Values of Some Physical Constants

Constant Symbol Value
Atomic mass constant m, 1.660 5402 x 107%" kg
Avogadro constant N, 6.022 1367 x 10~ mol™!
Bohr magneton B, = eh/2m 9.274 0154 x 107 J . T™!
Bohr radius a, = 4we h’/m e 529177249 x 107" m
Boltzmann constant kg 1.380 658 x 107 J . K™
0.695 038 cm™
Electron rest mass m, 9.109 3897 x 107" kg
Gravitational constant G 6.67259 x 107" m* - kg™' . s7*
Molar gas constant R 8.314510J-K™' - mol™'
0.083 1451 dm’ - bar - K" - mol™
0.082 0578 dm® - atm - K™ - mol™
Molar volume, ideal gas
(one bar, 0°C) 22.711 08 L - mol™!
(one atm, 0°C) 2241409 L - mol ™"
Nuclear magneton jy = €h/2m 5.050 7866 x 107%" J. T!
Permittivity of vacuum &, 8.854 187816 x 1072 C*- J7'.m™
4re, 1.112 650 056 x 107'°C*- J7' - m™
Planck constant h 6.626 0755 x 107*J - s
h 1.054 57266 x 107 J - s
Proton charge e 1.602 17733 x 107" C
Proton magnetogyric ratio Y, 2.67522128 x 10°s™' . T
Proton rest mass m 1.672 6231 x 107 kg
Rydberg constant (Bohr) R_=m_e*/8ch’ 2.179 8736 x 1078 J
109 737.31534 cm™
Rydberg constant (expt]) R, 109 677.581 cm™
Speed of light in vacuum C 299 792 458 m - s~ (defined)

Stefan—Boltzmann constant o = 2m°ky/15h°c? 567051 x 107 . m™2 . K™*.s"'
Conversion Factors for Energy Units
joule kJ - mol™! eV

] joule

1 kJ - mol™
1 eV
1 E
lcm™
1 Hz

]

1.660 540 x 1072
1.602 177 x 107"
4.359 748 x 107'®
1.986 447 x 1073
6.626 076 x 107*

6.022 137 x 10%°
]

96.4853

2625.500

1.196 266 x 1072
3.990 313 x 107"

6.241 506 x 10"

1.036 427 x 1072
]

27.2114

1.239 842 x 10~*
4.135 669 x 107




Some Mathematical Formulas

sin(x & y) = sinx cosy & cos x sin y
cos(x  y) = cosxcosy Fsinxsiny
sinx siny = 1 cos(x — y) — 3 cos(x + )
COSXCOSy = % cos(x —y) + % cos(x + y)
sinx cos y = 3 sin(x + y) + 1 sin(x — y)

e =cosx +isinx

cos x eix«+ e—-ix S'n eix _ e—ix
= , inx =
2 . 2i
coshx=e+e sinhx=e‘_e
2 2
14 1 14 ) 1 m
fO) =f@+f@G-a)+f'@Fx-a)+ 2 f"@Gx-a) +--
L 2 ox Xt
e =1+x+ T + 3 + a1 +
' x> x* Xt
cosx=l-Sta et
, x X X
X=X ntsnTaw
2 3 4
| x* x x -
In(1 Y=x — — _———— .o —1 < 1
At =x-gt3 -7t =x=
1 o '
T = 1+x+x"+x°+x*+... x* <1
—Xx | | | |
| | (n—1 — D@ -2
(1;|:x)"=1:|:nx:[:f£%?_lx2in(n 3)'(’1 )x3+--- x* <1
> ! - '.
fo x"e™¥dx = =) (n positive integer)
© 2 T \1/2
| —ax? 4 =(____)
["evtan= (2
1o 1-3-5---@2n—1) /m\112 |
[0 e gy — > +l;‘n ) (;) (n positive integer)
% 2 n! i N
j; x* e dx = ST v(n positive integer)
/’“ . BAX | muXx /“’ nmx mnx a._
sin sin = COS —— COS = =6
0 a a 0 a a 2"
a T :
[ cos ynax sin m;rx =0 (m-and n integers)
0 ' : o




plane polar coordinates:
O0<r <o
0<6 <2m

x =rcosf

y =rsinf

dt = rdrdb
9° 9°

V= +
dx*  9y?

1 0 0 N 1 92 9? N
- - — y — — —
r or or r? 96° or?

spherical coordinates:

X = rsiné cos ¢ 0<r <o
y =rsinf sin¢ 0<6<m
z =rcosb 0<¢<2nm

dr = r*sin0drd0d¢

1 o , 0 + 1 d
= —— |y —
r? or ar r’sinf 96

10 1 92

r8r+;55~05§

. a) 1 9*
snéd— | +

96 r? sin 6 9¢*

T I
[ cos" 0 sinf df = f x"dx =0 if n 1s odd
0 —
= if n 1s even
n—+1
T |
f cos”" 6 sin® 6 df = f x"(1 —x%)dx =0 if n is odd
0 1 4 -
= if n 1s even
(n+1)(n +3)

Sl1 Prefixes
Fraction Prefix Symbol Multiple Prefix Symbol
107! deci d 10 deka da
1072 centi C 10? hecto h
1073 milli m 10° kilo k
107° micro 7 10° mega M
107° nano n 10° giga G
10712 pico p 10" tera T
107" femto f 10" peta P
1071® atto a 10'® exa E




Pressure Conversion Factors

Pa bar atm torr
] Pa = 1 10™° 9.869 23 x 107°  7.50062 x 1073
lbar= 10° ] 0.986 923 750.062
latm = 1.01325x 10° 1.01325 1 760
ltorr = 133.322 1.33322 x 107 1.31579 x 107% 1

Some Commonly Used Non-SI Units

Umt Quantity Symbol SI value
Angstrom length A 107" m = 100 pm
Micron length w 107 m
Calorie energy cal 4.184 J (defined)
Debye dipole moment D 3.3356 x 107 C-m
Gauss magnetic field strength G 107*T
Greek Alphabet
Alpha A o Iota I ¢ Rho P o
Beta B B Kappa K K Sigma )) o
Gamma I’ % Lambda A A Tau T T
Delta A ) Mu M I Upsilon T U
Epsilon E € Nu N v Phi (O ¢
Zeta Z Z Xi = £ Chi X X
Eta H n Omicron O o Psi Y ('
Theta ® 6 Pi I1 /4 Omega Q2 W
E cm™! Hz

h

2.293 710 x 10"

3.808 798 x 1074
3.674 931 x 1072
1

4.556 335 x 107°
1.519 830 x 107'®

5.034 11 x 107
83.5935

8065.54

2.194 7463 x 10°
i

3.335 64 x 107"

1.509 189 x 10*
2.506 069 x 10'?
2.417 988 x 10"
6.579 684 x 10"
2.997 925 x 10"
1
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Preface

To the Student

You are about to begin your study of physical chemistry. You may have been told that
physical chemistry is the most difficult chemistry course that you will take, or you
may have even seen the bumper sticker that says “Honk if you passed P Chem”. The
anxiety that some students bring to their physical chemistry course has been eloquently
addressed by the British professor E. Brian Smith in the preface of his introductory
text, Basic Chemical Thermodynamics, Oxford University Press:

“The first time I heard about Chemical Thermodynamics was when a second-year
undergraduate brought me the news in my freshman year. He told a spine-chilling story
of endless lectures with almost three hundred numbered equations, all of which, it
appeared, had to be committed to memory and reproduced in exactly the same form in
subsequent examinations. Not only did these equations contain all the normal algebraic
symbols but in addition they were liberally sprinkled with stars, daggers, and circles
so as to stretch even the most powerful of minds. Few would wish to deny the mind-
improving and indeed character-building qualities of such a subject! However, many
young chemists have more urgent pressures on their time.”

We certainly agree with this last sentence of Professor Smith’s. The fact is, however,
that every year thousands upon thousands of students take and pass physical chemistry,
and many of them really enjoy it. You may be taking it only because it 1s required
by your major, but you should be aware that many recent developments in physical
chemistry are having a major impact in all the areas of science concerned with the
behavior of molecules. For example, in biophysical chemistry, the application of both
experimental and theoretical aspects of physical chemistry to biological problems has
greatly advanced our understanding of the structure and reactivity of proteins and
nucleic acids. The design of pharmaceutical drugs, which has seen great advances in
recent years, 1s a direct product of physical chemical research.

Traditionally, there are three principal areas of physical chemistry: thermodynam-
ics (which concerns the energetics of chemical reactions), quantum chemistry (which
concerns the structures of molecules), and chemical kinetics (which concerns the rates
of chemical reactions). Many physical chemistry courses begin with a study of thermo-
dynamics, then discuss quantum chemistry, and treat chemical kinetics last. This order
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is a reflection of the historical development of the field, and both of us learned phys-
ical chemistry in this order. Today, however, physical chemistry is based on quantum
mechanics, and so we begin our studies with this topic. We first discuss the underlying
principles of quantum mechanics and then show how they can be applied to a num-
ber of model systems. Many of the rules you have learned in general chemistry and
organic chemistry are natural results of the quantum theory. In organic chemistry, for
example, you learned to assign molecular structures using infrared spectra and nuclear
magnetic resonance spectra, and in Chapters 13 and 14 we explain how these spectra
are governed by the quantum-mechanical properties of molecules.

Your education in chemistry has trained you to think in terms of molecules and
their interactions, and we believe that a course in physical chemistry should reflect
this viewpoint. The focus of modern physical chemistry is on the molecule. Current
experimental research in physical chemistry uses equipment such as molecular beam
machines to study the molecular details of gas-phase chemical reactions, high vacuum
machines to study the structure and reactivity of molecules on solid interfaces, lasers
to determine the structures of individual molecules and the dynamics of chemical
reactions, and nuclear magnetic resonance spectrometers to learn about the structure
and dynamics of molecules. Modern theoretical research in physical chemistry uses
the tools of classical mechanics, quantum mechanics, and statistical mechanics along
with computers to develop a detailed understanding of chemical phenomena in terms
of the structure and dynamics of the molecules involved. For example, computer
calculations of the electronic structure of molecules are providing fundamental insights
into chemical bonding, and computer simulations of the dynamical interaction between
molecules and proteins are being used to understand how proteins function.

In general chemistry, you learned about the three laws of thermodynamics and
were introduced to the quantities enthalpy, entropy, and the Gibbs energy (formerly
called the free energy). Thermodynamics 1s used to describe macroscopic chemical
systems. Armed with the tools of quantum mechanics, you will learn that thermody-
namics can be formulated in terms of the properties of the atoms and molecules that
make up macroscopic chemical systems. Statistical thermodynamics provides a way
to describe thermodynamics at a molecular level. You will see that the three laws of
thermodynamics can be explained simply and beautifully in molecular terms. We be-
lieve that a modern introduction to physical chemistry should, from the outset, develop
the field of thermodynamics from a molecular viewpoint. Our treatment of chemical
kinetics, which constitutes the last five chapters, develops an understanding of chemical
reactions from a molecular viewpoint. For example, we have devoted more than half of
the chapter of gas-phase reactions (Chapter 30) to the reaction between a fluorine atom
and a hydrogen molecule to form a hydrogen fluoride molecule and a hydrogen atom.
Through our study of this seemingly simple reaction, many of the general molecular
concepts of chemical reactivity are revealed. Again, quantum chemistry provides the
necessary tools to develop a molecular understanding of the rates and dynamics of
chemical reactions.

Perhaps the most intimidating aspect of physical chemistry is the liberal use of
mathematical topics that you may have forgotten or never learned. As physicists say
about physics, physical chemistry is difficult with mathematics; impossible without it.
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You may not have taken a math course recently, and your understanding of topics such
as determinants, vectors, series expansions, and probability may seem a bit fuzzy at
this time. In our years of teaching physical chemistry, we have often found it helptul to
review mathematical topics before using them to develop the physical chemical topics.
Consequently, we have included a series of ten concise reviews of mathematical topics.
We realize that not every one of these so-called reviews may actually be a review for
you. Even if some of the topics are new to you (or seem that way), we discuss only
the minimum amount that you need to know to understand the subsequent physical
chemistry. We have positioned these reviews so that they immediately precede the
chapter that uses them. By reading these reviews first (and doing the problems!), you
will be able to spend less time worrying about the math, and more time learning the
physical chemistry, which is, after all, your goal in this course.

To the Instructor

This text emphasizes a molecular approach to physical chemistry. Consequently, unlike
most other physical chemistry books, this one discusses the principles of quantum
mechanics first and then uses these ideas extensively in its subsequent development
of thermodynamics and kinetics. For example, from the Contents, you will see that
chapters titled The Boltzmann Factor and Partition Functions (Chapter 17) and Partition
Functions and Ideal Gases (Chapter 18) come before The First Law of Thermodynamics
(Chapter 19). This approach 1s pedagogically sound because we treat only energy,
pressure, and heat capacity (all mechanical properties that the students have dealt
with in their general chemistry and physics courses) in Chapters 17 and 18. This
approach allows us to immediately give a molecular interpretation to the three laws of
thermodynamics and to many thermodynamic relations. The molecular interpretation
of entropy is an obvious example (an introduction to entropy without a molecular
interpretation 1s strictly for purists and not for the faint of heart), but even the concepts
of work and heat in the First Law of Thermodynamics have a nice, physical, molecular
interpretation in terms of energy levels and their populations.

Research advances during the past few decades have changed the focus of physical
chemistry and therefore should affect the topics covered in a modern physical chemistry
course. To introduce the type of physical chemical research that is currently being done,
we have included chapters such as Computational Quantum Chemistry (Chapter 11),
Group Theory (Chapter 12), Nuclear Magnetic Resonance Spectroscopy (Chapter 14),
Lasers, Laser Spectroscopy, and Photochemistry (Chapter 15), and Gas-Phase Reaction
Dynamics (Chapter 30). The inclusion of new topics necessitated a rather large book,
but one of the standard physical chemistry texts fifty years ago was Glasstone’s Textbook
of Physical Chemistry, which was considerably larger.

Keeping in mind that our purpose is to teach the next generation of chemists,
the quantities, units, and symbols used in this text are those presented in the 1993
International Union of Pure and Applied Chemistry (IUPAC) publication Quantities,
Units, and Symbols in Physical Chemistry by lan Mills et al. (Blackwell Scientific
Publications, Oxford). Our decision to follow the IUPAC recommendations means
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that some of the symbols, units, and standard states presented in this book may differ
from those used in the literature and older textbooks and may be unfamiliar to some
instructors. In some instances, we took some time ourselves to come to grips with the
new notation and units, but it turned out that, indeed, there was an underlying logic to
their use, and we found the effort to become facile with them worthwhile.

A unique feature of this text is the introduction of ten so-called MathChapters,
which are short reviews of the mathematical topics used in subsequent chapters. Some
of the topics covered that should be familiar to most students are complex num-
bers, vectors, spherical coordinates, determinants, partial derivatives, and Taylor and
Maclaurin series. Some topics that may be new are probability, matrices (used only in
the chapter on group theory), numerical methods, and binomial coefficients. In each
case, however, the discussions are brief, elementary, and self-contained. After read-
ing each MathChapter and doing the problems, a student should be able to focus on
the following physical chemical material rather than having to cope with the physical
chemistry and the mathematics simultaneously. We believe that this feature greatly
enhances the pedagogy of our text.

Today’s students are comfortable with computers. In the past few years, we have
seen homework assignments turned in for which students used programs such as Math-
Cad and Mathematica to solve problems, rather than pencil and paper. Data obtained in
laboratory courses are now graphed and fit to functions using programs such as Excel,
Lotus123, and Kaleidagraph. Almost all students have access to personal computers,
and a modern course in the physical sciences should encourage students to take ad-
vantage of these tremendous resources. As a result, we have written a number of our
problems with the use of computers in mind. For example, MathChapter G introduces
the Newton-Raphson method for solving higher-order algebraic equations and tran-
scedental equations numerically. We see no reason nowadays to limit calculations in
a physical chemistry course to solving quadratic equations and other artificial exam-
ples. Students should graph data, explore expressions that fit experimental data, and
plot functions that describe physical behavior. The understanding of physical concepts
is greatly enhanced by exploring the properties of real data. Such exercises remove
the abstractness of many theories and enable students to appreciate the mathematics
of physical chemistry so that they can describe and predict the physical behavior of
chemical systems.



Our Web Site

You can visit the Web site for our book by visiting the University Science Books
website at http://www.uscibooks.com. We have posted various types of supplementary
material on this site. For example, the figures (currently in .GIF format only) and the
numerical tables in the book can be downloaded from the site. In addition, we are
currently preparing a series of lecture slides to accompany the book. We will also
be providing downloadable tables of spectroscopic, thermodynamic, and kinetic data.
Instructors can use these data to prepare lecture presentations of the applications of the
theoretical ideas; using programs such as Kaleidagraph and Mathematica, students can
use these data to compare the predictions of equations derived in the text with real data
for chemical systems. We encourage both students and instructors to send suggestions,
comments, and (the inevitable) errors to us using the entry form posted on the site.
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CHAPTER 1

The Dawn of the Quantum Theory

Toward the end of the nineteenth century, many scientists believed that all the fun-
damental discoveries of science had been made and little remained but to clear up a
few minor problems and to improve experimental methods to measure physical results
to a greater number of decimal places. This attitude was somewhat justified by the
great advances that had been made up to that time. Chemists had finally solved the
seemingly insurmountable problem of assigning a self-consistent set of atomic masses
to the elements. Stanislao Cannizzaro’s concept of the molecule, while initially contro-
versial, was then widely accepted. The great work of Dmitri Mendeleev had resulted
in a periodic table of the elements, although the underlying reasons that such periodic
behavior occurred in nature were not understood. Friedrich Kekulé had solved the
great controversy concerning the structure of benzene. The fundamentals of chemical
reactions had been elucidated by Svante Arrhenius, and the remaining work seemed to
consist primarily of cataloging the various types of chemical reactions.

In the related field of physics, Newtonian mechanics had been extended by Comte
Joseph Lagrange and Sir William Hamilton. The resulting theory was applied to plan-
etary motion and could also explain other complicated natural phenomena such as
elasticity and hydrodynamics. Count Rumford and James Joule had demonstrated the
equivalence of heat and work, and investigations by Sadi Carnot resulted in the for-
mulation of what 1s now entropy and the second law of thermodynamics. This work
was followed by Josiah Gibbs’ complete development of the field of thermodynamics.
Shortly, scientists would discover that the laws of physics were also relevant to the un-
derstanding of chemical systems. The interface between these two seemingly unrelated
disciplines formed the modern field of physical chemistry, the topic of this book. In
fact, Gibbs’s treatment of thermodynamics is so important to chemistry that it is taught
in a form that 1s essentially unchanged from Gibbs’s original formulation.

The related fields of optics and electromagnetic theory were undergoing similar
maturation. The nineteenth century witnessed a continuing controversy as to whether
light was wavelike or particlelike. Many diverse and important observations were
unified by James Clerk Maxwell in a series of deceptively simple-looking equations
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that bear his name. Not only did Maxwell’s predictions of the electromagnetic behavior
of light unify the fields of optics with electricity and magnetism, but their subsequent
experimental demonstration by Heinrich Hertz in 1887 appeared to finally demonstrate
that light was wavelike. The implications of these fields to chemistry would not be
appreciated for several decades but are now important aspects of the discipline of
physical chemistry, particularly in spectroscopy.

The body of these accomplishments in physics is considered the development
of what we now call classical physics. Little did scientists realize in that justifiably
heady era of success that the fundamental tenets of how the physical world works
were to be shortly overturned. Fantastic discoveries were about to revolutionize not
only physics, chemistry, biology, and engineering but would have significant effects
on technology and politics as well. The early twentieth century saw the birth of the
theory of relativity and quantum mechanics. The first, due to the work of Albert Ein-
stein alone, completely altered scientist’s ideas of space and time and was an extension
of the classical ideas to include high velocities and astronomical distances. Quantum
mechanics, the extension of classical ideas into the behavior of subatomic, atomic,
and molecular species, on the other hand, resulted from the efforts of many creative
scientists over several decades. To date, the effect of relativity on chemical systems
has been limited. Although it is important in understanding electronic properties of
heavy atoms, it does not play much of a role in molecular structure and reactivity
and so 1s not generally taught in physical chemistry. Quantum mechanics, however,
forms the foundation upon which all of chemistry is built. Our current understanding
of atomic structure and molecular bonding is cast in terms of the fundamental prin-
ciples of quantum mechanics and no understanding of chemical systems is possible
without knowing the basics of this current theory of matter. For this reason, we begin
this book with several chapters that focus on the fundamental principles of quantum
mechanics. We then follow with a discussion of chemical bonding and spectroscopy,
which clearly demonstrate the influence that quantum mechanics has had on the field
of chemistry.

Great changes in science are spurred by observations and new creative ideas. Let
us go back to the complacent final years of the nineteenth century to see just what were
the events that so shook the world of science.

1-1. Blackbody Radiation Could Not Be Explained
by Classical Physics

The series of experiments that revolutionized the concepts of physics had to do with
the radiation given off by material bodies when they are heated. We all know, for
instance, that when the burner of an electric stove 1s heated, it first turns a dull red
and progressively becomes redder as the temperature increases. We also know that
as a body is heated even further, the radiation becomes white and then blue as its
temperature continues to increase. Thus, we see that there 1s a continual shift of the
color of a heated body from red through white to blue as the body is heated to higher
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temperatures. In terms of frequency, the radiation emitted goes from a lower frequency
to a higher frequency as the temperature increases, because red is in a lower frequency
region of the spectrum than is blue. The exact frequency spectrum emitted by the
body depends on the particular body itself, but an ideal body, which absorbs and emits
all frequencies, 1s called a blackbody and serves as an idealization for any radiating
material. The radiation emitted by a blackbody 1s called blackbody radiation.

