
Values of Some Physical Constants 

Constant 

Atomic mass constant 
Avogadro constant 
Bohr magneton 
Bohr radius 
Boltzmann constant 

Electron rest mass 
Gravitational constant 
Molar gas constant 

Molar volume, ideal gas 
(one bar, 0° C) 
(one atm, O°C) 

Nuclear magneton 
Permittivity of vacuum 

Planck constant 

Proton charge 
Proton magnetogyric ratio 
Proton rest mass 

Rydberg constant (Bohr) 

Rydberg constant (exptl) 
Speed of light in vacuum 
Stefan-Boltzmann constant 

Symbol 

m e 

G 
R 

J-l N = enj2m p 

So 

4nso 
h 
n 
e 

Yp 
m p 

R = m e4 j8s2
h2 

00 e 0 

RH 
c 
a = 2n 5 k~/ 15h3 c2 

Value 

1.660 5402 x 10-27 kg 
6.022 1367 x 1023 mol- I 

9.274 0154 x 10-24 J . T- I 

5.291 772 49 x 10- 11 m 
1.380 658 x 10-23 J . K- J 

0.695 038 cm- I 

9.109 3897 x 10-31 kg 
6.672 59 x 10-11 m 3 . kg-I. S-2 

8.314 510 J . K- I 
. mol-I 

0.083 1451 dm3 • bar . K- I • mol- I 

0.082 0578 dm3 
• atm· K- 1 

• mol-I 

22.711 08 L . mol 1 

22.414 09 L . mol-I 
5.050 7866 x 10-27 J . T- I 

8.854 187 816 x 10- 12 C2 • J- I • m- I 

1.112 650 056 x 10-10 C2 • J- I • m- I 

6.626 0755 x 10-34 J . s 
1.054 572 66 x 10-34 J . s 
1.602 177 33 x 10-19 C 
2.675 221 28 x 108 S-I • T-1 

1.672 6231 x 10-27 kg 

2.179 8736 x 10- 18 J 
109 737.31534 cm- I 

109 677.581 cm- 1 

299 792 458 m . s I (defined) 
5.670 51 x 10-8 J . m-2 . K-4 . S-I 

Conversion Factors for Energy Units 

1 joule 
1 kJ . mol-I 
leV 
1 Eh 
1 cm- I 

1 Hz 

joule 

1 
1.660 540 x 10-21 

1.602 177 x 10- 19 

4.359 748 x 10- 18 

1.986 447 x 10-23 

6.626 076 x 10-34 

kJ . mol-I 

6.022 137 x 1020 

1 
96.4853 
2625.500 
1.196 266 x 10-2 

3.990 313 x 10- 13 

eV 

6.241 506 x 1018 

1.036 427 x 10-2 

1 
27.2114 
1.239 842 x 10-4 

4.135 669 x 10- 15 



Some Mathematical Formulas 

sin(x ± y) = sin x cos y ± cosxsin y 

cos(x ± y) =cosxcosy =f sin x siny' 

sin x sin y = ~ cos(x - y) - 4 cos(x + y) 

cos x cosy =4 cos(x - y) + 4 cos(x + y) 

sin x cos y = 4 sin(x + y) + 4 sin(x - y) 

e±ix = cosx ± i sin x 

. eix _ e-ix 

cosx = ----
2 

slnx = ----
2i 

eX + e-X eX _ e-X 
coshx = . sinhx = ---

2 2 
1 1 

j(x) = j(a) + j'(a)(x - a) + ~ j"(a) (x - al2 + - j"'(a) (x - a)3 + ... 
21 ' 3! 

" 

, x 2 x3 X4 

eX =l+x+-+-+-+··· 
2! 3! 4! 

x 2 X4 x6 

COSX = 1 - - + - - - + ... 
2! 4! 6! 

x3 
X

S x7 

sinx = x - - + - - - + ... 
3! S! 7! 

. x 2 x 3 . X4 

In(1 +x) = x - "2 + 3" - 4 + ... -1<x<1 

1 2 3 4 2 --=l+x+x +x +x + ... x <1 
I-x . 

(1 ± )n _ 1 ± . ± n(n - 1) 2.± n(n - l)(n - 2) 3 
X - nx x x + ... 

. ' 2! 3! 

(n positive integer) 

(n positive integer) 

1
00 . , 

2n+l. - ax2d n. x e 'X=--
2an+1 o , 

<!' 

(n positive integer) 

L
a . nnx·. mnx La nnx mnx a 

sIn sm = cos cos = -~ 
o a .a 0 a a 2 nm 

La n1fx. mnx 0 
cos sm = (m/and n integers) 

o a a ",.'~~ 



plane polar coordinates: 

x = r cos e 
y = r sin e 
dr = rdrde 

O<r<oo 

0<8<2n - -

a2 a2 

\72=_+_ 
ax2 ay2 

1 a ( a) 1 a
2 

a
2 

1 a 1 a
2 

= r ar r ar + r2 ae2 = ar2 + r ar + r2 ae2 

spherical coordinates: 

x = r sin e cos ¢ 0 < r < 00 

y = r sin e sin ¢ 0 < e < n 

z = r cos e 0 < ¢ < 2n 

dr = r2 sin edrded¢ 

a2 a2 a2 
\72=_+_+_ 

ax2 ay2 az2 

= ~~ (r2~) + 1 ~ (sine~) + 1 ~ 
r2 ar ar r2 sin e ae ae r2 sin2 e a¢2 

l lf cosn e sin e de = 11 xndx = 0 if n is odd 
o -I 

2 
if n is even 

n+1 

{If cosn e sin3 e de = l' xn (1 - x2)dx = 0 
10 -I 

4 

(n + l)(n + 3) 

SI Prefixes 

Fraction Prefix Symbol Multiple Prefix 

10- 1 deci d 10 deka 
10-2 centi c 102 hecto 
10-3 milli m 103 kilo 
10-6 . 

106 mlcro J-L mega 
10-9 109 . 

nano n gIg a 
10- 12 . 

1012 PICO P tera 
10- 15 femto f 1015 peta 
10- 18 atto a 1018 exa 

if n is odd 

if n is even 

Symbol 

da 
h 
k 
M 
G 
T 
P 
E 



Pressure Conversion Factors 

Pa bar atm torr 

1 Pa = 1 10-5 9.869 23 x 10-6 7.500 62 x 10-3 

1 bar = 105 1 0.986 923 750.062 
1 atm = 1.013 25 x 105 1.013 25 1 760 
1 torr = 133.322 1.333 22 x 10-3 1.315 79 x 10-3 1 

Some Commonly Used Non-SI Units 

Unit 

Angstrom 
Micron 
Calorie 
Debye 
Gauss 

Quantity 

length 
length 
energy 
dipole moment 
magnetic field strength 

Symbol 

A 
J-L 
cal 
D 
G 

Greek Alphabet 

Alpha 
Beta 
Gamma 
Delta 
Epsilon 
Zeta 
Eta 
Theta 

2.293 710 x 1017 

3.808 798 x 10-4 

3.674 931 x 10-2 

1 
4.556 335 x 10-6 

1.519 830 x 10-16 

A ct Iota I l 

B fJ Kappa K K 

r y Lambda A A 
~ 8 Mu M /-l 
E E Nu N v 
Z ~ Xi 

,.... 
~ Co. 

H Y} Omicron 0 0 

e (J 

cm- I 

5.034 11 x 1022 

83.5935 
8065.54 

Pi 

2.194 7463 x 105 
1 
3.335 64 x 10- 11 

n ]f 

Hz 

1.509 189 x 1033 

2.506 069 x 1012 

2.417 988 x 1014 

6.579 684 x 1015 
2.997 925 x 1010 

1 

SI value 

10-10 m = 100 pm 
10-6 m 
4.184 J (defined) 
3.3356 x 10-30 C . m 
10-4 T 

Rho P p 
Sigma b a 

Tau T r 
Upsilon Y v 
Phi <l> ¢ 
Chi X X 
Psi \11 1/1 
Omega Q w 
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Preface 

To the Student 
You are about to begin your study of physical chemistry. You may have been told that 
physical chemistry is the most difficult chemistry course that you will take, or you 
may have even seen the bumper sticker that says "Honk if you passed P Chern". The 
anxiety that some students bring to their physical chemistry course has been eloquently 
addressed by the British professor E. Brian Smith in the preface of his introductory 
text, Basic Chemical Thermodynamics, Oxford University Press: 

"The first time I heard about Chemical Thermodynamics was when a second-year 
undergraduate brought me the news in my freshman year. He told a spine-chilling story 
of endless lectures with almost three hundred numbered equations, all of which, it 
appeared, had to be committed to memory and reproduced in exactly the same form in 
subsequent examinations. Not only did these equations contain all the normal algebraic 
symbols but in addition they were liberally sprinkled with stars, daggers, and circles 
so as to stretch even the most powerful of minds. Few would wish to deny the mind­
improving and indeed character-building qualities of such a subject! However, many 
young chemists have more urgent pressures on their time." 

We certainly agree with this last sentence of Professor Smith's. The fact is, however, 
that every year thousands upon thousands of students take and pass physical chemistry, 
and many of them really enjoy it. You may be taking it only because it is required 
by your major, but you should be aware that many recent developments in physical 
chemistry are having a major impact in all the areas of science concerned with the 
behavior of molecules. For example, in biophysical chemistry, the application of both 
experimental and theoretical aspects of physical chemistry to biological problems has 
greatly advanced our understanding of the structure and reactivity of proteins and 
nucleic acids. The design of pharmaceutical drugs, which has seen great advances in 
recent years, is a direct product of physical chemical research. 

Traditionally, there are three principal areas of physical chemistry: thermodynam­
ics (which concerns the energetics of chemical reactions), quantum chemistry (which 
concerns the structures of molecules), and chemical kinetics (which concerns the rates 
of chemical reactions). Many physical chemistry courses begin with a study of thermo­
dynamics, then discuss quantum chemistry, and treat chemical kinetics last. This order 
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is a reflection of the historical development of the field, and both of us learned phys­
ical chemistry in this order. Today, however, physical chemistry is based on quantum 
mechanics, and so we begin our studies with this topic. We first discuss the underlying 
principles of quantum mechanics and then show how they can be applied to a num­
ber of model systems. Many of the rules you have learned in general chemistry and 
organic chemistry are natural results of the quantum theory. In organic chemistry, for 
example, you learned to assign molecular structures using infrared spectra and nuclear 
magnetic resonance spectra, and in Chapters 13 and 14 we explain how these spectra 
are governed by the quantum-mechanical properties of molecules. 

Your education in chemistry has trained you to think in terms of molecules and 
their interactions, and we believe that a course in physical chemistry should reflect 
this viewpoint. The focus of modern physical chemistry is on the molecule. Current 
experimental research in physical chemistry uses equipment such as molecular beam 
machines to study the molecular details of gas-phase chemical reactions, high vacuum 
machines to study the structure and reactivity of molecules on solid interfaces, lasers 
to determine the structures of individual molecules and the dynamics of chemical 
reactions, and nuclear magnetic resonance spectrometers to learn about the structure 
and dynamics of molecules. Modern theoretical research in physical chemistry uses 
the tools of classical mechanics, quantum mechanics, and statistical mechanics along 
with computers to develop a detailed understanding of chemical phenomena in terms 
of the structure and dynamics of the molecules involved. For example, computer 
calculations of the electronic structure of molecules are providing fundamental insights 
into chemical bonding, and computer simulations of the dynamical interaction between 
molecules and proteins are being used to understand how proteins function. 

In general chemistry, you learned about the three laws of thermodynamics and 
were introduced to the quantities enthalpy, entropy, and the Gibbs energy (formerly 
called the free energy). Thermodynamics is used to describe macroscopic chemical 
systems. Armed with the tools of quantum mechanics, you will learn that thermody­
namics can be fonnulated in terms of the properties of the atoms and molecules that 
make up macroscopic chemical systems. Statistical thermodynamics provides a way 
to describe thermodynamics at a molecular level. You will see that the three laws of 
thermodynamics can be explained simply and beautifully in molecular terms. We be­
lieve that a modern introduction to physical chemistry should, from the outset, develop 
the field of thermodynamics from a molecular viewpoint. Our treatment of chemical 
kinetics, which constitutes the last fi ve chapters, develops an understanding of chemical 
reactions from a molecular viewpoint. For example, we have devoted more than half of 
the chapter of gas-phase reactions (Chapter 30) to the reaction between a fluorine atom 
and a hydrogen molecule to form a hydrogen fluoride molecule and a hydrogen atom. 
Through our study of this seemingly simple reaction, many of the general molecular 
concepts of chemical reactivity are revealed. Again, quantum chemistry provides the 
necessary tools to develop a molecular understanding of the rates and dynamics of 

chemical reactions. 
Perhaps the most intimidating aspect of physical chemistry is the liberal use of 

mathematical topics that you may have forgotten or never learned. As physicists say 
about physics, physical chemistry is difficult with mathematics; impossible without it. 



Preface 

You may not have taken a math course recently, and your understanding of topics such 
as determinants, vectors, series expansions, and probability may seem a bit fuzzy at 
this time. In our years of teaching physical chemistry, we have often found it helpful to 
review mathematical topics before using them to develop the physical chemical topics. 
Consequently, we have included a series of ten concise reviews of mathematical topics. 
We realize that not everyone of these so-called reviews may actually be a review for 
you. Even if some of the topics are new to you (or seem that way), we discuss only 
the minimum amount that you need to know to understand the subsequent physical 
chemistry. We have positioned these reviews so that they immediately precede the 
chapter that uses them. By reading these reviews first (and doing the problems !), you 
will be able to spend less time worrying about the math, and more time learning the 
physical chemistry, which is, after all, your goal in this course. 

To the Instructor 

This text emphasizes a molecular approach to physical chemistry. Consequently, unlike 
most other physical chemistry books, this one discusses the principles of quantum 
mechanics first and then uses these ideas extensively in its subsequent development 
of thermodynamics and kinetics. For example, from the Contents, you will see that 
chapters titled The Boltzmann Factor and Partition Functions (Chapter 17) and Partition 
Functions and Ideal Gases (Chapter 18) come before The First Law of Thermodynamics 
(Chapter 19). This approach is pedagogically sound because we treat only energy, 
pressure, and heat capacity (all mechanical properties that the students have dealt 
with in their general chemistry and physics courses) in Chapters 17 and 18. This 
approach allows us to immediately give a molecular interpretation to the three laws of 
thermodynamics and to many thermodynamic relations. The molecular interpretation 
of entropy is an obvious example (an introduction to entropy without a molecular 
interpretation is strictly for purists and not for the faint of heart), but even the concepts 
of work and heat in the First Law of Thermodynamics have a nice, physical, molecular 
interpretation in terms of energy levels and their populations. 

Research advances during the past few decades have changed the focus of physical 
chemistry and therefore should affect the topics covered in a modern physical chemistry 
course. To introduce the type of physical chemical research that is currently being done, 
we have included chapters such as Computational Quantum Chemistry (Chapter 11), 
Group Theory (Chapter 12), Nuclear Magnetic Resonance Spectroscopy (Chapter 14), 
Lasers, Laser Spectroscopy, and Photochemistry (Chapter 15), and Gas-Phase Reaction 
Dynamics (Chapter 30). The inclusion of new topics necessitated a rather large book, 
but one of the standard physical chemistry texts fifty years ago was Glasstone's Textbook 

of Physical Chemistry, which was considerably larger. 
Keeping in mind that our purpose is to teach the next generation of chemists, 

the quantities, units, and symbols used in this text are those presented in the 1993 
International Union of Pure and Applied Chemistry (IUPAC) publication Quantities, 
Units, and Symbols in Physical Chemistry by Ian Mills et al. (Blackwell Scientific 
Publications, Oxford). Our decision to follow the IUPAC recommendations means 
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that some of the symbols, units, and standard states presented in this book may differ 
from those used in the literature and older textbooks and may be unfamiliar to some 
instructors. In some instances, we took some time ourselves to come to grips with the 
new notation and units, but it turned out that, indeed, there was an underlying logic to 
their use, and we found the effort to become facile with them worthwhile. 

A unique feature of this text is the introduction of ten so-called MathChapters, 
which are short reviews of the mathematical topics used in subsequent chapters. Some 
of the topics covered that should be familiar to most students are complex num­
bers, vectors, spherical coordinates, determinants, partial derivatives, and Taylor and 
Maclaurin series. Some topics that may be new are probability, matrices (used only in 
the chapter on group theory), nUlnerical methods, and binomial coefficients. In each 
case, however, the discussions are brief, elementary, and self-contained. After read­
ing each MathChapter and doing the problems, a student should be able to focus on 
the following physical chemical material rather than having to cope with the physical 
chemistry and the mathematics simultaneously. We believe that this feature greatly 

enhances the pedagogy of our text. 
Today's students are comfortable with computers. In the past few years, we have 

seen homework assignments turned in for which students used programs such as Math­
Cad and Mathematica to solve problems, rather than pencil and paper. Data obtained in 
laboratory courses are now graphed and fit to functions using programs such as Excel, 
Lotus 123, and Kaleidagraph. Almost all students have access to personal computers, 
and a modern course in the physical sciences should encourage students to take ad­
vantage of these tremendous resources. As a result, we have written a number of our 
problems with the use of computers in mind. For example, MathChapter G introduces 
the Newton-Raphson method for solving higher-order algebraic equations and tran­
scedental equations numerically. We see no reason nowadays to limit calculations in 

a physical chemistry course to solving quadratic equations and other artificial exam­
ples. Students should graph data, explore expressions that fit experimental data, and 
plot functions that describe physical behavior. The understanding of physical concepts 
is greatly enhanced by exploring the properties of real data. Such exercises remove 
the abstractness of many theories and enable students to appreciate the mathematics 
of physical chemistry so that they can describe and predict the physical behavior of 
chemical systems. 



Our Web Site 

You can visit the Web site for our book by visiting the University Science Books 
website at http://www.uscibooks.com. We have posted various types of supplementary 
material on this site. For example, the figures (currently in .GIF format only) and the 
numerical tables in the book can be downloaded from the site. In addition, we are 
currently preparing a series of lecture slides to accompany the book. We will also 
be providing downloadable tables of spectroscopic, thermodynamic, and kinetic data. 
Instructors can use these data to prepare lecture presentations of the applications of the 
theoretical ideas; using programs such as Kaleidagraph and Mathematica, students can 
use these data to compare the predictions of equations derived in the text with real data 
for chemical systems. We encourage both students and instructors to send suggestions, 
comments, and (the inevitable) errors to us using the entry form posted on the site. 

. 
XXI 





Acknowledgments 

Many people have contributed to the writing and production of this book. We thank 
our colleagues Paul Barbara, James T. Hynes, Veronica Vaida, John Crowell, Andy 
Kummel, Robert Continetti, Amit Sinha, John Weare, Kim Baldridge, Jack Kyte, Bill 
Trogler, and Jim Ely for stimulating discussions on the topics that should be included 
in a modern physical chemistry course, and our students Bary Bolding, Peijun Cong, 
Robert Dunn, Scott Feller, Susan Forest, Jeff Greathouse, Kerry Hanson, B ulang Li, 
and Sunney Xie for reading portions of the manuscript and making many helpful 
suggestions. We are especially indebted to our superb reviewers Merv Hanson, John 
Frederick, Anne Meyers, George Shields, and Peter Rock, who read and commented 
on the entire manuscript; to Heather Cox, who also read the entire manuscript, made 
numerous insightful suggestions, and did every problem in the course of preparing the 
accompanying Solution Manual; to Carole McQuarrie, who spent many hours in the 
library and using the internet looking up experimental data and biographical data to 
write all the biographical sketches; and to Kenneth Pitzer and Karma Beal for supplying 
us with some critical biographical data. We also thank Susanna Tadlock for coordinating 
the entire project, Bob Ishi for designing what we think is a beautiful-looking book, 
Jane Ellis for competently dealing with many of the production details, John Choi for 
creatively handling all the artwork, Ann McGuire for a very helpful copyediting of 
the manuscript, and our publisher, Bruce Armbruster, for encouraging us to write our 
own book and for being an exemplary publisher and a good friend. Last, we thank our 
wives, Carole and Diane, both of whom are chemists, for being great colleagues as 
well as great wives. 

XXIII 





PHYSICAL CH EMISTRY 
A MOLECULAR APPROACH 



Max Planck was born in Kiel, Germany (then Prussia) on April 23, 1858, and died in 1948. 
He showed early talent in both music and science. He received his Ph.D. in theoretical physics 
in 1879 at the University of Munich for his dissertation on the second law of thermodynamics. 
He joined the faculty of the University of Kiel in 1885, and in 1888 he was appointed director 
of the Insti tute of Theoretical Physics, which was formed for him at the University of Berlin, 
where he remained until 1926. His application of thermodynamics to physical chemistry won 
him an early international reputation. Planck was president of the Kai ser Wilhelm Society, 
later renamed the Max Planck Society, from 1930 until 1937, when he was forced to retire 
by the Nazi govern ment. Planck is known as the father of the quantum theory because 
of his theoretical work on blackbody radiation at the end of the I 890s, during which time 
he introduced a quantum hypothesis to achieve agreement between his theoretical equations 
and experimental data. He maintained his interest in thermodynamics throughout his long 
career in physics. Planck was awarded the Nobel Prize in physics in 1918 "in recognition of 
services he rendered to the advancement of physics by his discovery of energy quanta." Planck's 
personal life was clouded by tragedy. His two daughters died in childbirth, one son died in 
World War I, and another son was executed in World War II for hi s part in the assassination 
attempt on Hitler in 1944. 



CHAPTER 

The Dawn of the Quantum Theory 

Toward the end of the nineteenth century, many scientists believed that all the fun­
damental discoveries of science had been made and little remained but to clear up a 
few minor problems and to improve experimental methods to measure physical results 
to a greater number of decimal places. This attitude was somewhat justified by the 
great advances that had been made up to that time. Chemists had finally solved the 
seemingly insurmountable problem of assigning a self-consistent set of atomic masses 
to the elements. Stanislao Cannizzaro's concept of the molecule, while initially contro­
versial, was then widely accepted. The great work of Dmitri Mendeleev had resulted 
in a periodic table of the elements, although the underlying reasons that such periodic 
behavior occurred in nature were not understood. Friedrich Kekule had solved the 
great controversy concerning the structure of benzene. The fundamentals of chemical 
reactions had been elucidated by Svante Arrhenius, and the remaining work seemed to 
consist primarily of cataloging the various types of chemical reactions. 

In the related field of physics, Newtonian mechanics had been extended by Comte 
Joseph Lagrange and Sir William Hamilton. The resulting theory was applied to plan­
etary motion and could also explain other complicated natural phenomena such as 
elasticity and hydrodynamics. Count Rumford and lames louIe had demonstrated the 
equivalence of heat and work, and investigations by Sadi Carnot resulted in the for­
mulation of what is now entropy and the second law of thermodynamics. This work 
was followed by Josiah Gibbs' complete development of the field of thermodynamics. 
Shortly, scientists would discover that the laws of physics were also relevant to the un­
derstanding of chemical systems. The interface between these two seemingly unrelated 
disciplines formed the modern field of physical chemistry, the topic of this book. In 
fact, Gibbs's treatment of thermodynamics is so important to chemistry that it is taught 
in a form that is essentially unchanged from Gibbs's original formulation. 

The related fields of optics and electromagnetic theory were undergoing similar 
maturation. The nineteenth century witnessed a continuing controversy as to whether 
light was wavelike or particlelike. Many diverse and important observations were 
unified by lames Clerk Maxwell in a series of deceptively simple-looking equations 1 
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that bear his name. Not only did Maxwell's predictions of the electromagnetic behavior 
of light unify the fields of optics with electricity and magnetism, but their subsequent 
experimental demonstration by Heinrich Hertz in 1887 appeared to finally demonstrate 
that light was wavelike. The implications of these fields to chemistry would not be 
appreciated for several decades but are now important aspects of the discipline of 
physical chemistry, particularly in spectroscopy. 

The body of these accomplishments in physics is considered the development 
of what we now call classical physics. Little did scientists realize in that justifiably 
heady era of success that the fundamental tenets of how the physical world works 
were to be shortly overturned. Fantastic discoveries were about to revolutionize not 
only physics, chemistry, biology, and engineering but would have significant effects 
on technology and politics as well. The early twentieth century saw the birth of the 
theory of relativity and quantum mechanics. The first, due to the work of Albert Ein­
stein alone, completely altered scientist's ideas of space and time and was an extension 
of the classical ideas to include high velocities and astronomical distances. Quantum 
mechanics, the extension of classical ideas into the behavior of subatomic, atomic, 
and molecular species, on the other hand, resulted from the efforts of many creative 
scientists over several decades. To date, the effect of relativity on chemical systems 
has been limited. Although it is important in understanding electronic properties of 
heavy atoms, it does not play much of a role in molecular structure and reactivity 
and so is not generally taught in physical chemistry. Quantum mechanics, however, 
forms the foundation upon which all of chemistry is built. Our current understanding 
of atomic structure and molecular bonding is cast in terms of the fundamental prin­
ciples of quantum mechanics and no understanding of chemical systems is possible 
without knowing the basics of this current theory of matter. For this reason, we begin 
this book with several chapters that focus on the fundamental principles of quantum 
mechanics. We then follow with a discussion of chemical bonding and spectroscopy, 
which clearly demonstrate the influence that quantum mechanics has had on the field 
of chemistry. 

Great changes in science are spurred by observations and new creative ideas. Let 
us go back to the complacent final years of the nineteenth century to see just what were 
the events that so shook the world of science. 

1-1. Blackbody Radiation Could Not Be Explained 

by Classical Physics 

The series of experiments that revolutionized the concepts of physics had to do with 
the radiation given off by material bodies when they are heated. We all know, for 
instance, that when the burner of an electric stove is heated, it first turns a dull red 
and progressively becomes redder as the temperature increases. We also know that 
as a body is heated even further, the radiation becomes white and then blue as its 
temperature continues to increase. Thus, we see that there is a continual shift of the 
color of a heated body from red through white to blue as the body is heated to higher 
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temperatures. In terms of frequency, the radiation emitted goes from a lower frequency 
to a higher frequency as the temperature increases, because red is in a lower frequency 
region of the spectrum than is blue. The exact frequency spectrum emitted by the 
body depends on the particular body itself, but an ideal body, which absorbs and emits 
all frequencies, is called a blackbody and serves as an idealization for any radiating 
material. The radiation emitted by a blackbody is called blackbody radiation. 

A plot of the intensity of blackbody radiation versus frequency for several temper­
atures is given in Figure 1.1. Many theoretical physicists tried to derive expressions 
consistent with these experimental curves of intensity versus frequency, but they were 
all unsuccessful. In fact, the expression that is derived according to the laws of nine­
teenth century physics is 

8nk T 
dp(v, T) = p (T)dv =3

B v2dv 
v c' 

(1.1 ) 

where Pv (T)dv is the radiant energy density between the frequencies v and v + dv and 
has units of joules per cubic meter (J.m-3

). In Equation 1.1, T is the absolute temper­
ature, and c is the speed of light. The quantity kB is called the Boltzmann constant and 
is equal to the molar gas constant R divided by the Avogadro constant (formerly called 
Avogadro's number). The units of kB are J. K- 1 ·particle 1, but particle- J is usually not 
expressed. (Another case is the Avogadro constant, 6.022 x 1023 particle· mol-l , which 
we will write as 6.022 x 1023 mol-I; the unit "particle" is not expressed.) Equation 1.1 
came from the work of Lord Rayleigh and J.H. Jeans and is called the Rayleigh-Jeans 

law. The dashed line in Figure 1.1 shows the prediction of the Rayleigh-Jeans law. 
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Spectral distribution of the intensity of blackbody radiation as a function of frequency for 
several temperatures. The intensity is given in arbitrary units. The dashed line is the prediction 
of classical physics. As the temperature increases, the maximum shifts to higher frequencies 
and the total radiated energy (the area under each curve) increases significantly. Note that the 
horizontal axis is labeled by 1)/1014 

S-I . This notation means that the dimensionless numbers 
on that axis are frequencies divided by 1014 

S 1. We shall use this notation to label columns in 
tables and axes in figures because of its unambiguous nature and algebraic convenience. 
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4 Chapter 1 / The Dawn of the Quantum Theory 

Note that the Rayleigh-Jeans law reproduces the experimental data at low frequencies. 
At high frequencies, however, the Rayleigh-Jeans law predicts that the radiant energy 
density diverges as v2

• Because the frequency increases as the radiation enters the ul­
traviolet region, this divergence was termed the ultraviolet catastrophe, a phenomenon 
that classical physics could not explain theoretically. This was the first such failure 
to explain an important naturally occuring phenomenon and therefore is of great his­
torical interest. Rayleigh and Jeans did not simply make a mistake or misapply some 
of the ideas of physics; many other people reproduced the equation of Ray leigh and 
Jeans, showing that this equation was correct according to the physics of the time. This 
result was somewhat disconcerting and many people struggled to find a theoretical 
explanation of blackbody radiation. 

1-2. Planck Used a Quantum Hypothesis to Derive the Blackbody 
Radiation Law 

The first person to offer a successful explanation of blackbody radiation was the 
German physicist Max Planck in 1900. Like Rayleigh and Jeans before him, Planck 
assumed that the radiation emitted by the blackbody was caused by the oscillations 
of the electrons in the constituent particles of the material body. These electrons were 
pictured as oscillating in an atom much like electrons oscillate in an antenna to give 
off radio waves. In these "atomic antennae", however, the oscillations occur at a much 
higher frequency; hence, we find frequencies in the visible, infrared, and ultraviolet 
regions rather than in the radio-wave region of the spectrum. Implicit in the derivation 
of Rayleigh and Jeans is the assumption that the energies of the electronic oscillators 
responsible for the emission of the radiation could have any value whatsoever. This 
assumption is one of the basic assumptions of classical physics. In classical physics, 
the variables that represent observables (such as position, momentum, and energy) can 
take on a continuum of values. Planck had the great insight to realize that he had to 
break away from this mode of thinking to derive an expression that would reproduce 
experimental data such as those shown in Figure 1.1. He made the revolutionary 
assumption that the energies of the oscillators were discrete and had to be proportional 
to an integral multiple of the frequency or, in equation form, that E == nh v, where E is 
the energy of an oscillator, n is an integer, h is a proportionality constant, and v is the 
frequency. Using this quantization of energy and statistical thermodynamic ideas that 
we will cover in Chapter 17, Planck derived the equation 

87Th v3dv 
dp(v T) == p (T)dv == ----

, 1'. c3 ehv/kBT - 1 ( 1.2) 

All the symbols except h in Equation 1.2 have the same meaning as in Equation 1.1. The 
only undetermined constant in Equation 1.2 is h. Planck showed that this equation gives 
excellent agreement with the experimental data for all frequencies and temperatures 
if h has the value 6.626 x 10-34 joule· seconds (J. s). This constant is now one of the 
most famous and fundamental constants of physics and is called the Planck constant. 



1-2. Planck Used a Quantum Hypothesis to Derive the Blackbody Radiation Law 

Equation 1.2 is known as the Planck distribution law for blackbody radiation. For 
small frequencies, Equations 1.1 and 1.2 become identical (Problem 1-4), but the 
Planck distribution does not diverge at large frequencies and, in fact, looks like the 
curves in Figure 1.1. 

EXAMPLE 1-1 
Show that Pv (T)dv in both Equations 1.1 and 1.2 has units of energy per unit volume, 
J. m -3. 

SOL UTI 0 N: The units of Tare K, of kB are J . K- 1 
, of hare J . s, of v and d lJ are s I 

and of care m· S-l . Therefore, for the Rayleigh-Jeans law (Equation l.1), 

8nk T , 
dp(v, T) = p,(T)dv = ~ lJ~dv 

~ c· 

For the Planck distribution (Equation 1.2), 

8nh v3dv 
dp(v, T) = p JT)dv = ') I Ilk T 

I c' e 7l, B-1 

(J'S)(S-I)3(S I) _') 
r-....; = J.m . 

(m·s- I )3 

Thus, we see that Pv (T)dv, the radiant energy density has units of energy per unit 
volume. 

Equation 1.2 expresses the Planck distribution law in terms of frequency. Because 
wavelength (A) and frequency (v) are related by A v == c, then d v == - cd A / A 2 , and we 
can express the Planck distribution law in terms of wavelength rather than frequency 
(Problem 1-10): 

8nhc dA 
dp(A, T) == p, (T)dA == ------

A A 5 ehc/),k B T - 1 ( 1.3) 

The quantity p)c (T)dA is the radiant energy density between A and A + dA. The intensity 
corresponding to Equation 1.3 is plotted in Figure 1.2 for several values of T. 

We can use Equation 1.3 to justify an empirical relationship known as the Wien 
displacement law. The Wien displacement law says that if Amax is the wavelength at 
which PA (T) is a maximum, then 

A T == 2.90 X 10-3 m·K max (1.4 ) 

By differentiating PA CT) with respect to A, we can show (Problem 1-5) that 

he 
A T==---

max 4.965k
B 

( 1.5) 
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FIG U R E 1.2 
The distribution of the intensity of the radiation emitted by a blackbody versus wavelength for 
various temperatures. As the ten1perature increases, the total radiation emitted (the area under 
the curve) increases. 

in accord with the Wein displacement law. Using the modern values of h, c, and kB given 
inside the front cover, we obtain 2.899 x 10 3 m. K for the right side of Equation 1.5, 
in excellent agreement with the experimental value given in Equation 1.4. 

The theory of blackbody radiation is used regularly in astronomy to estimate the 
surface temperatures of stars. Figure 1.3 shows the electromagnetic spectrum of the sun 

measured at the earth's upper atmosphere. A comparison of Figure 1.3 with Figure 1.2 

suggests that the solar spectrum can be described by a blackbody at approximately 

6000 K. If we estimate Arnax from Figure 1.3 to be 500 nm, then the Wein displacement 
law (Equation 1.4) gives the temperature of the surface of the sun to be 

2.90 x 10 3 m·K 
T == == 5800 K 

500 x 10~~9 m 

The star Sirius, which appears blue, has a surface temperature of about II 000 K (cf. 

Problem 1-7). 
Certainly Planck's derivation of the blackbody distribution law was an impres­

sive feat. Nevertheless, Planck's derivation and, in particular, his assumption that the 

energies of the oscillators have to be an integral multiple of h 1) was not accepted by 

most scientists at the time and was considered simply an arbitrary derivation. Most 

believed that in time a satisfactory derivation would be found that obeyed the laws of 

classical physics. In a sense, Planck's derivation was little more than a curiosity. Just 

a few years later, howevec in 1905, Einstein used the very same idea to explain the 

photoelectric effect. 
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The electromagnetic spectrum of the sun as measured in the upper atmosphere of the earth. A 
comparison of this figure with Figure 1.2 shows that the sun's surface radiates as a blackbody 
at a temperature of about 6000 K. 

1-3. Einstein Explained the Photoelectric Effect with 
a Quantum Hypothesis 

In 1886 and 1887, while carrying out the experiments that supported Maxwell's theory 
of the electromagnetic nature of light, the German physicist Heinrich Hertz discovered 
that ultraviolet light causes electrons to be emitted from a metallic surface. The ejection 
of electrons from the surface of a metal by radiation is called the photoelectric effect. 
Two experimental observations of the photoelectric effect are in stark contrast with 
the classical wave theory of light. According to classical physics, electromagnetic 
radiation is an electric field oscillating perpendicular to its direction of propagation, 
and the intensity of the radiation is proportional to the square of the amplitude of 
the electric field. As the intensity increases, so does the amplitude of the oscillating 
electric field. The electrons at the surface of the metal should oscillate along with the 
field and so, as the intensity (amplitude) increases, the electrons oscillate more violently 
and eventually break away from the surface with a kinetic energy that depends on the 
amplitude (intensity) of the field. This nice classical picture is in complete disagreement 
with the experimental observations. Experimentally, the kinetic energy of the ejected 
electrons is independent of the intensity of the incident radiation. Furthermore, the 
classical picture predicts that the photoelectric effect should occur for any frequency 
of light as long as the intensity is sufficiently high. The experimental fact, however, 
is that there is a threshold frequency, vo' characteristic of the metallic surface, below 
which no electrons are ejected, regardless of the intensity of the radiation. Above vo' 
the kinetic energy of the ejected electrons varies linearly with the frequency v. These 
observations served as an embarrassing contradiction of classical theory. 

7 



8 Chapter 1 / The Dawn of the Quantum Theory 

To explain these results, Einstein used Planck's hypothesis but extended it in 
an important way. Recall that Planck had applied his energy quantization concept, 
E == nh v or ~ E == h v, to the emission and absorption mechanism of the atomic 
electronic oscillators. Planck believed that once the light energy was emitted, it behaved 
like a classical wave. Einstein proposed instead that the radiation itself existed as small 
packets of energy, E == hv, now known as photons. Using a simple conservation-of­
energy argument, Einstein showed that the kinetic energy (KE) of an ejected electron 
is equal to the energy of the incident photon (h v) minus the minimum energy required 
to remove an electron from the surface of the particular metal (cp). In an equation, 

1 2 
KE == -mv == hv - cp 

2 
(1.6) 

where cp, called the work function of the metal, is analogous to an ionization energy 
of an isolated atom. The left side of Equation 1.6 cannot be negative, so Equation 1.6 
predicts that h v > cp. The minimum frequency that will eject an electron is just the 
frequency required to overcome the work function of the metal, thus we see that there 

is a threshold frequency vo' given by 

(1.7) 

Using Equations 1.6 and 1.7, we can write 

KE==hv-hvo (1.8) 

Equation 1.8 shows that a plot of KE versus v should be linear and that the slope of the 
line should be h, in complete agreement with the data in Figure 1.4. 
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Fie U R E 1.4 
The kinetic energy of electrons ejected from the surface of sodium metal versus the frequency of 
the incident ultraviolet radiation. The threshold frequency here is 4.40 x 1014 Hz (1 Hz == 1 S-I). 



1-3. Einstein Explained the Photoelectric Effect with a Quantum Hypothesis 

Before we can discuss Equation 1.8 numerically, we must consider the units 
involved. The work function ¢ is customarily expressed in units of electron volts (eV). 
One electron volt is the energy picked up by a particle with the same charge as an 
electron (or a proton) when it falls through a potential drop of one volt. If you recall 
that (1 coulomb) x (1 volt) = 1 joule and use the fact that the charge on a proton is 
1.602 x 10- 19 C, then 

EXAMPLE 1-2 

1 eV == (1.602 x 10- 19 C)(1 V) 

== 1.602 x 10- 19 J 

Given that the work function for sodium metal is 1.82 e Y, calculate the threshold 

frequency va for sodium. 

SOL UTI 0 N: We must first convert ¢ from electron volts to joules. 

¢ == 1.82 eV == (1.82 eV)(1.602 x 10- 19 J·ey- I
) 

== 2.92 x 10- 19 J 

Using Equation 1.7, we have 

2.92 X 10- 19 J 
v == ------------

() 6.626 X 10-34 J·s 

== 4.40 x 10 14 Hz 

In the last line here, we have introduced the unit hertz (Hz) for per second (s I). 

EXAMPLE 1-3 
When lithium is irradiated with light, the kinetic energy of the ejected electrons is 

2.935 x 10- 19 J for A == 300.0 nm and 1.280 x 10- 19 J for A == 400.0 nm. Calculate 

(a) the Planck constant, (b) the threshold frequency, and (c) the work function of 

lithium from these data. 

SOLUTION: 
(a) From Equation 1.8, we write 

v..,) == he ( 1 
- A 

1 ~J 
or 

1.655 X 10- 19 J == h(2.998 X 108 m·s-- I
) ( 1 9 - 1 9 ) 

300.0 x 10- m 400.0 x 10- m 

9 



10 Chapter 1 / The Dawn of the Quantum Theory 

from which we obtain 

1.655 X 10- 19 J 
h == == 6.625 X 10-34 J·s 

2.498 X 10 14 S-I 

(b) Using the A == 300.0 nm data, we have 

-19 he 
2.935 x 10 J== 9 -hvo 

300.0 x 10- m 

from which we find that Vo == 5.564 x 1014 Hz 

(c) Using Equation 1.7, we have 

¢ == hvo == 3.687 X 10- 19 J == 2.301 eV 

Einstein obtained a value of h in close agreement with Planck's value deduced from 
the blackbody radiation formula. This surely was a fantastic result because the whole 
business of energy quantization was quite mysterious and not well accepted by the 
scientific community of the day. Nevertheless, in two very different sets of experiments, 
blackbody radiation and the photoelectric effect, the very same quantization constant h, 
had arisen naturally. Scientists realized that perhaps there was something to all this 
after all. 

1-4. The Hydrogen Atomic Spectrum Consists of Several Series 
of Lines 

For some time scientists had known that every atom, when subjected to high tem­
peratures or an electrical discharge, emits electromagnetic radiation of characteristic 
frequencies. In other words, each atom has a characteristic emission spectrum. Be­
cause the emission spectra of atoms consist of only certain discrete frequencies, they 
are called line spectra. Hydrogen, the lightest and simplest atom, has the simplest 
spectrum. 

Figure 1.5 shows the part of the hydrogen atom emission spectrum that occurs in 
the visible and near ultraviolet region. 

Because atomic spectra are characteristic of the atoms involved, it is reasonable to 
suspect that the spectrum depends on the electron distribution in the atom. A detailed 
analysis of the hydrogen atomic spectrum turned out to be a major step in the elucidation 
of the electronic structure of atoms. For many years, scientists had tried to find a pattern 
in the wavelengths or frequencies of the lines in the hydrogen atomic spectrum. Finally, 
in 1885, an amateur Swiss scientist, Johann Balmer, showed that a plot of the frequency 
of the lines versus 1/ n 2 (n == 3, 4, 5, ... ) is linear, as shown in Figure 1.6. In particular, 
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Fie U R E 1.5 
Emission spectrum of the hydrogen atom in the visible and the near ultraviolet region showing 
that the emission spectrum of atomic hydrogen is a line spectrum. 
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Fie U R E 1.6 
A plot of frequency versus 1 jn 2 (n = 3, 4, 5, ... ) for the series of lines of the hydrogen atom 
spectrum that occurs in the visible and near ultraviolet regions. The actual spectrum is shown 
in Figure 1.5. The linear nature of this plot leads directly to Equation 1.9. 

Balmer showed that the frequencies of the emission lines in the visible region of the 
spectrum could be described by the equation 

where n == 3, 4, 5, .... This equation is customarily written in terms of the quantity 1/ A 
instead of v. Reciprocal wavelength is called a wavenumber, whose SI units are m-I. It 
turns out, however, that the use of the non-SI unit cm -I is so prevalent in spectroscopy 

1 1 



12 Chapter 1 / The Dawn of the Quantum Theory 

that we will use cm -\ in most of this book. Thus if we divide the previous equation 
by c and factor a 4 out of the two terms in parentheses, then we have 

_ ( 1 
v == 109680 22 n == 3, 4, ... ( 1.9) 

where v == 1/ A == 1)/ c. This equation is called Babner's formula. 

EXAMPLE 1-4 
U sing Balmer's formula, calculate the wavelengths of the first few lines in the visible 

region of the hydrogen atomic spectrum and compare them to the experimental values 
given in Figure 1.5. 

SOL UTI 0 N: The first line is obtained by setting n = 3, in which case we have 

v = 109680 (-; - 12) cm- 1 

2 3 

= 1.523 x 104 cm- 1 

and 

A = 6.565 X 10-5 cm = 656.5 nm 

The next line is obtained by setting n = 4, and so 

lJ = 109 680 - - - cm _ ( 1 1 ) 1 

22 42 

= 2.056 X 104 cm 1 

and 

A = 4.863 X 10-5 cm = 486.3 nm 

Thus, we see that the agreement with the experimental data (Figure 1.5) is excellent. 

Note that Equation 1.9 predicts a series of lines as n takes on the values 3, 4, 5, 
This series of lines, the ones occurring in the visible and near ultraviolet regions of the 
hydrogen atomic spectrum and predicted by Balmer's formula, is called the Balmer 
series. The Balmer series is shown in Figure 1.5. Note also that Equation 1.9 predicts 
that the lines in the hydrogen atomic spectrum bunch up as n increases. As n increases, 
1/ n2 decreases and eventually we can ignore this term compared with the ~ term and 
so in the limit n ----* 00 we have 

v >109680 (~) em I = 2.742 X 104 em I 

or A == 364.7 nm, in excellent agreement with the data in Figure 1.5. This value is 
essentially that for the last line in the Balmer series and is called the series limit. 



The Balmer series occurs in the visible and near ultraviolet regions. The hydrogen 
atomic spectrum has lines in other regions; in fact, series of lines similar to the Balmer 
series appear in the ultraviolet and in the infrared region (cf. Figure 1.7). 

1-5. The Rydberg Formula Accounts for All the Lines in the Hydrogen 
Atomic Spectrum 

The Swedish spectroscopist Johannes Rydberg accounted for all the lines in the hydro­
gen atomic spectrum by generalizing the Balmer formula to 

_ 1. ( 1 1 ) -1 
V == - == 109 680 - - - cm 

A n2 n 2 
I 2 

(1.10) 

where both n 1 and n2 are integers but n2 is always greater than n I. Equation 1.10 is 
called the Rydberg formula. Note that the Balmer series is recovered if we let n l == 2. 
The other series are obtained by letting n 1 be 1, 3, 4, .... The names associated with 
these various series are given in Figure 1.7 and Table 1.1. The constant in Equation 1.10 
is called the Rydberg constant and Equation 1.10 is commonly written as 

(1.11) 

where RH is the Rydberg constant. The modern value of the Rydberg constant is 
109 677.581 em -}; it is one of the most accurately known physical constants. 

a E a E E 
E ~ 

c c C t:: 
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C"-l \0 . ...- ~ \0 0 r--...- C"-l \0 if) C"-l 00 
0\ ~ ~ \.0 00 ~ 
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----------------..... ,.. ..,......-----
Ultra violet Visible Infrared 

FIG U R E 1.7 
A schematic representation of the various series in the hydrogen atomic spectrum. The Lyman 
series lies in the ultraviolet region; the Balmer lies in the visible region; and the Paschen and 
Bracket series lie in the infrared region (see Table 1.1). 
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TABLE 1.1 
The first four series of lines making up the hydrogen atomic spectrum. 
The term "near infrared" denotes the part of the infrared region of the 
spectrum that is near the visible region. 

Series name 

Lyman 

Balmer 

Paschen 

Bracket 

n
l 

1 

2 

3 

4 

n2 Region of spectrum 

2, 3, 4, Ultraviolet 

3, 4, 5, Visible 

4, 5, 6, Near infrared 

5, 6, 7, Infrared 

EXAMPLE 1-5 
Calculate the wavelength of the second line in the Paschen series, and show that this 

line lies in the near infrared, that is, in the infrared region near the visible. 

SOL UTI 0 N: In the Paschen series, n I == 3 and n 2 == 4, 5, 6, ... according to 
Table 1.1. Thus, the second line in the Paschen series is given by setting n 1 == 3 and 

n
2 

== 5 in Equation 1.11: 

and 

iJ = 109677.57 el2 - ;2) em-I 
== 7.799 X 103 cm- I 

A == 1.282 X 10-4 cm == 1282 nm 

which is in the near infrared region. 

The fact that the formula describing the hydrogen spectrum is in a sense controlled 
by two integers is truly amazing. Why should a hydrogen atom care about our integers? 
We will see that integers playa special role in quantum theory. 

The spectra of other atoms were also observed to consist of series of lines, and in 
the l890s Rydberg found approximate empirical laws for many of them. The empirical 
laws for other atoms were generally more involved than Equation 1.11, but the really 
interesting feature is that all the observed lines could be expressed as the difference 
between terms such as those in Equation 1.11. This feature was known as the Ritz 
combination rule, and we will see that it follows immediately from our modern view 
of atomic structure. At the time, however, it was just an empirical rule waiting for a 
theoretical explanation. 



'1-6. Louis de Broglie Postulated That Matter Has Wavelike Properties 

~r\lthough we have an intriguing partial insight into the electronic structure of atoms, 
something is missing. To explore this further, let us go back to a discussion of the 
nature of light. 

Scientists have always had trouble describing the nature of light. In many exper­
iments light shows a definite wavelike character, but in many others light seems to 
behave as a stream of photons. The dispersion of white light into its spectrum by a 
prism is an example of the first type of experiment, and the photoelectric effect is an 
example of the second. Because light appears wavelike in some instances and particle­
like in others, this disparity is referred to as the wave-particle duality of light. In 1924, 
a young French scientist named Louis de Broglie reasoned that if light can display 
this wave-particle duality, then matter, which certainly appears particlelike, might also 
display wavelike properties under certain conditions. This proposal is rather strange at 
first, but it does suggest a nice symmetry in nature. Certainly if light can be particlelike 
at times, why should matter not be wavelike at times? 

de Broglie was able to put his idea into a quantitative scheme. Einstein had shown 
from relativity theory that the wavelength, A, and the momentum, p, of a photon are 
related by 

h 
A == -

P 
(1.12) 

de Broglie argued that both light and matter obey this equation. Because the momentum 
of a particle is given by m v, this equation predicts that a particle of mass m moving 
with a velocity v will have a de Broglie wavelength given by A == h/mv. 

EXAMPLE 1-6 
Calculate the de Broglie wavelength for a baseball (5.0 oz) traveling at 90 mph. 

SOL UTI 0 N: Five ounces corresponds to 

(
lIb) (0.454 kg) In == (5.0oz) == 0.14kg 

160z lIb 

and 90 mph corresponds to 

( 
90 mi) (1610 m) ( I hr ) I V == == 40 m-s 
1 hr I mi 3600 s 

The momentum of the baseball is 

p == mv == (0.14 kg) (40 ill'S-
I

) == 5.6 kg.m·s- t 
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The de Broglie wavelength is 

h 6.626 x 10-34 J. S 34 
A == - == I == 1.2 x 10-' m 

p 5.6 kg·m·s-

a ridiculously small wavelength. 

We see from Example 1.6 that the de Broglie wavelength of the baseball is so small 
as to be completely undetectable and of no practical consequence. The reason is the 
large value of m. What if we calculate the de Broglie wavelength of an electron instead 
of a baseball? 

EXAMPLE 1-7 
Calculate the de Broglie wavelength of an electron traveling at 1.00% of the speed of 
light. 

SOL UTI 0 N: The mass of an electron is 9.109 x 10-31 kg. One percent of the speed 
of light is 

v == (0.0100)(2.998 X 108 m·s I) == 2.998 X 106 m.s 1 

The momentum of the electron is given by 

p == me v == (9.109 x 10-31 kg)(2.998 X 106 m.s I) 

== 2.73 X 10-24 kg.m.s 1 

The de Broglie wavelength of this electron is 

h 6.626 X 10-34 J·s 
A--- ==2.43x10- lO m 

- p - 2.73 X 10-24 kg·m·s- I 

== 243 pm 

This wavelength is of atomic dimensions. 

The wavelength of the electron calculated in Example 1-7 corresponds to the 
wavelength of X-rays. Thus, although Equation 1.12 is of no consequence for a macro­
scopic object such as a baseball, it predicts that electrons can be observed to act like 
X-rays. The wavelengths of some other moving objects are given in Table 1.2. 

1-7. de Broglie Waves Are Observed Experimentally 

When a beam of X rays is directed at a crystalline substance, the beam is scattered in a 
definite manner characteristic of the atomic structure of the crystalline substance. This 
phenomenon is called X-ray diffraction and occurs because the interatomic spacings in 



TAB l E 1.2 
The de Broglie wavelengths of various moving objects. 

Particle Mass/kg Speed/m·s- I Wavelength/pm 

Electron accelerated 

through 100 V 9.11 X 10- 31 5.9 X 106 120 

Electron accelerated 

through 10,000 V 9.29 X 10- 3 1 5.9 X 107 12 

a particle ejected 

from radium 6.68 x 10- 27 1.5 X 107 6.6 X 10- 3 

22-caliber rifle bullet 1.9 x 10- 3 3.2 X 102 1.1 X 10- 21 

Golf ball 0.045 30 4.9 x 10- 22 

the crystal are about the same as the wavelength of the X-rays. The X-ray diffraction 
pattern from aluminum foil is shown in Figure 1.8a. The X-rays scatter from the foil 
in rings of different diameters. The distances between the rings are determined by the 
interatomic spacing in the metal foil. Figure J.8b shows an electron diffraction pattern 
from aluminum foil that results when a beam of electrons is similarly directed. The 

(a) ( b) 

FIG U R E 1.8 

(a) The X-ray diffraction pattern of aluminum foil. (b) The electron diffraction pattern of 
aluminum foil. The similarity of these two patterns shows that electrons can behave like X-rays 
and display wavelike properties. 
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18 Chapter 1 / The Dawn of the Quantum Theory 

similarity of the two patterns shows that both X-rays and electrons do indeed behave 
analogously in these experiments. 

The wavelike property of electrons is used in electron microscopes. The wave­
lengths of the electrons can be controlled through an applied voltage, and the small 
de Broglie wavelengths attainable offer a more precise probe than an ordinary light 
microscope. In addition, in contrast to electromagnetic radiation of similar wavelengths 
(X-rays and ultraviolet), the electron beam can be readily focused by using electric and 
magnetic fields, generating sharper images. Electron microscopes are used routinely in 
chemistry and biology to investigate atomic and molecular structures. 

An interesting historical aside in the concept of the wave-particle duality of matter 
is that the first person to show that the electron was a subatomic particle was the English 
physicist Sir Joseph J. Thomson in 1895 and then his son Sir George P. Thomson was 
among the first to show experimentally in 1926 that the electron could act as a wave. 
The father won a Nobel Prize in 1906 for showing that the electron is a particle and the 
son won a Nobel Prize in 1937 for showing that it is a wave. 

1-8. The Bohr Theory of the Hydrogen Atom Can Be Used to Derive 
the Rydberg Formula 

In 1911, the Danish physicist Niels Bohr presented a theory of the hydrogen atom that 
gave a beautifully simple explanation of the hydrogen atomic spectrum. We present 
here a brief discussion of the Bohr theory. 

According to the nuclear model of the atom, the hydrogen atom can be pictured as 
a central, rather massive nucleus with one associated electron. Because the nucleus is 
so much more massive than the electron, we can consider the nucleus to be fixed and 
the electron to be revolving about it. The force holding the electron in a circular orbit 
is supplied by the coulombic force of attraction between the proton and the electron 
(Coulomb's law): 

where r is the radius of the orbit, e is the charge on the electron, and Eo == 8.85419 X 

10-12 C2
. N-1 ·m-2 is the permittivity of free space. The occurrence of the factor 4n Eo 

in Coulomb's law is a result of using SI units. The coulombic force is balanced by the 
centrifugal force (see Problem 1-41) 

(1.13) 
r 

where m and v are the mass and the speed of the electron, respectively. If we equate 
e 

the coulombic force and the centrifugal force, then we obtain 

} 

m v~ 
e (1.14) 
r 
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We are tacitly assuming here that the electron is revolving around the fixed nucleus 
in a circular orbit of radius r. Classically, however, because the electron is constantly 
being accelerated according to Equation 1.13 (Problem 1-41), it should emit electro­
magnetic radiation and lose energy. Consequently, classical physics predicts that an 
electron revolving around a nucleus will lose energy and spiral into the nucleus, and so 
a stable orbit for the electron is classically forbidden. Bohr's great contribution was to 
make two nonclassical assumptions. The first was to assume the existence of stationary 
electron orbits, in defiance of classical physics. He then specified these orbits by the 
equivalent of assuming that the de Broglie waves of the orbiting electron must "match" 
or be in phase, as the electron makes one complete revolution. Without such matching, 
cancellation of some amplitude occurs during each revolution, and the wave will dis­
appear (see Figure 1.9). For the wave pattern around an orbit to be stable, we are led 
to the condition that an integral number of complete wavelengths must fit around the 
circumference of the orbit. Because the circumference of a circle is 2n r, we have the 
quantum condition 

2n r == nA n == 1, 2, 3, ... ( 1.15) 

If we substitute the de Broglie wavelength formula (Equation 1.12) into Equation 1.15, 
we obtain 

or 

m vr == nh e 

nh 
m vr == -

e 2n 

n == 1, 2, 3, ... ( 1.16) 

where we introduce the symbol h for h /2n. The short-hand notation is introduced 
because h appears in many of the equations of quantum chemistry. The quantity on 
the left side of Equation 1.16 is the angular momentum of the electron. Thus, another 

(a) (b) (c) (d) 

Fie U R E 1.9 
An illustration of matching and mismatching de Broglie waves travelling in Bohr orbits. If the 
wavelengths of the de Broglie waves are such that an integral number of them fit around the 
circle, then they match after a complete revolution (a). If a wave does not match after a complete 
revolution (b), cancellation will result and the wave will progressively disappear (c, d). 
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interpretation of Equation 1.15, and one more commonly attributed to Bohr, is that the 
angular momentum of the electron about the proton must be quantized~ in other words, 
it can have only certain discrete values that satisfy Equation 1.16 for n == 1, 2, 3, .... 

If we solve Equation 1.16 for v and substitute it into Equation 1.14, we find that 
the radii of the orbits must satisfy 

'1 J 
£ h"'n­

r == _0 __ 

nm e2 
e 

( 1.17) 

Thus, we see that the radii of the allowed orbits, or Bohr orbits, are quantized. According 
to this picture, the electron can move around the nucleus in circular orbits only with 
radii given by Equation 1.17. The orbit with the smallest radius is the one with n == 1, 
for which 

4n(8.85419 x 10- 12 C2 .N- 1 .m-2)(1.055 x 10-34 
J'S)2 

r== 
(9.109 x 10 31 kg)(1.6022 X 10- 19 C)2 

== 5.292 X 10- 11 m == 52.92 pm ( 1.18) 

The radius of the first Bohr orbit is often denoted by Q o' 

The total energy of the electron in an atom is equal to the sum of its kinetic energy 
and potential energy. The potential energy of an electron and a proton separated by a 
distance r is given by Coulomb's law 

(1.19) 

The negative sign here indicates that the proton and electron attract each other~ their 
energy is less than it is when they are infinitely separated [V (00) == 0]. The total energy 
of the electron in a hydrogen atom is 

1 e2 

E == KE+ V(r) == -m v2 
- ---

2 e 4n£or 
( 1.20) 

Using Equation 1.14 to eliminate the me v 2 in the kinetic energy term, Equation 1.20 
becomes 

1 ( e
2

) e
2 

e
2 

E = 2 4JrEor - 4n£or == - 8n£or 
(1.21 ) 

The only allowed values of r are those given by Equation 1.17, and so if we substitute 
Equation 1.17 into Equation 1.21, we find that the only allowed energies are 

n == 1, 2, ... ( 1.22) 

The negative sign in this equation indicates that the energy states are bound states~ the 
energies given by Equation 1.22 are less than when the proton and electron are infinitely 
separated. Note that n == 1 in Equation 1.22 corresponds to the state of lowest energy. 
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This energy is called the ground-state energy. At ordinary temperatures, hydrogen 
atoms, as well as most other atoms and molecules, are found almost exclusively in 
their ground electronic states. The states of higher energy are called excited states and 
are generally unstable with respect to the ground state. An atom or a molecule in an 
excited state will usually relax back to the ground state and give off the energy as 
electromagnetic radiation. 

We can display the energies given by Equation 1.22 in an energy-level diagram 
such as that in Figure 1.10. Note that the energy levels merge as n ::-+ 00. Bohr assumed 
that the observed spectrum of the hydrogen atom is due to transitions from one allowed 
energy state to another, and using Equation 1.22, he predicted that the allowed energy 
differences are given by 

(1.23) 

n -E I crn- I 
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FIGURE 1.10 
The energy-level diagram for the hydrogen atom, showing how transitions from higher states 
into some particular state lead to the observed spectral series for hydrogen. 
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The equation .6. E == h 1) is called the Bohr frequency condition. Bohr assumed that as 
the electron falls from one level to another, the energy evolved is given off as a photon 
of energy E == h v. Figure 1.10 groups the various transitions that occur according to 
the final state into which the electron falls. We can see, then, that the various observed 
spectral series arise in a natural way from the Bohr model. The Lyman series occurs 
when electrons that are excited to higher levels relax to the n == 1 state; the Balmer 
series occurs when excited electrons fall back into the n == 2 state, and so on. 

We can write the theoretical formula (Equation 1.23) in the form of the empirical 
Rydberg formula by writing h 1) == hcv: 

( 1.24) 

If we compare Equations 1.11 and 1.24, we conclude that 

R 
ex 

(1.25) 

should be equal to the Rydberg constant, Equation 1.11. 

EXAMPLE 1-8 
U sing the values of the physical constants given inside the front cover of this book, 

calculate Rex and compare the result to its experimental value, 109677.6 cm- I
. 

SOLUTION: 

R == ex 
(9.10939 X 10-J1 kg)(1.602177 X 10- 19 C)4 

== 1.09737 X 107 m- I == 109737 cm- 1 

which is within 0.05% of the experimental value of 109677.6 cm- 1
, surely a remark­

able agreement. 

EXAMPLE 1-9 
Calculate the ionization energy of the hydrogen atom. 

SOL UTI 0 N: The ionization energy IE is the energy required to take the electron 

from the ground state to the first unbound state, which is obtained by letting n 2 == 00 

in Equation 1.24. Thus, we write 

IE == R (~. __ 1_) 
'"V'. 1 ') ') 
~ ~ oo~ 



1-9. Position and the Momentum of a Particle Cannot Be Specified Simultaneously 

or 

IE == R == 109737 cm- I 
00 

== 2.1787 X 10- 18 J 

== 13.598 eV == 1312.0 kJ·mol- 1 

Note that we have expressed the energy in units of wave numbers (cm- I
). This unit is 

not strictly a unit of energy, but because of the simple relation between wave number 
and energy, E == hev, energy is often expressed in this way (cf. Problem 1-1). 

Despite a number of successes and the beautiful simplicity of the Bohr theory, 
the theory could not be extended successfully even to a two-electron system such as 
helium. Furthermore, even for a simple system such as hydrogen, it could not explain 
the spectra that arise when a magnetic field is applied to the system, nor could it predict 
the intensities of the spectral lines. 

1-9. The Heisenberg Uncertainty Principle States That the Position 
and the Momentum of a Particle Cannot Be Specified 
Simultaneously with Unlimited Precision 

We now know that we must consider light and matter as having the characteristics of 
both waves and particles. Let's consider a measurement of the position of an electron. 
If we wish to locate the electron within a distance ~x, then we must use a measuring 
device that has a spatial resolution less than ~x. One way to achieve this resolution is 
to use light with a wavelength on the order of A ~ ~x. For the electron to be "seen", 
a photon must interact or collide in some way with the electron, for otherwise the 
photon will just pass right by and the electron will appear transparent. The photon 
has a momentum p == hlA, and during the collision, some of this momentum will be 
transferred to the electron. The very act of locating the electron leads to a change in 
its momentum. If we wish to locate the electron more accurately, we must use light 
with a smaller wavelength. Consequently, the photons in the light beam will have 
greater momentum because of the relation p == hi A. Because some of the photon's 
momentum must be transferred to the electron in the process of locating it, the mo­
mentum change of the electron becomes greater. A careful analysis of this process 
was carried out in the mid-1920s by the German physicist Werner Heisenberg, who 
showed that it is not possible to determine exactly how much momentum is transferred 
to the electron. This difficulty means that if we wish to locate an electron to within 
a region ~x, there will be an uncertainty in the momentum of the electron. Heisen­
berg was able to show that if ~p is the uncertainty in the momentum of the electron, 
then 

~x~p > h (1.26) 
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Equation 1.26 is called Heisenberg's Uncertainty Principle and is a fundamental 
principle of nature. The Uncertainty Principle states that if we wish to locate any 
particle to within a distance ~x, then we automatically introduce an uncertainty in the 
momentum of the particle and that the uncertainty is given by Equation 1.26. Note that 
this uncertainty does not stem from poor measurement or experimental technique but is 
a fundamental property of the act of measurement itself. The following two examples 
demonstrate the numerical consequences of the Uncertainty Principle. 

EXAMPLE 1-10 
Calculate the uncertainty in the position of a baseball thrown at 90 mph if we measure 

its momentum to a millionth of 1.0%. 

SOL UTI 0 N: According to Example 1-6, a baseball traveling at 90 mph has a 

momentum of 5.6 kg·m·s- 1
• A millionth of 1.0% of this value is 5.6 x 10-8 kg·m·s- I

, 

so 

~p == 5.6 X 10-8 kg.m.s I 

The minimum uncertainty in the position of the baseball is 

h 6.626 X 10-34 J·s 
~x == - == -------

~p 5.6 x 10-8kg.m.s 1 

== 1.2 X 10-26 m 

a completely inconsequential distance. 

EXAMPLE 1-11 
What is the uncertainty in momentum if we wish to locate an electron within an atom, 

say, so that ~x is approximately 50 pm? 

h 6.626 X 10-34 J·s 
~p == - == ------

~x 50 X 10- 12 m 
SOLUTION: 

== 1.3 X 10-23 kg·m·s- I 

Because p == mv and the mass of an electron is 9.11 x 10-31 kg, this value of ~p 
corresponds to 

~p 
~v == 

1.3 X 10-23 kg.m.s I 

9.11 x 10-31 kg 

which is a very large uncertainty in the speed. 



Problems 

These two examples show that although the Heisenberg Uncertainty Principle is of 
no consequence for everyday, macroscopic bodies, it has very important consequences 
in dealing with atomic and subatomic particles. This conclusion is similar to the one 
that we drew for the application of the de Broglie relation between wavelength and 
momentum. The Uncertainty Principle led to an awkward result. It turns out that the 
Bohr theory is inconsistent with the Uncertainty Principle. Fortunately, a new, more 
general quantum theory was soon presented that is consistent with theU ncertainty 
Principle. We will see that this theory is applicable to all atoms and molecules and 
forms the basis for our understanding of atomic and molecular structure. This theory 
was formulated by the Austrian physicist Erwin Schrodinger and will be discussed in 
Chapter 3. In preparation, in Chapter 2 we will discuss the classical wave equation, 
which serves as a useful and informative background to the Schrodinger equation. 

Problems 
1-1. Radiation in the ultraviolet region of the electromagnetic spectrum is usually described in 

terms of wavelength, A, and is given in nanometers (10-9 m). Calculate the values of v, v, 
and E for ultraviolet radiation with A == 200 nm and compare your results with those in 
Figure 1.11. 

v I Hz 
') 

10
4 

10
6 

10
8 10 I 0 10

12 
10

14 
10

16 
10

18 
10

20 
10

22 
10

24 10" 

I 
-+-' 

Microwaves "E 11) 
11) 

...-

Radio 
...- 0 \..-; .0 

Shortwave radio cj .- X rays ....... > y rays waves I-, C/':J cj 4-. ....... 
t:: > I-, 

TV ->-l -. 
! ::> I I I I I I I 

10 6 104 ') 

10 2 10-4 10-6 10 8 10- 10 10-12 10 14 10-16 10"-

Aim 

FIGURE 1.11 
The regions of electromagnetic radiation. 

1-2. Radiation in the infrared region is often expressed in terms of wave numbers, v == 1/ A. 

A typical value of v in this region is 103 cm I. Calculate the values of v, A, and E for 

radiation with v == 103 cm I and compare your results with those in Figure 1.11. 

1-3. Past the infrared region, in the direction of lower energies, is the microwave region. In 

this region, radiation is usually characterized by its frequency, v, expressed in units of 

megahertz (MHz), where the unit, hertz (Hz), is a cycle per second. A typical microwave 

frequency is 2.0 x 104 MHz. Calculate the values of v, A, and E for this radiation and 
compare your results with those in Figure 1.] ] . 
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1-4. Planck's principal assumption was that the energies of the electronic oscillators can have 

only the values E == nhv and that t:,.E == hv. As v ~ 0, then b..E ~ 0 and E is essentially 

continuous. Thus, we should expect the nonclassical Planck distribution to go over to 
the classical Rayleigh-Jeans distribution at low frequencies, where t:,. E ~ O. Show that 

Equation 1.2 reduces to Equation 1.1 as v ~ O. (Recall that eX == 1 + x + (x 2 /2!) + .. " 
or, in other words, that eX ~ I + x when x is small.) 

1-5. Before Planck's theoretical work on blackbody radiation, Wien showed empirically that 
(Equation 1.4) 

A T==2.90xI0- 3 m·K 
III ax 

where A is the wavelength at which the blackbody spectrum has its maximum value at a max 

temperature T. This expression is called the Wien displacement law; derive it from Planck's 

theoretical expression for the blackbody distribution by differentiating Equation 1.3 with 

respect to A. Hint: Sethc/AmaxkB T == x and derive the intermediate result e-x + (x/5) == 1. 
This problem cannot be solved for x analytically but must be solved numerically. Solve it 
by iteration on a hand calculator, and show that x == 4.965 is the solution. 

1-6. At what wavelength does the maXimUlTI in the radiant energy density distribution function 

for a blackbody occur if (a) T == 300 K? (b) T == 3000 K? (c) T == 10000 K? 

1-7. Sirius, one of the hottest known stars, has approximately a blackbody spectrum with 

A == 260 nm. Estimate the surface temperature of Sirius. max 

1-8. The fireball in a thermonuclear explosion can reach temperatures of approximately 107 K. 
What value of A does this correspond to? In what region of the spectrum is this wavelength 

max 

found (ct. Figure 1.1 I )? 

1-9. Calculate the energy of a photon for a wavelength of 100 pm (about one atomic diameter). 

1-10. Express the Planck distribution law in terms of A (and dA) by using the relationship 

Av==c. 

1-11. Calculate the number of photons in a 2.00 mJ light pulse at (a) 1.06 /Lm, (b) 537 nm, and 

(c) 266 nm. 

1-12. The mean temperature of the Earth's surface is 288 K. Calculate the wavelength at 
the maximum of the Earth's blackbody radiation. What part of the spectrum does this 

wavelength correspond to? 

1-13. A helium-neon laser (used in supermarket scanners) emits light at 632.8 nm. Calculate 

the frequency of this light. What is the energy of a photon generated by this laser? 

1-14. The power output of a laser is measured in units of watts (W), where one watt is equal to 
one joule per second. (I W == 1 J. S-I) What is the number of photons emitted per second 

by a 1.00 m W nitrogen laser? The wavelength emitted by a nitrogen laser is 337 nm. 

1-15. A household lightbulb is a blackbody radiator. Many light bulbs use tungsten filaments 

that are heated by an electric current. What temperature is needed so that A == 550 nm? max 

1-16. The threshold wavelength for potassium metal is 564 nm. What is its work function? 

What is the kinetic energy of electrons ejected if radiation of wavelength 410 nm is used? 



Problems 

1-17. Given that the work function of chromium is 4.40 e V, calculate the kinetic energy of 
electrons emitted from a chromium surface that is irradiated with ultraviolet radiation of 
wavelength 200 nm. 

1-18. When a clean surface of silver is irradiated with light of wavelength 230 nm, the kinetic 
energy of the ejected electrons is found to be 0.805 e V. Calculate the work function and the 
threshold frequency of silver. 

1-19. Some data for the kinetic energy of ejected electrons as a function of the wavelength of 
the incident radiation for the photoelectron effect for sodium metal are 

A/nm 100 200 300 400 500 

KE/eV 10.1 3.94 1.88 0.842 0.222 

Plot these data to obtain a straight line, and calculate h from the slope of the line and the 
work function ¢ from its intercept with the horizontal axis. 

1-20. Use the Rydberg formula (Equation 1.10) to calculate the wavelengths of the first three 
lines of the Lyman series. 

1-21. A line in the Lyman series of hydrogen has a wavelength of 1.03 x 10-7 In. Find the 
original energy level of the electron. 

1-22. A ground-state hydrogen atom absorbs a photon of light that has a wavelength of 97.2 nm. 
It then gives off a photon that has a wavelength of 486 nm. What is the final state of the 
hydrogen atom? 

1-23. Show that the Lyman series occurs between 91.2 nm and 121.6 nm, that the Balmer 
series occurs between 364.7 nm and 656.5 nm, and that the Paschen series occurs be­
tween 820.6 nm and 1876 nm. Identify the spectral regions to which these wavelengths 
correspond. 

1-24. Calculate the wavelength and the energy of a photon associated with the series limit of 
the Lyman series. 

1-25. Calculate the de Broglie wavelength for (a) an electron with a kinetic energy of 100 eV, 
(b) a proton with a kinetic energy of 100 e V, and (c) an electron in the first Bohr orbi t of a 
hydrogen atom. 

1-26. Calculate (a) the wavelength and kinetic energy of an electron in a beam of electrons 
accelerated by a voltage increment of 100 V and (b) the kinetic energy of an electron that 
has a de Broglie wavelength of 200 pm (1 picometer = 10- 12 m). 

1-27. Through what potential must a proton initially at rest fall so that its de Broglie wavelength 
is 1.0 x 10- 10 m? 

1-28. Calculate the energy and wavelength associated with an ex particle that has fallen 
through a potential difference of 4.0 V. Take the mass of an Ct particle to be 6.64 x 
10-27 kg. 

1-29. One of the most powerful modern techniques for studying structure is neutron diffrac­
tion. This technique involves generating a collimated beam of neutrons at a particular 
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temperature from a high-energy neutron source and is accomplished at several accelera­
tor facilities around the world. If the speed of a neutron is given by v n == (3k

B 
T / nl) 1/2, 

where m is the mass of a neutron, then what temperature is needed so that the neu­

trons have a de Broglie wavelength of 50 pm? Take the mass of a neutron to be 1.67 x 
10-27 kg. 

1-30. Show that a small change in the speed of a particle, ~ v, causes a change in its de Broglie 

wavelength, ~A, of 

where Vo and Ao are its initial speed and de Broglie wavelength, respectively. 

1-31. Derive the Bohr formula for v for a nucleus of atomic number Z. 

1-32. The series in the He+ spectrum that corresponds to the set of transitions where the 

electron falls from a higher level into the n == 4 state is called the Pickering series, an 

important series in solar astronomy. Derive the formula for the wavelengths of the ob­

served lines in this series. In what region of the spectrum does it occur? (See Problem 

1-31.) 

1-33. Using the Bohr theory, calculate the ionization energy (in electron volts and in kJ· mol-I) 

of singly ionized helium. 

1-34. Show that the speed of an electron in the nth Bohr orbit is v == e2 /2Eonh. Calculate the 

values of v for the first few Bohr orbits. 

1-35. If we locate an electron to within 20 pm, then what is the uncertainty in its speed? 

1-36. What is the uncertainty of the monlentum of an electron if we know its position is 
somewhere in a 10 pm interval? How does the value compare to momentum of an electron 

in the first Bohr orbit? 

1-37. There is also an uncertainty principle for energy and time: 

~E~t > h 

Show that both sides of this expression have the same units. 

1-38. The relationship introduced in Problem 1-37 has been interpreted to mean that a particle 

of mass nl (E == mc2) can materialize from nothing provided that it returns to nothing 

within a time ~t < h / lnc2
. Particles that last for time ~t or more are called real particles; 

particles that last less than time ~t are called virtual particles. The mass of the charged 

pion, a subatomic particle, is 2.5 x 10-28 kg. What is the minimum lifetime if the pion is 

to be considered a real particle? 

1-39. Another application of the relationship given in Problem 1-37 has to do with the 

excited state energies and lifetimes of atoms and molecules. If we know that the life­

time of an excited state is 10-9 s, then what is the uncertainty in the energy of this 

state? 



Problems 

1-40. When an excited nucleus decays, it emits a y -ray. The lifetime of an excited state of 
a nucleus is of the order of 10- 12 s. What is the uncertainty in the energy of the y-ray 

produced? (See Problem 1-37.) 

1-41. In this problem, we will prove that the inward force required to keep a mass revolving 
around a fixed center is f == In v2 / r. To prove this, let us look at the velocity and the 
acceleration of a revolving mass. Referring to Figure 1.12, we see that 

I~rl ~ ~s == r~e ( 1.27) 

if ~e is small enough that the arc length ~s and the vector difference I~rl == Ir1 - r21 are 
essentially the same. In this case, then 

~s ~() 
v == lim - == r lim - == rOJ 

~t~O ~t ~t~O ~t 
( 1.28) 

where w == de / dt == v / r. 

I~rl z ~s = r~(} 

FIGURE 1.12 
Diagram for defining angular speed. 

If wand r are constant, then v == rw is constant, and because acceleration is 

limt~O (~v / ~t), we might wonder if there is any acceleration. The answer is most definitely 
yes because velocity is a vector quantity and the direction of v, which is the same as ~r, is 
constantly changing even though its magnitude is not. To calculate this acceleration, draw 
a figure like Figure 1.12 but expressed in terms of v instead of r. From your figure, show 
that 

~v == I~vl == v~() ( 1.29) 

is in direct analogy with Equation 1.27, and show that the particle experiences an acceler­
ation given by 

~v ~() 
a == lim - == v lim - == vw 

,6.t~O ~t ,6.t~O ~t 
( 1.30) 
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Thus we see that the particle experiences an acceleration and requires an inward force equal 
to rna = rn vw = In v 2 / r to keep it moving in its circular orbit. 

1-42. Planck's distribution (Equation 1.2) law gives the radiant energy density of electromag­

netic radiation emitted between 1) and 1) + d v. Integrate the Planck distribution over all 

frequencies to obtain the total energy emitted. What is its temperature dependence? Do you 

know whose law this is? You will need to use the integral 

IX e~3 dX
j 

= 7~ 

1-43. Can you derive the temperature dependence of the result in Problem 1-42 without 

evaluating the integral? 

1-44. Ionizing a hydrogen atom in its electronic ground state requires 2.179 x 10- 18 J of 

energy. The sun's surface has a temperature of ~ 6000 K and is composed, in part, 

of atomic hydrogen. Is the hydrogen present as H(g) or H+ (g)? What is the tempera­

ture required so that the maximum wavelength of the emission of a blackbody ionizes 

atomic hydrogen? In what region of the electromagnetic spectrum is this wavelength 

found? 



MATHCHAPTER 

COMPLEX NUMBERS 

Throughout physical chemistry, we frequently use complex numbers. In this math­
chapter, we review some of the properties of complex numbers. Recall that complex 
numbers involve the imaginary unit, i , which is defined to be the square root of -I: 

(A.l) 

or 

· 2 I l = - (A.2) 

Complex numbers arise naturally when solving certain quadratic equations. For exam­
ple, the two solutions to 

are given by 

z =I±.J=4 

or 

z = I ± 2i 

where 1 is said to be the real part and ±2 the imaginary part of the complex number z. 
Generally, we write a complex number as 

z = x + iy (A.3) 

with 

x = Re(z) y = Im(z) (AA) 31 
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We add or subtract complex numbers by adding or subtracting their real and 
imaginary parts separately. For example, if ZI = 2 + 3i and Z2 = 1 - 4i, then 

ZI - Z2 = (2 - I) + (3 + 4)i = I + 7i 

Furthermore, we can write 

2z1 + 3z2 = 2(2 + 3i) + 3(1 - 4i) = 4 + 6i + 3 - 12i = 7 - 6i 

To multiply complex numbers together, we simply multiply the two quantities as 
binomials and use the fact that i 2 = -I . For example, 

(2 - i)(-3 + 2i ) = -6 + 3i + 4i - 2i 2 

= -4 + 71 

To divide complex numbers, it is convenient to introduce the complex conjugate 
of z, which we denote by z* and form by replacing i by -i. For example, if z = x + iy, 
then z* = x - i y. Note that a complex number multiplied by its complex conjugate is 
a real quantity: 

zz* = (x + i y)(x - i y) = x 2 
- i 2l = x 2 + l (A.S) 

The square root of zz* is called the magnitude or the absolute value of z, and is denoted 
by Izl. 

Consider now the quotient of two complex numbers 

2 + i 
z = 

I + 21 

This ratio can be written in the form x + i y if we multiply both the numerator and the 
denominator by 1 - 2i, the complex conjugate of the denominator: 

z = 2 + i (I -21) = 4 - 3i 
I + 2i I - 21 S 

4 3. 
= - -- / 

S S 

EXAMPLE A-l 
Show that 

SOLUTION : C l 

z 

_ I X Iy 
7 -

~ - X2 + l x 2 + l 

x + iv 
I (X-IY ) x- iy 

x+ iy x -iy -x2 + i 
. 

X l y 

X l + / x 2 + / 

Because complex numbers consist of two parts, a real part and an imaginary part, 
we can represent a complex number by a point in a two-dimensional coordinate system 
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where the real part is plotted along the horizontal (x) axes and the imaginary part is 
plotted along the vertical (y) axis, as in Figure A. I. The plane of such a figure is called 
the complex plane. If we draw a vector r from the origin of this figure to the point 
z = (x , y), then the length of the vector, r = (x2 + /)1 /2, is Izl, the magnitude or the 
absolute value of z. The angle e that the vector r makes with the x-axis is the phase 
angle of z. 

EXAMPLE A-2 
Given z = 1+ i , determine the magnitude, Izl, and the phase angle, e, of z. 

SOL UTI 0 N: The magnitude of z is given by the square root of 

zz* = (I + i)( I - i) = 2 

or I z I = 21 /2 . Figure A. I shows that the tangent of the phase angle is given by 

y 
tan e = - = I 

x 

or e = 45°, or n 14 radians. (Recall that 1 radian = 1800 In , or 10 = n 1180 radian.) 

We can always express z = x + iy in terms of rand e by using Euler's formula 

eie = cos e + i sin e (A.6) 

which is derived in Problem A-I O. Referring to Figure A.I , we see that 

and so 

Im ( z ) 

,. 

8 

x = r cos e and y = r sin e 

z = x + i y = rcose + irsine 

= r(cos e + i sin e) = re i8 (A.7) 

• ( x, y ) 

Re ( z) 

FIG U R E A.l 
Representation of a complex number 
z = x + iy as a point in a two-dimensional 
coordinate system. The plane of this figure 
is called the complex plane. 
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where 

(
? ")1 /2 r= r+ y (A.S) 

and 

V 
tan e = -' (A.9) 

x 

Equation A. 7, the polar representation of z, is often more convenient to use than 
Equation A.3, the Cartesian representation of z. 

Note that 

z* = re - i
& (A.! 0) 

and that 

(A. I I ) 

or r = (ZZ* )1 /2. Also note that z = ei
& is a unit vector in the complex plane because 

r 2 = (ei ll )(e- i&) = 1. The following example proves this result in another way. 

EXAMPLE A-3 
Show that e -

iH = cos 8 - i sin 8 and use this result and the polar representation of z 
to show that leifll = I. 

SO L UTI 0 N: To prove that e- iH = cos e - i sin 8 , we use Equation A.6 and the fact 
that cos 8 is an even function of 8 [cos( - 8 ) = cos 8 ] and that sin e is an odd function 
of e [sine -8) = - sin e] . Therefore, 

Furthermore, 

e- iH = cos e + i sin e- e ) = cas e - i sin 8 

leiHI = [(cos 8 + i sin 8)(cos e - i sin 8)]' /1 

= (cos1e + sin l e) '!2 = I 



Problems 

A-1. Find the real and imaginary parts of the following quantities: 

3. (2 - i)3 

A-2. If z = x + 2iy, then find 

3. Re(z*) 

e. Im(zz*) 

c. Im(z2) 

A-3. Express the following complex numbers in the form re iO
: 

3. 6i b. 4 -.J2i c. -1 - 2i 

A-4. Express the following complex numbers in the form x + iy: 

b. 6e2Jri /3 c. e- (Jr /4)i+ln2 

d. (.J2+2i)e- iJr /2 

d. Re(zz*) 

d. IT + ei 

A-S. Prove that eiJr = -1. Comment on the nature of the numbers in this relation. 

A-6. Show that 

and that 

eiO _ e- iO 

sin() = ----
2i 

A-7. Use Equation A.7 to derive 

zn = rn (cos () + i sin ())" = rn (cos n() + i sin n()) 

and from this, the formula of De Moivre: 

(cos () + i sin ())" = cos n() + i sin n() 

A-8. Use the formula of De Moivre, which is given in Problem A-7, to derive the trigonometric 
identities 

cos 2() = cos2 
() - sin2 

() 

sin 2() = 2 sin () cos () 

cos 3() = cos3 
() - 3 cos () sin2 

() 

= 4 cos3 
() - 3 cos () 

sin 3() = 3 cos2 
() sin () - sin3 

() 

= 3 sin () - 4 sin3 
() 
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A-9. Consider the set of functions 

First show that 

Now show that 

I ' "-<I:J (A.) e'lll o,p 
1/1 'I-' = 5 

1'" 
d¢<I:J (¢) = 0 III 

o 
=5 

I'll = 0, ±I , ±2, 

for all value of m =f 0 

m=O 

( IT d¢<I:J~I (¢)<l:J II (¢) = 0 m =f 11 

Jo 
= I m =11 

A-l0. This problem offers a derivation of Euler's formula. Start with 

fCe) = In(cos e + i sin e) 

Show that 

df . 
- =1 
de 

Now integrate both sides of Equation 2 to obtain 

fCe) = In (cos e + i sin e) = ie + c 

(1) 

(2) 

(3) 

where c is a constant of integration. Show that c = 0 and then exponentiate Equation 3 to 
obtain Euler's formula. 

A-ll. We have seen that both the exponential and the natural logarithm functions (Problem 
A- IO) can be extended to include complex arguments. This is generally true of most 
functions. Using Euler's formula and assuming that x represents a real number, show that 
cos ix and -i sin ix are equivalent to real functions of the real variable x. These functions 
are defined as the hyperbolic cosine and hyperbolic sine functions , cosh x and sinh x , 
respectively. Sketch these functions. Do they oscillate like sin x and cos x? Now show that 
si nh i x = i sin x and that cosh i x = cos x. 

A-12. Evaluate i' . 

A-13. The equation x 2 = I has two distinct roots, x = ± I. The equation x N = I has N distinct 
roots, called the N roots of unity. This problem shows how to find the N roots of unity. We 
shall see that some of the roots turn out to be complex, so let's write the equation as ZN = I. 
Now let z = redl and obtain r N e iNH = I. Show that this must be equivalent to eiN8 = I, or 

cos Ne + i sin Ne = I 

Now argue that Ne = 2nl1 , where n has the N distinct values 0, 1, 2, ... , N - I or that 
the N roots of units are given by 

17 = 0, I , 2, ... , N - I 
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Show that we obtain z = I and z = ± I, for N = I and N = 2, respectively. Now show 

that 

1)3 
z = I - - + i-and 

' 2 2 ' 

I .)3 
- - -/-

2 2 

for N = 3. Show that each of these roots is of unit magnitude. Plot these three roots in the 

complex plane. Now show that z = I, i , - I, and -i for N = 4 and that 

I v'3 
Z = I - I - ± i - . and , , 2 2 

1 v'3 
--±i-

2 2 

for N = 6. Plot the four roots for N = 4 and the six roots for N = 6 in the complex plane. 

Compare the plots for N = 3, N = 4, and N = 6. Do you see a pattern? 

A-14. Using the results of Problem A-13 , find the three distinct roots of x 3 = 8. 



Louis de Broglie was born on August 15, 1892 in Dieppe, France, into an aristocratic family 
and died in 1987. He studied history as an undergraduate in the early 191Os, but his interest 
turned to science as a result of his working with his older brother, Maurice, who had built 
his own private laboratory for X-ray research. de Broglie took up his formal studies in physics 
after World War I, receiving his Dr. Sc. from the University of Paris in 1924. His dissertation 
was on the wavelike properties of matter, a highly controversial and original proposal at 
that time. Using the special theory of relativity, de Broglie postulated that material particles 
should exhibit wavelike properties under certain conditions, just as radiation was known 
to exhibit particlelike properties. After receiving his Ph.D., he remained as a free lecturer 
at the Sorbonne and later was appointed professor of theoretical physics at the new Henri 
Poincare Institute. He was professor of theoretical physics at the University of Paris from 1937 
until his retirement in 1962. The wavelike properties he postulated were later demonstrated 
experimentally and are now exploited as a basis of the electron microscope. de Broglie spent 
the later part of his career trying to obtain a causal interpretation of the wave mechanics to 
replace the probabilistic theories. He was awarded the Nobel Prize for physics in 1929 "for his 
discovery of the wave nature of electrons." 



CHAPTER 

The Classical Wave Equation 

In 1925, Erwin Schrodinger and Werner Heisenberg independently formulated a general 
quantum theory. At first sight, the two methods appeared different because Heisenberg's 
Inethod is formulated in terms of matrices, whereas Schrodinger's method is formulated 
in terms of partial differential equations. Just a year later, however, Schrodinger showed 
that the two formulations are mathematically equivalent. Because most students of 
physical chemistry are not familiar with matrix algebra, quantum theory is customarily 
presented according to Schrodinger's formulation, the central feature of which is a 
partial differential equation now known as the Schrodinge r equation. Partial differential 
equations may sound no more comforting than matrix algebra, but fortunately we 
require only elementary calculus to treat the problems in this book. The wave equation 
of classical physics describes various wave phenomena such as a vibrating string, a 
vibrating drum head, ocean waves, and acoustic waves. Not only does the classical 
wave equation provide a physical background to the Schrodinger equation, but, in 
addition, the mathematics involved in solving the classical wave equation are central 
to any discussion of quantum mechanics. Because most students of physical chemistry 
have little experience with classical wave equations, this chapter discusses this topic. 
In particular, we will solve the standard problem of a vibrating string because not 
only is the method of solving this problem similar to the method we will use to solve 
the Schrodinger equation, but it also gives us an excellent opportunity to relate the 
mathematical solution of a problem to the physical nature of the problem. Many of the 
problems at the end of the chapter illustrate the connection between physical problems 
and the nlathematics developed in the chapter. 

2-1. The One-Dimensional Wave Equation Describes the Motion 
of a Vibrating String 

Consider a unifonn string stretched between two fixed points as shown in Figure 2.1. 
The maximum displacement of the string from its equilibrium horizontal position is 39 
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FIG U R E 2.1 
A vibrating string whose ends are fixed at 0 and I. The amplitude of the vibration at position x 
and time t is u(x, t). 

called its amplitude. If we let u (x, t) be the displacement of the string, then u (x, t) 
satisfies the equation 

(2.1 ) 

where v is the speed with which a disturbance moves along the string. Equation 2.1 
is the classical wave equation. Equation 2.1 is a partial differential equation because 
the unknown, u (x, t) in this case, occurs in partial derivatives. The variables x and t 
are said to be the independent variables and u (x, t), which depends upon x and t, is 
said to be the dependent variable. Equation 2.1 is a linear partial differential equation 
because u(x, t) and its derivatives appear only to the first power and there are no cross 
terms. 

In addition to having to satisfy Equation 2.1, the amplitude u (x, t) must also satisfy 
certain physical conditions as well. Because the ends of the string are held fixed, the 
amplitude at these two points is always zero, and so we have the requirement that 

u (0, t) == 0 and u (l, t) == 0 (for all t) (2.2) 

These two conditions are called boundary conditions because they specify the behavior 
of u (x , t) at the boundaries. Generally, a partial differential equation must be solved 
subject to certain boundary conditions, the nature of which will be apparent on physical 
grounds. 

2-2. The Wave Equation Can Be Solved by the Method of Separation 
of Variables 

The classical wave equation, as well as the Schrodinger equation and many other 
partial differential equations that arise in physical chemistry, can often be solved by a 
method called separation of variables. We shall use the problem of a vibrating string 
to illustrate this method. 



2-2. The Wave Equation Can Be Solved by the Method of Separation of Variables 

The key step in the method of separation of variables is to assume that u (x, t) 

factors into a function of x, X (x), times a function of t, T (t), or that 

u(x, t) == X(x)T(t) 

If we substitute Equation 2.3 into Equation 2.1, we obtain 

Now we divide by u(x, t) == X(x)T(t) and obtain 

1 

X(x) 

d 2 X(x) 1 d 2 T(t) 

dx 2 - v2 T(t) dt 2 

(2.3) 

(2.4) 

(2.5) 

The left side of Equation 2.5 is a function of x only and the right side is a function 
of t only. Because x and t are independent variables, each side of Equation 2.5 can be 
varied independently. The only way for the equality of the two sides to be preserved 
under any variation of x and t is for each side to be equal to a constant. If we let this 

constant be K, we can write 

and 

1 d 2X(x) 
-----==K 
X (x) dx 2 

1 d 2 T(t) 
------ == K 
v2 T(t) dt 2 

(2.6) 

(2.7) 

where K is called the separation constant and will be determined later. Equations 2.6 
and 2.7 can be written as 

(2.8) 

and 

d 2 T(t) 2 
-- - Kv T(t) == 0 

dt2 
(2.9) 

Equations 2.8 and 2.9 are called ordinary differential equations (as opposed to partial 
differential equations) because the unknowns, X (x) and T (t) in this case, occur as or­
dinary derivatives. Both of these differential equations are linear because the unknowns 
and their derivatives appear only to the first power. Furthermore, the coefficients of 
every term involving the unknowns in these equations are constants; that is, 1 and 
-K in Equation 2.8 and I and -Kv2 in Equation 2.9. These equations are called 
linear differential equations with constant coefficients and are quite easy to solve, as 
we shall see. 

41 
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The value of K in Equations 2.8 and 2.9 is yet to be determined. We do not know 
right now whether K is positive, negative, or even zero. Let us first assume that K = O. 
In this case, Equations 2.8 and 2.9 can be integrated immediately to find 

(2.10) 

and 

(2.11 ) 

where the a's and b's are just integration constants, which can be determined by using 
the boundary conditions given in Equation 2.2. In terms of X (x) and T (t), the boundary 
conditions are 

u(O, t) = X(O)T(t) = 0 (2.12) 

and 

u(l, t) = X(I)T(t) = 0 (2.13 ) 

Because T (t) certainly does not vanish for all t, we must have that 

X(O) = 0 and X(l) = 0 (2.14 ) 

which is how the boundary conditions affect X (x). Going back to Equation 2.10, we 
conclude that the only way to satisfy Equation 2.14 is for a J = b I = 0, which means that 
X (x) = 0 and that u (x, t) = 0 for all x. This is called a trivial solution to Equation 2.1 
and is of no physical interest. (Throwing away solutions to mathematical equations 
should not disturb you. What we know from physics is that every physically acceptable 
solution u (x, t) must satisfy Equation 2.1, not that every solution to the equation is 
physically acceptable.) 

Let's look at Equations 2.8 and 2.9 for K > O. Both equations are of the form 

(2.15) 

where k is a real constant. Experience shows that every solution to a linear differential 
equation with constant coefficients whose right side is equal to zero is of the form 
y (x) = eax

, where a is a constant to be determined. Therefore, we let y (x) = eax in 
Equation 2.15 and get 

Therefore, either (a 2 
- k2

) or y(x) must equal zero. The case y(x) = 0 is a trivial 
solution, and so a 2 

- k2 must equal zero. Therefore, 

a = ±k 
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Thus, there are two solutions: y(X) = ekx and e-kx
. We can easily prove that 

(where c
1 

and c
2 

are constants) is also a solution. This is the general solution to all 
differential equations with the form of Equation 2.15. The fact that a sum of the two 
solutions, ekx and e-kx

, is also a solution is a direct consequence of Equation 2.15 being a 
linear differential equation. Note that the highest derivative in Equation 2.15 is a second 
derivative, which implies that in some sense we are performing two integrations when 
~we find its solution. When we do two integrations, we always obtain two constants of 
integration. The solution we have found has two constants, C I and c2' which suggests 
that it is the most general solution. 

The solution of other ordinary differential equations with constant coefficients is 
best illustrated by examples. 

EXAMPLE 2-1 
Solve the equation 

d 2y dy 
--3-+2y=0 
dx 2 dx 

SOL UTI 0 N: If we substitute y (x) = eax into this differential equation, we obtain 

a 2 y - 3ay + 2y = 0 

a 2 
- 3a + 2 = 0 

(a-2)(a-l)=O 

or that a = I and 2. The two solutions are y (x) = eX and y (x) = e2x and the general 
solution is 

Prove this by substituting this solution back into the original equation. 

EXAMPLE 2-2 
Solve the equation in Example 2-1 subject to the two boundary conditions y (0) = 0 

and dy/dx(at x = 0) = -1. 

SOL UTI 0 N: The general solution is 

The two conditions given allow us to evaluate C I and c
2 

and hence find a particular 
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solution. Putting x := 0 into y(x) and x := 0 into dy /dx gives 

dy 
-(atx=O)=c +2c =-1 dx I 2 

Solving these two equations simultaneously gives c
1 

:= 1 and c
2 

= -1, and so 

satisfies not only the differential equation, but also the two boundary conditions as 
well. 

2-3. Some Differential Equations Have Oscillatory Solutions 

Now let's consider the case where K < 0 in Equations 2.8 and 2.9. In this case, a will 
be imaginary. As a concrete example, consider the differential equation 

d 2y 
-dx-2 + y(x) == 0 (2.16) 

which is essentially Equation 2.8 with K == -1. If we let y(x) == eCiX
, we have 

(a 2 + 1) y(x) == 0 

or that 

a == ± i 

(MathChapter A). The general solution to Equation 2.16 is 

(2.17) 

We can easily verify that this is a solution by substituting Equation 2.17 directly into 

Equation 2.16. . . 

It is usually more convenient to rewrite expressions such as e'X or e-lX in Equa-

tion 2.17 using Euler's formula (Equation A.6): 

e±i8 == cos () ± i sin () 

If we substitute Euler's formula into Equation 2.17, we find 

y (x) == C I (cos X + i sin x) + c 2 (cos x - i sin x) 

== (c) +c2)cosx + (ic, - ic2)sinx 



2-3. Some Differential Equations Have Oscillatory Solutions 

But C I + c
2 

and i C 1 - i C2 are also just constants, and if we call them c3 and C 4' respec­

tively, we can write 

y(x) = C3 COSX + C4 sinx 

instead of 

These two forms for y(x) are equivalent. 

EXAMPLE 2-3 
Prove that 

y(x) == Acosx + Bsinx 

(where A and B are constants), is a solution to the differential equation 

d2y 
dx2 + y(x) == 0 

SOL UTI 0 N: The first derivative of y(x) is 

dy 
- == - A sin x + B cos x 
dx 

and the second derivative is 

Therefore, we see that 

d 2 y 
- == - A cos x - B sin x 
dx 2 

d2y 
dx 2 + y(x) == 0 

or that y (x) == A cos x + B sin x is a solution of the differential equation 

d 2y 
-2 + y(x) == 0 
dx 

The next example is important and one whose general solution should be learned. 

EXAMPLE 2-4 
Solve the equation 

d2x 
- +w2x(t) == 0 
dt 2 

Subject to the initial conditions x(O) == A and dx/dt == 0 at t == O. 
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SOL UTI 0 N: In this case, we find a == ±i wand 

or 

x(t) == c
3 

cos wt + c4 sin wt 

Now 

x(O) == c3 == A 

and 

(dX) == OJc
4 

== 0 
dt 1=0 

implying that c 4 == 0 and that the particular solution we are seeking is 

x(t) == A cos wt 

This solution is plotted in Figure 2.2. Note that it oscillates cosinusoidally in time, 

with an amplitude A. The wavelength of the oscillation is 2rr I wand the frequency v 
is given by (see Problem 2-3) 

+A 

x(t) 

-A 

FIG U R E 2.2 

w 
v ==-

2rr 

r--T----~r-----~-----+------+_----~----_. t 

A plot of x (t) == A cos wt, the solution to the problem in Example 2-4. The amplitude is A, the 
wavelength is 2rr I w, and the frequency is w 12rr . 

2-4. The General Solution to the Wave Equation Is a Superposition 
of Normal Modes 

Let us assess where we are now. We have obtained Equations 2.8 and 2.9 by applying 
the method of separation of variables to the wave equation. We have already shown 
that if the separation constant K is zero, then only a trivial solution results. Now let's 
assume that K is positive. To this end, write K as f32, where f3 is real. This assures that 



2-4. The General Solution to the Wave Equation Is a Superposition of Normal Modes 

K is positive because it is the square .of a real number. In the case K == f32, the general 

solution to Equation 2.8 is 

We can easily show that the only way to satisfy the boundary conditions (Equation 2.14) 
is for c 1 == c

2 
== 0, and so once again we find only a trivial solution. 

Let's hope that assuming K to be negative gives us something interesting. If we 
set K == _f32, then K is negative if f3 is real. In this case Equation 2.8 is 

Referring to Example 2-4, we- see that the general solution can be written as 

X(x) == A cos f3x + B sin f3x 

The boundary condition that X (0) == 0 implies that A == o. The condition at the bound­
ary x == I says that 

X (I) == B sin f31 == 0 (2.18) 

Equation 2.18 can be satisfied in two ways. One is that B == 0, but this along with the 
fact that A == 0 yields a trivial solution. The other way is to require that sin f31 == o. 
Because sin e == 0 when e == 0, n, 2n, 3n, ... , Equation 2.18 implies that 

f31 == nn n == 1, 2, 3, ... (2.19) 

where we have omitted the n == 0 case because it leads to f3 == 0, and a trivial solution. 
Equation 2.19 determines the parameter f3 and hence the separation constant K == _f32. 
So far then, we have that 

nnx 
X(x) == B sin -1- (2.20) 

Remember that we have Equation 2.9 to solve also. Equation 2.9 can be written as 

(2.21) 

where Equation 2.19 says that f3 == nn / I. Referring to the result obtained in Example 
2-4 again, the general solution to Equation 2.21 is 

T (t) == D cos (J) t + E sin (J) t 
n n 

(2.22) 
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where wn == fJv == nnv I l. We have no conditions to specify D and E, so the amplitude 
u (x, t) is (cf. Equation 2.3) 

u(x, t) == X(x)T(t) 

= (B sin n~x) (Dcoswnt + Esinwnt) 

( 
. nrrx 

== F cos w t + G sIn w t) sin --
n n I n == 1, 2, ... 

where we have let F == DB and G == E B. Because there is a u (x, t) for each integer n 

and because the values of F and G may depend on n, we should write u (x, t) as 

u (x,t)==(Fcoswt+G sinwt)sin
nrrx 

n 11 n fl 11 I n == 1, 2, ... (2.23) 

Because each un (x, t) is a solution to the linear differential equation, Equation 2.1, their 
sum is also a solution of Equation 2.1 and is, in fact, the general solution. Therefore, 
for the general solution we have 

00 

L nrrx 
u(x, t) == (F cosw t + G sinw t) sin--

n 1'1 11 17 I 
n=1 

n == 1, 2, ... (2.24) 

No matter how the string is plucked initially, its shape will evolve according to Equa­
tion 2.24. We can easily verify that Equation 2.24 is a solution to Equation 2.1 by 

direct substitution. Problem 2-5 shows that F cos wt + G sin wt can be written in the 
equivalent form, A cos(wt + ¢), where A and ¢ are constants expressible in terms of 
F and G. The quantity A is the amplitude of the wave and ¢ is called the phase angle. 
U sing this relation, we can write Equation 2.24 in the form 

(2.25) 

Equation 2.25 has a nice physical interpretation. Each un (x, t) is called a normal 

mode, and the time dependence of each normal mode represents harmonic motion of 
frequency 

w vn n 
V ------ -

11 2][ 21 
(2.26) 

where we have used the fact that wn == f3v == nnvl I (cf. Equation 2.19). The spatial 
dependence of the first few terms in Equation 2.25 is shown in Figure 2.3. The first 
term, u 1 (x, t), called the fundamental mode or first harmonic, represents a sinusoidal 
(harmonic) time dependence of frequency v 121 of the motion depicted in Figure 2.3a. 
The second harmonic or first overtone, u2 (x, t), vibrates harmonically with frequency 
v / I and looks like the motion depicted in Figure 2.3b. Note that the midpoint of this 
harmonic is fixed at zero for all t. Such a point is called anode, a concept that arises in 
quantum mechanic as well. Notice that u (0) and u (I) are also equal to zero. These terms 
are not nodes because their values are fixed by the boundary conditions. Note that the 
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FIG U R E 2.3 
The first three normal modes of a vibrating string. Note that each normal mode is a standing 
wave and the the nth harmonic has n - 1 nodes. 

second harmonic oscillates with twice the frequency of the first harmonic. Figure 2.3c 
shows that the third harmonic or second overtone has two nodes. It is easy to continue 
and show that the number of nodes is equal to n - 1 (Problem 2-10). The waves shown 
in Figure 2.3 are called standing waves because the positions of the nodes are fixed in 
time. Between the nodes, the string oscillates up and down. 

Consider a simple case in which u (x, t) consists of only the first two harmonics 
and is of the form (cf. Equation 2.25) 

1T X 1 ( 1T ) 21T X 
u(x, t) = cos wIt sin -z- + 2 cos w2t + -2 sin -z- (2.27) 

Equation 2.27 is illustrated in Figure 2.4. The left side of Figure 2.4 shows the time de­
pendence of each mode separately. Notice that u2 (x, t) has gone through one complete 
oscillation in the time depicted while u 1 (x, t) has gone through only one-half cycle, 
nicely illustrating that w2 = 2w

1
. The right side of Figure 2.4 shows the sum of the two 

harmonics, or the actual motion of the string, as a function of time. You can see how a 
superposition of the standing waves in the the left side of the figure yields the traveling 

wave in the right side. The decomposition of any complicated, general wave motion 
into a sum or superposition of normal modes is a fundamental property of oscillatory 
behavior and follows from the fact that the wave equation is a linear equation. 

Our path from the wave equation to its solution was fairly long because we had 
to learn to solve a certain class of ordinary differential equations on the way. The 
overall procedure is actually straightforward, and to illustrate this procedure, we will 
solve the problem of a vibrating rectangular membrane, a two-dimensional problem, 
in Section 2-5. 

2-5. A Vibrating Membrane Is Described by a Two-Dimensional 
Wave Equation 

The generalization of Equation 2.1 to two dimensions is 

(2.28) 
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CI) 

s .-
~ 

1 

u1(x,t) 

First harmonic 

FIG U R E 2.4 

+ 

n 
Jr-------".'-------3I - - - (j) t = - --

1 4 

u 2(x,t) 

Second harmonic 

--

3n 
---Q) t=-

1 4 

u 1 (X,t) + u 2 (x,t) 

Sum of the two 
harmonics 

An illustration of how two standing waves can combine to give a traveling wave. In both 
parts, time increases downward. The left portion shows the independent motion of the first two 
harmonics. Both harmonics are standing waves; the first harmonic goes through half a cycle 
and the second harmonic goes through one complete cycle in the time shown. The right side 
shows the sum of the two harmonics. The sum is not a standing wave. As shown the sum is a 
traveling wave that travels back and forth between the fixed ends. The traveling wave has gone 
through one-half a cycle in the time shown. 

where u = u (x, y, t) and x, y, and t are the independent variables. We will apply this 
equation to a rectangular membrane whose entire perimeter is clamped. By referring 
to the geometry in Figure 2.5, we see that the boundary conditions that u(x, y, t) must 

y 

a 

FIG U R E 2.5 
A rectangular membrane clamped along its 
perimeter. 



2-5. A Vibrating Membrane Is Described by a Two-Dimensional Wave Equation 

satisfy because its four edges are clamped are 

u(O, y) == u(a, y) == 0 
(for all t) (2.29) 

u(x,O) == u(x, b) == 0 

By applying the method of separation of variables to Equation 2.28, we assume 
that u (x, y, t) can be written as the product of a spatial part and a temporal part or that 

u(x, y, t) == F(x, y)T(t) (2.30) 

We substitute Equation 2.30 into Equation 2.28 and divide by F (x, y) T (t) to find 

(2.31 ) 

The right side of Equation 2.31 is a function of x and y only and the left side is a 
function of t only. The equality can be true for all t, x, and y only if both sides are 
equal to a constant. Anticipating that the separation constant will be negative as it was 
in the previous sections, we write it as _f32 and obtain the two separate equations 

(2.32) 

and 

(2.33) 

Equation 2.33 is still a partial differential equation. To solve it, we once again use 
separation of variables. Substitute F (x, y) == X (x) Y (y) into Equation 2.33 and divide 
by X(x)Y(y) to obtain 

(2.34 ) 

Again we argue that because x and yare independent variables, the only way this 
equation can be valid is that 

and 

1 d2 X ____ == _p2 
X(x) dx 2 

1 d 2 y ____ == _q2 
Y(y) dy2 

(2.35) 

(2.36) 
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where p2 and q2 are separation constants, which according to Equation 2.34 must 
satisfy 

(2.37) 

Equations 2.35 and 2.36 can be rewritten as 

(2.38) 

and 

(2.39) 

Equation 2.28, a partial differential equation in three variables, has been reduced 
to three ordinary differential equations (Equations 2.32, 2.38, and 2.39), each of which 
is exactly of the form discussed in Example 2-4. The solutions to Equations 2.38 and 
2.39 are 

X(x) == A cos px + B sin px (2.40) 

and 

fey) == Ccosqy + Dsinqy (2.41 ) 

The boundary conditions, Equation 2.29, in terms of the functions X (x) and Y(y) are 

and 

which imply that 

X(O)f(y) == X(a)Y(y) == 0 

X(x)f(O) == X(x)f(b) == 0 

X(O) == X(a) == 0 

YeO) == feb) == 0 
(2.42) 

Applying the first of Equation 2.42 to Equation 2.40 shows that A == 0 and pa == nn, 

so that 

nnx 
X(x) == B sin--

a 
n == 1, 2, ... (2.43) 

In exactly the same manner, we find that C == 0 and q b == mn, where m == 1, 2, ... 
and so 

mny 
fey) == Dsin -b- m == 1, 2, ... (2.44) 



2-5. A Vibrating Membrane Is Described by a Two-Dimensional Wave Equation 

Recalling that p2 + q2 = f3 2, we see that 

n = 1, 2, . . . 
m = 1, 2, .. . 

(2.45) 

where we have subscripted f3 to emphasize that it depends on the two integers nand m. 
Finally, now we solve Equation 2.32 for the time dependence: 

T (t) = E cos w t + F sin w t 
11m nm urn nm 11m 

(2.46) 

where 

w = vf3 
lin! nm 

= vn n _ + m 
( 

2 2)1 /2 
a 2 b2 

(2.47) 

According to Problem 2-15, Equation 2.46 can be written as 

T (t) = G cos(w t + A. ) 
"m rIm "m '+' nm 

(2.48) 

The complete solution to Equation 2.28 is 

00 00 

u(x, y, t) = L L ullm(x , y, t) 
11 = 1 m= 1 

00 00 nn x mny 
= '" '" A cos(w t + ¢ ) sin sin --L L!lm nm nm a b 

n=1 m= 1 

(2.49) 

As in the one-dimensional case of a vibrating string, we see that the general 
vibrational motion of a rectangular drum can be expressed as a superposition of normal 
modes, U (x, y, t) . Some of these modes are shown in Figure 2.6. Note that in this 

nm 

two-dimensional problem we obtain nodal lines. In two-dimensional problems, the 
nodes are lines, as compared with points in one-dimensional problems. Figure 2.6 
shows the normal modes for a case in which a =1= b. The case in which a = b is an 

FIG U R E 2.6 
The first few normal modes of a rectangular membrane with shaded and clear sections having 
opposite sinusoidal displacements as indicated. 

53 



54 

FIG U R E 2.7 

The normal modes of a square membrane, illustrating the occurrence of degeneracy in this 
system. The normal modes u 12 and U 21 have different orientations but the same frequency, given 
by Equation 2.50. The same is true for the normal modes u 13 and u31• 

interesting one. The frequencies of the normal modes are given by Equation 2.47. 
When a = b in Equation 2.47, we have 

vrr (2 2)1/2 
W = - n +m 

nm a (2.S0) 

We see from Equation 2.S0 that W l2 = W 21 = SI /2 fa in this case; yet the normal modes 
UI2 (X, y, t) and U21 (X, y, t) are not the same, as seen from Figure 2.7. This is an 
example of a degeneracy, and we say that the frequency W

I2 
= W

21 
is doubly degenerate 

or two-fold degenerate. Note that the phenomenon of degeneracy arises because of the 
symmetry introduced when a = b. This phenomenon can be seen easily by comparing 
the modes U

l2 
and U 21 in Figure 2.7. Equation 2.S0 shows that there will be at least 

a twofold degeneracy when m=j. n because m 2 + n 2 = n 2 + m 2
. We will see that the 

concept of degeneracy arises in quantum mechanics also. 
This chapter has presented a discussion of the wave equation and its solutions. In 

Chapter 3, we will use the mathematical methods developed here, and so we recommend 
doing many of the problems at the end of this chapter before going on. Several problems 
involve physical systems and serve as refreshers or introductions to classical mechanics. 

Problems 

2-1. Find the general solutions to the following differential equations. 

d2y dy 
b. 

d2y dy dy 
a. - -4- +3y =0 -+6-=0 c. - + 3y = 0 

dX2 dx dx2 dx dx 

d. 
d2y dy d2y dy 
-+2--y=0 e. --3-+2y=0 
dx2 dx dx 2 dx 



Problems 

2-2. Solve the following differential equations: 

d 2 y 
3. -2 - 4y == 0 

dx 

dy 
yeO) == 2; - (at x == 0) == 4 

dx 

d2 y dy 
b. dx 2 - 5 dx + 6y == 0 

dy 
y (0) == -1; - (at x == 0) == 0 

dx 

dy 
c. - - 2y == 0 

dx 
yeO) == 2 

2-3. Prove that x (t) == cos wt oscillates with a frequency 1) == w /2n . Prove that 
x (t) == A cos wt + B sin wt oscillates with the same frequency, w /2n . 

2-4. Solve the following differential equations: 

d 2x dx 
3. dt 2 + w2 x(t) == 0 x(O) == 0; dt (at t == 0) == vo 

d 2x 
b. -2 + w2x(t) == 0 

dt 

dx 
x(O) == A; -(att == 0) == v 

dt 0 

Prove in both cases that x(t) oscillates with frequency w/2n. 

2-5. The general solution to the differential equation 

d 2x 
-2 + w2x(t) == 0 
dt 

IS 

x(t) == c 1 cos wt + c2 sin wt 

For convenience, we often write this solution in the equivalent forms 

x(t) == A sin(wt + ¢) 

or 

x(t) == B cos(wt + 0/) 

Show that all three of these expressions for x (t) are equivalent. Derive equations for A 

and ¢ in terms of C I and c2 ' and for Band 0/ in terms of C I and c2 . Show that all three forms 
of x (t) oscillate with frequency w /2n . Hint: Use the trigonometric identities 

sin(a + f3) == sin a cos f3 + cos a sin f3 

and 

cos(a + f3) == cos a cos f3 - sin a sin f3 

2-6. In all the differential equations we have discussed so far, the values of the exponents a that 
we have found have been either real or purely imaginary. Let us consider a case in which 
a turns out to be complex. Consider the equation 

d 2 y dy 
- + 2- + lOy == 0 
dx 2 dx 
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If we substitute vex) = e"x into this equation, we find that a 2 + 2a + 10 = 0 or that 
a = - I ± 3i. The general solution is 

y(x) = clel - I+3il.\· + c oei - I -3i)X 

= c e - x e 3ix + c e - x e - 3ix 
I 2 

Show that y(x) can be written in the equivalent form 

y(x) = e- x (c , cos 3x + c
4 

sin 3x) 

Thus we see that complex values of the a 's lead to trigonometric solutions modulated by 
an exponential factor. Solve the following equations. 

d 2y dy 
a. - + 2- + 2v = 0 

dx 2 dx . 

d 2 y dy 
b. - , - 6 - + 25 Y = 0 

dx- dx 

d 2 V d)l 
C. -' + 2fJ- + (fJ 2 + u/)y = 0 

dx 2 dx 

d 2y d y 
d. - +4- +5v = 0 yeO) = I ; 

dx 2 dx . 
dV 
-' (at x = 0) = -3 
dx 

2-7. This problem develops the idea of a classical harmonic oscillator. Consider a mass m 

attached to a spring as shown in Figure 2.8. Suppose there is no gravitational force acting 
on m so that the only force is from the spring. Let the relaxed or undistorted length of the 

spring be xu' Hooke's law says that the force acting on the mass m is f = -k(x - xo)' 
where k is a constant characteristic of the spring and is called the force constant of the 

spring. Note that the minus sign indicates the direction of the force: to the left if x > Xo 

(extended) and to the right if x < Xo (compressed). The momentum of the mass is 

dx d(x - xo) 
p=I/1-=m 

dt dt 

Newton's second law says that the rate of change of momentum is equal to a force 

Replacing f(x) by Hooke 's Jaw, show that 

d 2 (x - xu) 
1/1 2 = -k(x - xo) 

dl 

111 

x Fie U R E 2.8 
A body of mass m connected to a wall by a spring. 



Problems 

Upon letting ~ := X - Xo be the displacement of the spring from its undistorted length, then 

d2~ 
m-2+k~:=0 dt . 

Given that the mass starts at ~ := 0 with an intial velocity uO' show that the displacement is 
given by 

m 1/2 [( k ) 1/2 ] ~ (t) = Vo ( k) sin m t 

Interpret and discuss this solution. What does the motion look like? What is the frequency? 
What is the amplitude? 

2-8. Consider the linear second-order differential equation 

Note that this equation is linear because y (x) and its derivatives appear only to the first 
power and there are no cross terms. It does not have constant coefficients, however, and there 
is no general, simple method for solving it like there is if the coefficients were constants. 

In fact, each equation of this type must be treated more or less individually. Nevertheless, 
because it is linear, we must have that if y I (x) and y 2 (x) are any two solutions, then a linear 
combination, 

where C I and c
2 

are constants, is also a solution. Prove that y (x) is a solution. 

2-9. We will see in Chapter 3 that the Schrodinger equation for a particle of mass m that is 
constrained to move freely along a line between 0 and a is 

with the boundary condition 

V/(O) := 1/I(a) := 0 

In this equation, E is the energy of the particle and 1/1 (x) is its wave function. Solve this 
differential equation for 1/1 (x), apply the boundary conditions, and show that the energy 
can have only the values 

n 2h 2 

E :=--
11 8ma2 

or that the energy is quantized. 

n := 1, 2, 3, ... 

2-1 O. Prove that the number of nodes for a vibrating string clamped at both ends is n - 1 for 
the nth harmonic. 
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2-11. Prove that 

y(x, t) = A sin [2; (x - Vt)] 

is a wave of wavelength A and frequency lJ == v / A traveling to the right with a velocity v. 

2-12. Sketch the normal modes of a vibrating rectangular membrane and convince yourself 
that they look like those shown in Figure 2.6. 

2-13. This problem is the extension of Problem 2-9 to two dimensions. In this case, the 
particle is constrained to move freely over the surface of a rectangle of sides a and b. The 
Schrodinger equation for this problem is 

with the boundary conditions 

l/r(0, y) == l/r(a, y) == 0 for all y, 

l/r(x,O) == l/r(x, b) == 0 for all x, 

Solve this equation for l/r(x, y), apply the boundary conditions, and show that the energy 
is quantized according to 

E 
11 n 

x y 

n 2h 2 n~h2 

8~a2 + 8mb2 

nx == 1, 2, 3, 
ny == 1, 2, 3, 

2-14. Extend Problems 2-9 and 2-13 to three dimensions, where a particle is constrained to 
move freely throughout a rectangular box of sides a, b, and c. The Schrodinger equation 
for this system is 

and the boundary conditions are that l/r (x, y, z) vanishes over all the surfaces of the box. 

2-15. Show that Equations 2.46 and 2.48 are equivalent. How are G and ¢ in Equation 2.48 
nm nm 

related to the quantities in Equation 2.467 

Problems 2-16 through 2-19 illustrate some other applications of differential equations to 

classical mechanics. 

Many problems in classical mechanics can be reduced to the problem of solving a differential 
equation with constant coefficients (cf. Problem 2-7). The basic starting point is Newton's second 

law, which says that the rate of change of momentum is equal to the force acting on a body. 

Momentum p equals In v, and so if the mass is constant, then in one dimension we have 

If we are given the force as a function of x, then this equation is a differential equation for 

x (t), which is called the trajectory of the particle. Going back to the simple harmonic oscillator 
discussed in Problem 2-7, if we let x be the displacement of the mass from its equilibrium 



Problems 

position, then Hooke 's law says that f (x) = -kx, and the differential equation corresponding 
1:0 Newton's second law is 

a differential equation that we have seen several times. 

2-16. Consider a body falling freely from a height Xo according to Figure 2.9a. If we neglect 
air resistance or viscous drag, the only force acting upon the body is the gravitational 
force mg. Using the coordinates in Figure 2.9a, mg acts in the same direction as x and so 
the differential equation corresponding to Newton's second law is 

Show that 

where Xo and Vo are the initial values of x and v. According to Figure 2.9a, xo = 0 and so 

If the particle is just dropped, then Vo = 0 and so 

Discuss this solution. 
Now do the same problem using Figure 2.9b as the definition of the various quantities 

involved, and show that although the equations may look different from those above, they 
say exactly the same thing because the picture we draw to define the direction of x, uo' and 
mg does not affect the falling body. 

mg x 

(a) 

FIG U R E 2.9 

mg 

(b) 

--x o 

(a) A coordinate system for a body falling from a height xo' and (b) a different coordinate 
system for a body falling from a height xI)" 
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2-17. Derive an equation for the maximum height a body will reach if it is shot straight upward 
with a velocity vo' Refer to Figure 2.9b but realize that in this case Vo points upward. How 

long will it take for the body to return to its initial position , x = O? 

2-18. Consider a simple pendulum as shown in Figure 2. I O. We let the length of the pendulum 

be I and assume that all the mass of the pendulum is concentrated at its end as shown in 
Figure 2.10. A physical example of thi s case might be a mass suspended by a string. We 

assume that the motion of the pendulum is set up such that it oscillates within a plane so 
that we have a problem in plane polar coordinates. Let the distance along the arc in the 

figure describe the motion of the pendulum, so that its momentum is mds jdt = m/de jdt 
and its rate of change of momentum is ml d 2e j dt 2

• Show that the component of force in 

the direction of motion is -mg sin f), where the minus sign occurs because the direction of 

this force is opposite to that of the angle e. Show that the equation of motion is 

d2e 
ml-, = -mg sin e 

dt -

Now assume that the motion takes place only through very small angles and show that the 

motion becomes that of a simple harmonic oscillator. What is the natural frequency of this 

harmonic oscillator? Hint: Use the fact that sin e ::::; e for small values of e. 

2-19. Consider the motion of a pendulum like that in Problem 2-18 but swinging in a viscous 
medium. Suppose that the viscous force is proportional to but oppositely directed to its 

velocity; that is, 

ds de 
f . = -J,.- = -A/-

'IS(OUS dt dt 

where J,. is a viscous drag coefficient. Show that for small angles, Newton 's equation is 

d2e de 
ml-, +A/- +mge =0 

dt- dt 

Show that there is no harmonic motion if 
, 

, 4m-g 
J,.- > --=­

I 

Does it make physical sense that the medium can be so viscous that the pendulum undergoes 

no harmonic motion? 

, 

s FIGURE 2.10 
The coordinate system describing an oscillating pendulum. 



Problems 

2-20. Consider two pendulums of equal lengths and masses that are connected by a spring that 
obeys Hooke's law (Problem 2-7). This system is shown in Figure 2. I I. Assuming that the 

motion takes place in a plane and that the angular displacement of each pendulum from the 

vertical is small, show that the equations of motion for this system are 

d 2x J 
m-J = - mw(-J x - k(x - y) 

dt" 

d 2y 
m- = -mw2

)1 - key - x) 
dt 2 0 

where Wo is the natural vibrational frequency of each isolated pendulum, [i.e., Wo = (g / I) 1/ 2] 

and k is the force constant of the connecting spring. In order to solve these two simultaneous 

differential equations, assume that the two pendulums swing harmonically and so try 

x(t) = Aeiw1 yet) = Beiw1 

Substitute these expressions into the two differential equations and obtain 

( 
2 2 k) k 

W - Wo - m A = - m B 

Now we have two simultaneous linear homogeneous algebraic equations for the two am­

plitudes A and B. We shall learn in MathChapter E that the determinant of the coefficients 

must vanish in order for there to be a nontrivial solution. Show that this condition gives 

Now show that there are two natural frequencies for this system, namely, 

and 
2 2 2k 

W2 =WO+­
m 

Interpret the motion associated with these frequencies by substituting w~ and w~ back into 
the two equations for A and B. The motion associated with these values of A and B are 
called normal modes and any complicated, general motion of this system can be written as 
a linear combination of these normal modes. Notice that there are two coordinates (x and y) 
in this problem and two normal modes. We shall see in Chapter 13 that the complicated 

FIG U R E 2.11 
Two pendulums coupled by a spring that obeys Hooke's law. 
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vibrational motion of molecules can be resolved into a linear combination of natural, or 
normal, modes. 

2-21. Problem 2-20 can be solved by introducing center-of-mass and relative coordinates 
(cf. Section 5-2). Add and subtract the differential equations for x(t) and yet) and then 

introduce the new variables 

rJ == x + y and ~ == x - y 

Show that the differential equations for rJ and ~ are independent. Solve each one and 
compare your results to those of Problems 2-20. 



MATHCHAPTER 

PROBABILITY AND STATISTICS 

In many of the following chapters, we will deal with probability distributions, average 
values, and standard deviations. Consequently, we take a few pages here to discuss some 
basic ideas of probability and show how to calculate average quantities in general. 

Consider some experiment, such as the tossing of a coin or the rolling of a die, 
that has n possible outcomes, each with probability p, where j = 1, 2, . .. , 11. If the , 
experiment is repeated indefinitely, we intuitively expect that 

N. 
p . = lim - ' 

J N -+oo N 
j = I , 2, . .. , n (B. I ) 

where N. is the number of times that the outcome j occurs and N is the total number , 
of repetitions of the experiment. Because 0 < N

j 
< N , P

j 
must satisfy the condition 

(B.2) 

When p . = I, we say the event j is a certainty and when p . = 0, we say it is impossible. , J 

In addition, because 

we have the normalization condition, 

/I 

LPj = I (B.3) 
j = i 63 
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Equation B.3 means that the probability that some event occurs is a certainty. Suppose 
now that some number x) is associated with the outcome j. Then we define the average 

of x or the mean of x to be 

II /I 

(x) = '" x .p . = '" x .p(x .) 
LJ J L J J 
)= 1 )= 1 

(B.4) 

where in the last term we have used the expanded notation p(x .), meaning the proba­
J 

bility of realizing the number x .. We will denote an average of a quantity by enclosing 
J 

the quantity in angular brackets. 

EXAMPLE B-1 
Suppose we are given the following data: 

x 

I 

3 
4 

Calculate the average value of x. 

SOLUTION: Using Equation B.4, we have 

p(x) 

0.20 
0.25 
0.55 

(x ) = (I ) (0.20) + (3) (0.25) + (4)(0.55) = 3.15 

It is helpful to interpret a probability distribution like p as a distribution of a 
J 

unit mass along the x axis in a discrete manner such that p . is the fraction of mass 
J 

located at the point x .. This interpretation is shown in Figure B.1. According to this 
J 

interpretation, the average value of x is the center of mass of this system. 

p(x) 

o 

FIG U R E B.l 

X 4 

The discrete probability frequency function or probability density, p(x) . 



Another quantity of importance is 

/I 

2 L " (x ) = x p . 
J j 

j= 1 

(B.5) 

The quantity (x 2
) is called the second moment of the distribution {P j } and is analogous 

to the moment of inertia. 

EXAMPLE B-2 
Calculate the second moment of the data given in Example B-1. 

SOL UTI 0 N : Using Equation B .S, we have 

Note from Examples B-1 and B-2 that (x 2)=f (X)2 . This nonequality is a general 

result that we will prove below. 
A physically more interesting quantity than (x 2

) is the second central moment, or 
the variance, defined by 

/I 

a 2 = ((x - (X))2) = "(x - (X) )2p 
.\ ~ j j 

(B.6) 
j= 1 

As the notation suggests , we denote the square root of the quantity in Equation B.6 
by a x' which is called the standard deviation. From the summation in Equation B.6, 
we can see that a 2 will be large if x is likely to differ from (x) , because in that case 

x J 

(x . - (x )) and so (x . - (X))2 will be large for the significant values of p .. On the other 
J J J 

hand, a; will be small if Xi is not likely to differ from (x ), or if the Xj cluster around (x ), 
because then (x. - (X))2 will be small for the significant values of p. Thus, we see 

J J 
that either the variance or the standard deviation is a measure of the spread of the 
distribution about its mean. 

Equation B.6 shows that a; is a sum of positive terms, and so a; > O. Furthermore, 

11 11 

a,2 = "(x - (X))2 p . = "(x 2 
- 2(x )x . + (x )2) p . 

A ~ J J ~ J j j 

j= 1 j= 1 

/'I I I n 

= "xl p . - 2 " (x) xp + " (X)2 p 
~ Jj ~ Jj ~ J 

(B.7) 
j= 1 j= 1 j= 1 

The first term here is just (Xl) (cf. Equation B.5). To evaluate the second and third 
terms, we need to realize that (x), the average of x , is just a number and so can be 

J 

factored out of the summations, leaving a summation of the form LX. p . in the second 
j j 

term and L Pj in the third term. The summation L Xj P
j 

is (x ) by definition and the 
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summation L p is unity because of normalization (Equation B.3). Putting all this 
.I 

together, we find that 

a~; = (x 2) - 2 (X)2 + (X)2 

= (x 2) - (X)2 > ° (B.8) 

Because a'} > 0, we see that (x 2
) > (x) 2 . A consideration of Equation B.6 shows that 

a'} = ° or (X)2 = (x2) only when Xj = (x) with a probability of one, a case that is not 
really probabilistic because the event j occurs on every trial. 

So far we have considered only discrete distributions , but continuous distributions 
are also important in physical chemistry. It is convenient to use the unit mass analogy. 
Consider a unit mass to be distributed continuously along the x axis, or along some 
interval on the x axis. We define the linear mass density p (x) by 

dm = p(x)dx 

where dm is the fraction of the mass lying between x and x + dx. By analogy, then, 
we say that the probability that some quantity x, such as the position of a particle in a 
box, lies between x and x + dx is 

Prob(x, x + dx) = p(x)dx (B.9) 

and that 

Prob(a < x < b) = Ib p(x)dx 
a 

(B .lO) 

In the mass analogy, Prob{ a < x < b} is the fraction of mass that lies in the interval 
a < x < b. The normalization condition is 

1: p(x)dx = 1 

Following Equations B.4 through B.6, we have the definitions 

and 

(x) = 1: xp(x)dx 

(x
2

) = 1: x 2 
p(x)dx 

a; = 1: (x - (X)2 p(x)dx 

(B. II) 

(B.12) 

(B.l3) 

(B.14 ) 
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EXAMPLE B-3 
Perhaps the simplest continuous distribution is the so-called uniform distribution, 

where 

p (x) = constant = A a < x < b 

= 0 otherwise 

Show that A must equal I j (b - a). Evaluate (x ), (x 2
) , o}, and a, for this distribution. 

SO L U TI 0 N: Because p(x) must be normalized, 

f h f h 
p(x)dx = I = A dx = A(b - a) 

a u 

Therefore, A = I j (b - a) and 

The mean of x is given by 

1 
p(x) =-­

b - a 
=0 otherwise 

f h I f h 
(x ) = xp(x)dx = xdx 

(( b-a (( 

b2 
- a2 b + a 

2(b-a) 2 

and the second moment of x by 

3(b - a) 

Last, the variance is given by Equation B.6, and so 

7 , 2 (b - a)2 
a- = (r ) - (x ) = - - -

x 12 

and the standard deviation is 

EXAMPLE B-4 

(b - a) 

v't2 

The most commonly occurring and most important continuous probability distribution 

is the Gaussian distribution, given by 

, , 
p(x)dx = ce - x-/2a- dx -oo < x < oo 

Find c, (x ), 00; and ax' 
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SOL UTI 0 N: The constant c is determined by normalization: 

(B.IS) 

If you look in a table of integrals (for example, The CRC Standard Mathematical 
Tables or The CRC Handbook of Chemistry and Physics, CRC Press), you won ' t find 
the above integral. However, you will find the integral 

j oc.1 (Jr)1 /2 
o e-

cx
.
1 

dx = 4a (B.16) 

The reason that you won ' t find the integral with the limts (-00, 00) is illustrated in , 
Figure B.2(a), where e - cxx- is plotted against x. Note that the graph is symmetric about 

the vertical axis, so that the corresponding areas on the two sides of the axis are equal. 

A function that has the mathematical property that f (x) = f ( - x) and is called an 
even fun ction. For an even function 

A jA 
. x dx = 2 x dx f J eve ll ( ) f even ( ) 

- A 0 

(B.17) 

, , 
If we recognize that p(x ) = ce-x- /k is an even function and use Equation B .16, then 

we find that 

(

Jra 2 ) 1/2 
=2c 2 = I 

f(x) f(x) 

----~------7-----~~---. X 

--~~----~------~~-.x o 

(a) (b) 

FIG U R E B.2 , 
(a) The function f(x) = e- x

- is an even function , f(x) = fe-x). (b) The function f(x) = 
x e- x 2 is an odd function , f(x) = - f( - x ). 
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The mean of x is given by 

(B.IS) 

The integrand in Equation B.18 is plotted in Figure B.2(b). Notice that this graph is 
antisymmetric about the vertical axis and that the area on one side of the vertical axis 
cancels the corresponding area on the other side. A function that has the mathematical 

property that f (x) = - f ( -x) is called an odd function. For an odd function , 

f A j~dtl(x)dx = 0 
- A 

(B.I9) 

, , 
The function xe- x- /2,,- is an odd function , and so 

The second moment of x is given by 

' / ' The integrand in this case is even because y (x ) = x 2e- x- 2,,- = y( -x). Therefore, 

The integral 

can be found in integral tables, and so 

Because (x ) = 0, a} = (X2), and so ax is given by 

a =a .r 

(B.20) 

The standard deviation of a normal distribution is the parameter that appears tn the 
exponential. The standard notation for a normalized Gaussian distribution function is 

, 1/' .2/ , 2 p(x)dx = (2JT(J; )- -e- I -n' dx (B.2I) 
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Figure B.3 shows Equation B.21 for various values of u . Note that the curves become 
x 

narrower and taller for smaller values of u . 
x 

A more general version of a Gaussian distribution is 

(B.22) 

This expression looks like those in Figure B.3 except that the curves are centered at 
x = (x) rather than x = O. A Gaussian distribution is one of the most important and 
commonly used probability distributions in all of science. 

FIG U R E B.3 

p(x) 

/' 
o \ 
o , 

I \ 
o 
o 

, , 

, , -J- -- ---\ ------

o 

A plot of a Gaussian distribution, p(x) , (Equation B.21) for three values of 0> The dotted curve 
corresponds to u = 2, the solid curve to u = I, and the dash-dotted curve to (]" = 0.5 . .\" x x 

Problems 
B-1. Consider a particle to be constrained to lie along a one-dimensional segment 0 to a. We 

will learn in the next chapter that the probability that the particle is found to lie between x 

and x + dx is given by 

2 nnx 
p(x)dx = - sin2 dx 

a a 

where n = I, 2, 3, .... First show that p(x) is normalized. Now calculate the average 

position of the particle along the line segment. The integrals that you need are (The CRC 
Handbook of Chemistry and Physics or The CRC Standard Mathematical Tables, CRC 

Press) 

and 

f . ? x sin 2ax 
sm- axdx = - - ---

2 4a 

f . 2 x 2 x sin 2ax cos 2ax 
x SIO axdx = - - - -----;:--

4 4a 8a2 



Problems 

B-2. Calculate the variance associated with the probability distribution given in Problem 8-1. 
The necessary integral is (eRe tables) 

J J . ? X l ( x
2 I). x cos 20'x 

x- SIO- axdx = - - - - - 1 sm 20'x - J 

6 40' 8a' 40'-

B-3. Using the probability distribution given in Problem B- 1, calculate the probability that the 
particle will be found between 0 and a /2. The necessary integral is given in Problem 8 - 1. 

B-4. Prove explicitly that 

by breaking the integral from -00 to 00 into one from -00 to 0 and another from 0 to 00. 

Now let z = -x in the first integral and z = x in the second to prove the above relation, 

B-5. 8y using the procedure in Problem 8-4, show explicitly that 

B-6. We will learn in Chapter 27 that the molecules in a gas travel at various speeds, and that 
the probability that a molecule has a speed between v and v + dv is given by 

O <v<oo 

where m is the mass of the particle, kB is the Boltzmann constant (the molar gas constant R 
divided by the Avogadro constant), and T is the Kelvin temperature. The probability 
distribution of molecular speeds is called the Maxwell-Boltzmann distribution. First show 
that p(v) is normalized, and then determine the average speed as a function of temperature. 
The necessary integrals are (eRe tables ) 

x 2
" e-u

" dx = -100 ,2 I . 3 . 5 ... (2n - I ) (7f) 1/2 

o 2"+ I a" a 
n > 

and 

where n! is n factorial, or n! = n(n - I )(n - 2) ... (I). 

B-7. Use the Maxwell-Boltzmann distribution in Problem B-6 to determine the average kinetic 
energy of a gas-phase molecule as a function of temperature. The necessary integral is given 
in Problem 8-6. 
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Erwin Schrodinger was born in Vienna. Austria. on August 12, 1887, and died there in 1961. 
He received his Ph .D. in theoretical physics in 1910 from the University of Vienna. He then 
held a number of positions in Germany and in 1927 succeeded Max Planck at the University 
of Berlin at Planck's request. Schrodinger left Berlin in 1933 because of his opposition to Hitler 
and Nazi policies and eventually moved to the University of Graz in Austria in 1936. After the 
invasion of Austria by Germany, he was forcibly removed from his professorship in 1936. 
He then moved to the Institute of Advanced Studies. which was created for him , at the University 
College, Dublin, Ireland. He remained there for 17 years and then retired to his native Austria. 
Schrodinger shared the Nobel Prize for physics with Paul Dirac in 1933 for the "discovery of 
new productive forms of atomic theory." Schrodinger rejected the probabilistic interpretation 
of the wave equation , which led to serious disagreement with Max Born , but they remained 
warm friends in spite of their scientific disagreement. Schrodinger preferred to work alone, and 
so no school developed around him, as it did for severa l other developers of quantum mechanics. 
His influential book, Wh(l/ is Life :), caused a number of physicists to become interested in 
biology. His personal life. which was rather unconventional , has been engagingly related by 
Walter Moore in his book , Schrodinger (Cambridge University Press, 1989), 



CHAPTER 

The Schrodinger Equation 
and a Particle In a Box 

The Schrodinger equation is our fundamental equation of quantU111 mechanics. The 
solutions to the Schrodinger equation are called wave .functions. We will see that a 
wave function gives a complete description of any system. In this chapter, we present 
and discuss the version of the Schrodinger equation that does not contain time as a 
variable. Solutions to the tinle-independent Schrodinger equation are called stationary­
state wave junctions because they are independent of time. Many problems of interest 
to chemists can be treated by using only stationary-state wave functions. We do not 
consider any time dependence until Chapter 13, where we discuss molecular spec­
troscopy. 

In this chapter, we present the time-independent Schrodinger equation and then ap­
ply it to a free particle of mass m that is restricted to lie along a one-dimensional interval 
of length a. This system is called a particle in a box and the calculation of its properties 
is a standard introductory problem in quantum mechanics. The particle-in-a-box prob­
lem is simple, yet very instructive. In the course of discussing this problem, we will 
introduce the probabilistic interpretation of wave functions. We use this interpretation 
to illustrate the application of the Uncertainty Principle to a particle in a box. 

3-1. The Schrodinger Equation Is the Equation fc)r Finding the Wave 
Function of a Particle 

We cannot derive the Schrodinger equation any Inore than we can derive Newton's laws, 
and Newton's second law, j' == nz.a, in particular. We shall regard the Schrodinger 
equation to be a fundamental postulate, or aXi0111, of quantum mechanics, just as 
Newton's laws are fundamental postulates of c1assical lnechanics. Even though we 
cannot derive the Schrodinger equation, we can at least show that itis plausible and 
perhaps even trace Schrodinger's original line of thought. We finished Chapter 1 with 
a discussion of matter waves, arguing that lnatter has wavelike character in addition to 
its obvious particlelike character. As one story goes, at a rneeting at which this new 73 
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idea of matter waves was being discussed, someone mentioned that if indeed matter 
does possess wavelike properties, then there must be some sort of wave equation that 
governs them. 

Let us start with the classical one-dimensional wave equation for simplicity: 

(3.1) 

We have seen in Chapter 2 that Equation 3.1 can be solved by the method of separation 
of variables and that u (x, t) can be written as the product of a function of x and a 
harmonic or sinusoidal function of time. We will express the temporal part as cos wt 
(cf. Equation 2.25) and write u (x, t) as 

u(x, t) == l/J(x) cos wt (3.2) 

Because l/J(x) is the spatial factor of the amplitude u(x, t), we will call1/J(x) the spatial 

amplitude of the wave. If we substitute Equation 3.2 into Equation 3.1, we obtain an 
equation for the spatial amplitude l/J (x), 

d' '1/r J .... 'f' w-
-, + -2l/J(X) == 0 
dx.... v 

(3.3) 

Using the fact that w == 2n v and that VA == v, Equation 3.3 becomes 

(3.4) 

We now introduce the idea of de Broglie matter waves into Equation 3.4. The total 
energy of a particle is the sum of its kinetic energy and its potential energy, 

, 
1)-

E == - + Vex) 
2m 

(3.5) 

where p == m v is the momentum of the particle and V (x) is its potential energy. If we 
solve Equation 3.5 for the momentum p, we find 

p == {21n[E - V(X)]}1/2 (3.6) 

According to the de Broglie formula, 

h h 
A- - - --------------

- p - {2nl[E - V(X)]}1/2 

Substituting this into Equation 3.4, we find 

d 2l/J 2m 
-2 + -, [E - V(x)]l/J(x) == 0 
dx h--

(3.7) 

where n (called h bar) == h j2n . 



3-2. Classical-Mechanical Quantities Are Represented by Linear Operators in Quantum Mechanics 

Equation 3.7 is the famous Schrodinger equation, a differential equation whose 
solution, 1/1 (x), describes a particle of mass m moving in a potential field described 
by V (x). The exact nature of 1/1 (x) is vague at this point, but in analogy to the classical 
wave equation, it is a measure of the amplitude of the matter wave and is called the 
wave function of the particle. Equation 3.7 does not contain time and is called the tin1e­
independent Schrodinger equation. The wave functions obtained from Equation 3.7 are 
called stationary-state wave functions. Although there is a more general Schrodinger 
equation that contains a time dependence (Section 4-4), we will see throughout this 
book that many problems of chemical interest can be described in terms of stationary­
state wave functions. 

Equation 3.7 can be rewritten in the form 

1i 2 
d2 1/1 

-- 2 + V(x)1/I(x) == Eo/(x) 
2m dx 

(3.8) 

Equation 3.8 is a particularly nice way to write the Schrodinger equation when we 
introduce the idea of an operator in Section 3-2. 

3-2. Classical-Mechanical Quantities Are Represented by Linear 
Operators in Quantum Mechanics 

An operator is a symbol that tells you to do something to whatever follows the symbol. 
For example, we can consider dy / dx to be the d / dx operator operating on the func­
tion y(x). Some other examples are SQR (square what follows), J01 

(integrate fronl 0 
to 1), 3 (multiply by 3), and 3/3y (partial derivative with respect to y). We usually 

A 

denote an operator by a capital letter with a carat over it, e.g., A. Thus, we write 

A 

A/(x) == g(x) 

A 

to indicate that the operator A operates on f (x) to give a new function g (x). 

EXAMPLE 3-1 
Perform the following operations: 

A A d 2 

a. A(2x), A == -
dx 2 

A 7 A d 2 d 
h. A(x~), A == - + 2- + 3 

dx 2 dx 

A A a 
c. A(xy3), A == -

ay 
A d 

A == -i1i­
dx 
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SOLUTION: 

A d 2 

3. A (2x) == -" (2x) == 0 
dx-

1 

A ') dk. J d 1 1 . " 

b. A(x ) == -,X + 2-x- + 3x- == 2 +4x + 3x~ 
dx~ d.r 

"1 a ~ " c. A Cx- v·~) == -xy == 3x v-. a v . . 

In quantum mechanics, we deal only \vith linear o]Jerators. An operator is said to 

be linear if 

(3.9) 

where c, and c 2 are (possibly conlplex) constants. Clearly the "differentiate" and 
"integrate~' operators are linear because 

d . d.l df~ 
- [c, I, (x) + elfl (x)] == c, -' + c.,--
dx - ~ dx - dx 

and 

The "square" operator, SQR, on the other hand. is nonlinear because 

and therefore it does not satisfy the definition given by Equation 3.9. 

EXAMPLE 3-2 
Determine whether the following operators are linear or nonlinear: 

A 

a. Af(x) == SQRT f(x) (take the square root) 

b. Af(x) == x 2 f(x) 



3-3. The Schrodinger Equation Can Be Formulated as an Eigenvalue Problem 

SOLUTION: 

a. A [c l II (x) + c2j~(X)] - SQRT [['I II (x) + c2f~(x)] 
- [. f ) . f' )] 1/2 --I- > f" j2 () • f'l /2 ( . - (,. I(X +(2.2(X I (I. I X +-(2.2 x) 

and so SQRT is a nonlinear operator. 

2 2 "'. ". 
== C I X II (x) + C2 X 12 (x) == C I A j I (x) + C 2 A f 2 (X) 

and so Xl (multiply by X2) is a linear operator. 

3-3. The Schrodinger Equation Can Be Formulated 
as an Eigenvalue Problem 

A problem that we will frequently encounter in physical chemistry is the following: 
A 

Given A, find a function ¢(x) and a constant a such that 

A 

A¢(x) == a¢(x) (3.10) 

A 

Note that the result of operating on the function ¢ (x) by A is simply to give ¢ (x) 
" back again, only multipled by a constant factor. Clearly A and ¢ (x) have a very 

special relationship to each other. The function ¢ (x) is called an eigenfunction of the 
A 

operator A, and a is called an eigenvalue. The prob1em of determining ¢(x) and a for 
A 

a given A is called an eigenvalue problem. 

EXAMPLE 3-3 
Show that eCiX is an eigenfunction of the operator dO /dx fl

• What is the eigenvalue? 

SOL UTI 0 N: We differentiate eCiX n times and obtain 

and so the eigenvalue is all . 

Operators can be imaginary or complex quantities. We will soon learn that the 
x component of the linear momentum can be represented in quantum mechanics by an 
operator of the form 

A a 
P == -iTz-

x ax (3.11 ) 
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EXAMPLE 3-4 
'k A a 

Show that e1
'
X is an eigenfunction of the operator, P, == -in . What is the eigen-

,t ax 
value? 

SOL UTI 0 N: We apply P
t 

to eikx and find 

A 'k a 'k 'k P e1 .r == -in e1 
x == nke' 'x 

.r ax 

and so we see that eikx is an eigenfunction and hk is the eigenvalue of the operator ~'(' 

Let's go back to Equation 3.8. We can write the left side of Equation 3.8 in the 
form 

[ 

h2 d
2 

] 
-- 2 + Vex) 1jr(x) == E1jr(x) 

2,n dx 
(3.12) 

" If we denote the operator in brackets by H, then Equation 3.12 can be written as 

" H 1jr (x) == E 1jr (x ) (3.13) 

We have formulated the Schrodinger equation as an eigenvalue problem. The 
" 

operator H, 

(3.14 ) 

is called the Hanliltonian operator. The wave function is an eigenfunction, and the en­
ergy is an eigenvalue of the Hamiltonian operator. This suggests a correspondence be­
tween the Hamiltonian operator and the energy. We will see that such correspondences 
of operators and classical-mechanical variables are fundamental to the formalism of 
quantum mechanics. 

If V (x) == 0 in Equation 3.14, the energy is all kinetic energy and so we define a 
kinetic energy operator according to 

" K ,r (3.15) -----

(Strictly speaking, the derivative here should be a partial derivative, but we will 
consider only one-dimensional systems for the time being.) Furthermore, classically, 
K ==p2 12m, and so we conclude that the square of the momentum operator is given 

" 
by 2mKx' or 

"2 2 d
2 

P ==-h 
x dx 2 

(3.16) 



3-3. The Schrodinger Equation Can Be Formulated as an Eigenvalue Problem 

We can interpret the operator P'; by considering the case of two operators acting 
A A 

sequentially, as in A B f (x). In cases such as this, we apply each operator in turn, 
working from right to left. Thus 

A A A A A 

ABf(x) == A[Bf(x)] == Ah(x) 

A 

where h (x) == B f (x). Once again, we require that all the indicated operations be 
compatible. If A == B, we have AAf(x) and denote this term as A2 f(x). Note that 
A2 f (x) =f- [A f (X)]2 for arbitrary .f (x). 

EXAMPLE 3-5 
Given A = d/dx and 13 = x 2 (multiply by x 2

), show (a) that A2 f(x) =I=- [Af(x)]2 and 
A A " " 

(b) that ABf(x) =I=- BAf(x) for arbitrary f(x). 

SOLUTION: 

for arbitrary f(x), 

"2 d (df ) d
2 

f A f(x) = - - =-
dx dx dx 2 

AI". d 2 ~df 
ABf(x) = -[x f(x)] = 2xf(x) + x~-

dx dx 

13Af(x) = x2df 
=I=- A13f(x) 

dx 

for arbitrary f (x). Thus, we see that the order of the application of operators must be 
A A 

specified. If A and B are such that 

A A A A 

ABf(x) = BAf(x) 

for any compatible f (x), then the two operators are said to conunute. The two operators 
in this example, however, do not commute. 

U sing the fact that P; means two successive applications of P
x

' we see that the 
operator P; in Equation 3.16 can be factored as 

P == -n == -In - -In-1".2 2 d
2 

(. d) ( . d) 
x dx 2 dx dx 

so that we can say that -indjdx is equal to the momentum operator. Note that this 
definition is consistent with Equation 3.11. 
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3-4. Wave Functions Have a Probabilistic Interpretation 

In this section, we will study the case of a free particle of mass m constrained to lie 

along the x-axis between x = 0 and x = a. This case is called the problem ofa particle 
in a one-dimensional box (cf. Figure 3.1). It is mathematically a fairly simple problem, 

so we can study the solutions in great detail and extract and discuss their physical 

consequences, which carryover to more complicated problems. In addition , we will 

see that this simple model has at least a crude application to the J[ electrons in a linear 
conjugated hydrocarbon. 

The terminology Fee particle means that the particle experiences no potential en­

ergy or that V (x) = O. If we set V (x) = 0 in Equation 3.7 , we see thatthe Schrbdinger 

equation for a free particle in a one-dimensional box is 

d 21f; 2111 E 
----;:-1 + , 1f; (x) = 0 
dx- 71 -

O < x < ({ (3.17) 

The particle is restricted to the region 0 < x < II and so cannot be found outside this 

region (see Figure 3. I). To implement the condition that the particle is restricted to the 

region 0 < x < a, we must formulate an interpretation of the wave function 1f;(x). We 

have said that 1f;(x) represents the amplitude of the particle in some sense. Because the 

intensity of a wave is the square of the magnitude of the amplitude eef. Problem 3-31), 
we can write that the " intensity of the particle" is proportional to 1f; * (x)1f;(x) , where 

the asterisk here denotes a complex conjugate [recall that V; *(x)1f;(x) is areal quantity; 
see MathChapter A]. The problem lies in just what we mean by intensity. Schrbdinger 

originally interpreted it in the following way. Suppose the particle to be an electron. 
Then Sehrbdinger considered e1f; * (x)1f; (x) to be the charge density and e1f; * (x)1f; (x )dx 

to be the amount of charge between .r and x + dx. Thus. he presumably pictured the 
electron to be spread allover the region. A few years later. however, Max Born, a 
German physicist working in scattering theory, fOllnd that this interpretation led to 
logical difficulties and replaced Schrbdinger's interpretation with 1f; * (x)1f;(x)dx being 
the probability that the particle is located between x (llId .r + dx. Born's view is now 

generally accepted. 
Because the particle is restricted to the region 0 < x < {{. the probability that 

the particle is found outside this region is zero. Consequently. we shall require that 

00 00 

t t 
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x 

FIGURE 3.1 
The geometry of the problem of a particle in a 
one-dimensional box . 



3-5. The Energy of a Particle in a Box Is Quantized 

1j; (x) == 0 outside the region 0 < x < a, which is mathematically how we restrict the 

particle to this region. Furthermore, because 1j; (x) is a measure of the position of the 

particle, we shall require 1j; (x) to be a continuous function. If 1j; (x) == 0 outside the 

interval 0 < x < a and is a continuous function, then - -

1j; (0) == lj; (a) == 0 

These are boundary conditions that we impose on the problem. 

