amide, 59 

vinylogous Baylis-Hillman 
cyclization, 215 

vinylogous 
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salts, 468 

vinylogous esters, 132 
vinylogous Mannich addition,

205
vinylogous Mannich 

reaction, 205, 275 
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vinylogous Wolff 

rearrangement, 494 
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rearrangement, 36, 97, 
382, 383, 476 

Wagner-Meerwein 
rearrangements, 304, 
477

Wailes, P.C., 400 
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Weinreb amides, 245 

Weinreb ketone synthesis,
478, 479 
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Wicha, J., 193 
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192, 193, 207 
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Winkler, J.D., 133, 191 
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Winterfeldt, E., 36 
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Wittig modification, 206 
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