A plot of the intensity of blackbody radiation versus frequency for several temper-
atures 1s given in Figure 1.1. Many theoretical physicists tried to derive expressions
consistent with these experimental curves of intensity versus frequency, but they were
all unsuccesstul. In fact, the expression that 1s derived according to the laws of nine-

teenth century physics 1s

dp(v, T) = p (T)dv = — v dv (1.1)

where p (T)dv is the radiant energy density between the frequencies v and v 4 dv and
has units of joules per cubic meter (J-m ™). In Equation 1.1, T is the absolute temper-
ature, and c 1s the speed of light. The quantity & is called the Boltzmann constant and
is equal to the molar gas constant R divided by the Avogadro constant (formerly called
Avogadro’s number). The units of k, are J- K. particle™', but particle ' is usually not
expressed. (Another case is the Avogadro constant, 6.022 x 10* particle-mol ™', which
we will write as 6.022 x 10> mol™'; the unit “particle” is not expressed.) Equation 1.1
came from the work of Lord Rayleigh and J.H. Jeans and is called the Rayleigh-Jeans
law. The dashed line in Figure 1.1 shows the prediction of the Rayleigh-Jeans law.
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FIGURE 1.1
Spectral distribution of the intensity of blackbody radiation as a function of frequency for

several temperatures. The intensity is given in arbitrary units. The dashed line is the prediction
of classical physics. As the temperature increases, the maximum shifts to higher frequencies

and the total radiated energy (the area under each curve) increases significantly. Note that the
horizontal axis is labeled by v/10' s™'. This notation means that the dimensionless numbers
on that axis are frequencies divided by 10" s™'. We shall use this notation to label columns in
tables and axes in figures because of its unambiguous nature and algebraic convenience.
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Note that the Rayleigh-Jeans law reproduces the experimental data at low frequencies.
At high frequencies, however, the Rayleigh-Jeans law predicts that the radiant energy
density diverges as v°. Because the frequency increases as the radiation enters the ul-
traviolet region, this divergence was termed the ultraviolet catastrophe, a phenomenon
that classical physics could not explain theoretically. This was the first such failure
to explain an important naturally occuring phenomenon and therefore is of great his-
torical interest. Rayleigh and Jeans did not simply make a mistake or misapply some
of the ideas of physics; many other people reproduced the equation of Rayleigh and
Jeans, showing that this equation was correct according to the physics of the time. This
result was somewhat disconcerting and many people struggled to find a theoretical
explanation of blackbody radiation.

1-2. Planck Used a Quantum Hypothesis to Derive the Blackbody
Radiation Law

The first person to offer a successful explanation of blackbody radiation was the
German physicist Max Planck in 1900. Like Rayleigh and Jeans before him, Planck
assumed that the radiation emitted by the blackbody was caused by the oscillations
of the electrons in the constituent particles of the material body. These electrons were
pictured as oscillating in an atom much like electrons oscillate in an antenna to give
off radio waves. In these “atomic antennae”, however, the oscillations occur at a much
higher frequency; hence, we find frequencies in the visible, infrared, and ultraviolet
regions rather than in the radio-wave region of the spectrum. Implicit in the derivation
of Rayleigh and Jeans is the assumption that the energies of the electronic oscillators
responsible for the emission of the radiation could have any value whatsoever. This
assumption is one of the basic assumptions of classical physics. In classical physics,
the variables that represent observables (such as position, momentum, and energy) can
take on a continuum of values. Planck had the great insight to realize that he had to
break away from this mode of thinking to derive an expression that would reproduce
experimental data such as those shown in Figure 1.1. He made the revolutionary
assumption that the energies of the oscillators were discrete and had to be proportional
to an integral multiple of the frequency or, in equation form, that £ = nhv, where E is
the energy of an oscillator, n is an integer, & 1s a proportionality constant, and v 1s the
frequency. Using this quantization of energy and statistical thermodynamic ideas that
we will cover in Chapter 17, Planck derived the equation

'%
8th vdv
C3 eh v/ kT 1

do(w,T) = p (T)dv = (1.2)
All the symbols except 4 in Equation 1.2 have the same meaning as in Equation 1.1. The
only undetermined constant in Equation 1.2 is 4. Planck showed that this equation gives
excellent agreement with the experimental data for all frequencies and temperatures
if 4 has the value 6.626 x 10~ joule-seconds (J-s). This constant is now one of the
most famous and fundamental constants of physics and is called the Planck constant.
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Equation 1.2 is known as the Planck distribution law for blackbody radiation. For
small frequencies, Equations 1.1 and 1.2 become identical (Problem 1-4), but the
Planck distribution does not diverge at large frequencies and, in fact, looks like the
curves in Figure 1.1.

EXAMPLE 1-1
Show that p (T')dv in both Equations 1.1 and 1.2 has units of energy per unit volume,
J.m™,

SOLUTION: The units of T are K, of k, are J.K ', of hare J-s,of vand dv are s ',
and of ¢ are m-s~'. Therefore, for the Rayleigh-Jeans law (Equation 1.1),

Sk, T
— Vv dv
~

KK

(m-s~")’

dp(v, T) = p (T)dv =

s H=Jm™

For the Planck distribution (Equation 1.2),

8t h vidv

C3 €h v/kg T __ i

N (J~S)(s“‘)l3(28'l) S
(m-s™ )

dp(v. T) = p,(T)dv =

Thus, we see that p (T)dv, the radiant energy density has units of energy per unit
volume.

l |

Equation 1.2 expresses the Planck distribution law in terms of frequency. Because
wavelength (1) and frequency (v) are related by Av = ¢, then dv = —cd /A%, and we
can express the Planck distribution law in terms of wavelength rather than frequency
(Problem 1-10):

8t he dA

35 phelikgT

dp(x, T) = p,(T)d) = (1.3)
The quantity p, (T')d A 1s the radiant energy density between A and A + d . The intensity
corresponding to Equation 1.3 1s plotted in Figure 1.2 for several values of T.

We can use Equation 1.3 to justify an empirical relationship known as the Wien
displacement law. The Wien displacement law says that if A is the wavelength at
which o (T) 1s a maximum, then

A T =290x10"m-K (1.4)

By differentiating p, (T') with respect to A, we can show (Problem 1-5) that

hc

A T = — 15
w4 965k, (1.5)
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FIGURE 1.2

The distribution of the intensity of the radiation emitted by a blackbody versus wavelength for
various temperatures. As the temperature increases, the total radiation emitted (the area under
the curve) increases.

in accord with the Wein displacement law. Using the modern values of /1, ¢, and k, given
inside the front cover, we obtain 2.899 x 10~ m-K for the right side of Equation 1.5,
in excellent agreement with the experimental value given in Equation 1.4.

The theory of blackbody radiation is used regularly in astronomy to estimate the
surface temperatures of stars. Figure 1.3 shows the electromagnetic spectrum of the sun
measured at the earth’s upper atmosphere. A comparison of Figure 1.3 with Figure 1.2
suggests that the solar spectrum can be described by a blackbody at approximately
6000 K. If we estimate A from Figure 1.3 to be 500 nm, then the Wein displacement
law (Equation 1.4) gives the temperature of the surface of the sun to be

290 x 107" m-K
T = - = 5800 K
500 x 107" m

The star Sirius, which appears blue, has a surface temperature of about 11 000 K (cf.
Problem 1-7).

Certainly Planck’s derivation of the blackbody distribution law was an impres-
sive feat. Nevertheless, Planck’s derivation and, in particular, his assumption that the
energies of the oscillators have to be an integral multiple of Av was not accepted by
most scientists at the time and was considered simply an arbitrary derivation. Most
believed that in time a satisfactory derivation would be found that obeyed the laws of
classical physics. In a sense, Planck’s derivation was little more than a curiosity. Just
a few years later, however, in 1905, Einstein used the very same idea to explain the
photoelectric effect.
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FIGURE 1.3

The electromagnetic spectrum of the sun as measured in the upper atmosphere of the earth. A
comparison of this figure with Figure 1.2 shows that the sun’s surface radiates as a blackbody
at a temperature of about 6000 K.

1-3. Einstein Explained the Photoelectric Effect with
a Quantum Hypothesis

In 1886 and 1887, while carrying out the experiments that supported Maxwell’s theory
of the electromagnetic nature of light, the German physicist Heinrich Hertz discovered
that ultraviolet light causes electrons to be emitted from a metallic surface. The ejection
of electrons from the surface of a metal by radiation is called the photoelectric effect.
Two experimental observations of the photoelectric effect are in stark contrast with
the classical wave theory of light. According to classical physics, electromagnetic
radiation 1s an electric field oscillating perpendicular to its direction of propagation,
and the intensity of the radiation is proportional to the square of the amplitude of
the electric field. As the intensity increases, so does the amplitude of the oscillating
electric field. The electrons at the surface of the metal should oscillate along with the
field and so, as the intensity (amplitude) increases, the electrons oscillate more violently
and eventually break away from the surface with a kinetic energy that depends on the
amplitude (intensity) of the field. This nice classical picture is in complete disagreement
with the experimental observations. Experimentally, the kinetic energy of the ejected
electrons 1s independent of the intensity of the incident radiation. Furthermore, the
classical picture predicts that the photoelectric effect should occur for any frequency
of light as long as the intensity is sufficiently high. The experimental fact, however,
s that there is a threshold frequency, v, characteristic of the metallic surface, below
which no electrons are ejected, regardless of the intensity of the radiation. Above v,
the kinetic energy of the ejected electrons varies linearly with the frequency v. These
observations served as an embarrassing contradiction of classical theory.
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To explain these results, Einstein used Planck’s hypothesis but extended it in
an important way. Recall that Planck had applied his energy quantization concept,
E =nhv or AE = hv, to the emission and absorption mechanism of the atomic
electronic oscillators. Planck believed that once the light energy was emitted, it behaved
like a classical wave. Einstein proposed instead that the radiation itself existed as small
packets of energy, E = hv, now known as photons. Using a simple conservation-of-
energy argument, Einstein showed that the kinetic energy (KE) of an ejected electron
is equal to the energy of the incident photon (Av) minus the minimum energy required
to remove an electron from the surface of the particular metal (¢). In an equation,

1
KE = Emvz = hv — ¢ (1.6)

where ¢, called the work function of the metal, is analogous to an ionization energy
of an isolated atom. The left side of Equation 1.6 cannot be negative, so Equation 1.6
predicts that hv > ¢. The minimum frequency that will eject an electron is just the
frequency required to overcome the work function of the metal, thus we see that there
is a threshold frequency v,, given by

hv, = ¢ (1.7)

Using Equations 1.6 and 1.7, we can write

KE = hv — hy, V> (1.8)

— 0

Equation 1.8 shows that a plot of KE versus v should be linear and that the slope of the
line should be /4, in complete agreement with the data in Figure 1.4.
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FIGURE 1.4

The kinetic energy of electrons ejected from the surface of sodium metal versus the frequency of
the incident ultraviolet radiation. The threshold frequency hereis 4.40 x 10" Hz (1Hz = 1s7").



1-3. Einstein Explained the Photoelectric Effect with a Quantum Hypothesis

Before we can discuss Equation 1.8 numerically, we must consider the units
involved. The work function ¢ is customarily expressed in units of electron volts (e V).
One electron volt is the energy picked up by a particle with the same charge as an
electron (or a proton) when it falls through a potential drop of one volt. If you recall

that (1 coulomb) x (1 volt) = 1 joule and use the fact that the charge on a proton is
1.602 x 107" C, then

eV = (1.602 x 107 C)(1 V)
— 1.602 x 107" ]

EXAMPLE 1-2
Given that the work function for sodium metal is 1.82 eV, calculate the threshold
frequency v, for sodium.

SOLUTION: We must first convert ¢ from electron volts to joules.

¢ =1.82eV=(1.82eV)(1.602 x 107" J.eV")
=292x107"1J

Using Equation 1.7, we have

292 x 107"
V., = -
" 6.626 x 107 J.s
= 4.40 x 10" Hz

In the last line here, we have introduced the unit hertz (Hz) for per second (s7).

EXAMPLE 1-3

When lithium 1s irradiated with light, the kinetic energy of the ejected electrons is
2.935 x 107" J for A = 300.0 nm and 1.280 x 107" J for A = 400.0 nm. Calculate
(a) the Planck constant, (b) the threshold frequency, and (c¢) the work function of
lithium from these data.

SOLUTION:
(a) From Equation 1.8, we write

1 1
(KE)1 — (I(E)2 = /?(U] — UE) = hc (.)x_ — 1_)

[ 2

or

|
1.655 x 107" J = h(2.998 x 10° m-s™") ( — - :
3000 x 107°m 400.0 x 10 m
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from which we obtain

1655 % 107"
T 2.498 x 10" 57!

= 6.625 x 107 J.g

(b) Using the A = 300.0 nm data, we have

( h
2935 x 10 = E——
300.0 x 10 m

from which we find that V, = 5.564 x 10" Hz

(c) Using Equation 1.7, we have

¢ =hv, =3.687 x 1077 J =2.301 eV

Einstein obtained a value of / in close agreement with Planck’s value deduced from
the blackbody radiation formula. This surely was a fantastic result because the whole
business of energy quantization was quite mysterious and not well accepted by the
scientific community of the day. Nevertheless, in two very different sets of experiments,
blackbody radiation and the photoelectric effect, the very same quantization constant /4,
had arisen naturally. Scientists realized that perhaps there was something to all this
after all.

1-4. The Hydrogen Atomic Spectrum Consists of Several Series
of Lines

For some time scientists had known that every atom, when subjected to high tem-
peratures or an electrical discharge, emits electromagnetic radiation of characteristic
frequencies. In other words, each atom has a characteristic emission spectrum. Be-
cause the emission spectra of atoms consist of only certain discrete frequencies, they
are called line spectra. Hydrogen, the lightest and simplest atom, has the simplest
spectrum.

Figure 1.5 shows the part of the hydrogen atom emission spectrum that occurs in
the visible and near ultraviolet region.

Because atomic spectra are characteristic of the atoms involved, it is reasonable to
suspect that the spectrum depends on the electron distribution in the atom. A detailed
analysis of the hydrogen atomic spectrum turned out to be a major step in the elucidation
of the electronic structure of atoms. For many years, scientists had tried to find a pattern
in the wavelengths or frequencies of the lines in the hydrogen atomic spectrum. Finally,
in 1885, an amateur Swiss scientist, Johann Balmer, showed that a plot of the frequency
of the lines versus 1/n2(n = 3,4,5,...)1s linear, as shown in Figure 1.6. In particular,
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FIGURE 1.5

Emission spectrum of the hydrogen atom in the visible and the near ultraviolet region showing
that the emission spectrum of atomic hydrogen is a line spectrum.

10 —

0 | | | |
0 0.04 0.08 0.12

1/n?

FIGURE 1.6

A plot of frequency versus 1/n* (n = 3, 4, 5, ...) for the series of lines of the hydrogen atom
spectrum that occurs in the visible and near ultraviolet regions. The actual spectrum is shown
in Figure 1.5. The linear nature of this plot leads directly to Equation 1.9.

Balmer showed that the frequencies of the emission lines in the visible region of the
spectrum could be described by the equation

4
v = 8.2202 x 10" (1 - --;-) Hz

n’

wheren = 3,4, 5, .... Thisequation is customarily written in terms of the quantity 1/A
instead of v. Reciprocal wavelength is called a wavenumber, whose SI units are m™'. It
turns out, however, that the use of the non-SI unit cm™' is so prevalent in spectroscopy

11
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that we will use cm™' in most of this book. Thus if we divide the previous equation

by ¢ and factor a 4 out of the two terms in parentheses, then we have

1 ]
v = 109680 (-2—2———7) cm”™! n=3,4, ... (1.9)

n>

where v = 1/A = v/c. This equation is called Balmer’s formula.

EXAMPLE 1-4

Using Balmer’s formula, calculate the wavelengths of the first few lines in the visible
region of the hydrogen atomic spectrum and compare them to the experimental values
given in Figure 1.5.

SOLUTION: The first line is obtained by setting n = 3, in which case we have

_ ] 1 »
p = 109680 — — — }Jcm

22 32
=1.523 x 10* cm™
and
A =6.565 x 10 cm = 656.5 nm
The next line 1s obtained by setting n = 4, and so
. ] 1 »
v=109680( = — — ) cm
2° 4
= 2.056 x 10" cm™'
and

A=4.863 x 107> cm = 486.3 nm

Thus, we see that the agreement with the experimental data (Figure 1.5) is excellent.

| |

Note that Equation 1.9 predicts a series of lines as n takes on the values 3, 4, 5, ....
This series of lines, the ones occurring in the visible and near ultraviolet regions of the
hydrogen atomic spectrum and predicted by Balmer’s formula, is called the Balmer
series. The Balmer series 1s shown in Figure 1.5. Note also that Equation 1.9 predicts
that the lines in the hydrogen atomic spectrum bunch up as n increases. As n increases,
1/n* decreases and eventually we can ignore this term compared with the ;'{ term and
so in the limit n — o0 we have

|
v —> 109680 (4_1) cm | =2.742 x 10* cm ™!

or A = 364.7 nm, in excellent agreement with the data in Figufe 1.5. This value 1s
essentially that for the last line in the Balmer series and 1s called the series limit.



The Balmer series occurs in the visible and near ultraviolet regions. The hydrogen
atomic spectrum has lines in other regions; in fact, series of lines similar to the Balmer
series appear in the ultraviolet and in the infrared region (ct. Figure 1.7).

1-5. The Rydberg Formula Accounts for All the Lines in the Hydrogen
Atomic Spectrum

The Swedish spectroscopist Johannes Rydberg accounted for all the lines in the hydro-
gen atomic spectrum by generalizing the Balmer formula to

1 1 1
v=—=109680| - — = - 1.10
b= (n? ng)cm (n, >n,) (1.10)

where both n, and n, are integers but n, is always greater than n . Equation 1.10 1s
called the Rydberg formula. Note that the Balmer series is recovered if we let n, = 2.
The other series are obtained by letting n, be 1, 3, 4, .... The names associated with
these various series are given in Figure 1.7 and Table 1.1. The constant in Equation 1.10
is called the Rydberg constant and Equation 1.10 1s commonly written as

- 1 1
I 2

where R is the Rydberg constant. The modern value of the Rydberg constant is
109 677.581 cm™'; it is one of the most accurately known physical constants.
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Ultraviolet Visible Infrared

FIGURE 1.7

A schematic representation of the various series in the hydrogen atomic spectrum. The Lyman
series lies in the ultraviolet region; the Balmer lies in the visible region; and the Paschen and
Bracket series lie in the infrared region (see Table 1.1).
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TABLE 1.1

The first four series of lines making up the hydrogen atomic spectrum.
The term “‘near infrared” denotes the part of the infrared region of the
spectrum that is near the visible region.

Series name n, n, Region of spectrum
Lyman | 2. 3. 4, ... Ultraviolet

Balmer 2 3,4, 5, ... Visible

Paschen 3 4,5, 6, ... Near infrared
Bracket 4 5,6, 7, ... Infrared

EXAMPLE 1-5
Calculate the wavelength of the second line in the Paschen series, and show that this
line lies in the near infrared, that is, in the infrared region near the visible.

SOLUTION: In the Paschen series, n, =3 and n, =4, 5, 6, ... according to
Table 1.1. Thus, the second line in the Paschen series 1s given by setting n, = 3 and
n, =5 in Equation 1.11:

|
v =109677.57 (—; = 7) cm™!
35

= 7.799 x 10° cm™

and

A=1.282 x 107" cm = 1282 nm

which is in the near infrared region.

The fact that the formula describing the hydrogen spectrum 1s in a sense controlled
by two integers is truly amazing. Why should a hydrogen atom care about our integers?
We will see that integers play a special role in quantum theory.

The spectra of other atoms were also observed to consist of series of lines, and 1n
the 1890s Rydberg found approximate empirical laws for many of them. The empirical
laws for other atoms were generally more involved than Equation 1.11, but the really
interesting feature is that all the observed lines could be expressed as the difference
between terms such as those in Equation 1.11. This feature was known as the Ritz
combination rule, and we will see that it follows immediately from our modern view
of atomic structure. At the time, however, it was just an empirical rule waiting for a
theoretical explanation.



1-6. Louis de Broglie Postulated That Matter Has Wavelike Properties

Although we have an intriguing partial insight into the electronic structure of atoms,
something is missing. To explore this further, let us go back to a discussion of the
nature of light.

Scientists have always had trouble describing the nature of light. In many exper-
iments light shows a definite wavelike character, but in many others light seems to
behave as a stream of photons. The dispersion of white light into its spectrum by a
prism is an example of the first type of experiment, and the photoelectric effect 1s an
example of the second. Because light appears wavelike in some instances and particle-
like in others, this disparity is referred to as the wave-particle duality of light. In 1924,
a young French scientist named Louis de Broglie reasoned that if light can display
this wave-particle duality, then matter, which certainly appears particlelike, might also
display wavelike properties under certain conditions. This proposal 1s rather strange at
first, but it does suggest a nice symmetry in nature. Certainly if light can be particlelike
at times, why should matter not be wavelike at times?

de Broglie was able to put his idea into a quantitative scheme. Einstein had shown
from relativity theory that the wavelength, A, and the momentum, p, of a photon are
related by

A= — (1.12)
p

de Broglie argued that both light and matter obey this equation. Because the momentum
of a particle 1s given by mu, this equation predicts that a particle of mass m moving
with a velocity v will have a de Broglie wavelength givenby A = h/muv.

EXAMPLE 1-6
Calculate the de Broglie wavelength for a baseball (5.0 0z) traveling at 90 mph.