3-5. The Energy of a Particle in a Box Is Quantized 

The general solution of Equation 3.17 is (see Example 2-4) 

with 

1j;(x) == A cos kx + B sin kx 

(2mE)I/2 
k==--­n 

2n (2m E) 1/2 

h 
(3.18 ) 

The first boundary condition requires that lj; (0) == 0, which implies immediately that 

A == 0 because cos(O) == 1 and sin(O) == O. The second boundary condition then gives 

us that 

lj;(a) == B sin ka == 0 (3.19) 

We reject the obvious choice that B == 0 because it yields a trivial or physically 

uninteresting solution, lj; (x) == 0, for all x. The other choice is that 

ka == nn n == 1, 2, ... (3.20) 

(compare with Equations 2.18 through 2.20). By using Equation 3.18 for k, we find 
that 

h 2n2 

E ==--
n 8ma2 

n == 1, 2, ... (3.21) 

Thus, the energy turns out to have only the discrete values given by Equation 3.21 and 

no other values. The energy of the particle is said to be quantized and the integer n is 

called a quantum number. Note that the quantization arises naturally from the boundary 

conditions. We have gone beyond the stage of Planck and Bohr where quantum numbers 

are introduced in an ad hoc manner. The natural occurrence of quantum numbers was 

an exciting feature of the Schrodinger equation, and, in the introduction to the first of 

his now famous series of four papers published in 1926, Schrodinger says: 

In this communication I wish to show that the usual rules of quantization can be 

replaced by another postulate (the Schrodinger equation) in which there occurs 
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no mention of whole numbers. Instead, the introduction of integers arises in the 
same natural way as, for example, in a vibrating string, for which the number of 
nodes is integral. The new conception can be generalized, and I believe that it 
penetrates deeply into the true nature of the quantum rules. 
[from Annalen der Physik 79,361 (1926)] 

The wave function corresponding to Ell is 

11r (x) = B sin kx 
'f'n 

nJTx 
= Bsin--

a 
n = 1, 2, ... (3.22) 

We will determine the constant B shortly. These wave functions are plotted in Fig­
ure 3.2. They lookjust like the standing waves set up in a vibrating string (cf. Figure 2.3). 
Note that the energy increases with the number of nodes. 

The model of a particle in a one-dimensional box has been applied to the JT electrons 
in linear conjugated hydrocarbons. Consider butadiene, H2C=CHCH=CH

2
, which has 

four JT electrons. Although butadiene, like all polyenes, is not a linear molecule, we 
will assume, for simplicity that the JT electrons in butadiene move along a straight 

~'------""'"-~~ 10/
4 
(x ) 1 

2 

,., 

1""'----=--'---""" 10/
2 
(x ) 1--

o a 0 a 
x x 

(a) (b) 

Fie U R E 3.2 
The energy levels, wave functions (a), and probability densities (b) for the particle in a box. 



3-5. The Energy of a Particle in a Box Is Quantized 

line whose length can be estimated as equal to two C=C bond lengths (2 x 135 pm) 
plus one C-C bond (154 pm) plus the distance of a carbon atom radius at each end 
(2 x 77.0 pm == 154 pm), giving a total distance of 578 pm. According to Equation 3.21, 
the allowed energies are given by 

n == 1, 2, ... 

But the Pauli Exclusion Principle (which we discuss later but is assumed here to be 
known from general chemistry) says that each of these states can hold only two electrons 
(with opposite spins) and so the four n electrons fill the first two levels as shown in 
Figure 3.3. The energy of the first excited state of this system of four n electrons is 
that which has one electron elevated to the n == 3 state (cf. Figure 3.3), and the energy 
to make a transition from the n == 2 state to the n == 3 state is 

The mass me is that of an electron (9.109 x 10-31 kg), and the length of the box is 
given above to be 578 pm, or 578 x 10-12 m. Therefore, 

(6.626 x 10-34 J . s)25 
~E == == 9.02 X 10- 19 J 

8(9.109 x 10-31 kg)(578 X 10- 12 m)2 

and 

~E v == == 4.54 X 104 cm 1 
hc 

Butadiene has an absorption band at 4.61 x 104 cm 1, and so we see that this very 
simple model, called the free-electron model, can be somewhat successful at explaining 
the absorption spectrum of butadiene (cf. Problem 3-6). 

----<0 n =3 

n=2 

• • n = 1 
FIG U R E 3.3 
The free-electron model energy-level scheme for butadiene. 
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3-6. Wave Functions Must Be Normalized 

According to the Born interpretation~ 

'" '" . '} 11 J[.r 
1/1,; (:r) 1/1 (x)d x == 8' B Sln- -·--d x 

n (l 
(3.23) 

is the probability that the particle is located bet\veen x and x + dx. Because the particle 

is restricted to the region 0 < x < a ~ it is certain to be found there and so the probability 
that the particle lies between 0 and a is unity (Equation B.l1)~ or 

1° 
1/1,~ (x) 1/11/ (x )dx == 1 

o 
(3.24) 

If we substitute Equation 3.23 into Equation 3.24, we find that 

1
({ 

) . '} nJrx 
IBI- Sln- . dx==] 

u a 
(3.25) 

We let nJr x / a be z. in Equation 3.25 to obtain 

1tl • '} nrr x a 1flJI 

• 1 a (n JT ) a 
. Sln~ dx == - Sln- zdz. == -. - , == 
() a J1 JT () HJT ' ~ . 2 

(3.26) 

Therefore, 8 2 (a /2) == 1, B == (2/ a) 1/2, and 

(2) 1/2 nnx 
1/f (x) == - sin -

11 a a 
o < .r < a n == 1 ~ 2, ... (3.27) 

A wave function that satisfies Equation 3.24, and the one given by Equation 3.27 in 
particular, is said to be nornlalized.When the constant that lTIultiplies a wave function 
is adjusted to assure that Equation 3.24 is satisfied, the resulting constant is called a 
norlnalization constant. Because the Hamiltonian operator is a linear operator, if 1jJ is 

A 

a solution to H 1jJ == E1jJ, then any constant, say A, tirnes VI is also a solution, and A 
can always be chosen to produce a normalized solution to the Schrodinger equation, 

A 

H1jJ == E1jJ (cf. Problem 3-7). 

Because 1jJ*(x)1jJ(x)dx is the probability of finding the particle between x and 

x + dx, the probability of finding the particle within the interval Xl < X < x2 is 

Prob(x[ < x <xc) = I r

, 1jf*(x)l/I(x)dx 
.\ I 

(3.28) 



3-6. Wave Functions Must Be Normalized 

EXAMPLE 3-6 
Calculate the probability that a particle in a one-dimensional box of length a is found 

to be between D and a /2. 

SOL UTI 0 N: The probability that the particle will be found between 0 and a /2 is 

l
al2 210/2 . ') nnx 

Prob(D < x < a/2) == ljI*(x)ljI(x)dx == - Sln~ d~r 
o a 0 a 

If we let nn x / a be Z, then we find 

2 l nn 12 2 I x sin 2x I17r 12 
Prob(D < x <a/2) == -. sin

2 zdz == -1- -
nn 0 nn 2 4 0 

2 (I1n Sinnn) I == - - - == - (for all n) 
nn 4 4 2 

Thus, the probabiltiy that the particle lies in one-half of the interval 0 < x < a is l. 

We can use Figure 3.2 and a slight variation of Example 3-6 to illustrate a fun­
damental principle of quantum mechanics. Figure 3.2 shows that the particle is more 
likely to be found near the center of the box for the n == 1 state but that the probability 
density becomes more uniformly distributed as n increases. Figure 3.4 shows that the 
probability density, 1/!;(x)1/!n(x) == (2Ia) sin2 nJTxla, for n == 20 is fairly uniformly 
distributed from 0 to a. In fact, a variation of Example 3-6 (Problem 3-8) gives 

1.0 .. ; .. ::~ 

~ 

~ 

---~ 
t:::! 

0 
N 
'-" 

C"l 

C .-
r:/J 
~ 

~ 

---N 
'-" 

~ .; . .. ' ...... " . ... 
O.O~::- .... 

" 

0 a 
x 

F I CUR E 3.4 
The probability density, ljI,;(x)ljIn(x) == (2/a) sinl I1nx/a for 11 == 20, illustrating the corre­
spondence principle, which says that the particle tends to behave classically in the lilnit of 
large n. 
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1 
n even 

4 
Prob(O < X < a/4) == Prob(3a/4 < X < a) 

11~1 

1 (-1)2 
- - n odd 
4 2rrn 

and 
1 

n even 
4 

Prob(a/4 < X < a/2) == Prob(a/2 < x < 3a/4) 
11 I 

~ + (-1)2 n odd 
4 2rrn 

In both cases, the probabilities approach 1/4 for any large value of n. A similar result 
is found for any equi-sized intervals. In other words, the probability density becomes 
uniform as n increases, which is the expected behavior of a classical particle, which 
has no preferred position between 0 and a. 

These results illustrate the correspondence principle, according to which quantum 
mechanical results and classical mechanical results tend to agree in the limit of large 
quantum numbers. The large quantum number limit is often called the classical limit. 

3-7. The Average Momentum of a Particle in a Box Is Zero 

We can use the probability distribution l/r,~ (x) l/r
n 
(x) to calculate averages and stan­

dard deviations (MathChapter B) of various physical quantities such as position and 
momentum. Using the example of a particle in a box, we see that 

2 nrrx 
1/r*(X)1/r (x)dx == - sin2 dx 
'f/ II 'f/ 11 a a O<x<a 

(3.29) 

==0 otherwise 

is the probability that the particle is found between x and x + dx. These probabilities 
are plotted in Figure 3.2(b). The average value of x, or the mean position of the particle, 
is given by 

2j{l nrr x 
(x) == - x sin2 dx 

a (] a 

The integral in Equation 3.30 equals a 2 /4 (Problem B-1). Therefore, 

2 a2 a 
(x) == - . - == -

a 4 2 
(for all n) 

(3.30) 

(3.31) 

This is the physically expected result because the particle "sees" nothing except the 
walls at x == 0 and x == a, and so by symmetry (x) must be a/2. 



3-7. The Average Momentum of a Particle in a Box Is Zero 

We can calculate the spread about (x) by calculating the variance, a}. First we 
calculate (x 2

), which is (Problem B-2) 

(3.32) 

rrhe variance of x is given by 

and so the standard deviation is 

(3.33) 

We shall see that a is directly involved in the Heisenberg Uncertainty Principle. 
x 

A problem arises if we wish to calculate the average energy or momentum because 
they are represented by differential operators. Recall that the energy and momentum 
operators are 

A TI2 d 2 

H == -- + Vex) 
2m dx 2 

and 

A d 
P == -in-

x dx 

The problem is that we must decide whether the operator works on 1/1* (x) 1/1 (x)dx or on 
1/1 (x) or on 1/1* (x) alone. To determine this, let's go back to the Schrodinger equation 
in operator notation: 

(3.34) 

If we multiply this equation from the left (see Problem 3-19) by 1/1; (x) and integrate 
over all values of x, we obtain 

where the second step follows because En is a number and the last step follows because 
1/In (x) is normalized. Equation 3.35 suggests that we sandwich the operator between a 
wave function 1/In (x) and its complex conjugate 1/1; (x) to calculate the average value 
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of the physical quantity associated with that operator. We will set this up as a formal 
postulate in Chapter 4, but our assumption is that 

(3.36) 

A 

where S is the quantum-mechanical operator associated with the physical quantity s, 
and (s) is the average value of s in the state described by the wave function. For example, 
the average momentum of a particle in a box in the state described by 1/1

11 
(x) is 

1(1 (2) 1/2 

(p)= 0 a sin
n

:
x 

( ) ( )

1/2 d 2 nJTX 
-in- - sin dx 

dx a a 
(3.37) 

In this particular case, 1/In (x) is real, but generally the operator is sandwiched in between 
1/1: (x) and 1/I

n 
(x) and so operates only on 1/1

11 
(x) because only 1/I

n 
(x) lies to the right of 

the operator. We did not have to worry about this when we calculated (x) above because 
A 

the position operator X is simply the "multiply by x" operator and its placement in the 
integrand in Equation 3.36 makes no difference. 

If we simplify Equation 3.37, then we find 

2JTn 1a 
nJT x nJT x 

(p) == -in? sin cos dx 
a- 0 a a 

By consulting the table of integrals in the inside cover or Problem 3-14, we find that 
this integral is equal to zero, and so 

(p) == 0 (3.38) 

Thus, a particle in a box is equally likely to be moving in either direction. 

3-8. The Uncertainty Principle Says That (Jp(Jx > nl2 

Now let's calculate the variance of the momentum, (5; == (p2) - (p) 2, of a particle in 
a box. To calculate (p2), we use 

(3.39) 

A A 

and remember that p2 means apply p. twice in succession. Using Equation 3.36 x x 



3-8. The Uncertainty Principle Says That (Jp(Jx > n/2 

(~ y/2 sin _nn_a_x 
( _n2d2,) (2)1/2SinnJTX dx 

dx"" a a 

2n2n2n21a nnx nnx 
== 3 sin sin dx 

a 0 a a 

(3.40) 

1'he square root of (p2) is called the root-mean-square momentum. Note how Equa­
tion 3.40 is consistent with the equation 

(E) == (L) == (p2) 
2rn 2m 

IJsing Equation 3.40 and 3.38, we see that 

and 

a p 

nnn 
(3.41 ) 

a 

Because the variance a 2, and hence the standard deviation a, is a measure of the 
spread of a distribution about its mean value, we can interpret a as a measure of the 
uncertainty involved in any measurement. For the case of a particle in a box, we have 
been able to evaluate ax and a

p 
explicitly in Equations 3.33 and 3.41. We interpret 

these quantities as the uncertainty involved when we measure the position or the 
lTIOmentum of the particle, respectively. We expect to obtain a distribution of measured 
values because the position of the particle is given by the probability distribution, 
Equation 3.29. 

Equation 3.41 shows that the uncertainty in a measurement of p is inversely 
proportional to a. Thus, the more we try to localize the particle, the greater is the 
uncertainty in its momentum. The uncertainty in the position of the particle is directly 
proportional to a (Equation 3.33), which simply means that the larger the region over 
which the particle can be found, the greater is the uncertainty in its position. A particle 
that can range over the entire x-axis (-00 < x < (0) is called a free particle. In 
the case of a free particle, a ----+ 00 in Equation 3.41, and there is no uncertainty in 
the momentum. The momentum of a free particle has a definite value (see Problem 
3-32). The uncertainty in the position, however, is infinite. Thus, we see that there is a 
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reciprocal relation between the uncertainty in momentum and position. If we take the 
product of ax and ap ' then we have 

The value of the square-root term here is never less than I, and so we write 

1i 
a a >­

x jJ 2 

(3.42) 

(3.43) 

Equation 3.43 is one version of the Heisenberg Uncertainty Principle. We have been 
able to derive Equation 3.43 explicitly here because the mathematical manipulations 
for a particle in a box are fairly simple. 

Let's try to summarize what we have learned concerning the Uncertainty Principle. 
A free particle has a definite momentum, but its position is completely indefinite. When 
we localize a particle by restricting it to a region of length a, it no longer has a definite 
momentum, and the spread in its momentum is given by Equation 3.41. If we let 
the length a of the region go to zero, so that we have localized the particle precisely 
and there is no uncertainty in its position, then Equation 3.41 shows that there is an 
infinite uncertainty in the momentum. The Uncertainty Principle says that the minimum 
product of the two uncertainties is on the order of the Planck constant. 

3-9. The Problem of a Particle in a Three-Dimensional Box Is a 
Simple Extension of the One-Dimensional Case 

The simplest three-dimensional quantum-mechanical system is the three-dimensional 
version of a particle in a box. In this case, the particle is confined to lie within a rect­
angular parallelepiped with sides of lengths a, b, and c (Figure 3.5). The Schrodinger 
equation for this system is the three-dimensional extension of Equation 3.17. 

O<x<a - -

O<y<b (3.44) 
O<z<c 

Equation 3.44 is often written in the form 

where the operator ("del squared"), 

(3.45) 



z 

a 

c 
r------------ ---~------~ y 

r--------b--------~ 

x 

FIG U R E 3.5 
A rectangular parallelepiped of sides a, b, and c. In the problem of a particle in a three­
dimensional box, the particle is restricted to lie within the region shown above. 

is called the Laplacian operator. The Laplacian operator appears in many physical 
problems. 

The wave function 1jJ (x, y, z) satisfies the boundary conditions that it vanishes at 
all the walls of the box, and so 

1jJ(0, y, z) == 1jJ(a, y, z) == 0 
1jJ(x, 0, z) == 1jJ(x, b, z) == 0 
1jJ (x, y, 0) == 1jJ (x, y, c) == 0 

for all y and z 
for all x and z 
for all x and y 

(3.46) 

We will use the method of separation of variables to solve Equation 3.44. We write 

1jJ(x, y, z) == X(x)Y(y)Z(z) (3.47) 

Substitute Equation 3.47 into Equation 3.44, and then divide through by 1jJ(x, y, z) == 
X(x)Y(y)Z(z) to obtain 

(3.48) 

Each of the three terms on the left side of Equation 3.48 is a function of only x, y, or z, 
respectively. Because x, y, and z are independent variables, the value of each term can 
be varied independently, and so each term must equal a constant for Equation 3.48 to 
be valid for all values of x, y, and z. Thus, we can write Equation 3.48 as 

E+E+E==E x y z (3.49) 
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where Ex' E y ' and Ez are constants and where 

fz2 1 d 2 X 
-- ==E 

2mX(x)dx2 x 

h 2 1 d 2 Y 
-- ==E 

2m Y(y) dy2 y 
(3.50) 

h2 1 d 2Z 
-- ==E 

2m Z(z) dz 2 z 

From Equation 3.46, the boundary conditions associated with Equation 3.47 are 
that 

X(O) == X(a) == 0 
YeO) == Y(b) == 0 
Z(O) == Z(c) == 0 

(3.51 ) 

Thus, we see that Equations 3.50 and 3.51 are the same as for the one-dimensional case 
of a particle in a box. Following the same development as in Section 3-5, we obtain 

n JTX 
X(x) == A sin _.t_· -

. x a 

n yJT Y 
Y (y) == A y sin . b 

n JTZ 
Z(z) == A_ sin -::;;:..-' -.... c 

n == 1, 2, 3, x 

n y == 1, 2, 3, 

n~ == 1, 2, 3, 
" 

According to Equation 3.47, the solution to Equation 3.44 is 

n TrX n ,Try n TrZ 
1/1 (x, y, z) == A A ,A_ sin x sin) sin _z,---

x -'" abc 

(3.52) 

(3.53) 

with nx ' ny, and n z independently assuming the values 1, 2, 3, .... The normalization 
constant AXAyAZ is found from the equation 

1

a 

dx 1b dy 1'dZ1/J' (x, y, z)1/J(x, y, z) = 1 
o 0 0 

(3.54) 

Problem 3-24 shows that 

( 
8 ) 1/2 

A A A == 
x v z. abc 

(3.55) 

Thus, the normalized wave functions of a particle in a three-dimensional box are 

( 
8 ) 1/2 n Tr x n ,Tr V n JT Z 

1/1 '.. == sin x sin -' -" sin-'---
I!xn\n:: abc abc 

nx == 1, 2, 3, ... 
n == 1, 2, 3, y 

n == 1, 2, 3, ... z 

(3.56) 
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If we substitute Equation 3.56 into Equation 3.44, then we obtain 

E 
n n f1 

x v ~ 

n == 1, 2, 3, 
x 

n == 1, 2, 3, y 

n., == 1, 2, 3, ,. 

Equation 3.57 is the three-dimensional extension of Equation 3.21. 

(3.57) 

We should expect by symmetry that the average position of a particle in a three­
dimensional box is at the center of the box, but we can show this by direct calculation. 

EXAMPLE 3-7 
Show that the average position of a particle confined to the region shown in Figure 3.5 

is the point (a /2, b /2, e/2). 

SOL UTI 0 N: The position operator in three dimensions is (see MathChapter C) 

/'\ A .I'\. A 

R == Xi + Yj + Zk 

where i, j, and k are unit vectors along the X-, y-, and z-axes, respectively. The average 
position is given by 

{a {h {C 
(r) = Jo dx Jo dy Jo dzljr* (x, y, z):Rljr (x, y, z) 

== i(x) + j(y) + k(z) 

Let's evaluate (x) first. Using Equation 3.55, we have 

(x) == [2 {a X sin2 llxJTX dX] [2 (h sin2 nylTy dY] 
a Jo a b Jo b 

[21C ") n Trz ] x - sin~ z. , d z 
c () c 

The second and third terms in brackets are unity by the normalization condition of a 
particle in a one-dimensional box (Equation 3.27). The first integral is just (x) for a 
particle in a one-dimensional box. Referring to Equation 3.31, we see that (x) == a /2. 
The calculation for (y) and (z) are similar, and so we see that 

abc 
(r) == 2 i + 2 j + 2 k 

Thus, the average position of the particle is in the center of the box. 

In a silnilar manner, based on the case of a particle in a one-dimensional box, we 
should expect that the average momentum of a particle in a three-dimensional box is 
zero. The nlomentum operator in three dimensions is 

P == -in i- + j- + k-A (a a a ) 
ax 3y 3z 

(3.58) 
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and so 

(p) == la 

dx 1" dy Ie dzl/f* (x, y, z)Pl/f (x, y, z) 
o 0 0 

(3.59) 

It is a straightforward exercise to show that (p) == 0 (see Problem 3-25). 
An interesting feature of a particle in a three-dimensional box occurs when the 

sides of the box are equal. In this case, a == b == c in Equation 3.57, and so 

E 
n n 11 

r r :: 

(3.60) 

Only one set of values n r' n \,' and n _ corresponds to the lowest energy level. This 
- ~ 

level, E 111' is said to be nondegenerate. However, three sets of values of n x' n v' 

and n_ correspond to the second energy level, and we say that this level is threefold 
<, 

degenerate, or 

Figure 3.6 shows the distribution of the first few energy levels of a particle in a cube. 
Note that the degeneracy occurs because of the symmetry introduced when the general 
rectangular box becomes a cube and that the degeneracy is "lifted" when the symmetry 
is destroyed by making the sides of different lengths. A general principle of quantum 

N ti 

~ 

+ 
C'J ;;"'1 

s;;:: 

+ 
N :..: 

s;;:: 

FIG U R E 3.6 

19 

18 
17 

14 

12 
1 1 

9 

6 

3 

(n x ' ny, n z ) Degeneracy 

----- (3,3,1)(3,1,3)(1,3,3) 3 
---- (4,1,1)(1,4,1)(1,1,4) 3 
---- (3,2,2)(2,3,2)(2,2,3) 3 

(3,2,1 )(3, 1 ,2)(2,3,1) 
(1,3,2)( 1 ,2,3)(2, 1,3) 6 

(2,2,2) 1 

(3,1,1)(1,3,1)(1,1,3) 3 

(2,2,1)(2,1,2)(1,2,2) 3 

(2,1,1)( 1 ,2,1)( 1,1,2) 3 

---- (1,1,1) 1 

o '---------

The energy levels for a particle in a cube. The degeneracy of each level is also indicated. 
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mechanics states that degeneracies are the result of underlying symmetry and are lifted 
when the symmetry is broken. 

According to Equation 3.56, the wave functions for a particle in a three-dimensional 
box factor into products of wave functions for a particle in a one-dimensional box. In 
addition, Equation 3.57 shows that the energy eigenvalues are sums of terms corre­
sponding to the x, y, and z directions. In other words, the problem of a particle in 
a three-dimensional box reduces to three one-dimensional problems. This is no acci­
dent. It is a direct result of the fact that the Hamiltonian operator for a particle in a 
three-dimensional box is a sum of three independent terms 

A A A A 

H==H+H+H x y z 

where 

"- "- "-

H H H x y z 

In such a case, we say that the Hamiltonian operator is separable. 
"- "-

Thus, we see that if H is separable, that is, if H can be written as the sum of terms 
involving independent coordinates, say 

"- "- "-

H == HI (s) + H2(w) (3.61) 

"-

where sand ware the independent coordinates, then the eigenfunctions of H are given 
"- "-

by the products of the eigenfunctions of HI and H2 , 

(3.62) 

where 

(3.63) 
"-

H2 ( W ) ({Jm ( w) == Em ({Jm ( W ) 

"- "- "-

and Enm , the eigenvalues of H, are the sums of the eigenvalues of HI and H
2

, 

E ==E+E nm n In 
(3.64) 

This important result provides a significant simplification because it reduces the original 
problem to several simpler problems. 

We have used the simple case of a particle in a box to illustrate some of the general 
principles and results of quantum mechanics. In Chapter 4, we present and discuss a 
set of postulates that we use throughout the remainder of this book. 
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Problems 
" " 3-1. Evaluate g == A f, where A and f are given below: 

'" 
A f 

(a) SQRT 

d 3 

(b) _+x3 e-ax 

dx 3 

(c) [dX x 3 
- 2x + 3 

0 

a2 a2 a2 
x 3 y2 Z4 (d) -1 +-+-1 

ax" ay2 az" 

3-2. Determine whether the following operators are linear or nonlinear: 

'" 
3. Af(x) == SQRf(x) [square f(x)] 

" h. Af(x) == f*(x) [form the complex conjugate of f(x)] 
"-

c. A f (x) == 0 [multiply f (x) by zero] 

d. Af(x) == [f(X)]-' [take the reciprocal off(x)] 
'" 

e. Af(x) == f(O) [evaluate f(x) at x == 0] 
'" 

f. Af(x) == In f(x) [take the logarithm of f(x)] 

3-3. In each case, show that f (x) is an eigenfunction of the operator given. Find the eigenvalue. 

(a) 

(b) 

(c) 

(d) 

1 
dx" 

d 

dt 

"-

A 

d 2 d 
-1 +2- +3 
dx" dx 

a 
ay 

f(x) 

coswx 

3-4. Show that (cos ax) (cos by) (cos cz) is an eigenfunction of the operator, 

which is called the Laplacian operator. 

3-5. Write out the operator A2 for A == 

d 2 

3. -1 

dx" 

d 
h. - +x 

dx 

Hint: Be sure to include f (x) before carrying out the operations. 

d2 d 
c. -) - 2x- + 1 

dx- dx 



Problems 

3-6. In Section 3-5, we applied the equations for a particle in a box to the Jr electrons in 

butadiene. This simple model is called the free-electron model. Using the same argument, 

show that the length of hexatriene can be estimated to be 867 pm. Show that the first 
electronic transition is predicted to occur at 2.8 x 104 cm-- I

. (Remember that hexatriene 
has six Jr electrons.) 

3-7. Prove that if 0/ (x) is a solution to the Schrodinger equation, then any constant times 0/ (x) 

is also a solution. 

3-8. Show that the probability associated with the state o/n for a particle in a one-dimensional 

box of length a obeys the following relationships: 

1 
n even 

4 
Prob(O < x < a/4) == Prob(3a/4 < x < a) 

n--l 

1 (-1)-2 
- n odd 
4 2Jrn 

and 1 
- n even 
4 

Prob(a/4 < x < a/2) == Prob(a/2 < x < 3a/4) 
11-1 

~ + (-l)-Y n odd 
4 2Jrn 

3-9. What are the units, if any, for the wave function of a particle in a one-dimensional box? 

3-10. Using a table of integrals, show that 

1
a 

. 2 nn. x a sIn dx == -
o a 2 

1
a nJrx a2 

x sin2 dx == --
() a 4 

and 

1
a 

.. nnx ( a )3 (4n
3
n

3 
_ 2n7T) x 2 sln2 dx == JI-

o a 2Jrn 3 

All these integrals can be evaluated from 

1
a nJr x 

/ (f3) == etJx sin2 dx 
o a 

Show that the above integrals are given by 1(0), /' (0), and I" (0), respectively, where the 

primes denote differentiation with respect to f3. U sing a table of integrals, evaluate I (f3) 

and then the above three integrals by differentiation. 

3-11. Show that 

a 
(x) == -

2 

for all the states of a particle in a box. Is this result physically reasonable? 

3-12. Show that (p) == 0 for all states of a one-dimensional box of length a. 
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3 ... 13. Show that 

for a particle in a box is less than a, the width of the box, for any value of n. If ax is the 

uncertainty in the position of the particle, could (}x ever be larger than a? 

3-14. Using the trigonometric identity 

sin 28 = 2 sin 8 cos 8 

show that 

1(1 lln x nn x 
sin cos dx = 0 

o a a 

3-15. Prove that 

1
(1 

e±i2rrllx/£ldx = 0 
o 

n=lO 

3-16. Using the trigonometric identity 

1 1 
sin a sin f3 = - cos(a - f3) - - cos(a + f3) 

2 2 

show that the particle-in-a-box wave functions (Equations 3.27) satisfy the relation 

m =I n 

(The asterisk in this case is superfluous because the functions are real.) If a set of functions 

satisfies the above integral condition, we say that the set is orthogonal and, in particular, 

that ,Ir (x) is orthogonal to Vr (x). If, in addition, the functions are normalized, then we ~m n 

say that the set is orthononnal. 

3-17. Prove that the set of functions 

n = 0, ± 1, ±2, ... 

is orthonormal (cf. Problem 3-16) over the interval -a < x < a. A compact way to express 

orthonormality in the Vr
n 

is to write 

f
a 

* X dx = 8 -{( Vrm ( ) Vrll mil 

The symbol 8 is called a Kroenecker delta and is defined by 
mn 

8 =1 if In = n 
11111 

= 0 if m =t- n 

3-18. Show that the set of functions 

0<8<2n 

is orthonormal (Problem 3-16). 



Problems 

3-19. In going from Equation 3.34 to 3.35, we multiplied Equation 3.34 from the left by 1jJ*(x) 

and then integrated over all values of x to obtain Equation 3.35. Does it make any difference 
whether we multiplied from the left or the right? 

3-20. Calculate (x) and (x 2
) for the n == 2 state of a particle in a one-dimensional box of length 

a. Show that 

a == ~ (47f2 _ 2) 1/2 

x 47f 3 

3-21. Calculate (p) and (p2) for the n == 2 state of a particle in a one-dimensional box of 

length a. Show that 

a 
I) 

h 

a 

3 .. 22. Consider a particle of mass m in a one-dimensional box of length a. Its average energy 
is given by 

Because (p) == 0, (p2) == a:, where a
p 

can be called the uncertainty in p. Using the 

Uncertainty Principle, show that the energy must be at least as large as Ti 2 /8ma 2 because 

ax' the uncertainty in x, cannot be larger than a. 

3-23. Discuss the degeneracies of the first few energy levels of a particle in a three-dimensional 
box when all three sides have a different length. 

3-24. Show that the normalized wave function for a particle in a three-dimensional box with 
sides of length a, b, and e is 

( 
8 ) 1/2 n 7f x n .7f y n 7f Z 

1jJ (x, y ~ z) == - sin x sin) sin ----"--
abe abe 

3-25. Show that (p) == 0 for the ground state of a particle in a three-dimensional box with sides 
of length a, b, and e. 

3-26. What are the degeneracies of the first four energy levels for a particle In a three­
dimensional box with a == b == 1.5e? 

3-27. Many proteins contain metal porphyrin molecules. The general structure of the porphyrin 
molecule is 

:N-H H-N: 
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This molecule is planar and so we can approximate the n electrons as being confined inside 
a square. What are the energy levels and degeneracies of a particle in a square of side a? The 
porphyrin molecule has 18 n electrons. If we approximate the length of the molecule by 

1000 pm, then what is the predicted lowest energy absorption of the porphyrin molecule? 
(The experimental value is ~ 17000 em-I.) 

3-28. The Schrodinger equation for a particle of mass m constrained to move on a circle of 
radius a is 

0<8 < 2n 

where I = ma 2 is the moment of inertia and 8 is the angle that describes the position of the 
particle around the ring. Show by direct substitution that the solutions to this equation are 

where n = ±(21 £)1/2 In. Argue that the appropriate boundary condition is 1/1(8) = 1/1(8 + 
2n) and use this condition to show that 

21 
n = 0, ± 1, ±2, ... E=--

Show that the normalization constant A is (2n) 1/2. Discuss how you might use these 

results for a free-electron model of benzene. 

3-29. Set up the problem of a particle in a box with its walls located at -a and +a. Show that 
the energies are equal to those of a box with walls located at 0 and 2a. (These energies may 

be obtained from the results that we derived in the chapter simply by replacing a by 2a.) 

Show, however, that the wave functions are not the same and in this case are given by 

1 nn x 
1/1 (x) = -1/' sin --

II a - 2a 
n even 

1 nJr x 
= a1/2 cos 2a n odd 

Does it bother you that the wave functions seem to depend upon whether the walls are 
located at ±a or 0 and 2a? Surely the particle "knows" only that it has a region of length 2a 
in which to move and cannot be affected by where you place the origin for the two sets of 
wave functions. What does this tell you? Do you think that any experimentally observable 
properties depend upon where you choose to place the origin of the x-axis? Show that 

a a > n/2, exactly as we obtained in Section 3-8. 
x p 

3-30. For a particle moving in a one-dimensional box, the mean value of x is a /2, and the mean 
square deviation is a; = (a 2

/ 12)[1 - (6/n 2n 2
)]. Show that as n becomes very large, this 

value agrees with the classical value. The classical probability distribution is uniform, 

1 
p(x)dx = -dx 

a 

=0 

O<x<a 

otherwise 

3-31. This problem shows that the intensity of a wave is proportional to the square of its 
amplitude. Figure 3.7 illustrates the geometry of a vibrating string. Because the velocity at 



u 

Q 
P ds 

o x x+dx I 

FIG U R E 3.7 
The geometry of a vibrating string. 

any point of the string is au / at, the kinetic energy of the entire string is 

K == -p ~ dx II 1 (a ) 1 

o 2 at 

where p is the linear mass density of the string. The potential energy is found by considering 

the increase of length of the small arc P Q of length d s in Figure 3.7. The segment of the 

string along that arc has increased its length from dx to ds. Therefore, the potential energy 

associated with this increase is 

v == I' T(ds - dx) 
o 

where T is the tension in the string. Using the fact that (dS)2 == (dX)2 + (dU)2, show that 

v == It T 
o [ 

2] 1/2 
1+ C:) -I dx 

U sing the fact that (1 + x) I /2 ~ 1 + (x /2) for small x, show that 

V == T -; dx 1 I/(a )2 
2 0 ax 

for small displacements. 

The total energy of the vibrating string is the sum of K and V and so 

Pl'(au)2 Tl/(au)2 E - - - dx + - - dx 
2 0 at 2 0 ax 

We showed in Chapter 2 (Equations 2.23 through 2.25) that the nth normal mode can be 
written in the form 
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where wn == vn n / f. U sing this equation, show that 

K 
II 

and 

V 
II 

J J 
n~n-T 

J ! 
--D'~1 cos-(w t + ¢ ) 41 11 11 

U sing the fact that v == (T / p ) 1/2, show that 

E 
II 

Note that the total energy, or intensity, is proportional to the square of the amplitude. 

Although we have shown this proportionality only for the case of a vibrating string, it is 

a general result and shows that the intensity of a wave is proportional to the square of the 

amplitude. If we had carried everything through in complex notation instead of sines and 

cosines, then we would have found that E is proportional to I D 12 instead ofJ'ust D2. 
/I 11 n 

Generally, there are many normal modes present at the same tilne, and the complete 

solution is (Equation 2.25) 

x nnx 
u(x, t) == " D cos(w t + ¢ ) sin--L.-t 11 . 11 fl 1 

11=1 

Using the fact that (see Problem 3-16) 

1/ nnx Innx 
sin sin dx == 0 

() 1 1 
if nl =f 11 

show that 

3-32. The quantized energies of a particle in a box result from the boundary conditions, or from 
the fact that the particle is restricted to a finite region. In this problem, we investigate the 

quantum-mechanical problem of a free particle, one that is not restricted to a finite region. 

The potential energy V (x) is equal to zero and the Schrodinger equation is 

,., 
d~1jr 21nE 
-,., + J 1jr(x) == 0 
dx- n~ 

-oo<x<oo 

Note that the particle can lie anywhere along the x-axis in this problem. Show that the two 

solutions of this Schrodinger equation are 

and 



Problems 

where 

(2111 E) 1/2 
k == ---­n 

Show that if E is allowed to take on negative values, then the wave functions become 

unbounded for large x. Therefore, we will require that the energy, E, be a positive quantity. 

We saw in our discussion of the Bohr atom that negative energies correspond to bound 

states and positive energies correspond to unbound states, and so our requirement that E 

be positive is consistent with the picture of a free particle. 

To get a physical interpretation of the states that 0/ 1 (x) and 0/2 (x) describe, operate on 
" 0/

1 
(x) and 0/2(X) with the momentum operator P (Equation 3.11), and show that 

A d'llr 
p'Ilr == _ in 'P 1 ~ k'llr 

'PI dx == '2 'PI 

and 

do/ ') in "" == -n k 0/, 
dx -

Notice that these are eigenvalue equations. Our interpretation of these two equations is that 

0/
1 

describes a free particle with fixed momentum Tzk and that 0/
2 

describes a particle with 

fixed momentum -Tzk. Thus, 0/) describes a particle moving to the right and 0/2 describes 

a particle moving to the left, both with a fixed momentum. Notice also that there are no 

restrictions on k, and so the particle can have any value of momentum. Now show that 

2fn 

Notice that the energy is not quantized; the energy of the particle can have any positive 

value in this case because no boundaries are associated with this problem. 

Last, show that o/~(X)o/I(X) == A~AI == IAI12 == constant and that 0/;(X)0/2(X) == 
A; A2 == I A212 == constant. Discuss this result in terms of the probabilistic interpretation 
of 0/*0/. Also discuss the application of the Uncertainty Principle to this problem. What 
are a and (J ? 

[J x 

3-33. Derive the equation for the allowed energies of a particle in a one-diinensional box by 
assuming that the particle is described by standing de Broglie waves within the box. 

3-34. We can use the Uncertainty Principle for a particle in a box to argue that free electrons 

cannot exist in a nucleus. Before the discovery of the neutron, one might have thought 

that a nucleus of atoinic number Z and Inass number A is made up of A protons and 

A - Z electrons, that is, just enough electrons such that the net nuclear charge is +Z. Such 

a nucleus would have an atomic nUlnber Z and mass number A. In this problem, we will 

use Equation 3.41 to estimate the energy of an electron confined to a region of nuclear size. 

The diameter of a typical nucleus is approximately 10- 14 m. Substitute a == 10- 14 minto 

Equation 3.41 and show that (J is 
I) 

(J ;::: 3 x 10-20 kg· m· s I 
I) 
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Show that 

Chapter 3 / The Schrodinger Equation and a Particle In a Box 

! 
a~ 

E == _P == 5 X 10- 10 J 
2111 

~ 3000 MeV 

where millions of electron volts (MeV) is the common nuclear physics unit of energy. It 

is observed experimentally that electrons emitted from nuclei as f3 radiation have energies 
of only a few Me V, which is far less than the energy we have calculated above. Argue, 
then, that there can be no free electrons in nuclei because they should be ejected with much 

higher energies than are found experinlentally. 

3-35. We can use the wave functions of Problem 3-29 to illustrate some fundamental symmetry 

properties of wave functions. Show that the wave functions are alternately symmetric and 

anti symmetric or even and odd with respect to the operation x -+ -x, which is a reflection 

through the x == 0 line. This symmetry property of the wave function is a consequence of 

the symmetry of the Hamiltonian operator, as we now show. The Schrodinger equation may 

be written as 

Reflection through the x == 0 line gives x -+ -x and so 

" 
H( -x)1J; (-x) == E 1J; (-x) 

n 11 n 

"" " 
Now show that H (x) == H ( - x) (i.e., that H is symmetric) for a particle in a box, and so 

show that 

"-

H(x)1J; (-x) == E 1/1 (-x) n . n fl 

"-

Thus, we see that 1J; (-x) is also an eigenfunction of H belonging to the same eigen-
11 

value En' Now, if only one eigenfunction is associated with each eigenvalue (the state is 
nondegenerate), then argue that 1J;n (x) and 1/1

11 
(-x) must differ only by a multiplicative 

constant [i.e., that 1J;n (x) == c1/l
n 

( - x)]. By applying the inversion operation again to this 
equation, show that c == ± 1 and that all the wave functions must be either even or odd with 
respect to reflection through the x == 0 line because the Hamiltonian operator is symmetric. 
Thus, we see that the symmetry of the Hamiltonian operator influences the symmetry of 
the wave functions. A general study of symmetry uses group theory, and this example is 

actually an elementary application of group theory to quantum-mechanical problems. We 

will study group theory in Chapter 12. 



MATHCHAPTER 

VECTORS 

A vector is a quantity that has both magnitude and direction. Examples of vectors are 
position, force , velocity, and momentum. We specify the position of something, for 
example, by giving not only its distance from a certain point but also its direction from 
that point. We often represent a vector by an an'ow, where the length of the an'ow is 
the magnitude of the vector and its direction is the same as the direction of the vector. 

Two vectors can be added together to get a new vector. Consider the two vectors 
A and B in Figure C.I. (We denote vectors by boldface symbols.) To find C = A + B, 
we place the tail of B at the tip of A and then draw C from the tail of A to the tip of 
B as shown in the figure. We could also have placed the tail of A at the tip of Band 
drawn C from the tail of B to the tip of A. As Figure C.l indicates, we get the same 
result either way, so we see that 

Vector addition is commutative. 

y 

----~------------------~ x o 

(C.I) 

FIGURE C.l 

An illustration of the addition of two vectors, 
A + B = B+A = C. 105 
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To subtract two vectors, we draw one of them in the opposite direction and then 
add it to the other. Writing a vector in its opposite direction is equivalent to forming 
the vector -8. Thus, mathematically we have 

D = A - 8 = A + (-8) (C.2) 

A useful set of vectors are the vectors that are of unit length and point along the 
positive X-, y-, and z-axes of a Cartesian coordinate system. These unit vectors (unit 
length), which we designate by i, j, and k , respectively, are shown in Figure C.2. We 
shall always draw a Cartesian coordinate system so that it is right-handed. A right­
handed coordinate system is such that when you curl the four fingers of your right hand 
from i to j , your thumb points along k (Figure C.3). Any three-dimensional vector A 
can be described in terms of these unit vectors 

-.' 

k 

. 
J 

• 
I 

z 

k 

• 
I " 

• 
J 

, . ... 

(a) 

FIG U R E C.3 

Right 
hand 

\ . 

\ . 

(C.3) 

FIG U R E C.2 
The fundamental unit vectors i, j, and k of a 
Cartesian coordinate system. 

• 
J 

v 

-, . 

(b) 

• 
I 

Le ft 
hand 

x 

(a) An illustration of a right-handed Cartesian coordinate system and (b) a left-handed Cartesian 
system. We use only a right-handed coordinate system in this book. 
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where, for example, A) is A , units long and lies in the direction of i. GeneraJly, a 
number a times a vector A is a new vector that is parallel to A but whose length is 
a times the length of A. If a is positive, then aA lies in the same direction as A, but 

if a is negative, then aA lies in the opposite direction. The quantities A" A" and A, 
in Equation C.3 are the components of A. They are the projections of A along the 
respective Cartesian axes (Figure CA). In terms of components, the sum or difference 
of two vectors is given by 

A ± B = (A, ± B)i + (A, ± B,)j + (A , ± B) k (CA) 

Figure CA shows that the length of A is given by 

(C.S) 

EXAMPLE C-l 
If A = 2i - j + 3k and B = -i + 2j - k, then what is the length of A + B? 

SOL UTI 0 N: Using Equation C.4, we have that 

A+B=(2-I)i+( - 1 + 2)j + (3 - I)k=i+j+2k 

and using Equation C.5 gives 

There are two ways to form the product of two vectors, and both have many 
applications in physical chemistry. One way yields a scalar quantity (in other words , 
just a number), and the other yields a vector. Not surprisingly, we call the result of the 
first method a scalar product and the result of the second method a vee/or product. 

z 

- - - - - -A------71 

- - - - - -r---+---+- II 

FIG U R E C4 
The components of a vector A are its projections 
along the X - , y -, and z-axes, showing that the 
length of A is equal to (A : + A ~ + A: )1 /2. 

- . ~ 
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The scalar product of two vectors A and B is defined as 

A· B = IAIIBI cose (C.6) 

where e is the angle between A and B. Note from the definition that 

A·B=B·A (C.7) 

Taking a scalar product is a commutative operation. The dot between A and B is such a 
standard notation that A . B is often called the dot product of A and B. The dot products 
of the unit vectors i, j, and k are 

i . i = j . j = k . k = IIIII I cos ou = 1 

i . .i = j . i = i . k = k . i = j . k = k . j = 111111 cos 90° = 0 

We can use Equations C.8 to evaluate the dot product of any two vectors: 

A· B = (A) + A,J + A_k)· (B) + B,J + B_k) 
- " ~. . . .. 

which simplifies to 

EXAMPLE C-2 

= A, B) . i + A, B) . j + A, B,i . k 

+A , B,.i· i + A, B,J. j + AyB). k 

+A B k·i+A B k·j+A Bk · k 
:;x .::y :;:: 

Find the length of A = 2i - j + 3k. 

SOLUTION: EquationC.9withA=Bgives 

A . A = A" + A" + A ~ = IAI " 
.\ .1 • . 

Therefore, 

IAI = (A· A)I /2 = (4 + I + 9)1 /2 = JT4 

(C.8) 

(C.9) 
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EXAMPLE C-3 
Find the angle between the two vectors A = i + 3j - k and B = j - k. 

SO L UTI 0 N: We use Equation C.6, but first we must find 

and 

Therefore, 

or e = 3 I .48" . 

IAI = (A· A)I /2 = (I + 9 + 1)1 (2 = v1T 

IBI = (B· B)I /2 = (0 + I + 1) 1/2 =..J2 

A·B=0+3+ 1=4 

AB 4 
cose = -- = = 0.8528 

IAIIBI m 

One application of a dot product involves the definition of work. Recall that work 
is defined as force times distance, where "force" means the component of force that 
lies in the same direction as the displacement. If we let F be the force and d be the 
displacement, then work is defined as 

work = F · d (C.IO) 

We can write Equation C.l 0 as (F cos e )(d) to emphasize that F cos e is the component 
of F in the direction of d (Figure C.S). 

Another important application of a dot product involves the interaction of a dipole 
moment with an electric field. You may have learned in organic chemistry that the 
separation of opposite charges in a molecule gives rise to a dipole moment, which is 
often indicated by an arrow crossed at its tail and pointing from the negative charge 
to the positive charge. For example, because a chlorine atom is more electronegative 

+-+ 
than a hydrogen atom, HCl has a dipole moment, which we indicate by writing HC\. 
Strictly speaking, a dipole moment is a vector quantity whose magnitude is equal to 
the product of the positive charge and the distance between the positive and negative 

1_4 -- Fcos8 d 

FIG U R E C.5 

Work is defined as w = F· d, or (Fcose)d, 
where F cos e is the component of F along d. 
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-if 

x 

z 

+q 
• 

\ ' 

FIG U R E C.b 
A dipole moment is a vector that points 
from a negative charge , -q, to a positive 
charge , +q, and whose magnitude is qr. 

charges and whose direction is from the negative charge to the positive charge. Thus, 
for the two separated charges illustrated in Figure C.6, the dipole moment j.t, is equal to 

j.t = qr 

We will learn later that if we apply an electric field E to a dipole moment, then the 
potential energy of interaction will be 

(C.ll) 

The vector product of two vectors is a vector defined by 

A x B = IAllBlcsine (C.12) 

where e is the angle between A and Band c is a unit vector perpendicular to the plane 
formed by A and B. The direction of c is given by the right-hand rule: If the four fingers 
of your right hand curl from A to B, then c lies along the direction of your thumb. 
(See Figure C.3 for a similar construction.) The notation given in Equation C.12 is so 
commonly used that the vector product is usually called the cross product. Because 
the direction of c is given by the right-hand rule , the cross product operation is not 
commutative, and, in particular 

A x B = -B x A 

The cross products of the cartesian unit vectors are 

i x i = j x j = k x k = Illilic sin OC- = 0 
i x j = - j x i = 1IIIlik sin 90° = k 
j x k = - k x j = i 
k x i = - i x k = j 

(C.13) 

(C.14) 
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In terms of components of A and B, we have (Problem C-9) 

A x B = (A,.B, - A,B)i + (A , B, - A,B)j + (A, B, - AyB,)k (C.IS) 

Equation C.IS can be conveniently expressed as a determinant (see MathChapter E) 

• • 
I J 

A x B = A, A,. (C.16) 
B, -B B 

.r v 

Equations C.IS and C.I6 are equivalent. 

EXAMPLE C-4 

Given A = - 2i + j + k and B = 3i - j + k, determine C = A x B. 

SOL UTI 0 N: Using Equation C.IS, we have 

C = [(1) ( 1) - (I)(-I)]i + [(1)(3) - (-2)(1)]j + [(-2)( - 1) - (l)(3)]k 

= 2i + Sj - k 

One physically important application of a cross product involves the definition of 
angular momentum. [f a particle has a momentum p = mv at a position r from a fixed 
point (as in Figure C.7), then its angular momentum is defined by 

L = r x p (c.n) 

Note that the angular momentum is a vector perpendicular to the plane formed by r 
and p (Figure C.8). [n terms of components, L is equal to (see Equation C.IS) 

L 

\ e 
x \ 

p 
\I FIG U R E C.7 

The angular momentum of a particle of 
momentum p and position r from a fixed 
center is a vector perpendicular to the plane 
formed by rand p and in the direction of 
r x p. 
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L 

r 

FIG U R E C.s 
Angular momentum is a vector quantity that lies 
perpendicular to the plane formed by rand p and is 
directed such that the vectors r, p , and L form 
a right-handed coordinate system. 

L = (yp: - zp)i + (zp , - xp) j + (xp, - yp)k (C.18) 

We will learn that angular momentum plays an important role in quantum mechanics. 
Another example that involves a cross product is the equation that gives the force F 

on a particle of charge q moving with velocity v through a magnetic field B: 

F = q(v x B) 

Note that the force is perpendicular to v, and so the effect of B is to cause the motion 
of the particle to curve, not to speed up or slow down. 

We can also take derivatives of vectors. Suppose that the components of momen­
tum, p , depend upon time. Then 

dp(t) dp(t). dp , (t). dp . (t) 
-- = ., I + . J + - k 

dt dt dt dt 
(C.19) 

(There are no derivatives of i, j , and k because they are fixed in space.) Newton 's law 
of motion is 

dp 
-=F 
dt 

(C.20) 

This law is actually three separate equations, one for each component. Because p = mY, 

if m is a constant, we can write Newton's equations as 

dv 
m-=F 

dt 

Furthermore, because v = dr / dt, we can also express Newton 's equations as 

(C.21) 

Once again, Equation C.21 represents a set of three equations , one for each component. 



Problems 
(-1. Find the length of the vector v = 2i - j + 3k. 

(-2. Find the length of the vector r = x i + y j and of the vector r = xi + y j + zk. 

(-3. Prove that A . B = 0 if A and B are perpendicular to each other. Two vectors that are 
perpendicular to each other are said to be orthogonaL 

(-4. Show that the vectors A = 2i - 4j - 2k and B = 3i + 4j - Sk are orthogonal. 

(-5. Show that the vector r = 2i - 3k lies entirely in a plane perpendicular to the y axis. 

(-6. Find the angle between the two vectors A = -i + 2j + k and B = 3i - j + 2k. 

(-7. Determine C = A x B given that A = - i + 2j + k and B = 3i - j + 2k. What is B x A 
equal to? 

(-8. Show that A x A = O. 

(-9. Using Equations C.14, prove that A x B is given by Equation C.IS. 

(-10. Show that ILl = m vr for circular motion. 

(-11. Show that 

and 

d dA dB 
- (A·B) =-·B+A·­
dt df df 

d dA dB 
- (A x B) = - x B + A x -
df dt dt 

(-12. Using the results of Problem C- II, prove that 

A x -= - A x -d
2
A d ( dA) 

dt 2 dt dt 

(-13. In vector notation, Newton 's equations for a single particle are 

d2r 
m-, =F(x ,y,z ) 

df-

By operating on this equation from the left by r x and using the result of Problem C-12, 
show that 

dL 
- =r x F 
dt 

where L = mr x dr / dt = r x mdr/ dt = r x mv = r x p. This is the form of Newton's 

equations for a rotating system. Notice that dL / df = 0, or that angular momentum is 
conserved if r x F = O. Can you identify r x F? 
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Werner Heisenberg was born on December 5, 190 I in Duisburg, Germany, grew up in 
Munich, and died in 1976. In 1923, Heisenberg received his Ph.D. in physics from the 
University of Munich. He then spent a year as an assistant to Max Born at the University 
of G6ttingen and three years with Niels Bohr in Copenhagen. He was chair of theoretical 
physics at the University of Leipzig from 1927 to 1941 , the youngest to have received such 
an appointment. Because of a deep loyalty to Germany, Heisenberg opted to stay in Germany 
when the Nazis came to power. During World War II , he was in charge of German research 
on the atomic bomb. After the war, he was named director of the Max Planck Institute for 
Physics, where he strove to rebuild German science. Heisenberg developed one of the first 
formu lations of quantum mechanics, but it was based on matrix algebra, which was less easy 
to use than the wave equation of Schrodinger. The two formu lations, however, were later 
shown to be equivalent. His Uncertainty Principle, which he published in 1927, illuminates 
a fundamental principle of nature involving the measurement and observation of physical 
quantities. Heisenberg was awarded the 1932 Nobel Prize for physics in 1933 "for the creation 
of quantum mechanics." His role in Nazi Germany is somewhat clouded, prompting one author 
(David Cassidy) to title his biography of Heisenberg Uncertainty (W.H. Freeman, 1993). 



CHAPTER 

Some Postulates and General Principles 
of Quantum Mechanics 

Up to now, we have made a number of conjectures concerning the formulation of 
quantum mechanics. For example, we have been led to view the variables of classical 
mechanics as represented in quantum mechanics by operators. These operate on wave 
functions to give the average or expected results of measurements. In this chapter, we 
formalize the various conjectures we made in Chapter 3 as a set of postulates and then 
discuss some general theorems that follow from these postulates. This formalization 
is similar to specifying a set of axioms in geometry and then logically deducing the 
consequences of these axioms. The ultimate test of whether the axioms or postulates 
are sensible is to compare the end results with experimental data. Here we present a 
fairly elementary set of postulates that will suffice for all the systems we discuss in this 
book and for almost all systems of interest in chemistry. 

4-1. The State of a System Is Completely Specified by its 
Wave Function 

Classical mechanics deals with quantities called dynanzical variables, such as position, 
momentum, angular momentum, and energy. A measurable dynamical variable is 
called an observable. The classical-mechanical state of a particle at any particular 
time is specified completely by the three position coordinates (x, y, z) and the three 
momenta (Px ' Py ' pz) or velocities (vx ' vy ' v,:J at that tilne. The time evolution of the 
system is governed by Newton's equations, 

(4.1) 

where ~'(' ~v, and Fz are the components of the force, F(x, y, z). Newton's equations, 
along with the initial position and momentum of a particle, give us x (t), y (t), and z (t), 
which describe the position of the particle as a function of time. The three-dimensional 
path described by x(t), yet), and z(t) is called the trajectory of the particle. The 115 
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trajectory of a particle offers a complete description of the state of the particle. Classical 
mechanics provides a method for calculating the trajectory of a particle in terms of the 
forces acting upon the particle through Newton's equations, Equations 4.1. 

Newton's equations plus the forces involved enable us to deduce the entire history 
and predict the entire future behavior of the particle. We should suspect immediately 
that such predictions are not possible in quantum mechanics because the Uncertainty 
Principle tells us that we cannot specify or determine the position and momentum 
of a particle simultaneously to any desired precision. The Uncertainty Principle is of 
no practical importance for macroscopic bodies (see Example 1-10), and so classical 
mechanics is a perfectly adequate prescription for macroscopic bodies. For very small 
bodies, such as electrons, atoms, and molecules, however, the consequences of the 
Uncertainty Principle are far from negligible and the classical-mechanical picture is 
not valid. This leads us to our first postulate of quantum mechanics: 

Postulate 1 

The state of a quantum-nlechanical system is completely specified by afunction 

1jJ (x) that depends upon the coordinate of the particle. All possible information 

about the system can be derived from 1jr (x). This function, called the wave 

function or the state function, has the important property that 1/1* (x)1jJ (x )dx is 

the probability that the particle lies in the interval dx, located at the position x. 

In Postulate I we have assumed, for simplicity, that only one coordinate is needed 
to specify the position of a particle, as in the case of a particle in a one-dimensional 
box. In three dimensions, we would have that 1jJ*(x, y, z)1jJ(x, y, z)dxdydz is the 
probability that the particle described by 1/1 (x, y, z) lies in the volume element dxdydz 

located at the point (x, y, z). To keep the notation as simple as possible, we will express 
most of the equations to come in one dimension. 

If there is more than one particle, say two, then 1/1* (x] ,X2 )1/I(X 1, x 2)dx1dx2 is the 
probability that particle I lies in the interval dx I located at XI' and that particle 2 1 ies in 
the interval dX

2 
located at xl' Postulate I says that the state of a quantum-mechanical 

system such as two electrons is completely specified by this function and that nothing 
else is required. 

Because the square of the wave function has a probabilistic interpretation, it must 
satisfy certain physical requirements. The total probabilty of finding a particle some­
where must be unity, thus 

f 1jJ* (x)1jJ (x )dx = I (4.2) 

all space 

The notation "all space" here means that we integrate over all possible values of x. 

We have expressed Equation 4.2 for a one-dimensional system; for two- or three­
dimensional systems, Equation 4.2 would be a double or a triple integral. Wave func­
tions that satisfy Equation 4.2 are said to be normalized. 



4-1. The State of a System Is Completely Specified by its Wave Function 

EXAMPLE 4-1 
The wave functions for a particle restricted to lie in a rectangular region of lengths a 

and b (a particle in a two-dimensional box) are 

I/? 

( 4) ~ n JT x n ,JT V 
ljI- (x, y) == sin x sin.\-

Ilxn\ ab a b 

11 x == I, 2, .. . 
n\'==1,2, .. . 

O<x<a - -

O<v<b 
-.,/ -

Show that these wave functions are normalized. 

SOL UTI 0 N: We wish to show that 

1
a 1h dx dy 1/1 * (x , y)1/I (x, y) = 

o 0 

4 1a 1b . ? n .JT x . ? n vJT y - dx dv Sln- _t Sln-' == 1 
ab () 0 • a b 

This double integral actually factors into a product of two single integrals: 

4 1 a n JT X 1 b n ,JT Y .) .? ' • 2) , 
- dx SIn"" x dy sIn ' == 1 
ab 0 a 0 b 

Equation 3.26 shows that the first integral is equal to a /2 and that the second is equal 

to b /2, so that we have 

4 a b 
-·-·-==1 
ab 2 2 

and thus the above wave functions are normalized. 

Even if the integral in Equation 4.2 equals some constant A -+ 1, we can divide 
1/1 (x) by A 1/2 to make it normalized. On the other hand, if the integral diverges (i.e. goes 
to infinity), normalizing 1/1 (x) is not possible, and it is not acceptable as a state function 
(see Example 4-2b). Functions that can be normalized are said to be normalizable. 
Only normalizable functions are acceptable as state functions. Furthermore, for Vr (x) 

to be a physically acceptable wave function, it and its first derivative must be single­
valued, continuous, and finite (cf. Problem 4-4). We summarize these requirements by 
saying that 1/1 (x) must be well behaved. 

EXAMPLE 4-2 
Determine whether each of the following functions is acceptable or not as a state 

function over the indicated intervals: 

a. e-X (0, 00) 

h. e x (-00,00) 

c. . -I 
SIn x ( 1, 1) 

d. e- 1xl (-00,00) 

117 



118 Chapter 4 / Some Postulates and General Principles of Quantum Mechanics 

SOLUTION: 

a. acceptable; e- x is single-valued, continuous, finite , and normalizable over 
the interval (0, (0) . 

b. Not acceptable; e- x cannot be normalized over the interval (-00 , (0) 

because e- x diverges as x ~ -00. 

c. Not acceptable; sin- I x is a multivalued function. For example, 

. _ I :rr:rr :rr 
sin I = 2 ' 2 + 2:rr, 2 + 4:rr, etc 

d. Not acceptable; the first derivative of e- 1xl is not continuoliS at x = 0. 

4-2. Quantum-Mechanical Operators Represent 
Classical-Mechanical Variables 

In Chapter 3, we concluded that classical mechanical quantities are represented by 
linear operators in quantum mechanics. We now formalize this conclusion by our next 
postulate. 

Postulate 2 

To every observable in classical mechanics there corresponds a linear operator 

in quantum mechanics. 

We have seen some examples of the correspondence between observables and operators 
in Chapter 3. These correspondences are listed in Table 4.1. 

The only new entry in Table 4.1 is that for the angular momentum. Although we 
discussed angular momentum briefly in MathChapter C, we will discuss it more fully 
here . Linear momentum is given by mv and is usually denoted by the symbol p . Now 
consider a particle rotating in a plane about a fixed center as in Figure 4.1. Let v

rol 

r 

FIG U R E 4.1 

The rotation of a single particle about a fixed 
point. 



TAB L E 4.1 
Classical-mechanical observables and their corresponding quantum-mechanical operators. 

Name 

Observable 

Symbol 

Position x 

r 

Momentum 

p 

Kinetic energy K 
x 

K 

Potential energy Vex) 

vex, y, z) 

Total energy E 

Angular momentum L -vp -zp x v' Z • Y 

Ly == zPx - xpz 

L::; == XPy - ypx 

Symbol 

" X 
"-

R 

A 

P 
x 

"-p 

A 

K 
x 

A 

K 

VC-x) 
vex, y, z) 

A 

H 

" 
L 

x 

" L 
v 

A 

L z 

Operator 

Operation 

Multiply by x 

Multiply by r 

a -in-ax 

-in (i~ + j~ + k~) ax ay 8z 

n2 a2 

Multiply by Vex) 

Multiply by vex, y, z) 

+ vex, y, z) 

n2 

== --2 '\72 + vex, y, z) 
n2 

-in (y~ - z~) az ay 

-in (z a - x~) ax az 

-in (x~ -y~) ay ax 

be the frequency of rotation (cycles per second). The speeed of the particle, then, is 

v == 2Tf rv t == rw t' where w t == 2Tf V t has the units of radians per second and is ro ro ro ro 

called the angular speed. The kinetic energy of the revolving particle is 

(4.3) 
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where the quantity 1 == mr2 is the moment of inertia. By comparing the first and last 
expressions for the kinetic energy in Equation 4.3, we can make the correspondences 
w ** v and 1 ** In, where wand 1 are angular quantities and v and m are linear quan­
tities. According to this correspondence, there should be a quantity 1 w corresponding 
to the linear momentum nz v, and in fact the quantity L, defined by 

L = Iw = (mr2) (~) = mvr (4.4) 

is called the angular mOlnentum and is a fundamental quantity associated with rotating 
systems, just as linear momentum is a fundamental quantity in linear systems. 

Kinetic energy can be written in terms of momentum. For a linear system, we have 

mv2 (mv)2 p2 
K== -

2 2m 2m 
(4.5) 

and for rotating systems, 

Iw2 (/W)2 L2 
K== 

2 21 21 
(4.6) 

The correspondences between linear systems and rotating systems are given in 
Table 4.2. 

We learned in MathChapter C that the angular momentum of a particle is actually 
a vector quantity defined by L == r x p, where r is its position from a fixed point 
and p == mv is its momentum (Figure C.8). Figure C.8 shows that the direction of L is 
perpendicular to the plane formed by rand p. The components ofL are (Equation C.1S) 

TAB L E 4.2 

Lx == YPz. zPy 

Ly - zPx - xPz 

Lz. - XPy - YPx 

The correspondences between linear systems and rotating systems. 

Linear motion 

Mass (m) 

Speed (v) 

Momentum (p == mv) 

Angular motion 

Moment of inertia (1) 

Angular speed (w) 

Angular momentum (L == I w) 

(4.7) 

( 
mv2 p2) 

Kinetic energy K == 2 -­
- 2n1 ( 

Iw2 L2) 
Rotational kinetic energy K == - == -

2 21 



4-2. Quantum-Mechanical Operators Represent Classical-Meehan ical Variables 

Note that the angular momentum operators given in Table 4.1 can be obtained from 
Equation 4.7 by letting the linear momenta, Px' Py ' and p z. assume their operator 
equivalents. 

According to Postulate 2, all quantum mechanical operators are linear. There is 
an important property of linear operators that we have not discussed yet. Consider an 
eigenvalue problem with a two-fold degeneracy; that is, consider the two equations 

Both ¢l and ¢2 have the same eigenvalue a. If this is the case, then any linear combi-
A 

nation of ¢( and ¢2' say c1¢) + C2¢2' is an eigenfunction of A. The proof relies on the 
A 

linear property of A (Section 3-2): 

A A A 

A(c]¢( + C2¢2) == c1A¢( + c2A¢2 

== c1 a¢) + c2a¢2 == a(c1 ¢t + C2¢2) 

EXAMPLE 4-3 
Consider the eigenvalue problem 

where m is a real (not imaginary nor complex) number. The two eigenfunctions of 

A == d2/d¢2 are 

and <f> -tn (¢) == e-im
¢ 

We can easily show that each of these eigenfunctions has the eigenvalue -m 2 
. Show that 

any linear combination of <f> m (¢) and <f> -m (¢) is also an eigenfunction of A == d 2 
/ d ¢2 . 

SOLUTION: 

d 2 . . d 2 eim¢ d2e-im¢ 
- (c elm¢> + c e-1f1l¢) == c + c ---
d¢2 2 'd¢2 2 d¢2 

== -c m2eimr/J - C m 2e-im¢ 
I 2 

== _m 2 (c,e im r/J + c
2
e- inl¢) 

Example 4-3 helps show that this result is directly due to the linear property of 
quantum-mechanical operators. Although we have considered only a two-fold degen­
eracy, the result is easily generalized. We will use this property of linear operators 
when we discuss the hydrogen atom in Chapter 6. 
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4-3. Observable Quantities Must Be Eigenvalues of Quantum 
Mechanical Operators 

We now present our third postulate: 

Postulate 3 

" In any measurement of the observable associated with the operator A, the 
only values that will ever be observed are the eigenvalues an' which satisfy the 
eigenvalue equation 

" A ,Ir - a ,Ir 
"fJ 17 n "fJ n (4.8) 

" Thus, in any experiment designed to measure the observable corresponding to A, the 
onl y values we find are a l' a2 , ••• corresponding to the states 1/1 I' 1/1 2' .... No other 
values will ever be observed. 

As a specific example, consider the measurement of the energy. The operator 
corresponding to the energy is the Hamiltonian operator, and its eigenvalue equation is 

(4.9) 

This is just the Schrodinger equation. The solution of this equation gives the 1/In and En' 
For the case of a particle in a box, En == n2h2 /8ma 2 (Equation 3.21). Postulate 3 says 
that if we measure the energy of a particle in a box, we will find one of these energies 
and no others. 

According to Postulate 1, wave functions have a probabilistic interpretation, and 
so we can use them to calculate average values of physical quantities. Recall from 
Section 3-7 that we argued that the average position of a particle in a box is given by 

(for all n) ( 4.10) 

This leads us to our fourth postulate. 

Postulate 4 

If a system is in a state described by a normalized wave function 1/1, then the 
" average value of the observable corresponding to A is given by 

(a) = f ljJ*AljJdx (4.11 ) 

all space 



4-3. Observable Quantities Must Be Eigenvalues of Quantum Mechanical Operators 

EXAMPLE 4-4 
We will learn in the next chapter that a good approximate wave function for the 
vibrational properties of a diatomic molecule in its lowest quantum state is 

(a) 1/4 J 1/1 (x) == - e -CY.r- /2 
o JT 

-oo<x<oo 

where x is the displacement of the nuclei from their equilibrium positions and a is a 
parameter characteristic of the molecule. Calculate the average value of the momentum 
associated with this wave function. 

SOL UTI 0 N: From Postulate 4, we have 

(a) 1/2 /00 2 d 2 == -in - e-ax /2 _e-CYx /2dx 
JT -00 dx 

(a) 1/2 /00 .2 == in - axe-a); dx 
JT -00 

The integrand here is an odd function and the limits are symmetric, and so we have 
(Equation B.19) 

(p) == 0 

A 

Suppose now that 1/f (x) in Postulate 4 just happens to be an eigenfunction of A; 
that is, suppose that 1/f (x) == 1/fn (x) where 

A 

A 11r (x) == a 11r (x) 
¥-'n . 11 ¥-'n 

Then 

(a) = f: 1/f,;(x)A1/fn(x)dx = f: 1/f:(x)an 1/f)x)dx = an f: 1/f: (x) 1/fn (x)dx = an 

( 4.12) 
A 

Furthermore, if A ,,/r (x) == a 11r (x), then ¥-'n n ¥-'n 

and so 

( 4.13) 

From Equations 4.12 and 4.13, we see that the variance of the measurements gives 

( 4.14) 

Thus, as Postulate 3 says, the only value we measure is the value an' 
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EXAMPLE 4-5 
Show that a i == (E2) - (E) 2 == 0 for a particle in a box, for which 

( )

1/2 2 nnx 
1/1 (x) == -. sin 

II (l (l O<x<a 

In other words, show that the only values of the energy that can be observed are the 

energy eigenvalues, E'l == n 2h 2/8ma 2 (Equation 3.21). 

SOL UTI 0 N: The operator that corresponds to the observable E is the Hamiltonian 
operator, which for a particle in a box is [Equation 3.14 with V (x) == 0] 

The average energy is given by 

(E) == 1a 

1jJ/~(x)ii1jJ,,(x)dx 
o 

21° . nn x [ TI2 d
2

] . nn x == - SIn ---2 sIn dx 
a 0 (l 2m dx a 

Similarly, 

== - SIn ----- --- sIn dx 21(1 . nn x ( 1i
2 

d
2

) ( 1i
2 

d
2

) . nn x 
a 0 (l 2m dx 2 2m dx 2 a 

-- . - SIn - sIn dx 1i4 21°. nnx ( d
4

) . nnx 
4nz2 (loa dx 4 a 

1i4 2 (nn )41(/ . 2 lln x -- . -. - SIn dx 
7 

4m~ a a 0 a 

Therefore, (57:: == (E2) - (E)2 == 0, and so we find that the energies of a particle in a 

box can be observed to have only the values E), E2 , ..•. 



4-4. The Time Dependence of Wave Functions Is Governed by the 
Time-Dependent Schrodinger Equation 

To this point, we have tacitly used all the given postulates in Chapter 3, and so our 
discussion so far should be fairly familiar. Now we must discuss the time dependence 
of wave functions. The time dependence of wave functions is governed by the time­
dependent Schrodinger equation. We cannot derive the time-dependent Schrodinger 
equation any more than we can derive Newton's equation, so we will simply postulate 
its form and then show that it is consistent with the time-independent Schrodinger 

" equation, H'Ilr == E 1jJ . 
o/n 11 11 

Postulate 5 

The wave function, or state function, of a system evolves in time according to 
the time-dependent Schrodinger equation 

" aW(x, t) 
HW(x, t) == in--­

at 
( 4.15) 

Postulate 5 is the only one of the postulates that we did not use in Chapter 3 and 
" thus is new. For most systems, H does not contain time explicitly, and in those cases 

we can apply the method of separation of variables to Equation 4.15 and write 

W(x, t) == 1jJ(x)f(t) 

Ifwe substitute this expression into Equation 4.15 and divide both sides by 1/J(x)f(t), 
we obtain 

1" in df(t) 
1/1 (x) H1/I(x) = f(t) dt ( 4.16) 

" 
If H does not contain time explicitly, then the left side in Equation 4.16 is a function of 
x only and the right side is a function of t only, and so both sides must equal a constant. 
If we denote the separation constant by E, then Equation 4.16 gives 

" H1/J(x) == E1/J(x) ( 4.17) 

and 

df (t) i 
-- == --Ef(t) 

dt Pl 
( 4.18) 

The first of these two equations is what we have been calling the Schrodinger equa­
tion. In view of Equation 4.15, Equation 4.17 is often called the time-independent 
Schrodinger equation. 

Equation 4.18 can be integrated to give 

J(t) == e i Et /Tl 
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and so \lJ (x, t) is of the form 

\lJ (x, t) == 0/ (x ) e i E! In ( 4.19) 

If we use the relation E == h 1) == liw, we can write Equation 4.19 as 

\lJ (x, t) == 0/ (x) e i w! (4.20) 

In almost all cases of interest to chemists, there is a set of solutions to Equation 4.17, 
so we write Equation 4.19 as 

(4.21) 

If the system happens to be in one of the eigenstates given by Equation 4.21, then 

(4.22) 

Thus, the probability density and the averages calculated from Equation 4.21 are inde­
pendent of time, and the 0/

11 
(x) are called stationary-state wave functions. Stationary 

states are of central importance in chemistry. For example, in later chapters we will 
deduce a set of stationary energy states for an atom or a molecule and express the spec­
troscopic properties of the system in terms of transitions from one stationary state to 
another. The Bohr model of the hydrogen atom is a simple illustration of this idea. The 
following example illustrates the stationary states of a model for a rotating diatomic 
molecule. 

EXAMPLE 4-6 
We will learn in Chapter 5 that a rotating diatomic molecule can be well approximated 
by a rigid rotator (essentially a dumbbell) and that the Schrodinger equation of a rigid 
rotator gives a set of stationary energy levels with energies 

Ti 2 

EJ=-J(J+l) 
21 

J = 0, 1, 2, ... 

where I is the moment of inertia of the molecule. Given that transitions can occur only 
between adjacent levels, show that the rotational absorption spectrum of a diatomic 
molecule consists of a series of equally spaced lines. 

SOL UTI 0 N: Absorption occurs for transitions from the level J to the level J + 1 
(adjacent levels). The energy difference is 

Ti 2 

/:).E = EJ+l - E J = -[(I + l)(I + 2) - I(I + 1)] 
21 
Ti 2 

= -(J + 1) 
I 

I = 0, 1, 2, ... 



4-5. The Eigenfunctions of Quantum Mechanical Operators Are Orthogonal 

U sing the relation ~ E = h v, we see that absorption occurs at the frequencies 

11 
V= (1+1) 

2][ I 
1 = 0, 1, 2, ... 

which corresponds to a series of lines separated by 1i /2][ I, from which one may obtain 
the moment of inertia and bond length of the molecule (Example 5-7). 

4-5. The Eigenfunctions of Quantum Mechanical Operators 
Are Orthogonal 

Table 4.1 contains a list of some commonly occurring quantum mechanical operators. 
We stated previously that these operators must have certain properties. We noticed 
they all are linear, and, in fact, linearity is a requirement we impose. A more subtle 
requirement arises if we consider Postulate 3, which says that, in any measurement of 
the observable associated with a quantum-mechanical operator, the only values that 
are ever observed are its eigenvalues. We have seen, however, that wave functions and 

A 

quantum-mechanical operators can be complex quantities (see the expression for P
x 

in Table 4.1, for example), but certainly the eigenvalues must be real quantities if they 
are to correspond to the result of experimental measurement. In an equation, we have 

A 

A 1/" - a 1/" 
'f' 11 fl 'f' 11 

(4.23) 

A 

where A and Vr
n 

may be complex but an must be real. We will insist, then, that 
quantum-mechanical operators have only real eigenvalues. Clearly, this requirement 
places a certain restriction on the properties of quantum-mechanical operators. We will 
not elaborate on this restriction here (see Problems 4-28 and 4-29, however), but an 
important direct consequence of the fact that the eigenvalues of quantum-mechanical 
operators must be real is that their eigenfunctions satisfy the condition 

m=/=-n (4.24 ) 

Let's see how this condition applies to the wave functions of a particle in a box. The 
wave functions for this system are (Equation 3.27) 

( )

1/2 2 nrrx 
Vr (x) == -. sin 

II a a 
n == 1, 2, ... (4.25) 

Proving that these functions satisfy Equation 4.24 is easy if you use the trigonometric 
identity (Problem 3-16) 

. . 1 1 
SIn a SIn 13 == - cos(a - 13) - - cos(a + 13) 

2 2 
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Then 

21" . nnx . mnx I 1" (n - m)nx 11° (n + m)nx - sm sm dx = - cos dx - - cos dx 
ao a a ao a a o a 

(4.26) 
Because nand m are integers, both integrands on the right side of Equation 4.26 
are of the form cos(Nnx j a) , where N is a nonzero integer, if m=/=- n . Consequently, 
both integrals go over complete half cycles of the cosine and equal zero if m=/=- n (cf. 
Figure 4.2). Thus, we see that 

21" nnx mnx - sin sin dx = 0 
a 0 a a 

m=/=-n (4.27) 

and that the particie-in-a-box wave functions satisfy Equation 4.24. 
A set of wave functions that satisfy Equation 4.24 is said to be orthogonal, or 

we say that the wave functions are orthogonal to each other. The wave functions of a 
particle in a box are orthogonal to each other. 

When n = /11 in Equation 4.26, the integrand of the first integral on the right side 
of Equation 4.26 is unity because cos 0 = I. The second integral on the right side of 
Equation 4.26 vanishes , so we have that 

21" nn x - sin2 d x = 1 
a 0 a 

(4.28) 

or that the particle-in-a-box wave functions are normalized. A set of functions that are 
both normalized and orthogonal to each other is called an orthonormal set. We can 
express the condition of orthonormality by writing 

FIG U R E 4.2 

"'t 

Joo ,,,*,I'dx = 0 .. 
YJ f YJ) IJ 

- 00 

41I 

c ~----~----~----~r-----+--­
.;;; 0 21t 4 rr 

(4.29) 

An illustratration of the fact that the integrals of cos x and sin x vanish if the limits of integration 
extend over the complete half cycles of cos x and complete cycles of sin x . 



4-5. The Eigenfunctions of Quantum Mechanical Operators Are Orthogonal 

where 

. . 
1=) 

i =1= j 
(4.30) 

The symbol 6 .. is called the Kroenecker delta (cf. Problem 3-17). 
lJ 

EXAMPLE 4-7 
According to Problem 3-28, the eigenfunctions of a particle constrained to move on a 
circular ring of radius a are 

1/1 (e) = (2JT) 1/2e im
& m = 0, ±l, ±2, ... 

111 

where e describes the angular position of the particle about the ring. Clearly 0 < e < 

2JT. Prove that these eigenfunctions form an orthonormal set. 

SOL UTI 0 N: To prove that a set of functions forms an orthonormal set, we must 
show that they satisfy Equation 4.29. To see if they do, we have 

1
2rr 

1 12rr 

1/r* (e)1/r (e)de = - e- imO e inH de 
If' m If' n 2JT 

o 0 

1 12rr 

= - ei (n-m)8 de 
2JT 0 

1 12rr 

i 12rr 

= - cos(n - m)ede + - sin(n - nl)BdB 
2JT () 2JT 0 

For n 1- m, the final two integrals vanish because they are over complete cycles of the 
cosine and sine. For n = m, the first integral in the last expression gives 2][ because 
cos 0 = 1 and the second integral vanishes because sin 0 = O. Thus, 

1
2rr 

* e e de = 8 1/Im ( ) 1/Ifl ( ) f11n 

o 

and we have shown that the 1/1
111 

(e) form an orthonormal set. 

Before we leave this section, we will discuss very briefly the property of quantum­
mechanical operators that guarantees their eigenvalues will be real. In an equation, the 

A 

property such an operator A must satisfy is that 

f f*(x)Ag(x)dx = f g(x)[Af]*(x)dx (4.31) 

all space all space 

A 

where f (x) and g (x) are any two state functions. Note that A operates on g (x) on the 
"-

left side of Equation 4.31 and that A * operates on f* (x) on the right side. To see how 
A A 

this equation works, let A be the momentum operator P
x 

= -ihd / dx and let 

1 2 

I(x) = e- X /2 
1/4 

JT 
-oo<x<oo 
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and 

21/2 2 

g(X) == xe-x /2 
JT 1/4 

-oo<x<oo 

[The constants in f (x) and g (x) are simply normalization constants. The functions f (x) 
and g (x) are solutions to the one-dimensional harmonic oscillator problem discussed 
in detail in the next chapter.] Therefore, 

and 

f (2) 1/21
00 

f*(x)Ag(x)dx == -in Tr -00 (e- X
' - x 2e-

X2

)dx 

all space 

_ . (2)1/2( 1/2 nl/2)_ iii 
- -zli - JT - - ---

n 2 21/2 

Similarly, 

and 

A d 1 7 

A*f(x) == +in- 1/4 e x~/2_ 
dx 1T 

i1i 2 --xe-x /2 
n 1/4 

f (2) 1/21
00 

g(x)A*f*(x)dx == -in Tr -00 x 2e-X'dx 

all space 

A 

. (2) 1/2 1T 1/2 
== -zn -

JT 2 
in 

Thus we see that P
x 

satisfies Equation 4.31. An operator that satisfies Equation 4.31 is 
said to be Hermitian. Thus, Postulate 2 should be amended to read 

Postulate 2' 

To every observable in classical mechanics there corresponds a linear, Her­
mitian operator in quantum mechanics. 

Problems 4-28 and 4-29 take you through the proof that the eigenvalues of Hermitian 
operators are real and that their eigenfunctions are orthonormal. 



4-6. The Physical Quantities Corresponding to Operators That 
Commute Can Be Measured Simultaneously to Any Precision 

" " When two operators act sequentially on a function, f (x), such as in A B f (x), we apply 
each operator in turn, working from right to left (as in Example 3-5): 

~ A A A 

ABf(x) == A[B.f(x)] 

An important difference between operators and ordinary algebraic quantities is that 
operators do not necessarily commute. If 

A A A /'\. 

ABf(x) == BAf(x) (commutative) ( 4.32) 

" " for arbitrary f(x), then A and B are said to commute. If 

A /'\. A A 

ABf(x)=f- BA.f(x) (noncommutative) (4.33) 

" " " for arbitrary f(x), then A and B do not commute. For example, let A be the kinetic 
" " " energy operator, K x ' and B be the momentum operator, ~r' for a one-dimensional 

system (Table 4.1). Then 

" " ( h 
2 

d
2

) ( d ) K P lj!(x) == -- 2 -ih- lj!(X) 
x x 2m dx dx 

= in} d
2 

(dlj!) == ih
3 

d
3
lj! 

2m dx 2 dx 2m dx 3 

and 

Therefore, 

/'\. A A A 

K.P lj!(x) == P.K,lj!(x) x x ,l .~ 
(4.34 ) 

and we see that the kinetic energy operator and the momentum operator commute. We 
can write Equation 4.34 in the form 

or 

A A A A A 

(K p. - P.K )l/f(x) == Olj!(x) 
X.\ X X 

( 4.35) 
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" where 0 is the "multiply by zero" operator. Because we have not used any special 
property of 1f; (x) to arrive at Equation 4.35, we can write it as an operator equation by 
suppressing 1f; (x) on both sides of the equation to give 

"" "" "-

KP-PK==O x x x x 
(4.36) 

" " The left side of Equation 4.36 is called the commutator of Kx and ~r and is written as 

( 4.37) 

and we can write Equation 4.36 as 

( 4.38) 

The commutator of commuting operators is the zero operator. 
/"'\. " " "-

Now let A be the momentum operator ~t and B be the position operator X == x 

(multiply by x). In this case, 

and 

Note that 

" " 

" " (d ) P_X1f;(x) == -in- x1f;(x) 
.\ dx 

== -in 1f; (x) - inx d 1f; 
dx 

"" (d) X P 1f;(x) == x -in-. 1f;(x) 
x dx 

. d1f; 
== -znx­

dx 

so P
x 

and X do not commute. In this particular case, 

or 

"" "" " 
(P X - XP.)1f;(x) == -inf1f;(x) 

x .\ 

" 

(4.39) 

(4.40) 

where we have introduced the identity operator f, which is simply the "multiply by 
one" operator. Because we have not used any special property to arrive at Equation 4.40, 
we can write Equation 4.40 as an operator equation by suppressing 1/1 (x) on both sides 
of the equation to give 

"" "" "-

P X - X P == -iii f x .X 
(4.41) 



4-6. Operators That Commute Can Be Measured Simultaneously to Any Precision 

A A 

The left side here is the commutator of P
x 

and X, so we can write Equation 4.41 as 

A A A 

[P , X] == -in! 
x 

(4.42) 

We know from the Uncertainty Principle that both the momentum and the position 
of a particle cannot be measured simultaneously to any desired degree of accuracy. 
There is a direct relationship between the Uncertainty Principle and the commutator 

A A 

of two operators, which we give here without proof. Consider two operators, A and B. 
The standard deviations, aa and ab , that correspond to these operators are quantita­
tive statistical measures of the uncertainties in the observed values of these physical 
quantities. These standard deviations are given by (MathChapter B) 

(4.43) 

with a similar equation for a;. A rigorous expression of the Uncertainty Principle says 
that aa and a

b 
(the uncertainties in the measurements of a and b) are related by 

1 f A A a a, > - 1/r*(x)[A, B]1/r(x) dx 
a )-2 If' 'f' (4.44) 

/'It.. /'It.. AA A/'It.. A /'It.. 

where [A, B] == AB - BA is the commutator of A and B and the vertical bars denote 
the absolute value of the integral. 

A A 

If A and B commute, then the right side of Equation 4.44 is zero, so aa' ab , or 
both could equal zero simultaneously. There is no restriction on the uncertainties in the 

A A 

measurements of a and b. If, on the other hand, A and B do not commute, then the right 
side of Equation 4.44 will not equal zero. Thus, there is a reciprocal relation between 
aa and a

b
; one can approach zero only if the other approaches infinity. Therefore, both 

a and b cannot be measured simultaneously to arbitrary precision. 
Let's consider as an example, the simultaneous measurement of the momentum 

A A A A 

and position of a particle, so that A == ~'( and B == X in Equation 4.44. Equation 4.42 
A A A 

tells us that [P , X] == -in I, and so Equation 4.44 gives x 

1 f A a a > - 1/r*(x)(-iliI)1/r(x)dx 
p x-2 If' 'f' 

1 n 
> -I - in 1 > -2 - 2 (4.45) 

Equation 4.45 is the usual expression given for the Uncertainty Principle for momentum 
and position. If a is made to be small, then a is necessarily large, and if a is made 

p x x 

to be small, then a p is necessarily large. Thus, the momentum and position cannot be 
measured simultaneously to arbitrary precision. 

Thus, we see that there is an intimate connection between commuting operators 
A A 

and the Uncertainty Principle. If two operators A and B commute, then a and b can be 
A A 

measured simultaneously to any precision. If two operators A and B do not commute, 
then a and b cannot be measured simultaneously to arbitrary precision. 
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Problems 
4-1. Which of the following candidates for wave functions are normalizable over the indicated 

intervals? 
') 

3. e-x - /2 (-00, 00) h. eX (0, 00) c. e ifj (0, 2n) d. sinh x (0, 00) 

e. xe-x (0, ex:» 

Normalize those that can be normalized. Are the others suitable wave functions? 

4-2. Which of the following wave functions are normalized over the indicated two-dimensional 

intervals? 

O<x<oo 

O<y<oo 

(
4)1/2 nx ny 

c. ab SIn -;; sIn b 

Normalize those that aren't. 

O<x<a 

O<v<b -. -

h. e (x+y)/2 
O<x<oo 

O<y<oo 

4-3. Why does ljJ*ljJ have to be everywhere real, nonnegative, finite, and of definite value? 

4-4. In this problem, we will prove that the form of the Schrodinger equation imposes the 

condition that the first derivative of a wave function be continuous. The Schrodinger 

equation is 

d2 ljJ 2m 
-dx-2 + -TI2 [E - V(x)]ljJ(x) == 0 

If we integrate both sides from a - E to a + E, where a is an arbitrary value of x and E is 

infinitesimally small, then we have 

dljJ dljJ 2m f a
+

E 

== -2 [Vex) - E]ljJ(x)dx 
dx X=(J-E TI a-E dx x=a+E 

N ow show that d ljJ / dx is continuous if V (x) is continuous. 

Suppose now that V (x) is not continuous at x == Q, as in 

~.-----

----------------~----------------~.·x 
a 

Show that 

dljJ dljJ 2m 
dx x=a-f = r;z["" + Vr - 2E]1/r(a)E 

dx x=a+E 



Problems 

so that d1/l/dx is continuous even if Vex) has afinite discontinuity. What if Vex) has an 
infinite discontinuity, as in the problem of a particle in a box? Are the first derivatives of 
the wave functions continuous at the boundaries of the box? 

4-5. Determine whether the following functions are acceptable or not as state functions over 
the indicated intervals. 

1 
3. - (0,00) 

x 
h. e-2x sinh x (0, 00) 

c. e-x cos x (0, 00) d. eX (-00,00) 

4-6. Calculate the values of (Ji = (E2) - (E) 2 for a particle in a box in the state described by 

4-7. Consider a free particle constrained to move over the rectangular region 0 < x < a, 
o < y < b. The energy eigenfunctions of this system are 

( 
4 ) 1/2 n JT x n ,JT Y 

1/1 (x, y) = - sin x. sin .' 
flx,flv ab a b 

The Hamiltonian operator for this system is 

Show that if the system is in one of its eigenstates, then 

4-8. The momentum operator in two dimensions is 

P = -in i- +j-A (a a ) 
ax ay 

n x = 1, 2, 3, 

n.v = 1, 2, 3, 

U sing the wave function given in Problem 4-7, calculate the value of (p) and then 

Compare your result with (Jj; in the one-dimensional case. 

4-9. Suppose that a particle in a two-dimensional box (cf. Problem 4-7) is in the state 

Show that 1/1 (x, y) is normalized, and then calculate the value of (E) associated with the 
state described by 1/1 (x, y). 

135 



136 Chapter 4 / Some Postulates and General Principles of Quantum Mechanics 

4-10. Show that ') 1/I
o
(x) == 7T-l/4e-x~/2 

') 

ljIl(X) == (4/7T)1/4xe -x--;2 

are orthonormal over the interval -00 < x < 00. 

4-11. Show that the polynomials 

and 

satisfy the orthogonality relation 

P (x) P (x )dx == In 1
1 28 

_I I 17 21 + 1 

where 8
1n 

is the Kroenecker delta (Equation 4.30). 

4-12. Show that the set of functions (2/a)I/2 cos(n7Tx/a), n == 0,1,2, ... is orthonormal over 
the interval 0 < x < a. 

4-13. Prove that if 8 is the Kroenecker delta 
11m 

8 _ {I 
11m 0 

n==m 

n-=j=m 

then 

ex:; 

"c8 ==c ~ II nm /11 

11 1 

and 

""ab8 =="ab ~ ~ /1 /11 11111 ~ 11 11 

II III 11 

These results will be used later. 

4-14. Determine whether or not the following pairs of operators commute. 

(a) 

" A 

d 

dx 

(b) x 

(c) 

(d) 

SQR 

') d 
x .. -

dx 

A 

B 

d2 d 
-+2-
dx 2 dx 

d 

dx 

SQRT 

') 

dx"-

4-15. In ordinary algebra, (P + Q)(P - Q) == p2 - Q2. Expand (P + QJ(P - Q). Under 
what conditions do we find the same result as in the case of ordinary algebra? 



Problems 

" " "" 4-16. Evaluate the commutator [A, B], where A and B are given below. 

(a) 

(b) 

(c) 

(d) 

" 
A 

d 
--x 
dx 

j x dx 
() 

" 
B 

x 

d 
-+x 
dx 

d 

dx 

d '1 

-+x"" 
dx 

4-1 7. Referring to Table 4.1 for the operator expressions for angular momentum, show that 

and 

(Do you see a pattern here to help remember these commutation relations?) What do 
these expressions say about the ability to measure the components of angular momentum 
simultaneously? 

4-18. Defining 

[2 == [2 + i 2 + [2 
x y z: 

show that [ 2 commutes with each component separately. What does this result tell you 

about the ability to measure the square of the total angular momentum and its components 
simultaneously? 

4-19. In Chapter 6 we will use the operators 

" " " 
L+ == Lx + i Ly 

and 

" " " 
L ==L -iL 

x \' 

Show that 

and that 

"" " 
[L_, L_J == -1iL 

~. 
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A A A A A ~ 

4-20. Consider a particle in a two-dimensional box. Determine [X, P), [X, ~J, [Y, p\,), and 
" A ~ ~ 

[Y, P ]. 
x 

4-21. Can the position and total angular momentum of any electron be measured simultaneously 
to arbitrary precision? 

4-22. Can the angular momentum and kinetic energy of a particle be measured simultaneously 
to arbitrary precision? 

4-23. Using the result of Problem 4-20, what are the "uncertainty relationships" .6.x.6.p \' and 
.6.y.6.p equal to? 

x 

4-24. We can define functions of operators through their Taylor series (MathChapter I). For 
" example, we define the operator exp (5) by 

Under what conditions does the equality 

hold? 

4-25. In this chapter, we learned that if ljJn is an eigenfunction of the time-independent 
Schrodinger equation, then 

\fI (x t) == ljJ (x)e -; £,/ In 
n' n 

"-

Show that if ljJ and ljJ are both stationary states of H, then the state 
In 11 

\fI(x t) == C ,Ir (x)e- i
£l/It ln + C ,Ir (x)e iE,/ln 

'm'l-'l11 /I'I-'{1 

satisfies the time-dependent Schrodinger equation. 

4-26. Starting with 

(x) = f \II'(x, t)x\ll(x, t)dx 

and the time-dependent Schrodinger equation, show that 

_d (_x) == J \fI * ~ (fI x - x fI) \fI d x 
dt h . 

Given that 

show that 

" A 112 d T12 i A i11 " 
Hx-xH==-2--==-- P ==--p 

2111 d x nl h x 1'1'1 x 



Problems 

Finally, substitute this result into the equation for d (x) / d t to show that 

d (x) A 

In = (P ) 
dt x 

Interpret this result. 

4-27. Generalize the result of Problem 4-26 and show that if F is any dynamical quantity, then 

_d_(F_) =J\IJ*~(fIF-FH)\lJdX 
dt h 

Use this equation to show that 

Interpret this result. This last equation is known as Ehrenfest's theorem. 

4-28. The fact that eigenvalues, which correspond to physically observable quantities, must 
be real imposes a certain condition on quantum-mechanical operators. To see what this 
condition is, start with 

(1) 

A 

where A and ljJ may be complex, but a must be real. MUltiply Equation 1 from the left by 
ljJ * and then integrate to obtain 

J 1/1* A1/Idr = a f 1/I*1/Idr = a (2) 

Now take the complex conjugate of Equation 1, multiply from the left by ljJ, and then 
integrate to obtain 

(3) 

Equate the left sides of Equations 2 and 3 to give 

(4) 

This is the condition that an operator must satisfy if its eigenvalues are to be real. Such 
operators are called Hermitian operators. 

4-29. In this problem, we will prove that not only are the eigenvalues of Hermitian operators 
real but that their eigenfunctions are orthogonal. Consider the two eigenvalue equations 

" A ,Ir - a ,Ir 
'f/ n fl 'f/ 11 

Multiply the first equation by ljJ/~ and integrate; then take the complex conjugate of the 
second, multiply by ljJ/1' and integrate. Subtract the two resulting equations from each other 
to get 

1
00 100 100 

A A 

*A dx- A* *dx= a -a* * dx -00 ljJ m ljJ n -00 ljJ/1 ljJm (11 m) -CX) ljJ m ljJl1 . 
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" Because A is Hermitian, the left side is zero, and so 

(all - a,~,) i: 1/1; 1/I"dx = 0 

Discuss the two possibilities n = 111 and n j 111. Show that an == a,~, which is just another 
proof that the eigenvalues are real. When n j In, show that 

i: 1/I,~, 1/1" d x = 0 m jn 

if the system is nondegenerate. Are 1/11/1 and 1/I
n 

necessarily orthogonal if they are degenerate? 

4-30. All the operators in Table 4.1 are Hermitian. In this problem, we show how to determine 
" " if an operator is Hermitian. Consider the operator A == d / dx. If A is Hermitian, it will 

" satisfy Equation 4 of Problem 4-28. Substitute A == d / dx into Equation 4 and integrate by 

parts to obtain 

I
x d 1/1 x IX d 1/1* 

1/1* -. dx == 1/1*1/1 - 1/1 dx 
dx -x dx -x -00 

For a wave function to be normalizable, it must vanish at infinity, so the first term on the 

right side is zero. Therefore, we have 

f x d fX d 
1/1* -1/Idx == - .1/1-1/1* dx 

-00 dx -oc dx 

For an arbitrary function 1/1 (x), d / d x does not satisfy Equation 4 of Problem 4-28, so it is 

not Hermitian. 

4-31. Following the procedure in Problem 4-30, show that the momentum operator is Hermi­
tian. 

4-32. Specify which of the following operators are Hermitian: id / dx, d 2 
/ dx 2

, and id2 
/ dx 2

. 

Assume that -00 < x < 00 and that the functions on which these operators operate are 
appropriately well behaved at infinity. 

Problems 4-33 through 4-38 exan1ine systems with piece-wise constant potentials. 

4-33. Consider a particle moving in the potential energy 

Vex) 

Vo r---------~ .... 
Region 1 Region 2 

------------------~----------------~x o 



Problems 

whose mathematical form is 

o x < 0 
Vex) = V 0 

ox> 

where Va is a constant. Show that if E > ~)' then the solutions to the Schrodinger equation 

in the two regions (1 and 2) are (see Problem 3-32) 

x<O (1) 

and 

x>O (2) 

where 

= (2mE)I/2 
k) ') 

li~ 
(3) 

As we learned in Problem 3-32, eikx represents a particle traveling to the right and e-ikx 

represents a particle traveling to the left. Let's consider a particle traveling to the right in 

region 1. If we wish to exclude the case of a particle traveling to the left in region 2, we 

set D = 0 in Equation 2. The physical problem we have set up is a particle of energy E 
incident on a potential barrier of height Vo' The squares of the coefficients in Equation 1 
and 2 represent the probability that the particle is traveling in a certain direction in a given 

region. For example, I A 12 is the probabillity that the particle is traveling with momentum 

+likI (Problem 3-32) in the region x < O. If we consider many particles, No, instead of 

just one, then we can interpret IA 12 No to be the number of particles with momentum likI 
in the region x < O. The number of these particles that pass a given point per unit time is 

given by v1A1 2No, where the velocity v is given by hkI/ln. 
Now apply the conditions that 1/1 (x) and d 1/1 / dx must be continuous at x = 0 (see 

Problem 4-4) to obtain 

and 

N ow define a quantity 

and show that 

Similarly, define 

A+B=C 

v)IBI 2 NO lik]IBI 2 No/m IBI2 
R - - ----------

- v]IAI 2 N
O 

- hk]IAI 2 No/m IAI2 

(
k _. k )2 

R - ] 2 

k] + k2 

lik21 CI 2 No/ In 

lik1lAI2 No/m 
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and show that 
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4klk2 
T= ----

(k, +k2)2 

The symbols Rand T stand for reflection coefficient and transmission coefficient, respec­

tively. Give a physical interpretation of these designations. Show that R + T = 1. Would 
you have expected the particle to have been reflected even though its energy, E, is greater 

than the barrier height, Vo? Show that R ---+ 0 and T ---+ 1 as Vo ---+ O. 

4-34. Show that R = I for the system described in Problem 4-33 but with E < V:), Discuss 

the physical interpretation of this result. 

4-35. In this problem, we introduce the idea of quantuln-nzechanical tunneling, which plays a 

central role in such diverse processes as the a-decay of nuclei, electron-transfer reactions, 

and hydrogen bonding. Consider a particle in the potential energy regions as shown below. 

Region 2 

Region 1 Region 3 
r 

r 
-------------------L~--~-----------------.,x 

Mathematically, we have 

o a 

o 
Vex) = v:) 

o 

x<O 
O<x<a 

x>a 

Show that if E < Vo' the solution to the Schrodinger equation in each region is given by 

x<O (1) 

O<x<a (2) 

and 

x>a (3) 

where 

= (2mE)1/2 
k1 2 

1i 
and 

E) ) '(2 
(4) 



Problems 

If we exclude the situation of the particle coming from large positive values of x, then 
F = 0 in Equation 3. Following Problem 4-33, argue that the transmission coefficient, the 
probability the particle will get past the barrier, is given by 

(5) 

N ow use the fact that ljJ (x) and d ljJ / dx must be continuous at x = 0 and x = a to obtain 

A+B=C+D (6) 

and 

(7) 

Eliminate B from Equations 6 to get A in terms of C and D. Then solve Equations 7 for C 
and D in terms of E. Substitute these results into the equation for A in terms of C and D 
to get the intermediate result 

Now use the relations sinhx = (eX - e-X)/2 and coshx = (eX + e-X)/2 (Problem A-II) 
to get 

E 

A 

Now multiply the right side by its complex conjugate and use the relation cosh2 x = 
I + sinh2 x to get 

T= 
E 2 

A 

4 

Finally, use the definition of kl and k2 to show that the probability the particle gets through 
the barrier (even though it does not have enough energy!) is 

I 
T = -----------------------

v2 

1 + 0 sinh2(vo _ 8)1/2 
48(Vo - E) 

(8) 

or 

(9) 

where Vo = 2ma2 Vo /h 2, E = 2ma2 E /h2, and r = E / Vo = 8/ VO" Figure 4.3 shows a plot 
of T versus r. To plot T versus r for values of r > 1, you need to use the relation 
sinh ix = i sinx (Problem A-II). What would the classical result look like? 
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FIG U R E 4.3 
A plot of the probability that a particle of energy E will penetrate a barrier of height Va plotted 
against the ratio E / ~) (Equation 9 of Problem 4-35). 

4-36. Use the result of Problem 4-35 to determine the probability that an electron with a 
kinetic energy 8.0 x 10-21 J will tunnel through a 1.0 nm thick potential barrier with 

~) == 12.0 X 10-21 1. 

4-37. Problem 4-35 gives that the probability of a particle of relative energy E / ~) will penetrate 

a rectangular potential barrier of height ~) and thickness a is 

1 
T== ------------------

• 1 1/2 In sInh"" [v (1 - r) 1-] 
1 + 0 

4r(1 - r) 

where Vo == 2111 ~)a2 /h2 and r == E / Vo. What is the limit of T as r ---+ I? Plot T against r 
for Vo == 1/2, 1, and 2. Interpret your results. 

4-38. In this problem, we will consider a particle in afinite potential well 

r 
Region 1 Vo 

1 
-Q 

whose mathematical form is 

Vex) 

Region 2 

Va 
Vex) == 0 

~) 

o a 

x <-Q 

-Q < X < a 
x>a 

r 
Vo Region 3 

1 "'" ,.. x 

(1) 



Problems 

Note that this potential describes what we have called a "particle in a box" if Vo ---+ 00. 

Show that if 0 < E < Vo' the solution to the Schrodinger equation in each region is 

where 

0/] (x) == Aek1x 

o/2(X) == B sinax + Ccosax 
0/ (x) == De-k1x 

3 

x <-a 
-a < x < a 

x>a 

== (2m(Vo - E)) 1/2 
k] 2 

h 

_ (2mE)1/2 
and a - 2 

h 

(2) 

(3) 

N ow apply the conditions that 0/ (x) and do/ / dx must be continuous at x == -a and x == a 

to obtain 

Ae-k1a == -Bsinaa + Ccosaa (4) 

(5) 

(6) 

and 

(7) 

Add and subtract Equations 4 and 5 and add and subtract Equations 6 and 7 to obtain 

(8) 

(9) 

(10) 

and 

( 11) 

N ow divide Equation 10 by Equation 8 to get 

. 
a Slnaa 
--- == a tanaa == k 
cos aa 1 

(D -=1= -A and C -=1= 0) (12) 

and then divide Equation 11 by Equation 9 to get 

a cos aa 
--- == a cotaa == -k 

sin aa I 
and (D -=1= A and B -=1= 0) (13) 

Referring back to Equation 3, note that Equations 12 and 13 give the allowed values of E 

in terms of Va- It turns out that these two equations cannot be solved simultaneously, so we 
have two sets of equations 

a tanaa == k, (14) 
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and 

a cotaa == -kl ( 15) 

Let's consider Equation 14 first. Multiply both sides by a and use the definitions of a and k 1 

to get 

(
_2m_a_

2_E) 1/2 (2ma.2E)I/2 _ [2ma2 _ ]1/2 
2 tan J - J ( Vo E) 

h n~ n~ 
(16) 

Show that this equation simplifies to 

( 17) 

where c == 2ma2 E /h2 and Vo == 2ma2 ~)/n2. Thus, if we fix Vo (actually 2ma2 VO/h 2), 
then we can use Equation 17 to solve for the allowed values of c (actually 2ma 2 E /( 2). 
Equation 17 cannot be solved analytically, but if we plot both c l

/
2tanc l

/
2 and (vo - c)I/2 

versus c on the same graph, then the solutions are given by the intersections of the two 
curves. Show that the intersections occur at c == 21na 2 E /h2 == 1.47 and 11.37 for Vo == 12. 
The other value(s) of c are given by the solutions to Equation 15, which are obtained 
by finding the intersection of _c l

/
2 cot c l

/
2 and (vo - c)I/2 plotted against c. Show that 

c == 2ma 2 E /h2 == 5.68 for Vo == 12. Thus, we see there are only three bound states for a 

well of depth Vo == 12h2 /2Ina 2
. The important point here is not the numerical values of E, 

but the fact that there is only a finite number of bound states. Show that there are only two 

bound states for Vo == 2ma2 VO/h 2 == 4. 



MATHCHAPTER 

SPHERICAL COORDINATES 

Although Cartesian coordinates (x, y, and z) are suitable for many problems, there are 
many other problems for which they prove to be cumbersome. A particularly important 
type of such a problem occurs when the system being described has some sort of a 
natural center, as in the case of an atom, where the (heavy) nucleus serves as one. In 
describing atomic systems, as well as many other systems, it is most convenient to use 
spherical coordinates (Figure D.I). Instead of locating a point in space by specifying 
the Cartesian coordinates x, y , and z, we can equally well locate the same point by 
specifying the spherical coordinates r, e, and ¢. From Figure D.l, we can see that the 
relations between the two sets of coordinates are given by 

FIGURE 0 .1 

x = r sin e cos ¢ 

y = r sin e sin ¢ 

z = r cose 

z 

• (r, e, ¢) , 

e r 

____________ ~-------L--------~~ y 

- - ---- - --- - " 

x 

(D.I) 

A representation of a spherical coordinate system. A point is specified by the spherical 
coordinates r, e, and ¢. 147 
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This coordinate system is called a spherical coordinate system because the graph of 
the equation r = c = constant is a sphere of radius c centered at the origin. 

Occassionally we need to know r, e, and ¢ in terms of x , y, and z. These relations 
are given by (Problem 0-1) 

(
" 2 " ) 1/2 r = x- + y + z-

z 
cose = ~~--"~~~~ 

(x 2 + y- + Z2)1 /2 
(0.2) 

Y tan¢ = -
x 

Any point on the surface of a sphere of unit radius can be specified by the values 
of e and ¢. The angle e represents the declination from the north pole, and hence 
o < e < n. The angle ¢ represents the angle about the equator, and so 0 < ¢ < 2n. 
Although there is a natural zero value for e (along the north pole), there is none for ¢. 
Conventionally, the angle ¢ is measured from the x-axis as illustrated in Figure 0.1 . 
Note that r, being the distance from the origin, is intrinsically a positive quantity. In 
mathematical terms, 0 < r < 00. 

In Chapter 6, we will encounter integrals involving spherical coordinates. The 
differential volume element in Cartesian coordinates is dxdydz , but it is not quite so 

rs in edt/! -I 
rde dr 

x 

FIG U R E 0.2 
A geometrical construction of the differential volume element in spherical coordinates. 
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simple in spherical coordinates. Figure 0.2 shows a differential volume element in 
spherical coordinates, which can be seen to be 

d V = (r sin ed¢) (rde)d r = r 2 sin edrded¢ (0 .3) 

Let's use Equation 0.3 to evaluate the volume of a sphere of radius a. In this case, 
o < r < a, 0 < e < JT, and 0 < ¢ < 2JT . Therefore, 

V = l a 

r 2dr 1" sin ede 12

" d¢ = (a_
3

) (2)(2JT) = _4JT_a_
3 

o 0 0 3 3 

Similarly, if we integrate only over e and ¢, then we obtain 

d V = r2dr 1" sin ede 12

" d¢ = 4JT r 2dr (0.4) 

This quantity is the volume of a spherical shell of radius r and thickness d r (Figure 0 .3). 
The factor 4JT r2 represents the surface area ofthe spherical shell and d r is its thickness. 

The quantity 

(0.5) 

is the differential area on the surface of a sphere of radius r. (See Figure 0.2.) If we 
integrate Equation 0.5 over all values of e and ¢, then we obtain A = 4JT r2, the area 

of the surface of a sphere of radius r . 
Often, the integral we need to evaluate will be of the form 

100 1" 12

" J = 0 0 0 F(r, e , ¢)r2 sinedrded¢ (0.6) 

FIG U R E D.3 
A spherical shell of radius r and thickness 
dr. The volume of such a shell is 4rrr2dr , 
which is its area (4rrr2) times its thickness 
(dr). 
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When writing multiple integrals, for convenience we use a notation that treats an 
integral like an operator. To this end, we write the triple integral in Equation D.6 in the 
form 

[ 00 [" ( " 
1= Jo drr2Jo desine

Jo 
dcpF(r, e,cp) (D.7) 

In Equation D.7, each integral "acts on" everything that lies to its right; in other words, 

we first integrate F(r, e, cp ) over cp from 0 to 2][ , then multiply the result by sin e and 

integrate over e from 0 to ][ , and finally multiply that result by r2 and integrate over r 
from 0 to 00. The advantage of the notation in Equation D.7 is that the integration 

variable and its associated limits are always unambiguous. As an example of the 
application of this notation , let's evaluate Equation D .7 with 

I 
F(r, e, cp) = r2e-r sin2 ecos2 cp 

32][ 

(We will learn in Chapter 6 that this function is the square of a 2p, hydrogen atomic 

orbital.) If we substitute F(r, e, cp) into Equation D.7, we obtain 

The integral over cp gives 

12

" dcp cos2 cp = ][ 

so that 

(D.S) 

The integral over e, Ie' is 

[" 
Iii = Jo de sin

1 
e 

It is often convenient to perform a transformation of variables and let x = cos e in 

integrals involving e. Then sin ede becomes -dx and the limits become + 1 to -1 , so 

in this case we have 

1" 1-1 /1 2 4 18 = desin 3 e=- dx(l-x 2)= dx(l-x 2)=2--=-
o I - I 3 3 

Using this result in Equation D.S gives 
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where we have used the general integral 

This final result for I simply shows that our above expression for a 2p hydrogen x 

atomic orbital is normalized. 
Frequently the integrand in Equation D.7 will be a function only of r, in which 

case we say that the integrand is spherically symmetric. Let's look at Equation 0.7 
when F(r, e, </J) = fer): 

(0.9) 

Because fer) is independent of e and </J, we can integrate over </J to get 2rr and then 
integrate over e to get 2: 

r sin ede = 11 dx = 2 
Jo - I 

Therefore, Equation D.9 becomes 

J = ro f(r)4rrr2dr 
Jo 

(D.lO) 

The point here is that if F(r, e, </J) = fer) , then Equation D .7 becomes effectively 
a one-dimensional integral with a factor of 4rr r2dr multiplying the integrand. The 
quantity 4rr r2dr is the volume of a spherical shell of radius r and thickness dr. 

EXAMPLE 0-1 
We will learn in Chapter 6 that a I s hydrogen atomic orbital is given by 

Show that the square of this function is normalized. 

SOLUTION: Realize that f er) is a spherically symmetric function of x, y, and z, 
where r = (x 2 + l + Z2) 1/ 2 . Therefore, we use Equation 0.10 and write 
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We need to di scuss one final topic involving spherical coordinates. If we restrict 
ourselves to the surface of a sphere of unit radius , then the angular part of Equation 0.5 
gives us the differential surface area 

d A = s in eded¢ (0.11 ) 

If we integrate over the entire spherical surface (0 < e < rr, 0 < ¢ < 2rr), then 

A = 1" si n ede 1 2JT d¢ = 4rr 
(I II 

(0 .12) 

which is the area of a sphere of unit radius. 
We call the solid enclosed by the surface that connects the origin and the area d A a 

solid angle , as shown in Figure 0.4. Because of Equation 0.12, we say that a complete 

solid angle is 4rr , just as we say that a complete angle of a circle is 2rr. We often denote 
a solid angle by dO., whereby 

dO. = sin eded¢ (0.13) 

and Equation 0.12 becomes 

(0.14) 

In discussing the quantum theory of a hydrogen atom in Chapter 6, we will 
frequently encounter angular integrals of the form 

I = IJT 

de sin e 12

" d¢ Fee, ¢) 
II 0 

(0. 15) 

Note that we are integrating F(e, ¢) over the surface of a sphere. For example, we will 

encounter the integral 

x 

I = - de sin (J d¢(sin2 (J cos2 (J) lSI" 12

" 

Srr 1I \I 

dQ 

r --------- J 
FIe U R E 0.4 
The solid angle, dQ , subtended by the 
differential area element dA = sin eded</>. 



Problems 

The value of thi s integral is 

I = - de sin2 e cos2 e sin e d¢ IS I II I 2ll 
8rr 0 0 

15 11 

2 2 15[2 2] = 4 _y - x )x dx = 4 3 - 5 = I 

EXAMPLE D-2 
Show that 

where 

and 

( 
3 ) 1/ 2 

YICe ,¢)= 4n cose 

( 
5 ) 1/ 2 

Y?(e , ¢) = (3cos2 e- l) 
- 16n 

SOL UTI 0 N: Because both Y
I 

and Y
2 

are independent of ¢ , the integration over ¢ 
gives 2n. The integral over e is 

1& = 1" cos eo cos2 e - I) sin ede 
[} 

= i: x(3x
2 

- I)dx 

But this is an odd function of x integrated between -I and + I, so 

I = a 
& 

and therefore I = O. We say that Y
I 
ce, ¢) and Y

2 
ce, ¢) are orthogonal over the surface 

of a unit sphere. 

Problems 

D-1. Derive Equations 0.2 from 0.1. 

0-2. Express the following points given in Cartesian coordinates in terms of spherical coordi­
nates. 

(x , y ,z): (1,0, 0) ; (0, 1,0) ; (0, 0, 1); (0,0, - 1) 

0-3. Describe the graphs of the following equations: 

a. r = 5, b. e = n j 4, c. ¢ = n j 2 

153 



154 MathChapter 0 I 5 P HER I CAL COO R 0 I NAT E 5 

0-4. Use Equation 0.3 to determine the volume of a hemisphere. 

0-5. Use Equation 0.5 to determine the surface area of a hemisphere. 

0-6. Evaluate the integral 

by letting x = cos (). 

1
'T 

I = cos2 e sin' ede 
Il 

0-7. We will learn in Chapter 6 that a 2p, hydrogen atom orbital is given by 

I 
,I, re- r/ 2 sin e sin A. 
'I' 2".,. 4& 'I' 

Show that 1/12 ) is normalized. (Don't forget to square 1/12 ) first.) 
f I' , Y 

0-8. We will learn in Chapter 6 that a 2s hydrogen atomic orbital is given by 

I 
1/10 = (2 - r)e - r

/
2 

-, 4J2n 

Show that 1/12.1 is normalized. (Don't forget to square l/f2.1 first.) 

0-9. Show that 

( 
3 ) 1/ 2 y: I (e . c/J) = 47f cos e 

and 

are orthonormal over the surface of a sphere. 

0-10. Evaluate the average of cos e and cos1 e over the surface of a sphere. 

0-11. We shall frequently use the notation dr to represent the volume element in spherical 

coordinates. Evaluate the integral 

I = f dre - r cos1 e 

where the integral is over all space (in other words, over all posible values of r, e and c/J). 
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D-12. Show that the two functions 

11 (r) = e- r cos e and j~ (r) = (2 - r )e- r/2 cose 

are orthogonal over all space (in other words, over all possible values of r, e and rp). 



E. Bright Wilson, Jr. was born on December 18, 1908 in Gallatin , Tennessee, and died 
in 1992. Wilson received his Ph.D in 1933 from the California Institute of Technology, where 
he studied with Linus Pauling. In 1934, he went to Harvard University as a Junior Fellow 
and became a full professor just three years later. He was the Theodore Richards Professor of 
Chemistry from 1948 until his formal retirement in 1979. Wilson's experimental and theoretical 
work in microwave spectroscopy contributed to the understanding of the structure and dynamics 
of molecules. During World War II , he directed underwater explosives research at Woods Hole, 
Massachusetts. [n the early 1950s, he spent a year at the Pentagon as a research director of 
the Weapons System Evaluation Group. [n later years, he served on and chaired committees of 
the National Research Council seeking solutions to various environmental problems. Wilson 
wrote three books , all of which became classics. His book Introduction to Quantum Mechanics, 
written with Linus Pauling in 1935 , was used by almost all physical chemistry graduate students 
for 20 years and Molecular Vibrations: The Th eory of Infrared and Raman Vibrational Spectra, 
written with J.e. Decius and Paul Cross, was a standard reference for most of a generation of 
physical chemists. His An Introduction to Scient(fic Research is a model for both substance and 
clarity. One of his sons, Kenneth , was awarded the Nobel Prize in physics in 1982. 



CHAPTER 

The Harmon ic Osci Ilator and the Rigid 
Rotator: Two Spectroscopic Models 

The vibrational motion of a diatomic molecule can be approximated as a harmonic 
oscillator. In this chapter, we will first study a classical harmonic oscillator and then 
present and discuss the energies and the corresponding wave functions of a quantum­
mechanical harmonic oscillator. We will use the quantum-mechanical energies to de­
scribe the infrared spectrum of a diatomic molecule and learn how to determine molec­
ular force constants from vibrational spectra. Then we will model the rotational motion 
of a diatomic molecule by a rigid rotator. We will discuss the quantum-mechanical en­
ergies of a rigid rotator and show their relation to the rotational spectrum of a diatomic 
molecule. We will use the rotational spectrum of a diatomic molecule to determine the 
bond length of the molecule. 

5-1. A Harmonic Oscillator Obeys Hooke's Law 

Consider a mass m connected to a wall by a spring as shown in Figure 5.1. Suppose 
further that no gravitational force is acting on m so that the only force is due to 

'1 + --- / ---.. 

FIGURE 5.1 

A mass connected to a wall by a spring. If the force acting 
upon the mass is directly proportional to the displacement of 
the spring from its undistorted length, then the force law is 
called Hooke's law. 157 
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the spring. If we let to be the equilibrium, or undistorted, length of the spring, then 
the restoring force must be some function of the displacement of the spring from its 
equilibrium length. Let this displacement be denoted by x == I - 1

0
, where I is the length 

of the spring. The simplest assumption we can make about the force on m as a function 
of the displacement is that the force is directly proportional to the displacement and to 
write 

(5.1) 

The negative sign indicates that the force points to the right in Figure 5.1 if the spring is 
compressed (t < to) and points to the left if the sllring is stretched (t > to)' Equation 5.1 
is called Hooke's law and the (positive) proportionality constant k is called the force 

constant of the spring. A small value of k implies a weak or loose spring, and a large 
value of k implies a stiff spring. 

Newton's equation with a Hooke's law force is 

(5.2) 

(5.3) 

According to Section 2-3, the general solution to this equation is (Problem 5-1) 

x (t) == C 1 sin wt + c2 cos wt (5.4) 

where 

(5.5) 

EXAMPLE 5-1 
Show that Equation 5.4 can be written in the form 

x (t) == A sin (cut + ¢) (5.6) 

SOL UTI 0 N: The easiest way to prove this is to write 

sin(cut + ¢) == sin cut cos ¢ + cos Nt sin ¢ 

and substitute this into Equation 5.6 to obtain 

x (t) == A cos ¢ sin Nt + A sin ¢ cos cut 

== C I sin Nt + c2 cos Nt 



5-1. A Harmonic Oscillator Obeys Hooke's Law 

where 

c 1 = A cos ¢ and c2 = A sin ¢ 

Equation 5.6 shows that the displacement oscillates sinusoidally, or harmonically, with 
a natural frequency w = (k/m)I/2. In Equation 5.6, A is the amplitude of the vibration 

and ¢ is the phase angle. 

Suppose we initially stretch the spring so that its initial displacement is A and then 
let go. The initial velocity in this case is zero and so from Equation 5.4, we have 

x(O) == c., == A 

and 

'These two equations imply that C I == 0 and c
2 

== A in Equation 5.4, and so 

x(t) == A cos wt (5.7) 

The displacement versus time is plotted in Figure 5.2, which shows that the mass 
oscillates back and forth between A and -A with a frequency of w radians per second, 
or v == w /2l[ cycles per second. The quantity A is called the amplitude of the vibration. 

Let's look at the total energy of a harmonic oscillator. The force is given by 
Equation 5.1. Recall from physics that a force can be expressed as the negative derivative 
of a potential energy or that 

so the potential energy is 

+A 

dV 
f(x) == -­

dx 

v (x) == - f f (x )dx + constant 

x(t) r-~----~r-----~-----4------+-----~----~ t 

-A 

Fie U R E 5.2 
An illustration of the displacement of a harmonic oscillator versus time. 

(5.8) 

(5.9) 
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Using Equation 5.1 for f (x), we see that 

k 1 

V (x) == - x"" + constant 
2 

(5.10) 

The constant term here is an arbitrary constant that can be used to fix the zero of 
energy. If we choose the potential energy of the system to be zero when the spring is 
undistorted (x == 0), then we have 

k ') 
Vex) == -x~ 

2 

for the potential energy associated with a simple harmonic oscillator. 

The kinetic energy is 

K == ~'n (dl)2 = ~m (dx)2 
2 dt 2 dt 

Using Equation 5.7 for x(t), we see that 

K I J

A
')· ') == -}nw- ~ Sln~ wt 

J 

and 

Both K and V are plotted in Figure 5.3. The total energy is 

I ') 1.) I ') ') 
E == K + V == -nlW~ A ~ Sln- wt + -kA ~ cos~ wt 2 . 2 

E = K(x) + Vex) 

-A o 
x 

FIG U R E 5.3 

(5.11 ) 

(5.12) 

(5.13 ) 

(5.14 ) 

+A 

The kinetic energy [curve labelled K (x)] and the potential energy [curve labelled V (x)] of 
a harmonic oscillator during one oscillation. The spring is fully compressed at - A and fully 
stretched at + A. The equilibrium length is x == O. The total energy is the horizontal curve 
labelled E, which is the sum of K(x) and Vex). 



5-2. Reduced Mass of the Molecule 

If we recall that w = (k / m) ' /2 , we see that the coefficient of the first term is k A 2 /2, so 
that the total energy becomes 

kA2 
E = (sin2 wt + cos2 wt) 

2 
kA2 

2 
(5.15) 

Thus, we see that the total energy is a constant and, in particular, is equal to the potential 
energy at its largest displacement, where the kinetic energy is zero. Figure 5.3 shows 
how the total energy is distributed between the kinetic energy and the potential energy. 
Each oscillates in time between zero and its maximum value but in such a way that 
their sum is always a constant. We say that the total energy is conserved and that the 
system is a conservative system. 

5-2. The Equation for a Harmonic-Oscillator Model of a Diatomic 
Molecule Contains the Reduced Mass of the Molecule 

The simple harmonic oscillator is a good model for a vibrating diatomic molecule. A 
diatomic molecule, however, does not look like the system pictured in Figure 5.1 but 
more like two masses connected by a spring as in Figure 5.4. In this case we have two 
equations of motion, one for each mass: 

d 2x, 
= k(x2 - x, - lo) (5.16) m 

, dt 2 

and 

d 2x m 2 = -k(x - x -I) (5.17) 
2 dt 2 2 , Il 

/Il , 

~ ____ ~ __________ . ______ -i ______ ~ X 

x, 

FIG U R E 5.4 

Two masses connected by a spring, which is a model used to describe the vibrational motion of 
a diatomic molecule. 
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where 10 is the undistorted length of the spring. Note that if x
2 

- Xl > 1
0

, the spring is 
stretched and the force on mass m 1 is toward the right and that on mass m

2 
is toward the 

left. This is why the force term in Equation 5.16 is positive and that in Equation 5.17 
is negative. Note also that the force on m, is equal and opposite to the force on m 2 , as 
it should be according to Newton's third law, action and reaction. 

If we add Equations 5.16 and 5. 17, we find that 

(5.18) 

This form suggests that we introduce a center-oj-mass coordinate 

(5.19) 

where M = m
l 
+ m

2
, so that we can write Equation 5.18 in the form 

(5.20) 

There is no force term here, so Equation 5.20 shows that the center of mass moves 
uniformly in time with a constant momentum. 

The motion of the two-mass or two-body system in Figure 5.4 must depend upon 
only the relative separation of the two masses, or upon the relative coordinate 

(5.21 ) 

If we divide Equation 5.17 by m, and then subtract Equation 5.16 divided by m 1 we 
find that 

d 2x k k 
_I = --(x,., - X -1) - -(x - x -1) dt 2 m '- , 0 m 2 , 0 

2 1 

or 

d
2 

( 1 1 ) - (x, - x ) = -k - + - (x - x - I ) 
dt 2 ~ I m m 2 I 0 

I 2 

If we let 

11m 1 + m 2 1 
-+-=---
m, m 2 m 1m 2 ~ 

and introduce x = x
2 

- XI - 10 from Equation 5.21, then we have 

(5.22) 

The quantity ~ that we have defined is called the reduced mass. 



5-3. Expansion of an Internuclear Potential Around its Minimum 

Equation 5.22 is an important result with a nice physical interpretation. If we 
compare Equation 5.22 with Equation 5.3, we see that Equation 5.22 is the same 
except for the substitution of the reduced mass J1. Thus, the two-body system in 
Figure 5.4 can be treated as easily as the one-body problem in Figure 5.1 by using 
the reduced mass of the two-body system. In particular, the motion of the system is 
governed by Equation 5.6 but with w =: (k / J1) 1/2. Generally, if the potential energy 
depends upon only the relative distance between two bodies, then we can introduce 
relative coordinates such as x

2 
- x I and reduce a two-body problem to a one-body 

problem. This important and useful theorem of classical mechanics is discussed in 
Problems 5-5 and 5-6. 

5-3. The Harmonic-Oscillator Approximation Results from the 
Expansion of an Internuclear Potential Around its Minimum 

Before we discuss the quantum-mechanical treatment of a harmonic oscillator, we 
should discuss how good an approximation it is for a vibrating diatomic molecule. 
The internuclear potential for a diatomic molecule is illustrated by the solid line in 
Figure 5.5. Notice that the curve rises steeply to the left of the minimum, indicating 
the difficulty of pushing the two nuclei closer together. The curve to the right side of 
the equilibrium position rises intially but eventually levels off. The potential energy at 
large separations is essentially the bond energy. The dashed line shows the potential 
~k(l - 10)2 associated with Hooke's law. Although the harmonic-oscillator potential 
may appear to be a terrible approximation to the experimental curve, note that it 
is, indeed, a good approximation in the region of the minimum. This region is the 

FIG U R E 5.5 
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A comparison of the harmonic oscillator potential (k (l lO)2/2; dashed line) with the complete 

internuclear potential (solid line) of a diatomic molecule. The harmonic oscillator potential is a 
satisfactory approximation at small displacements from the minimum. 
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physically important region for nlany IDolecules at room temperature. Although the 
harmonic oscillator unrealistically allows the displacement to vary from 0 to +00, these 
large displacements produce potential energies that are so large that they do not often 
occur in practice. The harmonic oscillator will be a good approximation for vibrations 
with small amplitudes. 

We can put the previous discussion into mathematical terms by considering the 
Taylor expansion (see MathChapter I) of the potential energy V (/) about the equilibrium 

bond length I == ler The first few tenDS in this expansion are 

I (d J V) + - . (I - t )3 + ... 
3! dt-~ 0 

1=/
0 

(5.23) 

The first term in Equation 5.23 is a constant and depends upon where we choose 
the zero of energy. It is convenient to choose the zero of energy such that V (/

0
) 

equals zero and relate V (I) to this convention. The second term on the right side 

of Equation 5.23 involves the quantity (d V I dl) 1=1 . Because the point I == 10 is the 
() 

minimum of the potential energy curve, d V I dl vanishes there, so there is no linear 
term in the displacement in Equation 5.23. Note that d V I dt is essentially the force 
acting between the two nuclei, and the fact that d V I dt vanishes at I == 10 means that 
the force acting between the nuclei is zero at this point. This is why I == 10 is called the 
equilibriuln bond length. 

f J 1) 1 . 
I we denote I -/0 by x, (d-V Id/~)/=, by k, and (d' V Idt- )/=1 by y, EquatIon 5.23 

() () 

becomes 

~ I 2 I ] V (x) == - k (I - I) + - y (I - I) + ... 2 () 6 0 

I 2 I :3 == -kx + -yx + ... 
2 6 

(5.24) 

If we restrict ourselves to small displacements, then x will be small and we can neglect 
the terms beyond the quadratic term in Equation 5.24, showing that the general potential 
energy function V (I) can be approximated by a harmonic-oscillator potential. Note that 
the force constant is equal to the curvature of V (I) at the minimum. We can consider 
corrections or extensions of the harmonic-oscillator model by the higher-order terms in 
Equation 5.24. These are called anharnl0nic ternlS and will be considered in Chapter 13. 

EXAMPLE 5-2 
An analytic expression that is a good approximation to an intermolecular potential 

energy curve is a Morse potential 



5-3. Expansion of an Internuclear Potential Around its Minimum 

First let x == I - Io so that we can write 

where D and f3 are parameters that depend upon the molecule. The parameter D is 
the dissociation energy of the molecule measured from the minimum of V (/) and fJ 
is a measure of the curvature of V (l) at its minimum. Figure 5.6 shows V (I) plotted 
against I for H

2
. Derive a relation between the force constant and the parameters D 

and fJ. 

SOL UTI 0 N: We now expand V (x) about x == 0 (Equation 5.23), using 

V(O) == 0 

and 

Therefore, we can write 

Vex) == DfJ2x2 + ... 

Comparing this result with Equation 5.11 gives 

10 

8 

2 

OL----3o.L.-...I.---_-'--__ ---J.-__ ---J 

o 100 200 300 400 
1/ pm 

FIG U R E 5.6 
The Morse potential energy curve 
VCl) == D(l - e- fJ (I-'o)2 plotted against 
the internuclear displacement / for H

2
. 

The values of the parameters for H2 are 
D == 7.61 X 10- 19 J, fJ == 0.0193 pm-I, 
and Io == 74.1 pm. 
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5-4. The Energy Levels of a Quantum-Mechanical Harmonic 
Oscillator Are Ev == hw(v + ~) with v == 0, 1, 2, ... 

The Schrodinger equation for a one-dimensional harmonic oscillator is 

with V (x) == ~ kx 2
. Thus, we must solve the second-order differential equation 

(5.25) 

(5.26) 

This differential equation, however, does not have constant coefficients, so we cannot 
use the method we developed in Section 2-2. In fact, when a differential equation does 
not have constant coefficients, there is no simple, general technique for solving it, and 
each case must be considered individually. 

When Equation 5.26 is solved, well-behaved, finite solutions can be obtained only 
if the energy is restricted to the quantized values 

( 
k) 1/2 

Ev = 11 /-L (v + D 
== Jiw (v + i) == h lJ (v + ~) v == 0, 1, 2, ... (5.27) 

where 

(5.28) 

and 

lJ == _1 (~) 1/2 

2;r fL 
(5.29) 

The energies are plotted in Figure 5.7. Note that the energy levels are equally spaced, 
with a separation nw or h lJ. This uniform spacing between energy levels is a property 
peculiar to the quadratic potential of a harmonic oscillator. Note also that the energy 
of the ground state, the state with v == 0, is i h lJ and is not zero as the lowest classical 
energy is. This energy is called the zero-point energy of the harmonic oscillator and is 
a direct result of the Uncertainty Principle. The energy of a harmonic oscillator can be 
written in the form (p2/2fL) + (kx 2/2), and so we see that a zero value for the energy 
would require that both p and x or, more precisely, the expectation values of p2 and 
X2 be simultaneously zero, in violation of the Uncertainty Principle. 
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FIG U R E 5.7 
The energy levels of a quantum-mechanical harmonic oscillator. 

5-5. The Harmonic Oscillator Accounts for the Infrared Spectrum of a 
Diatomic Molecule 

We will discuss molecular spectroscopy in some detail in Chapter 13, but here we will 
discuss the spectroscopic predictions of a harmonic oscillator. If we model the potential 
energy function of a diatomic molecule as a harmonic oscillator, then according to 
Equation 5.27, the vibrational energy levels of the diatomic molecule are given by 

v == 0, 1, 2, ... (5.30) 

A diatomic molecule can make a transition from one vibrational energy state to another 
by absorbing or emitting electromagnetic radiation whose observed frequency satisfies 
the Bohr frequency condition 

(5.31) 

We will prove in Chapter 13 that the harmonic-oscillator model allows transitions only 
between adjacent energy states, so that we have the condition that ~ v == ± 1. Such a 
condition is called a selection rule. 

For absorption to occur, ~ v == + 1 and so 

( 
k) 1/2 

E ==n -v 
I-L 

(5.32) 

Thus, the observed frequency of the radiation absorbed is 

I (k)1/2 
lJohs == 2JT fJ, 

(5.33) 
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or 

1 (k ) 1/2 

1) obs == 27T C f-L (5.34) 

where the tilde indicates that the units are em - J. Furthermore, because successive 
energy states of a harmonic oscillator are separated by the same energy, ~ E is the 
same for all allowed transitions, so this model predicts that the spectrum consists of 
just one line whose frequency is given by Equation 5.34. This prediction is in good 
accord with experiment, and this line is called the fundamental vibrational frequency. 
For diatomic molecules, these lines occur at around 103 em I, which is in the infrared 
region. Equation 5.34 enables us to determine force constants if the fundamental 
vibrational frequency is known. For example, for H35 Cl, v

obs 
is 2.886 x 103 cm- I and 

so, according to Equation 5.34, the force constant of H35 Cl is 

k == (27T CV Obs)2 f-L 

== [27T(2.998 X 108 m·s- ' )(2.886 x 103 cm- I)(100 cm·m- I
)]2 

(35.0 amu) (1.01 amu) 
x (1.661 x 10-27 kg.amu I) 

(35.0 + 1.01) amu 

== 4.78 x 102 kg· s -- 2 == 4.78 x 102 N· m- 1 

EXAMPLE 5-3 
The infrared spectrum of 75Brl9p consists of an intense line at 380 em-I. Calculate the 
force constant of 75Br19p. 

SOL UTI 0 N: The force constant is given by 

The reduced mass is 

(75.0 amu)(19.0 amu) (1 661 10-77 k -I) 2 52 10-26 k f1 == --------. x ~ g·amu ==. x g 
(75.0 + 19.0) amu 

and so 

k == [2]'[(2.998 X 108 m·s 1)(380 cm- I )(100 cm·m 1)]2(2.52 x 10-26 kg) 

== 129 kg.s-2 == 129 N ·m- 1 

Force constants for diatomic molecules are of the order of 102 N· m -1. Table 5.1 
lists the fundamental vibrational frequencies, force constants, and bond lengths of some 
diatomic molecules. We will also see in Chapter 13 that not only must ~ v == ± 1 in the 
harmonic-oscillator model but the dipole moment of the molecule must change as the 



TABLE 5.1 
The fundamental vibrational frequencies, the force constants, and 
bond lengths of some diatomic molecules 

Molecule v /cm- 1 k/N·m- 1 Bond length/pm 

H2 4401 570 74.1 

D2 2990 527 74.1 

H35 CI 2886 478 127.5 

H79 Br 2630 408 141.4 
H1271 2230 291 160.9 
35Cl35CI 554 319 198.8 
79Br79Br 323 240 228.4 
12711271 213 170 266.7 
160 160 1556 1142 120.7 
14N14N 2330 2243 109.4 
12C160 2143 1857 112.8 
14N160 1876 1550 115.1 
23Na23Na 158 17 307.8 
23Na35CI 378 117 236.1 
39K35CI 278 84 266.7 

molecule vibrates if the molecule is to absorb infrared radiation. Thus, the harmonic­
oscillator model predicts that Hel absorbs in the infrared but N2 does not. We will see 
that this prediction is in good agreement with experiment. There are, indeed, deviations 
from the harmonic-oscillator model, but we will see not only that they are fairly small 
but that we can systematically introduce corrections and extensions to account for 
them. 

5-6. The Harmonic-Oscillator Wave Functions Involve 
Hermite Polynomials 

The wave functions corresponding to the Ev for a harmonic oscillator are nondegenerate 
and are given by 

(5.35) 

where 

(5.36) 
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TAB L E 5.2 
The first few Hermite polynomials. 

Ho(~) == 1 HI (~) == 2~ 

H2 (~) == 4~ 2 - 2 H3(~) == 8~3 - 12~ 

H4(~) == 16~4 -48~2 + 12 Hs (~) == 32~5 - 160~3 + 120~ 

The normalization constant N is 
v 

1 (a ) 1/4 

Nv = (2V v!) 1/2 :rr 
(5.37) 

and the Hv (a 1/2 x) are polynomials called Hermite polynomials. The first few Hermite 

polynomials are listed in Table 5.2. Note that Hv (~) is a vth-degree polynomial in ~. 

The first few harmonic oscillator wave functions are listed in Table 5.3 and plotted in 

Figure 5.8. 

Although we have not solved the Shrodinger equation for a harmonic oscillator 

(Equation 5.26), we can at least show that the functions given by Equation 5.35 are 

solutions. For example, let's consider %(x), which according to Table 5.3 is 

(a) 1/4 2 0/
0 
(x ) =:rr e~ax /2 

Substitution of this equation into Equation 5.26 with Eo == ~1iw yields 

or 

(a x -a) + - - -x == 0 2 2 ( {LW {Lk 2) ? 
11 1i 2 

TAB L E 5.3 
The first few harmonic-oscillator wave functions, Equation 5.35. The parameter 
a == (k M ) 1/2 In. 

(
a )1/4 .2/" 

1jJ (x) == - e-a.\-
o JT 
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(a) The normalized harmonic-oscillator wave functions. (b) The probability densities for a 
harmonic oscillator. 

U sing the relations a == (k fL Iii 2 ) 1/2 and w == (k I fL) 1/2, we see that everything cancels 
on the left side of the above expression. Thus, % (x) is a solution to Equation 5.26. 
Problem 5-15 involves proving explicitly that 0/ I (x) and 0/2 (x) are solutions of Equa­
tion 5.26. 

We can also show explicitly that the 0/ v (x) are normalized, or that N
v 

given by 
Equation 5.37 is the normalization constant. 

EXAMPLE 5-4 
Show that 1fro (x) and l/J1 (x) are normalized. 

SOL UTI 0 N: According to Table 5.3, 

and 

Then 

1
00 J (Ci)I/21OO _ .2 (Ci)1/2(Tf)1/2 l/Jr;(x)dx == - e t¥.\ dx == - - == 1 

-00 Tf -x 7f a 

1 71 
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and 

J 00 (4 3) 1/2 J x , (4 3) 1/2 [ 1 1/2] 1/I~(x)dx= ~ x 2e-
cyc

dx= ~ -C) =1 
-00 J[ -x J[ 20' a 

The integrals here are given on the inside cover of this book and are evaluated in 
Problem 5-17. 

We can appeal to the general results of Chapter 4 to argue that the harmonic­
oscillator wave functions are orthogonal. The energy eigenvalues are nondegenerate, 
so we have that 

v =1= v' 

or, more explicitly, that 

i: Hv (ex 1/2 x) Hv' (ex 1/2 x )e-ax' dx = 0 v =1= v' 

EXAMPLE 5-5 
Show explicitly that 1/1

0 
(x) and 1/1 1 (x) for the harmonic oscillator are orthogonal. 

SOLUTION: 

so 

00 2 2 1/2 00 

LX) 0/1 (x)%(x)dx = ( :) fcc xe-ax' dx = 0 

because the integrand is an odd function of x. 

Problem 5-16 has you verify that the harmonic oscillator wave functions are orthogonal 
for a few other cases. 

5-7. Hermite Polynomials Are Either Even or Odd Functions 

Recall from MathChapter B that an even function is a function that satisfies 

f(x) == fe-x) (even) (5.38) 

and an odd function is one that satisfies 

f(x) == -fe-x) (odd) (5.39) 



5-8. The Energy Levels of a Rigid Rotator Are E = 1i 2 J(J + 1)/21 

EXAMPLE 5-6 
Show that the Hennite polynomials Hv (~) are even if v is even and odd if v is odd. 

SOLUTION: Using Table 5.2, 
Ho(~) = 1 is even. 

HI(~) = 2~ = -2(-~) = -HI(-~) and so is odd. 

H2(~) = 4~2 - 2 = 4(_~)2 - 2 = H
2

( -~) is even. 

Hl(~) = 8~3 - 12~ = _[8(_~)3 - 12(-~)] = -H3(-~) and so is odd. 
- -

Recall that if f (x) is an odd function, then 

i: f(x)dx = 0 f(x) odd (5.40) 

because the areas from -A to 0 and 0 to A cancel. According to Equation 5.35, the 

harmonic-oscillator wave functions are 

Because the 1/1 v (x) are even when v is an even integer and odd when v is an odd integer, 

1/1; (x) is an even function for any value of v. Therefore, x 1/1; (x) is an odd function, 
and according to Equation 5.40, then, 

(5.41 ) 

Thus, the average displacement of a harmonic oscillator is zero for all the quantum 
states of a harmonic oscillator, or the average internuclear separation is the equilibrium 

bond length lo' 
The average momentum is given by 

(5.42) 

The derivative of an odd (even) function is even (odd), so this integral vanishes because 
the integrand is the product of an odd and even function and hence is overall odd. Thus, 
we have that {p) = 0 for a harmonic operator. 

5-8. The Energy Levels of a Rigid Rotator Are E == h2 I(I + 1)/21 

In this section we will discuss a simple model for a rotating diatomic molecule. The 

model consists of two point masses m I and m 2 at fixed distances r I and r
2 

from their 

center of mass (cf. Figure 5.9). Because the distance between the two masses is fixed, 

this model is referred to as the rigid-rotator model. Even though a diatomic molecule 
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Ce nter 
of mas 

FIGURE 5.9 

111 I 

Two masses m I and m2 shown rotating about their center of mass. 

vibrates as it rotates, the vibrational amplitude is small compared with the bond length, 
so considering the bond length fixed is a good approximation (see Problem 5-22). 

Let the molecule rotate about its center of mass at a frequency of I!rot cycles 
per second. The velocities of the two masses are VI = 2][ rllirot and v2 = 2][ r2 lirot , 

which we write as V I = rl wand v2 = r2w, where w (radians per second) = 2][ lirot 

and is called the angular speed (Section 4-2). The kinetic energy of the rigid rota­
tor is 

(5.43) 

where I , the moment of inertia, is given by 

(5.44) 

Using the fact that the location of the center of mass is given by m I r l = m 2r 2, the 
moment of inertia can be rewritten as (Problem 5-29) 

(5.45) 

where r = rl + r2 (the fixed separation of the two masses) and fJ- is the reduced mass 
(Section 5-2). In Section 4-2, we discussed a single body of mass m rotating at a 
distance r from a fixed center. In that case, the moment of inertia, I , was equal to 
mr2. By comparing Equation 5.45 with this result, we may consider Equation 5.45 
to be an equation for the moment of inertia of a single body of mass fJ- rotating at 
a distance r from a fixed center. Thus, we have transformed a two-body problem 
into an equivalent one-body problem, just as we did for a harmonic oscillator in 
Section 5-2. 



5-8. The Energy Levels of a Rigid Rotator Are E = Ti 2 l(l + 1)/21 

Following Equations 4.4 and 4.6, the angular momentum L is 

and the kinetic energy is 

L == lw 

L2 
K ==-

21 

(5.46) 

(5.47) 

There is no potential energy term because in the absence of any external forces (e.g., 
electric or magnetic), the energy of the molecule does not depend on its orientation in 
space. The Hamiltonian operator of a rigid rotator is therefore just the kinetic energy 

A 

operator, and using the operator K given in Table 4.1 and the correspondences between 
linear and rotating systems given in Table 4.2, we can write the Hamiltonian operator 
of a rigid rotator as 

(r constant) (5.48) 

where \72 is the Laplacian operator. We encountered \72 in Cartesian coordinates in 
Section 3-7, but if the system has a natural center of symmetry, such as one particle 
revol ving around one fixed at the origin, then using spherical coordinates (Math­
Chapter D) is much more convenient. Therefore, we must convert \72 from Cartesian 
coordinates to spherical coordinates. This conversion involves a tedious exercise in the 
chain rule of partial differentiation, which is best left as problems (see Problems 5-30 
through 5-32). The final result is 

\72 == _1 _a (r2_a) + 1 _a (sine-a) + _1_ ( a
2 

) 
r2 a r a r e,¢ r2 sin e ae ae r,¢ r2 sin2 e a¢2 r,e 

(5.49) 

The rigid rotator is a special case where r is a constant, so Equation 5.49 becomes 

2 1 1 a (. a) 1 1 a2 

\7 == - -- slne- + ------r2 sin e ae ae r2 sin2 e a¢2 (r constant) (5.50) 

If we use this result in Equation 5.48, we obtain 

if == __ Ti
2 

[ 1 _a (sine-a) + _1 (a 2

)] 

21 sin e ae ae sin2 e a¢2 (5.51) 

Because iI == L 2 121, we see we can make the correspondence 

L == -n - Slne- +--.A 2 . 2 [ 1 a (. a ) 1 (a 2

)] 

sin e ae ae sin2 e a¢2 (5.52) 

Note that the square of the angular momentum is a naturally occurring operator in 
quantum mechanics. Both e and ¢ are unitless, so Equation 5.52 shows that the natural 
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units of angular momentum are Ii for atomic and molecular systems. We will make use 
of this fact later. 

The orientation of a linear rigid rotator is completely specified by the two angles 
e and cp, so rigid-rotator wave functions depend upon only these two variables. The 
rigid-rotator wave functions are customarily denoted by Y(e, cp), so the Schrodinger 
equation for a rigid rotator reads 

"-

HY(e, cp) == EY(e, cp) 

or 

-- - sine- . . Y e - EY e 11? [ I a ( a ) I (a 2

)] 
21 sin e ae ae + sin2 e aqi ( ,¢) - (, cp) (5.53) 

If we multiply Equation 5.53 by sin2 e and let 

(5.54) 

we find the partial differential equation 

sin e - sin e - + J + (tJ sin
2 e) Y == ° a ( a Y) a

2
y 

ae ae acp"" 
(5.55) 

The solutions to Equation 5.55 are the rigid-rotator wave functions, which we won't 
need in this chapter. We will encounter Equation 5.55 when we solve the Schrodinger 
equation for the hydrogen atom in Chapter 6. We therefore defer discussion of the rigid­
rotator wave functions until we discuss the hydrogen atom in detail. Nevertheless, you 
might be interested to know that the solutions to Equation 5.55 are very closely related 
to the s, p, d, and f orbitals of a hydrogen atom. 

When we solve Equation 5.55, it turns out naturally that tJ, given by Equation 5.54, 
must obey the condition 

f3 == J(J + 1) J==o, 1,2, ... 

Using the definition of f3 (Equation 5.54), Equation 5.56 is equivalent to 

112 
E J == -J(J + 1) 

21 
J == 0, I, 2, ... 

(5.56) 

(5.57) 

Once again, we obtain a set of discrete energy levels. In addition to the allowed energies 
given by Equation 5.57, we also find that each energy level has a degeneracy g J given 

by g J == 2 J + 1. 



5-9. The Rigid Rotator Is a Model for a Rotating Diatomic Molecule 

The allowed energies of a rigid rotator are given by Equation 5.57. We will prove 
in Chapter 13 that electromagnetic radiation can cause a rigid rotator to undergo 
transitions from one state to another, and, in particular, we will prove that the selection 
rule for the rigid rotator says that transitions are allowed only between adjacent states 
or that 

~J == ±1 (5.58) 

In addition to the requirement that ~ J == ± 1, the molecule must also possess a per­
manent dipole moment to absorb electromagnetic radiation. Thus, HCI has a rotational 
spectrum, butN 2 does not. In the case of absorption of electromagnetic radiation, the 
molecule goes from a state with a quantum number J to one with J + 1. The energy 
difference, then, is 

Ti 2 

~E == E J+
1 

- E J == [(J + l)(J + 2) - J(J + 1)] 
21 

Ti 2 h 2 

==-(J+l)== 2 (J+l) 
I 4n I 

(5.59) 

The energy levels and the absorption transitions are shown in Figure 5.10 . 
. Using the Bohr frequency condition ~E == hv, the frequencies at which the ab­

sorption transitions occur are 

h 
v == 2 (J + 1) 

4n I 
J == 0, 1, 2, ... (5.60) 

The reduced mass of a diatomic molecule is typically around 10-25 to 10-26 kg, 
and a typical bond distance is approximately 10- 10 m (100 pm), so the moment of 
inertia of a diatomic molecule typically ranges from 10-45 to 10-46 kg· m2

. Substi­
tuting 1==5 X 10-46 kg.m2 into Equation 5.60 gives that the absorption frequen­
cies are about 2 x 1010 to 101 

I Hz (cf. Problem 5-33). By referring to Figure 1.11 
in Problem 1-1, we see that these frequencies lie in the microwave region. Con­
sequently, rotational transitions of diatomic molecules occur in the microwave re­
gion, and the direct study of rotational transitions in molecules is called microwave 
spectroscopy. 

It is common practice in microwave spectroscopy to write Equation 5.60 as 

v == 2B(J + 1) J==O, 1,2, ... (5.61) 

where 
h 

B== --
8n 2 1 

(5.62) 
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FIGURE 5.10 
The energy levels and absorption transitions of a rigid rotator. The absorption transitions occur 
between adjacent levels, so the absorption spectrum shown below the energy levels consists of 
a series of equally spaced lines. The quantity B is h j8rr 2c I (Equation 5.64). 

is called the rotational constant of the molecule. Also, the transition frequency is 
commonly expressed in terms of wave numbers (em-I) rather than hertz (Hz). If we 
use the relation v == v / c, then Equation 5.61 becomes 

-v == 2B(J + 1) J == 0, 1, 2, (5.63) 

-
where B is the rotational constant expressed in units of wave numbers 

(5.64) 

From either Equation 5.61 or 5.63, we see that the rigid-rotator model predicts that the 
microwave spectrum of a diatomic molecule consists of a series of equally spaced lines 
with a separation of 2B Hz or 2B cm-I as shown in Figure 5.10. From the separation 
between the absorption frequencies, we can determine the rotational constant and 
hence the moment of inertia of the molecule. Furthermore, because I == f.-Lr2, where r 



Problems 

is the internuclear distance or bond length, we can determine the bond length given the 
transition frequencies. This procedure is illustrated in Example 5-7. 

EXAMPLE 5-7 
To a good approximation, the microwave spectrum of H35 CI consists of a series of 

equally spaced lines, separated by 6.26 x lOll Hz. Calculate the bond length of H35 Cl. 

SOL UTI 0 N: According to Equation 5.61, the spacing of the lines in the microwave 
spectrum of H35 CI is given by 

and so 

h 
2B ==--

4;r2[ 

Solving this equation for [, we have 

6.626 X 10-34 J·s -47 2 
I ==! 11 I == 2.68 x 10 kg· m 

4;r ~ (6.26 x lOs ) 

The reduced mass of H 35 CI is 

( 1.01 amu) (35.0 amu) 
J.L == (1.661 x 10-27 kg· amu- I

) == 1.63 x 10-27 kg 
36.0 amu 

U sing the fact that I == /Lr2, we obtain 

(
2.68 X 10-47 kg .m2 ) 1/2 

r == 27 == 1.28 X 10- 10 m == 128 pm 
1.63 x 10- kg 

Problems 5-34 and 5-35 give other examples of the determination of bond lengths 
from microwave data. 

A diatomic molecule is not truly a rigid rotator, because it simultaneously vibrates, 
however small the amplitude. Consequently, we might expect that although the mi­
crowave spectrum of a diatomic molecule consists of a series of lines, their separation 
is not exactly constant. In Chapter 13, we will learn how to correct for the fact that the 
bond is not exactly rigid. 

Problems 
5-1. Verify that xU) == Asinwt + Bcoswt, where w == (k/ln)I/2 is a solution to Newton's 

equation for a harmonic oscillator. 

5-2. Verify that xU) == C sin(wt + ¢) is a solution to Newton's equation for a harmonic oscil­
lator. 
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5-3. The general solution for the classical harmonic oscillator is x(t) == C sin(wt + ¢), Show 
that the displacement oscillates between + C and - C with a frequency w radian, s -lor 

1) == W 12Jr cycle· s I. What is the period of the oscillations; that is, how long does it take 
to undergo one cycle? 

5-4. From Problem 5-3, we see that the period of a harmonic vibration is r == 1 11), The average 

of the kinetic energy over one cycle is given by 

1 iT lnw
2
C

2 

(K) == - cos2 (wt +¢)dt 
r 0 2 

Show that (K) == E 12 where E is the total energy. Show also that (V) == E 12, where the 
instantaneous potential energy is given by 

Interpret the result (K) == (V). 

kC2 

V == - sin2 (wt + ¢) 
2 

5-5. Consider two masses m, and ln 2 in one dimension, interacting through a potential that 

depends only upon their relative separation (x, - x 2 ), so that V(x" x 2 ) == Vex, - x2 ). 

Given that the force acting upon the jth particle is f· == -(a V lax.), show that f, == - f2' 
} } 

What law is this? 
Newton's equations for m, and n12 are 

av av 
and 

Now introduce center-of-mass and relative coordinates by 

where M == m, + ln 2 , and solve for Xl and x 2 to obtain 

J'nj 
XI == X + -- X 

M 
and 

m 1 x == X --x 
2 M 

Show that Newton's equations in these coordinates are 

av 
ax 

and 

N ow add these two equations to find 
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Interpret this result. Now divide the first equation by m 1 and the second by In 2 and subtract 
to obtain 

or 

where fJ., == m 1 m 2 / (In 1 + m 2) is the reduced mass. Interpret this result, and discuss how the 
original two-body problem has been reduced to two one-body problems. 

5-6. Extend the results of Problem 5-5 to three dimensions. Realize that in three dimensions 
the relative separation is given by 

5-7. Calculate the value of the reduced mass of a hydrogen atom. Take the masses of the electron 
and proton to be 9.109 390 x 10-31 kg and 1.672623 x 10-27 kg, respectively. What is the 
percent difference between this result and the rest mass of an electron? 

5-8. Show that the reduced mass of two equal masses, m, is m /2. 

5-9. Example 5-2 shows that a Maclaurin expansion of a Morse potential leads to 

2 2 Vex) == Df3 x + ... 

Given that D == 7.31 X 10- 19 J·molecule- I and {3 == 1.81 X 1010 m 1 for HCI, calculate 

the force constant of HCl. Plot the Morse potential for HCI, and plot the corresponding 
harmonic oscillator potential on the same graph (cf. Figure 5.5). 

5-10. Use the result of Example 5-2 and Equation 5.34 to show that 

( 
fJ., ) 1/2 

f3 == 2]"[ ev 2D 

Given that v == 2886 cm- I and D == 440.2 kJ· mol 1 for H3s CI, calculate {3. Compare your 
result with that in Problem 5-9. 

5-11. Carry out the Maclaurin expansion of the Morse potential in Example 5-2 through terms 
in X4. Express y in Equation 5.24 in terms of D and {3. 

5-12. It turns out that the solution of the Schrodinger equation for the Morse potential can be 
expressed as 

- 1 

Ev == v (v + ~) - v.r (v + l)~ 

where 

_ hev 
X== -

4D 

Given that v == 2886 cm 1 and D == 440.2 kJ· mol- I for H3s Cl, calculate i and vi. 
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5-13. In the infrared spectrum of H79Br, there is an iDtense line at 2630 em-I. Calculate the 
force constant of H79 Br and the period of vibration of H79 Br. 

5-14. The force constant of 79Br79Br is 240 N· mi. Calculate the fundamental vibrational 
frequency and the zero-point energy of 79Br79Br. 

5-15. Verify that 0/1 (x) and 0/2(X) given in Table 5.3 satisfy the Schrodinger equation for a 
harmonic oscillator. 

5-16. Show explicitly for a harmonic oscillator that %(x) is orthogonal to 1/f1 (x), 0/2(X), and 
1/f3(X) and that 1/f1 (x) is orthogonal to 1/f2(x) and 1/f3(X) (see Table 5.3). 

5-17. To normalize the harmonic-oscillator wave functions and calculate various expectation 

values, we must be able to evaluate integrals of the form 

v == 0, 1, 2, ... 

We can simply either look them up in a table of integrals or continue this problem. First, 
show that 

The case v == 0 can be handled by the following trick. Show that the square of 10 (a) can be 
written in the form 

N ow convert to plane polar coordinates, letting 

I 2 I 
r~ == x + y~ and dxdy == rdrde 

Show that the appropriate limits of integration are 0 < r < 00 and 0 < e < ;r /2 and that 

which is elementary and gives 

2 JT 1 JT 
10 (a) == 4 . - . - == -

2 2a a 

or that 

Now prove that the Iv (a) may be obtained by repeated differentiation of 10 (a) with respect 

to a and, in particular, that 

d V I ( ) 
o a == (_I)V I (a) 

dav v 

Use this result and the fact that Io(a) == (;r/a)I/2 to generate II (a), I
2
(a), and so forth. 
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5-18. Prove that the product of two even functions is even, that the product of two odd functions 

is even, and that the product of an even and an odd function is odd. 

5-19. Prove that the derivative of an even (odd) function is odd (even). 

5-20. Show that 

for a harmonic oscillator. Note that (x 2
) 1/2 is the square root of the mean of the square of 

the displacement (the root-lnean-square displacement) of the oscillator. 

5-21. Show that 

for a harmonic oscillator. 

5-22. U sing the fundamental vibrational frequencies of some diatomic molecules given below, 
calculate the root-mean-square displacement (see Problem 5-20) in the v = 0 state and 
compare it with the equilibrium bond length (also given below). 

5-23. Prove that 

Molecule v/cm- I 

H2 

J5Cl35CI 

14Nl4N 

4401 

554 

2330 

E 
(K) = (V(x)) = _v 

2 

lo/pm 

74.1 

198.8 

109.4 

for a one-dimensional harmonic oscillator for v = 0 and v = 1. 

5-24. There are a number of general relations between the Hermite polynomials and their 
derivatives (which we will not derive). Some of these are 

dHv(;) = 2f: H (t) - H (t) 
d; "P " v+ I " 

and 

d HlJ (;) = 2 v H (; ) 
d~ v I 

Such connecting relations are called recursion formulas. Verify these formulas explicitly 

using the first few Hermite polynomials given in Table 5.2. 

5-25. Use the recursion formulas for the Hermite polynomials given in Problem 5-24 to show 

that (p) = 0 and (p2) = 11 (11 k ) 1/2 (v + !). Remember that the momentum operator involves 

a differentiation with respect to x, not;. 
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5-26. It can be proved generally that 

2 1 ( 1) 1i ( ') (x I == - v +;- == . I j' V + ? 
a - (fJ-k)'" -

and that 

for a harmonic oscillator. Verify these formulas explicitly for the first two states of a 
harmonic oscillator. 

5-27. This problem is similar to Problem 3-35. Show that the harmonic-oscillator wave func­
tions are alternately even and odd functions of x because the Hamiltonian operator obeys 

~ ~ A 

the relation H (x) == H ( - x). Define a reflection operator R by 

~ 

Ru(x) == u( -x) 

~ ~ ~ 

Show that R is linear and that it commutes with H. Show also that the eigenvalues of R 
are ±l. What are its eigenfunctions? Show that the harmonic-oscillator wave functions are 

~ ~ ~ 

eigenfunctions of R. Note that they are eigenfunctions of both Hand R. What does this 
~ ~ 

observation say about Hand R? 

5-28. Use Ehrenfest's theorem (Problem 4-27) to show that (pxl does not depend upon time 
for a one-dimensional harmonic oscillator. 

5-29. Show that the moment of inertia for a rigid rotator can be written as I == fJ-r2, where 

r == r 1 + r 2 (the fixed separation of the two masses) and J1 is the reduced mass. 

5-30. Consider the transformation from Cartesian coordinates to plane polar coordinates where 

x == r cos e 
(1) 

y == r sin e 

y 

• (r, e) 

r 

e 

If a function f (r, e) depends upon the polar coordinates rand e, then the chain rule of 

partial differentiation says that 

(2) 
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and that 

(3) 

For simplicity, we will assume r is constant so that we can ignore terms involving derivatives 
with respect to r. In other words, we will consider a particle that is constrained to move on 
the circumference of a circle. This system is sometimes called a particle on a ring . Using 

Equations 1 and 2, show that 

( a f ) == _ sin €I (a f ) 
ax y r ae r 

and _co_;_e C~), 

N ow apply Equation 2 again to show that 

(~~) y = [aax C~) J = [aae C~)Yl C~) y 

= faae [_Si~e C~)JL (_Si~e) 

sin €I cos €I 

(r fixed) 

r2 
Cf) + sin

2 

e C2 

~) 
ae r2 ae~ 

(r fixed) 
r r 

Similarly, show that 

C2f) sin €I cos €I Cf) + cos
2 

e C2 f) (r fixed) 
ay2 x r2 ae r r2 ae2 

r 

and that 

(r fixed) 

(4) 

Now show that the Schrodinger equation for a particle of mass m constrained to move on 
a circle of radius r is (see Problem 3-28) 

0<8<2n - -

where I == m r2 is the moment of inertia. 

5-31. Generalize Problem 5-30 to the case of a particle moving in a plane under the influence 
of a central force; in other words, convert 

to plane polar coordinates, this time without assuming that r is a constant. Use the method 
of separation of variables to separate the equation for this problem. Solve the angular 
equation. 

5-32. Using Problems 5-30 and 5-31 as a guide, convert V2 from three-dimensional Cartesian 

coordinates to spherical coordinates. 
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5-33. Show that rotational transitions of a diatomic molecule occur in the microwave region or 
the far infrared region of the spectrum. 

5-34. In the far infrared spectrum of H79 Br, there is a series of lines separated by 16.72 cm- 1
• 

Calculate the values of the moment of inertia and the internuclear separation in H79Br. 

5-35. The J == 0 to J == 1 transition for carbon monoxide ('2C I60) occurs at 1.153 x 105 MHz. 
Calculate the value of the bond length in carbon monoxide. 

5-36. Figure 5.11 compares the probability distribution associated with the harmonic oscillator 

wave function 1jrIO(~) to the classical distribution. This problem illustrates what is meant 
by the classical distribution. Consider 

x(t) == A sin(wt + ¢) 

which can be written as 

wt = sin-I (:) - ¢ 

Now 

(1) 

This equation gives the time that the oscillator spends between x and x + dx. We can 

convert Equation I to a probability distribution in x by dividing by the time that it takes 
for the oscillator to go from - A to A. Show that this time is n / wand that the probability 

distribution in x is 

dx 
p (x ) d x == --;:======== 

nJA2-x2 
(2) 

Show that p(x) is normalized. Why does p(x) achieve its maximum value at x == ±A? 
Now use the fact that ~ == a 1/2 x, where a == (kIJ.)Ji 2

) 1/2, to show that 

-
I 

I ~ 
I 
I 
I 

'-

I 

I 

1 
I 

'- I " I , 
I 

\ 

1\ " f-

\ , 
" " 

-- ~ 

l-

) 
II V 

I I 

-5 -3 -1 1 

~ 

fI 

I 

I 
/ 

,-

,.r.-
~ 

II 
I 

3 

d~ 
p(l;)d~ = J 2 2 

n aA - ~ 
(3) 

I 

~: 
I 

I 
I 
I 
I 

I 

I 
I 

I 

\ 
I 

5 

FIGURE 5.11 
The probability distribution function of a 
harmonic oscillator in the v == 10 state. The 
dashed line is that for a classical harmonic 
oscillator with the same energy. The vertical 
lines at ~ ~ ±4.6 represents the extreme 
limits of the classical harmonic motion. 
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Show that the limits of ~ are ±(aA2)1/2 == ±(21)1/2, and compare this result to the vertical 

lines shown in Figure 5.11. [Hint: You need to use the fact that kA 2 /2 == E 10 (v == 10).] 
Finally, plot Equation 3 and compare your result with the curve in Figure 5.11. 

5-37. Compute the value of i 2 Y(8, ¢) for the following functions: 

a. 1/ (4n) 1/2 b. (3 /4n) 1/2 cos e 
c. (3/8n)I/2sin8e i ¢ d. (3/8n)I/2 sin8e i¢ 

Do you find anything interesting about the results? 

Problems 5-38 through 5-43 develop an alternative method for determining the eigenvalues 

and eigenfunctions of a one-dimensional harmonic oscillator. 

5-38. The Schrodinger equation for a one-dimensional harmonic oscillator is 

A 

H1jI(x) == E1jI(x) 

where the Hamiltonian operator is given by 

A il 2 d 2 1 2 
H == ---- + -kx 

2/-1, dx 2 2 

.') A A 

where k == fJ.,w~ is the force constant. Let P and X be the operators for momentum and 
position, respectively. If we define p == (fJ.,nw) 1/2 P and x == (fJ.,w/n) 1/2 X, show that 

Use the definitions of p and x to show that 

and 

A • d 
p == -1-

dx 

5-39. We will define the operators Q_ and Q + to be 

and 
A 1 A • A 

a == -(x - zp) +v'2 
where x and p are given in Problem 5-38. Show that 

and that 

(1) 

(2) 

(3) 

Now show that the Hamiltonian operator for the one-dimensional harmonic oscillator can 
be written as 

187 



188 Chapter 5 / The Harmonic Oscillator and the Rigid Rotator: Two Spectroscopic Models 

N ow show that Q a + + Q + Q _ is equal to 2Q + Q _ + 1 so that the Hamiltonian operator can 
be written as 

The operator Q+Q is called the number operator, which we will denote by V, and using this 
definition we obtain 

(4) 

Comment on the functional form of this result. What do you expect are the eigenvalues 
of the number operator? Without doing any calculus, explain why v must be a Hermitian 
operator. 

5-40. In this problem, we will explore some of the properties of the operators introduced in 
Problem 5-39. Let 0/1) and Ev be the wave functions and energies of the one-dimensional 
harmonic oscillator. Start with 

Multiply from the left by Q and use Equation 2 of Problem 5-39 to show that 

or that 

Also show that 

or that 

Thus, we see that Q+ operating on o/v gives o/v+l (to within a constant) and that Q_o/v gives 
o/v-I to within a constant. The operators Q+ and Q are called raising or lowering operators, 

or simply ladder operators. If we think of each rung of a ladder as a quantum state, then 

the operators Q + and Q _ enable us to move up and down the ladder once we know the wave 
function of a single rung. 

5-41. Use the fact that x and p are Hermitian in the number operator defined in Problem 5-39 
to show that 

5-42. In Problem 5-41, we proved that v > 0. Because Q O/V ex: o/v-I and v > 0, there must be 

some minimal value of v, vmin' Argue that Q_o/v. == O. Now multiply Q_o/v. == 0 by Q+ 
mill mm 

and use Equation 3 of Problem 5-39 to prove that v . == 0, and that v == 0, 1, 2, .... mm 
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5-43. Using the definition of a given in Problem 5-39 and the fact that a _0/
0 

== 0, determine 
the unnormalized wave function %(x). Now determine the unnormalized wave function 

0/ I (x) using the operator a +' 

Problems 5-44 through 5-47 apply the idea of reduced mass to the hydrogen atom. 

5-44. Given the development of the concept of reduced mass in Section 5-2, how do you think 
the energy of a hydrogen atom (Equation 1.22) will change if we do not assume that the 
proton is fixed at the origin? 

5-45. In Example 1-8, we calculated the value of the Rydberg constant to be 109737 cm- I
. 

What is the calculated value if we replace me in Equation 1.25 by the reduced mass? 
Compare your answer with the experimental result, 109 677.6 cm -\ . 

5-46. Calculate the reduced mass of a deuterium atom. Take the mass of a deuteron to be 
3.343586 x 10-27 kg. What is the value of the Rydberg constant for a deuterium atom? 

5-47. Calculate the ratio of the frequencies of the lines in the spectra of atomic deuterium and 
atomic hydrogen. 
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Niels Bohr was born in Copenhagen, Denmark, on October 7,1885 and died there in 1962. 
In 1911 , Bohr received his Ph.D. in physics from the University of Copenhagen. He then 
spent a year with J.J. Thompson and Ernest Rutherford in England, where he formulated 
his theory of the hydrogen atom and its atomic spectrum. In 1913, he returned to the University 
of Copenhagen, where he remained for the rest of his life. In 1920, he was named director of 
the Institute of Theoretical Physics, which was supported largely by the Carlsberg brewery. 
The Institute was an international center for theoretical physics during the 1920s and 1930s, 
when quantum mechanics was being developed. Almost every scientist who was active in the 
development of quantum mechanics worked at Bohr's institute at one time or another. Bohr 
later worked on the theory of the structure of the nucleus and its application to nuclear fission. 
In 1943, because the Germans planned to arrest him to force him to work in their atomic bomb 
project, Bohr and his family fled to England under great secrecy and spent the remaining war 
years in the United States, where he participated in the Manhatten Project at Los Alamos. 
After the war, Bohr worked energetically for peaceful uses of atomic energy. He organized the 
first Atoms for Peace Conference in 1955 and received the first Atoms for Peace prize in 1957. 
Bohr was awarded the Nobel Prize for physics in 1922 "for his investigation of the structure 
of atoms and of the radiation emanating from them." 



CHAPTER 

The Hydrogen Atom 

We are now ready to study the hydrogen atom, which is of particular interest to chemists 
because it serves as the prototype for more complex atoms and, therefore, molecules. 
In addition, probably every chemistry student has studied the results of a quantum­
mechanical treatment of the hydrogen atom in general chemistry, and in this chapter 
we will see the familiar hydrogen atomic orbitals and their properties emerge naturally 
as solutions to the Schrodinger equation. 

6-1. The Schrodinger Equation for the Hydrogen Atom 
Can Be Solved Exactly 

For our model of a hydrogen atom, we will picture it as a proton fixed at the origin and 
an electron of mass me interacting with the proton through a Coulombic potential: 

(6.1) 

where e is the charge on the proton, Co is the permittivity of free space, and r is 
the distance between the electron and the proton. (We consider the case in which the 
nucleus is not fixed at the origin in Problem 6-35.) The factor 4rr Eo arises because 
we are using SI units. The spherical geometry of the model suggests that we use a 
spherical coordinate system with the proton at the origin. The Hamiltonian operator 
for a hydrogen atom is 

A 112 e2 

H == ___ \72 - ---

2me 4n cor 
(6.2) 
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where V2 is the Laplacian operator in spherical coordinates (Equation 5.49): 

(6.3) 

If we substitute Equation 6.3 into Equation 6.2, the Schrodinger equation for a hydrogen 
atom becomes 

(6.4) 

At first sight, this partial differential equation looks exceedingly complicated. To bring 
Equation 6.4 into a more manageable form, first mUltiply through by 2mer2 to obtain 

(6.5) 

Notice that all the e and ¢ dependence in Equation 6.5 occurs within the first large 
square brackets. The form of Equation 6.5 suggests that we use separation of variables 
and let 

o/(r, e, ¢) == R(r)y(e, ¢) (6.6) 

If we substitute Equation 6.6 into Equation 6.5 and divide by R (r) Y (e, ¢), we obtain 

- - r2_ + C + E R(r) 112 [d ( d R) 2m r2 (e 2 
) ] 

R(r) dr dr n2 4JTcor 

- - sin e - + == 0 h
2 [1 a ( ay) 1 a2y] 

y(e, ¢) sin e ae ae sin2 e a¢2 (6.7) 

The terms in the first set of brackets are functions of only r, whereas the terms in 
the second set of brackets are functions of only e and ¢. Because r, e, and ¢ are 
independent variables, we may write 

(6.8) 

and 

1 [1 a ( ay) 1 a2y] - - sin e - + == f3 
Y (e, ¢) sin e ae ae sin2 e a¢2 (6.9) 
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where fJ is a constant (we have incorporated Ti 2 into fJ.). If we multiply Equation 6.9 
through by the product of sin2 e and Y (e, ¢) to get 

a ( ay) a2 y sin e - sin e - + 2 + (fJ sin2 e) Y == 0 
ae ae a¢ 

(6.10) 

we see that Equation 6.10 is exactly the same as Equation 5.55, the equation for the 
rigid-rotator wave functions. Thus, the angular parts of hydrogen atomic orbitals are 
also rigid-rotator wave functions. Equation 6.8, which gives the radial dependence of 
hydrogen atomic orbitals, is called the radial equation. We will discuss the angular 
solutions first and then the radial solutions. 

6-2. The Wave Functions of a Rigid Rotator Are Called 
Spherical Harmonics 

To solve Equation 6.10, we again use the method of separation of variables and let 

Y(e, ¢) == 0)(e)<p(¢) (6.11 ) 

If we substitute Equation 6.11 into Equation 6.10 and divide by G (e) <P (¢), we find 

( 6.12) 

Because e and ¢ are independent variables, we must have that 

---- sin e - + f3 sin2 e == m-sin e d ( d G ) / 
G(e) de de 

(6.13) 

and 

1 d2 <P --__ == _m 2 

<P(¢) d¢2 
(6.14) 

where m 2 is a constant. We use m 2 as a separation constant in anticipation of using the 
square root of the separation constant in later equations. 

Because Equation 6.14 contains only constant coefficients, it is relatively easy to 
solve. Its solutions are 

( 6.15) 

The requirement that <P(¢) be a single-valued function of ¢ is that 

<P (¢ + 2n) == <P ( ¢ ) ( 6.16) 
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By substituting Equation 6.15 into Equation 6.16, we see that 

(6.17) 

and that 

A e im(¢+2rr) == A e im¢ 
-111 -m (6.18) 

Equations 6.17 and 6.18 together imply that 

(6.19) 

In terms of sines and cosines, Equation 6.19 is (Equation A.6) 

cos(2n m) ± i sin(2n m) == 1 

which implies that In == 0, ± 1, ±2, ... , because cos 2nm == 1 and sin 2nm == ° for 
m == 0, ± 1, ±2, .... Thus Equation 6.15 can be written as one equation 

cD (A-.) == A ei m¢ 
111 '+' IJ1 

m == 0, ± 1, ±2, ... (6.20) 

We can find the value of A by requiring that the cD (¢) be normalized. 
IJ1 111 

EXAMPLE 6-1 
Determine the value of A //I so that the functions given by Equation 6.20 are normalized. 

SOL UTI 0 N: The normalization condition is that 

Using Equation 6.20 for the <P (¢), we have 
III 

1 A 1212

" d rjJ = I 
171 

o 

or 

or 

A == (27T)-1/2 
III 

Thus, the normalized functions of Equation 6.20 are 

1 . ei 1711> 
<Ptll (¢) == (2 ) I r' 7T -

rn == 0, ± 1, ±2, ... (6.21) 
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The differential equation for e (8), Equation 6.13, is not as easy to solve because it 
does not have constant coefficients. It is convenient to let x == cos e and 0)(e) == P(x) 

in Equation 6.13. (This x should not be confused with the Cartesian coordinate, x.) 

Because ° < 8 < 1T, the range of x is -1 < x < + 1. Under the change of variable, 
x == cos e, Equation 6.13 becomes (Problem 6-2) 

(1 - x 2
) '") - 2x- + f3 - P(x) == ° d

2 
P dP [ m2] 

dx" dx 1 - x 2 
(6.22) 

with m == 0, ± 1, ±2, .... Equation 6.22 for P (x) is called Legendre's equation and is a 
well-known equation in classical physics. It occurs in a variety of problems formulated 
in spherical coordinates. When Equation 6.22 is solved, it is found that f3 must equal 
I (I + 1) with I == 0, 1, 2, ... and that 1m I < I, where 1m I denotes the magnitude of 
m, if the solutions are to remain finite. Thus, Equation 6.22 can be written as 

d
2 

P dP [ m
2 

] (1 - x 2
) 2 - 2x- + I(Z + 1) - 2 P(x) == ° 

dx dx 1 - x 
(6.23) 

with Z == 0, 1, 2, ... and m == 0, ± 1, ±2, ... , ±Z. 
The solutions to Equation 6.23 are most easily discussed by considering the m == ° 

case first. When m == 0, the solutions to Equation 6.23 are called Legendre polynomials 
and are denoted by PI (x). Legendre polynomials arise in a number of physical problems. 
The first few Legendre polynomials are given in Table 6.1. 

TAB L E 6.1 
The first few Legendre polynomials, which are the solutions to Equation 6.23 with In == O. The 
subscript indexing the Legendre polynomials is the value of I in Equation 6.23. 

EXAMPLE 6-2 

Po(x) == 1 

PI (x) == X 

P2 (x) == ~ (3x 2 
- 1) 

P3(x) == ~(5X3 3x) 

P4 (x) == ~ (35x 4 
- 30x 2 + 3) 

Prove that the first three Legendre polynomials satisfy Equation 6.23 when nl == O. 

SOL UTI 0 N: Equation 6.23 with In == 0 is 

1 d 2 PdP 
(1 - x ~ ) ) - 2x - + l (l + 1) P (x) == 0 

dx~ dx 
(1) 
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The first Legendre polynomial ~) (x) == 1 is clearly a solution of Equation 1 with I == O. 
When we substitute PI (x) == x into Equation 1 with I == 1, we obtain 

- 2x + 1 (2) x == 0 

and so PI (x) is a solution. For P2 (x), Equation 1 is 

(1 - x 2 )(3) - 2x(3x) + 2(3)[~(3x2 - 1)] == (3 - 3x 2
) - 6x 2 + (9x 2 

- 3) == 0 

Notice from Table 6.1 that P, (x) is an even function if f is even and an odd function 
if f is odd. The factors in front of the PI (x) are chosen such that PI (1) = 1. In addition, 
although we will not prove it, it can be shown generally that the P, (x) in Table 6.1 are 
orthogonal, or that 

f =1= n (6.24) 

Keep in mind here that the limits on x correspond to the natural, physical limits on e 
(0 to n) in spherical coordinates because x = cos e (Problem 6-4). The Legendre 
polynomials are normalized by the general relation 

(6.25) 

Equation 6.25 shows that the normalization constant of PI (x) is [(21 + 1) /2] 1/2. 

Although the Legendre polynomials arise only in the case m = 0, they are custom­
arily studied first because the solutions for the m #- 0 case, called associated Legendre 
functions, are defined in terms of the Legendre polynomials. If we denote the associated 
Legendre functions by ptnl (x), then their defining relation is 

(6.26) 

Note that only the magnitude of m is relevant here because the defining differential 
equation, Equation 6.23, depends on only m2

. Because the leading term in P, (x) is 
Xl, Equation 6.26 shows that p,lm l (x) = 0 if m > f. The first few associated Legendre 
functions (Problem 6-6) are given in Table 6.2. 

Before we discuss a few of the properties of the associated Legendre functions, 
let's be sure to realize that e and not x is the variable of physical interest. Table 6.2 
also lists the associated Legendre functions in terms of cos e and sin e. Note that the 
factors (1 - x 2

) 1/2 in Table 6.2 become sin e when the associated Legendre functions 
are expressed in the variable e. Because x = cos e, Equations 6.24 and 6.25 are 

J1 17T 28 
PI(x)P (x)dx = p,(cose)p (cos e) sinede = 'n 

11 n 2f + 1 -1 0 

(6.27) 



TAB L E 6.2 
The first few associated Legendre functions ptnl (x) 

p(j)(x) == 1 

P~(x) == x == cose 

p/ (x) == (1 - X2)1/2 == sine 

p20 (x) == ~ (3x 2 - 1) == ~ (3 cos2 e - 1) 

P2
1 (x) == 3x(1 - X2)1/2 == 3 cos e sin e 

P;(x) == 3(1 - x 2
) == 3 sin2 e 

P30(x) == ~(5x3 - 3x) == ~(5COS3 e - 3cose) 

P31 (x) == ~(5X2 - 1)(1 - X2 )1/2 == ~(5 cos2 e - 1) sin e 

P3
2 (x) == 15x (1 - x 2) == 15 cos e sin2 e 

pi(x) == 15(1 - X2)3/2 == 15 sin3 e 

Because the differential volume element in spherical coordinates is d r = r2 sin fJ 
drdfJdcp, we see that the factor sinfJdfJ in Equation 6.27 is the "fJ part" of dr in 
spherical coordinates. 

The associated Legendre functions satisfy the relation 

(6.28) 

(Remember that O! = 1.) Equation 6.28 can be used to show that the normalization 
constant of the associated Legendre functions is 

N = [( 2l + 1) (l - I m I) ! ] 1/2 

1m 2 (l + 1m I)! 
(6.29) 

EXAMPLE 6-3 
Use Equation 6.28 in both the x and e variables and Table 6.2 to prove that P l

1 (x) and 
P2

1 (x) are orthogonal. 

SOL UTI 0 N: According to Equation 6.28, we must prove that 
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From Table 6.2, we have 

In terms of e, we have from Equation 6.28 and Table 6.2 

l
IT lIT sin 8(3 cos e sin e) sin ed8 == 3 sin3 e cos ede == 0 

o 0 

Returning to the original problem now, the solutions to Equation 6.10, which are 
not only the angular part of the hydrogen atomic orbitals but also the rigid-rotator wave 
functions, are p,lml(cos8)<P

m
(¢). By referring to Equations 6.21 and 6.29, we see that 

the normalized functions 

ym (8 ¢) == +. m. plml (cos 8)eim ¢ 
[ 

(21 1) (I _ I I) , ] 1/2 

" 4JT (I + 1m I) ! / 
(6.30) 

with I == 0, 1, 2, ... and nl == 0, ± 1, ±2, ... , ±l satisfy Equation 6.10. The 
~m (8, ¢) form an orthonormal set 

(6.31 ) 

Note that the ~m (8, ¢) are orthonormal with respect to sin 8 d 8 d ¢, the angular part 
of the spherical coordinate volume element, and not just d8d¢ (MathChapter D). 
According to Equation 6.31, the ~m (e, ¢) are orthonormal over the surface of a sphere 
and so are called spherical harnlonics. The first few spherical harmonics are given in 
Table 6.3. 

TAB L E 6.3 
The first few spherical harmonics. 

o 1 Y. - ---
o - (4;r)1/2 ( 

3 ) 1/2 
Y~ == 4;r cos e 

( 

3 \ 1/2 . 
yl == _) sin ee[(P 

I 8;r 
y-I == - sin ()e- UP 

( 
3 ) 1/2 . 

I 8;r 

( 
5 ) 1/2 

yO == (3 cos2 
() - 1) 

2 16;r ( 
15 ) 1/2 . 

Y21 == 8;r sin e cos () eUP 

y2 == sin- e e2[(P 
( 

15 ) 1/2 'J . 

2 32;r 



6-2. The Wave Functions of a Rigid Rotator Are Called Spherical Harmonics 

EXAMPLE 6-4 
Show that y l-

l (e, ¢) is normalized and that it is orthogonal to Y d (e, ¢). 

SOL UTI 0 N : Using YI- 1 (e, ¢) from Table 6.3, the normalization condition is 

Letting x = cos e, we have 

3 /1 ') 3 ( 2) - ·2][ (1 - x")dx = - 2 - - = 1 
8][ -I 4 3 

The orthogonality condition is 

{If {2lf 
10 de sin e 10 drjJ Yi (e, rjJ)* Y,-' (e, (jJ) 

( 
15 ) 1/2 ( 3 ) 1/2 {If {2lf. . 

= 8n 8n 10 de sin e 10 drjJ (e-"P sin e cos e) (e-l<P sin e) 

( 
45 ) 1/21lf 12lf

. = 2 de sin3 e cos e d¢ e-2l(P 
64][ 0 0 

The integral over ¢ is zero because it is the integral of cos 2¢ and sin 2¢ over complete 
cycles. Thus, we see that y l-

1 (e, ¢) and Yd (e, ¢) are orthogonal. 

According to Equation 5.52, the quantum-mechanical operator corresponding to 
the square of the angular momentum is 

L == -n - sin8- + ---'" 2 2 [ 1 3 ( 3 ) 1 3
2

] 
sin () 3() 3() sin2 () 3¢2 

(6.32) 

which is essentially the operator given in the square brackets in Equation 6.9. If we 
multiply both sides of Equation 6.9 with f3 == l(l + 1) by 1i2Y(8, ¢), we see that the 
spherical harmonics satisfy 

(6.33) 

Thus, we see that the spherical harmonics are also eigenfunctions of L 2 and that the 
square of the angular momentum can have only the values given by 

I == 0, 1, 2, ... (6.34) 

Because fI == L 2 /21 for a rigid rotator (Equation 5.51), we also have 

(6.35) 

for a rigid rotator. 
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EXAMPLE 6-5 
Show that Y\\ (e, ¢) is an eigenfunction of L 2 . 

SO L UTI 0 N: From Table 6.3, we have 

The "e" part of the differential operator in brackets in Equation 6.32 gives ei
¢ (cos2 e -

sin2 e) / sin e and the "¢" part gives _e i
¢ / sin e. If we add these two results, we get 

Therefore, 

(cos2 e - sin2 e - 1 )ei
¢ 

sin e 

which is Equation 6.33 with 1 == 1. 

2ei
¢ sin2 e ' 

--- == -2e 1
¢ sine 

sin e 

6-3. Precise Values of the Three Components of Angular Momentum 
Cannot Be Measured Simultaneously 

In this section, we will explore some of the quantum-mechanical properties of an­
gular momentum. Recall that angular momentum is a vector quantity. The quantum­
mechanical operators corresponding to the three components of angular momentum are 
given in Table 4.1. These operators are obtained from the classical expressions (Equa­
tion 4.7) by replacing the classical momenta by their quantum-mechanical equivalents 
to get 

A "" (a a) L =yP-zP =-in y--z-
x :: Y az ay 

L = zp - xP = -in z- - x-A " " (a a) 
y x:: ax az (6.36) 

A " A (a a) L = xP - vp = -in x-... - y-
:: y -" x av ax 

Through a straightforward, but somewhat tedious, exercise in partial differentiation, 
we can convert Equations 6.36 into spherical coordinates (Problems 6 -11 and 6 -12) 



6-3. Precise Values of the Three Components of Angular Momentum 

to obtain 

A (a a ) L == -i11 - sin ¢- - cote cos ¢-
x ae a¢ 

A (a a ) L. == -til cos~- -cotesin~-
y o/ae o/a¢ 

(6.37) 

A a 
L == -in-

<, a¢ 

The equation for L~ turns out to be relatively simple. We can easily see that e im
¢ is 

<c, 
A 

an eigenfunction of L z. or that 

L
7

(e im¢) == _ih~(eillJ(P) = mn(eim¢) 
" a¢ 

All the ¢ dependence of the spherical harmonics occurs in the factor eim
¢, and so the 

A 

spherical harmonics are eigenfunctions of L _ : 
" 

L ym (e ~) == N L. plml (cos e)e im¢ 
- I ' 0/ 1m":' I " " 

==nn1y/n(e,¢) (6.38) 

Equation 6.38 shows that measured values of L-c are integral multiples of 11. Notice 
that n is a fundamental measure of the angular momentum of a quantum-mechanical 
system. 

A " 

The spherical harmonics are not eigenfunctions of Lx or L y ' as the following 
example shows. 

EXAMPLE 6-6 
Use Equation 6.37 to show that y l-

1 (8, ¢) is not an eigenfunction of Lx' 

SOLUTION: From Table 6.3, yl-ICB,¢) == (3/8n)'/2 sinee- i
¢. Using the first of 

Equations 6.37, we have 

( 
3 ) 1/2 , 

==-i1i 8n cos8(-sin¢+icos¢)e /¢ 

But the term in parentheses is 

" (e i¢ _ e-i4» • (e i¢ + e- i¢) 
- SIn ~ + I cos ~ == - + I ----

'f' 'P 2i 2 
. 

== +~(ei¢ - e i¢) + ~(ei¢ + e i¢) == ie i¢ 

2 2 
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Therefore, 

( 
3 

) 

1/2 1;. 

/'0. -I fl 0 
L'YI (EJ,¢)==n - cose==-I/ly\(e,¢) 

~\ 8rr 2 -

and yl-
1 (EJ, ¢) is not an eigenfunction of Lx' Note that 

because of the orthogonality of y\-I (e, ¢) and Y? (e, ¢). 

Equation 6.33 shows that the ~m (8, ¢) are eigenfunctions of L 2 . Because the 
spherical harmonics are eigenfunctions of both L 2 and L." we can determine precise 

~ ~ 

values of L 2 and L z. simultaneously (Section 4-6), which implies that the operators L 2 

" and L., commute. 
~, 

EXAMPLE 6-7 
A) A 

Prove that the operators L - and L _ commute. 

SOL UTI 0 N: Using j} from Equation 6.32 and L., from Equation 6.37, we have 

A 2" 2[ 1 a (,. a) 1 a
2
](. ( 1 ) L L f == -Ji Slne- + - -In-

::. sin e ae ae sin2 e a¢2 3¢ 

== liz- - sIne + -. 1 [ 1 a (. (21 ) 1 a31 ] 
sin e ae ae a¢ sin2 e a¢3 

and 

,/'0. AI (. a) { ') [ I a (. a) I a2

] } L_L- f == -In- -Ji- . - slne- +. - 1 -, . a¢ SIn e ae ae S1n2 e a¢2 

. 1 [ 1 a (. (21 ) 1 a31 ] == ln' - SIn e ,+ -
sin e ae a¢ae sin2 e a¢3 

where in writing the last line here we have recognized that (a / a¢) does not affect 

terms involving EJ. Because 

a21 a2 f 
aea¢ a¢aEJ 

for any function well enough behaved to be a wave function, we see that 

j}Lf==L_L2f 
"" "", 
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or that 

because f is arbitrary. 

We can use Equations 6.33 and 6.38 to prove that Iml < I, or that m = 0, ±1, 

±2, ... , ±l. It follows from Equation 6.38 that 

i: ~m ( f), ¢) = m 27i 
2 ~m ( f), ¢) 

~, 

(6.39) 

and because 

we obtain 

Furthermore, because 

then 

Thus, the observed values of L; + L~ are [l (I + 1) - m2
] Ji 2

• But because L; + L: is 
- ~ 

the sum of two squared terms, it cannot be negative, and so we have that 

or that 

l (l + 1) > m2 (6.41) 

Because land m are integers, Equation 6.41 says that 

Iml < I 

or that the only possible values of the integer mare 

m = 0, ± 1, ±2, ... , ±l (6.42) 

This result might be familiar as the condition of the magnetic quantum number asso­
ciated with the hydrogen atom. 
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Equation 6.42 shows that there are 21 + 1 values of n1 for each value of I. Let's 
look at the case of 1 == 1 for which 1 (l + 1) == 2. Because I == 1, nl can have only the 
values ° and ± 1. Using the equations 

m == 0, ±1 

and 

A 

L_ yt (8, ¢) == Inn yt (8, ¢) 
'" 

m == 0, ±1 

we see that 

and 

L_ == -n, 0, + n 
" 

where I L I is the magnitude of the angular-momentum vector. Note that the maximum 
value of L'C is less than I L I, which implies that Land L", cannot point in the same 

~ ~ 

direction. This is illustrated in Figure 6.1, which shows L 7 with a value + n and I L I 
with its value ,j2n. Now let's try to specify Lx and Lv' Pr~blem 6-13 has you prove 

A A A A,., • 

that L.r , L", and L; commute with L'"- but do not commute among themselves. This 
result impiies that although it is possible to observe precise values of L 2 and one of the 
components of angular momentum simultaneously, it is not possible to observe precise 
values of the other two cOlnponents at the same time. For example, we may observe 

z 

,-,---n---1 

-------~-------. y 

x 

Fie U R E 6.1 
The nl == + 1 component of the angular-momentum state I == 1. The angular momentum 
describes a cone because the x and y components cannot be specified. The projection of the 
motion onto the x-y plane is a circle of radius lz centered at the origin (Example 6-8). 
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precise values of L2 and L
z 

simultaneously (as shown above); in this case, it is not 
possible to observe precise values of either Lx or Lv' 

Even though Lx andL \' do not have precise values, they do, of course, have average 
values, and Problem 6-14 shows that (L)) == (Lv) == 0 (see also Example 6-6). These 
results are illustrated in Figure 6.1, which shows L_ with a value of + Ii and I L I with a 
value of J2 Ii. A nice classical interpretation of th~se results is that L precesses about 
the z-axis, mapping out the surface of the cone shown in Figure 6.1. The projection of 
the motion onto the x-y plane is a circle of radius Ii centered at the origin. 

EXAMPLE 6-8 
Show that the projection onto the x-y plane of the motion of the angular momentum 
vector with L 2 == 2h2 and L~ == Ti is a circle of radius h in the x-y plane. 

SOL UTI 0 N: From the cone in Figure 6.1, we see that the x-y projection wil1 be a 
circle. To determine the radius, r, of the circle, consider the x, z cross section 

r 

-----------*-----------------. x 

Because we have a right triangle, r2 + Ti 2 == 2h2 and so r == h. Thus, we also see that 
while we know the magnitude of the angular momentum and its z-component, we do 
not know the direction in which the vector Lxi + L.) points. 

According to Example 6-8, then, the average values of (Lx) and (L,,) are zero. This 
picture is in good accord with the Uncertainty Principle: By specifying Lz. exactly, 
we have a complete uncertainty in the angle ¢ associated with L_, so the angular 

~, 

momentum vector can lie anywhere on the rim of the cone. 
Before leaving this section, we should address ourselves to the question: What is 

so special about the z direction? The answer is that nothing at all is special about the 
z direction. We could have chosen either the x or y direction as the unique direction 
and all the above results would be the same, except for exchanging x or y for z. For 
example, we can know both L 2 and Lx precisely simultaneously, in which case Ly and 
L~ do not have precise values. It is customary to choose the z direction because the .., 
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~ ~ ~ 

expression for L z in spherical coordinates is so much simpler than for Lx or L y (cf. 
Equation 6.37). Clearly the rotating system does not know x from y from z and, in 
fact, this inability to distinguish between the three directions explains the (21 + I)-fold 
degeneracy. 

6-4. Hydrogen Atomic Orbitals Depend upon Three 
Quantum Numbers 

Up to now we have solved Equation 6.9, giving the angular part of the hydrogen atomic 
orbitals. Now we will solve Equation 6.8, giving the radial part of the hydrogen atomic 
orbitals. Equation 6.8 with f3 set equal to I (I + I) can be written as 

(6.43) 

Equation 6.43 is an ordinary differential equation in r. It is somewhat tedious to solve, 
but once solved, we find that for solutions to be acceptable as the wave functions, the 
energy must be quantized according to 

Tn e4 
e n == 1, 2, ... (6.44) 

If we introduce the Bohr radius from Section 1-8, ao == Eoh 2 /nm
e
e2 == 4n Eon2 

/ m
e
e2

, 

then Equation 6.44 becomes 

! 
e~ 

E == -----
II 8n E a n 2 

o 0 

n == 1, 2, ... (6.45) 

It is surely remarkable that these are the same energies obtained from the Bohr model of 
the hydrogen atom. Of course, the electron now is not restricted to the sharply defined 
orbits of Bohr but is described by its wave function, 1/1 (r, e, ¢). 

In the course of solving Equation 6.43, we find not only that an integer n occurs 
naturally but that n must satisfy the condition that n > I + 1, which is usually written as 

O<l<n-l n == 1, 2, ... (6.46) 

because we have already seen that the smallest possible value of I is zero. (Equation 6.46 
might be familiar from general chemistry.) The solutions to Equation 6.43 depend on 
two quantum numbers n and I and are given by 

R r __ { (n - I - I)! } 1/2 (~)1+3/2 r' e rinG" L 21+ I ( 2r ) 
nf( ) - 2n[(n + I) !]3 nao 17+1 nao 

(6.47) 

where the L~/:/ (2r/nao) are called associated Laguerre polynomials. The first few 
associated Laguerre polynomials are given in Table 6.4. 



TAB L E 6.4 
The first few associated Laguerre polynomials. 

n = 1, 

n=2 , 

n = 3, 

n = 4, 

[=0 

[=0 

[ = 1 

[=0 

[ = 1 

[=2 

[=0 

[ = 1 

[=2 

[= 3 

L: (x) = -1 

L~(x) = -2!(2 - x) 

L~(x) = -3! 

L~(x) = -3!(3 - 3x + lx 2
) 

L~(x) = -4!(4 - x) 

L~(x) = -5! 

L!(x) = -4!(4 - 6x + 2X2 - *x 3
) 

L~(x) = -5!(10 - 5x + lx2
) 

L~(x) = -6!(6 - x) 

L;(x) = -71 

The functions given by Equation 6.47 may look complicated, but notice that each 
one is just a polynomial multiplied by an exponential. The combinatorial factor in front 
assures that the Rnl (r) are normalized with respect to an integration over r, or that the 
Rnl (r) satisfy 

(6.48) 

Note that the volume element here is r2dr, which is the "r" part of the spherical 
coordinate volume element r2 sinBdrdBd¢. 

The complete hydrogen atomic wave functions are 

(6.49) 

The first few hydrogen atomic wave functions are given in Table 6.5. The normalization 
condition for hydrogen atomic wave functions is 

(6.50) 

"-

Because H is Hermitian (Section 4-5), the functions Vr
n1m 

must also be orthogonal. 
This orthogonality relationship is given by 

(6.51) 

where the 8's are Kronecker deltas (Equation 4.30). 
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TAB L E 6.5 
The complete hydrogenlike atomic wave functions for n == 1, 2, and 3. The quantity Z is the 
atomic number of the nucleus, and a == Z r / ao' where ao is the Bohr radius. 

n == 1 , I == 0, 11"1 == 0 
1 (Z )3/2 

ljr I 00 == r;:; - e -a 
V Jr aO 

n == 2, 1==0 , m == 0 
1 

ljr 200 == J32Jr ( Z) 1/? 
- (2 - a)e-a

/
2 

au 

1 == 1, n1 == 0 ( 
Z )3/2 
- ae-a

/
2 cos () 

ao 

1 == 1 , nl == ± 1 

11 == 3, 1 == 0, m == 0 

1 == L In == 0 
1 (2) 1/2 ( Z ) 3/2 

ljr == - - - (6a - a 2)e-a
/
3 cos () 

310 81 Jr a 
o 

1 == 1 , m == ±1 

1==2 , nl == 0 

I == 2, fn == ± 1 

I == 2, nl == ±2 

EXAMPLE 6-9 
Show that the hydrogenlike atomic wave function ljr210 in Table 6.5 is normalized and 

that it is orthogonal to ljr 200' 

SOL UTI 0 N: The orthonormality condition is given by Equation 6.51. Using ljr 210 

from Table 6.5, 

l
oe Ill' 127

[ [ 1 (Z)3/2 ]2 drr2 d()sin(). d¢ - ae-a/2 cos() 
o 0 0 J32Jr ao 

- drr4e-Zr/Clo d()sin()cos2 () d¢ 1 (Z )51
00 Ill' 12ll' 

32Jr ao 0 0 0 

1 

32Jr 
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and so 0/210 is normalized. To show that it is orthogonal to 0/200' 

drr 2 de sin e d¢ - -- e-Zr/2ao cos e 100 1 IT 12Jr [ 1 ( Z ) 3/2 (Z r )' ] 
o 0 () ,j32n ao ao 

x - 2 - ~ e-Zr/2ao [ 1 ( Z ) 3/2 ( Z) ] 
,j32rr aO aO 

= - dr r3 2 - ~ e Zr/ao de sin e cos e d¢ 1 ( Z ) 41 ex:: ( Z) 1 IT 12Jr 
32n an 0 an 0 0 

The integral over e here vanishes, so we see that 0/210 and 0/200 are orthogonal. 

6-5. s Orbitals Are Spherically Symmetric 

Equation 6.49 tells us that the hydrogen atomic wave functions depend upon three 

quantum numbers, n, l, and n1. The quantum number n is called the principal quantum 
number and has the values 1, 2, .... The energy of the hydrogen atom depends upon 

only the principal quantum number through the equation En == _e2 18n Eoaon
2

• The 
quantum number l is called the angular momentum quantum number and has the 
values 0, 1, ... , n - 1. The angular momentum of the electron about the proton is 

determined completely by l through ILl == nJl (l + 1). Note that the form of the radial 

wave functions depends upon both n and I. The value of l is customarily denoted by a 

letter, with I == 0 being denoted by s, I == 1 by p, I == 2 by d, l == 3 by f, with higher 

values of I denoted by the alphabetic sequence following f. The origin of the letters 

s, p, d, f is historic and has to do with the designation of the observed spectral lines 

of atomic sodium. (The letters s, p, d, and f stand for sharp, principal, diffuse, and 

fundamental.) A wave function with n == I and I == 0 is called a I s wave function; one 

with n == 2 and I == 0 a 2s wave function, and so on. 
The third quantum number m is called the magnetic quantum number and takes 

on the 21 + 1 values m == 0, ± 1, ±2, ... ± t. The z component of the angular 
momentum is determined completely by In through L7 == mn. The quantum number m 

" 
is called the magnetic quantum number because the energy of a hydrogen atom in a 
magnetic field depends on nz. In the absence of a magnetic field, each energy level has 
a degeneracy of 21 + 1. In the presence of a magnetic field, these levels split, and the 

energy depends upon the particular value of In (Problems 6-43 through 6-47). This 
splitting is illustrated in Figure 6.2 and is called the Zeeman effect (see Problem 6-46). 

In this case, E is a function of both the quantum numbers nand m. 
The complete hydrogen atomic wave functions depend on three variables (r, e, ¢), 

so plotting or displaying them is difficult. The radial and angular parts are commonly 

considered separately. The state of lowest energy of a hydrogen atom is the Is state. 

The radial function associated with the Is state is (Z == 1) 

2 
R (r) == . e- r/oo 

Is 3/2 ao 
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6-5. s Orbitals Are Spherically Symmetric 

As mentioned above, the radial wave functions are normalized with respect to integra­
tion over r, so we have that 

(6.52) 

From Equation 6.52, we see that the probability that the electron lies between rand 
r + dr is [Rn/(r)]2r2dr, and plots of r2 R~l(r) are shown in Figure 6.3. An important 
observation from the plots in Figure 6.3 is that the number of nodes in the radial 
function is equal to n - I-I. (Recall that the point r == 0 is not considered to be a 
node; see Section 2-4.) 

For the Is state, the probability that the electron lies between rand r + dr is 

(6.53) 

This result is contrary to the Bohr model in which the electron is incorrectly restricted 
to lie in fixed, well-defined orbits. 

EXAMPLE 6-10 
Calculate the probability that an electron described by a hydrogen atomic 1 s wave 
function will be found within one Bohr radius of the nucleus. 

SOL UTI 0 N: The probability that the electron will be found within one Bohr radius 
of the nucleus is obtained by integrating Equation 6.53 from 0 to ao: 

We must keep in mind that we are dealing with only the radial parts of the total 
wave function here. The radial parts are easy to display because they depend on only 
the one coordinate r. The angular parts depend on both e and cp and so are somewhat 
more difficult to display. The I == 0 case is easy, however, because when I == 0, m must 
equal zero and so we have yg(e, cp), which according to Table 6.3 is 

° 1 Yo (8, cp) == r;c 
v 4n 

yg (8, cp) is normalized with respect to integration over a spherical surface 

i n i2JT 1 in i 2n 
d8sine dqyyoO(e,cp)*yg(8,qy)==- de sine dcp==l 

° ° 4n ° ° 
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In this particular case, the angular dependence drops out and the wave function is 
spherically symmetric. The complete Is wave function is 

(6.54) 

We have displayed the r, e, and ¢ dependence on the left side of Equation 6.54 even 
though the e and ¢ dependence drops out so we can emphasize that lj; Is (r, e, ¢) is the 
complete wave function. For example, the normalization condition is 

roo d rr2 [" de sin e (" d¢ Vr~, (r, e, ¢) Vr's (r, e, ¢) = 1 
~) ~ ~ 

The hydrogen atomic wave functions are called orbitals, and, in particular, Equa­
tion 6.54 describes the Is orbital; an electron in the I s orbital is called a Is electron. 

The probability that a I s electron lies between rand r + d r from the nucleus is 
obtained by integrating lj;~\ (r, e, ¢) lj; 1.1' (r, e, ¢) over all values of e and ¢ according to 

(6.55) 

in agreement with Equation 6.53. 
We can use Equation 6.55 to calculate average values of r. For example, 

41 X 

3 (r) == - r3 e 2r/oodr == -a 
Is a 3 2 0 o 0 

(6.56) 

Equation 6.55 can be used to determine the most probable distance of a 1 s electron 
from the nucleus. 

EXAMPLE 6-11 
Show that the most probable value of r (r mp) in a 1 s state is ao' 

SOL UTI 0 N: To determine the most probable value of r, we find the value of r that 

maximizes the probability density of r or that maximizes 

If we differentiate Prob (1 s) and set the result equal to zero, we find that r mp = a o' the 
Bohr radius. 

The next simplest orbital is the 2s orbital. A 2s orbital is given by 

(6.57) 



6-6. There Are Three p Orbitals for Each Value of the Principal Quantum Number! n > 2 

which is also spherically symmetric. In fact~ because any s orbital will have the angular 
factor yg(e, ¢), we see that all s orbitals are spherically symmetric. By referring to 
Table 6.5, we see that 

1 
1/r2s (r, e, ¢) = J32n (6.58) 

Remember that 1jJ,). is normalized with respect to an integration over r, e, and ¢. The _s 

average value of r in the 2s state is (cf. Problem 6-23) 

(6.59) 

showing that a 2s electron is on the average a much greater distance from the nucleus 
than a Is electron. In fact, using the general properties of the associated Laguerre 
polynomials, we can show that (r) == iaon2 for an I1S electron. 

6-6. There Are Three p Orbitals for Each Value of the Principal 
Quantum Number, n > 2 

When l =f=. 0, the hydrogen atomic wave functions are not spherically symmetric~ they 
depend on e and ¢. In this section, we will concentrate on the angular parts of the 
hydrogen wave functions. Let's first consider states with I == 1, or p orbitals. Because 

m == 0 or ± 1 when l == 1, there are three p orbitals for each value of 11. The angular 
part of the p orbitals is given by the three spherical harmonics y? (e, ¢) and Y~ 1 (e, ¢). 
The simplest of these spherical harmonics is 

(6.60) 

which is readily shown to be normalized, because 

3 IJT 12JT 31JT 31 1 

- de sin e d¢ cos2 e == - sin e cos2 ede == - x 2dx == 1 
4rr 0 0 2 0 2 -I 

In the last step, we let cos e == x, as in Example 6-4. 
A common way to present the angular functions is as three-dimensional figures. 

Figure 6.4 is the familiar tangent sphere picture of a p orbital often presented in general 
chemistry texts. Although the tangent sphere picture represents the shape of the angular 
part of p orbitals, it is not a faithful representation of the shape of a p orbital because 
the radial functions are not included. 

Because a complete wave function generally depends on three coordinates, wave 
functions are difficult to display clearly. One useful and instructive way, however, is 
the following. The quantity 1jJ*1jJdr is the probability that the electron is located within 
the volume element dr. Thus, we can divide space into little volume elements and 
compute the average or some representative value of 1/1* 1jJ within each volume elen1ent 
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FIG U R E 6.4 
Three-dimensional polar plots of the angular part of the real representation of the hydrogen 
atomic wave functions for I = I (see Equations 6.62 for real representations of P

r 
and P

r
. ) 

and then represent the value of 1/1*1/1 by the density of dots in a picture. Figure 6.5 
shows such plots for several orbitals. 

An alternate way to represent complete wave functions is as contour maps. Fig­
ure 6.6a shows a contour map for a Is orbital. The nine contours shown in each case in 
Figure 6.6 enclose the 10%, 20%, . . . , 90% probability of finding the electron within 

. . :: . ., : , ... '. ~'~~~' .. . . ~ .. .. . 
. ,~.... ' i ·· , . 

: 

Is 2s 

3s 3do 

FIG U R E 6.S 
Probability density plots of some hydrogen atomic orbitals. The density of the dots is 
proportional to the probability of finding the electron in that region . 
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FIG U R E 6.6 
Probability contour maps for the hydrogen atomic orbitals. The nine contours shown in 
each case enclose the 10%, 20%, ... , 90% probability of finding the electron within each 
contour. The scale of the figure is indicated by hash marks: one mark corresponds to 
one Bohr radius ao- Note that the different orbitals are presented on different scales . The 
shaded areas shown in each case indicates the highest 40% of the probability densities. 
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216 Chapter 6 / The Hydrogen Atom 

each contour. Note that the contour maps appear as cross sections of the plots in 
Figure 6.5. 

It is interesting to compare the depictions of the 2 Po and 3 Po orbitals in Figures 6.5 
and 6.6. The expressions for these orbitals are 

and 

Both orbitals have the same angular part, which is represented in Figure 6.4. The radial 
functions have n - I - 1 nodes, however, and so R21 (r) has no nodes and R31 (r) has 
one. The difference in the shapes of the 2po and 3 Po orbitals in Figures 6.5 and 6.6 
is due to the node in R31 (r). This example illustrates the inadequacy of the "tangent 
sphere" representation of p orbitals. 

The angular functions with nl =1= 0 are more difficult to represent pictorially because 
they not only depend on ¢ in addition to e but are complex as well. In particular, the 

I == 1 states with m =1= 0 are 

(6.61 ) 

The probability densities associated with Y/ (e, ¢) and y l-
1 (e, ¢) are the same because 

1 Yi (e, (p) 12 = 8~ sin2 e 

and 

Because Y/ (e, ¢) and Y
1
- I (e, ¢) correspond to the same energy, we know from Sec­

tion 4-2 that any linear combination of Y/ and Y I I is also an energy eigenfunction 
with the same energy. It is customary to use the combinations 

1 ( 3 ) 1/2 
P == M(Y/ + yl-

l
) == - sinecos¢ 

x v2 4n 

1 ( 3 ) 1/2 
p.' = ~ (Y,I - Y I I) == _ sine sin¢ 

-' 2i 4n 

(6.62) 

"Tangent sphere" plots of Px and p r are shown in Figure 6.4. They have the same 
shape as the Pz function except that they are directed along the x- and y-axes. The 
three functions p , p !' and P'7 are often used as the angular part of hydrogen atomic 

X) -<. 

wave functions because they are real and have easily visualized directional properties. 



6-6. There Are Three p O rbitals for Each Value of the Principal Quantum Number, 11 > 2 

For the I = 2 case, m = 0, ± I, and ±2, and so there are five d orbitals. For 
m = ± 1 and ±2, we take linear combinations as we did above for the p functions. The 
customary linear combinations are (Problem 6-42) 

(6.63) 

The angular parts of the fi ve d orbitals are shown in Figure 6.7 . Note that the last 
four orbitals given in Equations 6.63 differ only in their orientation. Figure 6.7 suggests 

y y 

x 

-.. 

y y y 

x 

FIG U R E 6.7 

Three-dimensional plots of the angular part of the real representation of the hydrogen atomic 
wave functions for I = 2. Such plots show the directional character of these orbitals but are not 
good representations of the shape of these orbitals because the radial functions are not included. 
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the rationale of the notation of the d orbitals; dz.2 lies along the z-axis, d
X

2_y2 lies along 
the x and y-axes; d

xy 
lies in the x-y plane; d

xz 
lies in the x-z plane, and dyZ lies in 

the y-z plane. There is no fundamental reason to choose these linear combinations of 
spherical harmonics over the spherical harmonics themselves, but most chemists use 
the five d orbitals given by Equations 6.63 because the functions in Equations 6.63 
are real and have directional properties consistent with molecular structures. The real 
representations of the hydrogen atomic wave functions are given in Table 6.6. The 
functions in Table 6.6 are the linear combinations of the complex wave functions in 

TAB L E 6.6 
The complete hydrogenlike atomic wave functions expressed as real functions for n = 1, 2, 
and 3. The quantity Z is the atomic number of the nucleus and (5 = Z r / ao' where ao is the 
Bohr radius. 

n=l , l = 0, nl = ° 
n = 2, l = 0, m =0 

l = 1, m =0 

I = 1 , m = ±l 

n = 3, l = 0, m =0 

I = 1, m =0 

l = 1, m = ±1 

l = 2, m =0 

l = 2, m = ±1 

l = 2, m =±2 



6-7. The Schrodinger Equation for the Helium Atom Cannot Be Solved Exactly 

Table 6.5. Both sets are equivalent, but chemists normally use the real functions in 
Table 6.6. We will see in later chapters that molecular wave functions can be built out 
of atomic orbitals and if the atomic orbitals have a definite directional character, we 
can use chemical intuition to decide which are the more important atomic orbitals to 
use to describe molecular orbitals. 

6-7. The Schrodinger Equation for the Helium Atom Cannot Be 
Solved Exactly 

The next system to study is clearly the helium atom, whose Schrodinger equation is 

(6.64) 

In this equation, R is the position of the helium nucleus and r I and r 2 are the positions 
of the two electrons; M is the mass of the nucleus and m is the electronic mass; V2 is 

e 

the Laplacian operator with respect to the position of the nucleus and V~ and Vi are the 
Laplacian operators with respect to the positions of the electronic coordinates. Realize 
that this is a three-body problem and not a two-body problem, and so the separation 
into center-of-mass and relative coordinates is much more complicated than it is for 
hydrogen. Because M » me' however, regarding the nucleus as fixed relative to the 
motion of the electrons is still an excellent approximation. Under this approximation, 
we can fix the nucleus at the origin of a spherical coordinate system and write the 
Schrodinger equation as 

(6.65) 

Even this simplified equation cannot be solved exactly. 

The e2 /47Tt:olr} - r21 term is called the interelectronic repulsion term and is di­
rectly responsible for the difficulty associated with solving Equation 6.65. If this term 
were not there, the total Hamiltonian operator in Equation 6.65 would be the sum of 
the Hamiltonian operators of two hydrogenlike atoms. According to Equations 3.61 
through 3.64, the total energy would be the sum of the energies of the two individual 
hydrogenlike atoms, and the wave function would be a product of two hydrogenlike 
atomic orbitals. To solve Equation 6.65, we must resort to some approximation method. 
Fortunately, two quite different approximation methods that can yield extremely good 
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results have found wide use in quantum chemistry. These are called perturbation theory 
and the variational method and are presented in Chapter 7. 

Problems 
6-1. Show that both 71 2 \72 /2Jn e and e2 /4rr cor have the units of energy (joules). 

6-2. In terms of the variable e, Legendre's equation is 

d ( de (e)) 2? 7 
sin e - sin e + (f3 sin- e - m-)8 (e) == 0 

de de 

Let x == cos e and P(x) == e (e) and show that 

7 d
2 
P(x) d P(x) [ ln2] 

(1 - x - ) 7 - 2x . + f3 - 2 P (x) == 0 
dx- dx 1 - x 

6-3. Show that the Legendre polynomials given in Table 6.1 satisfy Equation 6.23 with m == O. 

6 .. 4. Show that the orthogonality integral for the Legendre polynomials, Equation 6.24, is 

equivalent to 

1" PI (cos e) P" (cos e) sin ede = 0 l of- n 
o 

6 .. 5. Show that the Legendre polynomials given in Table 6.1 satisfy the orthogonality and 

normalization conditions given by Equations 6.24 and 6.25. 

6-6. Use Equation 6.26 to generate the associated Legendre functions in Table 6.2. 

6 .. 7. Show that the first few associated Legendre functions given in Table 6.2 are solutions to 

Equation 6.23 and that they satisfy the orthonormality condition, Equation 6.28. 

6-8. There are a number of recursion formulas for the associated Legendre functions. One that 

we will have occasion to use in Section 13-12 is 

Show that the first few associated Legendre functions in Table 6.2 satisfy this recursion 

formula. 

6-9. Show that the first few spherical harmonics in Table 6.3 satisfy the orthonormality condi­

tion, Equation 6.31. 

6-10. Using explicit expressions for ~m (e ~ ¢), show that 

This is a special case of the general theorem 

+1 L I y/n (e, ¢) 12 == constant 
m=-/ 

known as Unsold's theorem. What is the physical significance of this result? 



Problems 

6-11. In Cartesian coordinates, 

A (a a ) L7 == -in x- - y-
<. ay ax 

Convert this equation to spherical coordinates, showing that 

A a 
L == -i71-

z a¢ 
" A 

6-12. Convert Lx and Ly from Cartesian coordinates to spherical coordinates. 

6-13. Prove that i2 commutes with Lx' L
y

' and Lz but that 

A A A A A A 

[L " LJ == inL } ~ x 
[L_, L ] == i71L , 

~. x ) 

(Hint: Use Cartesian coordinates.) Do you see a pattern in these formulas? 

6-14. It is a somewhat advanced exercise to prove generally that (Lx) == (Ly) == 0 (see, however, 

Problem 6-58), but prove that they are zero at least for the first few I, m states by using the 

spherical harmonics given in Table 6.3. 

6-15. For an isolated hydrogen atom, why must the angular momentum vector L lie on a cone 

that is symmetric about the z-axis? Can the angular momentum operator ever point exactly 

along the z-axis? 

6-16. Referring to Table 6.5, show that the first few hydrogen atomic wave functions are 

orthonormal. 

6-17. Show explicitly that 

for the ground state of a hydrogen atom. 

6-18. Show explicitly that 

for a 2po state of a hydrogen atom. 

6-19. Given the first equality, show that the ground-state energy of a hydrogen atom can be 

written as 

71 2 

E == ---
o 2m a2 

e 0 

In e
4 

e 

6-20. Calculate the probability that a hydrogen 1 s electron will be found within a distance 2ao 
from the nucleus. 

6-21. Calculate the radius of the sphere that encloses a 50% probability of finding a hydrogen 

1 s electron. Repeat the calculation for a 90% probability. 
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6-22. Many problems involving the calculation of average values for the hydrogen atom require 
evaluating integrals of the form 

This integral can be evaluated readily by starting with the elementary integral 

100 1 
1 (fJ) == e- f3r dr == -
o fJ o 

Show that the derivatives of 1 (fJ) are 

and so on. Using the fact that 10 (fJ) == 1/ fJ, show that the values of these two integrals are 
-1/ fJ2 and 2/ fJ3, respectively. Show that, in general 

and that 

n! 
1 ==--

n fJn+ I 

6-23. Prove that the average value of r in the I sand 25 states for a hydrogenlike atom is 3ao/2Z 

and 6aol Z, respectively. 

" 6-24. Prove that (V) == 2(E) and, consequently, that (K) == -(E), for a 2s electron. 

6-25. By evaluating the appropriate integrals, compute (r) in the 2s, 2p, and 3s states of the 
hydrogen atom; compare your results with the general formula 

6-26. Show that the first few hydrogen atomic orbitals in Table 6.6 are orthonormal. 

6-27. Show that the two maxima in the plot of r21/1;~ (r) against r occur at (3 ± v's)ao' (See 
Figure 6.3.) 

6-28. Calculate the value of (r) for the n == 2, I == I state and the n == 2, I == 0 state of the 
hydrogen atom. Are you surprised by the answers? Explain. 

6-29. In Chapter 4, we learned that if 1/1 I and 1/12 are solutions of the Schrodinger equation that 

have the same energy E
I1

, then c,1/1, + c21/12 is also a solution. Let 1/1, == 1/1210 and 1/12 == 1/1211 
(see Table 6.5). What is the energy corresponding to 1/1 == C ,1/1} + c21/12 where c~ + c~ == I? 
What does this result tell you about the uniqueness of the three p orbitals, p , p ., and p ? 

x.\ z. 



Problems 

6-30. Show that the total probability density of the 2 p orbitals is spherically symmetric by 

evaluating L~=-I 1/I;lm' (Use the wave functions in Table 6.6.) 

6-31. Show that the total probability density of the 3d orbitals is spherically symmetric by 

evaluating L~1=-2 1/Ii2m' (Use the wave functions in Table 6.6.) 

6-32. Show that the sum of the probability densities for the n == 3 states of the hydrogen atom 

is spherically symmetric. Do you expect this to be true for all values of n? Explain. 

6-33. Determine the degeneracy of each of the hydrogen atomic energy levels. 

6-34. Set up the Hamiltonian operator for the system of an electron interacting with a fixed 
nucleus of atomic number Z. The simplest such system is singly ionized helium, where 
Z == 2. We will call this a hydrogenlike system. Observe that the only difference between 

this Hamiltonian operator and the hydrogen Hamiltonian operator is the correspondance 

that e2 for the hydrogen atom becomes Z e2 for the hydrogenlike ion. Consequently, show 
that the energy becomes (cf. Equation 6.44) 

n7 Z2 e4 

En = - 8E~h2n2 n == l, 2, ... 

Furthermore, now show that the solutions to the radial equation, Equation 6.47, are 

{ 
(n - l - I)! } 1/2 ( 2Z )/+3/2 . (2Z r) R (r) == -. - rle-Zr/llaoL2/+1 

nl 2n[(n+/),]3 na n+1 na 
. 0 0 

Show that the 1 s orbital for this system is 

1 (Z)3/2 r 1/1 == - - e-zr/ao 
Is IJi a v J~ () 

and show that it is normalized. Show that 

and that 

3a 
(r) == _0 

22 

r 
mp 

Last, calculate the ionization energy of a hydrogen atom and a singly ionized helium atom. 
Express your answer in kilojoules per mole. 

6-35. How does En for a hydrogen atoln differ from Equation 6.44 jf the nucleus is not 
considered to be fixed at the origin? 

6-36. Determine the ratio of the ground-state energy of atomic hydrogen to that of atomic 
deuterium. 

6-37. In this problem, we will prove the so-called quantunz-mechanical virial theorem. Start 
with 

A 

H 1jf == E1/I 
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where 

" U sing the fact that H is a Hermitian operator (Problem 4-28), show that 

(1) 

" " where A is any linear operator. Choose A to be 

" (a a a ) A == -in x- + V-. +z-ax . ay az (2) 

and show that 

[H, A] == in x- + y- + z- - -(P~ + p~ + P~~) "" ( a v a v a V) iii A " A) 

a x a y a z nl' -' -. 

== in x- + v- + z- - 2inK ( 
av av BV) A 

ax . ay az 
A 

where K is the kinetic energy operator. Now use Equation 1 and show that 

( 
av av av) " 

x- + y- +z- == 2(K) ax ay 3z 
(3) 

Equation 3 is the quantum-mechanical virial theorem. 

Now show that if V (x, y, z) is a Coulombic potential 

then 

A 

(V) == -2(K) == 2(E) (4) 

where 

A 

(E) == (K) + (V) 

In Problem 6-24 we proved that this result is valid for a 2s electron. Although we proved 

Equation 4 only for the case of one electron in the field of one nucleus, Equation 4 is valid 

for many-electron atoms and molecules. The proof is a straightforward extension of the 

proof developed in this problem. 

A 

6-38. Use the virial theorem (Problem 6-37) to prove that (K) == (V) == E /2 for a harmonic 

oscillator (cf. Problem 5-23). 

6-39. The average value of r for a hydrogenlike atom can be evaluated in general and is given 

by 

(r) - n
2

ao {I + ~ [1 __ /(l_+_1)]} 
II! - Z 2 n 2 

Verify this formula explicitly for the 1/1211 orbital. 



Problems 

6-40. The average value of r2 for a hydrogenlike atom can be evaluated in general and is given 

by 

2 _ n 4 a6 { 3 [ I (I + 1) - ~] } 
(r ) I - 2 1 + - 1 - 2 

n Z 2 n 

Verify this formula explicitly for the 1/1210 orbital. 

6-41. The average values of 1/ r, 1/ r2, and 1/ r3 for a hydrogenlike atom can be evaluated in 

general and are given by 

Z 

and 

Verify these formulas explicitly for the 1/1210 orbital. 

6-42. The designations of the d orbitals can be rationalized in the following way. Equation 6.63 

shows that d "' goes as sin e cos e cos ¢. Using the relation between Cartesian and spher-
x." 

ical coordinates, show that sin e cos e cos ¢ is proportional to x z. Similarly, show that 

sin e cos e sin ¢ (dvz) is proportional to yz~ that sin2 e cos 2¢ (dx2 _-/) is proportional to 

x 2 - y2; and that sln2 e sin 2¢ (d
XY

) is proportional to xy. -

Problems 6-43 through 6-47 examine the energy levels for a hydrogen atom in an external 

magnetic fie ld. 

6-43. Recall from your course in physics that the motion of an electric charge around a closed 

loop produces a magnetic dipole, J-L, whose direction is perpendicular to the loop and whose 
magnitude is given by 

f-1- == i A 

where i is the current in amperes (C· S-I) and A is the area of the loop (m2
). No­

tice that the units of a magnetic dipole are coulombs· meters2 
. seconds-I (C· m2 

. S-I), or 

amperes·meters2 (A·m2
). Show that 

. qv 
l ==--

2nr 

for a circular loop, where v is the velocity of the charge q and r is the radius of the loop. 

Show that 

qrv 
f-1- == -

2 
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for a circular loop. If the loop is not circular, then we must use vector calculus and the 
magnetic dipole is given by 

q(r x v) 
JL= ---

2 

Show that this formula reduces to the preceding one for a circular loop. Last, using the 
relationship L = r x p, show that 

q 
J..1= -L 

2m 

Thus, the orbital motion of an electron in an atom imparts a magnetic moment to the atom. 

For an electron, q = -I e I and so 

lei 
J..1=--L 

2m e 

6-44. In Problem 6-43, we derived an expression for the magnetic moment of a hydrogen atom 
imparted by the orbital motion of its electron. Using the result that L 2 = h2l(l + 1), show 
that the magnitude of the magnetic moment is 

where f3 B = hlel/2me is called the Bohr magneton. What are the units of f3B? What is its 
numerical value? A magnetic dipole in a magnetic field (B) has a potential energy 

(We will discuss magnetic fields when we study nuclear magnetic resonance, NMR, in 
Chapter 14.) Show that the units of the intensity of a magnetic field are J . A -I . m -2. This 

set of units is called a tesla (T), so that we have I T = I J. A -I . m-2
. In terms of teslas, the 

units of the Bohr magneton, f3
B

, are J . T- 1 
• 

6-45. Using the results of Problems 6-43 and 6-44, show that the Hamiltonian operator for a 
hydrogen atom in an external magnetic field where the field is in the z direction is given by 

'" where Ho is the Hamiltonian operator of a hydrogen atom in the absence of the magnetic 
field. Show that the wave functions of the Schrodinger equation for a hydrogen atom in 

a magnetic field are the same as those for the hydrogen atoln in the absence of the field. 

Finally, show that the energy associated with the wave function ljJ I is 
11m 

E = E(O) + f3 B m 
n 8 z (1) 

where £,;0) is the energy in the absence of the magnetic field and m is the magnetic quantum 

number. 

6-46. Equation 1 of Problem 6-45 shows that a state with given values of nand 1 is split into 

21 + 1 levels by an external magnetic field. For example, Figure 6.8 shows the results for the 

Is and 2p states of atomic hydrogen. The Is state is not split (21 + 1 = I), but the 2p state 

is split into three levels (21 + 1 = 3). Figure 6.8 also shows that the 2p to Is transition in 

atomic hydrogen could (see Problem 6-47) be split into three distinct transitions instead 
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The splitting of the 2 p state of the hydrogen atom in a magnetic field. The 2 p state is split 
into three closely spaced levels. In a magnetic field, the 2 p to 1 s transition is split into three 
distinct transition frequencies. 

of just one. Superconducting magnets have magnetic field strengths of the order of 15 T. 

Calculate the magnitude of the splitting shown in Figure 6.8 for a magnetic field of 15 T. 

Compare your result with the energy difference between the unperturbed Is and 2p levels. 

Show that the three distinct transitions shown in Figure 6.8 lie very close together. We say 

that the 2 p to I s transition that occurs in the absence of a magnetic field beconles a triplet 
in the presence of the field. The occurrence of such multiplets when atoms are placed in 

magnetic fields is known as the Zeelnan effect. 

6-47. Consider a transition between the I == 2 and the I == 3 states of atomic hydrogen. What is 

the total number of conceivable transitions between these two states in an external magnetic 

field? For light whose electric field vector is parallel to the direction of the external magnetic 

field, the selection rule is ~m == O. For light whose electric field vector is perpendicular to 

the direction of the external magnetic field, the selection rule is ~m == ± 1. In each case, 

how many of the possible transitions are allowed? 

Problems 6-48 through 6-57 develop the quantum-mechanical properties of angular momentum 

using operator notation, without solving the Schriidinger equation. 

6-48. Define the two (not necessarily Hermitian) operators 

A A I'. A A A 

L+ == Lx + i Ly and L ==L -iL x \' 

Using the results of Problem 6-13, show that 

"A AA "A A 

[L:, L+l == L;L+ L+L: == nL+ 
"A AA '" /'\. A 

[ L _, L _] == L _ L _ - L _ L _ == -n L 
.... ... ... 

and 

227 
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6-49. Show that 

A A "j "'2 ,...,... A" 

L L+ = L.~ + L" +iLxL" - iL\,Lx 

=L2-L:-11L_ 
" 

and 

6-50. Because L 2 and L_ commute, they have mutual eigenfunctions. We know from the chapter 
<, 

that these mutual eigenfunctions are the spherical harmonics, Y/ll (8, ¢), but we really don't 

need that information here. To emphasize this point, let 1/1 af3 be the mutual eigenfunctions 

of L2 and L_ such that 

"2 2 
L 1/1 a{3 = f3 1/1 afi 

and 

" L '1lr - (1'1lr 
;, If' a{3 - If' a{3 

Now let 

Show that 

L '1lr+ 1 = ((1 + 11)'1lr+' 
;,If'a{3 If'a{3 

and 

L2'1lr+1 = f32'1lr+ 1 
If' a {3 If' a f3 

Therefore, if (1 is an eigenvalue of Lz.' then (1 + 11 is also an eigenvalue (unless 1/I~I 
happens to be zero). In the notation for the spherical harmonics that we use in the chapter, 
L + YIn (e, ¢) ex Yjn+ I (e, ¢). 

" " A 

6-51. Using L instead of L + in Problem 6-50, show that if (1 is an eigenvalue of L z' then 

(1 - 11 is also an eigenvalue (unless 1/I;;f31 = L_1/I
a

{3 happens to be zero). In the notation for 

the spherical harmonics that we use in the chapter, i YIn (8, ¢) ex Yt1 
I (8, ¢). 

"-

6-52. Show that each application of L + to 1/1 aft raises the eigenvalue by 11, so long as the result 

IS nonzero. 

"-

6-53. Show that each application of L to 1/Ia{3 lowers the eigenvalue by 11, so long as the result 
. 
IS nonzero. 

6-54. According to Problem 6-48, L 2 commutes with L + and L _. Now prove that L 2 commutes 

with L~ and L~. Now prove that 

m = I, 2, 3, ... 
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6-55. In Problems 6-50 through 6-53, we proved that if l/!;;n == L~ l/! afP then 

L '1lr±m == (ex ± mh)'1lr±m 
z I.f/ a f3 I.f/ a f3 m == 0, 1, 2, ... 

A A A 

SO long as the result is non-zero. The operators L± are called raising (L+) or lowering (L_) 
A 

operators because they raise or lower the eigenvalues of L 7. They are also called ladder 
<. 

operators because the set of eigenvalues ex ± mn form a ladder of eigenvalues. Use the 

result of Problem 6-54 to show that 

[ 2 'II r ±m == f3 2 'II r ±m 
I.f/ a fJ I.f/ a f3 

6-56. Start with 

[ '1lr±m == (ex ± mh)'1lr±m 
z I.f/ a f3 I.f/ a f3 

A 

Operate on both sides with L~ and subtract the result from (Problem 6-55) 
.(, 

[ 2 '1lr ±m == f32 '1lr ±m 
I.f/ a f3 I.f/ a f3 

to get 

Because the operator [2 + [~ corresponds to a nonnegative physical quantity, show that 
x ) 

or that 

-f3 < ex ± mh < f3 m==O, 1,2, ... 

Because f3 is fixed, the possible values of In must be finite in number. 

6 ... 57. Let ex
max 

be the largest possible value of ex ± mho By definition then, we have that 

A 

L '1lr - ex '1lr 
Z I.f/ a R - max I.f/ a R 

max fJ max f' 

and 

A 

Operate on the last equation with L _ to obtain 

and 

f3 2 == ex 2 + nex max max 
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Use a paralJe 1 procedure on 1/r(y . fi to obtain 
mm 

N ow show that (1 == -(1 . , and then argue that the possible values of the eigenvalues (1 max mm 
"-

of L extend from +a to -(1 in steps of magnitude fl. This is possible only if (1 is 
:::: max max max 

itself an integer (or perhaps a half-integer) times n. Finally, show that this last result leads 
to 

I == 0, 1, 2, ... 

and 

(1 == n1n In == 0, ± 1, ±2, ... , ±l 

6-58. According to Problems 6-50 and 6-51, 

i ym (8 ~) == ne+ YI7I+1 (8 ~) 
+ / ' \.f/ /m / ' \.f/ 

and 

L ym (8 ~) == Ii e ym I (e ~) / ,\.f/ /m / ,\.f/ 

where we are using the notation y/n (e, ¢) instead of 1/r aJ3' Show that 

and 

" ne+ ne-
L ym (8 ¢) == /m ylJl + I (e, ¢) _ / m ym I (e, ¢) 

y /' 2i / . 2i / 

Use this result to show that 

for any rotational state (see Problem 6-14). 

6-59. Show that 

L == n e l 
- + i cot e -A "¢ [ a a ] 

+ ae a¢ 

and 

L == ne i¢ [-~ + i cote~] ae a¢ 



MATHCHAPTER 

DETERMINANTS 

In Chapter 7, we will encounter n linear algebraic equations in n unknowns. Such equa­
tions are best solved by means of determinants, which we discuss in this MathChapter. 
Consider the pair of linear algebraic equations 

allx + a l2 y = d l 
a 21 x + a 22 y = d2 

(E.l) 

If we multiply the first of these equations by a22 and the second by a 12 and then subtract, 
we obtain 

or 

x = a22d l - a l 2d2 

allan - a l2a 21 

(E.2) 

Similarly, if we multiply the first by a 21 and the second by all and then subtract, we get 

Y = a ll d 2 - a 21 d l 

allan - a l2a21 

(E.3) 

Notice that the denominators in both Equations E.2 and E.3 are the same. We represent 

. all aJ? 
a ll a 22 - a l2a 21 by the quantIty - , which equals a ll a

22 
- a l2a21 and is called a 

a21 an 

2 x 2 determinant. The reason for introducing this notation is that it readily generalizes 
to the treatment of n linear algebraic equations in n unknowns. Generally, a n x n 231 
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determinant is a square array of I'l l elements arranged in 1'1 rows and n columns. A 
3 x 3 determinant is given by 

(/11 (/1 2 (/1 .1 
(/ 11(/22 0 1.1 + (/21012 (/1.1 + (/1 2(/23(/3 1 

(/ 2 1 (/ n {/ 2.1 (E.4) -°11 (/]1 (/1 .1 - a 2 1(/ I ZCl3.1 - (/ll a 23 (/ :n 
(/ 31 (/ 1' ° 13 

(We will prove this soon.) Notice that the element Cl
ij 

occurs at the intersection of the 
ith row and the jth column. 

Equation E.4 and the corresponding equations for eval uating higher-order determi­
nants can be obtained in a systematic manner. First we define a cofactor. The cofactor, 
A , of an element Cl .. is a (1/ - I) x (1'1 - I) determinant obtained by deleting the 

I J 1/ ......, 

i th row and the jth column, multiplied by (- I / +j . For example, A 12 ' the cofactor of 
element a l 2 of 

. 
IS 

(/11 (l1 2 (/13 

D= (I l l (/ ]1 (/ 23 

° 11 (/ lJ ° 13 

EXAMPLE E-l 
Evaluate the cofactor of each of the first-row e lements in 

2 - I 
D= 0 3 - 1 

2 - 2 

SOLUTION: The cofactor of all i s 

3 A = (_ 1)1 1- 1 
11 -2 

The cofactor of a 11 i s 

and the cofactor of (/ 13 i ~ 

- I 

I 

- I 

I 

=3 - 2=1 

= - 2 

3 = - 6 
- 2 
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We can use cofactors to evaluate determinants. The value of the 3 x 3 determinant 
in Equation E.4 can be obtained from the formula 

a l l a l 2 au 
a 2 1 a22 aD = a11A 11 +a12 A 12 +auAu (E.5) 

° 3 1 a
32 

a 33 

Thus, the value of D in Example E- I is 

D = (2)(1) + (-1)(-2) + (1)(-6) =-2 

EXA MPLE E-2 
Evaluate D in Example E- I by expanding in terms of the first column of elements 
instead of the first row. 

SOLUTION: We will use the formula 

The various cofactors are 

and 

and so 

3 - I 
A I I =(-1)2 -2 1= 1 

A21 = (_1)1 
-I 

= -I 
- 2 

A,, =(_1)4 
-I I 

= -2 
3 -I 

D = (2)(1) + (0)(- 1) + (2)(-2) =-2 

Notice that we obtai ned the same answer for D as we did for Example E-l. This result 
illustrates the general fact that a determinant may be evaluated by expanding in terms 
of the cofactors of the elements of any row or any column. If we choose the second 
row of D, then we obtain 

D = (0)(-1)3 - I 
-2 : + (3)(-1)4 ~ I + (- 1)(- 1)5 2 

I 2 
-1 

= -2 
-2 

Although we have discussed only 3 x 3 determinants , the procedure is readily extended 
to determinants of any order. 

233 
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EXAMPLE E-3 
In Chapter 10 we will meet the determinantal equation 

x 100 
I x 
o I x 
o 0 

o = 0 
I 

x 

Expand this determinantal equation into a quartic eq uation for x. 

SOLUTION: Expand about tbe first row of elements to obtain 

x I 0 I L 0 
x I x I 0 x I =0 

0 x 0 x 

Now expand about the first column of each of the 3 x 3 determinants to obtain 

or 

or 

) ) 
.~ I 

(x (x 
I x 

I 
- ex) ( I ) I o _ ( I ) x 

x I 

X4 - 3x~ + I = 0 

I 
=0 

x 

Note that although we can choose any row or column to expand the determinant, it is 
easiest to take the one with the most zeroes. 

A number of properties of determinants are useful to know: 

1. The value of a determinant is unchanged if the rows are made into columns in the 
same order; in other words, first row becomes first column, second row becomes 
second column, and so on. For example, 

I 2 5 
-I 0 -I 

3 I 2 

I - 1 3 
2 0 I 
5 -I 2 

2. If any two rows or columns are the same, the value of the determinant is zero. For 
example, 

424 
-J 0 

3 I 
-1 = 0 

3 
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3. If any two rows or columns are interchanged, the sign of the determinant is 
changed. For example, 

3 I -I 
-6 4 5 

I 2 2 

I 3-1 
4 -6 5 
212 

4. If every element in a row or column is multiplied by a factor k, the value of the 
determinant is multiplied by k. For example, 

6 
-1 

8 = 2 3 
2 -I 

4 
2 

5. If any row or column is written as the sum or difference of two or more terms, the 
determinant can be written as the sum or difference of two or more determinants 
according to 

, 
all ±all 

• 
a 21 ± a 21 , 
a 31 ± a 31 

For example, 

3 3 
2 6 

a l 2 

a 22 

a 32 

au all 

a 23 
a 21 

a 33 
a 31 

2 + I 3 
-2 +4 6 

a l 2 

a 22 

a}? 

an all a l 2 an 
• 

a 23 ± a 2 1 a 22 a ?, 
..... "J 

a 33 a 31 a 32 a 33 

6. The value of a determinant is unchanged if one row or column is added or 
subtracted to another, as in 

For example 

all a l 2 

a 21 a 22 

a 31 a 32 

1 -I 3 
4 0 2 
I 2 1 

a l 3 

a 23 

a 33 

all +a12 a l2 a l3 

a 21 + a 22 a 22 a ? } 

a 31 + a 32 a 32 a 33 

o - I 3 o -I 3 
4 0 2 4 0 2 
3 2 1 7 2 3 

In the first case we add column 2 to column I , and in the second case we added 
row 2 to row 3. Thjs procedure may be repeated n times to obtain 

all a l2 au al l + na l2 a l 2 a J:l 
a 21 a 22 a 23 a 21 + na22 a 22 a n (E.6) 
a 31 a 32 a 33 a 31 + na32 a 32 a 33 
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This result is easy to prove: 

all + na l 2 a l2 au (/11 (/ 12 au a l2 (/1 2 au 

(/2 1 + na22 a]2 a " -.' 
a 21 an a23 + 11 a22 an a23 

a l l + l1a32 a ll a1.1 a l l a ll a D a 12 a 12 a33 

all a l2 au 

(/2 1 a 22 av +0 
a l l a 32 a" 

where we used rule 5 to write the first line. The second determinant on the right 
side equals zero because two columns are the same (rule 2). 

We provided these rules because simultaneous linear algebraic equations can be 

solved in terms of determinants. For simplicity, we will consider only a pair of equations 

but the final result is easy to generali ze. Consider the two equations 

allx + (/I ] Y = d l 

{l2 1X + an Y = d2 

(E.7) 

If dl = d2 = 0, the equations are said to be homogeneous. Otherwi se, they are called 
inhomogeneous. Let 's assume at first that they are inhomogeneous. The determinant of 

the coefficients of x and y is 

According to Rule 4, 

D= (/11 a l ] 

(/ 21 a2] 

Furthermore, according to Rule 6, 

a ll x + a l2y 
a21x + an Y 

= x D 

If we substitute Equation E.7 into Equation E.8, then we have 

= xD 

Solving for x gives 

dl (/ 12 

d, a21 -x = 
all a l2 

a l l a 22 

(E.8) 

(E.9) 
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Similarly, we get 

all d
l 

y = 
a 2 l d2 (E. I 0) 
all a l 2 

a 2 l a22 

Notice that Equations E.9 and E.I 0 are identical to Equations E.2 and E.3. The solution 
for x and y in terms of determinants is called Cramer's rule. Note that the determinant 
in the numerator is obtained by replacing the column in D that is associated with the 
unknown quantity with the column associated with the right sides of Equation E.7. 
This result is readily extended to more than two simultaneous equations. 

EXAMPLE E-4 

Solve the equations 

x+y+z=2 

2x-y-z=1 

x + 2y - z = -3 

SOL UTI 0 N: The extension of Equations E.9 and E. lOis 

2 I I 
I - \ -I 

X= 
-3 2 - I 9 

- -[ .- - -
[ 1 I 9 

2 -I -I 
I 2 - I 

Similarly, 

I 2 I 
2 I - I 
I -3 -I -9 

y = 
I I I 

- - --I - -
9 

2 - I - I 
I 2 - I 

and 

I I 2 
2 - I I 
I 2 -3 18 

Z = 
I I I 

- -- 2 - -
9 

2 - I -I 
I 2 - I 
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What happens if d l = d2 = 0 in Equation E. 7? [n that case, we find that x = y = 0, 
which is an obvious solution called a trivial solution. The only way that we could 
obtain a nontrivial solution for a set of homogeneous equations is for the denominator 
in Equations E.9 and E.lO to be zero, or for 

=0 (E.ll) 

[n Chapter 10, when we discuss ethene, we will meet the equations 

and 

where ('I and ('2 are the unknowns (corresponding to x and y in Equation E.7), a and f3 
are known quantities , and E is the energy of the n electrons. We can use Equation E.ll 
to derive an expression for the n -electron energies in ethene. Equation E.ll says that 
for a nontrivial solution «('I' ('2) to exist, we must have that 

a-E 
=0 a-E f3 

orthat (a - E)2 - f32 = O. Taking the square root of both sides and solving for E gives 

E=a±f3 

Although we considered only two simultaneous homogeneous algebraic equations, 
Equation E.II is readily extended to any number. We will use this result in the next 
chapter. 

Problems 

E-l. Evaluate the determinant 

Add column 2 to column I to get 

2 I 1 
D = -I 3 2 

2 0 

3 I I 
232 
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and evaluate it. Compare your result with the value of D. Now add row 2 of D to row 1 

of D to get 

4 3 
- 1 3 2 

2 0 

and evaluate it. Compare your result with the value of D above. 

E-2. Interchange columns I and 3 in D in Problem E-l and evaluate the resulting determinant. 

Compare your result with the value of D . Interchange rows I and 2 of D and do the same. 

E-3. Evaluate the determinant 

I 6 
D = -2 4-2 

I -3 I 

Can you determine its value by inspection? What about 

2 6 I 
D = -4 4-2 

2 -3 I 

E-4. Find the values of x that satisfy the following determinantal equation 

x 
I 
I 
I 

I I I 

o x 
o 0 

o = 0 
x 

o 0 x 

E-S. Find the values of x that satisfy the following determinantal equation 

x I 0 I 
I x I 0 

=0 
0 I I x 

0 x 

E-6. Show that 
cosO - sin 0 0 
sin 0 cosO 0 =1 

0 0 

E-7. Solve the following set of equations using Cramer's rule 

x+y=2 

3x - 2y = 5 

E-8. Solve the following set of equations using Cramer's rule 

x + 2y + 32 =-5 

-x - 3y + 2 = - 14 

2x+ y+z =1 

239 



Douglas Hartree (left) and Vladimir Fock (right) formulated an approximate method for 
calculating atomic (and molecular) properties in the 1930s that is still used today. Douglas 
Hartree was born on March 27 , 1897 in Cambridge, England, and died in 1958. After 
receiving his Ph.D. in applied mathematics from Cambridge University in 1926, he spent 
1929 to 1937 as the chair of applied mathematics and 1937 to 1946 as professor of 
theoretical physics at the University of Manchester. From 1946 until his death, he was 
Plummer Professor of Mathematical Physics at Cambridge University. Hartree pioneered the 
use of computers in research in the United Kingdom. He developed powerful methods of 
numerical analysis, which he applied to problems in atomic structure, ballistics, atmospheric 
physics, and hydrodynamics. Hartree was also an accomplished pianist and drummer. 
Vladimir Fock (also Fok) was born on December 22, 1898, in Petrograd (later Leningrad 
and now St. Petersburg), Russia, and died in 1974. After graduating from Petrograd University 
in 1922, he spent 1924 to 1936 at the Len ingrad Institute of Physics and Technology. He 
spent 1936 to 1953 at the Institute of Physics, USSR Academy of Science, and then returned 
to Leningrad University, where he remained until his death. Fock generalized the equations 
of Hartree to include the fact that electronic wave functions must be anti symmetric under 
the interchange of any two electrons (the Pauli Exclusion Principle). Fock 's research was in 
quantum electrodynamics, general relativity, and solid-state physics. He was almost completely 
deaf as an adult. 



CHAPTER 

Approximation Methods 

We stated in Chapter 6 that the Schrodinger equation cannot be solved exactly for 
any atom or molecule more complicated than the hydrogen atom. At first thought, 
this statement would appear to certainly deprive quantum mechanics of any interest to 
chemists, but fortunately approximation methods can be used to solve the Schrbdinger 
equation to almost any desired accuracy. In this chapter, we will present the two most 
widely used of these methods, the variational method and perturbation theory. We will 
present the basic equations of the variational method and perturbation theory and then 
apply them to a variety of problenls. 

7-1. The Variational Method Provides an Upper Bound to the 
Ground-State Energy of a System 

We will first illustrate the variational method. Consider the ground state of some arbi­
trary system. The ground-state wave function % and energy Eo satisfy the Schrodinger 
equation 

(7.1) 

Multiply Equation 7.1 from the left by 1/1; and integrate over all space to obtain 

(7.2) 

where dr represents the appropriate volume element. We have not set the denominator 
equal to unity in Equation 7.2 to allow for the possibility that 1/1

0 
is not normalized 241 
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beforehand. A beautiful theorem says that if we substitute any other function ¢ for 1/fo 
in Equation 7.2 and calculate the corresponding energy according to 

E == _1 _¢ *_H_¢_d_T 
¢ 1 ¢*¢dT 

(7.3) 

then E¢ will be greater than the ground-state energy Eo' In an equation, we have the 
variational principle 

(7.4) 

where the equality holds only if ¢ == 1/10' the exact wave function. We will not prove 
the variational principle here (although it is fairly easy), but Problem 7-1 takes you 
through the proof step by step. 

The variational principle says that we can calculate an upper bound to Eo by using 
any trial function we wish. The closer ¢ is to l/I 0 in some sense, the closer E ¢ will 
be to Eo' We can choose a trial function ¢ such that it depends upon some arbitrary 
parameters, a, /3, y, ... , called variational parameters. The energy also will depend 
upon these variational parameters, and Equation 7.4 will read 

(7.5) 

Now we can minimize E¢ with respect to each of the variational parameters and thereby 
determine the best possible ground-state energy that can be obtained from our trial wave 
function. 

As a specific example, consider the ground state of the hydrogen atom. Although 
we know from Chapter 6 that we can solve this problem exactly, let's assume that 
we cannot and use the variational method. We will compare our variational result to 
the exact result. Because I == 0 in the ground state, the Hamiltonian operator is (cf. 
Equation 6.43) 

(7.6) 

Even if we did not know the exact solution, we would expect that the wave function 
decays to zero with increasing r. Consequently, as a trial junction, we will try a 

2 

Gaussian function of the form ¢(r) == e-ar 
, where a is a variational parameter. By a 

straightforward calculation, we can show that (c[ Problem 7-2) 

and that 

[00 ( Jr )3/2 
41T 10 ¢*(r)¢(r)r

2
dr = 2ev 



7-1. The Variational Method Provides an Upper Bound to the Ground-State Energy of a System 

Therefore, from Equation 7.3, 

(7.7) 

We now minimize E(a) with respect to a by differentiating E(a) with respect to a 

and setting the result equal to zero. We solve the equation 

dE(a) 311 2 e2 

==0 
da 2m (2JT )3/2 eoa] /2 

c 

for a to give 

m2e4 
c (7.8) a== 

I8JT3 8 2Ji4 
0 

as the value of a that minimizes E(a). Substituting Equation 7.8 back into Equation 7.7, 
we find that 

(7.9) 

compared with the exact value (Equation 6.44) 

(7.10) 

Note that E . > Eo' as the variational theorem assures us. mm 

The normalized trial function is given by ¢(r) == (2a/JT)3/4 e-ar
2

, where a is given 

by Equation 7.8, and the exact ground-state wave function (the hydrogen Is orbital) 
is given by (ljJTab)1/2e-r/ao, where ao == 4JTc

O
Ji 2 jm

e
e2 is the Bohr radius. We can 

compare these two functions by first expressing ex in terms of ao' which comes out to be 

16 

18JT 

Thus, we can write the trial function as 

This result is compared with 1/I]s in Figure 7.1. 

8 1 

9JT 

(8/9rr)r2 /a~ 

a2 
o 

Our variational calculation for the ground-state energy of a hydrogen atom is within 
80% of the exact result. This result was obtained using a trial function with only one 
variational parameter. We can obtain progressively better results by using more flexible 
trial functions, containing more parameters. In fact, we will see such a progression 
(Table 7.1) that approaches the exact energy in Section 7-3. 
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FIGURE 7.1 
') 

A comparison of the optimized Gaussian trial wave function ¢ (r) == (2Q' In )3/4 e-ar
- , where Q' 

is given by Equation 7 .8 (dashed line), and the exact ground-state hydrogen wave function, 
1/I(r) == (1/na(~)1/2e--r/(/(), where a o == 4rrEon21rrlee2 is the Bohr radius (solid line). Both 

functions are plotted against the reduced distance, r lao' and the vertical axis is expressed in 
units of 1 I (n a(~) I . 

EXAMPLE 7-1 
Use a trial function of the fonn e-ar to calculate the ground-state energy of a hydrogen 

atom. 

SOL UTI 0 N: The Hamiltonian operator for the ground state of hydrogen is given by 

Equation 7.6. Therefore, 

') " Q'n-
H e-ar == ') (2r 

2111 r"-
e 

and the numerator of Equation 7.3 is 

We have used the fact that 
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to evaluate all the above integrals. Similarly, the denominator of Equation 7.3 is 

denolninator == 4;r e -2eu ,2 d, == 1 1
°c . 8;r 

() (2a)-

and so 

Setting dE Ida == 0 gives 

and substituting this result back into E (a) gives 

This happens to be the exact ground-state energy of a hydrogen atom. We fortuitously 
chose the exact form of the ground-state wave function and so ended up with the exact 
energy. 

EXAMPLE 7-2 
Use the variational principle to estimate the ground-state energy of a harmonic oscil­
lator using the trial function 

1 
¢(x) ==-­

I + f3x 2 

SOL UTI 0 N: The Hamiltonian operator of a harmonic oscillator is 

Therefore, we must first find d 2¢ I dx 2
, which comes out to be 

2f3 8f3 2x2 

-------- + --------
(1 + f3x 2

)2 (1 + f3x 2 )3 

The numerator of Equation 7.3 is 
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The necessary integrals can be found in handbooks and are given by 

and 

U sing these integrals, we get 

][ k ][ 712 fJ 3][ 
numerator == - . Ie 

11 8fJ" 

4n 2fJ2 

11 16fJ 1/2 + 2 . 2f33/2 

_ 112][ 1/2 k][ 
- --fJ + I 

811 4fJ3/~ 

The denominator of Equation 7.3 is 

j X1 dx ][ 
denominator == 2 J == Ie 

-00 (1 + fJx)~ 2fJ ~ 

and so E (fJ) is given by 

71 2 k 
E(fJ) == -fJ + -

411 2f3 

To find the minimum value of E(fJ), we use 

dE 71 2 k 
------0 
df3 - 4}1 2f32 -

and find that the optimum value of {3 is 

If we substitute this value back into the above equation for E({3), we obtain 

2[/
2 (k)1/2 1 (k)1/2 

E . == -71 - + -In -
mm 4 I-L 23/~ I-L 

_ ~ (~) 1/2 _ (~) 1/2 
- [/2 - 0.707 71 

2 I-L I-L 

The exact value for the ground-state energy of a harmonic oscillator is (Equation 5.30) 

n (k) [12 ( k ) 1/2 
E == - == 0.500 h -

exact 2 JL 11 

so we see that our simple trial function gives a result that is about 40% too high. 
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A comparison of the normalized, optimized trial function of Example 7-2 (dashed line) with 
the exact ground-state harmonic oscillator wave function (solid line). Both functions are 
plotted against xj(n2jf-lk)1/4, and the vertical axis is expressed in units of (ajJT)1/4, where 
a == (kf-l) 1/2 jn (see Example 7-3). 

In Figure 7.2, the normalized, optimized trial function of Example 7-2 is com­
pared with the exact ground-state harmonic oscillator wave function, ljJ 0 (x) == 

(ajn)I/4e-ax
2
/2, where a == (k/-L)1/2jli (Section 5-6). Note that the trial function has 

greater amplitude at large displacements. 

EXAMPLE 7-3 
Determine the normalized, optimized trial function of Example 7-2. 

SOL UTI 0 N: The (unnormalized) optimized trial function from Example 7-2 is 

1 
¢(x) == I + /3x2 

with f3 == (2f-lk) 1/2 In. To normalize ¢ (x), we need to evaluate 

J
OO Joo dx 

¢2(x)dx == . ') 2 
-co -00 (1 + /3x-) 

This integral is given in Example 7-2 as JT 12f31/2, so the normalized, optimized trial 
function is 

In terms of the parameter a == (f-lk) 1/2 jn that occurs in the exact solution, /3 == 21/2 a, 

and so 

(
a)I/4 (25/2jJT)I/4 (CX)I/4 1.158 

¢(x) == - ') ') == - ----
JT I +2 1/-cxx- JT 1 +21/2ax2 

This function is plotted in Figure 7.2. 
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So far we have applied the variational method to two problems we actually know 
how to solve exactly. Now let's apply it to a problem for which we do not know the 
exact solution. We will use the variational method to estimate the ground-state energy 
of a helium atom. We saw at the end of Chapter 6 that the Hamiltonian operator for a 
helium atom is 

(7.11 ) 

The Schrodinger equation cannot be solved exactly for this system because of the term 

involving '12" Equation 7.11 can be written in the form 

(7.12) 

where 

j == 1 and 2 (7.13) 

" is the Hamiltonian operator for a single electron around a helium nucleus. Thus, HH (1) 
" 

and HH (2) satisfy the equation 

" H H (j ) 0/ H (,. , e., cp.) == E.o/ H (r . , e. , cp.) 
} } } ./ } } .J 

j == 1 or 2 (7.14 ) 

where o/H(r., e., cp.) is a hydrogenlike wave function with Z == 2 (Table 6.6) and 
.I .I .I 

where the E. are given by (Problem 6-34) 
.I 

j == 1 or 2 (7.15) 

with Z == 2. If we ignore the interelectronic repulsion term (e 2 j4n cOr I2 ), then the 
Hamiltonian operator is s~parable and the ground-state wave function would be 

(Section 3-9) 

where (Table 6.5) 

( 
Z3 )1/2 

0/) (r.) == ~ e 
S.l na-o 

Zr./ao J j == 1 or 2 

(7.16) 

(7.17) 

where ao == 4n Eo1i 2 
/ mee

2
• We can use Equations 7.16 and 7.17 as a trial function 
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using Z as a variational constant. Thus, we must evaluate 

(7.18) 

'" with H given by Equation 7.11. The integral is a bit lengthy, albeit straightforward, to 
evaluate and is carried out step by step in Problem 7-32. The result is 

m e
4 

(') 27) E(Z) == ~ 2 2 Z- - -Z 
16rr Eon 8 

(7.19) 

Equation 7.19 suggests that it is convenient to express E in units of me e4 
/ 16rr 2 E~n? , 

and so we can write Equation 7.19 as 

') 27 
£(Z) == Z~ - -Z 

8 
(7.20) 

If we minimize E(Z) with respect to Z, we find that Z . == 27/16. We substitute this 
mm 

result back into Equation 7.20 to obtain 

(27)2 
E . == - - == -2.8477 

mm 16 
(7.21) 

compared with the most accurate calculated result of -2.9037 (in units of 
m

e
e4

/ 16][2 EGn?), which is in excellent agreement with the experimental result 
(-2.9033). Thus, we achieve a fairly good result, considering the simplicity of the 
trial function. 

The value of Z that minimizes E can be interpreted as an effective nuclear charge. 
The fact that Z comes out to be less than 2 reflects the fact that each electron partially 
screens the nucleus from the other, so that the net effective nuclear charge is reduced 
from 2 to 27/16. 

7-2. A Trial Function That Depends Linearly on the Variational 
Parameters Leads to a Secular Determinant 

As another example of the variational method, consider a particle in a one-dimensional 
box. Even without prior knowledge of the exact ground-state wave function, we should 
expect it to be symmetric about x == a/2 and to go to zero at the walls. One of the 
simplest functions with these properties is XII (a - x)'\ where n is a positive integer. 
Consequently, let's estimate Eo by using 

(7.22) 
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as a trial function, where C I and c2 are to be determined variationally, that is, where C I 

and c2 are the variational parameters. If ¢ in Equation 7.22 is used as a trial function, 
we find after quite a lengthy but straightforward calculation that 

h2 

E . == 0.125002 2 
mm rna 

(7.23) 

compared with 

h2 h2 

E == --2 == 0.125000 2 
exact 8 rna rna 

(7.24) 

So we see that using a trial function with more than one parameter can produce 
impressive results. The price we pay is a correspondingly more lengthy calculation. 
Fortunately, there is a systematic way to handle a trial function such as Equation 7.22. 
Note that Equation 7.22 is a linear combination of functions. Such a trial function can 
be written generally as 

(7.25) 
11=1 

where the C n are variational parameters and the in are arbitrary known functions. We 
will use such a trial function often in later chapters. For simplicity, we will assume that 
N == 2 in Equation 7.25 and that the cn and in are real. We relax these restrictions in 
Problem 7-17. 

Consider 

Then, 

where 

f ¢iI¢dr = f (c,f, + c2f2)iI(cJ, + cd2)dr 

= c; f f, iI f,dr + c,c2 f f, iI f 2dr 

+ c,c2 f f2iI f,dr + c~ f f2iI f 2dr 

== c~ Hll + C I C2 HI2 + C I C2 H21 + c; H22 

H .. == f F.iI/.dr lJ J l J 

(7.26) 

(7.27) 

We learned in Section 4-5 that quantum mechanical operators must be Hermitian to 
guarantee that their eigenvalues are real numbers. Equation 4.31 gives the relation that 
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a Hermitian operator must satisfy, which in the notation we are using in Equation 7.27 
becomes 

f f ·il f·dr == f I'·il {,.dr I '.I . J • I 
(7.28) 

In terms of the quantities H .. given in Equation 7.27, Equation 7.28 says that H .. == H ... 
IJ 1.1 .II 

U sing this result, Equation 7.26 becomes 

(7.29) 

Similarly, we have 

(7.30) 

where 

S .. == So. == J .r,f·dr IJ )1 J, ) (7.31 ) 

The quantities Hi} and Si} are called matrix elements. By substituting Equations 7.29 
and 7.30 into Equation 7.3, we find 

(7.32) 

where we emphasize here that E is a function of the variational parameters c
J 

and c2 • 

Before differentiating E(c l , c2 ) in Equation 7.32 with respect to c] and c
2

' it is 
convenient to write Equation 7.32 in the form 

(7.33) 

If we differentiate Equation 7.33 with respect to c,' we find that 

(7.34) 

Because we are minimizing E with respect to c,' a E / a c, == 0 and so Equation 7.34 
becomes 

(7.35) 

Similarly, by differentiating E(c" c2 ) with respect to c2 instead of c]' we find 

(7.36) 
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Equations 7.35 and 7.36 constitute a pair of linear algebraic equations for c I and c
2

• 

There is a nontrivial solution, that is, a solution that is not simply c 1 == c
2 

== 0, if and 
only if the determinant of the coefficients vanishes (MathChapter E), or if and only if 

==0 (7.37) 

This determinant is called a secular determinant. When this 2 x 2 determinant is 
expanded, we obtain a quadratic equation in E, called the secular equation. The 
quadratic secular equation gives two values for E, and we take the smaller of the two 
as our variational approximation for the ground-state energy. 

To illustrate the use of Equation 7.37, let's go back to solving the problem of a 
particle in a one-dimensional box variationally using Equation 7.22 as a trial function. 
For convenience, we will set a == 1. In this case, 

II == x(1 - x) and 

and the matrix elements (see Equations 7.27 and 7.31) are (see Problem 7-26) 

1;" r1-

1 
S ==-

11 30 

1 
H ==H ==--

12 21 30m Sl2 == S21 == --
140 

n2 

H ==--
22 105,n 

1 
S ==-

22 630 

EXAMPLE 7-4 
Using Equation 7.38, show explicitly that HI2 = H

21
• 

SOL UTI 0 N: Using the Hamiltonian operator of a particle in a box, we have 

n ,.., 1; 211 
= -- xCI - x)[2 - I2x + I2x-]dx 

2n1 0 

il
2 

( 1) il
2 

= - 2nl 15 = 30m 

(7.38) 
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Similarly, 

Substituting the matrix elements H .. and S .. into the secular determinant (Equa-
l) lJ 

tion 7.37) gives 

where E' == Em/h2. The corresponding secular equation is 

E'2 - 56E' + 252 == 0 

whose roots are 

56 ± ,)2128 
E' == == 51.065 and 4.93487 

2 

We choose the smaller root and obtain 

h 2 h2 

E . == 4.93487- == 0.125002-
mm m m 

compared with (recall that a == 1) 

h 2 h 2 

E t == - == 0.125000-
exac 8m m 

The excellent agreement here is better than should be expected normally for such a 
simple trial function. Note that E . > E t' as it must be. mm exac 

EXAMPLE 7-5 
Determine the normalized trial function for our variational treatment of a particle in 
a box. 

SOL UTI 0 N: To determine the normalized trial function, we must determine c 1 and 
c

2 
in Equation 7.22. These quantities are given by Equations 7.35 and 7.36, which are 
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the two algebraic equations that lead to the secular determinant, Equation 7.37. These 
two equations are not independent of each other, so we will use the first to calculate 

the ratio c21 c I: 

HII - ES I1 

HI2 - ES I2 

h
2 

( h
2

) I - - 4.93487- -
6m m 30 

2 2 == 1.133 
_li _ _ (4.93487li-) _1_ 
30m m 140 

or c2 == 1.133c I' SO far, then we have 

We now determine c 1 by requiring ¢ (x) to be normalized. 

Instead of expanding out each integral, it is more convenient to use (CRC Handbook) 

in which case 

1
1 m!n! 

x l11 (1 - x)lIdx == ----­
o (m + n + I)! 

11 [2'21 3'3' 414'] ¢2(x)dx == c~ .. + 2.266 .. + 1.284 ., == 0.05156c 2

1 
== 1 

o 5! 7! 9! 

giving us c I == 4.404. Thus, the normalized trial function is 

¢(x) == 4.404x(1 - x) + 4.990x 2 (1 - X)2 

Figure 7.3 compares ¢ (x) with the exact ground-state particle-in-a-box wave function 
(with a == 1),0/

1 
(x) == 21/2 sinJTx. 

You may wonder about the physical meaning of the other root to Equation 7.37. It 
turns out that it is an upper bound to the energy of the first excited state of a particle in 
a box. The value we calculated above is 1.2935 h2lm, compared with the exact value 
of 4h2 18ma2, or O.5000h2 I m. Thus, we see that although the second root is an upper 
bound to £2' it is a fairly crude one. Although there are methods to give better upper 
bounds to excited-state energies, we will restrict ourselves to a determination of only 
ground-state energies. 
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FIGURE 7.3 
A comparison of the optimized and normalized trial function determined in Example 7-5 
(dashed line) with the exact ground-state particle-in-a-box wave function, 0/

1 
(x) == 21/2 sinnx 

(solid line). The width of the box is taken to be 1. 

If we use a linear combination of N functions as in Equation 7.25 instead of 
using a linear combination of two functions as we have done so far, then we obtain N 

simultaneous linear algebraic equations for the c. s: 
j 

cl(Hll - ESll ) + c 2(H12 - ES21 ) + ... + cN(H1N - ES1N ) == 0 

c 1(H12 - ES I2 ) + c 2 (H22 - ES22 ) + ... + c N (H2N - ES2N ) == 0 
(7.39) 

To have a nontrivial solution to this set of homogeneous equations, we must have that 

H22 - ES22 (7.40) 

A 

In writing Equation 7.40, we have used the fact that H is a Hermitian operator, so 
H .. == H ... The secular equation associated with this secular determinant is an Nth-

lJ j l 

degree polynomial in E. We choose the smallest root of the Nth-order secular equation 
as an approximation to the ground-state energy. The determination of the smallest root 
must usually be done numerically for values of N larger than two. This is actually a 
standard numerical problem, and a number of packaged computer programs do this. 

Once the smallest root of Equation 7.40 has been determined, we can substitute 
it back into Equation 7.39 to determine the c.s. As in Example 7-5, only N - 1 of 

] 
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these equations are independent, and so we can use them to determine only the 'ratios 

c2/cl' C3/C 1' ... , CN/C1' for example. We can then determine c1 by requiring that the 
trial function ¢ be normalized, as we did in Example 7-5. 

7-3. Trial Functions Can Be Linear Combinations of Functions that 
Also Contain Variational Parameters 

It is a fairly common practice to use a trial function of the form 

N 

¢ = "'" c. f· ~ J J 
)=1 

where the f. themselves contain variational parameters. An example of such a trial 
J 

function for the hydrogen atom is 

N 

¢ = "'" c.e -aj r
2 

~ J 
)=1 

where the c. s and the a. s are treated as variational parameters. We have seen in 
J J 

Section 7-1 that the use of one term gives an energy -O.424(mee4/16n2£6h2) compared 
with the exact value of -O.500(nz ee4 / 16n2£~1i2). Table 7.1 shows the results for taking 
more terms. We can see that the exact value is approached as N increases. Realize in 
this case, however, that we do not obtain a simple secular determinant, because ¢ is 
linear only in the c. but not in the a .. The minimization of E with respect to the c. 

J J J 

and a. is fairly complicated, involving 2N parameters, and must be done numerically. 
J 

Fortunately, a number of readily available algorithms can be used to do this. 

TABLE 7.1 
-, 

The ground-state energy of a hydrogen atom using a trial function of the form ¢ = L; I c
j 
e -aj r~ , 

where the c. and the a. are treated as variational parameters. The exact value is -0.500000. 
J .I 

N 

1 

2 

3 

4 

5 

6 

8 

16 

-0.424413 

-0.485813 

-0.496967 

-0.499276 

-0.49976 

-0.49988 

-0.49992 

-0.49998 



7-4. Perturbation Theory Expresses the Solution to One Problem in 
Terms of Another Problem Solved Previously 

The idea behind perturbation theory is the following. Suppose that we are unable to 
solve the Schrodinger equation 

A 

H 1/1 == E1/I (7.41) 

for some system of interest but that we do know how to solve it for another system that 
is in some sense similar. We can write the Hamiltonian operator in Equation 7.41 in 
the form 

(7.42) 

where 

(7.43) 

is the Schrodinger equation we can solve exactly. We call the first term in Equation 7.42 
the unperturbed Hamiltonian operator and the additional term the perturbation. You 
might expect intuitively that if the perturbation term is small in some sense, then the 
solution to Equation 7.41 should be close to the solution to Equation 7.43. For example, 
in the case of an anharmonic oscillator with 

A 1i 2 
d

2 1 2 1 3 b 4 
H == --- + -kx + -yx +-x 

2~ dx 2 2 6 24 

we treat the anharmonic terms, y x 3 /6 + bx4/24, as a perturbation to a harmonic 
oscillator, and write (Chapter 5) 

(7.44) 

where ex == (k~/n2) 1/2. 
A 

To apply perturbation theory to the solution of Equation 7.41 with H given by 
Equation 7.42, we write 1/1 and E in the form 

(7.45) 
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and 

E == E(O) + E(l) + E(2) + ... (7.46) 

where 1/1(0) and E(O) are given by the solution to the unperturbed problem (Equation 7.43) 
and 1/1 (I), 1/1 (2), ..• are successive corrections to 1/1 (0) and E(I), E(2), ..• are successive 
corrections to E(O). A basic assumption is that these successive corrections become 
increasingly less significant. Although we will not do so here, we can derive explicit 
expressions for these corrections. The only one we will use is the expression for E(I), 

which is 

(7.47) 

(Problem 7-19 takes you step by step through the derivation of this result.) We say that 
E(I) is the first-order correction to E(O\ and we write 

(7.48) 

Equation 7.48 represents the energy through first -order perturbation theory. If we were 
to evaluate 1/1(1) (which we will not), then 

would represent 1/1 through first order. Similarly, if we were to evaluate E(2) (which we 
will not), then 

would represent E through second-order perturbation theory. In this book, we evaluate 
E to first order only, using Equation 7.47. 

Let's use Equation 7.47 to calculate the ground-state energy of the anharmonic 
oscillator described by Equation 7.44. In this case, 

and so Equation 7.47 becomes 

The first integral equals zero because the integrand is an odd function, and so 

b ( ex ) 
1/2100 

2 E(I) == - - x 4e-ax dx 
12 IT 0 



7-4. Perturbation Theory Expresses the Solution to One Problem in Terms of Another Problem 

The integral here can be found in tables and is equal to 3rr 1/2 /8a S
/
2

, and so 

(I) b 
E ==--

32a2 

and the total ground-state energy through first order is 

EXAMPLE 7-6 
U se first-order perturbation theory to calculate the energy of a particle in a one­

dimensional box from x == 0 to x == a with a slanted bottom, such that 

Vx 
Vex) == -(-) 

a 
O<x<a 

SOL UTI 0 N: In this case, the unperturbed problem is a particle in a box and so 

"(I) Vo 
H ==-x O<x<a - -a 

where Va is a constant. The wave functions and the energies for a particle in a box are 

and 

(0) ( 2 ) 1/2 .' n Jr x 1/1 . == - SIn --
a a 

'J

h2 
(0) no.. 

E == --" 
8ma~ 

According to Equation 7.47, the first-order correction to E(O) due to the perturbation 

is given by 

This integral occurs in Equation 3.30 and is equal to a 2/4. Therefore, we find that 

for all values of n. The energy levels are given through first order by 

n == 1, 2, 3, ... 

where the term 0 (V(;) emphasizes that terms of order V(; and higher have been 

dropped. Thus, we see in this case that each of the unperturbed energy levels is shifted 

by Vo/2. 
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We can apply perturbation theory to the helium atom whose Hamiltonian operator is 
given by Equation 7.11. For simplicity, we will consider only the ground-state energy. If 
we consider the interelectronic repulsion term, e2 /4n c

O
r

l2
, to be the perturbation, then 

the unperturbed wave functions and energies are the hydrogenlike quantities given by 

H(O) == HH (1) + HH (2) 

0/(0) == 0/Is(r1, 81, ¢1)0/Is(r2, 82, ¢2) 
(7.49) 

and 

with Z == 2. Using Equation 7.47, we have 

(7.50) 

where 0/ Is (r
j

) is given by Equation 7.17. The evaluation of the integral in Equation 7.50 
is a little lengthy, but Problem 7-30 carries it out step by step. The final result is that 

(7.51 ) 

or £(1) == 5Z/8 in units of lnee4/16n2c~n2. If we add this to E(O), with n
1 

== n
2 

== 1, 
then (in units of m ee4 /16n 2 sGn2) 

! 5 
== -z- + -z 

8 
(7.52) 

Letting Z == 2 gives -2.750 compared with our simple variational result (-2.8477) 
given by Equation 7.26 and the experimental result of -2.9033. So we see that first­
order perturbation theory gives a result that is about 5% in error. It turns out that 
second-order perturbation theory gives -2.910 and that a higher-order calculation 
gives -2.9037. Thus, we see that both the variational method and the perturbation 
theory are able to achieve very good results. 



Problems 
" 7 -1. This problem involves the proof of the variational principle, Equation 7.4. Let H 0/11 == 

En 1jJ n be the problem of interest, and let ¢ be our approximation to 1/10" Even though we do 
not know the 1/If1' we can express ¢ formally as 

(1) 
11 

where the c are constants. Using the fact that the 1/r are orthonormal, show that 
n f1 

We do not know the 1/rn' however, so Equation I is what we call a formal expansion. Now 
substitute Equation 1 into 

to obtain 

f ¢* iI¢dr 
E == ----

¢ f ¢*¢dr 

" c*c E E == Ln n n n 

¢ "c*c 
Ln n 11 

Subtract Eo from the left side of the above equation and Eo" c* c /" c* c from the LI1 n n Ln 11 n 

right side to obtain 

" c*c (E - E ) E - E == Ln 11 n f1 a 
¢ 0 " c*c 

Ln 11 n 

Now explain why every term on the right side is positive, proving that Erp > Eo' 

7 

7 -2. Using a Gaussian trial function e-ar
- for the ground state of the hydrogen atom (see 

" Equation 7.6 for H), show that the ground-state energy is given by 

and that 

7 Jh-a 
E(a) == --

2rn 
e 

e2a 1/2 

21/2 E Jr 3/2 
o 

7-3. Use a trial function ¢(x) == 1/(1 + {JX 2)2 to calculate the ground-state energy of a har­
monic oscillator variationally. The necessary integrals are 

and 

100 d x (2n - 3) (2n - 5) (211 - 7) ... (1) Jr 

-co (1 + f3x2)11 == (2n - 2)(2n - 4)(2n - 6) ... (2) {J1/2 

(2n - 5) (2n - 7) . . . (1) Jr 

(2n - 2) (2n - 4) ... (2) {J3!2 
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7 .. 4. If you were to use a trial function of the form ¢(x) == (1 + ccyx2)e-ax2/2, where cy == 
(k/-L /1i2) 1/2 and c is a variational parameter to calculate the ground-state energy of a harmonic 

oscillator, what do you think the value of c will come out to be? Why? 

7-5. Use a trial function of the form ¢(r) == re-ar with cy as a variational parameter to calculate 

the ground-state energy of a hydrogen atom. 

7 .. 6. Suppose we were to use a trial function of the form ¢ == c
1 
e-ar + c

2
e- fJr2 to carry out a 

variational calculation for the ground-state energy of the hydrogen atom. Can you guess 

without doing any calculations what c 1' c2 ' CY, and E . will be? What about a trial function 
~ min 

of the form rh == ",5 C e -ak r-Pk r" ? 
'P L....k=l k 

" 7 -7. Use a trial function of the form e- fJx - with f3 as a variational parameter to calculate 

the ground-state energy of a harmonic oscillator. Compare your result with the exact 
energy h lJ /2. Why is the agreement so good? 

7 .. 8. Consider a three-dimensional, spherically symmetric, isotropic harmonic oscillator with 

VCr) == kr2/2. Using a trial function e-ar2 
with a as a variational parameter, estimate the 

ground-state energy. Do the same using e-ar
• The Hamiltonian operator is 

A 112 d ( 2 d) k 2 

H == - 2/-L r2 dr r dr + 2 r 

Compare these results with the exact ground-state energy, E == % h lJ. Why is one of these 
so much better than the other? 

, 
7 -9. Use a trial function of the form e -ax- /2 to calculate the ground-state energy of a quartic 

oscillator, whose potential is V (x) == cx 4
• 

7 .. 1 O.U se a trial function of the form ¢ == cos AX with - Jr /2A < x < Jr /2A and with A as a 
variational parameter to calculate the ground-state energy of a harmonic oscillator. 

7 -11. Use the variational method to calculate the ground-state energy of a particle constrained 
to move within the region 0 < x < a in a potential given by 

a 
O<x<­- - 2 

a 
- < x < a 
2 -

As a trial function, use a linear combination of the first two particle-in-a-box wave 

functions: 

( 
2 ) 1/2 ( 2 ) 1/2 2 

¢(x) = c) a sin l1:a
X + c2 a sin: x 



Problems 

7 -12. Consider a particle of mass m in the potential energy field described by 

--------------~----------------~---------------.~ x 
-a o +a 

This problem describes a particle in a finite well. If~) ~ 00, then we have a particle in a box. 
Using ¢ (x) == [2 - x 2 for -[ < x < [ and ¢ (x) == 0 otherwise as a trial function with [ as a 

variational parameter, calculate the ground-state energy of this system for 2m Voa2 /h2 == 4 

and 12. The exact ground-state energies are O.530h2 /ma 2 and O.736h 2 /ma 2, respectively 

(see Problem 7-29). 

7 -13. Repeat the calculation in Problem 7-12 for a trial function ¢ (x) == cos AX for -JT /2A < 
x < 1T /2'A and ¢ (x) == 0 otherwise. Use 'A as a variational parameter. 

7 -14. Consider a particle in a spherical box of radius a. The Hamiltonian operator for this 

system is (see Equation 6.43) 

O<r<a 

In the ground state, [ == 0 and so 

A h
2 

d ( 2 d ) 
H == - 2mr2 dr r dr O<r<a 

As in the case of a particle in a rectangular box, ¢ (a) == O. Use ¢ (r) == a - r to calculate 

an upper bound to the ground-state energy of this system. There is no variational parameter 

in this case, but the calculated energy is still an upper bound to the ground-state energy. 
The exact ground-state energy is JT

2n2 /2ma 2 (see Problem 7-28). 

7-15. Repeat the calculation in Problem 7-14 using ¢(r) == (a - r)2 as a trial function. 

7 -16. Consider a system subject to the potential 

k Y 1> 
Vex) == _x 2 + _x 3 + _x4 

2 6 24 

Calculate the ground-state energy of this system using a trial function of the form 

where 1/10 (x) and 1/1
2 
(x) are the first two even wave functions of a harmonic oscillator. Why 

did we nbt include ljJ I (x)? 

7 -17. It is quite common to assume a trial function of the form 

¢ == c 1 ¢t + c2¢" + ... + C ¢ 
... 11 n 
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where the variational parameters and the 4>/1 may be complex. Using the simple, special 
case 

show that the variational method leads to 

E == C~C,Hll + c~c2H'2 + C,C;H21 + c;c2H22 

¢ C~CISll + C~C2SI2 + C1C;S21 + C;C2S22 

where 

H .. == f A.~ if A..dr == H.~ 
IJ 'YI 'YJ ./' 

and 

S .. == f A.~A..dr == S:. 
1./ 'Y, 'YJ ./ 1 

" because H is a Hermitian operator. Now write the above equation for E ¢ as 

c~cIHII + c~c2H12 + c1c;H21 + c;c2 H22 

and show that if we set 

we obtain 

and 

== E¢(C~ClSII + C~C2SI2 + C 1C;S21 + C;C2S22 ) 

aE¢ 
-- ==0 
Bc* I 

and 

There is a nontrivial solution to this pair of equations if and only if the determinant 

HI! - E¢SII 

H21 - E¢S21 

which gives a quadratic equation for E ¢ . We choose the smaller solution as an approximation 

to the ground-state energy. 

7 -18. This problem shows that terms in a trial function that correspond to progressively higher 

energies contribute progressively less to the ground-state energy. For algebraic simplicity, 

assume that the Hamiltonian operator can be written in the form 

and choose a trial function 



Problems 

where 

j == 1,2 

Show that the secular equation associated with the trial function is 

E(O + E(I) - E 
1 I 

HI2 

where 

and H == f '1lr* H(\)'1lr dr 
12 'PI 'P2 

Solve Equation 1 for E to obtain 

E~O) + E;I) + E;O) + Ei l
) 

E== -------------------
2 

± ~ {[E(O) + E(I) _ E(O) _ E(I)]2 + 4H2 }I/2 
2 I I 2 2 12 

(1) 

(2) 

If we arbitrarily assume that Ei C» + E;l) < EiO) + Ei'), then we take the positive sign in 

Equation 2 and write 

Use the expansion (I + x) 112 == I + x /2 + .. " x < I to get 

(3) 

Note that if E~()) + E~I) and EiO) + Ei1
) are widely separated, the term involving HI22 in 

Equation 3 is small. Therefore, the energy is simply that calculated using 0/
1 

alone; the 0/
2 

part of the trial function contributes little to the overall energy. The general result is that 

terms in a trial function that correspond to higher and higher energies contribute less and 
less to the total ground-state energy. 

7 -19. We will derive the equations for first-order perturbation theory in this problem. The 
problem we want to solve is 

"-

Ho/ == Eo/ (1) 

where 

if == H (OJ + iI ( I ) 

and where the problem 

(2) 
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has been solved exactly previously, so that 1/1(0) and E(()) are known. Assuming now that 
the effect of fI(l) is small, write 

(3) 
E == E(O) + ~E 

where we assume that ~ 1/1 and ~ E are small. Substitute Equations 3 into Equation 1 to 

obtain 

iI(O)1/I(0) + iI(')1/I(O) + iI(O)~1/i + fI(I)~1/I 

== E(O) 1/1 (0) + ~ E 1/1 (0) + E(O) ~ 1/1 + ~ E ~ 1/1 
(4) 

The first terms on each side of Equation 4 cancel because of Equation 2. In addition, we 
will neglect the last terms on each side because they represent the product of two small 

terms. Thus, Equation 4 becomes 

(5) 

Realize that ~ 1/1 and ~ E are the unknown quantities in this equation. 

Note that all the terms in Equation (5) are of the same order, in the sense that each is 

the product of an unperturbed term and a small term. We say that this equation is first order 
in the perturbation and that we are using first-order perturbation theory. The two terms we 
have neglected in Equation 4 are second-order terms and lead to second-order (and higher) 

corrections. 
Equation 5 can be simplified considerably. Multiply both sides from the left by 1/1(())* 

and integrate over all space to get 

The integral in the last term in Equation 6 is unity because 1/1 (tl) is taken to be normalized. 

More important, however, is that the first term on the left side of Equation 6 is zero. Use 
the fact that iI(O) E«() is Hermitian to show that 

But according to Equation 2, the integrand here vanishes. Thus, Equation 6 beCOlnes 

(7) 

Equation 7 is called the first-order correction to E(O). To first order, the energy is 

7 -20. Identify fI(O), fI(1), 1/1(0), and E(O) for the following problems: 

a. An oscillator governed by the potential 

k J Y 1 b 4 
Vex) == -x- + -x' + -x 

2 6 24 



Problems 

h. A particle constrained to move in the region 0 < x < a with the potential 

Vex) = 0 

=b 

c. A helium atom 

a 
O<x<-

2 
a 

<x<a 
2 

d. A hydrogen atom in an electric field of strength E. The Hamiltonian operator for this 

system is 

e. A rigid rotator with a dipole moment M in an electric field of strength E. The Hamiltonian 
operator for this system is 

where V2 is given by Equation 6.3. 

7 -21. Using a harmonic oscillator as the unperturbed problem, calculate the first-order correc­
tion to the energy of the v = 0 level for the system described in Problem 7-20(a). 

7 -22. Using a particle in a box as the unperturbed problem, calculate the first-order correction 
to the ground-state energy for the system described in Problem 7-20(b). 

7 -23. Using the result of Problem 7-20(d), calculate the first-order correction to the ground­
state energy of a hydrogen atom in an external electric field of strength E. 

7 -24. Calculate the first-order correction to the energy of a particle constrained to move within 
the region 0 < x < a in the potential 

where Va is a constant. 

a 
O<x< 

2 
a 
- < x < a 2 - -

7 -25.U se first-order perturbation theory to calculate the first-order correction to the ground­
state energy of a quartic oscillator whose potential energy is 

Vex) = cx 4 

In this case, use a harmonic oscillator as the unperturbed system. What is the perturbing 
potential? 

7 -26. Use a trial function 
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for a particle in a one-dimensional box. For simplicity, let a = 1, which amounts to mea­
suring all distances in units of a. Show that 

Ji2 
H=-

116m 

Ji2 
H =--

22 105nl 

1 
5 =-

II 30 

1 
5 =5 =-

12 21 140 

1 
5 =-

22 630 

7 -27. In Example 5-2, we introduced the Morse potential 

Vex) = D(l - e tJ x )2 

as a description of the intramolecular potential energy of a diatomic molecule. The constants 

D and f3 are different for each molecule~ for H
2

, D = 7.61 x 10- 19 J and f3 = 0.0193 pm-I. 
First expand the Morse potential in a power series about x. (Hint: Use the expansion 
e-l = 1 + x + x

2

2 + x~" + .... ) What is the Hamiltonian operator for the Morse potential? 
Show that the Hamiltonian operator can be written in the form 

') ') 

" ir d- 2 3 4 
H = - - -') + ax + bx + ex + ... 

2f.L dx~ 
(1) 

How are the constants a, b, and c related to the constants D and f3? What part of the 
Hamiltonian operator would you associate with fICO), and what are the functions l/r,~0) and 

energies E,;O)? Use perturbation theory to evaluate the first-order corrections to the energy 
of the first three states that arise from the cubic and quartic terms. Using these results, how 
different are the first two energy levels of H2 if its intramolecular potential is described 
by a harmonic oscillator potential or the quartic expansion of the Morse potential (see 

Equation I)? 

7 -28. In this problem, we will solve the Schrodinger equation for the ground-state wave function 
and energy of a particle in a spherical box of radius a. The Schrodinger equation is given 
by Equation 6.43 with l = 0 (ground state) and without the e2 /4n Eor term: 

Substitute u = r l/r into this equation to get 

The general solution to this equation is 

u(r) = A cosar + B sinar 

or 

A cos ar B sin (ir 
l/r(r) = +--

r r 



Problems 

where a := (2m E /n2) 1/2. Which of these terms is finite at r := O? Now use the fact that 

0/ (a) := 0 to prove that 

aa:= 7T 

for the ground state, or that the ground-state energy is 

Show that the normalized ground-state wave function is 

') sin 7T r / a 
o/(r) := (27Ta) I/~ __ -

r 

7 .. 29. In this problem, (see also Problem 4-38) we calculate the ground-state energy for the 

potential shown in Problem 7-12. The Schrodinger equation for this system is 

-00 < x < -a 

-a < x < a 

a<x<oo 

Label the three regions 1, 2, and 3. For the case E < Vo' show that 

o/",(x):= Csinax + Dcosax 
"-

0/ (x) := Ee f3x + F e- f3x 
3 

where f3 := [2m(,\) - E)/h2]'/2 is real and a := (2mE/h2)1/2. If 0/, (x) is to be finite as 

x ~ -00 and ljf3(x) be finite as x ~ 00, we must have B := 0 and E := O. Now there are 

four constants (A, C, D, and F) to be determined by the four boundary conditions 

do/I d 0/2 

dx dx x=-{/ x=-{/ 

d0/2 d0/3 

dx dx x=(/ x=a 

Before we go into all this algebra, let's remember that we are interested only in the ground­

state energy. In this case, we expect 0/2 (x) to be a cosine term because cos ax has no nodes 

in region 2, whereas sin ax does. Therefore, we will set C := O. Show that the four boundary 

conditions give 

Ae-f3a := Dcosaa A{3e- f3o 
:= Da sin aa 

D cos aa := F e- f3a -Da sinaa := -F{3e- f3a 
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These equations give A == F. Now divide A{3e- fJ
(J == Da sin aa by Ae- fJa == D cos aa to 

get 

{3 == a tan aa 

Now show that 

and so 

2 J.,) 2m V() 
a + a - tan';' a a == . n2 

Multiply through by a l to get 

') 

J ."l 2nl V()a-
rt (1 + tan ~ Y}) == == a 

h2 

where Y} == aa. Solve this equation numerically for Y} when a == 2m ~)a2 / Til == 4 and 12 to 
verify the exact energies given in Problem 7-12. 

7 -30. In applying first-order perturbation theory to the helium atom, we must evaluate the 
integral (Equation 7.50) 

where 

and Z == 2 for the helium atom. This same integral occurs in a variational treatment of 
helium, where in that case the value of Z is left arbitrary. This problem proves that 

Let r) and r
2 

be the radius vectors of electron I and 2, respectively, and let 8 be the angle 

between these two vectors. Now this is generally not the e of spherical coordinates, but if 

we choose one of the radius vectors, say r), to be the z axis, then the two e's are the same. 

U sing the law of cosines, 

r == (r2 + r2 - 2r r cos 8)· )/2 
)2 ) 2 ) 2 

show that E()) becomes 

X 12
" d¢ In ___ d_8_s_in_8 __ _ 

o 0 (r~ + r~ - 2r, r2 cos 8) '/2 



Problems 

Letting x == cos e, show that the integral over e is 

dx fo Jr de sin e 11 J 0 -(r-~-+-r-;---2-r-
1
-r 2-C-O-s-e-)-I-/2 == _I -(r-~-+-r-;---2-r-l-r 2-X-)-1 /-2 

2 

Substituting this result into E(I), show that 

Show that the energy through first order is 

compared with the exact result, E t == -2.9037(m e4/16:rr2so21i2). 
exac e 

7 -31. In Problem 7-30 we evaluated the integral that occurs in the first-order perturbation theory 
treatment of helium (see Equation 7.50). In this problem we will evaluate the integral by 
another method, one that uses an expansion for 1/ r 12 that is useful in many applications. 
We can write 1/ r 12 as an expansion in terms of spherical harmonics 

1 

where e. and cp. are the angles that describe r. in a spherical coordinate system and rand r 
I I I < > 

are, respectively, the smaller and larger values of r) and rr In other words, if r
l 

< r
2

, then 
r == r

1 
and r == r'). Substitute 1fr,.(r.) == (Z3 /a(3):rr)1/2e- Zr

)ao, and the above expansion for 
< >... .\ I 

1/ r 12 into Equation 7.50, integrate over the angles, and show that all the terms except for 
the I == 0, m == 0 term vanish. Show that 
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Now show that 

as in Problem 7-30. 

7 -32. This problem fills in the steps of the variational treatment of helium. We use a trial 
function of the form 

with Z as an adjustable parameter. The Hamiltonian operator of the helium atom is 

We now evaluate 

2e2 e2 

---+---
4JT £or2 4JT £orl2 

The evaluation of this integral is greatly simplified if you recall that 1/1 (r.) == 
} 

(Z3 ja6JT)1/2e-Zr/ao is an eigenfunction of a hydrogenlike Hamiltonian operator, one for 

which the nucleus has a charge Z. Show that the helium atom Hamiltonian operator can be 
written as 

where 



Problems 

Show that 

The last integral is evaluated in Problem 7-30 or 7-31 and the others are elementary. 
Therefore, E(Z), in units of (mee4j16JT2s~h2) is given by 

E(Z) == _Z2 + 2(Z - 2)- dr + -Z 
Z3 J e-

2Zr 
5 

JT r 8 

'1 5 == -Z~ + 2(Z - 2)Z + -Z 
8 

? 27 == Z- - -Z 
8 

N ow minimize E with respect to Z and show that 

(
27)2 

E == - 16 == -2.8477 

in units of nlee
4j16JT 2s&h2. Interpret the value of Z that minimizes E. 
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Charlotte E. Moore was born in Ercildoun, Pennsylvania, on September 24, 1898 and died 
in 1990. After graduating from Swarthmore College in 1920, she worked at the Princeton 
University Observatory and the Mt. Wilson Observatory on stellar spectra and the determination 
of the Sun's chemical composition. She earned a Ph.D. in astronomy in 1931 from the 
University of California at Berkeley on a Lick Fellowship. In 1945, she moved from Princeton 
to Washington, D.C., to join the spectroscopy section at the National Bureau of Standards 
(now the National Institute of Standards and Technology) until her retirement in 1968. Moore 
was placed in charge of an Atomic Energy Level Program, a program whose mission was to 
produce a current and more complete compilation of spectral data and atomic energy levels. 
She not only compiled published data, but she critically analyzed the data for each spectrum. 
When the data were insufficient or of dubious quality, she persuaded competent spectroscopists 
to carry out new observations and analysis. The result of her effort, Atomic Energy Levels 
(1949-1958), is a classic work that provides data for 485 atomic species in a uniform, clear 
format with standardized notation. In 1949, Moore was elected as an Associate of the Royal 
Astronomical Society, the first woman to receive this honor, breaking a 129-year tradition. 
In 1937, she married a fellow astronomer, Bancroft Sitterly, but always published under her 
maiden name. 



CHAPTER 

Mu Itielectron Atoms 

We concluded Chapter 6 with an introduction to the helium atom. We showed there that 
if we considered the nucleus to be fixed at the origin, then the Schrodinger equation 
has the form 

(8.1 ) 

A 

where HH(j) is the hydrogenlike Hamiltonian operator of electron j (Equation 6.2). If 
it were not for the presence of the interelectronic repulsion term, Equation 8.1 would 
be immediately solvable. Its eigenfunctions would be products of hydrogenlike wave 
functions and its eigenvalues would be sums of the hydrogenlike energies of the two 
electrons (see Section 3-9). Helium is our first multielectron system, and although the 
helium atom may seem to be of minimal interest to chemists, we will discuss it in detail 
in this chapter because the solution of the helium atom illustrates the techniques used 
for more complex atoms. Then, after introducing the concept of electron spin and the 
Pauli Exclusion Principle, we will discuss the Hartree-Fock theory of complex atoms. 
Finally, we discuss the term symbols of atoms and ions and how they are used to label 
electronic states. This chapter illustrates the powerful utility of quantum mechanics in 
analyzing the electronic properties of atoms. 

8-1. Atomic and Molecular Calculations Are Expressed 
in Atomic Units 

We will apply both perturbation theory and the variational method to the helium atom, 
but before doing so, we will introduce a system of units, called atomic units, that is 
widely used in atomic and molecular calculations to simplify the equations. Natural 
units of mass and charge on an atomic or molecular scale are the mass of an electron 
and the magnitude of the charge on an electron (the charge on a proton). Recall in 275 
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Chapter 5 (Equation 5.52) that we saw that a natural unit of angular momentum on an 
atomic or molecular scale is n. A natural unit of length on an atomic scale is the Bohr 
radius (see Sections 1-8 and 6-4) 

(8.2) 

and we saw repeatedly in Chapter 7 that a natural unit of energy is 

(8.3) 

It is convenient in atomic and molecular calculations to use units that are natural on 
that scale. The units that we will adopt for atomic and molecular calculations are given 
in Table 8.1. This set of units is called atomic units. The atomic unit of energy is called 
a hartree and is denoted by E

h
. Note that in atomic units the ground-state energy of a 

hydrogen atom (in the fixed nucleus approximation) is - Eh/2 (cf. Equation 6.44). 

TAB L E 8.1 
Atomic units and their SI equivalents. 

Property 

mass 

charge 

angular 
momentum 

distance 

energy 

permittivity 

EXAMPLE 8-1 

Atomic unit 

mass of an electron, rn 
e 

charge on a proton, e 

Planck constant divided 
by 2rr, n 

. 4rr 8(/1 2 

Bohr radIus, ao == ') 
Tn e~ 

16rr282h2 
o 

4rr8o 

c 
') 

e~ 

---==E 
4rr 8oao h 

The unit of energy in atomic units is given by 

SI Equivalent 

9.1094 X 10-31 kg 

l.6022 X 10- 19 C 

1.0546 X 10-34 J·s 

5.2918 X 10- 11 m 

4.3597 X 10- 18 J 

Express 1 Eh in units of joules (J), kilojoules per mole (kJ 'mol- I
), wave numbers 

(cm- 1
), and electron volts (eV). 



8-1. Atomic and Molecular Calculations Are Expressed in Atomic Units 

SOL UTI 0 N: To find 1 Eh expressed in joules, we substitute the SI values of 

me' e, 471£0' and 17 into the above equation. Using these values from Table 8.1, 

we find 

(9.1094 X 10-31 kg)(1.6022 X 10- 19 C)4 
IE == --------------------------------~--~ 

h (1.1127 X 10- 10 C2·1- I ·m 1)2(1.0546 x 10-34 1·s)2 

== 4.3597 X 10- 18 1 

If we multiply this result by the Avogadro constant, we obtain 

1 Eh == 2625.5 kl .mol I 

To express 1 Eh in wave numbers (cm -I), we use the equation 

_ 1 hv E 4.3597 X 10- 18 1 
v - - - -- - -- - ------------------------------

- A - he - ch - (2.9979 x 108 m·s- I )(6.6261 x 10-34 1·s) 

== 2.1947 X 107 m- I == 2.1947 x 105 cm I 

so that we can write 

Last, to express one Eh in terms of electron volts, we use the conversion factor 

1 e V == 1. 6022 x 10 19 1 

U sing the value of one Eh in joules obtained previously, we have 

-18 ( 1 eV ) 1 Eh == (4.3597 x 10 1) 19 
1.6022 x 10- J 

== 27.211 eV 

The use of atomic units greatly simplifies most of the equations we will use in 
atomic and molecular calculations. For example, the Hamiltonian operator of a helium 
atom 

in atomic units becomes simply (Problem 8-7) 

2e2 e2 

---+------
4n £Or2 4n £Or12 

(8.4) 

(8.5) 

An important aspect of the use of atomic units in atomic and molecular calculations is 
that the calculated energies are independent of the values of physical constants such 
as the electron mass, the Planck constant, etc. As the values of physical constants are 
further refined by advances in experimental methodology, the energies calculated using 
atomic units will not be affected by these refinements. For example, we will see in the 
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next section that the most accurate calculation of the ground-state energy of a helium 
atom gives -2.903 724375 Eh (Table 8.2), which took months of computer time at the 
time the calculation was done. Because atomic units were used, this value will never 
have to be redetermined. 

8-2. Both Perturbation Theory and the Variational Method Can Yield 
Excellent Results for Helium 

~ A 

The problem we want to solve is H ljr == Eljr, where H is given by Equation 8.5. We 
applied perturbation theory to this problem at the end of Section 7--4 by considering the 

TAB L E 8.2 
Ground-state energy of the helium atoma

. 

Ionization Ionization 
Method Energy/ Eh energy/ Eh energy /kJ . mol-I 

Perturbation calculations 

Complete neglect of the inter- 4.0000 2.000 5250 
electronic repulsion term 

First -order perturbation theory -2.7500 0.7500 1969 

Second-order perturbation 2.9077 0.9077 2383 
theory 

Thirteenth-order perturbation -2.90372433 0.90372433 2373 
theoryb 

Variational calculations 

(ls)2 with s == l.6875 -2.8477 0.8477 2226 

(n s ) 2 with s == 1.61162 and -2.8542 0.8542 2242 
n == 0.995 

Hartree-Fockc -2.8617 0.8617 2262 

Hyllerasd
, 10 parameters -2.90363 0.90363 2372 

Pekerise
, 1078 parameters -2.903724375 0.903 724375 2373 

Experimental value -2.9033 0.9033 2373 

a These are nonrelativistic, fixed nucleus-approximation energies. Corrections for nuclear motion and 

relativistic corrections are estimated to be 10-4 Eh . 

b C.W. Scheer and R.E. Knight, Rev. Mod. Ph}'s. 35,426 (1963) 

C E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (] 974) 

d E.A. Hylleras, Z. Physik 54, 347 (1929) 

e C.L. Pekeris, Phys. Rev. 115, 1216 (1959) 



8-2. Both Perturbation Theory and the Variational Method Can Yield Excellent Results for Helium 

interelectronic repulsion term to be a perturbation and found that the energy through 

first order is given by 

'} 5 1 1 
E == -z~ + -z == --Eh == -2.750 Eh 

8 4 
(8.6) 

or -7220 kJ·mol- l
. The experimental value of the energy is -2.9033 E

h
, or 

-7623 kJ ·mol- I
, and so we see that first-order perturbation theory gives a result 

that is approximately 5% in error. Scheer and Knight (see Table 8.2) calculated the 

energy through many orders of perturbation theory and found that 

2 5 0.00870 0.000889 
E == -Z + -Z -0.15766+ + + 8 Z Z2 ... (8.7) 

Equation 8.7 yields a value of -2.9037 E
h

, in good agreement with the experimental 

value of -2.9033 E
h

. 

We can also use the variational method to calculate the ground-state energy of a 

helium atom. In Section 7-1, we used 

(8.8) 

where 

( 
Z3) 1/2 

0/
1 
,Cr.) == - e Z'j 

.S J n (8.9) 

in atomic units as a trial function with Z as a variational parameter and found that 

(27)2 
E == - - E == -2.8477 E 16 h h 

(8.10) 

compared with the first-order perturbation theory result of -2.7500 Eh and the higher­
order result of -2.9037 E

h
, 

The agreement we have found between first-order perturbation theory or our varia­

tional approximation and the experimental value of the energy may appear quite good, 
but let's examine this agreement more closely. The ionization energy (IE) of a helium 
atom is given by 

IE == EH + - EH e e (8.11 ) 

The energy of He+ is -2 Eh (Problem 8-2), so we have 

IE = (-2 + ~) Eh = 0.7500 Eh 

== 1969 kJ .mol I (first-order perturbation theory) 
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or 

(
27)2 

IE == -2Eh + 16 Eh == 0.8477 Eh 

== 2226 kJ ·mol- ' (our variational result) 

whereas the experimental value of the ionization energy is 0.9033 E
h

, or 
2372 kJ· mol I. Even our variational result, with its 60/0 discrepancy with the ex­
perimental total energy, is not too satisfactory if you realize that an error of 0.056 Eh 

is equivalent to 150 kJ· mol I, which is the same order of magnitude as the strength of 
a chemical bond. Clearly, we must be able to do better. 

One way to improve our results is to use a more general trial function than Equa­
tion 8.8. Because a suitable trial function may be almost any function, we are not 
restricted to choosing a Is hydrogenlike wave function. For example, in 1930 the 
American physicist John Slater introduced a set of orbitals, now called Slater orbitals, 
which are of the form 

S (r 8 rfa) == N r f1
-

1 e-(r ym (8 rfa) 
!lIm ' ,If/ III I' If/ (8.12) 

where Nnl == (2S- )n+ ~ / [(2n) !] 1/2 is a normalization constant and the y/n (8, ¢) are the 

spherical harmonics (Section 6-2 and Table 6.3). The parameter S- (zeta) is taken 
to be arbitrary and is not necessarily equal to Z / n as in the hydrogenlike orbitals. 
Note that the radial parts of Slater orbitals do not have nodes like hydrogen atomic 
orbi tals do. 

EXAMPLE 8-2 
Show that S I (r, 8, rfi) is not orthogonal to S '{ (r, 8, ¢). nm 'f/ 11/7/ . 

SOL UTI 0 N: We must show that I =1= 0 where 

I == 100 

drr21IT d8 sin8 12K d¢ S,71111(r, e, ¢)S,,'lm(r, e, ¢) 
o 0 0 

100 lIT 12IT == drr"+n
' e-2~r d8 sin 8 d¢ Y/ll (8, ¢)* Y/ll (8, ¢) 

000 

The integral over 8 and ¢ gives 1 by Equation 6.31, leaving 

This integral cannot equal zero because the integrand is always positive. 



8-2. Both Perturbation Theory and the Variational Method Can Yield Excellent Results for Helium 

If we use 

(8.13) 

as a trial function with ~ as the only variational parameter, then we have seen above 
that ~ == 1.6875 == (~~) and E == -2.8477 Eh (see also Table 8.2). This value of E 
gives an ionization energy of 2226 kJ . mol I, compared with the experimental value of 
2373 kJ· moll. If we let n also be a variational parameter so that the trial function is 

(8.14) 

then we find that n == 0.995, ~ == 1.6116, and E == 2.8542 E
h

, leading to an ionization 
energy of 2242 kJ ·mol- I

. 

If we use a more flexible trial function of the form in which 1jf (r 1 ' r 2) is a product 
of one-electron functions, or orbitals, 

(8.15) 

and allow ¢ (r) to be completely general, then we reach a limit that is both practical 
and theoretical. In this limit, E == -2.8617 Eh and the ionization energy is 0.8617 E

h
, 

compared with the best variational values -2.9037 Eh and 0.9033Eh , respectively. 
This limiting value is the best value of the energy that can be obtained using a trial 
function of the form of a product of one-electron wave functions (Equation 8.15). This 
limit is called the Hartree-Fock limit, and we will discuss it more fully in the next 
section. Note that the concept of electron orbitals is preserved in the Hartree-Fock 
approximation. 