SOLUTION: Five ounces corresponds to

b\ /0454 k
m = (5.0 0z) ( ) ( g) —0.14 kg

16 oz [ 1b

and 90 mph corresponds to

90 mi 1610 m | hr y
V= . =40 m-s
| hr 1 mi 3600 s

The momentum of the baseball is

p=mv=(0.14kg)(40m-s') = 5.6 kg-m-s™"

15
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The de Broglie wavelength is

h 6626 x 107" I-s L
A= — = —— =12x 107" m
p 5.6 kg-m-s

a ridiculously small wavelength.

t |

We see from Example 1.6 that the de Broglie wavelength of the baseball 1s so small
as to be completely undetectable and of no practical consequence. The reason is the

large value of m. What if we calculate the de Broglie wavelength of an electron instead
of a baseball?

EXAMPLE 1-7
Calculate the de Broglie wavelength of an electron traveling at 1.00% of the speed of

light.

SOLUTION: The mass of an electron is 9.109 x 107" kg. One percent of the speed
of light 1s

v = (0.0100)(2.998 x 10° m-s™') =2.998 x 10° m-s~'
The momentum of the electron is given by

p=muv=(9.109 x 107" kg)(2.998 x 10° m-s™")
= 2.73 x 10M24 kg.[n.s“I

The de Broglie wavelength of this electron 1s

6626 X 1077 J-s
273 x 107 kg-m-s™
= 243 pm

=243 x 107" m

h
P

This wavelength 1s of atomic dimensions.

| |

The wavelength of the electron calculated in Example 1-7 corresponds to the
wavelength of X-rays. Thus, although Equation 1.12 is of no consequence for a macro-
scopic object such as a baseball, it predicts that electrons can be observed to act like
X-rays. The wavelengths of some other moving objects are given in Table 1.2.

1-7. de Broglie Waves Are Observed Experimentally

When a beam of X rays is directed at a crystalline substance, the beam 1s scattered in a
definite manner characteristic of the atomic structure of the crystalline substance. This
phenomenon is called X-ray diffraction and occurs because the interatomic spacings in
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similarity of the two patterns shows that both X-rays and electrons do indeed behave
analogously in these experiments.

The wavelike property of electrons is used in electron microscopes. The wave-
lengths of the electrons can be controlled through an applied voltage, and the small
de Broglie wavelengths attainable offer a more precise probe than an ordinary light
microscope. In addition, in contrast to electromagnetic radiation of similar wavelengths
(X-rays and ultraviolet), the electron beam can be readily focused by using electric and
magnetic fields, generating sharper images. Electron microscopes are used routinely in
chemistry and biology to investigate atomic and molecular structures.

An interesting historical aside in the concept of the wave-particle duality of matter
1s that the first person to show that the electron was a subatomic particle was the English
physicist Sir Joseph J. Thomson in 1895 and then his son Sir George P. Thomson was
among the first to show experimentally in 1926 that the electron could act as a wave.
The father won a Nobel Prize in 1906 for showing that the electron is a particle and the
son won a Nobel Prize in 1937 for showing that it is a wave.

1-8. The Bohr Theory of the Hydrogen Atom Can Be Used to Derive
the Rydberg Formula

In 1911, the Danish physicist Niels Bohr presented a theory of the hydrogen atom that
gave a beautifully simple explanation of the hydrogen atomic spectrum. We present
here a brief discussion of the Bohr theory.

According to the nuclear model of the atom, the hydrogen atom can be pictured as
a central, rather massive nucleus with one associated electron. Because the nucleus is
so much more massive than the electron, we can consider the nucleus to be fixed and
the electron to be revolving about it. The force holding the electron in a circular orbit
is supplied by the coulombic force of attraction between the proton and the electron
(Coulomb’s law):

2

o2

47 eorz

where r is the radius of the orbit, e 1s the charge on the electron, and ¢, = 8.85419 x
107 C*-N~"-m™ is the permittivity of free space. The occurrence of the factor 47 e,
in Coulomb’s law is a result of using SI units. The coulombic force 1s balanced by the
centrifugal force (see Problem 1-41)

= (1.13)

where m_ and v are the mass and the speed of the electron, respectively. If we equate
the coulombic force and the centrifugal force, then we obtain

2

= — (1.14)




1-8. The Bohr Theory of the Hydrogen Atom Can Be Used to Derive the Rydberg Formula

We are tacitly assuming here that the electron is revolving around the fixed nucleus
in a circular orbit of radius r. Classically, however, because the electron is constantly
being accelerated according to Equation 1.13 (Problem 1-41), it should emit electro-
magnetic radiation and lose energy. Consequently, classical physics predicts that an
electron revolving around a nucleus will lose energy and spiral into the nucleus, and so
a stable orbit for the electron is classically forbidden. Bohr’s great contribution was to
make two nonclassical assumptions. The first was to assume the existence of stationary
electron orbits, in defiance of ¢lassical physics. He then specified these orbits by the
equivalent of assuming that the de Broglie waves of the orbiting electron must “match”
or be in phase, as the electron makes one complete revolution. Without such matching,
cancellation of some amplitude occurs during each revolution, and the wave will dis-
appear (see Figure 1.9). For the wave pattern around an orbit to be stable, we are led
to the condition that an integral number of complete wavelengths must fit around the
circumference of the orbit. Because the circumference of a circle is 277, we have the
quantum condition

2Mr = nA n=1, 2, 3, ... (1.15)

If we substitute the de Broglie wavelength formula (Equation 1.12) into Equation 1.135,
we obtain

nh
muvr = —
27T

or

m_vr = nh n=1,2 3, ... (1.16)

where we introduce the symbol % for 4 /2. The short-hand notation is introduced
because  appears in many of the equations of quantum chemistry. The quantity on
the left side of Equation 1.16 is the angular momentum of the electron. Thus, another

OO0

(a) (b) (c) (d)

FIGURE 1.9

An 1llustration of matching and mismatching de Broglie waves travelling in Bohr orbits. If the
wavelengths of the de Broglie waves are such that an integral number of them fit around the
circle, then they match after a complete revolution (a). If a wave does not match after a complete
revolution (b), cancellation will result and the wave will progressively disappear (c, d).

19



20

Chapter 1 / The Dawn of the Quantum Theory

interpretation of Equation 1.15, and one more commonly attributed to Bohr, is that the
angular momentum of the electron about the proton must be quantized; in other words,
it can have only certain discrete values that satisfy Equation 1.16 forn =1, 2, 3, ....

If we solve Equation 1.16 for v and substitute it into Equation 1.14, we find that
the radii of the orbits must satisfy

80/1”1/12 47r80h2n.2
r = - (1.17)

Tm 82 m€2
e e

Thus, we see that the radii of the allowed orbits, or Bohr orbits, are quantized. According
to this picture, the electron can move around the nucleus in circular orbits only with
radii given by Equation 1.17. The orbit with the smallest radius is the one withn = 1,
for which

 47(8.85419 x 107 C*-N""-m™*)(1.055 x 107 I-s)
B (9.109 x 107" kg)(1.6022 x 107" C)?
=5.292 x 107" m = 52.92 pm (1.18)

¥

The radius of the first Bohr orbit is often denoted by a,.

The total energy of the electron in an atom is equal to the sum of its kinetic energy
and potential energy. The potential energy of an electron and a proton separated by a
distance r is given by Coulomb’s law

“

V(ir) =— (1.19)

47 E,r

The negative sign here indicates that the proton and electron attract each other; their
energy is less than it is when they are infinitely separated [V (o0) = 0]. The total energy
of the electron in a hydrogen atom 1is

(32

(1.20)

|
E=KE+ V(@) =-mv> —
2 € dre r

Using Equation 1.14 to eliminate the mcv‘(2 in the kinetic energy term, Equation 1.20

becomes
1 2 2 2
E—-(-2 |- ___° (1.21)
47reor e r 871'80)’

The only allowed values of r are those given by Equation 1.17, and so if we substitute
Equation 1.17 into Equation 1.21, we find that the only allowed energies are

4
1
E =< n=1, 2. .. (1.22)
v T T8k

The negative sign in this equation indicates that the energy states are bound states; the
energies given by Equation 1.22 are less than when the proton and electron are infinitely
separated. Note that n = 1 in Equation 1.22 corresponds to the state of lowest energy.
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This energy is called the ground-state energy. At ordinary temperatures, hydrogen
atoms, as well as most other atoms and molecules, are found almost exclusively in
their ground electronic states. The states of higher energy are called excited states and
are generally unstable with respect to the ground state. An atom or a molecule in an
excited state will usually relax back to the ground state and give off the energy as
electromagnetic radiation.

We can display the energies given by Equation 1.22 in an energy-level diagram
such as that in Figure 1.10. Note that the energy levels merge as n — ©0. Bohr assumed
that the observed spectrum of the hydrogen atom is due to transitions from one allowed
energy state to another, and using Equation 1.22, he predicted that the allowed energy
differences are given by

Apo e (L 1Y, (1.23)
= _ — = nv .
82 \n2  n
n —E/cm™!
o0 0
4 i 6855
3 AN 12187
2 Wﬁ‘n Yy v A\ 27420
| WYy ‘ 109680
Lyman Balmer Paschen
i | | | | | ]
100 130 200 300 5001000 2000 A/nm
| | | | | | 14
30 24 17 10 5 > v/10™ Hz

FIGURE 1.10

The energy-level diagram for the hydrogen atom, showing how transitions from higher states
into some particular state lead to the observed spectral series for hydrogen.
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The equation A E = hv is called the Bohr frequency condition. Bohr assumed that as
the electron falls from one level to another, the energy evolved is given off as a photon
of energy E = hv. Figure 1.10 groups the various transitions that occur according to
the final state into which the electron falls. We can see, then, that the various observed
spectral series arise in a natural way from the Bohr model. The Lyman series occurs
when electrons that are excited to higher levels relax to the n = 1 state; the Balmer
series occurs when excited electrons fall back into the n = 2 state, and so on.

We can write the theoretical formula (Equation 1.23) in the form of the empirical
Rydberg formula by writing hv = hcv:

_ m e’ | |
V) = ¢ - (124)

2 73\ 2 2
8eych™ \ny  n;

If we compare Equations 1.11 and 1.24, we conclude that

f71e€4
~ 7 Belch’ (-2
0

should be equal to the Rydberg constant, Equation 1.11.

EXAMPLE 1-8

Using the values of the physical constants given inside the front cover of this book,

calculate R__ and compare the result to its experimental value, 109 677.6 cm™'.

SOLUTION:

R =

20

(9.10939 x 107! kg)(1.602177 x 107" C)*
(8)(8.85419 x 107" C*N'"'m™%)%(2.99792 x 10® m-s~')(6.626076 x 107** J-s)°
= 1.09737 x 10" m~' = 109737 cm™!

which is within 0.05% of the experimental value of 109677.6 cm™

able agreement.

, surely a remark-

EXAMPLE 1-9
Calculate the 1onization energy of the hydrogen atom.

SOLUTION: The ionization energy /E is the energy required to take the electron
from the ground state to the first unbound state, which is obtained by letting n, = oo
in Equation 1.24. Thus, we write

1 [
IE=R_|= - —
> 1~ CXD‘..



1-9. Position and the Momentum of a Particle Cannot Be Specified Simultaneously

or

IE =R _= 109737 cm™!
=2.1787 x 107" ]
= 13.598 eV = 1312.0 kJ-mol™"
Note that we have expressed the energy in units of wave numbers (cm™"). This unit is

not strictly a unit of energy, but because of the simple relation between wave number
and energy, E = hcv, energy is often expressed in this way (cf. Problem 1-1).

Despite a number of successes and the beautiful simplicity of the Bohr theory,
the theory could not be extended successfully even to a two-electron system such as
helium. Furthermore, even for a simple system such as hydrogen, it could not explain
the spectra that arise when a magnetic field is applied to the system, nor could it predict
the intensities of the spectral lines.

1-9. The Heisenberg Uncertainty Principle States That the Position
and the Momentum of a Particle Cannot Be Specified
Simultaneously with Unlimited Precision

We now know that we must consider light and matter as having the characteristics of
both waves and particles. Let’s consider a measurement of the position of an electron.
If we wish to locate the electron within a distance Ax, then we must use a measuring
device that has a spatial resolution less than Ax. One way to achieve this resolution is
to use light with a wavelength on the order of A &~ Ax. For the electron to be “seen”,
a photon must interact or collide in some way with the electron, for otherwise the
photon will just pass right by and the electron will appear transparent. The photon
has a momentum p = A /A, and during the collision, some of this momentum will be
transferred to the electron. The very act of locating the electron leads to a change in
its momentum. If we wish to locate the electron more accurately, we must use light
with a smaller wavelength. Consequently, the photons in the light beam will have
greater momentum because of the relation p = A /A. Because some of the photon’s
momentum must be transferred to the electron in the process of locating it, the mo-
mentum change of the electron becomes greater. A careful analysis of this process
was carried out in the mid-1920s by the German physicist Werner Heisenberg, who
showed that it 1s not possible to determine exactly how much momentum is transferred
to the electron. This difficulty means that if we wish to locate an electron to within
a region Ax, there will be an uncertainty in the momentum of the electron. Heisen-
berg was able to show that if Ap is the uncertainty in the momentum of the electron,
then

AxAp > h (1.26)
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Equation 1.26 1s called Heisenberg’s Uncertainty Principle and is a fundamental
principle of nature. The Uncertainty Principle states that if we wish to locate any
particle to within a distance Ax, then we automatically introduce an uncertainty in the
momentum of the particle and that the uncertainty 1s given by Equation 1.26. Note that
this uncertainty does not stem from poor measurement or experimental technique but is
a fundamental property of the act of measurement itself. The following two examples
demonstrate the numerical consequences of the Uncertainty Principle.

EXAMPLE 1-10
Calculate the uncertainty in the position of a baseball thrown at 90 mph if we measure
its momentum to a millionth of 1.0%.

SOLUTION: According to Example 1-6, a baseball traveling at 90 mph has a

momentum of 5.6 kg-m-s~'. A millionth of 1.0% of this value is 5.6 x 10 ®kg-m-s™",

SO
Ap =56 x 10" kg-m:s™'

The minimum uncertainty in the position of the baseball 1s

h 6626 x 107 J-s
Ap 5.6 x 10 %kg-m-s™!
1.2 x 107 m

Ax

I

a completely inconsequential distance.

EXAMPLE 1-11
What is the uncertainty in momentum it we wish to locate an electron within an atom,
say, so that Ax i1s approximately 50 pm?

_h6.626 x 107 )5
Ax 50x10 "7 m
=13 x 10" kg-m-s™'

SOLUTION:

Ap

Because p = mv and the mass of an electron is 9.11 x 107! kg, this value of Ap
corresponds to

Ap 13 x 10" kgm-s™'
Av = = 31
m, 9.11 x 1077 kg

=14 x 10 m-s”!

which 1s a very large uncertainty in the speed.




Problems

These two examples show that although the Heisenberg Uncertainty Principle is of
no consequence for everyday, macroscopic bodies, it has very important consequences
in dealing with atomic and subatomic particles. This conclusion is similar to the one
that we drew for the application of the de Broglie relation between wavelength and
momentum. The Uncertainty Principle led to an awkward result. It turns out that the
Bohr theory is inconsistent with the Uncertainty Principle. Fortunately, a new, more
general quantum theory was soon presented that is consistent with the Uncertainty
Principle. We will see that this theory is applicable to all atoms and molecules and
forms the basis for our understanding of atomic and molecular structure. This theory
was formulated by the Austrian physicist Erwin Schrodinger and will be discussed in
Chapter 3. In preparation, in Chapter 2 we will discuss the classical wave equation,
which serves as a useful and informative background to the Schrodinger equation.

Problems

1-1. Radiation in the ultraviolet region of the electromagnetic spectrum 1s usually described in
terms of wavelength, A, and is given in nanometers (107° m). Calculate the values of v, 7,
and E for ultraviolet radiation with A = 200 nm and compare your results with those in
Figure 1.11.

v/ Hz
102 10 10% 10® 10" 10" 0™ 10' 10" 10** 10?2 10*
| | ! | | ! | i | i ! I ]
Rad; MicrowavesT o %f
adlo . o 0 —
B . [ae . — s \
waves Shortwave radio Z 'z 3z X rays Y rays
TV s > g
| 1 i | . i ] ; | L | ) | | | !
10 10*  10° 1 1072 107 107 10 107" 107" 10" 107!

A/ m

FIGURE 1.11
The regions of electromagnetic radiation.

1-2. Radiation in the infrared region is often expressed in terms of wave numbers, v = 1/A.
A typical value of v in this region is 10° cm™'. Calculate the values of v, A, and E for
radiation with o = 10° cm ™' and compare your results with those in Figure 1.11.

1-3. Past the infrared region, in the direction of lower energies, is the microwave region. In
this region, radiation is usually characterized by its frequency, v, expressed in units of
megahertz (MHz), where the unit, hertz (Hz), 1s a cycle per second. A typical microwave
frequency is 2.0 x 10" MHz. Calculate the values of v, A, and E for this radiation and
compare your results with those in Figure 1.11.
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1-4. Planck’s principal assumption was that the energies of the electronic oscillators can have
only the values E = nhv andthat AE = hv. Asv — 0,then AE — 0 and E is essentially
continuous. Thus, we should expect the nonclassical Planck distribution to go over to
the classical Rayleigh-Jeans distribution at low frequencies, where AE — 0. Show that
Equation 1.2 reduces to Equation 1.1 as v — 0. (Recall that ¢* =1 4+ x + (x*/2!) + - - -,
or, in other words, that ¢* =~ 1 + x when x 1s small.)

1-5. Before Planck’s theoretical work on blackbody radiation, Wien showed empirically that
(Equation 1.4)
A T=290x 10" m-K

max

where A is the wavelength at which the blackbody spectrum has its maximum value at a
temperature 7. This expression is called the Wien displacement law; derive it from Planck’s
theoretical expression for the blackbody distribution by differentiating Equation 1.3 with
respect to A. Hint: Sethe/A_ k, T = x and derive the intermediate resulte™ + (x/5) = 1.
This problem cannot be solved for x analytically but must be solved numerically. Solve it
by iteration on a hand calculator, and show that x = 4.965 is the solution.

1-6. At what wavelength does the maximum in the radiant energy density distribution function
for a blackbody occur if (a) T = 300 K? (b) 7" = 3000 K? (¢c) T = 10000 K?

1-7. Sirius, one of the hottest known stars, has approximately a blackbody spectrum with

A =260 nm. Estimate the surface temperature of Sirius.

1-8. The fireball in a thermonuclear explosion can reach temperatures of approximately 10" K.
Whatvalue of A does this correspond to? In what region of the spectrum is this wavelength
found (cf. Figure 1.11)?

1-9. Calculate the energy of a photon for a wavelength of 100 pm (about one atomic diameter).

1-10. Express the Planck distribution law in terms of A (and dA) by using the relationship
AV = C.

1-11. Calculate the number of photons in a 2.00 mJ light pulse at (a) 1.06 um, (b) 537 nm, and
(c) 266 nm.

1-12. The mean temperature of the Earth’s surface 1s 288 K. Calculate the wavelength at
the maximum of the Earth’s blackbody radiation. What part of the spectrum does this
wavelength correspond to?

1-13. A helium-neon laser (used in supermarket scanners) emits light at 632.8 nm. Calculate
the frequency of this light. What is the energy of a photon generated by this laser?

1-14. The power output of a laser is measured in units of watts (W), where one watt is equal to
one joule per second. (I W = 1 J-s™") What is the number of photons emitted per second
by a 1.00 mW nitrogen laser? The wavelength emitted by a nitrogen laser 1s 337 nm.

1-15. A household lightbulb is a blackbody radiator. Many light bulbs use tungsten filaments
that are heated by an electric current. What temperature is needed so that A = 550 nm?

1-16. The threshold wavelength for potassium metal is 564 nm. What 1s its work function?
What is the kinetic energy of electrons ejected if radiation of wavelength 410 nm 1s used?
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1-17. Given that the work function of chromium is 4.40 eV, calculate the kinetic energy of
electrons emitted from a chromium surface that is irradiated with ultraviolet radiation of
wavelength 200 nm.

1-18. When a clean surface of silver is irradiated with light of wavelength 230 nm, the kinetic
energy of the ejected electrons is found to be 0.805 eV. Calculate the work function and the
threshold frequency of silver.

1-19. Some data for the kinetic energy of ejected electrons as a function of the wavelength of
the incident radiation for the photoelectron effect for sodium metal are

A/nm l 100 200 300 400 500

KE/eV l 10.1 3.94 [.88 0.842 0.222

Plot these data to obtain a straight line, and calculate ~ from the slope of the line and the
work function ¢ from its intercept with the horizontal axis.

1-20. Use the Rydberg formula (Equation 1.10) to calculate the wavelengths of the first three
lines of the Lyman series.

1-21. A line in the Lyman series of hydrogen has a wavelength of 1.03 x 10~" m. Find the
original energy level of the electron.

1-22. A ground-state hydrogen atom absorbs a photon of light that has a wavelength of 97.2 nm.
It then gives off a photon that has a wavelength of 486 nm. What is the final state of the
hydrogen atom?

1-23. Show that the Lyman series occurs between 91.2 nm and 121.6 nm, that the Balmer
series occurs between 364.7 nm and 656.5 nm, and that the Paschen series occurs be-
tween 820.6 nm and 1876 nm. Identify the spectral regions to which these wavelengths
correspond.

1-24. Calculate the wavelength and the energy of a photon associated with the series limit of
the Lyman series.

1-25. Calculate the de Broglie wavelength for (a) an electron with a kinetic energy of 100 eV,
(b) a proton with a kinetic energy of 100 eV, and (¢) an electron in the first Bohr orbit of a
hydrogen atom.

1-26. Calculate (a) the wavelength and kinetic energy of an electron in a beam of electrons
accelerated by a voltage increment of 100 V and (b) the kinetic energy of an electron that
has a de Broglie wavelength of 200 pm (1 picometer = 10™'* m).