If we do not restrict the trial function to be a product of single-electron orbitals, 
then we can go on and obtain essentially the exact energy. It has been found to be 
advantageous to include terms containing the interelectronic distance r'2 explicitly in 
the trial function. This was first done by Hylleras in 1930, who introduced a trial 
function of the (unnormalized) form 

(8.16) 

Using Z and c as variational parameters, Hylleras obtained a value of E == -2.8913 E
h

, 

within less than 0.5% of the exact value. Using a computer, we could carry this 
procedure out to a larger number of terms to yield an energy that is essentially exact. 
The most extensive such calculation was carried out in 1959 by Pekeris, who obtained 
E == -2.903724375 Eh using 1078 parameters. 
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Although these calculations do show that we can obtain essentially exact energies 
by using the variational method with r 12 in the trial function explicitly, these calculations 
are quite difficult computationally and do not readily lend themselves to large atoms 
and molecules. Furthermore, we have abandoned the orbital concept altogether. The 
orbital concept has been of great use to chemists, so the scheme nowadays is to find 
the Hartree-Fock orbitals mentioned above and correct them by some method such as 
perturbation theory. It is instructive to outline the Hartree-Fock procedure for helium 
because the equations are fairly simple for this two-electron case and provide a nice 
physical interpretation. 

8-3. Hartree-Fock Equations Are Solved by the Self-Consistent 
Field Method 

The starting point of the Hartree-Fock procedure for helium is to write the two-electron 
wave function as a product of orbitals, as in Equation 8.15: 

(8.17) 

The two functions on the right side of Equation 8.17 are the same because we are 
assuming that both electrons are in the same orbital, in accord with the Pauli Exclusion 
Principle. According to Equation 8.17, the probability distribution of electron 2 is 
¢*(r2)¢(r2)dr2 . We can also interpret this probability distribution classically as a 
charge density, and so we can say that the potential energy that electron 1 experiences 
at the point r

1 
due to electron 2 is (in atomic units) 

(8.18) 

where the superscript "eff" emphasizes that vtff (r 1) is an effective, or average, potential. 
We now define an effective one-electron Hamiltonian operator by 

iIeff(r ) == _ ~ '12 
I) 2 I 

(8.19) 

The Schrodinger equation corresponding to this effective Hamiltonian operator is 

(8.20) 

There is a similar equation for ¢(r
2
), but because ¢(r l ) and ¢(r2) have the same 

functional form, we need to consider only one equation like Equation 8.20. Equa­
tion 8.20 is the Hartree-Fock equation for a helium atom, and its solution gives the best 
orbital wave function for helium. Note that iI~ff (r)) depends upon ¢ (r2) through Equa­
tion 8.18. Thus, we must know the solution to Equation 8.20 before we even know the 
operator. The method of solving an equation like Equation 8.20 is by a scheme called 
the self-consistent field method, which can be implemented very easily on a computer. 



8-3. Hartree-Fock Equations Are Solved by the Self-Consistent Field Method 

First, we guess a form for ¢ (r 2) and use it to evaluate v]eff (r
l

) by Equation 8.18. Then 
we solve Equation 8.20 for ¢(r]). Usually, after one cycle the ¢(r) that is used as 
input and the ¢ (r) obtained as output differ. [Remember that ¢ (r

l
) and ¢ (r

2
) have 

the same functional form.] Now we calculate v]eff (r
l
) with this new ¢ (r

2
) and then 

solve Equation 8.20 for a newer ¢(r
l
). This cyclic process is continued until the ¢(r

2
) 

used as input and the ¢ (r]) obtained from Equation 8.20 as output are sufficiently 
close, or are self-consistent. The orbitals obtained by this method are the Hartree-Fock 
orbitals. 

In practice, we use linear combinations of Slater orbitals for ¢ (r), varying the pa­
rameters in each Slater orbital and the number of Slater orbitals used until convergence 
is obtained. For helium, the result obtained was 

¢Is (r
l
) == 0.75738e 1.4300r l + 0.43658e-2.4415r l + 0.17295e-4.0996rl 

-0.02730e 6.4843r) + 0.06675e-7.978rl 

with an identical equation for ¢]s (r2 )· The Hartree-Fock limit gives EHF == -2.8617 Eh 
compared with Eexact == -2.9037 Eh , This procedure yields the best value of the energy 
under the orbital approximation, and the results seem to justify the use of the orbital 
concept for multielectron atoms (and molecules). 

Investigating the discrepancy between the self-consistent field energy and the exact 
energy is interesting. Because 1/J(r

1
, r

2
) == ¢(r

l
)¢(r

2
), the two electrons are taken to 

be independent of each other, or at least to interact only through some average, or 
effective, potential. We say, then, that the electrons are uncorrelated, and we define a 
correlation energy (CE) by the equation 

correlation energy == CE == Eexact - EHF (8.21 ) 

For helium, the correlation energy is (see Table 8.2) 

CE== (-2.9037+2.8617) Eh 

== -0.0420 Eh == -110 kJ·mol- 1 

Although the Hartree-Fock energy is this case is almost 99% of the exact energy, the 
difference is still 110 kJ· mol-I, which is unacceptably large because it is roughly of 
the same magnitude as the strength of a chemical bond. We will say more about this 
difference in Section 8-7 and Chapter 11. 

So much for the ground state of the helium atom. Let's now consider the lithium 
atom. Following Equation 8.17, it would be "natural" to start a variational calculation 
with 

where ¢]s is a hydrogenlike or Slater I s orbital, but we know from general chemistry 
that you cannot put three electrons into a 1 s orbital. This fact leads us to a discussion 
of the Pauli Exclusion Principle and to the spin of the electron. 
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8-4. An Electron Has An Intrinsic Spin Angular Momentum 

Although the Schodinger equation was amazingly successful in predicting or explaining 
the results of most experiments, it could not explain a few phenomena. One was the 
doublet yellow line in the atomic spectrum of sodium. The Schrodinger equation 
predicts that there should be one line around 590 nm, whereas two closely spaced lines 
(a doublet) are observed at 589.59 nm and 588.99 nm. 

This observation and several others were explained in 1925 by two young Dutch 
physicists George Uhlenbeck and Samuel Goudsmit, who suggested that an electron 
behaves like a spinning top having z components of spin angular momentum of ± n12. 
This suggestion amounts to introducing a fourth quantum number for an electron. This 
fourth quantum number, which represents the z component of the electron spin angular 
momentum, is now called the spin quantum number, ms ' and takes on the values ± 1/2 
in atomic units. 

We are going to simply "graft" the concept of spin onto the quantum theory and onto 
the postulates we developed earlier. This may appear to be a somewhat unsatisfactory 
way to proceed, but it turns out to be quite satisfactory for our purposes. In the early 
1930s, the English physicist Paul Dirac developed a relativistic extension of quantum 
mechanics, and one of its greatest successes is that spin arose in a perfectly natural 
way. We will introduce spin here, however, in an ad hoc manner. 

To this point, we have restricted angular momentum to integer values of J in the 
case of the rigid rotator (Section 5-8) or I in the case of the orbital angular momentum 
in the hydrogen atom (Section 6-2). Following the suggestion of Uhlenbeck and 
Goudsmit, we will introduce half-integral angular momentum for electron spin. Just as 

" " we have the eigenvalue equations for L2 and L~ (Equations 6.33 and 6.38), 

(8.22) 

we define the spin operators S2 and S~ and their eigenfunctions 0; and f3 by the equations 

(8.23) 

and 

" 1 S 0; = m 0; = -no; z s 2 
(8.24 ) 

In analogy with Equations 8.22, 0; = Y/f~ and f3 = YI/~/2, but this is a strictly form~al 
association and 0; and f3 and even S2 and S~, for that matter, do not have to be specified 
any further. 



8-5. Wave Functions Must Be Antisymmetric in the Interchange of Any Two Electrons 

Just as we can write that the value of the square of the orbital angular momentum 
of an electron in a hydrogen atom is given by 

(8.25) 

we can say that the square of the spin angular momentum of an electron is 

(8.26) 

Unlike l, which can range from 0 to 00, s can have only the value s == 1/2. Note that 
because s is not allowed to assume large values, the spin angular momentum can never 
assume classical behavior. (See Section 3-6.) Spin is strictly a nonclassical concept. 
The functions a and f3 in Equations 8.23 and 8.24 are called spin eigenfunctions. Even 

"- "-

though we do not know (or need to know) the forms of the operators Sand Sz' they 
must be Hermitian, and so a and f3 must be orthonormal, which we write formally as 

f a*(CT)a(CT)dCT = f {3*(CT){3(CT)dCT = 1 

f a*(CT){3(CT)dCT = f a(CT){3*(CT)dCT = 0 

(8.27) 

where a is called the spin variable. The spin variable has no classical analog. We will 
use Equations 8.27 in a strictly formal sense. 

8-5. Wave Functions Must Be Antisymmetric in the Interchange 
of Any Two Electrons 

We must now include the spin function with the spatial wave function. We postulate 
that the spatial and spin parts of a wave function are independent and so write 

\II (x, y, Z, a) == o/(x, y, z)a(a) or o/(x, y, z)fJ(a) (8.28) 

The complete one-electron wave function '-11 is called a spin orbital. Using the hydro­
genlike wave functions as specific examples, the first two spin orbitals of a hydrogenlike 
atom are 

(8.29) 

It follows that each of these spin orbitals is normalized because we can write 

(8.30) 
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where we have used Equation 8.27. The above two spin orbitals are orthogonal to each 
other because 

Note that even though the" 1 00" part in Equation 8.31 is normalized, the two spin 
orbitals are orthogonal due to the spin parts. 

You probably remember from general chemistry that no two electrons in an atom 
can have the same values of all four quantum numbers, n, I, nl/, and m s' This restriction 
is called the Pauli Exclusion Principle . There is another, more fundamental statement 
of the Exclusion Principle that restricts the form of a multielectron wave function. We 
will present the Pauli Exclusion Principle as another postulate of quantum mechanics, 

but before doing so we must introduce the idea of an antisynl1netric wave function. 
Let's go back to helium and write 

1/1(1,2) == Isa(l)ls,8(2) (8.32) 

where Isa and Is,8 are shorthand notation for WlOol and WIOO- I ' respectively, and , , 
where the arguments 1 and 2 denote all four coordinates (x, y, z, and a) of electrons 1 
and 2, respectively. Note that Equation 8.32 corresponds to a product of the two wave 
functions given by Equation 8.29. Because no known experiment can distinguish one 
electron from another, we say that electrons are indistinguishable and, therefore, cannot 
be labelled. Thus, the wave function 

1/1(2,1) == Isa(2)lsf:3(I) (8.33) 

is equivalent to Equation 8.32. Mathematically, indistinguishability requires that we 
take linear combinations involving all possible labelings of the electrons. For a two­
electron atom, we take the linear combinations of Equations 8.32 and 8.33: 

WI == 1/1(1,2) + 1/1(2, I) == Isa(I)ls,8(2) + lsa(2)ls,8(I) (8.34) 

and 

W
2 

== 1/1(1,2) - 'ljJ(2, 1) == Isa(I)ls,8(2) - lsa(2)ls,8(1) (8.35) 

Both W I and W 2 describe states in which there are two indistinguishable electrons; 
one electron is in the spin orbital Isa and the other is in Is,8. Neither wave function 
specifies which electron is in each spin orbital, nor should they because the electrons 
are indistinguishable. 

Both of the wave functions W I and W 2 appear to be acceptable wave functions for 
the ground state of a helium atom, but it turns out experimentally that we must use the 
wave function W

2 
to describe the ground state of a helium atom. Note that W2 has the 

property that it changes sign when the two electrons are interchanged because 

(8.36) 



8-5. Wave Functions Must Be Antisymmetric in the Interchange of Any Two Electrons 

We say that w 2 (1 , 2) is antisymlnetric under the interchange of the two electrons. The 
observation that the ground state of a helium atom is described by only W 2 is but one 
example of the Pauli Exclusion Principle: 

Postulate 6 

All electronic wave functions must be antisymmetric under the interchange of 
any tlvo electrons. 

In Section 8-6, we will show that Postulate 6 implies the more familiar statement 
of the Pauli Exclusion Principle, that no two electrons in an atom can have the same 
values of the four quantum numbers, n, I, n11, and ms' 

EXAMPLE 8-3 
The wave function \112 (I, 2) given by Equation 8.35 is not normalized as it stands. 

Determine the normalization constant of \112(1, 2) given that the "Is" parts are nor­
malized. 

SOL UTI 0 N: We want to find the constant c such that 

First notice that \112 (1, 2) can be factored into the product of a spatial part and a spin 
part: 

\112(1,2) == Is(1)ls(2)[a(I)j3(2) a(2)j3(I)] 

== I s ( r 1 ) I s ( r 2 ) [ a ((51 ) j3 ( (52 ) a ( (52 ) f3 ((51 ) ] (8.37) 

The normalization integral becomes the product of three integrals 

I = c2 f I S * (r I ) I s (r I ) d r I f I S * (r 2) Is (r 2) d r 2 x 

f f [a*(eY1){J*«(J2) a*«(J2),8*«(JI)][a«(JI),8«(J2) - a((52)j3((5I)]d(5l d (52 

The spatial integrals are equal to 1 because we have taken the ] s orbitals to be 
normalized. Now let's look at the spin integrals. When the two terms in the integrand 
of the spin integral are multiplied we get four integrals. One of them is 

f f a* (eY l ),8* (eY2)a«(JI),8 (eY2)deY l d(J2 

= f a* «(JI )a(eY l )d(J, f ,8* (eY2),8 (eY2)deYz = I 

where we have used Equation 8.27. Another is 

f f a* «(JI),8* «(J2)a «(J2),8 «(JI )d eY l deY 2 

= f a*(eY l ),8«(J1 )deY l f ,8* (eYz)a«(J2)deYz = 0 
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The other two are equal to 1 and 0, and so 

J = 2c~ 

In order that I = 1, C = 1 / J2. 

8-6. Antisymmetric Wave Functions Can Be Represented 

by Slater Determinants 

Now that we have introduced spin and have seen that we must use antisymmetric wave 
functions, we must ask why we could ignore the spin part of the wave function when 
we treated the helium atom in Sections 7-1 and 8-2. The reason is that \11

2 
can be 

factored into a spatial part and a spin part, as we saw in Equation 8.37 in Example 8-3. 
In Sections 7-1 and 8-2, we used only the spatial part of \112' and the spatial part is just 
a product of two Is Slater orbitals. If we use \112 to calculate the ground-state energy 
of a helium atom, then we obtain 

f \11;(1, 2)H\II/I, 2)dr1dr2dO'l d0'2 

E~ ---------------------------f \11;0,2)\11/1, 2)dr1dr2dO'l d0'2 

(8.38) 

The numerator in Equation 8.38 is 

f Is*(rl ) Is*(r2)[a*(0'1)tl*(0'2) - a*(a2 ){3*(a
J
)] 

'" 
(8.39) 

x Hls(r t )ls(r2)[a(a
J
){3(a2) - a(a2){3(at)]drtdr2da\da2 

Because the Hamiltonian operator does not contain any spin operators, it does not 
affect the spin functions and so we can factor the integral in Equation 8.39 to give 

f 1s*(r)) Is*(r
2
)H1s(r

l
) 1s(r

2
)dr

1
dr2 

(8.40) 
x f [a*(0'1)tl*(0'2) - a*(a2){3*(a))][a(a)){3(a2 ) - a(a2){3(al )]da)da2 

We showed in Example 8-3 that the total spin integral is equal to 2. It is a straightforward 
exercise (Problem 8-15) to show that the contribution of the spin integral to the 
denominator in Equation 8.38 is also equal to 2 and so Equation 8.38 becomes 

f 1jr*(rl' r 2)H1jr(r l , r 2)dr1dr2 

E~ -----------------------

f 1jr*(rl' r 2)1jr(r l , r 2)dr1dr2 

(8.41) 



8-6. Antisymmetric Wave Functions Can Be Represented by Slater Determinants 

where 1(; (r l' r 2) is just the spatial part of \112 (1, 2). Equation 8.41 is equivalent to 
Equation 7.18 in Section 7-1. It is important to realize that a factorization into a spatial 
part and a spin part does not occur in general but that it does occur for two-electron 
systems. 

It is fairly easy to write the antisymmetric two-electron wave function by in­
spection, but what if we have a set of N spin orbitals and we need to construct an 
antisymmetric N -electron wave function? In the early I930s, Slater introduced the use 
of determinants (MathChapter E) to construct antisymmetric wave functions. If we 
use Equation 8.35 as an example, then we see that we can write \{J (we will drop the 
subscript 2) in the form 

Isa(l) 
\{J(I,2) == 

lsa (2) 

ls,8(I) 

Is,8(2) 
(8.42) 

We obtain Equation 8.35 upon expanding this determinant. The wave function \11 (1, 2) 
given by Equation 8.42 is called a determinantal wave function. 

Two properties of determinants are of particular importance to us. The first is that 
the value of a determinant changes sign when we interchange any two rows or any two 
columns of the determinant. The second is that a determinant is equal to zero if any 
two rows or any two columns are the same (MathChapter E). 

Notice that when we interchange the two electrons in the determinantal wave 
function \11 (1, 2) (Equation 8.42), we interchange the two rows and so change the sign 
of \11 (1, 2). Furthermore, if we place both electrons in the same spin orbital, say the 
Isa spin orbital, then \11 (1, 2) becomes 

Isa (1) 
\{J (1, 2) == 

Isa(2) 

lsa (1) 
==0 

1 sa (2) 

This determinant is equal to zero because the two columns are the same. Thus, we 
see that the determinantal representation of wave functions automatically satisfies the 
Pauli Exclusion Principle. Determinantal wave functions are always antisymmetric and 
vanish when any two electrons have the same four quantum numbers, that is, when 
both electrons occupy the same spin orbital. 

We need to consider one more factor before our discussion of determinantal wave 
functions is complete. Recall from Example 8-3 that the normalization constant for 
\11 (I, 2) given by Equation 8.42 is 1 I J2. Therefore, 

1 Isa(l) 
\11(1,2) == M2 

v L lsa(2) 

Is,8(I) 

Is,8(2) 
(8.43) 

is a normalized two-electron determinantal wave function. The factor of II J2 assures 
that \11 ( 1, 2) is normalized. 

We have developed the determinantal representation of wave functions using a 
two-electron system as an example. To generalize this development for an N -electron 
system, we use an N x N determinant. Furthermore, one can show (Problem 8-21) 
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that the normalization constant is 1/ vItif, and so we have the N -electron determinantal 
wave function 

1 
\}J(I, 2, ... , N) == ri:Ti 

v N ! 
(8.44) 

where the u 's in Equation 8.44 are orthonormal spin orbitals. Notice that \11 (1, 2, ... , N) 

changes sign whenever two electrons (rows) are interchanged and vanishes if any two 

electrons occupy the same spin orbital (two identical columns). 

We are now ready to go back to the problem that led us to discuss spin, that is, the 

lithium atom. Note that we cannot put all three electrons into 1 s orbitals because two 

columns in the determinantal wave function would be the same. Thus, an appropriate 
wave function is 

Isa(l) 
1 

\11 == Isa(2) 
J3! 

I sa (3) 

1 sf3 ( I ) 

1 sf3 (2) 

Isf3(3) 

2sa(1) 

2sa(2) 

2sa(3) 

(8.45) 

The standard method for determining the optimal form of the spatial part of the spin 

orbitals in a determinantal wave function such as Equation 8.43 or 8.45 is the Hartree­

Fock self-consistent field method, which we discuss in the next section. 

8-7. Hartree-Fock Calculations Give Good Agreement with 
Experi mental Data 

In Section 8-3, we discussed the Hartree-Fock method for the helium atom. The 
Hartree-Fock equation for this system is given by Equation 8.20, where iI~ff is given 

by Equation 8.19. The helium atom is a special case because the Slater determinant 
factors into a spatial part and a spin part, and so we were able to use Equation 8.17 

as the helium atomic wave function. This factorization into a spatial part and a spin 

part does not occur for atoms with more than two electrons and so we must start with 

a complete Slater determinant such as Equation 8.45. This leads to an equation of the 

form 

/'-. 

F.¢. == E.¢. 
I I I I 

(8.46) 

A 

where the effective Hamiltonian operator is called the Fock operator (F). The use 

of a full Slater determinant instead of just a simple product of spatial orbitals like 
in Equation 8.17 makes Fi more complicated than HefT given by Equation 8.19 for 

/'-. 

helium. We will not need an explicit expression for F
i

• It is sufficient to realize that 

Equation 8.46 must be solved in a self-consistent manner and that there are readily 

available computer programs to do this. The self-consistent orbitals obtained from 



8-7. Hartree-Fock Calculations Give Good Agreement with Experimental Data 

Equation 8.46 are called Hartree-Fock orbitals. The eigenvalues Ei of Equation 8.46 
are called orbital energies. 

According to an approximation first introduced by Koopmans, Ei in Equation 8.46 
is the ionization energy of an electron from the ith orbital. Table 8.3 compares some 
ionization energies of neon and argon obtained by using Koopmans' approximation 
with those obtained by subtracting the Hartree-Fock energy of the neutral atom from 
that of the ion. You can see that Koopmans' approximation gives results that are al­
most as good as the direct calculation. Figure 8.1 shows the ionization energies of 
the elements hydrogen through xenon plotted against atomic number. Both ioniza­
tion energies obtained by Koopmans' approximation and experimental data are shown 
in the figure. This plot clearly shows the shell and subshell structure that students 
first learn in general chemistry. Given that there are no adjustable parameters in­
volved in the calculated values in Figure 8.1, the agreement with experimental data is 
remarkable. 

Note that the order of the energies of the various subshells is in general agreement 
with observation for neutral atoms. In particular, the energies of the 2s and 2 p orbitals 
are not the same as they are for the hydrogen atom. The degeneracy of the 2s and 
2p orbitals or, more generally, the fact that the energy depends on only the principal 
quantum number is unique to the purely llr Coulombic potential in the hydrogen atom. 
In a Hartree,-Fock calculation, the effective potential "jeff (r

j
) is more complicated than 

llr, and v.eff (r.) breaks up the degeneracy found in the hydrogen atom, giving us the 
) ) 

familiar ordering of the orbital energies we first learned in general chemistry. 

TAB L E 8.3 
Ionization energies of neon and argon obtained from neutral aton1 orbital energies (Koopmans' 
approximation) and by subtracting the Hartree-Fock energy of the neutral atom from the 
Hartree-Fock energy of the appropriate state of the positive ion. 

Electron 
removed 

Neon 

Is 

2s 

2p 

Argon 

Is 

2s 

2p 

3s 

3p 

Resulting 
orbital occupancy 

Is2s 22p6 

ls22s2 p6 

Is 22s 22p 5 

Is2s22p63s23 p6 

Is22s2p63s23 p6 

ls22s22ps3s23p6 

1 s22s22p63s3 p6 

1 s22s22p63s 23 pS 

Ionization energies/MJ . mol I 

Koopmans' 
approximation 

86.0 

5.06 

1.94 

311.35 

32.35 

25.12 

3.36 

1.65 

Direct Hartree­
Fock calculation 

83.80 

4.76 

1.91 

308.25 

31.33 

24.01 

3.20 

1.43 

Experimental 

83.96 

4.68 

2.08 

309.32 

23.97 

2.82 

1.52 
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FIG U R E 8.1 
The ionization energies of neutral atorTIS of hydrogen through xenon plotted versus atomic 
number. The straight lines connect experimental data, and the crosses are calculated according 
to Koopmans' approximation. 

Because the Hartree-Fock method uses determinantal wave functions, there is 
some correlation between electrons with the same spin, because two electrons with the 
same spin cannot occupy the same orbital. Nevertheless, the Hartree-Fock method is 
not exact, and so we define a correlation energy by (see Equation 8.21) 

correlation energy == CE == E .t - EHF·, 
exac 

Recall from Section 8-3 that the correlation energy of a helium atom is 0.042 Eh == 
110 kJ· mol-I. Although correlation energies appear to be small, they are significant 
when we realize that many quantities of chemical interest such as bond strengths and 
the energies associated with many chemical reactions are of the order of 100 kJ· moll. 
Consequently, much quantum-chemical research has been directed toward the calcula­
tion of correlation energies. For example, perturbation schemes have been developed 
that treat the Hartree-Fock orbitals as a zero-order wave function, so that the correlation 
energy can be calculated by perturbation theory. 

8-8. A Term Symbol Gives a Detailed Description 
of an Electron Configuration 

Electron configurations of atoms are ambiguous in the sense that a number of sets of 
m I and m s are consistent with a given electron configuration. For example, consider the 
ground-state electron configuration of a carbon atom, ls22s22p2. The two 2p electrons 
could be in any of the three 2 p orbitals (2 p , 2 p ., 2 p,,) and have any spins consistent 

x ,\ ,. 

with the Pauli Exclusion Principle. The energies of these different states may differ, 
and so we require a more detailed designation of the electronic states of atoms. The 
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scheme we will present here is based upon the idea of determining the total orbital 
angular momentum L and the total spin angular momentum S and then adding Land 
S together vectorially to obtain the total angular momentum J. The result of such a 
calculation, called Russell-Saunders coupling, is presented as an atomic tern1 symbol, 
which has the form 

2S+1 L 
J 

In a term symbol, L is the total orbital angular momentum quantum number, S is 
the total spin quantum number, and J is the total angular momentum quantum number. 
We will see that L will necessarily have values such as 0, 1, 2, .... Similar to assigning 
the letters s, p, d, f to the values I == 0, 1,2,3 of the orbital angular momentum for 
the hydrogen atom, we will make the correspondence 

L=012345 
SPDFGH 

We will also see that the total spin quantum number S will necessarily have values 
such as 0, ~, 1, ~, ... and so the 2S + 1 left superscript on a term symbol will have 
values such as 1 , 2, 3, .... The quantity 2S + 1 is called the spin multiplicity. Thus, 
ignoring for now the subscript J, term symbols will be of the type 

The total orbital angular momentum and the total spin angular momentum are 
given by the vector sums 

(8.47) 

and 

(8.48) 

where the summations are over the electrons in the atom. The z components of L 
and S are given by the scalar sums 

L" == " L- == "m l _ == ML , L.t ,./ L.t ( (8.49) 

and 

s == '""'s _ == '""'m _ == M(, ;:. L.t;:'1 L.t.l'1 ~) (8.50) 

Thus, although the angular momenta add vectorially as in Equations 8.47 and 8.48, 
the z components add as scalars (Figure 8.2). Just as the z cOlnponent of I can assume 
the 21 + 1 values m, == I, I - 1, ... , 0, ... , -I, the z component of L can assume 
the 2L + 1 values ML == L, L - 1, ... ,0, ... , -L. Similarly, Ms can take on the 
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Fie U R E 8.2 
A schematic illustration of the addition of 
angular momentum vectors. 

2S + 1 values S, S - 1, ... , - S + 1, - S. Thus, the spin multiplicity is simply the 
2S + 1 projections that the z component of S can assume. 

Let's consider the electron configuration ns 2 (two electrons in a ns orbital). There 
is only one possible set of values of In/I' 111.1'1' m 12 , and ms2: 

m s1 In 12 

o o 

fn
s2 

1 
2 

o o 

The fact that the only value of M L is M L == 0 implies that L == o. Similarly, the fact 
that the only value of Ms is Ms == 0 implies that S == O. The total angular momentum J 
is given by 

J==L+S (8.51 ) 

and its z component is 

J == L + S == (M + M ) == M == 0 :;. ::: .:: L 5 J 
(8.52) 

which implies that J == O. Consequently, for an ns 2 electron configuration, L == 0, 
S == 0, and J == o. The value L == 0 is written as S in the term symbol, and so we find 
that the term symbol corresponding to an ns 2 electron configuration is I So (singlet S 
zero). Because the two electrons have opposite spins, the total spin angular momentum 
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is zero. Both electrons also occupy an orbital that has no angular momentum, thus the 
total angular momentum must be zero, which is what the 1 So term indicates. 

An np6 electron configuration also will have a I So term symbol. To understand 
this, realize that the six electrons in the three np orbitals have the quantum numbers 
(n, 1, 1, ± 1/2), (n, 1,0, ± 1/2), and (n, 1, -1, ± 1/2). Therefore, when we add up all 

the m/i and m si ' we get ML == 0 and Ms == 0, and we have ISO' 

EXAMPLE 8-4 
Show that the term symbol corresponding to an nd 10 electron configuration is 1 So-

SOL UTI 0 N: The ten d orbital electrons have the quantum numbers (n, 2, 2, ± 1/2), 
(n,2, 1, ± 1/2), (n, 2, 0, ± 1/2), (n, 2, -1, ± 1/2), and (n, 2, -2, ± 1/2). Therefore, 

M L == ° and M 5 == ° as for ns2 and np6 electron configurations, and the term symbol 
• 1 S 
IS O. 

Notice that M Land M 5 are necessarily equal to zero for completely filled subshells 
because for every electron with a negative value of m li , there is another electron with 
a corresponding positive value to cancel it~ the same holds true for the values of m si' 

Thus, we can ignore the electrons in completely filled subshells when considering other 
electron configurations. For example, we can ignore the contributions of the ls22s2 
orbitals to the 1 s22s22 p2 electron configurations of a carbon atom when we discuss a 
carbon atom later. 

An electron configuration that has a term symbol other than I So is ns In's 1 , 

where n -=1= n'. An example is a helium atom with the excited-state electron config­
uration IS12s 1. To determine the possible values of m'l' m'sl' m ,2 , and m s2 ' we set up 
a table in the following manner: Because mil and n1

/2 
can both have a maximum value 

of 0, the maximum value of M L is 0 (see Equation 8.49), and 0 is its only possible 
value. Similarly, because m,d and n1s2 can both have values of ± 1/2, Ms can be -1, 
0, or 1. We now set up a table with its columns headed by the possible values of 
M s and its rows headed by the possible values of M

L
, and we then fill in the sets of 

values of m'l' m.d , m /2 , and n1 s2 that are consistent with each value of ML and Ms as 
shown 

Ms 

ML 1 0 -1 

0 0+,0+ 0+ 0-' 0- 0+ , , , 0- 0-, 

The notation 0+ means that ml == 0 and In,\' == + 1/2 and 0- means that In, == 0 and 

ms == -1/2. The possible sets of values of In II , m,d' In'2' and ms2 that are consistent 
with each value of M Land Ms are called lnicrostates. 

There are four microstates in this table because there are two possible spins (± 1/2) 
for the electron in the ns orbital and two possible spins for the electron in the n's orbital. 

295 



296 Chapter 8 / Multielectron Atoms 

Note that we include both 0+ ~ 0 and 0-,0+ because the electrons are in nonequiv­
alent orbitals (e.g., Is and 2s). Note that all the values of M L in the above table are 

zero, so they all must correspond to L == O. In addition, the largest value of M s is 1. 
Consequently, S must equal 1 and the values M 5 == 1, 0, and -1 correspond to L == 0, 
S == 1, corresponding to a 3 S state. This 3 S state accounts for one microstate from 

each column in the above table. The middle column contains two microstates, but it 

makes no difference which one we choose. After eliminating one microstate from each 
column (0+, 0+ ~ 0 ,0 ; and either 0+, 0- or 0- , 0+), we are left with only the entry 

with M L == 0, Ms == 0 (either 0 ,0+ or 0+,0 ), which implies that L == 0 and S == 0, 
corresponding to a I S state. These two pairs of L == 0, S == 1 and L == 0, S == 0 along 

with their possible values of M J can be summarized as 

L==O S==1 , 
M L == 0, M s == 1, 0, -1 
M J == ML + Ms == 1, 0, -1 

L == 0, S == 0 

ML == 0, Ms == 0 
M.I == ML + Ms == 0 

The values of M J here imply that J == 1 for the L == 0, S == 1 case and that J == 0 for the 
L == 0, S == 0 case. The two term sYlnbols corresponding to the electron configuration 
ns In's I are 

The 3 S 1 is called a triplet S state. These two term symbols correspond to two 
different electronic states with different energies. We will see below that the triplet 
state (3 S I) has a lower energy than the singlet state C So). 

8-9. The Allowed Values of J are L + S, L + S - 1, ... , IL - 51 

As a final example of deducing atomic term symbols, we will consider a carbon atom, 
whose ground-state electron configuration is Is22s22p2. We have shown previously 

that we do not need to consider completely filled subshells because M Land M 5 are 
necessarily zero for cOlnpletely filled subshells. Consequently, we can focus on the 
electron configuration np2. As for the case of ns 1 n' s I above, we will make a table of 

possible values of In'I' In sl ' 111 12 , and 111.\2' Before we do this, however, let's see how 
many entries there will be in the table for np2. We are going to assign two electrons 

to two of six possible spin orbitals (2P.rCt, 2p.rf3, 2pyCt, 2py/3, 2pz.Ct, 2p~f3). There 
are 6 choices for the first spin orbital and 5 choices for the second, giving a total of 
6 x 5 == 30 choices. Because the electrons are indistinguishable, however, the order of 

the two spin orbitals chosen is irrelevant. Thus, we should divide the 30 choices by a 

factor of 2 to give 15 as the number of distinct ways of assigning the two electrons to 

the six spin orbitals. Generally, the number of distinct ways to assign N electrons to 
G spin orbitals belonging to the same subshell (equivalent orbitals) is given by 

G! 

N!(G - N)! 
(equivalent orbitals) (8.53) 
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Note that Equation 8.53 gives 15 if G == 6 and N == 2. 

EXAMPLE 8-5 
How many distinct ways are there of assigning two electrons to the nd orbitals? In 

other words, how many sets of In/i and nZsi are there for an nd2 electron configuration? 

SOL UTI 0 N: There are five nd orbitals, or ten nd spin orbitals. Thus, the nun1ber 

of distinct ways of placing two electrons in nd orbitals is 

10! 
-- == 45 
2181 

To determine the 15 possible sets of mil' m,d' m 12 , and ms2 for an np2 electron 
configuration, we first determine the possible values of M L and Ms' Because mil 
and m 12 can both have a maximum value of 1, the maximum value of M L is 2 (see 
Equation 8.49), and so its possible values are 2, 1, 0, -1, and -2. Similarly, because 
msl and ms2 can each have a maximum value of 1/2, the maximum value of Ms is 1 
(see Equation 8.50), and so its possible values are 1, 0, and -1. Using this information, 
we set up a table with its columns headed by the possible values of Ms and its rows 
headed by the possible values of M L' and then fill in the microstates consistent with 
each value of ML and M s' as shown: 

Ms 

M I 0 -1 

2 1 + 1 + , I +, 1 

1 0+ 1+ , 1+ 0 , , 1- 0+ , 

0 o+-()+ . 1+ -1+ , , , I + , 1 - ~ -1+ 1-' , , 0+,0-

1 0+ -1+ , 0+ , 1-' , 0 , -1+ 0- -1 , 

-2 -1 +; 1+ -I + -1-, 

where, for example, the notation 1+, -1- means that mil == 1, n1
s1 

== + 1/2, and 
n1'2 == -1, m s2 == - 1/2. Unlike the earlier example in which we treated nonequivalent 
orbitals, we do not include both 1 +,0 and 0-, 1 + in the Ms == 0, M L == 1 position 
because in this case, the orbitals are equivalent (two 2 p orbitals). Consequently, the 
two microstates 1 +, 0 and 0-, 1 + are indistinguishable. The six microstates that are 
crossed out in the above table violate the Pauli Exclusion Principle. The remaining 15 
microstates constitute all the possible microstates for an np2 electron configuration. 

We must now deduce the possible values of Land S from the tabulated values of 
ML and Ms' The largest value of ML is 2, which occurs only with Ms == O. Therefore, 
there must be a state with L == 2 and S == 0 CD). Because L == 2, M L == 2, 1, 0, -1, 
and -2, and so the I D state will account for one microstate in each row of the middle 
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column of the above table. For those rows that contain more than one microstate (the 
second, third, and fourth rows), it makes no difference which microstate is chosen. We 
will arbitrarily choose the microstates 1 +, 0-; 1 +, -1 ; and 0+, -1-. If we eliminate 

these microstates from the table, we are left with the following table. 

Ms 

ML 1 0 -1 

2 

1 0+, 1 + 1 , 0+ 0- 1-, 

0 1+ -1+ , -1+ 1 , ; 0+,0- 1- -1-, 

-1 0+, -1 + 0-, -1 + 0- -1 , 

-2 

The largest value of M L remaInIng is M L == 1, implying L == 1. There are mi­
crostates with M L == 1, 0, -1 associated with M s == 1 (0+, 1 +; 1 +, -1 +; 0+, -1 +), 

with M s == ° , (1-, 0+; either -1 +, 1 or 0+, 0-; 0-, -1 +) and with M s == -1 
(0 , 1-; 1-, -1 ; 0-, -1-). Therefore, these nine microstates correspond to L == 1 
and S == 1, or a 3p (triplet P) state. If we eliminate these nine microstates from the 

table, then we are left with only one microstate with M L == 0 and M s == 0 at the center 

of the table, which implies L == 0 and S == 0 C S). 
So far, we have found the partially specified term symbols, I D, 3p, and I S. To 

complete the specification of these term symbols, we must determine the possible 

values of J in each case. Recall that M J == M L + Ms' For the five entries corresponding 
to the I D state, Ms == 0, and so the values of M J are 2, 1, 0, -1, and -2, which 
implies that 1 == 2. Thus, the complete term symbol of the I D state is I D

2
. Note that 

the degeneracy of this state is 5, or 21 + 1. The values of M J for the nine entries 
for the 3p state are 2, 1, 1, 0, 0, -1, 0, -1, and -2. We clearly have one set of 

2, 1, 0, -1, -2 corresponding to 1 == 2. If we eliminate these five values, then we are 
left with I, 0, 0, -1, which corresponds to 1 == 1 and 1 == 0. Thus, the 3p state has 

three possible values of 1, so the term symbols are 3P2' 3Pl' and 3PO' The I S state must 

be I So' In summary, then, the electronic states associated with an np2 configuration are 

3p 
0' 

3p 
I ' 

3p 
2' and 

The degeneracies of these states are 21 + 1 == 5, 1, 3, 5, and 1, respectively. Table 8.4 

lists the term symbols that arise from various electron configurations. 

The values of 1 for the term symbols in Table 8.4 can be determined in terms of 

the values of Land S if we recall that 

J==L+S 



TAB L E 8.4 
The possible term symbols (excluding the J subscript) for various 
electron configurations. 

Electron 
configuration 

p3 

pI, p5 

d l
, d 9 

d 2 d 8 , 

Term symbol (excluding the J subscript) 

2 P 

2p, 2D (two), 2F, 2G, 2H, 4p, 4F 

IS (two), ID (two), IF, IG (two), 21, 3p (two), 

3D 3F (two) 3G 3H 5D , '" 

2S, 2p, 2D (three), 2F (two), 2G (two), 2H, 21, 

4p 4D 4F 40 6S , , , , 

The largest value that J can have is in the case when both Land S are pointing in the 
same direction, so that J == L + 5. The smallest value that J can have is when Land S 
are pointing in opposite directions, so that J == I L - 51. The values of J lying between 
L + Sand /L - 51 are obtained from 

J==L+S, L+S 1, L+S-2, ... , IL-SI (8.54) 

Equation 8.54 has the following pictorial representation. The vectors Land S are 
added together in all ways such that their sum is a vector of length 0, 1, 2, ... if S 
is an integer, or 1/2, 3/2, 5/2, ... if S is 1/2, 3/2, 5/2, and so on. For example, if L == 2 
and S == 1, then Land S can be added vectorially as follows. 

S 

J=L+S S 
L L L 

J=L+S 
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Note that the maximum value of J corresponds to Land S pointing in the same 
direction and that the minimum value of J corresponds to Land S pointing in opposite 
directions. 

If we apply Equation 8.54 to the Jp term symbol above, then we see that the values 
of J are given by 

J == (1 + 1)~ (1 + 1) - 1, 1 - 1 

and so J == 2, 1, 0, as \tve deduced above. 

EXAMPLE 8-6 
Use Equation 8.54 to deduce the values of J associated with the tenn symbols 2S, 3D, 
and 4p. 

SOL UTI 0 N: For a 2S state, L == 0 and S == 1/2. According to Equation 8.54, the 

only possible value of J is 1/2, and so the term symbol will be 2S 1/2' For a 3D state, 

L == 2 and S == 1. Therefore, the values of J will be 3, 2, and 1, and so the term 

symbols will be 

3D 
I ' 

3.0 
! ' 

and 

Par a 4p state, L == 3 and S = 3/2. Therefore, the values of J will be 9/2, 7/2, 5/2, and 

3/2, and so the term sYInbols will be 

Example 8-6 shows that the "L and S part" of a term symbol is sufficient to deduce 
the complete term symbol. 

There is a useful consistency test between Equation 8.53 and the term symbols 
associated with a given electron configuration. A term symbol 25+ I L will have 2S + 1 
entries for each value of M L in a table of possible values of the In/i and m sf (cf. the 
table of entries for np2). Because there are 2L + 1 values of M L for a given value 
of L, the total number of entries for each term symbol (excluding the J SUbscript) is 
(2S + 1) (2L + 1). Applying this result to the np2 case gives 

IS 3p ID 
(1 x J) + (3 x 3) + (1 x 5)== 15 

EXAMPLE 8-7 
Show that Equation 8.53 and the term symbols for nd2 given in Table 8.4 are consistent. 



8-10. Hund's Rules Are Used to Determine the Term Symbol of the Ground Electronic State 

SOL UTI 0 N: The total number of entries in a table of possible values of m Ii and ln si 

for an nd2 electron configuration is 

G! 10! 
- ==45 

N!(G - N)! 2!8! 

The term symbols given in Table 8.4 are 

IS 10 10 3p 3F 
(1 x I) + (1 x 5) + (I x 9) + (3 x 3) + (3 x 7)== 45 

8-10. Hund's Rules Are Used to Determine the Term Symbol of the 
Ground Electronic State 

Each of the states designated by a term symbol corresponds to a determinantal wave 
function that is an eigenfunction of L 2 and 52, and each state corresponds to a certain 
energy. Although we could calculate the energy associated with each state, in practice, 
the various states are ordered according to three empirical rules formulated by the 
German spectroscopist Friederich Hund. Hund's rules are as follows: 

1. The state with the largest value of S is the most stable (has the lowest energy), 
and stability decreases with decreasing S. 

2. For states with the same value of S, the state with the largest value of L is the 
most stable. 

3. If the states have the same value of Land S, then, for a subshell that is less than 
half filled, the state with the smallest value of J is the most stable; for a subshell 
that is more than half filled, the state with the largest value of J is the most stable. 

EXAMPLE 8-8 
Use Hund's rules to deduce the lowest energy state of an excited state of a beryllium 
atom whose electron configuration is (Is )225 135 I and of the ground state of a carbon 
atom. 

SOL UTI 0 N: The term symbols for a 25 135 I configuration are (see Section 8-8) 

According to the first of Hund's rules, the more stable state is the 3 S I state. 

The ground-state electron configuration of a carbon atom is p2. The term symbols 
for a p2 configuration are (see Table 8.4) 

3p 
0' and 10 

2 

According to the first of Hund's rules, the ground state is one of the 3p states. According 
to Hund's third rule, the most stable state is the 3P

O 
state. 
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8-11. Atomic Term Symbols Are Used to Describe Atomic Spectra 

Atomic term symbols are sometimes called spectroscopic term symbols because atomic 
spectral lines can be assigned to transitions between states that are described by atomic 
term symbols. For example, the first few electronic states of atomic hydrogen are 
given in Table 8.5. The electron configuration Is gives the term 2S

1
/2' which is doubly 

degenerate, corresponding to M] == + 1/2 and -1/2. The 2s electron also gives rise 
to a doubly degenerate 2 S 1/2 state. An electron in a 2 p orbital gives rise to two states, 

2Pl/2 and 2P3/2' The first of these is two-fold degenerate, and the second is four-fold 
degenerate (M] == 3/2, 1/2, -1/2, -3/2). The total degeneracy of the n == 2 level 
is eight-fold. When we solved the Schrodinger equation for the hydrogen atom in 
Chapter 6, we found that the electronic energy depended only upon the principal 
quantum number, n (Equation 6.44). The data in Table 8.5, however, show that the 
various n levels are split into sets of closely lying energy levels. The reason for this 
fine splitting is spin-orbit coupling, which we will discuss only briefly. 

In addition to the usual kinetic energy and electrostatic terms in the Hamiltonian 
operator of a multielectron atom, there are a number of magnetic and spin terms. The 
most important of these terms is the spin-orbit interaction term, which represents the 
interaction of the magnetic moment associated with the spin of an electron with the 
magnetic field generated by the electric current produced by the electron's own orbital 

TAB L E 8.5 
The first few electronic states of atomic hydrogen. a 

Electron configuration Term symbol Energy/em I 

Is 1 s 2 S 1/2 0.00 

2p 
, 

2p ~PI/2 82 258.917 

2s 2s 2S 1/2 82 258.942 

2p 2p 2P3/ 2 82 259.272 

3p 3p 2PI/2 97 492.198 

3s 3s 2S I/2 
97 492.208 

3p,3d ? 2D 3 p ~ P 3/2' 3d 3/2 97 492.306 

3d 3d 20S/ 2 97 492.342 

4p 
, 

4p ~PI/2 102 823.835 

4s 
, 

4s -S 1/2 102 823.839 

4p,4d ' 2 4 p -P3/ 2 , 4d 0 3/ 2 102 823.881 

4d,4f 4d 20S/ 2 ' 4f 2FS/2 102 823.896 

4f 
, 

4f ~FS/2 102 823.904 

a From C.E. Moore, "Atomic Energy Levels", Nat!. Bur. Std. eire. No. 467 (U.S. Government Printing 

Office, Washington, D.C., 1949). 
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motion. Other terms include spin-spin interaction and orbit-orbit interaction, but these 

are numerically less important. The Hamiltonian operator for a multielectron atom can 

be written as 

" 1 ~ 2 ~ Z ~ 1 ~ 
H == --~ ~i - ~ - + ~ - + ~~(~i)lj . Sj 

2 . . r. .. r.. . 
(8.55) 

./ ././ 1<./ 1./ J 

where I. and s. are the individual electronic orbital momenta and spin angular momenta, 
.I J 

respectively, and where ~ (r.) is a scalar function of r, whose form is not necessary here 
J 

(see Problem 8-46). We can abbreviate Equation 8.55 by writing 

where fIo represents the first three terms, which we have treated in this chapter, and Hs~) 
" 

represents the fourth term (spin-orbit coupling) in Equation 8.55. When Hs~~) is small 

enough to be considered a small perturbation (particularly, for atoms whose atomic 

numbers are less than 30 or so), perturbation theory leads to the splitting we observe 

in Table 8.5 (Problem 8-46). 

Let's use Table 8.5 to take a closer look at the atomic hydrogen spectrum. In 
particular, let's look at the Lyman series, which is the series of lines that arise from 

transitions from states with n > 2 to the n == 1 state. (See Figure 1.10.) As we did in 

Chapter 1, we can use the Rydberg formula to calculate the frequencies of the lines in 
the Lyman series. The frequencies of the lines in the Lyman series are given by 

jj = I 09 677.58 ( I n == 2, 3, ... (8.56) 

If we express our results in terms of wave numbers, we obtain the following: 

Transition Frequency /cm- I 

2~ 1 82 258.19 
3~ 1 97 491.18 
4~ 1 102 822.73 
5~ 1 105 290.48 

If we use Table 8.5, we see that there are three states for n == 2. Not all these states can 
make a transition to the ground state because of selection rules. Recall from Chapter 5 
that selection rules are restrictions that govern the possible, or allowed, transitions from 
one state to another. In the case of atomic spectra, the selection rules are 

~L == O. ± 1 
J 

~S == 0 (8.57) 

~J==O,±1 

except that a transition from a state with ] == 0 to another state with J == 0 is not 
allowed (forbidden). The selection rules given by Equation 8.57 have been deduced 

experimentally and corroborated theoretically. We will derive some spectroscopic se­

lection rules in Chapter 13, but here we will just accept them. (The rule ~ L == ± 1 
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follows from the principle of conservation of angular momentum because a photon has 
a spin angular momentum of n.) 

The selection rules given in Equations 8.57 tell us that 2p ---+ 2S transitions are 
allowed, but that 2 S ---+ 2 S transitions are not allowed because ~ L == 0 and that 2 S ---+ 

2D transitions and 2p ---+ 2p transitions are not allowed because ~L == ±2, respectively, 
in these transitions. Thus, if we look closely at the Lyman series of atomic hydrogen, 
we see that the allowed transitions into the ground state are 

or 

~L==l 

~s == 0 
~J==O 

~L == 1 
~S == 0 
~J== 1 

No other transi tions into the 1 s 2 S 1/2 ground state are allowed. 
The frequencies associated with the 2 ---+ 1 transitions can be computed from 

Table 8.5 ~ their values are 

v == (82258.917 - 0.00) cm- I == 82258.917 cm- I 

and (8.58) 
v == (82259.272 - 0.00) cm- I == 82259.272 cm- I 

respectively. We see that the n == 2 to n == 1 transition occurs at a frequency v == 
82 258.19 em-I if we ignore spin-orbit coupling, but that it consists of two closely 
spaced lines whose frequencies are given by Equations 8.58 if spin-orbit coupling is 
included. This closely spaced pair of lines is called a doublet, and so we see that under 
high resolution, the first line of the Lyman series is a doublet. Table 8.5 shows that all 
the lines of the Lyman series are doublets and that the separation of the doublet lines 
decreases with increasing n. The increased spectral complexity caused by spin-orbit 
coupling is called fine structure. 

EXAMPLE 8-9 
Calculate the frequencies of the lines in the 3d 20 to 2p 2p transition for atomic 

hydrogen. 

SOL UTI 0 N: There are two 2p 2p states in atomic hydrogen, 2p 2Pl/2 and 2p 2P
3

/
2

. 

The allowed transition from the 3d 20 states into the 2p 2PII') state is 
/~ 

, ') 

3d '"03/ 2 ---+ 2p "P I / 2 

V == (97492.306 - 82258.917) cm- I == 15 233.389 cm- I 
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and the 3d 20 -----* 2p 2P3/2 transitions are 

"1 "1 

3d -0 3/ 2 -----* 2 p ~ P 3/2 

V = (97492.306 - 82259.272) cm- 1 = 15233.034 cm- I 

and 
"1 ') 

3d ~ OS/2 -----* 2 p -P 3/2 

V = (97492.342 - 82259.272) cm- 1 = 15233.070 cm- I 

These three transitions are illustrated in Figure 8.3. Note that the 3d 205/ 2 -----* 2p 2Pl/~ 
transition is not allowed because ~ J = 2 is not allowed. 

3d 2 D ----

/ 

/ 

/ 

/ 

/ 

/ 

2p 2p 
, , , 

\ 

1 

/ 
----- 3d-D'1 -/2 

HW "1 

2p ""P, 
/2 

,It 

2p 2 p'h 

I I I 1 
I" )001 

I 

0.33 em -- I 

Fie U R E 8.3 
The fine structure of the spectral line 
associated with the 3d 20 -----* 2p 2p transi­
tion in atomic hydrogen. 

The type of data presented in Table 8.5 for atomic hydrogen have been tabulated for 
many atoms and ions in the publication Atonlic Energy Levels by Charlotte E. Moore 
(see footnote to Table 8.5). Chemists usually refer to these tables as "Moore's tables". 
Table 8.6 is a direct copy of the energy-level data for the first few levels of atomic 
sodium, whose ground-state electron configuration is 1 s22s22 p 6 3s 1. Figure 8.4 is an 
energy-level diagram of atomic sodium, showing the allowed electronic transitions. 
The 3s, 3 p, etc. in front of the term symbols in Table 8.6 indicate that the electron 
configuration of those states are [Ne]3s, [Ne]3p, etc. 

EXAMPLE 8-10 
Use Table 8.6 to calculate the wavelengths of the two lines in the doublet associated 
with the 3 p 2p -----* 35 2S transition in sodium, and compare your results with those of 
Figure 8.4. 
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TAB L E 8.6 
A reprint of a page from ·'Moore' stables", giving the energies (in em I) of the first few states 
of atomic sodium. 

NaI NaI 

J 

Config. Desig. J Level Interval Config. Desig. J Level Interval 

3s 3s ~S ~~ O. 000 5p 5p 2pO }~ 85040. 27 2. 52 
1% 85042. 79 

3p 3p 2PO H 16956.183 17. H)63 pI 16973. 379 68 6s 28 }~ 36372. 647 /2 

48 4s 28 }f 2.5739. 86 5d 5d 2D 2}~ 37036. 781 -0.0230 1 }~ 37036. 805 
3d 3d 2D 

I 
2};i 2U172. 855 -0.0494 111 2\H 72. QO·! { 2}~ } /2 5f 5f 2Fo 87057. 6 3H 

4p 4p 2pO l~ 30 ;:ritJ. 8 S 5. 03 / -pi 30[;';2. 51 { 3~f } ;2 5g 5g 2G 37060. 2 
4}~ 

58 58 28 ~ "2 33200. 606 
6p 6p 21'° ]/ 87296. 51 /2 1.25 4d 4d 2D 2~~ 345·18. 754 O. 0346 IH 37297. 76 

}II 34548. 789 /2 
78 78 28 }~ 38012. 074 

41 41 2FO .{ 2~2 } 84588. 6 
3~~ 6d 6d 'D 2}~ 38387. 287 

I 1~ 38387. 300 =0.0124 

"The last 14 members art: nut intluLlrd l,reau~e page prouf ba(l heen preparell. when the data wt're received. 

From C. E. Moore, ""Atomic Energy Levels," Natl. Bur. Std. U.S. Circ. No. 467 (U.S. Government 
Printing Office, Washington, D.C., 1949. 

SOL UTI 0 N: The two transitions are 

v == 16956.183 em-I 

and 

v == 16 973.379 em-I 

The wavelengths are given by A == 1/ \J, or 

).. == 5897.6 A and 5891.6 A 

where A represents the non SI but commonly used unit, Angstrom (IA == 10-lom). 

If we compare these wavelengths with those in Figure 8.4, we see that there is a 
small discrepancy. This discrepancy is caused by the fact that wavelengths determined 
experimentally are measured in air, whereas the calculations using Table 8.6 provide 

wavelengths in a vacuum. We use the index of refraction in air (1.00029) to convert 

from one wavelength to another: 

).. == 1.00029)" . 
vac alf 

If we divide each of the wavelengths obtained above by 1.00029, then we obtain 

).. t == 5895.9 A exp 
and 5889.9 A 

in excellent agreement with Figure 8.4. These wavelengths occur in the yellow region 

of the spectrum and account for the intense yellow doublet, called the sodium D line, 
that is characteristic of the emission spectrum of sodium atoms. 
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FIG U R E 8.4 
Energy-level diagram of atomic sodium, showing some of the allowed electronic transitions. 
The numbers on the lines are the wavelengths (measured in air) in angstroms (1 A == 10-10 m) 
of the transitions. 

Figure 8.5 shows the energy-level diagram of helium at a resolution at which the 
spin-orbit splittings are not significant. The principal feature of the helium energy-level 
diagram is that it indicates two separate sets of transitions. Notice from the figure that 
one set of transitions is among singlet states (S == 0) and the other is among triplet 
(S == 1) states. No transitions occur between the two sets of states because of the 
~S == 0 selection rule. Thus, the only allowed transitions are between states with the 
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fiG U R E 8.5 
The energy-level diagram of helium. showing the two separate sets of singlet and triplet states. 

same spin multiplicity. The observed spectrUlTI of helium consists of two overlapping 
sets of lines. We should point out that the selection rules presented here are useful 
only for small spin-orbit coupling, and so they apply only to atoms with small atomic 
numbers. As the atomic number increases, the selection rules break down. For example, 
mercury has both singlet and triplet states like helium does, but many singlet-triplet 
state transitions are observed in the atomic spectrum of mercury. 

We are now ready to discuss molecules. One of the great achievements of quantum 
mechanics is a detailed explanation of the stability of the chemical bond, such as in H

2
• 

Because H2 is the simplest molecule, we will discuss it in some quantitative detail like 
we did helium in this chapter and then discuss the results of similar calculations for 
more complicated molecules more qualitatively. 

Problems 
8-1. Show that the atomic unit of energy can be written as 

) 

fr 
E ==--

h In a 2 
e 0 



Problems 

8-2. Show that the energy of a helium ion in atoInic units is - 2E
h

. 

8-3. The electric potential energy at a distance r froln a charge q is 

q 
v==--

4][ c({ 

Show that the atomic unit of potential energy is the potential energy at a distance of one 

Bohr radius from a proton (see Table 8.1). 

8-4. Show that the speed of an electron in the first Bohr orbit is e2 /4][ coh == 2.188 x 106 m· S-I . 

This speed is the unit of speed in atomic units. 

8-5. Show that the speed of light is equal to 137 in atomic units. 

8-6. Another way to introduce atomic units is to express mass as multiples of me' the mass of 

an electron (instead of kg); charge as multiples of e, the protonic charge (instead of C); 

angular momentum as multiples of h (instead of in J. s == kg· m2
. S-I); and permittivity as 

multiples of 4][ Co (instead of in C2
. S2 . kg -I . m -3). This conversion can be achieved in all 

of our equations by letting In e == e == 11 == 4n Co == 1. Show that this procedure is consistent 

wi th the definition of atomic units used in the chapter. 

8-7. Derive Equation 8.5 from Equation 8.4. Be sure to remember that V 2 has units of 

(distance) 2. 

8-8. Show that the normalization constant for the radial part of Slater orbitals IS 

(2s )'1+ ~ / [(2n) !] 1/2. 

8-9. Use Equation 8.12 to write out the normalized 1 s, 2s, and 2p Slater orbitals. How do they 

differ from the hydrogen like orbitals? 

" 8-10. Substitute Equation 8.5 for H into 

and show that 

where 

f '" [I! z] I. == dr. ¢ . (r.) - - V.- - - ¢ (r . ) 
J J J 2 J r. J 

.! 

and 

Why is 1'2 called a Coulomb integral? 

In the next problem we use the above result to deduce a physical interpretation of the 

eigenvalue E in the Hartree-Fock equation, Equation 8.20. 
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8-11. In this problem we will examine the physical significance of the eigenvalue E in Equa­
tion 8.20. The quantity E is called the orbital energy. Using Equation 8. I 9 for H~ff (r

l
), 

multiply Equation 8.20 from the left by ¢* (r I) and integrate to obtain 

where II and 112 are defined in the previous problem. Show that the total energy of a helium 

atom E == II + 12 + 112 is not the sum of its orbital energies. In fact, show that 

(1) 

But according to the definition of 12 in Problem 8-10, 12 is the energy of a helium ion, 
calculated with the helium Hartree-Fock orbital ¢ (r). Thus, Equation I suggests that the 

orbital energy E I is an approximation to the ionization energy of a helium atom or that 

(Koopmans' approximation) 

Even within the Hartree-Fock approximation, Koopmans' approximation is based upon the 

approximation that the same orbitals can be used to calculate the energy of the neutral 

atom and the energy of the ion. The value of -E I obtained by Clementi (see Table 8.2) is 

0.91796E
h

, compared with the experimental value of 0.904E
h

• 

8-12. Show that the two-term helium Hartree-Fock orbital 

¢(r) == 0.8183ge-1.44608r + 0.52072e-2.86222r 

is normalized. 

8-13. The normalized variational helium orbital we determined in Chapter 7 is 

¢ (r) == 1.2368e-27rjI6 

A two-term Hartree-Fock orbital is given in Problem 8-12: 

¢(r) == 0.8183ge- 1.44608r + 0.52072e-2.86222r 

and a five-term orbital given on page 283 is 

¢(r) == 0.75738e- I .4300r + 0.43658e-2.4415r + 0.17295e-4.0996r 

_0.02730e-6.4843r + 0.06675e-7.978r 

Plot these orbitals on the same graph and compare them. 

8-14. Given that \11(1,2) == Isa(I)lsf3(2) - lsa(2)lsf3(I), prove that 

f dr\ dr/II * (1 ,2)\11(1,2) = 2 

if the spatial part is normalized. 

8-15. Show that the spin integral in Equation 8.40 is equal to 2. 



Problems 

8-16. Why is it impossible to distinguish the two electrons in a helium atom~ but not the two 

electrons in separated hydrogen atoms? Do you think the electrons are distinguishable in 

the diatomic Hl molecule? Explain your reasoning. 

8-17. Why is the angular dependence of multielectron atomic wave functions in the Hartree­
Fock approximation the saine as for hydrogen atomic wave functions? 

8-18. Why is the radial dependence of multielectron atomic wave functions in the Hartree-Fock 

approximation different from the radial dependence of hydrogen atomic wave functions? 

8-19. Show that the atomic determinantal wave function 

I IsO'(I) 
1/1 == -
~ IsO'(2) 

Is/3(I) 

Is/3(2) 

is normalized if the I s orbitals are normalized. 

8-20. Show that the two-electron determinantal wave function in Problem 8-19 factors into a 

spatial part and a spin part. 

8-21. Argue that the normalization constant of an N x N Slater determinant of orthonormal 

spin orbitals is 1/ JNT. 

8-22. The total z component of the spin angular momentum operator for an N -electron system 
. 
IS 

Show that both 

" 

N 

s == s. A L" 
:.total :./ 

j=1 

1 IsO'(I) 

1jf = ~ Isa(2) 

Is/3(1) 

Isf3(2) 

are eigenfunctions of 5:.total' What are the eigenvalues in each case? 

8-23. Consider the determinantal atonlic wave function 

1/I21- ,f3(1) 

1/1 21 I f3 (2) 

where 1/I21±1 is a hydrogenlike wave function. Show that \11 (I ~ 2) is an eigenfunction of 

A "" 

L ==L +L, :.tOlal :1 ::.~ 

and 
" "-

5 ==5 +5 :::.total :1 :2 

What are the eigenvalues? 

311 



312 Chapter 8 / Multielectron Atoms 

8-24. For a two-electron system, there are four possible spin functions: 

1. 0'(1)0'(2) 

3. 0'(1) f3 (2) 

2. {3(I)O'(2) 

4. {3(1)t3(2) 

The concept of indistinguishability forces us to consider only linear combinations of 2 

and 3, 

1 
l/f ± = y'2 [a (1),8 (2) ± ,8 (I )a(2)J 

instead of 2 and 3 separately. Show that of the four acceptable spin functions, 1, 4, and 1jJ ±' 

three are symmetric and one is antisymmetric. 

Now for a two-electron system, we can combine spatial wave functions with spin 

functions. Show that this combination leads to only four allowable combinations: 

1 
[1jJ(1)¢(2) + 1jJ(2)¢(1)] y'2[O'(I){3(2) - 0'(2),8(1)] 

[1jJ(1)¢(2) -1jJ(2)¢(I)][O'(I)O'(2)] 

[1jJ(1)¢(2) -1jJ(2)¢(1)][,B(1){3(2)] 

and 

1 
[1jJ(1)¢(2) -1jJ(2)¢(1)] y'2[O'(I),8(2) + 0'(2),8(1)] 

where 1jJ and ¢ are two spatial wave functions. Show that M s == m,d + ms2 == 0 for the first 
of these and that Ms == I, -I, and ° (in atomic units) for the next three, respectively. 

Consider the first excited state of a helium atom, in which 1/1 == Is and ¢ == 2s. The 
first of the four wave functions above, with the symmetric spatial part, will give a higher 
energy than the remaining three, which form a degenerate set of three. The first state is a 

singlet state and the degenerate set of three represents a triplet state. Because M s equals 
zero and only zero for the singlet state, the singlet state corresponds to 5 == O. The other 
three, with Ms == ± I, 0, corresponds to 5 == 1. Note that the degeneracy is 25 + 1 in each 
case. 

'" A A 

Putting all this information into a more mathematical form, given that 5total == 51 + 52' 

we can show that (Problem 8-53) 

corresponding to S == 0, and that 

0'(1)0'(2) 0'(1)0'(2) 

1 
y'2[O'(I),8(2) + 0'(2),8(1)] 

1 
y'2[O'(I),8(2) + 0'(2),8(1)] 

t3(1),8(2) ,8(1),8(2) 

corresponding to 5 == 1. 



Problems 

8-25. Consider a helium atom in an excited state in which one of its Is electrons is raised to 
the 2s level, so that its electron configuration is 1 s2s. Argue that because the two orbitals 

are different, there are four possible determinantal wave functions for this system: 

1 lsa(l) 

¢I = .j2 Isa(2) 

1 Is,8(I) 

¢2 = .j2 Is,8(2) 

1 Isa(l) 

¢3 = .j2 lsa(2) 

1 Is,B(l) 

¢4 = .j2 Ils,8 (2) 

2sa( 1) 

2sa(2) 

2s,B (1) 

2s,B(2) 

2s,B (1) 

2s,8 (2) 

2sa(l) 

2sa(2) 

To calculate the energy of the 1 s2s configuration, assume the variational function 

Show that the secular equation associated with this linear combination trial function is (this 

is the only lengthy part of this problem and at least you have the answer in front of you; be 

sure to remember that the 1 sand 2s orbitals here are eigenfunctions of the hydrogenlike 

Hamiltonian operator) 

E +J-K-E 
0 

0 0 0 

0 E +J-K-E 0 0 
0 

=0 
0 0 Eo + J - E -K 

0 0 -K Eo + J - E 

where 

J = f f dTI dT2 ls(l) Is (I) C:J 2s(2)2s(2) 

K = f f dT1dT2 Is(l)2s(l) c.:J Is(2)2s(2) 

and Eo is the energy without the 1/ r
12 

term in the helium atom Hamiltonian operator. Show 

that 

5 
E = --E o 2 h 

Explain why J is called an atomic Coulombic integral and K is called an atomic exchange 

integral. 
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Even though the above secular determinant is 4 x 4 and appears to give a fourth-degree 

polynomial in E, note that it really consists of two 1 x 1 blocks and a 2 x 2 block. Show 

that this symmetry in the determinant reduces the determinantal equation to 

and that this equation gives the four roots 

E == Eo + J - K 

== Eo + J ± K 

-K 
==0 

(twice) 

Show that the wave function corresponding to the positive sign in E in the Eo + J ± K 
. 
IS 

1 
1/11, == . h (¢l - ¢4) . v2' 

and that corresponding to the negative sign in Eo + J ± K is 

Now show that both 1/1'3 and Vf 4 can be factored into a spatial part and a spin part, even 

though ¢:, and ¢4 separately cannot. Furthermore, let 

and 

and show that both of these can be factored also. Using the argument given in Problem 8-24, 
group these four wave functions (1/1 I' 1/1 2' 1/1:" 1/14 ) into a singlet state and a triplet state. 

Now calculate the energy of the singlet and triplet states in terms of Eo' J, and K. 
Argue that J > O. Given that K > 0 also, does the singlet state or the triplet state have the 

lower energy? The values of J and K when hydrogenlike wave functions with Z == 2 are 

used are J == 34/81 Eh and K == 32/(27)2 Eh.Using the ground-state wave function 

1 lsa(l) 
¢== -

J2 Isa(2) 

IsJ3(l) 

IsJ3(2) 

show that the first-order perturbation theory result is E == -11/4 Eh if hydrogenlike wave 

functions with Z == 2 are used. Use this value of E to calculate the energy difference 

between the ground state and the first excited singlet state and the first triplet state of 

helium. The experimental values of these energy differences are 159700 cm- I and 166 
200 cm -I, respectively (cf. Figure 8.5). 

8-26. Determine the term symbols associated with an np 1 electron configuration. Show that 

these term symbols are the same as for an np5 electron configuration. Which term symbol 

represents the ground state? 

8-27. Show that the term symbols for an np4 electron configuration are the same as for an np2 

electron configuration. 

8-28. Show that the number of sets of magnetic quantum numbers (In/) and spin quantum 

numbers (In) associated with any term synlbol is equal to (2L + 1)(25 + 1). Apply this 
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result to the np2 case discussed in Section 8-9, and show that the term symbols IS, 3p, 

and I D account for all the possible sets of magnetic quantum numbers and spin quantum 

numbers. 

8-29. Calculate the number of sets of magnetic quantum numbers (m/) and spin quantum 
numbers (m,) for an nds electron configuration. Prove that the term symbols I S, I D, 3p, 3F, 

and I G account for all possible term symbols. 

8-30. Determine the term symbols for the electron configuration nsnp. Which term symbol 

corresponds to the lowest energy? 

8-31. How many sets of magnetic quantum numbers (m,) and spin quantum numbers (n1
s

) are 

there for an nsnd electron configuration? What are the term symbols? Which term symbol 

corresponds to the lowest energy? 

8-32. The term symbols for an nd2 electron configuration are 1 S, I D, I G, 3p, and 3F. Calculate 

the values of J associated with each of these term symbols. Which term symbol represents 

the ground state? 

8-33. The term symbols for an npJ electron configuration are 2p, 2D, and 4S. Calculate the 

values of J associated with each of these term symbols. Which term symbol represents the 

ground state? 

8-34. Determine the electron configuration of a magnesium atom in its ground state, and its 

ground-state tenn symbol. 

8-35. Given that the electron configuration of a zirconium atom is [Kr](4d)2(Ss)2, determine 

the ground-state term symbol for Zr. 

8-36. Given that the electronic configuration of a palladium atom is [Kr] (4d) 10, determine the 

ground-state term symbol for Pd. 

8-37. Consider the Is2p electron configuration for helium. Determine the states (term symbols) 

that correspond to this electron configuration. Determine the degeneracies of each state. 

What will happen if you include the effect of spin orbit coupling? 

8-38. Use Table 8.S to calculate the separation of the doublets that occur in the Lyman series 
of atomic hydrogen. 

8-39. Use Table 8.6 to calculate the wavelength of the 4f 2F -+ 3d 2D transition in atomic 

sodium and compare your result with that given in Figure 8.4. Be sure to use the relation 

Avac == 1.00029Aair (see Example 8-10). 

8-40. The orbital designations s, p, d, and f come from an analysis of the spectrum of 

atomic sodium. The series of lines due to ns 2 S -+ 3 p 2p transitions is called the sharp 

(s) series~ the series due to np 2p -+ 35 2S transitions is called the principal (p) series~ the 

series due to nd 20 -+ 3 p 2p transitions is called the d(fluse Cd) series~ and the series due 

to nf 2F -+ 3d 2D transitions is called the fundanlental (f) series. Identify each of these 

series in Figure 8.4, and tabulate the wavelengths of the first few lines in each series. 

8-41. Problem 8-40 defines the sharp, principal, diffuse, and fundamental series in the spectrum 

of atomic sodium. Use Table 8.6 to calculate the wavelengths of the first few lines in each 
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senes and compare your results with those in Figure 8.4. Be sure to use the relation 

Avac == 1.00029Aair (see Example 8-10). 

8-42. In this problem, we will derive an explicit expression for veil (r I) given by Equation 8.18 

using ¢ (r) of the form (Z3 /n) 1/2e-Zr
. (We have essentially done this problem in Problem 7-

30.) 

Veff(r ) = Z3 J dr e-
2Zr2 

1 n 2 r 
12 

As in Problem 7-30, we use the law of cosines to write 

and so vetf becomes 

Problem 7-30 asks you to show that the integral over e is equal to 2/ r
1 

if r
l 

> r
2 

and equal 

to 2/ r2 if r
l 

< r2 . Thus, we have 

Now show that 

veft(r]) = :] - e-2Z
" (z + :]) 

8-43. Repeat Problem 8-42 using the expansion of 1/ r
l2 

given in Problem 7-31. 

Problelns 8~4 through 8~8 address the energy levels of one electron atoms that include the 
effect of spin-orbit coupling. 

8-44. Show that L· S == ~(]2 - i2 - 52). 

8-45. Show that [H, I}] == [H, 52] == [H, ]2] == 0, where if is the Hamiltonian operatorofa 
hydrogen atom. Hint: Use the result of Problem 8-44 and operate on a function that is a 

product of a spatial part and a spin part. 

8-46. Because of the coupling of the spin and orbital angular momenta of the electron, the 

Hamiltonian operator for a hydrogenlike atom becomes 

where (in atomic units) 

" (0) 1 2 Z H ==--V--
2 r 

and 

"(\) Z 1" "-
H == -I·s 

so 2( 137)2 r3 



Problems 

We will now use first-order perturbation theory to evaluate the first-order correction to the 

energy. Recall from Chapter 7 that 

U sing the result of Problem 8--44, show that 

Z f 1 "-
E(l) == ljrCO)* (l.s)1/f(O)dr 

n 2(137)2 II r3 n 

1 Z ( 1 ) == - {j (j + 1) - I (l + 1) - s (s + I)} ') 1" 
2 2(137)~ r-

(1) 

where 

(2) 

Problem 6-41 shows that 

(3) 

Now combine Equations 1 through 3 to obtain 

(1) Z4 {j(j + 1) -I(l + 1) - s(s + I)} 
E / E == -----------------

n h 2 ( 137) 2 n 3 21 (l + 1) (l + ~) 

For Z == I and I == 1, what is the order of magnitude (in cm -1) for the spin-orbit splitting 

between the two states as a function of n? (Hint: For a hydrogen atom s == 1/2 and j can 

be only I ± 1/2.) Recall also that 1 Eh == 2.195 x 105 cm - I • How does this energy compare 

with the energy separation between the energies for different values of n? 

8-47. The two term symbols corresponding to the ns 2np5 valence electron configuration of the 

halogens are 2P
1
/
2 

and 2P
3

/ 2. Which is the term symbol for the ground state? The energy 

difference between these two states for the different halogens is given below 

Halogen [Ee P
I / 2 ) - Eep3/2)]/cm-1 

F 404 
CI 880 

Br 3685 
I 7600 

Suggest an explanation for this trend. 

8-48. The photoionization spectra of the noble gases argon and krypton each show two closely 

spaced lines that correspond to the ionization of an electron from a 2 p orbital. Explain why 

there are two closely spaced lines. (Assume the resulting ion is in its ground electronic 

state.) 

The spin operators satL~fy the saIne general equations that we developed for the angular 

momentum operators in Problems 6-48 through 6-57. Problems 8-49 through 8-53 review 
these results. 
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~ ~ ~ 

8-49. The spin operators~ 5x ' S", and 5:, like all angular momentum operators, obey the 
commutation relations (Problem 6-13) 

Define the (non-Hermitian) operators 

~ ~ ~ 

5 ==5 -i5 
x " 

(1) 

and show that 

(2) 

and 

A ~ A 

[5_.5 ] == -n5 (3) 

Now show that 

and that 

where 

8-50. Use Equation 2 from Problem 8--49 and the fact that S:f3 == - ~ f3 to show that 

Because SJX == ~ a, this result shows that 
.... , L 

where c is a proportionality constant. The following problem shows that c == h, so that we 

have 

A fi 
Now use Equation 3 from Problem 8--49 and the fact that 5:0' == iO' to show that 

(1) 

where c is a proportionality constant. The following problem shows that c == n, so that we 

have 

A ~ 

5 +f3 == nO' and 5 a == iz{3 (2) 



Problems 

A A 

Notice that S + "raises" the spin function from f3 to a, whereas S "lowers" the spin function 
A A 

from a to f3. The two operators S+ and S _ are called raising and lowering operators, 

respectively. 

Now use Equation 2 to show that 

A n 
S a == -f3 \ 2 

A r1 
S tg == -a 

x 2 

A in 
5 a == -f3 

y 2 

A in 
S f3 == --a 

y 2 

8-51. This problem shows that the proportionality constant c in 

A 

S+f3 == ca 

is equal to n. S tart with 

A A A A /'\ 

Let 5+ == 51; + i 5y in the second factor in the above integral and use the fact that 51: and Sy 
are Hermitian to get 

Now take the complex conjugate of both sides to get 

f f3* S,S+f3dr - i f f3* S,S+f3dr = lel 2 

= f f3* S 

Now use the result in Problem 8-49 to show that 

or that c == n. 

8-52. Use the result of Problenl 8--50 along with the equations S_a == ~a and S_f3 == - ~ f3 to 
,",,':'" .... ' -

show that 

and 
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8-53. In this problem, we will use the results of Problems 8-50 and 8-52 to verify the statements 
~ A A 

at the end of Problem 8-24. Because Stotal == SI + S2' we have 

Now show that 

A A A A 

+2Srl O'(1)Sr2O'(2) + 2S~IO'(1)S~2O'(2) 
.. ~ ~ 

'I == 211 ~ 0' ( 1 ) 0' (2 ) 

Similarly, show that 

St~tal[O'(I);5(2) + ;5(1)0'(2)] == 211 2[0'(1)/3(2) + /3(1)0'(2)] 

and 

AI 

S~tal[O'(1)f:J(2) - /3(1)0'(2)] == 0 

8-54. We discussed the Hartree-Fock method for a helium atom in Section 8-3, but the applica­

tion of the Hartree-Fock method to atoms that contain more than two electrons introduces 

new terms because of the determinantal nature of the wave functions. For simplicity, we 

shall consider only closed-shell systems, in which the wave functions are represented by 

N doubly occupied spatial orbitals. The Hamiltonian operator for a 2N -electron atom is 

A 1 2N ) 2N Z 2N 1 
H==- LVj-L-+LL-

2 . I . 1 r. . 1 .. r .. } = J = J I J > I lJ 

1 

and the energy is given by 

E = f drl deJ l •.• dr 2NdeJ2N IJI* (I, 2, ... , 2N) HIJI (1, 2, ... , 2N) (2) 

Show that if Equation 1 and Equation 8.44 (with N replaced by 2N in this case) are 

substituted into Equation 2, then you obtain 

where 

N N N 

E == 2 " /. + ""(21.. - K .. ) L...t J L...t L...t IJ IJ 
j=1 i=1 j=1 

I. == f dr.cp:(r.) [- ~ V~ 
} JJ J 2.1 z] cp.(r.) 

r. J J 
J 

iij = f f dr1dr2¢;'(r l )¢i(r l ) r:
2 

¢7(r2)¢/r2) 

Kij = f f dr1dr2¢;(r l )¢i(r2) r:
2 

¢7(r2)¢j(r l ) 

(3) 

(4) 

(5) 

(6) 



Problems 

Can you explain why the Iii integrals are called Coulomb integrals and the Kij integrals 
are called exchange integrals (if i -=I- j)? Show that Equation 3 for a helium atom is the 
san1e as that given in Problem 8-10. 
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Robert S. Mulliken was born in Newburyport, Massachusetts, on June 25, 1896, and died in 
Chicago in 1986. He received his Ph.D. in physical chemistry from the University of Chicago in 
1921 , where his dissertation was on the separation of mercury isotopes by fractional distillation. 
He then went to Harvard University to continue his study of the behavior of isotopes. Realizing 
the importance of the new quantum theory to the understanding of atomic and molecular 
structure, he then spent a year in Europe studying quantum theory. After one year as an assistant 
professor at Washington Square College in New York City, he spent a year with Frederich Hund 
at the University of Gottingen, during which time they developed molecular orbital theory. 
Upon his return to the United States in 1928, Mulliken accepted a position at the University 
of Chicago, where he remained until his formal retirement in 1961. He continued working 
on molecular orbital theory at Chicago, and one of his early important contributions was the 
introduction of the LCAO approximation. After World War II, Mulliken and his collaborators 
pioneered the use of computers for calculating and elucidating molecular structure. He was 
known by all his associates as an unassuming and good-natured man. He was awarded the Nobel 
Prize in chemistry in 1966 "for his fundamental work concerning bonds and the electronic 
structure of molecules by the molecular orbital method ." 



CHAPTER 

The Chemical Bond: 
Diatomic Molecules 

One of the great achievements of quantum mechanics is its ability to describe the 

chemical bond. Before the development of quantum mechanics, chemists did not 

understand why two hydrogen atoms come together to form a stable chelnical bond. 

We will see in this chapter that the existence of stable chemical bonds is described 

by quantum mechanics. Because the molecular ion Hi involves the simplest chemical 

bond, we will discuss it in detail. Many of the ideas we will develop for Hi are applicable 

to more complex molecules. After our discussion of Hi, we will learn how to construct 

molecular orbitals for diatomic molecules. We will place electrons into these orbitals 

in accord with the Pauli Exclusion Principle, just like we placed electrons into atomic 

orbitals for multielectron atoms. This chapter focuses on diatomic molecules and the 
next chapter examines polyatolnic molecules. 

9-1. The Born-Oppenheimer Approximation Simplifies the 

Schrodinger Equation for Molecules 

For simplicity, let's consider the simplest neutral molecule, H J • The Hanliltonian 
<-

operator for a hydrogen molecule is given by 

J) J 
e'- e- e-

------ + + -----
4][ cOr2B 4n Eorl2 4n CoR 

(9.1 ) 

In Equation 9.1, M is the mass of each hydrogen nucleus, me is the mass of the electron, 

the subscripts A and B refer to the nuclei of the individual atoms, the subscripts 1 and 2 

refer to the individual electrons, and the various distances riA' rIB' etc. are illustrated in 323 
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/'1 A 

r1A 

HA 

I'll -----
1'1 B 

1'18 

R 
H e 

e, 

FIGURE 9.1 

Definition of the di stances between the nuclei 
and the electrons involved in the Hamiltonian 
operator for a hydrogen molecule (Equations 9. 1 
through 9.3) 

Figure 9.1. The first two terms of the Hamiltonian operator in Equation 9.1 correspond 
to the kinetic energy of the two nuclei ; the next two terms represent the kinetic energy 
of the two electrons; the four ensuing negative terms describe the contributions to the 
potential energy that arise from the attraction between the nuclei and the electrons; and 
the final two positive terms account for electron-electron and nuclear-nuclear repulsion, 
respectively. 

Because of the large difference between the masses of the nuclei and the electrons, 
we can reasonably view the nuclei as fixed in position relative to the motion of the 
electrons. Under such an approximation, the kinetic energy terms of the nuclei (the 
first two terms in the Hamiltonian operator, Equation 9.1) can be treated separately. 
This approximation of neglecting the nuclear motion is called the Born-Oppenheimer 
approximation. Although the Born-Oppenheimer approximation will lead to approx­
imate values of the energies and wave functions , it can be systematically corrected 
using perturbation theory. For most practical purposes, however, these corrections are 
on the order of the mass ratio (;::::; 10-.1 ), and so the Born-Oppenheimer approximation 
is a very good approximation. Neglecting the nuclear energy terms in Equation 9.1 
gives the Hamiltonian operator for the motion of the electrons around the two nuclei 
fixed at an internuclear separation: 

(9.2) 

Because the nuclei are considered to be fixed , the quantity R in Equation 9.2 is treated 
as a parameter; the energy we wi ll calculate using the above Hamiltonian operator will 
depend upon R. As usual , we will express all our equations in atomic units (Section 
8-1), and so Equation 9.2 becomes (Problem 9-1) 



9-2. H; Is the Prototypical Species of Molecular-Orbital Theory 

The method we will use to describe the bonding properties of molecules is called 
molecular-orbital theory. Molecular-orbital theory was developed in the early 1930s 
and is now the most commonly used method to calculate molecular properties. In 
molecular-orbital theory, we construct molecular wave functions in a manner similar to 

the way we constructed atomic wave functions in Chapter 8, where we expressed atomic 

wave functions in terms of determinants involving hydrogenlike, or single-electron, 

wave functions called atomic orbitals. Here we will express molecular wave functions 
in terms of determinants involving single-electron wave functions called molecular 

orbitals. The question that arises, then, is how to construct molecular orbitals. This 

problem is approached in an analogous way to what we did for multielectron atoms. 

There, the Schrodinger equation of the one-electron atom (hydrogen) was solved, and 

the orbitals obtained were used to construct wave functions for multielectron atoms. 
Here, for molecules, the Schrodinger equation for the one-electron molecular ion Hi 
is solved, and the resulting orbitals are used to construct the wave functions for more 

complicated molecules. We should emphasize at this point that Hi is a stable species 

that has been well studied spectroscopically. It has a bond length of 106 pm (2.00 ao) 
and a binding energy of 268 kJ ·mol I (O.103E

h
). 

Because Hi is a one-electron species, the Schrodinger equation for Hi can be 
solved exactly within the Born-Oppenheimer approximation. Nevertheless, the solu­

tions are not easy to use, and their mathematical form does not give much physical 

insight as to how and why bonding occurs. Instead, it is more useful to solve Hi 

approximately and use the resultant approximate molecular orbitals to build molecular 

wave functions. Although this approach may seem a crude way to proceed (after all, 

the problem can be solved exactly), it provides good physical insight into the nature of 
chemical bonds in molecules and yields results in good agreement with experimental 
observations. Furthermore, this approach can be systematically improved to give any 
desired degree of accuracy. 

The Hamiltonian operator for Hi in the Born-Oppenheimer approximation is 

A I 2 1 
H==--V --

2 rA 

1 1 
-+­
r B R 

(9.4) 

where r
A 

and r
B 

are the distances of the electron from nucleus A and B, respectively, and 

R is the internuclear separation, which we treat as a variable parameter (Figure 9.2). 

The Schrodinger equation for Hi is 

(9.5) 

where the VJj (rA 
l r B; R) are molecular orbitals, which extend over both nuclei. Recall 

that the variational principle (Chapter 7) says that we can get an excellent approximation 
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e 

FIG U R E 9.2 
----- R -----< Definition of the distances involved in the 

Hamiltonian operator for Ht (Equation 9.4). 

to the energy if we use an appropriate trial function. As a trial function for 1/1 . (rA , r B; R), 
.I 

we take the linear combinations 

(9.6) 

where I SA and ISB are hydrogen atomic orbitals centered on nuclei A and B, respectively. 
The molecular orbital given by Equation 9.6 is a Linear Combination of Atomic Orbitals, 

and is called a LCAO molecular orbital. 
Equation 9.6 for 1/1+ is sketched in Figure 9.3 for the case c 1 = ('2 ' Note that 1/1+ 

has the property you might expect of a molecular orbital in that it does indeed spread 

over both nuclei. Because the two nuclei in Hi are identical , the weighting or the 
relative importance of I SA and I SB must be the same, and so c 1 must equal c2 . For 
simplicity, we will set c

1 
= c

2 
= I, but note that before we can discuss a probalbility 

density associated with these molecUilar orbitals, 1/1 ± must be normalized. 

? 

"' -+ 

FIG U R E 9.3 

.----- R ------+". 
H He 

A sketch of the Hi molecular orbital formed by a sum of hydrogen atomic I s orbitals situated 
on each nucleus. Note that the molecular orbital spreads over both nuclei, or over the entire 
molecule. 



9-3. The Overlap Integral Is a Quantitative Measure of the Overlap 
of Atomic Orbitals Situated on Different Atoms 

Let's use 1/1+ given in Equation 9.6 to calculate the energy of H; as a function of 
the internuclear separation, R. (Problem 9-5 has you calculate the energy associated 
with 1/1_.) To determine E+, the energy associated with Vr +' we start with Equation 9.5: 

Multiplying on the left by 1fJ: (r; R) and then integrating over the allowed values of r 
gives the full expression for E +: 

(9.7) 

Let's look at the denominator of Equation 9.7 first: 

f dn/!:Vr+ = f dr(ls; + Is~)(lsA + IsB ) 

= f dr15;15A + f dr15;lsB + f drls~15A + f drls~lsB 
(9.8) 

There are two types of integrals in Equation 9.8. The first and fourth integrals are 
simply the normalization expressions of the hydrogen atomic orbitals, so we have 

(9.9) 

The second and third integrals are another story, however. Because the hydrogen atomic 
Is orbital is expressed by a real function, 1 s* == I s and therefore, the two integrals are 
equal to each other (we denote them by S): 

(9.10) 

Note that these integrals involve the product of a hydrogen atomic orbital situated on 
nucleus A and one situated on nucleus B. This product is significant only for regions 
where the two atomic orbitals have a large overlap (Figure 9.4). Consequently, S in 
Equation 9.10 is called an overlap integral. The extent of overlap and therefore the 
magnitude of the overlap integral depends upon the internuclear separation, R. For large 
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FIG U R E 9.4 

A B 

• • R 

Small overlap 

A B 
• • R 

Large overlap 

The overlap of the I s orbitals centered on hydrogen nuclei located at A and B, a distance 
R apart. 

internuclear separations. S is very close to zero. With decreasing internuclear distance, 

the value of S increases, approaching a value of one when R = 0 (Figure 9.5). 
The integrals in Equation 9.10 are somewhat complicated to evaluate, but they can 

be evaluated analytically (Problems 9- 3 and 9-42). The resulting function S(R) for 

the overlap of two hydrogen I s atomic orbitals is given by 

( R2) 
S(R) = e- Ii I + R + 3' (9.11 ) 

and is plotted in Figure 9.5. Thus, we can write the denominator of Equation 9.7 as 

f dr( Is; + Is~ )( ISA + Iss) = 2 + 2S(R) (9.12) 

where we write S(R) to emphasize that the function S depends upon the parameter R. 

1.0 r--_ 

S 0.5 

0.0 '-------'--------.1..---------'------'-1-
() 2 3 4 

R / au 

FIG U R E 9.S 
The overlap integral S( R). Equation 9. I I, for two hydrogen atom Is orbitals plotted versus the 
internuclear separation in atomic units. 



9-4. The Stability of a Chemical Bond Is a ()uantunl-Mechanical Effect 

EXAMPLE 9-1 
Determine the normalized wave function for 1j; +? 

SOL UTI 0 N: The wave function for 1f + is given by 1f + == c( 1 SA + 1 sf})' To norn1al­

ize this function, we require that I dr1j;_~ 1f + == 1. Thus 

I = c2 
/ dr(ls; + I s~)(1 sA + b B) 

whereby 

= ('2 (/ drb;bA + / drls;I5 B + / drls~I.IA + / drIS~ISB) 
== c2 (1 + S + 5 + 1) 

1 == c.:.2(1 + 5) 

1 
c =-~ -:;-;;2==( 1==+==5:::::::::::) 

and the normalized wave function is given by 

I 
.lj; ... == ------- ( Is + 1 s ) 

~ V'2( I + S)· A B 

Using the same approach, you can show that the normalized wave function for 1f __ is 

given by 

9-4. The Stability of a Chemical Bond Is a 
Quantum-Mechanical Effect 

So far, we have evaluated the denonlinator of Equation 9.7. The evaluation of the 

nUlnerator is 1110re conlplicatecL lJsing Equation 9.4 for the Halniltonian operator, we 

obtain 

f . * * ( 1) 1 1 1) == dr(L'A + IsB) ----V- - - - - + - (Is + Is) 
2 r r R A B 

A B 

(9.13) 
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To see how this expression can be simplified, we expand the right side to give 

! '" ( I) I I 1) + dr(Ls~:+lsB) --\7---- +- Is 
2 r r R B 

!\ B 

(9.14 ) 

We know that the 15~\ and 1 SB wave functions are solutions to the one-electron atomic 
Schrodinger equation for atom A and B. respectively, and so we have 

(9.15) 

and 

( 
I ") I ) --\7- - - Iss == E"lss 2 r ' ,\ 

, B 
(9.16) 

where E ,s == -~Eh' Using Equation 9.15 in the first integral in Equation 9.14 and 
Equation 9.16 in the second gives 

! dnV; li 1/l+ = ! drCl.I; + Is~) (EI\ - r~ + ~) i.lA 

+ ! dr(i.I; + 1s~) (EI\ - /~\ + ~) ISB 

Now using Equations 9.9 and 9.10, we have 

! dr1/l~ Ii 1/1+ = 2E II (1 + 5) + ! drl s~ (- rIB + ~) l.\~,\ 

(9.17) 

+ ! drls~ (- r
l

FJ 
+ ~) ISA + ! drl.l; (- :A + ~) ISn 

+ f drls~ (-:A + ~) ISB (9.18 ) 

Physically, the first integral of the right side of Equation 9.18 reflects (1) the charge 
density of the electron around nucleus A interacting with nucleus B via the Coulomb 
potential and (2) the internuclear repulsion. This integral is denoted by J and is called 
a Cou/cnnh integral: 

(9.19) 

where we have used the fact that R is fixed during the integration over r. The origin of 
the name follows by noting that the charge in the volunle element dr is drls; Is

A
, and 

the Coulomb energy of interaction with a proton separated a distance r B is drl s!~ Is AI r B' 



9-4. The Stability of a Chemical Bond Is a Quantum-Mechanical Effect 

If all the volume elements are added (integrated) and we add the Coulomb repulsion 
energy between the two protons (1 /R), then we have J. The second integral in Equa­
tion 9.18 is denoted by K and is called an exchange integral: 

(9.20) 

where we have used the definition of S and the fact that R is constant during integration. 
We are lead naturally to seek a classical interpretation of Equation 9.20. It is, however, 
a purely quantum-mechanical effect and has no analogy in classical mechanics. Equa­
tion 9.20 is a direct result of the approximation that the molecular orbital is a linear 
combination of atomic orbitals centered on different atoms (Equation 9.6). 

The final two integrals in Equation 9.18 are the same as the first two except that 
the indices of the two atoms, A and B, are swapped for each term. Because the atoms 
in this case are the same (both hydrogen), the mathematical expressions are identical, 
and so we have 

f drljJ:ihf;+ = 2E".(1 + S) + 21 + 2K (9.21 ) 

Combining Equations 9.21 and 9.12, the energy (Equation 9.7) associated with the 
molecular-orbital wave function 1/1+ is E+ == E 1s + (J + K)/(1 + S) or 

~E == E - E == _J_+_K_ 
+ + Is 1 + S 

(9.22) 

The quantity ~E+ == E+ - E 1s represents the energy of Hi relative to the completely 
dissociated species (i.e., H+ and H). The integrals, J and K, can be evaluated analyti­
cally (Problem 9-6) and the results are 

and 

S -R 
K==--e (I+R) 

R 

(9.23) 

(9.24) 

Figure 9.6 shows a plot of the energy ~ E + == E + - E Is of Hi as a function of the 
internuclear separation, R. The plot of ~ E + against R describes a stable molecular 
species whose binding energy (the value of ~ E+ at R ) is E b, d' == 0.0648E

h 
== 

e III II1g 

170kJ·mol-1 and whose bond length is Re == 2.50ao == 132 pm. The experimental 
values for these quantities are Eb, d' == 0.102E

h 
== 268kJ·mol- 1 and R == 2.00ao == 

111 . mg e 

106 pm. 
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Fie U R E 9.6 
The energies ~ E + - E + E Is and ~ E_ == E'_ - E I s corresponding to the ljJ + and ljJ_ 
molecular orbital wave functions given in Equation 9.6 (with c

1 
== c

2
) plotted as a function 

of intermolecular separation R for Hi. The plot shows that 1/1+ leads to a bonding nl0lecular 
orbital whereas ljJ _ leads to an antibonding molecular orbital. 

According to Equation 9 .22, ~ E + is Inade up of two terms 

J K 
~E == +--

+ 1+5 1+5 

Figure 9.7 shows a plot of these two terms separately. Note that the Coulomb integral 
term is always positive (see also Equation 9.23), and therefore the exchange integral is 
entirely responsible for the existence of the chemical bond in H~. Because the exchange 

Fie U R E 9.7 
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The separate contributions of the Coulomb integral, J, and the exchange integral, K, to the 
stability of Hi. 



9-5. Bonding Orbital and an Antibonding Orbital 

term has no classical analog, this result serves to highlight the quantum-mechanical 

nature of the chemical bond. 

9-5. The Simplest Molecular Orbital Treatment of Hi Yields a 
Bonding Orbital and an Antibonding Orbital 

The two Illolecular orbitals 1jJ +- and 1j; describe quite different states. The orbital 1jJ + 

describes a state that exhibits a stable chemical bond and is called a bonding orbital. 

The other possible linear combination of the two 1 s atoInic orbitals is 

(9.25) 

and Problem 9-10 has you show that this rnolecular orbital results in an energy given 

by 

~E == E - E == - Is 

J- K 

1-5 
(9.26) 

Figure 9.6 also shows a plot of ~ E .. as a function of internuclear separation relative 

to that of the separated nuclei. The wave function 0/ leads to a repulsive interac­

tion between the two nuclei for all internuclear distances and is therefore called an 

antibonding orbital. 

Figure 9.8 shows plots of the molecular orbitals 0/_+ and Vr _ and their squares. 

In the case of the bonding molecular orbital, ljJ +' electron density builds up in the 

region between the nuclei. For the antibonding molecular orbital, 0/_, however, there 

is a node at the midpoint between the two nuclei and consequently a lack of electron 

lfI+ 

R ---.-~ 

FIG U R E 9.8 
The molecular orbitals l/t + (bonding) and lj; (antibonding) and their squares are plotted along 
the internuclear axis. 
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density between them. We will indicate whether an orbital is a bonding orbital or an 
antibonding orbital by using a subscript ~'b" or an "a," respectively. Therefore, we write 

I 
0/1 == 0/+ == ( I SA + I SB ) 

1 J2( I + S) ,~ 
(9.27) 

and 

1 
.. Ir - .. Ir - ( 1 s - Is) 
If' a - If' ~ - J2( 1 _ S) A B 

(9.28) 

The bonding orbital describes the ground state of Hi and the antibonding orbital 
describes an excited state. As the following example shows, the energies associated 

with the molecular orbital can also be determined through evaluation of the secular 
determinant. 

EXAMPLE 9-2 
Use the variational nlethod to calculate the (two) energies associated with the trial 

function 

,I r == C I \' + cis If' 1 'A ! B 

SOL UTI 0 N: Equation 7.37 gives the secular determinant for a trial function that is 

a linear combination of two arbitrary known functions. For the trial function in this 

exalnple, Equation 7.37 tells us that the secular determinant is given by 

where 

H - ES 
AA ;'\A 

==0 

HAA = HilI! = f drLI:,,Jf Is" = f drl.l'B If 1.\'8 

HAS = f drlsAHlss = f drl.l'sHI.IA 

S/\A - SBB = f drl.sA I.s;\ = f drlsH Iss = I 

S~B = f dr 1.1;\ 1.1'8 = S 

Using Equations 9.15, 9.16, 9.19, and 9.20, we find that (Problem 9-8) 



9-5. Bonding Orbital and an Antibonding Orbital 

so the secular determinant becomes 

or 

Els + J - E 

EI.,S+K-ES 

ES 

E)s + J - E 

We can solve this equation to obtain the two values of E, 

J± K 
~E == E - E ==--

± ± Is 1 ± S 

==0 

in agreement with our previous results. If we determine the values of e I and e2 

associated with each energy, we find they are equal in magnitude, Ie II == le21 == e. In 

addition, we find that 

and 

1/r == e(ls - Is ) 'f'_ A B 

The contributions of the two atomic wave functions turn out to be identical (e~ == e~), 
reflecting that there is no physical reason to expect one of the two hydrogen atoms to 

dominate the wave function of this homonuclear diatomic molecule. 

Note that the simple approach we have used here leads to only two molecular 
orbitals, one bonding, 1/1+, and one antibonding, 1/1_. We started this endeavor to find a 
set of molecular orbitals for H~ that we can use to build molecular wave functions in .... 

much the same way that we built atomic wave functions for multielectron atoms from 
products of hydrogen like atomic orbitals. You may wonder why in the atomic case there 
is an infinite set of atomic orbitals (e.g., the hydrogenlike atomic orbitals), whereas in 
the molecular case, the above treatments yielded only two molecular orbitals for Hi. 
We obtained only two molecular orbitals because we used a linear combination of only 
two atomic orbitals in Equation 9.6. This was done solely for simplicity. We could just 
as well have used a linear combination such as 

Because such a trial wave function involves the linear combination of six atomic 
orbitals, it will lead to a set of six molecular orbitals and six energies. The energies 
will depend on the value chosen for R. Clearly, this procedure has no limit, and thus, 
a large set of molecular orbitals can be generated, with a corresponding improvement 
in our energy and wave-function estimates. For pedagogical reasons, however, we will 
develop the molecular-orbital treatment of H~ using just the two normalized wave 

.... 

functions, 1/1 + and 1/1_, given in Example 9-2. 
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9-6. A Simple Molecular-Orbital Treatment of H2 Places Both 
Electrons in a Bonding Orbital 

Because 1/Ib is the molecular orbital corresponding to the ground-state energy of Hi, 
we can describe the ground state of H2 by placing two electrons with opposite spins 
in 1/Ib' just as we place two electrons in a I s atomic orbital to describe the helium atom. 
The Slater determinant corresponding to this assignlnent is 

1 1/Iba (l) 1/Ibf3(I) 
1/1 == -

J2! 1/Iba (2) 1/Ibf3(2) 

= 1/Ib(l)1/Ib(2) {~[a(l).B(2) - a(2).B(I)]} (9.29) 

Once again, we see the spatial and spin parts of the wave function separate for a two­
electron system (see Example 8-3). Note also that the two electrons have opposite 
spins, as expected. Because the Hamiltonian operator is taken to be independent of 
spin, we can calculate the energy using only the spatial part of Equation 9.29. Using 

Equation 9.27 for o/b' we have a molecular wave function, o/MO' of 

(9.30) 

Note that 0/ MO is a product of nzolecular orbitals, which in turn are linear combinations 
of atomic orbitals. This method of constructing molecular wave functions is known as 
the LCAO-MO (linear cOlnbination oj'atolnic orbitals-molecular orbitals) method and 
has been successfully extended and applied to a variety of molecules, as we will see in 

this and the following chapters. 
To calculate the ground-state energy of H2, we use 

(9.31 ) 

A 

where H is given by Equation 9.3 and VrMO is given by Equation 9.30. The integrals in 
Equation 9.31 can be evaluated analytically, but they result in complicated functions 

of R, which we will not display. A plot of fl.E+ == E
MO 

- 2E
ls 

versus R is shown in 

Figure 9.9. We find that Eb" d" == ~E+ (at R == R ) == 0.0990Eh == 260 kJ 'mol- l
, and 

III IIlg e 

Re == 1.61 an == 85 pm, compared with experimental values of EbindinlT == 0.174Eh == 
c 

457 kJ ·mol- I
, and Re == 1.40 an == 74.1 pIn. 

9-7. Molecular Orbitals Can Be Ordered According to Their Energies 

In this section, we will construct a set of of molecular orbitals and assign electrons to 
them in accord with the Pauli Exclusion Principle. This procedure will generate electron 
configurations for molecules similar to those discussed for atoms in Chapter 8. We will 



0.2 

..c 
~ 0.1-

-
~ NO. 0 f----+_ \----~---~--------

I 
~ 
'-' 

- 0.1 

Experi nlental 

-0.2~--~--~----~---~~--~ 

o 1 234 
R / a o 

5 

FIGURE 9.9 
The ground-state energy of H, (relative 

"-

to two separated ground-state hydrogen 
atolTIs) calculated according to molecular­
orbital theory, Equation 9.31. The quantity 
~ E + is the energy difference (E MO -

2E Is) corresponding to ljJ MO in Equation 
9.30. The quantity ~E_ is the energy 
difference corresponding to ljJ MO == 
ljJa (I) ljIa (2). 

illustrate this procedure in some detail for homonuclear diatomic molecules and then 

present some results for heteronuclear diatomic molecules. 
We will use the LCAO-MO approximation and form molecular orbitals from linear 

combinations of atomic orbitals. In the simplest case, a molecular orbital consists of 
one atomic orbital centered on each atom. Starting with the 1 s orbitals on each atom 
(as done in the treatInent of H,), the first two molecular orbitals we will discuss are 

(9.32) 

These two molecular orbitals are shown in Figure 9.10, which shows that the resulting 

molecular orbitals are cylindrically symmetric about the internuclear axis. 

An orbital that is symlnetric about the internuclear axis is called a (J orbital. Both 

1/1 + and 1/1_ are (J orbitals. Because many combinations of atomic orbitals lead to 
symmetric distributions about the internuclear axis, we must identify which atomic 
orbitals constitute a particular (J orbital. Molecular orbitals constructed from atomic 
Is orbitals are denoted by a Is. 

Remember that 1/1 + concentrates electron density in the region between the two 
nuclei, whereas 0/_ excludes electron density from that region and even has a nodal 
plane at the midpoint between the two nuclei (Figure 9.10). Consequently, as discussed 

in Section 9-5, 1/1+ is a bonding orbital and 0/_ is an antibonding orbital. Because a 
(J Is orbital may be a bonding orbital or an antibonding orbital, we need to distinguish 
between the two possibilities. There are two common ways to make this distinction. 

One is to use a superscript asterisk to denote an antibonding orbital, so that the two 

orbitals in Figure 9.10 are denoted by a 1 s (bonding) and a * 1 s (antibonding). The 

other way is based upon the difference in the symmetry of the two molecular orbitals 

under an inversion of the orbital through the point midway between the two nuclei. If 

the orbital does not change its sign under this inversion, we label the wave function 

gerade after the German word for even, and we subscript the orbital with a g. Referring 

to Figure 9.10, we see that 1/1 + == 1 ~A + 1 SB does not change its sign under inversion, 

so we denote 0/ + by (J Mis. We see from Figure 9.10 that 1jf == l,sA - 1 SB changes sign 
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I 1,1 + I ~ II -- (jg 1 .\ 

I .1,\ I .1 B 

+ 
H" HI> 

(j il l I 

FIGURE 9.10 
The linear combination of two I s orbitals to give the bonding (a I s or ax Is) and anti bonding 
molecular orbitals (a * Is or a I s) . 

" 

under inversion , so we denote 1/1_ by a ll Is , where the u stands for ungerade, the German 
word for odd. Thus. we have two designations of the (J I s orbitals: (J I sand (J * Is , or 
(Jg Is and (JII Is. Both designations are common ly used, but we will primarily use g, u 

notation for molecular orbitals. Note that in the case of I s orbitals, the gerade symmetry 
leads to a bonding orbita l and the ungerade symmetry leads to an antibonding orbital. 

Molecular orbitals constructed from other kinds of atomic orbitals are generated 
in a simi lar way. In a first approximation, only atomic orbitals of similar energies are 
combined to give molecular orbitals (see Problem 9-40). Following the above approach, 
the next combinations to consider are ? SA ± 2.\'8' These two molecular orbitals look 
similar to those plotted in Figure 9. I 0 but are larger in extent because a 2.1' orbital 
is larger than a I s orbital. In addition. there are spherical nodal planes about each 
nucleus reflecting the radial nodes of the individual 2.1' wave functions (see Figure 6.3). 
Following the notation introduced above, the two molecular orbitals 2s

A 
± 2s

B 
are 

designated (J 2.1' and 0' 2.1'. Because an atomic 2.1' orbital is associated with a higher ........ g If ......., 

energy than an atomic Is orbital , the energy of the (Jg2s molecular orbital will be higher 
than that of the 0'" I s molecular orbital. This difference can be demonstrated rigorously 

.' 
by calculating the energies associated with these molecular orbitals, as done for the 
0'" 15 and (JII 1 s molecular orbitals in Sections 9-4 and 9-5. In addition. bonding orbitals ., 
are lower in energy than corresponding antibonding orbitals. Thi s then gives an energy 
ordering 0' 15 < 0' Is < 0' 2s < 0' 2s for the four molecular orbitals discussed so far. 

- g If R If 

Now consider linear combinations of the 2p orbitals. Although a 2p orbital has 
the same energy as a 25 orbital in the case of atomic hydrogen, thi s is not true for other 
atoms, in which case E7 > E7 . As a result, the molecular orbitals builtfrom2p orbitals 

-I' -,\ 

will have a higher energy than the O'g2s and 0'1I2s orbitals. Defining the internuclear 
axis to be the z-axi s. Figures 9.11 and 9.12 show that the atomic 2p_ orbitals combine 



+ - + -

FIGURE 9.11 
The e> ,2p- and e> 2p_ molecular orbitals formed from linear combinations of the 2p_ atomic 

g •. II.. " 

orbitals. Note that the bonding orbital (e>
g
2p) corresponds to the combination, 2P:A - 2P:B' 

and that the antibonding orbital (e> 2pJ corresponds to the combination , 2p_A + 2p_B' in 
II " .. •. 

contrast to the corresponding combinations of s orbitals. 

+ + 

-
+ 

FIGURE 9.12 
The bonding lr,,2p, and antibonding lrg2p, molecular orbitals formed from linear combinations 
of the 2p, atomic orbitals. 

to give a differently shaped molecular orbital than that made by combining either the 
atomic 2px or 2p, orbitals. The two molecular orbitals 2P:A ± 2P:B are cylindrically 
symmetric about the internuclear axis and therefore are e> orbitals. Once again, both 
a bonding orbital and an anti bonding molecular orbital are generated, and the two 
orbitals are designated by e>,2p_ and e> 2p_, respectively. 

8., I I •. 

Unlike the 2p_ orbitals, the 2p , and 2p, orbitals combine to give molecular orbitals - '-
that are not cylindrically symmetric about the internuclear axis . Figure 9.12 shows that 
the y-z plane is a nodal plane in both the bonding and anti bonding combinations of 
the 2px orbitals. Molecular orbitals with one nodal plane that contains the internuclear 
axis are called lr orbitals. The bonding and antibonding molecular orbitals that arise 
from a combination of the 2p, orbitals are denoted lr,,2p, and lrx2p" respectively. 
Note that the antibonding orbitallrg 2Px also has a second nodal plane perpendicular to 
the internuclear axis that is not present in the lr ,, 2p, bonding orbital. The 2p, orbitals 
combine in a similar manner, and the resulting molecular orbitals look like those in 
Figure 9.12 but are directed along the y-axis instead of the x-axis. The x-z plane is 
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340 Chapter 9 / The Chemical Bond: Diatomic Molecules 

the nodal plane for the Jf1(2py and Jfg 2p-" orbitals. Because the 2px and 2py orbitals 
have identical energy and the resulting molecular orbitals differ only in their spatial 

orientation, the pairs of orbi tals, Jfu 2 Px ' Jfl/2 Py and Jfg 2 Px ' Jfg 2 Py ' are degenerate. Note 
that unlike the bonding (J orbitals, the bonding Jf orbitals have ungerade symmetry and 
the antibonding Jf orbitals have gerade symmetry. 

Now that we have developed a set of molecular orbitals by combining atomic 
Is, 25, and 2 p orbitals, we need to know the order of these molecular orbitals with 

respect to energy. We can then determine the electronic configurations of molecules 

by placing electrons into these orbitals in accord with the Pauli Exclusion Principle 
and Hund's rules, just as we did for multielectron atoms in Chapter 8. The order of 
the various molecular orbitals depends upon the atomic number (nuclear charge) on 

the nuclei. As the atomic number increases from three for lithium to nine for fluorine, 

the energies of the a
g
2p; and Jf1l2px' Jf{{2py orbitals approach each other and actually 

interchange order in going from N:? to °2 , as shown in Figure 9.13. The somewhat 
complicated ordering shown in Figure 9.13, which is consistent with calculations 
and experilnental spectroscopic observations, is reminiscent of the ordering of the 
energies of atomic orbitals as the atomic number increases. We will use Figure 9.13 to 
deduce electron configurations of the second-row homonuclear diatomic molecules in 

Section 9-9, but first we will consider H2 through He:? in the next section. 

n II 2/\ ' n II 2 P y 

(J 2 S' 
II ' 

(J 2s g 

FIGURE9.13 

Li, 

----

-4-i' 

B, c, 
'- '-

++ 
-4t-* 

-t±-, 

The relative energies (not to scale) of the nlolecular orbitals for the homonuclear diatomic 
molecules Li-, through F " The 7r 2 p and 7r 2 p orbitals are degenerate, as are the 7r 2 p and 

~ ~ II X II \' g x 

7r
g
2p

y
orbitals. -



9-8. Molecular-Orbital Theory Predicts that a Stable Diatomic 
Helium Molecule Does Not Exist 

For H, through He2
, we need to consider only the a I s and a I s orbitals, the two 

~ K U 

rnolecular orbitals of lowest energy. Consider the ground-state electron configuration 
of H

2
. According to the Pauli Exclusion Principle, two electrons of opposite spin are 

placed in the a
g 
I s orbital. The electron configuration of H2 is written as (a

g 
Is)2. The 

two electrons in the bonding orbital constitute a bonding pair of electrons and account 
for the single bond of H,. 

"-

Now consider Her This rllolecule has four electrons, and its ground-state electron 
configuration is (a ls)2(a Is)2. 1'his assignment gives He., one pair of bonding elec-. g u "-

trons and one pair of antibonding electrons. Electrons in bonding orbitals tend to draw 
nuclei together, whereas those in antibonding orbitals tend to push thein apart. The re­
sult of these opposing forces is that an electron in an antibonding orbital approximately 
cancels the effect of an electron in a bonding orbital. Thus, in the case of He2 , there 
is no net bonding. Simple molecular-orbital theory predicts that diatomic helium does 
not exist. 

The above results are forrnalized by defining a quantity called bond order by 

bond 1 [(number of electrons) (nuInber of electrons )] 
order == 2 in bonding orbitals - in antibonding orbitals 

(9.33) 

Single bonds have a bond order of one; double bonds have a bond order of two~ and so 
on. The bond order for He

2 
is zero. As the following example shows, the bond order 

does not have to be a whole number; it can be a half-integer. 

EXAMPLE 9-3 
Determine the bond order of He1. 

SOL UTI 0 N: The ground-state electron configuration of He; is (a
g 

1 S)2 (all 1 s) I, and 

so the bond order is 

1 1 
bond order == - [ (2) - (I) ] - -

2 2 

Table 9.1 gives the molecular-orbital theory results for H~, H], He~, and He]o 
~ '-- ~ -
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TABLE 9.1 
Molecular properties of H~, H

2
, He~, and He

2
. 

Number of Ground-state Bond Bond Binding energy/ 
Species electrons electron configuration order length/pIll kJ ·mol- ' 

H~ (a Is)' 1/2 106 268 - 0 
,", 

HI ') I 
I 74 457 (a Is) ..... 

f} 

" 

He; 3 (a Is)2(a IS)1 1/2 108 241 
g if 

He, 4 (a Is)2(a Is)2 0 ~ 6000 « I () II 
,", 

The molecular orbitals we are using here are very simple, being linear combinations 

of only two atomic orbitals in each case. This simple nl0lecular orbital description 

predicts that the bond order of He2 is zero and therefore should not exist. But in 1993, 

Gentry and his coworkers reported the spectroscopic observation of He
2 

in a gas-phase 

sample of helium that had a temperature near 0.001 K. The He2 bond, however. is by 

far the weakest chemical bond known, with E
b

, ,I' ~ 0.01 kJ· mol I. A more refined 
JIlulllg 

version of molecular-orbital theory predicts the weak bond in He2. 

9-9. Electrons Are Placed into Molecular Orbitals in Accord 
with the Pauli Exclusion Principle 

Consider the homonuclear diatomic molecules Li, through Ne,), Each lithium atoITI 
- -

has three electrons, so the ground-state electron configuration for Li2 is (a,l; Is)2 (all Is) 2 

(a(l2s)2, and the bond order is one. We predict that the diatomic lithium molecule ,,, 
is stable relative to two separated lithium atoms. Lithiunl vapor is known to contain 

diatoITIic lithium ITIolecules, which have a bond length of 267 pm and a bond energy 

of 1 05 kJ· mol I. 

Contour maps of the electron density in the individual molecular orbitals and the 

total electron density in Li2 are shown in Figure 9. 14. These contour maps were obtained 

by solving the Schrbdinger equation for Li2 to high accuracy using a computer. Each line 

in a contour map corresponds to a fixed value of electron density. Contours are generally 

plotted for fixed increments of electron density. Thus, the distance between contours 

provides information about how rapidly the electron density is changing. Figure 9.14 

shows clearly that there is little difference between the electron densities of the a.~ 1 sand 

a 1 s molecular orbitals of Lil and the electron densities of the two I s atomic orbitals II _ 

of the individual lithium atoms. This observation underlies the common assumption 

that only electrons in the valence shell need be included in discussions of chemical 

bonding. In the case of Li
2

, the 1 s electrons are held tightly about each nucleus and do 

not participate significantly in the bonding. The ground-state electron configuration of 

Li2 can therefore be written as K K (a:~2S)2, where K represents the filled 11 == 1 shell 

on a lithium atom. 



Total 

Gul s 

FIGURE 9.14 

Electron density contours for the molecular orbitals of Li2 . Note that the electrons in 
the o:~ Is and 0;, Is are tightly held around the nucleus and do not participate to any large 
extent in the bonding. The electrons in the (J~ 2s orbital are the ones responsible for the 
bonding in Li 1 . 

With increasing nuclear charge across the second row of the periodic table, the 
Is electrons are held even more tightly than are the Is electrons in lithium. Thus, to a 
first approximation, only the valence electrons need to be considered in writing electron 
configurations of diatomic molecules beyond He2 • The (T~ 1 sand 0;, I s molecular orbitals 
are equivalent to the filled K shell on each atom. 

Diatomic boron is a particularly interesting case. This molecule has a total of six 
valence electrons (three from each boron atom). According to Figure 9.13, the ground­
state electron configuration of 8 2 is K K ((T~ 2s) 2 (0;,2si (n,,2py (n,,2p),. As in the 
atomic case, Hund 's rules apply, so we place one electron into each of the degenerate 
n,,2p orbitals such that their spins are parallel in order to achieve the greatest possible 
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spin multiplicity. Experimental measurements have determined that B2 does indeed 
have two unpaired electrons (i.e., is paramagnetic). 

EXAMPLE 9-4 
Use molecular-orbital theory to predict whether or not diatomic carbon exists. 

SOL UTI 0 N: The ground-state electron configuration of C2 is K K (~~ 2S)2 (~{ 2S)2 

(n
u
2P

x
)2(n

u
2p,,)2, giving a bond order of two. Thus, we predict that diatomic carbon 

exists. Experimental measurements have determined that C
2 

has no unpaired electrons 

(i.e., is diamagnetic). The correct prediction of the magnetic properties of B2 and C2 

corroborates the ordering of the molecular orbital energies given in Figure 9.13 for 

Z = 5 and Z = 6. 

9-10. Molecular-Orbital Theory Correctly Predicts that Oxygen 
Molecules Are Paramagnetic 

The prediction of the correct electron configuration of an oxygen molecule is one of the 
most impressive successes of molecular-orbital theory. Oxygen molecules are param­
agnetic; experimental measurements indicate that the net spin of the oxygen molecule 
corresponds to two unpaired electrons of the same spin. Let's see what molecular­
orbital theory has to say about this. The predicted ground-state electron configuration 
of 02 is K K((}g2s)2(~/2s)2((}g2Pz)2(lfIl2Px)2(lfI12p.'fJ2(lfg2Px)1 (lf

g
2py )l. Because the 

lfg2px and lf
g
2py orbitals are degenerate, according to Hund's rule, we place one elec­

tron in each orbital such that the spins of the electrons are parallel. The occupation 
of the other molecular orbitals, K K(~~2s)2(~{2s)2(~~2Pz)2(lf1l2Px)2(lfu2py)2, gener­
ates no net spin because all these occupied molecular orbitals contain two spin-paired 
electrons, so we predict that 02 in its ground state has two unpaired electrons. Thus, 
the molecular-orbital configuration correctly accounts for the paramagnetic behavior 
of the 02 molecule. 

We can use molecular-orbital theory to predict relative bond lengths and bond 
energies, as shown in the following example. 

EXAMPLE 9-5 
Discuss the relative bond lengths and bond energies of O~, O2 , O~ , and O~- . 

SOL UTI 0 N: O
2 

has 12 valence electrons. According to Figure 9.13, the ground­

state electron configurations and bond orders for these species are as follows: 

Ground-state electron configuration Bond order 

0i K K(~q2s)2(~12s)2(~q2p~)2(n1l2px)2(nu2Prf~(ng2px)1 5/2 

O2 K K(ag2s)2(~,2s)2(ag2p~)2(nll2px)2(nu2py)2(ng2px)1 (ng2P.,J 1 2 

O~ K K (a
g
2s)2 (~,2S)2 (~f? 2 p~)2 (nu 2P

x
)2 (nu 2py)2 (ng 2Px)2 (n g2py) I 3/2 

O~- K K (~f? 2S)2 (~,2S)2 (~q 2 P ~)2 (nil 2 Px)2 (nu2 py)2 (ng 2 p.r)2 (ng 2 py)2 1 



9-10. Molecular-Orbital Theory Correctly Predicts that Oxygen Molecules Are Paramagnetic 

We predict that the bond lengths decrease and that the bond energies increase with 
increasing bond order. This prediction is in nice agreement with the experimental 
values, which are 

Bond length/pm 

112 
121 
135 

149 

Bond energy/kJ ·mol- 1 

643 
494 
395 

Note that removing an electron from 02 produces a stronger bond, in agreement with 

the prediction of molecular orbital theory. 

Figure 9.15 illustrates the predicted bond orders and the experimentally measured 
bond lengths and bond energies for the homonuclear diatomic molecules B2 through 
F 2' The results for the diatomic molecules of the elements in the second row of the 
periodic table are summarized in Table 9.2. 
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FIGURE9.15 

Plots of various bond properties for the homonuclear diatomic molecules B2 through F 2' 
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TAB L E 9.2 
The ground-state electron configurations and various physical properties of homonuclear diatomic 
molecules of elements in the second row of the periodic table. 

Species 

Li2 

Be2 

B2 

C2 

N2 

°2 

F2 

Ne2 

Ground-state Bond 

electron configuration order 

K K(a 2s)2 g 

K K(a 2s)2(a 2s)2 0 g u 

K K (a 2s) 2 (a 2s) 2 (rr 2 p ) I (rr 2 p ) I 1 g u ·U X 1I Y 

K K (ag2s)2 (~12s)2 (rr
ll 
2p x)2 (rr u 2py)2 2 

K K (0:'5 2s)2 (q/2s)2 (rr II 2Px)2 (rru2py)2 (0:~2 p:)2 3 

K K (ag 2s)2 (qj2s)2 (ag 2p 7,)2 (rr
1l

2PX)2 (rr
u 
2py)2 (rr g2px) I (rr g 2py) I 2 

K K (ag 2s)2 (au 2s)2 (ag 2pz.)2 (rru 2Px)2 (rru 2py )2 (rrg 2Px)2 (rr g 2P.v)2 1 

K K (O:l?' 2s)2 (au 2s)2 (ag 2P:)2 (rru 2p'()2 (rr
u
2py )2 (rrg 2Px )2 (rr g2py )2 (au 2 p7,)2 0 

9-11. Photoelectron Spectra Support the Existence 
of Molecular Orbitals 

Bond Bond energy / 

length/pm kJ·mol- 1 

267 lOS 

245 ~9 

159 289 

124 599 

110 942 

121 494 

141 154 

310 <1 

The idea of atomic orbitals and molecular orbitals is rather abstract and sometimes 
appears far removed from reality. It so happens, however, that the electron configu­
rations of molecules can be demonstrated experimentally. The approach used is very 
similar to the photoelectric effect discussed in Chapter 1. If high energy electromag­
netic radiation is directed into a gas, electrons are ejected from the molecules in the 
gas. The energy required to eject an electron from a molecule, called the ionization 
energy, is a direct measure of how strongly bound the electron is within the molecule. 
The ionization energy of an electron within a molecule depends upon the molecular 
orbital the electron occupies; the lower the energy of the molecular orbital, the more 
energy needed to remove, or ionize, an electron from that molecular orbital. 

The measurement of the energies of the electrons ejected by radiation incident on 
gaseous molecules is called photoelectron spectroscopy. A photoelectron spectrum of 
N 2 is shown in Figure 9.16. According to Figure 9.13, the ground-state configuration 
ofN2 is K K(og2s)2(ou2s)2(Jru2p})2 (Jru2p),)2(Og2pz)2. The peaks in the photoelectron 
spectrum correspond to the energies of occupied molecular orbitals. Photoelectron 
spectra provide striking experimental support for the molecular-orbital picture being 
developed here. 

9-12. Molecular-Orbital Theory Also Applies to Heteronuclear 
Diatomic Molecules 

The molecular-orbital theory we have developed can be extended to heteronuclear 
diatomic molecules, that is, diatomic molecules in which the two nuclei are different. 
It is important to realize that the energies of the atomic orbitals on the two atoms from 



40 
Ionization energy / MJ· mol 

FIGURE 9.16 
The photoelectron spectrum of N

2
. The peaks in this plot are caused by electrons being ejected 

from various molecular orbitals. 

which the molecular orbitals are constructed will now be different. This difference must 
be considered in light of the approximation made earlier that only orbitals of similar 
energy combine to give molecular orbitals. For small changes in atomic number, the 
energy difference for the same atomic orbital on the two bonded atoms is small (e.g., 
CO, NO). For many heteronuclear diatomic molecules (e.g., HF, HCI), however, the 
energies of the respective atomic orbitals can be significantly different, and we will 
need to rethink which atomic orbitals are involved in constructing the molecular orbitals 
for such molecules. 

Consider the cyanide ion, CN-. The atomic numbers of carbon (6) and nitrogen (7) 
differ by only one unit, so the same energy ordering may still be valid. The total number 
of valence electrons is 10 (carbon has 4 electrons and nitrogen has 5 electrons in the 
n == 2 shell), and the overall charge on the ion is -I. Accordingly, the ground-state 
electron configuration of CN- is predicted to be 

K K (a2s)2(a*2s)2 (JT2P.I:)2 (JT2py)2 (a2pz.)2, 

with a bond order of three. Note that we do not use the subscripts g and u here because 
heteronuclear molecules do not possess inversion symmetry. 

EXAMPLE 9-6 
Discuss the bonding in the carbon monoxide molecule, CO. 

SOL UTI 0 N: The CO molecule has a total of 10 valence electrons. Note that CO 
is isoelectronic with N 2' The ground-state electron configuration of CO is therefore 
K K(a2s)2 (a*2s)2(rr2P

x
)2(rr2p

y
)2(a2p;)2., so the bond order is three. Because both 

N2 and CO have triple bonds and because all three atoms (N, 0, C) are approximately 
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the same size, we expect that the bond length and bond energy of CO are comparable 

with those of N
2

• The experimental values are 

Bond length/pm 

N2 110 
CO 113 

Bond energy /kJ . mo I I 

942 

1071 

The bond energy of CO is one of the largest known for diatomic ITIolecules. 

Figure 9.17 presents the photoelectron spectrum of CO. The energies of the molec­
ular orbitals are revealed nicely by these data. In addition, the photoelectron spectrum 
exhibits peaks characteristic of the atomic Is orbitals on carbon and oxygen. Notice 
the high binding energy of the 1 s atomic orbitals. This energy is a result of their being 
close to the nuclei and these data further verify that the 1 s electrons do not play a 
significant role in the bonding of these molecules. 

Now consider the diatomic molecule HF. This molecule illustrates the case in 
which the valence electrons on the atoms occupy different electron shells. The energies 
of the valence electrons in the 2s and 2p atomic orbitals on fluorine are -1.477 Eh and 
-O.684E

h
, respectively. The energy of the valence electron in the Is atomic orbital 

on hydrogen is -O.500E
h

. Because the 2 p atomic orbitals on fluorine are the closest 
in energy to the 1 s orbital on hydrogen, a first approximation to the molecular orbital 
would be to consider linear combinations of these two different types of atomic orbitals. 
But which 2p atomic orbital should be used? Defining the z-axis as the internuclear 
axis, Figure 9.18 shows the overlap of the fluorine 2p and 2p _ orbitals with the 

~ ] 

0' 1 s O'*ls 

02s 

x2 xIS 

IT 2 p.t" ' IT 2 Py 

I I O'2p~ 

/1 ' 
j 

I I I\; I I 1\;..---------'-----'--1 ---'-----'--1 --
52.5 52 29 28.5 4 3 2 1 

Ionization energy / MJ -mol 

FIGURE9.17 

The photoelectron spectrum of CO. The energies associated with various molecular orbitals 
are identified. The (5ls and (5* Is orbitals are essentially the Is electrons of the oxygen and 
carbon atoms, respectively. The relatively large ionization energies of these electrons indicate 
that they are held tightly by the nuclei and play no role in bonding. 



FIGURE9.18 
The overlap of the fluorine 2p, and 2p . atomic orbitals with the hydrogen Is atomic orbital. 

" . .\ 

Because of the change in sign of the 2p . wave function, the net overlap between the 2p . 
. \ .\ 

and hydrogen I s is zero for all internuclear distance. A set of two (J molecular orbitals result 
from the overlap of the fluorine 2p, atomic orbital and the hydrogen I s atomic orbital. The 
bonding (J orbital , (Jb ' is the one shown. 

hydrogen Is orbital. The fluorine 2p" atomic orbital overlaps the hydrogen Is atomic 
orbital in a similar manner as the 2px orbital except that it is directed along the y-axis 
instead of the x-axis. The hydrogen I s and fluorine 2pz orbitals overlap constructively, 
so we can use linear combinations of these two orbitals. However, because of the 
change in sign of the wave function for the 2px (2p ) atomic orbital with respect to 
the y -z plane (x-z plane) and the constant sign of the hydrogen Is atomic orbital, the 
net overlap between the 2p .. (2p) on fluorine and the Is on hydrogen is zero for all 
internuclear distances. Thus, a first approximation to the molecular orbital would be 
the linear combinations of the fluorine 2p, and hydrogen I s atomic orbitals: 

(9.34) 

The molecular orbitals given by the wave function in Equation 9.34 describe electron 
densities that are symmetric about the internuclear axis, so both are u molecular orbitals 
(one bonding, u

b
' and one anti bonding, 0). Figure 9.19 shows the molecular-orbital 

energy-level diagram for HF. (The ISr and 2sF orbitals are not shown.) The eight 
valence electrons occupy the four lowest energy orbitals in Figure 9.19 in accord with 
the Pauli Exclusion Principle, so the ground-state valence electron configuration of HF 
is (2SF)2(Ub)2(2p' F)2(2py F) 2 . The 2sF, 2p,F and 2p,F orbitals are non-bonding orbitals, 
so the bond order of HF is one. 

9-13. An SCF-LCAO-MO Wave Function Is a Molecular Orbital 
Formed from a Linear Combination of Atomic Orbitals and 
Whose Coefficients Are Determined Self-Consistently 

The molecular-orbital scheme we have presented thus far is the simplest possible 
molecular-orbital treatment. Each of the molecular orbitals in Figures 9.10 through 
9.12 is formed from just one atomic orbital on each nucleus. In analogy with the 
atomic case, we can obtain better molecular orbitals by forming linear combinations 
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FIG U R E 9.19 
A molecular-orbital energy-level diagram of HF. The fluorine Is and 2s orbitals are not shown. 
Note that the 2 P

xF 
and 2 P

yF 
orbitals are nonbonding orbitals. 

of many atomic orbitals. For example, instead of using simply 1/1 = c1 (lsA + 1sB), we 
can use a molecular-orbital trial function of the form 

(9.35) 

Note that we are including orbitals of higher energy and are achieving a more flexible 
trial function. We let the variational principle determine the relative importance of 
the various terms by yielding the relative magnitudes of the variational parameters 
C l' C2 ' C3 ' .•.. Just as for atomic calculations, as we include more and more terms in 
Equation 9.35, we reach a limit in the calculation of the ground-state energy, and this 
limit is the Hartree-Fock limit. The procedure discussed in Chapter 8 for a Hartree­
Fock self-consistent field calculation of atomic properties can be modified to calculate 
molecular properties. If we start with molecular orbitals that are linear combinations of 
atomic orbitals as in Equation 9.35 and determine the coefficients by a self-consistent 
field method, we obtain what is called an SCF-LCAO-MO wave function. This method 
was developed at the University of Chicago by Clemens Roothaan in the 1950s and is 
often called the Hartree-Fock-Roothaan method. Because these calculations are done 
using linear combinations of many atomic orbitals, molecular-orbital designations such 
as a 2s and rr 2 p lose their significance, and molecular orbitals are more appropriately 
designated as the first a orbital (la), the first a orbital (la), the first rr orbital 

g g u u u 

(1 rr u)' and so on. The correspondence between the various notations for diatomic 
molecular orbitals is given in Table 9.3. Because molecular orbitals are determined 
computationally from linear combinations of a large set of atomic orbitals, the SCF­
LCAO notation is used in the research literature. 



TAB L E 9.3 
The correspondence between the various 
notations for diatomic molecular orbitals. 

Simple LCAO-MO 

0- Is (5 Is 
~ 

(5* 1 s (5 Is 
u 

0-2s 0- 2s 
g 

0-*2s 0- 2s 
u 

n2px n 2p 
u x 

n2p" nu 2py 
(52p_ (52p 

-, g ~ 

n*2p 
x n ~2px 

n*2pv n g 2py 

0-*2p_ ~l2p ;: 
" 

SCF-LCAO-MO 

lo­
g 

lo-
u 

20-
g 

20-
u 

In 
u 

In 
LI 

30-
g 

In 
g 

In 
~ 

30-
Lt 

We must realize that if we use only a few terms in the LCAO-MO and determine 
all the coefficients self-consistently, we may not achieve or reach the Hartree-Fock 
limit. Thus, an SCF-LCAO-MO molecular orbital is not necessarily the same as a 
Hartree-Fock orbital. They are the same only if the SCF-LCAO-MO molecular orbitals 
contain enough terms that the Hartree-Fock limit is reached. 

We can use Equation 9.35 to illustrate the difference between an SCF-LCAO-MO 
calculation and a Hartree-Fock calculation. If c2 == c

3 
== 0 in Equation 9.35, and only 

c 1 is varied, we have the result we obtained in Section 9-4. The energy and bond length 
are given in the first row in Table 9.4. If we allow the nuclear charge Z in the exponent 
of the Is orbitals to vary, then we obtain the second entry in Table 9.4. Now consider 
the LCAO-MO given by Equation 9.35 in which the atomic orbitals are Slater orbitals 
(Equation 8.12): 

(2)- )n+ 1/2 
'llr ( Ll~) _'" ,An I -1;r ym (Ll ~) 
'fJ / r, (7, If' - 1/2 1 e / (7, If' 

n m (2n!) 

If c l' c2 , and c3 are taken to be variational parameters and ~ is taken to be Z / n as in a 
hydrogen atomic orbital, the binding energy is 0.1321 Eh and the bond length is 1.40ao 
(the third entry in Table 9.4). If, in addition, the values of Z in the 1 s, 2s, and 2 p orbitals 
are varied independently, then the binding energy is O.1335E

h 
and the bond length is 

1.40ao (the fourth entry in Table 9.4). This is still not the Hartree-Fock limit. If more 
terms (about nine terms) are included in Equation 9.35, then eventually the Hartree­
Fock limit of a dissociation energy of 0.1336E

h 
and a bond length of 1.40ao is reached. 

Hartree-Fock wave functions have been calculated for many diatomic molecules. Fig­
ure 9.20 shows the contour diagrams of the total electron density and for the individual 
molecular orbitals for the homonuclear diatomic molecules H2 through F 2' The ground­
state configurations of H2 through F 2 are also given in Figure 9.20. 
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Contour maps of the various molecular orbitals and the total electron density of the 
homonuclear diatomic molecules H} through F 2" 
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TAB L E 9.4 
A demonstration of the convergence to the Hartree-Fock limit for H2 • 

Effective Total Binding Bond 
LCAO-MO nuclear charge energy/ Eh energy/ Eh length/ao 

IsA + IsB 1.00 -1.0990 0.0990 1.61 

IsA + IsB 1.197 -1.1282 0.1282 1.38 

Equation 9.35 1.231 -1.1321 0.1321 1.40 

Equation 9.35 Z(ls) == 1.378 -1.1335 0.1335 1.40 

Z (2s) == 1.176 

Z (2p) == 1.820 

Hartree-Fock -1.1336 0.1336 1.40 

Experimental 0.1642 1.41 

Table 9.5 shows some results of calculated bond lengths for various diatomic 
molecules. The agreement with experimental values is impressive. We will discuss the 
details of Hartree-Fock calculations of poly atomic molecules in Chapter 10, where we 
will see that similar impressive results can be achieved for polyatomic molecules. 

TAB L E 9.5 
Calculated and experimental bond lengths for various diatomic molecules. The Hartree-Fock 
calculations used the 6-31 G* basis set (to be discussed in Chapter 11) to represent the atomic 
orbitals. 

Molecule 

H", 

LiH 

HF 

NaH 

HC} 

LiCI 

CO 

N2 

CIF 

Li2 

Na
2 

NaCl 

Cl", 

F2 

Calculated 
bond length/pm 

73.0 

163.6 

91.1 

191.4 

126.6 

207.2 

111.4 

107.8 

161.3 

281.2 

313.0 

239.7 

199.0 

134.5 

Ex peri mental 
bond length/pm 

74.2 

159.6 

91.7 

188.7 

127.5 

202.1 

112.8 

107.9 

162.8 

267.3 

307.8 

236.1 

198.8 

141.2 



9-14. Electronic States of Molecules Are Designated by Molecular 
Term Symbols 

In Section 8-8, the electronic states of atoms were designated by atomic term symbols. 
The electronic states of molecules are also designated by term symbols. Molecular 
term symbols happen to be easier to deduce than atomic term symbols. To determine 
molecular term symbols, we first calculate the possible values for the total orbital 
angular momentum, M L' which is the sum of the orbital angular momenta of the 
electrons occupying the molecular orbitals: 

(9.36) 

where m I = 0 for a a orbital, m I = ± I for a J[ orbital, and so on. (Recall that m I is 
the projection in units of n of the orbital angular momentum on the z-axis.) Different 
electron configurations give rise to different allowed values of M L . The various values 
of 1M L I are associated with capital Greek letters according to 

IML I Letter 

o L 
1 n 
2 ~ 

3 <P 

Once ML has been determined, we then determine the possible values for the total 
spin angular momentum, Ms: 

M =m +m + ... s s 1 s2 
(9.37) 

The values of M s correspond to the projections of the total spin, S, of the molecule along 
the bond axis. For S = 0, Ms = O~ for S = 1/2, Ms = ± 1/2; for S = 1, Ms = ±1, 0, 
and so on. Hence, as for atoms, the total spin S can be determined from the obtained 
values of Ms' For a particular set of M Land S, the molecular term symbol is then 
represented by 

The superscript 2S + I is the spin multiplicity and indicates the number of values of Ms 
for a particular value of S. Recall that the state is called a singlet if 2S + 1 = 1, a doublet 
if 2S + 1 = 2, a triplet if 2S + 1 = 3, and so on. The determination of molecular term 
symbols from molecular-orbital electron configurations is best illustrated by example. 

Consider the H2 molecule first. The ground-state electron configuration of H2 is 
(1 a )2, so m I = 0 for each electron in the occupied a orbitals. Therefore, g 
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The spins of the two electrons must be paired to satisfy the Pauli Exclusion Principle, so 

I I 
M, == +- - - == 0 

5 2 2 

Because Ms equals 0, S must equal zero. Therefore, the term symbol for the ground­
state electron configuration of H2 is I ~ (a singlet sigma state). 

EXAMPLE 9-7 
Determine the term symbols for He~ and He, ? 

"" ~ 

SOL UTI 0 N: He~: The ground-state electron configuration is (I cy
g

)2 (10;,) 1. We need 

to consider the values of m / and nI.l for all three electrons. The possible values are 

listed below. 

mil == 0 
In ll == 0 
In l3 == 0 

M == 0 L 

nIl) == + 1/2 
nl, == -1/2 

,\ -'-

m,d == ±1/2 

Ms == ±1/2 

The fact that M L == 0 says that we have a L state. The M s == ± 1/2 corresponds to the 

two projections of S == 1/2, so the term symbol for the ground state of He~ is 2 L (a 

doublet sigma state). 

He,: The ground-state electron configuration is (I (J )2 (I CY )2. In this case, ML == 0 and _ . g II 

Ms == O. Therefore, the term symbol for the ground state of He
2 

is I L. 

Now consider B2. This molecule is more complicated and illustrates the general 
case that needs to be considered. The ground-state electron configuration of B2 is 
(1~!?)2(1~)2(2~!?)2(2~)2(lnu)l(lnl)l. Because the first four molecular orbitals of B2 

have M L == ° and M 5 == 0, only the two electrons that occupy the lnll orbitals need be 
considered. The Inu orbital is doubly degenerate and, according to Hund's rules, each 

of these two electrons occupies its own Inll orbital and thus can have 111, == ± 1 and 
m s == ± 1/2. To determine the term symbol for the molecular electronic state, we use 
the same approach introduced for determining atomic term symbols. For the electron 

configuration (In ) I (In ) I, the allowed values for ML are 2, 0, and -2, and Ms can 
u u 

take on values of 1, 0, and -1. We now construct a table of all possible combinations 

of (m 11' m,l'I) and (111,2' ms2 ) that correspond to the possible values of ML and Ms' 

Ms 

ML 1 0 -1 

2 1+- 1 + , 1 + 1 , 1- 1-, 

0 1 + -1 + , 1 + , 1-' , 1-, -1 + 1- -1 , 

-2 -1 +; 1+ -1+ -I-, I- -1 , 
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In the entries of the above table, the superscripts + and - are used to designate 
spin quantum numbers of ms == +1/2 and m,,\' == -1/2, respectively. The numbers in 
each entry are the corresponding nIl quantum numbers. For example, the entry 1 +, -1 + 

corresponds to mil == 1, m,d == 1/2 and ml2 == -1, ms2 == 1/2, or M L == mil + m'l == 0 
and M s == m s I + m s2 == 1. Not all the entries in the above table are allowed. The Pauli 
Exclusion Principle requires that no two electrons in the same orbitals have the same 
set of quantum numbers; hence the configurations 1 +, 1 +; 1 ,1 ; -1 +, -1 +, and 
-1 -, -1 do not correspond to allowed quantum states and are crossed out. This leaves 
the following combinations of (m ll , m,Yi) and (m I2 , m

s2
) from which the allowed term 

symbols are to be derived. 

Ms 

1 0 -1 

2 1+ 1 , 

ML 0 1+ , 1+ 1+ -1-' 1-, " 1+ 1- -1 , 

-2 -1+, -1 

Looking across the middle row, we have three configurations 1 +, -1 +; 1 +, -1 (or 
1-, -1 +); and 1 ,-1- that correspond to M L == 0 and Ms == 1, 0, -1, or a 3 ~ state. 
This leaves 

Ms 

1 0 -1 

2 1+ , 1 

ML 0 1 , -1 + 

-2 -1 +, 1 

Two of the remaining terms in the column (1 +, 1- and -1 +, -1 ) correspond to 
ML == 2 and 2 (IMLI == 2) andMs == 0, ortoa l~ state. The remaining term (1 ,-1+) 
corresponds to ML == 0 and M,s == 0 or to a l~ state. We find that there are three possible 
molecular states, I~, 3~, and l~, for Br Because Hund's rules apply to molecular 
electronic states as well as to atomic electronic states, the state with the largest spin 
multiplicity will be the ground state of B2 . Thus, we predict that the ground state of B2 
is a 3~ state. 

EXAMPLE 9-8 
Determine the term symbols for the ground states of 0,., and O~? 

~ -
SOL UTI 0 N: The molecule O

2 
has a ground-state electron configuration of (see 

Example 9-5) (I a
g

)2 (1 ~)2 (2a
g

)2 (2~)2 (3o:~)2 (1 Jr
I
)2 ( 1 Jr

u
)2 (1 Jr

g
) I (1 Jr g) I. The only 

electrons that we need to consider in determining the molecular term symbol are 
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the two that occupy the In orbitals. This is identical to what we just discussed for the 
g 

molecule B
2

. Thus, we know that according to Hund's rule, the term symbol for the 
ground state of O

2 
is 3:E. 

The ground-state electron configuration of 0; is 

The only electron we need to consider in determining the term symbol is the one 
electron in the In g orbital. The allowed values of m I and m s for an electron in a 

Ing orbital are ml == ±l and m.\, == ±1/2. These values correspond to IMLI == 1 and 
") 

M s == 1/2, or a term symbol of ... Il. 

9-15. Molecular Term Symbols Designate the Symmetry Properties 
of Molecular Wave Functions 

Term symbols are also used to denote symmetry properties of a molecular wave 
function. (We will study the symmetry properties of molecules in detail in Chapter 12.) 
For homonuclear diatomic molecules, inversion through the point midway between 
the two nuclei leaves the nuclear configuration of the molecule unchanged. This need 
not be the case for the molecular wave function, however. Table 9.3 summarizes this 
symmetry behavior of the molecular orbitals for all the homonuclear diatomic orbitals 
discussed in this chapter. 

Because a molecular electronic wave function is a product of molecular orbitals, 
the symmetry of the molecular electronic wave function of a homonuclear diatomic 
molecule must be either gerade (g) or ungerade (u). Consider the simplest case of the 
product of two molecular orbitals. If both orbitals are gerade, the product is gerade. If 
both orbitals are ungerade, the product is also gerade because the product of two odd 
functions is an even function. If the two orbitals have opposite symmetry, the product is 
ungerade. The resultant symmetry is indicated by either a g or a u right-side subscript 
on the molecular term symbol. For example, the ground-state electron configuration 
of 02 is (la~,J2(lau)2(2ag)2(2au)2(3~~)2(lnu)2(lnu)2(I7Tg)1 (l7Tg) 1. As usual, we can 
ignore completely filled orbitals and focus on (In) 1 (In) I. According to Table 9.3 (or 

g g 

Figures 9.11 and 9.12), the symmetry of (In )1(ln )1 is g. g == g, so the molecular 
g g 

term symbol for the ground electronic state of 02 is 3 b
g

. Similarly, that for 0t is 2 n g' 

EXAMPLE 9-9 
Determine the symmetry designation (g or u) for the term symbol of the ground-state 

electron configuration of B
2

• 

SOL UTI 0 N: The ground-state electron configuration is 
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corresponding to a term symbol of 3L: . We can ignore completely occupied orbitals, 

so the product of the symmetry of the molecular orbitals occupied by the two unpaired 
electrons is u . u = g, so the term symbol is 3 L:

g
• 

Finally, I; electronic states (M L = 0) are labeled with a + or - right-side su­
perscript to indicate the behavior of the molecular wave function when it is reflected 
through a plane containing the nuclei. Because a orbitals are symmetric about the 
internuclear axis, they do not change sign when they are reflected through a plane con­
taining the two nuclei. Figure 9.21 shows that one of the doubly degenerate Jr" orbitals 
changes sign and the other does not. Similarly, one of the doubly degenerate Jr orbitals g 

changes sign and the other one does not (see Figure 9.12). Using these observations, we 
can determine whether or not a I; electronic state is labeled with a + or - superscript. 

/' 

FIG U R E 9.21 

+ 

,/' . 
• 

The behavior of the two I Trll orbitals with respect to a plane containing the two nuclei, which 
we arbitrarily choose as the y-z plane. (See Figure 9.12.) 

EXAMPLE 9-10 
Determine the complete molecular term symbol of the ground state of 0 2' 

SOL UTI 0 N: According to Example 9-8, the molecular term symbol of 0 2 without 
the ± designation is 3 L: . The electron configuration is (filled orbitals)(1 Tr 2p ) I 

g g x 

(ITr
g
2p) I, so the symmetry with respect to a reflection through the x-z plane is 

(+)( -) = (-). Therefore, the complete molecular term symbol of 0 2 is 3 L:; . 

EXAMPLE 9-11 
Determine the sign designation (+) or ( -) for the ground-state electron configuration 

of Hei. 

SOL UTI 0 N: The ground-state electron configuration of Hei is (10:/ (10;)' , cor­

responding to a term symbol of 2L: . Because the 10 and 10 wave functions are 
'-' II g II 
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unchanged upon reflection through a plane containing the two nuclei, the total molec­
ular orbital wave function is unchanged. As a result, the complete term symbol of the 

ground state of He~ is 2 L + . 
~ II 

Table 9.6 lists the term symbols of the ground states of a number of homonuclear di­
atomic molecules and Problem 9-30 involves the determination of these term symbols. 

TAB L E 9.6 
The ground-state electron configurations and term symbols for the first and second-row 
homonuclear diatomic molecules. 

Molecule 

H2 

Hei 

Li') 

B2 
C

2 

N~ 

Electron configuration 

(I a ) 1 
g 

J 

(Ia t 
g 

(Ia )2(la)1 
g II 

(Ia )2(la )2(2a)2 
g II g 

(la)2(la)2(2a)2(2a)2(17T )1(17T)1 
g . 1I g 1I. 1I 1I 

J J J J 1 J 
(I a,~)~ (I ~()~ (2a,t;)- (2~1 t (I 7T,,)~ ( I 7Tu)~ 
( I a,~ ) 2 ( I ~I ) 

2 (2 a,~ ) 2 (2 ~ { ):2 ( I 7T II ) 
2 

( I 7T II ) 
2 

( 3 ~~ ) 1 
J J J -, 11 ') 

(I ~r; t (1 o;,)~ (2ag)~ (20;,)- ( I 7T[{)- ( I 7TII t (3a,~)~ 
(I ~~)2 (1~,)2 (2~r;)2 (20;,)2 (3~1{)2 (I 7TII)2 ( I 7T/I)2 (I 7T

g
) 1 

( I ~I{ ) 2 
( 10;1) 2 (2a,r; ) 2 (20;1 ) 2 (3 a,r; ) 2 

( I 7T/I ) 2 
( 1 7TII ) 2 ( I 7T

g 
) I (1 7T

g 
) I 

(1~1{)2 (10;,)2 (2~1{)2 (20;,)2 (3a,r;)2 ( I 7T
u

)2 ( I 7T
u

)2 (I 7Tg)2 (I 7T g)2 

9-16. Most Molecules Have Excited Electronic States 

Term symbol 

I~+ 
g 

2n 
g 

32:­
g 

12:+ 
g 

So far we have considered only the ground electronic states of diatomic molecules. 
In this section we will consider some of the excited electronic states of molecular 
hydrogen. As we saw in Section 9-8, the electron configuration of the ground electronic 
state of H2 is (1 O"g)2, whose molecular term symbol is I ~;. The first excited state has 
the electron configuration (I ~r;) I (1 ~() I, which, as the following example shows, gives 

rise to the term symbols I L 17 and 3 L I; . 

EXAMPLE 9-12 
Show that the electron configuration (1 ~r;) I (10;,) I gives rise to the term symbols I L: 
and 3~+. 

II 

SOL UTI 0 N: The values of m / are 0 for both electrons, so M L == O. The possi­

ble values of 111s1 and 111.,2 are ln sl == ±lj2 and 111.'2 == ±lj2, respectively, and so 



9-16. Most Molecules Have Excited Electronic States 

Ms = 1, 0, -1. We now construct a table of all possible combinations of (m{!, Ins') 

and (n1 /2 , nz s2 ) that correspond to the possible values of ML and Ms' 

Ms 

1 0 -1 

ML 0 0+ 0+ , 0+ (y-. 0-- 0+ , , , 0- 0-, 

Looking across the middle row, we see that the entries 0+ , 0+; 0+, 0- (or 0- , 0+) and 

0-, 0- correspond to ML = 0 and Ms = 1, 0, -1, or a 3 L state. The remaining entry 

0- , 0+ (or 0+ , 0- ) corresponds to M L = 0 and Ms = 0, or a 'L state. 

The product 1 (J x 1 (J leads to a u state, so we have the states 3L and 'L . Further-
fi U U II 

more, both the I (J and la orbitals are symmetric with respect to a reflection through 
g u 

, a plane containing the two nuclei, so the complete molecular term sYlnbols are 3 L~ 

and 'L~. 

According to Hund's rule, the 3'L; excited state has a lower energy than the I'L: 
excited state. Figure 9.22 shows the potential energy curves of the ground state and 
two of the excited electronic states of H

2
, 

-0.500 

-0.625 

-0.750 

--~ -0.875-

- 1 .000 

-1.125 -

o 2 6 8 

FIG U R E 9.22 
The internuclear potential energy curves of the ground state and two of the excited electronic 
states of Hr Note that the two lowest curves go to 1.0E

h 
at large distances, indicating two 

isolated ground-state hydrogen atolllS. (The ground state of a hydrogen atom is - ~ E
h

,) The 
other excited state shown dissociates into one ground-state hydrogen atom and one excited 
hydrogen atom with its electron in the atomic 2s orbital. 
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Note that the triplet state corresponding to an electron configuration of (1 ~fj) 1 (1~) 1 

(a 3 LI~ state) is always repulsive. The second excited state shown in Figure 9.22 

corresponds to an electron configuration of (1 ~~) I (2~~) I, or a ternl symbol of 11:,;. 
Like the ground state H2 molecule, this excited state has a bond order of one. Because 

the 2~!i orbital is larger than the l~!i orbital, however, we would predict that the bond 
length of H2 is longer in this excited state than in the ground state. Experimental 

measurelnents confirm this prediction~ the bond length is ~ 350/0 longer in this '1:; 
excited state than it is in the ground state. 

Problems 
9-1. Express the Halniltonian operator for a hydrogen molecule in atomic units. 

9-2. Plot the product 1 SA 1 SB along the internuclear axis for several values of R. 

9-3. The overlap integral, Equation 9.10, and other integrals that arise in two-center systems like 

H" are called t~t'()-Cel1ter integrals. Two-center integrals are most easily evaluated by using a 

coordinate system called elliptic coordinates. In this coordinate system (Figure 9.23), there 

are two fixed points separated by a distance R. A point P is given by the three coordinates 

r r 
/1 - _A __ B 

R 

and the angle cp, which is the angle that the (fA' rB , R) triangle makes about the interfocal 

axis. The ditferential volulne element in elliptic coordinates is 

f.1 = constant 

R:' 
dr == _(A 2 

8 

--------~--~~~----+-R~~----~----~~-----

/ 

A = constant 

FIG U R E 9.23 
Elliptic coordinates are the natural coordinates for evaluating two-center integrals such as the 
overlap integral, Equation 9.10. 



Problems 

Given the above definitions of A, IL, and ¢~ show that 

I<A<oo 

and 

o < ¢ < 2n 

Now use elliptic coordinates to evaluate the overlap integral, Equation 9.10, 

9 .. 4. Determine the normalized wave function for Vr _ == c) (ISA - IsB). 

9-5. Repeat the calculation in Section 9-3 for Vr _ == (lsA - IsB). 

9-6. Use the elliptic coordinate system of Problem 9-3 to derive analytic expressions for S, J, 

and K for the simple molecular-orbital treatment of Hi. 

9 .. 7. Plot 1/r
b 

and Vra given by Equations 9.27 and 9.28 for several values of R along the 
internuclear axis. 

9 .. 8. Show that 

and that 

S 

1 
-+J 
2 

H == -- + K 
AB 2 

in the simple molecular-orbital treatment of Hi. The quantities J and K are given by 
Equations 9.23 and 9.24, respectively. 

9 .. 9. Show explicitly that an s orbital on one hydrogen atom and a Px orbital on another have 
zero overlap. Use the 2s and 2 P

x 
wave functions given in Table 6.6 to set up the overlap 

integral. Take the z axis to lie along the internuclear axis. Hint: You need not evaluate any 
integrals, but simply show that the overlap integral can be separated into two parts that 
exactly cancel one another. 

9 .. 10. Show that ~ E == (J - K) / ( I 5) for the anti bonding orbital Vr _ of Hi. 
A A " 

9-11. Show that 1/r given by Equation 9.29 is an eigenfunction of S;;: == 5;;:) + 5z.2 with Sz. == O. 

9 .. 12. Use molecular-orbital theory to explain why the dissociation energy ofN2 is greater than 

that of Ni, but the dissociation energy of 0i is greater than that of °2, 

9 .. 13. Discuss the bond properties of F2 and Fi using molecular-orbital theory. 

9 .. 14. Predict the relative stabilities of the species N2, Ni, and N2. 
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9-15. Predict the relative bond strengths and bond lengths of diatomic carbon, C
2

, and its 
negative ion, C2 . 

9-16. Write out the ground-state molecular-orbital electron configurations for Na
2 

through Arr 

Would you predict a stable Mg
2 

molecule? 

9-17. Determine the ground-state electron configurations of NO+ and NO. Compare the bond 

orders of these two species. 

9-18. Determine the bond order of a cyanide ion. 

9-19. The force constants for the diatomic molecules Bl through Flare given in the table below. 
"- "-

Is the order what you expect? Explain. 

Diatomic molecule klN.m I 

350 

930 

2260 

1140 

450 

9-20. In Section 9-7, we constructed molecular orbitals for homonuclear diatomic molecules 

using the n = 2 atomic orbitals on each of the bonded atoms. In this problem, we will 

consider the molecular orbitals that can be constructed from the 11 = 3 atomic orbitals. These 

orbitals are important in describing diatolTIic molecules of the first row of transition metals. 

Once again we choose the z-axis to lie along the molecular bond. What are the designations 

for the 3s
A 

± 3s
B 

and 3 P
A 

± 3 P
B 

molecular orbitals? The n = 3 shell also contains a set 

of five 3d orbitals. (The shapes of the 3d atomic orbitals are shown in Figure 6.7.) Given 

that molecular orbitals with two nodal planes that contain the internuclear axis are called 

8 orbitals, show that ten 3d
A 

± 3d
B 

molecular orbitals consist of a bonding a orbital, a pair 
of bonding rr orbitals, a pair of bonding 8 orbitals, and their corresponding antibonding 

orbitals. 

9-21. Determine the largest bond order for a first-row transition-metal hOlTIonuclear diatomic 

molecule (see Problem 9-20). 

9-22. Figure 9.19 plots a schematic representation of the energies of the molecular orbitals 

of HF. How will the energy-level diagram for the diatomic OH radical differ from that 

of HF? What is the highest occupied molecular orbital of OH? 

9-23. A common light source used in photoelectron spectroscopy is a helium discharge, which 

generates light at 58.4 nm. A photoelectron spectrometer measures the kinetic energy of the 

electrons ionized when the molecule absorbs this light. What is the largest electron binding 

energy that can be measured using this radiation source? Explain how a measurement of 

the kinetic energy of the ionized electrons can be used to determine the energy of the 

occupied molecular orbitals of a molecule. Hint: Recall the photoelectron effect discussed 

in Chapter 1. 

9-24. Using Figure 9.19, you found that the highest occupied molecular orbital for HF is 

a fluorine 2p atomic orbital. The measured ionization energy for an electron from this 

nonbonding molecular orbital of HF is 1550 kJ· mol-I. However, the measured ionization 



Problems 

energy of a 2p electron from a fluorine atoiTI is 1795 kJ ·mol- I
. Why is the ionization energy 

of an electron from the 2 p atomic orbital on a fluorine atom greater for the fluorine atom 
than for the HF ITIolecule? 

9-25. In this problem, we consider the heteronuclear diatomic molecule CO. The ionization 
energies of an electron from the valence atomic orbitals on the carbon atom and the oxygen 

atom are listed below. 

Atom 

o 

C 

Valence orbital 

2s 
2p 

2s 
2p 

Ionization energy IMJ . mol 1 

3.116 

1.524 

1.872 

1.023 

Use these data to construct a molecular-orbital energy-level diagram for CO. What are the 

symmetry designations of the molecular orbitals of CO? What is the electron configura­

tion of the ground state of CO? What is the bond order of CO? Is CO paramagnetic or 

diamagnetic? 

9-26. The molecule BF is isoelectronic with CO. However, the molecular orbitals for BF are 

different from those for CO. Unlike CO, the energy difference between the 2s orbitals of 

boron and fluorine is so large that the 2s orbital of boron combines with a 2p orbital on 
fluorine to make a molecular orbital. The remaining 2 p orbitals on fluorine combine with 

two of the 2 p orbitals on B to form Jr orbitals. The third 2 p orbital on B is nonbonding. The 

energy ordering of the lTIolecular orbitals is 1/J(2sB + 2PF) < 1jJ(2PB - 2PF) < 1/J(2sB -

2PF) < 1jJ(2PB + 2PF) < 1/J(2PB )· What are the symmetry designations of the molecular 
orbitals of BF? What is the electron configuration of the ground state of BF? What is the 

bond order of BF? Is BF diamagnetic or paramagnetic? How do the answers to these last 

two questions conlpare with those obtained for CO (Problem 9-25)? 

9-27. The photoelectron spectrum of O
2 

exhibits two bands of 52.398 MJ·mol- 1 and 52.311 

MJ· mol- 1 that correspond to the ionization of an oxygen 1 s electron. Explain this obser­
vation. 

9-28. The experimental ionization energies for a fluorine Is electron from HF and F2 are 66.981 
and 67.217 MJ· mol I. Explain why these ionization energies are different even though the 
1 s electrons of the fluorine are not involved in the chemical bond. 

9-29. Show that filled orbitals can be ignored in the determination of molecular term symbols. 

9-30. Deduce the ground-state term symbols of all the diatomic molecules given in Table 9.6. 

9-31. Determine the ground-state molecular term synlbols of Orp N), N~, and O~. - "'""'..... -

9-32. The highest occupied molecular orbitals for an excited electronic configuration of an 

oxygen molecule are 

Determine the molecular term symbols for oxygen with this electronic configuration. 
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9-33. Determine the values for the energies of the separated hydrogen atoms shown in Fig­

ure 9.22. Detennine the energy difference of the dissociated limits. 

9-34. For a set of point charges Zie that lie along a line, we define the dipole moment (/1) of 

the charge distribution by 

11==e~Z.x. ~ I I 

where e is the protonic charge and .\ is the distance of the charge Zie from the origin. 

Consider the molecule LiH. A n101ecular-orbital calculation of LiH reveals that the bond 

length of this diatornic rTIolecule is 159 pn1 and that there is a net charge of +0.76e on 

the lithiutn aton1 and a net charge of -0.76e on the hydrogen atom. First, determine the 

location of the center-of-mass of the LiH molecule. Use the center-of-mass as the origin 

along the x-axis and determine the dipole mOInent of the LiH molecule. How does your 

value compare with the experin1ental value of 19.62 x 10-30 C·m? 

9-35. Show that the value of the dipole rnoment 11 defined in Problenl 9-34 is independent of 

where we place the origin along the x-axis so long as the net charge of the molecule is 

equal to zero. Recalculate the dipole Inon1ent of LiH by placing the origin on the hydrogen 

atom, and compare your answer with that obtained for Problem 9-34. 

9-36. What would be the value of the dipole mOlTIent of LiH if its bond were purely ionic? 

Estimate the amount of ionic character in LiH. (See Problern 9-34). 

9-37. A dipole moment is actually a vector quantity defined by 

where r
i 

is a vector from son1e origin to the charge Zie. Show that J.L is independent of 

where we take the origin if the net charge on the molecule is zero. 

9-38. The dipole Inornent of HCl is 3.697 x 10--30 C· m. The bond length of HCl is 127.5 pm. 

If HCl is n10deled as two point charges separated by its bond length, then what are the net 

charges on the Hand Cl aton1? 

9-39. Use the data in the table below to compute the fractional charges on the hydrogen atom 

and halide atom for the hydrogen halides. Is your finding in agreement with the order of 

the electronegativities of the halogen aton1s, F > Cl > Br > I? 

Re /pm 11 I I 0 - 30 C· n1 

HF 91.7 6.37 

HCI 127.5 3.44 

HBr 141.4 2.64 

HI 160.9 1.40 

9-40. When we built up the molecular orbitals for diatomic molecules, we combined only those 

orbitals with the same energy because we said that only those with similar energies mix 



Problems 

well. This problem is meant to illustrate this idea. Consider two atomic orbitals XA and X
B

. 

Show that a linear combination of these orbitals leads to the secular determinant 

where 

a - E 
A 

{3 - ES 

{3 - ES 

Sa - E 
B 

aA J XAhcffXAdr 

aB f X hctlX dr 
. B B 

==0 

{3 J XBh cff XA dr == J XA hCffxBdr 

S J xAxBdr 

where heff is some effective one-electron Hamiltonian operator for the electron that occupies 
the molecular orbital ¢. Show that this secular determinant expands to give 

It is usually a satisfactory first approximation to neglect S. Doing this, show that 

a +a ±[(a -a )2+4{32]1/2 E == A B ., A B ' 

± 2 

Now if X
A 

and X
B 

have the same energy, show that a
A 

== a
B 

== a and that 

giving one level of {3 units below a and one level of {3 units above a; that is, one level of 
{3 units more stable than the isolated orbital energy and one level of {3 units less stable. 

Now investigate the case in which u
A 

=I=- as' say a
A 

> a
B

. Show that 

where we have assumed that {32 < (a
A 

- a
B

)2 and have used the expansion 

2 
1/2 X X (1 + x) == 1 + - - - + ... 

2 8 

Show that 
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Using this result, discuss the stabilization-destabilization of a
A 

and a
B 

versus the case above 

in which a
A 

= a
B

. For simplicity, assume that a
A 

- a
B 

is large. 

9-41. In the Born-Oppenheimer approximation, we assume that because the nuclei are so much 

more massive than the electrons, the electrons can adjust essentially instantaneously to any 

nuclear motion, and hence we have a unique and well-defined energy, E(R), at each inter­

nuclear separation R. Under this same approximation, E (R) is the internuclear potential 

and so is the potential field in which the nuclei vibrate. Argue, then, that under the Born­

Oppenheimer approximation, the force constant is independent of isotopic substitution. U s­

ing the above ideas, and given that the dissociation energy for H2 is Do = 432.1 kJ ·mol- l 

and that the fundamental vibrational frequency v is 1.319 x 1014 
S-l, calculate Do and v 

for deuterium, D
2

. Realize that the observed dissociation energy is given by 

I 
D = D - -hv 

() e 2 

where De is the value of E(R) at Reo 

9-42. In this problem, we evaluate the overlap integral (Equation 9.10) using spherical coordi­

nates centered on atom A. The integral to evaluate is (Problem 9-3) 

where r
A

, r B' and e are shown 1n the figure. 

\e 
A~--~--------------~B 

1'-\ R 

To evaluate the above integral, we must express r B in terms of r A' e, and ¢ 0 We can do 

this using the law of cosines 

So the first integral we must consider is 

Let cos e = x to get 
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Now let u == (r; + R2 2rA Rx) 1/2 and show that 

udu 
dx == ---

rAR 

Show that the limits of the integration over u are u == r
A 

+ R when x == -1 and u == I R - rA I 
w hen x == 1. Then show that 

I == _1_ [e (R-'i\\R + 1 - r ) - e (R-I-IA\R + 1 + r )] 
erR A A 

A 

== _1_ [e-(l~1\ R) (r - R + 1) - e-(R-I-rA)(R + 1 + r )] 
r R A A 
A 

Now substitute this result into S(R) above to get 

( 
R2) S(R) == e- R 1 + R + 3 

Compare the length of this problem to Problem 9-3. 

9-43. Let's use the method that we developed in Problem 9--42 to evaluate the Coulomb integral, 
J, given by Equation 9.19. Let 

1==- A A - - dr----------J drls* Is 1 J e-2rA 

r B - JT (r; + R2 - 2rA R cos e) 1/2 

I IX d J -2,. 12IT d lIT de sine 
rAr;e A ¢ 2; 1/2 

JT 0 0 0 (rA + R- - 2rARcose) 

U sing the approach of Problem 9-42, let cos e == x and u == (r; + R2 - 2rA Rx) 1/2 to show 
that 

1 

R 

and that the Coulomb integral, J, is given by 

Hint: You need to use the integrals 

and 

2x 2.) ,+ 1" 
a"""' a-



Linus Pauling was born in Portland , Oregon, on February 28, 190 I, and died in 1994. He 
received his Ph.D. in chemistry in 1925 from the California Institute of Technology for his 
dissertation on X-ray crystallography of organic compounds and the structure of crystals . After 
spending a year studying at the University of Munich, he joined the faculty at the California 
Institute of Technology, where he remained for almost 40 years. Pauling was a pioneer in the 
application of quantum mechanics to chemistry. His book The Nature of the Chemical Bond 
(1939) is one of the most influential chemistry texts of the twentieth century. In the 1930s, 
he became interested in biological molecules and developed a structural theory of protein 
molecules, work that led to elucidating that sickle cell anemia is caused by a faulty structure of 
hemoglobin. [n the early 1950s, he proposed the alpha helix as the basic structure of proteins. 
Pauling was awarded the Nobel Prize for chemistry in 1954 "for his research into the nature of 
the chemical bond and its application to the elucidation of the structure of complex structures." 
During the 1950s, Pauling was in the forefront of the tight against nuclear testing, for which 
he was awarded the Nobel Peace Prize in 1963. From the early 1980s until his death, he was 
embroiled in the controversy of advocating the use of vitamin C as protection against the 
common cold and other serious maladies such as cancer. 



CHAPTER 

Bonding In Polyatomic Molecules 

In Chapter 9, we developed molecular-orbital theory to describe the bonding in di­
atomic molecules. We showed that the electrons in molecules occupy molecular or­
bitals in accordance with the Pauli Exclusion Principle. These molecular orbitals are 
constructed by forming linear combinations of atomic orbitals on the individual bonded 
atoms. In this chapter, these ideas are extended to polyatomic molecules. We will see 
that molecular-orbital theory can be used successfully to describe bonding in large 
molecules. We begin the discussion by introducing localized bond orbitals in terms of 
hybrid orbitals. This is followed by a discussion on bonding in small molecules such 
as water and methane. Then we will discuss Huckel molecular-orbital theory, which is 
a fairly simple but useful theory to describe the Jr molecular orbitals of conjugated and 
aromatic hydrocarbons such as benzene. 

10-1. Hybrid Orbitals Account for Molecular Shape 

The ground-state electron configuration of a carbon atom, ls22s22p;2p.~" does not 
seem to lead to the tetrahedral bonding in methane and other saturated hydrocarbons. In 
fact, the electron configuration seems to imply that carbon should be divalent instead of 
tetravalent. You may have learned in general chemistry and organic chemistry, however, 
that we explain that carbon is tetravalent by promoting one of the 2s electrons to the 
2pz orbital, giving an electron configuration for carbon of ls22s 12p.!2p~!2p;, and then 
the four singly occupied orbitals combine to form four equivalent s p3 hybrid orbitals, 
each of which points to a corner of a tetrahedron. In this section, we will discuss 
hybridization from a quantum-mechanical point of view. 

Consider first the linear molecule beryllium hydride, BeH2. The two Be-H bonds 
in BeH2 are equivalent, and the bond angle between them is 1800

• The ground-state 
electron configuration of a beryllium atom is 1s22s2. The question arises as to how we 
can describe the direction of the two bonds using the atomic orbitals on the beryllium 
atom. In constructing molecular orbitals, linear combinations are formed from atomic 3 71 
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orbitals that are similar in energy. The 2s and 2p orbitals on any given atom are similar 
in energy and as a result we should consider the possibility that more than one atomic 
orbital from a given atom can contribute to a molecular orbital. In the particular case 
of BeH2 , the resultant orbitals on the beryllium atom must point in opposite directions 
to explain the linear structure of the molecule. Whereas the occupied 2s orbital is 
spherically symmetric, the desired geometry is similar to the spatial orientation of the 
2p atomic orbital that points along the internuclear axis . Thus, it is reasonable to use 
the following linear combination to describe the molecular orbitals formed between 
the beryllium atom and the hydrogen atoms: 

(10.1 ) 

Whether these molecular orbitals correspond to bonding or anti bonding orbitals de­
pends on the signs of the coefficients. The first two terms in Equation 10.1 can be 

thought of as representing a new "orbital" on beryllium, given by C 1o/
SC

(2 1) + C2 o/13 e(2p) ' 

Linear combinations of atomic orbitals on the same atom are called hybrid orbitals. 

The linear combination of two atomic orbitals yields two hybrid orbitals. Because these 
hybrid orbitals are made up of a 2s orbital and a 2p orbital, they are called sp hybrid 

orbitals. 
The two sp hybrid orbitals are equivalent and are directed 1800 from each other. 

The normalized sp hybrid orbitals are given by 

I 
0/ := ;;:;(2s ± 2pJ 

' 1' v2 -
(10.2) 

--

FIG U R E 10.1 
An illustration of the sp hybrid orbitals. The two sp hybrid orbitals are equivalent and are 
directed 1800 from each other. The two remaining 2p orbitals are perpendicular to each other 
and to the line formed by the sp orbitals .. 



FIG U R E 10.2 

A contour map of one of the s p hybrid orbitals. 
The two sp hybrid orbitals are equivalent and are 
directed 180" from each other. 

where the z-axis is arbitrarily defined to lie along the H-Be-H bonds. Figure LO.I 
illustrates the sp hybrid orbitals. The remaining two 2p orbitals are perpendicular 
to the sp hybrid orbitals. Whereas each 2p orbital consists of two lobes that point in 
opposite directions, each sp hybrid orbital concentrates electron density in one direction 
(Figure 10.2). This is understandable since the sign of the 2p wave function is different 
in the two directions (± z) but the sign of the 2s wave function is everywhere positive. 

Examining Equation 10.2, we note that the linear combination C I Vr Be(2s) + c2 VrBe(2p) 

constructively builds electron density along the +z direction; the linear combination 
c 1 VrBC(2s) - c2 VrBo(2/1) constructively builds electron density along the - z direction. The 
beryllium-hydrogen bond orbitals result from a linear combination of each sp hybrid 
orbital and a hydrogen Is orbital as in Equation LO.1. The bonding of BeH2 can be 
depicted as in Figure LO.3. 

FIG U R E 10.3 

acant 
p orbilal 

\ 

+ 2 

The formation of two equivalent localized bond orbitals in BeH
2

. Each bond orbital is formed 
from the overlap of a beryllium sp orbital and a hydrogen I s orbital. There are four valence 
electrons in BeHz, two from the beryllium atom and one from each of the two hydrogen atoms. 
The four valence electrons occupy the two localized bond orbitals, forming the two localized 
beryllium-hydrogen bonds in BeHo . 

373 



374 Chapler 10 / Bond ing In Pol ya tomic Molecules 

This approach can be extended to more complicated molecules. Consider the 
molecule BH3 . The three B-H bonds are equivalent, lie in a plane, and are directed 
1200 from each other. The ground-state electron configuration of atomic boron is 
15 2252217 I. Once again, we need a set of equivalent orbitals on the central boron atom 
that describe the observed bonding. Because we need three equivalent hybrid orbitals, 
we consider hybrid orbitals that are linear combinations of three atomic orbitals on 
boron. The electron configuration of boron suggests that the appropriate hybrid orbitals 
will be constructed from the 2s orbital and two of the 217 orbitals; such orbitals are 
called 5 p2 hybrid orbitals. Figure 10.4 illustrates the geometry associated with the 
Sp 2 hybrid orbitals. A contour map of an 517" hybrid orbital looks similar to that shown 
for an sp orbital in Figure 10.2. The normalized Sp" hybrid orbitals are given by the 
linear combinations 

I fl 1/1
1 

= ro2s + -2p. 
y' 3 3 '· 

(10.3) 

I I I 
1/1, = ro 2s - rc 2p- + h2p . 

- y' 3 y' 6 .. y 2' 
(10.4 ) 

and 
I I I 

1/1 = -2s - --2p - --2p .1 .J3 J6 0 J2 .\" (10.5) 

Note that the sum of the squares of the coefficients for a particular atomic orbital for 
the set of hybrid orbitals is equal to one. For example, for the 25 atomic orbital 

Notice that the number of hybrid orbitals is equal to the number of atomic orbitals we 
started with. 

1100 

\ 

Side view Top view 

FIG U R E 10.4 
The geometry associated with Spl orbitals. The three Sp l orbitals lie in a plane and point 
to the vertices of an equilateral triangle. The remaining 2p orbital is perpendicular to the plane 
formed by the three Sp l orbitals. 



10-1. Hybrid Orbitals Account for Molecular Shape 

E X AMP L E 1 0-1 
Show that the three s p2 hybrid orbitals are orthogonal to one another. 

SOL UTI 0 N: If two orbitals, 1/1 I and 1/12' are orthogonal, then 

Substituting the first two s p2 hybrid orbitals (Equations 10.3 and 10.4) into this or­

thogonality integral gives 

Expanding the product in the above integral gives 

1 dT1/J~1/f7 = ~ 1 dr2s*2s + v0. 1 dr2p~2s - ~ 1 dr2s*2p_ 
- 3 3" 18 ' 

11 I f If'" -- dr2p*2p_ + IL dr2s*2p, + h dr2p'2p 3 ,,' v 6 ,\ V 3 ,,\ 

Because the atomic orbitals are orthogonal, this expression simplifies to 

Each of the integrals on the right side of the above equation is equal to one because 

the atomic orbitals are normalized. Thus, we obtain 

f * 1 I dr1/l,1/l, == - - == 0 
~ 3 3 

which establishes that 1f; I and 1f; 2 are orthogonal. Likewise J d r 1f;~ 1f; 3 == 0 and 
f dr1/l;1/I3 == 0, thereby proving that the three Sp2 orbitals are mutually orthogonal. 

The three s p2 hybrid orbitals are able to account for the planar bonding and bond 
angles observed in BH

3
, as shown schematically in Figure 10.5. In constructing the 

hybrid orbitals in Equations 10.3 to 10.5, we arbitrarily choose the molecule to lie in 
the x-z plane. In principle, any set of two of the p orbitals can be used to construct the 
s p2 hybrid orbitals. 

The final example we consider is the tetrahedral molecule, methane, CH4 . As 
indicated in the beginning of this section, the observed molecular bonding is not easily 
described in terms of the ground-state electron configuration of the central carbon atom. 
Following the approach used above, however, we can construct four equivalent hy,brid 
orbitals that point to the corners of a tetrahedron. The four hybrid orbitals involve the 
linear combinations of four atomic orbitals. For carbon, this involves the 2s and the 
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Va ca n t 
p orbital 

! 

FIG U R E 10.5 

+ 3 

A schematic illustration of the bonding in BH, . Each of the three boron-hydrogen bond orbitals 
is formed from the overlap of a boron Sp2 orbital and a hydrogen Is orbital. The six valence 
electrons in BH, occupy the three bond orbitals to form the three boron-hydrogen bonds. 

three 2p orbitals thereby generating sp' hybrid orbitals. The normalized Sp3 hybrids 
orbitals are given by 

I 
1/1 1 = 2 (2s + 2p, + 2p, + 2p) ( I 0.6) 

1 
1/12 = 2 (2s - 2p, - 2p, + 2p) (10.7) 

1 
1/1, = 2 (2s + 2Pr - 2p, - 2p) (10.8) 

and 
I 

1/14 = 2 (2s - 2p, + 2p, - 2p) (10.9) 

Figure 10.6 illustrates the geometry associated with the spJ hybrid orbitals . 

. -

• ,. , , 

109 .5 0 

\ 
J 

J 

FIG U R E 10.6 

The geometry associated with sp' hybrid orbitals. The 
four Sp 3 hybrid orbitals point toward the vertices of a 
tetrahedron . The angle between the center lines of any 
pair of sp' hybrid orbitals in this structure is 109.5" 
(Problems 10- 7 and 10-9). 



FIGURE 10.7 
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A schematic representation of the bonding in ethane, CHlCHr Six of the seven bond orbitals 
in ethane result from the overlap of Sp 3 orbitals on the carbon atoms and I s orbitals on the 
hydrogen atoms. The seventh bond orbital involves the overlap of an sp" orbital on each carbon. 
There are 14 valence electrons in ethane. Each of these seven bonding orbitals is occupied by 
two valence electrons of opposite spins . The electrons are depicted by an'ows in the above figure. 

The s p3 hybrid orbitals on the carbon atom are used to describe the bonding in 
saturated hydrocarbons. Figure 10.7 illustrates this by presenting an illustration of the 
bonding in ethane, C

2 
H

6
• 

In this section, we have shown that molecular shapes can be accounted for by 
using hybrid atomic orbitals. We have not illustrated the mathematical details by 
which equivalent hybrid orbitals are generated from linear combinations of atomic 
orbitals. Problem 10-6 asks you to provide these details for the sp hybrid orbitals, and 
Problem 10-10 addresses the Spl hybrid orbitals. The choice of linear combinations is 
greatly simplified by consideration of the molecular symmetry, a topic we will explore 
in Chapter 12. 

EXAMPLE 10-2 
Which atomic orbitals on the sulfur atom are involved in the hybrid orbitals that 

account for the bonding in SF
I
, 

SOL UTI 0 N: SF
6 

is an octahedral molecule, in which the six S- F bonds are equiv­

alent. The bond angles are all 90". We assume that the S·-F bonds lie along the X-, 

Y-, and z-axes, with the origin of the coordinate system centered on the sulfur atom. 

To account for this bonding, we require six equivalent hybrid orbitals that point in 

directions consistent with the known molecular structure. The ground-state electron 

configuration ofa sulfur atom is [Ne13s " 3p~. Using the 3.1' and three 3p orbitals would 

limit us to a total of four hybrid orbitals, and hence only four S- F bonds. The 3d or­

bitals, however, are also similar in energy to the 3s and3p. In constructing six hybrid 

orbitals for the sulfur atom, we consider linear combinations of two 3d orbitals, the 

3s orbital and the three 3 p orbitals. These six atomic orbitals give rise to six hybrid 

orbitals , which are called (1".1',," hybrid orbitals. If we consider that the six fluorine 

atoms lie along the X- , y-, and z-axes, the two d orbitals used to construct the hybrid 

orbitals are the dc' and d ,' _,2 orbitals (Figure 10.8). 
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The six d~Sp 3 hybrid orbitals point along the X-, y -, and z-axes and are formed from linear 
combinations of an n5' orbital, the three njJ orbitals, and the nd,' and nd,'_, ' orbitals. 

I 

10-2. Different Hybrid Orbitals Are Used for the Bonding Electrons 
and the Lone Pair Electrons in Water 

The valence electrons on the central atoms of the molecules discussed in the last section 
(beryllium for BeHz, boron for BH" and carbon for CH4 ) all occupy hybrid orbitals 
involved in bonding to a hydrogen atom. In this section, we consider the description 
of molecules in which the central atom has lone pairs of electrons by considering the 
specific case of water (H20). 

The ground-state electron configuration of an oxygen atom is Is 2 2s2 2p.;2p~ 2p~. 
Because the 2p, and 2P: orbitals contain only one electron, they can form chemical 
bonds with the hydrogen Is electron. We could form two bond orbitals by forming the 
linear combinations 

¢I = c 1 ISHA 
+ c 22pyO 

¢ 2 = c3 1s
Hs 

+ c42p,o 
(l0.1O) 
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This model predicts, however, that the bond angle in water is 90°, compared with the 
observed bond angle of 104.5°. Even though the oxygen atom contains the needed 
electrons in half-filled atomic orbitals to account for the number of chemical bonds in 
water, the geometry of the molecule necessitates the consideration of hybrid orbitals 
on the central oxygen molecule. The bond angle in water (104.5 ) is between that 
predicted using s p2 hybrid orbitals (120()) and 2 p orbitals (90 0

). This result is not 
surprising. In the case of BH1 , all the valence electrons on the boron atom are involved 
in the three equivalent B-H bonds, thus the angles between the bonds are equivalent. 
In water, two of the valence electrons on the oxygen atom are involved in the bonds 
with hydrogen atoms while four remain as two sets of lone pair electrons on the oxygen 
atom. We expect the pair of bonding orbitals to be equivalent and the pair of orbitals 
for the lone pairs to be equivalent, but there is no reason to expect the bonding orbitals 
to be equivalent to the lone pair orbitals. Proceeding as we did in the previous section, 
the general form of the hybrid orbitals on the oxygen atom is given by 

(10.11) 

We need to determine the coefficients C I' c2 , and C 3 such that two orthogonal orbitals 
are directed at an angle of 104.5°. The details of this calculation are left as an exercise 
(Problem 10-12). The results for the two bonding hybrid orbitals, 1/f] and 1/f2' are 
given by 

and 

1/f1 == 0.45 . 2s + 0.7] . 2py + 0.55 .2pz (10.12) 

1/f2 == 0.45 . 2s - 0.71 . 2py + 0.55 .2pz (10.13) 

EXAMPLE 10-3 
Show that the molecular orbitals 1/1, and 1/12 given by Equations 10.12 and 10.13 are 
orthogonal. 

SOL UTI 0 N: The two orbitals, 1/1, and 1/12' are orthogonal if 

f dT1/f~o/~ = 0 

Substituting in Equations 10.12 and 10.13 gives 

f d T 0/ ~ 0/ 2 = f d T (0.45 . 2s * + 0.71 . 2 p~ + 0.55 . 2 p; ) 
x (0.45 . 25 - 0.71 . 2p

y 
+ 0.55 . 2p~) 
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Multiplying out the above product gives 

f dT1jf~ljJ2 = f dr(0.45)22s*2s + f dr(0.45)(0.55)2s*2p, 

-f dr (0.45)(0.71 )2s*2p,. + f dr(0.55)(0.45)2p;2s 

+ f dr(0.55)22p;2p, - f dr(0.55)(0.71)2p;2p,. 

+ f dr (0.71)(0.45)2p~2s + f dr(0.71 )(0.55)2p;2p, 

- f dr(0.71 )22p~2p, 

Because the 2s, 2 P
x

' and 2 P r atomic orbitals are mutually orthogonal, the above sum 

simplifies to 

The atomic orbitals are normalized, giving 

f drljJ~ljJ 2 = (0.55)2 - (0.71)2 + (0.45)2 = 0 

Thus, the two hybrid orbitals are orthogonal. 

EXAMPLE 10-4 

Show that the hybrid orbitals 1/1 I and 1/12 given by Equations 10.12 and 10.13 are 
directed at an angle of 104.5 with respect to one another. 

SOL UTI 0 N: Because the 2s orbital is spherically symmetric, the directionalities of 

1/J
l 

and 1/1
2 

are determined by the relative contributions of 2py and 2P:. The following 
figure illustrates this directionality. 

-0.71 o 0.71 
y 

~ 
0.55 



10-3. Why is BeH 2 Linear and H20 Bent? 

Note that 1/1
1 

and 1/1
2 

may be depicted as vectors whose C0l11pOnents are the coefficients 

of 2py and 2pz; the 2py and 2pz atolnic orbitals are the (orthonormal) unit vectors. 

The angle e in the above figure is given by 

0.71 
tan e == == 1.29 

0.55 

or e == 52.24°. Therefore, the bond angle is 28, or 104.5 . 

The hybrid orbitals given by Equations 10.12 and 10.13 are normalized. Because 
the 2s, 2py, and 2pz orbitals are orthonormal, the nonnallzation condition says that 

c~ + c; + c~ == 1. We can give a physical interpretation to this result by saying that 
c~, the square of the coefficient of the 2s orbital in the hybrid orbital, is the fraction 
of s character in the hybrid orbital, with a corresponding interpretation for c; and c~. 
Therefore, we can say that the hybrid orbitals on the oxygen atom in water have an 
s character of 0.20 (0.452

) and a p character of 0.81 (0.552 + 0.71 2
). Note that the 

Sp2 hybrid orbitals constructed for BH1 are 0.333 s character and 0.667 p character, 
different from those for water. The quantitative contribution of the sand p orbitals to a 
particular type of hybrid atomic orbitals is a function of the bond angle and the number 
of valence electrons on the central atom. 

The two hybrid bond orbitals we have constructed consist of the oxygen 2s, 2py, 
and 2 p 7 orbitals. Because we are using three atolnic orbitals, there must be a third 

,,-, 

hybrid orbital 1/13 ' Thus, we have an unused hybrid orbital and an unused 2 Px orbital 
to accomodate the two lone pair of electrons on the oxygen atoIn.Because we require 
that the two lone pair orbitals be equivalent, we fornl two such orbitals by taking linear 
combinations of 1/13 and the oxygen 2px orbital (Problem 10-13). 

10-3. Why is BeH2 Linear and H 20 Bent? 

We have seen that BeH2 is linear and H20 is bent. Although introducing hybrid orbitals 
can provide us an explanation of the observed geoInetry, the physical origin of this 
difference in molecular structure is not accounted for. 'I'he Inajor difference between 
BeH2 and H20 is the nUlnber of valence electrons on the central atom (beryllium has 
two valence electrons, whereas oxygen has six). 1'he effect of the number of valence 
electrons on the molecular structure can be quantitatively understood in terms of the 
shape and occupation of the molecular orbitals. 

The molecular orbitals for both BeHz and H20 involve linear combinations of the 

valence orbitals of the central atom (2s, 2px' 21)y' and 2p:;:) and the Is orbitals of the 
two hydrogen atoms. Using these six atomic orbitals, we \vrite the LCAO-MO wave 
function by the general form 

1jJ == clIsHa + c2 1sHh + c32sA + C4 2PxA + C S2PrA .-t- c6 2P:::A (10.14) 

where the subscript A is used to indicate the central atoI11 of the dihydride molecule. 
This particular LCAO-MO involves six atolnic orbitals, and therefore it must generate 
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six molecular orbitals. Once again the energies and coefficients for these six molecu­
lar orbitals are obtained by solving a secular determinantal equation. The calculated 
energies and corresponding wave functions clearly depend on the molecular geometry 
because the Hamiltonian operator explicitly depends on molecular geometry. Here, 
we first examine the six molecular orbitals that result from the linear combinations of 
atomic orbitals given in Equation 10.14 for a linear molecule AH

2
. Then, we consider 

how these molecular orbitals change as the molecule bends. 
Figure 10.9 shows the six molecular orbitals for the linear molecule AH2 that 

arise from Equation 10.14. The occupied Is orbital, the 10- , on atom A is a non-
g 

bonding orbital and is not shown in the figure. (We will use the notation for molec-
ular orbitals introduced in Section 9-13.) The LCAO-MO given by Equation 10.14 
generates two bonding orbitals (20- , 10- ), two antibonding orbitals (30- , 20- ), and 

S I' R U 

a doubly degenerate set of nonbonding orbitals (in). As Figure 10.9 shows, the 

C..l 
C 

W 

FIG U R E 10.9 
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The six molecular orbitals for a linear AH2 molecule that are constructed from the linear 
combination of atomic orbitals given by Equation 10.14. 



10-3. Why is BeH2 Linear and H20 Bent? 

two bonding orbitals 2a and 1 a concentrate electron density between the cen-
g u 

tral A atom and the hydrogen atoms. The two orbitals 3a and 2a , however, have g u 

nodes between the central A atom and the hydrogen atoms and so are antibond-
ing orbitals. The doubly degenerate Inll orbitals are the P

r 
and P \' orbitals on the 

central atom and so are nonbonding orbitals. The 2a and 3a orbitals result from g g 

linear combinations of the 2s orbital on the central atom with the Is orbitals on 
the two hydrogen atoms, and the 1 au and 2a

u 
orbitals result from linear combina­

tions of the 2p~ orbital on the central atom (the z-axis is defined as the internu-
,. 

clear axis) with the Is orbitals on the two hydrogen atoms. The molecular-orbital 
energy-level diagram of BeH2 is shown in Figure 10.10. The energy ordering of these 
six molecular orbitals is 2a < la < In == In < 3a < 2a . This ordering is in-g u u u g II 

dependent of the number of valence electrons on the central A atom in the linear 
AH2 molecule. 

Now let's consider what happens to these molecular orbitals as the molecule bends. 
Surely the energies and the molecular orbitals depend upon the shape of the molecule. 
For example, for a linear AH2 molecule there is no net overlap between the Is orbitals 
on the hydrogen atoms and the 2px and 2py orbitals on the central atom (Figure 10.11). 
For a bent molecule, however, this is no longer the case. If the molecule bends in the 
y-z plane, a net overlap (of bonding character) results with the 2p \' orbital, as shown in 
Figure 10.11. The net overlap between the I s orbitals on the hydrogen atoms and the 

FIGURE 10.10 
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A molecular orbital energy level diagram for the valence electrons in the linear BeH2 molecule. 
Note that the doubly degenerate 1 JT orbitals are nonbonding orbitals. 
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FIG U R E 10.11 
The net overlap of hydrogen I s orbital s with a central atom 2p , orbital is zero for a linear 
molecule. If the molecule is bent, however, a nonzero net orbital' overlap of the 2p , orbital on 
the central A atom with the I s orbitals on the two hydrogen atoms results. . 

2Px orbital on the central atom is still zero, however. Because there is a net overlap of 
the I s orbitals with only one of the 2p orbitals , the degeneracy of the]T orbitals is lifted 
upon bending. What was once a nonbonding orbital of the linear molecule becomes a 
bonding orbital in the bent molecule. 

The molecular orbitals for a bent triatomic molecule will be represented by different 
linear combinations of the atomic orbitals from those found for a linear structure. By 
solving for the energy as a function of all bond angles between a linear geometry and 
a 90° geometry, we can determine how the molecular orbitals for the linear molecule 
evol ve into those characteristic of the 90° geometry. A plot of the energy of a molecular 
orbital as a function of a systematic change in molecular geometry is called a Walsh 

correlation diag ram. Figure 10.12 shows the Walsh cOlTelation diagram for a triatomic 
molecule, AH

2
, for which the energies of all six of the molecular orbitals shown in 

Figure 10.9 are plotted as a function of bond angle. Note that the labels designating 
the orbitals for the 90° geometry are different from those used for the linear molecule. 
By their definitions , the a and ]T designations can be used to describe only a linear 
molecule. The labels for a bent molecule, ai' b I' and 172 , reflect specific symmetry 
properties of the molecule and are discussed in Chapter 12. Here we will use them 
simply as a short-hand notation for the molecular orbitals of the bent molecule. 

Whether the geometry of a molecule is linear or bent (at a particular angle) depends 

on which structure is lowest in energy, which can be determined using the Walsh 
cOlTelation diagram. The data presented in Figure 10.12 show that bending a molecule 
affects the energy of the six molecular orbitals differently. The molecular geometry 
will therefore depend on which orbitals are occupied. The Walsh correlation diagram 
shows that the bonding 2a and I a orbitals are destabilized with bending. Bending 

~ M /I 

lifts the degeneracy of the I]TII orbitals in the linear structure, stabilizing the 3a l (see 
Figure 10.12), and not affecting the energy of the 1171 orbital. For large bending angles, 
the energy of the 3a

l 
orbital drops below that of the 1172 orbital. 

This energy-correlation diagram can be used to predict general features of molec­
ular geometry. Consider, for example, the molecule BeH

2
, which has a total of four 
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FIG U R E 10.12 
The Walsh correlation diagram for the 
valence electrons of an AH2 molecule. The 
right side of the diagram gives the energy 
ordering of the molecular orbitals for an 
H-A-H bond angle of 1800
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gives the energy ordering of the molecular 
orbitals for an H-A-H bond angle of 900

• 

The solid lines tell us how the energies of 
the molecular orbitals depend upon H-A-H 
bond angles between 90° and 1800

• 

valence electrons. For a linear structure, this would correspond to the electron con­
figuration of (2a ) 2 

( 1 a ) 2 . A bent structure would have an electron configuration of g u 

(2a 1)2 (I b2)2 or (2a 1)2 (3a 1)2, depending on the bond angle. Because bending desta-
bilizes the energy of the lowest two molecular orbitals, the electron configuration 
(2a

g
)2(la

l
)2 is lower in energy than either (2a

1
)2(lb2)2 or (2a

l
)2(3a

l
)2. The Walsh 

correlation diagram correctly predicts that BeH,) is linear . ... 

EXAMPLE 10-5 
Predict the geometry of the ground state of B H

2
. 

SOL UTI 0 N: The species BH) has five valence electrons. A linear structure would 
have an electron configuration -of (2a

g
)2 (I a

ll
)2 ( I Jr

it
)). A bent structure could have 

the electron configuration (2a)2(3a)2(lh2») or (2a
1
)2(lb2)2(3a)), depending on the 

H-B-H angle. Figure 10.12 shows that the decrease in the energy of the 3a I orbitals 

outweighs the increase in energy of the sum of the 20 I and 1 h2 orbitals as the molecule 

is bent from 180C

). We therefore expect the nlolecule to be bent. However, the desta­

bilization of the energy of the four total electrons in the 2a l and I b
2 

orbitals that 

accompanies bending quickly outweighs the stabilization in energy derived from the 

one electron in the 3a I orbital. Thus, the bond angle should lie sOlnewhere near the 

middle of the diagram between 180' and 90, and we would predict a ground-state 

electron configuration of (2a 1)2 (1 b
2

)2 (3a) I. This configuration is in agreement with 

the experimentally determined bond angle for BH2 of 131;'. 
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Now let's consider a water molecule, which has eight valence electrons. Each of 
the four lowest energy molecular orbitals given in the Walsh diagram will be popu­
lated by two electrons. A linear structure would correspond to an electron configu­
ration of (2a,l,J 2(lau )2(ln

L
)4. A bent structure could have the electron configuration 

(2a
J
)2(3a

J
)2(lb2)2(lb

J
)2 or (2a

J
)2(lb2)2(3a

J
)2(lb

J
)2 depending on the H-O-H bond 

angle. The energy of the 1 b J orbital in the bent geometry is the same as the In u in 
the linear geometry, hence the contribution of these electrons to the total energy is 
independent of the molecular geometry. The important issue to consider is how the 
stabilization in energy of one of the 1 nu orbitals with bending (corresponding to the 
3a J orbital in the bent molecule) compares with the destabilization in energy that ac­
companies generation of the (2a

J 
)2(lb

2
)2 electron configuration from the (2a

g
)2(la

u
)2 

electron configuration of the linear molecule. As we found for BH2 in Example 10-5, 
the stabilization of the 3a J orbital is greater than the destabilization associated with for­
mation of the (2a

1
)2 (1 b

2
)2 electronic configuration for small bending angles. Thus, the 

Walsh correlation diagram predicts that water is a bent molecule, which is in agreement 
with experimental measurements. The exact value of the H-O-H bond angle (104.5°) 
can be calculated using the computational techniques discussed in the next chapter. 
The molecular-orbital energy-level diagram for H20 is shown in Figure 10.13. Water 
has eight valence electrons, and so Figure 10.13 shows that the ground-state electron 
configuration of H20 is (2a

J
)2(lb2)2(3a

J
)2(lb

J
)2. 

FIG U R E 10.13 
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10-4. Photoelectron Spectroscopy Can Be Used to Study 
Molecular Orbitals 

We discussed photoelectron spectroscopy in Chapter 9, where we showed photoelec­

tron spectra of N2 and CO. Photoelectron spectroscopy can also be used for polyatomic 

molecules. Figure 10.14 shows the photoelectron spectrum of H'1 0 vapor. The electron 
"-

configuration (2a 1)2 (1 b2)2 (3a 1)2 (1 b 1)2 suggests that ionization from each of these oc-

cupied orbitals will be observed, and the three bands shown in Figure 10.14 correspond 

to ionization of electrons from the 1 b I' 3a I' and 1 b
2 

molecular orbitals. (The ionization 
from the 2a I level is off the scale of the figure.) The structure evident in the 3a I and 

Ib
2 

bands reflects ionization from the different vibrational levels associated with that 

state. Thus, an analysis of the photoelectron spectrum can be used to determine the 

energy spacing between the vibrational levels associated with various electronic states. 

Figure 10. 15 shows the molecular-orbital energy-level diagram of CH4 . Methane 

has eight valence electrons, so its ground-state valence configuration is (2a l )2 (1 t
2

)6 

(the designation of the molecular orbitals will be explained in Chapter 12). Thus, for 

the valence electrons, we predict that only two bands are observed in the photelectron 

spectrum of CH
4

, as confirmed in Figure 10.16. The la l orbital, which corresponds 

to the core 1 s orbital on carbon, is off the scale in the figure. Once again, notice the 

vibrational structure superimposed on the bands. 

As a final example, the molecular-orbital energy-level diagram of the valence 

electrons in ethene, C
2 
H

4
, is shown in Figure 10.17. The photoelectron spectrum of 

ethene is shown in Figure 10.18. Ethene has twelve valence electrons, so its ground­

state valence electron configuration is (2ag)2(2bll)2(lb21)2(lb3g)2(3ag)2(lb3u)2. (Once 

again, we simply consider 2ag, 2b Ill' etc. as a short-hand notation for the molecular 

1 .2 t 1.4 t 1.6 1 .8 t 2.0 

Ionization energy / MJ .mol- I 

FIG U R E 10.14 
The photoelectron spectrUlTI of water. The three bands shown correspond to ionization from 
the three highest energy occupied molecular orbitals. The fine structure on each band reflects 
ionization to different vibrational levels. The arrows indicate the calculated ionization energies 
from the v == 0 vibrational states (see Chapter II). 
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orbitals.) Although not evident from the notation, the lowest five states in Figure 10.17 
are associated with a orbitals, and the sixth state, the highest occupied molecular 
orbital, is associated with a JT orbital. Figure 10.17 shows that the energy difference 
between If bonding and If antibonding orbitals is less than the difference between 

I .3 1.5 1 .8 2. I 

Ionization energy / MJ ·mol 

2.4 

FIG U R E 1 0.16 
The photoelectron spectrum of methane. 

The two bands observed in the photo­

electron spectrum reflect the ionization 

of electrons from the I t2 and 2a I molecular 
orbitals. The energy difference between 

these two bands corresponds to the en­

ergy difference between the I t2 and 2a
l 

molecular orbitals (see Figure 10.15). The 

bands are broad because ionization occurs 

to many different vibrational levels of the 
molecules. 
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a bonding and a antibonding orbitals, suggesting that unsaturated hydrocarbons such 
as ethene should absorb light at longer wavelengths (less energy) than do saturated 
hydrocarbons. Ethene, for example, turns out to have an ultraviolet absorption peak at 
58500 cm- 1

, whereas ethane (with no IT orbitals) does not begin to absorb strongly 
until 62500 cm I. Therefore, we can develop a simplified molecular-orbital treat­
ment of unsaturated hydrocarbons that includes only the ][ orbitals. In this approx­
imation, the relatively complicated energy-level diagram in Figure 10.17 consists of 
simply two molecular orbitals, a ][ bonding orbital and a ][ anti bonding orbital (see 
Figure lO.20). We will discuss this simple molecular-orbital theory in the following 
sections. 
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3a~ 
I b 2 II 
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I 

FIGURE 10.18 
The photoelectron spectrum of ethene. The bands in the photoelectron spectrum correspond to 
the ionization of electrons from the different molecular orbitals of the molecule. The energies 
of the bands in the photoelectron spectrum can be used to determine the energy spacings 
between the lowest six molecular orbital s in Figure 10.17. 

10-5. Conjugated Hydrocarbons and Aromatic Hydrocarbons 
Can Be Treated by a n-IElectron Approximation 

In this section, we will discuss a well-known theory of bonding in unsaturated hy­

drocarbons. The simplest unsaturated hydrocarbon is ethene, CZH4 • Ethene is a planar 

unsaturated hydrocarbon, all of whose bond angles are approximately 120°. We can 

describe the structure of ethene by saying that the carbon atoms form Sp2 hybrid orbitals 

and that each C- H bond results from an overlap of the Is hydrogen orbital with an 

Sp2 hybrid orbital on each carbon atom. Part of the C-C bond in ethene results from the 

I s 

H 

H 

I s 

FIG U R E 10.19 
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The (J-bond framework of an ethene mo.lecule. 
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10-5. Conjugated Hydrocarbons and Aromatic Hydrocarbons 

overlap of an s p2 hybrid orbital from each carbon atom. All five bonds are a bonds and 
collectively are called the a -bond framework of the ethene molecule (Figure 10.19). 

If this a framework lies in the x-y plane, thus implying that the 2 p x and 2 p \' orbitals 
were used to construct the hybrid orbitals, then the 2 p _ orbital on each carbon atom is 

~ 

still available for bonding. The charge distribution that results from the overlap of the 
2 p" orbitals produces a Jr bond between the carbon atoms. Thus, the picture we are 

~ 

developing here assumes that unsaturated hydrocarbons will have both a and Jr bonds. 
In large systems, such as conjugated polyenes and benzene, you learned in organic 
chemistry that the Jr orbitals can be delocalized over the entire molecule. In such cases, 
we could view the Jr electrons moving in some fixed, effective, electrostatic potential 
due to the electrons in the a framework. This approximation is called the Jr -electron 
approximation. The Jr-electron approximation can be developed formally by starting 
with the Schrodinger equation, but we will simply accept it here as a physically intuitive 
approach to the bonding in unsaturated hydrocarbons. 

We now turn our attention to describing the delocalized molecular orbitals occu­
pied by these Jr electrons. You need to realize that the Hamiltonian operator we are 
considering contains an effective potential due to the electrons in the a framework and 
that the explicit form of this effective Hamiltonian operator has not been specified in 
our treatment so far. With this in mind, let's return to ethene. Here, each carbon atom 
contributes a 2 p _ orbital to the delocalized Jr orbital, and using the same approach as 

~. 

we used to describe the a bond of the wave function of H
2

, we would write the wave 
function of the Jr orbital of ethene, l/f ,as 

JT 

The secular determinant associated with this wave function is 

HII - ES11 

Hl2 - ES I2 

(10.15) 

(10.16) 

where the H .. are integrals involving the effective Hamiltonian operator and the S .. are 
lJ IJ 

overlap integrals involving 2p" atomic orbitals. Because the carbon atoms in ethene 
"-

are equivalent, HII == H22 . The diagonal elements of the Hamiltonian operator in the 
secular determinant are called Coulomb integrals. The off-diagonal elements of the 
Hamiltonian operator are called resonance integrals or exchange integrals. Note that the 
resonance integral involves two atomic centers because it has contributions of atomic 
orbitals from two different carbon atoms. To determine the energies and associated 
molecular orbitals, we either need to specify the effective Hamiltonian operator or 
propose approximations for evaluating the various entries in the secular determinant. 
Here, we examine an approximation proposed by Erich Huckel in 1930, which along 
with various extensions and modifications has found wide use in organic chemistry. 
There are three simple assertions of Huckel molecular-orbital theory. First, the overlap 
integrals, S .. , are set to zero unless i == ,', where S .. == 1. Second, all the Coulomb 

IJ • 11 

integrals (the diagonal elements of the Hamiltonian operator in the secular determinant) 
are assumed to be the same for all carbon atoms and are commonly denoted by a. Third, 
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the resonance integrals involving nearest-neighbor carbon atoms are assumed to be the 
same and are denoted by fJ; the remaining resonance integrals are set equal to zero. 
Thus, the Huckel secular determinant for ethene (Equation 10.16) is given by 

a-E 

a-E 
==0 (10.17) 

The two roots of this secular determinant are E == a ± fJ. 
To evaluate the energy quantitatively, we would need to know the effective Hamil­

tonian operator. Fortunately, in Huckel theory, we do not need to worry about this 

because a and fJ are assigned values that are determined by experimental measure­
ments. Because a approximates the energy of an electron in an isolated 2 p _ orbital, it 

~. 

can be used as a reference point for the zero of energy. The quantity f3 has been deter-
mined from the consideration of a variety of experimental data and is given a value of 

approximately -75 kJ ·mol- 1
• The Huckel approximations allow us to determine the 

energies (in terms of a and fJ) and wave functions for the J[ molecular orbitals without 

explicitly specifying the Hamiltonian operator. 
There are two J[ electrons in ethene. In the ground state, both electrons occupy the 

orbital of lowest energy. Because f3 is negative, the lowest energy is E == a + fJ. The 

rr -electronic energy of ethene is E == 2a + 2f3. Figure 10.20 shows an energy-level 
IT 

diagram for the rr electrons of ethene (cf. Figure 10.17). Because a is used to specify 

the zero of energy, the two energies found from the secular determinant, E == a ± fJ, 
must correspond to bonding and antibonding orbitals. 

a f3 

>. 
OIJ 
~ 
C) -------- a 
=: 

u.J 

H a+f3 

EXAMPLE 10-6 

FIG U R E 10.20 
The ground-state electron configuration of the J[ 

electrons in ethene. 

Find the bonding Huckel molecular orbitals for ethene. 



10-6. Butadiene Is Stabilized by a Delocalization Energy 

SOL UTI 0 N: Recall from Section 7-2 that the secular determinantal equation orig­
inates from the following pair of linear algebraic equations for C I and c2 in Equa­

tion 10.16: 

and 

Using the Huckel approximations, we rewrite these equations as 

and 

To find the values of C I and c
2 

associated with each value of E, we substitute in an 
allowed value of E and solve for the coefficients. For E == a + f3, either equation 

yields that C I == c
2

. Thus, 

The value of c
1 

can be found by requiring that the wave function be normalized. The 

normalization condition on 1jr IT gives 

c~ (I + 2 S + 1) == 1 

U sing the Huckel assumption that S == 0, we find that C I == 1/--/2. Problem 10-24 asks 
you to find the wave function for E == a - f3. 

10-6. Butadiene Is Stabilized by a Delocalization Energy 

The case of butadiene is more interesting than that of ethene. Although butadiene exists 
in both the cis and trans configurations, we will ignore that and picture the butadiene 
molecule as simply a linear sequence of four carbon atoms, each of which contributes 
a 2pz orbital to the n-electron orbital (Figure 10.21). Because we are considering the 
linear combination of four atomic orbitals, the dimension of the secular determinant 

F I CUR E 1 0.21 
A schematic representation of the 2 p~ orbitals of each of 
the carbon atoms in a butadiene molecule. 

393 



394 Chapter 10 / Bonding In Polyatomic Molecules 

will be 4 x 4 and will give rise to four different energies and four different 7T molecular 
orbitals. We can express all the molecular orbitals, Vri' by the single expression 

4 

Vr. == " c . . 2p~. 
1 ~ 1./ .:..J 

(10.IS) 
j=! 

where the c .. are the coefficients of the 2 p atomic orbital on the j th atom (2 p _.) in the 
IJ ,. . ,.J 

ith molecular orbital. The secular determinantal equation for the butadiene molecule 
is (Problem 10-26) 

H11 - E SII H I2 -ESI2 H 13 -ES13 H14 - ES 14 

H I2 -ESI2 H22 - ES22 H23 - ES23 H24 ES24 
==0 (10.19) 

H I3 -ESI3 H23 - ES23 H33 - ES33 H34 -ES34 

H14 - £S14 H24 - ES24 H34 - ES34 H44 -ES44 

U sing the Huckel approximations, H .. == a, S .. == 1, S .. == 0 if i =I=- j and the H .. == fJ 
II JJ lJ IJ 

for neighboring carbon atoms, and Hij == 0 for distant carbon atoms. Therefore, HI2 == 
H23 == H34 == fJ and H13 == Hl4 == H24 == 0, and the secular determinant becomes 

a-E fJ 0 0 

fJ a-E fJ 0 
==0 (10.20) 

0 fJ a-E fJ 
0 0 fJ a-E 

If we factor fJ from each column and let x == (a - E)/ fJ, then we can rewrite this 
determinantal equation as 

x I 0 0 

fJ4 
I x 1 0 

==0 (10.21) 
0 1 x I 

0 0 1 x 

If this determinant (MathChapter E) is expanded, the secular equation is 

(10.22) 

We can solve this equation for x 2 to obtain 

(10.23) 

from which we find the four roots x == ±1.61S, ±0.61S. 
Recalling that x == (a - E) / fJ and that fJ is a negative quantity, we can construct 

the Huckel energy-level diagram for butadiene, as shown in Figure 10.22. There are 



~ 
OJ) 
~ 

---- a - 1.618 f3 

---- a-O.618f3 

C) --------- a 
~ 

~ 

tt a + 0.618 f3 

---+t-+-t - a + 1.618 f3 

FIG U R E 10.22 
The ground-state electron configuration of the Jf 

electrons in butadiene. 

four JT electrons in butadiene and, in the ground state, these electrons occupy the two 
orbitals of lowest energy (Figure 10.22). The total JT -electronic energy of butadiene is 

Err == 2(a + 1.618/J) + 2(a + 0.618/J) 

== 4a + 4.472/J (10.24) 

We can make an interesting comparison of the energy given by Equation 10.24 
with that predicted for a localized structure in which two JT electrons are localized 
between carbon atoms 1 and 2 and between carbon atoms 3 and 4, respectively. This 
localized structure is equivalent to two isolated ethene molecules. We found that the 
energy of the JT orbital in ethene is 2a + 2/J. If we compare the energy of two ethene 
molecules with that obtained for the delocalized orbitals of butadiene, we see there is 
an energy stabilization that results from delocalization, E deloc: 

Edeloc == Err (butadiene) - 2Err (ethene) == O.472/J < 0 (10.25) 

If we use the value of -75 kJ· mol 1 for f3, the delocalization energy of butadiene is 
on the order of -35 kJ· mol- l 

. This is the energy by which butadiene is stabilized 
relative to two isolated double bonds, or the stability that butadiene derives because 
its JT electrons are delocalized over the entire length of the molecule instead of being 
localized to the two end bonds. 

Associated with each of the four molecular-orbital energies of butadiene that 
we have found is a molecular orbital. To specify these molecular orbitals, we need to 
determine the coefficients eij of Equation 10.18. The approach is the same as that carried 
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out in Example 10-6, but the algebra is quite a bit more lengthy (see Problem 10-28). 
The resulting wave functions are 

1/1 1 == 0.371 7 . 2 P -1 + 0.6015 . 2 P -1 + 0.601 5 . 2 P -1 + 0.371 7 . 2 P -4 
~ ~~ ~- ~ 

EI == a + 1.61813 

ljJ 2 == 0.6015 . 2P:: \ + 0.3717 . 2 P::2 - 0.3717 . 2 P;3 - 0.6015 . 2 P::4 

El == a + 0.618# 
~ 

1/13 == 0.6015 . 2 P _\ - 0.37 17 . 2 P 1 - 0.3717 . 2 p 1 + 0.6015 . 2 P -4 
"', ........ ...... - ..... 

£] == a - 0.61813 

1/14 == 0.3717· 2P:: 1 - 0.6015· 2p,2 + 0.6015· 2p;] - 0.3717· 2P::4 

E4 == a - 1.61813 

(10.26) 

and these molecular orbitals are shown schematically in Figure 10.23. Notice that as 
the energy of the molecular orbital increases so do the number of nodes. This is a 
general result for J[ molecular orbitals. 

lfI3 -

FIG U R E 10.23 
A schematic representation of the JT molecular orbitals of butadiene. Note that the corresponding 
energy increases with the number of nodes. 

EXAMPLE 10-7 
Show that 1/1 I in Equation 10.26 is normalized and that it is orthogonal to 1/12' 

SOL UTI 0 N: We want to show first that 



10-6. Butadiene Is Stabilized by a Delocalization Energy 

Using the fact that Huckel theory (as we have discussed it) sets all the overlap integrals 
to zero, we have 

f dnjf~o/ 1 = (0.3717)2 + (0.6015)2 + (0.6015)2 + (0.3717)2 = 1.000 

To show that 1/1 1 is orthogonal to 1/12' we must show that 

Once again, because all the overlap integrals equal zero, we have 

f dro/~ 0/2 = (0.3717) (0.6015) + (0.6015)(0.3717) 

- (0.60 15) (0.3717) - (0.3717) (0.6015) == 0 

It is straightforward to show that all four molecular orbitals in Equation 10.26 are 

normalized and that they are mutually orthogonal. 

As our final example, we consider benzene. Here, we approach this problem using 

the basic principles of Huckel theory outlined above. In Chapter 12, we will learn that by 

considering the symmetry properties of the molecule, the same results can be obtained 

without performing much of the tedious algebra. Benzene has six carbon atoms, each 
contributing a 2 P"7 orbital from which the 7T molecular orbitals are to be constructed. 

,-, 

Because we are considering linear combinations of six atomic orbitals, the dimension 

of the secular determinant will be 6 x 6 and wi}] give rise to six different energies 

and six different 7T molecular orbitals. The Huckel secular determinantal equation for 

benzene is given by (Problem 10-29) 

a-E f3 0 0 0 f3 
f3 a-E f3 0 0 0 

0 f3 a-E f3 0 0 
==0 (10.27) 

0 0 f3 a E f3 0 

0 0 0 f3 a-E f3 
fJ 0 0 0 f3 a-E 

This 6 x 6 secular determinant leads to a sixth-degree polynomial for E. Using the 

same approach as for butadiene, we let x == (a - E) / fJ. The resulting determinant can 
be expanded to give 

(10.28) 
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l'he six roots to this equation are x == ± 1, ± 1, and ±2, giving the following energies 
for the six molecular orbitals: 

(10.29) 
E == E_ == a - f3 4 ) 

The Huckel energy-level diagram for benzene is given in Figure 10.24. The six JT 

electrons are placed into the three lowest energy molecular orbitals. The total JT­

electron energy in benzene is given by 

E == 2(a + 2f3) + 4(a + f3) == 6a + 8f3 
][ 

(10.30) 

Compared with the JT -electron energy of three ethene molecules, the delocalization (or 
resonance) energy in benzene is 2f3. Thus, Huckel molecular-orbital theory predicts 
that benzene is stabilized by about 150 kJ . mol-I. The resulting wave functions for the 
six JT molecular orbitals of benzene are given by 

0/1 == ~ (2P:1 + 2P::2 + 2P::3 + 2P:4 + 2P::5 + 2P:.6 ) 

0/2 == ~ (2P:: 2 + 2P::3 - 2P:5 - 2P:6 ) 

-,/r - _I (2p - 2p + 2p - 2p ) 
'f' 4 - J4 ::2 ::3 ::5 :.6 

0/5 == ~(2p:1 - ~2P::2 - ~2P::3 + 2P::4 - ~2Pz.5 - ~2P::6) 

0/6 == ~ (2P::1 - 2P::2 + 2P~3 - 2P::4 + 2P::5 - 2P::6 ) 

a - 2f3 

a-f3 

--------a 

ti a+f3 
FIG U R E 10.24 

(10.31) 

ti a + 2f3 
The ground-state electron configuration of the 
JT electrons in benzene. 



Problems 

EXAMPLE 10-8 
Draw the JT molecular orbitals for benzene and indicate the nodal planes. 

SOLUTION: 

V'6 E=cx-2{3 

E=cx {3 

E=cx+{3 

E=cx+2{3 

Note that as we found for ethene and butadiene, the energy increases with the number 
of nodal planes. 

Problems 

10-1. Show that 1/fsp = ~ (2s ± 2 p z) is normalized. 

10-2. Show that the three s p2 hybrid orbitals given by Equations 10.3 through 10.5 are normal­
ized. 

10-3. Prove that the three s p2 hybrid orbitals given by Equations 10.3 through 10.5 are directed 
at angles of 1200 with respect to one another. (See Example 10-4.) 
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10-4. Represent the three s p2 hybrid orbitals given by Equations 10.3 through 10.5 as vectors, 

where the coefficient of 2 Px is the x component and the coefficient of 2 P;: is the z component. 

Now determine the angles between the hybrid orbitals using the formula for the dot product 

of two vectors. (Don't include the 2s orbital because it is spherically symmetric and so has 

no directionality.) 

10-5. The following three orbitals are equivalent to the three Sp2 hybrid orbitals given by 

Equations 10.3 through 10.5 

(
1)112 (1)112 (1)1!2 

<PI == 3 2s - 3 2 Px + 3 2 P: 

( 
I ) 1/2 I 1 

<P ') == - 2s + - (1 + 3 - 1 12 ) 2 p . + (1 - 3 1 (2 ) 2 p _ 
~ 3 2 .t 2 

( 
1 ) 1/2 I I 

<P~== - 25+-(-1+3 1/2)2p.--(1+3 1/2)2p_. 
- 3 2 .t 2 ' 

First show that these orbitals are normalized. Now use the method introduced in Problem 

10-4 to show that the angles between these orbitals are 120'. (These orbitals are the orbitals 

given by Equations 10.3 through 10.5 rotated by 45; .) 

10-6. Given that one s p hybrid orbital is 

I 
~1 == h (2s + 2 p ) 

",2 ' 

construct a second one by requiring that it be normalized and orthogonal to ~I' 

10-7. The relation between a tetrahedron and a cube is shown in the following figure: 

Use this figure to show that the bond angles in a regular tetrahedron are 109.47°. (Hint: 

If we let the edge of the cube be of length a, then the diagonal on a face of the cube has 

a length vI2 a, by the Pythagorean theorem. The distance from the center of the cube to a 

face is equal to a /2. Using this information, determine the tetrahedral angle.) 

10-8. Show that the s p3 hybrid orbitals given by Equations 10.6 through 10.9 are orthonormal. 

10-9. Using the vector approach described in Problem 10-4, show that the cosine of the angle 

between the s p3 hybrid orbitals given by Equations 10.6 through 10.9 is -1/3. What is the 

angle equal to? 



Problems 

10-10. The s p3 hybrid orbitals given by Equations 10.6 through 10.9 are symmetric but not 
unique. We construct an equivalent set in this problem. We can write the four s p3 hybrid 

orbitals on the carbon atom as 

(1) 

By requiring these four hybrid orbitals to be equivalent, we have that a I == a2 == a3 == a4 • 

Because there is one 2s orbital distributed among four equivalent hybrid orbitals, we also 
2 2 2 2 / r;4 W' h say that at + a2 + a3 + Q 4 == 1. Thus, we have that a l == Q 2 == a3 == Q 4 == 1 v~. It out 

loss of generality, we take one of the hybrid orbitals to be directed along the positive z axis. 

Because the 2 Px and 2 p.v orbitals are directed along only the x and y axes, respectively, 

then band c are zero in this orbital. If we let this orbital be ~ I' then 

By requiring that ~ I be normalized, show that 

1 Ir~ ~I == r;2s + -2p" 
v4 4' 

(2) 

Equation 2 is the first of our four s p3 hybrid orbitals. 

Without any loss of generality, take the second hybrid orbital to lie in the x-z plane, 

so that 

1 
~2 == r;2s + b2 2p + d2 2p., v4 x ~ 

(3) 

Show that if we require ~2 to be normalized and orthogonal to ~I' then 

1 fl 1 ~ == -2s + -2p - 2p 
2 J4 3 X J}2z 

Show that the angle between ~I and ~2 is 1 09.47(). Now determine ~3 such that it is normalized 

and orthogonal to ~l and ~2' Last, determine ~4' 

10-11. Calculate the bond angle between 0/ I and 0/2 in Example 10--4 using the vector approach 
described in Problem 10--4. (Remember not to use the 2s part of 0/, and 0/2') 
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1 0-12. Using the coordinate system shown below for a water molecule, 

o 
y 

H H 

show that we can write the two bonding hybrid atomic orbitals on the oxygen atom as 

1/r) = N[y2s + (sin 8)2py + (cos 8)2PJ 

and 

1/r" = N[y2s - (sin 8)2p. + (cos 8)2pJ - ) ~ 

where y is a constant and N is the normalization constant. Now use the fact that these 

orbitals must be orthogonal to show that 

Finally, given that the H-O-H bond angle of water is 104.5 , determine the orthonormal 
hybrid orbitals 1/r) and l/J

2 
(see Equations 10.12 and 10.13). 

10-13. In Problem 10-12, you found two bonding hybrid orbitals for the oxygen atom of a 
water molecule. In this problem, we will find the two equivalent lone-pair orbitals. Starting 
with the results of Problem 10-12, show that the third s p2 hybrid orbital is given by 

1/r:, = 0.77 . 2s - 0.64 . 2 p :: 

At this point the lone pair orbitals are given by 1/r 1 and the oxygen 2 P < orbital. Construct _ x 

two equivalent lone pair orbitals by taking the appropriate linear combinations of 1/r 3 and 

the 2p orbital. Which pair of orbitals, 1/r1 and the 2p, orbital or your set of equivalent x _ x 

orbitals, is the correct description of the lone-pair orbitals for a water molecule? Explain 

your reasonIng. 

10-14. Figure 10.9 shows a schematic representation of the various molecular orbitals for a 

linear AH2 molecule. We could draw similar pictures for the molecular orbitals of a linear 

XY,) molecule. For example, the 3(J and 4(J molecular orbitals can be represented as 
- g g 



+ + + + 
• • • • • • 
y x y y x y 

Draw a schematic representation of the 2a , In , 2n , and In orbitals. 
u u u g 

10-15. Explain why the energies of the 3a
g 

and 2a
u 

orbitals for an XY 2 molecule are insensitive 
to small changes in the bond angle. 

10-1 6. Explain why the doubly degenerate In u orbitals for a linear XY 2 molecule do not remain 
degenerate when the molecule is bent. 

10-17. Explain why the 3a
u 

molecular orbital of a linear XY 2 molecule increases in energy 
as the molecule bends. (Hint: The 3a molecular orbital is a linear combination of the 

Ii 

2pz orbitals from each atom.) 

1 0-18. Use Figure 10.25 to predict whether the following molecules are linear or bent: 

h. COi c. CF
2 

10-19. Use Figure 10.25 to predict whether the following molecules are linear or bent: 

7a 1 4a 
u 

5a g 

2b l 
2n u 

4b 2 

la 2 
>. 
OJ.) 

6a 1 
~ In Fie U R E 10.25 Q) g 
~ 5a l The Walsh correlation diagram for the ~ 

In Ib 1 valence electrons of a XY 2 molecule. The u 

3b 2 right side of the diagram gives the energy 
3a ordering of the molecular orbitals for an II 

4a 1 Y-X-Y bond angle of 1800
• The left side 

4a gives the energy ordering of the molecular g 

orbitals for an Y-X-Y bond angle of 90°. 
2b 2 2a The solid lines tell us how the energies of Ii 

3a 1 3a the molecular orbitals depend upon Y-X-Y g 

bond angles between 90° and 1800
• The I a , 

g 

90 0 180 0 
2a

g
, and la

u 
orbitals correspond to the core 

1 s electrons on the bonded atoms and are 
Bond angle not shown in the figure. 
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3. OF, 
.:.. 

h. NO~ c. CN, 

10-20. Walsh correlation diagrams can be used to predict the shapes of polyatonlic Inolecules 

that contain more than three atoms. In this and the following three problems we con­

sider molecules that have the general fonnula XH~. We will restrict our discussion to 
.' 

XH:1 nlolecules, where all the H-X-H bond angles are the saine. If the molecule is planar, 

then the H-X-H bond angle is 120 . A nonplanar XH
J 

molecule, then, has an H-X-H bond 

angle that is less than 120' . Figure 10.26 shows the Walsh correlation diagranl that describes 

how the energies of the molecular orbitals for an XH
J 

molecule change as a function of 

the H-X-H bond angle. Note that because XH~ is not linear, the labels used to describe 

the orbitals on the two sides of the correlation diagranl do not have designations such as a 
and JT. We see that the lowest-energy molecular orbital is insensitive to the H-X-H bond 

angle. Which atomic orbital(s) contribute to the lowest-energy molecular orbital? Explain 

why the energy of this molecular orbital is insensitive to changes in the H-X-H bond 

angle. 

10-21. Consider the Walsh correlation diagram given in Figure 10.26. The 2a~ molecular 

orbital of the planar XH J molecule is a linear combination of the 2 p orbital on X that 

lies in the nl0lecular plane and the I s orbital on each hydrogen atoln. Why does the 

energy of this molecular orbital increase as the H-X-H bond angle decreases from] 20c 

to 90'? 

10-22. Orbitals designated by the letter "e" in a Walsh correlation diagraln are doubly de­

generate. Which atomic orbitals can contribute to the 1 e' Inolecular orbitals of the planar 

XH
J 

molecule? 

10-23. Use the Walsh correlation diagram in Figure 10.26 to deternline which of the following 

molecules are planar: (a) BH~, (b) CH" (c) CH~, and (d) NHr (Orbitals designated by the 
. J. . 

letter "e" are doubly degenerate.) 

2e 

-------I 2 e ' 

2([1 

1 " __ ----i a 'J 

-----..J Ie' 

--------J 2 (l ; 

I a 1 '---_________ ---' 1 (l i 
90 0 120 0 

Bond angle 

FIG U R E 10.26 
The Walsh correlation diagram for XH, 

J 

molecules. The right side of the diagram 
gives the energy ordering of the molecular 
orbitals for an H-X-H bond angle of 120c

• 

The left side gives the energy ordering of the 
Inolecular orbitals for an H-X-H bond angle 
of 90-. The solid lines tell us how the energies 
of the ITIolecular orbitals depend upon H-X-H 
bond angles between 90~ and 120c

• 



Problems 

10-24. Show that the JI molecular orbital corresponding to the energy E == a - f3 for ethene 

is 1/I;r == ~(2P;A - 2P:::B)' 

10-25. Generalize our Huckel molecular-orbital treatment of ethene to include overlap of 2P-cA 

and 2 P::: B • Determine the energies and the wave functions. 

10-26. Show that the four tTIolecular orbitals for butadiene (Equation 10.18), 

4 

1/1. == " c .. 2p . 
{ ~ Ij :::j 

. I 
J 

lead to the secular determinant given by Equation 10.19. 

10-27. Show that 

x I 0 0 

I x I 0 
==0 

0 I x I 

0 0 1 x 

gives the algebraic equation 

10-28. Show that the four JI molecular orbitals for butadiene are given by Equations 10.26. 

1 0-29. Derive the Huckel theory secular determinant for benzene (see Equation 10.27). 

10-30. Calculate the Huckel JI-electron energies of cyclobutadiene. What do Hund's rules say 

about the ground state of cyclobutadiene? Compare the stability of cyclobutadiene with 

that of two isolated ethene molecules. 

1 0-31. Calculate the Huckel JI -electron energy of trimethy lenemethane: 

Compare the JI-electron energy of trimethylenemethane with that of two isolated ethene 
molecules. 

10-32. Calculate the JT-electron energy levels and the total JT-electron energy of bicyclobuta­
diene: 
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10-33. Show that the HUckel molecular orbitals of benzene given in Equations 10.31 are 

orthonormal. 

10-34. Set up, but do not try to solve, the Huckel molecular-orbital theory determinantal 

equation for naphthalene, C1oHx' 

10-35. A Huckel calculation for naphthalene, C1oHx' gives the molecular-orbital energy levels 

Ei == 0' + l11 i {3, where the 10 values of ln i are 2.3028, 1.6180, 1.3029, 1.0000, 0.6180, 
-0.6180, -1.0000, -1.3029, -1.6180, and -2.3028. Calculate the ground-state JT­

electron energy of naphthalene. 

10-36. The total JT-electron energy of naphthalene (Problem 10-35) is 

E == 100' + 13.68{3 
/I 

Calculate the delocalization energy of naphthalene. 

10-37. Using HUckel molecular-orbital theory, determine whether the linear state (H-H-H+) 

or the triangular state 

+ 
H 

/\ 
H H 

of Hj is the more stable state. Repeat the calculation for H3 and H~ . 

10-38. Set up a Huckel theory secular determinant for pyridine. 

10-39. The coefficients in HUckel molecular orbitals can be used to calculate charge distribu­

tion and bond orders. We will use butadiene as a concrete example. The molecular orbitals 

of butadiene can be expressed as 

-l 

1/1. == '" c .. 2p . 
I ~ IJ ~/ 

. 1 ./ 

where the c .. are determined by the set of linear algebraic equations that lead to the sec-
1./ 

ular determinantal equation. The resulting molecular orbitals for butadiene are given by 

Equations 10.26: 

1/11 == 0.3717 2P:I + 0.601521':2 + 0.6015 2P:3 + 0.3717 2P:4 

Vr2 == 0.6015 2P:1 + 0.3717 2p - 0.3717 2P:3 - 0.6015 2P::4 

Vr" == 0.6015 2p_
1 

- 0.3717 2p_-, - 0.3717 2p_" + 0.6015 2p-4 - ""', ... , - "'.~- ,. 

Vr4 == 0.3717 2P:I - 0.6015 2P::2 + 0.6015 2P:3 - 0.3717 2P:4 



Problems 

These molecular orbitals are presented schematically in Figure 10.23. Because we have 

set S .. == 8 .. in Equation 10.19, we have in effect assumed that the 2p_'s are orthonormal. 
I) lJ 4. 

Using this fact, show that the C .. satisfy 
IJ 

4 

" c~. == 1 ~ IJ 
i==I, 2, 3,4 (1) 

j=1 

Equation 1 allows us to interpret cfi as the fractional n -electronic charge on the j th carbon 

atom due to an electron in the i th molecular orbital. Thus, the total Jr -electron charge on 

the j th carbon atom is 

q . == "n.c~. 
.I ~ I I} 

where n. is the number of electrons in the ith molecular orbital. Show that 
I 

q, == 2c~1 + 2c~, + OC~I + OC~l 
== 2(0.3717)2 + 2(0.6015)2 

== 1.000 

(2) 

for butadiene. Show that the other q's are also equal to unity, indicating that the Jr electrons 

in butadiene are uniformly distributed over the molecule. 

10-40. Another interesting quantity that can be defined in terms of the c
ij 

in Problem 10-39 
is the Jr-bond order. We can interpret the product CirC

is 
as the Jr-electron charge in the ith 

molecular orbital between the adjacent carbon atoms rand s. We define the Jr -bond order 

between the adj acent carbon atoms rand s by 

Pf~ == "n.c. c. 
.1 ~ I ir IS 

(1) 

where n. is the number of Jr electrons in the i th molecular orbital. Show that 
I 

PI~ == 0.8942 

and 

for butadiene. Clearly, P~ == p~: by symmetry. If we recall that there is a a bond between 

each carbon atom, then we can define a total bond order 

(2) 

where the first term on the right side is due to the a bond between atoms rand s. For 

butadiene, show that 

(3) 
p ~~ta' == 1. 447 

Equations 3 are in excellent agreement with the experimental observations involving the 

reactivity of these bonds in butadiene. 
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1 0-41. Calculate the delocalization energy~ the charge on each carbon atom~ and the bond 

orders for the allyl radical~ cation~ and anion. Sketch the molecular orbitals for the ally I 
system. 

10-42. Calculate the rr -electron charge on each carbon atom and the total bond orders in 

benzene. Comlnent on the result. 

10-43. Because of the sYlnmetry inherent in the Huckel theory secular determinants of linear 

and cyclic conjugated polyenes, we can write mathematical formulas for the energy levels 

for an arbitrary number of carbon atoms in the system (for present purposes, we con­

sider cyclic polyenes with only an even number of carbon atoms). The formula for linear 

chains is 

rrn 
E == Ci + 2f3 cos --

II N + 1 

and the formula for cyclic chains with N even is 

2rr 11 
E == Ci + 2f3 cos --

11 N 

n == 1. 2. .... N 

where Ci and /) are as defined in the text and N is the number of carbon atoms in the 

conjugated rr system. 

(a) Use these formulas to verify the results given in the chapter for butadiene and 

benzene. 

(b) Now use these formulas to predict energy levels for linear hexatriene (C6Hs) and 

octatetraene (CsH 1o)' How does the delocalization energy of these molecules per carbon 

atom vary as the chains grow in length? 

(c) Compare the results for hexatriene and benzene. Which molecule has a greater 

delocalization energy? Why? 

10-44. The problem of a linear conjugated polyene of N carbon atoms can be solved in general. 
The energies E, and the coefficients of the atonlic orbitals in the j th molecular orbital are 

J 

given by 

and 

Jrr 
E, == Ci + 2f3 cos --

J N + 1 

( 
2 )1/2 . jkrr 

c, == sIn--
Jk N + 1 N + 1 

j == L 2, 3 ..... N 

k == I, 2, 3. . .. , N 

Derive the energy levels and the wave functions for butadiene using these fornlulas. 

1 0-45. We can calculate the electronic states of a hypothetical one-dimensional solid by 

modeling the solid as a one-dimensional array of atoms with one orbital per atom, and 

using Huckel theory to calculate the allowed energies. Use the formula for E, in Prob­
J 

lem 10-44 to show that energies will fonn essentially a continuous band of width 4f3. 
Hint: Calculate E I - EN and let N be very large so that you can use cos x ~ I - x 2 /2 + 

10-46. The band of electronic energies that we calculated in Problem 10-45 can accomodate 

N pairs of electrons of opposite spins, or a total of 2N electrons. If each atom contributes 



Problems 

one electron (as in the case of a polyene), the band is occupied by a total of N electrons. 
U sing some ideas you may have learned in general chemistry, would you expect such a 
system to be a conductor or an insulator? 

10-47. The dipole moment of a polyatomic molecule is defined by 

J-L == e " z.r. L..t .I .I 
J 

where z.e is the magnitude of a charge located at the point given by r .. Show that the value 
J J 

of J-L is independent of the origin chosen for r. if the net charge is zero. Show that J-L == 0 
.I 

for S03 (trigonal planar), CCl4 (tetrahedral), SF
6 

(octahedral), XeF4 (square planar), and 
PF5 (trigonal bipyramidal). 
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John Pople was born in Somerset, England, on October 31, 1925. He received his Ph.D. 
in mathematics from Cambridge University in 1951. He remained there until 1958 and then 
emigrated to the United States in 1964 to the Carnegie Institute of Technology (now Carnegie 
Mellon University). He then joined the faculty of Northwestern University in 1993, where he is 
still active. We will see in this chapter that much of modern computational quantum chemistry 
uses gaussian orbitals as a basis set. Although Pople was not the first person to propose the 
use of gaussian orbitals, he saw their computational advantages early on and over a period of 
years developed computational algorithms for the ab initio calculation of molecular properties 
based upon gaussian orbitals. The computer programs developed by Pople and his many 
collaborators have been packaged as a commercially available program called Gaussian 94, 
which is constantly being upgraded and extended by computational theorists employed in the 
private sector, as well as in academia. There are other commercially available computational 
quantum chemical programs, but Gaussian 94 is perhaps the most widely used. The availability 
of such programs has made it possible for chemistry students to calculate quantities such as 
molecular energies and structures, bond energies, dipole moments, vibrational frequencies, 
thermochemical properties, and reaction pathways. Popte shared the 1998 Nobel Prize in 
chemistry with Walter Kohn "for his development of computational methods in chemistry". 



CHAPTER 

Computational Quantum Chemistry 

At one time, quantum-chemical calculations were the domain of professional quan­
tum chemists using large, powerful mainframe computers. Over the years, however, 
computer programs have become readily available that can be used by nonexperts to 
calculate reliable values of molecular properties such as geometries and energies. With 
recent advances in computer technology, it is now possible to carry out computations 
on relatively large molecules without having to be a quantum chemist or a computer 
whiz. 

Many of these programs express the atomic orbitals that make up a molecular 
orbital as linear combinations of Gaussian functions. We will see in this chapter that 
Gaussian functions are particularly convenient from a computational standpoint. Our 
discussion of Gaussian functions will lead us to designations such as STO-6G, 6-
31 G**, and other cryptic codes that are becoming part of the vocabulary of not just 
computational physical chemists, but also experimental physical chemists, inorganic 
chemists, organic chemists, and biochemists. 

In the last section of this chapter, we will discuss GAUSSIAN 94, one of the most 
popular quantum chemical computer programs that is available today. GAUSSIAN 94 
was developed by Professor John Pople and his colleagues at Carnegie-Mellon Uni­
versity over many years. As the name GAUSSIAN 94 implies, the latest version of this 
program was released in 1994, and newer versions are in development. 

11-1. Gaussian Basis Sets Are Often Used in Modern 
Computational Chemistry 

Contemporary molecular-orbital theory calculations of the properties of polyatomic 
molecules are done using computers. We will examine both how such calculations 
are carried out and the accuracy of the methods used in predicting the properties of 
molecules. In analogy to the discussion of multielectron atoms in Chapter 8, the wave 4 11 
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function for a closed-shell molecule with N electrons (N must be an even number) is 
given by the Slater determinantal wave function 

1/1 I ( 1 )a ( I ) 1/11(1)13(1) 1/IN/2(I)a(l) 1/IN/2(1){3(I) 

1 1/1, (2)a(2) 1/1 1 (2),8(2) 1/IN/2(2)a(2) 1/1 N /2 (2) 13 (2) 
1jr(l, 2, ... , N) = v'NT (11.1) 

N! 

1/1, (N)a(N) 1/11 (N){3(N) ... 1/IN/2(N)a(N) 1/IN /2 (N) f3 (N) 

where the individual entries are products of (one-electron) molecular orbitals and spin 
functions. To carry out a molecular-orbital theory calculation, we need to determine 

each of the molecular orbitals, 1/Ii , as well as calculate the energy associated with this 
total wave function. The standard method for determining the molecular orbitals and 

their associated energies is to express the molecular orbitals as linear combinations of 
atomic orbitals (LCAO-MO) and then determine the coefficients in the linear combina­

tion by a self-consistent field calculation (LCAO-MO-SCF). The Hartee-Fock method, 

which we introduced in Section 8-7 to calculate orbitals of multi-electron atoms, is a 
systematic procedure for doing this. In Section 9-13 we briefl y discussed Roothaan' s 

extension of the Hartree-Fock method to the calculation of molecular orbitals in the 
LCAO-MO approximation. The set of resulting equations for the coefficients in the 
LCAO-MO are called the Roothaan-Hartree-Fock equations. 

The set of atomic functions used to construct LCAO-MOs is called the basis set. 
In the case of the diatomic molecules discussed in Section 9-7, hydrogen-like atomic 

orbitals form the basis set. For example, 1 SH and I SH constitute the basis set for the 
molecular orbital a 1 s. The first basis set use'd in larg~-scale computational studies of 
poly atomic molecules consisted of Slater atomic orbitals, abbreviated STOs, 

(2)- )11+1/2 
S (r e A..) == ':, . rn-Ie rY,I11(·.e,A..) 

film ' ,'P [(2n)!]1/2 'P 
( 11.2) 

introduced in Chapter 8. The difference between the STOs and the hydrogen-like 
atomic orbitals is that the Slater orbitals have no nodes and the orbital exponent, ~ 
(zeta), is not necessarily equal to Z /11. In principle, the orbital exponents should be 
chosen to minimize the energy, but this selection is still a formidable task even with 
modern computers. In practice, an optimal set of orbital exponents has been chosen that 

has turned out to be the most reliable in numerous molecular calculations. Table 11.1 

lists these orbital exponents for the atoms in the first two rows of the periodic table. 
Note that the value of the orbital exponent for the Slater orbitals is the same for 2s and 

2 p orbitals. Also note that s increases with increasing atomic number, reflecting the 

contraction of the orbitals as the nuclear charge increases. 

Although Slater orbitals were used for many years, they are not used directly any 

more because the integrals in the resulting secular determinants are difficult to evaluate. 
In particular, integrals involving more than one nuclear center, called lnulticenter 
integrals, are awkward to calculate using Slater orbitals. If we use Gaussian functions 
instead of Slater orbitals, however, all the multicenter integrals are very easy to evaluate 



TABLE 11.1 
Orbital exponents, S , for the Slater orbitals of the atoms of 
the first two rows of the periodic table. 

Atom SIs S2s = S2p 

H 1.24 

He 1.69 

Li 2.69 0.80 

Be 3.68 l.15 

B 4.68 1.50 

C 5.67 1.72 

N 6.67 1.95 

0 7.66 2.25 

F 8.56 2.55 

Ne 9.64 2.88 

(Problem 11-9). Thus, it would seem desirable to use Gaussian-type orbitals of the 
form 

G (r 9 ~) = N rn-le-ar2ym(9 ~) 
nlm ' ,0/ n I' 0/ (11.3) 

for the basis sets in molecular-orbital calculations. The problem with this idea is that 
Slater orbitals and Gaussian orbitals have very different behavior for small values of r. 
Figure 11.1 compares a normalized SIOO = ¢~.~o Slater orbital (Equation 11.2) with a 
normalized G 100 = ¢~F Gaussian orbital (Equation 11.3) for a hydrogen atom, with 
orbital exponents; = 1.24 and a = 0.4166 in ¢~.;o and ¢~F, respectively. [This value 
of a has been chosen to maximize the overlap between the ¢~;o orbital and the ¢~F 
orbital (cf. Problem 11-10).] In carrying out calculations, we then use 

¢IS (r) = ¢~.~o (r, 1.24) (11.4 ) 

or 

( 11.5) 

depending on whether we are using the Slater orbitals (STO) or Gaussian functions 
(GF) as our basis set. The Is orbital in each of these basis sets is 

( 11.6) 

and 

( 11.7) 
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0.8 

--- STO 

---GF 

O.OL-___ ~I--------L--~~~~~==~~ 
0.0 1.0 2.0 3.0 4.0 

r / a o 

FIGURE 11.1 
A comparison of the nonnalized Slater orbital, 5

100 
== ¢T.;o (Equation 11.6), to the Gaussian 

orbital (Equation 11.7), G IOO == ¢~t, with orbital exponents ~ == 1.24 and a == 0.4166, 
respectively. 

Note that the Slater orbital shown in Figure 11.1 has a cusp at r = 0, whereas the slope 
of the Gaussian orbital is zero at r = O. 

EXAMPLE 11-1 
Show that ¢Is == ¢T.;o(O, 1.24) == 0.779 and that ¢Is == ¢~.F(O, 0.4166) == 0.370 as 
shown in Figure 11.1. 

SOLUTION: From Equation 11.6, 

Setting r == 0 and ( == 1.24 gives 

STO ¢Is (0, 1.24) == 0.779 

From Equation 11.7 with a == 0.4166 

( 
(2)(0.4166) )3/4 . . ') 

¢~F (r, 0.4166) == n e-OAI66r-

and at r == 0 

¢ ~F (0, 0.4166) == 0.370 

" 



11-1. Gaussian Basis Sets Are Often Used in Modern Computational Chemistry 

The Gaussian orbital does a reasonably good job of describing the Slater orbital 
for values of r greater than ao' but it underestimates its magnitude for values of r less 
than ao' These discrepancies turn out to be very significant in molecular calculations. 
To overcome this difficulty, a number of researchers in quantum chemistry have curve 
fit Slater orbitals to sums of Gaussian functions, the fit improving with N, the number 
of Gaussian functions used. Figure 11.2 shows this fit as a function of N. For example, 
for N == 3, the Slater orbital ¢T,~o (r, 1.24) == O.77ge 1.24r is expressed by 

3 

~STO (r) == '""'" d ~GF (r ex ) 
o/ls ~ lsio/ls ' lsi 

== 0.4446 ¢~,F (r, 0.1688) + 0.5353 ¢7F (r, 0.6239) + 0.1543 ¢~,F (r, 3.425) 

( 11.8) 

Because we are using a sum of three Gaussian functions to represent one Slater 
orbital, such a basis set is called the STO-3G basis set. In the STO-3G basis set, all 
atomic orbitals are described by a sum of three Gaussian functions. Although this 
procedure leads to a proliferation of integrals to evaluate, each one is relatively easy, 
so the overall procedure is quite efficient. 

0.8 
--- STO 
------- STO-3G 
- - - - STO-2G 
--- STO-IG 

0.4 

O.OL------~--------~---~~-~~~~-~~~==~~ 
O.D 1.0 2.0 3.0 4.0 

FIGURE 11.2 
The Slater ¢~,;o orbital is compared with ¢Is(r) represented by sums of different numbers of 
Gaussian functions. 

EXAMPLE 11-2 
Show that Equation 11.8 gives the value 0.628 at r == 0, as indicated in Figure 11.2. 
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SOL UTI 0 N : Using Equation 1 1. 7, we have 

[ 
(2)(0 1688) ]3/4 . , 

<p~'t(r, 0.1688) = ~ e-O.16R8r" = 0.1877 e-O.1688r' 

¢~.F (r, 0.6239) = 0.5003 e-O.62J9r2 

..., 

¢~F(r, 3.425) = 1.7943 e-3.42Sr-' 

Therefore, 

¢Is(r = 0) = (0.4446)(0.] 877) + (0.5353)(0.5003) + (0.1543)( 1.7943) 

= 0.628] 

EXAMPLE 11-3 
What is the general form of an atomic orbital in the STO-6G basis set? Use the data in 
Table 11.2 to write the expression for a Slater 1 s orbital in the STO-6G basis set. 

SOL UTI 0 N: The STO-6G basis set is one in which each Slater orbital is described 
by a sum of six Gaussian functions. Thus, for a 1 s orbital, we have 

6 

rf..STO(r) = "d .rf..GF(r ex .) 
\f" I s L...,; 1.1 I \f" Is' Is I 

i=1 

where d
lsi 

is the coefficient of each of the contributing Gaussian functions, and where 

¢~F (r, ex Is) is defined by Equation 11.7 . Using the data in the Table I 1.2, we see that 
the I s orbital in the STO-6G basis set is given by the following expression: 

GF GF + 0.3706 ¢]s (r, 0.6260) + 0.1685 ¢Is (r, 1.8222) 

GF . GF + 0.0494 ¢t.\' (r, 6.5131) + 0.0092 ¢l.\' (r, 35.523]) 

At r = 0, the STO-6G representation of the Is orbital gives ¢]s(O) = 0.733. The value 
of the STO Is orbital at r = 0 is 0.779. Comparing Examples 11-2 and 11-3 shows 
that the STO-6G basis set provides a better representation of the 1 s orbital than the 
STO-3G basis set for small values of r. 

Each atomic orbital in the basis set is now expressed as a sum of Gaussian functions. 
If we let the atomic orbitals be denoted by ¢k' then the ith molecular orbital is 

M 

1/Ii == L C ki¢k 
k 1 

(11.9) 

where M is the number of atomic orbitals used to construct the molecular orbitals, or 
in other words, M is the number of atomic orbitals in the basis set. Realize that each 



TABLE 11.2 
Values of the expansion coefficients, dis;' and exponents, a lsi' for a Slater Is orbital with 
~ = 1.24 in the STO-6G basis set. These values are obtained from an "optimal" fit of a linear 
combination of six Gaussian functions to a 1 s Slater orbital with ~ = 1.24. 

d l · 
Sf 

a l . 
SI 

0.1303 0.1000 

0.4165 0.2431 

0.3706 0.6260 

0.1685 1.8222 

0.0494 6.5131 

0.0092 35.5231 

atomic orbital ¢k in Equation 11.9 is a sum of Gaussian functions, as in Equation 11.8. 
Our task now is to determine the C ki in Equation 11.9 that minimize the energy of the 
molecule. This condition leads to a set of algebraic equations for the coefficients called 
the Roothaan equations, which can be written as 

M 

"'(F .. - E.S .. )c .. == 0 ~ IJ I IJ J I 
(11.10) 

j=I 

The Roothaan equations are an extension of the Hartree-Fock equations to poly­
atomic molecules. The quantity Fij is the ijth matrix element of the Fock operator and 
S .. is the overlap integral between the basis functions ¢. and ¢ .. Equation 11.10 will 

IJ I J 

have a nontrivial solution only if 

IF .. - E.S .. I == 0 
IJ I IJ 

(11.11) 

Here, as for diatomic molecules (Section 9-13), the Fock operator depends on the 
coefficients in the molecular-orbital expansion, Equation 11.9, and so Equation 11.11 
must be solved self-consistently. As we said in the introduction to this chapter, a number 
of user-friendly computer programs can be used to solve Equation 11.11 in order to 
calculate molecular properties to a high degree of accuracy. Most of these programs 
express the atomic orbitals in Equation 11.9 in terms of Gaussian functions. 

11-2. Extended Basis Sets Accurately Account for the Size and Shape 

of Molecular Charge Distributions 

While the STO-NG (N == 1, 2, 3, ... ) basis sets were popular in the 1980s, they are 
not widely used today. Using a finite sum of Gaussian functions to describe an atomic 
orbital results in several inadequacies that affect the accuracy of the calculations. Here 
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we consider one of the major limitations, and then we will learn how this problem 
can be overcome by modifying the linear combination of Gaussian functions used to 
represent an atomic orbital. 

Because the atomic orbitals in the STO-NG basis sets use fixed exponents, a ki , all 
orbitals of a given type are identical in size. For example, the Px' P v' and p z atomic 
orbitals all have the same radial function, r exp(-ar2

) (Equation 1 1.3) and thus are 
identical. However, this generally will not give an accurate picture of the electron 
density for a particular atom within a molecule. Consider the linear triatomic molecule 
HCN, where we define the bonds to lie along the z direction. In HCN, the p., orbitals 

(, 

on the carbon and nitrogen atoms form a a orbital, and the p.r and p y orbitals form 
JT orbitals. We learned in Chapters 9 and 10 that JT orbitals are more diffuse than 
a orbitals; therefore we expect the radial function for the p", orbital to peak at a 

'-. 

smaller value of r than the radial function for the Px or P \' orbital does. Such a 
description requires one value of the orbital exponent for the 2 p", orbital and a different 
value for the 2 Px and 2 P" orbitals. Furthermore, such effects are expected to be 
molecule dependent, implying that different molecules would have different orbital 
exponents. 

A similar problem arises in the inability of the STO-NG basis sets to reproduce 
the anisotropic charge distributions of many hydrocarbon molecules. We can visualize 
this problem by comparing methane and ethyne. In methane, the electron densities 
in the four s p3 hybrid orbitals are equivalent. Thus, expressing the three 2 p orbitals 
by functions that have the same orbital exponent is reasonable. For ethyne, however, 
the electron density along the bond direction is much less diffuse than that along the 
axes perpendicular to the bond. This leads to an anisotropic distribution of the electron 
density, an effect that cannot be described by the STO-NG basis set because all three 
2 p orbitals have the same r dependence. 

Tabulating separate mathematical functions to describe the atomic orbitals for 
every molecule is clearly impractical. We need a general approach that allows the size 
of the orbital to be optimized as part of the Hartree-Fock calculation. This can be done 
if the basis set consists of functions that can adjust the shape of the atomic orbital. 
Computational chemists have solved this problem by expressing each atomic orbital as 
a sum of two Slater-type orbitals that differ only in the value of their exponent ~. For 
example, the 2s orbital is written as 

(11.12) 

The advantage of this approach can be seen as follows. The Slater orbitals ¢~:o (r, ~I) 
and ¢~;o (r, ~2) represent different size 2s orbitals. Using a linear combination of these 
two functions, we can construct an atomic orbital whose size can range between 
that specified by ¢~,:o (r, ~I) and ¢~.;o (r, ~2) by varying the constant d, as shown in 
Figure 11.3. Because both functions are of the same type (¢~;o in this case), the linear 
combination retains the desired symmetry of the atomic orbital. Basis sets generated 
from a sum of two Slater orbitals with different orbital exponents are called double-zeta 



d » 1 

o + d 

I :::: I 

o d « I 

FIG U R E 11.3 
A linear combination of two Slater orbitals of the same type (¢i"[o in the case shown) but with 
different orbital exponents SI and S2 can generate an atomic orbital of adjustable size by varying 
the constant d. 

basis sets because each orbital in the basis set is the sum of two Slater orbitals that 
differ only in their value of the orbital exponent, l; (zeta). 

In general, only the valence orbitals are expressed by a double-zeta representation. 
The inner-shell electrons are still described by a single Slater orbital. For example, the 
electrons in the 1 s atomic orbi talon a carbon atom would be described by a single </>~;o 
Slater orbital with l; given in Table 11.1, whereas the electrons in the 2s atomic orbital 
would be described by a linear combination of two </>~;o Slater orbitals with different 
values of the orbital exponent, l;. Basis sets that describe the inner-shell electrons by 
a single Slater orbital and the valence-shell electrons by a sum of Slater orbitals are 
commonly referred to as split-valence basis sets. 

EXAMPLE 11-4 
Describe how a double-zeta basis set can be used to overcome the problems encoun­
tered in describing the 217 orbitals on the carbon atom in HeN by using only a STO-3G 
basis set. 

SOL UTI 0 N: The (normalized) Slater orbitals for the 217" 2p ,., and 2p_ orbitals are 
.. .. 

given by 
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All three Slater 2p orbitals have the same r dependence and same value of S. The 
corresponding Gaussian functions in an STO-3G basis set also have the same r depen­
dence and therefore cannot describe the differences between the 2p orbitals involved 
in the a and][ orbitals of HCN. Consider, for example, a linear combination of two 

¢~;~ Slater orbitals with different orbital exponents, Sl and S2 (for discussion purposes, 

Sl > S2): 

Because Sl > S2' ¢i;~(r, S2) will be larger (or more diffuse) than ¢~;~(r, ~l)' Depend­
ing on our choice of d, we can vary the size of the 2px orbital between that represented 

by the two individual functions ¢i;~(r, Sl) and ¢i;~(r, ~2)' The same procedure allows 
us to vary the size of the 2py and 2P: orbitals. 

Because the ][ orbitals are more diffuse than the a orbital, the 2 P
x 

and 2 P \' orbitals 
on the carbon and nitrogen atoms must be larger than the 2p_ orbital. This difference 
in size can be accounted for by an appropriate choice of the coefficient d for each 

orbital. The larger Slater orbitals (¢~;o (r, ~2)' i == x, y, or z), will make a greater 
I 

contribution to the 2 P rand 2 P \' orbitals than to the 2 P _ orbital. The smaller Slater 

orbital ¢~;~(r, Sl) will'make a greater contribution to th~ 2P: orbital than to the 2p
x 

and 2 P \' orbitals. 

How different are ~I and ~2 in the double-zeta basis sets? The optimal orbital 

exponents for the 2px' 2py, and 2P: orbitals of the carbon atom in HeN are 1.51,1.51, 
and 2.08, respectively. (The z-axis lies along the bonds.) The standard orbital exponent 
in the STO-NG data set for the 2p orbital on a carbon atom is 1.72 (Table 11.1). Thus, 
the contraction of the 2 P::: orbitals and expansion of the 2 Px and 2 Py orbitals of the 
carbon atom in a HCN molecule correspond to roughly a 20% change in the value 
of s. A linear combination of a smaller 2p" orbital (~I ~ 2.08) and larger 2px and 
2py orbitals (S2 ~ 1.51) could be used to describe the 2p orbitals on the carbon atom 
in HCN. 

Once again, to facilitate the evaluation of the secular determinant, each Slater 
orbital in the split-valence basis set is expressed in terms of Gaussian functions. Thus, 

each of the two Slater orbitals, ¢~J:o (r, S \) and ¢~,:o (r, ~2)' in Equation 11.12 is a linear 
combination of Gaussian functions. In principle, any number of Gaussian functions 
can be used to describe ¢;,;o (r, s\) and ¢~,;o (r, S2)' giving rise to an infinite number of 
possible basis sets. We need a short-hand notation that tells us the number of Gaussian 
functions used to describe the various Slater atomic orbitals in a split-valence basis set. 
We will use the notation N-MPG, where N is the number of Gaussian functions used 
to describe the inner-shell orbitals; the hyphen indicates that we have a split-valence 
basis set; and the numbers M and P designate the number of Gaussian functions that are 

used to fit ¢~.;o(r, s\) and ¢~.:'o(r, S2)' respectively. Because ~l > ~2 (by convention), 
M corresponds to the number of Gaussian functions used to express the smaller Slater 
orbital and P corresponds to the number of Gaussian functions used to express the 
larger Slater orbital. The G simply tells us that we are using Gaussian functions. 
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For example, one popular split-valence basis set used extensively in computational 
chemistry is the 6-31 G basis set. Consider a carbon atom in a 6-31 G basis. The 6 tells 
us that the Is orbital on the carbon atom (the inner-shell orbital) is given by a sum of 
6 Gaussian functions. The hyphen indicates a split-valence basis set, telling us that the 
valence 2s and 2p orbitals are each represented by a pair of Slater orbitals. One of these 
Slater orbitals, the smaller one, is represented by a sum of three Gaussian functions 
(hence the 3), and the larger orbital is represented by a single Gaussian function (hence 
the 1). The time required to evaluate the elements of the secular determinant depends 
upon the number of functions used. Computational chemists need to use computer time 
efficientl y, thus one of the most important decisions in performing any calculation is 
the choice of basis set. We will explore this issue in more detail in the final two sections. 
First, however, we need to construct some of the more popular Gaussian basis sets that 
are derived from a split-valence representation of the atomic orbitals. 

EXAMPLE 11-5 
Describe the general procedure for constructing the functional forms of the 1 sand 2s 

orbitals for a carbon atom in the 5-31G basis set. (See Table 1l.3.) 

SOL UTI 0 N: The label 5-31 G tells us we are using a Gaussian basis set for which 
the inner-shell (Is) orbitals are described by a sum of 5 Gaussian functions and the 
valence orbitals are described by a double-zeta representation where one Slater orbital 
(the smaller one) is represented by a linear combination of three Gaussian functions 
and the other Slater orbital (the larger one) is represented by a single Gaussian function. 
The Is orbital in the 5-31 G basis set is given by the best fit of a sum of 5 Gaussian 
functions to a single ¢~.;o Slater orbital using ~ = 5.67 from Table 11.1. Thus, 

5 

¢ ~.:O (r, 5.67) = L dIs i ¢ ~~ (r, (X Is) 
i=1 

where the values for d
1si 

and (X lsi for the carbon atom in the 5-31 G basis set are given 
in Table 11.3. 

TABLE 11.3 
The coefficients and orbital exponents for the five Gaussian functions of the ground-state 
carbon atom in the 5-31 G basis set. These values are determined by an "optimal" fit of 
a linear combination of five Gaussian functions to a Slater orbital with ~ = 5.67. 

(XI' Sl 
d

1 
. 

Sf 
(X, . 

~Sf = (X2pi d, . 
~Sl 

(X 2,1' 

1264.250 0.005473 7.942731 -0.1207731 0.158512 

190.1443 0.040791 1.907238 -0.1697932 

43.12859 0.181220 0.5535774 1.149812 

11.94438 0.463485 

3.651485 0.452471 
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The 2s orbital is described by a double-zeta basis set, or a linear combination of 
two ¢;}'O Slater orbitals, ¢;,;o (r, Sf) and ¢;}'O (r, S2)' of different orbital exponents, 

S, > sr The smaller Slater orbital, ¢~,;o (r, SI)' is described by a linear combination of 
3 Gaussian functions, and the larger Slater orbital, ¢;,:o (r, S2)' is described by a single 
Gaussian function. Thus, we have 

3 

",STO(r r ) == "d .",GF(r Ci .) 
V"2s .," 1 ~ 2Si V"2s ' 2.\1 

i I 

",STO( r GF( I) 
V" 2.1' r,,, 2) == ¢ 2.1' r, a 2.1' 

so the 2s orbital in the 5-31 G basis set is given by 

3 

¢2s (r) == L d2si ¢~F (r, a 2s ;) + d~s ¢~F (r, a;s) 
;=1 

where the values of the d" .. the a) ., and a;. are given in Table 11.3. The value of the 
~,\I ~Sl .\ 

coefficient d~s is optimized as part of the Roothaan-Hartree-Fock procedure. The three 
2 p orbitals are given by a similar procedure. 

11-3. Asterisks in the Designation of a Basis Set Denote Orbital 

Polarization Terms 

Consider the formation of a simple a 1 s molecular orbital in H2 . This orbital is formed 
from a Is orbital on each hydrogen atom. Surely, however, the electron distribution 
about each hydrogen atom does not remain spherically symmetric as the two atoms 
approach each other. We can take this effect into account in the following way. If we 
let the internuclear axis be the z-axis, we can construct the molecular orbital from a 
linear combination of a 1 s orbital and a 2 p _ orbital on each hydrogen atom instead of 

,. 

from just a Is orbital. In this manner, we can generally account for the fact that atomic 
orbitals distort as atoms are brought together. Such an effect is called a polarization 

effect. We can account for polarization by adding orbitals of higher orbital angular 
momentum quantum number, I, to the mathematical expression for a given atomic 
orbital just as we added a 2p~ orbital to a Is hydrogen orbital above. For example, d 
character can be added to the description of the valence electrons in 2 p orbitals, thereby 
providing a representation of the asymmetric shape of the electron density along the 
chemical bonds involving 2 p orbitals. The addition of 3d orbitals to the 2 p orbitals of 
the atoms of the second row elements in the periodic table is denoted by an asterisk 
*, for example, 6-31 G*. A double asterisk, **, denotes that polarization is also being 
taken into account for the orbital descriptions on hydrogen atoms by adding 2 p orbitals 
to the hydrogen Is orbitals. In particular, the basis set 6-31 G** is used in systems in 
which hydrogen bonding occurs. As you may have surmised, there are many basis sets 
used in modern computation chemistry (Table 11.4). 



TABLE 11.4 
Various split-valence Gaussian basis sets for the first- and second-row atoms in the 
periodic table. 

Basis seta Atom 

3-21G H 

Li-Ne 

5-31G H 

Li-Ne 

6-31G H 

Li-Ne 

Atomic 
orbital 

Is 
Is 

2s, 2p 

Is 
Is 

2s, 2p 

Is 
Is 

2s, 2p 

N umber of contributing Gaussian functions 
Valence shell 

Inner shell Smaller Larger 

2 I 

3 

2 1 

3 I 
5 

3 I 

3 I 

6 

3 1 

a Addition of a * superscript (e.g., 6-31 G*) indicates that a single set of Gaussian 3d functions is added to the 

split-valence basis set description of each non-hydrogen atom. A ** superscript (e.g., 6-31 G**) indicates that 

a single set of Gaussian 2p functions is also added to the split-valence basis set description of each hydrogen 

atom. 

EXAMPLE 11-6 
Table 11.8 gives the results of 6-31 G** calculation of a water molecule. Describe 
what is meant by this notation. 

SO L UTI 0 N: Let's refer to Table 11.4. The "6" in 6-31G** tells us that the Is orbital 
(the inner-shell orbital) on the oxygen atom is represented by a linear combination of 
six Gaussian functions. The six Gaussian functions represent a Slater Is orbital with 
~ :.=: 7.66 (see Table 11.1). The "31" in 6-31 G** tells us that the hydrogen 1 s orbital 
and the 2s and 2p orbitals on the oxygen atom are represented by a double-zeta basis 
set, with the smaller orbitals represented by a linear combination of three Gaussian 
functions and the larger orbitals represented by a single Gaussian function. The "**,, 
part of 6-31G** tells is two things. First, d orbital character, represented by a single 
set of Gaussian 3d functions, is added to the oxygen 2 p orbitals and, in addition, p 
orbital character, represented by a single set of Gaussian 2 p functions, is added to the 
hydrogen Is orbitals to account for a polarization effect in each case. 

Table 11.5 lists the coefficients d
ki 

and exponents (iki for the split-valence 6-31 G 
basis functions for the carbon, nitrogen, and oxygen atoms. Tabulated values can be 
found for many atoms. Example 11-7 shows that it is easy to write the basis set 
functions for the various atomic orbitals from such tables. 

Even the most sophisticated basis sets we have considered here, 6-31 G* and 
6-31 G**, have deficiencies that limit their ultimate use. Quantum chemists are currently 
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TAB L E 11.5 
The Gaussian exponents and expansion coefficients for the n == 1 (15) and n == 2 (25, 2 p) 

orbitals of atomic carbon, nitrogen, and oxygen in the 6-31 G basis set. 

Atom a l · d, . a, . == a, . d, . d) . a 2s == a 2p SI .\ I ... s I _In ~Sl _pi 

C 3047.5 0.0018347 7.8683 -0.11933 0.068999 0.15599 

457.47 0.014037 1.8813 -0.16085 0.31642 

103.95 0.068843 0.54425 1.1435 0.74431 

29.210 0.23218 

9.2867 0.46794 

3.1639 0.36312 

N 4173.5 0.0018348 11.862 -0.11496 0.067579 0.22077 

627.46 0.013995 2.7714 -0.16912 0.32391 

142.90 0.068587 0.7890 1.1458 0.74089 

40.234 0.23224 

12.820 0.46907 

4.3904 0.36046 

0 5484.7 0.0018311 15.855 -0.11078 0.070874 0.28114 

825.23 0.039502 3.6730 0.14803 0.33975 

188.05 0.068445 1.0343 1.1308 0.72716 

52.965 0.23271 

16.898 0.47019 

5.7996 0.35852 

exploring triple-zeta and quadruple-zeta basis sets (larger sums of Slater-type orbitals). 
With improvements in computational speed and computer algorithms, calculations 
using larger and more accurate basis sets will become practical. 

EXAMPLE 11-7 
Using the data in Table 11.5, determine the mathematical formulas for the 15, 25, and 
2 p orbitals for a carbon atom in the 6-31 G basis set? 

SOL UTI 0 N: Using the data in Table 11.5, we can write out the functional forms of 
the Is, 2s, and 2 p orbitals of a carbon atoIn in the 6-31 G basis set. 

6 

A-, (r) == "d A-,GF(r a ) 
'f"1s L....t Isi'f"ls ' lsi 

i=l 

== 0.0018347 ¢~F(r, 3047.5) + 0.014037 ¢~,F(r, 457.47) 

+ 0.068843 ¢~F(r, 103.95) + 0.023218 ¢~\F(r, 29.210) 

+ 0.46794 ¢~~F(r, 9.2867) + 0.36231 ¢~F(r, 3.1639) 
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:I 

¢2, (r) == L d2si ¢{\F (r~ (X2,,) + d;,\¢;\F (r, 0';,\) 
i I 

_ GF ~ GF - -0.11933 ¢2s (I, 7.8683) 0.16085 ¢2s' (r, 1.8813) 

+ 1.1435 ¢~3F(r, 0.54425) + d~¢~F(r, 0.15599) 
-~ -~ -~ 

GF .. GF == 0.068999 ¢2p (r. 7.8683) + 0.31642 ¢2p (r, 1.8813) 

+ O. 74431 ¢~~; Cr, 0.54425) + d;p¢~; Cr, 0.15599) 

The values of d~.1 and d~p are optimized as part of the Hartree-Fock procedure. 

11-4. The Ground-State Energy of H2 Can Be Calculated 
Essentially Exactly 

For our first calculation, let's return to a discussion of the simplest diatomic molecule, 
Hr In Chapter 9, molecular orbitals for H2 were generated using the LCAO-MO 
approach. When only the 1 s orbitals on the two bonded atoms are used to generate 
the lag molecular orbital, an energy of -1.099 Eh is obtained. In light of what we 
have learned in this chapter, however, limiting the basis set for this molecular orbital 
to a sum of just two atomic orbitals is clearly a severe approximation. It is worth 
investigating what energies are obtained for the lowest energy molecular orbital of H" 

"-

when different basis sets are used. GAUSSIAN 94 calculations of the total energy of 
H2 and the equilibrium bond length using the different basis sets considered in the last 
section are given by the first six entries of Table 11.6. 

TABLE 11.6 
Calculated energy and bond length for H2 for different basis sets. 

Description of wave functions Total energy I E h R(/pm 

Molecular orbital (1 SA + 1 SB) -1.099 85.0 

STO-3G -1.117 71.2 

STO-6G 1.124 71.1 

3-21G -1.123 73.5 

6-31G -1.127 73.0 

6-31 G** -1.131 73.2 

Best configuration interaction 1.174 74.2 

Experimental 1.174 74.2 
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For all the basis sets used, the calculated energy is greater than the experimental 
value, in accord with the variational principle. The 6-31 G** basis set affords the 
maximum flexibility in determining the molecular orbitals of H2, yet the calculated 
total energy differs fronl the experimental value by 3.60/0, and the calculated bond 
length is 1.0 pm too short. If we are to have confidence in the accuracy of calculated 
energies and geometries of polyatomic molecules, we should be able to determine the 
energy and bond length of H2 essentially exactly. 

We know froIn Chapter 8 that the difference between the energy calculated for 
the Hartree-Fock theory and the exact energy is called the correlation energy. For 
calculations using the 6-31 G** basis set, the correlation energy of H2 is -0.043E

h
. 

This correlation energy arises from the correlation between electrons of opposite spin 
and is ignored by the one-electron orbitals used in the Hartree-Fock method. 

We can use the simple H2 molecular-orbital wave function given by Equation 9.30 
to discuss the limitations of the Hartree-Fock procedure. Ignoring the normalization 
constant, Equation 9.30 gives 

(11.13) 

We can interpret the four terms in this wave function. The first two terms represent 
one electron on each nucleus, there being two terms because of the indistinguishability 
of the two electrons. These two terms describe a purely covalently bonded hydrogen 
Inolecule, given by the Lewis formula H-H. The last two terms in Equation 11.13 
represent both electrons being on nucleus A or both on nucleus B. These two terms 
describe purely ionic structures for H2, given by the Lewis formulas: 

Thus, according to Equation 11.13, the ionic terms [ls
A
(I)ls

A
(2) and ls

8
(1)ls

8
(2)] 

carry the same weight as the covalent terms [ 1 SA (1) 1 S B (2) and 1 S8 (1) 1 SA (2)]. Thus, 
dissociation of H2 is just as likely to create the ions H+ and H- as it is to create neutral 
hydrogen atoms. This prediction clearly is not correct. However, this prediction is 
reflected in Figure 11.4, where the potential energy curves for H2 are plotted against 
distance for a Hartree-Fock calculation using the 6-31 G** basis set. 

We see that the Hartree-Fock calculation (6-31 G** basis set) gives an energy 
that exceeds the energy of two neutral hydrogen atoms for distances greater than 
:::::; 3ao' In addition, the calculated potential energy underestimates the bond strength 
at all distances. This result stems from the fact that the single determinantal wave 
function (Equation 11.1) overemphasizes the ionic configuration (H+H-). These results 

show that an accurate description of the molecular bonding cannot be achieved using 

a single Slater determinantal wave function. Several methods are used to improve 
upon a Hartree-Fock calculation. One method employs linear combinations of Slater 
determinants involving excited electronic states of the molecule instead of using just a 
single Slater determinant involving the lowest orbitals for the molecular wave function. 
This approach is called configuration interaction, and it is the most complete treatment 
of electronic structure possible for a given basis set. The details of configuration 
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The energy of H2 is plotted as a function of internuclear separation for Hartree-Fock calculations 
(HF) using the 6-31 G** basis set with and without configuration interaction. These calculations 
are compared with the exact result published by Kolos and Wolniewicz in 1968. The calculation 
including configuration interaction is nearly identical to the exact result. 

interaction are beyond the scope of this book, but you should be aware of its existence 
because most calculations reported today use it. Table 11.6lists the calculated energy for 
H2 obtained using Hartree-Fock theory with configuration interaction. The calculated 
potential energy curve using the 6-31 G** basis set along with configuration interaction 
is also shown in Figure 11.4. The calculated curve is nearly identical to the extremely 
accurate results published later by Kolos and Wolniewicz in 1968 using a variational 
trial function containing more than 100 variational parameters that was limited to H2. 
This example demonstrates the power of modern quantum-mechanical calculations. 
Fortunately, most of the commercially available quantum chemistry programs have 
routines for including configuration interaction so that calculations beyond the Hartree­
Fock approximation are readily accessible. 

11-5. GAUSSIAN 94 Calculations Provide Accurate Information 
About Molecules 

We have said that a number of commercially available computer programs can be 
used by nonexperts to calculate molecular properties. GAUSSIAN 94, GAMESS, 
and SPARTAN are three of the most widely used. In this section, we will discuss 
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GAUSSIAN 94 and examine some of the actual input and output of GAUSSIAN 94 
using water and ammonia as examples. To carry out a GAUSSIAN 94 calculation, you 
must provide three pieces of information: the method and level of calculation to be 
used, the total charge and spin multiplicity of the molecule to be considered, and the 
starting geometry (x, y, and z coordinates) of each atom in the molecule. 

A sample input file for a water molecule is shown in Table 11.7. Line 1 specifies 
the name of the file (water) that will be used to store the results of the calculation. 
Line 2 contains a string of control words preceded by the # character. These words 
tell GAUSSIAN 94 various details about the desired calculation. For this example, the 
level of theory is a RHF (Restricted Hartree-Fock) calculation using the 6-31 G* basis 
set. The term "restricted" means that the wave function is written in the form given 
by Equation 11.1; that is, all orbitals are doubly occupied, meaning that all spins are 
paired. The second control sequence "geom=coord" tells the computer program how 
the initial geometry of the molecule is specified in the input file; in this case, "coord" is 
a short-hand notation for Cartesian coordinates. The final control word "opt" tells the 
program is to optimize the molecular geometry as part of the calculation. If this phrase 
were deleted, the atoms \"ould be restricted to the positions indicated in the input file, 
and the energy of the molecule would be minimized by the Hartree-Fock procedure for 
this fixed geometry. The third line of the input file is left blank to indicate the end of 
the sequence of control words. Line 4 is reserved for the title of the calculation. Here 
we have used a descriptive title so that we know the molecule, the level of calculation, 
and the basis set used. Line 5 is left blank to indicate the termination of the title. Line 6 
contains the total charge and spin multiplicity of water. Water is a neutral molecule, 
hence the total charge is zero. Recall that the valence-electron configuration of water 
is (2a

l
)2(Ib

2
)2(3a,)2(lb

1
)2 (see Figure 10.13) and therefore water has a net spin of 

s == 0, which corresponds to a total spin multiplicity S == 2s + 1, or S == 1, a singlet 

TABLE 11.7 
An input file for the GAUSSIAN 94 program for a water molecule. 

Line # 

1 %chk=water 

2 #rhf/6-31G* geom=coord opt 

3 

4 Restricted Hartree Fock Calculation of Water with the 

6-31G* basis set 

5 

6 0 1 

7 H 0.754565 0.000000 0.4587771 

8 0 0.000000 0.000000 -0.1146943 

9 H -0.754565 0.000000 0.4587771 

10 



11-5. GAUSSIAN 94 Calculations Provide Accurate Information About Molecules 

state. Lines 7 to 9 specify the type of atom and Cartesian coordinates (x, y, z) for each 
atom in the molecule. The coordinates are in units of Angstroms (10- IO m or 102 pm). 

Line 10 is left blank to indicate the end of the input file. 

EXAMPLE 11-8 
Set up an input file for running a geolnetry optimized restricted Hartree-Fock calcula­

tion using the 6-31 G** basis set for an ammonia molecule. 

SOLUTION: 

Line # 

1 %chk=ammonia 
2 #rhf/6-31G** geom=coord opt 

3 

4 Restricted Hartree Fock Calculation of 

Ammonia with the 6-31G** basis set 

5 

6 0 1 

7 N 0.000000 0.000000 0.000000 

8 H 0.962752 0.000000 -0.373049 

9 H -0.450719 -0.803397 -0.466363 
10 H -0.440104 0.826195 -0.435709 
11 

The coordinates (in Angstroms) given for the four atoms are our initial guess. They 

need only be a rough estimate because the molecular geometry will be optimized (the 

"opt" control word is specified in line 2) as part of the calculation. 

Table 11.8 gives the energies, geometry, net atomic charges, and dipole moment 

for a water molecule that result from a calculation using the input file in Table 11.7. 
According to Koopmans' approximation (Section 8-7), the negative of the energies 
of the one-electron orbitals corresponds to the ionization energies. We can therefore 
test the accuracy of the calculated energies of the molecular orbitals by comparing 
the values obtained with the peaks in the photoelectron spectrum (Figure 10.14). The 
calculated values are indicated along the energy axis of Figure 10.14. We find excellent 
agreement between the calculated and experimental values for the energies of the 
Ib2 , 3a l , and Ib l molecular orbitals. Excellent agreement is also found between the 

calculated and experimental molecular geometries. The calculated dipole moment of 

water differs from the experimental value by approximately 200/0 (Problem 11-30). This 

difference can be significantly narrowed using configuration interaction but requires 

more computer time to carry out the calculation. Table 11.9 gives the results for an 

RHF/6-31 G* calculation of ammonia. Figure 11.5 shows the photoelectron spectrum 

of ammonia. Similar to the case for water, as discussed in Chapter 10, the bands 

in the photoelectron spectrum are broad due to ionization from different vibrational 
levels of the molecule. The calculated values of the orbital energies using Koopmans' 
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TABLE 11.8 
Calculated results for water using the input file in Table 11.7. 

Restricted Hartree Fock Calculation of Water with the 6-31G* 

basis set 

Molecular orbital energies 

Orbital 

1a1 

2al 

1b2 

3al 

Ib1 

Total 

Bond lengths 

Bond 

O--H 

H--H 

Bond angle 

Angle 

H-O-H 

Net atomic charges 

Atom 

H 

o 
H 

Dipole mornent/D 

Calculated 

Experimental 

Energy /MJ . mol I 

-53.9 

-3.53 

-1.87 

1.49 

-1.31 

-199.70 

Calculated length/pm 

94.7 

150.8 

Calculated 

105.5 

Net charge 

+0.41 

0.82 

+0.41 

2.3 

1.85 

Experimental energy/MJ' mol-I 

-200.78 

Experimental value/pm 

95.8 

Experimental 

104.5 

approximation are, once again, in excellent agreement with the experimental values. 
As for water, the calculated and experimental molecular geometries for ammonia are 
in excellent agreement. The dipole moment differs by about 30% (Problem 11-31) and 
like that for water, the calculated dipole moment is too large. A more accurate value 
can be obtained using configuration interaction. 

Hartree-Fock calculations have been carried out on a large number of molecules 
and in many cases, excellent agreement between theory and experiment is observed. In 
Table 11.10, optimized structural information is displayed for various molecules using 
different basis sets. The experimental values are also given for comparison. 



TABLE 11.9 
Calculated results for an amonia molecule using the input file in Example 11-8. 

Restricted Hartree Fock Calculation of Ammonia with the 6-31G* 

basis set 

Molecular orbital energies 

Orbital Energy/MJ . mol-I 

1al 

2a1 

e 

e 

3al 

Total 

-40.79 

-2.99 

-1.65 

-1.65 

-1.10 

-147.53 

Bond lengths 

Bond Calculated length/pm Experimental value/pm 

N-H 

H-H 

Bond angle 

Angle 

H-N-H 

Net atomic charges 

Atom 

N 

H 

Dipole moment/D 

Calculated 

Experimental 

100.0 101.2 

160.9 

Calculated 

107.1 

Net charge 

-1.11 

+0.37 

2.0 

1.5 

Experimental 

106.7 

Tables 11.11 and 11.12 present calculated and experimental bond lengths and 
bond angles for the optimized structure of large molecules. Although there are small 
discrepancies between the calculated and experimental values, these results clearly 
show that the computational technology discussed in this section is not limited to small 
molecules. In most cases, the agreement is improved by using advanced methods that 
account for electron correlation. The data given in Tables 11.10 to 11.12 reveal the 
power and accuracy of modern computational techniques. 
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e 

1 .0 t 1.2 1.4 1.6 t 1 .8 

Ionization energy / MJ .mol I 

FIGURE 11.5 
The photoelectron spectrum of anlI110nia. This range corresponds to ionization from the two 
highest occupied molecular orbitals l e and 3a I' The fine structure of each band corresponds 
to ionization from different vibrational levels. The arrows indicate the calculated ionization 
energies from the v == 0 vibrational states at the HF/6-31 G* level (Table 11.9) using Koopmans' 
approximation. 

TABLE 11.10 
Calculated and experimental bond lengths (pm) and bond angles (degrees) for small molecules 
for different basis sets. 

Geometrical 
Molecule parameter STO-3G 3-21G 3-21G* 6-31 G* 6-31G** Expt. 

H2 r(HH) 71.2 73.5 73.5 73.0 73.2 74.2 

LiH r(LiH) 151.0 164.0 164.0 163.6 162.3 159.6 

CH
4 

r(CH) 108.3 108.3 108.3 108.4 108.4 109.2 

NH} r(NH) 103.3 100.3 100.3 100.2 100.1 10l.2 

L(HNH) 104.2 112.4 112.4 107.2 107.6 106.7 

H,O r(OH) 99.0 96.7 96.7 94.7 94.3 95.8 

L(HOH) 100.0 107.6 107.6 105.5 105.9 104.5 

HF r(FH) 95.6 93.7 93.7 91.1 90.1 9l.7 

NaH r(NaH) 165.4 192.6 193.0 191.4 19l.2 188.7 

SiH
4 

r(SiH) 142.2 148.7 147.5 147.5 147.6 148.1 

PH
3 

r(PH) 137.8 142.3 140.2 140.3 140.5 142.0 

L(HPH) 95.0 96.1 95.2 95.4 95.6 93.3 

H
2
S r(SH) 132.9 135.0 132.7 132.6 132.7 133.6 

L(HSH) 92.5 95.8 94.4 94.4 94.4 92.1 

HCI r(HCl) 131.3 129.3 126.7 126.7 126.6 127.5 
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TABLE 11.11 
Calculated and experimental molecular bond lengths. 

Bond Bond length/pm 

type Molecule STO-3G 3-21G 3-21 G* 6-31 G* Expt. 

C-C Acetylene 116.8 I 18.8 118.8 118.5 1 ?0.3 
Propyne I 17.0 118.8 118.8 1 18.7 120.6 

C==C Cyclopropene 127.7 128.2 228.2 127.6 130.0 
Allene 128.8 129.2 129.2 129.6 130.8 
Cyclobutene 131.4 132.6 132.6 132.2 133.2 
Ethene 130.6 131.5 131.5 131.7 133.9 
Cyclopentadiene 131.9 132.9 132.9 132.9 134.5 

C-C Acetonitrile 148.8 145.7 145.7 145.8 
Acetaldehyde 153.7 150.7 150.7 150.4 150.1 
Cyclopentadiene 152.2 151.9 151.9 150.7 150.6 
Cyclobutane 155.4 157.1 157.1 154.8 154.8 

C=N Hydrogen cyanide IIS.3 I 13.7 113.7 113.3 11S.3 
Acetonitrile 115.4 I 13.9 113.9 113.3 I IS.7 
Hydrogen isocyanide 117.0 116.0 116.0 115.4 116.9 

C==O Carbon dioxide 118.8 115.6 115.6 114.3 116.2 
Formaldehyde 121.7 120.7 120.7 118.4 120.8 
Acetone 121.9 121.1 121.1 122.2 

C-S Methanethiol 179.8 189.5 182.3 181.7 181.9 
C-CI Chloromethane 180.2 189.2 180.6 178.5 178.1 
N==N Diazene 126.7 123.9 123.9 121.6 12S.2 
0-0 Ozone 128.S 130.8 130.8 120.4 127.8 

Hydrogen peroxide 139.6 147.3 147.3 139.3 14S.2 

TAB L E 11.12 
Calculated and experimental nl0lecular bond angles. 

Angle/degrees 

Angles Molecule STO-3G 3-21G 3-21 G* Expt. 

C==C-C Acrolein 122.4 120.5 120.5 119.8 
Isobutene 122.4 122.6 122.6 122.4 
Propene 12S.1 124.7 124.7 124.3 

C-C-C Isobutane 110.9 110.4 110.4 110.8 
Propane 112.4 1 I 1.6 11 I .6 I 12.4 

C-C==O Acetone 122.4 122.5 122.5 121.4 
Acetic acid 126.8 127.4 127.4 126.6 

C-O-C Dilnethylether 108.7 114.0 114.0 1 J I. 7 
N-C==O Formamide 124.3 12S.3 12S.3 124.7 
0-0-0 Ozone 116.2 117.0 I 17.0 116.8 
CI-O-CI Oxygen dichloride 109.3 112.0 113.2 110.9 
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Problems 

11-1. Show that a three-dimensional Gaussian function centered at ro = xoi + yoj + zok is a 

product of three one-dimensional Gaussian functions centered on xO' y()' and z()" 

11-2. Show that 

11-3. The Gaussian integral 

I = JOO e-ax2 dx 
() 

() 

can be evaluated by a trick. First write 

Now convert the integration variables from Cartesian coordinates to polar coordinates and 

show that 

1 = ~ (If) 1/2 

() 2 a 

11-4. Show that the integral 

can be obtained from In in Problem 11-3 by differentiating 11 times with respect to a . Using 

the result of Problem 11-3, show that 

1 . 3 . 5 .... (211 - 1) (If) 1/2 
1=-

211 2(2a)11 a 

11-5. Show that the Gaussian function 

(
2 )3/4 

¢(r) = : e-
ar2 

is normalized. 

11-6. Show that the product of a (not normalized) Gaussian function centered at RA and one 

centered at R s ' i.e. 

, 
¢ _ -alr-R 1--e A 

1 

is a Gaussian function centered at 

and 

R 
17 

For simplicity, work in one dimension and appeal to Problem 11-1 to argue that it is true 

in three dimensions. 



Problems 

11-7. Show explicitly that if 

and 

are normalized Gaussian Is functions, then 

¢Is (a, r - RA)¢ls (f3, r - R B) == K AB¢ls (p, r - R,) 

where p == a + f3, Rp == (aRA + f3 R B)/(a + f3) (see Problem 11-6), and 

[ 
2af3 ]3/4 _~ IR -R 12 

K == e 1i+f3 A B 

AB (a + f3)n 

11-8. Plot the product of the two (unnormalized) Gaussian functions 

and 

Interpret the result. 

11-9. Using the result of Problem 11-7, show that the overlap integral of the two normalized 

Gaussian functions 

and 

IS 

J 

IifllRA -RBI-

Ii+ Ii 

Plot this result as a function of IRA - RB I· 

11-10. One criterion for the best possible "fit" of a Gaussian function to a Slater orbital is a fit 
that minimizes the integral of the square of their difference. For example, we can find the 
optimal value of a in ¢~F(r, a) by minimizing 

with respect to a. If the two functions ¢~,;'o (r, 1.00) and ¢~~F (r, a) are normalized, show 
that minimizing I is equivalent to maximizing the overlap integral of ¢~.:o (r, 1.00) and 

GF ¢]s (r, a): 

s = f dr¢f;o (r, l.OO)¢~;F(r, a) 

11-11. Show that S in Problem 11-10 is given by 
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U sing a numerical integration computer program such as Mathematica or MathCad, show 

that the following results are correct: 

Ci S 

0.10 0.8642 

0.15 0.9367 

0.20 0.9673 

0.25 0.9776 

0.30 0.9772 

0.35 0.9706 

0.40 0.9606 

These numbers show that the Inaximum occurs around Ci == 0.25. A more detailed calcula­

tion would show that the maxio1um actually occurs at Ci == 0.27095. Thus, the normalized 

Gaussian 1 s function ¢~F (r, 0.2709) is an optimal fit to the 1 s Slater orbital ¢~,;o (r, 1.00). 

11-12. Compare ¢,~:o (r, 1.00) and ¢i~F (r. 0.27095) graphically by plotting them on the same 

graph. 

11-13. In Problems 11-11 and 11-12, we discussed a one-term Gaussian fit to a Is Slater 

orbital ¢~,:o (r, 1.00). Can we use the result of Problem 11-11 to find the optimal Gaussian 

fit to a I s Slater orbital with a different orbital exponent, ¢~F (r, s)? The answer is "yes." 

To see how, start with the overlap integral of ¢~.:o (r, s) and ¢~F (r, f3): 

N ow let u == S r to get 

Compare this result for S with that in Problem 11-11 to show that fJ == Cis
2 or, in more 

detai led notation, 

Ci (s == s) == Ci (s == 1. 00 ) x S 2 

11-14. Use the result of Problem 11-13 to verify the value of Ci used in Equation 11.5 and 

Figure 11.1. 

11-15. Because of the scaling law developed in Problem 11-13, Gaussian fits are usually made 

with respect to a Slater orbital with s == 1.00 and then the various Gaussian exponents are 

scaled according to Ci(S == s) == Ci(S == 1.00) x S2. Given the fit 

¢T.:O-
JG (r, 1.0000) == 0.4446¢~~F (r, 0.10982) 

verify Equation 11.8. 

+ 0.5353¢~F (r, 0.40578) 

+ 0.1543¢~~F (r, 2.2277) 



Problems 

11-16. The Gaussian function exponents and expansion coefficients for the valence shell or­

bitals of chlorine are as follows: 

d, . I , 
d O'~ . == 0'1 . 0' - 0' 

.SI . iii .HI J.I - Jp 3fJ 

3.18649 -0.25183 1.42657 0.014299 

1.19427 0.061589 0.323572 

0.420377 1.06018 0.743507 

Write the expressions for the Gaussian functions corresponding to the 3s and 3 p atomic 

orbitals of chlorine. Plot the function for the 3s orbital for several values of the expansion 

coefficient for the O'~s term. 

11-17. The input file to a computational quantum chenlistry program must specify the coordi­

nates of the atoms that comprise the molecule. Determine a set of Cartesian coordinates of 

the atoms in the ITIolecule CH
4

. The HCH bond angle is 109.5 and the C-H bond length 

is 109.] pm. (Hint: Use the figure in Problem 10-7.) 

11-18. The input file to a computational quantum chemistry program must specify the coor­

dinates of the atolTIS that comprise the molecule. Determine a set of Cartesian coordinates 

of the atoms in the molecule CH
3 
Cl. The HCH bond angle is 110.00 and the C-H and 

C-Cl bond lengths are 109.6 and 178.1 pm, respectively. (Hint: locate the origin at the 

carbon atoIn.) 

11-19. The calculated vibrational frequencies and bond lengths for three diatomic molecules 

are listed below. 

Calculated values (6-31 G*) 

Molecule Frequency jcm I Rejpm 

4647 

2438 

2763 

73.2 

111 .4 

107.9 

Determine the force constants that correspond to these vibrational frequencies. How do 

these values compare with the data in Table S.l? How do the calculated bond lengths 

compare with the experimental values (also Table 5.1)? Why do you think the bond-length 

calculations show a higher accuracy than the vibrational-frequency calculations? 

11-20. Nornlalize the following Gaussian functions 

') 

3. 1>(r) == xe-(Yr-
') 

b. 1> (r) == x 2 e -(Yr-

11-21. Which hydrogen atomic orbital corresponds to the following normalized Gaussian 

orbital? 

How many radial and angular nodes does the above function have? Is this result what you 

would expect for the corresponding hydrogenic function? 
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11-22. Using Equations 6.62 for the spherical harmonic components of 4>2 1 and 4>2 ,show 
Ix PI' 

that the Slater orbitals for the 2px' 2py, and 2p" orbitals are given by the formulas in 

Exanlple I 1-4. Recall that the 2 P.r and 2 p \' orbitals are given by Equations 6.62. 

11-23. Consider the normalized functions 

Which hydrogen atomic orbital corresponds to the linear combination G I (x, y, z; a) -

G}(x,y,z~a)? 

11-24. What is meant by the phrase '"triple-zeta basis set"? 

11-25. Part of the output of most computational programs is a list of numbers that comprise 

what is called Mulliken Population Analysis. This list assigns a net charge to each atom 

in the molecule. The value of this net charge is the difference between the charge of the 

isolated atoIn, Z, and the calculated charge on the bonded atom, q. Thus if Z - q > 0, 

the atom is assigned a net positive charge and if Z - q < 0, the atom is assigned a net 

negative charge. What would be the sum of the Mulliken Populations for the molecules 

H2CO, CO~-, and NHt? 

11-26. In this problem, we show that the Mulliken Populations (Problem 11-25) can be used to 

calculate the molecular dipole moment. Consider the formaldehyde molecule, H
2
CO. The 

calculated bond lengths for the CO and CH bonds are 121.7 pm and 110.0 pm, respectively, 

and the optimized H-C-H bond angle was found to be 114.5 . Use this information along 
with the Mulliken Population Analysis shown below 

H 
+0.0566 e \ 

0.1879 e 

+0.0747 e C ---0 

+(l.O566 e / 

H 

to calculate the dipole moment of formaldehyde. The experimentally determined values for 

the bond lengths and bond angles are Rco = 120.8 pm, RCH = 111.6 pm and L (HCH) = 
116.5;. What is the value of the dipole moment if you combine the experimental geometry 

and the calculated Mulliken Populations? How do your calculated dipole moments compare 

with the experimental value of 7.8 x 10-30 C·m? 

11-27. The experimentally determined dipole moment of CO is 3.66 X 10-31 C·m, with the 

oxygen atom being positively charged. The Mulliken Populations from Hartree-Fock 

calculations using the STO-3G or the 6-31 G* basis sets predict a dipole moment of 

5.67 x 10-31 C· m and 1.30 x 10-30 C· m, respectively, and pointing in the opposite di­

rection of the experimental results. The experimental and two calculated bond lengths 



Problems 

are 112.8 pm, 114.6 pm, and 111.4 pm, respectively. Why do you think the bond-length 
calculation is significantly more accurate than the dipole-moment calculation? 

11-28. The orbital energies calculated for formaldehyde using STO-3G and 3-21 G basis sets 
are given below. 

STO-3G 3-21G 
Orbital energy / Eh energy / Eh 

I a l 
-20.3127 -20.4856 

2a) -11.1250 -11.2866 

3a) -1.3373 -1.4117 
4a

l 
-0.8079 -0.8661 

1b
2 

-0.6329 -0.6924 
5a

l 
-0.5455 -0.6345 

1b, -0.4431 -0.5234 
2b

2 
-0.3545 -0.4330 

2b
I 

0.2819 0.1486 

6a, 0.6291 0.2718 
3b

2 
0.7346 0.3653 

7a, 0.9126 0.4512 

Determine the ground-state electronic configuration of formaldehyde. The photoelectron 
spectrum of formaldehyde is shown below. 

2.4 2.2 2.0 1.8 1 .6 1 .4 1 .2 1.0 

Ionization energy / MJ .mol- l 

Assign the bands. Which calculated set of energies shows the best agreement with the 
photoelectron spectrum? Why is there such a large energy separation between the 1a

l 
and 

2a I orbitals? Predict the ionization energy and electron affinity of formaldehyde for each 
calculated set of energy levels. How do these compare with the experimental values? 

11-29. The units of dipole moment given by Gaussian 94 are called debyes (D), after the 
Dutch-American chemist, Peter Debye, who was awarded the Nobel Prize for chemistry 
in 1936 for his work on dipole moments. One debye is equal to 10- 18 esu . cm where esu 
(electrostatic units) is a non-SI unit for electric charge. Given that the protonic charge is 
4.803 x 10- IO esu, show that the conversion factor between debyes and C . m (coulomb . 
meters) is 1 D == 3.33 X 10-30 C . m. 
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11-30. Using the geometry and the charges given in Table 11.8, verify the value of the dipole 
moment of water. 

11-31. Using the geometry and the charges given in Table 11.9, verify the value of the dipole 
moment of ammonia. 



MATHCHAPTER 

MATRICES 

Many physical operations such as magnification, rotation, and reflection through a 
plane can be represented mathematically by quantities called matrices. A matrix is 
simply a two-dimensional array that obeys a certain set of rules called matrix algebra. 
Even if matrices are entirely new to you, they are so convenient that learning some of 
their simpler properties is worthwhile. 

Consider the lower of the two vectors shown in Figure F.l. The x and y components 
of the vector are given by XI = r cos a and Y

I 
= r sin a, where r is the length ofr , . Now 

let 's rotate the vector counterclockwise through an angle e, so that X~ = r cos(a + e) 
" 

and Y2 = r sin(a + e) (see Figure Fl). Using trigonometric formulas, we can write 

or 

y 

X 2 = r cos(a + e) = r cos a cos e - r sin a sin e 
Y2 = r sin(a + e) = r cos a sin e + r sin a cos e 

FIGURE F.l 

(F. I) 

~----~~--------------~ x 
An illustration of the rotation of a vector r I 
through an angle e. 441 
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We can display the set of coefficients of XI and YI in the form 

R = (c~se 
SIn e 

- sin e) 
cos e (F.2) 

We have expressed R in the form of a matrix, which is an array of numbers (or functions 
in this case) that obey a certain set of rules, called matrix algebra. We will denote a 
matrix by a sans serif symbol, e.g., A, B, etc. Unlike determinants (MathChapter E), 
matrices do not have to be square arrays . Furthermore, unlike determinants, matrices 
cannot be reduced to a single number. The matrix R in Equation F.2 corresponds to a 
rotation through an angle e. 

The entries in a matrix A are called its matrix elements and are denoted by a, 
IJ 

where, as in the case of determinants, i designates the row and j designates the column. 
Two matrices, A and B, are equal if and only if they are of the same dimension and 
aij = bij for all i and j. In other words, equal matrices are identical. Matrices can be 
added or subtracted only if they have the same number of rows and columns, in which 
case the elements of the resultant matrix are given by a .. + b .. Thus, if 

IJ IJ 

(-3 6 ~) and B = ( 2 
1 ~) A= 

1 0 -6 4 

then 

(-I 7 ~) C=A+B= 
4 -5 

If we write 

(-6 12 !) A+A = 2A = 2 0 

we see that scalar multiplication of a matrix means that each element is multiplied by 
the scalar. Thus, 

(F.3) 

EXAMPLE F-l 
Using the matrices A and B above, form the matrix D = 3A - 2B. 

SOLUTION: 

D = 3 (-~ 6 
4)_2( 2 

I ~) 0 2 -6 4 

= (-~ 18 12) ( 4 2 ~)=(-:; 16 l~ ) 0 6 -12 8 -8 
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One of the most important aspects of matrices is matrix multiplication. For sim­
plicity, we will discuss the multiplication of square matrices first. Consider some linear 

transformations of (XI ' Y I ) into (x2' Yl ): 

represented by the matrix 

Xl = alix i + allYl 

Yl = a l ix i + a 22 Y I 

Now let's transform (x2' Yl ) into (x} ' Y}): 

represented by the matrix 

X } = b ll X2 + b l2Yl 

Y } = b l l X2 + b 22 Yl 

Let the transformation of (x I ' YI ) directly into (x} ' Y3) be given by 

represented by the matrix 

Symbolically, we can write that 

X3 = CIIX I + CI2Y I 

Y3 = C21X I + cnY I 

c= BA 

(F.4) 

(F.S) 

(F.6) 

(F.7) 

(F.8) 

(F.9) 

because C results from transforming from (XI' Y I ) to (x2' Y2) by means of A followed 
by transforming (Xl' Y2) to (X3' Y3) by means of B. Let's find the relation between the 
elements of C and those of A and B. Substitute Equations F.4 into F.6 to obtain 

or 

X3 = bll(alixi + a l2y) + b l/ a 2l x l + a 22 y l ) 

Y3 = b 21 (alix i + a 12 y l ) + b22(a21xl + a 22y l ) 

X} = (blla ll + b1 2a 21)xl + (b ll a l2 + bl 2a l2 )YI 

Y3 = (b2l a ll +bn a 21)x l + (b2i a l l +b22 a 22 )YI 

(F.IO) 
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Thus, we see that 

This result may look complicated, but it has a nice pattern which we will illustrate two 
ways. Mathematically, the ijth element of C is given by the formula 

For example, 

c .. = ""'" b.,a , . 
fJ ~ I~ ~ 

k 

(' I I = Lblk{/kl = blla ll +b12a2 1 
k 

(F.l2) 

as in Equation F.ll. A more pictorial way is to notice that any element in C can be 
obtained by mUltiplying elements in any row in B by the corresponding elements in 
any column in A, adding them, and then placing them in C where the row and column 

intersect. For example, c II is obtained by multiplying the elements of row 1 of B with 
the elements of column I of A, or by the scheme 

-? (b ll 
b21 

-} 

b12 ) (all 
bn a21 

a12 ) = (blla l ! + bl2a2 1 

an . :) 
and ('12 by 

-? (b ll 
b21 

b12 ) (all 
bn an 

-} 

( 12 ) _ ( 
an . 

bll al2 ~ b l2 a22 ) 

EXAMPLE F-2 
Find C = BA if 

1 2 1 -3 0 -1 
B= 3 0 - I and A= 1 4 0 

- I - I 2 1 1 

SOLUTION: 

1 2 1 -3 0 -I 

C= 3 0 - I 1 4 0 
- I - I 2 1 1 1 

-3 + 2 + 1 0+8+1 - I +0+ 1 
-9 + 0 - 1 0+0-1 -3 + 0- 1 

3 - 1+2 0-4+2 1+0+2 

0 9 0 
- 10 -I -4 

4 -2 3 
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EXAMPLE F-3 
The matrix R given by Equation F.2 represents a rotation through the angle e. Show 
that R2 represents a rotation through an angle 2e . 

SOLUTION: 

R2 = (cos e 
sm e 

- sin e ) (cos e 
cose sine 

- sin e) 
cose 

_ (cos2 e - sin2 e -2 sin e cos e ) 
- 2 sin e cos e cos2 e - sin2 e 

Using standard trigonometric identities, we get 

R2 = (cos 2e 
sin 2e 

- sin 2e ) 
cos 2e 

which represents rotation through an angle 2e. 

Matrices do not have to be square to be multiplied together, but either Equation FII 
or the pictorial method illustrated above suggests that the number of columns of B must 
be equal to the number of rows of A. When this is so, A and B are said to be compatible. 
For example, Equations F.4 can be written in matrix form as 

(F13) 

An important aspect of matrix multiplication is that BA does not necessarily 
equal AB. For example, if 

A= (~ ~) and B= G -~) 
then 

AB = (~ I)C 0)=(0 -I) ° ° -\ I ° 
and 

BA= G -~) (~ ~) = (-~ ~) 
and so AB = -BA in this case. If it does happen that AB = BA, then A and B are said 

to commute. 

EXAMPLE F-4 
Do the matrices A and B commute if 

and B = G :) 
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SOLUTION: 

AS = (~ ~) 
and 

SA = (~ ~) 
so they do not commute. 

Another property of matrix multiplication that differs from ordinary scalar multi­
plication is that the equation 

AB =0 

where 0 is the zero matrix (all elements equal to zero) does not imply that A or B 
necessarily is a zero matrix. For example, 

(11)(-1 1)=(00) 
2 2 I -I 0 0 

A linear transformation that leaves (x I ' Y I) unaltered is called the identity transfor­
mation, and the corresponding matrix is called the identity matrix or the unit matrix. All 
the elements of the identity matrix are equal to zero, except those along the diagonal, 
which equal one: 

I o 0 · . . o 
o 1 0 0 

1= o 0 1 · . . o 

000 · . . I 

The elements of 1 are O;j ' the Kronecker delta, which equals one when i = j and zero 
when i -=f j . The unit matrix has the property that 

IA = AI (F.14) 

The unit matrix is an example of a diagonal matrix. The only nonzero elements of 
a diagonal matrix are along its diagonal. Diagonal matrices are necessarily square 
matrices. 

If BA = AB = I, then B is said to be the inverse of A, and is denoted by A - I. Thus, 
A - I has the property that 

(F.IS) 

If A represents some transformation, then A - I undoes that transformation and restores 
the original state. There are recipes for finding the inverse of a matrix, but we won't 
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need them (see Problem F-9, however). Nevertheless, it should be clear on physical 
grounds that the inverse of R in Equation F.2 is 

sin e ) 
cose 

(F.16) 

which is obtained from R by replacing e by -e. In other words, if R(e) represents a 
rotation through an angle e, then R- I = R(-e) and represents the reverse rotation. It 
is easy to show that Rand R- 1 satsify Equation F.15. Using Equations F.2 and F.16, we 
have 

and 

sin e ) (cos e 
cos e sin e 

- sin e) 
cose 

= (cos
2 e +0 sin

2 eo) 
cos2 e + sin2 e 

= (~ ~) 

RR- I = (c?se - sine) (c~se sine) 
SIn e cos e - SIn e cos e 

= (cos
2 e +0 sin

2 eo) 
cos2 e + sin2 e 

= (1 0) ° 1 

We can associate a determinant with a square matrix by writing 

det A = IAI = 

all 

a
21 

a 
/I I 

a l n 

a 
2/1 

a 
1111 

Thus, the determinant of R is 

cose 
sin e 

- sine 

cos e = cos2 e + sin2 e = 1 

and det R- 1 = 1 also. If det A = 0, then A is said to be a singular matrix. Singular 
matrices do not have inverses. 
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A quantity that arises in group theory, which we will study in the next chapter, is 
the sum of the diagonal elements of a matrix , called the trace of the matrix. Thus, the 
trace of the matrix 

1/ 2 0 1 
B = 0 2 1 

I I 1/ 2 

is 3, which we write as Tr B = 3. 

Problems 

F-1. Given the two matrices 

A= - I 

o 

o - I 

2 0 
I I 

and B= 

form the matrices C = 2A - 3B and 0 = 6B - A. 

F-2. Given the three matrices 

B = ~ (0 -i ) 
2 i 0 

- I I 0 

302 

I 

C = ~ (1 0) 
2 0 -I 

show that A2 + B2 + C2 = i l. where I is a unit matri x. Also show that 

AB - BA = iC 

BC-CB=iA 

CA-AC=iB 

F-3. Given the matrices 

0 I 0 0 
. 

0 I 0 
I I 

- / 
. 