1-27. Through what potential must a proton initially at rest fall so that its de Broglie wavelength
is 1.0 x 107" m?

1-28. Calculate the energy and wavelength associated with an « particle that has fallen
through a potential difference of 4.0 V. Take the mass of an « particle to be 6.64 x
107" kg.

1-29. One of the most powerful modern techniques for studying structure is neutron diffrac-
tion. This technique involves generating a collimated beam of neutrons at a particular
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temperature from a high-energy neutron source and is accomplished at several accelera-
tor facilities around the world. If the speed of a neutron is given by v = (3k,T/m)'",
where m is the mass of a neutron, then what temperature is needed so that the neu-

trons have a de Broglie wavelength of 50 pm? Take the mass of a neutron to be 1.67 x
107%" kg.

1-30. Show that a small change in the speed of a particle, Av, causes a change in its de Broglie
wavelength, AA, of

|Av|A,

PAVERS

Yy

where v, and A are its initial speed and de Broglie wavelength, respectively.
1-31. Derive the Bohr formula for v for a nucleus of atomic number Z.

1-32. The series in the He' spectrum that corresponds to the set of transitions where the
electron falls from a higher level into the n = 4 state is called the Pickering series, an
important series in solar astronomy. Derive the formula for the wavelengths of the ob-
served lines in this series. In what region of the spectrum does it occur? (See Problem

1-31.)

1-33. Using the Bohr theory, calculate the ionization energy (in electron volts and in kJ-mol ™)
of singly ionized helium.

1-34. Show that the speed of an electron in the nth Bohr orbit 1s v = 62/280n/’l. Calculate the
values of v for the first few Bohr orbits.

1-35. If we locate an electron to within 20 pm, then what is the uncertainty in its speed?

1-36. What 1s the uncertainty of the momentum of an electron if we know its position is
somewhere in a 10 pm interval? How does the value compare to momentum of an electron
in the first Bohr orbit?

1-37. There is also an uncertainty principle for energy and time:
AEAt > h
Show that both sides of this expression have the same units.

1-38. The relationship introduced in Problem 1-37 has been interpreted to mean that a particle
of mass m (E = mc?) can materialize from nothing provided that it returns to nothing
within a time At < h/mc”. Particles that last for time At or more are called real particles;
particles that last less than time At are called virtual particles. The mass of the charged
pion, a subatomic particle, is 2.5 x 107*° kg. What is the minimum lifetime if the pion is
to be considered a real particle?

1-39. Another application of the relationship given in Problem 1-37 has to do with the
excited state energies and lifetimes of atoms and molecules. It we know that the life-
time of an excited state is 107° s, then what is the uncertainty in the energy of this
state?
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1-40. When an excited nucleus decays, it emits a y-ray. The lifetime of an excited state of
a nucleus is of the order of 10™'% s. What is the uncertainty in the energy of the y-ray
produced? (See Problem [-37.)

1-41. In this problem, we will prove that the inward force required to keep a mass revolving
around a fixed center is f = mv*/r. To prove this, let us look at the velocity and the
acceleration of a revolving mass. Referring to Figure 1.12, we see that

AT ~ As = r A0 (1.27)

if A6 1s small enough that the arc length As and the vector difference |Ar| = |r, —r,| are
essentially the same. In this case, then

As AB
v = lim — = r lim — = ro (1.28)
Ar—0 At Ar—0 At

where w = d6/dt = v/r.

IAr| = As = rAB

A

A6 2

r/‘_-.-

\M//

FIGURE 1.12
Diagram for defining angular speed.

If w and r are constant, then v = rw is constant, and because acceleration is
lim _ (Av/Ar), we might wonder if there is any acceleration. The answer is most definitely
yes because velocity 1s a vector quantity and the direction of v, which is the same as Ar, is
constantly changing even though its magnitude is not. To calculate this acceleration, draw
a figure like Figure 1.12 but expressed in terms of v instead of r. From your figure, show

that

Av = |Av| = vAH (1.29)

i1s in direct analogy with Equation 1.27, and show that the particle experiences an acceler-
ation given by

= lim =Y = lim 27 1.30
o= 0mAr T A A T (1.30)
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Thus we see that the particle experiences an acceleration and requires an inward force equal
to ma = mvw = mv>/r to keep it moving in its circular orbit.

1-42. Planck’s distribution (Equation 1.2) law gives the radiant energy density of electromag-
netic radiation emitted between v and v + dv. Integrate the Planck distribution over all
frequencies to obtain the total energy emitted. What is its temperature dependence? Do you
know whose law this 1s? You will need to use the integral

[“ xdx B Tt
0 e'\._] - 15

1-43. Can you derive the temperature dependence of the result in Problem 1-42 without
evaluating the integral?

1-44. lonizing a hydrogen atom in its electronic ground state requires 2.179 x 10™'* J of
energy. The sun’s surface has a temperature of ~ 6000 K and is composed, in part,
of atomic hydrogen. Is the hydrogen present as H(g) or H"(g)? What is the tempera-
ture required so that the maximum wavelength of the emission of a blackbody 1onizes

atomic hydrogen? In what region of the electromagnetic spectrum is this wavelength
found?



























CHAPTER

The Classical Wave Equation

In 1925, Erwin Schrodinger and Werner Heisenberg independently formulated a general
quantum theory. At first sight, the two methods appeared different because Heisenberg’s
method is formulated in terms of matrices, whereas Schrodinger’s method is formulated
in terms of partial differential equations. Just a year later, however, Schrodinger showed
that the two formulations are mathematically equivalent. Because most students of
physical chemistry are not familiar with matrix algebra, quantum theory is customarily
presented according to Schrodinger’s formulation, the central feature of which is a
partial differential equation now known as the Schriodinger equation. Partial differential
equations may sound no more comforting than matrix algebra, but fortunately we
require only elementary calculus to treat the problems in this book. The wave equation
of classical physics describes various wave phenomena such as a vibrating string, a
vibrating drum head, ocean waves, and acoustic waves. Not only does the classical
wave equation provide a physical background to the Schrodinger equation, but, in
addition, the mathematics involved in solving the classical wave equation are central
to any discussion of quantum mechanics. Because most students of physical chemistry
have little experience with classical wave equations, this chapter discusses this topic.
In particular, we will solve the standard problem of a vibrating string because not
only 1s the method of solving this problem similar to the method we will use to solve
the Schrodinger equation, but it also gives us an excellent opportunity to relate the
mathematical solution of a problem to the physical nature of the problem. Many of the

problems at the end of the chapter illustrate the connection between physical problems
and the mathematics developed in the chapter.

2-1. The One-Dimensional Wave Equation Describes the Motion
of a Vibrating String

Consider a uniform string stretched between two fixed points as shown in Figure 2.1.
The maximum displacement of the string from its equilibrium horizontal position is 39
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FIGURE 2.1
A vibrating string whose ends are fixed at 0 and /. The amplitude of the vibration at position x
and time ¢ 1S u(x, t).

called its amplitude. If we let u(x,t) be the displacement of the string, then u(x, t)
satisfies the equation

0%u(x,t) B 1 9%u(x,t)

dx? v: 9r? 2.1)

where v 1s the speed with which a disturbance moves along the string. Equation 2.1
is the classical wave equation. Equation 2.1 is a partial differential equation because
the unknown, u(x, t) in this case, occurs in partial derivatives. The variables x and ¢
are said to be the independent variables and u(x, t), which depends upon x and ¢, is
said to be the dependent variable. Equation 2.1 is a linear partial differential equation
because u(x, t) and its derivatives appear only to the first power and there are no cross
terms.

In addition to having to satisfy Equation 2.1, the amplitude u(x, t) must also satisfy
certain physical conditions as well. Because the ends of the string are held fixed, the
amplitude at these two points is always zero, and so we have the requirement that

u@0,1) =0 and u(,t)=0 (for all 1) (2.2)

These two conditions are called boundary conditions because they specify the behavior
of u(x, t) at the boundaries. Generally, a partial differential equation must be solved
subject to certain boundary conditions, the nature of which will be apparent on physical
grounds.

2-2. The Wave Equation Can Be Solved by the Method of Separation
of Variables

The classical wave equation, as well as the Schrodinger equation and many other
partial differential equations that arise in physical chemistry, can often be solved by a
method called separation of variables. We shall use the problem of a vibrating string
to illustrate this method.



2-2. The Wave Equation Can Be Solved by the Method of Separation of Variables

The key step in the method of separation of variables is to assume that u(x, t)
factors into a function of x, X (x), times a function of ¢, T (¢), or that

u(x,t) = Xx)T (@) (2.3)
If we substitute Equation 2.3 into Equation 2.1, we obtain

d*X (x) 1 d*T (1)

T = —=X 2.4
(¢) s - (x) 17 (2.4)
Now we divide by u(x, t) = X (x)7T (¢) and obtain
2 2
1 d°X(x) _ 1 d°T(@) (2.5)

X(x) dx*  ’T@) di?

The left side of Equation 2.5 is a function of x only and the right side is a function
of ¢ only. Because x and ¢ are independent variables, each side of Equation 2.5 can be
varied independently. The only way for the equality of the two sides to be preserved

under any variation of x and 7 is for each side to be equal to a constant. If we let this
constant be K, we can write

1 d*X(x)
= 2.6
X(x) dx* (26)
and
1 d'T@t)
VT () dt? =4 7)

where K is called the separation constant and will be determined later. Equations 2.6
and 2.7 can be written as

d*X (x) B
eI KX(x)=0 (2.8)
and
d*T (1) , B
promi Kv'T()=0 (2.9)

Equations 2.8 and 2.9 are called ordinary differential equations (as opposed to partial
differential equations) because the unknowns, X (x) and T (¢) in this case, occur as or-
dinary derivatives. Both of these differential equations are linear because the unknowns
and their derivatives appear only to the first power. Furthermore, the coefficients of
every term involving the unknowns in these equations are constants; that is, 1 and
—K in Equation 2.8 and 1 and —Kv* in Equation 2.9. These equations are called

linear differential equations with constant coefficients and are quite easy to solve, as
we shall see.
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The value of K in Equations 2.8 and 2.9 is yet to be determined. We do not know
right now whether K is positive, negative, or even zero. Let us first assume that K = 0.
In this case, Equations 2.8 and 2.9 can be integrated immediately to find

X(x)=ax+b, (2.10)

and

T(t)=a,t +b, (2.11)

where the a’s and b’s are just integration constants, which can be determined by using
the boundary conditions given in Equation 2.2. In terms of X (x) and 7'(¢), the boundary
conditions are

u,t) = XO0O)T(t)=0 (2.12)
and

ull,t) = XWUOT@) =0 (2.13)
Because T (r) certainly does not vanish for all 1, we must have that

X0)=0 and X()=0 (2.14)

which i1s how the boundary conditions atfect X (x). Going back to Equation 2.10, we
conclude that the only way to satistfy Equation 2.14 1sfora, = b, = 0, which means that
X (x) = Oand that u(x, t) = O for all x. This 1s called a trivial solution to Equation 2.1
and 1s of no physical interest. (Throwing away solutions to mathematical equations
should not disturb you. What we know from physics is that every physically acceptable
solution u(x, t) must satisfy Equation 2.1, not that every solution to the equation is

physically acceptable.)
Let’s look at Equations 2.8 and 2.9 for K > 0. Both equations are of the form

oy

d’y

i k*y(x) =0 (2.15)

where & is a real constant. Experience shows that every solution to a linear differential
equation with constant coefficients whose right side is equal to zero is of the form
y(x) = ", where « is a constant to be determined. Therefore, we let y(x) = " in
Equation 2.15 and get

(@ = k*)y(x) =0

Therefore, either (a? — k*) or y(x) must equal zero. The case y(x) = 0 is a trivial
solution, and so a* — k> must equal zero. Therefore,

0 =3k
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Thus, there are two solutions: y(x) = e** and e ™**. We can easily prove that

y(x) = ¢ + c,e

(where ¢, and c, are constants) is also a solution. This is the general solution to all
differential equations with the form of Equation 2.15. The fact that a sum of the two
solutions, e** and e ™**, is also a solution is a direct consequence of Equation 2.15 being a
linear differential equation. Note that the highest derivative in Equation 2.15 1s a second
derivative, which implies that in some sense we are performing two integrations when
we find its solution. When we do two integrations, we always obtain two constants of
integration. The solution we have found has two constants, ¢, and c,, which suggests
that it is the most general solution.

The solution of other ordinary differential equations with constant coefficients 1s
best illustrated by examples.

EXAMPLE 2-1
Solve the equation

SOLUTION: If we substitute y(x) = e”* into this differential equation, we obtain

a’y —3ay +2y =0
o’ =30 +2=0
(¢ —2)(x—1)=0

or that « = | and 2. The two solutions are y(x) = ¢* and y(x) = ¢** and the general
solution is

y(x) =c e +c,e™

Prove this by substituting this solution back into the original equation.

EXAMPLE 2-2

Solve the equation in Example 2-1 subject to the two boundary conditions y(0) = 0
anddy/dx(at x = 0) = —1.

SOLUTION: The general solution is

y(x) =ce + Czezx

The two conditions given allow us to evaluate ¢, and ¢, and hence find a particular
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solution. Putting x = O into y(x) and x = 0 into dy/dx gives

y()=c, +c¢,=0

dy
-Czt—(atx =0)=c¢, +2, =1

Solving these two equations simultaneously gives ¢, = 1 and ¢, = —1, and so

yx) =e" —e”

satisfies not only the differential equation, but also the two boundary conditions as
well.

2-3. Some Differential Equations Have Oscillatory Solutions

Now let’s consider the case where K < 0 in Equations 2.8 and 2.9. In this case, o will
be imaginary. As a concrete example, consider the differential equation

Y s =0 (2.16)
— X)) = .
dx* Y

which is essentially Equation 2.8 with K = —1. If we let y(x) = ¢, we have

(oz2 + 1) y(x) =0
or that
o ==x1
(MathChapter A). The general solution to Equation 2.16 1s
y(x) = cle” + cze"” (2.17)

We can easily verify that this is a solution by substituting Equation 2.17 directly into
Equation 2.16.

It is usually more convenient to rewrite expressions such as e'* or e~
tion 2.17 using Euler’s formula (Equation A.6):

[

* 1n Equa-

et — cos + isinb

If we substitute Euler’s formula into Equation 2.17, we find

y(x) = ¢, (cosx +isinx) + c,(cosx — i sinx)

= (c, +¢,) cosx + (ic, —ic,)sinx



2-3. Some Differential Equations Have Oscillatory Solutions

But ¢, + ¢, and ic, — ic, are also just constants, and if we call them c, and c,, respec-
tively, we can write

y(x) =c,cosx + ¢, sinx
instead of

y(x) =ce” +ce

These two forms for y(x) are equivalent.

EXAMPLE 2-3
Prove that

y(x) = Acosx + Bsinx

(where A and B are constants), is a solution to the differential equation

&y, (x) =0
dx? Y
SOLUTION: The first derivative of y(x) is
dy .
— = —Asinx + Bcosx
dx
and the second derivative 1s
d*y .
—3 = —Acosx — Bsinx
dx

Therefore, we see that
d? y
dx?

or that y(x) = A cosx + B sinx is a solution of the differential equation

+y(x) =0

@y, (x) = 0
—— xX) =
dx? Y

| |

The next example 1s important and one whose general solution should be learned.

EXAMPLE 24
Solve the equation

d*x 5
“(—1—[5 + wx(t) =0

Subject to the initial conditions x(0) = A and dx/dt =0 att = 0.
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SOLUTION: In this case, we find @« = +iw and

x(t) —_ Cleiwt + Cze-—ia)t

or
x(t) = ¢, coswt + ¢, sinwt
Now
x(0) =c,=A
and

dx 0
— o= C, =
dt ) ._, “ea

implying that ¢, = 0 and that the particular solution we are seeking is
x(t) = A coswt

This solution is plotted in Figure 2.2. Note that it oscillates cosinusoidally in time,
with an amplitude A. The wavelength of the oscillation is 277 /w and the frequency v
1s given by (see Problem 2-3)

W\ N/
NNV

—A

FIGURE 2.2
A plot of x(t) = A cos wt, the solution to the problem in Example 2—4. The amplitude is A, the
wavelength 1s 27 /w, and the frequency is w/2rm.

2-4. The General Solution to the Wave Equation Is a Superposition
of Normal Modes

Let us assess where we are now. We have obtained Equations 2.8 and 2.9 by applying
the method of separation of variables to the wave equation. We have already shown
that if the separation constant K is zero, then only a trivial solution results. Now let’s
assume that K is positive. To this end, write K as ﬁz, where B 1s real. This assures that



2-4. The General Solution to the Wave Equation Is a Superposition of Normal Modes

K is positive because it is the square of a real number. In the case K = f°, the general
solution to Equation 2.8 is

X(x) = cleﬁx + cze“ﬁx

We can easily show that the only way to satisfy the boundary conditions (Equation 2.14)
is for ¢, = ¢, = 0, and so once again we find only a trivial solution.
Let’s hope that assuming K to be negative gives us something interesting. If we

set K = —B7, then K is negative if 8 is real. In this case Equation 2.8 is
d* X (x
L BX () =0
dx

Referring to Example 2—4, we see that the general solution can be written as
X(x) =AcosBx + BsinfBx

The boundary condition that X (0) = 0 implies that A = 0. The condition at the bound-
ary x = [ says that

X()=Bsinpl =0 (2.18)

Equation 2.18 can be satisfied in two ways. One is that B = 0, but this along with the
fact that A = O yields a trivial solution. The other way is to require that sin 8 = 0.
Because sinf = O when 6 =0, 7, 27, 37, ..., Equation 2.18 implies that

Bl = nx n=1,2 3, ... (2.19)

where we have omitted the n = O case because it leads to 8 = 0, and a trivial solution.

Equation 2.19 determines the parameter 8 and hence the separation constant K = — .
So far then, we have that

. hirXx
X(X) = Bsin —l'—* (220)

Remember that we have Equation 2.9 to solve also. Equation 2.9 can be written as

d*T(t)
dt’

+ BT () =0 (2.21)

where Equation 2.19 says that B = nz/[. Referring to the result obtained in Example
2—4 again, the general solution to Equation 2.21 is

I'(t)=Dcosw t+ Esinw t (2.22)
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where w = Bv = nmv/l. We have no conditions to specify D and E, so the amplitude
u(x, t)1s (cf. Equation 2.3)

ulx,t) = Xx)T ()
 nmx .
- (B sin —~l———) (Dcosw,t + E sin w, 1)

T
:(Fcoswnt+Gsinwnt)sinn——l—{ n=1, 2, ...

where we have let F = DB and G = E B. Because there is a u(x, t) for each integer n
and because the values of F and G may depend on n, we should write u(x, t) as

_ . nmXx
u (x,t) = (Fn cosw t + G sin a)nt) sin

n=1, 2, ... (2.23)

Because each u _(x, t) is a solution to the linear differential equation, Equation 2.1, their
sum 18 also a solution of Equation 2.1 and is, in fact, the general solution. Therefore,
for the general solution we have

o0

u(x, 1) =Y (F,cosw,t + G, sinw,1) sinn——j;—{ n=1,2 ... (224

n=|\

No matter how the string is plucked initially, its shape will evolve according to Equa-
tion 2.24. We can easily verify that Equation 2.24 is a solution to Equation 2.1 by
direct substitution. Problem 2-5 shows that F cos wt + G sinwt can be written in the
equivalent form, A cos(wt + ¢), where A and ¢ are constants expressible in terms of
F and G. The quantity A is the amplitude of the wave and ¢ is called the phase angle.
Using this relation, we can write Equation 2.24 in the form

u(x,t) = Z A cos (a)nt + ¢>n) sin m;x = Z u (x,t) (2.25)
n=| n=1

Equation 2.25 has a nice physical interpretation. Each u _(x, 1) is called a normal
mode, and the time dependence of each normal mode represents harmonic motion of
frequency

W vn
vV = —F = — (2.26)
" 27 21

where we have used the fact that o = Bv = nmv/[ (cf. Equation 2.19). The spatial
dependence of the first few terms in Equation 2.25 is shown in Figure 2.3. The first
term, u,(x, t), called the fundamental mode or first harmonic, represents a sinusoidal
(harmonic) time dependence of frequency v/2[ of the motion depicted in Figure 2.3a.
The second harmonic or first overtone, u,(x, t), vibrates harmonically with frequency
v/l and looks like the motion depicted in Figure 2.3b. Note that the midpoint of this
harmonic is fixed at zero for all z. Such a point 1s called a node, a concept that arises in
quantum mechanic as well. Notice that #(0) and u (/) are also equal to zero. These terms
are not nodes because their values are fixed by the boundary conditions. Note that the



FIGURE 2.3
The first three normal modes of a vibrating string. Note that each normal mode is a standing
wave and the the nth harmonic has n — 1 nodes.

second harmonic oscillates with twice the frequency of the first harmonic. Figure 2.3c
shows that the third harmonic or second overtone has two nodes. It is easy to continue
and show that the number of nodes is equal ton — 1 (Problem 2—-10). The waves shown
in Figure 2.3 are called standing waves because the positions of the nodes are fixed in
time. Between the nodes, the string oscillates up and down.
Consider a simple case in which u(x, t) consists of only the first two harmonics
and is of the form (cf. Equation 2.25)
S A T\ . 2mx
u(x,t) = cosw,tsin — + — COS (a)zt + —) sin —— (2.27)
[ 2 2 [
Equation 2.27 is illustrated in Figure 2.4. The left side of Figure 2.4 shows the time de-
pendence of each mode separately. Notice that u, (x, t) has gone through one complete
oscillation in the time depicted while u (x, t) has gone through only one-half cycle,
nicely illustrating that w, = 2w,. The right side of Figure 2.4 shows the sum of the two
harmonics, or the actual motion of the string, as a function of time. You can see how a
superposition of the standing waves in the the left side of the figure yields the traveling
wave 1n the right side. The decomposition of any complicated, general wave motion
into a sum or superposition of normal modes is a fundamental property of oscillatory
behavior and follows from the fact that the wave equation is a linear equation.
Our path from the wave equation to its solution was fairly long because we had
to learn to solve a certain class of ordinary differential equations on the way. The
overall procedure is actually straightforward, and to illustrate this procedure, we will

solve the problem of a vibrating rectangular membrane, a two-dimensional problem,
in Section 2-5.