C = 0 A=- I 0 B=- / 0 -/ 0 
J2 0 I 0 J2 0 I 0 0 0 

show that 

AB - BA = iC 

BC - CB = iA 

CA - AC=iB 

0 
0 

-1 



Problems 

and 

where I is a unit matrix . 

F-4. Do you see any similarity between the results of Problems F-2 and F-3 and the commu­
tation relations involving the components of angular momentum? 

F-S. A three-dimensional rotation about the z axis can be represented by the matrix 

cose - sin e 0 
R= sin e cose 0 

0 0 

Show that 

det R = IRI = I 

Also show that 

cose sin e 0 
R- 1 = R(-e) = - sine cose 0 

0 0 I 

F-6. The transpose of a matrix A, which we denote by A, is formed by replacing the first row 
of A by its first column, its second row by its second column, etc. Show that this procedure 
is equivalent to the relation a .. = a .. . Show that the transpose of the matrix R given in 

IJ j f 

Problem F-5 is 

cos e sin e 0 
R = -sine cose 0 

001 

Note that R = R- 1
• When R = R- 1

, the matrix R is said to be orlhogonal. 

F-7. Given the matrices 

a = (I 
v 0 

( 

I 
, 2 a -
v - J{ 

show that 

C " a = a v J v Cp =a~ . v 

C " 
l a v = a . v 

Calculate the determinant associated with each matrix. Calculate the trace of each matrix. 
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F-B. Which of the matrices in Problem F-7 are orthogonal (see Problem F-6)? 

F-9. The inverse of a matrix A can be found by using the following procedure: 

a. Replace each element of A by its cofactor in the corresponding determinant (see 
MathChapter E for a definition of a cofactor). 

b. Take the transpose of the matrix obtained in step 1. 

c. Divide each element of the matrix obtained in Step 2 by the determinant of A. 

For example, if 

then det A = -2 and 

Show that AA - I = A - I A = I. Use the above procedure to find the inverse of 

A = (~ ~) 
.Ji 

o 2 3 
and A = I 1 I 

201 

F-l0. Recall that a singular matrix is one whose determinant is equal to zero. Referring to the 
procedure in Problem F-9, do you see why a singular matrix has no inverse? 

F-ll. Consider the simultaneous algebraic equations 

x+y=3 

4x-3y=5 

Show that this pair of equations can be written in the matrix form 

Ax=c 

where 

Now multiply Equation 1 from the left by A- I to obtain 

Now show that 

0) 

(2) 



Problems 

and that 

or that x = 2 and y = I . Do you see how this procedure generalizes to any number of 
simultaneous equations? 

F-12. Solve the following simultaneous algebraic equations by the matrix Inverse method 
developed in Problem F-Il : 

First show that 

and evaluate x = A- Ie. 

x+y-z=1 

2x - 2y + z = 6 

x + 3z = 0 

I A- I =_ 
13 

6 3 I 
5 -4 3 

-2 -I 4 
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This photograph shows the team of researchers that discovered buckminsterfullerene (C
60

) , 

one of the most symmetric molecules known. Buckminsterfullerene is so symmetric that of its 
174 normal modes of vibration, only four are infrared active. Kneeling in the photo from left 
to right are Sean O 'Brien, Rick Smalley, Harry Kroto, and Jim Heath; Bob Curl is standing 
in the back. Smalley, Kroto, and Curl were professors of chemistry and O ' Brien and Heath 
were graduate students at the time (1985). Smalley, Kroto, and Curl shared the Nobel Prize in 
chemistry in 1996 "for their discovery of fullerenes." Richard E. Smalley was born in Akron, 
Ohio, on June 6, 1943, and received hi s Ph.D. in chemistry from Princeton University in 1973. 
In 1976, he moved to Rice University, where he remains today. His current research interests 
lie in nanotechnology. Robert F. Curl, Jr. was born in Alice, Texas, on August 23, 1933, and 
received his Ph.D. in chemistry from the University of California at Berkeley in 1957. He 
joined the faculty at Rice University in 1958, where he remains today. Curl 's research interests 
are in laser spectroscopy and chemical kinetics. Harold Kroto was born in Wisbech, England, 
on October 7. 1939, and received his Ph.D. in chemistry from the University of Sheffield in 
1964. After postdoctoral research in Canada and the United States, he returned to England to 
the University of Sussex in Brighton, where he remains today. Kroto 's research involves the 
spectroscopy of molecules in interstellar space. 



CHAPTER 

Group Theory: 
The Exploitation of Symmetry 

Group theory is perhaps the best example of a subject developed in pure mathemat­
ics and subsequently found to have wide application in the physical sciences. Many 
molecules have a certain degree of symmetry: methane is a tetrahedral molecule; ben­
zene is hexagonal; sulfur hexafluoride and many inorganic ions are octahedral; and so 
on. By using the properties of groups, we can take advantage of molecular symmetry 
in a systematic way to predict the properties of molecules and to simplify molecular 
calculations. Group theory can be used to predict whether or not a molecule has a 
dipole moment, to derive selection rules for spectroscopic transitions, to determine 
which atomic orbitals to use to construct hybrid orbitals, to predict which molecular 
vibrations lead to infrared spectra, to predict which elements are necessarily equal to 
zero in secular determinants, to label and designate molecular orbitals, and many other 
useful things. In this chapter, we will develop some of the ideas of group theory and 
show how group theory can be used to simplify and organize molecular calculations. 
In the next chapter, we will apply group theory to molecular vibrations and infrared 
spectroscopy. 

12-1. The Exploitation of the Symmetry of a Molecule Can Be Used 
to Significantly Simplify Numerical Calculations 

In Chapter 10, we applied Huckel molecular-orbital theory to benzene. We used the 
2P7 orbitals on each carbon atom as our atomic orbitals and found the 6 x 6 secular 

"-

determinant 

x 1 0 0 0 1 
1 x 1 0 0 0 
0 1 x 1 0 0 

==0 (12.1 ) 
0 0 1 1 0 x 

0 0 0 1 x 1 
1 0 0 0 1 x 453 
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which gives 

( 12.2) 

when expanded. This resulting secular equation is a sixth-order equation whose six 

roots are x == ± 1, ± 1, and ±2. Now, if instead of using just the 2 p z orbital on each 
carbon atom to evaluate the secular determinant, we use the following six molecular 

orbitals that are linear combinations of 2 p z orbitals, where we denote the 2 p z orbital 
centered on the j th carbon atom by 0/., 

} 

1 
¢I = ,J6 (0/1 + 0/2 + 0/3 + 0/4 + 0/5 + 0/6) 

1 
¢2 = ,J6(0/1 -0/2 + 0/3 -0/4 + 0/5 -0/6) 

1 
¢3 = ,JTI (20/1 + 0/2 - 0/3 - 20/4 - 0/5 + 0/6) 

1 
¢4 = ,JTI(0/1 + 20/2 + 0/3 -0/4 - 20/5 -0/6) 

12 

1 
¢5 = ,JTI(20/1 - 0/2 -0/3 + 20/4 - 0/5 -0/6) 

1 
¢6 = ,JTI(-0/1 + 20/2 -0/3 -0/4 + 20/5 -0/6) 

12 

then the secular determinant comes out to be (Problem 12-2) 

x+2 o 

o x-2 

o o 

o o 

o o 

o o 

o o 

o o 

x+l 
x+l 

2 

x+l 
x+l 

2 

o o 

o o 

When we evaluate this determinant, we get 

(x + 2)(x - 2) 

x+l 

x+l 
2 

x+l 
2 

x+l 

o 

o 

o 

o 

x-I 

I-x 
2 

x-I 

I-x 
2 

o 

o 

o 

o 

I-x 
2 

x-I 

I-x 
2 

x-I 

(12.3) 

==0 (12.4 ) 

==0 (12.5) 



12-2. The Symmetry of Molecules Can Be Described by a Set of Symmetry Elements 

Notice that the block diagonal form of the determinant in Equation 12.4 expands into 
a product of smaller determinants. Equation 12.5 gives 

9 ~, 2 
-(x + 2)(x - 2)(x + 1)-(x - 1) == 0 
16 

( 12.6) 

whose six roots are ± 1, ± 1, and ±2, which are identical to those found from Equa­
tion 12.2. 

In the specific case of benzene, we see that by choosing the set of orbitals given by 
Equations 12.3, we obtain a secular determinant that is in a block diagonal form, and 
instead of having to find the six roots of a sixth-degree polynomial (Equation 12.2), 
we end up with Equation 12.6. Using the "judicious" choice of linear combinations 
given by Equations 12.3, we reduced the complexity of the resulting secular equa­
tion enormously. The obvious question is "Where do these linear combinations come 
from 7", or "Are we able to generate them in a routine manner?". The hexagonal planar 
symmetry of the benzene molecule happens to lead in a natural way to Equations 12.3, 
and by taking advantage of this symmetry we will be able to construct these so-called 
symmetry orbitals in a straightforward manner. Furthermore, when we learn how to 
do this, we will also be able to deduce all the zero matrix elements in Equation 12.4 
without even evaluating integrals such as 

or 

We will be able to identify which matrix elements must necessarily equal zero because 
of the symmetry of the molecule. We have chosen benzene as a specific example, 
but the result is general. By using the symmetry orbitals as dictated by the molecular 
symmetry, the resulting secular determinant will appear in a block diagonal form, thus 
reducing the amount of numerical labor significantly. 

The procedure we will use is based upon group theory. Its applicability lies in its 
relation to the symmetry properties of a molecule. To develop this relation, we must 
first discuss what we mean by the symmetry properties of molecules. Then we will 
relate these properties to what in mathematics is called a group. 

12-2. The Symmetry of Molecules Can Be Described by a Set of 
Symmetry Elements 

The symmetry of a molecule can be described in terms of its sYlnmetry elements. For 
example, a water molecule has the symmetry elements shown in Figure 12.1. The 
element C2 is an axis of symmetry and a v and a~ are planes of symmetry, or mirror 
planes. Because the hydrogen atoms are indistinguishable, a rotation about the C

2 
axis 

through 1800 or a reflection through the a v plane leaves the molecule indistinguishable 
from its original configuration, or essentially unchanged. Furthermore, because the 
molecule is planar, a reflection through the a ~ plane leaves the molecule essentially 
unchanged. The C2 axis is called a two-fold axis. The subscript 2 designates a rotation 
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H 

I 

I" 

I 

I 

c 

)' 

a ' 
l' 

FIGURE 12.1 

The C2, 0-", and 0-,: symmetry elements of a water molecule. The 
molecule lies in the mirror plane 0- ' and 0- is perpendicular to 

1/ II 

the 0-,: plane. The C, axis lies along the intersection of the 0-
~ II 

and 0-; planes. 

by 3600 / 2 ; or two such rotations brings us back to the original configuration. A CII axis 
is called an n-fold rotation axis of symmetry; a rotation by 3600

/ n leaves that molecule 
essentially unchanged. 

There are only five types of symmetry elements we must consider, and these are 
listed in Table 12.1. The identi ty element, which may seem rather trivial, is included 
to make the connection with group theory later on. Of course, all molecules have an 
identity element. Figure 12.1 illustrates a two-fold axis and two planes of symmetry for 
a H,O molecule. Sulfur hexafluoride and xenon tetrafluoride (Figure 12.2) are examples 

• 

of molecules with a center of symmetry, i, and allene and methane are examples of 
molecules with a four-fold rotation-reflection axis, 54 (Figure 12.3). 

Symmetry e lements have symmeli}' operations associated with them. The sym­
metry operation associated with an n-fold axis, CII' is a rotation by 3600 / n and that 

TAB L E 12.1 

The five symmetry elements and their associated operators. 

Symmetry elements Symmetry operations 

Symbol Descri ption Symbol Description 

, 
E Identity E No change 

, 
C n-Fold axis of symmetry C Rotation about the axis by 3600

/ n 
/I /I 

Plane of symmetry 
, 

Reflection through the plane 0- 0-
. 

Center of symmetry 
, 

Reflection through the center I I 
, 

S" /1-Fold rotation-reflection S" Rotation about the axis by 3600
/ n 

axis of symmetry, also followed by reflection through 

called an improper a plane perpendicular to 

rotation the axis 



XeF4 

FIe U R E 12.2 
Sulfur hexafluoride, an octahedral molecule, and xenon tetrafluoride, a square planar molecule, 
are examples of molecules with a center of symmetry. 

C~, 4 

(a) 

FIe U R E 12.3 

i---:..U0'-y'·e 
--··-e-- __ 

, 
'" , , 
, , 

( b ) 

--

An illustration of the four-fold rotation-reflection axis, S4 ' in (a) allene and (b) methane. We 
see that the S4 axis is also a C2 axis for both molecules. 

associated with a plane of symmetry is a reflection through that plane. Note that we have 
distinguished between a symmetry element and a symmetry operation in Table 12.1 by 
placing a carat over the symbol for the operation as we do for operators. A symmetry 
element may have more than one symmetry operation associated with it. For example, 
a three-fold axis implies a counterclockwise rotation by 120°, and a counterclockwise 
rotation by 240°, which we write as C

3 
and C

3 
C

3 
= C~ , respectively. Similarly, a four­

fold axis implies rotations by 90°,180°, and 270°, which we write as C
4

' C;, and C;, 
respectively. 
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EXAMPLE 12-1 

Illustrate the various symmetry elements for ammonia and ethene. 

SOL UTI 0 N: The symmetry elements are illustrated in Figure 12.4. 

3 

S-P , 

" 

a) 

FIG U R E 12.4 

a ' 
t ' 

(J " 
l' 

t ,(:) 
-----

( b) 

( v) 2 . 

(a) The symmetry elements of ammonia. Each mirror plane contains an N-H bond and bisects 
the opposite H- N- H bond angle. The three planes are at angles of 120' to each other. The C

3 
axis lies along the intersection of the three mirror planes. Of course, there is also an identity 
element. (b) The symmetry elements of ethene. There are three mutually perpendicular two-fold 
axes [C, (x), Co (y) , and C, (z)], a center of inversion (i), and three mutually perpendicular . - -
mirror planes [0" (xy), O"(yz), and O"(x z)] , and, of course, the identity element. 

~--------------------------------------~ 
The set of symmetry operations for a given molecule constitutes a point group. For 

example, a water molecule has the symmetry elements E, e2, au' and a:, (Figure 12.1). 
The point group consisting of these symmetry elements is designated Co . We say that _v 

ammonia belongs to the Cov point group, which consists of E, e3, and three planes 
of symmetry (Figure 12.4a). Only albout 30 point groups are of interest to chemists, 
and in this chapter, we will discuss only a few of them (listed in Table 12.2). Using 

the examples of the molecules described by each point group helps you visualize its 
symmetry elements and their conoesponding symmetry operations. 

Table 12.2 introduces some notation that needs explaining. First, if a molecule 
contains several symmetry axes, then the one with the largest value of n (if there is 
such an axis) is called the principal axis. Thus, the e

6 
axis in benzene is the principal 

axis. If a plane of symmetry is parallel to a unique axis or to a principal axis, it 
is designated by au (for vertical). If it is perpendicular, it is designated by a" (for 
horizontal). If a plane of symmetry bisects the angle between two-fold axes thatt are 
perpendicular to a principal axis, it is designated by ad (for dihedral). Figure 12.5 
shows the dihedral planes in a benzene molecule. A ad plane is just a special type of a 
au plane. A point group designated by C'I!' has an n-fold axis and n au mirror planes. A 



TAB L E 12.2 
Examples of common point groups of interest to chemists. The number in front of a symmetry 
element is the number of times such a symmetry element occurs. 

C' 
2 

Point group 

C 2v 

C 3v 

C2h 

D2h 

D6h 

C' 
2 

Symmetry elements 

E, C2, 2av 

E, C
3

, 3a
v 

E, C
2

, i, ah 

E, 3C
2 

(mutually perpendicular), 

i, 3a
v 

(mutually perpendicular) 

E, C
3

, 3C
2 

(perpendicular to the C
3 

axis), 

ah , S3' 3av 

E, C
4

, 4C
2 

(perpendicular to the C
4 

axis), 

i, S 4' all' 2a v' 2(J d 

E, C6 , 3C2 , 3C~, 

i, S 6' ah , 3 a v' 3 ad 

E, S4' 3C2 , 2(Jd 

E, 4C
3

, 3C2, 3S
4

, 6a
d 

C' 2 

FIG U R E 12.5 

Molecular examples 

H
2
0, CH

2
Cl

2
, C

6
HsCI 

NH
3

, CH
3
CI 

lrans-HCIC=CCIH 

C
2
H

4 
(ethene) 

S03' BF3 

H
2
C=C=CH

2 
(allene) 

CH
4 

An illustration of the dihedral planes of symmetry (ad) in 
a benzene molecule. 

point group designated by Cnh has an n-fold axis and a mirror plane perpendicular to 
the n-fold axis. Point groups that have an n-fold axis and n two-fold axes perpendicular 
to it are desginated by D n' If there is also a mirror plane perpendicular to the n -fold axis, 
then the point group is designated by D

nh
, a common point group for planar molecules. 

A point group that has the elements of D nand n dihedral mirror planes is designated 
by Dndo Allene (Figure 12.3) is a good example of a D 2d molecule. The last point group 
listed in Table 12.2 is T d' which stands for tetrahedral. Methane is the prototypical 
tetrahedral molecule. 
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12-3. The Syrnmetry Operations of a Molecule Form a Group 

A group is a set of entities that satisfy certain requirements. Specifically, the set 
A, B, C, ... is said to form a group if 

1. there is a rule for combining any t\VO members of the group, and moreover, the 
result is a member of the group. This combining rule is commonly called 
multiplication and is denoted by A B, etc. The product A B must be one of the 
members of the group, and so we say that a group must be closed under 
multiplication. 

2. the"multiplication" rule must be associative; that is, 

A(BC) = (AB)C 

In other words, whether we combine Band C and then multiply by A or combine 
A and B and then multiply the result into C makes no difference. 

3. the set of entities contains an identity element, E. Whatever the combination rule, 
there must be an element such that 

EA = AE, EB = BE, and so on 

4. for every entity in the group there is an inverse that is also a member of the group. 
We will denote the inverse of A by A -I, the inverse of B by B- 1

, and so on. An 
inverse has the property that 

AA -I = A I A = E, BB I = B- 1 B = E, and so on 

This may seem like a lot of abstract mathematics at this point (which it is), but we will 
now show that the set of symmetry operations of a molecule forms a group. 

Let's use the water molecule as an example. The symmetry elements of H
2
0 are E, 

C2 , (Tv' and a~ (Figure 12.1), and each of these symmetry elements has one symmetry 
operation associated with it. Thus, the C') I point group has four symmetry operations. 

~l, 

The number of symmetry operations in a group is called the order of the group, and is 
denoted by h. 

EXAMPLE 12-2 
Determine the order of the D3h point group. 

SOL UTI 0 N: According to Table 12.2, there are 10 symmetry elements in D
3h

. 
A Aj 

However, C
3 

and S3 each have two associated symmetry operations (C
3 

and C3, and 
""2 . 
S3 and 53)' so the order of D3h IS 12. 

The multiplication rule of the group is the sequential application of the corre­
sponding symmetry operations. To see the effect of the various symmetry operations, 
we again consider the water molecule. We define a coordinate system whose origin is 



z 

I)-J----~ y 

7'\ 
x H H 

(a) 

FIG U R E 12.6 

a­
v 

af _____ ~--~ 
v Y 

x 

(b) 

(a) An illustration of the coordinate axes attached to the oxygen atom in a water molecule. The 
y axis lies in the plane of the molecule (the (J~ plane), the x axis is perpendicular to that plane, 
and the z axis bisects the H-O-H bond angle. (b) A view looking down the z axis, showing the 
arbitrary unit vector, U 1 • 

at the oxygen atom (Figure 12.6). We now consider how an arbitrary vector 01 that 
points away from this origin is transformed by the symmetry operators of the C

2v 
point 

group. When the various symmetry operations are applied, the symmetry elements and 
the coordinate axes remain fixed in space, and only the vector is transformed. Because 
the z axis lies along both the C

2 
axis and the intersection of the mirror planes, we will 

A 

look down this axis to see how the vector is transformed. For example, if we apply C
2 

to °1, we obtain 02' Applying av to 02 gives 03· 

f'.. 

a 
v 

---~--_JIIo_ y ------+----~ y ---~--_JIIo_ } 

x x x 

This final result, however, is what we get if we apply a~ directly to the original vector, °1 , 

----ir------___... Y 

x 

" Thus, we see that av C2 
= a~. 

f'.. f a 
v 

---~---~y 

x 
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EXAMPLE 12-3 
A 

Evaluate the products o-~o-v and &:, C
2 

for a water molecule. 

SOL UTI 0 N: Once again, we look down the z axis in Figure 12.6 and write 

----+---~y 

x 

/\ 

(J 
V 

----+--------.. Y 

x 

A 

/\ ! 
(J 

V 
----+---~ )' 

x 

which is equivalent to applying C2 directly to the original vector u
1 

. Thus, we find that 
A 

O-~&v = C2 · Similarly, 

/\ 

----+-------.. y 

x .X 

/\ , 
(J 

V 
----+--------.. Y 

x 

A 

which is equivalent to applying o-v directly to the original vector u 1• Thus a-l~ C2 = o-v' 

We can summarize these results in a group multiplication table (Table 12.3), in 
which each entry is obtained by applying an operation in the top row followed by an 

A 

operation from the first column. Thus, the result of a~ C
2 

is equivalent to the operation 
" 

that occurs at the intersection of the column headed by C
2 

and the row headed by a~, 
namely av ' There are several things to notice in Table 12.3. The multiplication is closed 
because the result of applying two operations sequentially is always equivalent to one 
of the operations. Each operation appears just once in each row and column. Every 
operation has an inverse because the table shows us that 

" " " A 

EE==E, aa ==E 
v 11 ' 

Thus, each operation in this case happens to be its own inverse. An inverse has the 
effect of undoing the operation. 



TAB l E 12.3 
The group multiplication table of the C2v point group. 

A 

Second operation E 

"- A 

E E 
A A 

C2 C2 
"- "-a a 

v v 
"- ! A! 
a v a v 

First operation 

" a 
v 

A 

a 
v 

A 

a 
v 

"- ! 

au 
A 

E 
A 

C2 

A ! 
av 

" a v 
A 

C2 
" E 

The multiplication (successive application of each operation) is also associative, 

and we can refer to the group multiplication table to show this. Let's see if 

A 

The product in the parentheses on the left gives C
2

, and the one on the right gives a~. 
Thus, we have 

"'-

but we find that both of these equal E. If we continue this search, we find that our 
multiplication rule is associative for all cases. Thus, the four symmetry operations of 

C
2v 

satisfy the conditions of being a group and are collectively referred to as the point 

group C2v ' 

The other point group we will consider is C
3v

' and we will use NH3 as the example 
of a molecule whose symmetry properties are described by the C

3v 
point group. In 

this case, we must carefully distinguish between a symmetry element and a symmetry 
operation. In principle, either a clockwise or a counterclockwise rotation by 1200 

about the C
3 

symmetry axis leaves the molecule unchanged. By convention, however, 
only counterclockwise rotations are considered. Thus, the C

3 
symmetry axis has two 

symmetry operations associated with it, a counterclockwise rotation by 1200 and one 
by 2400

, which we write as C
3 

and C;, respectively. The geometry in this case is a 

little more complicated than for H
2
0 because of the 1200 angles. To see the effect of 

the various group operations, we will set up a coordinate system whose origin is at 

the nitrogen atom and then follow the effect of the various symmetry operations on an 

arbitrary vector that points away from the origin. As before, the symmetry elements 

and the coordinate axes remain fixed in space, and the vector is transformed. Because 

the z-axis lies along C3 and the intersection of the mirror planes, it is easier to look 

down the C
3 

axis as we looked down the C
2 

axis for water. Let's determine the result 
"'-

of C3a~. 
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a a U 3 
a 

v v v 

a" a" a f
' v v v 

1\ , 1\ 

a C
3 v 

y .. v .. y 
"" 

"2 
a' a' a' 

'(1 v v 

"1 
x x x 

The end result here is equivalent to a reflection of u 1 through a~!, and so we see that 
A 

C 
A! Af! 

"av == a i • _1 L 

EXAMPLE 12-4 
Evaluate &::' &: for the C

3v 
point group. 

SOLUTION: 

a a a "3 v v v 

a" a" a'! 
v v v 

1\ , 
1\ " a a 

v v 
y y )to y 

"2 , , at a a v v v 

"I 
X X X 

A 

which is equivalent to applying C
3 

directly to u
1

• 

The complete multiplication table for the C 3V point group is given in Table 12.4. 

12-4. Symmetry Operations Can Be Represented by Matrices 

Let's consider H
2
0, which we have shown belongs to the C

2l' 
point group. We once 

again construct a set of Cartesian coordinates centered on the oxygen atom (Figure 12.6) 
and follow the effect of each symmetry operation on an arbitrary vector, u, where 

u == u xi + u yj + U,' k. If the vector is rotated by 1800 about the z -axis, we have 

A A 

C,.,u == -u , ... x x 
C U ==-u 

2 " " , 
and 



TAB L E 12.4 
The group multiplication table for the C

3u 
point group. 

First operation 

A A A') 

Second operation E C] C~ 
A A , AI! a au a v 3 v 

A " A A2 

E E C] " A, AI! C] a au av v 
A A "2 A 

A 

C] C
3 

E " , AI! C3 a v av a 
u 

"2 A2 A " 
E C

3 

AI! A "- , C3 C3 au a au u 
" A2 

A 
A A "I! A , 

E C3 a a au au C3 v v 
A "- A") A, A , A AI! C

3 
E C~ a v a v a a v v 3 

A") " A 
AI! AI! A, A C'" C

3 
E av av av a 

v 3 

We can express this result as a matrix equation by writing 

u u -1 0 0 u 
x x x 

"-

C2 U ==c u 0 -1 0 U y 2 Y Y 

U U 0 0 1 u 
7 Z '7 ". .... 

The above matrix 

-1 0 0 
C -2- 0 -1 0 

0 0 1 

"-

represents the operation C
2

• We will denote a matrix that represents an operator by its 
corresponding sans serif symbol, without the caret. Similarly, av changes u y to -uy 
and a ~ changes u to - u ,so the reflection operations can be represented by 

x x 

1 0 0 -1 0 0 
a == 0 -1 0 and a' == 0 1 0 v v 

o 0 1 

The identity operation is represented by a unit matrix 

100 
E == 0 1 0 

001 

001 

We will now show that these four matrices mUltiply in the same manner as the C
2v 

group multiplication table in Table 12.3. For example, 

-1 0 0 1 0 0 -1 0 0 

C a == 0 -1 0 0 -1 0 0 1 0 
, 

==a 2 v v 

0 0 1 0 0 1 0 0 1 
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EXAMPLE 12-5 
Show that (J (J~ = C;' v _ 

Chapter 12 / Group Theory: The Exploitation of Symmetry 

SOL UTI 0 N: Using the matrix representations for (Jv and (J~, we have 

1 0 0 
(J (J' = 0 -1 0 v v 

o 0 1 

-1 0 0 
010 
001 

-1 0 0 
o -1 0 
o 0 1 

=C 2 

A set of matrices that multiply together in the same manner as a group multipli­
cation table is said to be a representation of that group. Thus, the above four matrices 
form a representation for the C7 point group. In particular, it is said to be a three-_v 

dimensional representation because it consists of 3 x 3 matrices. This is not the only 
representation, however. Consider the set of 1 x 1 matrices 

E == (1), c, == (1), and a~ == (1) 

Certainly, these four matrices multiply in accord with the group mUltiplication table 
given in Table 12.3. For example, C2av == a~, ava~ == C2 , etc., and so the above set 
of 1 x 1 matrices also forms a representation for the C; point group. This one-_v 

dimensional representation may seem trivial at this point, but it turns out to be one of 
the most important representations of any point group. Representations do not have to 
be diagonal matrices. For example, the 2 x 2 matrices 

form a (two-dimensional) representation that consists of nondiagonal matrices. Show­
ing that these four matrices multiply in accord with Table 12.3 is an easy exercise. For 
example, 

-~) (~ ~) = (-~ -1) o == a~ 

You might ask how many representations there are, and the answer is an infinite 
number. A few of these, however, are special in the sense that all other representations 
can be expressed in terms of them. These special representations are called irreducible 
representations, and all others are called reducible. There are recipes to determine the 
irreducible representations for any point group, but fortunately this process has already 
been done for all the point groups. 

There are four irreducible representations of the C
2v 

point group, all one-dimen­
sional. One-dimensional irreducible representations are designated by either A or B. 

If they are symmetric under a rotation about the principal axis, they are designated 
by A; if they are antisymmetric, they are designated by B. Note that in Table 12.5 the 

A 

A irreducible representations have a + 1 under C2 , and the B's have a -1. Numerical 
subscripts are used to distinguish irreducible representations of a similar type. The 



TABLE 12.5 
The irreducible representations of the C J 1 point 

_L 

group. 

A A 

E C2 
A A ! 
(5 (5v v 

At ( 1) (1) (1) (1) 

A2 (1) (1) ( -1) ( -1) 

B\ (1) (-1) (1) ( -1) 

B2 (1) (-1) ( -1) (1) 

totally symmetric representation is always designated by A,. The four irreducible 
representations of C2v are given in Table 12.5. Note that each one multiplies in accord 
with the group multiplication table. All point groups have a totally symmetric one­
dimensional irreducible representation like A 1 in Table 12.5. 

There is an important relation between the dimensions of the irreducible represen­
tations and the order of the point group. Recall that the order is the number of symmetry 
operations in the group. If we let the dimension of the jth irreducible representation 
be d. and the order of the group be h, then 

} 

(12.7) 

where N is the total number of irreducible representations. Because all point groups 
have a totally symmetric irreducible representation, A" d, always equals one in Equa­
tion 12.7. Therefore, the only solution to Equation 12.7 with d

1 
== 1 and h == 4 is 

d 1 == d2 == d3 == d4 == 1, so the C 2v point group must have four one-dimensional irre­
ducible representations. 

EXAMPLE 12-6 
Use Equation 12.7 to determine the possible number and dimensions of the irreducible 
representations of the C

3v 
point group. 

SOL UTI 0 N: There are six symmetry operations associated with C
3v

' and so Equa­
tion 12.7 reads (with d\ == 1) 

There are only two ways to satisfy this relation. There are either six one-dimensional 
irreducible representations (1 2 + 12 + 12 + 12 + 12 + ] 2 == 6) or two one-dimensional 
and one two-dimensional irreducible representations (] 2 + ] 2 + 22 == 6). We shall see 

that the C
3v 

point group is characterized by the latter. 
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12-5. The C3v Point Group Has a Two-Dimensional 
Irreducible Representation 

The irreducible representations of the C3v point group are given in Table 12.6. Note how 
the number and dimensions of these irreducible representations satisfy Equation 12.7. 
Note also that C3v has a totally symmetric irreducible representation A l' which can 
be deduced by applying the six operations of C3v to the z component of the vector in 
Figure 12.7. 

EXAMPLE '12-7 
Use the irreducible representation labelled E in Table 12.6 to show that a;'a;" == C~, 
in accord with the group multiplication table of the C:3u point group. 

SO L U TI 0 N: We have 

v; ) (-l -y; ) == ( -1 
I J3) ~ -- - --
2 2 2 2 

v1J) 2 _ C2 
I - :3 

2 

Two-dimensional irreducible representations are designated by the letter E (not 
to be confused with the identity element E). The two-dimensional irreducible rep­
resentations in Table 12.6 can be obtained by applying the symmetry operations 
to an arbitrary unit vector, u l' as shown in Figure 12.7. According to Figure 12.7, 

"'-

u l == ulxi + uhJ == (cosa)i + (sina)j. Therefore, if we apply C3 to up we get a new 
vector u

2 

"'-

u2 == C3U I == cos(120° + a)i + sin(120° + a)j 

1 ~ . 
-- cosa - -- Sina i + 

2 2 
~ 1.. 
- cos ex - - SIn a J 
2 2 

1 ~ •. + --u - --u 2 Ix 2 I." 

~ 1 . 
-u - -u J 2 Ix 2 1.1' 

TAB L E 12.6 
The irreducible representations of the C

3v 
point group. 

" " "') " E C
3 

C~ " ! "I! a au a v 3 u 

Al (1) (1) ( 1 ) (1) (1) (1) 

A') (1) (1) (1) ( -1) ( -1) ( -1) 

E G ~) () ~f) (~~ ~) G -~) () f) ( -~ -t) y---
2 



or 

a 
v 

af! 
v 

~------JIIoo. Y 

x 

a' 
v 

Fie U R E 12.7 
A view looking down the z axis of a set of coordinate axes 
centered on the nitrogen atom in NH

3
, a C

3v 
molecule. The 

x-z plane lies in the mirror plane (Jv (see Figure 12.4). 

1 J3 
u == --u - --u 

2x 2 Ix 2 ly 

J3 1 
u == -u --u 

2y 2 Ix 2 ly 

or in matrix form 

" Thus, the matrix representation of C
3 

is 

C3 
--

1 
2 

J3 
2 

I --
2 

J3 -
2 

--
2 

I 
2 

J3 --
2 

I --
2 

in agreement with Table 12.6. Furthermore, note that C
3
C

3 
== C; in Table 12.6. Note 

also that C3 is given by Equation F.2 if we let e == 1200
• 

EXAMPLE 12-8 
Deduce the 2 x 2 matrix corresponding to &;" in Table 12.6. 

5 0 L UTI 0 N: The geometry is shown in Figure 12.8. We write u, as 

U, == u1xi + ul)j == (cosa)i + (sina)j 

Figure 12.8 shows that a reflection through a;" sends a to 240° - a, so u
1 

becomes the 
vector u

2 
where 

U 2 == u
2x

i + u
2
,j == [cos(240° - a)]i + [sin(240° - a)]j 

( 1 y'3.) . ( y'3 1.) . == - 2 cos a - 2 SIn a I + - 2 cos a + 2 SIn a J 
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or 

1 ~ 
u = --u --u 

2x 2 Lx 2 iy 

~ 1 
u = --u +-u 

2y 2 Ix 2 lr 

or in matrix form 

in agreement with Table 12.6. 

cr cr v v 

cr" cr" 

x 

FIGURE 12.8 

v 

cr' 
v 

y 

/'.. " cr 
V .. 

x 

V 

cr' 
v 

The result of a reflection of the unit vector u
l 

in Figure 12.7 through the mirror plane 0-:". 

y 

Notice that the reason the E irreducible representation is two-dimensional is that 
the U

x 
and U y transform together so that the result of a given operation must be written 

as a linear combination of U
x 

and u y ' The components U
x 

and u
y 

are said to form a 
basis for E or to belong to E. The basis for A 1 is simply Uz. because Uz is unaffected by 
each operation of the group. Notice that the number of bases is equal to the dimension 
of the irreducible representation. (Although it is not obvious, the basis for A2 is the set 
of vectors that represents a rotation of the molecule about the z-axis). 

EXAMPLE 12-9 
Show that the basis for BI in Table 12.5 for the e

2v 
point group is u

x
' 

SOL UTI 0 N: Refer to just the u
t 

portion shown in the figures in Example 12-3, and 

see that 

A A 

Eux=(+l)ux , C2ux =(-I)ux , o-v ux=(+I)ux ' and a:ux =(-I)ux 

in accord with B I in Table 12.5. 



12-6. The Most Important Summary of the Properties of a Point 
Group Is Its Character Table 

Tables 12.5 and 12.6 show the irreducible representations of the point groups C2v and 
C

3v
' respectively. It turns out that for almost all the applications of group theory we 

do not need the complete matrices, only the sum of the diagonal elements. The sum 
of the diagonal elements of a matrix is called its trace, or more commonly in group 
theory, its characte r. Of course, the matrices must be square, but all the matrices we 
encounter in group theory are square. The characters of the irreducible representations 
of a point group are displayed in a character table, as shown in Tables 12.7 and 12.8 
for C

2v 
and C

3v
' respectively. The numerical entries in these tables follow immediately 

from Tables 12.5 and 12.6, but some new notation has been introduced. We will use 
character tables throughout the rest of this chapter, so let's examine the various parts 
of Tables 12.7 and 12.8 in detail. 

As expected, the A irreducible representations in Tables 12.7 and 12.8 have + 1 
" " 

under C
2 

and C
3

, respectively, while the B' shave -1. Numerical subscripts serve 
to distinguish irreducible representations of a similar type. By convention, the totally 
symmetric irreducible representation is designated by AI in Tables 12.7 and 12.8. Now 
let's look at the first of the two right columns in Tables 12.7 and 12.8. This column lists 
the bases for the various irreducible representations. We showed earlier that u x forms a 
basis of B} in Table 12.7 and that u x and uy jointly form a basis for the two-dimensional 
irreducible representation E in Table 12.8. The R. denote vectors that depict rotations 

.J 

about the indicated axes. We stated earlier that the basis for A2 in Table 12.8 is the set 
of vectors that represent a rotation about the principal (z) axis. If we look down the z 

TAB l E 12.7 
The character table of the C

2u 
point group. 

" " C E C2 
" " I 
() (}u 2v v 

AI 1 1 1 1 
') ') ') 

z x .... , y~, z~ 

A2 1 1 -1 -1 R xy -,. 

BI 1 1 1 -1 x, Rv XZ 

B2 1 -1 -1 1 v R 0/' X 
yz 

TABLE 12.8 
An expanded form of the character table of the C

3v 
point group. 

" " /'0.') 

C E C3 C"" 
A " , All a (}v (}v 31' 3 v 

AI I I 1 1 1 1 Z x 2 + v2 
Z2 ~ , 

A2 1 1 1 -1 -1 -1 R -,. 
E 2 -I -1 0 0 0 (x,y)(Rx,R v ) (x2 - y2, xy) (xz, yz) 
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axis of a C3v molecule such as ammonia, a rotation about this axis can be depicted as 
follows. 

To see that these vectors form a basis of A), we apply each symmetry operation in 
A A ~ -

turn. The operations E, C3 , and ci do not change the directions of the vectors, but au' 
a~, and a~' do. Symbolically, we have 

"-

C3 (R;) == R: o-~(R:) == -R: 
A, 
C~ (R_) == R 

-- '" """, 
O-l~! (R:) == - R: 

"'-

Thus, we see from Table 12.8 that R_ is a basis for A) because the characters for E, 
~ ~ ~ ~ 

C3' and ci are + 1 and the characters for 0-v' a ~, and 0-~' are -1. 

EXAMPLE 12-10 
Show that R

z 
forms a basis for A 2 in Table 12.7 (the e2v point group). 

SOL UTI 0 N: We can represent a rotation about the C
2 

axis as follows (looking down 
the axis). 

A A 

The operations E and C
2 

do not change the directions of the arrows, but av and a~ do. 

Therefore, ER" == C)R_ == (+l)R_ and a,R_ == a~R_ == (-1)R
7

• Table 12.7 shows, 
'" ~" ,,-, L""", ... , ...... 

then, that R is a basis for A). 
7 , 
" -

We will use the information in the first of the right columns of a character table 
when we apply group theory to the vibrational spectra of polyatomic molecules in 
Chapter 13. The final column lists how certain products of x, y, and z transform. This 
column is used in discussing d orbitals and in Raman spectroscopy. 

We now turn to an explanation of the title to Table 12.8, which reads "An expanded 
form of the character table for the C 1 1 point group." If you look up the C 1 ) character _ t _ 1 



12-6. The Most Important Summary of the Properties of a Point Group Is Its Character Table 

table in any book on group theory, you will find the table given in Table 12.9. To explain 
the difference between Tables 12.8 and 12.9, we need to introduce the idea of a class. 

A A 

Notice that the columns headed by C
3 

and C~ are the same in Table 12.8. The reason for 
this is that C

3 
(counterclockwise rotation by 120°) and ci (counterclockwise rotation 

by 240° == clockwise rotation by 120°) are essentially the same operation physically. 
Whether we rotate clockwise or counterclockwise by 1200 is rather arbitrary. Thus, 
(;3 and (;~ head identical columns in Table 12.8. Similarly, the three mirror planes are 
essentially equivalent. Their labeling is arbitrary, and so their corresponding symmetry 
operations are equivalent physically. Symmetry operations that are essentially equiv­
alent are said to belong to the same class. There is a more mathematical definition of 
class, but the physical argument given here is all we need. 

Table 12.9 shows that there are three classes of symmetry operations in C
3v

' Note 
from Tables 12.7 and 12.9 through 12.14 that the number of classes equals the number 
of irreducible representations. This is a general result; character tables are square. 
Note that Table 12.14 has triply degenerate representations, which are designated by 
the letter T. The point group C

2h
, which describes a trans-dichloroethene molecule, 

has a center of inversion, i, and the character table is given in Table 12.10. Irreducible 
representations that are symmetric under an inversion have a subscript g (for the German 
word, gerade, meaning even), while those that are antisymmetric have a subscript u 
(for the German word, ungerade, meaning odd). Recall that these labels were also used 
to describe the properties of the molecular orbitals of homonuclear diatomic molecules 
under inversion through the point halfway between the two bonded atoms. Thus, the 

TAB L E 12.9 
The character table of the C

3v 
point group. 

"- "-

C E 2C
3 

30-
3v v 

AI 1 1 1 ') '1 2 
Z x- + vo:. z .' , 

A2 1 1 -1 R 
,. 

E 2 -1 0 (x, y) (Rx ' R)J (x 2 
- y2, xy) (xz, yz) 

TAB L E 12.10 
The character table of the C

2h 
point group. trans-dichloroethene is an example 

of a C
2h 

molecule. 

"- '" C
2h 

E C2 
"- '" 1 all 

A 1 1 1 1 R 
') ') 2 x-, y~, z ,xy g ,. 

B 1 1 1 1 R R xz,yz g x' r 

A 1 1 -1 -1 z u 

B 1 -1 -1 1 x,y 
u 
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TABLE 12.11 
The character table of the D3h point group. Sulfur trioxide is an example of a D3h 

molecule. 

A A A A 

D3h E 2C3 3C2 
A 

2S3 38-(jh v 

A' I 1 1 1 1 1 1 x2 + y2, Z2 

A' 1 1 -1 1 1 -1 R 2 z. 

E' 2 -1 0 2 -1 0 (x, y) (X 2 _y2,xy) 

AI! 
I 1 1 1 -1 -1 -1 

AI! 
2 1 1 -1 -1 -1 1 Z 

E" 2 -1 0 -2 1 0 (Rx ' R,) (XZ, YZ) 

TABLE 12.12 
The character table of the D 4h point group. Xenon tetrafi uoride is an example of a D 4h molecule. 

A A A " A A 

D4h E 2C4 C2 2C' 2CI! A 

2S4 

A 20- 20-
d 

1 (jh 2 2 v 

A lg 1 1 1 1 1 1 1 1 1 1 x 2 + y2, Z2 

A2 1 1 1 -1 -1 1 1 1 -1 -1 R 
~ g ,. 

BIg 1 -1 1 1 -1 1 -1 1 1 -1 x2 _ y2 

B 2g 1 -1 1 -1 1 1 -1 1 -1 1 xy 

E 2 0 -2 0 0 2 0 -2 0 0 (Rx ' R}J (xz, yz) g 

A III 1 1 1 1 1 -1 -1 -1 -1 -1 

Al 1 1 1 -1 -1 
~U 

-1 -1 -1 1 1 Z 

B
lu 

1 -1 1 1 -1 -1 1 -1 -1 1 

B2u 1 -1 1 -1 I -1 1 -1 1 -1 

E 2 0 -2 0 0 -2 0 2 0 0 (x, y) 
u 

first irreducible representation in Table 12.10 is designated by A because the character 
g 

A A 

under the operator C2 is + 1 (hence A) and the character under the operator i is + 1 
(hence the subscript g). 

12-7. Several Mathematical Relations Involve the Characters of 

Irreducible Representations 

In this section, we will give without proof a number of the mathematical properties 
associated with character tables. As we said in the previous section, character tables 
are square; in other words, the number of irreducible representations equals the number 
of classes. Furthermore, because an identity operation is represented by a unit matrix 
and the character is the sum of the diagonal elements of this matrix, the character 



TAB L E 12.13 
The character table of the D 6h point group. Benzene is an example of a D 6h molecule. 

"'- " "'- "'- A "'- " "'-

D6h E 2C
6 2C] C2 

3C' 3C" " 2S3 
2S

6 

"'-

30-
d 

30-l a
h 2 2 v 

A
ig 

1 1 1 1 1 1 1 1 1 1 1 1 
; ;; 

x~ + y~, z~ 
A

2g 
1 1 1 1 -1 -1 1 1 1 1 -1 -1 R 

~. 

BI 1 -1 1 -] 1 -1 1 -1 1 -1 1 -1 
g 

B; 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 
-g 

E ig 
2 1 -1 -2 0 0 2 1 -1 -2 0 0 (Rx ' Ry) (xz, yz) 

E; 2 -1 -1 2 0 0 2 -1 -1 2 0 0 (X 2 _y2,xy) 
-g 

A 
lu 

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 

A; 1 1 1 1 -1 -1 
~u 

-1 -1 -1 -1 1 1 z 

B
lu 

1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 

B
2u 

1 -1 1 -1 -1 1 -1 1 -1 I 1 -1 

E 
III 

2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x, y) 

E,., 2 -1 -1 2 0 0 -2 1 1 -2 0 0 
.... u 

TABLE 12.14 
The character table of the T d point group. Methane is an example of a T d molecule. 

"'- "'- "'- "'-

Td E 8C3 
3C2 6S

4 
6a

d 

AI 1 1 1 1 1 
,., 2 ; 

x~ + y + z-

A2 1 1 1 -1 -1 

E 2 -1 2 0 0 
,., ) 2 ') 2 

(2z~ - x- - y ,x- - y ) 

TI 3 0 -1 I -1 (Rx ' Ry ' Rz ) 

T2 3 0 -1 -1 1 (x,y,z) (xy, xz, yz) 

of the identity operator is equal to the dimension of the irreducible representations. 
Tables 12.7 through 12.14 show that the character for the identity operator is 1 for 
A and B irreducible representations and 2 and 3 for E and T irreducible representa­
tions, respectively. We stated earlier that if d. is the dimension of the jth irreducible 

.I 

representation and h is the order of the group (Section 12-4), then 

N 

"d~ == h L...t .I 
j=1 

(12.8) 

where N is the number of irreducible representations. We can write this equation in 
'" different, but more common, notation. First, let R be any symmetry operation, and let 

'" '" '" 
X (R) be the character of a matrix representation of R. Furthermore, let X. (R) be the 

.I 
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A A 

character of the jth irreducible representation of R. Now because X. (E) == d., we can 
) ) 

write Equation 12.8 in the more commonly seen form 

N 

L[~j(E)]l == h (12.9) 
j=1 

Not only is this equation valid for Tables 12.7 through 12.14, but it is valid for the 
character tables of all point groups. 

A more thorough treatment of group theory views each row of a character table 
as an abstract vector. Recall from MathChapter C that the scalar product or the dot 
product of two vectors u and v is given by (Equation C.6) 

u . v == I u II v I cos e (12.10) 

or by (Equation C.9) 

(12.11) 

where lu I and I v I are the lengths of u and v and e is the angle between them. Therefore, 
if u and v are perpendicular (orthogonal), then cos e == 0 and 

(12.12) 

Although we wrote u and v as three-dimensional vectors in Equations 12.11 and 12.12, 

they can be n-dimensional vectors, in which case Equation 12.11 becomes 

(12.13) 

If the sum in Equation 12.13 equals zero, we say that u and v are orthogonal. Of 
course, if n > 3, it is difficult to visualize that u and v are perpendicular, but they are in 
a generalized sense. Now let's return to the rows in the e

lv 
character table (Table 12.7). 

Each row contains four characters, and we can think of each row as a four-dimensional 
'" 

vector whose components are X.(R). Now let's take the dot product (Equation 12.13) 
) 

of any two rows of the character table. If we do this, then we find that the rows are, in 

fact, orthogonal, or that 

LXi(R)X)(R) == 0 i i- j (12.14) 

R 

For example, the dot product of A 1 with B2 in Table 12.7 is 

A A A A 

X
A1 

(E)X B2 (E) + X
A1 

(C2 )XB2 (C2 ) + XA\ (o-V)X B2 (o-v) + X
A1 

(0-~)XB2 (o-~) 

or 

(1) x (1) + (1) x (-1) + (1) x (-1) + (1) x (1) == 0 



12-7. Several Mathematical Relations Involve the Characters of Irreducible Representations 

EXAMPLE 12-11 
Show that the row A I is orthogonal to the row E in the C 3v point group (Table 12.9). 
(Remember that the columns are headed by classes.) 

SOL UTI 0 N: The dot product of the two rows A I and E in Table J 2.8 is 

(1) x (2) + (1) x (-1) + (1) x (-1) + (1) x (0) + (1) x (0) + (1) x (0) =: 0 
\ V j , v-----------~ 

30-
u 

Note that because we have summed over symmetry operations, we must include the 
A A A 

products Xi (R) Xj (R) for each of the two C
3 

rotations and the three o-u reflections. 

We can sum over classes rather than symmetry operations in Equation 12.14. If we 
A A 

let n (R) be the number of symmetry operations in the class containing R, then Equa-
tion 12.14 can be written as 

L n(R)Xi(R)~j(R) == 0 i =f j (12.15) 
classes 

Applying Equation 12.15 to Example 12-11 gives 

or 

(1) x (1) x (2)+(2) x (1) x (-1)+(3) x (1) x (0) == 0 
\, V .! \.... V .! \. 'V ,) 

A 

IE 38-
v 

If we let the i in Equation 12.14 or 12.15 stand for the totally symmetric irreducible 
A 

representation, then Xi (R) == 1 in each term in the summation, and so Equation 12.14 
says that 

(12.16) 
R classes 

In other words, the sum of the characters in any row (other than the first) is equal to 
zero. Confirm that this statement is true for Tables 12.7 through 12.14. 

The square of the length of a vector v is given by (Example C-2) 

which we can readily generalize to n dimensions 

11 

V . V == (length)2 == L vi 
k=1 
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Because each row of a character table may be treated as an n-dimensional vector, we 

may express this equation as 

(length)2 == L[x
j 
(R)]2 (12.17) 

R 

If we apply Equation 12.17 to any of the rows in Tables 12.7 through 12.14, then we 

find that 

(12.18) 
~ 

R 

which is a general result. In terms of a sum over classes, we have 

L n(R)[xj (R)]2 == h (12.19) 
classes 

Equation 12.18 or 12.19 says that the length of the vector corresponding to any row in a 

character table equals the square root of the order of the group. Applying Equation 12.19 

to A2 of C3v (Table 12.9) gives 

L n(R)[x
j
(R)]2 == 1 x (1)2 + 2 X (1)2 + 3 X (_1)2 == 6 

classes 

We can combine Equations 12.14 through 12.19 into 

(12.20) 
~ 

R classes 

where Dij is the Kronecker delta. Everything in this section up to this point can be 
summarized by Equation 12.20, which says that the rows of a character table are 
orthogonal and of length hI /2. 

In applying group theory to a physical problem such as a molecular orbital cal­
culation (as in Section 12-1), we are going to apply the symmetry operations of the 

molecular point group to the atomic orbitals on each atom to construct a certain (usu­
ally reducible) representation. We will then reduce this reducible representation into 

its irreducible representations and then use this result to construct symmetry orbitals 

or linear combinations of the atomic orbitals that make optimum use of the symmetry 

of the molecule (see Equations 12.3). The one question that remains, then, is how do 

we reduce a given reducible representation into its component irreducible representa­

tions. As usual, we will work with the characters of the various representations. The 

mathematical question we want to answer is how to determine the aj 's in the expression 

(12.21) 
) 

~ ~ 

where X (R) is the character of the symmetry operator R in the reducible representation, 

r. These coefficients will tell us how many times each irreducible representation is 
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contained in r. Determining the a. 's using the orthogonality relation given in Equa-
l A 

tion 12.20 is actually fairly easy. Multiply Equation 12.21 by Xi (R) and sum both sides 
-" 

over R: 

LX(R)Xi(R) == La) Lxi(R)xj(R) 
~ 

R 1 R 

" But Equation 12.20 says that the sum over R on the right side is h8ij , so we have 

" x(R)X.(R) == "ha.8 .. ~ I ~.J lJ 
~ 

R J 

The only term that survives in the right side is the term with i == j (otherwise 8ij == 0), 
so we have 

(12.22) 

We can also write Equation 12.22 as a sum over classes: 

(12.23) 

We now know enough group theory to apply it to some molecular calculations. 

EXAMPLE 12-12 
Suppose that the characters of a reducible representation of the C

2 
1 point group are 

A A 1) 

x(E) == 4, x(C2 ) == 2, x(o-v) == 0, and X(o-~) == 2. We usually express this result by 
writing r == 4 2 0 2. Determine how many times each irreducible representation of 
C

2v 
is contained in r == 4 2 0 2. 

SOL UTI 0 N: We use Equation 12.23 with h == 4. 

Thus, 

1 
a 4 == -[(4) x (1) + (2) x (1) + (0) x (1) + (2) x (1)] == 2 

; I 4 

1 
a

A 
== [(4) x (1) + (2) x (1) + (0) x (-1) + (2) x ( 1)] == 1 

2 4 

1 
a

B1 
== 4 [(4) x (1) + (2) x (-1) + (0) x (1) + (2) x (-1)] == 0 

1 
a

B2 
== 4 [(4) x (1) + (2) x (-1) + (0) x (-1) + (2) x (1)] == 1 

479 



480 Chapter 12 / Group Theory: The Exploitation of Symmetry 

EXAMPLE 12-13 
Suppose that r = 3 0 -J for C 11 • Determine the a. 's in Equation 12.23 . 

. 1 I 

SOL UTI 0 N: We use Equation 12.23 as a sum over classes, in which case we have 

1 
QA, = 6[(1) x (3) x (1) + (2) x (0) x (1) + (3) x (-1) x (1)] = 0 

1 
a

A2 
= 6[(1) x (3) x (1) + (2) x (0) x (1) + (3) x (-1) x (-1)] = 1 

1 
a E = 6[(1) x (3) x (2) + (2) x (0) x (-1) + (3) x (-1) x (0)] = 1 

or r = A2 + E. 

12-8. We Use Symmetry Arguments to Predict Which Elements in a 
Secular Determinant Equal Zero 

Recall from Chapters 9 and 10 that we encountered molecular integrals of the type 

R .. == f ~~ iI~.dT lJ "V ( "VJ 
and S .. == f ~~~.dr 

lJ "V I 'P.; (12.24) 

We will now show that integrals like these will be equal to zero if we choose ¢; and 
¢. such that they belong to different irreducible representations. For simplicity, we 

) 

will prove this only for one-dimensional irreducible representations, but the result is 
general. Let's start with the overlap integral 

S .. == f ~~~.dT 
lJ "V I 'P.; ( 12.25) 

This integral is just some number, and its value certainly cannot depend upon how we 
"-

orient the molecule. A symmetry operation of the molecule R transforms ¢i and ¢) to 
"- "-

R¢i and R¢), respectively. The resulting (transformed) overlap integral is 

RS .. == f R~: R~.dT 
I) "VI ~ 

Because the value of Si) cannot change when we apply a symmetry operation of the 

point group of the molecule 

RS .. == f R~~ R~.dT == S .. == f ~:~.dT IJ "VI "VJ 1) "VI "VJ 
( 12.26) 
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Suppose now that <p; and <P
j 

are bases for the (one-dimensional) irreducible represen­

tations r u and r h' If that is so, then 

( 12.27) 

In fact, Equations 12.27 are exactly what we mean when we say that ¢; and ¢j are bases 
for the one-dimensional irreducible representations r u and rb (see Example 12-9). If 
we substitute Equations 12.27 into Equation 12.26, we obtain 

S .. == X (R)X1 (R) f ¢:¢.dr == X (R)Xh(R)S .. 
I) a") I J a IJ 

( 12.28) 

Equation 12.28 requires that 

A A A 

Xa (R) Xb (R) == 1 for all R ( 12.29) 

"-

Because Xi (R) is either 1 or -1 for anyone-dimensional irreducible representation, 
A A 

Equation 12.29 is true only if Xa (R) == Xh (R), or if r u and r h are the same irreducible 
A '" A 1"\ 

representation. If Xa (R) -=1= Xb (R), then Xu (R) Xb (R) will equal -1 for some symmetry 
A 

operation R, and the only way that Sij can equal - Sij in Equation 12.28 is for Sij to equal 
zero. Thus, we have proved (at least for one-dimensional irreducible representations) 
one of the most useful results of group theory; namely, that Sij must necessarily be 
equal to zero if ¢; and ¢j are bases of different irreducible representations. 

Let's apply this result to the H
2
0 molecule (which lies in the y-z plane, Fig­

ure 12.6a) and evaluate Sij for a 2 p x orbital on the oxygen atom (2 p xo) and the sum 
of the Is orbitals on the hydrogen atoms (I SH + ISH ). This linear combination of 

A B 
hydrogen 1 S orbitals is symmetric under all four operations of the C2v point group, and 
so transforms as AI' We chose ISH + ISH rather than ISH or ISH individually for this 

A B A B. 

very reason. The 2 p x orbital on the oxygen atom transforms as x, whIch transforms as 
Bl according to Table 12.7. Therefore, we can say that the overlap integral of 2pxo and 
ISH

A 
+ ISH

B 
is zero by symmetry. Table 12.7 shows that the same is true for 2pyO' but 

not for 2pzo' 

EXAMPLE 12-14 
Show that the overlap integral involving 2PxN and ISH

A 
+ lSH

B 
+ Is

Hc 
in the NH3 

molecule (C
3v

) is equal to zero. 

SOL UTI 0 N: The linear combination ISH + 1 SH + ISH belongs to the totally sym-
ABC 

metric irreducible representation A 1 and, according to Table 12.9, 2 P
xN 

belongs to E. 
Therefore, the overlap integral is equal to zero. 

The other integrals in a secular determinant are the Hij in Equation 12.24. The 
molecular Hamiltonian operator is symmetric under all the group operations of the 
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molecule, because the molecule is indistinguishable under all these operations. There-
'" fore, H must belong to A I. Using the same procedure we did for Sij' we have 

'" '" '" == X (R)XA (R)Xh(R)H .. 
a \ 0 

(12.30) 

Therefore, because H .. is independent of the orientation of the molecule, we must have 
IJ 

that 
'" '" '" '" 

Xa(R)XA\ (R)Xh(R) == I for all R (12.31) 

'" '" But X
A 

(R) == 1 for all R, so Equation 12.31 is the same as Equation 12.29, which 
I 

implies once again that ¢; and ¢j must belong to the same irreducible representation. 
Thus, both H.. and S.. will necessarily equal zero unless ¢: and At. belong to the 

lJ I) I 0/) 

same irreducible representation. This affords an enormous simplification in evaluating 
typically large secular determinants in molecular calculations. 

Table 12.13 gives the character table for the D 6h point group, which describes 
benzene. Referring back to Equation 12.3, let's show that the symmetry orbital ¢t 
belongs to A 2u • To do so, we must show that ¢t transforms according to the characters 

'" of each symmetry operation of A 2u • Of course, E¢l == ¢l. Figure 12.9 shows some of 
the symmetry elements of a benzene molecule, and Figure 12.10 illustrates some of 
the symmetry operations. A counterclockwise rotation by 60° about the principal axis 
gives (remember that 1/Ij stands for a 2 p:: orbital on carbon atom j) 

A A A A A A ~ 

C6¢1 == C61/11 + C6 1/12 + C6 1/13 + C6 1/14 + C6 1/15 + C6 1/16 

== 1/16 + 1/It + 1/12 + 1/13 + 1/14 + 1/15 == ¢t 

Similarly, (see Figure 12.10) 

e' 2 

(J 
v 

e" 2 

C~¢, == -1/1, - 1/16 - 1/15 - 1/14 - 1/13 - 1/12 == -¢t 

ad¢t == 1/12 + 1/11 + 1/16 + 1/15 + 1/14 + 1/13 == ¢t 

e' 2 

(J 
v 

e" 2 

e' 2 

(J 
v 

FIG U R E 12.9 
The symmetry elements of a benzene molecule, which 
belongs to the D6h point group. The C6 and S6 axes are 
perpendicular to the plane, ah lies in the plane and i is 
at the center. 



1 2 

4 5 

1 3 

4 6 

FIGURE 12.10 
The effect of some of the symmetry operations of the D 6h point group on the carbon 2 p z 

orbitals, which are used to construct molecular orbitals for benzene. 

and so on. In each case, ¢] transforms according to the characters in A
2u

' Similarly, we 
can easily show that ¢2 belongs to B2 . For example, g 

A A A A ~ ~ ~ 

C~¢2 == c~ 0/] - C~ 0/2 + C~ o/j - C~ 0/4 + C~ 0/5 - C~ 0/6 
== -0/] + 0/6 -0/5 + 0/4 -0/3 + 0/2 == -¢2 

Of the other four symmetry orbitals in Equation 12.3, ¢3 and ¢4 belong to E'g' and ¢s and 
¢6 belong to E2u ' Because the integrals in Equation 12.24 equal zero if ¢; and ¢j belong 
to different irreducible representations, we can now see why the 6 x 6 benzene secular 
determinant (Equation 12.1) factors into two 1 x 1 and two 2 x 2 determinants when 
we use the linear combinations in Equations 12.3. The final question that we must face 
is how to find these symmetry orbitals; in other words, how to find linear combinations 
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of atomic orbitals that act as bases for the various irreducible representations. This 
question is the topic of the next section. 

12-9. Generating Operators Are Used to Find Linear Combinations of 
Atomic Orbitals That Are Bases for Irreducible Representations 

There is a straightforward procedure to find linear combinations of atomic orbitals that 
are bases for the irreducible representations. It involves a quantity called a generating 
operator, whose formula we give without proof. The generating operator for the jth 
irreducible representation is 

(12.32) 

Recall that dj is the dimensionality of the jth irreducible representation. Equation 12.32 

may look formidable, but it is really easy to use. Before we use it to generate symmetry 

orbitals for benzene, with its relatively large D6h character table, let's use it to generate 
symmetry orbitals for butadiene. Recall that we applied Huckel molecular-orbital 
theory to butadiene in Section 10-6. The skeletal ][ -electron framework of butadiene 

3 4 

C ==== C 
1 2/ 
C ==== C 

suggests that we use the C2h point-group elements (Table 12.10). If we denote the 2pz 
orbital an carbon atom i by o/i' Equation 12.32 gives 

I". 1 I". I". 

PA 0/, == 4 LR XA (R)Ro/, 
g g 

,I". A 

== 4[(I)Eo/, + (I)C20/, + (1)(0/, + (l)o-ho/'] 

== ±(o/, + 0/4 -0/4 -0/,) == 0 

with similar results for 0/3 and 0/4' Similarly, using 0/1 and 0/2' we get 

(12.33) 
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We have ignored the numerical factors in front of the various symmetry orbitals because 
we are interested only in their functional form. Their subsequent normalization is a 
simple matter. 

Equations 12.33 give us four symmetry orbitals, two belonging to Bg symmetry and 
two belonging to Au symmetry. Using these symmetry orbitals, the Huckel molecular­
orbital theory secular determinant of butadiene factors into two 2 x 2 blocks. The 
actual form is (Problem 12-28) 

or 

or 

x== 

x 1 0 0 
1 x+l 0 0 

- - -- - --- - -- - - =0 
0 0 x 1 
0 0 1 x-I 

(x 2 + x-I) (x 2 
- x-I) = 0 

-1 ± vis 
2 

and x= 
1 ± vis 

2 

(12.34) 

or x = 0.6180, -1.6180, 1.6180, and -0.6180. These are the very same values we 
obtained in Section 10-6, but there we had to deal with a quartic equation for x because 
the secular determinant was not in block diagonal form. 

Note above that no symmetry orbitals belong to A g or Bu' It turns out that we 
really did not have to apply the generating operators for Ag and Bu to learn this. Let's 
apply the four group operations to the four 2p-; orbitals in Figure 12.11. For the identity 

" 
,", 

operation, E 1jr. == 1jr. for each j. We can write this result in matrix form: 
) ) 

" E 

100 0 
o 100 
001 0 
000 1 

FIGURE 12.11 
A schematic illustration of the four 2 p ~ orbitals 

"" 
used to form Huckel molecular orbitals for 
butadiene. 
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A A A A 

The character of this matrix is X(E) = 4. Similarly, C20/1 = 0/4' C20/2 = 0/3' C2 0/3 = 
" 

0/2' and C20/4 = 0/1' or 

1/f1 0 0 0 1 1/f1 

" 1/f2 0 0 1 0 1/f2 C2 1/f3 0 1 0 0 1/f3 
1/f4 1 0 0 0 1/f4 

" for X(C2) = O. Similarly, 

1/f1 0 0 0 -1 1/f1 

" l/J2 0 0 -1 0 1/f2 l 
1/f3 0 -1 0 0 1/f3 

1/f4 -1 0 0 0 1/f4 

and 

-1 0 0 0 
o -1 0 0 
o 0 -1 0 
o 0 0-1 

for x (i') = 0 and x (o-v) = -4. These results tell us that the four 2pz orbitals belong to 
the reducible representation 

" " l (J 
v 

r 4 0 0 -4 

We can even write r without writing out all the matrices. Note that there is a 1 
on a diagonal in a representation if the 2 p z orbital is unchanged, a -1 if it remains 
on the original atom but changes direction, and a 0 if it is moved to another atom. 

" " The operation E leaves all four unchanged; the operations C2 and i' move all of them 
to different atoms; and o-v changes the direction of all four but doesn't move them 

otherwise. 
We can use Equation 12.23 to reduce r into irreducible representations: 

aA = ~[(4) x (1) + (0) x (1) + (0) x (1) + (-4) x (1)] = 0 
g 

a B = ±[(4) x (1) + (0) x (-1) + (0) x (1) + (-4) x (-1)] = 2 
g 

a
A 

= ±[(4) x (1) + (0) x (1) + (0) x (-1) + (-4) x (-1)] = 2 
II 

a
B 

= ±[(4) x (1) + (0) x (-1) + (0) x (-1) + (-4) x (1)] = 0 
II 

which we write as r = 2B + 2A , in agreement with our earlier result that no sym-g u 

metry orbitals belong to A or B . g u 
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EXAMPLE 12-15 
If we carry out a molecular-orbital calculation onH2 0 using the minimal basis set 

atomic orbitals ISH' ISH' Iso' 2so' 2pxo' 2p\.0' and 2p~0 without using group theory, 
we would obtain a

A
7 x 1 secular determinan't. How will this determinant look if we 

use group theory to generate symmetry orbitals? 

SOL UTI 0 N: The water molecule belongs to e
2

l" First determine the reducible 

representation of the seven atomic orbitals as we did above for butadiene. We picture 

the S orbitals as spheres on each atom and the 2p orbitals on the oxygen atom, much 
~ A 

like the coordinate axes in Figure 12.6a. Certainly X (E) == 7. The operation C2 moves 

the ISH orbitals to different atoms, does not alter Iso, 2so' and 2P:::o' and changes the 

direction of2pxo and 2pyO; therefore X(C\) == 3 - 2 == l. Similarly, o-v tTIoves the ISH 

to different atoms, does not alter Iso, 2so' 2pxo ' and 2P:::o and changes the direction 

of 2pyo ' Therefore, x (o-v) == 4 - 1 == 3. Last, X(o-~) == 6 - 1 == 5, to give 

r 7 1 3 5 

Using Equation 12.23, we find that 

a
A1 

== ~[(7) x (1) + (1) x (1) + (3) x (1) + (5) x (1)] == 4 

a A == ~[(7) x (1)+(1) x (1)+(3) x (-1)+(5) x (-1)]==0 
2 

as == ~[(7) x (1) + (1) x (-1) +(3) x (1) + (5) x (-I)J == 1 
I 

as == ~[(7) x (1) + (1) x (-1) + (3) x (-1) + (5) x (I)J == 2 
2 

which we write as r == 4A I + B I + 2B
2

. So we see that four combinations belong to 

AI' none to A 2 , one to B I and two to B
2

• The original 7 x 7 secular determinant blocks 

into a I xl, a 2 x 2, and a 4 x 4 determinant. The energies obtained for the 1 xl, 

2 x 2, and 4 x 4 determinants correspond to the molecular orbitals of B I' B2 , and A I 

symmetry, respectively. We can easily show, using Equation 12.32, that ISH + 1 sH ' 
A B 

Iso, 2so' and 2P:::o belong to A I; that 2pxo belongs to B I; and that 2pyO and ISH
A 

- ISH
s 

belong to B
2

. 

For the final topic in this chapter, we will use Equation 12.32 to derive the symmetry 
orbitals for benzene that are given in Equations 12.3. First we deduce the reducible 
representation for the six 2 P z. orbitals that we use in the Huckel molecular-orbital 
treatment for benzene. The result of applying each symmetry operation to the six 2 p '" 

" 

orbitals is (see Figure 12.9) 

30-v 

r 6 o o o -2 o o o o -6 o 2 

'" "'.::; A "'2 A A. A A A'} A AS 

Note that the symmetry operations C6' C6' C3' C3' C2 ' C;, i, S3' S3' S6' S6' and o-d 
A 

move the 2p-: orbitals to other atoms~ that each C~ operation leaves two 2p_ orbitals on 
'" ..... ..... 
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their original atoms but changes their direction; that all reverses the direction of all six 
2 p., orbitals; and that a 1 leaves two 2 p _ orbitals on their original atoms and preserves 

~ 1 _ 

their directions. Equation 12.23 gives (Problem 12.29) 

f==B +E +A +E 2g I g 2u 2u 

This result tells us that the secular determinant for benzene will contain two 1 x 1 

blocks (for the B2g and A211 sYlnmetry orbitals) and two 2 x 2 blocks (for the E Ig and 
E 2u symmetry orbitals) (see Equation 12.4). We can use Equation 12.32 to generate 

the symmetry orbitals. Using Equation 12.32 for A1 gives (use Figures 12.8 and 12.9) 
~U 

A 1 
PA,,, 0/1 = 24 Cl;..., + ~2 ~ + ~3 -: 0/5, + ~ + ~I + ~3 + o/~ +!2 + ~4 + o/~ 

'" /'\, A /'\. A. A 

E 2C6 2C3 C2 3C~ 3C~ 

+ l/I4 + l/I3 + l/Is + l/I2 + l/I6 + l/II + l/I2 + l/I4 + l/I6 + l/II + l/I3 + l/Is) 
~'--~\. v ,;~'. V .II". V .) 

A A A. A 

1 25
3 

25
6 

air 3a 
v 

~ l/II + l/I2 + l/I3 + l/I4 + l/Is + l/I6 
A 

We obtain the same result for p'\ l/I. for j == 2 through 6, so this molecular orbital is the 
r 211 ./ 

one symmetry orbital belonging to A1 . Similarly, the one symmetry orbital belonging 
_1/ 

A 

PB) l/II ~ (l/I) -l/I2 - l/I6 + l/I3 + l/Is - l/I4 + l/I) + l/I3 + 1/Is -l/I2 + l/I4 + 1/16 
-g ~ '-v-' '-v-' ~ '- v .) \, V .I 

A A /'\. A /'\, A 

E 2C6 2C3 C1 3C~ 3C~ 

- l/I4 + l/I3 + l/Is -l/I2 - l/I6 + l/I, -1/12 - l/I4 - l/I6 + l/I, + l/I3 + l/IS) 
~'-v-'\' y .-'~I". V .I\, Y .I 

/'\, A. A. /'\, 

1 25:, 25
6 

all 3a v 

~ l/II - l/I2 + l/I3 -l/I4 + l/Is - l/I6 
A 

(Once again, we obtain the same symmetry orbital if we evaluate P B 1/1. for j == 2 
2g .J 

through 6.) Because E I (J is two-dimensional, two symmetry orbitals belong to this ,,, 

irreducible representation. For example, 

A 

PE1ul/II ~ (2l/11 + l/I2 -l/I3 - 20/4 -l/Is + l/I6) 
" 

and 

A 

P
Elg 

l/I2 ~ (l/II + 2l/12 + l/I] -l/I4 - 21/15 - 1/16) 

A 

Applying P El~ to the other 2 P; orbitals will give different linear combinations, but 

only two of them can be linearly independent. We are free to choose any two or even 

any linear combination of them, whatever is convenient. (See Problem 12-26.) For 

simplicity, we have used the two given above to evaluate the secular determinant in 



Problems 

Equations] 2.3. Last, two linearly independent symmetry orbitals, belonging to E
2u

' 

are 

and 

A 

PE ) 0/2 ~ (-0/1 + 20/2 - 0/3 - 0/4 + 20/5 - 0/6 ) 
-II 

in accord with Equations 12.3. 
As we have seen, group theory can be used to simplify molecular calculations. 

By choosing linear combinations of atomic orbitals that belong to irreducible repre­
sentations of the molecular point group, many of the integrals involved are necessarily 
zero. This affords an enormous advantage in large calculations. Group theory can also 
be used to classify the vibrations of polyatomic molecules. Once again, by exploiting 
molecular symmetry we will be able to assert which vibrations lead to an infrared 
spectrum (are infrared active) and which do not (are infrared inactive). We will see 
how to do this in the next chapter. 

Problems 
12-1. Neglecting overlap, show that ¢l and ¢2 given by Equations 12.3 are orthonormal to the 

other four molecular orbitals. 

12-2. Using the six molecular orbitals given by Equations 12.3, verify that HII == LX + 2{J, 

Hn == LX - 2{3, HI2 == HI3 == Hl4 == HIS == Hl6 == 0 (see Equation 12.4). 

12-3. List the various symmetry elements for the trigonal planar molecule SO:). 

12-4. Verify that a methane molecule has the symmetry elements given in Table 12.2. 

12-5. Verify that a benzene molecule has the symmetry elements given in Table 12.2. 

12-6. Verify that a xenon tetrafluoride (square planar) molecule has the symmetry elements 
given in Table 12.2. 

" 1 A I 
12-7. Explain why C4 == C; . 

12-8. Deduce the group multiplication table for the point group e
2l' 

(see Table 12.3). 

12-9. Determine the order of the D 4h point group (see Table 12.2). 

12-10. Determine the order of the D6h point group (see Table 12.2). 

I .J"\. A! 

12-11. Evaluate the products o-vo-v' C2o-v' and C2o-
1

' for a e2 L' point group (see Table 12.3) . 

.J"\. A" 
12-12. Evaluate the products C

3
o-l' and C

3
o-v for a C

3
1' point group (see Table 12.4). 

12-13. Show that Equation 12.7 is valid for the point groups given in Tables 12.9 through 
12.14. 
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12-14. Show that the 2 x 2 matrices given in Table 12.6 are a representation for the C~h' point 
group. 

12-15. In Section 12-4, we derived matrix representations for various symmetry operators. 

Starting with an arbitrary vector u, where U == u) + u) + u~k, show that the matrix 
• A 

representation for a counterclockwise rotation about the z-axis by an angle a, C
360

/
a

' is 
given by 

cosO' -sInO' 0 
SIn a COS a 0 

001 

A 

Show that the corresponding matrix for rotation-reflection S about the z-axis by an 
360/a 

angle a is 

cos ex. - SIn a 0 
SIn ex. COSO' 0 

0 0 -1 

12-16. Show that u
r 

fonTIs a basis for the irreducible representation B I of the point group C
2

1" 

12-17. Show that R . forms a basis for the irreducible representation B, of the point group C, " 
.\ _ .... 1 

12-18. Show that (u.\, u) fonns a joint basis for the irreducible representation E of the point 

group C
lI

,. 

12-19. Show that the rows of the character table of C
2h 

satisfy Equation 12.20. 

12-20. Show that the rows of the character table of D3h satisfy Equation 12.20. 

A 

12-21. Suppose the characters of a reducible representation of the Tel point group are X (£) == 

17, X(C3 ) == 2, X(C2 ) == 5, X(S4) == -3, and x(ad ) == 5, or r == 17 2 5 - 3 - 5. 
Determine how many times each irreducible representation of Td is contained in r. 

12-22. Suppose the characters of a reducible representation of the e 2l' point group are r == 

27 - I I 5. Determine how many times each irreducible representation of C) , is contained 
~t 

in r. 

12-23. Suppose the characters of a reducible representation of the D3h point group are r == 
12 0 - 2 4 - 2 2. Determine how ITIany tilTIeS each irreducible representation of D3h is 

contained in r. 

12-24. In Example 12-14, we showed that the overlap integral involving 2P.rN and lSH
A 
+ 

1 SH
B 
+ 1 sHe in the NH3 ITIolecule is equal to zero. Is this necessarily true for the 2 P ~N rather 

than the 2 P.rN orbital? 

12-25. Show that the molecular orbital ¢2 given by Equations 12.3 belongs to the irreducible 

representation B2g . 



Problems 

12-26. Because the benzene molecular orbitals ¢3 and ¢4 in Equations 12.3 belong to a two­
dimensional irreducible representation (E

1g
), they are not unique. Any two linear combi­

nations of ¢3 and ¢4 will also form a basis for E I[( Consider 

and 

First show that 

I ~ . . 

¢ 4 = 6 (2¢ 4 - ¢:1) 

Now show that ¢~ is normalized. (Realize that ¢;, and ¢4 are not necessarily orthogonal 
because they are degenerate (see Problem 4-29).) Evaluate the 2 x 2 block of the secular 

determinant corresponding to E Ig and show that the final value of the energy is the same 
as that given in Equation 12.4. 

12-27. Arrange the benzene molecular orbitals given by Equations 12.3 in the order of the 
number of nodal planes perpendicular to the plane of the molecule. Label the molecular 
orbitals according to the irreducible representation (see Example 10-8). 

12-28. Using the symmetry orbitals for butadiene given by Equations 12.33, show that the 
Hi.ickel theory secular determinant is given by Equation 12.34. 

12-29. Show that if we used a 2p_ orbital on each carbon atom as the basis for a (reducible) 
,. 

representation for benzene, (D 611) then r = 6 0 0 0 - 2 0 0 0 0 - 6 0 2. Reduce r 
into its component irreducible representations. What does your answer tell you about the 
expected Hi.ickel secular determinant? 

12-30. Show that if we used a 2p~ orbital on each carbon atom as the basis for a (reducible) 
,. 

representation for cyclobutadiene (D 4h)' then r = 4 0 0 0 - 2 0 0 - 4 0 2. Reduce r 
into its component irreducible representations. What does your answer tell you about the 
expected Hi.ickel secular detenninant? 

12-31. Consider an allyl anion, CH" CHCH, , which belongs to the point group C" . Show 
~ ~ ~V 

that if we use 1j;1' 1j;2' and 1j;:, (2P::: on each carbon atom) to calculate the Hi.ickel secular 
determinant, then we obtain 

a-E f3 0 x 1 0 

f3 a-E f3 I x 1 = 0 
o f3 a-E o I x 

or x 3 
- 2x = 0, or x = 0, ±-J2. Now show that if we use the 1j;. as the basis for a 

.J 

(reducible) representation for the allyl anion, then r = 3 - 1 1 - 3. Now show that 

r = A2 + 2B I • What does this say about the expected Hi.ickel secular determinant? Now 
use the generating operator, Equation 12.32, to derive three symmetry orbitals for the allyl 
anion. Normalize them and use them to calculate the Hi.ickel secular determinantal equation 
and solve for the n -electron energies. 
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12-32. Apply the analysis we use in Example 12-15 to a minimal basis set for NH
3

. 

12-33. Just as we have orthogonality conditions for the characters of irreducible representations, 
1'\ 

there are also orthogonality conditions of their matrix elements. For example, if r. (R) 
I mn 

denotes the Inn Inatrix elelnent of the matrix of the ith irreducible representation, then 

L
A A h 

r.(R) r.(R) I I == - 8 .. 6 ,8 ! 

, 1 11111./ . 111 II d. 1./ 111171 /Ill 

R I 

This rather complicated looking equation is called the great orthogonality theoren1. Show 

how this equation applies to the elements of the matrices in Table 12.6. 

12-34. 

a. Let i == j, In == 11, and n11 == III in the great orthogonality theorem (Problem 12-33) and 

sum over 11 and n l to derive Equation 12.18. 

h. Let m == 11, m' == n' and sum over nand n' to derive Equation 12.14. 

c. Combine these results to derive Equation 12.20. 

12-35. Consider the point group C.
I

, which contains only the symmetry elements E and (). 

Determine the character table for C\. (The molecule NOCI belongs to this point group.) 

12-36. Consider the simple point group C, whose character table is 

A 

C E 
A 

() 
.\ 

~ I 1 
A 1 -1 

where & represents reflection through the y axis in a two-dimensional x ~ y Cartesian 

coordinate system. Show that the bases for this point group are even and odd functions of 

x over a symmetric interval, -a < x < a . Now use group theory to show that 

j
u 

. x tdt==O _{{ f even ( ) fodd (. ) • 

12-37. We calculated the J[ -electron energy of a trimethylenemethane molecule in Problem 
10-31. Derive the symmetry orbitals for the Jr orbitals by applying the generating operator, 

Equation 12.32, to the atomic 2 p _ orbital on each carbon atom. Identify the irreducible 

representation to which each resulting symmetry orbital belongs. Derive the Huckel secular 

determinant corresponding to these symmetry orbitals and compare it to the one that you 

obtained in Problem 10-31. Compare the Jr -electron energies. 

12-38. We calculated the Jr -electron energy of a bicyclobutadiene molecule in Problem 10-32. 

U sing the point group C
2h

, derive the symmetry orbitals for the Jr orbitals by applying the 

generating operator, Equation 12.32, to the atomic 2P: orbital on each carbon atom. Identify 

the irreducible representation to which each resulting symmetry orbital belongs. Derive the 

Huckel secular determinant corresponding to these symlnetry orbitals and compare it to the 

one that you obtained in Problem 10-32. Compare the Jr -electron energies. 

12-39 . Use the generating operator, Equation 12.32, to derive the symmetry orbitals for the 

Jr orbitals of the (bent) allyl radical (C
1
H_·) from a basis set consisting of a 2p_ orbital on . ) ~ 



Problems 

each carbon atoIn. (Assume the three carbon atoms lie in the x-y plane.) Now create a set of 

orthonormal molecular orbitals from these symmetry orbitals. Sketch each orbital. How do 
your results compare with the Jf orbitals predicted by Huckel theory (see Problem 10-47)? 

The following four problerns illustrate the application of group theory to the formation of 

hvbrid orbitals. 
0/ 

12-40. Consider a trigonal planar molecule XY 3 whose point group is D
3h

. All three bonds are 
~ ~ 

unmoved by the operation of E; all three are moved by the operation of C
3

; one is unmoved 
by the operation of (;2; all three are unmoved by the operation of a

h
; all are moved by 

the operation of 53; and one is unmoved by the operation of avo This result leads to the 

reducible representation r == 3 0 I 3 0 1. Now show that r == A'l + E'. Argue now 
that this result suggests that hybrid orbitals with D3h symmetry can be formed from an s 

orbital and the p,. and P
y 

orbitals (or the d
x
2_/- and d-:2 orbitals) to give s p2 (or sd2

) hybrid 
orbitals. 

12-41. Consider a tetrahedral molecule XY 4 whose point group is T d . Using the procedure 
introduced in Problem 12-40, show that r == 4 1 0 0 2, which reduces to r == A I + T2 . 

Now argue that hybrid orbitals with T d symmetry can be formed from an s orbital and the 
p _, p. and p_ orbitals (or the d." d, ,and d 'c- orbitals) to give Sp3 (or sd3) hybrid orbitals. 

,\ ,\ ,. ,\ .' ,t " " " 

12-42. Consider a square planar molecule XY 4 whose point group is D 4h' Using the procedule 
introduced in Problem 12-40, show that r == 4 0 0 2 0 0 0 4 2 0, which reduced 

to r == A 1g + Big + Eu' Now argue that hybrid orbitals with D4h symmetry can be formed 
from a s orbital, a dx2 _\,2 orbital, and the Px and p \' orbitals to give Sdp2 hybrid orbitals. 

, , 

12-43. Consider a trigoanl bipyramidal molecule XY 5 whose point group is D
3h

. Using the 
procedure introduced in Problem 12-40, show that r == 5 2 1 3 0 3, and that r == 

2A'j + A~ + E'. Now argue that hybrid orbitals with D3h symmetry can be formed from an 
s orbital, a d_ 2 orbital, a p _ orbital, and p _ and p , orbitals to give Sdp3 hybrid orbitals. 

" " ,\.\ 
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Gerhard Herzberg was born in Hamburg, Germany, on December 25, 1904. He received his 
Doctor of Engineering Physics from the Technical University at Darmstadt in 1928, having 
published 12 papers in atomic and molecular physics. After spending a year with Max Born 
and James Franck at Gottingen, Herzberg returned to Darmstadt for a period during which 
he concentrated on spectroscopy. In 1935 , he was dismissed from his position because his 
wife was Jewish. Realizing he must leave Germany, he found a position at the University 
of Saskatchewan as a research professor in physics. In 1945, he received a position at the Yerkes 
Observatory at the University of Chicago. Herzberg 's early ambition had been to become an 
astronomer, but positions with funding were not available in Germany at that time. After three 
years , the Herzberg family returned to Canada. The National Research Council of Canada 
invited him to establish a laboratory for fundamental research in spectroscopy. Under his 
leadership, NRC became a world leader in spectroscopy. His three comprehensive volumes , 
Molecular Spectra and Molecular Structure: I. Spectra o/Diatomic Molecules; II. Infrared 
and Raman Spectra of Polyatomic Molecules, and III. Electronic Spectra and Electronic 
Structure of Polyatomic Molecules, are c lassic books in spectroscopy. Herzberg was awarded 
the Nobel Prize for chemistry in 1971 "for his contributions to the knowledge of electronic 
structure and geometry of molecules, particularly free radicals." 



CHAPTER 

Molecular Spectroscopy 

To this point, we have mainly focused on the theoretical description of atomic and 
molecular orbitals and molecular structure. The interaction of electromagnetic radiation 
with atoms and molecules, or spectroscopy, is one of the most important experimental 
probes for studying atomic and molecular structure. We will see in this chapter that 
the absorption properties of molecules in various regions of the electromagnetic spec­
trum yield important information about molecular structure. For example, microwave 
absorption spectroscopy is used to investigate the rotation of molecules and yields 
moments of inertia and bond lengths. Infrared absorption spectroscopy is used to study 
the vibrations of molecules and yields information concerning the stiffness or rigidity 
of chemical bonds. This information, in turn, provides how the potential energy of the 
molecule changes with the vibrational motion of the bonded atoms. We have already 
discussed the quantum-mechanical properties of a harmonic oscillator (Section 5-4) 
and a rigid rotator (Section 5-8), which are simple models for molecular vibrations 
and rotations, respectively. We will extend these models and compare the predictions 
of these extensions to experimental data. In this chapter, we will also introduce normal 
coordinates to describe the vibrational spectra of polyatomic molecules, which will 
give us the normal vibrational modes of a polyatomic molecule. We will then show 
how group theory can be used to predict which normal modes can be studied by in­
frared absorption spectroscopy. Next will come a discussion of the electronic spectra 
of diatomic molecules. Last, we use time-dependent perturbation theory to derive the 
various spectroscopic selection rules used throughout this chapter. 

13-1. Different Regions of the Electromagnetic Spectrum Are Used to 
Investigate Different Molecular Processes 

Molecular spectroscopy is the study of the interaction of electromagnetic radiation 
with molecules. Electromagnetic radiation is customarily divided into different energy 
regions reflecting the different types of molecular processes that can be caused by 495 
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such radiation. The classifications we focus on in this chapter are summarized in 
Table 13.1. The absorption of microwave radiation generally causes transitions between 
rotational energy levels; the absorption of infrared radiation generally causes transitions 
bet\veen vibrational levels and is accompanied by transitions between rotational energy 
levels; and the absorption of visible and ultraviolet radiation causes transitions between 
electronic energy levels, accompanied by simultaneous transitions between vibrational 
and rotational levels. The frequency of the radiation absorbed is given by 

b,.E == E - E == hv 
[( , (13.1) 

where E[( and E, are the energies of the upper and lower states, respectively. 

EXAMPLE 13-1 
Calculate II E for radiation of wave number, v == 1.00 em I. To what type of molecular 

process will absorption of this radiation correspond? 

SOL UTI 0 N: Recall that wave number is given by reciprocal wavelength, or that 

-v == -
A 

Therefore, II E is related to v by 

and so 

llE==hcv 

he 
llE == hv == - == hev 

A 

== (6.626 x 10-34 J·s)(2.998 X 108 m·s 1)(1.00 cm- I )(100 cm·m- I
) 

== 1.99 x 10-23 J 

According to Table 13.1, absorption of this of energy corresponds to a rotational 

transition. 

TABLE 13.1 
Regions of the electromagnetic spectrum and the corresponding molecular processes. 

Region Microwave Far infrared Infrared 

Frequency/Hz lOY-lOll lOll_lOLl IOU 10 14 

Wavelength/m 3 x I 0 - 1_3 x I 0 - 3 3 x 10-3-3 X 10-5 3 x I 0 - 5 -6.9 x I 0 - 7 

Wave number/cm -1 0.033-3.3 3.3-330 330-14500 

Energy/J. molecule-I 6.6 x 10-25-6.6 x 10-23 6.6 x 10-2:1-6.6 x 10- 21 6.6 x 10-21 -2.9 x 10- 19 

Molecular process Rotation of Rotation of Vibrations of 

polyatomic molecules small molecules flexible bonds 

Visible and 

ultraviolet 

10 14_10 16 

6.9 x 10-7-2 x 10 ... 7 

14500-50000 

2.9 x 10- 19_1.0 x 10- 18 

Electronic 

transitions 



13-2. Rotational Transitions Accompany Vibrational Transitions 

The quantum-mechanical properties of a diatomic harmonic oscillator were described 
in Section 5-4. Recall that the allowed energies of a harmonic oscillator are given by 

Ev == (v + ~)h\J v == 0, 1, 2, ... ( 13.2) 

where 

v == _1 (~) 1/2 

2][ fL 
(13.3 ) 

is the fundamental vibrational frequency of the oscillator. In Equation 13.3, k is the 
force constant and fL is the reduced mass of the molecule. Transitions among the 
vibrational levels that result from the absorption of radiation are subject to a selection 
rule that states that ~ v == ± 1 and that the dipole moment of the molecule must vary 
during a vibration. We will derive this and other selection rules in Sections 13-11 
through 13-13. For now, we will use the result that in the case of absorption, ~ v == + 1 
for a harmonic oscillator, so the spectrum consists of one line in the infrared region 
that occurs at the frequency \Jobs == (k 1 fL) 1/2 12][ . 

The vibrational energy of a molecule in wavenumbers is denoted by G(v), where 
G (v) is called the vibrational tern1. Currently, vibrational and electronic energies are 
tabulated in units of cm -1, so G (v) is often expressed in these units. Introducing G (v) 

into Equation 13.2 gives 

G(v) == (v +~) v (13.4 ) 

where G(v) == Evl he and 

v == 1 (~) 1/2 

2]"[ C jJ., 
( 13.5) 

A tilde (-) over a symbol emphasizes that the quantity is expressed in wavenumbers. 
We discussed the quantum-mechanical properties of a diatomic rigid rotator in 

Section 5-8. The allowed energies of a rigid rotator are given by 

1i 2 

E j == -J(J + 1) 
21 

J == 0, 1, 2, ... (13.6) 

where I is the moment of inertia, f.1 R;, and R e is the bond length. The degeneracy 
associated with Equation 13.6 is 

gj==2J+l (13.7) 

The rotational energy of a molecule in wavenumbers is denoted by F(J), which is 
called the rotational term. Once again, F (J) is commonly tabulated in units of cm I. 
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The transitions between the various rotational energy levels of a rigid rotator that 
result from the absorption of radiation are governed by a selection rule that states that 
~ J == ± 1 and that the molecule must have a permanent dipole moment. As we showed 
in Section 5-9, the rotational spectrum of a rigid rotator consists of a series of equally 
spaced lines in the microwave region. 

EXAMPLE 13-2 
Equation 13.6 is custonlarily written as 

-
f'(J) == BJ(J + 1) (13.8) 

- -
where B is called the rotational constant of the molecule. Derive an equation for B, 
which has units of wave numbers. 

SOL UTI 0 N: From Equation 13.6~ 

1; 1 
11-

EJ==-J(J+I) 
21 

where E
J 

is expressed in joules. The relation between energy and the rotational term 

is given by F( J) == E J/ he, so 

E 71 2 

F(J) == _J == J(J + J) 
hc 2hcl 

h 
== I J(J+l) 

8][- c 1 

Comparing this result with Equation 13.8, we see that 

- h 
B==--

8rr 2c / 
(13.9) 

Typical values of B for diatomic Inolecules are of the order of I cm I (cf. Table 13.2). 

Within the rigid rotator-harmonic oscillator approximation, the rotational and vi­
brational energy of a diatomic molecule is given by the sum of Equations 13.4 and 13.8 

E v.} == G(v) + F(}) == (v + ~)iJ + R)(} + 1) 
v == 0, 1, 2, 
} == 0, 1, 2, 

(13.10) 

where iJ and B are given by Equations 13.5 and 13.9, respectively. Typical values of iJ 
and B are on the order of 103 cm 1 and 1 cm -I, respectively, so the spacing between 

vibrational energy levels is about 100 to 1000 times the spacing between rotational 
levels. This result is shown schematically in Figure 13.1. 



TAB l E 13.2 
Spectroscopic parameters of some diatomic molecules in the ground electronic state. 

Molecule B /cm- I a /cm- I D/cm I v fcm I i v /cm- I Re(v - O)/pm Do/kJ ·mol- 1 
e e e e e 

H2 60.8530 3.0622 4.71 x 10-2 4401.213 121.336 74.14 432.1 
HI9F 20.9557 0.798 2.15 x 10-3 4138.32 89.88 91.68 566.2 

H 35 CI 10.5934 0.3072 5.319 x 10-4 2990.946 52.819 127.46 427.8 

H
79 Br 8.4649 0.2333 3.458 x 10-4 2648.975 45.218 141.44 362.6 

Hl271 6.5122 0.1689 2.069 x 10-4 2309.014 39.644 160.92 294.7 
12

C
160 1.9313 0.0175 6.122 x 10-6 2169.814 13.288 112.83 1070.2 

14
N

160 1.67195 0.0171 5.4 x 10-6 1904.20 14.075 115.08 626.8 
14N 14N 1.9982 0.01732 5.76 x 10-6 2358.57 14.324 109.77 941.6 
160 160 1.4456 0.0159 4.84 x 10-6 1580.19 11.98 120.75 493.6 
19FI9F 0.89019 0.13847 3.3 x 10-6 916.64 11.236 141.19 154.6 
35C135CI 0.2440 0.001 49 1.86 x 10-7 559.72 2.675 198.79 239.2 
79 Br79 Br 0.0821 0.0003187 2.09 x 10-8 325.321 1.0774 228.11 190.1 
12711271 0.03737 0.000 1138 4.25 x 10--9 214.502 0.6147 266.63 148.8 
35 CI 19F 0.5165 0.004358 8.77 x 10-7 786.15 6.161 162.83 252.5 
23Na23Na 0.1547 0.0008736 5.81 x 10-7 159.125 0.7255 307.89 71.1 
39 K 39K 0.05674 0.000 165 8.63 x 10-8 92.021 0.2829 390.51 53.5 

v=3 

v=2 

v=l 

v = 0 

FIG U R E 13.1 
An energy diagram showing the rotational levels associated with each vibrational state for a 
diatomic molecule. 

When a molecule absorbs infrared radiation, the vibrational transition is accompa­
nied by a rotational transition. The selection rules for absorption of infrared radiation 
in the rigid rotator-harmonic oscillator approximation are 

~v == +1 

~J==±l 

(absorption) (13.11) 
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For the case ~} == + 1, Equation 13.1 0 gives 

- -v (~}==+I)==E -£ 
obs p+I . .I+1 F • .I 

== (v + ~) v + B(} + 1)(} + 2) - (v + i) v - B}(] + 1) 
-== v + 2B(} + 1) } == 0, I, 2, ... (13.12) 

and likewise for the case ~} == -1, we have 

- - -vobs (~) == -1) == £1
1
+1..1_1 - Ep . J == V - 2B} ] == 1, 2, ... (13.13) 

In both Equations 13.12 and 13.13, } is the initial rotational quantum number. Typically, 

v ~ 103 cm I and B ~ 1 cm- I 
, so the spectrum predicted by Equations 13.12 and 13.13 

contains lines at 103 cm--- I ± integral multiples of~ 1 cm-- I
• Notice that there is no line 

at v because the transition ~} == 0 is forbidden. The rotational-vibrational spectrum 

of HBr(g) is shown in Figure 13.2. The gap centered around 2560 cm I corresponds 

to the missing line at v. On each side of the gap is a series of lines whose spacing is 

about 10 cm I. The series toward the high-frequency side is called the R branch and is 

due to rotational transitions with ~} == + 1. The series toward the low frequencies is 

called theP branch and is due to rotational transitions with ~} == -1. 

I 

2400 

FIG U R E 13.2 

P-branch 

2500 
--- I 
V / em 

R-branch 

I 

2600 
I 

2700 

The rotational-vibrational spectrUITI of the 0 ~ I vibrational transition of HBr(g). The R branch 
and the P branch are indicated in the figure. 

EXAMPLE 13-3 
The bond length in 12C 14N is 117 pm and its force constant is 1630 N· mi. Predict the 

vibrational-rotational spectrum of 12C14N. 



13-3. Vibration-Rotation Interaction 

SOL UTI 0 N: First we must calculate the fundamental frequency v (Equation 13.5) -
and the rotational constant B (Equation 13.9). Both quantities require the reduced 

mass, which is 

(12.0 amu) (14.0 amu) (1 661 10 77 k I) -_ 1.07 x 10-26 kg I-l == . x -- g·amu 
(12.0 + 14.0) amu 

Using Equation 13.5 for v, 

1 (k)1/2 1 ( 1630N.m- 1 )1/2 
\J == 2rre I-l == 2n(2.998 x 108 m) 1.07 x 10-26 kg 

== 2.07 X 105 m- I == 2.07 x 103 cm I 

-
U sing Equation 13.9 for B, 

- h h 
B==--

8n 2 c J 8n 2 C I-l R; 

6.626 x 10-34 J. S 

8rr 2(2.998 x 108 m·s 1)(1.07 x 10-26 kg)(117 X 10- 12 m)2 

== 1 91 m - 1 == 1. 91 em - 1 

-
The vibration-rotation spectrum will consist of lines at v ± 2B J where J == 1, 

2, 3, .... There will be no line at v, and the separation of the lines in the P and 

R branches will be 2B == 3.82 cm- 1 (cf. Figure 13.2 for HBr). 

If we cOlnpare the results of Example 13-3 with experimental data, or look closely 
at Figure 13.2, we see several features we cannot explain. Close examination shows 
that the lines in the R branch are more closely spaced with increasing frequency and 
that the lines of the P branch become further apart with decreasing frequency. We will 
discuss the spacing of the lines in the Rand P branches in the next section. 

13-3. Vibration-Rotation Interaction Accounts for the Unequal 
Spacing of the Lines in the P and R Branches of a 
Vibration-Rotation Spectrum 

The energies of a rigid rotator-harmonic oscillator are given by (Equation 13.10) 

E
V
,} == G(v) + F(J) == v(v + ~) + B J(J + 1) 

where B == h j8n2cfJvR;. Because the vibrational amplitude increases with the vibra­
tional state (cf. Figure 13.1), we expect that Rf' should increase slightly with v, causing 
- -
B to decrease with increasing v. We will indicate the dependence of B upon v by using 
- -
Bv in place of B: 

(13.14) 
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-
The dependence of B on v is called vibration-rotation interaction. If we consider a 
v == 0 -+ 1 transition, then the frequencies of the Rand P branches will be given by 
(Problem 13-10) 

V R ( ~ J == + 1) == E I, .1+1 - EO,.l 

== ~v + B1 (J + 1)(J + 2) - ~v - BoJ(J + 1) 
- - - - - - 2 

== V + 2BI + (3B} - Bo)J + (B1 - Bo)J J == 0,1,2, ... (13.15) 

and 

,..., -- - ,...,,..., ,...,,..., 2 
Vp(~J ==-1) == E1,./ I - Eo,./ == V - (B} + Bo)J + (B1 - Bo)J J == 1,2,3, ... 

(13.16) 
In both cases, J corresponds to the initial rotational quantum number. Note that Equa-

- -
tions 13.15 and 13.16 reduce to Equation~ 13.1_2 and 13.13 if B1 == Bo' Because the 
bond length increases with increasing v, B} < Bo' and therefore the spacing between 
the lines in the R branch decreases and the spacing between the lines in the P branch 
increases with increasing J. This behavior is reflected in Figure 13.2. 

EXAMPLE 13-4 
The lines in the Rand P branches are customarily labeled by the initial value of 

the rotational quantum number, giving rise to the lines. Thus, the lines given by 

Equation 13.15 are R(O), R(I), R(2), ... , and those given by Equation 13.16 are P(I), 
P(2), .... Given the following data for 1 H1271 

Line Frequency / em 1 

R(O) 2242.087 
R(1 ) 2254.257 
P(I) 2216.723 
P(2) 2203.541 

- -
calculate ,,8

0 
and Bl and Re(v==O) and Re(v== 1). Take the reduced mass of the molecule 

to be 1.660 x 10-27 kg. 

SO L UTI 0 N: Using Equation 13.15 with J == 0 and 1 and Equation 13.16 with 

J == 1 and 2, we have 

_ _ R branch 
2242.087 cm 1 == Vo + 2EI } 

2254.257 cm 1 == Vo + 6B, - 2Bo 

and 

_ _ Pbranch 
2216.723 em I == Vo - 2Bo } 

2203.541 cm- I == Vo + 2BI - 6Bo 



13-4. The Lines in a Pure Rotational Spectrum Are Not Equally Spaced 

If we subtract the first line of the P branch from the second line of the R branch, we 

find 

37.534 cm 1 == 613
1 

or B 1 == 6.256 em -I. If we subtract the second line of the P branch from the first line 

of the R branch, we find 

-I -3S.546 cm == 6Bo 

or 13
0 

== 6.424 em-I. Using the fact that 13v == h/SJf 2c/-lR;(v), we obtain Re(v == 0) == 
162.0 pm and Re(v == I) == 164.1 pm. 

~ 

The dependence of Bv on v is usually expressed as 

- - - I 
B == B - a (v + -) 
vee 2 

( 13.17) 

Using the values of Bo and Bl from the above example, we find that Be == 6.508 cm- 1 

and that Cxe == 0.168 cm- 1 
• Values of Be and Cte as well as other spectroscopic parameters 

are given in Table 13.2. 

13-4. The Lines in a Pure Rotational Spectrum Are 
Not Equally Spaced 

Table 13.3 lists some of the observed lines in the pure rotational spectrum (no vibrational 
transitions) of H35 Cl. The differences listed in the third column clearly show that the 
lines are not exactly equally spaced as the rigid rotator approximation predicts. The 
discrepancy can be resolved by realizing that a chemical bond is not truly rigid. As 
the molecule rotates more energetically (increasing ]), the centrifugal force causes the 
bond to stretch slightly. This small effect can be treated by perturbation theory, and the 
end result is that the energy can be written as 

(13.18) 

-
where D is called the centrifugal distortion constant. Rigid rotator and nonrigid rotator 
energy levels are sketched in Figure 13.3. 

The frequencies of the absorption due to ] ~ ] + 1 transitions are given by 

v == F(] + 1) - F(]) 

== 2B(] + 1) - 4D(] + 1)3 ] == 0, 1, 2, ... (13.19) 

-
The predictions of this equation are given in Table 13.3, where we obtain B == 
10.403 cm- I and D == 0.00044 cm- I for H35 Cl by fitting Equation 13.19 to the 
experimental data. These values differ slightly from those in Table 13.2 because of 
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TAB L E 13.3 
The rotational absorption spectrum of H35 Cl. 

veale == 2B(] + 1) - 4D(] + 1)3 
-

V calc == 2 B (] + 1) B == 10.403 cm-1 

Transition vobs/cm I ~v b /cm- 1 B == 10.243 cm- 1 jj == 0.00044 cm-1 
o s 

3~4 83.03 82.72 83.l1 
21.07 

4~5 104.10 103.40 103.81 
20.20 

5~6 124.30 124.08 124.46 
20.73 

6~7 145.03 144.76 145.04 
20.48 

7~8 165.51 165.44 165.55 
20.35 

8~9 185.86 186.12 185.97 
20.52 

9 ~ 10 206.38 206.80 206.30 
20.12 

10 ~ 11 226.50 227.48 226.52 

] 

-5 ----

- - ----4 

- - 3 - -

- - - 2 - -

- - - 1 
FIG U R E 13.3 

- - -0 - - ---- The rotational energy levels of (a) a rigid 
rotator and (b) a nonrigid rotator. 

(a) (b) 

higher-order effects. The inclusion of centrifugal distortion alters the extracted value 
,.., 

of B (see Problem 13-18). 

13-5. Overtones Are Observed in Vibrational Spectra 

Thus far we have treated the vibrational motion of a diatomic molecule by means of 
a harmonic-oscillator model. We saw in Section 5-3, however, that the internuclear 
potential energy is not a simple parabola but is more like that illustrated in Figure 5.5 



13-5. Overtones Are Observed in Vibrational Spectra 

(cf. also Figure 13.4). The dashed line in either of these figures depicts the harmonic 
oscillator. Recall from Equation 5.23 that the potential energy V (R) may be expanded 
in a Taylor series about R

e
, the value of R at the minimum of V (R), to give 

VCR) - VCR ) == - (R - R )2 + - (R - R )3 + ... 1 (d2 V) 1 (d3 V) 
e 2! dR 2 

R=R e 3! dR 3 
R=R e 

f' e 

k 2 Y3 3 Y4 4 == -x + -x + -x + ... 
2 6 24 

(13.20) 

where x is the displacement of the nuclei from their equilibrium separation, k is the 
(Hooke's law) force constant, and y. == (d

j 
V / d Rj) R=R . 

J e 

The harmonic-oscillator approximation consists of keeping only the quadratic term 
in Equation 13.20, and it predicts that there will be only one line in the vibrational 
spectrum of a diatomic molecule. Experimental data show there is, indeed, one domi­
nant line (called the fundamental) but also lines of weaker intensity at almost integral 
multiples of the fundamental. These lines are called overtones (Table 13.4). If the 
anharmonic terms in Equation 13.20 are included in the Hamiltonian operator for the 
vibrational motion of a diatomic molecule, the Schrodinger equation can be solved by 
perturbation theory to give 

v==O, 1,2, ... (13.21) 

where x. is called the anharlnonicity constant. The anharmonic correction in Equa-e 

tion 13.21 is much smaller than the harmonic term because x «1 (cf. Table 13.2). 
e 

Figures 13.4 and 13.5 show the levels given by Equation 13.21. Notice that the 
levels are not equally spaced as they are for a harmonic oscillator and, in fact, that 
their separation decreases with increasing v. This is reflected by the numbers in the last 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I , I 
I I 
I I 

• 
~ I ~ 

, ~ , I /' I I 

'.1 I / I 

'.\ I / \\ I 

'1 '/ "1 
l // 
\ I 

\ / 
R 

FIG U R E 13.4 
The energy states of a harmonic oscillator (dashed line) and an anharmonic oscillator 
superimposed on a harmonic-oscillator potential and a more realistic internuclear potential. 
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TAB L E 13.4 
The vibrational spectrum of H35 Cl. 

Transition 

Harmonic 

oscillator 

V b /cm- 1 
o s 

Anharmonic oscillator 

vObS/cm- 1 v - 2885.90v v = 2990.9v 52.82v(v + 1) vobs(O -+ v)/vobs(O -+ 1) 

o -+ I (fundamental) 2885.9 

5668.0 

8347.0 

2885.9 

5771.8 

8657.7 

2885.3 

5665.0 

8339.0 

1.000 

1.964 

2.892 

3.785 

4.642 

o -+ 2 (first overtone) 

o -+ 3 (second overtone) 

o -+ 4 (third overtone) 

o -+ 5 (fourth overtone) 

14 

1 2 

- 1 0 
I 

E 
u 

8 -

0 
0 
0 

6 ...... -

-.. 
;:::. 

~ 4 

2 

0 

4 

3 

2 

1 

10923.1 

13 396.5 

0 
(a) 

-

Harmonic 
oscillator 

11 543.6 

14429.5 

- - - - -

(b) 

Anharmonic 
oscillator 

10907.4 

13 370.2 

Fie U R E 13.5 
The vibrational energy state of H35 CI(g) 
calculated (a) in the harmonic-oscillator 
aproximation and (b) with a correction for 
anharmonicity. 

column of Table 13.4. Notice from Figure 13.5 that the harmonic-oscillator approxi­
mation is best for small values of v, which we will see are the most important values 
at room temperature. 

The selection rule for an anharmonic oscillator is that ~ v can have any integral 
value, although the intensities of the ~ v == ±2, ±3, ... transitions are much less than 
for the ~ v == ± 1 transitions. If we recognize that most diatomic molecules are in the 
ground vibrational state at room temperature, the frequencies of the observed 0 ~ v 

transitions will be given by 

V b == G(v) - G(O) == v v - X V v(v + 1) 
o see e v == 1, 2, ... (13.22) 

The application of Equation 13.22 to the spectrum of H35CI is given in Table 13.4. You 
can see that the agreement with experimental data is a substantial improvement over 
the harmonic-oscillator approximation. 



13-6. Electronic Spectra Contain Electronic, Vibrational, and Rotational Information 

EXAMPLE 13-5 
Given that ve == 536.10 cm- I and ie ve == 3.4 cm- I for 23NaI9P(g), calculate the fre­

quencies of the first and second vibrational overtone transitions. 

SOLUTION: We use Equation 13.22: 

V b == V V - .X v v (v + I) o see e v == 1, 2, ... 

The fundamental is given by letting v == 1, and the first two overtones are given by 

letting v == 2 and 3. 

Fundamental: - - 2 - - 529 3 -I v b == V - X 1) == . cm o see e 

First overtone: V b == 2v - 6i v == 1051.8 cm- 1 
o see e 

Second overtone: V b == 31) - 12i v == 1567.5 cm I 
o see e 

Note that the overtones are not quite integral multiples of the fundamental frequency, 
and the fundamental frequency is less than the frequency for pure harmonic motion. 

13-6. Electronic Spectra Contai n Electronic, Vibrational, and 
Rotational Information 

In addition to undergoing rotational and vibrational transitions as a result of absorb­
ing microwave and infrared radiation, respectively, molecules can undergo electronic 
transitions. The difference in energies between electronic levels is usually such that 
the radiation absorbed falls in the visible or ultraviolet regions. Just as rotational tran­
sitions accompany vibrational transitions, both rotational and vibrational transitions 
accompany electronic transitions. Figure 13.6 shows several electronic potential en­
ergy curves of 0,., with the vibrational levels indicated on each curve. Each vibrational 

..... 

level has a set of rotational levels associated with it, but these are too closely spaced to 
be shown in the figure. 

According to the Born-Oppenheimer approximation (Section 9-1), the electronic 
energy is independent of the vibrational-rotational energy. If we use an anharmonic 
oscillator-nonrigid rotator approximation, the total energy of a diatomic molecule, 
excluding translational energy, is given by 

-
Etotal = Vel + G(v) + F(J) 

= vel + Ve (V + ~) - X eVe (V + ~) 2 + B J (J + 1) - jj J2 (J + 1) 2 
( 13 .23 ) 

where Vel is the energy at the minimum of the electronic potential energy curve. The 
selection rule for vibronic transitions (vibrational transitions in electronic spectra) 
allows ~ v to take on any integral value. Because rotational energies are usually much 
smaller than vibrational energies, we will ignore the rotational terms in Equation 13.23 
and investigate only the vibrational substructure of electronic spectra. 
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FIG U R E 13.6 

6 

-
I 

§ 4 
"T 
o 

2 

o 

R 

A potential energy diagram of 0-" showing the vibrational states associated with the various 
"-

electronic states. 

In electronic absorption spectroscopy, the vibronic transitions usually originate 
from the v = 0 vibrational state, because this is usually the only state appreciably 
populated at normal temperatures (see Section 18--4). Consequently, the predicted 
frequencies of an electronic transition are given by 

- T- ( I -! I -! - f) ( I - II I - f! - If) -f' -! -, f (! 1) v = + -v - -x v - -v - -x v + v v - x v v v + obs e 2 e 4 e e 2 e 4 e e e e e (13.24) 

-
The term Te is the difference in energies of the minima of the two electronic potential 

energy curves in wave numbers, and the single primes and double primes indicate 
the upper and lower electronic states, respectively. The difference in energy between 
the minimum of the potential energy curve and the dissociated atoms is denoted 
by De' The symbol Do denotes the corresponding dissociation energy from the ground­
vibrational level of the potential (see Figure 13.7). Consequently, De = Do + ihv 
in the harmonic oscillator approximation, or Do + ih(ve - iXe ve ) in the anharmonic 
oscillator approximation. The values of Do for various diatomic molecules are listed 
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FIG U R E 13.7 
Two electronic states of a diatomic molecule, illustrating the two quantities Te and vo.o' 

in Table 13.2. Realize that ve and x eVe depend on the shape of the electronic potential 
energy curve at its mimimum and so should differ for each electronic state. 

The first two terms in parentheses in Equation 13.24 are the zero-point energies of 
the upper and lower states. Therefore, the quantity vo,o defined by 

corresponds to the energy of the 0 ~ 0 vibronic transition. Introducing 1}0.0 into Equa­
tion 13.24, we obtain 

Vobs == 1}0.0 + v; v' - x~ v; v' (v' + 1) v' == 0, 1, 2, ... ( 13.25) 

As v', the vibrational quantum number of the upper state, takes on successive values in 
Equation 13.25, the vibronic spacing becomes progressively smaller until the spectrum 
is essentially continuous as shown in Figures 13.8 and 13.9. Example 13-6 illustrates 
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The electronic spectrum due to v" == 0 to v' == 0, 1, 2, ... transitions. Such a set of transitions 
is called an v' progression. 
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Fie U R E 13.9 
The absorption spectrum of 12 (g) in the visible region. This spectrum is a v' progression. 



13-7. The Franck-Condon Principle Predicts the Relative Intensities of Vibronic Transitions 

how experimental data like that in Figure 13.9 can be analyzed to determine the 
vibrational parameters of excited electronic states. It is possible to analyze electronic 
spectra in even greater detail and to learn about the rotational properties of various 
electronic states, but we will not do that here. 

EXAMPLE 13-6 
The frequencies of the first few vibronic transitions to an excited electronic state of 

PN are: 

Vibronic transition 

0--+0 

0--+1 

0--+2 

V b /cm- I 
o s 

39 699.10 

40 786.80 

41 858.90 

Use these data to calculate v; and i~ v~ for the excited electronic state of PN. 

SO L UTI 0 N: Using Equation 13.25 with v' == 0, 1, and 2, we have 

39 699. 10 == i\U) 

40 786.80 == vo,o + v~ - 2i~ v; 
41 858.90 == 1)0,0 + 2v; - 6x~ 1)~ 

By subtracting the first equation from the second and third, we find 

1087.70 cm- l == v~ - 2i:,v~ 

2159.80 cm- I == 2v~ - 6i;v; 

Solving these two equations for v; and .t~ v;, we find 

v; == 1103.3 cm- I 

Analysis of electronic spectra yields structural information of excited states that would 
be difficult to obtain otherwise. 

13-7. The Franck-Condon Principle Predicts the Relative Intensities 
of Vibronic Transitions 

Figure 13.10 shows two electronic potential energy curves with the vibrational states 
associated with each electronic energy state indicated. In each vibrational state, the 
harmonic-oscillator probability densities are plotted (cf. Figure 5.8). Notice that except 
for the ground vibrational state, the most likely internuclear separation occurs near the 
exteme of a vibration, which is called a classical turning point because the vibrational 
motion changes direction at that point. Because electrons are so much less massive than 
nuclei, the motion of electrons is almost instantaneous relative to the motion of nuclei. 
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FIGURE 13.10 
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Two e lectronic potential energy curves showing the vibrational states associated with each 
electronic state. The minimum of the upper curve lies almost directly over the minimum of tbe 
lower curve. The shaded areas represent the harmonic-oscillator probability densities for each 
vibrational state. The vertical lines represent a series of 0 ~ v' vibronic transitions. 

Consequently, when an electron makes a transition from one electronic state to another, 
the nuclei do not move appreciably during the transition. Electronic transitions can 
therefore be depicted as vertical lines in a diagram such as in Figure 13.10. This argu­
ment can be made rigorous and is known as the Franck-Condon principle. The Franck­
Condon principle allows us to estimate relative intensities of vibronic transitions. In 
Figure 13.10, the minima of the two electronic states lie very nearly above each other. It 
turns out that the relative intensity of a 0 ~ v' transition is proportional to the product 
of the harmonic-oscillator wave functions in the two vibrational states. Figure 13.10 
shows that the overlap of the wave functions in the upper and lower vibronic states 
varies with v' . Thus, we obtain a di stribution of intensities like that shown in Figure 
l3.lla. 

Figure 13.12 shows another commonly occurring case, in which the minimum of 
the upper potential energy curve lies at a somewhat greater value of the internuclear 



v'=o I 2 3 v'=o I 2 3 

(a) (b) 

fiG U R E 13.11 
The distribution of intensities of the vibronic transitions for the case shown in (a) Figure 13.10 
and (b) Figure 13.12. 

v" 

R 

fiG U R E 13.12 
Two electronic potential energy curves showing the vibrational states and the harmonic­
oscillator probability densities as in Figure \3.10. In this case, however, the minimum of the 
upper curve occurs at a somewhat greater value of the internuclear separation than for the lower 
curve. The vertical lines represent the 0 ~ Vi vibronic transitions. 
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TAB L E 13.5 
The equilibrium bond lengths for various 
electronic states of °2 , 

Electronic state Te/cm- I 
Re/pm 

32:-
g 0 120.74 

I~ 7 918.1 121.55 
g 

12:+ 
g 13 195.2 122.67 

32:+ 
u 36096 142 

32:-
Ii 

49802 160 

separation than for the lower curve. (See, for example, Figure 13.6 and Table 13.5 
for °2 ,) In this case, the 0 ---+ 0 transition is not the most intense transition. The most 
intense transition as shown in Figure 13.12 is the 0 ---+ 1 transition, and the distribution 
of intensities for this case is like that given in Figure 13.11 b. If the excited-state 
potential curve is displaced to a sufficiently larger internuclear distance than that of 
the ground-state potential curve, then the absorption spectrum may not contain a line 
corresponding to v 0.0' The 1 ~: ---+ 3 n absorption spectrum of 12 (g), Figure 13.9, is 
such a case. The bond length increases from 266.6 pm to 302.5 pm as a result of this 
transition. The 0 ---+ 0 as well as several other low-energy vibronic transitions are not 
observed. Performing a detailed analysis of the intensities of such vibronic transitions 
yields much information about the shapes of electronic potential energy curves. 

Analyses of electronic spectra yield an exceedingly rich view of molecular struc­
ture. As we have seen, structural information of excited electronic states as well as 
ground electronic states can be obtained. In addition, the selection rules do not re­
quire the molecule to have a permanent dipole moment, nor must there be a change 
in dipole moment upon vibration. Thus, electronic spectroscopy yields information 
about homonuclear diatomic molecules (such as 12 (g) in Figure 13.9) that cannot be 
obtained from either microwave rotational or infrared vibrational absorption spec­
troscopy. All the parameters given in Table 13.2 can be obtained from electronic 
spectra. 

13-8. The Rotational Spectrum of a Polyatomic Molecule Depends 
Upon the Principal Moments of Inertia of the Molecule 

In this section, we will model a polyatomic molecule as a rigid network of N atoms. 
The rotational properties of a rigid body are characterized by its principal moments of 

inertia, which are defined in the following way. Choose any set of Cartesian axes with 



13-8. The Rotational Spectrum of a Polyatomic Molecule 

the origin at the center of mass of the body. The moments of inertia about these three 
axes are 

N 

Ixx == L mj [(Yj - Ycm)2 + (~j - Zcm )2] 
j=1 

N 

Iyy == L mj [(Xj - Xcm)2 + (Zj - Zcm)2] 
j=1 

N 

IZz. == L m
J 

[(X
J 

- Xcm)2 + (~/ - Ycm)2] 
j=1 

(13.26) 

where m. is the mass of the l'th atom situated at the point x., y., z· and x ,Y ,and 
J J J J em • em 

Z are the coordinates of the center of mass of the body. Notice that the terms in square 
em 

brackets in Equations 13.26 are the squares of the distances to the respective axes. In 
addition to these three moments of inertia, there are also products of inertia, such as 

N 

I == - '"" m (x - x ) (y - Y ) .xy ~././ em .I em 
j=1 

with a similar equation for Ixz and I
yz

. Now there is a theorem of rigid body motion that 
says that there always exists a particular set of Cartesian coordinates X, Y, Z, called 
the principal axes, passing through the center of mass of the body such that all the 
products of inertia (e.g., I.nJ vanish. The moments of inertia about these axes, I xx' I YY' 

and Izz are called the principal moments of inertia. The principal moments of inertia 
are customarily denoted by I A' I B' and I c· The convention is such that I A < I B < I c· 

If the molecule possesses some degree of symmetry, the principal axes are simple 
to find. For example, if the molecule is planar, one of the principal axes will be 
perpendicular to the plane. Usually an axis of symmetry of the molecule will be a 
principal axis. The C-H bond of CHCl

3 
is a three-fold axis of symmetry and also 

a principal axis. It is rarely necessary to calculate the principal moments of inertia, 
however, because extensive tables of these quantities are available in the literature. 
They are usually given in terms of rotational constants in units of cm I, defined by 

- h - h 
A == ---

8 ? ' n-cIA 
and C == ---

8n2clc 
(13.27) 

Because I A. < I B < I C' the rotational constants will always satisfy the relation 
-- - -

A > B > C. 
The relative magnitudes of the three principal moments of inertia are used to 

characterize a rigid body. If all three are equal, the body is called a spherical top; if 
only two are equal, the body is called a sYlnm,etric top; and if an three are different, 
the body is called an asymmetric top. The molecules CH

4 
and SF6 are examples of 

spherical tops; NH3 and C6H6 are examples of symmetric tops; and H
2
0 is the classic 
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example of an asymmetric top. Any molecule with an n-fold axis of symmetry, with 
n > 3, is at least a symmetric top. 

- - -
The quantum-mechanical problem of a spherical top (A == B == C) can be solved 

exactly, and the energy levels come out to be 

-
F(l) == B l(J + 1) 1 == 0, 1, 2, ... (13.28a) 

(which is the same as for a linear molecule). The degeneracy of each level, however, is 

(13.28b) 

The high symmetry of spherical top molecules precludes their having a permanent 
dipole moment, so they do not have pure rotational spectra. 

The quantum-mechanical problem of a symmetric top is also solvable in closed 
form. Because a symmetric top has a unique principal moment of inertia, there are 
two types of symmetric tops. When the unique moment of inertia is larger than the 

two equal ones, the molecule is called an oblate symmetric top. When the unique 

moment of inertia is smaller than the two equal ones, the molecule is called a prolate 
syn1metric top. Benzene is an example of an oblate symmetric top, and chloromethane 
is an example of a prolate symmetric top (Figure 13.13). A less "chemical" example 
of an oblate symmetric top is an O-ring, and that of a prolate symmetric top is a 

. 
cIgar. 

EXAMPLE 13-7 
Classify BCl

3 
and CH]I as either an oblate or a prolate symmetric top. 

SOL UTI 0 N: (a) BCl3 is a planar molecule. The center of mass of BCl3 sits at 
the central boron atom. Therefore, one of the principal axes is perpendicular to the 
molecular plane; the other two will lie in the plane of the molecule. The unique axis 
is the one perpendicular to the plane of the molecule. (Call this the z axis.) All three 
chlorine atoms lie as far as possible from this axis, and so the moment of inertia about 
this axis (lzz ) will be larger than the other two. The moments of inertia about the two 
axes lying in the plane of the molecule (the x and y axes) can be made to be equal by 

orienting the axes properly, and in any case the chlorine atoms will lie closer to either 

one of these axes than to the z axis. Therefore, I xx == Iyy < Izz' and so BCl3 is an 
oblate symmetric top. 

(b) CH3I is a tetrahedral molecule. The center of mass of CH31 will sit along the 
C-I bond somewhere between the carbon atom and the iodine atom, and the unique 

axis (call it the z axis) contains the C-I bond. Only the three relatively light hydrogen 
atoms lie off this axis, and so the moment of inertia about this (unique) axis must be 

smaller than the moments of inertia about the other two axes. Furthermore, these two 
axes (x and y) can be oriented so that I x x == I y y' All five atoms lie off these two axes, 

and so Ixx == Iyy > Izz' and CH31 is a prolate symmetric top. 



Prolate symmetric top 

fA < IB = I e 

(a) 

FIG U R E 13.13 

f 

Oblate symmetric top 

Ie > IA = la 

(b) 

(a) Chloromethane is an example of a prolate symmetric top, and (b) benzene is an example of 
an oblate symmetric top. The assignments of the axes are in accord with the convention that 
fA < f B < Ie 

The energy levels of an oblate symmetric top are given by 

F(J, K) = B}(J + 1) + (C - B)K 2 (13.29) 

with) = 0 , 1, 2, ... and K = 0, ±l, ±2, ... , ±1 and with a degeneracy glK = 
2} + 1. Note that the energy levels depend upon two quantum numbers, } and K. 
The quantum number 1 is a measure of the total rotational angular momentum of the 
molecule, and K is a measure of the component of the rotational angular momentum 
along the unique axis of the symmetric top; that is, the axis having the unique moment 
of inertia. 

The energy levels of a prolate symmetric top are given by 

F(J, K) = B1(J + 1) + (A - B)K 2 (13.30) 

with 1 = 0, 1, 2 , . . . and K = 0, ±l , ±2, . .. , ±1 and a degeneracy glK = 21 + 1. 
Not all symmetric top molecules have dipole moments (C6H6 and XeF

4
, for exam­

ple), but of those that do, most have the dipole moment directed along the symmetry 

axis (NH3 and CH3CN, for example). The selection rules for such molecules are 

l'>.}=0,±1 l'>.K=O 

l'>.1=±1 l'>.K=O 

for Kj ° 
for K = ° (13.31) 
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For the selection rules, .6.] = + 1 (absorption) and .6. K = 0, 

-v = 2B(] + 1) (13.32) 

which is the same result as for a linear molecule. 
Polyatomic molecules, however, are likely to be less rigid than diatomic molecules, 

and so centrifugal distortion effects are more pronounced for polyatomic molecules. If 
we take these effects into account, Equation 13.32 becomes 

(13.33) 

- -
where D J K and D J are centrifugal distortion constants. Equation 13.33 predicts that 
any rotational transitions will consist of a series of lines under high resolution as 
K takes on the values 0, 1, 2, .... Figure 13.14 shows this K dependence for 
the ] = 8 ~ 9 transition of CF

3
CCH. Thus, although the rigid-rotator model of a 

symmetric top molecule predicts the same spectrum as that of a linear molecule, an 
observable distinction occurs when centrifugal distortion is taken into account. 

There are no simple expressions for the energy levels of an asymmetric top 
molecule. Generally, their rotational spectra are fairly complicated and do not exhibit 
any simple pattern. 

13-9. The Vibrations of Polyatomic Molecules Are Represented by 
Normal Coordinates 

The vibrational spectra of poly atomic molecules tum out to be easily understood in 
terms of the harmonic-oscillator approximation. The key point is the introduction of 
normal coordinates, which we discuss in this section. 

K=8 7 6 5 4 3 

I. 6 MHz --------)00-

oil( v--

FIG U R E 13.14 
Part of the J = 8 ~ 9 transition of CF 3 CCH, showing the effect of centrifugal distortion. 
Notice that the transitions shown in the figure span only 6 MHz. 



13-9, The Vibrations of Polyatomic Molecules Are Represented by Normal Coordinates 

Consider a molecule containing N nuclei. A complete specification of this molecule 
in space requires 3N coordinates, three Cartesian coordinates for each nucleus. We 
say that the N -atomic molecule has a total of 3N degrees of freedom. Of these 3N 

coordinates, three can be used to specify the center of mass of the molecule. Motion 
along these three coordinates corresponds to translational motion of the center of mass 
of the molecule, and so we call these three coordinates translational degrees offreedom. 

It requires two coordinates to specify the orientation of a linear molecule about its center 
of mass and three coordinates to specify the orientation of a nonlinear molecule about 
its center of mass. Because motion along these coordinates corresponds to rotational 
motion, we say that a linear molecule has two degrees of rotational freedom and that a 
nonlinear molecule has three degrees of rotational freedom. The remaining coordinates 
(3N - 5 for a linear molecule and 3N - 6 for a nonlinear molecule) specify the 
relative positions of the N nuclei. Because motion along these coordinates corresponds 
to vibrational motion, we say that a linear molecule has 3N - 5 vibrational degrees 

offreedom and that a nonlinear molecule has 3N - 6 vibrational degrees of freedom. 
These results are summarized in Table 13.6. 

TAB L E 13.6 
The number of various degrees of freedom of a polyatomic molecule 
containing N atoms, 

Translational degrees of freedom 

Rotational degrees of freedom 

Vibrational degrees of freedom 

EXAMPLE 13-8 

Linear 

3 

2 

3N 5 

Nonlinear 

3 

3 

3N - 6 

Determine the number of various degrees of freedom of HCI, CO
2

, H
2
0, NH

3
, 

and CH
4

, 

SOLUTION: 

Total Translational Rotational Vibrational 

HCl 6 3 2 1 

CO2 (linear) 9 3 2 4 

H,)O 9 3 3 3 ... 

NH3 12 3 3 6 

CH4 15 3 3 9 

In the absence of external fields, the energy of a molecule does not depend upon 
the position of its center of mass or its orientation. The potential energy of a polyatomic 
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molecule is therefore a function of only the 3N - 5 or 3N - 6 vibrational coordinates. 
If we let the displacements about the equilibrium values of these coordinates be denoted 

by q I' q2' ... , q N
vih

' where N
Vib 

is the number of vibrational degrees of freedom, then the 
potential energy is given by the multidimensional generalization of the one-dimensional 
case given by Equation 5.23: 

I
N 'h N 'b \'l \1 

Ll V == V (q l' qz' ... , q N ' ) - V (0, 0, ... , 0) == - "" 
\Jh 2 ~ ~ 

i = I j 1 

I N 'b N 'h VI \1 

= 2 LLfjq;q; + ... 
i=1 j I 

(13.34) 

In general, there are other terms that contain higher powers of qi' but these anhar­
monic terms are neglected here. The presence of the cross terms in Equation 13.34 
makes the solution of the corresponding Schrbdinger equation very difficult to obtain. 
A theorem of classical mechanics, however, allows us to eliminate all the cross terms in 
Equation 13.34. The details are too specialized to go into here, but a straightforward pro­
cedure using matrix algebra can be used to find a new set of coordinates {Q . }, such that 

.J 

N 1 \ih 

Ll V == - " F. Q~ 2 ~ ./ } 
j~l 

(13.35) 

Note the lack of cross terms in this expression. These new coordinates are called 
norlnal coordinates or nornlal Inodes. In terms of normal coordinates, the vibrational 
Hamiltonian operator is 

A 

H == vib 

N "} J N, 
\Jb n - d - 1 \Ih ') 

L, + - LF,Q~ 
. I 211. d Q: 2. 1 ./ .J 

./= r-"-'j ./ }= 

(13.36) 

Recall from Section 3-9 that if a Hamiltonian operator can be written as a sum of 
independent terms, the total wave function is a product of individual wave functions and 
the energy is a sum of independent energies. Applying this theorem to Equation 13.36, 
we have 

N 'b N 'h \,1 VI 

H. == H .. == A L A L 
Vlb Vlb,j 

j I j=1 

and 

liZ d 2 1 ___ +_FQ2 
2fJ.,. dQ~ 2 j j 

j .J 

each v. == 0, 1, 2, ... 
.J 

(13.37) 

(13.38) 



13-9. The Vibrations of Polyatomic Molecules Are Represented by Normal Coordinates 

The practical consequence of Equations 13.36 through 13.38 is that under the 
harmonic-oscillator approximation, the vibrational motion of a polyatomic molecule 
appears as N

Vib 
independent harmonic oscillators. In the absence of degeneracies, 

each will have its own characteristic fundamental frequency v .. The normal modes 
J 

of formaldehyde (H,.,CO) and chloromethane (CH1CI) are shown in Figure 13.15. A 
4 _ 

selection rule for vibrational absorption spectroscopy is that the dipole moment of the 
molecule must vary during the normal mode motion. When this is so, the normal mode 
is said to be infrared active. Otherwise, it is infrared inactive. 

The three normal modes of H2 0 are shown below. 

Symmetric stretch 
VI 

3650 cm- I 

Asymmetric stretch 
V3 

3760 cm- l 

Bend 
v,., 

1600 ~m-l 

Note that the dipole moment changes during the motion of all three normal modes, so 
all three normal modes of H,., 0 are infrared active. Therefore, H,., 0 has three bands in 

~ 4 

its infrared spectrum. For CO
2

, there are four normal modes (3N - 5). 

•• • •• 
Symmetric stretch 

VI 

(infrared inacti ve) 

•••• •• 
Asymmetric stretch 

V3 
2349 cm- I 

8 

• 
® 8 
.-e 

Bends 
(doubly degenerate) 

V2 
667 cm- l 

(infrared active) 

There is no change in dipole moment during the symmetric stretch of CO
2

, so this 
mode is infrared inactive. The other modes are infrared active, but the bending mode 
is doubly degenerate, so it leads to only one infrared band. 

The two infrared active normal modes of CO2 differ in an important respect. In the 
asymmetric stretch, the dipole moment oscillates parallel to the molecular axis, and in 
the bending mode, it oscillates perpendicular to the molecular axis. These two modes 
lead to quite different vibration-rotation spectra. The parallel case is similar to that of 
a diatomic molecule. The selection rules, 

~v ==+1 

~J==±l 

(absorption) 
(parallel band) 

are the same as for a diatomic molecule and lead to a vibration-rotation spectrum 
consisting of a P branch and an R branch, like that shown in Figure 13.2. Such an 
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Fie U R E 13.15 
The normal modes of formaldehyde and chloromethane. For a given normal mode~ the arrows 
indicate how the atoms move. Each atom oscillates about its equilibrium position with the same 
frequency and phase, but different atoms have different amplitudes of oscillation. Although 
specific molecules are indicated~ the normal modes are characteristic of the symmetry of the 
molecules and so are more general. The designations in parentheses will be explained in the 
next section. 

absorption band is called a parallel band. If the dipole moment oscillates perpendicular 
to the intermolecular axis, the selection rules are 

~v ==+1 
~J==O,±1 

(absorption) 
(perpendicular band) 

In this case, there is a band due to ~ J == 0, called the Q branch, centered between the 
P and R branches, as shown in Figure 13 .16b for the bending vibration of HeN. 



R Q 
p 

R 

200 3600 700 00 
- - I vi c m Ii I cm- I 

(a) (b) 

FIG U R E 13.16 

Two bands in the infrared spectrum of HeN. (a) A parallel band, showing the P and R branches 
and no Q branch. (b) A perpendicular band showing all three branches. 

13-10. Normal Coordinates Belong to Irreducible Representations 
of Molecular Point Groups 

Group theory can be used to characterize the various normal coordinates belonging to 
any molecule. This section uses the group-theoretic ideas presented in Chapter 12. (If 

you have not studied Chapter 12, then you may skip this section and go on to the next 
section.) 

The fact that the vibrational properties of a molecule cannot change under any 
symmetry operation of the molecule forces the normal coordinates to transform as the 
irreducible representations of the group that describes the molecule. For example, let's 
consider the normal coordinates of a water molecule shown in the previous section. 
Recall from Chapter 12 that H

2
0 belongs to the C2v point group, whose character table 

is given in Table 12.7. If we let the symmetric stretch normal coordinate be Q" , we can 
write (see Figure 12.1 for a reminder of the symmetry elements of the C

2
t' point group) 

A 

E 

A, 

U,' 
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or, 

A " 
E Q ss == Qss, C2 Qss == Qss, 0-11 QSS == Q ss ' 

which shows that Qss belongs to the totally symmetric irreducible representation A l' 
Similarly, the bending mode can be shown to belong to Al . For the asymmetric stretch 

(Qas)' however, we have 

-. '. -~ +-

0 0 0 0 
A / \ / \ / \ / \ 

E - A -
H H - H H o-v H H - H H 

/ ~ / ~ I ~, I \l. J \ ,t 

... -4-- ... ... 
0 0 0 0 

1\ / \ / \ A, / \ / \ - -c) - crt' -
H H H H H H H H , 

~ ~ 
\ I \ / \, f 

II' \ ~ II' 

or , 

A " 
EQas == Qas' C2 Qos == - Q(lS' " Q Q (J --

l' ({S - (IS' 

which shows that Q belongs to B". as _ 

EXAMPLE 13-9 
The normal modes in Figure 13. 15 are labelled by the irreducible representations to 
which they belong. Verify the assignments for the six normal modes of H2CO. 

SOL UTI 0 N: The molecular point group of H2 CO is C2v ' whose character table is 
given in Table 12.7. We can express our results by the following table, whose entries 

are the result of acting upon the normal mode with the symmetry elements of C
2v 

(see 

Figure 12.1). 

~ ~ 

" E C., " ! a a v v 

v, 1 1 1 1 

v., 1 1 1 1 

V3 1 1 1 I 

v4 1 -1 -I 1 

V5 1 -1 -1 1 

V6 1 -1 1 -1 

By referring to Table 12.7, we see that v,, v2' and V3 belong to A" that v4 and V5 belong 

to B2 , and that v 6 belongs to B I • 

We can use group theory to determine how many normal coordinates belong to each 

irreducible representation. The procedure is to place an arbitrary (three-dimensional) 
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vector onto each of the N atoms in the molecule to construct a 3N x 3N reducible 
representation, which we then reduce using the character table. Actually, all we need are 
the characters of the 3N x 3N reducible representation, which can be obtained fairly 
easily. We carried out a similar procedure in Section 12-9 when we derived symmetry 
orbitals for various molecules. We learned some simple rules there that allowed us to 
write the character for each group operation. For example, if an atom is moved under 
the symmetry operation, the contribution to the character is 0 for that atom. Only atoms 
whose positions are unchanged contribute to the character of any group operation. 
Because the identity operation leaves the (three-dimensional) vector on each of the 

A A 

N atoms unchanged, its character, X (E), is equal to 3 N. When the operation C
2 

leaves 
A 

an atom unmoved, it contributes -1 to X (C2 ) because two of the axes change sign 
and one does not. When the operation a leaves an atom unmoved, it contributes + 1 
to X (a) because two of the axes are left unchanged and one changes sign. Table 13.7 
summarizes the contributions to the characters that each unmoved atom makes to the 
3 N-dimensional reducible representation. The entries for the various rotation axes in 
Table 13.7 can be deduced by remembering that the matrix for a rotation through an 
angle e about the z axis is (MathChapter F) 

! 
X 

! 

Y 
I 

Z 

cose 
sin e 

o 

-sine 0 
cose 0 
o 1 

x 

z 

where e == 3600 
/ n. For a rotation-reflection axis, the 1 in the above matrix becomes 

a-I. 

TAB L E 13.7 
The contribution that each unmoved atom makes to the character 
of the 3 N-dimensional representation obtained by operating on 
arbitrary (three-dimensional) vectors attached to each of the N 
atoms in the molecule. 

" Operation, R 

" 
E 

A 

(5 

A 

I 

"-

S., 

" Contribution to X (R) per unmoved atom 

3 

1 

-3 

-1 

o 
1 

2 

-3 

-2 

-1 

o 
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Let's apply this procedure to H
2
0. The point group is C

2v
' whose character table 

A 

is given in Table 12.7. The operations C2 and a
v 

leave only the oxygen atom unmoved, 
and a~ leaves all three atoms unmoved. Therefore, the nine-dimensional reducible 
representation is 

A 

E 

r 3N 9 -1 1 3 

We can use Equation 12.23 to reduce r 3N into its irreducible representations: 

a
A 

== ~[(9) x (1) + (-I) x (1) + (1) x (I) + (3) x (1)] == 3 
1 

aA == ~[(9) x (1) + (-1) x (1) + (1) x (-1) + (3) x (-1)] == 1 
'J 

a
B 

== ~[(9) x (1) + (-1) x (-1) + (1) x (1) + (3) x (-1)] == 2 
1 

a B == ~[(9) x (1) + (-1) x (-1) + (1) x (-1) + (3) x (1)] == 3 
'2 

or 

This sum of irreducible representations accounts for all the degrees of freedom of the 
molecule. The irreducible representations of x, y, and z (B I' B2, and AI) correspond 
to the three translational degrees of freedom, which we will denote by T.'(, r.y' and Tz' 

respectively, and those of R
x

' Ry ' and R: (B2' B), and A 2) correspond to the three 
rotational degrees of freedom (see Table 12.7). If we subtract these from r 3N , we 
have 

f Yib == 2A) + B2 

consistent with our determination of the symmetries of the normal coordinates of H20 
using their depictions shown earlier. 

E X AMP l E 1 3-1 0 
Determine the symmetries of the normal coordinates of a planar XY 3 molecule. 

SOL UTI 0 N: The point group is D
3h

, whose character table is given in Table 12.1l. 
U sing Table 13.7 to determine the characters of the 12-dimensional reducible repre­
sentation, we obtain 

r3N 12 0 -2 4 -2 2 

Using Equation 12.23, we get 

r == A' + A' + 3 E' + 2A" + E" 3N I 2 2 
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The D3h character table shows that ~t and T" jointly belong to E', that Rx and R" 
jointly belong to E", that T., belongs to A~, and that R., belongs to A;. Subtracting 

~ ~ 

these from r 3N gives 

['. == A' + 2EI + A" 
Vlb I 2 

Because E' is two-dimensional, [' vib represents the six normal modes of a D3h XY 3 

molecule such as S03 or BF 3' 

After we learn about selection rules in the next three sections, we will return to 
group theory and show how it can be used to determine which normal coordinates are 
infrared active and which are not. 

13-11. Selection Rules Are Derived from Time-Dependent 
Perturbation Theory 

The spectroscopic selection rules determine which transitions from one state to another 
are possible. The very nature of transitions implies a time-dependent phenomenon, so 
we must use the time-dependent Schrodinger equation (Equation 4.15) 

"-

"- aw 
Hw == th­at 

We showed in Section 4-4 that if H does not depend explicitly on time, then 

where l/f
n 
(r) satisfies the time-independent Schrodinger equation 

"-

H'l/l' (r) == E 'Ill' (r) 
¥-'n n¥-'n 

(13.39) 

Recall that l/ff; l/f n is independent of time and that the states described by l/f
n 

are called 
stationary states (cf. Section 4-4). 

The idea of stationary states applies to isolated systems. Consider now a molecule 
interacting with electromagnetic radiation. The electromagnetic field may be written 
approximately as 

E == Eo cos 2n vt (13.40) 

where v is the frequency of the radiation and Eo is the electric field vector. If J1 is the 
dipole moment of the molecule (see Problem 10-47 for a review of molecular dipole 
moments), then the Hamiltonian operator for the interaction of the electric field with 
the molecule is (Problem 13-49) 

H(I) == -JLoE == -JLoEo cos 2JTvt (13.41) 
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Thus, we must solve 

where 

~ 3\11 
H\II == ih­at 

iJ == iJ(O) + iJ( I) == iJ(O) - J..L' Eo cos 2rr 1) t 

(13.42) 

(13.43) 

and iJ (0) is the Hamiltonian operator of the isolated molecule. We will see below that 
the time-dependent term iJ ( I) can cause transitions from one stationary state to another. 

To solve Equation 13.42, we will treat the time-dependent term iJ(l) as a small 

perturbation. The procedure we will use is called time-dependent perturbation theory 
and is an extension of the perturbation theory developed in Chapter 7 to time-dependent 
phenomena. Although an isolated molecule generally has an infinite number of sta­
tionary states, for simplicity of notation, we will consider only a two-state system. For 
such a system, in the absence of time-dependent perturbations 

( 13.44) 

where there are only two stationary states, 1/J) and 1/J2' with 

and (13.45) 

EXAMPLE 13-11 
Show that WI and w

2 
given by Equation 13.45 satisfy Equation 13.44. 

SOL UTI 0 N: Substitute \II I (t) == 1/1 I e- i 
E) tin into Equation 13.44 to get 

and 

In the first line, we have used the fact that fI(O) is independent of time, and in the 

second line, we used the fact that 1/1) is independent of time and that iI(O)'l/JI == E1'l/Jj' 
The proof that w-2 is also a solution is silllilar. 

Assume now that initially the system is in state 1. We let the perturbation begin at 

t == 0 and assume that \Ii (t) is a linear combination of \111 (t) and \112 (t) with coefficients 
that depend upon time. Thus, we write 

(13.46) 
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where a I (t) and a2 (t) are to be determined. Recall from Chapter 4 that for such a 
linear combination, a; a

i 
is the probability that the molecule is in state i. We substitute 

Equation 13.46 into Equation 13.42 to obtain 

a (t)H(O)W + a (t)H(O)W + a (t)H(')W + a (t)H(l)w 
I I 2 2 J I 2 2 

a w a w 7 dad a7 == a l (t)in I + a2 (t)in. ~ + in WI -' + inw)-~ 
dt dt dt ~ dt 

(13.47) 

U sing the result given in Example 13-11, we can cancel the first two terms on both 
sides of Equation 13.47 to obtain 

" . A da da 
a (t)H(l)w + a (t)H(I)W == inw _I + inw --.2 

I I 2 2 1 dt 2 dt (13.48) 

We now multiply Equation 13.48 by l/I; and integrate over the spatial coordinates 
~ . 

to get 

(13.49) 

The first integral on the right side vanishes because WI == l/I t e E\ t IT1 (Equation 13.45) 
and because l/I2 and l/II are orthogonal. Similarly, the second integral on the right side 
is equal to the iE2tlnda2/dt because \Il2 == l/I2e-iE2tln and because l/I2 is normalized. 
Solving Equation 13.49 for ihda2/dt gives 

Using Equation 13.45 for \II I and \Il 2 finally gives 

in _2 == a (t) exp I 2 '1lr* H(I)'1lr dr + a (t) '1lr* H(I)'1lr dr da [-iCE -E)t]! A.· ! A 

dt I n If'2 If'1 2 If'2 If'2 

(13.50) 
Because the system is initially in state 1, 

(13.51 ) 

" 
Because H(l) is considered a small perturbation, there are not enough transitions out 
of state 1 to cause a l and a2 to differ appreciably from their initial values. Thus, as an 
approximation, we may replace a, (t) and a

2
(t) in the right side of Equation 13.51 by 

their initial values [at (0) == 1, a2 (0) == 0] to get 

(13.52) 
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For convenience only, we will take the electric field to be in the z direction, in which 
case we can write 

where /viz is the z component of the molecular dipole moment and Eoz is the magni­
tude of the electric field along the z-axis. We substitute this expression for fI(l) into 
Equation 13.52 and obtain 

(13.53) 

where we have defined 

(13.54) 

The quantity (/vi~) 12 is the z component of the transition dipole moment between 
states 1 and 2. Note that if (/vi:,) 12 == 0, then da2 / dt == 0 and there will be no transitions 
out of state 1 into state 2. The dipole transition moment is what underlies the selection 
rules assumed so far. Transitions occur only between states for which the transition 
moment is nonzero. 

We will derive explicit selection rules in the next two sections, but before doing so 
let's integrate Equation 13.53 between 0 and t to obtain 

Because we have taken E2 > E), the so-called resonance denominators in Equa­
tion 13.55 cause the second term in this equation to become much larger than the first 
term and be of major importance in determining a2 (t) when 

E - E ~ hv 
2 1 

(13.56) 

Thus, we obtain in a natural way the Bohr frequency condition we have used repeatedly. 
When a system makes a transition from one state to another, it absorbs (or emits) a 
photon whose energy is equal to the difference in the energies of the two states. 

The probability of absorption or the intensity of absorption is proportional to the 
probability of observing the molecules in state 2, which is given by a; (t )a2 (t). Using 
only the second term in Equation 13.55, we obtain (Problem 13-40) 

(13.57) 

Equation 13.57 is plotted in Figure 13.17 . Note that the plot indicates strong absorption 

when liw == hv ~ E2 - E). 



FIG U R E 13.17 
The function F(w) = sin2[(E2 - E

J 
- nw)t/2n]/(E2 - E

J 
- nw)2, which represents the 

probability of making a 1 ~ 2 transition in the time interval 0 to t, plotted against frequency 
w . Note that this function peaks when E 2 - E I = n w = h v . 

13-12. The Selection Rule in the Rigid-Rotator Approximation 
Is~J==±l 

We can use Equation 13.54 and the properties of the spherical harmonics to derive the 
selection rule for a rigid rotator. Recall that the rigid-rotator wave functions are the 
spherical harmonics, which are developed in Section 6-2. Once again, if we assume 
the electric field lies along the z-axis, then the dipole transition moment between any 
two states in the rigid-rotator approximation is 

U sing the fact that J-L z == J-L cos e gives 

{2IT {IT 
(11) },M,]',M' = 11 io io y;!' (8, ¢)* Y: (8, ¢) cos 8 sin 8d8d¢ (13.58) 

Notice that {L must be nonzero for the transition moment to be non-zero. Thus, we have 
now proven our earlier assertion that a molecule must have a permanent dipole moment 
for it to have a pure rotational spectrum, at least in the rigid-rotator approximation. 

We can also determine for which values of J, M, J', and M' the integral in 
Equation 13.58 will be nonzero. Recall that (Equation 6.30) 

(13.59) 

where NJM is a normalization constant. Substitute Equation 13.59 into Equation 13.58 
and let x == cos e to obtain 

(13.60) 
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The integral over ¢ is zero unless M == M', so we find that ~ M == 0 is part of the 
rigid-rotator selection rule. Integration over ¢ for M == M' gives a factor of 2JT, so we 
have 

(13.61) 

We can evaluate this integral in general by using the identity (Problem 6-8) 

(2J + l)xPJMI(x) == (J -IMI + I)PJ~~(x) + (J + IMI)PjM;(x) (13.62) 

By using this relation in Equation 13.61, we obtain 

(fJ.,,)J,M:J',M' == 2JTfJ.,NJM Nj'M 11 dx pi~l(x) 
-I 

[ 
(J - IMI + 1) plMI (x) + (J + IMI)) plMI (X)] 

2J + 1 J+I 2J + 1 J 1 

Using the orthogonality relation for the pj"-t (x) (Equation 6.28), we find that the above 

integral will vanish unless J' == J + 1 or Jf == J - 1. This finding leads to the selection 
rule J' == J ± 1, or ~ J == ± 1. Thus, we have shown that the selection rule for pure 
rotational spectra in the rigid-rotator approximation is that the molecule must have a 
permanent dipole moment and that ~J :=; ±1 and ~M == O. 

EXAMPLE 13-12 

U sing the explicit formulas for the spherical harmonics given in Table 6.3, show that 
the rotational transition J == 0 ~ J == 1 is allowed, but J == 0 ---+ J == 2 is forbidden 
in microwave spectroscopy (in the rigid-rotator approximation). 

SOL UTI 0 N: Referring to Equation 13.58, we see that we must show that the integral 

is nonzero and that 

, 
[O~2 = t" r yt (tJ, cp)* ~~ (tJ, cp) cos tJ sin tJdtJdcp In Jo 

is equal to zero. In either case, we can easily see that the integral over ¢ will be zero 

unless M == 0, so we will concentrate only on the e integration. For Io~ l' we have 

17T ( 3 ) 1/2 ( 1 ) 1/2 
In 1 == 2JT - cos e - cos e sin ede 
~ 0 4n 4n 

== J3 f 1 dXX2 == _1_ =¥: 0 
2 -1 J3 



13-13. The Harmonic-Oscillator Selection Rule Is ~ v - ± 1 

For IO~2' we have 

17r ( 5 ) 1/2 ( 1 ) 1/2 
IO~2 == 2n (3 cos2 

(-) - 1) - cos (-) sin (-)d(-) 
o 16][ 4n 

vis /1 == - dx(3x 3 
- x) == 0 

4 _I 

because the integrand is an odd function of x. 

13-13. The Harmon ic-Osci Ilator Selection Ru Ie Is ~ v == ± 1 

U sing Equation 13.54 and the fact that the harmonic-oscillator wave functions are 
(Equation 5.35) 

(13.63) 

where Hv(a l
/
2q) is a Hermite polynomial and where a == (k/-L/h2)1/2, we obtain the 

transition dipole moment when the electric field is along the z-axis as follows 

( 13.64) 

We now expand /-L", (q) about the equilibrium nuclear separation: 
,-, 

(13.65) 

where 11-0 is the dipole moment at the equilibrium bond length and q is the displacement 
from that equilibrium value. Thus when q == 0, /-Lz. == 11-0, If we substitute the first two 
terms of the expansion in Equation 13.65 into Equation 13.64, we have: 

( II) 1 == N N 111 .100 

H l(a 1
/
2q)H (a l

/
2q)e-CXC/"dq 

1'-""';:, V,v v v 1'-""'0 V v 
-00 

+NvNv, (~{L) 100 

Hv,(a
1
/
2q)q H,,(a 1

/
2q )e~aq2 dq 

q 0 -00 

(13.66) 

The first integral here vanishes if v i VI due to the orthogonality of the Hermite 
polynomials. 

The second integral can be evaluated in general by using the Hermite polynomial 
identity (Problem 5-24): 

(13.67) 
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If we substitute Equation 13.67 into Equation 13.66, letting a 1/2q == ~, we obtain 

(13.68) 

Using now the orthogonality property of the Hermite polynomials, we see that (Il z ))),))' 

vanishes unless v' == v ± 1. Thus, the selection rule for vibrational transitions under the 
harmonic-oscillator approximation is that ~v == ±1. In addition, the factor (dfJ.,/dq)o 
in front of the transition moment integral reminds us that the dipole moment of the 
molecule must vary during a vibration (Equation 13.65), or the transition will not take 
place. 

E X AMP l E 1 3-1 3 
U sing the explicit formulas for the Hermite polynomials given in Table 5.2, show that 

a 0 ~ 1 vibrational transition is allowed and that a 0 ~ 2 transition is forbidden for 

a harmonic oscillator. 

SO L UTI 0 N: Letting ~ == a 1
/
2x in Table 5.3, we have 

(
a)I/4 J 1/1 (~) == - e -~ -/2 

o 7T 

The dipole transition moment is given by the integral 

The transition is allowed if lo_v j 0 and is forbidden if 10_v == O. For v == 1, we have 

ex 2 _~2 (2 )1/2/00 
10_ 1 ex -;- -ex] ~ e d~ =1= 0 

because the integrand is everywhere positive. For v == 2, 

because the integrand is an odd function and the limits go from -00 to +00. 



13-14. Group Theory Is Used to Determine the Infrared Activity 
of Normal Mode Vibrations 

In the previous section, we saw that a normal mode will be infrared active if the dipole 
moment of the molecule changes as the molecule vibrates. Thus, for example, the 
symmetric stretch of CO

2 
will be infrared inactive, whereas the three other modes 

will be infrared active. We can use the vibrational selection rule and group theory to 
prove this. If we write Equation 13.54 in terms of normal coordinates, we see that the 
selection rule for the v = 0 to v = 1 vibrational state says that the integral 

( 13.69) 
must be nonzero. We have written Equation 13.69 in a form that includes all three 
components of the dipole moment J1 x ' J1 y ' and J1z' This equation is then general for an 
electric field oriented along any particular direction with respect to the dipole moment 
of the molecule. In the harmonic oscillator approximation, 1/10 (Q I' Q 2' ... , Q N . ) is 

Vlb 

the product (Equation 13.37), 

(13.70) 

where c is just a normalization constant, and a. = (J1.k.) 1/2 /211. The normal modes 
.J j j 

belong to the irreducible representations of the molecular point group. Therefore, for 
non degenerate modes, the effect of any symmetry operation on Q. gives ± Q ., so 

j j 

1/10 (Q l' Q 2' ... , Q N . ), being a quadratic function of the Q. s, is invariant under all the 
Vlb j 

symmetry operations of the group. In other words, it belongs to the totally symmetric 
irreducible representation, A l' (We will not prove it here, but this is also the case for 
degenerate vibrations.) We can express this result by the equation 

(13.71) 

~ 

for all the group operations, R. According to Table 5.3 and Equation 13.37, 1/1) (Q l' 

Q2' ... , Q N ) for a state in which the normal coordinate Q. is excited to the v = 1 
vib j 

level is 

(13.72) 

Therefore, 1/1 I ( Q I' Q 2' ... , Q N . ) transforms as the normal coordinate Q .. If we let 
vlb j 

~ A 

the character of the operation R of the irreducible representation of Qj be X Q
i 
(R), then 

we can write . 

(13.73) 
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Now let's return to the selection rule integral, Equation 13.69. Surely 1
0

----*1 must be 
invariant under all the operations of the group, so 

R1o--> I = /0-->1 = f (Rl/fo)(Rfl)(Rl/fI)dQl dQ2" .dQN'ib 

= X A I (R) X I' x (R) X Q j (R) f l/f 0 fl x l/f 1 d Q 1 d Q 2 • • • d Q N ,ib 

~ ~ ~ 

== X A I (R) X fi,( R) X Q
j 
(R) 10-'; I (13.74) 

~ ~ 

Thus, the products of the characters here must equal 1 for all R. Because X A (R) == 1 
I 

'" /'\c '" '" 

for all R, the product X f1.
x 
(R) X Q i (R) must equal 1 for all R. This can be so for one-

dimensional irreducible representations only if fL (or x itself) and Q. belong to the 
x J 

same irreducible representation, with a similar result for fly (or y itself) and fL z (or 
z itself). In summary, then, 10----* 1 will be nonzero only if Q

j 
belongs to the same 

irreducible representation as x, y, or z. Note that this proof is very similar to the proof 
we presented in Section 12-8 for the matrix elements H .. and S ... 

lJ 1 } 

Let's apply this result to the normal modes of H20. The C2v character table 
(Table 12.7) shows that x belongs to B 1 ' Y to B2 , and z to AI' But we saw in Section 13-
9 that the symmetric stretch and the bending mode belong to A 1 and the asymmetric 
stretch belongs to B2 . Therefore, all three normal modes of H2 ° are infrared active. 

EXAMPLE 13-14 
Determine the infrared activity (active or inactive) of the normal modes of S03 shown 

below. 

+ 

+ + 

SOL UTI 0 N: The D3h character table (Table 12.11) shows that x and y belong to £' 

and that z belongs to A~ . Referring to the normal modes shown above we see that the 



Problems 

\)1 mode (which belongs to A'l) is infrared inactive, and the others (which belong to 
A~ and £/) are infrared active. 

Problems 

13-1. The spacing between the lines in the microwave spectrum of H35CI is 6.350 x lOll Hz. 

Calculate the bond length of H35 Cl. 

13-2. The microwave spectrum of 39KI271 consists of a series of lines whose spacing is almost 
constant at 3634 MHz. Calculate the bond length of 39K 1271. 

13-3. The equilibrium internuclear distance of H1271 is 160.4 pm. Calculate the value of B in 

wave numbers and megahertz. 

13-4. Assuming the rotation of a diatomic molecule in the J = 10 state may be approximated 
by classical mechanics, calculate how many revolutions per second 23Na35CI makes in the 

J = 10 rotational state. The rotational constant of 23Na35CI is 6500 MHz. 

13-5. The results we derived for a rigid rotator apply to linear polyatomic molecules as well as to 
diatomic molecules. Given that the moment of inertia I for H 12C I4N is 1.89 x 10-46 kg.m2 

(cf. Problem 13-6), predict the microwave spectrum of H 12C 14N. 

13-6. This problem involves the calculation of the moment of inertia of a linear triatomic 

molecule such as H I2C 14N (see Problem 13-5). The moment of inertia of a linear molecule 
. 
IS 

I = ""In.d~ ~ J J 
.i 

where d. is the distance of the jth mass from the center of mass. Thus, the moment of 
J 

inertia of H I2C 14N is 

(1) 

Show that Equation 1 can be written as 

mHmcR~c + n1Hn1NR~N + m mNR~N 
1=-----------------------------

m H + Inc + mN 

where the R's are the various internuclear distances. Given that RHC = 106.8 pm and RCN = 
115.6 pm, calculate the value of I and compare the result with that given in Problem 13-5. 

13-7. The far infrared spectrum of 39K35CI has an intense line at 278.0 cm- I. Calculate the 
force constant and the period of vibration of 39K35Cl. 

13-8. The force constant of 79Br79Br is 240 N· m -I. Calculate the fundamental vibrational 

frequency and the zero-point energy of 79Br 2' 
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1 3-9. Prove that 

2 h 
(x ) = 2(fl-k) 1/2 

for the ground state of a harmonic oscillator. Use this equation to calculate the root-mean­
square amplitude of 14N2 in its ground state. Compare your result to the bond length. Use 
k = 2260 N ·m-1 for 14N2. 

13-10 .. Derive Equations 13.15 and 13.16. 

13-11 .. Given that B = 58000 MHz and v = 2160.0 cm-1 for CO, calculate the frequencies of 
the first few lines of the Rand P branches in the vibration-rotation spectrum of CO. 

13-12 .. Given that Re = 156.0 pm and k = 250.0 N·m 1 for 6Li 19F, use the rigid rotator­
harmonic oscillator approximation to construct to scale an energy-level diagram for the 
first five rotational levels in the v = 0 and v = 1 vibrational states. Indicate the allowed 
transitions in an absorption experiment, and calculate the frequencies of the first few lines 
in the Rand P branches of the vibration-rotation spectrum of 6Li 19F. 

-13-13. Using the values of v, iv, B, and a given in Table 13.2, construct to scale an 
e e e e e 

energy-level diagram for the first five rotational levels in the v = 0 and v = 1 vibrational 
states for H35 Cl. Indicate the allowed transitions in an absorption experiment, and calculate 
the frequencies of the first few lines in the Rand P branches. 

1 3-14. The following data are obtained for the vibration-rotation spectrum of H79Br. Determine - - -
Bo' B I , Be' and ae from these data. 

Line Frequency / cm I 

RCO) 2642.60 
R(l) 2658.36 
P( 1) 2609.67 
P(2) 2592.51 

13-15 .. The following lines were observed in the microwave absorption spectrum of H127I and 
DI27I between 60 cm-1 and 90 cm- I. 

64.275 
65.070 

v/cm- I 

77.130 
71.577 

89.985 
78.084 84.591 

-
Use the rigid-rotator approximation to determine the values of B, I, and R e for each 
molecule. Do your results for the bond length agree with what you would expect based 
upon the Born-Oppenheimer approximation? Take the mass of 1271 to be 126.904 amu and 
the mass of D to be 2.014 amu. 

13-1 6. The following spectroscopic constants were determined for pure samples of 74Ge32 S 
and 72Ge32S: 

74Ge32S 5593.08 
72Ge32S 5640.06 

22.44 
22.74 

2.349 
2.388 

0.201 20 
0.201 20 



Problems 

Determine the frequency of the J == 0 to J == I transition for 74Ge32 Sand 72Ge32 S in their 

ground vibrational states. The width of a microwave absorption line is on the order of 

1 kHz. Could you distinguish a pure sample of 74Ge32 S from a 50/50 mixture of 74Ge32 S 

and 72Ge32 S using microwave spectroscopy? 

13-17. The frequencies of the rotational transitions in the nonrigid-rotator approximation are 
- -

given by Equation 13.19. Show how both Band D may be obtained by curve fitting v to - -
Equation 13.19. Use this method and the data in Table 13.3 to determine both Band D 
for H35 Cl. 

13-18. The following data are obtained in the microwave spectrum of 12C160. Use the method 
- -

of Problem 13-17 to determine the values of Band D from these data. 

Transitions Frequency / cm I 

O~I 3.84540 

1~2 7.69060 

2~3 11.53550 

3~4 15.37990 

4~5 19.22380 

5~6 23.06685 

13-19. Using the parameters given in Table 13.2, calculate the frequencies (in cm- I
) of the 

o ~ 1, 1 ~ 2, 2 ~ 3, and 3 ~ 4 rotational transitions in the ground vibrational state of 

H35 CI in the nonrigid-rotator approximation. 

13-20. The vibrational term of a diatomic molecule is given by 

where v is the vibrational quantum number. Show that the spacing between the adjacent 

levels ~ G is given by 

~G == G(v + 1) G ( v) == v {I - 2i (v + I)} 
e e 

(1) 

The diatomic molecule dissociates in the limit that ~ G ~ O. Show that the maximum 

vibrational quantum number, v ,is given by max 

I 
v ==--1 

max 2-X 
l" 

-
Use this result to show that the dissociation energy De of the diatomic molecule can be 

written as 

-
D e 

v (I - x2
) 

e e 

4x 
-V 

I"'..J l" 
I"'..J -

4x (2) 
e e 

Referring to Equation 1, explain how the constants v and x can be evaluated from a 
l" l" 

plot of ~ G versus v + I. This type of plot is called a Birge-Sponer plot. Once the values 

of ve and x e are known, Equation 2 can be used to determine the dissociation energy of 
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the mole_cule. Use the following experimental data for H2 to calculate the dissociation 

energy, De' 

V G(v)/cm I V G(v)/cm- I 

0 4161.12 7 26 830.97 

1 8087.11 8 29 123.93 

2 11 782.35 9 31 150.19 

3 15 250.36 10 32 886.85 

4 18 497.92 1 1 34 301.83 

5 21 505.65 12 35 351.01 

6 24 287.83 13 35 972.97 

Explain why your Birge-Sponer plot is not linear for high values of v. How does the value 

of De obtained from the Birge-Sponer analysis compare with the experimental value of 

38269.48 cm- I ? 

13-21. An analysis of the vibrational spectrum of the ground-state homonuclear diatomic 

molecule C
2 

gives ve == 1854.71 cm I and vexe == 13.34 cm- I
. Suggest an experimental 

method that can be used to determine these spectroscopic parameters. Use the expression 

derived in Problem 13-20 to detern1ine the number of bound vibrational levels for the 

ground state of C
2

. 

13-22. A simple function that is a good representation of an internuclear potential is the Morse 

potential, 

where q is R - Re' Show that the force constant calculated for a Morse potential is given 

by 

Given that D == 7.31 X 10- 19 J·molecule I and f3 == 1.83 X 1010 m- I for HCI, calculate 
e 

the value of k. 

13-23. The Morse potential is presented in Problem 13-22. Given that De == 8.19 

X 10- 19 J·molecule- I
, Ve == 1580.0 cm I, and Re == 121 pm for 160

2
, plot a Morse po­

tential for 160 2, Plot the corresponding harmonic-oscillator potential on the same graph. 

13-24. The fundamental line in the infrared spectrum of 12CI60 occurs at 2143.0 cm I, and the 

first overtone occurs at 4260.0 cm I. Calculate the values of v and x v for 12C160. 
e e e 

13-25. Using the parameters given in Table 13.2, calculate the fundamental and the first three 

overtones of H79Br. 

13-26. The frequencies of the vibrational transitions in the anharmonic-oscillator approxima­

tion are given by Equation 13.22. Show how the values of both ve and xe ve may be obtained 

by plotting vObS/V versus (v + 1). Use this method and the data in Table 13.4 to determine 

the values v and x v for H35 Cl. 
e e e 



Problems 

13-27. The following data are obtained from the infrared spectrum of 127I35Cl. Using the method 

of Problem 13-26, determine the values of v and i v from these data. 
l' e e 

Transitions Frequency /cm- 1 

0-71 381.20 

0---+2 759.60 
0-73 1135.00 
0-74 1507.40 

0-75 1877.00 

13-28. The values of v and i v of 12C160 are 2169.81 cm- I and 13.29 em-I in the ground 
e e e 

electronic state and 1514.10 cm- I and 17.40 cm- 1 in the first excited electronic state. 

If the 0 -7 0 vibronic transition occurs at 6.47515 x 104 em-I, calculate the value of 

Te = V~l - v~~, the energy difference between the minima of the potential curves of the two 
electronic states. 

13-29. Given the following parameters for 12C160: Te = 6.508043 x 104 em-I, v~ = 
1514.10 em-I, x;v~ = 17.40 em-I, v~' = 2169.81 em-I, and i:v: = 13.29 em-I, con­

struct to scale an energy-level diagram of the first two electronic states, showing the first 
four vibrational states in each electronic state. Indicate the allowed transitions from v" = 0, 
and calculate the frequencies of these transitions. Also, calculate the zero-point vibrational 

energy in each electronic state. 

13-30. An analysis of the rotational spectrum of 12C32 S gives the following results: 

v o 1 2 3 

0.81708 0.81116 0.80524 0.79932 

-
Determine the values of Band ii from these data. 

e e 

1 3-31. The frequencies of the first few vibronic transitions to an excited state of BeO are as 
follows: 

Vibronic 
transitions 0-72 0-73 0-74 0-75 

12 569.95 1 3 648.43 14 71 0.85 15 757.50 

Use these data to calculate the values of v and i v for the excited state of BeO. 
e e e 

13-32. The frequencies of the first few vibronic transitions to an excited state of 7Li2 are as 
follows: 

Vibronic 
transitions 

V b /cm- I 
o s 

0-700-710-720-730---+40-75 

14020 14 279 14 541 14 805 15 074 15 345 

Use these data to calculate the values of ve and i eVe for the excited state of 7Li2. 
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13-33. Determine the number of translational, rotational, and vibrational degrees of freedom in 

h.OCS 

d. H
2
CO 

13-34. Determine which of the following molecules will exhibit a microwave rotational ab­

sorption spectrum: H2, HCI, CH
4

, CH
3
I, H20, and SF

6
, 

13-35. Classify each of the following molecules as a spherical, a symmetric, or an asymmetric 

top: CH3CI, CCI4 , S02' and SiH4 , 

13-36. Classify each of the following molecules as either a prolate or an oblate symmetric top: 

FCH
3

, HCC1
3

, PF
3

, and CH
3
CCH, 

13-37. Show that the components of the moment of inertia of the trigonal planar molecule 

shown below are Ixx = Iyy = 3m /2 and !'z: = 3m if all the masses are m units, all the bond 
lengths are unit length, and all the bond angles are 1200

, 

y 

----.....,.,------JIIo.x 

13-38. This problem illustrates how the principal moments of inertia can be obtained as 
an eigenvalue problem. We will work in two dimensions for simplicity, Consider the 
"molecule" represented below, 

y 

----~--'------JIIo.x 

where all the masses are unit masses and the long and short bond lengths are 2 and 1, 
respectively, Show that 

I = 2 cos2 () + 8 sin2 () xx 

I = -6 cos e sin () 
X)' 



Problems 

The fact that f ..../... 0 indicates that these I.. are not the principal moments of inertia. Now 
xy / IJ 

solve the secular determinantal equation for A-

f - A- I 
xx xy ==0 

f f - A-
xy yy 

and compare your result with the values of fxx and fyy that you would obtain if you align 
the "molecule" and the coordinate system such that e == 90°. What does this comparison 

tell you? What are the values of fxx and f y ). if () == 0°? 

13-39. Sketch an energy-level diagram for a prolate symmetric top and an oblate symmetric 

top. How do they differ? Indicate some of the allowed transitions in each case. 

13-40. Derive Equation 13.57 from Equation 13.55. 

13-41. Show that the first few associated Legendre functions satisfy the recursion formula 

given by Equation 13.62. 

13-42. Calculate the ratio of the dipole transition moments for the 0 ---1> 1 and 1 ---1> 2 rotational 
transitions in the rigid-rotator approximation. 

13-43. Calculate the ratio of the dipole transition moments for the 0 ---1> 1 and 1 ~ 2 vibrational 

transitions in the harmonic-oscillator approximation. 

13-44. Use Table 13.7 to determine the 12-dimensional reducible representation for the vibra­

tional motion of NH
3

. Use this result to determine the symmetries and the infrared activity 
of the normal coordinates of NH

3
. 

13-45. Use Table 13.7 to determine the is-dimensional reducible representation for the vi­
brational motion of CH

2 
C1

2
• Use this result to determine the symmetries and the infrared 

activity of the normal coordinates of CH
2 
C1

2
. 

13-46. Use Table 13.7 to determine the I8-dimensional reducible representation for the vibra­

tional motion of trans-dichloroethene. Use this result to determine the symmetries and the 
infrared activity of the normal coordinates of trans-dichloroethene. 

13-47. Use Table 13.7 to determine the IS-dimensional reducible representation for the vibra­

tional motion of XeF4 (square planar). Use this result to determine the symmetries and the 

infrared activity of the normal coordinates of XeF 4' 

13-48. Use Table 13.7 to determine the IS-dimensional reducible representation for the vibra­

tional motion of CH
4

. Use this result to determine the symmetries and the infrared activity 

of the normal coordinates of CH4. 
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13-49. Consider a molecule with a dipole moment J-L in an electric field E. We picture the 
dipole moment as a positive charge and a negative charge of magnitude q separated by a 
vector l. 

/= qE~ 
" - ..... E~ 

" 

The field E causes the dipole to rotate into a direction parallel to E. Therefore, work is 
required to rotate the dipole to an angle e to E. The force causing the molecule to rotate is 
actually a torque (torque is the angular analog of force) and is given by 1/2 times the force 
perpendicular to I at each end of the vector I. Show that this torque is equal to jJ., E sin e and 
that the energy required to rotate the dipole from some initial angle eo to some arbitrary 
angle e is 

Given that eo is customarily taken to be Jr /2, show that 

v == jJ., E cos e == - Jl . E 

The magnetic analog of this result will be given by Equation 14.10. 

\3-50. The observed vibrational-rotational lines for the v == 0 to v == 1 transition of 12CI60(g) 
"""" -,- -

are listed below. Determine Bo' B
1

, B , a , I , and r . e e e e 

2238.89 2215.66 2189.84 2161.83 2127.61 2094.69 2059.79 
2236.06 2212.46 2186.47 2158.13 2123.62 2090.56 2055.31 
2233.34 2209.31 2183.14 2154.44 2119.64 2086.27 2050.72 
2230.49 2206.19 2179.57 2150.83 2115.56 2081.95 2046.14 
2227.55 2202.96 2176.12 2147.05 2111.48 2077.57 

2224.63 2199.77 2172.63 2139.32 2107.33 2073.19 

2221.56 2196.53 2169.05 2135.48 2103.12 2068.69 

2218.67 2193.19 2165.44 2131.49 2099.01 2064.34 

[Hint: Recall that the transition (v" == 0, J/' == 0) ~ (v" == 1, Jf' == 0) is forbidden.] 

13-51. This problem is a three-dimensional version of Problem 13-41. The rotational spectrum - - -
of a polyatomic molecule can be predicted once the values of A, B, and C are known. 

These, in turn, can be calculated from the principal moments of inertia lA' Is' and Ic' In 
this problem, we show how lA' Is' and Ic can be determined from the molecular geometry. 
We set up an arbitrarily oriented coordinate system, whose origin sits at the center-of-mass 



Problems 

of the molecule, and determine the moments of inertia I , I , I .' I , I ,and I .. The 
xx xy x: yy y: :: 

principal moments of inertia are the solution to the secular determinantal equation 

I - A I I xx x\' x: 

I I - A I - 0 -Xy rr re-

I I I - A r- y,- --. ,- , ...... 

The assignment for the subscripts A, B, and C to the three roots of this determinant are done 
according to the convention I A < I B < Ie. Use this approach to find the principal moments 
of inertia for the planar formate radical, HC0

2
, given the following geometry: 

o 
Ill~ He) 124.8° 

'\ 
o 

The H-C bond length is 109.7 pm, the C=O bond length is 120.2 pm, and the C-O bond 
length is 134.3 pm. 
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the development of two-dimensional NMR, which turns out to be enormously important 
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CHAPTER 

Nuclear Magnetic 
Resonance Spectroscopy 

Certainly one of the most important spectroscopic techniques is nuclear magnetic res­
onance (NMR) spectroscopy, particularly to organic chemists and biochemists. Hardly 
a chemical laboratory in the world does not have at least one NMR spectrometer. You 
may have learned about the application of NMR to the determination of the structures 
of organic molecules in your course in organic chemistry. In this chapter, we will study 
NMR spectroscopy in a fairly quantitative manner, using the principles of quantum 
mechanics developed in previous chapters. NMR spectroscopy involves transitions of 
the orientations of nuclear spins in magnetic fields. Consequently, in this chapter we 
will examine the quantum-mechanical states of nuclear spins interacting with magnetic 
fields, and learn how we can induce transitions between these states when we irradiate 
the nuclei with electromagnetic radiation. We will focus exclusively on magnetic res­
onance that results from transitions involving the protons in hydrogen atoms. First, we 
will discuss the properties of isolated nuclei in magnetic fields, and then we will show 
how the chemical or the electronic environment in a molecule can affect the energies 
of hydrogen nuclei (protons) in external magnetic fields. This discussion will lead us 
to simple NMR spectra in which hydrogen nuclei in different chemical or electronic 
environments yield characteristic absorption frequencies in NMR experiments. Last, 
we will see how these spectra are modifed under high resolution to give information 
not only about the electronic environment about a given nucleus, but also about the 
arrangements of its neighboring hydrogen atoms. 547 
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14-1. Nuclei Have Intrinsic Spin Angular Momenta 

We learned in Section 8--4 that an electron has an intrinsic spin angular momentum, 
whose z components are equal to ± li /2, or that it has a spin of 1/2, with z compo­
nents ± 1 /2. We defined two spin functions, ex (a) and fJ (a), where a is a spin variable, 
which satisfy the eigenvalue equations 

S2 fJ == i (i + 1) li 2 fJ 
(14.1 ) 

We associated ex with s ~ == li /2 and fJ with s., == -li /2. We expressed the orthonormality 
~ ~ 

of ex and fJ formally by the equations 

f a*((J)a((J)d(J = f f3* ((J)f3 ((J)d(J = 1 

f a* ((J)f3 ((J)d(J = f a ((J)f3*((J)d(J = 0 

( 14.2) 

Because an electron is charged, the intrinsic spin confers the property of a magnetic 
dipole to an electron. In other words, because of its spin, an electron acts like a 
magnet when it is placed in a magnetic field. Nuclei also have an intrinsic spin angular 
momentum (which we designate by /) and an associated magnetic dipole. Unlike 
electrons, the spins of nuclei are not restricted to 1/2. The commonly occurring nuclei 
I2C and 160 have a spin of 0, a proton (' H) and 19p have a spin of 1/2, and a deuteron 
(2H) and 14N have a spin of 1. Table 14.1 lists the spins and other properties of some 
nuclei important in NMR spectroscopy. Because essentially all organic compounds 
contain hydrogen, for simplicity, we will focus almost exclusively on protons, with 
their spin of 1/2, in this chapter. The nuclear spin eigenvalue equations for protons 
analogous to Equations 14.1 for electrons are 

TAB l E 14.1 
The properties of some common nuclei used in NMR experiments. 

Nuclear g Magnetic moment 

Nucleus Spin factor (in nuclear magnetons) 

IH 1/2 5.5854 2.7928 
2H 1 0.8574 0.8574 
I3C 1/2 1.4042 0.7021 
14N I 0.4036 0.4036 
31p 1/2 2.2610 1.1305 

(14.3a) 

(14.3b) 

Magnetogyric ratio 

y /107 rad·T-1.s-1 

26.7522 

4.1066 

6.7283 

1.9338 

10.841 



14- 1. Nuclei Have Intrinsic Spin Angular Momenta 

and the nuclear spin functions satisfy orthonormality conditions equivalent to 
Equations 14.2 

As we stated above, a charged particle with a nonzero spin acts as a magnetic 
dipole and consequently will interact with a magnetic field. Let's look into this concept 
more closely. Recall from your course in physics that the motion of an electric charge 
around a closed loop produces a magnetic dipole, J-L , (Figure 14.1) whose magnitude 
is given by 

J-L=iA (14.4) 

where i is the current in amperes (coulombs per second) and A is the area of the loop 
in square meters. Note that the SI units of magnetic dipole are ampere· meter2 (A· m2

). 

If we consider a circular loop for simplicity, then 

qv . 
1= 

2:rrr 
(14.5) 

where v is the velocity of the charge q and r is the radius of the circle. Substituting 
Equation 14.5 and A = :rr r2 into Equation 14.4 gives 

j.L = q rv (14.6) 
2 

More generally, if the orbit is not circular, then Equation J 4.6 becomes (see Math­
Chapter C) 

q(r x v) 
J-L = (14.7) 

2 

(b) 

(a) 

FIG U R E 14.1 
(a) Iron filings sprinkled around a loop carrying an electric current show the spatial 
distribution of the magnetic field produced by the current loop. This field is very similar 
to the field produced by a bar magnet (b). 
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Equation 14.7 says that JL is perpendicular to the plane formed by r and v (the plane of 
motion). Problem 14-1 has you show that Equation 14.7 reduces to Equation 14.6 for 
the case of a circular orbit. 

We can express JL in terms of angular momentum by using the fact that L == r x p 
and that p == mY, so that Equation 14.7 becomes 

q 
JL ==-L 

2m 
(14.8) 

Equation 14.8 says that the magnetic moment JL is proportional to the angular 
momentum L. 

Of course, a nucleus is not a circular current-carrying loop, but Equation 14.8 can 
still be applied to a nucleus by replacing the classical angular momentum L by the spin 
angular momentum I and writing 

(14.9) 

where gN is the nuclear g factor, f3 N is the nuclear magneton (q j2mN), mN is the mass 
of the nucleus, and y == gNf3N is the magnetogyric ratio. The nuclear g factor is a 
unitless constant whose magnitude is on the order of unity and is characteristic of each 
nucleus. The magnetogyric ratio is also a characteristic quantity for each nucleus. The 
detection sensitivity of a particular type of nucleus in an NMR experiment depends 
upon the value of y. The larger the value of y, the easier it is to observe the nucleus. 
Some nuclear g factors and magnetogyric ratios are given in Table 14.1. 

14-2. Magnetic Moments Interact with Magnetic Fields 

A magnetic dipole will tend to align itself in a magnetic field, and its potential energy 
will be given by (see Problem 13-49) 

(14.10) 

where B is the strength of the magnetic field. The quantity B is defined through the 
equation 

F == q(v x B) (14.11) 

where F is the force acting upon a charge q moving with a velocity v in a magnetic field 
of strength B. The SI unit of magnetic field strength is tesla (T). From Equation 14.11, 
we see that one tesla is equal to one newton/ampere· meter (N . A -1 . m ]). 

EXAMPLE 14-1 
Show that an ampere.meter2 (A·m2

) is equal to ajoule·tesla- I (J·T- I
). 



14-2. Magnetic Moments Interact with Magnetic Fields 

SOL UTI 0 N: Equation 14.4 shows that the units of a magnetic dipole moment are 

") 

f.1 ::::: A· m--

Equation 14.10 gives the units 

where T stands for tesla, the unit of the intensity of a magnetic field. Therefore, we 

see that 

or that the units of JL are either A· m2 or J. T- 1 
• 

Although tesla is the SI unit of magnetic field strength, another unit, called a gauss, 

is so commonly used in NMR that we will use it frequently. The relation between a 
gauss (G) and a tesla (T) is 1 G == 10-4 T. Table l4.2lists some magnetic field strengths 
to give an idea of some typical val ues found in nature and in the laboratory. 

If, as usual, we take the magnetic field to be in the z direction, Equation 14.10 
becomes 

(14.12) 

Using Equation 14.9 for ~"7' we have 
'" 

(14.13) 

/'\ 

If we replace I by its operator equivalent 1"7' then Equation 14.13 gives the Hamiltonian z ~ 

operator that accounts for the interaction of the nucleus with the external magnetic field. 
Thus, we write the spin Hamiltonian operator of a single isolated nucleus as 

/'\ A 

H == -y B71_ (14.14) 
.... , ..... , 

The corresponding Schrodinger equation for the nuclear spin is 

(14.15) 

/'\ 

The wave functions in this case are the spin eigenfunctions, so 1z.0/
1 

== lim
l 
0/1' where 

as usual m 1 == 1, I - 1, ... , -I. Therefore, Equation 14.15 gives 

(14.16) 

We can use Equation 14.16 to calculate the difference in energy between a proton 
aligned with a magnetic field and one aligned against it. The energy of a proton 
aligned with or against a magnetic field is given by Equation 14.16 with m

l 
== + 1/2 

or m
l 

== -1/2, respectively. Thus, the energy difference is given by 

~E == E(ml == -1/2) - E(ml == 1/2) == liy B7 
" 

(14.17) 
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TAB L E 14.2 
Some approximate magnetic field strengths in units of teslas and gauss. 

Source BIT BIG 

Surface of a pulsar 108 1012 

Maximum achieved in laboratory 

Transient 103 107 

Steady 30 300000 

Superconducting magnet 15 150000 

Electromagnet 2 20000 

Small bar magnet 0.01 100 

Near household wiring 10-4 1 

Surface of the Earth 5 x 10-5 0.5 

Note that ~E depends linearly on the strength of the magnetic field. Figure 14.2 
shows ~ E as a function of B;: for a spin 1/2 nucleus. If a proton aligned with an 
applied magnetic field is ilTadiated with electromagnetic radiation of frequency given 

by ~ E == 11 y B;: == h v == 11 w, the radiation will cause the proton to make a transition 

from the lower energy state (1'1'1] == 1/2) to the higher energy state (m] == -1/2). For a 
field of 21 100 gauss (2.11 T), the energy difference for protons is 

~E == (1.054 x 10-34 J·s·rad- I )(26.7522 x 107 rad·T-J·s 1)(2.11 T) 

== 5.95 X 10-26 J 

2 

t 
11£ 

r-------=L--4---- + I 
2 

Magnetic field strength 

FIG U R E 14.2 
The relative energies of a spin 1/2 nucleus in a magnetic field. In the state of lower energy, the 
nucleus is aligned with the field (n?! = + 1 12), and in the state of higher energy, it is aligned 
against the field (nl! = -1/2). The magnitude of the energy difference depends upon the 
strength of the magnetic field. 



14-2. Magnetic Moments Interact with Magnetic Fields 

U sing the relation ~ E == h v, this result corresponds to a frequency of 90 MHz, which 
is in the radiofrequency region. Generally, the frequency associated with a transition 
of one aligned nuclear spin state to another for a spin + 1 /2 nucleus is given by 

or 

Y B_ 
(Hz) (14.18) V== 

~, 

2rr 

{j) == y B;, (rad. s I) (14.19) 

EXAMPLE 14-2 
What magnetic field strength must be applied to a free proton for spin transitions to 

occur at 60.0 MHz? 

SOLUTION: According toTable 14.1, y == 26.7522 X 107 rad·T-1·s- 1 for IH, so 

2nv (2n rad) (60.0 x 106 
S-I) 

B 
y y 26.7522 X 107 rad·T- 1 'S-1 

== 1.41 T == 14 100 G 

Figure 14.3 gives the frequency v as a function of magnetic field strength B_ for (free) 
proton spin transitions. 

20 -

15 

--.. 1 0 

5 

o~--------~----------~----------~--------~ 
o 200 400 600 800 

v / MHz 

FIG U R E 14.3 
The frequencies that induce (free) proton spin transitions as a function of the strength of 
the magnetic field, according to Equation 14.18. Commercial NMR spectrometers operate at 
frequencies of 60 MHz, 90 MHz, 250 MHz, 270 MHz, 300 MHz, 500 MHz, 600 MHz, and 
750 MHz. 
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14-3. Proton NMR Spectrometers Operate at Frequencies Between 
60 MHz and 750 MHz 

According to Equation 14.18, the resonance frequency of a proton (the frequency at 
which a spin-state transition will occur) in a magnetic field is directly proportional to 
the strength of the magnetic field. Thus, for a fixed magnetic field strength, we can vary 
the frequency of the electromagnetic radiation until absorption occurs, or conversely, 
we can fix the frequency of the radiation and vary the strength of the magnetic field. 
Early spectrometers used magnets that produced fields at 14 100 G (1.41 T), which 
sets the frequency of proton transitions at about 60 MHz. (See Example 14-2.) Newer 
spectrometers, however, using superconducting magnets, operate at frequencies as 
high as 750 MHz. We will see later that higher operating frequencies (or higher field 
strengths) give greater resolution than lower operating frequencies and hence greatly 
simplify the interpretation of NMR spectra. 

The basic elements of a proton NMR spectrometer are diagrammed in Figure 14.4. 
A compound containing hydrogen is placed between the poles of a strong electromagnet 
whose field strength can be varied by varying the current through the wires wrapped 
around the electromagnet. The sample is irradiated by radio-frequency radiation, and 
the amount absorbed by the sample is detected and recorded. When the magnetic field 
strength is such that the energy difference between the two nuclear spin states is the 
same as the energy of the radio frequency radiation, then protons make transitions from 

N 

Radio 
frequency 
generator 

Fie U R E 14.4 

Sample 

Radio 
frequency 
detector 

Recorder 

Variable 
magnetic field 

- - - - - t&---+-+--+-+-f-+-+----

s 

A schematic diagram of a magnetic resonance spectrometer. The sample is placed between 
the poles of an electromagnet, whose strength can be varied by varying the electric current 
through the coils wrapped around the magnet. The sample is irradiated by a fixed frequency 
of radio-frequency radiation. The amount of radiation absorbed by the sample is measured by 
a radio-frequency detector, whose output is fed into a recorder. The magnetic field strength 
is varied, and the radio-frequency radiation absorbed by the sample is measured and plotted 
versus the magnetic field strength by the recorder. The result is an NMR spectrum. 



14-3. Proton NMR Spectrometers Operate at Frequencies Between 60 MHz and 750 MHz 

one spin state to another, and the radiation is absorbed by the sample as illustrated in 
Figure 14.5. 

Although NMR spectra may be recorded by either varying the magnetic field 
strength at fixed frequency or by varying the frequency at fixed magnetic field strength, 
the spectra obtained are indistinguishable. It is standard practice to calibrate NMR 
spectra in hertz (Hz), as if the frequency had been varied at constant magnetic field 
strength, and furthermore to present spectra with the strength of the magnetic field 
increasing from left to right. The NMR spectrum of iodomethane (CH

1
I) is shown in 

Figure 14.6. The strong peak, or signal, in this spectrum reflects absorption by the three 
equivalent hydrogen nuclei in iodomethane. We will discuss both the top and bottom 
scales in this and other NMR spectra in the following section, but note that the top 
scale is calibrated in Hz and the bottom scale is unitless. 

~N 
0 ............ 
~ 

= +1 
o II .-

FIG U R E 14.5 

~ E: 
;..... 
ro..c: 
~~ .-
~ ~ 
>...VJ 
b1)= 
;..... 0 
~ ~ = 0 
~ ~ 

t 
11£ = h v 

~ 

Magnetic field strength 

(a) 

Magnetic field strength 

(b) 

The energy separation of a proton aligned with or against an applied magnetic field increases 
with the strength of the magnetic field as shown in (a). When the strength of the magnetic field 
is such that the separation matches the energy of the radio frequency radiation (say 90 MHz) 
that irradiates the sample, the sample will absorb the radiation and give the NMR spectrum 
shown in (b). The condition for absorption, or resonance, is ~ E == h y B~ == h lJ. 

" 
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500 400 300 200 100 o Hz 
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TMS 
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8 6 4 2 o 

FIG U R E 14.6 
An NMR spectrunl of iodomethane taken on a 60-MHz spectrometer. There is a strong signal 
at 130 Hz on the top horizontal axis and 2.16 on the lower horizontal axis. This signal reflects 
the absorption by the three equivalent hydrogen nuclei in iodomethane. The small signal at 0 
on the horizontal axis is a reference peak and can be ignored for now. 

14-4. The Magnetic Field Acting upon Nuclei in Molecules 
Is Sh ielded 

In Section 14-3, we showed that the two spin states of a spin 1/2 nucleus such as a 
proton have different energies in a magnetic field, and that the frequency associated 
with a transition from one state to another is given by Equation 14.18, 1) == Y Bz/2n . 
According to this equation, all the hydrogen nuclei in a molecule absorb at the same 
frequency. If this were the case, then NMR spectroscopy would be little more than an 
expensive technique for testing for the presence of hydrogen. 

The quantity B: in Equation 14.18 is the magnetic field the nucleus experiences. 
For an isolated or bare nucleus, this field is just the external magnetic field. But 
a nucleus in a molecule is surrounded by electrons, and the applied magnetic field 
causes a circulatory motion of these electrons, which in turn generates an additional 
small magnetic field at the nucleus. For most substances, this electronically generated 
magnetic field, B

e1ec
' opposes the applied magnetic field. It turns out that the magnitude 

of B
elec 

is proportional to the applied field, so we can write 

B == -a B 
elec 0 

(14.20) 

where Bo is the applied magnetic field (assumed to be in the z direction) and a is a 
(unitless) proportionality constant. The negative sign in Equation 14.20 accounts for 
the fact that B

elec 
opposes Bo' The electrons effectively shield the nucleus from Bo' so 

a is called a shielding constant. Typical values of shielding constants for hydrogen 
nuclei in organic compounds are approximately 10-5

. 



14-4. The Magnetic Field Acting upon Nuclei in Molecules Is Shielded 

An important property of a shielding constant is that its value depends upon the 
electronic or chemical environment around the nucleus. Therefore, the two sets of chem­
ically equivalent hydrogen nuclei in a molecule such as methyl formate (HCOOCH3) 

experience different local fields. 
The total magnetic field that any nucleus experiences is the sum of the applied, 

external field, Bo' and the shielding field, B
e1ec 

== -(5 Bo' so that the total field is given 
by B 7 == (1 - a) Bo' If we substitute this expression into Equation 14.18 or 14.19, we 

~, 

see that the frequency (at fixed magnetic field strength) or the field strength (at fixed 
frequency) at which a nucleus will undergo a spin transition is given by 

27TlJ W 
B- -----

o - y(1 - (5) - y(1 - a) 
(14.21) 

Equation 14.21 shows that the field strength at which a nuclear spin transition will take 
place depends upon a, which in turn depends upon the chemical environment of the 
nucleus. Thus, in iodomethane, with its three chemically equivalent hydrogen nuclei, 
the NMR spectrum (Figure 14.6) has only one absorption line, whereas in methyl 
formate, with hydrogen nuclei in two different chemical or electronic environments, 
there are two lines (Figure 14.7). 

The spectra in Figures 14.6 and 14.7 show a relatively small peak at the right side, 
at the zero position on both the top and the bottom scales. This peak at zero is due to a 
small amount of added tetramethylsilane, Si(CH3)4 (TMS), which is used as an internal 
reference or standard. Tetramethylsilane is used because it has 12 equivalent hydrogen 
atoms and is relatively nonreactive. Furthermore, the hydrogen atoms in most organic 
compounds absorb at fields smaller than does TMS, or downfield from TMS, and so the 

500 400 300 200 100 a Hz 

o b 
II 

H-C-O-CH 3 
a b 

TMS a 

8 6 4 2 a 
FIG U R E 14.7 
An NMR spectrum of methyl formate taken on a 60-MHz spectrometer. The small signal 
at 0 on the horizontal scale is simply a reference signal and can be ignored for now. The signals 
at 3.6 and 8.1 on the lower scale reflect the two sets of equivalent hydrogen nuclei in methyl 
formate. Note that the signal due to the three hydrogen nuclei labelled b is about three times 
greater than the signal due to the single hydrogen nucleus labelled Q. 
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absorption due to TMS will appear at the right edge of the spectrum. (Recall that NMR 
spectra are conventionally presented with the strength of the magnetic field increasing 
from left to right.) The top and bottom scales in the spectra in Figures 14.6 and 14.7 
indicate the absorption lines relative to this TMS standard. 

The top scale in both Figures 14.6 and 14.7 is in hertz (Hz), and runs from 0 Hz 
(on the right) to 500 Hz (on the left). The bottom scale in both figures is a derived scale 
related to the top scale and is defined in the following way. From Equation 14.21, the 
resonance frequency of a hydrogen nucleus vH is 

( 14.22) 

Equation 14.22 shows that the resonance frequency is proportional to the strength of 
the magnetic field generated by the spectrometer. Different NMR spectrometers, then, 
will record different resonance frequencies relative to TMS for similar hydrogen nuclei 
in similar compounds. For example, the hydrogen nuclei in CH3I will absorb at 130 Hz 
in a 60-MHz spectrometer, at 195 Hz (130 x 90/60 Hz) in a 90-MHz spectrometer, 
and at 585 Hz (130 x 270/60 Hz) in a 270-MHz spectrometer. 

To avoid this complication and to be able to compare spectra taken by different 
spectrometers, we standardize the measured resonance frequency (relative to TMS) by 
dividing it by the frequency of the spectrometer. This procedure yields a spectrometer­
independent number, the chemical shift (8H), defined by 

8 == resonance frequency of nucleus H relative to TMS x 106 

H spectrometer frequency 

VH - VTMS X 106 (14.23) 
V spectrometer 

From Figure 14.6, we find that vH - VTMS == 130 Hz, so Equation 14.23 gives 8 == 
2.16 ppm, which is given on the bottom scale in Figure 14.6. Because the numerator 
of Equation 14.23 is measured in Hz and the denominator is measured in MHz, the 
factor of 106 in Equation 14.23 yields values of 8 (in ppm) usually between 0 and 10 
for hydrogen nuclei in organic compounds. 

Consider two different hydrogen nuclei that absorb at frequencies v I and v2 • Using 

Equation 14.22, we can write 

and 

Therefore, 

V 
spectrometer 

yB 
v == o(l-a) 

I 2n ' 

6 Y Bo 6 
X 10 == (a2 - a,) x 10 

2nv spectrometer 

(14.24) 



14-4. The Magnetic Field Acting upon Nuclei in Molecules Is Shielded 

Realizing that typical values of a are of the order of 10-5
, we can neglect a compared 

to 1 in Equation 14.21 and replace Vspectrometer with y Bo/2][ in Equation 14.24 to get 

(14.25) 

Notice that the separation between the two absorption lines for the chemical shift scale 
is independent of the applied magnetic field. 

EXAMPLE 14-3 
Show that the top and bottom scales in Figure 14.7 are consistent for the two signals 
labelled a and h. Estimate the difference in chemical shifts for the hydrogen nuclei 

labelled a and h. What would be the separation between the two signals on a 270-MHz 

spectrometer? 

SOL UTI 0 N: The a signal occurs at approximately 480 Hz, so using Equation 14.23, 
we find that 

8 = X 106 = 8.0 ppm ( 
480 HZ) 

a 60 MHz 

Similarly, the b signal at 230 Hz corresponds to 8
b 

= 3.8 ppm. 
The separation between the two signal is 8

0 
- 8

b 
= 8.0 ppm 3.8 ppm = 4.2 ppm, 

so Equation 14.25 gives 

a
j 

- a = 4.2 x 10-6 
) (I 

On a 270-MHz spectrometer, the separation in the frequency between the two signals 
would be (Equation 14.24) 

l' - l' = v (8 - 8 ) X 10-6 
{/ b spectrometer (/ b 

= (270 MHz)(4.2 ppm) x 10-6 

= 1130 Hz 

The separation is different on the hertz scale but remains the same on the chemical 
shift scale. 

EXAMPLE 14-4 
Show that 

and interpret this result. 

SOL UTI 0 N: Simply let 81 = 8H , 82 = 0, and a
2 

- a
l 

= a TMS - a
H 

in Equation 
14.25. This results says that the chemical shift of a given proton decreases with 
an increase in shielding constant (so long as DH remains positive). 
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14-5. Chemical Shifts Depend upon the Chemical Environment 
of the Nucleus 

Because the shielding of a nucleus is caused by the enhanced electronic currents set 
up in the molecule by the external applied magnetic field, we can expect that the 
degree of shielding increases with increasing electron density around the nucleus. As 
Equation 14.21 shows, the larger the shielding constant, the greater is the external 
magnetic field required to produce resonance. Thus, according to Example 14.4, we 
expect that the greater the electron density, the smaller the chemical shift and the more 
upfield (toward the right in the spectrum) the resonance will occur. Table 14.3 lists 
typical hydrogen chemical shifts in organic molecules. (Note that all the chemical 
shifts are positive; this is another reason that TMS is used as a standard.) Table 14.3 
shows that the hydrogen nuclei in alkanes absorb at relatively high fields, or have 
relatively small chemical shifts (8 == 0.8 to 1.7). The hydrogen nuclei in alkanes are 
relatively well shielded by the surrounding electrons. If we substitute an electron­
withdrawing group on an alkane carbon atom, as in CH

3
CI, the hydrogen nuclei will 

be less shielded, the value of (J will be smaller, and the hydrogen nuclei will absorb at 
lower field strengths, or at higher chemical shifts. This downfield shift increases with 

the number of electron-withdrawing groups attached, as the following data show: 

CH4 
CH

3
CI CH

2
Cl

2 
CHCl

3 

8 == 0.23 8 == 3.05 8 == 5.33 8 == 7.26 

TAB L E 14.3 
Chemical shifts for hydrogen nuclei in various chemical or electronic environments. 

Type of compound Type of proton Example 8 

Tetramethylsilane (CH3 )4Si 0 

Alkane RCH
3 

CH
3
CH

2
CH

3 
0.8-1.0 

Alkane R2CH2 (CH3 )2CH2 1.2-1.4 

Alkane R1CH (CH3)3CH 1.4-1.6 

Aromatic ArH Benzene 6.0-8.5 

Aromatic ArCH p-Xylene 2.2-2.5 

Chloroalkane RCH,)CI CH
3
CH

2
CI 3.4-3.8 

-.:.., 

Bromoalcane RCH2Br CH
3
CH

2
Br 3.3-3.6 

Iodoalkane RCH
2
I CH

3
CH

2
I 3.1-3.3 

Ether ROCH
2
R CH

3
OCH

2
CH

3 
3.3-3.9 

Ester RCOOCH
2
R CH

3 
COOCH

2 
CH

3 
3.7-4.1 

Ester RCH,)COOR CH
3 
CH

2 
COOCH

3 
2.0-2.2 

-.:., 

Ketone RCOCH
3 

CH
3
COCH

3 
2.1-2.6 



14-5. Chemical Shifts Depend upon the Chemical Environment of the Nucleus 

Also, as you might expect, there is a correlation between electronegativity and chemical 
shift; the greater the electronegativity of X in CHjX, the greater the chemical shift: 

CH}F 

8 == 4.26 

The electronegativity effect also can be transmitted through adjacent carbon atoms: 

CHjCl 

8 == 3.05 

CH}-CH
2
CI 

8 == 1.42 

CH
3

- CH
2

- CH
2
CI 

8 == 1.04 

In the NMR spectrum of methyl formate (Figure 14.7), the two signals (not counting 

the reference signal from TMS) are due to the hydrogen nuclei as indicated in the figure. 
From Table 14.3, we see that the smaller signal arises from the hydrogen labelled a in 
Figure 14.7 and that the larger signal arises from the methyl hydrogens. 

The relative areas of the two peaks in Figure 14.7 reflect the number of equivalent 
hydrogen atoms in each set. Each hydrogen atom in a set contributes to the observed 
signal, so the area of a signal peak is proportional to the number of hydrogen atoms 
generating that signal. The relative signal areas in Figure 14.7 are in the ratio 3: 1, in 
quantitative agreement with the numbers of equivalent hydrogen atoms in the two sets 

of hydrogen atoms in methyl formate. The relative areas are often difficult to determine 
visually, but the areas are measured electronically by an NMR spectrometer. In many 
spectrometers, the chemical shift and relative areas of each peak are printed digitally 

right on the spectrum. 

EXAMPLE 14-5 
Suppose we have a compound that we know to be either methyl acetate (CH

3
COOCH

3
) 

or ethyl formate (HCOOCH2CH3). Both substances have the same molecular formula, 

C
3
H

6
0

2
. Given that the NMR spectrum of the compound is as shown below, 

500 400 300 200 100 a Hz 
I I I I I I 

C3 H 6 0 2 

TMS 

I I I I I I I I 

8 6 4 2 o 

determine which substance the compound is. 
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SOL UTI 0 N: From the Lewis formula of methyl acetate, we see that methyl acetate 

has two methyl groups. One methyl group is attached to an oxygen atom, and the other 

is attached to a carbon atom. Consequently, these two methyl groups are not equivalent, 

so methyl acetate has two sets of equivalent hydrogen nuclei, each set containing three 

hydrogen atolTIS. The Lewis formula of ethyl formate suggests there are three different 

sets of hydrogen atoms in this molecule. Because only two signals are observed in 

the NMR spectrum, we conclude the unknown compound must be methyl acetate. For 

added assurance, note that the positions of the two signals are in agreement with the 

values given in Table 14.3, and the relative areas are I: 1. 

14-6. Spin-Spin Coupling Can Lead to Multiplets in NMR Spectra 

There is an important feature of NMR spectra we have not discussed yet. To see this 
feature, let's consider 1,1 ,2-trichloroethane.There are two types of hydrogen atoms 
in this molecule. One set contains one hydrogen atom, and the other contains two 
structurally equivalent hydrogen atoms. Consequently, we predict that the NMR spec­
trum will contain two signals whose areas are in the ratio 1 :2. The NMR spectrum of 
1,1,2-trichloroethane is shown in Figure 14.8. It appears to be more complicated than 
we predicted. Instead of just two single peaks, we have two groups of closely spaced 
peaks. One group consists of three closely spaced peaks (labelled a) and the other 
consists of two closely spaced peaks (labelled b). The signals due to the two sets of 

500 400 300 200 100 o Hz 
! ! ! ! I 

CI Hb b 
I I 

H-C-C-Cl 
a I I 

CI Hb 

a 
TMS 

i I I ! I i I I 

8 6 4 2 o 

FIG U R E 14.8 
The NMR spectrum of 1,1 ,2-trichloroethane taken on a 60-MHz spectrometer. There are 
two sets of hydrogen atoms, labelled a and b in the Lewis formula. Instead of two single peaks 
in the spectrum, there is a signal consisting of three closely spaced peaks (a triplet) and a 
signal consisting of two closely spaced peaks (a doublet). The signals due to the two sets of 
hydrogen atoms are said to be split. The observed splitting gives information about the number 
of protons adjacent to each set of equivalent hydrogen atoms. The relative areas under the two 
multiplets are 1 :2, in accord with the number of hydrogen atoms in the two equivalent sets. 
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hydrogen atoms in 1,1 ,2-trichloroethane are said to be 5plit. The three peaks labelled a 
in Figure 14.8 are collectively called a triplet, and the two peaks labelled b are called 
a doublet. 

The areas of the doublet and triplet in Figure 14.8 are in the ratio 2: 1, as we 
would have predicted, but why does the splitting occur? Recall that protons behave as 
tiny magnets and so create their own magnetic fields. Therefore, any given hydrogen 
nucleus will be acted upon not only by the externally applied field and by the magnetic 
field generated by the motion of its nearby electrons, but also by the magnetic field 
due to the magnetic dipoles of its neighboring hydrogen nuclei on adjacent carbon 
atoms. The effect of the neighboring hydrogen nuclei is to split the signal of the 
given hydrogen nucleus into multiplets. The interaction between nuclear spins is called 
spin-spin interaction. 

Now we will consider this splitting into multiplets due to spin-spin interaction in 
a quantitative manner. For simplicity, let's consider a molecule with just two hydrogen 
atoms in different electronic environments. In the absence of spin-spin interaction, 
the spin Hamiltonian operator of such a molecule consists of two terms similar to 
Equation 14.14 but with Bz replaced by Bo(1 - (Jj)' where O:i is the chemical shift of 

" the jth hydrogen nucleus. Thus, we can write H as 

" " " 
H == -y Bo(1 - (J1)IzJ - Y Bo(l - (J2)Iz2 ( 14.26) 

This Hamiltonian operator has no terms that account for the interaction between 
spins on neighboring hydrogen nuclei. The classical expression for the interaction 
between two magnetic dipole moments involves a factor J..L I . J..L 2 , where J..L I and J..L2 are 
the magnetic dipole moments. Quantum mechanically, J..L is proportional to the spin 1 
(Equation 14.9), so we can account for the effect of spin-spin coupling by including 

" A 

a term proportional to 1 I . 12 in the Hamiltonian operator. (See a similar interaction 
term in Equation 8.55.) We let the proportionality constant be 112 , so we write the spin 
Hamiltonian operator for an interacting two-spin system as 

( 14.27) 

The factor of h j1i 2 is included in the spin-spin interaction term to give 112 units of 
hertz. The quantity 112 is called the spin-spin coupling constant. 

In this section, we will assume the spin-spin interaction term can be treated by 
first-order perturbation theory. The unperturbed spin Hamiltonian operator and the 
perturbation term are 

( 14.28) 

and 

( 14.29) 
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The unperturbed wave functions are the four spin-function products for a two-spin 
system: 

1/J1 == a(1)a(2) 

1/J~ == a(1),8(2) 

1/J2 == ,8(1)a(2) 

1/J4 == ,8(1),8(2) 
(14.30) 

Recall from Section 7--4 that the energy through first -order is given by (Equations 7.47 
and 7.48) 

(14.31) 

where T1 and T2 are spin variables. (We don't use (5 here for the spin variable as we did 
in Section 8-4 and Equation 14.2 to avoid confusion with the notation for shielding 
constants.) The E)O) are given by 

( 14.32) 

where the 1/J. are given in Equation 14.30. For example, EiO) can be determined readily 
] 

A Tz 
by using the fact that I~j a (j) == 2 a (j) for j == 1 and 2: 

fi(O)1/J1 == fi(O)a(1)a(2) 
A A 

== -y Bo(l - (51)I
zl

a(l)a(2) - y Bo(l - (52)Iz2a(l)a(2) 

1iyB(l-(5) hyB(l-(5) 
== _ ° I a(l)a(2) _ ° 2 a(1)a(2) 

2 2 

== E~O)a(1)a(2) == EiO)1/J\ (14.33) 

so that 

(14.34) 

EXAMPLE 14-6 
Show that E~(» == ny Bo(a

l 
- a

2
) /2. 

SOL UTI 0 N: To determine E~O), we use 

Therefore, we have 

iJ(O)lj; == iI(o l a(I){3(2) 
3 

~ A 

== -yBo(l - a
1
)I

zl
a(1){3(2) - yBo(1 - a

2
)I

z2
a(I)f3(2) 

nyB(1 a) nyB(I-a) 
o 1 a(1)f3(2) + 0 2 a(1)f3(2) 

2 2 
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TIyB 
__ 0 (a

l 
- a')a(1){:3(2) 

2 -

so that 

(14.35) 

Similarly (Problem 14-16), 

nyB 
£ (0) _ _ 0 ( _ ) ') - a l a') - 2 ~ 

(14.36) 

and 

(14.37) 

To calculate the first-order corrections, we must evaluate integrals of the type 

(14.38) 

" " The dot product of I, . 12 is (MathChapter C) 

A A A A A A A A 

1·1==/1+11+11 1 2 x I x2 .v 1 .v2 1.1 1.2 
(14.39) 

" " The integral involving 171172 is fairly easy to evaluate because of Equation 14.3b. If we 
..... ...., 

take 1/11 == a(l)a(2) as an example, we obtain 

" " "" lzl l z2a(l)a(2) == [lzl a(I)][1z'2a (2)] 

n n n2 

== 2 aC !) 2a(2) == 4 a (l)a(2) 

and so 

hlp Ti
2 f f == ') "- - dr

1
a*(I)a(l) dr;a*(2)a(2) 

Ti- 4 -

Similarly (Problem 14-17), we find that 

hJI2 H == H == ---
z.22 :::.33 4 

(14.40) 

(14.41) 
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and 

H == hil2 
:.44 4 (14.42) 

A A/"\./"\. 

The integrals involving Ix I Ix2 and Irl 1\'2 are not as easy to evaluate. Problems 14-18 
through 14-21 lead you through the proof that 

A h A ih 
I a == -f3 

x 2 

A h 

I a == -f3 
y 2 

A ih 
(14.43) 

I f3 == -a 
x 2 I f3 == --a 

y 2 

These equations along with Equation 14.3b are listed in Table 14.4 for convenience. 
U sing these relations, we see, for example, that 

A A A "'-

I
rl 

I x2a(l)a(2) == [I
x1

a(I)][I
x2

a(2)] 

h h h2 

== 2f3(1)2f3(2) == 4 f3 (1)f3(2) 

and so 

h J f f h
2 

== . '")12 d TId T'") a * ( 1 ) a * (2) - f3 ( 1 ) f3 (2 ) 
h- - 4 

= h~'l f dT,CX*(l).B(l) f dT2CX*(2).B(2) = 0 

where we have used the orthogonality of the a and f3 functions. Similarly, we can show 

TAB L E 14.4 
"" " 

A summary of the results of Ix' I\" and I:: operating on a and [3. 

A n A in A n 
I a == -[3 

.r 2 I a == -[3 
y 2 I a ==-a 

~ 2 

A Pl A in A n 
I {3 == -a 

x 2 I [3 == --a 
y 2 1:{3 == - 2 [3 
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" " that the x and y terms in 11 . 12 do not contribute to any of the first-order energies in 
this case (Problem 14-22), and so the energy of each level to first-order is 

(14.44) 

where 

yBo 
1J ==--
o 2JT 

( 14.45) 

The energy levels given by Equations 14.44 (along with the allowed transitions) 
are sketched in Figure 14.9. The selection rule for transitions between nuclear spin 

lJI 

/3(1)/3(2) 

a(1)f3(2) 

/3(1)a(2) 

a(1)a(2) 

FIGURE 14.9 

I 
V3~4 

I 
V2~4 

J 

E 

(0) 
E4 + hi12/4 

E(O) hi 14 
3 - 12 

E(O) hi 14 
2 - 12 
(0) 

E] + hi12/4 

The energy levels of a two-spin system calculated by first-order perturbation theory. The 
allowed transitions are indicated by the vertical arrows. 
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states says that only one type of nucleus at a time can undergo a transition. Thus, the 
allowed transitions for absorption (as indicated in Figure 14.9) are 

a(l)a(2) ~) f3(I)a(2) (I -+ 2) 

a(l)a(2) ~> a(I)f3(2) (I -+ 3) 

f3(I)a(2) ~> f3(1)f3(2) (2 -+ 4) 

a(I)f3(2) ~) f3(1)f3(2) (3 -+ 4) 

The frequencies associated with the allowed transitions are 

We can express the above four resonance frequencies by 

1 
v± == v (1 - a ) ± ~ 

1 0 1 2 

1 
v± == v (I - a ) ± ~ 

2 0 2 2 

(14.46) 

(14.47) 

Realizing that 112 is small enough to use first-order perturbation theory, we know the 
four resonant frequencies occur as a pair of two closely spaced lines, or two doublets, as 
sketched in Figure 14.10. The centers of the doublets are separated by vola} - a21, and 
the separations of the peaks within the two doublets is 112 . A molecule in which the two 
hydrogen nuclei are in very different chemical environments so that vola] - a21 » 112 

is called an AX system. Figure 14.11 is a sketch of the NMR spectrum of an AX 
spin system taken at 90 MHz and 200 MHz. In the 90-MHz spectrum, one doublet is 

1 

112 :112 
-1-

2 : 2 
1 

FIG U R E 14.10 

VO\O"I- 0"21---~~·: 
I 

1 
1 

112 :112 
-1-

2:2 
1 

The splitting pattern in the first -order spectrum of an AX spin system. The centers of the 
doublets are separated by va la] - a21, and the separation within each doublet is '12. 



I 
600 

I 
600 

FIGURE 14.11 

II 

I 
400 

I 
400 

II 

" II I 
200 

I 
200 

90 MHz 

I 
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200 MHz 

I 
o Hz 

An idealized spectrum of an AX spin system taken at 90 MHz (top) and 200 MHz (bottom), 
illustrating that the spacing between the centers of the doublets increases with increasing 
spectrometer frequency but that the spacing within the doublets is independent of spectrometer 
frequency. 

centered at 130 Hz and the other at 210Hz. The separation within the doublet is 6.5 Hz. 

In the 200-MHz spectrum, Vo is now 200 MHz, so the two doublets are centered at 

center of doublet 1 == (130 Hz) == 289 Hz (
200 MHZ) 
90 MHz 

and the other at 

center of doublet 2 == (210 Hz) == 467 Hz (
200 MHZ) 
90 MHz 

so their separation increases from 80 Hz at 90 MHz to 178 Hz at 200 MHz. The spacing 
within the doublets, however, is still 6.5 Hz because 112 is independent of the frequency 
of the spectrometer. 

The condition for the use of first-order perturbation theory is that 112 « Vo 10'1 - 0'2 1, 

and this is the condition that leads to two separated doublets. Such a spectrum is called 
a first-order spectrum. Typical values of coupling constants are around 5 Hz, so a 
first-order spectrum will result if the separation between multiplets is 100 Hz or so. 
For example, in Figure 14.8, I == 6 Hz and volO'I - 0'

2
1 == 110 Hz. We will see in 

Section 14-9 that the resultant spectrum will not consist of two separated doublets of 

equal intensity unless 112 « Vo 10'1 - 0'2 1. 

The designation "AX" to describe the two-spin system discussed above comes 
from a notation commonly used in NMR studies. For any molecule, each nonequivalent 
hydrogen atom is given a letter, A, B, C, and so forth. If there is more than one hydrogen 

atom of a type, we use a subscript to denote the number as in A3 or B
2

• Hydrogen atoms 
whose chemical shifts are relatively similar in magnitude are assigned letters that are 
close to each other in the alphabet, such as AB. Hydrogen atoms whose chemical shifts 
differ by a relatively large amount are assigned letters that are far apart in the alphabet, 

such as AX. Thus, a two-spin system with 112 « Vo 10'1 - 0'2 1 is an AX system. One 
with 112 ~ vol 0' 1 - 0'2 1 is an AB system. Figure 14.8 shows that 1,1 ,2-trichloroethane 
is an example of an A

2
X system when measured by a 60-MHz spectrometer. 
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14-7. Spin-Spin Coupling Between Chemically Equivalent Protons 
Is Not Observed 

In the previous section we showed that the first-order spectrum of an AX system leads 
to an NMR spectrum consisting of two doublets. Figure 14.12 shows the spectrum of 
dichloromethane, in which the two hydrogen atoms are chemically equivalent (an A2 
system). Note that the spectrum in this case consists of just one singlet. Not only do 
the two protons absorb at the same frequency, as you might expect, but no splitting of 
this signal due to spin-spin coupling is observed, as you might not expect. 

The spin Hamiltonian operator of an A2 system is (see Equation 14.27) 

(14.48) 

The spin Hamiltonian operator for an A2 system is similar to that of an AX system, 
except that in this case the two shielding constants are equal. As we did in the previous 
section, we will use perturbation theory to determine the first-order spectrum. We will 
use 

(14.49) 

as the unperturbed Hamiltonian operator and 

(14.50) 

as the perturbation term. A primary difference between the first-order perturbation 
theory treatment of an AX system and an A2 system is in the form of the unperturbed 

500 400 300 200 100 o Hz 
I I I I I I 

TMS 

'-

I I I I I I I I I 

8 6 4 2 o 

Fie U R E 14.12 
An NMR spectrum of dichloromethane taken on a 60-MHz spectrometer. 
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spin wave functions. Because the two nuclei are equivalent, and so indistinguishable, 
in the A2 case, we must use combinations of the a's and {3's that are either sym­
metric or antisymmetric, as we did when we developed the spin wave functions of 
the two electrons in a helium atom in Section 8-5. The four acceptable combina­
tions are 

¢l == a(l)a(2) 

1 
13 = y'2[a(1),B(2) + ,B(1)a(2)] 

1 
12 = y'2[a(1),B(2) - ,8(I)a(2)] 

(14.51) 

¢4 == ,8(1){3(2) 

We can now use Equation 14.31 to calculate the four first-order energies. For 
example, 

The first integral in Equation 14.52 is evaluated readily using the fact that (Equa­
tions 14.3b) 

"" (Ji Ji ) (Izl + I z2 )a(l)a(2) == 2 + 2 a(1)a(2) == Jia(1)a(2) 

The second integral is evaluated using the relations in Table 14.4: 

A A. A A. A A. 

(Ix] Ix2 + IYl IY2 + Izl I z2 )a(l)a(2) 

Ji2 Ji2 Ji2 
== 4{3(1),8(2) - 4,8(1){3(2) + 4 a (1)a(2) 

To evaluate E1' we multiply this relation by a*(1)a*(2) and integrate over the spin 
coordinates. The first and second terms here will vanish due to the orthogonality of the 
spin functions a and ,8, and so we have 

hJ n
2 f f + n~A 4" dT

J
a*(1)a(1) dT2a*(2)a(2) 

hJ 
== -Ji y B (1 - a ) + AA o A 4 (14.53) 
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EXAMPLE 14-7 
Evaluate E2 through first order. 

SOL UTI 0 N: The value of E2 through first order is given by 

E - E(O) + E(l) 
2 - 2 2 

:= II d r d r "" * iI (0) "" + II d r d r "" * iI (1 ) "" ( 1 ) 1 20/2 0/2 I 20/2 0/2 

The first integral in Equation I requires that we evaluate 

'" A. 1 '" '" 
(Izi + I z2 )12 := v0.(Izl + I z2 )[a(1),B(2) - ,B(1)a(2)] 

= ~[ G -~) -G -~)] [a(l).B(2) - .B(l)a(2)] = 0 

Substituting this result into Equation 1 shows that EiO) := O. The second integral 

invol ves evaluating the term 

U sing the relations in Table 14.4, we see that 

'1 

" " Ti"" 
Ixl I x2 ,B(1)a(2) := 4 a (1),B(2) 

" " Ti
2 

I y1 l y2 a(1),B(2) := 4,B(1)a(2) 

" " Ti
2 

l yl / y2 ,B(I)a(2):= 4 a (1),B(2) 

" " Ti
2 

1:l/z2a(1),B(2) := -4a (1),B(2) 

" " Ti
2 

l:llz2,B(1)a(2):= -4,B(1)a(2) 

Putting this all together gives 

and substituting this result into Equation 1 gives 

(14.54) 
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Similarly, we find that (Problem 14-27) 

(14.55) 

and 

( 14.56) 

These four energy levels are sketched in Figure 14.13. The selection rules state that not 
only does one spin at a time undergo a transition, but that only transitions between states 
of the same spin symmetry are allowed (Problem 14-39). Thus, the allowed transitions 
are 1 ~ 3 and 3 ~ 4. The frequencies corresponding to these transitions are 

(14.57) 

Therefore, although the spin-spin coupling between equivalent protons alters the en­
ergy levels, the selection rules are such that the spin-spin coupling constant effect 
cancels in the transition frequencies, so only a single proton resonance is observed in 
a molecule such as dichloromethane (Figure 14.12). 

14-8. The n + 1 Rule Applies Only to First-Order Spectra 

The splitting observed for 1,1 ,2-trichloroethane in Figure 14.8 shows a doublet and 
a triplet, and that for chloroethane in Figure 14.14 shows a triplet and a quartet. The 

(0) 

<P4 r 
E4 + hlAA/4 

V3~4 

I (0) 

<P2 , <P3 t E3 + hIAA/4 
'" --

VI ~3 

£(0) _ 3hI 14 
2 AA 

(0) 

<PI 
E I + hI AA/4 

FIG U R E 14.13 
The energy levels of an A2 system calculated by first-order perturbation theory. The two allowed 
transitions, indicated by vertical arrows, have the same frequency (Equation 14.57). The wave 
functions are defined by Equations 14.5l. 
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An NMR spectrum of chloroethane taken on a 60-MHz spectrometer. The equivalent sets of 
hydrogen atoms are labelled a and h. 

splitting in each case can be predicted by a simple rule called the n + 1 rule. The 
n + 1 rule states that if a proton has n equivalent neighboring protons, then its NMR 
signal will be split into n + 1 closely spaced peaks. Each proton senses the number of 
equivalent protons on the carbon atoms adjacent to the one to which it is bonded. 

To illustrate the n + 1 rule, consider 1,1 ,2-trichloroethane, whose NMR spectrum 
is shown in Figure 14.8. The two equivalent hydrogen atoms labelled b are neighbors 
of hydrogen atom a. 

Cl Hb 

a I I 
H-C-C-Cl 

I I 
Cl Hb 

The two sets of hydrogen atoms are bonded to adjacent carbon atoms. Consequently, 
the nuclei of the two hydrogen atoms labelled b split the signal due to the nucleus of 
hydrogen atom a into a triplet (n + 1 == 2 + 1 == 3). The nucleus of the hydrogen atom 
labelled a in tum splits the signal due to the nuclei of the hydrogen atoms labelled b 
into a doublet (n + 1 == 1 + 1 == 2). The ratio of the area under the doublet signal to 
that under the triplet signal, however, is still equal to 2: 1, in accord with the number 
of equivalent hydrogen atoms in each set. Note that there is no splitting between the 
nuclei of the hydrogen atoms labelled b. Signal splitting and the n + 1 rule applies 
only between groups of nonequivalent hydrogen atoms in a molecule. 

Chloroethane (Figure 14.14) has two sets of equivalent hydrogen atoms, so there 
are two signals in the NMR spectrum. The two hydrogen atoms labelled a have three 
equivalent neighboring hydrogen atoms (labelled b). Therefore, the signal due to the 
a hydrogen nuclei is split into a quartet (n + 1 == 3 + 1 == 4) by the three neighboring 



14-8. The n + 1 Rule Applies Only to First-Order Spectra 

b hydrogen nuclei. The signal due to the three hydrogen nuclei labelled b is split by 
the two neighboring hydrogen nuclei a into a triplet (n + 1 == 2 + 1 == 3). The relative 
areas of the quartet and triplet are in the ratio 2:3, in accord with the number of hydrogen 
atoms in each equivalent set. 

In the case of 1, I-dichloroethane (Figure 14.15), there are two sets of equivalent 
hydrogen atoms, containing one and three hydrogen atoms. Consequently, the NMR 
spectrum shows two main signals, one a doublet and the other a quartet, and the ratio 
of the area under the doublet to that under the quartet is 3: 1. 

To explain the basis of the n + 1 rule qualitatively, consider the resonance due to 
the hydrogen atoms labelled b in the spectrum of 1,1 ,2-trichloroethane (Figure 14.8). 
Each of these hydrogen atoms is acted upon by the magnetic field due to the nucleus of 
hydrogen atom a. This nucleus can be aligned in one of only two orientations (±1/2) 
with respect to the externally applied magnetic field. These two possible orientations 
produce slightly different magnetic fields, so the nuclei of the b hydrogen atoms are 
acted upon by two slightly different magnetic field strengths. Consequently, the nuclei 
labelled b absorb at two slightly different positions in the NMR spectrum, leading to a 
doublet. Thus, we see that a set containing only one equivalent neighboring hydrogen 
atom yields a doublet. 

Now consider the hydrogen atom labelled a in Figure 14.8. The nucleus in this 
case has two equivalent neighboring hydrogen atoms. Each of these nuclei must be 
aligned in one of only two orientations. This requirement leads to four possibilities: 

tt 
Because one equivalent proton cannot be distinquished from another, the middle two 
combinations (t -J,- and -J,- t) produce the same field, albeit twice as likely as the other 

500 400 300 200 100 o Hz 
I I I I I I 

Cl Hb 

a I I 
H-C-C-Hb 

b I 'b 
Cl H 

TMS 

a 

~ 

I I I I I I I 

8 6 4 2 o 

FIG U R E 14.15 
The NMR spectrum of 1, I-dichloroethane taken on a 60-MHz spectrometer. The equivalent 
sets of hydrogen atoms are labelled a and b. 
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two combinations (t t or t t)· Thus, the signal due to hydrogen atom a in 1,1,2-
trichloroethane is split into a triplet, with the middle peak of the triplet being twice the 
size of the other two peaks. This leads to the 1 :2: 1 triplet pattern shown in Figure 14.8. 

We can use chloroethane to illustrate the splitting caused by a set of three equiv­
alent neighboring hydrogen atoms. Using the same argument as before, we write the 
following possibilites: 

ttt ttt 

This pattern of proton spin combinations leads to a quartet of intensities 1 :3:3: 1, 
as shown for the hydrogen atoms labelled a in the spectrum of chloroethane in 
Figure 14.14. Table 14.5 summarizes the observed multiplet splitting in first-order 
spectra. 

TAB L E 14.5 
The observed multiplet splitting in first-order spectra. 

N umber of closely spaced lines 

Name 

Relati ve peak size 

Idealized intensity pattern 

1 

Singlet 

1 

2 

Doublet 

1:1 

I I 

3 

Triplet 

1 :2: 1 

4 

Quartet 

1:3:3:1 

14-9. Second-Order Spectra Can Be Calculated Exactly Using 
the Variational Method 

The relative simplicity of first-order spectra occurs because the spin-spin coupling 
constants are small relative to the separation of the multiplets. When this is the case, 
we can use first-order perturbation theory to calculate spectra, as we did in the previous 
sections. When this is not the case, we can still predict spectra correctly, but we must 
resort to a variational calculation. 

Let's consider a molecule containing two nonequivalent hydrogen atoms. The spin 
Hamiltonian operator for this system is (Equation 14.27) 

(14.58) 
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There are a total of four possible spin wave functions for this system: 

¢I == a(1)a(2) 

¢3 == ,8(1)a(2) 

¢2 == a(1),B(2) 

¢4 == ,8(1),8(2) 
(14.59) 

We can calculate the energy levels of this spin system exactly by using a linear combi­

nation of Equations 14.59, 

(14.60) 

as a trial function in a variational calculation. In other words, we use cl' c2, c3 , and c4 

as variational parameters and minimize 

(14.61) 

Ordinarily, variational calculations are not exact, but for this case Equation 14.60 
represents all the possible two-proton spin functions, so the resultant 1/1 is as general as 
possible, and a variational calculation will yield an exact result. When Equation 14.61 
is minimized with respect to the c. 's, we obtain a 4 x 4 secular determinantal equation 

} 

(Section 7-2), 

HII - E Hl2 H I3 Hl4 

HI2 H22 - E H 23 H24 
==0 (14.62) 

H I3 H 23 H33 - E H34 

HI4 H24 H34 H44 - E 

where 

Hjj = f f dT1dT/pt H<pj 
(14.63) 

When the determinant in Equation 14.62 is expanded, we obtain a fourth-degree poly­
nomial in E, giving the four allowed energy levels of a two-spin system. We have 
evaluated integrals similar to the H .. when we calculated the first-order corrections to 

l} 

the energies in the previous sections. All of them are fairly easy to evaluate using the 
relations given in Table 14.4. 

EXAMPLE 14-8 
Using the relations in Table 14.4, evaluate H

I2
, 

SOL UTI 0 N: We must evaluate the integral 

HI2 = f f drldr/p~ Hq;2 

= f f dr1dr2a*(l)a*(2)Ha(l).B(2) 
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A 

where H is given by Equation 14.58. Therefore, we must first evaluate terms such as 

" h 
IZI a(l) fJ (2) := 2 a(l)fJ (2) 

" h 
I z2 a(1);9(2) := - 2 a(1);9(2) 

1;.2 
" A rl 

I xl l x2 a(1)fJ(2):= 4;9(1)a(2) 

" " h
2 

IYI l y2a(1);9(2) := 4 fJ (1)a(2) 

" " h
2 

1z, 11z'2a (1)fJ(2):= -4a (1)fJ(2) 

Therefore, 

and 

H)2 = - [hl!o(l - a)) + hl!o(l - a2 ) - h~)2 ] f f dr)drza*(l)a*(2)a(l),B(2) 

+ h~)2 f f dr)drza*(l)a*(2),B(l)a(2) 

But both of these integrals equal zero; the first because of the integration over dT2 and 
the second because of the integration over d r 1 • 

Not only does HI2 == 0, but most of the nondiagonal Hij for this two-spin system 
are equal to zero. The only nonzero Hij with i =f=. j is H23 == H32 . Using the result for 

" A 

H¢2 == Ha(1)f3(2) given in Example 14-8, we find that 

hil2 
H ==--

23 2 

When all the H .. are evaluated (Problems 14-28 through 14-30), Equation 14.62 
IJ 

becomes 

-d - d + !J.l - E 
1 2 4 

0 0 0 

0 -d + d - hi - E hi 0 
1 2 4 2 

(14.64) ==0 
0 hi d - d - hi - E 0 -

2 1 2 4 

0 0 0 d1 + d2 + h4 -E 
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where d1 == khvo(1 - at)' d2 == khvo(1 - a2), and we have dropped the 12 subscript 
on i for convenience. 

When the secular determinant is expanded, we obtain two first-degree equations 
and one second-degree equation for the E's. These give 

E == -hv 1 - +-( 
al +a2 ) hi 

1 0 2 4 

(14.65) 

E == hv 1 - ~ +-( 
al +a,,) hI 

4 0 2 4 

Note that Equations 14.65 reduce to the results given in Section 14.7 for two equivalent 
protons when a 1 == a 2 • 

The energies given by Equations 14.65 are sketched in Figure 14.16 for a two­
spin system. The selection rules from Sections 14.6 and 14.7 give the allowed tran­
SItIons 1 ---+ 2, 1 ---+ 3, 2 ---+ 4, and 3 ---+ 4 for non-equivalent protons (Sec­
tion 14.6) and 1 ---+ 3, 3 ---+ 4 for equivalent protons (Section 14.7), as shown in 
Figure 14.16. 

AX(JAX = 0) AX(JAX > 0) AB(JAB>O) 

, , 
, " 

J 

• 
FIG U R E 14.16 
The four energy levels of a two-spin system for various relative values of 1)0 10"1 - 0"2 1 and 1. 
For the AX case, volO"l - 0"2 1 » 1~ for A2 , volO"I - 0"2 1 = 0; and for AB, vola

l 
- 0"2 1 ~ 1. The 

selection rules differ for non-equivalent and equivalent protons. 
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EXAMPLE 14-9 
Determine the resonance frequency of the 1 -+ 3 transition for a two-spin system. 

SOLUTION: Using Equations 14.65, we have 

_ _ h J h 2 2 2 1/2 
E3 - EI - hVI---+3 - -4 + 2 [vo(al - a 2) + J ] 

h Vo h J 
+T(2-a l -a2)-4 

or 

All four allowed resonance frequencies and their relative intensities are given in 
Table 14.6. 

The observed spectra associated with the resonance frequencies and relative in­
tensities given in Table 14.6 depend upon the relative values of Vo 10'1 - a21 and J, 

as shown in Figure 14.16. Note that for J == 0, there are just two separate singlets, 
as you would expect for two distinct hydrogen atoms with no coupling. At the other 
extreme, when at == a 2, we have two chemically equivalent hydrogen atoms, with 
one signal, as in the case of dichloromethane (Figure 14.12). Note that even though 
J =1= 0 in this case, no coupling between chemically equivalent hydrogen atoms is 
observed. 

TAB l E 14.6 
The four resonance frequencies and their relative intensities for a two-spin system. 

Frequency 

v 0 J 1 2 2 2 1/2 
Vl---+2 == 2(2-a1 -a2) -"2 - 2[vO(a l -a2) + J] 

v 0 J 1 2 2 2 1/2 
Vl---+3 == 2(2-a l -a2) -"2 + 2[vo (a l -a2) + J] 

_ Vo J 1 2 2 2 1/2 
V2---+4 - 2(2 - a 1 - a2) +"2 + 2[vo (a l - a2) + J ] 

v 0 J 1 2 2 2 1/2 
V3---+4 == 2(2 - a1 - a2) +"2 - 2 [vOCal - a2) + J ] 

[ 

(~2 + J2) 1/2 + ~ ] 1/2 

a where r == 2 2 1/2 and ~ == vO(a l - a,J 
(~ + J) - ~ ~ 

Relative 
intensityCl 

(r - 1)2/(r + 1)2 

1 

1 



14-9. Second-Order Spectra Can Be Calculated Exactly Using the Variational Method 

EXAMPLE 14-10 
Show that there is only one singlet signal in the spectrum of an A" spin system . ... 

SOL UTI 0 N: If a
l 

== a
2

, then ~ == 0, and r == 1. Therefore, there is no signal (zero 
intensity) for the 1 ----+ 2 and 2 ----+ 4 transitions in Table 14.6. Furthermore, when 

so there is only one singlet signal in the system. 

For cases that are intermediate between the two extremes, J == 0 and a 1 == a2, the 
spectrum can vary considerably (Figure 14.17). Such spectra are called second-order 
spectra and the n + 1 rule does not apply to such systems. Only for the case in which 
J « Vo lat - a21 does the n + 1 rule apply, and the spectrum consists of two separated 
doublets of equal intensity, as shown in Figure 14.17. When J « Vola} - a21, we can 

I I 
-CH-CH-

I I I I 

Vo I 0"1- 0"21 - 61 I I I I -

Vo I 0"]- 0"2\ - 31 I I -

Vo I 0"1- 0"2/ = ~1 II 
2 

FIG U R E 14.17 
I I 

The splitting pattern of a two-spin system -CH-CH- for various values of J and Vola} - a21. 
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write the square root term in Table 14.6 in the form 

and then use the fact that J 2/v5(a1 - a2)2 « 1. In this case, we can use the expansion 

and write 

2 
1/2 X X (1 + x) = 1 + - - - + ... 

2 8 

= v (a - a ) + ... 
012 

Therefore, keeping only terms linear in J, we have from Table 14.6 

J 
Vl~2 = vo(l - a 1) - 2 

J 
V3~4 = vo(l - a l ) + 2" 

J 
Vl~3 = vo(l - a2 ) - 2" 

J 
VI 4 = vo(l - a l ) + -
~~ ""' 2 

(14.66) 

in agreement with our first-order perturbation theory treatment of an AX system (Equa­
tion 14.46). The general case, in which vola] - a21 and J are of comparable magni­
tudes, must be handled by a computer. Fortunately, computer programs are available 
for analyzing second-order spectra. 

EXAMPLE 14-11 
Using the results in Table 14.6, compute the spectrum of a two-spin system for va = 

60 MHz and Vo = 270 MHz, given that a 1 - a2 = 0.24 x 10-6 and J = 8.0 Hz. Sketch 

the spectrum in each case. 

SOL UTI 0 N: At 60 MHz, 

8.0 Hz 1 
VI 2 = 60 MHz - - - [(14.4 Hz)2 + (8.0 HZ)2]1/2 
~ 2 2 

= 60 MHz - 4.0 Hz - 8.2 Hz 

= 60 MHz - 12.2 Hz 

8.0 Hz 
VI---+3 = 60 MHz - 2 + 8.2 Hz 



14-9. Second-Order Spectra Can Be Calculated Exactly Using the Variational Method 

== 60 MHz + 4.2 Hz 

8.0Hz 
1)2---+4 == 60 MHz + 2 + 8.2 Hz 

== 60 MHz + 12.2 Hz 

V3---+4 == 60 MHz - 4.2 Hz 

To calculate the relative intensities, we first must calculate r: 

{ 
[(14.4 Hz)2 + (8.0 HZ)2] 1/2 + 14.4 Hz } 1/2 6 

r == == 3.8 
[(14.4 Hz)2 + (8.0 HZ)2]1/2 - 14.4 Hz 

so the relative intensities are (r - 1)2 I (r + 1)2 == 0.35 to 1. At 60 MHz, the ideal 
spectrum looks like this: 

At 270 MHz, 

1 ·7 , 1/' 1)1---+2 == 270 MHz - 4.0 Hz - 2 [(64.8 Hz)~ + (8.0 Hz)~] ~ 

== 270 MHz - 4.0 Hz - 32.6 Hz 

== 270 MHz - 36.6 Hz 

V1---+3 == 270 MHz + 28.6 Hz 

V2---+4 == 270 MHz + 36.6 Hz 

V3---+4 == 270 MHz - 28.6 Hz 

For the intensities at 270 MHz, 

{ 
[(64.8 Hz)2 + (8.0 Hz)2]1/2 + 64.8 HZ} 1/2 

r == == 16.3 
[(64.8 Hz)2 + (8.0 Hz)2] 1/2 - 64.8 Hz 

so the relative intensities are (r - 1)2/(r + 1)2 == 0.78 to 1. The idealized 270-MHz 
spectrum (on the same scale as the 60-MHz spectrum) looks like this: 

Note that the 270-MHz spectrum looks like a first-order spectrum consisting of two 
doublets with internal spacing J == 8.0 Hz, but that the 60-MHz spectrum looks like 
a second-order spectrum. The n + I rule works for the 270-MHz spectrum but not for 
the 60-MHz spectrum. 
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Figure 14.18 shows the calculated spectra for a three-spin system of the type 
I 

-CH2 -CH-. In this case, the secular determinant is 8 x 8 because there is a total of 
8 (2 x 2 x 2 == 8) spin wave functions. The calculations of the spectra are very similar 
to those for the two-spin system, except that the algebra is more invol ved. Notice 
from Figure 14.18 that if J « vola1 - a21, the n + 1 rule applies, and the spectrum 
consists of a separated doublet and a triplet, as in the case of 1,1 ,2-trichloroethane 
(Figure 14.8). 

Figure 14.19a shows a 60-MHz spectrum of 1,2,3-trichlorobenzene. The chemical 
shifts of the two sets of chemically equivalent hydrogen atoms are similar enough 
that 1,2,3-trichlorobenzene must be treated as an AB2 molecule. A comparison of 
Figures 14.18 and 14.19a suggests that vola1 - a211 J is about 1.5. Figure 14.19b 
shows a 270-MHz spectrum of the same compound. In this case, vola1 - a21 is now 
large enough that the spectrum appears to be first order, with a separated doublet and 
triplet, as in the top entry in Figure 14.18. The use of an instrument of higher frequency 
or higher field strength is advantageous in this case, avoiding the complications of a 
second-order spectrum. Modern NMR spectrometers work at frequencies as high as 
750 MHz, resulting in greatly improved resolution. 

FIG U R E 14.18 

I 
-CH 2-CH-

II 

IIII 

IIII I II I 

I I 

III 

III 
I 

The splitting pattern of a three-spin system of the type -CH2 -CH- for various relative values 
of J and vola\ - (J2 1. 



8 6 8 6 
(a) (b) 

Fie U R E 14.19 
(a) A 60-MHz spectrum and (b) a 270-MHz spectrum of 1,2,3-trichlorobenzene. The 60-MHz 
spectrum is a second-order spectrum and the 270-MHz spectrum is first-order. 

Problems 

14-1. Show how Equation 14.7 reduces to Equation 14.6 for a circular orbit. 

14-2. What magnetic field strength must be applied for C-13 spin transitions to occur at 

90.0 MHz? 

14-3. What magnetic field strength must be applied for proton spin transitions to occur at 

270.0 MHz? 

14-4. Calculate the magnetic field strength necessary to observe resonances of the nuclei given 

in Table 14.1 using a 300-MHz NMR spectrometer. 

14-5. It turns out that a proton chemical shift of 2.2 ppm corresponds to a frequency range 

of 1100 Hz on a certain NMR instrument. Determine the magnetic field strength of this 

instrument. 

14-6. Show that a chemical shift range of 8.0 ppm corresponds to a frequency range of 480 Hz 

on a 60-MHz instrument. What is the frequency range on a 270-MHz instrument? 

14-7. Show that the top and bottom scales in Figure 14.6 are consistent. 

14-8. Use Equation 14.21 to show that BTMS - BH is directly proportional to 0H' in analogy 

with Equation 14.23. Interpret this result. 

14-9. Make a rough sketch of what you think the NMR spectrum of methyl acetate looks like. 

14-10. Make rough sketches of what you think the NMR spectra of the two isomers dimethyl 

ether and ethanol look like and compare the two. 
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14-11. Make a rough sketch of what you think the NMR spectrum of diethyl ether looks like. 

14-12. Make a rough sketch of what you think the NMR spectrum of 3-pentanone looks like. 

14-13. Make a rough sketch of what you think the NMR spectrum of methyl propanoate 
looks like. 

14-14. Make a rough sketch of what you think the NMR spectrum of ethyl acetate looks like. 

14-15. Show that Equation 14.27 has units of joules. 

14-1 6. Verify Equations 14.36 and 14.37. 

14-17. Verify Equations 14.41 and 14.42. 

"" " 
14-18. The nuclear spin operators, Ix' I", and I~, like all angular momentum operators, obey 

the commutation relations (Problem 6-13) 

Define the (non-Hermitian) operators 

" " '" " " " 
1+ == Ix + i Iy and 1==1 -if 

x \' 
(1) 

and show that 

(2) 

and 

"" A" A 

1 1 == 1 1_ - n 1 (3) 

" " 
14-19. Using the definitions of 1+ and 1 from the previous problem, show that 

j j == j2 _ i! + 11j 
+ - ':: 

and that 

"" ", 1 1 == I~ 
+ 

where 

14-20. Use Equation 2 from Problem 14-18 and the fact that i::f3 == -%f3 to show that 

Because i;: (X == ~ a, this result shows that 



Problems 

where c is a proportionality constant. The following problem shows that c = n, so we have 

(1) 

Now use Equation 3 from Problem 14-18 and the fact that ra = ~a to show that 
,. ~ 

1'\ 

I a = cfJ 

where c is a proportionality constant. The following problem shows that c = n, so we have 

1'\ 

I a = hfJ (2) 

1'\ 1'\ 

Notice that 1+ "raises" the spin function from fJ to a, whereas 1_ "lowers" the spin function 
1'\ 1'\ 

from a to fJ. The two operators I + and I_are called raising and lowering operators, 
respectively. 

1'\ 1'\ 

N ow argue that a consequence of the raising and lowering properties of 1+ and I_is 
that 

A 

Ia=O + and 

N ow use Equations 1, 2, and 3 to show that 

1'\ h 1'\ in 
I a = -fJ 

x 2 I a = -fJ 
y 2 

A n 1'\ in 
I fJ = -a 

x 2 I fJ = --a 
y 2 

14-21. This problem shows that the proportionality constant c in 

1'\ A 

I+fJ = ca or I a = cfJ 

is equal to h. Start with 

(3) 

I"\. "- ".,.. A A. 

Let 1+ = Ix + i I y in the second factor in the above integral and use the fact that Ix and I v 

are Hermitian to get -

Now take the complex conjugate of both sides to get 

f f3* ix i+f3dr - i f f3* i)+f3dr = c
2 

= f f3* t i+f3dr 

Now use the result in Problem 14-19 to show that 

or that c = n. 
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14-22. Show that 

hlp 11 A A Hy.11 = n2 - dTldT2a*(I)a*(2)IYlly2a(1)a(2) 

=0 

and more generally that 

H .. =H .. =O 
x.}} y.}} 

j = 1, 2, 3, 4 

where j = 1, 2, 3, 4 refer to the four spin functions given by Equations 14.30. 

14-23. Verify Equations 14.44. 

14-24. Verify Equations 14.46. 

14-25. Make a sketch like Figure 14.11 for a spectrum taken at 500 MHz. 

14-26. For a first-order spectrum with (Equations 14.47) 

and 

1 
v± = v (1 - a ) ± ~ 

2 0 2 2 

show that the centers of the doublets are separated by Vo lal - a21 and that the separations 
of the peaks within the two doublets is 112" 

14-27. Verify Equations 14.55 and 14.56. 

14-28. Prove that 

A 

with H given by Equation 14.58. 

14-29. Prove that 

HII = f 1 dTl dT2a*(l)a*(2)Ha(l)a(2) 

1 1 Jz 112 = --hv (1 - a ) - -hv (1 - a ) + -
2 0 1 2 0 ? 4 

A 

with H given by Equation 14.58. 

14-30. Prove that 

A 

H44 = f f dTl dT2{3*(l){3*(2)H{3(l){3(2) 

1 1 h 112 
hVo(1 - ( 1) + -hvo(l - (

2
) + --

224 

with H given by Equation 14.58. 



Problems 

14-31. Show that Equation 14.64 leads to Equation 14.65. 

I I 
14-32. Sketch the splitting pattern of a two-spin system -CH-CH- for vola, - a211 J = 20~ 

10,5,2,1,0.10, and 0.01. 

14-33. Show that a two-spin system with J = 0 consists of just two peaks with frequencies 

vo(l - a
J

) and vo(1 - (
2

). 

14-34. Show that 

v 0 J I 2 2 2 1/2 
V = - (2 - 0 - (J ) - - - - [v (a - (J) + J ] 

1-+2 2 I 2 2 2 . 0 I 2 

for a general two-spin system (see Table 14.6). 

14-35. Show that the frequencies given in Table 14.6 reduce to Equations 14.66 (and also 

Equations 14.46) when J « vo(al - (J2)' 

14-36. Using the results in Table 14.6, compute the spectrum of a two-spin system for 

Vo = 60 MHz and 500 MHz given that a
l 

- O
2 

= 0.12 X 10-6 and J = 8.0 Hz. 

14-37. In Chapter 13, we learned that selection rules for a transition from state i to state j are 

governed by an integral of the form (Equation 13.52) 

J 1/f: iI(I)1/f.dr 
.I I 

where fI(') is the Hamiltonian operator that causes the transitions from one state to another. 

In NMR spectroscopy, there are two magnetic fields to consider. There is the static field B 
that is produced by the magnets and aligns the nuclear spins of the sample. We customarily 

take this field to be in the z direction, and the nuclear (proton) spin states ex and f3 are 
defined with respect to this field. Nuclear spin transitions occur when the spin system is 

irradiated with a radio-frequency field B 1 = B(: cos 2][ v t. In this case, 

~ (I) A 

H = [L.B1=-yI.B 1 

Show that the NMR selection rules are governed by integrals of the form 

"- "-

with similar integrals involving Iv and I:, Now show that p.,( -4 0, Pr =I 0, and Pz. = 0, 
indicating that the radio-frequency field must be perpendicular to the static magnetic field. 

14-38. Consider the two-spin system discussed in Section 14-6. In this case, the selection rule 
is governed by 

with a similar equation for P
y

' Using the notation given by Equations 14.30, show that the 
only allowed transitions are for 1 ---+ 2, I ---+ 3, 2 ---+ 4, and 3 ---+ 4. 

14-39. Using the spin functions given by Equations 14.51, show that the only allowed transitions 
are 1 ---+ 3 and 3 ---+ 4. 
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CHAPTER 

Lasers, Laser Spectroscopy, 
and Photochemistry 

The word laser is an acronym for light amplification by stimulated emission of 
radiation. Lasers are used in a variety of devices and applications such as super­
market scanners, optical disk storage drives, compact disc players, ophthalmic and 
angioplastic surgery, and military targeting. Lasers have also revolutionized research 
in physical chemistry. Their impact on the field of spectroscopy and light-initiated 
reactions, or photochemistry, has been tremendous. Using lasers, chemists can mea­
sure the spectra and photochemical dynamics of molecules with high spectral or time 
resolution. Furthermore, the techniques are so sensitive that a single molecule can be 
studied. Every chemist today should know how lasers work and understand the unique 
properties of the light they generate. 

To understand how a laser works, we first must learn about the various pathways 
by which an electronically excited atom or molecule can decay back to its ground 
state. The generation of laser light depends on the rates at which these excited atoms 
or molecules decay back to their ground states. Therefore, we will discuss a rate­
equation model developed by Einstein that describes the dynamics of spectroscopic 
transitions between atomic energy levels. We will see that before we can even consider 
building a laser, we must understand transitions between more than two atomic energy 
levels. We will then discuss the general principles of laser design and describe some 
of the lasers used in research chemistry laboratories. In particular, we will illustrate 
the specifics of how a laser works by examining the helium-neon laser in detail. Using 
the laser spectroscopy of iodine chloride, ICI(g), as an example, we will see that 
spectral features can be resolved by lasers that cannot be observed using conventional 
lamp-based spectrometers. We will then examine a photochemical reaction, the light­
induced dissociation, or photodissociation, of ICN(g). We will learn that the time 
required for the I-CN bond to break after absorption to a dissociative electronic state 
can be measured using lasers with outputs of femtosecond (10- 15 s) light pulses. 591 
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15-1. Electronically Excited Molecules Can Relax 
by a Number of Processes 

A molecule will not remain in an excited state indefinitely. After an excitation to an 
excited electronic state, a molecule invariably will relax back to its electronic ground 
state. Although we will consider a diatomic molecule to illustrate the mechanisms 
by which an electronically excited molecule can relax back to its ground state, our 
discussion also applies to polyatomic molecules. We will assume that the ground 
electronic state of the diatomic molecule is a singlet state, which we denote by So. 
Figure 15.1 shows a plot of the potential energy curves for the ground electronic state 
and the first excited singlet state, S l' and the first excited triplet state, T 1. (Recall from 
Section 9-16 that the energy of the triplet state is less than that of the singlet state.) So 
that the various processes can be viewed easily, we assume that the equilibrium bond 
length in these three electronic states increases in the order R e (So) < R e (S 1) < R e (T1)· 

The vibrational levels of the ground and electronically excited states are indicated by 
the horizontal solid lines. The spacing between rotational levels is small compared with 
that between vibrational levels, so there are discrete rotational levels (not indicated in 
the figure) that lie between the indicated vibrational levels. 

Absorption to S 1 produces a molecule that is in an excited vibrational (and possibly 
rotational) state, and from our study of the Franck-Condon principle in Section 13-7, 

~ 
b1) 
J..... 
C) 

= 1 3 
~ :2 

I 

I 

I 

:5 
6 

R 

FIGURE 15.1 
A schematic illustration of the absorption 
and the subsequent radiative and nonradia­
tive decay pathways for an electronically 
excited diatomic molecule: 1, absorption 
from So to Sl ~ 2, fluorescence (a radiative 
transition from S 1 to So); 3, internal conver­
sion (a nonradiative transition from Sl to 
So)~ 4, intersystem crossing (a nonradiative 
transition from S 1 to T 1); 5, phospho­
rescence (a radiative transition from T} 
to So); and 6, intersystem crossing (a 
nonradiative transition from T

J 
to So). The 

wavy arrows between adjacent vibrational 
states illustrate the nonradiative process of 
vibrational relaxation. 



15-1. Electronically Excited Molecules Can Relax by a Number of Processes 

we know that electronic transitions are depicted by vertical lines in a diagram such as 
in Figure 15.1. An excited-state molecule can relax by many different mechanisms. 
Transitions between energy levels that involve either the absorption or the emission of 
radiation are called radiative transitions. Transitions between energy levels that occur 
without the absorption or emission of radiation are called nonradiative transitions. 

The various types of arrows in Figure 15.1 indicate the types of relaxation pro­
cesses that can occur between the different energy levels shown. Solid arrows are 
used to depict radiative transitions, wavy arrows to indicate nonradiative transitions 
within a single electronic state, and dashed lines with an unfilled arrow tip to indicate 
nonradiative transitions between two electronic states. In the absence of collisions, an 
excited molecule can undergo only processes that conserve energy, and therefore the 
return to the ground state must involve the emission of a photon. Collisions between an 
excited molecule and other molecules in the sample, however, can result in an exchange 
of energy that removes some of the excess vibrational energy. This process is called 
vibrational relaxation. Because of vibrational relaxation, an excited molecule quickly 
relaxes to the lowest vibrational state of S). Once the molecule reaches the lowest 
vibrational state of Sl' it can relax to the ground state So by either emitting a photon 
(a radiative process) or by exchanging energy in a collision such that it makes a nonra­
diative transition from the excited electronic state to one of the rotational-vibrational 
energy levels of the ground electronic state of the molecule. The radiative decay process 
involves a transition between states of the same spin multiplicity and is called fluores­
cence. The nonradiative decay process also involves the transition between states of 
the same spin multiplicity and is called internal conversion. 

Notice that some of the vibrational and rotational states of the S] electronic state 
overlap the vibrational and rotational states of the Tl electronic state in Figure 15.1. 
When such an overlap occurs, the molecule may undergo a nonradiative transition 
between states of different spin mUltiplicity, a process called intersystem crossing. 

Because intersystem crossing requires a change in the spin of an electron, it is usually a 
slower process than internal conversion. If intersystem crossing produces a molecule in 
the T, state with an excess of vibrational energy, then vibrational relaxation can occur 
in the T} state until the molecule reaches the v == 0 level of this state. Once the molecule 
reaches the lowest vibrational level in the ~ state, it can relax to the ground electronic 
state by either emitting a photon (a radiative process) or by exchanging energy in 
a collision such that it makes a nonradiative transition from the excited electronic 
state to one of the rotational-vibrational energy levels of the ground electronic state. 
The radiative decay process involves a transition between states of different spin 
multiplicity (T) ---+ So) and is called phosphorescence. The nonradiative decay process 
also involves a transition between states of different spin multiplicity and is therefore 
another example of intersystem crossing. Because phosphorescence requires a change 
in the spin of an electron, it is usually a slower process than fluorescence. Because the 
~ state in Figure 15.1 is lower in energy than the S) state, phosphorescence occurs at 
a lower energy than fluorescence. Figure 15.1 and Table 15.1 summarize the various 
relaxation processes we have described. 

Consider the absorption and fluorescence spectra of a diatomic molecule when 
Re (So) == Re (S)). In this case, the minimum of the potential curve for the S} state 
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TABLE 15.1 
Typical time scales of the various processes by which a molecule in an excited electronic 
state can relax. 

Process 

Fluorescence 

Internal conversion 

Vibrational relaxation 

Intersystem crossing 

Phosphoresence 

Intersystem crossing 

Transition 

Radiative 

S] ~ So 

Collisional 

S] ~ So 

Collisional 

SI ~TI 

T] ~ So 

T, ~ So 

Change in 

spin multiplicity 

o 

o 

1 

1 

1 

Time scale 

10- 14 S 

10- 12_10-6 S 

10-7-10-5 S 

10-8-10-3 S 

shown in Figure 15.1 would sit directly above that of the So ground state. Figure 15.2 
shows a plot of both the absorption and the fluorescence spectra in this case. The 
energy levels that give rise to the observed transitions are indicated above the spectra. 
The vibrational quantum numbers for the ground electronic state and excited electronic 
states are denoted by v" and VI, respectively. The absorption spectrum consists of a series 

of lines reflecting the transitions from the v" == 0 level of the ground electronic state to 
the VI == 0, 1, 2, 3, ... levels of the excited electronic state. The data in Table 15.1 show 
that vibrational relaxation occurs more rapidly than electronic relaxation. Therefore, we 
can reasonably assume that the excited molecule relaxes to the lowest vibrational state 
of the S) electronic state before any fluorescence occurs. The fluorescence spectrum 
will then consist of a series of lines reflecting the transitions from the VI == 0 level of 
the excited electronic state to the v" == 0, 1, 2, ... levels of the ground electronic 
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v' 0 
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state 2 

v tl 

0 
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I 
I 
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FIG U R E 15.2 
An illustration of fluorescence transitions 
of a diatomic molecule. Both the absorption 
and fluoresence spectra have peaks corre­
sponding to a transition between v" = 0 
and VI = O. The spacing between lines 
in the absorption spectrum is determined 
by the energy gap between vibrational states 
in the excited electronic state. The spacing 
between lines in the fluoresence spectrum 
is determined by the energy gap between 
vibrational states in the ground electronic 
state. 
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state. Note that both the absorption and fluorescence spectra will contain a transition 
between the vI! == 0 and Vi == 0 levels, which is called the O,O-transition. The remaining 
absorption bands occur at higher energy than the O,O-transition, and the remaining 
fluorescence bands occur at lower energy than the O,O-transition. The spacing between 
the lines in the absorption spectrum depends on the energy gaps between the vibrational 
levels of the excited electronic state. The spacing between the lines in the fluorescence 
spectrum depends on the energy gaps between the vibrational levels of the ground 
electronic state. If the vibrational frequencies of the ground electronic state and the 
excited electronic state are the same, the absorption and fluorescence spectra appear 
to be mirror images of one another, as shown in Figure 15.2. The relative intensities 
of the absorption and fluorescence lines can be determined using the Franck-Condon 
principle (see Section 13-7). 

15-2. The Dynamics of Spectroscopic Transitions Between the 
Electronic States of Atoms Can Be Modeled by Rate Equations 

To understand how lasers work, we need to learn about the rate at which atoms and 
molecules undergo radiative transitions. To illustrate the concepts of radiative decay, 
we will focus our discussion on atoms, so that we need consider only electronic states. 
Molecules can be treated in a similar way, but the mathematical equations become more 
complicated because of the need to include transitions among the various vibrational 
and rotational levels in addition to electronic levels. Actually, many lasers are based 
on the radiative properties of atomic transitions. A phenomenological approach that 
describes the rates of the various transitions between electronic states was proposed by 
Einstein at the beginning of this century. Einstein's approach is based on a few simple 
assumptions that account for how atoms absorb and emit photons. (His assumptions 
can be justified using time-dependent quantum mechanics.) The elegance of Einstein's 
approach is that no quantum mechanics is required except that the energy levels of the 
atom are assumed to be quantized. 

Consider the interaction of light with a sample of Ntotal identical atoms. We will 
assume for simplicity that each atom has only two electronic levels, a ground level 
(with energy E 1) and an excited level (with energy E

2
). Furthermore, we will assume 

that each level is nondegenerate and therefore, each level represents a single state of 
the system. The number of atoms in each state is designated by NI and N

2
, respectively 

(see Figure 15.3). Because there are only two possible states that the atom can occupy, 

0000 

00000000 

FIGURE 15.3 
A schematic representation of a two-level energy 
diagram. Both levels are non degenerate and therefore 
each one indicates a single state of the system. The 
circles represent the number of atoms in each state, 
eight in the ground state and four in the excited state. 
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N
tota

) == N} + N2 • We will learn in Chapters 17 and 18 that the average energy of an 
atom or a molecule depends upon the kelvin temperature, T, and is of the order of kB T, 
where kB is the Boltzmann constant. Consequently, for atoms in which E2 - E} is much 
greater than the thermal energy kB T, the atoms do not have sufficient (thermal) energy 
to make a transition from state 1 to 2. Therefore, essentially all the atoms in the sample 
will be in the ground state, so NI == N

tota
)' If we expose the sample to electromagnetic 

radiation of frequency V}2' where h V l2 == E2 - E}, some of the atoms will absorb light 
and make a transition from state 1 to state 2, (Figure 15.4). 

The energy density of the light is described by two related quantities. The radiant 

energy density, p, is defined as the radiant energy per unit volume and has units of J. m-3 
• 

The spectral radiant energy density, Pv' is a measure of the radiant energy density per 
unit frequency, Pv == dp/dv, and has units of J·m-3 ·s. Because the transition between 
states 1 and 2 occurs only if light at v == V}2 is provided, we will be interested in the 

spectral radiant energy density at V12 ' P\,(V I2 ), of the incident light source. 
Einstein proposed that the rate of excitation from the ground electronic state 

to the excited electronic state is proportional to Pv (v 12) and to N 1, the number of 
molecules present in the ground state at time t. The rate of excitation from the ground 
electronic state to the excited electronic states is given by -dN{ (t)/dt, where the 

negative sign indicates that N{ (t) decreases with increasing time. Because -d Nl (t) / d t 
is proportional to both P\,(V I2 ) and N{ (t), we can write 

dN (t) 
rate == - { ex p (V

1
.2) N{ (t) 

dt v 

or 

(15.1) 

where B{2 is a proportionality constant called an Einstein coefficient. The "12" subscript 
of the B coefficient refers to the order of the states involved for the particular transition 
being discussed (1 ---+ 2). In the absence of any decay mechanism, the rate of growth 
of the excited-state population must be the negative of the rate of depletion of the 

Absorption 

--------------- E2 ------------~- E2 

00000008 0000000 

FIG U R E 15.4 
An illustration of the absorption process. Light of energy hVl2 == E2 - £1 can be absorbed by 
an atom, which causes the atom to make a transition from the ground state to an electronically 
excited state. 
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ground-state population, -dN) (t)/dt == dN2(t)/dt, because NI (t) + N2 (t) == Ntotal == 
constant. Therefore, 

(absorption only) (15.2 ) 

Note that N1 (t) decreases and N2 (t) increases with increasing time. 

EXAMPLE 15-1 
The output of a light source is usually given by a measure of its intensity. The intensity I 

is defined as the radiant energy per time that passes through a cross-sectional area 

perpendicular to the direction of propagation of the light. Show that 

I == pc 

where p is the radiant energy density and c is the speed of light. 

SOL UTI 0 N: Consider a light beam of radiant energy d Q that passes through a 

cross-sectional area d A during a time period d t. The intensity is then defined as 

I == _d_Q_ 
dtdA 

(1) 

and has units of J 'S-I ·m-2
. During the time dt, the light beam travels a distance cdt. 

Therefore, d Q, the radiant energy that has passed through the cross-sectional area d A 

in the time dt is now contained in the volume cdAdt. The radiant energy density is 

then 

dQ 
p == cdAdt 

(2) 

Solving Equation 1 for d Q and substituting the result into Equation 2 gives us I == pc. 

Note that we can also define a spectral intensity Iv(v) == dI/dv, which has units of 

J . m -2. Because I == pc, we see that the spectral intensity is related to the spectral 

radiant energy density by Iv(v) == pv(v)c, where Pt,(v) == dp/dv. 

The above discussion accounts for only the absorption process. Atoms do not 
remain in excited states indefinitely, however. After a brief time, an atom emits energy 
and returns to the ground electronic state. Einstein's treatment proposes two pathways 
by which atoms relax back to the ground electronic state: spontaneous enlission and 
stimulated emission. Spontaneous emission accounts for the process by which atoms 
spontaneously emit a photon of energy h v 12 == E2 - E) at some time after excitation 
(Figure 15.5). The rate at which spontaneous emission occurs can be described by 
-d N2 (t) / dt, where the negative sign indicates that N2 (t) decreases with increasing 
time. We assume that the rate of spontaneous emission is simply proportional to the 
number of atoms in the excited state, N2 (t), at time t. The proportionality constant 
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FIG U R E 15.5 
The spontaneous-emission process. Light of energy hV)2 = E2 - E) is emitted by an excited 
atom when the atom makes a transition from the electronically excited state to the ground state. 

relating the rate of excited state decay, -d N2 (t) / d t, to the population of that level, 
N2 (t ), is given by another Einstein coefficient, A 21 : 

(spontaneous emission only) (15.3) 

In addition to spontaneous emission, Einstein proposed that the exposure of an atom 
in an excited electronic state to electromagnetic radiation of energy h V 12 == E2 - E1 

could stimulate the emission of a photon and thereby regenerate the ground-state atom 
(Figure 15.6). As for spontaneous emission, the rate of stimulated emission also depends 
on the number of excited molecules. Unlike spontaneous emission, however, the rate 
of stimulated emission is proportional to the spectral radiant energy density, p v (1) 12)' in 
addition to N2 (t), the number of atoms in state 2 at tilne t. The proportionality constant 
relating the rate of stimulated emission, -dN2(t)/dt, to Pv(V I2 ) and N2 (t), is given by 
a third Einstein coefficient, B

21
• The order of the subscript of B is 21, indicating that 

Stimulated 
. . 

emISSIon 

0000000 0000000. 

FIGURE 15.6 
The stimulated-emission process. Incident light of energy h v J 2 = E2 - E I stimulates an atom 
in an excited electronic state to emit a photon of energy hVl2 and thereby causes the atom to 
make a transition from the excited electronic state to the ground electronic state. 
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the transition takes place from the excited state (level 2) to the ground state (2 ~ 1). 
The rate of decay of N~ (t) as a result of stimulated emission is given by 

t-

dN
2
(t) 

--- == BlIP (vl~)N2(t) dt - v '"-
(stimulated emission only) (15.4 ) 

Notice that the stimulated-emission process amplifies light intensity; one photon at 
frequency 1) 12 stimulates an atom to emit another, thus generating a second photon 
at frequency V 12 • In a large sample of atoms, this process can occur many times, 
resulting in a substantial amplification of an incident light beam at frequency vIr 

Lasers are devices that exploit the amplification of light through stimulated emission 
(recall that the word, laser, stands for light amplification by stimulated emission of 
radiation). 

Upon exposure to light, a sample of atoms simultaneously undergoes all three 
processes, absorption, spontaneous emission, and stimulated emission. Thus, the rate 
of change in the population of either the ground electronic state or the excited electronic 
state must be the sum of the rates of these three individual processes, Equations 15.2, 
15 .3, and 15.4 : 

(15.5) 

EXAMPLE 15-2 
What are the units of the Einstein A and B coefficients? 

SOL UTI 0 N: We can use Equations 15.3 and 15.4 to determine the units of the 
Einstein A and B coefficients. First, consider Equation 15.3: 

Solving this equation for A21 gives us 

( 
1 ) (dN2(t)) 

N,(t) dt 
"-

The units of 1/ N
2
(t) and dN

2
(t)/dt are number-I and number·s I, respectively, and 

so the units of A21 are S-I . 

Now consider Equation 15.4: 

Solving this equation for B2l gives us 
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The units of the spectral radiant energy density of the electromagnetic radiation, 
Pv(v I2 ), are J·m-3 os. Thus, the units of B21 are 

A comparison of Equations 15.2 and 15.4 shows that BI2 and B21 have identical units. 

The three Einstein coefficients (B'2' B21' and A 21 ) turn out to be related to each 
other. We can see this relation by considering the limit at which the two energy states 
are in thermal equilibrium, in which case N

J 
and N2 no longer vary with time, 

__ dN_I(t_) == dN2 (t) == 0 
dt dt 

(15.6) 

and P
v 

(V I2 ) is the equilibrium spectral radiant energy density, which we can assume 
comes from a thermal blackbody radiation source. Recall that this quantity is given by 
Planck's blackbody distribution law (Equation 1.2), 

( 15.7) 

Now if we let d NI (t) / dt == 0 in Equation 15.5 and solve for PLY (V I2 ), we obtain 

(15.8) 

We will learn in Chapter 17 that for a system in equilibrium at a temperature T, the 
number of atoms or molecules in the state j with energy E. is given by 

J 

N -E.jkBT . == ce J 
J 

(15.9) 

where c is a proportionality constant. Using Equation 15.9 for states 1 and 2 gives us 
that 

(15.10) 

at equilibrium. If we use Equation 15.10 in Equation 15.8, we obtain 

(15.11) 

Equations 15.7 and 15.11 are equivalent only if (Problem 15--4) 

(15.12) 
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and 

8hn v3 

A 12 B 
21 == 1 21 C· 

(15.13) 

Note that we had to include the stimulated-emission process to have consistency 
between the Einstein theory and Planck's blackbody radiation law. 

15-3. A Two-Level System Cannot Achieve a Population Inversion 

Lasers are designed to amplify light by the stimulated emission of radiation. For this 
amplification to occur, a photon that passes through the sample of atoms must have a 
greater probability of stimulating emission from an electronically excited atom than of 
being absorbed by an atom in its ground state. This condition requires that the rate of 
stimulated emission be greater than the rate of absorption, or that (see Equations 15.2 
and 15.4) 

(15.14) 

Because B21 == B12 (Equation 15.12), stimulated emission is more probable than ab­
sorption only when N2 > N I , or when the population of the excited state is greater 
than that of the lower state. Such a situation is called pO]Julation inversion. According 
to Equation 15.10, N2 must be less than Nt because hV 12 / k8 T is a positive quantity. 
Consequently, a population inversion, for which N2 > N I , is a nonequilibrium situa­
tion. Thus, before we can expect light amplification, a population inversion between 
the upper and lower levels must be generated. Let's see if a population inversion can 
be achieved for the two-level system discussed in Section 15-2. 

The rate equation for a non degenerate two-level system is given by Equation 15.5: 

(15.15) 

where we have dropped the indices for the Einstein coefficients because B12 == B21 and 
the spontaneous emission process, A, occurs only from state 2 to state 1 in a two-level 
system. If we assume that all the atoms are in the ground state at time t == 0 so that 
N) == Ntotal and N2 == 0, Equation 15.15 gives us (Problem 15-5): 

(15.16) 

Figure 15.7 shows a plot of N2 / Ntotal as a function of time. The value of the excited-state 
population reaches a steady state as t ~ cx). If we let t ~ CX) in Equation 15.16, we 
find that 

N
2
(t ~ (0) 

Ntotal 

(15.17) 
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FIG U R E 15.7 
The ratio of the number of atoms in electronically excited states to the total number of 
atoms, N 2 / Ntotal' is plotted as a function of time for a two-level system. The number of atoms 
in the excited state is always less than that in the ground state in a two-level system. Therefore, 
a two-level system can never achieve a population inversion. 

Because A > 0, Equation 15.17 says that for all time t, 

< 
1 

2 
(15.18) 

Equation 15.18 reveals that the number of atoms in the excited state can never exceed 
the number of atoms in the ground state (Problem 15-8). Thus, a population inversion 
cannot occur in a two-level system. 

EXAMPLE 15-3 
Consider a two-level system. An incident light beam of energy hVl2 = £2 - E} is 
turned on for a while and then turned off. Describe how the system relaxes to equilib­
rium once the incident light source is turned off. 

SOL UTI 0 N: Once the light source is turned off, the only pathway by which an 
excited atom can return to its ground state is by spontaneous emission. Because 

P lJ (v 12) = 0, the rate equation (Equation 15.5) simplifies to 

dN (t) 
2 = -AN

2
(t) 

dt 

This equation can be integrated to give 

The reciprocal of A is denoted by T R and is called the fluorescence lifetime or radiative 

lifetime. 



15-4. Population Inversion Can Be Achieved in a Three-Level System 

The ideas presented in Section 15-3 can be generalized to multilevel systems, and 
we will demonstrate here that a population inversion can be achieved in a three-level 
system. A schematic diagram of a three-level system is shown in Figure 15.8. Each level 
is once again assumed to be nondegenerate and therefore represents a single state of the 
system. In this figure, the ground state is labeled as 1 and has an energy E I' We have 
drawn two excited states, labeled 2 and 3, which have energies E2 and E

3
, respectively. 

We will show that under certain conditions, a population inversion can be achieved 
between the two excited states (in other words, that N3 > N

2
). Once prepared, such a 

system provides a medium for the amplification of light of energy h 1)32 = E3 - E2 and 
is said to be able to lase. 

Many rate processes are labeled in Figure 15.8. The double-headed arrows indicate 
that both absorption and stimulated emission occur between the two states. A single 
B coefficient is used for absorption and stimulated emission between a set of two states 
because we know that B .. = B ... Initially, all atoms are in the ground state, so that 

IJ J I 

Nl (0) = Ntotal' We consider the case in which this three-level system is exposed to an 
incident light beam of spectral radiant energy density, Pv (1)31 ) (where h 1)3 I = E3 - E I)' 

which excites atoms from level 1 to level 3. A light beam such as this one that is used 
to create excited-state populations is referred to as a pump source. The pump source 
is assumed to have no spectral radiant energy density at h 1)12 = E2 - EI' and as a 
result no atoms are excited to state 2. Once an atom populates state 3, it can decay by 
stimulated emission back to state 1 (induced by the pump source) or by spontaneous 
emission to either state 2 or state 1. The rates of spontaneous emission to state 2 
and state 1 can be different; thus, we must include subscripts on the A coefficients 
to indicate explicitly the two states involved in the transition. An atom that relaxes 
from state 3 to state 2 can in turn relax back to the ground state by spontaneous 
emission. If light of frequency 1)32 (h v~n = E3 - E2 ) is available, both absorption and 
stimulated emission can occur between states 3 and 2. Light of this energy is inevitably 

Level 

3 

2 

1 

Energy FIG U R E 15.8 
A three-level energy diagram. Pump light 
of frequency given by h Vl3 = E3 - EI 
excites an atom from the ground state 
(state I) to state 3. Once populated, this 
excited state can relax by spontaneous 
emission to states 2 or 1 or by stimu­
lated emission back to the ground state. 
Those excited-state atoms that relax by 
spontaneous emission to state 2 will also 
undergo spontaneous emission to state 1. If 
light of energy h 1)32 = E3 - E2 is incident 
on the system, absorption and stimulated 
emission can occur between the excited 
states 3 and 2. 
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available because it is generated by the spontaneous-emission process between these 
two levels. 

For a three-level system, the sum of the populations of the individual energy levels 
is equal to the total number of atoms: 

(15.19) 

The processes indicated in Figure 15.8 give rise to rate equations for each of the 
three energy levels (Problem 15-11). Because each level is nondegenerate, these rate 
equations apply to the populations of states 1, 2, and 3. When the system achieves 
equilibrium, the population of each level will remain constant, so d NI (t) j dt == 0, 
dN2(t)jdt == 0, and dN3(t)jdt == O. Although the three rate equations can be written 
and solved exactly to generate expressions for the time-dependent and equilibrium 

values of N
1

, N2, and N3, we can learn an important result by considering only the rate 
equation for state 2. The population of state 2, N

2
, is a balance between spontaneous 

emission from state 3 to state 2 (A 32 N
3

), spontaneous emission from state 2 to state 1 

(A 2I N2), stimulated emission from state 3 to state 2 [Pv(V32)B32N3]' and absorption 
from state 2 to state 3 [Pli(V32)B32N2] (Figure 15.8). When equilibrium is achieved, 
d N2 (t ) j d t == 0 and 

Equation 15.20 can be rearranged to become 

or 

A2l + B32 Pli (V32 ) 

A32 + B32Pli(V32) 

(15.20) 

(15.21) 

(15.22) 

Notice that N3 can be larger than N2 if A21 > A 32 . Therefore, a popUlation inversion 
is possible between states 3 and 2 when the atoms excited to state 3 decay relatively 
slowly to state 2 and those in state 2 decay rapidly back to the ground state. If this is 
the case, a population of state 3 can be built up, and a system of atoms that satisfies 
this condition may lase. Such a system is called a gain medium. 

15-5. What is Inside a Laser? 

Lasers are composed of three essential elements (Figure 15.9): (1) a gain medium that 
amplifies light at the desired wavelength, (2) a pumping source that excites the gain 
medium, and (3) mirrors that direct the light beam back and forth through the gain 
medium. We will discuss each of these components in turn. 
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A diagram of the insides of a laser. The gain medium is placed between two mirrors ; the 
arrangement of these components is called the laser cavity. A pump source excites the atoms, 
molecules, or ions that constitute the gain medium. The radiation that is emitted by the 
excited-state atoms is directed back and forth through the gain medium using the mirrors. One 
of the mirrors has a reflectivity that is less than 100%, which allows light to escape the cavity. 
This output light is the laser beam. 

Gain medium: 
The gain medium of a laser can be a solid-state material, a liquid solution, or a 

gas mixture. Since the report of the first laser in 1960, many different media have been 
used. In the following paragraphs, we discuss only a few of the materials currently 
used as laser gain media. 

The first laser used a solid ruby rod as a lasing medium. Ruby is a crystal of 
corundum, A1

2
0

3
, in which some of the AIH ions are replaced by impurity CrH ions. 

The impurity CrH ions are the source of the laser light because the photophysical 
properties of the electronic energy levels of CrH in the AI20 3 host crystal are suitable 
for achieving a population inversion. Naturally occurring ruby is unsuitable as a laser 

gain medium because of its strains and crystal defects, so ruby lasers use synthetic rods 
grown from molten mixtures of Cr

2
0

3 
and A1 20

3
• A typical chromium doping level is 

about 0.05% by mass. There are many solid-state gain media, like ruby, in which the 
active ion (Cr3+ for ruby) is embedded in a host material (A120 3 for ruby). Examples 
of different solid-state gain media are given in Table lS.2 along with the wavelength 
of the laser light produced. Many commercially available lasers use Nd' + as the gain 
medium. Note from the information given in Table 15.2 for various NdH lasers that the 
host material can affect the wavelength of the laser light produced. Laser output can be 

a continuous light beam or a short burst of light. We see in Table 15.2 that solid-state 
lasers can produce both continuous and pulsed laser output. 

EXAM PlE 15-4 
A Nd3+ :YAG (YAG stands for yttrium-aluminum garnet) laser produces pulses at a 
repetition rate of I kHz. If each pulse is 150 ps in duration and has a radiant energy of 
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1.25 X 10-3 J, calculate P, the radiant power of each laser pulse, and (P), the average 
radiant power of the laser. Also, calculate the number of photons in a single pulse. 

SOL UTI 0 N: Radiant power is a measure of radiant energy per unit time and has 
units of watts (1 W == 1 J. S I). Therefore the radiant power P of an individual laser 
pulse from the described laser is 

1.25 X 10-3 J 6 
P == 12 == 8.3 x 10 W == 8.3 MW 

150 x 10- s 

The average radiant power of the laser is a measure of the total power emitted per 
second by the laser, or 

(P) == (1000 pulses·s- I )(1.25 x 10-3 1 ·pulse- I
) == 1.25 W 

A Nd3+:YAG laser produces light at A == 1064.1 nm (Table 15.2). The radiant energy 
of a 1064.1-nm photon, Q , is 

p 

he (6.626 x 10-34 1·s)(2.998 X 108 m·s- 1
) 

Q p == h \J == T == 1064.1 x 10-9 m 

== 1.867 x 10- 19 J 

The pulse radiant energy, Q, is given by Q == n Qp' where n is the number of photons 
in the laser pulse. Therefore, the number of 1064.1-nm photons in a 1.25 x 10-3 1 
laser pulse is 

Q 1.25 X 10-3 1 15 
n == - == == 6.70 x 10 -

Q 1.867 X 10- 19 1 
p 

Examples of different gas-phase gain media and the wavelengths produced by the 
lasers that use them are listed in Table 15.3. The active element in a gas-phase laser can 
be a noble-gas atom (e.g., the He-Ne laser, see Section 15-6), a positive ion (e.g., Ar+ 
laser, K+ laser), a metal atom (e.g., He-Cd laser, Cu vapor laser), a neutral molecule 
(e.g., N

2
laser, CO

2 
laser), or an unstable complex created by the pumping process (e.g., 

TAB L E 15.2 
The gain medium (active ion and host) and laser wavelength of various solid-state lasers. 

Active ion Host Wavelength/nm 

Cr3+ Al20 3 
694.3 

Nd3+ Y
3
AlsO

l5 
(YAG) 1064.1 

Nd3+ Y3LiXFy (YLF) 1054.3 

Nd3+ Glass 1059 

Ti3+ Al20
3 

(sapphire) 780 

a The term "both" refers to both continuous and pulsed outputs. 

Outputa 

Pulsed 

Both 

Both 

Pulsed 

Both 

Duration 

10 ps 

10-150 ps 

10-100 ps 

1 ps 

10 fs-5 ps 



TABLE 15.3 
The gain medium and laser wavelength of various gas-phase lasers. 

Gain medium Wavelength/nm Output Pulse duration 

He(g), Ne(g) 3391, 1152, 632, 544 Continuous Continuous 

N
2
(g) 337 Pulsed 1 ns 

Ar+(g) 488,515 Continuous Continuous 

K+(g) 647 Continuous Continuous 

CO2 (g), He(g), N2 (g) Line tunable Pulsed > 100 ns 

around 10 000 

Cu(g) 510 Pulsed 30 ns 

He(g), Cd(g) 441,325 Continuous Continuous 

XeCl*). The wavelength data given in Table 15.3 reveal that gas-phase lasers produce 
light in the ultraviolet, visible, and infrared regions of the spectrum. Some of these 
lasers are capable of generating light at several different frequencies. For example, 
the CO2 laser involves population inversion (and therefore lasing) between different 
rotational-vibrational levels of the electronic ground state. Laser light can be generated 
in small, discrete frequency steps dictated by the energy separation of the rotational 
levels of COr Figure 15.10 shows the frequencies of laser light that can be generated 
from a population inversion between the first excited asymmetric stretch and both the 
first excited symmetric stretch and the second excited state of the bending mode of 
CO

2 
(g). 
Because the energy of laser light must correspond to an energy difference between 

two quantized stationary states of the gain medium, the laser light must be monochro­
matic (single color). The electric field of a monochromatic light source can be expressed 
as E == A cos (wt + ¢), where A is the amplitude, w is the angular frequency of the light 
(w == 2JT v), and ¢ is the phase angle, which serves to reference the field to some fixed 
point in time. The phases of light waves from a lamp vary randomly (0 < ¢ < 2JT). In 
contrast, the stimulated-emission process requires that the phases of the incident light 
wave and stimulated light wave have the same phase. Thus, the light waves emitted 
from a laser are all in phase. This property of laser light is called coherence. Many 
modern spectroscopic techniques take advantage of the coherence of laser light. We 
will not discuss these techniques in this text, but you should be aware of this unique 
property of laser light. 

Pumping sources: 

There are two common approaches for pumping the gain medium: optical excitation 
and electrical excitation. In optical excitation, a high-intensity light source is used to 
excite the gain medium. Devices that use continuous lamps, flashlamps, and lasers as 
pumping sources are commercially available. Figure 15.11 shows the optical pumping 
arrangement used for the first ruby laser (a solid-state gain medium of Cr3+ doped into 
AI20 3). The ruby rod was surrounded by a high-intensity helical flashlamp. 
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The energies of several of the low vibrational-rotational states of CO2 (V" V2, V3, J). Laser light 
is generated by stimulating the emission between a pair of quantum states. The approximate 
wavelengths for the transitions between the (0,0, I , }') upper state and the (l,O,O,}') and 
(0,2,0,1') lower states are indicated. The I~xact wavelength depends upon the rotational quantum 
numbers of the upper and lower states. Because the rotational states have discrete energies, 
the CO2 laser is not continuously tunable, 

FIGURE 15.11 

Ruby 
laser 
rod 

Flas hlamp 

The arrangement for optically pumping a ruby rod, the gain medium of a ruby laser. The 
ruby rod is placed inside a helical flashlamp. The flashlamp emits a short burst of high-intensity 
light. This light excites the CrH atoms in the ruby rod, a process that creates a population 
inversion between two electronic states of the CrH atoms. 

It is interesting to consider how efficiently lasers convert the energy of the pumping 
source into laser light The energy of the pumping source places an upper limit on the 
energy output of a laser. Because of the discrete energy levels of the gain medium, a 
large fraction of the pump light is generally not absorbed by the gain medium. Thus, 
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lasers tend to be inefficient devices. For example, gas lasers convert only between 
0.001 % and 0.1 % of the input energy into laser light. Solid-state lasers are more 
efficient, approaching values of a few percent. A few lasers such as the CO2 laser and 
some semiconductor lasers exhibit conversion efficiencies as high as 500/0 to 70%. If 
the pump source populated only the upper lasing level, improved efficiency could be 
achieved. This fact has prompted the use of lasers themselves as pump sources for 
other lasers. 

Electrical excitation involves using intense electrical discharges to excite the gain 
material. This approach is commonly used in gas lasers. The discharge of a large 
current through the gain medium can be done continuously or in short pulses. Collisions 
between the high-energy electrons created in the discharge and the atoms or molecules 
in the gas container produce atoms, molecules, or ions in excited states. One of the 
ways that electrical pumping produces a population inversion is examined in detail in 
our discussion of the helium-neon (He-Ne) laser in the next section. 

Laser cavity design: 

Combining a gain medium with a pumping source does not make a laser. Once 
a popUlation inversion is achieved, light of a specific frequency can be amplified as 
we demonstrated in Section 15-4. Unfortunately, a single pass of light through the 
gain medium generally does not produce much amplification in the light intensity. To 
generate high-intensity outputs, the light must be directed back and forth through the 
gain medium. Lasers accomplish this feat by having the gain medium placed inside an 
optical cavity called a resonator, which usually includes a pair of mirrors that direct the 
light back and forth through the gain medium. Only the light that travels back and forth 
along the path defined by the gain medium and the cavity mirrors can be amplified. If 
both mirrors were 100% reflective, the device would not create any output. In a laser, 
one of the mirrors is 100% reflective, and the other is less than 100% reflective, thereby 
allowing some of the light to escape from the resonator. 

15-6. The Helium-Neon Laser Is an Electrical-Discharge Pumped, 
Continuous-Wave, Gas-Phase Laser 

In 1961, the first continuous-wave laser was reported. This device, using a mixture of 
gaseous helium and neon as the gain medium and a direct current power supply as 
the pumping source, produced light in the infrared region at 1152.3 nm. In 1962, it 
was demonstrated that by proper choice of resonator mirrors, a He-N e laser could also 
generate light at 632.8 nm (red light). Today, commercial He-Ne lasers are available 
that produce light at 3391.3 nlll, 1152.3 nm, 632.8 nm, or 543.5 nm. The He-Ne laser is 
a low-power laser, producing an output radiant power on the order of a few milliwatts. 
The He-Ne laser is a widely produced laser; it is used in such devices as supermarket 
scanners, range finders, and Fourier-transform spectrometers. 

The design of the He-Ne laser is shown in Figure 15.12. A glass cell containing 
the gas mixture serves as the gain medium. (A typical gas pressure in the cell is about 
1.0 torr of helium and 0.1 torr of neon, or about an order of magnitude more helium 
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A schematic diagram of the helium-neon laser. A mixture of helium and neon gases is contained 
in a gas cell. A pair of electrodes located inside the gas cell is connected to an external 
high-current power supply. This circuit causes electrons to flow between the two electrodes in 
the cell. Collisions between the electrons and the gas atoms excite the atoms, which creates the 
population inversion required for lasing. 

than neon.) Near each end of the gas cell is a mirror. One of the mirrors is 100% 
reflective at the desired lasing frequency; the other is partially reflective. Inside the 
gas cell are electrodes that are connected to the positive and negative poles of a direct 
current electrical power supply. The completed circuit causes high-energy electrons 
to travel through the gas cell from the cathode to the anode. While traversing the 
cell, these high-energy electrons collide with the gas-phase atoms. The transfer of 
energy during these collisions generates atoms in excited states. Because the power 
supply provides a steady flow of electrons, the excitation process occurs continuously. 
The collisions between the electrons and the atoms serve as the pump source for this 
laser. To understand how this excitation process ends up generating laser light, we 
need to examine the energy levels of helium and neon, which are diagrammed in 
Figure 15.13. 

Because the concentration of helium in the glass cell is an order of magnitude 
greater than that of neon, the energetic electrons provided by the electric current have a 
much greater probability of colliding with helium atoms than with neon atoms. These 
collisions generate helium atoms in a variety of excited electronic states. We will be 
concerned with two relatively long-lived excited states, the 2s 3S 1 and 2s 1 So states (the 
2s in front of 3S

1 
and 1 So indicates that one of the electrons in the helium atom is 

excited to the 2s state), which lie 159 809 cm - I and 166527 cm - I above the ground 
state (see Figure 15.13). The lifetimes of the 2s 3S1 and 2s 1 So states are 10- 4 sand 
5 x 10- 6 s, respectively. For a typical gas pressure in the cell of about 1.0 torr of 
helium and 0.1 torr of neon, the time between collisions of a helium atom with a neon 
atom is about 10- 7 s, which is less than the lifetimes of the 2s3 SI and 2s 1 So states of 
helium. 

Figure 15.13 reveals a fortuitous near equivalence of the energies of the set of 
excited states corresponding to the electron configurations 2p54s and 2p55s of neon 
with the energies of the 2s ' SI and 2s 1 So excited states of helium. Consequently, there is 
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The electron configurations and the energies of several electronic excited states of helium and 
neon. An electrical discharge produces helium atoms in the 2s 3S

1 
and 2s I So excited states. The 

energies of these states are similar to the sets of four states ep
2

, 3P I, l P
O

' I PI) com·esponding 
to the 2p54s and 2p5SS e lectron configurations of neon , and so nonradiative energy transfer 
from helium to neon occurs readily upon colli sion. The lifetimes of the excited states of neon 
produced by these coll isions are such that population inversion can be achieved. Several of the 
transitions used to generate laser light are indicated in the figure. 

a high probability that a nonradiative energy transfer occurs during a collision between 
an excited helium atom, He*, and a ground-state neon atom: 

He*(2s ' SI) + Ne(g) ~ He(g) + Ne*(2p 54s) 

He*(2s ISo) + Ne(g) ~ He(g) + Ne*(2p55s) 

As Figure 15 .13 shows, there is a set of excited states of neon associated with the 
2p53 p electron configuration that lie at a lower energy than those associated with 
the 2p54s and 2p55s electron config urations. The lifetime of these respective states 

are such that a population inversion can be set up and maintained. There are four 

states e p2' ' PI ' ' Po' and IP I) associated with the 2p5ns electron configurations and 
ten states C0 3 ' 30 2 , 30 1, 102, ' P2 , 3PI, ' Po' IP I, l SI ' and ISO) associated with the 

2p 5np electron configuration. Several lasing transitions are indicated by solid arrows 

on the right side of Figure 15.13. The output wave length of the first He-Ne laser was 

1152.3 nm, corresponding to the 4s I PI ---+ 3 P ' P2 transition of neon (Figure 15.13). The 

most widely used He-Ne laser produces light at 632.8 nm (red light) by amplifying the 

emission from the 5s I PI ---+ 3 p3p 2 transition. A He-Ne gas mixture can also be made 
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to lase at 3391.3 nm. Table 15.4 lists some of the data associated with neon transitions 
that have been observed to lase. 

You may have noticed that the 4s I PI -+ 3 p3p 2 transition and several of the transi­
tions shown in Table 15.4 do not obey the selection rules given in Section 8-11. Those 
selection rules are based upon the assumption that spin-orbit coupling is small, which 
is not so for these excited states of neon. 

TAB L E 15.4 
The wavelength and Einstein A coefficient for several of the transitions of a neon 
atom. 

Transition 

5S 1Pl --+ 3p l So 

5s 1P I --+ 3p3P1 

5s I P --+ 3p3p 
I 0 

5s l p --+ 3p3 p 
I 2 

5s l
PI --+ 3plpI 

5s l p --+ 3plD 
I 2 

5s I P --+ 3p 3D 
I I 

5s l p[ --+ 3p3D
2 

EXAMPLE 15-5 

A/nm 

730.5 

640.1 

635.2 

632.8 

629.4 

61l.8 

604.6 

593.9 

0.48 

0.60 

0.70 

6.56 

l.35 

1.28 

0.68 

0.56 

Relative intensity 

30 

100 

100 

300 

100 

100 

50 

50 

The atomic term symbols of the four states corresponding to the 2 p5 3s electron 
configuration are 3P2' 3P

I
, 3P

O
' and I PI in order of increasing energy. To indicate that 

these states arise from an electron promoted to a 3s orbital, we designate these states 
as 3s3p 2' etc. Show that these four states account for all the states associated with the 
2 p5 3s electron configuration. 

SOL UTI 0 N: There are two spin orbitals associated with the 3s orbital and six 
associated with the (empty) 2p orbital. Thus, there are 2 x 6 == 12 microstates in a 
table of microstates corresponding to 2 p5 3s. Using the fact that each term symbol 
(without the J subscript) accounts for (2S + 1 )(2L + 1) microstates, we have 

3 x 3 + I x 3 == 12 
3p Ip 



15-7. H igh-Resol ution Laser Spectroscopy Can Resolve 

Absorption Lines that Cannot Be Distinguished by 
Conventional Spectrometers 

Figure 15.14 shows part of the absorption spectrum of ICI(g) measured by a con­
ventional absorption spectrometer. The displayed spectrum consists of two absorption 
lines in the vicinity of 17 299 cm I. The separation between the absorption lines is 
approximately 0.2 cm 1. These two absorption lines correspond to transitions from the 
v" == 0, JI! == 2 state of the ground electronic state to two different rotational levels in 
the v' == 32 level of the first electronic excited state (see Problem 15-27). 

Spectrometers have an inherent limit in their ability to resolve light of different 
wavenumbers. The range over which a spectrometer cannot distinguish a difference in 
wavenumbers is called the spectral resolution of the spectrometer. In the visible region 
of the electromagnetic spectrum, the spectral resolution of a spectrometer that uses a 
lamp as the light source is about 0.03 cm- I

. As a result, a lamp-based spectrometer 
will be unable to distinguish two absorption bands that differ by 0.03 cm I. We 
learned in Section 15-5 that lasers generate monochromatic radiation. Actually, there 
is an inherent linewidth associated with the "monochromatic" light from a laser. For 
lasers that emit visible light, the output beam can have a spectral width as small as 
3.0 x 10-scm- l . 

We now ask whether or not the width of the absorption lines shown in Figure 15.14 
are an intrinsic property of the ICI(g) molecule or are limited by the spectral resolution 
of the lamp-based instrument. The spectrum of ICI(g) recorded using a tunable laser 
with a Iinewidth of ~ 3.0 x 10-s cm -\ is shown in Figure 15.15. With this higher 
resolution, each absorption band shown in Figure 15.14 is found to consist of a set of 
closely spaced absorption lines. The expanded region of part of this spectrum shows 
that the individual lines are separated by energies as small as 0.002 cm 1. These features 
could not be resolved by the conventional spectrometer because the spectral resolution 
of the lamp-based device was insufficient to distinguish between the frequencies of the 
different absorption bands. Clearly new information can be observed using laser light 
sources instead of lamps. The lines in the high-resolution absorption spectrum shown 

I I I 
17299.5 17299.6 17299.7 

v/cm- 1 

FIGURE 15.14 
The absorption spectrum of ICI(g) in 
the vicinity of 17 299.6 cm 1 recorded 
using an absorption spectrolneter with a 
spectral resolution of about 0.03 cm -I. These 
two bands correspond to absorption from 
the (v" = 0, J" = 2) level of the electronic 
ground state to different rotational states of 
the VI = 32 level of the first electronic excited 
state. 
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The absorption spectrum of ICI(g) in the vicinity of 17299.600 cm- 1 recorded using a 
high-resolution laser spectrometer. With this type of spectrometer, the single absorption lines 
shown in Figure 15.14 are found to consist of multiple absorption bands. A portion of this 
high-resolution spectrum is expanded to show the detailed features of the absorption spectrum 
that can be resolved. 

in Figure 15.15 correspond to small changes in the energies of the rotational state of 
ICI(g) that are caused by the interaction of the electron spins with the nuclear spins, 
an effect called hyperfine interaction. It is possible to include hyperfine interactions in 
the Hamiltonian operator for a molecule and thereby predict the spacings that would 
be observed in its high-resolution spectrum. 

15-8. Pulsed Lasers Can Be Used to Measure the Dynamics 

of Photochemical Processes 

One application of time-resolved laser spectroscopy is to study the dynamics of chem­
ical reactions initiated by the absorption of light. Chemical reactions that result from 
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the absorption of light are called photochemical reactions. The following equations 
illustrate some of the many types of photochemical reactions that can occur. 

03 (g) + (A. == 300 nm) --+) 02 (g) + O(g) (Photodissociation) 

trans-butadiene + (A. == 250 nrn) --+) cis-butadiene (Photoisomerization) 

2 + (A == 280 nm) 

(Photodimerizati on) 

We define the quantum yield <l> for a photochemical reaction by 

number of molecules that undergo reaction 
<l> == ---------------------------------

number of photons absorbed 
(15.23 ) 

The values of quantum yields vary over a wide range. For example, <l> ~ 10-3 for the 
bleaching of certain dyes, <l> ~ 1 for the photodissociation of ozone, and <l> == 106 for 
the reaction between H2 (g) and el2 (g). 

EXAMPLE 15-6 
Upon absorption of 313 nm light, acetone photodissociates according to the chemical 

equation 

Exposure of a gaseous sample of acetone to a radiant power of 1.71 x 10-2 W at 

313 nm for a period of 1.15 x 104 s results in the photodissociation of 8.68 x 10-5 mol 
of acetone. Determine the quantum yield for this photodissociation reaction. (Assume 
the sample absorbs all the light.) 

SOL UTI 0 N: The number of molecules of acetone that photodissociates is 

(8.68 X 10-5 mol)(6.022 x 1023 molecule·mol- I
) == 5.23 x 1019 ITIolecule 

The gas sample was exposed to a total radiant energy Q of 

Q == (1.71 X 10-2 W)(1.15 X 104 s) == 1.97 X 102 J 

The number of photons is given by 

( 1. 97 x 102 J) (313 x 10-9 m) QA 

he (6.626 X 10~34 J·s)(2.998 x log m·s~-I) 

== 3. lOx 1020 
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The quantum yield for the photodissociation of acetone is given by (Equation 15.23) 

number of molecules that undergo reaction 
$= ------------------------------

number of photons absorbed 

5.23 x 10 19 

----- =0.17 
3. lOx 1020 

Figure 15.16 shows a schematic diagram of an apparatus designed to carry out 

time-resolved laser studies of photochelTIical reactions. The light source is a pulsed 

laser, which generates light pulses of short duration. Light pulses as short as 1 x 10- 14 s, 
or 10 fs (femtoseconds) are routinely generated in laser laboratories. The laser output 

is split into two parts by a partially reflecting min4 or, or beam splitter. The two pulses 
leave the beam splitter at the same time but then travel in different directions. The path 

that each pulse travels is determined using milTors. The paths are designed so that they 

eventually cross one another inside the sample of interest. Consider the path traveled 

by each beam from the beam splitter to the sample. If the lengths of the two paths are 

the same, both pulses arrive at the crossing point in the sample at the same time. In 

this case, we say there is no time delay between the two light pulses. If the pathlengths 

differ, the two pulses will arrive at the sample at different times. In a time-resolved 

laser experiment, some property of the sample is measured as a function of the delay 

time between these two laser pulses. The laser pulse that initiates the photochemistry 

is called the pU111P pulse. The laser pulse that is used to record changes in the sample 

since the pun1p pulse arrived is called the probe pulse. Depending on the type of 

Adjustable 
delay line 

1-~ 
I 

Bean1 I I 
I 

splitter ~: 
Laser 
output 

: I 

-------~-- --~----~----/ T Probe 
: : pulse 

FIGURE 15.16 
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Detector 

An illustration of the apparatus designed to carry out time-resolved laser experiments. The 
laser pulse is split into two pulses, a pUlnp pulse and a probe pulse, using a beam splitter. The 
paths cross one another in the salnple. The pump pulse is used to initiate a photochemical 
process in the salnple, and the probe pulse is used to record how the sample changes in response 
to the pump pulse. A change in the pathlength of the two pulses affects the relative arrival times 
of the pump pulse and the probe pulse at the salnple. In this manner, the sample can be probed 
as a function of time following the excitation by the pump pulse. 
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experiment being performed, the pump and probe pulses can be at the same or different 

wavelengths. 

EXAMPLE 15-7 
The probe laser pulse travels a path length that is 10.00 cm longer than that traveled 

by the pump laser pulse. Calculate the difference in arrival times of the two pulses of 

light at the sample. 

SOL UTI 0 N: The difference in arrival times of the two laser pulses at the sample is 

the time required for the probe pulse to travel the extra 10.00 cm that the pump pulse 

did not travel. The time required for light to travel 10.00 cm is 

(10.00 cm)( 1 m/ 1 00 cm) 
t == ---------

2.998 X 108 m.s 1 

== 3.335 X 10- 10 s 

or 333.5 picoseconds. 

We now illustrate the use of time-resolved laser spectroscopy by examining exper­

imental data for the photodissociation reaction of ICN(g), 

ICN(g) + hv ~> leg) + CN(g) (15.24 ) 

For reasons we will see shortly, the pump and probe laser pulses have different wave­
lengths; the pump wavelength is set at 306 nm and the probe wavelength is set at 
388 nm. Figure 15.17 shows how the energies of the ground state and one of the ex­
cited electronic states of ICN(g) depend on the distance between the iodine and carbon 

atoms, or the I-CN bond length. The ground state is a bound electronic state and the 
excited state is dissociative. Once the I-CN bond length reaches 400 pm, the bond is 
broken and leg) and ground-state CN(g) radicals are produced. 

EXAMPLE 15-8 
The quantum yield for the photodissociation of ICN(g) into I(g) and CN(g) by a 306 nm 

pump pulse is 1.00. If the radiant energy of the pump pulse is 1.55 x 10-4 J, determine 

the number of CN (g) radicals created per pulse if only 0.100% of the incident light is 

absorbed by the ICN (g) sample. 

SOL UTI 0 N: The radiant energy of a 306 nm photon is 

he (6.626 x 10-34 J·s)(2.998 X 108 m·s- 1
) 

Q p ==;:== 306xl0-9 m 

== 6.49 x 10- 19 J 
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Therefore, the number of photons in a 1.55 x 10-4 1 pulse is 

Q l.55xl0-4 1 
number of photons == - == 19 == 2.39 x 1014 

Q 6.49 x 10- J p 

The number of CN(g) radicals produced by each laser pulse is given by (Equa­
tion 15.23) 

number of CN(g) produced == (0.100% )(number of photons)¢ 

== (0.00100) (2.39 x 1014
) (l.00) 

==2.39 x lOll 

The idea behind a time-resolved experiment is as follows. The ICN(g) sample is 
excited from the ground state to the excited state (Figure 15.17) using a laser pulse that 
is short compared with the time required for the molecule to dissociate. In that case, 
when the light pulse is over, the molecules find themselves on the dissociative curve 
with a bond length equal to the equilibrium bond length in the ground electronic state, 
as required by the Franck-Condon principle (see Section 13-7). These excited-state 
molecules respond to the repulsive force of the excited-state potential and therefore 
dissociate. Now suppose that at some time after the photoexcitation of ICN(g), a probe 
pulse of short duration interacts with the sample. The wavelength of the probe pulse 

FIGURE 15.17 
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The potential energy curves of the ground state and first excited state of ICN(g) are plotted 
as a function of the I-CN bond distance. Dissociation of the I-CN bond from both states 
produces the CN (g) radical in its X2 L + ground state. The diagram also indicates the energy 
of the B2 2'.. + excited state of CN (g). In the time-resolved study of the photodissociation 
of ICN (g), excitation by a pump pulse at 306 nm promotes molecules from the ground state to 
the excited dissociative state. A time-delayed probe pulse at 388 nm, which is on resonance 
with the X22'..+ ---+ B22'..+ transition of CN(g), is used to excite the CN(g) in the sample. The 
subsequent fluorescence from CN* (g) is then recorded. The intensity of the fluorescence caused 
by the probe pulse is a measure of the concentration of CN(g) present in the sample. 
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is not designed to excite the ICN(g) molecule but is tuned to the X2!:+ ~ B2L+ 

transition of the CN(g) radical at 388 nm (see Figure 15.17). Thus, if there are CN(g) 
radicals present in the sample, the light will be absorbed. The excited CN(g) molecules 
relax back to the ground state by fluorescence. The intensity of the fluorescence signal 
is a measure of the number of CN(g) radicals present in the sample at the time the 
probe pulse arrived at the sample. The only source of these CN(g) radicals is via the 
dissociation of excited ICN(g) molecules. If we monitor the intensity of the CN(g) 
fluorescence as a function of delay time between the pump and probe laser pulses, we 
thereby record the number of CN(g) molecules formed as a function of time following 
the initial excitation of ICN(g) to its dissociative state. This form of detection is called 
laser-induced fluorescence because we are using a laser to cause the product molecules 
to fluoresce. 