2-5. A Vibrating Membrane Is Described by a Two-Dimensional
Wave Equation

The generalization of Equation 2.1 to two dimensions is

9%u 0%u 1 8%u
= (2.28)

S __|_ S .
ax*  dyr  v? ar?
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harmonics

FIGURE 2.4

An illustration of how two standing waves can combine to give a traveling wave. In both
parts, time increases downward. The left portion shows the independent motion of the first two
harmonics. Both harmonics are standing waves; the first harmonic goes through half a cycle
and the second harmonic goes through one complete cycle in the time shown. The right side
shows the sum of the two harmonics. The sum is not a standing wave. As shown the sum is a
traveling wave that travels back and forth between the fixed ends. The traveling wave has gone
through one-half a cycle in the time shown.

where u = u(x, y, t) and x, y, and ¢ are the independent variables. We will apply this
equation to a rectangular membrane whose entire perimeter is clamped. By referring
to the geometry in Figure 2.5, we see that the boundary conditions that u(x, y, r) must

FIGURE 2.5
A rectangular membrane clamped along its
a perimeter.




2-5. A Vibrating Membrane Is Described by a Two-Dimensional Wave Equation

satisfy because its four edges are clamped are

u(0,y) =ula,y) =0
(for all 1) (2.29)
ux,0) =ux,b) =0

By applying the method of separation of variables to Equation 2.28, we assume
that u(x, y, t) can be written as the product of a spatial part and a temporal part or that

u(x,y,t) = F(x,y)T(1) (2.30)

We substitute Equation 2.30 into Equation 2.28 and divide by F(x, y)T'(¢) to find

1 d°T 1 °F  3*F
( ) (2.31)

e + —
vT(t) dt* F(x,y) \ox* 0y’

The right side of Equation 2.31 is a function of x and y only and the left side is a
function of ¢ only. The equality can be true for all ¢, x, and y only if both sides are
equal to a constant. Anticipating that the separation constant will be negative as it was
in the previous sections, we write it as —8° and obtain the two separate equations

d’T -
— + VBT (1) =0 (2.32)
dt
and
a”ﬁ+yF+ﬁ%x ) =0 (2.33)
X, = .
dx* 9y* Y

Equation 2.33 i1s still a partial differential equation. To solve it, we once again use

separation of variables. Substitute F(x, y) = X (x)Y(y) into Equation 2.33 and divide
by X (x)Y(y) to obtain

1 d°X 1 d%Y

X (%) dx? + Y(y) dy? + B =0 (2.34)

Again we argue that because x and y are independent variables, the only way this
equation can be valid is that

1 d2X__ 5 535
X(x) dx*> P (2:39)

and

L &Y __p (2.36)
Yoy dy |
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where p° and ¢’ are separation constants, which according to Equation 2.34 must
satisfy

pP+q’=p (2.37)

Equations 2.35 and 2.36 can be rewritten as

2

...X 2
— +p Xx)=0 (2.38)
dx
and
'y
— +q°Y(y) =0 (2.39)
dy

Equation 2.28, a partial differential equation in three variables, has been reduced
to three ordinary differential equations (Equations 2.32, 2.38, and 2.39), each of which
is exactly of the form discussed in Example 2—4. The solutions to Equations 2.38 and
2.39 are

X(x) = Acos px + Bsin px (2.40)

and

Y(y) = Ccosqy+ Dsingy (2.41)
The boundary conditions, Equation 2.29, in terms of the functions X (x) and Y (y) are
XO)Y(y)=X@)Y(y)=0
and
X)) Y0)=Xx)Y(b) =0
which imply that

X(0)=X(@@a =0
YO0)=Y(®»)=0

(2.42)

Applying the first of Equation 2.42 to Equation 2.40 shows that A = 0 and pa = n,
so that

X(x) = Bsin =2 n=1,2 .. (2.43)
a

In exactly the same manner, we find that C = 0 and gb = mm, where m =1, 2, ...
and so

m=1, 2, ... (2.44)

. mm
Y(y) = Dsin









Problems

2-2,

2-3.

2-4.

2-5.

2-6.

Solve the following differential equations:

d’y dy
a 3w y(0) dx(a x = 0)
d’y dy dy
b. — —-5—+4+6y=0 0)=—1; —(atx=0)=0
dx? dx+ Y y(©) dx(ax )
d
e. 2 _2y=0 y(0) =2
dx

Prove that x(#) = cos wt oscillates with a frequency v = w/27m. Prove that
x(t) = Acoswt + B sinwt oscillates with the same frequency, w/27.

Solve the following differential equations:

d*x 5 dx
a.ﬁ—l—a)x(t)zo x(0) = 0; E(att-—_()):v0
b. &—I—wzx(t)z() x(0) = A; g—x—(att:()):v

dt’ dt 0

Prove in both cases that x(¢) oscillates with frequency w/2r.

The general solution to the differential equation

d*x 5
F +wx(t) =0

1S
x(1) = ¢ coswt + ¢, sinwt
For convenience, we often write this solution in the equivalent forms
x(t) = Asin(wt + ¢)
or

x(t) = Bcos(wt + )

Show that all three of these expressions for x(¢) are equivalent. Derive equations for A
and ¢ in terms of ¢, and ¢, , and for B and ¥ in terms of ¢, and ¢,. Show that all three forms
of x(t) oscillate with frequency w/2m. Hint: Use the trigonometric identities

sin(a + B) = sina cos B + cosa sin

and

cos(a + B) = cosa cos B — sina sin 8

In all the differential equations we have discussed so far, the values of the exponents « that
we have found have been either real or purely imaginary. Let us consider a case in which

« turns out to be complex. Consider the equation

d’y  _dy
) 40 Loy =0
a e T
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Problems

Upon letting § = x — x,, be the displacement of the spring from its undistorted length, then

Given that the mass starts at £ = 0 with an intial velocity v
given by

o» show that the displacement is

» N
E(t) =, (%) sin I:(;;) t:|

Interpret and discuss this solution. What does the motion look like? What is the frequency?
What is the amplitude?

2-8. Consider the linear second-order differential equation

2-9.

d’y dy

i a,(x) =+ a,(x)y(x) =0
Note that this equation is linear because y(x) and its derivatives appear only to the first
power and there are no cross terms. It does not have constant coefficients, however, and there
1s no general, simple method for solving it like there is 1f the coefficients were constants.
In fact, each equation of this type must be treated more or less individually. Nevertheless,

because it is linear, we must have that if y, (x) and y,(x) are any two solutions, then a linear
combination,

y(x) =c¢,y,(x) +¢,y,(x)
where ¢, and ¢, are constants, is also a solution. Prove that y(x) is a solution.

We will see in Chapter 3 that the Schrodinger equation for a particle of mass m that is
constrained to move freely along a line between 0 and a 1s

d? 87°mE
L (S
dx- h

) v(x) =0
with the boundary condition

Y (0) =9(a)=0

In this equation, E is the energy of the particle and ¥ (x) is its wave function. Solve this
differential equation for ¥ (x), apply the boundary conditions, and show that the energy
can have only the values

n’h?
E”:8 5 n=1, 2,3, ...
ma

or that the energy is quantized.

2-10. Prove that the number of nodes for a vibrating string clamped at both ends is n — 1 for

the nth harmonic.
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2-11. Prove that
| 27
v(x,1) = Asin [—X-—(x — vt)]

1s a wave of wavelength A and frequency v = v/A traveling to the right with a velocity v.

2-12. Sketch the normal modes of a vibrating rectangular membrane and convince yourself
that they look like those shown in Figure 2.6.

2-13. This problem is the extension of Problem 2-9 to two dimensions. In this case, the
particle 1s constrained to move freely over the surface of a rectangle of sides a and b. The
Schrodinger equation for this problem is

9° 9° 8m’mE
LT (s
dox° ay h

) Yx,y) =0
with the boundary conditions

v(0,y) =v(a,y)=0 forally, 0O0=<y<b
U(x,0) =v¢Y(x,b)=0 forallx, 0<x<a

Solve this equation for vy (x, y), apply the boundary conditions, and show that the energy
1s quantized according to

2 21,2
n’h nh n, e

non_ ] 2 + 2 7
My ma mb . , Ly D, ...

1, 2, 3,
1, 2, 3

I

2-14. Extend Problems 2-9 and 2-13 to three dimensions, where a particle is constrained to
move freely throughout a rectangular box of sides a, b, and c¢. The Schrodinger equation
for this system is

3y 9y 32¢+(8n2mE

+ + x,y,2) =0
dx? dy? 0z h* )W( y.2)

and the boundary conditions are that i (x, y, z) vanishes over all the surfaces of the box.

2-15. Show that Equations 2.46 and 2.48 are equivalent. How are G and ¢ in Equation 2.48
related to the quantities in Equation 2.467

Problems 2—-16 through 2-19 illustrate some other applications of differential equations to
classical mechanics.

Many problems in classical mechanics can be reduced to the problem of solving a differential
equation with constant coefficients (cf. Problem 2—7). The basic starting point is Newton’s second
law, which says that the rate of change of momentum is equal to the force acting on a body.
Momentum p equals mv, and so if the mass is constant, then in one dimension we have

If we are given the force as a function of x, then this equation is a differential equation for
x (1), which is called the trajectory of the particle. Going back to the simple harmonic oscillator
discussed in Problem 2-7, if we let x be the displacement of the mass from its equilibrium
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vibrational motion of molecules can be resolved into a linear combination of natural, or
normal, modes.

2-21. Problem 2-20 can be solved by introducing center-of-mass and relative coordinates
(cf. Section 5-2). Add and subtract the differential equations for x(¢) and y(¢) and then
introduce the new variables

n=x+y and &=x—y

Show that the differential equations for n and & are independent. Solve each one and
compare your results to those of Problems 2-20.

































CHAPTER

The Schrodinger Equation
and a Particle In a Box

The Schrodinger equation is our fundamental equation of quantum mechanics. The
solutions to the Schrodinger equation are called wave functions. We will see that a
wave function gives a complete description of any system. In this chapter, we present
and discuss the version of the Schrodinger equation that does not contain time as a
variable. Solutions to the time-independent Schrodinger equation are called stationary-
state wave functions because they are independent of time. Many problems of interest
to chemists can be treated by using only stationary-state wave functions. We do not
consider any time dependence until Chapter 13, where we discuss molecular spec-
troscopy.

In this chapter, we present the time-independent Schrodinger equation and then ap-
ply it to a free particle of mass m that is restricted to lie along a one-dimensional interval
of length a. This system is called a particle in a box and the calculation of its properties
1s a standard introductory problem in quantum mechanics. The particle-in-a-box prob-
lem 1s simple, yet very instructive. In the course of discussing this problem, we will
introduce the probabilistic interpretation of wave functions. We use this interpretation
to illustrate the application of the Uncertainty Principle to a particle in a box.

3-1. The Schrodinger Equation Is the Equation for Finding the Wave
Function of a Particle

We cannot derive the Schrodinger equation any more than we can derive Newton’s laws,
and Newton’s second law, f = ma, in particular. We shall regard the Schrodinger
equation to be a fundamental postulate, or axiom, of quantum mechanics, just as
Newton’s laws are fundamental postulates of classical mechanics. Even though we
cannot derive the Schrodinger equation, we can at least show that it is plausible and
perhaps even trace Schrodinger’s original line of thought. We finished Chapter 1 with
a discussion of matter waves, arguing that matter has wavelike character in addition to
its obvious particlelike character. As one story goes, at a meeting at which this new
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idea of matter waves was being discussed, someone mentioned that if indeed matter
does possess wavelike properties, then there must be some sort of wave equation that
governs them.

Let us start with the classical one-dimensional wave equation for simplicity:

0”1t 1 9%u
o R (-1

We have seen in Chapter 2 that Equation 3.1 can be solved by the method of separation
of variables and that u(x, t) can be written as the product of a function of x and a
harmonic or sinusoidal function of time. We will express the temporal part as cos wt
(cf. Equation 2.25) and write u(x, t) as

u(x,r) = Y(x)coswt (3.2)

Because 1 (x) is the spatial factor of the amplitude u(x, 1), we will call ¥ (x) the spatial
amplitude of the wave. If we substitute Equation 3.2 into Equation 3.1, we obtain an
equation for the spatial amplitude v (x).

d™
dx*
Using the fact that w = 27 v and that vA = v, Equation 3.3 becomes

0
-+ Fw(x) =0 (3.3)

dy  4n? B
e + e Y(x) =0 (3.4)

We now introduce the idea of de Broglie matter waves into Equation 3.4. The total
energy of a particle is the sum of its kinetic energy and its potential energy,

P
E=_—+V() (3.5)

2m

where p = mv is the momentum of the particle and V (x) is its potential energy. If we
solve Equation 3.5 for the momentum p, we find

p={2m[E — V(x)]}'? (3.6)

According to the de Broglie formula,

h h
)\_ = — == 3
p {2mlE — V()|}'”?

Substituting this into Equation 3.4, we find
d’ 2m
S+
dx h
where 7 (called h bar) = h/2x.

[E = V()Y (x) =0 (3.7)



3-2. Classical-Mechanical Quantities Are Represented by Linear Operators in Quantum Mechanics

Equation 3.7 is the famous Schrodinger equation, a differential equation whose
solution, v (x), describes a particle of mass m moving in a potential field described
by V(x). The exact nature of ¥r(x) is vague at this point, but in analogy to the classical
wave equation, it is a measure of the amplitude of the matter wave and is called the
wave function of the particle. Equation 3.7 does not contain time and 1s called the time-
independent Schriodinger equation. The wave functions obtained from Equation 3.7 are
called stationary-state wave functions. Although there is a more general Schrodinger
equation that contains a time dependence (Section 4-4), we will see throughout this
book that many problems of chemical interest can be described in terms of stationary-
state wave functions.

Equation 3.7 can be rewritten in the form

ht d*y

—2—7;1- dx’

+ V) (x) = E¢(x) (3.8)

Equation 3.8 is a particularly nice way to write the Schrodinger equation when we
introduce the idea of an operator in Section 3-2.

3-2. Classical-Mechanical Quantities Are Represented by Linear
Operators in Quantum Mechanics

An operator 1s a symbol that tells you to do something to whatever follows the symbol.
For example, we can consider dy/dx to be the d /dx operator operating on the func-
tion y(x). Some other examples are SQR (square what follows), fol (integrate from 0
to 1), 3 (multiply by 3), and 9/0y (partial derivative with respect to y). We usually
denote an operator by a capital letter with a carat over it, e.g., A. Thus, we write

Af(x) = g(x)

to indicate that the operator A operates on f(x) to give a new function g(x).

EXAMPLE 3-1
Perform the following operations:

. . d*
a. A2x), A= —
(2x) o

2

.. d d
b. A(x?), A=-— +2— +3
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SOLUTION:

R

~

a. A(2x) = > 2x) =0

d x
A4 d> d | ) ,
b. A(x") = —x +2—x" 4+ 3x" =24+ 4x + 3x°
dx~ dx
A ) ,
Cc. A(xy’) = —uxy = 3x)°
dy

In quantum mechanics, we deal only with linear operators. An operator is said to
be linear if

Ale, () + e, fy(0)] = ¢, Af (x) + ¢,A fo(x) (3.9)

where ¢, and ¢, are (possibly complex) constants. Clearly the “differentiate” and
“Integrate” operators are linear because

~—C~1—— [C‘ fi(x)+c f(r)] = f-l—]l +c a1,
dx V1N 2T gy “dx

and

f [lel (x) + szz(x)] dx = c, / Ji(x)dx + ¢, / fr(x)dx
The “*square” operator, SQR, on the other hand. i1s nonlinear because

SQR [, f,(x) + ¢, f5(0)] = 7 f7(x) + 63 f5(x) + 2¢,¢, £, (x) f,(x)
+ C, f]2 (x) + €, fzz (x)

and therefore 1t does not satisty the definition given by Equation 3.9.

EXAMPLE 3-2
Determine whether the tfollowing operators are linear or nonlinear:

a. Af(-r]) = SQRT f(x) (take the square root)
b. Af(x)=x"f(x)
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SOLUTION:

a. Alc f,(x) + ¢, f,(x)] = SQRT [¢, f,(x) + ¢, /,(x)]
= [e, £, + 6, /] # e, £ 00 + e, 7 ()
and so SQRT is a nonlinear operator.

b. Al f,(0) + e, /(0] =& [¢, f,(0) + ¢, f,(0)]
= ¢, X f,(0) + ¢, f,(x) = ¢| A f,(x) + ¢, A £, ()

and so x* (multiply by x?) is a linear operator.

3-3. The Schrodinger Equation Can Be Formulated
as an Eigenvalue Problem

A problem that we will frequently encounter in physical chemistry is the following:
Given A, find a function ¢ (x) and a constant ¢ such that

Ag(x) = ag(x) (3.10)

Note that the result of operating on the function ¢ (x) by A is simply to give ¢ (x)
back again, only multipled by a constant factor. Clearly A and ¢ (x) have a very
special relationship to each other. The function ¢ (x) 1s called an eigenfunction of the
operator A, and a is called an eigenvalue. The problem of determining ¢ (x) and a for
a given A is called an eigenvalue problem.

EXAMPLE 3-3
Show that ¢** 1s an eigenfunction of the operator d” /dx". What is the eigenvalue?

SOLUTION: We differentiate ¢** n times and obtain
di?

dx"

X [N Sy

e Y A

and so the eigenvalue is .

Operators can be imaginary or complex quantities. We will soon learn that the
x component of the linear momentum can be represented in quantum mechanics by an
operator of the form

~>

— —1h— 3.11
Hax ( )

/7
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EXAMPLE 3-4

Show that ¢"** is an eigenfunction of the operator, 13X = —ih—. What is the eigen-
value?

dx

SOLUTION: We apply ISX to ¢"** and find

A Jd .
P\_e'k" — _lha__etk.\ ____hkelk.\
’ X

ikx

and so we see that ¢'"* 1s an eigenfunction and %k 1s the eigenvalue of the operator }A’x.

Let’s go back to Equation 3.8. We can write the left side of Equation 3.8 in the
form

4

hod’
m dx

If we denote the operator in brackets by H, then Equation 3.12 can be written as

Hyr(x) = Evr(x) (3.13)

We have formulated the Schrodinger equation as an eigenvalue problem. The
operator H,

H=——— + V(x) (3.14)

is called the Hamiltonian operator. The wave function is an eigenfunction, and the en-
ergy is an eigenvalue of the Hamiltonian operator. This suggests a correspondence be-
tween the Hamiltonian operator and the energy. We will see that such correspondences
of operators and classical-mechanical variables are fundamental to the formalism of
quantum mechanics.

If V(x) = 0 in Equation 3.14, the energy is all kinetic energy and so we define a
kinetic energy operator according to

A hod’
K =———— (3.15)

* 2m dx’

(Strictly speaking, the derivative here should be a partial derivative, but we will
consider only one-dimensional systems for the time being.) Furthermore, classically,
K = p*/2m, and so we conclude that the square of the momentum operator is given
by 2m I%x, or

p? = —-hzﬁz—- (3.16)
* dx’
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We can interpret the operator 133 by considering the case of two operators acting
sequentially, as in AB f(x). In cases such as this, we apply each operator in turn,
working from right to left. Thus

ABf(x) = A[Bf(x)] = Ah(x)

where h(x) = B f (x) Once agaln we require that all the indicated operations be
compatlble If A= B, we have AA f(x) and denote this term as A? f(x). Note that

A2 f(x)#£ [Af(x)] for arbitrary f(x).

EXAMPLE 3-5 ) )
Given A = d/dx and B = x* (multiply by x?), show (a) that A* f (x) % [A f(x)]* and
(b) that AB f(x) #* BA f(x) for arbitrary f(x).

SOLUTION:
df\  df
Af = (dx) dx?
i oot — (4 __f..
[Af ()] = (dx) + g

for arbitrary f(x).

d d
Breo = Liro) = 2cf ) + 2L
dx dx

BAf(x) =x Cf:#ABfu)

for arbitrary f (x). Thus, we see that the order of the application of operators must be
specified. If A and B are such that

ABf(x) = BA f(x)

for any compatible f (x), then the two operators are said to commute. The two operators
in this example, however, do not commute.

| |

Using the fact that 1’3x2 means two successive applications of }A’x, we see that the
operator P’ in Equation 3.16 can be factored as

- 5 d’ d . d
P = —"h — = —1h— —ih—
! dx dx dx

so that we can say that —ihd/dx is equal to the momentum operator. Note that this
definition is consistent with Equation 3.11.

/79






3-5. The Energy of a Particle in a Box Is Quantized

Y (x) = 0 outside the region 0 < x < a, which is mathematically how we restrict the
particle to this region. Furthermore, because 1/ (x) is a measure of the position of the
particle, we shall require ¥ (x) to be a continuous function. If ¥ (x) = 0 outside the
interval 0 < x < a and is a continuous function, then

Y (0) =y(a)=0

These are boundary conditions that we impose on the problem.

3-5. The Energy of a Particle in a Box Is Quantized

The general solution of Equation 3.17 is (see Example 2—4)
Y (x) = Acoskx + Bsinkx
with

L 2mE)'"*  2m(2mE)'*
- h h

(3.18)

The first boundary condition requires that ¥ (0) = 0, which implies immediately that
A = 0 because cos(0) = 1 and sin(0) = (. The second boundary condition then gives
us that

Y(a) = Bsinka =0 (3.19)

We reject the obvious choice that B = 0 because it yields a trivial or physically
uninteresting solution, ¥ (x) = 0, for all x. The other choice 1s that

ka = nm n=1, 2, ... (3.20)

(compare with Equations 2.18 through 2.20). By using Equation 3.18 for k£, we find
that

h*n?

- 0)
ma-

E n=1, 2, ... (3.21)
Thus, the energy turns out to have only the discrete values given by Equation 3.21 and
no other values. The energy of the particle 1s said to be quantized and the integer n is
called a quantum number. Note that the quantization arises naturally from the boundary
conditions. We have gone beyond the stage of Planck and Bohr where quantum numbers
are introduced in an ad hoc manner. The natural occurrence of quantum numbers was
an exciting feature of the Schrodinger equation, and, in the introduction to the first of
his now famous series of four papers published in 1926, Schrodinger says:

In this communication I wish to show that the usual rules of quantization can be
replaced by another postulate (the Schrodinger equation) in which there occurs
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no mention of whole numbers. Instead, the introduction of integers arises in the
same natural way as, for example, in a vibrating string, for which the number of
nodes is integral. The new conception can be generalized, and I believe that it

penetrates deeply into the true nature of the quantum rules.
[from Annalen der Physik 79, 361 (1926)]

The wave function corresponding to E is

V (x) = Bsinkx
. NTX |
:Bsm—-—c—l—— n=1, 2, ... (3.22)
We will determine the constant B shortly. These wave functions are plotted in Fig-
ure 3.2. They look just like the standing waves set up in a vibrating string (cf. Figure 2.3).
Note that the energy increases with the number of nodes.

The model of a particle in a one-dimensional box has been applied to the 7 electrons
in linear conjugated hydrocarbons. Consider butadiene, H,C=CHCH=CH,, which has
four 7t electrons. Although butadiene, like all polyenes, is not a linear molecule, we
will assume -for simplicity that the 7 electrons in butadiene move along a straight

n E
] A 2| 16k
R \./ \WL‘(X)} 8ma-
!2 9]2
O N LA N v
2| 4h?
24 W, (x) v (| - §m7a2
; 2| h?
1 - W](x) Wfl(x) N 8’;102
0 a 0 a
X X
(a) (b)

FIGURE 3.2
The energy levels, wave functions (a), and probability densities (b) for the particle 1n a box.
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line whose length can be estimated as equal to two C=C bond lengths (2 x 135 pm)
plus one C—C bond (154 pm) plus the distance of a carbon atom radius at each end
(2 x 77.0pm = 154 pm), giving a total distance of 578 pm. According to Equation 3.21,
the allowed energies are given by

h*n’

E = 5 n=1, 2, ...
' 8m.a

But the Pauli Exclusion Principle (which we discuss later but is assumed here to be
known from general chemistry) says that each of these states can hold only two electrons
(with opposite spins) and so the four 7 electrons fill the first two levels as shown in
Figure 3.3. The energy of the first excited state of this system of four 7 electrons is
that which has one electron elevated to the n = 3 state (cf. Figure 3.3), and the energy
to make a transition from the n = 2 state to the n = 3 state is

2

AE = (3° =29

8mea2

The mass m_ is that of an electron (9.109 x 107" kg), and the length of the box is
given above to be 578 pm, or 578 x 10~"* m. Therefore,

B (6.626 x 107" J - 5)*5
~8(9.109 x 107" kg)(578 x 107'? m)

- =9.02x107"J

and

~ AE 4
V= —— =454 x 10" ¢cm
hce

Butadiene has an absorption band at 4.61 x 10* cm™', and so we see that this very

simple model, called the free-electron model, can be somewhat successful at explaining
the absorption spectrum of butadiene (cf. Problem 3-6).

FIGURE 3.3
The free-electron model energy-level scheme for butadiene.

33
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3-6. Wave Functions Must Be Normalized

According to the Born interpretation,

V0w, (dx = B Bsin' (3:23)

(l

is the probability that the particle is located between x and x + dx. Because the particle
is restricted to the region 0 < x < «, itis certain to be found there and so the probability
that the particle lies between 0 and « is unity (Equation B.11), or

f Y, (Y, (x)dx =1 (3.24)
0

It we substitute Equation 3.23 into Equation 3.24, we find that

Y Snmx
lBI“/ SIN” dx =1 (3.25)
(

a

We let ntx/a be z in Equation 3.25 to obtain

CoonmTx a R a /ni a
sin” dx = — sin"zd; = — {— ) = — (3.26)
0 a nmw J, nToN 2 2

Therefore, B*(a/2) = 1, B = (2/a)"*, and

2\ amx
U (x) = (—) sin O0<x<u n=1, 2, ... (3.27)
a a

A wave function that satisfies Equation 3.24, and the one given by Equation 3.27 in
particular, is said to be normalized. When the constant that multiplies a wave function
1s adjusted to assure that Equation 3.24 is satisfied, the resulting constant is called a
normalization constant. Because the Hamiltonian operator is a linear operator, 1f ¥ 1s
a solution to ﬁw = E1, then any constant, say A, times v 1s also a solution, and A
can always be chosen to produce a normalized solution to the Schrodinger equation,
Hvy = Ev (cf. Problem 3-7).

Because ¢ (x)y (x)dx is the probability of finding the particle between x and
x + dx, the probability of finding the particle within the interval x, < x < x, is

Prob(x, < x < x,) = / 2 () (x)dx (3.28)
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EXAMPLE 3-6
Calculate the probability that a particle in a one-dimensional box of length « 1s found

to be between 0 and a /2.

SOLUTION: The probability that the particle will be found between 0 and a/2 is

a/2 ) al? AmX
Prob(0 < x <a/2) = Y)Y (x)dx = — / sin” d x
0

0 a

If we let nmx/a be z, then we find

) nm/2 ., o IX sin 2.x nm/?2
Prob(0_<_x§a/2)—_—_ — sin“ zdz = — |— — _
nmw Jy ni l 2 4 0
2 (nm  sinnm 1 (For all n)
= — | — — = — (foralln
nmt \ 4 4 2

g |

Thus, the probabiltiy that the particle lies in one-half of the interval 0 < x < a is

We can use Figure 3.2 and a slight variation of Example 3-6 to illustrate a fun-
damental principle of quantum mechanics. Figure 3.2 shows that the particle is more
likely to be found near the center of the box for the n = | state but that the probability
density becomes more uniformly distributed as n increases. Figure 3.4 shows that the
probability density, ¥ (x)¥ (x) = (2/a) sin’ nmx /a, for n = 20 is fairly uniformly
distributed from O to a. In fact, a variation of Example 3-6 (Problem 3-8) gives

(2/a)sin® (207x/a)

FIGURE 3.4

The probability density, ¥, (x)y (x) = (2/a) sin’ nmx /a for n = 20, illustrating the corre-
spondence principle, which says that the particle tends to behave classically in the limit of
large n.
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|
1 n even
Prob(0 <x <a/4) =Prob(3a/4 <x <a) = -
] -1
- — =D n odd
4 2mn
and
|
1 n even
Prob(a/4 < x <a/2) =Prob(a/2 < x < 3a/4) = -
1 (DT
— dd
4 * 27TH "o

In both cases, the probabilities approach 1/4 for any large value of n. A similar result
is found for any equi-sized intervals. In other words, the probability density becomes
uniform as n increases, which is the expected behavior of a classical particle, which
has no preferred position between 0 and a.

These results illustrate the correspondence principle, according to which quantum
mechanical results and classical mechanical results tend to agree in the limit of large
quantum numbers. The large quantum number limit is often called the classical limit.

3-7. The Average Momentum of a Particle in a Box Is Zero

We can use the probability distribution v"(x)¥ (x) to calculate averages and stan-
dard deviations (MathChapter B) of various physical quantities such as position and
momentum. Using the example of a particle in a box, we see that

2 ,nmx
v ()Y (x)dx = — sin
a

dx 0<x<ua

a (3.29)
= () otherwise

is the probability that the particle is found between x and x + dx. These probabilities
are plotted in Figure 3.2(b). The average value of x, or the mean position of the particle,
is given by

2 (% . ,nmx
(x) = — X sin dx (3.30)
0

The integral in Equation 3.30 equals a”/4 (Problem B—1). Therefore,

2
. %r_ — 512- (for all n) (3.31)

This is the physically expected result because the particle “sees” nothing except the
walls at x = 0 and x = «, and so by symmetry (x) must be a/2.
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We can calculate the spread about (x) by calculating the variance, 0. First we
calculate (x?), which is (Problem B-2)

N 2 (¢, . ,nmx
(x°) = — X~ sin dx
0

a a

a \2 [4mx°n’ a’ a’
_ 2= 3.32
(25711)( 3 ) 3 2nim’ 5-32)

The variance of x 1s given by

S S A (_f’__) LA
g 12 2n°m? 2mn 3

and so the standard deviation is

a T°n’ /2
o = 5 ( T 2) (3.33)
: TN

We shall see that o is directly involved in the Heisenberg Uncertainty Principle.

A problem arises if we wish to calculate the average energy or momentum because
they are represented by differential operators. Recall that the energy and momentum
operators are

and

The problem is that we must decide whether the operator works on ¥ * (x)y (x)dx or on
V¥ (x) or on ¥*(x) alone. To determine this, let’s go back to the Schrodinger equation
1in operator notation:

Hy (x) = E ¥ (x) (3.34)

If we multiply this equation from the left (see Problem 3-19) by i *(x) and integrate
over all values of x, we obtain

/w:(x)ﬁwn(x)dx = /w,f(x)Enwn(x)a'x = En/w:(x)wn(x)dx = E_ (3.35)

where the second step follows because E  1s a number and the last step follows because
¥ (x) 1s normalized. Equation 3.35 suggests that we sandwich the operator between a
wave function v (x) and its complex conjugate ¥ (x) to calculate the average value

3/
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of the physical quantity associated with that operator. We will set this up as a formal
postulate in Chapter 4, but our assumption is that

(s) = f Y (x)SY (x)dx (3.36)

where S is the quantum-mechanical operator associated with the physical quantity s,
and (s) 1s the average value of s in the state described by the wave function. For example,
the average momentum of a particle in a box in the state described by ¥ (x) is

ali 2\ 12 | nnx‘J d 2\ /2 nx
o= [[@) o) () [E) = ]ae o
0 a a dx a a

In this particular case, ¥ (x) is real, but generally the operator 1s sandwiched in between
¥, (x) and ¥ (x) and so operates only on ¥ (x) because only v (x) lies to the right of
the operator. We did not have to worry about this when we calculated (x) above because
the position operator X is simply the “multiply by x” operator and its placement in the
integrand in Equation 3.36 makes no difference .

If we simplify Equation 3.37, then we find

2mn (Y . nmx niTx
(p) = —ih—— SIn —— C0S ——dx
a Jo a a

By consulting the table of integrals in the inside cover or Problem 3-14, we find that
this integral 1s equal to zero, and so

(p) =0 (3.38)

Thus, a particle in a box is equally likely to be moving in either direction.

3-8. The Uncertainty Principle Says Thato 0, > /2

Now let’s calculate the variance of the momentum, o) = (p*) — (p)*, of a particle in
a box. To calculate (p°), we use

(p?) = [ Y (x) P2y (x)dx (3.39)

~

and remember that f’f means apply P, twice in succession. Using Equation 3.36



3-8. The Uncertainty Principle Says Thato o > h/2

a 2 1/2 d2 2 1/2
(p*) = / (—) sin (—h2 ,,) (—) sin = | dx
0 a a dx~ a a

2nin’h? [“  NTX . NTX
0

- Sin —— sin ——dx
a a

- .= (3.40)

The square root of (p*) is called the root-mean-square momentum. Note how Equa-
tion 3.40 is consistent with the equation

2m 8ma

< pZ > <p2> n2h2 n27_[2h2

2m 2 2ma’

Using Equation 3.40 and 3.38, we see that

5 n’m’h?
o, = 5
a
and
nmth
o = —— (3.41)
p a

Because the variance o2, and hence the standard deviation o, is a measure of the
spread of a distribution about its mean value, we can interpret o as a measure of the
uncertainty involved in any measurement. For the case of a particle in a box, we have
been able to evaluate o, and o explicitly in Equations 3.33 and 3.41. We interpret
these quantities as the uncertainty involved when we measure the position or the
momentum of the particle, respectively. We expect to obtain a distribution of measured
values because the position of the particle is given by the probability distribution,
Equation 3.29.

Equation 3.41 shows that the uncertainty in a measurement of p is inversely
proportional to a. Thus, the more we try to localize the particle, the greater is the
uncertainty in its momentum. The uncertainty in the position of the particle 1s directly
proportional to a (Equation 3.33), which simply means that the larger the region over
which the particle can be found, the greater is the uncertainty in its position. A particle
that can range over the entire x-axis (—oo < x < o0) 1s called a free particle. In
the case of a free particle, a — oo in Equation 3.41, and there is no uncertainty in
the momentum. The momentum of a free particle has a definite value (see Problem
3-32). The uncertainty in the position, however, is infinite. Thus, we see that there is a

39
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reciprocal relation between the uncertainty in momentum and position. If we take the
product of o and 7, then we have

h (m'n’ /2
0.0,= -2" ( 3 o 2) (3.42)

The value of the square-root term here 1s never less than I, and so we write

h
0.0, > 5 (3.43)

Equation 3.43 1s one version of the Heisenberg Uncertainty Principle. We have been
able to derive Equation 3.43 explicitly here because the mathematical manipulations
for a particle in a box are fairly simple.

Let’s try to summarize what we have learned concerning the Uncertainty Principle.
A free particle has a definite momentum, but its position is completely indefinite. When
we localize a particle by restricting it to a region of length a, it no longer has a definite
momentum, and the spread in its momentum 1s given by Equation 3.41. If we let
the length a of the region go to zero, so that we have localized the particle precisely
and there is no uncertainty in its position, then Equation 3.41 shows that there is an
infinite uncertainty in the momentum. The Uncertainty Principle says that the minimum
product of the two uncertainties is on the order of the Planck constant.

3-9. The Problem of a Particle in a Three-Dimensional Box Is a
Simple Extension of the One-Dimensional Case

The simplest three-dimensional quantum-mechanical system is the three-dimensional
version of a particle in a box. In this case, the particle is confined to lie within a rect-
angular parallelepiped with sides of lengths a, b, and ¢ (Figure 3.5). The Schrodinger
equation for this system is the three-dimensional extension of Equation 3.17.

| | | O<x<a
R /9? 3° 9° —
-5 ( 1{+ er f)zEW(x,y,z) O0<y=<b (3.44)

Equation 3.44 is often written in the form

hz
VY = Ey
2m

where the operator (“del squared™),

(3.45)




M~

>y

e

FIGURE 3.5
A rectangular parallelepiped of sides a, b, and c. In the problem of a particle in a three-
dimensional box, the particle is restricted to lie within the region shown above.

is called the Laplacian operator. The Laplacian operator appears in many physical
problems.

The wave function ¥ (x, y, z) satisfies the boundary conditions that it vanishes at
all the walls of the box, and so

v (0,y,2) =% (a,y,z) =0 forall yandz
V(x,0,2) =v(x,b,z) =0 forall x and z (3.46)
Yv(x,y,0) =v((x,y,c)=0 forall x and y

We will use the method of separation of variables to solve Equation 3.44. We write

Ylx,y,2) = X(0)Y(y)Z(2) (3.47)

Substitute Equation 3.47 into Equation 3.44, and then divide through by ¥ (x, vy, z) =
X(x)Y(y)Z(z) to obtain

o1 d*X Rt 1 dY R ldQZ_

_ - — — - = (3.48)
2m X(x) dx= 2m Y(y) dy 2m Z(2) dz

Each of the three terms on the left side of Equation 3.48 1s a function of only x, y, or z,
respectively. Because x, y, and z are independent variables, the value of each term can
be varied independently, and so each term must equal a constant for Equation 3.48 to
be valid for all values of x, y, and z. Thus, we can write Equation 3.48 as

E+E +E =E (3.49)

91
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where E L E . and E_are constants and where

1 d*X
o 2 - Ex
2m X (x) dx
2 2
LN S (3.50)
2m Y (v) dy- ?
ht 1 d*Z

2mZ(z) d2

From Equation 3.46, the boundary conditions associated with Equation 3.47 are
that

X0)=X(@@) =0
YO)=YbH)=0 (3.51)
Z0)=Z()=0

Thus, we see that Equations 3.50 and 3.51 are the same as for the one-dimensional case
of a particle in a box. Following the same development as in Section 3-5, we obtain

N mTX
X(x)=A_sin— no=1,2 3, ...
' a
. hTy
Y(v) = Ay sin ’b n =1 2,3, ... (3.52)
. n.mz
Z(z):A:sm nz-—_l, 2,3, ...

According to Equation 3.47, the solution to Equation 3.44 1s

. homx  RTY nmg
v(x,y,7) =A A A sin — sin — sin — (3.53)
ey s a b C
withn_, n., and n_ independently assuming the values 1, 2, 3, .... The normalization

constant A A A _1is found from the equation

a b ¢
f dxf a’yf dzy™(x,y,D)v(x,v,2) =1 (3.54)
0 0 0

Problem 3-24 shows that

] 1/2

Thus, the normalized wave functions of a particle in a three-dimensional box are

I

9 9 b
abc a b C Y

|

I, 2, 3, ..
8 \'* noax nay nwz R

Vywn = (———) sin ——— sin ——— sin — n 1, 2, 3, ... (3.56)
o n =12 3,...

bl 9 bl
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If we substitute Equation 3.56 into Equation 3.44, then we obtain

nonon 8m a2 bZ C2

’ 9 = e .

h2 nz n2 n2 n-x = 1, 2, 3, Ce
_ ST *") ny::l, 2.3, ... (3.57)
n.=1, 2,3
Equation 3.57 is the three-dimensional extension of Equation 3.21.
We should expect by symmetry that the average position of a particle in a three-

dimensional box is at the center of the box, but we can show this by direct calculation.

EXAMPLE 3-7
Show that the average position of a particle confined to the region shown in Figure 3.5
1s the point (a/2, b/2, ¢/2).

SOLUTION: The position operator in three dimensions is (see MathChapter C)
R=Xi+Yj+ Zk

where i, j, and k are unit vectors along the x-, y-, and z-axes, respectively. The average
position is given by

a b ¢

(r) = f dx [ dy [ d2y* (v, v, DRY (x, v, 2)
0 0 0
i) + ) + k()

Let’s evaluate (x) first. Using Equation 3.55, we have

2 (¢ n7wx 2 (P ., nTmy
(x)=1- xsin® ——dx | | = sin” ——dy
a Jo a b J b
2 [ ,n7z
X | — [ sin® ——dz
C Jo C

The second and third terms in brackets are unity by the normalization condition of a
particle in a one-dimensional box (Equation 3.27). The first integral is just (x) for a
particle in a one-dimensional box. Referring to Equation 3.31, we see that (x) = a/2.
The calculation for (y) and (z) are similar, and so we see that

(r) a,+b,+ck
r)=—i+ —j+ =
A

Thus, the average position of the particle is in the center of the box.

| |

In a similar manner, based on the case of a particle in a one-dimensional box, we
should expect that the average momentum of a particle in a three-dimensional box is
zero. The momentum operator in three dimensions is

P=—in '8+"8+k8 (3.58)
=—th{1— + J— . :
0x Jay 0z
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and so

a b ¢
(P) 2/ dxf dY/ dzy™(x,y, )Py (x, y, 2) (3.59)
0 0 0

It 1s a straightforward exercise to show that (p) = 0 (see Problem 3-25).
An interesting feature of a particle in a three-dimensional box occurs when the
sides of the box are equal. In this case, a = b = ¢ in Equation 3.57, and so

9

-

= - (nf, +- ni 4 ni) (3.60)

Sma“

n.nn
oy

Only one set of values n , n , and n_ corresponds to the lowest energy level. This
level, E . 1s said to be nohdegeneréte. However, three sets of values of n , n,
and n_ correspond to the second energy level, and we say that this level 1s threefold
degenerate, or

6h*
E = E = E " st 5
| Sma”
Figure 3.6 shows the distribution of the first few energy levels of a particle 1n a cube.
Note that the degeneracy occurs because of the symmetry introduced when the general
rectangular box becomes a cube and that the degeneracy 1s “lifted” when the symmetry
is destroyed by making the sides of different lengths. A general principle of quantum

(n,,n,,n.) Degeneracy
19 (3,3,1)(3,1,3)(1,3,3) 3
18 (4,1, D)(1,4,1)(1,1.4) 3
17 (3.2,2)(2,3,2)(2,2,3) 3
(4 (3,2,1)(3,1,2)(2,3,1)
e (1,3,2)(1,2,3)(2,1,3) 6
+ 12 (2,2,2)
oo ll (39111)(13331)(19193) 3
=
+ 9 (2,2,1)(2,1,2)(1,2,2) 3
N e
=
6 (2,1,1)(1,2,1)(1,1,2) 3
3 (11,1 1
0

FIGURE 3.6
The energy levels for a particle in a cube. The degeneracy of each level is also indicated.



3-9. The Problem of a Particle in a Three-Dimensional Box Is a Simple Extension of the One-Dimensional Case Q5

mechanics states that degeneracies are the result of underlying symmetry and are lifted
when the symmetry is broken.

According to Equation 3.56, the wave functions for a particle in a three-dimensional
box factor into products of wave functions for a particle in a one-dimensional box. In
addition, Equation 3.57 shows that the energy eigenvalues are sums of terms corre-
sponding to the x, y, and z directions. In other words, the problem of a particle in
a three-dimensional box reduces to three one-dimensional problems. This 1s no acci-
dent. It is a direct result of the fact that the Hamiltonian operator for a particle in a
three-dimensional box is a sum of three independent terms

A

H=H +H+H

where

P S S NP

— — Jro—

* 2m ox* Y 2m Jy* < 2m 9z°

In such a case, we say that the Hamiltonian operator 1s separable.
Thus, we see that if H is separable, that is, 1f H can be written as the sum of terms
involving independent coordinates, say

7 — 191 (s) + ﬁz(w) (3.61)

where s and w are the independent coordinates, then the eigenfunctions of H are given
by the products of the eigenfunctions of H and H

Vo (8, w) =@, (s)e, (W) (3.62)

where

H (s)p,(s) = E,,(s)

R (3.63)
H,(w)g, (w) = E, ¢, (W)
and E_ , the eigenvalues of H., are the sums of the eigenvalues of ﬁl and I-AIZ,
nm — Eﬂ + EH’I (3'64)

This important result provides a significant simplification because it reduces the original
problem to several simpler problems.

We have used the simple case of a particle in a box to illustrate some of the general
principles and results of quantum mechanics. In Chapter 4, we present and discuss a
set of postulates that we use throughout the remainder of this book.
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Problems

3-1. Evaluate g = A f, where A and f are given below:

A f
(a) SQRT x*
d3
b o +x3 e—ax
®) dx’
{
(c) / dx x?—2x 43
0
82 82 82
d - + + - x3 ,224
@ ox?  9yr 97’ ?

3-2. Determine whether the following operators are linear or nonlinear:

Af(x) =SQR[f(x) [square f(x)]

Af(x) = f*(x) [form the complex conjugate of f(x)]
Af(x) = (0 [multiply f(x) by zero]

/if(x) = [f(x)]”" [take the reciprocal of f(x)]
Af(x) = f(0) [evaluate f(x)atx = 0]

Af(x) =In f(x) [take the logarithm of f(x)]

- 0 & 0 T P

3-3. Ineach case, show that f(x) is an eigenfunction of the operator given. Find the eigenvalue.

A f(x)
d2

a COS WX

@) dx*

(b) d [wt
— e
dt

(c) a4y o

C —_— — e’
dx?’ dx
0 .

d) — x*e®
dy

3-4. Show that (cos ax)(cos by)(cos ¢z) is an eigenfunction of the operator,

which 1s called the Laplacian operator.

3-5. Write out the operator A” for A =

pe - d .\ d’ 5 d +l
L ] - C. - T x———
dx* dx dx’ dx

al

Hint: Be sure to include f(x) before carrying out the operations.



Problems

3-6. In Section 3-5, we applied the equations for a particle in a box to the 7 electrons in
butadiene. This simple model is called the free-electron model. Using the same argument,
show that the length of hexatriene can be estimated to be 867 pm. Show that the first

. (Remember that hexatriene

electronic transition is predicted to occur at 2.8 x 10* cm™

has six 7 electrons.)

3-7. Prove that if ¥/ (x) 1s a solution to the Schrodinger equation, then any constant times ¥ (x)

1s also a solution.

3-8. Show that the probability associated with the state v for a particle in a one-dimensional

box of length a obeys the following relationships:

|
4
Prob(0 < x < a/4) =Prob(3a/4 < x <a) = .
1 (=D
4  2mn
and 1
4
Prob(a/4 < x <a/2) =Prob(a/2 < x <3a/4) = .
1 N (—1) 2
4 2mTH

n even

n odd

n even

n odd

3-9. What are the units, if any, for the wave function of a particle in a one-dimensional box?

3-10. Using a table of integrals, show that

£}
., NTTX a
/ sin’ dx = —
0 2

a

and

fczxz gin? T g ( a )3 4rn? o
0 a 2mn 3

All these integrals can be evaluated from

| “ niTx
[(B) = f e sin® ——dx
0 a

Show that the above integrals are given by 1(0), /'(0), and 7”(0), respectively, where the
primes denote differentiation with respect to 8. Using a table of integrals, evaluate 7(B)

and then the above three integrals by differentiation.

3-11. Show that

tor all the states of a particle in a box. Is this result physically reasonable?

3-12. Show that (p) = O for all states of a one-dimensional box of length a.
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3-13. Show that

for a particle in a box is less than a, the width of the box, for any value of n. If o_is the
uncertainty in the position of the particle, could o _ever be larger than a?

3-14. Using the trigonometric identity
sin26 = 2sin 6 cos 6

show that

“  nmx Nt X
/ sin cos —dx =0
0 d a
3-15. Prove that
‘ +i2mnx/a
f e “dx =0 n =0
0
3-16. Using the trigonometric identity
. : 1
sine sin 8 = 5 cos(a — B) — 5 cos(a + fB)

show that the particle-in-a-box wave functions (Equations 3.27) satisfy the relation

/ w: (x)wmdx =0 m # n
0

(The asterisk in this case is superfluous because the functions are real.) If a set of functions
satisfies the above integral condition, we say that the set i1s orthogonal and, 1n particular,
that Y (x) is orthogonal to ¥ (x). If, in addition, the functions are normalized, then we
say that the set 1s orthonormal.

3-17. Prove that the set of functions
w” (.’C) — (2a)~—l/2€1‘7m.\‘/a - O, j:l, :i:2, o

is orthonormal (ct. Problem 3—16) over the interval —a < x < a. A compact way to express
orthonormality in the ¥ 1S to write

f w:l (X)w”d.x — 8)?”1

The symbol § is called a Kroenecker delta and is defined by

1 - l if fn — n
=0 itm#n
3-18. Show that the set of functions
¢ (0) = (2m) 2™ 0<6 <27

1s orthonormal (Problem 3-16).



Problems

3-19. In going from Equation 3.34 to 3.35, we multiplied Equation 3.34 from the left by ¥/ *(x)
and then integrated over all values of x to obtain Equation 3.35. Does it make any difference
whether we multiplied from the left or the right?

3-20. Calculate (x) and (x*) for the n = 2 state of a particle in a one-dimensional box of length

a. Show that
4 1/2
o = a 7 -2
! 47 3

3-21. Calculate (p) and (p°) for the n = 2 state of a particle in a one-dimensional box of
length a. Show that

h
o = —
P
3-22. Consider a particle of mass m in a one-dimensional box of length a. Its average energy
1s given by

- 2
(E) = >—(p)

Because (p) =0, (p’) = o, where o, can be called the uncertainty in p. Using the
Uncertainty Principle, show that the energy must be at least as large as 7*/8ma’ because
o, the uncertainty in x, cannot be larger than a.

3-23. Discuss the degeneracies of the first few energy levels of a particle in a three-dimensional
box when all three sides have a different length.

3-24. Show that the normalized wave function for a particle in a three-dimensional box with
sides of length a, b, and c 1s

8\ . nax Ry . nmuzg
w(xv y-, Z) - —— Sin X SIn — sin —=
abc a b -
3-25. Show that (p) = 0 for the ground state of a particle in a three-dimensional box with sides

of length «a, b, and c.

3-26. What are the degeneracies of the first four energy levels for a particle in a three-
dimensional box witha = b = 1.5¢?

3-27. Many proteins contain metal porphyrin molecules. The general structure of the porphyrin
molecule is
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This molecule 1s planar and so we can approximate the 7 electrons as being confined inside
a square. What are the energy levels and degeneracies of a particle in a square of side a? The
porphyrin molecule has 18 7 electrons. If we approximate the length of the molecule by
1000 pm, then what is the predicted lowest energy absorption of the porphyrin molecule?
(The experimental value is & 17000 cm™".)

3-28. The Schrodinger equation for a particle of mass m constrained to move on a circle of

radius a 1s

A _ Ev (0) 0<6 <2
21 do? ==

where / = ma’ is the moment of inertia and @ is the angle that describes the position of the
particle around the ring. Show by direct substitution that the solutions to this equation are

w(@) — Aeme

where n = +(21 E)"/? /h. Argue that the appropriate boundary condition is ¥ (6) = ¥ (0 +
2m) and use this condition to show that
n’h’

E = n=20, 1, £2, ...
21

1/2

Show that the normalization constant A is (277)” /~. Discuss how you might use these

results for a free-electron model of benzene.

3-29. Set up the problem of a particle in a box with its walls located at —a and +a. Show that

the energies are equal to those of a box with walls located at 0 and 2a. (These energies may
be obtained from the results that we derived in the chapter simply by replacing a by 2a.)
Show, however, that the wave functions are not the same and in this case are given by

() 1 nmx
X) = — N ——— n even
7 ai/?_ 2
1 nITXx
= —5 COS —— n odd
all 2

Does it bother you that the wave functions seem to depend upon whether the walls are
located at =a or O and 2a? Surely the particle “knows” only that it has a region of length 2a
in which to move and cannot be affected by where you place the origin for the two sets of
wave functions. What does this tell you? Do you think that any experimentally observable
properties depend upon where you choose to place the origin of the x-axis? Show that
0.0, > h/2, exactly as we obtained in Section 3-8.

3-30. For a particle moving in a one-dimensional box, the mean value of x 1s a/2, and the mean

square deviation 1s O’XQ = (a*/12)[1 — (6/°n?)]. Show that as n becomes very large, this
value agrees with the classical value. The classical probability distribution is uniform,

]
p(x)dx = —dx O0<x<a
a

=0 otherwise

3-31. This problem shows that the intensity of a wave is proportional to the square of its

amplitude. Figure 3.7 illustrates the geometry of a vibrating string. Because the velocity at



U
A
Q
P -0
>
0 X x+dx [
FIGURE 3.7

The geometry of a vibrating string.

any point of the string is du /dt, the kinetic energy of the entire string is

X [H au’d
= —p| — X
s 2P\ o
where p 1s the linear mass density of the string. The potential energy is found by considering
the increase of length of the small arc P Q of length ds in Figure 3.7. The segment of the

string along that arc has increased its length from dx to ds. Therefore, the potential energy
associated with this increase is

!
V :/ T(ds —dx)

0

where T is the tension in the string. Using the fact that (ds)* = (dx)* + (du)?, show that

! au\’ v
V:/T 1+(m) — 1% dx
0 d.x

Using the fact that (1 + x)'/* &~ | + (x/2) for small x, show that

L' [ou\’
V==T — ) dx
2 Jy \0dx
for small displacements.

The total energy of the vibrating string is the sum of K and V and so

o '/ 0u ’ T (' (ou\
E=— — | dx + — — | dx
2 0 31‘ 2 0 a.x

We showed in Chapter 2 (Equations 2.23 through 2.25) that the nth normal mode can be
written in the form

nmwx

u (x,l) =D cos(w t+ ¢ )sin
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where w = vnm/[. Using this equation, show that

vt L,
K” p— TD” Slnh(a)nt + ¢H)

and

2.2

_IrnT
no 4]

2
D;cos(w t + ¢ )

Using the fact that v = (T/p)'/", show that

frzvznzp
E =—— "D
" 4/

Note that the total energy, or intensity, is proportional to the square of the amplitude.
Although we have shown this proportionality only for the case of a vibrating string, it is
a general result and shows that the intensity of a wave is proportional to the square of the
amplitude. If we had carried everything through in complex notation instead of sines and
cosines, then we would have found that £ is proportional to IDHI2 instead of just D?.

Generally, there are many normal modes present at the same time, and the complete
solution 1s (Equation 2.253)

nitx

u(x,t) = Z D cos(w t + ¢ )sin -

n=1\

Using the fact that (see Problem 3—-16)

onmx . ommx _
sin sin dx =0 if m =£n
0 [ [
show that
Tt p
E = 2 n’D>

n=1|

3-32. The quantized energies of a particle in a box result from the boundary conditions, or from

the fact that the particle is restricted to a finite region. In this problem, we investigate the
quantum-mechanical problem of a free particle, one that is not restricted to a finite region.
The potential energy V (x) is equal to zero and the Schrodinger equation is

v 2mE
=+ ——Y(x) =0 — 00 <X <00
dx- h-

Note that the particle can lie anywhere along the x-axis in this problem. Show that the two
solutions of this Schrodinger equation are

_ i(2mE)1"/2.r/fr _ ikx
U (x) =Ae = A e

and

'Kl’z(x) _ Aje——i(2mE)'/2.\‘/h _ A"ewik_r
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where

2 E)2
L (2mkE)
h

Show that if E is allowed to take on negative values, then the wave functions become
unbounded for large x. Therefore, we will require that the energy, E, be a positive quantity.
We saw in our discussion of the Bohr atom that negative energies correspond to bound
states and positive energies correspond to unbound states, and so our requirement that £
be positive is consistent with the picture of a free particle.

To get a physical interpretation of the states that ¥ (x) and v, (x) describe, operate on
¥, (x) and ¥, (x) with the momentum operator P (Equation 3.11), and show that

. d
Py, = —in iy,
X
and
- dyr,
Py, = —ih i = —hky,
Z dx L

Notice that these are eigenvalue equations. Our interpretation of these two equations is that
yr, describes a free particle with fixed momentum %k and that v, describes a particle with
fixed momentum —7%k. Thus, ¥ describes a particle moving to the right and v/, describes
a particle moving to the left, both with a fixed momentum. Notice also that there are no
restrictions on k, and so the particle can have any value of momentum. Now show that

thz

F=—-—
2m

Notice that the energy is not quantized; the energy of the particle can have any positive
value in this case because no boundaries are associated with this problem.

Last, show that ¥/ (x)¥,(x) = ATA, = lAll2 = constant and that ¥, (x)¢,(x) =
ATA, = lAzl2 = constant. Discuss this result in terms of the probabilistic interpretation

of Y™¢. Also discuss the application of the Uncertainty Principle to this problem. What
are o and o 7

3-33. Derive the equation for the allowed energies of a particle in a one-dimensional box by
assuming that the particle is described by standing de Broglie waves within the box.

3-34. We can use the Uncertainty Principle for a particle in a box to argue that free electrons
cannot exist in a nucleus. Before the discovery of the neutron, one might have thought
that a nucleus of atomic number Z and mass number A i1s made up of A protons and
A — Z electrons, that is, just enough electrons such that the net nuclear charge is +Z. Such
a nucleus would have an atomic number Z and mass number A. In this problem, we will
use Equation 3.41 to estimate the energy of an electron confined to a region of nuclear size.
The diameter of a typical nucleus is approximately 10™'* m. Substitute « = 10" m into
Equation 3.41 and show that o, s

0,=3x 107" kg-m-s~'
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Show that

9

72
E=-~=5x10"]

2m

~ 3000 MeV

where millions ot electron volts (MeV) is the common nuclear physics unit of energy. It
is observed experimentally that electrons emitted from nuclei as g radiation have energies
of only a few MeV, which is far less than the energy we have calculated above. Argue,
then, that there can be no free electrons in nuclei because they should be ejected with much
higher energies than are found experimentally.

3-35. We can use the wave functions of Problem 3-29 to illustrate some fundamental symmetry

properties of wave functions. Show that the wave functions are alternately symmetric and
antisymmetric or even and odd with respect to the operation x — —x, which is a reflection
through the x = 0O line. This symmetry property of the wave function is a consequence of
the symmetry of the Hamiltonian operator, as we now show. The Schrodinger equation may
be written as

F](.X)W” (X) = EII 1’[[/1 (X)

Reflection through the x = 0 line gives x — —x and so
ﬁ(".‘f)lﬂ”(—‘X) = Ellwn(“x)

Now show that ﬁ(x) = ﬁ(mx) (1.e., that H is symmetric) for a particle in a box, and so
show that

H(x)Y, (—x) = E ¥ (—x)

Thus, we see that ¥ (—x) 1s also an eigenfunction of H belonging to the same eigen-
value E . Now, if only one eigenfunction is associated with each eigenvalue (the state is
nondegenerate), then argue that ¥ (x) and ¥ (—x) must differ only by a multiplicative
constant [i.e., that ¥ (x) = ¢y (—x)]. By applying the inversion operation again to this
equation, show that ¢ = +£1 and that all the wave functions must be either even or odd with
respect to reflection through the x = 0 line because the Hamiltonian operator 1s symmetric.
Thus, we see that the symmetry of the Hamiltonian operator influences the symmetry of
the wave functions. A general study of symmetry uses group theory, and this example 1s
actually an elementary application of group theory to quantum-mechanical problems. We
will study group theory in Chapter 12.

































CHAPTER l

Some Postulates and General Princip
of Quantum Mechan

Up to now, we have made a number of conjectures concerning the formulation of
quantum mechanics. For example, we have been led to view the variables of classical
mechanics as represented in quantum mechanics by operators. These operate on wave
functions to give the average or expected results of measurements. In this chapter, we
formalize the various conjectures we made in Chapter 3 as a set of postulates and then
discuss some general theorems that follow from these postulates. This formalization
1s similar to specifying a set of axioms in geometry and then logically deducing the
consequences of these axioms. The ultimate test of whether the axioms or postulates
are sensible 1s to compare the end results with experimental data. Here we present a
fairly elementary set of postulates that will suffice for all the systems we discuss in this
book and for almost all systems of interest in chemistry.

4-1. The State of a System Is Completely Specified by its
Wave Function

Classical mechanics deals with quantities called dynamical variables, such as position,
momentum, angular momentum, and energy. A measurable dynamical variable is
called an observable. The classical-mechanical state of a particle at any particular
time 1s specified completely by the three position coordinates (x, v, z) and the three
momenta (p , p_, p.) or velocities (v , v, v_) at that time. The time evolution of the
system 1s governed by Newton’s equations,

d*x d’y ~ d’z
mdﬂ = F ., y.2), m dt’ - Fv(x’y’Z)’ mdﬂ = F.(x, ¥, 2) (4.1)

where £, F , and F_are the components of the force, F(x, y, z). Newton’s equations,
along with the initial'position and momentum of a particle, give us x(¢), y(t), and z(1),
which describe the position of the particle as a function of time. The three-dimensional
path described by x(t), y(t), and z(z) is called the trajectory of the particle. The

€S

1CS
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trajectory of a particle offers a complete description of the state of the particle. Classical
mechanics provides a method for calculating the trajectory of a particle in terms of the
forces acting upon the particle through Newton’s equations, Equations 4.1.

Newton’s equations plus the forces involved enable us to deduce the entire history
and predict the entire future behavior of the particle. We should suspect immediately
that such predictions are not possible in quantum mechanics because the Uncertainty
Principle tells us that we cannot specify or determine the position and momentum
of a particle simultaneously to any desired precision. The Uncertainty Principle is of
no practical importance for macroscopic bodies (see Example 1-10), and so classical
mechanics is a perfectly adequate prescription for macroscopic bodies. For very small
bodies, such as electrons, atoms, and molecules, however, the consequences of the
Uncertainty Principle are far from negligible and the classical-mechanical picture is
not valid. This leads us to our first postulate of quantum mechanics:

Postulate 1

The state of a quantum-mechanical system is completely specified by a function
W (x) that depends upon the coordinate of the particle. All possible information
about the system can be derived from (x). This function, called the wave
function or the state function, has the important property that Y™ (x)y (x)dx is
the probability that the particle lies in the interval dx, located at the position x.

In Postulate 1 we have assumed, for simplicity, that only one coordinate is needed
to specify the position of a particle, as in the case of a particle in a one-dimensional
box. In three dimensions, we would have that ¥*(x, y, 2)¥(x, v, 2)dxdydz is the
probability that the particle described by ¥ (x, v, z) lies in the volume element dxdydz
located at the point (x, y, z). To keep the notation as simple as possible, we will express
most of the equations to come in one dimension.

If there is more than one particle, say two, then ¥"(x , x,)¥ (x,, x,)dx dx, 1s the
probability that particle 1 lies in the interval dx, located at x , and that particle 2 lies in
the interval dx, located at x,. Postulate | says that the state of a quantum-mechanical
system such as two electrons is completely specified by this function and that nothing
else is required.

Because the square of the wave function has a probabilistic interpretation, it must
satisfy certain physical requirements. The total probabilty of finding a particle some-
where must be unity, thus

f YO (x)dx =1 (4.2)

all space

The notation ““all space” here means that we integrate over all possible values of x.
We have expressed Equation 4.2 for a one-dimensional system; for two- or three-
dimensional systems, Equation 4.2 would be a double or a triple integral. Wave func-
tions that satisfy Equation 4.2 are said to be normalized.
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EXAMPLE 4-1
The wave functions for a particle restricted to lie in a rectangular region of lengths a
and b (a particle in a two-dimensional box) are

4\ nmgx NIy n =1
x,y)=|— sin — Sin — :
‘//,,x,,y( y) ab a b n =1

o O
IATA
< =
IATA

S Q

Show that these wave functions are normalized.

SOLUTION: We wish to show that
a b
f [ dxdyy™(x, v (x,y) =
0 Jo

4 a b o I’i\_T[X o nvj{y
— dxdysin” — sin” — =1
ab Jy Jo ' b

a

This double integral actually factors into a product of two single integrals:

4 a 5 n X b n T{y N

L .2ty )
— dx sin” — dy sin =1
ab 0 a 0 b

Equation 3.26 shows that the first integral is equal to ¢ /2 and that the second 1s equal
to b/2, so that we have

and thus the above wave functions are normalized.

Even if the integral in Equation 4.2 equals some constant A= 1, we can divide
¥ (x) by A'? to make it normalized. On the other hand, if the integral diverges (i.e. goes
to infinity), normalizing v (x) is not possible, and it is not acceptable as a state function
(see Example 4-2b). Functions that can be normalized are said to be normalizable.
Only normalizable functions are acceptable as state functions. Furthermore, for ¥ (x)
to be a physically acceptable wave function, it and its first derivative must be single-
valued, continuous, and finite (ct. Problem 4—4). We summarize these requirements by
saying that ¥ (x) must be well behaved.

EXAMPLE 4-2
Determine whether each of the following functions is acceptable or not as a state
function over the indicated intervals:

a. e (0, 00)
b. ¢ (—00, 00)
c. sin'x (—1, 1)

d. ™ (—00, 00)






TABLE 4.1

Classical-mechanical observables and their corresponding quantum-mechanical operators.

Observable Operator
Name Symbol Symbol Operation
Position X X Multiply by x
r R Multiply by r
N 0
Momentum p. P —ih—
! g 0x
P a4+ K
— l.—.. JR— e
P l dx ']8y 0z
. h* 97
Kinetic energy K. K ~ 3 al
p 1{(‘, h2 ( 82 N 82 N 82 )
2m \ ax*  9y* 97’
= __E.vz
2m
Potential energy Vi(x) V(%) Multiply by V(x)
V(x,y,2) V(£.§.2)  Multiply by V(x,,2)
Total E H h2(82+82+82)
otal ener _ _
5y 2m \ox* =~ 9y* 97’
+ Vix,y,2)
hZ
= ——V + V(x,y,2)
2m
~ _ 0 0
Angular momentum L = yp —zp. L —ih|y— — 27—
X z 3 X 8Z ay
| . , 0 0
Ly =zp, — XP. L_\_ —ih Zé_x- — xgg
L [ i (x2 !
= — —ih|x— —y—
<= A0 TP 0y Y ox

be the frequency of rotation (cycles per second). The speeed of the particle, then, is

V=2TTrv. _ =rw__,
rot rot

where w

rot

= 2mv_ has the units of radians per second and is

called the angular speed. The kinetic energy of the revolving particle is

lw’ (4.3)
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where the quantity I = mr* is the moment of inertia. By comparing the first and last
expressions for the kinetic energy in Equation 4.3, we can make the correspondences
w <> vand I < m, where w and I are angular quantities and v and m are linear quan-
tities. According to this correspondence, there should be a quantity /w corresponding
to the linear momentum mv, and in fact the quantity L, defined by

[

L=1w= mr? ( ) = mvr (4.4)

r
is called the angular momentum and is a fundamental quantity associated with rotating
systems, just as linear momentum is a fundamental quantity in linear systems.

Kinetic energy can be written in terms of momentum. For a linear system, we have

2 2
KoM _ )t pr (4.5)
2 2m 2m

and for rotating systems,

[w* _ (lw)? _ L?

K = = —
2 21 21

(4.6)

The correspondences between linear systems and rotating systems are given in
Table 4.2.

We learned in MathChapter C that the angular momentum of a particle is actually
a vector quantity defined by L. =r x p, where r is its position from a fixed point
and p = mv 1s its momentum (Figure C.8). Figure C.8 shows that the direction of L is
perpendicular to the plane formed by r and p. The components of L are (Equation C.18)

L.=yp.—zp,
L =zp, —xp, 4.7)
. =Xp, =YD,

TABLE 4.2
The correspondences between linear systems and rotating systems.

Linear motion Angular motion

Mass (m) Moment of inertia (/)

Speed (v) Angular speed (w)

Momentum (p = mv) Angular momentum (L. = /w)

2 2

. mv- _p A I’ L
Kinetic energy | K = = Rotational kinetic energy | K = =
2 2m 2 21




4-2. Quantum-Mechanical Operators Represent Classical-Mechanical Variables

Note that the angular momentum operators given in Table 4.1 can be obtained from
Equation 4.7 by letting the linear momenta, p , p , and p_ assume their operator
equivalents.

According to Postulate 2, all quantum mechanical operators are linear. There is
an important property of linear operators that we have not discussed yet. Consider an
eigenvalue problem with a two-fold degeneracy; that is, consider the two equations

Ap, =ap, and A, = ag,

Both ¢, and ¢, have the same eigenvalue a. If this is the case, then any linear combi-
nation of ¢ and ¢,, say ¢, ¢, + ¢,9,, is an eigenfunction of A. The proof relies on the
linear property of A (Section 3-2):

Alc,d, +c,0,) = ¢, Ap, + c,A¢,
= c,ap, + c,ap, = a(c,¢, + c,¢,)

EXAMPLE 4-3
Consider the eigenvalue problem

0 (9)
o = o)

where m is a real (not imaginary nor complex) number. The two eigenfunctions of
A = d*/d¢* are

D (¢p) =e"? and S (p)=¢"

We can easily show that each of these eigenfunctions has the eigenvalue —m*. Show that
any linear combination of ® (¢) and ®_ (¢) is also an eigenfunction of A = d 2/dg*.

SOLUTION:
d2 img —imao d2€"m¢ d2€—im¢
6—1;5’5(616 +c,e”") =, e + ¢, e
= —c,m’e" — cm’e”"

— ___m2(Cl€rm¢ + C2€~—1m¢>)

Example 4-3 helps show that this result is directly due to the linear property of
quantum-mechanical operators. Although we have considered only a two-fold degen-
eracy, the result 1s easily generalized. We will use this property of linear operators
when we discuss the hydrogen atom in Chapter 6.
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4-3. Observable Quantities Must Be Eigenvalues of Quantum
Mechanical Operators

We now present our third postulate:

Postulate 3

In any measurement of the observable associated with the operator A, the
only values that will ever be observed are the eigenvalues a_, which satisfy the
eigenvalue equation

~

Awn = an wn (48)

Thus, in any experiment designed to measure the observable corresponding to A, the
only values we find are a,, a,, ... corresponding to the states ¥/, v, .... No other
values will ever be observed.

As a specific example, consider the measurement of the energy. The operator
corresponding to the energy is the Hamiltonian operator, and its eigenvalue equation is

HYy =E ¥ (4.9)

This 1s just the Schrodinger equation. The solution of this equation gives the ¥ and E .
For the case of a particle in abox, E_ = n*h*/8ma’ (Equation 3.21). Postulate 3 says
that if we measure the energy of a particle in a box, we will find one of these energies
and no others.

According to Postulate 1, wave functions have a probabilistic interpretation, and
so we can use them to calculate average values of physical quantities. Recall from
Section 3—7 that we argued that the average position of a particle in a box 1s given by

(x) -——f Y, (O)xy, (x)dx
0

2 (Y . nmx a
— — [ x sin” —= dx = — (fOI' all I’l) (410)
aJo a 2

This leads us to our fourth postulate.

Postulate 4

If a system is in a state described by a normalized wave function , then the
average value of the observable corresponding to A is given by

(a) = f U Avrdx 4.11)

all space



4-3. Observable Quantities Must Be Eigenvalues of Quantum Mechanical Operators

EXAMPLE 4-4
We will learn in the next chapter that a good approximate wave function for the
vibrational properties of a diatomic molecule in its lowest quantum state 18

o 1/4 2,
v, (x) = (——) e "/ —00 < X <X
T

where x is the displacement of the nuclei from their equilibrium positions and « 1s a
parameter characteristic of the molecule. Calculate the average value of the momentum
associated with this wave function.

SOLUTION: From Postulate 4, we have
o0 . o0 . d
(p) = [ Uy ()P (x)dx = [ W (x) [—lhg;} v, (x)dx

a2 [ 2, d >
"“"lh (___) / e—ax /2_€—ax /2dx

I

T o dx
a2 > 2
= ih (—) a[ xe " dx
‘T[ — X0

The integrand here 1s an odd function and the limits are symmetric, and so we have
(Equation B.19)

(p) =0

|

Suppose now that ¥/ (x) in Postulate 4 just happens to be an eigenfunction of A;
that is, suppose that ¢/ (x) = ¢ (x) where

Ay, (x) = a, ¥, (x)

Then

(a) = [ YA, ()dx = [ vy (a, ¥, (x)dx = an/ Y, ()Y, (x)dx = a,

) (4.12)
Furthermore, if Ay (x) = a ¥ (x), then
Ay (x) = A[Ay, (0)] = Ala, ¥, ()] = a,[AY, (0] = a ¥, (x)
and so
(a®) = f YA, (0dx = d (4.13)

From Equations 4.12 and 4.13, we see that the variance of the measurements gives

o’ =(a")—{(a)=a —a =0 (4.14)

4]

Thus, as Postulate 3 says, the only value we measure is the value a.
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EXAMPLE 4-5
Show that 02. = (E*) — (E)* = 0 for a particle in a box, for which

2\'* nmx
Y (x) = (-—) sin 0<x<a
a

a

In other words, show that the only values of the energy that can be observed are the
energy eigenvalues, E = n°h’/8ma” (Equation 3.21).

SOLUTION: The operator that corresponds to the observable E i1s the Hamiltonian
operator, which for a particle in a box 1s [Equation 3.14 with V(x) = 0]

ne o d?

.
2m dx

The average energy is given by
(E) = f ¥y () Hyp, (x)dx
0

2 f"  nTX heod* onmx
= — sSin — 5 | sin —dx
0 2m dx

a a a

e 2 /nmN\? (¢ . ,nmx n’h*
S N LA RPN

2m a a 0 a 8ma

Similarly,

(E*) =[ W,T(X)lrlzﬁlf,,(x}dx =/ W,T(X)ﬁ[ﬁ%/f,,(X)]dx
0 4]
2 /‘“  nTX h? o d? Rt d?  nwX
— sin — | ——— ——— sin ——d x
a Jo a 2m dx 2m dx a
nt 2/‘” nmx ( a’4>  nmx
=—F = Sin 7 | sin —dx
4m- a J, a dx a
h4 2 4 a
Lz (T_{) ] G2 X
dm- a a 0 a
n'h? n’h? . 5
= P 7 ) = (E)
64m-a 8mua

Therefore, J;} = (E*) — (E)* = 0, and so we find that the energies of a particle in a
box can be observed to have only the values E|, Ez, e

|

I




4-4. The Time Dependence of Wave Functions Is Governed by the
Time-Dependent Schrodinger Equation

To this point, we have tacitly used all the given postulates in Chapter 3, and so our
discussion so far should be fairly familiar. Now we must discuss the time dependence
of wave functions. The time dependence of wave functions is governed by the time-
dependent Schrodinger equation. We cannot derive the time-dependent Schrodinger
equation any more than we can derive Newton’s equation, so we will simply postulate
its form and then show that it is consistent with the time-independent Schrodinger
equation, H v =E ¢ .

Postulate 5

The wave function, or state function, of a system evolves in time according to
the time-dependent Schrodinger equation

A _dW(x, 1)
HWY(x.,t) = ih o (4.15)

Postulate 5 is the only one of the postulates that we did not use in Chapter 3 and
thus is new. For most systems, H does not contain time explicitly, and in those cases
we can apply the method of separation of variables to Equation 4.15 and write

Wix, 1) =yx)f{)

If we substitute this expression into Equation 4.15 and divide both sides by v (x) f (1),
we obtain

| |
S HY () = (4.16)

If H does not contain time explicitly, then the left side in Equation 4.16 1s a function of
x only and the right side is a function of ¢ only, and so both sides must equal a constant.
If we denote the separation constant by E, then Equation 4.16 gives

Hy (x) = EY(x) 4.17)
and
df () _ i
= th(t) (4.18)

The first of these two equations is what we have been calling the Schrodinger equa-
tion. In view of Equation 4.15, Equation 4.17 is often called the time-independent
Schrodinger equation.

Equation 4.18 can be integrated to give

f(t) — e—iEr/h
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and so W (x, t) 1s of the form

W(x,t)=y(x)e B/ (4.19)

If we use the relation £ = hv = hw, we can write Equation 4.19 as

W(x,t) =Y(x)e ™ (4.20)

In almost all cases of interest to chemists, there is a set of solutions to Equation 4.17,
so we write Equation 4.19 as

W (x, 1) = (x)e 5 (4.21)

If the system happens to be in one of the eigenstates given by Equation 4.21, then

Wi, )WY (x, )dx = ¢If(x)€fE'1t/hwn (x)e " En'Mdx = v (X)) (x)dx (4.22)

Thus, the probability density and the averages calculated from Equation 4.21 are inde-
pendent of time, and the v (x) are called stationary-state wave functions. Stationary
states are of central importance in chemistry. For example, in later chapters we will
deduce a set of stationary energy states for an atom or a molecule and express the spec-
troscopic properties of the system in terms of transitions from one stationary state to
another. The Bohr model of the hydrogen atom is a simple illustration of this idea. The
following example illustrates the stationary states of a model for a rotating diatomic
molecule.

EXAMPLE 4-6

We will learn in Chapter 5 that a rotating diatomic molecule can be well approximated
by a rigid rotator (essentially a dumbbell) and that the Schrodinger equation of a rigid
rotator gives a set of stationary energy levels with energies

hZ
E, =—=J(J+1) J=0,12,...
21
where / is the moment of inertia of the molecule. Given that transitions can occur only
between adjacent levels, show that the rotational absorption spectrum of a diatomic
molecule consists of a series of equally spaced lines.

SOLUTION: Absorption occurs for transitions from the level J to the level J 4 1
(adjacent levels). The energy difference is

2

AE=E, —E,=[(J+ DU +2) = J(U+ D]

2

h
—-:7-(J—|—1) J=0,1, 2, ...



4-5. The Eigenfunctions of Quantum Mechanical Operators Are Orthogonal

Using the relation AE = hv, we see that absorption occurs at the frequencies

h
:———J+1 JIO, 1,2,...
g 2771( )

which corresponds to a series of lines separated by 72 /27 I, from which one may obtain
the moment of inertia and bond length of the molecule (Example 5-7).

4-5. The Eigenfunctions of Quantum Mechanical Operators
Are Orthogonal

Table 4.1 contains a list of some commonly occurring quantum mechanical operators.
We stated previously that these operators must have certain properties. We noticed
they all are linear, and, in fact, linearity is a requirement we impose. A more subtle
requirement arises if we consider Postulate 3, which says that, in any measurement of
the observable associated with a quantum-mechanical operator, the only values that
are ever observed are its eigenvalues. We have seen, however, that wave functions and
quantum-mechanical operators can be complex quantities (see the expression for }A’x
in Table 4.1, for example), but certainly the eigenvalues must be real quantities if they
are to correspond to the result of experimental measurement. In an equation, we have

A\wn = an 17bn (423)

A

where A and ¥ may be complex but @, must be real. We will insist, then, that
quantum-mechanical operators have only real eigenvalues. Clearly, this requirement
places a certain restriction on the properties of quantum-mechanical operators. We will
not elaborate on this restriction here (see Problems 4-28 and 4-29, however), but an

important direct consequence of the fact that the eigenvalues of quantum-mechanical
operators must be real is that their eigenfunctions satisfy the condition

/ ' ¥, ()Y, (x)dx =0 m=# n (4.24)

Let’s see how this condition applies to the wave functions of a particle in a box. The
wave functions for this system are (Equation 3.27)

nitx

2\ 2
v, (x) = (Zi) sin —— n=1,2, ... (4.25)

a

Proving that these functions satisfy Equation 4.24 is easy if you use the trigonometric
identity (Problem 3-16)

sina sin B = 5 cos(ax — B) — 5 cos(a + B)
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where

Il i=
= 4.30
5. {o oy (4.30)

The symbol 51.]. is called the Kroenecker delta (cf. Problem 3-17).

EXAMPLE 4-7
According to Problem 3-28, the eigenfunctions of a particle constrained to move on a
circular ring of radius a are

Y (0) = Q2r) %™ m =0, £1, £2,

where 6 describes the angular position of the particle about the ring. Clearly ) < 6 <
2. Prove that these eigenfunctions form an orthonormal set.

SOLUTION: To prove that a set of functions forms an orthonormal set, we must
show that they satisfy Equation 4.29. To see if they do, we have

2

27 I | |
] W; (Q)w (9)61’9 _ — e-—zm(iemydg
0 n 27_[

0

1 27

— 5__ ez(n-m)9 dg
T
1 2T

. 2
— | costn — m)Bdo + — [ sin(n — m)6de
T 0 21 Jy

For n # m, the final two integrals vanish because they are over complete cycles of the
cosine and sine. For n = m, the first integral in the last expression gives 27 because
cos 0 = 1 and the second integral vanishes because sin 0 = 0. Thus,

2T
/ w:? (e)wn (Q)dQ — 5mn
0

and we have shown that the ¥ (6) form an orthonormal set.

Betore we leave this section, we will discuss very briefly the property of quantum-
mechanical operators that guarantees their eigenvalues will be real. In an equation, the
property such an operator A must satisfy is that

[f*(X)Ag(X)dxz [ gO[Af] (x)dx (4.31)

all space all space

where f(x) and g(x) are any two state functions. Note that A operates on g(x) on the
left side of Equation 4.31 and that A operates on ™ (x) on the right side. To see how
this equation works, let A be the momentum operator P —ihd/dx and let

1
T

—x%)2

— X <X <00
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and

2]/2
g(x) = er

2
x/2 — 00 < X < 00

[The constants in f(x) and g (x) are simply normalization constants. The functions f (x)
and g(x) are solutions to the one-dimensional harmonic oscillator problem discussed
in detail in the next chapter.] Therefore,

A . d 21/2 .y
Ag(x) = ‘“lh;i‘;nlmxe
21/2 , ,
- _ihmm [e™/? — x?e™ /7]
and
n ) 1/2 Ao , ,
/ f*(x)Ag(X)dX = —ih (-—7;) / (e“x — xze”" )dx
all space >
1/2 1/2
a(2) (i
T 2 2172
Similarly,
L x . d 1 —1n ih —x2
A f(X) — +lhg';"m€ Y = —-—;—mxe /2
and
A 2 1/2 o0 ,
/ gx)A* f (x)dx = —ih (—) / x2e " dx
T —00
all space

(2 A
-\ 2T am

Thus we see that 13x satisfies Equation 4.31. An operator that satisfies Equation 4.31 is
said to be Hermitian. Thus, Postulate 2 should be amended to read

Postulate 2’

To every observable in classical mechanics there corresponds a linear, Her-
mitian operator in quantum mechanics.

Problems 4-28 and 4-29 take you through the proof that the eigenvalues of Hermitian
operators are real and that their eigenfunctions are orthonormal.



4-6. The Physical Quantities Corresponding to Operators That
Commute Can Be Measured Simultaneously to Any Precision

When two operators act sequentially on a function, f(x), such asin AB f(x), we apply
each operator in turn, working from right to left (as in Example 3-5):

ABf(x) = A[Bf(x)]

An important difference between operators and ordinary algebraic quantities is that
operators do not necessarily commute. If

AIA%f(x) = éﬁf(x) (commutative) (4.32)

for arbitrary f(x), then A and B are said to commute. If

AB f(x)=+ lAS’Af (x) (noncommutative) (4.33)

for arbitrary f(x), then A and B do not commute. For example, let A be the Kinetic

energy operator, K , and B be the momentum operator, P, for a one-dimensional
system (Table 4.1). Then

A e d? o d

K P y(x)= (_%g;c_z) (——lh*d—;) v (x)

ih’ d’ (dw i dy
a’x) © 2m dx’

© 2m dx?

and

phv- (52) (55
RS xwx T n— 2mdx2 Wx)

in’ d (dzw) iR dY
dx?

—“Zf;dx:;

Therefore,

K Py(x)=PKx) (4.34)

and we see that the kinetic energy operator and the momentum operator commute. We
can write Equation 4.34 in the form

K. Py(x)—PKyx)=0

or

(K P

X

T f’x lex)tff(x) = OV (x) (4.35)
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where O is the “multiply by zero” operator. Because we have not used any special
property of v (x) to arrive at Equation 4.35, we can write it as an operator equation by
suppressing ¥ (x) on both sides of the equation to give

KP—-PK =0 (4.36)

The left side of Equation 4.36 is called the commutator of I%x and 13_,( and 1s written as

A

[K,P]=KP —PK (4.37)
and we can write Equation 4.36 as
[K.P]1=0 (4.38)
The commutator of commuting operators 1s the Zero operator.

Now let A be the momentum operator P and B be the position operator X =x
(multiply by x). In this case,

ﬁiwmm::(~mfi)xwu)
X dx

= —ihy(x) — ihx@—
dx

and
XPy(x) = (ﬂw~)wu>
— ——iflei-}—b—
dx
Note that
P Xy (x)# X P (x) (4.39)

SO 13x and X do not commute. In this particular case,
(P.X — XP)Y(x) = —ihy(x)
or
(P.X — XP)y(x) = —ihy(x) (4.40)

where we have introduced the identity operator I, which is simply the “multiply by
one” operator. Because we have not used any special property to arrive at Equation 4.40,
we can write Equation 4.40 as an operator equation by suppressing ¥ (x) on both sides
of the equation to give

PX—XP =—ihl (4.41)



4-6. Operators That Commute Can Be Measured Simultaneously to Any Precision

The left side here is the commutator of I3X and X, so we can write Equation 4.41 as

e A

[P, X]=—ihl (4.42)

We know from the Uncertainty Principle that both the momentum and the position
of a particle cannot be measured simultaneously to any desired degree of accuracy.
There is a direct relationship between the Uncertainty Principle and the commutator
of two operators, which we give here without proof. Consider two operators, A and B.
The standard deviations, o and o,, that correspond to these operators are quantita-
tive statistical measures of the uncertainties in the observed values of these physical
quantities. These standard deviations are given by (MathChapter B)

2
o, = (A*) — (A) = f () A% (x)dx — [ [ w*<x>Aw<x>dx] (4.43)

with a similar equation for o,. A rigorous expression of the Uncertainty Principle says
that o, and o, (the uncertainties in the measurements of a and b) are related by

(4.44)

1 P
0,0, 5 | f Y (OLA, Bl (x) dx

where [A, IAB] — AB — BA is the commutator of A and B and the vertical bars denote
the absolute value of the integral.

If Aand B commute, then the right side of Equation 4.44 is zero, so o, 0,, or
both could equal zero simultaneously. There is no restriction on the uncertainties in the
measurements of a and b. If, on the other hand, A and B do not commute, then the right
side of Equation 4.44 will not equal zero. Thus, there is a reciprocal relation between
o and o,; one can approach zero only if the other approaches infinity. Therefore, both
a and b cannot be measured simultaneously to arbitrary precision.

Let’s consider as an example, the simultaneous measurement of the momentum
and position o