Figure 15.18 shows a plot of the fluorescence intensity as a function of the delay 
time between the pump laser pulse and the probe laser pulse. At negative time delays 
the probe pulse arrives at the sample before the pump pulse. The ground state ICN(g) 
molecules do not absorb the probe pulse, so the signal intensity is zero. When the two 
pulses arrive at the sample at the same time (t == 0), we observe a small amount of 
CN(g) fluorescence. This result tells us that some of the excited Inolecules dissociate 
quickly after the absorption of the pump pulse. The signal continues to grow as the 
delay between the pump and probe pulses is increased. A constant signal level is 
observed for probe pulses delayed by 600 fs or longer. This observation tells us that no 
additional CN (g) radicals are produced for t > 600 fs. In other words, all the excited 
ICN(g) molecules have undergone photodissociation during the first 600 fs after the 
excitation. The solid line in Figure 15.18 is a curve fit of the experimental data to a 
function of the form 1 - exp(-t IT), where r is a constant called the reaction half-life. 
For this reaction, we find that r == 205 ± 30 fs. 

• 

• • . --~~~~~~.~. ••• •• ... . .. . ~, .. . .-. 
• • 

~--~--------~----------~--------~---------I 
-400 o 400 800 1200 

Time delay / fs 

FIGURE 15.18 
Experimental time-resolved data for the reaction ICN(g) ~ I(g) + CN(g). The intensity of 
the CN(g) ftuoresence caused by the 388-nm probe pulse is plotted as a function of the 
delay time between the arrival of the probe pulse and the 306 nIn pump pulse at the sample. 
Analysis of these data indicates that after excitation at 306 nm, the I-CN bond breaks with a 
reaction half-life of r == 205 ± 30 fs. The solid line is a curve fit of the data to the function 
I == 1 - exp( -t IT). 
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Problems 

15-1. The ground-state ternl sYlnbol for a~ is 2 n . The first electronic excited state has an 
- g 

energy of 38795 cm-- I above that of the ground state and has a term symbol of 20
u

' 

Is the radiative 2 n II ~ 2 ng decay of the at molecule an example of fluorescence or 

phosphorescence? 

15-2. Consider the absorption and fluorescence spectrum of a diatomic molecule for the specific 

case in which R(,(S,) > Re(So)' Using the potential energy curves shown in Figure 15.1, 
draw the expected absorption and fluorescence spectra of the molecule. You can assume 

that the molecule relaxes to v' :=: 0 before it fluoresces. Do your spectra look like the spectra 

in Figure 15.27 Explain. 

15-3. In Section 15-2, the spectral radiant energy density was expressed in terms of the 

frequency of the electrolnagnetic radiation. We could have chosen to express the spectral 

radiant energy density in tenns of the wave number or wavelength of the electromagnetic 

radiation. Recall that the units of P1,(v) are l·m 3· S. Show that the units of PtJv), the 

spectral radiant energy density in terms of wave numbers, are 1· m -2 and that the units of 

PI, (A), the spectral radiant energy density in tenns of wavelength, are 1· m-4
• What are the 

units of the Einstein B coefficient if we use p\,( v) to describe the spectral radiant energy 

density? What are the units of the Einstein B coefficient if we use PI,. (A) to describe the 

spectral radiant energy density? 

15-4. Show that Equations 15.7 and 15.11 are equivalent only if BI2 == B21 and A21 == 
(8hJT vi21 c3

) B21 · 

15-5. Substitute Equation 15.16 into Equation 15.15 to prove that it is a solution to Equa­

tion 15.15. 

15-6. Use the fact that NI (t) + N, (t) == N _I to write Equation 15.15 as _ lotd 

dN, 
---------------------------- ==dt 
Bp\,(vI2)Ntolal - [A + 2Bp\,(v I2 )]JV2 

Now show that the integral of this equation gives Equation 15.16. 

15-7. Prove that Equation 15.17 ilnplies that N21Ntotai is less than 1/2 because A > O. 

15-8. Prove that the inequal ity 

N, 

lV 
tOlal 

I 
< 

2 

implies that N21 NI is less than 1. (Hint: Use the fact that lla > lib if a < b.) 

15-9. The Einstein coefficients can also be derived using quantum mechanics. If the ground 

state and the excited state have a degeneracy of g I and g 2' respectively, the Einstein A 

coefficient is given by 



Problems 

where 1111 is the transition dipole moment (see Section 13-11). Now consider the Is --+ 2p 
absorption of H(g), which is observed at 121.8 nm. The radiative lifetime (see Example 
15-3) of the triply degenerate excited 2p state of H(g) is 1.6 x 10-9 s. Determine the value 
of the transition dipole moment for this transition. 

15-10. Use the equation given in Problem 15-9 and Equation 15.13 to derive the quantum 

mechanical expression for the Einstein B coefficient. Consider the 5s I PI --+ 3 p3 P 2 tran­

sition of neon at 632.8 nm, which is the lasing transition of most commercially available 
helium-neon lasers. Table 15.4 gives the Einstein A coefficient for this transition to be 
6.56 x 106 

S-l. Determine the values of the Einstein B coefficient and the transition mo­

ment dipole for this transition. (gl == g2 == 1.) 

15-11. Derive (but do not try to solve) rate equations for NI (t), N2 (t), and N3 (t) for the 
three-level system described by Figure 15.8. 

15-12. Consider the nondegenerate three-level system shown in Figure 15.8. Suppose that an 

incident light beam of energy hv == E3 - E, is turned on for a while and then turned off. 

Show that the subsequent decay of the E3 level is given by 

where N~) is the number of atoms in state 3 at the instant the light source is turned off. What 

will be the observed radiative lifetime of this excited state? 

15-13. In this problem, we will generalize the result of Problem 15-12. Consider a system that 

has N nondegenerate levels of energy, E I' E2, ... , EN such that E 1 < E2 < ... < EN' 
Suppose that all the atoms are initially in the level of energy E l' The system is then exposed 

to light of energy h v == EN - E I . Defining t == 0 to be the instant the light source is turned 
off, show that the decay of p N' the population in state N, is given by 

,,",N 1 

PN(t) == p~e L..."i=! ANi! 

where p~ is the population of level N at t == O. Show that the radiative lifetime of level N 
is given by 1/ L~~' ANi' Use this result and the data in Table 15.4 to evaluate the radiative 
lifetime of the 5s' P, level of neon, assuming the only radiative decay channels are to the 
eight levels tabulated in Table 15.4. 

15-14. The excited states of helium shown in Figure 15.13 have the electron configuration 
ls2s. Show that this electron configuration leads to a 3 S, and a I So state. Which state has 
the lower energy? 

15-15. According to Table 8.2, the ground-state energy of a helium atom is -2.904 hartrees. 
Use this value and the fact that the energy of a helium ion is given by E == -Z2/2n2 (in 
hartrees) to verify the energy of He+ in Figure 15.13. 

15-16. The 3391.3 nm line in a He-Ne laser is due to the 5s I PI --+ 3 p3P
2 

transition. According 

to the Table of Atomic Energy Levels by Charlotte Moore, the energies of these levels are 
166658.484 em-I and 163710.581 em-I, respectively. Calculate the wavelength of this 

transition. Why does your answer not come out to be 3391.3 nm? (See Example 8-10.) 

15-17. Using the method explained in Section 8-9, show that the states associated with a 2p5ns 
electron configuration are 3P

2
, 3p" 3P

O
' and' PI' 
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15-18. Consider the excited-state electron configuration 2psnp, with n > 3. How many mi­

crostates are associated with this electron configuration? The term symbols that correspond 
to 2p snp are 3D

3
, 3D2, 3D I, ID2' 3P

2
, 3P

I
, 3P

O
' IP I, 3S), and ISO- Show that these term 

symbols account for all the microstates of the electron configuration 2p5np, n > 3. 

15-19. A titanium sapphire laser operating at 780 nm produces pulses at a repetition rate of 

100 MHz. If each pulse is 2S fs in duration and the average radiant power of the laser is 

1.4 W, calculate the radiant power of each laser pUlse. How many photons are produced by 

this laser in one second? 

15-20. A typical chromium doping level of a ruby rod is O.OSO% by mass. How many chromium 

atoms are there in a ruby rod of diameter 1.15 cm and length IS.2 cm? The density of 

corundum (AI20 3) is 4.0S g·cm 3, and you can assume that the doping with chromium has 

no effect on the density of the solid. Now suppose all the chromium atoms are in the upper 

lasing level. If a laser pulse of 100 ps is generated by the simultaneous stimulated emission 

of all the chromium atoms, determine the radiant power of the laser pulse. (See Table IS.2.) 

15-21. Which laser pulse contains more photons, a 10-ns, 1.60-mJ pulse at 760 nm or a SOO-ms, 

1.60-mJ pulse at 532 nm? 

15-22. Consider a ftashlamp-pumped Nd3+:YAG laser operating at a repetition rate of 10 Hz. 

Suppose the average radiant power of the ftashlamp is 100 W. Determine the maximum 

number of photons that each laser pulse can contain using this pump source. The actual 

number of photons per laser pulse is 6.96 x 10 17
• Determine the efficiency for converting 

the ftashlamp output into laser output. (See Table 15.2.) 

15-23. Chemical lasers are devices that create population inversions by a chemical reaction. 

One example is the HF gas laser, in which HF(g) is generated by the reaction 

F(g) + H
2
(g) ~ HF(g) + H(g) 

The major product of this reaction is HF(g) in the excited v == 3 vibrational state. The 

reaction creates a population inversion in which N (v), the number of molecules in each 

vibrational state, is such that N (3) > N (v) for v == 0, 1, and 2. The output of the HF(g) 

laser corresponds to transitions between rotational lines of the v == 3 ---+ v == 2 (A == 2.7-

3.2 {im) transition. Why is there no lasing action from v == 3 ---+ v == 1 and v == 3 ---+ v == 0 

even though there is a population inversion between these pairs of levels? 

15-24. A CO
2 

laser operating at 9.6 {im uses an electrical power of 5.00 kW. If this laser 

produces 100-ns pulses at a repetition rate of 10Hz and has an efficiency of 270/0, how 

many photons are in each laser pulse? 

15-25. Figure 15.10 displays the energy levels of the CO
2 

laser. Given the following spectro­

scopic data for CO
2 
(g), calculate the spacing between the J' == 1 ---+ 0 and J' == 2 ---+ I 

laser lines for the 00 I ---+ 100 vibrational transition. 

Fundamental frequency( J' == 0 ---+ 0) 100 ---+ 001 == 960.80 em 1 

B(OOI) == 0.3871 em I B(100) == 0.3902 cm- 1 

Why is no lasing observed at the fundamental frequency of 960.80 cm I? 



Problems 

15-26. The upper level of the H2 (g) laser is the lowest excited state of the ITIolecule, the B I 'L; 
state, and the lower level is the X I 'L,; ground state. The lasing occurs between the v' == 5 
level of the excited state and the vI! == 12 level of the ground state. Use the following 

spectroscopic data to determine the wavelength of the laser light from the H2 (g) laser. 

State ~)/cm-I iJ / CITI 
I iJ x jcrn I 

e c c 

BI'L+ 
Ii 

91689.9 ] 356.9 19.93 
XI'L+ 

g 
0 4401.2 ] 21.34 

A 1.0 ns pulse can be generated with a pulse radiant power of 100 k W. Calculate the radiant 

energy of such a laser pulse. How many photons are there in this pulse? 

15-27. In this problem, we will determine the excited-state rotational quantum numbers for the 

X --+ A absorption bands of ICI(g) that are shown in Figure 15.14. The transition is from 

the v" == 0 state of the X state to a highly excited vibrational level of the A state (v' == 32). 

To accurately calculate the vibrational term G( v) for the excited A state, we will need to 

include a second-order anharmonic correction to take into account the shape of the potential 

curve. First-order corrections will be sufficient for the ground electronic state. Extending 

the approach discussed in Chapter 13, we would write 

G(v) == iJ (v + l) - iJ x (v + l)2 + iJ v (v + l)3 
e 2 e (' 2 e- e 2 

Some of the spectroscopic constants for the X ground state and the A excited state of ICI(g) 
are tabulated below. 

A 13 745.6 212.30 1.927 -0.03257 0.08389 0.00038 

X 0 384.18 1.46 

Determine the value of iJ corresponding to the transition X (v" == 0, Jf! == 0) --+ A (v' == 
32, J' == 0). Given that the ground state for the lines shown in Figure 15.14 is the v" == 
0, J" == 2 level of the X state and that the rotational term for this level is F (2) == 0.65 cm -I, 

determine the closest value of J', the rotational number of the v" == 32 level of the excited 
A state that gives the two observed spectral lines. Using your results, do you think that the 
individual lines between 17 299.45 and 17 299.55 cm -I in Figure 15.15 can be attributed to 

transitions to different excited rotational states from the X (v" == 0, J" == 2) ground state? 

15-28. Hydrogen iodide decomposes to hydrogen and iodine when it is irradiated with radiation 
of frequency 1.45 x 10 15 Hz. When 2.31 J of energy is absorbed by HI(g), 0.153 mg of 

HI(g) is decomposed. Calculate the quantum yield for this reaction. 

15-29. Ozone decomposes to O2 (g) and O(g) with a quantum yield of 1.0 when it is irradiated 

with radiation of wavelength 300 nm. If ozone is irradiated with a power of 100 W, how 
long will it take for 0.020 mol of 0

3 
(g) to decompose? 

15-30. The quantum yield for the photosubstitution reaction 

in octane solution at room temperature is 0.71 for a photolysis wavelength of 308 nm. How 

nlany Cr(CO)6 molecules are destroyed per second when the solution is irradiated by a 
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continuous laser with an output radiant power of 1.00 mW at 308 nm? If you wanted to 

produce one Inole of Cr(CO)5NH] per nlinute of exposure, what would the output radiant 

power of the laser need to be? (For both questions, assume the sample is sufficiently 

concentrated so that all the incident light is absorbed.) 

15-31. A mole of photons is called an einstein. Calculate the radiant energy of an einstein if 

the photons have a wavelength of 608.7 nm. 

15-32. The width of the duration of an electromagnetic pulse, 1}.t, and the width of the frequency 

distribution of the pulse, ~ v, are related by !J.t!J.v == 1/2][. Compute the width of the 

frequency distribution of a 10-fs laser pulse and a I-ms laser pulse. Can you record high­

resolution spectra like that shown in Figure 15.15 for ICl(g) using a tunable femtosecond 

laser? 

15-33. In Section 15-8, we found that in the photodissociation reaction of ICN(g), 205 fs is 

required for the I(g) and CN(g) photofragments to separate by 400 pm (Figure 15.18). 

Calculate the relative velocity of the two photofragments. (Hint: The equilibrium bond 

length in the ground state is 275 pH1.) 

15-34. In the photolysis of ICN(g), the CN(g) fraglnent can be generated in several different 

vibrational and rotational states. At what wavelength would you set your probe laser to 
excite the vI! == 0, JI' == 3 of the X2 1: + ground state to the VI == 0, JI == 3 level of the B2 L. + 

excited state? Use the following spectroscopic data. 

- I I 1 - I I State ~,/cln V /cnl vi /cm Be/cm a /cm e e e e 

8 21:+ 25 751.8 2164.13 20.25 1.970 0.0222 
X21: T 0 2068.71 13.14 1.899 0.0174 

Calculate the energy-level spacing between the v" == 0, JI! == 3 and the v ll == 0, JI! == 4 
levels. Can the fonnation dynalnics of a single vibrational-rotational state of CN(g) be 

monitored by a femtosecond pun1p-probe experiment? (Hint: See Problem 15-32.) 

15-35. The X I A I -+ A electronic excitation of CH] I (g) at 260 nm results in the following two 

competing photodissociation reactions: 

7 
CH~I(g) + hv -+ CHj(g) + I(g)(~P~n) 

- - - / -
') 

-+ CH
3
(g) + I*(g)(-P

1
/
2

) 

The energy difference between the excited 2P
1
/
2 

state and the ground 2P3/ 2 state of I(g) 

is 7603 cm I. The total quantuIll yield for dissociation is 1.00 with 31 % of the excited 

molecules producing 1* (g). Assuming that 1* (g) relaxes by only radiative decay, calculate 

the number of photons elnitted per second by a CH
3
I(g) sample that absorbs 10% of the 

light generated by a I .00-n1 W 260-nm laser. 

15-36. The frequency of laser light can be converted using nonlinear optical materials. The 

most common form of frequency conversion is second harmonic generation, whereby laser 

light of frequency lJ is converted to 1 ight at frequency 2v. Calculate the wavelength of the 

second harmonic light from a Nd3+: YAG laser. If the output pulse of a Nd3+:YAG laser at 

1064.1 nm has a radiant energy of 150.0 m1, how many photons are contained in this pulse? 
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Calculate the maximum number of photons that can be generated at the second harmonic. 

(Hint: Energy must be conserved.) 

15-37. There are nonlinear optical materials that can sum two laser beams at frequencies 1) I 

and v2 and thereby generate light at frequency v} = VI + v2 • Suppose that part of the output 
from a krypton ion laser operating at 647.1 nm is used to pump a rhodamine 700 dye 
laser that produces laser light at 803.3 nm. The dye laser beam is then combined with the 
remaining output from the krypton ion laser in a nonlinear optical luaterial that sums the 
two laser beams. Calculate the wavelength of the light created by the nonlinear optical 
material. 

The following four problems examine how the intensity of absorption lines are 
quantified. 

15-38. The decadic absorbance A of a sample is defined by A = 10g(Io/ I), where Io is the 
light intensity incident on the sample and I is the intensity of the light after it has passed 

through the sample. The decadic absorbance is proportional to c, the molar concentration 
of the sample, and I, the path length of the sample in meters, or in an equation 

A = scI 

where the proportionality factor s is called the molar absorption coefficient. This expression 
is called the Beer-Lambert law. What are the units of A and s? If the intensity of the 
transmitted light is 25.00/0 of that of the incident light, then what is the decadic absorbance 

of the sample? At 200 nm, a 1.42 x 10-3 M solution of benzene has decadic absorbance 
of 1.08. If the pathlength of the sample cell is 1.21 x 10-3 m, what is the value of s? What 

percentage of the incident light is transmitted through this benzene sample? (It is common 
to express s in the non SI units L· mol-I ·cm 1 because I and c are commonly expressed in 

em and mol· L -I, respectively. This difference in units leads to annoying factors of 10 that 
you need to be aware of.) 

15-39. The Beer-Lambert law (Problem 15-38) can also be written as 

where N is the number of molecules per cubic meter and I is the path1ength of the cell 
in units of meters. What are the units of (J? The constant (J in this equation is called 
the absorption cross section. Derive an expression relating (J to s, the molar absorption 
coefficient introduced in Problem 15-38. Determine (J for the benzene solution described 
in Problem 15-38. 

15-40. The Beer-Lambert law (Problem 15-38) can also be written in terms of the natural 
logarithm instead of the base ten logarithm: 

I 
A = In ....Q = Kel 

e I 

In this form, the constant K is called the molar napierian absorption coefficient, and A e is 
called the napierian absorbance. What are the units of K? Derive a relationship between 

K and c (see Problem 15-38). Determine K for the benzene solution described in Problem 
15-38. 
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15-41. A re-examination of the spectra in Chapter 13 reveals that the transitions observed have 
a line width. We define A, the integrated absorption intensity to be 

A = f: K(v)dv 

where K(V) is the molar napierian absorption coefficient in terms of wavenumbers, v (see 
Problem 15-40). What are the units of A? Now suppose that the absorption line has a 

Gaussian line shape, or that 

- - ') 

(
-) (-) -0'(1 ' -11 )~ K 1) == K 1) e . max 

max 

where Ci is a constant and v is the maximum frequency of absorption. Plot K(V). How is max 

Ci related to ~ VI / 2 ' the width of the absorption line at half of its maximum intensity? Now 

show that 

') 

(Hint: .fc~ e-f).c dx == (n /4[3) 1/2.) 



MATHCHAPTER 

NUMERICAL METHODS 

You learned in high school that a quadratic equation ax 2 + bx + c = 0 has two roots, 
given by the so-called quadratic formula: 

x= 
-b ± Jb2 

- 4ac 

2a 

Thus, the two values of x (called roots) that satisfy the equation x " + 3x - 2 = 0 are 

x= 
-3 ± ffi 

2 

Although there are general formulas for the roots of cubic and quartic equations, they 
are very inconvenient to use, and furthermore , there are no formulas for equations 
of the fifth degree or higher. Unfortunately, in practice we encounter such equations 
frequently and must learn to deal with them. Fortunately, with the advent of hand 
calculators and personal computers, the numerical so lution of polynomial equations 
and other types of equations, such as x - cos x = 0, is routine. Although these and 
other equations can be solved by "brute force" trial and error, much more organized 
procedures can arrive at an answer to almost any desired degree of accuracy. Perhaps the 
most widely known procedure is the Newton-Raphson method, which is best illustrated 
by a figure. Figure G.I shows a function f(x) plotted against x. The solution to the 
equation f(x) = 0 is denoted by x • . The idea behind the Newton-Raphson method is 
to guess an initial value of x (call it xlJ) "sufficiently close" to x. ' and draw the tangent 
to the curve f (x) at xO' as shown in Figure G . I. Very often, the extension of the tangent 
line through the horizontal axis will lie closer to x* than does Xo- We denote this value 

of x by XI and repeat the process using X I to get a new value of x 2' which will lie 
even closer to x. ' By repeating thi s process (called iteration) we can approach x. to 
essentially any desired degree of accuracy. 627 
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x 

FIG U R E C.l 
A graphical illustration of the Newton-Raphson method. 

We can use Figure G.I to derive a convenient formula for the iterative values of x. 
The slope of f (x) at x"' f' (x ,, ), is given by 

{'(x ) = f (x,) - 0 
. " x-x 

11 11 + I 

Solving this equation for .\",, + 1 gives 

f (x,,) 
= x - ---""-

" } " (x) 
" 

(G. I ) 

which is the iterative formula for the Newton-Raphson method. As an application of 
this formula, consider the chemical equation 

2 NOCI(g) ~ 2 NO(g) + Cl1 (g) 

whose related equilibrium constant is 2.18 at a certain temperature. (Chemical equilib­
rium is discussed in Chapter 26, but we're simply using the algebraic equation below 
as an example at thi s point.) If 1.00 atm of NOCI(g) is introduced into a reaction vessel, 
then at equilibrium PNOCI = 1.00 - 2x, PNO = 2x , and PCI , = x; these pressures satisfy 
the equilibrium-constant expression -

which we write as 

(2xlx­
------::- = 2. 18 
(1.00 - 2X)2 

I(x) = 4x1 
- 8.72x 2 + 8.72x - 2.18 = 0 

Because of the stoichiometry of the reaction equation , the value of x we are seeking 
must be between 0 and 0.5, so let 's choose 0.250 as our initial guess (xo)' Table G.l 
shows the results of using Equation G.I. Notice that we have converged to three 
significant figures in just three steps . 



TAB L E G.l 
The results of tbe application of the Newton-Raphson method to the solution of the equati on 
I(x) = 4x 3 

- 8.72x2 + 8.72x - 2.18 = O. 

EXAMPLE G-l 

n 

o 
I 

2 

3 

4 

x I (x,,) 
" 

0.2500 -4.825 x 10- 1 

0.3442 -4.855 x 10- 2 

0.3559 - 6.28 1 x 10- 4 

0.3561 - 1.704 x 10- 5 

0.3561 

In Chapter 16, we wi ll solve the cubic equation 

x' + 3x2 + 3x - I = 0 

f'(x ) 
" 

5.110 

4. 139 

4.033 

4.03 1 

Use the Newton-Raphson method to find the real root of thi s equation to five significant 

figures . 

SO L UT I 0 N: We write the equation a. 

I(x) = x' + 3x2 + 3x - I = 0 

By inspection, a solution lies between 0 and I. Using Xo = 0.5 results in the fo ll owing 

table: 

n x I (x,,) f'ex ) 
" " 

0 0.500000 1.37500 6.7500 
I 0.296300 0. 178294 5 .04118 

2 0.260930 0.004809 4.76983 

3 0.259920 - 0 .000005 4 .76220 
4 0.259920 

The answer to five significant figure s is x = 0.25992. Note that I(x,) is s ignificantly 

small er at each step, as it should be as we approach the value of x that satisfies 

I (x) = 0, but that f' (x) does not vary appreciably. The same behavior can be seen 

in Table G.I . 

As powerful as it is, the Newton-Raphson method does not always work; when it 
does work, it is obvious the method is working, and when it doesn't work, it may be 
even more obvious. A spectacular fai I ure is provided by the equation f (x) = X I I } = 0, 

for which x. = 0. If we begin with Xo = I, we will obtain X I = -2, x2 = +4, x} = -8, 
and so on. Figure 0.2 shows why the method is failing to converge. The message here 
is that you should always plot f (x) first to get an idea of where the relevant roots 
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y 

, , 

2 ' - , , I __ ~ _ 4 x 

FIG U R E C.2 
A plot of y = X 1/3, illustrating that the Newton-Raphson method fail s in this case. 

lie and to see that the function does not have any peculiar properties. You should do 
Problems 0-1 to 0-9 to become proficient with the Newton-Raphson method. 

There are also numerical methods to evaluate integrals. You learned in calculus 
that an integral is the area between a curve and the horizontal axis (area under a curve) 
between the integration limits, so that the value of 

r" I = i ll f(u)du (0.2) 

is given by the shaded area in Figure 0.3. Recall a fundamental theorem of calculus, 
which says that if 

F(x) = r f(u)du 
i ll 

-- ( 

t1 /I 

FIG U R E C.3 
The integral of f(u) from a to b is given by the shaded area. 



MathChapter G / N U MER I CAL MET HOD 5 

then 

dF 
dx = f(x) 

The function F(x) is sometimes called the antiderivative of f(x) . If there is no 
elementary function F(x) whose derivative is f(x), we say that the integral of f(x) 

cannot be evaluated analytically. By elementary function, we mean a function that can 
be expressed as a finite combination of polynomial, trigonometric, exponential, and 
logarithmic functions. 

It turns out that numerous integrals cannot be evaluated analytically. A particularly 
important example of an integral that cannot be evaluated in terms of elementary 
functions is 

¢(x) = l' e-
1I 2

du (G.3) 

Equation G.3 serves to define the (nonelementary) function ¢(x). The value of ¢ (x) for , 
any value of x is given by the area under the curve feu) = e- II

- from U = ° to U = x . 
Let's consider the more general case given by Equation G.2 or the shaded area in 

Figure G.3. We can approximate this area in a number of ways . First divide the interval 
(a,b) into n equally spaced subintervals U I - uo' u2 - U I ' . .. , u" - U,, _I with Uo = a 

and u" = b. We will let h = u
j
+

1 
- uj for j = 0, 1, ... , n - 1. Figure GA shows 

a magnification of one of the subintervals, say the u
j

' UJ+ I subinterval. One way to 
approximate the area under the curve is to connect the points feu) and f(u

j
+) by a 

straight line as shown in Figure GA. The area under the straight line approximation 
to feu) in the interval is the sum of the area of the rectangle [hf(u)] and the area of 
the triangle qh[f(u

j
+

l
) - feu)]}. Using this approximation for all intervals, the total 

area under the curve from U = a to u = b is given by the sum 

h 
1 ~ 11/ = hf(uo) + 2 [f(u l) - f(u u)] 

h + hf(u l ) + 2 [f(u 2) - f(u l )] 

h + hf(u,, _2) + 2 [f(U I/ _I) - f(UI/ _2)] 

h 
+ hf(u,, _I) + 2 [feu ,) - f(u l/ _ I)] 

h 
= 2 [f(uo) + 2f(u l ) + 2f(u2 ) + ... + 2f(u,, _I) + feu,)] (GA) 

Note that the coefficients in Equation GA go as I, 2, 2, ... , 2, 1. Equation GA is 
easy to implement on a hand calculator for n = 10 or so and on a personal computer 
using a spreadsheet for larger values of n. The approximation to the integral given by 
Equation GA is called the trapezoidal approximation. [The error goes as Ah 2

, where 
A is a constant that depends upon the nature of the function f (u). In fact, if M is the 
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FIG U R E G.4 

u · 
.I U · 1 J + u 

An illustration of the area of the .i + I st subinterval for the trapezoidal approximation. 

largest value of I r (u) I in the interval (a, IJ), then the error is at most M (IJ - a )h 2 /12.] 
Table G.2 shows the values of 

¢(I) = 11 e- // ' du 
() 

(G.S) 

for n = to (11 = 0.1), n = 100 (h = 0.0 I ), and n = 1000 (h = 0.001). The "accepted" 
value (using more sophisticated numerical integration methods) is 0.74682413 , to eight 

decimal places. 
We can develop a more accurate numerical integration routine by approximating 

f (u) in Figure GA by something other than a straight line. If we approximate f (u) by 
a quadratic function, we have Simpson's rule, whose formula is 

h 
12// = 3 [f(uo) + 4f(u 1) + 2f(u 2 ) + 4f(u3 ) + 2f(u4 ) + .. . 

+ 2f(U2// _ 2 ) + 4f(u 211 _ 1) + f(u 2,)] 
(G.6) 

Note that the coefficients go as I. 4. 2. 4, 2. 4 , ... , 4, 2, 4 , I. We write 10 in 
_II 

Equation G.6 because Simpson 's rule requires that there be an even number of intervals. 
Table G.2 shows the values of ¢ (I) in Equation G.S for n = 10, 100, and 1000. Note that 

TAB l E G.2 
The application of the trapezoidal approximation (Equation GA) and Simpson's rule (Equation 
G .6) to the evaluation of 4>( I) given by Equation G.S. The exact value to eight decimal places 
is 0.74682413. 

/1 

10 

100 

1000 

h 

0.1 

0.01 

0.001 

I (trapezoidal) 
" 

0.74621800 

0.74681800 

0.74682407 

1211 (Simpson 's tule) 

0.74682494 

0.74682414 

0.74682413 
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with n = 100, the result for Simpson's rule differs from the "accepted" value by only 
one unit in the eighth decimal place. The error for Simpson's rule goes as h4 compared 
with h2 for the trapezoidal approximation. In fact, if M is the largest value of Il4

) (u) I 
in the interval (a, b), then the error is at most M (b - a )h4 /180. Problems G-IO to 
G-13 illustrate the use of the trapezoidal approximation and Simpson's rule. 

EXAMPLE G-2 
One theory (from Debye) of the molar heat capacity of a monatomic crystal gives 

where R is the molar gas constant (8.314 J . K- 1 . mol - I) and eD' the Debye temperature, 

is a parameter characteristic of the crystalline substance. Oiven that e
D 

= 309 K for 

copper, calculate the molar heat capacity of copper at T = 103 K. 

SOL UTI 0 N: At T = 103 K, the basic integral to evaluate numerically is 

Using the trapezoidal approximation (Equation 0.5) and Simpson's rule (Equa­
tion 0.6), we find the following values of [: 

11 

10 

100 

1000 

h 

0.3 

0.03 

0.003 

I" (trapezoidal) 

5.9725 

5.9649 

5.9648 

The molar heat capacity at 103 K is given by 

I 211 (Simpson 's rule) 

5.9648 

5.9648 

5.9648 

or C v = 16.5 J. mo) - I. K- 1
, in agreement with the experimental value. 

Although the Newton-Raphson method and Simpson 's rule can be implemented 
easily on a spreadsheet, there are a number of easy-to-use numerical software packages 
such as MathCad, Kaleidagraph, Mathematica, or Maple that can be used to evaluate 
the roots of algebraic equations and integrals by even more sophisticated numerical 
methods. 
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Problems 

G-l. Solve the equation X 5 + 2X4 + 4x = 5 to four significant figures for the root that lies 

between 0 and I. 

G-2. Use the Newton-Raphson method to derive the iterative formula 

I ( A) x - - x -
,, + 1 - 2 " + XII 

for the value of.JA. This formula was discovered by a Babylonian mathematician more 

than 2000 years ago. Use this formula to evaluate -J2 to five significant figures . 

G-3. Use the Newton-Raphson method to solve the equation e- x + (x / 5) = I to four significant 

figures . This equation occurs in Problem 1-5. 

G-4. Consider the chemical reaction described by the equation 

at 300 K. If 1.00 atm of CH4 (g) and H20(g) are introduced into a reaction vessel, the 

pressures at equilibrium obey the equation 

Solve this equation for x. 

(X) (3X) 3 
-----=26 
(l-x)(1-x) 

G-S. In Chapter 16, we will solve the cubic equation 

64x 3 + 6X2 + 12x - I = 0 

Use the Newton-Raphson method to find the only real root of this equation to five significant 

figures . 

G-6. Solve the equation x 3 
- 3x + I = 0 for all three of its roots to four decimal places. 

G-7. In Example 16-3 we will solve the cubic equation 

V
3 

_ 0. 1231 V
2 + 0.02056V - 0.001271 = 0 

Use the Newton-Raphson method to find the root to this equation that is near V = 0.1. 

G-B. In Section 16-3 we will solve the cubic equation 

\7J _ 0.3664\72 + 0.03802V - 0.001210 = 0 

Use the Newton-Raphson method to show that the three roots to this equation are 0.07073, 

0.07897, and 0.2167. 



Problems 

C-9. The Newton-Raphson method is not limited to polynomial equations. For example, in 
Problem 4-38 we solved the equation 

for £ by plotting £ 1/ 2 tan £1 /2 and (12 - £) 1/2 versus £ on the same graph and noting the 

intersections of the two curves. We found that £ = 1.47 and 11.37. Solve the above equation 

using the Newton-Raphson method and obtain the same values of £. 

C-10. Use the trapezoidal approximation and Simpson's rule to evaluate 

1_ t dx 
- 10 I + x 2 

This integral can be evaluated analytically ; it is given by tan - I ( I ), which is equal to 7r / 4, 
so 1 = 0.78539816 to eight decimal places. 

C-ll. Evaluate In 2 to six decimal places by evaluating 

12 dx 
In2= -

1 X 

What must n be to assure six-digit accuracy? 

C-12. Use Simpson's rule to evaluate 

1 = 100 

e-
x2 

dx 

and compare your result with the exact value, ..;n /2. 

C-13. The integral 

100 x 3dx 
1= 

x I o e-

occurs in Problem 1-42, where we use its exact value 7r
4 

/ IS. Use Simpson's rule to evaluate 
1 to six decimal places. 

C-14. Use a numerical software package such as Mathead, Kaleidagraph, or Mathematica to 
evaluate the integral 

for values of Q' between 0.200 and 0.300 and show that S has a maximum value at Q' = 0.271 
(see Problem 11 - 11 ). 
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Johannes Diderik van der Waals was born in Leiden , the Netherlands, on November 23 , 
1837, and died in 1923. Because he had not learned Latin and Greek , he was at first not able 
to continue with university studies and so worked as a school teacher in a secondary school. 
After passage of new legislation, however, van der Waals obtained an exemption from the 
university requirements in classical languages and defended his doctoral dissertation at Leiden 
University in 1873. In his dissertation, he proposed an explanation of the continuity of the 
gaseous and liquid phases and the phenomenon of the critical point, as well as a derivation of 
a new equation of state of gases, now called the van der Waals equation. A few years later, 
he proposed the law of corresponding states, which reduces the properties of all gases to one 
common denominator. Although his dissertation was written in Dutch, his work quickly came 
to the attention of Maxwell , who published a review of it in English in the British journal 
Nature in 1875 and so brought the work to the attention of a much broader audience. In 1876, 
van der Waals was appointed the first Professor of Physics at the newly created University of 
Amsterdam. The University became a center for both theoretical and experimental research on 
fluids, large ly through van der Waals ' influence. Van der Waals was awarded the Nobel Prize 
for physics in 1910 "for the work on the equation of state for gases and liquids." 



CHAPTER 

The Properties of Gases 

To this point, we have learned about the properties of individual atoms and molecules. 
For most of the rest of the book, we will study systems consisting of large num­
bers of atoms and molecules. In particular, we will explore the relations between the 
macroscopic properties of systems and the dependence these properties have upon the 
properties of the constituent atoms and molecules. We begin our study with the prop­
erties of gases. First, we will discuss the ideal-gas equation and then some extensions 
of this equation, of which the van der Waals equation is the most famous. Although 
the van der Waals equation accounts in part for deviations from ideal-gas behavior, a 
more systematic and accurate approach is to use a so-called virial expansion, which is 
an expression for the pressure of a gas as a polynomial in the density. We will relate 
the coefficients in this polynomial to the energy of interaction between the molecules 
of the gas. This relation will take us into a discussion of how molecules interact with 
one another. We will see that deviations from ideal-gas behavior teach us a great deal 
about molecular interactions. 

16-1. All Gases Behave Ideally If They Are Sufficiently Dilute 

If a gas is sufficiently dilute that its constituent molecules are so far apart from each 
other on the average that we can ignore their interactions, it obeys the equation of state 

PV == nRT (16.1a) 

If we divide both sides of this equation by n, we obtain 

PV == RT (16.1b) 

where V == V / n is the molar volume. We will always indicate a molar quantity by 
drawing a line above the symbol. Either of Equations 16.1, familiar even to high school 
students, is called the ideal-gas equation of state. Equations 16.1 are called an equation 637 
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of state because they serve as a relation between the pressure, volume, and temperature 
of the gas for a given quantity of gas. A gas that obeys Equations 16.1 is called an ideal 
gas, or the gas is said to behave ideally. 

The distinction between V and V illustrates an important character of the quantities 
or the variables used to describe macroscopic systems. These quantities are of two types, 
called extensive quantities and intensive quantities. Extensive quantities, or extensive 
variables, are directly proportional to the size of a system. Volume, mass, and energy 
are examples of extensive quantities. Intensive quantities, or intensive variables, do not 
depend upon the size of the system. Pressure, temperature, and density are examples of 
intensive quantities. If we divide an extensive quantity by the number of particles or the 
number of moles in a system, we obtain an intensive quantity. For example, V (dm3

) is an 
extensive quantity but V (dm3

. mol-I) is an intensive quantity. Distinguishing between 
extensive and intensive quantities is often important in describing the properties of 
chemical systems. 

The reason Equations 16.1 are encountered so frequently in chemistry courses is 
that all gases obey Equations 16.1, as long as they are sufficiently dilute. Any individual 
characteristics of the gas, such as the shape or size of its molecules or how the molecules 
interact with each other, are lost in Equations 16.1. In a sense, these equations are a 
common denominator for all gases. Experimentally, most gases satisfy Equations 16.1 
to approximately 1 % at one atm and O°C. 

Equations 16.1 require us to discuss the system of units (SI) adopted by the 
International Union of Pure and Applied Chemistry (IUPAC). For example, although 
the SI unit of volume is m3 (meters cubed), the unit L (liter), which is defined as exactly 

1 dm3 (decimeters cubed), is an acceptable unit of volume in the IUPAC system. The 
SI unit of pressure is a pascal (Pa), which is equal to one newton per square meter 
(Pa = N ·m-2 = kg.m- l 

·S-2). Recall that a newton is the SI unit of force, so we see that 
pressure is a force per unit area. Pressure can be measured experimentally by observing 
how high a column of liquid (usually mercury) is supported by the gas. If m is the mass 
of the liquid and g is the gravitational acceleration constant, the pressure is given by 

F mg phAg 
p = - = - = =phg 

A A A 
(16.2) 

where A is the base area of the column, p is the density of the fluid, and h is the height 
of the column. The gravitational acceleration constant is equal to 9.8067 m· S-2, or 
980.67 cm· S-2. Note that the area cancels out in Equation 16.2. 

EXAMPLE 16-1 
Calculate the pressure exerted by a 76.000-cm column of mercury. Take the density of 
mercury to be 13.596 g. cm -3 . 

SO L UTI 0 N : P == (13.596 g.cm-3)(76.000 cm)(980.67 cm 'S-2) 

== l.0133 x 106 g.cm- 1 'S-2 



16-1. All Gases Behave Ideally If They Are Sufficiently Dilute 

A pascal is equal to N . m-2 or kg· m -I . S -2, so the pressure in pascals is 

P = (1.0133 X 106 g·cm l' s-2)(10-3 kg.g- I )(100 cm·m- I
) 

= 1.0133 x 105 Pa = 101.33 kPa 

Strictly speaking, new textbooks should use the IUPAC-suggested SI units, but 
the units of pressure are particularly problematic. Although a pascal is the SI unit 
of pressure and will probably see increasing use, the atmosphere will undoubtedly 
continue to be widely used. One atmosphere (atm) is defined as 1.01325 x 105 Pa = 
101.325 kPa. [One atmosphere used to be defined as the pressure that supports a 76.0-
cm column of mercury (see Example 16.1 ).] Note that one kPa is approximately 1 % of 
an atmosphere. One atmosphere used to be the standard of pressure, in the sense that 
tabulated properties of substances were presented at one atm. With the change to SI 
units, the standard is now one bar, which is equal to 105 Pa, or 0.1 MPa. The relation 
between bars and atmospheres is 1 atm = 1.01325 bar. One other commonly used unit 
of pressure is a torr, which is the pressure that supports a 1.00-mm column of mercury. 
Thus 1 torr = (1/760) atm. Because we are experiencing a transition period between 
the widespread use of atm and torr on the one hand and the future use of bar and kPa on 
the other hand, students of physical chemistry must be proficient in both sets of pressure 
units. The relations between the various units of pressure are collected in Table 16.1 

Of the three quantities, volume, pressure, and temperature, temperature is the most 
difficult to conceptualize. We will present a molecular interpretation of temperature 
later, but here we will give an operational definition. The fundamental temperature 
scale is based upon the ideal-gas law, Equations 16.1. Specifically, we define T to be 

PV 
T = lim-­

p-+o R 
(16.3) 

because all gases behave ideally in the limit of P -+ O. The unit of temperature is 
the kelvin, which is denoted K. Note that we do not use a degree symbol when the 
temperature is expressed in kelvin. Because P and V cannot take on negative values, the 
lowest possible value of the temperature is 0 K. Temperatures as low as 1 x 10-7 K have 

TABLE 16.1 
Various units for expressing pressure. 

1 pascal (Pa) 

1 atmosphere (atm) 

1 N·m-2 = 1 kg'ill I 'S-2 

1.01325 X 105 Pa 

1.01325 bar 

101.325 kPa 

1013.25 mbar 

760 torr 

1 bar 1 05 Pa = O. 1 MPa 
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been achieved in the laboratory. The temperature of absolute zero (0 K) corresponds to 
a substance that has no thermal energy. There is no fundamental limit to the maximum 

value of T. There are, of course, practical limitations, and the highest value of T 

achieved in the laboratory is around 100 million (108
) K, which has been generated 

inside a magnetic confinement in nuclear fusion research facilities. 

To establish the unit of kelvin, the triple point of water has been assigned the 
temperature of 273.16 K. (We will learn about the properties of a "triple point" in 
Chapter 23. For our present purposes, it is sufficient to know that the triple point of a 
substance corresponds to an equilibrium system that contains gas, liquid, and solid.) 
We now have a definition for 0 K and 273.16 K. A kelvin is then defined as 1/273.16 
of the temperature of the triple point of water. These definitions of 0 K and 273.16 K 

generate a linear temperature scale. 
Figure 16.1 plots experimental V versus T for Ar(g) at different pressures. As 

expected from our definition of the temperature scale, the extraplotation of these data 

shows that T ----+ 0 as V ----+ O. 
The kelvin scale is related to the commonly used Celsius scale by 

tj C == TjK-273.15 (16.4 ) 

We will use the lower case t for C and the upper case T for K. Note also that the 
degree symbol ee') is associated with values of the temperature in the Celsius scale. 

Equation 16.4 tells us that 0 K == -273.15 C, or that O°C == 273.15 K. Because of 

the general use of °C in laboratories, a significant amount of thermodynamic data are 

tabulated for substances at OCC (273.15 K) and 25 C (298.15 K); this latter value is 

commonly called "room temperature." 

~\~ 
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F I CUR E 16.1 
Experimental molar volumes (solid lines) of Ar(g) are plotted as a function of T IK at 0.040 atm, 
0.020 atm, and 0.010 atITI. All three pressures extrapolate to the origin (dashed lines). 



16-1. All Gases Behave Ideally If They Are Sufficiently Dilute 

If we measure P V at 273.15 K for any gas at a sufficiently low pressure that its 
behavior is ideal, then 

P V = R(273.15 K) 

Figure 16.2 shows PV data plotted against P for several gases at T = 273.15 K. All the 
data plotted extrapolate to PV = 22.414 L'atm'mol-1 as P ---+ 0, where the gases certainly 
behave ideally. Therefore, we can write 

PV 22.414 L'atm'mol-1 
R = --- = = 0.082058 L·atm·mol-1·K-1 

T 273.15 K 

Using the fact that 1 atm = 1.01325 x 105 Pa and that 1 L = 10-3 m3
, we have 

R = (0.082058 L·atm.mol-1 ·K- 1)(1.01325 x 105 Pa·atm-1)(10-3 m3 ·L-1
) 

= 8.3145 Pa·m3 ·mol-1 
• K- 1 

= 8.3145 J ·mol- l 
• K- 1 

where we have used the fact that 1 Pa· m3 = 1 N· m = 1 J. Because of the change of 
the standard of pressure from atmospheres to bars, it is also convenient to know the 
value of R in units of L· bar·mol- l 

• K- 1
• Using the fact that 1 atm = 1.01325 bar, we 

see that 

R = (0.082058 L·atm·mol-1 ·K-1)(1.01325 bar·atm-1
) 

= 0.083145 L· bar·mol-1
. K- 1 = 0.083145 dm3

. bar· mol 1 ·K-1 

Table 16.2 gives the value of R in various units. 

22.45 

Ideal gas 

~ 22.35 

22.30 

22.25~----~----~------~----~----~---
o 0.2 0.4 0.6 0.8 1.0 

P latm 

FIG U R E 16.2 
A plot of experimental values of PV versus P for H

2
(g) (crosses), N

2
(g) (diamonds), 

and CO2 (g) (circles) at T = 273.15 K. The data for all three gases extrapolate to a value of 
PV = 22.414 L·atm as P ~ 0 (ideal behavior). 

641 



642 
TAB L E 16.2 
The values of the molar gas constant R in 
various units. 

R 8.3145 J·mol-1·K- 1 

0.083145 dm3 ·bar·mol- 1 ·K- 1 

83.145 cm3
• bar· mol-l . K- 1 

0.082058 L·atm·mol- I ·K- 1 

82.058 cm3 ·atm·mol-1 ·K- 1 

16-2. The van der Waals Equation and the Redlich-Kwong Equation 
Are Examples of Two-Parameter Equations of State 

The ideal-gas equation is valid for all gases at sufficiently low pressures. As the pressure 
on a given quantity of gas is increased, however, deviations from the ideal-gas equation 
appear. These deviations can be displayed graphically by plotting P V / R T as a function 
of pressure, as shown in Figure 16.3. The quantity P V / R T is called the compressibility 

factor and is denoted by Z. Note that Z = 1 under all conditions for an ideal gas. For 
real gases, Z = 1 at low pressures, but deviations from ideal behavior (Z =f. 1) are seen 
as the pressure increases. The extent of the deviations from ideal behavior at a given 
pressure depends upon the temperature and the nature of the gas. The closer the gas is 
to the point at which it begins to liquefy, the larger the deviations from ideal behavior 
will be. Figure 16.4 shows Z plotted against P for methane at various temperatures. 
Note that Z dips below unity at lower temperatures but lies above unity at higher 
temperatures. At lower temperatures the molecules are moving less rapidly, and so 

2.0 

1 .5 He 
~ 
Ct:: 
........... 

I~ 
~ 

1 .0 Ideal gas 

0.5~----~------~----~------~----~ 
a 200 400 600 800 1000 

P / bar 

FIG U R E 16.3 
A plot of P V / R T versus P for one mole of helium~nitrogen, and methane at 300 K. This 
figure shows that the ideal-gas equation, for which P V / RT = 1, is not valid at high pressure. 
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FIGURE 16.4 
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The compressibility factor of methane versus pressure at various temperatures. This figure 
shows that the effect of molecular attraction becomes less important at higher temperatures. 

are more influenced by their attractive forces. Because of these attractive forces, the 
- -

molecules are drawn together, thus making V I less than V'd I' which in turn causes rea I ea 

Z to be less than unity. A similar effect can be seen in Figure 16.3: the order of the 
curves shows that the effect of molecular attractions are in the order CH4 > N2 > He 
at 300 K. At higher temperatures, the molecules are moving rapidly enough that their 
attraction is much smaller than kB T (which we will see in Chapter 18 is a measure of 
their thermal energy). The molecules are influenced primarily by their repulsive forces 

- -
at higher temperatures, which tend to make V > Videal' and so Z > 1. 

Our picture of an ideal gas views the molecules as moving independently of each 
other, not experiencing any intermolecular interactions. Figures 16.3 and 16.4 show that 
this picture fails at high pressures, and that the attractive and repulsive intermolecular 
interactions must be taken into account. Many equations extend the ideal-gas equation 
to account for the intermolecular interactions. Perhaps the most well known is the van 
der Waals equation, 

( 16.5) 

where V designates molar volume. Notice that Equation 16.5 reduces to the ideal­
gas equation when V is large, as it must. The constants a and b in Equation 16.5 
are called van der Waals constants, whose values depend upon the particular gas 
(Table 16.3). We will see in Section 16-7 that the value of a reflects how strongly 
the molecules of a gas attract each other and the value of b reflects the size of the 
molecules. 

Let's use Equation 16.5 to calculate the pressure (in bars) exerted by 1.00 mol 
of CH4 (g) that occupies a 250-mL container at O°C. From Table 16.3, we find that 
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TAB L E 16.3 
van der Waals constants for various substances. 

Species a / d m 6 
. bar· m 0 1-:2 a/dm6 ·atm·mol-2 b/dm3 ·mol- I 

Helium 0.034598 0.034145 0.023733 

Neon 0.21666 0.21382 0.017383 

Argon 1.3483 ] .3307 0.031830 

Krypton 2.2836 2.2537 0.038650 

Hydrogen 0.24646 0.24324 0.026665 

Nitrogen 1.3661 1.3483 0.038577 

Oxygen 1.3820 1.3639 0.031860 

Carbon monoxide 1.4734 ] .4541 0.039523 

Carbon dioxide 3.655 ] 3.6073 0.0428] 6 

Ammonia 4.3044 4.248 ] 0.037847 

Methane 2.3026 2.2725 0.043067 

Ethane 5.5818 5.5088 0.065144 

Ethene 4.61 ] 2 4.5509 0.058] 99 

Propane 9.3919 9.2691 0.090494 

Butane 13.888 ] 3.706 0.11641 

2-Methyl propane 13.328 13.153 0.1 ]645 

Pentane 19.124 18.874 0.145]0 

Benzene 18.876 18.629 0.] 1974 

a == 2.3026 dm6 ·bar·mol-2 and b == 0.043067 dm3 ·mol- 1 for methane. If we divide 
Equation 16.5 by V - b and solve for P, we obtain 

RT a 
P == ==--- --

V - b -V2 

(0.083145 dm3 ·bar·mol- I ·K- 1)(273.15 K) 2.3026 dm6 ·bar·mol-2 

(0.250 dI113 ·mol- 1 
- 0.043067 dm3 ·mol 1) (0.250 dm3 ·mol- I

)2 

== 72.9 bar 

By comparison, the ideal-gas equation predicts that P == 90.8 bar. The prediction of 
the van der Waals equation is in much better agreement with the experimental value of 

78.6 bar than is the ideal-gas equation. 
The van der Waals equation qualitatively gives the behavior shown in Figures 16.3 

and 16.4. We can rewrite Equation 16.5 in the form 

z== 
PV 

RT 

V a 
( 16.6) 

V - b RTV 



16-2. The van der Waals Equation and the Redlich-Kwong Equation 

At high pressures, the first term in Equation 16.6 dominates because V - b becomes 
small, and at low pressures the second term dominates. 

EXAMPLE 16-2 
Use the van der Waals equation to calculate the molar volume of ethane at 300 K and 

200 atm. 

SOL UTI 0 N: When we try to solve the van der Waals equation for V, we obtain a 

cubic equation, 

V - b+- V +-V--==O -3 ( RT)-2 a- ab 
P P P 

which we must solve numerically using the Newton-Raphson method (MathChap­

ter G). Using the values of a and b from Table 16.3, we have 

The Newton-Raphson method gives us 

-3 -2 -
V == V _ Vn -0.188Vn +0.0275Vn -0.00179 

n+l 11 -2 -
3 V

Il 
- 0.376 Vn + 0.0275 

where we have suppressed the units for convenience. The ideal-gas value of V is 

Videal == RT / P == 0.123 L·mol- 1
, so let's use 0.10 L·mol- 1 as our initial guess. In this 

case, we obtain 

n V /L.mol I I(V,)/L3 ·mol-3 I' (V
n
)/L2 ·mol-2 

n 

0 0.100 8.00 x 10-5 2.00 X 10-2 

1 0.096 2.53 x 10-6 1.90 X 10-2 

2 0.096 

The experimental value is 0.071 L·mol- 1
• The calculation of pressure preceding this 

example and the calculation of the volume in this example show that the van der Waals 

equation, while more accurate than the ideal-gas equation, is not particularly accurate. 

We will learn shortly that there are more accurate equations of state. 

Two other relatively simple equations of state that are much more accurate and 
hence more useful than the van der Waals equation are the Redlich-Kwong equation 

RT A 
p = =---

V-B 
(16.7) 

and the Peng-Robinson equation 

RT 
p = =---

V-fJ V(V + fJ) + fJ(V - fJ) 
(16.8) 
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TAB L E 16.4 
The Redlich-Kwong equation parameters for various substances. 

Species A/dm6 • bar· mol-2
. Ki/2 A/dm6 .atm.mol-2 . KI/2 B/dm3 .mol-1 

Helium 0.079905 0.078860 0.016450 

Neon 1.4631 1.4439 0.012049 

Argon 16.786 16.566 0.022062 

Krypton 33.576 33.137 0.026789 

Hydrogen 1.4333 1.4145 0.018482 

Nitrogen 15.551 15.348 0.026738 

Oxygen 17.411 17.183 0.022082 

Carbon monoxide 17.208 16.983 0.027394 

Carbon dioxide 64.597 63.752 0.029677 

Ammonia 87.808 86.660 0.026232 

Methane 32.205 31.784 0.029850 

Ethane 98.831 97.539 0.045153 

Ethene 78.512 77.486 0.040339 

Propane 183.02 180.63 0.062723 

Butane 290.16 286.37 0.08068 

2-Methy I propane 272.73 269.17 0.080715 

Pentane 419.97 414.48 0.10057 

Benzene 453.32 447.39 0.082996 

where A, B, ex, and {J, are parameters that depend upon the gas. The values of A and 
B in the Redlich-Kwong equation are listed in Table 16.4 for a variety of substances. 
The parameter ex in the Peng-Robinson equation is a somewhat complicated function 
of temperature, so we will not tabulate values of ex and {J. Equations 16.7 and 16.8, like 
the van der Waals equation (Example 16-2), can be written as cubic equations in V. 
For example, the Redlich-Kwong equation becomes (Problem 16-26) 

-3 _ RT-2 _ (2 BRT _ A ) - _ AB _ 
V V B + 1/2 V 1/2 - 0 

P P T P T P 
(16.9) 

Problem 16-28 has you show that the Peng-Robinson equation of state is also a cubic 

equation in V. 

EXAMPLE 16-3 
Use the Redlich-Kwong equation to calculate the molar volume of ethane at 300 K 

and 200 atm. 



16-2. The van der Waals Equation and the Redlich-Kwong Equation 

SOLUTION: SubstituteT ==300K,P ==200atm,A ==97.539dm6
. atm· mol-I. Kill, 

and B == 0.045153 dm3 ·mol- I into Equation 16.9, to obtain 

V
3 

_ 0.1231 V
2 + 0.02056 V - 0.001271 == 0 

where we have suppressed the units for convenience. Solving this equation by the 
Newton-Raphson method gives V == 0.0750 dm3 'mol- I

, compared with the van der 
Waals result of V == 0.096 dm3 

. mol I and the experimental result of 0.071 dm3 
. mol I 

(see Example 16-2). The prediction of the Redlich-Kwong equation is nearly quan­
titative, unlike the van der Waals equation, which predicts a value of V that is about 

300/0 too large. 

Figure 16.5 compares experimental pressure versus density data for ethane at 400 K 
with the predictions of the various equations of state introduced in this chapter. Note 

that the Redlich-Kwong and Peng-Robinson equations are nearly quantitative, whereas 
the van der Waals equation fails completely at pressures greater than 200 bar. One 
of the impressive features of the Redlich-Kwong and Peng-Robinson equations is that 

they are nearly quantitative in regions where the gas liquefies. For example, Figure 16.6 

shows pressure versus density data for ethane at 305.33 K, where it liquefies at around 
40 bar. The horizontal region in the figure represents liquid and vapor in equilibrium 
with each other. Note that the Peng-Robinson equation is better in the liquid-vapor 
region but that the Redlich-Kwong equation is better at high pressures. The van der 

Waals equation is not shown because it gives negative values of the pressure under 
these conditions. 

1200 I 
I 

/ 
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--- / 0... 
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o 5 10 15 
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FIG U R E 16.5 
Experimental pressure versus density data for ethane at 400 K (solid line) is compared with the 
predictions of the van der Waals equation (dot-dashed line), the Redlich-Kwong equation (long 
dashed line), and the Peng-Robinson equation (short dashed line). 
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The experimental pressure versus density data (solid line) for ethane at 305.33 K is compared 
with the predictions of the Redlich-Kwong equation (long dashed line) and the Peng-Robinson 
equation (short dashed line). The liquid and vapor phases are in equilibrium in the horizontal 
regIon. 

Although Figures 16.5 and 16.6 show comparisons only for ethane, the conclusions 
as to the relative accuracies of the equations are general. In general, the Redlich-Kwong 
equation is superior at high pressures, whereas the Peng-Robinson equation is superior 
in the liquid-vapor region. In fact, these two equations of state have been "constructed" 
so that this is so. There are more sophisticated equations of state (some containing 
more than 10 parameters!) that can reproduce the experimental data to a high degree 
of accuracy over a large range of pressure, density, and temperature. 

16-3. A Cubic Equation of State Can Describe Both the Gaseous 
and Liquid States 

A remarkable feature of equations of state that can be written as cubic equations 
in V is that they describe both the gaseous and the liquid regions of a substance. 
To understand this feature, we start by discussing some experimentally determined 
plots of P as a function of V at constant T, which are commonly called isotherms 
(iso = constant). Figure 16.7 shows experimental P versus V isotherms for carbon 
dioxide. The isotherms shown are in the neighborhood of the critical temperature, Tc ' 

which is the temperature above which a gas cannot be liquefied, regardless of the 
pressure. The critical pressure, Pc' and the critical volume, V c' are the corresponding 
pressure and the molar volume at the critical point. For example, for carbon dioxide, 
T == 304.14 K (30.99°C), P == 72.9 atm, and V == 0.094 L·mol- I

. Note that the c c c 

isotherms in Figure 16.7 flatten out as T ---+ Tc from above and that there are horizontal 
regions when T is less than Tc' In the horizontal regions, gas and liquid coexist in 
equilibrium with each other. The dashed curve connecting the ends of the horizontal 
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FIG U R E 16.7 
Experimental pressure-volume isotherms of 
carbon dioxide around its critical temperature, 
30.99 J C. Points G, A, D, and L are discussed 
in the text. 

lines in Figure 16.7 is called the coexistence curve~ because any point within this curve 
corresponds to liquid and gas coexisting in equilibrium with each other. At any point 
on or outside this curve, only one phase is present. For example, at point G in the figure 
we have only a gas phase. If we now start at G and compress the gas along the I3.2°C 
isotherm, liquid will first appear when we reach the horizontal line at point A. The 
pressure will remain constant as we condense the gas at molar volume 0.3 L·mol- 1 

(point A) to liquid at molar volume of approximately 0.07 L· mol I (point D). After 
reaching point D, the pressure increases sharply with a further decrease in volume, 
because we now have all liquid and the volume of a liquid changes very little with 
pressure. 

Note that as the temperature increases toward the critical temperature, the hori­
zontallines shorten and disappear at the critical temperature. At this point, the menis­
cus between the liquid and its vapor disappears and there is no distinction between 
liquid and gas; the surface tension disappears and the gas and liquid phases both 
have the same (critical) density. We will discuss the critical point in more detail in 
Chapter 23. 

Figure 16.8 shows similar isotherms for the van der Waals equation and the Redlich­
Kwong equation. Notice that the two equations of state give fairly similar plots. The 
spurious loops obtained for T < Tc result from the approximate nature of these equa­
tions of state. Figure 16.9 shows a si ngle van der Waals or Redlich-Kwong isotherm 
for T < Te' The curve GADL is the curve that would be observed experimentally upon 
compressing the gas. The horizontal line DA is drawn so that the areas of the loop both 
above and below DA are equal. (This so-called Maxwell equal-area construction will 
be justified in Chapter 23.) The line GA represents compression of the gas. Along the 
line AD, liquid and vapor are in equilibrium with each other. The point A represents 
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Pressure-volume isothenns of carbon dioxide around its critical temperature, as calculated 
from (a) the van der Waals equation (Equation 16.5) and (b) the Redlich-Kwong equation 
(Equation 16.7). 
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FIG U R E 16.9 
A typical van der Waals pressure-volume isotherm at a temperature less than the critical 
temperature. The horizontal line has been drawn so that areas of the loop above and below are 
equal. 

the coexisting vapor and the point D represents the liquid. The line DL represents the 
change of volume of the liquid with increasing pressure. The steepness of this line re­
sults from the relative incompressibility of the liquid. The segment AB is a metastable 
region corresponding to the superheated vapor, and the segment CD corresponds to 
the supercooled liquid. The segment Be is a region in which (a P fa V)r > O. This 
condition signifies an unstable region, which is not observed for equilibrium systems. 

Figure 16.9 shows that we can obtain three values of the volume along the line DA 
for a given pressure if the temperature is less than the critical temperature. This result 



16-3. A Cubic Equation of State Can Describe Both the Gaseous and Liquid States 

is consistent with the fact that the van der Waals equation can be written as a cubic 
polynomial in the (molar) volume (see Example 16-2). The volume corresponding to 
point D is the molar volume of the liquid, the volume corresponding to point A is 
the molar volume of the vapor in equilibrium with the liquid, and the third root, lying 
between A and D is spurious. 

At 142.69 K and 35.00 atm, argon exists as two phases in equilibrium with 
each other, and the densities of the liquid and vapor phases are 22.491 mol· L -I and 
5.291 mol·L -I, respectively. Let's see what the van der Waals equation predicts in this 

case. As we saw in Example 16-2, we can write the van der Waals equation as 

V - b+- V +-V--==O -3 ( RT) -2 a - ab 
P P P 

(16.10) 

Using the values of a and b from Table 16.3, T == 142.69 K, and P == 35.00 atm, 
Equation 16.10 becomes 

-3 -2 -
V - 0.3664V + 0.03802V - 0.001210 == 0 

where, for convenience, we have suppressed the units of the coefficients. The three 
roots of this equation are (Problem 16-22) 0.07073 L·mol- I

, 0.07897 L·mol- I
, and 

0.2167 L·mol- I
. The smallest root represents the molar volume of liquid argon, and 

the largest represents the molar volume of the vapor. The corresponding densities 
are 14.14 mol·L -I and 4.615 mol·L -I, which are in poor agreement with the ex­
perimental values (22.491 mol·L -I and 5.291 mol·L -1). The Redlich-Kwong equa­

tion gives 20.13 mol· L -I and 5.147 mol· L -I, and the Peng -Robinson equation gives 
23.61 mol·L -I and 5.564 mol·L -I (Problem 16-23). Both the Redlich-Kwong and the 
Peng-Robinson equations are fairly accurate, and the Peng-Robinson equation is about 
10% more accurate in this liquid region. 

The point C.P. in Figure 16.7 is the critical point, where T == Tc' P == Pc' and 
V == V c' The point C.P. is an inflection point, and so 

(~~)T = 0 and at C.P. 

We can use these two conditions to determine the critical constants in terms of a and b 
(Problem 16-25). An easier way to do this, however, is to write the van der Waals 
equation as a cubic equation in V, Equation 16.10. 

V - b + V + -V - - == 0 -3 ( RT) -2 a - ab 
P P P 

Being a cubic equation, it has three roots. For T > r::, only one of these roots is real (the 

other two are complex), and for T < r:: and P ~ ~, all three roots are real. At T == r::, 
these three roots merge into one, and so we can write Equation 16.10 as (V - V

c
)3 == 0, 

or 

-1 --I -2- -3 
V- - 3 Vc V~ + 3 Vc V - V~ == 0 (16.11) 
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If we compare this equation with Equation 16.10 at the critical point, we have 

RT 
3V==b+ c 

c p 
e 

-2 a 
3Ve == -, p 

c 

and 

Eliminate P between the second two of these to obtain 
e 

v == 3b 
c 

-3 ab 
V' ==­

c p 
c 

and then substitute this result into the third of Equations 16.12 to obtain 

a 
P ==-­

c 27b2 

(16.12) 

(16.13a) 

(16.13b) 

and last, substitute Equations 16.13a and 16.13b into the first of Equations 16.12 to 
obtain 

8a 
T==--

c 27bR 

The critical constants of a number of substances are given in Table 16.5. 

(16.13c) 

The values of the critical constants in terms of the parameters A and B of the 
Redlich-Kwong equation can be determined in a similar fashion. The mathematics is a 
bit more involved, and the results are (Problem 16-27) 

v == 3.8473B ~ e . 

A 2/3 R 1 /3 ( A ) 2/3 

P == 0.029894 , and T == 0.34504 (16.14) 
c B5j3 C B R 

The following example shows that the van der Waals equation and the Redlich-Kwong 
equation make an interesting prediction about the value of ~ Vel R~. 

EXAMPLE 16-4 
Calculate the ratio ~ Vc / R ~ for the van der Waals equation and the Redlich-Kwong 
equation. 

SOL UTI 0 N: Multiplying Equation 16.13h by 16.13a and dividing by R times Equa­

tion 16.13c gives 

P V 1 ( a) (27bR) 3 c c = - 2 (3b) = - = 0.375 
RT R 27b 8a 8 

c 

(16.15) 

Similarly, the Redlich-Kwong equation gives 

~ Vc _ 1 (0.029894A 2/3 R 1/3) ( (B R)2/3 .) _ 
- - 5/1 (3.8473B) 2/1 - 0.33333 (16.16) 
RT R B - 0.34504A . 

c 

Equations 16.15 and 16.16 predict that ~ Vel R ~ should be the same value for 
all substances but that the numerical values differ slightly for the two approximate 



TABLE 16.5 
The experimental critical constants of various substances. 

Species TIK Plbar Platm V IL·mol- 1 
~ Vel R~ c c e c 

Helium 5.1950 2.2750 2.2452 0.05780 0.30443 

Neon 44.415 26.555 26.208 0.04170 0.29986 

Argon 150.95 49.288 48.643 0.07530 0.29571 

Krypton 210.55 56.618 55.878 0.09220 0.29819 

Hydrogen 32.938 12.838 12.670 0.06500 0.30470 

Nitrogen 126.20 34.000 33.555 0.09010 0.29195 

Oxygen 154.58 50.427 50.768 0.07640 0.29975 

Carbon monoxide 132.85 34.935 34.478 0.09310 0.29445 

Chlorine 416.9 79.91 78.87 0.1237 0.28517 

Carbon dioxide 304.14 73.843 72.877 0.09400 0.27443 

Water 647.126 220.55 217.66 0.05595 0.2295 

Ammonia 405.30 11l.30 109.84 0.07250 0.23945 

Methane 190.53 45.980 45.379 0.09900 0.28735 

Ethane 305.34 48.714 48.077 0.1480 0.28399 

Ethene 282.35 50.422 49.763 0.1290 0.27707 

Propane 369.85 42.477 4l.922 0.2030 0.28041 

Butane 425.16 37.960 37.464 0.2550 0.27383 

2-Methylpropane 407.85 36.400 35.924 0.2630 0.28231 

Pentane 469.69 33.643 33.203 0.3040 0.26189 

Benzene 56l.75 48.758 48.120 0.2560 0.26724 

equations of state. The experimental values of ~ Vel R~ given in Table 16.5 show 
that neither equation of state is quantitative. The corresponding value for ~ Vel R ~ 

for the Peng-Robinson equation is 0.30740 (Problem 16-28), which is closer to the 
experimental values than either of the values given by the van der Waals equation 
or the Redlich-Kwong equation. Note, however, that all three equations of state do 
predict a constant value for ~ Vel R~, and the experimental data in Table 16.5 show 
that this value is indeed fairly constant. This observation is an example of the law of 
corresponding states, which says that the properties of all gases are the same if we 
compare them under the same conditions relative to their critical point. We will discuss 
the law of corresponding states more thoroughly in the next section. 

Although we have written Ve , ~, and ~ in tern1S of a and b in Equations 16.13 
or in terms of A and B in Equations 16.14, in practice these constants are usually 
evaluated in terms of experimental critical constants. Because there are three critical 
constants and only two constants for each equation of state, there is some ambiguity in 
doing so. For example, we could use Equations 16. 13a and 16.13b to evaluate a and b 
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in terms of Vc and ~, or use another pair of equations. Because ~ and ~ are known 
more accurately, we use Equations 16.13b and 16.13c to obtain 

27(RT)2 
a == c 

64P 
and b== 

RT 
c 

8P 
(16.17) 

c c 

Likewise, from Equations 16.14, we obtain the Redlich-Kwong constants, 

R2 T 5/ 2 

A == 0.42748 c 
p 

RT 
and B == 0.086640 c 

p 
(16.18) 

c c 

The van der Waals and Redlich-Kwong constants in Tables 16.3 and 16.4 have been 
obtained in this way. 

E X AMP l E 1 6-5 

Use the critical-constant data in Table 16.5 to evaluate the van der Waals constants for 

ethane. 

SOLUTION: 

27 (0.083145 dm3 . bar· mol-I K-I)2 (305.34 K)2 
a= -------------------------------

64(48.714 bar) 

= 5.5817 dm6 ·bar·mol-2 = 5.5088 dm6 ·atm·mol-2 

and 

(0.083145 dm}· bar·mol- J K- 1 )(305.34K) 
b= ----------------------------

8(48.714 bar) 

- 0.065144 dm" .mol I 

EXAMPLE 16-6 
Use the critical-constant data in Table 16.5 to evaluate A and B, the Redlich-Kwong 

constants for ethane. 

SOLUTION: 

and 

(0.083145 dm3 • bar· mol- 1 ·K- 1 )2 (305.34 K)5/2 
A = 0.42748--------------

48.714 bar 

= 98.83] dm6 ·bar·mor-2 ·K 1
/
2 = 97.539 dm6 ·atm·mol-2·K1

/
2 

(0.083145 dm} ·bar·mol- 1 ·K- 1)(305.34 K) 
B = 0.086640-------------

48.714 bar 



16-4. The van der Waals Equation and the Redlich-Kwong Equation 
Obey the Law of Corresponding States 

Let's start with the van der Waals equation, which we can write in an interesting and 
practical form by substituting the second of Equations 16.12 for a and Equation 16.13a 
for b into Equation 16.5: 

-2 
3P Vc P+ c 
-2 
V 

Divide through by ~ and Vc to get 

-2 
P 3Vc 

P + -! 
C V-

V 1 
---
V 3 

c 

RT 

PV c c 

RT 
~RT 
8 c 

8T 

3T 
c 

where we have used Equation 16.15 for Pc Vc' Now introduce the reduced quantities 
- --

PR == P /~, V R == V / Vc' and TR == T / r:: to obtain the van der Waals equation written 
in terms of reduced quantities: 

(16.19) 

Equation 16.19 is remarkable in that there are no quantities in this equation that 
are characteristic of any particular gas; it is a universal equation for all gases. It 
says, for example, that the value of PR will be the same for all gases at the same 

- -
values of V Rand TR. Let's consider CO2 (g) an~ N2 (g) for V R == 20 and TR == 1.5. 
According to Equation 16.19, PR == 0.196 when V R == 20.0 and TR == 1.5. Using the 
values of the critical constants given in Table 16.5, we find that the reduced quantities 

PR == 0.196, V R == 20.0, and TR == 1.5 correspond to Peo == 14.3 atm == 14.5 bar, 
2 - 1 -

Veo == 1.9 L·mol ,and Teo == 456 K and to PN == 6.58 atm == 6.66 bar, V N == 
222 2 

1.8 L·mo1- 1
, and TN == 189 K. These two gases under these conditions are said to 

2 _ 

be at corresponding states (same values of PR, V R' and TR). According to the van der 
Waals equation, these quantities are related by Equation 16.19, so Equation 16.19 is 
an example of the law of corresponding states, that all gases have the same properties 
if they are compared at corresponding conditions (same values of PR, V R' and T

R
). 

EXAMPLE 16-7 
Express the Redlich-Kwong equation in terms of reduced quantities. 

SOL UTI 0 N: Equations 16.18 show that 

R2 T S/ 2 

A == 0.42748 c 
RT 

and B == 0.086640-c 
p P c c 

655 



656 Chapter 16 / The Properties of Gases 

Substituting these equivalencies into Equation 16.7 gives 

RT 
p==-----­

RT 
0.086640-c 

P 
v 

c 

0.42748R2 r:: 5
/
2 / Pc 

T 1/2 V ( V + 0.086640 R~ ) 

Divide the numerator and the denominator of the first term on the right side by Vc and 

the second by Vc to get 

RT /Vc 
p = ----------­

RT 
V R - 0.086640 ~ 

PV 
c c 

J J -2 
0.42748R-~- / Pc Vc 

\1,- (- RT ) T 1- V V + 0.086640 c 
R R R P V 

c c 

Divide both sides by ~ and use the fact that ~ V c / R ~ = 1/3 in the second term to get 

P
R 

= _ RT / ~ Vc 11'_ ~8473 
V R - 0.25992 TR -V R(V R + 0.25992) 

Finally, multiply and divide the numerator of the first term on the right side by Tc to 
obtain 

3T
R P

R 
= =..-----

V R - 0.25992 

3.8473 
\j?-

TR - V R(V R + 0.25992) 

Thus, we see that the Redlich-Kwong equation also obeys a law of corresponding 

states. 

The compressibility factor, Z, associated with the van der Waals equation also 
obeys the law of corresponding states. To demonstrate this point, we start with Equa­
tion 16.6 and substitute the second of Equations 16.12 for a and Equation 16.13b for 
b to get 

z= 
PV 
RT 

-2 
V 3~Vc 

- I-
V - - V RTV 

3 c 

Now use Equation 16.15 for P V in the second term and introduce reduced variables 
c c 

to get 

VR 
Z = - 1 

V --
R 3 

9 
(16.20) 

Similarly, the compressibility factor for the Redlich-Kwong equation is (Problem 
16-30) 

V R Z==------
V R - 0.25992 

1.2824 

T~/2(V R + 0.25992) 
(16.21) 
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Equations 16.20 and 16.21 express Z as a universal function of V Rand TR, or of any 
other two reduced quantities, such as PR and TR • Although these equations can be used 
to illustrate the law of corresponding states, they are based on approximate equations of 
state. Nevertheless, the law of corresponding states is valid for a great variety of gases. 
Figure 16.10 shows experimental data for Z plotted against PR at various values of TR 

for 10 gases. Note that the data for all 10 gases fall on the same curves, thus illustrating 
the law of conesponding states in a more general way than either Equation 16.20 
or 16.21. Much more extensive graphs are available, particularly in the engineering 
literature, and are of great use in practical applications. 

z 

FIG U R E 16.10 
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An illustration of the law of corresponding states. The compressibility factor, Z , is plotted 
against the reduced pressure, PR, of each of the 10 indicated gases. Each curve represents 
a given reduced temperature. Note that for a given reduced temperature, all 10 gases fall on the 
same curve because reduced quantities are used. 
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EXAMPLE 16-8 
Use Figure 16.10 to estimate the Ino]ar volume of ammonia at 215°C and 400 bar. 

SOL UTI 0 N: Using the critical-constant data in Table 16.5, we find that TR = 1.20 
and P

R 
= 3.59. Figure 16.10 shows that Z ~ 0.60 under these conditions. The molar 

volume is 

RTZ 
V~--

P 

(0.08314 L·bar·mol I·K- 1)(488 K)(0.60) 

400 bar 

~ 0.061 L·mol I = 61 cm3 ·mol- I 

The law of corresponding states has a nice physical interpretation. Any temperature 
scale we use to describe a gas is necessarily arbitrary. Even the Kelvin scale, with its 
fundamental zero temperature, is arbitrary in the sense that the size of a degree on the 
Kelvin scale is arbitrary. Thus, the numerical value we assign to the temperature is 
meaningless as far as the gas is concerned. A gas does "know" its critical temperature, 
and therefore is "aware" of its temperature relative to its critical temperature or its 
reduced temperature, TR = T /~. Similarly, pressure and volume scales are imposed 
by us, but the reduced pressure and the reduced volume are quantities that are of 
significance to a particular gas. Thus, any gas that has a certain reduced temperature, 
pressure, and volume will behave in the same manner as another gas under the same 
condi tions. 

16-5. Second Virial Coefficients Can Be Used to Determine 
I ntermolecu lar Potentials 

The most fundamental equation of state, in the sense that it has the most sound theo­
retical foundation, is the virial equation of state. The virial equation of state expresses 
the compressibility factor as a polynomial in 1/ V: 

( 16.22) 

The coefficients in this expression are functions of temperature only and are called 
virial coefficients. In particular, B2 v (T) is called the second virial coefficient, B3 v (T) 

the third, and so on. We will see later that other properties such as energy and entropy 
can be expressed as polynomials in 1/ V, and generally these relations are called virial 

. 
expanslons. 

We can also express the compressibility factor as a polynomial in P 

PV 2 
Z = = 1 + B,p(T)P + B'lp(T)P + ... RT ~ _1 

(16.23) 



16-5. Second Virial Coefficients Can Be Used to Determine Intermolecular Potentials 

Equation 16.23 is also called a virial expansion or a virial equation of state. The virial 
coefficients B2 v (T) and B2P (T) are related by (Problem 16-36 ) 

(16.24 ) 

Note in Equation 16.22 or 16.23 that Z --+ 1 as V becomes large or as P becomes 
small, just as it should. Table 16.6 gives an idea of the magnitudes of the terms in 
Equation 16.22 as a function of pressure for argon at 25°C. Notice that even at 100 bar 
the first three terms are sufficient for calculating Z. 

TABLE 16.6 
The contribution of the first few terms in the virial expansion 
of Z, Equation 16.22, for argon at 25°C. 

P /bar Z == P V / R T 

B (T) B (T) 
1 + 2 ~ + 3 V + remaining terms 

V V
2 

1 1 - 0.00064 + 0.00000 + (+0.00000) 

10 1 - 0.00648 + 0.00020 + (-0.00007) 

100 1 - 0.06754 + 0.02127 + (-0.00036) 

1000 1 - 0.38404 + 0.08788 + (+0.37232) 

The second virial coefficient is the most important virial coefficient because it 
reflects the first deviation from ideality as the pressure of the gas is increased (or the 
volume is decreased). As such, it is the most easily measured virial coefficient and 
is well tabulated for many gases. According to Equation 16.23, it can be determined 
experimentally from the slope of a plot of Z against P, as shown in Figure 16.11. 
Figure 16.12 shows B2 v (T) plotted against temperature for helium, nitrogen, methane, 
and carbon dioxide. Note that B2 v (T) is negative at low temperatures and increases with 
temperature, eventually going through a shallow maximum (observable only for helium 
in Figure 16.12). The temperature at which B

2V
(T) == 0 is called the Boyle temperature. 

At the Boy Ie temperature, the repulsive and attractive parts of the intermolecular 
interactions cancel each other, and the gas appears to behave ideally (neglecting any 
effect of virial coefficients beyond the second). 

Not only are Equations 16.22 and 16.23 used to summarize experimental P - V - T 

data, but they also allow us to derive exact relations between the virial coefficients 
and the intermolecular interactions. Consider two interacting molecules as shown 
in Figure 16.13. The interaction of the two molecules depends upon the distance 
between their centers, r, and upon their orientations. Because the molecules are ro­
tating, their orientations partially average out, so for simplicity we assume that the 
interaction depends only upon r. This approximation turns out to be satisfactory for 
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FIGURE 16.11 
A plot of Z versus P at low pressures for NH

j 
(g) at OUC, 100°C, and 200°C. The slopes of the 

lines are equal to B2V (T)/ RT according to Equations 16.23 and 16.24. The respective slopes 

give B2V (OCC) = -0.345 dm3 ·mol 1, B
2v

(100 C C) = 0.142 dm3 'mol- l
, and B

2V
(200°C) = 

-0.075 dm3 .mol I. 
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FIG U R E 1 6.12 
The second virial coefficient B

2V 
(T) of several gases plotted against temperature. Note that 

B2 v (T) is negative at low temperatures and increases with temperature up to a point, where it 
passes through a shallow maximum (observable here only for helium). 

many molecules, especially if they are not very polar. If we let u (r) be the potential 
energy of two molecules separated by a distance r, the relation between the second 
virial coefficient B2V (T) and u(r) is given by 

(16.25) 



FIG U R E 16.13 
Two interacting linear molecules. Generally, the intermolecular interaction between two 
molecules depends upon the distance between their centers (r) and upon their orientations 

(e I ' e 2' and ¢) . 

where NA is the Avogadro constant and kB is the Boltzmann constant, which is equal 
to the molar gas constant R divided by the Avogadro constant. Note that B2V (T) == 0 
if u (r) == 0; in other words, there are no deviations from ideal behavior if there are no 
intermolecular interactions. 

Equation 16.25 shows that once u (r) is known, it is a simple matter to calculate 
B2 v (T) as a function of temperature, or conversely, to determine u (r) if B2 v (T) is 
known. In principle, u (r) can be calculated from quantum mechanics, but this is a 
difficult computational problem. We can show from perturbation theory, however, that 

( 16.26) 

for large values of r. In this expression, c
6 

is a constant whose value depends upon 
the particular interacting molecules. The negative sign in Expression 16.26 indicates 
that the two molecules attract each other. This attraction is what causes substances to 
condense at sufficiently low temperatures. There is no known exact expression like 
16.26 for small distances, but it must be of a form that reflects the repulsion that occurs 
when two molecules approach closely. Usually, we assume that 

C 
u(r) ~ 1/ ( 16.27) 

for small values of r. In Equation 16.27, n is an integer, often taken to be 12, and c
n 

is 
a constant whose value depends upon the two molecules. 

An intermolecular potential that embodies the long-range (attractive) behavior of 
Equation 16.26 and the short-range (repulsive) behavior of Equation 16.27 is simply 
the sum of the two. If we take n to be 12, then 

( 16.28) 

Equation 16.28 is usually written in the form 

( 16.29) 
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where C l2 == 4E(J 12 and c
6 

== 4E(J6. Equation 16.29, which is called the Lennard-lanes 
potential, is plotted in Figure 16.14. The two parameters in the Lennard-lones potential 
have the following physical interpretation: E is the depth of the potential well and (J is 
the distance at which u (r) == 0 (Figure 16.14). As such, £ is a measure of how strongly 
the molecules attract each other, and (J is a measure of the size of the molecules. These 
Lennard-lanes par{uneters are tabulated for a number of molecules in Table 16.7. 

EXAMPLE 16-9 
Show that the minimum of the Lennard-lones potential occurs at r. = 21

/
6a = 1.12a. mm 

Evaluate u (r) at r .. 
min 

SOL UTI 0 N: To find r ' . we differentiate Equation 16.29: 
111m' 

- = 46 - + - = 0 
d U [12a 12 6a 6 ] 

dr rl3 r7 

h· h' 6 ') 6 2 I /6 Th f w IC gIves rmin = ..... a ,or rmin = I a. ere ore, 

Thus 6 is the depth of the potential welL relative to the infinite separation. 

If we substitute the Lennard-lones potential into Equation 16.25, we obtain 

3.0 

2.0 

~ 1.0 
~. 

~ 

"-' 
~ 0.0 \--------

-1.0 

0.0 

(16.30) 

1.0 2.0 3.0 
rl a 

FIG U R E 1 6.14 
A plot of u (r) / E = 4 [ (~) 12 - (;.-) 6] versus r / a for the Lennard-Jones potential. Note that the 

depth of the potential well is E and that u (r) = 0 at r / a = 1. 



TAB L E 16.7 
Lennard-lanes parameters, 8 and a, for various substances. 

Species (8/ ks)/K a/pm (2na 3 NA /3)/cm3 ·mol- ' 

He 10.22 256 21.2 

Ne 35.6 275 26.2 

Ar l20 341 50.0 

Kr 164 383 70.9 

Xe 229 406 86.9 

H2 37.0 293 31.7 

N2 95.1 370 63.9 

°2 118 358 57.9 

CO 100 376 67.0 

CO2 189 449 114.2 

CF
4 

152 470 131.0 

CH
4 

149 378 68.1 

C2H
4 199 452 Il6.5 

C2H6 243 395 77.7 

C3H8 242 564 226.3 

C(CH3)4 232 744 519.4 

Equation 16.30 may look complicated, but it can be simplified. We first define a reduced 
temperature T* by T* == kB T 1 £ and let ria == x to get 

We then divide both sides by 2n a 3 N A/3 to get 

(16.31) 

where B;v(T*) == B2V (T*)/(2n(53 N
A

/3). Equation 16.31 shows that the reduced sec­
ond virial coefficient, B; v (T*), depends upon only the reduced temperature, T*. The 
integral in Equation 16.31 must be evaluated numerically (MathChapter G) for each 
value of T*. Extensive tables of B;v (T*) versus T* are available. 

Equation 16.31 is another example of the law of corresponding states. If we take 
experimental values of B2 v (T), divide them by 2n a 3 N A 13, and then plot the data 
versus T* == kB T 1 £, the result for all gases will fall on one curve. Figure 16.15 shows 
such a plot for six gases. Conversely, a plot such as the one in Figure 16.15 (or better 
yet, numerical tables) can be used to evaluate B

2V
(T) for any gas. 
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Fie U R E 16.15 
A plot of the reduced second virial coefficient B;v(T*) = B

2V
(T*)/(2na 3 N

A
/3) (solid line) 

against the reduced temperature T* = kB TIE. Experimental data of six gases (argon, nitrogen, 
oxygen, carbon dioxide, methane, and sulfur hexafluoride) are also plotted. This plot is another 
illustration of the law of corresponding states. 

EXAMPLE 16-10 
Estimate B

2V
(T) for N2(g) at O°C. 

SOLUTION: Table 16.7 gives ElkB = 95.1 K and 2na 3 N
A

/3 = 63.9 cm3 'mol- 1 

for N
2
(g). Thus, T* = 2.87, and Figure 16.15 gives B;v(T*) ~ -0.2. Therefore, 

B
2V 

(T) ~ (63.9 cm3
. mol- I

)( -0.2) 

~ -10cm3 ·mol- 1 

If we had used numerical tables for B;v (T*) instead of Figure 16.15, we would have 
obtained B;v(T*) = -0.16, or B

2V
(T) = -10 cm3 ·mol- 1

• 

The value of B
2V 

(T) has a simple interpretation. Consider Equation 16.23 under 
conditions where we can ignore the terms in p2 and higher 

PV = 1 + B
2P

(T)P = 1 + B2V (T) P 
RT RT 

By multiplying through by RT / P and using Videal == RT / P, we can rewrite this 
equation in the form 

or 

B2V (T) == V - V ideal ( 16.32) 

Thus, we see that B
2V 

(T) represents the difference between the actual value of V 



16-6. London Dispersion Forces Are Often the Largest Contribution to the r-6 Term 

and the ideal-gas value VideaI at pressures such that the contribution of the third virial 
coefficient is negligible. 

EXAMPLE 16-11 
The molar volume of isobutane at 300.0 K and one bar is 24.31 dm3 ·mol- I

. Estimate 

the value of B2 v for isobutane at 300.0 K. 

SOL UTI 0 N: The ideal-gas molar volume at 300.0 K and one bar is 

RT (0.083145 dm3 ·bar·K- 1 ·mol 1)(300.0 K) 
V - -- - ------------------------------

ideal - p - 1 bar 

= 24.94 dm3 ·mol- I 

Therefore, using Equation 16.32, 

- - 3 -I 3-1 
B2V = V - Videa1 = 24.31 dm ·mol - 24.94 dm ·mol 

= -0.63 dm3 ·mol- 1 = -630 cm3 'mol- 1 

Although we have been discussing calculating B2V (T) in terms of the Lennard­
Jones potential, in practice it's the other way around: Lennard-lones parameters are 
usually determined from experimental values of B

2V
(T). This determination is usually 

made through trial and error using tables of B;v (T*). The values of the Lennard-lones 
parameters in Table 16.7 were determined from experimental second virial coefficient 
data. Because the second virial coefficient reflects the initial deviations from ideal 
behavior, which are caused by intermolecular interactions, experimental P-V - T data 
turn out to be a rich source of information concerning intermolecular interactions. Once 
Lennard-lones parameters have been determined, they can be used to calculate many 
other fluid properties such as viscosity, thermal conductivity, heats of vaporization, and 
various crystal properties. 

16-6. London Dispersion Forces Are Often the Largest Contribution 
to the r-6 Term in the Lennard-Jones Potential 

In the previous section, we used the Lennard-lones potential (Equation 16.29) to 
represent the intermolecular potential between molecules. The r- 12 term accounts for 
the repulsion at short distances, and the r -6 term accounts for the attraction at larger 
distances. The actual form of the repulsive term is not well established, but the r-6 

dependence of the attractive term is. In this section, we will discuss three contributions 
to the r-6 attraction and compare their relative importance. 

Consider two dipolar molecules, whose dipole moments are IL 1 and IL
2

• The inter­
action of these dipoles depends upon how they are oriented with respect to each other. 
The energy will vary from repulsive, when they are oriented head-to-head as shown in 
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(a) (c) 

( __ 0 ( __ ~ 
(b) (d) 

FIG U R E 1 6.1 6 
Two permanent dipoles oriented (a) head-to-head and (b) head-to-tail. The head-to-tail 
orientation is energetically favorable. (c) A molecule with a permanent dipole moment will 
induce a dipole moment in a neighboring molecule. (d) The instantaneous dipole-dipole 
correlation shown here is what leads to a London attraction between all atoms and molecules. 

Figure 16.16a to attractive, when they are oriented head-to-tail (Figure 16.16b). Both 
molecules rotate in the gas phase, and if we were to average both dipoles randomly 
over their orientations, the dipole-dipole interactions would average out to zero. Be­
cause different orientations have different energies, they do not occur to equal extents. 
Clearly, the lower-energy head-to-tail orientation is favored over the repulsive head-to­
head orientation. If we take into account the energy of the orientation, then the overall 
average interaction between the two molecules results in an attractive r-6 term of the 
form 

(16.33) 

EXAMPLE 16-12 
Show that the units of the right side of Equation 16.33 are energy. 

SOL UTI 0 N: The units of J-l are C· m (charge x separation), and so we have 

(C·m)4 
u (r) '"'-' -------

d.d (C2 .s2 .kg- l .m-3)2J m6 

kg2 .m4 'S-4 
'"'-' =1 

1 
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EXAMPLE 16-13 
Calculate the value of the coefficient of r-6 in Equation 16.33 at 300 K for two HCI(g) 
molecules. Table 16.8 lists the dipole moments of various molecules. 

SOL UTI 0 N: According to Table 16.8, fvi I == fvi
2 

== 3.44 x 10-30 C· m. Therefore, 

(2) (3.44 x 10-30 C .m)4 

(
8.314 J·mol- 1 ·K- 1 

) 
(3) 23 I (300 K)(1.113 x 10-10 C2 ·s2 .kg 

6.022 x 10 . mol-
== 1.82 x 10-78 J·m6 

This numerical result may seem exceedingly small, but remember that we are cal­
culating -r6ud.d(r). At a separation of 300 pm, ud.d(r) is equal to -2.5 x 10-21 J, 
compared with a thermal energy (kB T) of 4.1 x 10-21 J at 300 K. 

Equation 16.33 requires that both molecules have a permanent dipole moment. 
Even if one molecule does not have a permanent dipole moment, the one without a 
permanent dipole moment will have a dipole moment induced by the other. A dipole 
moment can be induced in a molecule that does not have a permanent dipole moment 
because all atoms and molecules are polarizable. When an atom or a molecule interacts 
with an electric field, the (negative) electrons are displaced in one direction and the 
(positive) nuclei are displaced in the opposite direction, as illustrated in Figure 16.16c. 
This charge separation with its associated dipole moment, is proportional to the strength 
of the electric field, and if we designate the induced dipole moment by fLinduced and the 
electric field by E, we have that fLinduced ex: E. The proportionality constant, which we 
denote by ex, is called the polarizability, so we have the defining expression 

II. d d == ex E fA" In uce (16.34) 

The units of E are V·m I, so the units of a in Equation 16.34 are C·m/V ·m-1 == 
C· m2 . V-I. We can put a into more transparent units by using the fact that energy == 
(charge)2 14n Co (distance), which in SI units gives 

C2 

joule "-I == C2
. m- I I 4n C 

(4rrco)m 0 

Similarly, from electrostatics, we have that 

joule == coulomb x volt == C· V 

Equating these two expressions for joules gives C· V == C2. m -1 I 4rr cO' or C· V-I == 
(4nco) m. Now we substitute this result into the above units for ex (C·m2 .V- I

) to get 

Thus, we see that a /4n Co has units of m3
. The quantity a /4n £0' which is sometimes 

referred to as the polarizability volume, has units of volume. The easier it is for the 
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electric field to deform the atomic or molecular charge distribution, the greater is the 
polarizability. The polarizability of an atom or a molecule is proportional to its size 
(note the units of ex /4][ Eo)' or to its number of electrons. This trend can be seen in 
Table 16.8, which lists the polarizability volumes of some atoms and molecules. 

TAB L E 16.8 
The dipole moment (IL), the polarizability volume (al4n £'0)' 

and the ionization energies (/) of various atoms and molecules. 

Species ILI10-30 C'm (al4n £'0) 110-30 m3 /110- 18 J 

He 0 0.21 3.939 

Ne 0 0.39 3.454 

Ar 0 1.63 2.525 

Kr 0 2.48 2.243 

Xe 0 4.01 1.943 

N2 0 1.77 2.496 

CH
4 0 2.60 2.004 

C2H
6 0 4.43 1.846 

C3Hg 0.03 6.31 1.754 

CO 0.40 1.97 2.244 

CO
2 0 2.63 2.206 

HCl 3.44 2.63 2.043 

HI 1.47 5.42 1.664 

NH3 5.00 2.23 1.628 

H2O 6.14 1.47 2.020 

We now return to the dipole-induced dipole interaction shown in Figure 16.16c. 
Because the induced dipole moment is always in a head-to-tail orientation with respect 
to the permanent dipole moment, the interaction is always attractive and is given by 

( 16.35) 

The first term represents a permanent dipole moment in molecule 1 and an induced 
dipole moment in molecule 2, and the second represents the opposite situation. 

EXAMPLE 16-14 
Calculate the value of the coefficient of r-6 for u. d d(r) for two HCl(g) molecules. 

m uce 
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SOL UTI 0 N: The two terms in Equation 16.35 are the same for identical molecules. 

Using the data in Table 16.8, 

6 . 2fL2(a/47rco) 
-r u. (r) == -----

mduced 4 7r Co 

(2)(3.44 X 10-30 C·m)2(2.63 x 10-30 m3
) 

1.113 x 10- 10 C2 'S2 .kg I ·m-3 

== 5.59 x 10-79 J·m6 

Note that this result is about 30% of the result we obtained in Example 16-13 for 

-r6 ud .d (r). 

Both Equations 16.33 and 16.35 equal zero when neither molecule has a permanent 
dipole moment. The third contribution to the r-6 term in Equation 16.29 is nonzero 
even if both molecules are nonpolar. This contribution was first calculated by the 
German scientist Fritz London in 1930 using quantum mechanics and is now called a 
London dispersion attraction. Although this attraction is a strictly quantum-mechanical 
effect, it lends itself to the following commonly used classical picture. Consider two 
atoms as shown in Figure 16.16d separated by a distance r. The electrons on one atom 
do not completely shield the high positive charge on the nucleus from the electrons 
on the other atom. Because the molecule is polarizable, the electronic wave function 
can distort a bit to further lower the interaction energy. If we average this electronic 
attraction quantum mechanically, we obtain an attractive term that varies as r-6

• The 
exact quantum-mechanical calculation is somewhat complicated, but an approximate 
form of the final result is 

( 16.36) 

where I j is the ionization energy of atom or molecule j . Note that Equation 16.36 does 
not involve a permanent dipole moment and that the interaction energy is proportional 
to the product of the polarizability volumes. Thus, the importance of udiSp(r) increases 
with the sizes of the atoms or molecules, and, in fact, is often the dominant contribution 
to the r -6 term in Equation 16.29. 

EXAMPLE 16-15 
Calculate the value of the coefficient of r-6 for u

d
" (r) for two HCI(g) molecules. 
ISP 

SOLUTION: Using the data in Table 16.8, we have 

-r6u " (r) == - (2.63 X 10-30 m3
)2 

3 (2.043 X 10-
18 J) 

dlSP 2 2 
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This quantity is about six times greater than -r6u
d

.
d
(r) and 20 times greater than 

_r6 U induced (r). Similar calculations show that the dispersion term is significantly larger 
than either the dipole-dipole term or the dipole-induced dipole term except for very 
polar molecules such as NH

3
, H

2
0, and HeN. 

The total contribution to the r -6 term in the Lennard-lones potential is given by 
the sum of Equations 16.33, 16.35, and 16.36, giving 

with (Problem 16-53) 

for identical atoms or molecules. 

16-7. The van der Waals Constants Can Be Written in Terms 
of Molecular Parameters 

(16.37) 

Although the Lennard-lones potential is fairly realistic, it is also difficult to use. For 
example, the second virial coefficient (Example 16-10) must be evaluated numerically 
and one must resort to numerical tables to calculate the properties of gases. Conse­
quently, intermolecular potentials that can be evaluated analytically are often used 
to estimate the properties of gases. The simplest of these potentials is the so-called 
hard-sphere potential (Figure 16.17a), whose mathematical form is 

,-." 

:.... 

00 
u(r) = 0 

~ ~--~-------------
~ 

(a) 

FIG U R E 1 6.17 

r<a 
r>a 

,-." 

:.... 
~ ~--~~----~------

~ 

(b) 

(16.38) 

(a) A schematic illustration of a hard-sphere potential and (b) a square-well potential. The 
parameter a is the diameter of the molecules, 8 is the depth of the attractive well, and (A - l)a 
is the width of the well. 



16-7. The van der Waals Constants Can Be Written in Terms of Molecular Parameters 

This potential represents hard spheres of diameter a. Equation 16.38 depicts the re­

pulsive region as varying infinitely steeply rather than as r- 12
• As simplistic as this 

potential may seem, it does account for the finite size of molecules, which turns out to 

be the dominating feature in determining the structure of liquids and solids. Its obvious 
deficiency is the lack of any attractive term. At high temperatures, however, meaning 

high with respect to £ / kB in the Lennard-lones potential, the molecules are traveling 

with enough energy that the attractive potential is significantly "washed out," so the 

hard-sphere potential is useful under these conditions. 

The second virial coefficient is easy to evaluate for the hard sphere potential. 

Substituting Equation 16.38 into Equation 16.25 gives 

B
2V

(T) == -2lf NA 100 

[e-u(r)/kBT - IJr2dr 

== -2lf NA 1" [0 - IJr
2
dr - 2lf NA 100 

[eO - 1]r
2
dr 

2Jra 3 NA 

3 
(16.39) 

which is equal to four times the volume of NA spheres. (Remember that a is the 

diameter of the spheres.) Thus, the hard-sphere second virial coefficient is independent 

of temperature. Note that the high-temperature limit of the second virial coefficients 

shown in Figures 16.12 and 16.15 is fairly constant. The curves actually go through a 

slight maximum because molecules are not really "hard." 

Another simple potential used fairly often is the square-well potential (Fig­

ure 16.1 7b ): 

00 

u(r) == -£ 

o 

r<a 

a < r < Aa 
r > Aa 

(16.40) 

The parameter £ is the depth of the well and (A - l)a is its width. This potential 

provides an attractive region, as crude as it is. The second virial coefficient can be 
evaluated analytically for the square-well potential 

B2V (T) == -2lf NA 1" [0 - 1]r2dr - 2lf NA 1M [eF./kBT - l]r 2dr 

-2Jr NA 100 

[eO - 1]r2dr 
Au 

3 

(16.41) 

Note that Equation 16.41 reduces to Equation 16.39 when A == 1 or £ == 0, there being 

no attractive well in either case. Figure 16.18 shows Equation 16.41 compared with 
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FIG U R E 1 6.1 8 
A comparison of the square-well second virial coefficient for nitrogen. The square-well 
parameters for nitrogen are a = 327.7 pm, elk

B 
= 95.2 K, and A = l.58. The solid circles 

represent experimental data. 

experimental data for nitrogen. The agreement is amazingly good, but the square-well 
potential does have three adjustable parameters. 

We will finish this chapter with a discussion of the second virial coefficients for 
the three cubic equations of state introduced in Section 16-2. First, we write the van 
der Waals equation in the form 

RT a 
P == - - -2 

V-b V 

RT 1 a 

V (1 - b/V) 
-2 
V 

(16.42) 

We now use the binomial expansion of 1/( 1 - x) (MathChapter I), 

1 2 
--==I+x+x + ... 
I-x 

to write Equation 16.42 as (letting x == b / V) 

P == RT [1 + b + ~ + ... ] _ ~ 
V V V

2 
V

2 

RT 1 RTb2 

- + (RTb - a)_2 + -3 + ... 
V V V 

or 

PV ( a) 1 b
2 

Z == RT == 1 + b - RT V + V 2 + ... 
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Comparing this result with Equation 16.22, we see that 

a 
B

2V
(T) == b - -­

RT 
(16.43) 

for the van der Waals equation. We will now derive a similar result from Equation 16.25 
and interpret a and b in terms of molecular parameters. The intermolecular potential 
that we will use is a hybrid of the hard-sphere potential and the Lennard-Jones potential 

00 r<a 
u(r) == c

6 --
r6 

(16.44 ) 
r>a 

We substitute this potential into Equation 16.25 to obtain 

B
2V

(T) == -27i NA 1" (-I)r 2dr - 27i NA 100 

[eC6/ksTr6 - IJr 2dr 

In the second integral, we assume that c
6

/ kB T r 6 « 1 and use the expansion for eX 

(MathChapter I) 

x 2 

eX == I + x + - + . . . 
2! 

and keep only the first two terms to obtain 

2na
3 

NA 2n NA c61°° r
2
dr 

B (T) - ---
2V . - 3 kB T (J r6 

Comparing this result with Equation 16.43 gives 

2][ N;c
6 a == ---

3a 3 

(16.45) 

Thus, we see that a is directly proportional to c6 , the coefficient of r-6 in the inter­
molecular potential, and that b is equal to four times the volume of the molecules. 
From a molecular point of view, the van der Waals equation is based on an intermolec­
ular potential that is a hard-sphere potential at small distances and a weak attractive 
potential (such that c6 / kB T r 6 « 1) at larger distances. 

In a similar fashion (Problem 16-55), the second virial coefficient for the Redlich­
Kwong equation is 

(16.46) 

and the second virial coefficient for the Peng-Robinson equation is (Problem 16-56) 

ex 
B (T) == f3 - -

2V RT 
(16.47) 

673 



674 Chapter 16 / The Properties of Gases 

The second virial coefficient from the van der Waals equation and the Peng-Robinson 
equation have the same functional form, but they have different numerical values 
because the values of the constants are different. Also, the parameter a is a function of 
temperature in the Peng-Robinson equation. 

Problems 
1 6-1. In an issue of the journal Science a few years ago, a research group discussed exper­

iments in which they determined the structure of cesium iodide crystals at a pressure of 
302 gigapascals (GPa). How many atmospheres and bars is this pressure? 

16-2. In meteorology, pressures are expressed in units of millibars (mbar). Convert 985 mbar 
to torr and to atmospheres. 

16-3. Calculate the value of the pressure (in atm) exerted by a 33.9-foot column of water. Take 
the density of water to be 1.00 g. mL -1 . 

16-4. At which temperature are the Celsius and Farenheit temperature scales equal? 

1 6-5. A travel guide says that to convert Celsius temperatures to Farenheit temperatures, double 
the Celsius temperature and add 30. Comment on this recipe. 

1 6-6. Research in surface science is carried out using ultra-high vacuum chambers that can 
sustain pressures as low as 10- 12 torr. How many molecules are there in a 1.00-cm3 volume 
inside such an apparatus at 298 K? What is the corresponding molar volume V at this 
pressure and temperature? 

16-7. Use the following data for an unknown gas at 300 K to determine the molecular mass of 
the gas. 

P/bar 0.1000 0.5000 1.000 1.01325 2.000 

p/g·L -I 0.1771 0.8909 1.796 1.820 3.652 

16-8. Recall from general chemistry that Dalton's law of partial pressures says that each gas 
in a mixture of ideal gases acts as if the other gases were not present. Use this fact to show 
that the partial pressure exerted by each gas is given by 

P = ] P = .P 
( 

n. ) 
j L n j total YJ total 

where P. is the partial pressure of the jth gas and y. is its mole fraction. 
] } 

16-9. A mixture of H
2
(g) and N

2
(g) has a density of 0.216 g·L -1 at 300 K and 500 torr. What 

is the mole fraction composition of the mixture? 

16-10. One liter of N2 (g) at 2.1 bar and two liters of Ar(g) at 3.4 bar are mixed in a 4.0-L 
flask to form an ideal-gas mixture. Calculate the value of the final pressure of the mixture 
if the initial and final temperature of the gases are the same. Repeat this calculation if the 
initial temperatures of the N2 (g) and Ar(g) are 304 K and 402 K, respectively, and the final 
temperature of the mixture is 377 K. (Assume ideal-gas behavior.) 



Problems 

16-11. It takes 0.3625 g of nitrogen to fill a glass container at 298.2 K and 0.0100 bar pressure. 
It takes 0.9175 g of an unknown homonuclear diatomic gas to fill the same bulb under the 

same conditions. What is this gas? 

16-12. Calculate the value of the molar gas constant in units of dm3
. torr· K I. moll. 

16-13. Use the van der Waals equation to plot the compressibility factor, Z, against P for 

methane for T = 180 K, 189 K, 190 K, 200 K, and 250 K. Hint: Calculate Z as a function 

of V and P as a function of V, and then plot Z versus P. 

16-14. Use the Redlich-Kwong equation to plot the compressibility factor, Z, against P for 

methane for T = 180 K, 189 K, 190 K, 200 K, and 250 K. Hint: Calculate Z as a function 

of V and P as a function of V, and then plot Z versus P. 

16-15. Use both the van der Waals and the Redlich-Kwong equations to calculate the molar 

volume of CO at 200 K and 1000 bar. Compare your result to the result you would get 

using the ideal-gas equation. The experimental value is 0.04009 L·mol- I
. 

16-16. Compare the pressures given by (a) the ideal-gas equation, (b) the van der Waals equa­

tion, (c) the Redlich-Kwong equation, and (d) the Peng-Robinson equation for propane at 

400 K and p = 10.62 mol·dm 3. The experimental value is 400 bar. Take ex = 
9.6938 L2 ·bar·mol-2 and fJ = 0.05632 L·mol- I for the Peng-Robinson equation. 

1 6-17. Use the van der Waals equation and the Redlich-Kwong equation to calculate the value 

of the pressure of one mole of ethane at 400.0 K confined to a volume of 83.26 cm3
. The 

experimental value is 400 bar. 

16-18. Use the van der Waals equation and the Redlich-Kwong equation to calculate the 

molar density of one mole of methane at 500 K and 500 bar. The experimental value is 
10. 06 mal· L -I . 

16-19. Use the Redlich-Kwong equation to calculate the pressure of methane at 200 K and a 

density of 27.41 mol· L -I . The experimental value is 1600 bar. What does the van der Waals 

equation give? 

16-20. The pressure of propane versus density at 400 K can be fit by the expression 

P /bar = 33.258(p /mo}· L -I) - 7 .5884(p /mol. L -1)2 

+ 1.0306(p/mol.L -\)3 _ 0.058757(p/mol.L -1)4 

-0.0033566(p/lTIol.L -1)5 + 0.00060696(p/mol.L -1)6 

for 0 < p/mol·L- 1 < 12.3. Use the van der Waals equation and the Redlich-Kwong equa­
tion to calculate the pressure for p = 0 mol·L -I up to 12.3 mol·L -I. Plot your results. How 

do they compare to the above expression? 

16-21. The Peng-Robinson equation is often superior to the Redlich-Kwong equation for 

temperatures near the critical temperature. Use these two equations to calculate the pressure 

of CO2 (g) at a density of 22.0 mol· L -I at 280 K [the critical temperature of CO
2 
(g) is 

304.2 K]. Use a = 4.192 bar·L2 ·mol-2 and fJ = 0.02665 L·mol- I for the Peng-Robinson 
equation. 
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16-22. Show that the van der Waals equation for argon at T == 142.69 K and P == 35.00 atm 
can be written as 

-3 -2 -
V - 0.3664 V + 0.03802 V - 0.001210 == 0 

where, for convenience, we have supressed the units in the coefficients. Use the Newton­
Raphson method (MathChapter G) to find the three roots to this equation, and calculate 
the values of the density of liquid and vapor in equilibrium with each other under these 
conditions. 

16-23. Use the Redlich-Kwong equation and the Peng-Robinson equation to calculate the 
densities of the coexisting argon liquid and vapor phases at 142.69 K and 35.00 atm. Use 
the Redlich-Kwong constants given in Table 16.4 and take a == 1.4915 atm·L2 ·mol-2 and 
f3 == 0.01981 L·mol- I for the Peng-Robinson equation. 

16-24. Butane liquid and vapor coexist at 370.0 K and 14.35 bar. The densities of the liquid and 
vapor phases are 8.128 mol· L -I and 0.6313 mol· L -I, respectively. Use the van der Waals 
equation, the Redlich-Kwong equation, and the Peng-Robinson equation to calculate these 
densities. Take a == 16.44 bar·L2 ·mol-2 and f3 == 0.07245 L·mol- I for the Peng-Robinson 

equation. 

16-25. Another way to obtain expressions for the van der Waals constants in terms of critical 

parameters is to set (a P fa V)T and (a 2 P fa V 2
)T equal to zero at the critical point. Why 

are these quantities equal to zero at the critical point? Show that this procedure leads to 
Equations 16.12 and 16.13. 

16-26. Show that the Redlich-Kwong equation can be written in the form 

-3_RT-2_( 2 BRT_ A )-_ AB _ 
V V B + 1/2 V 1/2 - 0 

P P PT PT 

Now compare this equation with (V - V
c

)3 == 0 to get 

and 

Note that Equation 1 gives 

RT 
3V == _c 

c P 
c 

v3 == AB 
c P TI/2 

PV 
c c 

RT 
c 

c c 

1 

3 

(1) 

(2) 

(3) 

(4) 

N ow solve Equation 3 for A and substitute the result and Equation 4 into Equation 2 to 
obtain 

(5) 



Problems 

-1 -
Divide this equation by V~ and let B / Vc == x to get 

x 3 + 3x 2 + 3x - 1 == 0 

Solve this cubic equation by the Newton-Raphson method (MathChapter G) to obtain 

x == 0.25992, or 

B == 0.25992 V c 
(6) 

Now substitute this result and Equation 4 into Equation 3 to obtain 

R2 rS/ 2 

A == 0.42748 c 
p 

c 

16-27. Use the results of the previous problem to derive Equations 16.14. 

16-28. Write the Peng-Robinson equation as a cubic polynomial equation in V (with the 

coefficient of V
3 

equal to one), and compare it with (V - V c)3 == 0 at the critical point to 

obtain 

and 

RT 
_c_P.==3V 
p fJ c 

c 

a, RT -2 
~ - 3f-l~ - 2R_C == 3V p fJ fJ P c 

c c 

aP. RT -1 
_c_fJ _ p'2 _c _ p'3 == V' 
P fJ P fJ c 

c c 

(1) 

(2) 

(3) 

(We write a
c 

because a depends upon the temperature.) Now eliminate a
c

/ ~ between 
Equations 2 and 3, and then use Equation I for V c to obtain 

RT (RT)2 (RT)3 64,83 + 6,82 ~ c + 12,8 ~ c _ ~ c = 0 

Let f3 / (R ~ / ~) == x and get 

1 ') 
64 x - + 6x ~ + 12x - 1 == 0 

Solve this equation using the Newton-Raphson method to obtain 

RT 
f3 == 0.077796-c 

p 
c 

Substitute this result and Equation 1 into Equation 2 to obtain 

(RT)'") 
a == 0.45724 c 

c p 
c 

Last, use Equation 1 to show that 

PV 
c c == 0.30740 
RT 

c 
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16-29. Look up the boiling points of the gases listed in Table 16.5 and plot these values 
versus the critical temperatures ~. Is there any correlation? Propose a reason to justify your 
conclusions from the plot. 

16-30. Show that the compressibility factor Z for the Redlich-Kwong equation can be written 

as in Equation 16.21. 

16-31. Use the following data for ethane and argon at TR = 1.64 to illustrate the law of 
corresponding states by plotting Z against V R' 

Ethane (T = 500 K) Argon (T = 247 K) 

Plbar V jL·mol- 1 Platm V /L·mol- 1 

0.500 83.076 0.500 40.506 

2.00 20.723 2.00 10.106 

10.00 4.105 10.00 1.999 

20.00 2.028 20.00 0.9857 

40.00 0.9907 40.00 0.4795 

60.00 0.6461 60.00 0.3114 

80.00 0.4750 80.00 0.2279 

100.0 0.3734 100.0 0.1785 

120.0 0.3068 120.0 0.1462 

160.0 0.2265 160.0 0.1076 

200.0 0.1819 200.0 0.08630 

240.0 0.1548 240.0 0.07348 

300.0 0.1303 300.0 0.06208 

350.0 0.1175 350.0 0.05626 

400.0 0.1085 400.0 0.05219 

450.0 0.1019 450.0 0.04919 

500.0 0.09676 500.0 0.04687 

600.0 0.08937 600.0 0.04348 

700.0 0.08421 700.0 0.04108 

16-32. Use the data in Problem 16-31 to illustrate the law of corresponding states by plotting 

Z against PR• 

16-33. Use the data in Problem 16.31 to test the quantitative reliability of the van der Waals 

equation by comparing a plot of Z versus V R from Equation 16.20 to a similar plot of 

the data. 

16-34. Use the data in Problem 16.31 to test the quantitative reliability of the Redlich-Kwong 
equation by comparing a plot of Z versus V R from Equation 16.21 to a similar plot of the 

data. 



Problems 

16-35. Use Figure 16.10 to estimate the molar volume of CO at 200 K and 180 bar. An accurate 
experimental value is 78.3 cm3 ·mol- I

• 

16-36. Show that B
2V

(T) = RT B
2P

(T) (see Equation 16.24). 

16-37. Use the following data for NH3 (g) at 273 K to determine B2P (T) at 273K. 

P /bar 0.10 0.20 0.30 0.40 0.50 0.60 0.70 

(Z - 1)/10-4 1.519 3.038 4.557 6.071 7.583 9.002 10.551 

16-38. The density of oxygen as a function of pressure at 273.15 K is listed below. 

Platm 0.2500 0.5000 0.7500 1.0000 

p / g. dm -3 0.356985 0.714154 1.071485 1.428962 

Use the data to determine B
2V

(T) of oxygen. Take the atomic mass of oxygen to 
be 15.9994 and the value of the molar gas constant to be 8.31451 l· K- I ·mol-1 = 
0.0820578 dm3 ·atm·K- 1 ·mol- I

• 

16-39 .. Show that the Lennard-lones potential can be written as 

( *)12 ( *)6 U (r) = £ rr - 2£ rr 

where r* is the value of r at which u (r) is a minimum. 

16-40. Using the Lennard-lones parameters given in Table 16.7, compare the depth of a typical 
Lennard-lones potential to the strength of a covalent bond. 

16-41. Compare the Lennard-lones potentials of H2 (g) and O
2 
(g) by plotting both on the same 

graph. 

16-42. Use the data in Tables 16.5 and 16.7 to show that roughly E/ kB = 0.75 ~ and 
bo = 0.7 Vc' Thus, critical constants can be used as rough, first estimates of E and bo 
(= 2][ NA a 3 /3), 

16-43. Prove that the second virial coefficient calculated from a general intermolecular potential 
of the form 

u(r) = (energy parameter) x f ( . r ) 
dIstance parameter 

rigorously obeys the law of corresponding states. Does the Lennard-lones potential satisfy 
this condition? 
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16-44. Use the following data for argon at 300.0 K to determine the value of B2 V' The accepted 
value is -15.05 cm3

. mol-I. 

P/atm p/mol·L-- 1 P/atm p/mol·L -\ 

0.01000 0.000406200 0.4000 0.0162535 

0.02000 0.000812500 0.6000 0.0243833 

0.04000 0.00162500 0.8000 0.0325150 

0.06000 0.00243750 1.000 0.0406487 

0.08000 0.00325000 1.500 0.0609916 

0.1000 0.00406260 2.000 0.0813469 

0.2000 0.00812580 3.000 0.122094 

16-45. Using Figure 16.15 and the Lennard-lones parameters given in Table 16.7, estimate 

B2 v (T) for CH
4 
(g) at O~C. 

16-46. Show that B
2V 

(T) obeys the law of corresponding states for a square-well potential 

with afixed value of A (in other words, if all molecules had the same value of A). 

16-47. Using the Lennard-lones parameters in Table 16.7, show that the following second 

virial cofficient data satisfy the law of corresponding states. 

Argon Nitrogen Ethane 

TIK B2 v (T) TIK B2 v (T) TIK B
2V

(T) 

/ 1 O-~ d)n~ . mol- 1 /10- 3 dm3 . mol I /10- 3 dm3 ·mol- 1 

173 -64.3 143 -79.8 311 -164.9 

223 -37.8 173 -51.9 344 -132.5 

273 -22.1 223 -26.4 378 -110.0 

323 -11.0 273 10.3 411 -90.4 

423 +1.2 323 -0.3 444 -74.2 

473 4.7 373 +6.1 478 -59.9 

573 11.2 423 11.5 511 -47.4 

673 15.3 473 15.3 

573 20.6 

673 23.5 

16-48. In Section 16-4, we expressed the van der Waals equation in reduced units by dividing 

P, V, and T by their critical values. This suggests we can write the second virial coefficient 

in reduced form by dividing B2 v (T) by Vc and T by ~ (instead of 2rr NA (J3 /3 and s / k as 

we did in Section 16-5). Reduce the second virial coefficient data given in the previous 

problem by using the values of Vc and ~ in Table 16.5 and show that the reduced data 

satisfy the law of corresponding states. 



Problems 

1 6-49. Listed below are experimental second virial coefficient data for argon, krypton, 

and xenon. 

B 2 V ( T) / 1 0-3 dm 3 
• mo 1-] 

TIK Argon Krypton Xenon 

173.16 -63.82 

223.16 -36.79 

273.16 -22.10 -62.70 -154.75 

298.16 -16.06 -130.12 

323.16 -11.17 -42.78 -110.62 

348.16 -7.37 - 95.04 

373.16 -4.14 -29.28 - 82.13 

398.16 -0.96 

423.16 +1.46 -18.13 - 62.10 

473.16 4.99 -10.75 - 46.74 

573.16 10.77 +0.42 - 25.06 

673.16 15.72 7.42 - 9.56 

773.16 17.76 12.70 - 0.13 

873.16 19.48 17.19 + 7.95 

973.16 14.22 

Use the Lennard-Jones parameters in Table 16.7 to plot B;v(T*), the reduced second 

virial coefficient, versus T*, the reduced temperature, to illustrate the law of corresponding 

states. 

16-50. Use the critical temperatures and the critical molar volumes of argon, krypton, and xenon 

to illustrate the law of corresponding states with the data given in Problem 
16-49. 

16-51. Evaluate B;v(T*) in Equation 16.31 numerically from T* = 1.00 to 10.0 using a pack­
aged numerical integration program such as MathCad or Mathematica. Compare the 
reduced second virial coefficient data from Problem 16-49 and B;v(T*) by plotting them 

all on the same graph. 

16-52. Show that the units of the right side of Equation 16.35 are energy. 

16-53. Show that the sum of Equations 16.33, 16.35, and 16.36 gives Equation 16.37. 

16-54. Compare the values of the coefficient of ,-6 for N2 (g) using Equation 16.37 and the 

Lennard-J ones parameters given in Table 16.7. 

16-55. Show that 

A 
B2V (T) = B - 3/2 

RT 
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and 

for the Redlich-Kwong equation. 

16-56. Show that the second and third virial coefficients of the Peng-Robinson equation are 

and 

2 2exf3 
Bv;(T) == f3 +-. ~ RT 

16-57. The square-well parameters for krypton are ejkB == 136.5 K, (J == 327.8 pm, and A == 

1.68. Plot B
2V 

(T) against T and compare your results with the data given in Problem 16-49. 

16-58. The coefficient of thermal expansion ex is defined as 

Show that 

1 
ex ==-

T 

for an ideal gas. 

16-59. The isothermal compressibility K is defined as 

( -) 1 av 
K == -:= -

V ap 
T 

Show that 

1 
K ==-

p 

for an ideal gas. 



MATHCHAPTER 

PARTIAL DIFFERENTIATION 

Recall from your course in calculus that the derivative of a function y(x) at some point 
x is defined as 

dy 

dx 

. y (x + ~x) - y(x) 
hm-------

t.x .... O ~x 
(H.I) 

Physically, dy / dx expresses the variation of y when x is varied. Much of your calculus 
course was spent in starting with Equation H.I to derive formulas for the derivatives 
of the commonly occurring functions. The function y in Equation H.I depends upon 
only one variable, x . For the function y (x), x is called the independent variable and y, 

whose value depends upon the value of x , is called the dependent variable. 
Functions can depend upon more than one variable. For example, we know that the 

pressure of an ideal gas depends upon the temperature, volume, and number of moles 
through the equation 

nRT 
p=-­

V 
(H.2) 

In this case, there are three independent variables; the temperature, volume, and amount 
of gas can be varied independently. The pressure is the dependent variable. We can 
emphasize this dependency by writing 

P = P en , T , V) 

Experimentally, we may wish to vary only one of the independent variables at a time 
(say the temperature) to produce a change in pressure with two of the independent 
variables fixed (fixed volume and fixed number of moles). To form the derivative of P 
with respect to T with n and V held constant, we simply refer to Equation H.I and 
write 

. Pen , T + ~T, V) - Pen, T , V) 
ltm 

t.T .... O ~T 
(H.3) 
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We call (a P / a T) II. v the partial derivative of P with respect to T , with n and V held 
constant. To actually evaluate thi s partial derivative, we simply differentiate P with 
respect to T in Equation H.2, treating n and V as if they were constants. Thus, for an 
ideal gas 

C1P

) 

nR 
aT 1I'v V 

We can also have 

and 

(ap) RT 
an T.V V 

( ap) nRT 
a v lIor V2 

EXAMPLE H-l 
Evaluate the two first partial derivatives of P for the van der Waals equation 

P= =---­- 0 
V-

RT (/ 

(H.4) 
V-b 

SO L UTI 0 N: [n thi s case, P depends upon T and V, so we have P = p eT, V). The 

two first partial derivatives of Pare 

and 

R 

V-b 

(
BP ) RT 2a 
BV T=-(V-b)2+ V ' 

(H.5) 

(H.6) 

The partial derivatives given by Equations H.5 and H.6 are themselves functions 
of T and V, so we can form second partial derivatives by differentiating Equations H.5 

and H.6: 

and 

2RT 6a 
-==---..,- - -
( V _b) 'l, -V 4 
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We can also form another type of second derivative, however. For example, we can 
form 

(V - bf 
(H.7) 

and we can also form 

[aaT (:~)Jv = [aaT (-(V~b? + :~)]v 
R 

(H.8) 

The above two second derivatives are called cross derivatives, mixed derivatives, or 
second cross partial derivatives. These derivatives are commonly written as 

or ( 
a' P ) 

aTav 
We don ' t indicate which variable is held constant because they differ with each dif­
ferentiation. Notice that these two cross derivatives are equal (see Equations H.7 and 
H.8), so that 

(H.9) 

Thus, the order in which we take the two partial derivatives of P makes no difference 
in this case. It turns out that cross derivatives are generally equal. 

EXAMPLE H-2 
Suppose that 

s= _(aA) 
aT v 

and P = _ (aA) 
av T 

where A, S, and P are functions of T and V. Prove that 

SOL UTI 0 N: Take the partial derivative of S with respect to V at constant T: 

(as) ( aLA) 
av r =- avaT 
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and the partial derivative of P with respect to T at constant V: 

and equate the two cross derivatives of A to obtain 

The partial derivatives given in Equations H.S and H.6 indicate how P changes 
with one independent variable, keeping the other one fixed . We often want to know 
how a dependent variable changes with a change in the values of both (or more) of its 
independent variables. Using the example P = p eT , V) (for one mole), we write 

/::,. P = peT + /::,. T , V + /::,. V) - peT, V) 

If we add and subtract peT, V + /::,. V) to this equation, we obtain 

/::"P = [peT + /::,. T, V + /::,. V) - peT, V + /::,. V)] 
- - -+ [peT, V + /::,. V) - peT, V)] 

Multiply the first two terms in brackets by /::,.T / /::,. T and the second two terms by 
- -

/::,. V / /::,. V to get 

/::,. P = 
peT + /::,. T , V + /::,. V) - peT, V + /::,. V) 

/::,.T 

+ peT, V + /::,. V) - peT, V) /::,. V 

/::,.V 

Now let /::,. T ~ 0 and /::,. V ~ 0, in which case we have 

d P = lim 
peT + /::"T, V) - peT, V) 

/::,.T 
6. T-.O 

+ lim 
6. V-.o 

peT, V + /::,. V) - peT, V) 

/::,.v 
(H.t 0) 

The first limit gives (a P / a T)v (by definition) and the second gives ca P / a V) T' so that 
Equation H. I 0 gives our desired result: 

dP=(ap) dT+(ap) dV 
aT v av T 

(H. I) ) 

Equation H.II is called the total derivative of P. It simply says that the change 
in P is given by how P changes with T (keeping V constant) times the infinitesimal 
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change in T plus how P changes with V (at constant T) times the infinitesimal change 
in V. 

EXAMPLE H-3 
We can use Equation H.I! to estimate the change in pressure when both the temperature 
and the molar volume are changed slightly. To this end, for finite!'::,. T and!'::,. V, we 
write Equation H.l1 as 

!'::,.p ~ - !'::,.T+ -= !'::,.V (a?) (a?)-
aT II av r 

Use this equation to estimate the change in pressure of one mole of an ideal gas if the 
temperature is changed from 273.15 K to 274.00 K and the volume is changed from 
10.00 L to 9.90 L. 

SO L UTI 0 N: We first need 

and 

so that 

R RT -
!'::,. P ~ =!'::,. T - -!'::,. V 

V V
2 

~ (S.314 J ·K- I·mol- ' ) O.SS K 
(10.00 L·mol- I) ( ) 

(S.314 J·K- ' ·mol - I)(273.IS K) I 
---------'-;---,,--------'- (-0. 1 0 L· mol - ) 

(l0.00 L'mol - ' )2 

~ 3.0J·L- ' 

~ 3.0 X 103 J ·m- 3 = 3.0 x 103 Pa = 0.030 bar 

Incidently, in this particularly simple case, we calculate the exact change in P from 

RT2 RTI 
!'::,.P = -=-=-

V2 VI 

=(S.3l4J.K- I.mol- I ) ( 274.00K I 
9.90 L·mol-

=3.0J·L- 1 =3.0J ·dm- 3 = 0.030 bar 

273.15 K ) 
10.00 L·mol - ' 
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Equation H.4 gives P as a function of T and V, or P = peT, V) . We can form 
the total derivative of P by differentiating the right side of Equation H.4 with respect 
to T and V to obtain 

R RT 2a -
elP = =--elT - elV + -dV 

V - b (V - bi V 3 

R [RT 2a]---elT + - 2 + - 3 elV 
V-b (V-b) V 

(H.12) 

We can see from Example H-I that Equation H.l2 is just Equation H.ll written for the 
van der Waals equation. Suppose, however, that we are given an arbitrary expression 
fordP , say 

RT [RT a ] -elP= elT+ ) - 2 dV 
V-b (V-b)- TV 

(H. I3) 

and are asked to determine the equation of state P = P (T , V) that leads to Equa­
tion H.l3. In fact, a simpler question is to ask if there even is a function peT, V) 

whose total derivative is given by Equation H.l3 . How can we tell? If there is such a 
function peT, V), then its total derivative is (Equation H.Il) 

eI P = (~P) dT + (ap) dV 
aT II av T 

Furthermore, according to Equation H.9, the cross derivatives of a function peT, V), 

( a2 P) [a (a P) ] 
avaT = av aT II T 

and 

( a2 P) [a (a P) ] 
anv = aT av T II 

must be equal. If we apply this requirement to Equation H.13 , we find that 

and 

a ( RT ) RT 
av V-b =-(V-b)2 

Thus, we see that the cross-derivatives are not equal, so the expression given by 
Equation H.13 is not the derivative of any function P( T , V). The differential given by 
Equation H.13 is called an inexact differential. 

We can obtain an example of an exact differential simply by explicitly differenti­
ating any function peT, V), such as we did for the van der Waals equation to obtain 



Problems 

Equation H.12. Equations H.7 and H.8 show that the cross derivatives are equal, as 
they must be for an exact differential. 

EXAMPLE H-4 
Is 

dP = + dT [ RAJ 
V - B 2T 3

/
2 V(V + B) 

[ 
RT A(2V+B)] -+ - ? + ? dV 

(V-B)- T I / 2 V-(V+B)2 

an exact differential? 

SOL UTI 0 N: We evaluate the two derivatives 

R A(2V + B) 

and 

(H.14) 

R A(2V + B) 

(V - B)2 2T3/2V\V + B)2 

These derivatives are equal and so Equation H.14 represents an exact differential. 

Equation H.l4 is the total derivative of P for the Redlich-Kwong equation of state. 

Exact and inexact differentials playa significant role in physical chemistry. If dy 
is an exact differential , then 

1 1- dy = Y2 - YI (exact differential) 

so the integral depends only upon the end points (1 and 2) and not upon the path from I 
to 2. This statement is not true for an inexact differential , however, so 

12 dyj. Y2 - YI (inexact differential) 

The integral in this case depends not only upon the end points but also upon the path 
from I to 2. 

Problems 

H-l. The isothermal compressibility, K
T

, of a substance is defined as 
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Obtain an expression for the isothermal compressibility of an ideal gas. 

H-2. The coefficient of thermal expansion, ex , of a substance is defined as 

I (a V) 
a = V aT p 

Obtain an expression for the coefficient of thermal expansion of an ideal gas . 

H-3. Prove that 

(ap) 
a V II. T 

for an ideal gas and for a gas whose equation of state is P = n RT / (V - nh), where h is a 
constant. This relation is generally true and is called the reciprocal identity. Notice that the 
same variables must be held fixed on both sides of the identity. 

H-4. Given that 

,(alnQ) U = kT-
aT N. V 

where 

1 2TrmkB T N 

( )

3N12 

Q(N, V, T) = N! h2 V 

and ks , 111, and h are constants, determine U as a function of T . 

H-S. Show that the total derivative of P for the Redlich-Kwong equation, 

P= 

is given by Equation H.14. 

H-6. Show explicitly that 

RT 

V-8 

A 

for the Redlich-Kwong equation (Problem H-5). 

H-7. We will derive the following equation in Chapter 19: 

(au) =T(ap)_p 
av T aT v 

Evaluate (a U /a V)r for an ideal gas, for a van der Waals gas (Equation H.4), and for a 

Redlich-Kwong gas (Problem H-5). 

H-8. Given that the heat capacity at constant volume is defined by 



Problems 

and given the expression in Problem H-7, derive the equation 

(acv) (a 2 P) 
a v T = T aT2 v 

H-9. Use tbe expression in Problem H-8 to determine (acv /a V)T for an ideal gas, a van del' 
Waals gas (Equation HA), and a Redlich-Kwong gas (see Problem H-5). 

H-l0. Is 

dV = nr2dh + 2nrhdr 

an exact or inexact differential? 

H-l1. Is 

nRT 
dx = Cv(T)dT + V dV 

an exact or inexact differential? The quantity CvCT) is simply an arbitrary function of T. 
What about dx/ T? 

H-12. Prove that 

I (ay) I (ay) yap T,,, = yap T 

and that 

where Y = Yep, T, n) is an extensive variable. 

H-13. Equation 16.5 gives P for the van der Waals equation as a function of V and T. Show 
that P expressed as a function of V, T, and n is 

P= 
nRT 

---
V -nb 

(I) 

Now evaluate (a P /a V)T from Equation 16.5 and (a P /a V)],,, from Equation I above and 
show that (see Problem H-12) 

H-14. Referring to Problem H-13, show that 

and generally that 

[
aycx, V)] = [ay (x, n, V)] 

ax - ax v v ,I I 

where y and x are intensive variables and y(x , n , V) can be written as y (x , V / n). 
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Ludwig Boltzmann was born in Vienna, Austria, on February 20, 1844, and died in 1906. 
In 1867, he received his doctorate from the University of Vienna, where he studied with 
Stefan (of the Stefan-Boltzmann equation). He worked on the kinetic theory of gases and 
did experimental work on gases and radiation during his stay there. Although known for his 
theoretical work, he was an able experimentalist but was handicapped by poor vision. He 
was an early proponent of the atomic theory, and much of his work involved a study of the 
atomic theory of matter. In 1869, Boltzmann extended Maxwell 's theory of the distribution of 
energy among colliding gas molecules and gave a new expression for this distribution, now 
known as the Boltzmann factor. In addition, the distribution of the speeds and the energies of 
gas molecules is now called the Maxwell-Boltzmann distribution . In 1877, he published his 
famous equation, S = kB In W, which expresses the relation between entropy and probability. 
At the time, the atomic nature of matter was not generally accepted, and Boltzmann's work 
was criticized by a number of eminent scientists. Unfortunately, Boltzmann did not live to see 
the atomic theory and his work corroborated. He had always suffered from depression and 
committed suicide in 1906 by drowning. 



CHAPTER 

The Boltzmann Factor and 
Partition Functions 

In previous chapters, we learned that the energy states of atoms and molecules, and for 
all systems in fact, are quantized. These allowed energy states are found by solving 
the Schrbdinger equation. A practical question that arises is how the molecules are 
distributed over these energy states at a given temperature. For example, we may ask 
what fraction of the molecules are to be found in the ground vibrational state, the first 
excited vibrational state~ and so on. You may have an intuitive feel that the populations 
of excited states increase with increasing temperature, and we will see in this chapter 
that this is the case. Two central themes of this chapter are the Boltzmann factor and 
the partition function. The Boltzmann factor is one of the most fundamental and useful 
quantities of physical chemistry. The Boltzmann factor tells us that if a system has 
states with energies E l' E2 , E3 , ••. , the probability Pj that the system will be in the 
state with energy E. depends exponentially on the energy of that state, or 

J 

ex. E.j kB T p. e} 
} 

where kB is the Boltzmann constant and T is the kelvin temperature. We will derive 
this result in Section 17-2 and then discuss its implications and applications in the 
remainder of the chapter. 

The sum of the probabilities must equal 1, so the normalization constant for the 
above probability is 1/ Q where 

Q = Le Ej/kBT 

j 

The quantity Q is called a partition function, and we will see that partition functions 
play a central role in calculating the properties of any system. For example, we will 
show that we can calculate the energy, heat capacity, and pressure of a system in terms 
of Q. In Chapter 18, we will use partition functions to calculate the heat capacities of 
monatomic and polyatomic ideal gases. 693 
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17-1. The Boltzmann Factor Is One of the Most Important Quantities 
in the Physical Sciences 

Consider some macroscopic system such as a liter of gas, a liter of water, or a kilogram 
of some solid. From a mechanical point of view, such a system can be described 
by specifying the number of particles, N, the volume, V, and the forces between 
the particles. Even though the system contains on the order of Avogadro's number 

of particles, we can still consider its Hamiltonian operator and its associated wave 
functions, which will depend upon the coordinates of all the particles. The Schrodinger 
equation for this N -body system is 

j == 1, 2, 3, ... (17.1) 

where the energies depend upon both N and V, which we will emphasize by writing 
E.(N, V). 

} 

For the special case of an ideal gas, the total energy E. (N, V) will simply be a 
} 

sum of the individual molecular energies, 

(17.2) 

because the molecules of an ideal gas are independent of each other. For example, for 
a monatomic ideal gas in a cubic container with sides of length a, if we ignore the 
electronic states and focus only on the translational states, then the E. S are just the 

} 

translational energies given by (Equation 3.60) 

(17.3) 

Note that E.(N, V) depends upon N through the number of terms in Equation 17.2 
} 

and upon V through the fact that a == VI/3 in Equation 17.3. 
For a more general system in which the particles interact with each other, the 

E. (N, V) cannot be written as a sum of individual particle energies, but we can still 
J 

consider the set of allowed macroscopic energies {E. (N, V)}, at least in principle. 
} 

What we want to do now is to determine the probability that a system will be in the 

state j with energy E. (N, V). To do this, we consider a huge collection of such systems 
} 

in thermal contact with an essentially infinite heat bath (called a heat reservoir) at a 

temperature T. Each system has the same values of N, V, and T but is likely to be in 
a different quantum state, consistent with the values of N and V. Such a collection of 

systems is called an ensemble (Figure 17.1). We will denote the number of systems in 
the state j with energy E. (N, V) by a. and the total number of systems in the ensemble 

} } 

by A. 
We now ask for the relative number of systems of the ensemble that would be 

found in each state. As an example, let's focus on two particular states, 1 and 2, with 



ystem 

Thermal 
re servo ir 

Thermal 
in ula!ion 

FIGURE 17.1 
An ensemble, or collection, of (macroscopic) systems in thermal equilibrium with a heat 
reservoir. The number of systems in the state j [with energy ECN , V)] is a ., and the total 

J J 
number of systems in the ensemble is A. Because the ensemble is a conceptual construction, 
we may consider A to be as large as we want. 

energies EI (N, V) and E2(N, V). The relative number of systems in the states with 

energies EI and E2 must depend upon EI and E2, so we write 

az - = I(E
I

, E7 ) 
Q -

I 

(17.4) 

where Q I and a2 are the number of systems in the ensemble in states 1 and 2 and 
where the functional form of I is to be determined. Now, because energy is a quantity 
that must always be referred to a zero of energy, the dependence on EI and E2 in 
Equation 17.4 must be of the form 

(17.5) 

In this way, any arbitrary zero of energy associated with EI and E2 will cancel. Thus, 
we have so far 

(17.6) 

Equation 17.6 must be true for any two energy states, so we can also write 

Q
3 = I (E - E) and Q

3 = I (E - E) (17.7) 
Q 2 3 Q I 3 

Z I 

But 

Q 3 a 2 
Q

3 - -. -

Q I a
l 

a2 

so using Equations 17.6 and 17.7, we find that the function I must satisfy 

(17 .8) 

695 



696 Chapter 1 7 / The Boltzmann Factor and Partition Functions 

The form of the function f that satisfies this equation may not be obvious as first sight, 
but if you remember that 

then we can see that 

f(E) == efJ E 

where fJ is an arbitrary constant (see also Problem 17-2). To verify that this form for 
f does indeed satisfy Equation 17.8, we substitute this functional form of f (E) into 
Equation 17.8: 

Thus, we find from Equation 17.6 that 

(17.9) 

There is nothing special about the states 1 and 2, so we can write Equation 17.9 
more generally as 

a n f3(E -E ) -==e m /I (17.10) 
a 

m 

The form of this equation implies that both am and an are given by 

(17.11) 

where j represents either state m or nand C is a constant. 

17-2. The Probability That a System in an Ensemble Is in the State j 
with Energy Ej(N, V) Is Proportional to e-Ej(N,V)/kBT 

Equation 17.11 has two quantities, C and fJ, that we must determine. Determining C 
is fairly easy. We sum both sides of Equation 17.11 over j to obtain 

J J 

But the summation over a. must equal A, the total number of systems in the ensemble. 
J 

Therefore, we have 

L·a. 
C == J J 

L -f3E, . e J 
J 

A 



17-2. The Probability That a System in an Ensemble Is in the State j 

If we substitute this result back into Equation 17.11, we obtain 

a. 
J 

A 

-fJE. e J 

L -fJE. . e J 
J 

(17.12) 

The ratio a. / A is the fraction of systems in our ensemble that will be found in 
J 

the state j with energy E .. In the limit of large A, which we are certainly able to take 
J 

because we can make our ensemble as large as we want, a. / A becomes a probability 
J 

(MathChapter B), so Equation 17.12 can be written as 

e- fJEj 

Pj = Li e~fJEi (17.13) 

where p. is the probability that a randomly chosen system will be in state j with energy 
J 

E.(N, V). 
J 

Equation 17.13 is a central result of physical chemistry. We customarily let the 
denominator in this expression be denoted by Q, and if we specifically include the 
dependence of E. on N and V, then we write 

J 

(17.14) 

Equation 17.13 becomes 

-fJ E. (N, V) e J 

p;(N, V,,8) = Q(N, V, ,8) (17.15) 

We are not quite ready to determine f3 at this point, but later we will present several 
different arguments to show that 

1 
fJ=kT 

B 

(17.16) 

where kB is the Boltzmann constant and T is the kelvin temperature. Thus, we can 
write Equation 17.15 as 

-E. (N, V)! ks T e } 
P (N V T) - ---­

j " - Q(N, V, T) 
(17.17) 

We will use Equations 17.15 and 17.17 interchangeably. Equation 17.15 is just as 
acceptable as Equation 17.17. From a theoretical point of view, {3, or 1/ kB T, often 
happens to be a more convenient quantity to use than T itself. 

The quantity Q(N, V, {3), or Q(N, V, T), is called the partition function of the 
system, and we will see in the next few chapters that we can express all the macroscopic 
properties of a system in terms of Q(N, V, fJ). At this point, it may not seem possible 
to determine all the energy states {E. (N, V)} never mind Q(N, V, {3), but you will 

J 

learn that we can determine Q(N, V, f3) for a number of interesting and important 
systems. 
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17-3. We Postulate That the Average Ensemble Energy Is Equal to the 
Observed Energy of a System 

U sing Equation 17.15, we can calculate the average energy of a system in an ensemble 
of systems. If we denote the average energy by (E), then (see MathChapter B) 

E. (N, V)e-/3E/N, V) 
(E) = LP.(N, V, fJ)E.(N, V) = L _J ___ _ 

. J J . Q(N, V, fJ) 
J J 

(17.18) 

Note that (E) is a function of N, V, and fJ. We can express Equation 17.18 entirely in 

terms of Q(N, V, fJ). First we differentiate In Q(N, V, fJ) with respect to fJ, with N 
and V held constant: 

( 
a In Q (N, V, fJ) ) 

afJ N, V 

1 

N,V 
Q(N, V, fJ) 

1 ---- L[-E.(N, V)]e-/3Ej (N,V) 
Q(N, V, fJ). J 

J 

(17.19) 

If we compare Equation 17.19 with 17.18, we see that 

(E) =- (
a In Q) 

afJ N, v 
(17.20) 

We can also express Equation 17.20 as a temperature derivative rather than a fJ 
derivative. If we use the chain rule of differentiation, we can write for any function f 
that 

or 

af af afJ af d(l/ kBT) 
=-.-=-.---

aT afJ aT afJ dT 

at 2 at - = -k T­afJ B aT 

Applying this result to Equation 17.20 with t = In Q gives us the alternate form 

(E) = kBT2 (aln Q) 
aT N.V 

(17.21) 

Equation 17.20 is often the easier one to use, however. 



17-3. We Postulate That the Average Ensemble Energy Is Equal to the Observed Energy of a System 

EXAMPLE 17-1 
Derive an equation for (£) for the simple system of a (bare) proton in a magnetic 

field B . 
"' " 

SOL UTI 0 N: According to Equation 14.16, the energy can take on one of the two 

values 

where y is the magnetogyric ratio. The partition function consists of just two terms: 

Q(T, B
z

) == e fJny B)2 + e-f3ny B)2 

== ehyB)2ksT + e-nyB)2kBT 

The average energy is obtained from either Equation 17.20 or 17.21: 

( alnQ) 1 (a Q) 
(E) = - a{3 B = - Q({3, BJ aji B 

- ... -,. ~ 

This expression for (£) (in units ofhy B7/2) is plotted against T (in units ofhy B /2kB ) 
~ z 

in Figure 17.2. Note that (£) --+ -hy B",/2 as T --+ 0 and that (£) --+ 0 as T --+ 00. As 
'" 

T --+ 0, there is no thermal energy, so the proton orients itself parallel to the magnetic 

field with certainty. As T --+ 00, however, the thermal energy of the proton increases 

to such an extent that the proton is equally likely to point in either direction. 

~ 

N 
........... 

I'c~ 

~ 
~ 
~ 
'-" 
........... 

/"0... 

~ ..........,.. 

FIG U R E 17.2 

o 
o 

-0.4 

-0.8 

50 

The average energy of a (bare) proton in a magnetic field plotted against the temperature (see 
Example 17-1). 
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We will learn in Chapter 18 that for a monatomic ideal gas, 

(17.22) 

where 

(
2 ) 3/2 

q(V, f3) = h~; V (17.23) 

For a monatomic ideal gas in its electronic ground state, the energy of the system is 
only in the translational degrees of freedom. Before we substitute Equation 17.22 into 
Equation 17.20, we write In Q for convenience as a sum of terms that involve fJ and 
terms that are independent of fJ: 

In Q = N In q - In N! 

3N 3N (2nm) = - -- In fJ + - In + N In V - In N ! 
2 2 h2 

3N 
= - -- In fJ + terms involving only N and V 

2 

Now we can see more easily that 

(
alnQ) =_3NdlnfJ =_3N =_3 Nk T 

afJ N, v 2 dfJ 2fJ 2 B 

and that (Equation 17.20) 

For n moles, N = nNA and kBNA = R, so 

(E) = ~nRT 

We will arrive at this same result when we study the kinetic theory of gases in 
Chapter 27. This observation leads us to a fundamental postulate of physical chemistry 
that the ensemble average of any quantity, as calculated using the probability distri­
bution of Equation 17.17, is the same as the experimentally observed value of that 
quantity. If we let the experimentally observed energy of a system be denoted by U, 
then we have 

- - 3 
U = (E) = "2RT 

for one mole of a monatomic ideal gas. (We indicate a molar quantity by an overbar.) 



17-3. We Postulate That the Average Ensemble Energy Is Equal to the Observed Energy of a System 

EXAMPLE 17-2 
We will learn in the next chapter that for the rigid rotator-harmonic oscillator model 

of an ideal diatomic gas, the partition function is given by 

where 

( 
2n m ) 3/2 8n2 I e-f3hvj2 

q( V, fJ) = h2 fJ V· h2 fJ . -1 =-e--f3-hv 

In this expression, I is the moment of inertia and v is the fundamental vibrational 

frequency of the diatomic molecule. Note that q (V, fJ) for a diatomic molecule is the 

same as the expression for q ( V, fJ) for a monatomic gas (Equation 17.23, a translational 

term), except that it is multiplied by a rotational term, 8;r2 1/ h2 fJ, and a vibrational 
term, e-f3hvj2/(1 - e-f3hv ). The reason for this difference will become apparent in 

Section 17-8. Use this partition function to calculate the average energy of one mole 

of a diatomic ideal gas. 

SOL UTI 0 N: Once again, for convenience we write In Q as the sum of terms that 
involve fJ and terms that are independent of fJ: 

In Q = N In q - In N! 

3N NfJhv -f3hv = --lnfJ - NlnfJ - - Nln(1 - e ) 
2 2 

+ terms not involving fJ 

Now 

(
3InQ) =_3NdlnfJ _NdlnfJ _ Nhv _Ndln(l-e-f3hV) 

3fJ N v 2 dfJ dfJ 2 dfJ , 

3N N Nhv Nhve-f3hv 
--- - --

2fJ fJ 2 1 - e-f3hv 

or 

3 Nhv Nhve-f3hv 
U = (E) = -NkBT + NkBT + + f3J 2 2 1 - e- IV 

For one mole, N = NA and NAkB = R, so 

(17.24) 

Equation 17.24 has a nice physical interpretation. The first term represents the av­
erage translational energy, the second term represents the average rotational energy, the 
third term represents the zero-point vibrational energy, and the fourth term represents 
the average vibrational energy. The fourth term is negligible at low temperatures for 
most gases but increases with increasing temperature as the excited vibrational states 
become populated. 
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17-4. The Heat Capacity at Constant Volume Is the Temperature 
Derivative of the Average Energy 

The constant-volume heat capacity, C v' of a system is defined as 

(a(E)) (au) 
C v = aT N v = aT N v 

, , 

(17.25) 

The heat capacity C v is then a measure of how the energy of the system changes with 
temperature at constant amount and volume. Consequently, C v can be expressed in 
terms of Q (N, V, T) through Equation 17.21. We have seen that U == 3 R T /2 for one 
mole of a monatomic ideal gas, so 

C =='lR v 2 (
monatomic ) 

ideal gas 

For a diatomic ideal gas, we obtain from Equation 17.24 

(
diatomic) 
ideal gas 

(17.26) 

(17.27) 

Figure 17.3 shows the theoretical (Equation 17.27) versus the experimental molar heat 
capacity of 02 (g) as a function of temperature. The agreement between the two is seen 
to be excellent. 

R:: 
............ 

3.2 

3.0 

Ie]'" 2.8 

2.6 

Fie U R E 17.3 
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TIK 

800 1000 

The experimental and theoretical (Equation 17.27) molar heat capacity of 02 (g) from 300 K to 
1000 K. The theoretical curve (solid curve) is calculated using h v / kB = 2240 K. 



EXAMPLE 17-3 
In 1905, Einstein proposed a simple model for an atomic crystal that can be used to 
calculate the molar heat capacity. He pictured an atomic crystal as N atoms situated 
at lattice sites, with each atom vibrating as a three-dimensional harmonic oscillator. 
Because all the lattice sites are identical, he further assumed that each atom vibrated 
with the same frequency. The partition function associated with this model is (Prob­
lem 17-20) 

Q == e- f3Uo 
( 

e f3hv/2 ) 3N 

I -f3hv -e 
(17.28) 

where v, which is characteristic of the particular crystal, is the frequency with which 
the atoms vibrate about their lattice positions and Vo is the sublimation energy at 0 K, 
or the energy needed to separate all the atoms from one another at 0 K. Calculate the 
molar heat capacity of an atomic crystal from this partition function. 

SOL UTI 0 N: The average energy is given by (Equation 17.20) 

v == _ (3 In Q) 
3f3 N, v 

== - (~ [-f3 Uo - 3N {3hv - 3N InC! - e- f3hV )]) 
3f3 2 N,V 

3Nhv 3Nhve- f3h
J) 

== Vn + 2 + 1 _ e - f3h v 

Note that V consists of three terms: V
O

' the sublimation energy at 0 K; 3Nh v /2, 
the zero-point energy of N three-dimensional harmonic oscillators; and a term that 
represents the increase in vibrational energy as the temperature increases. 

The heat capacity at constant volume is given by 

or 

(17.29) 

where we have used the fact that N == N A and N A kB == R for one mole. 

Equation 17.29 contains one adjustable parameter, the vibrational frequency v. 
Figure 17.4 shows the molar heat capacity of diamond as a function of temperature 
calculated with v == 2.75 X 1013 

S-I. The agreement with experiment is seen to be 
fairly good considering the simplicity of the model. 
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FIGURE 17.4 
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The observed and theoretical (Einstein model) molar heat capacity of diamond as a function 
of temperaure. The solid curve is calculated using Equation 17.29, and the circles represent 
experimental data. 

It is interesting to look at the high-temperature limit of Equation 17.29. At high 
temperatures, h v / kB T is small, so we can use the fact that eX ~ 1 + x for small x 

(MathChapter I). Thus, Equation 17.29 becomes 

hv 
2 1 - + ... 

- hv kBT 
C ~3R 

B 

kBT 

hv 2 1 

kBT 

This result predicts that the molar heat capacities of atomic crystals should level off at 
a value of 3R == 24.9 ]·K-1 ·mol- I at high temperatures. This prediction is known as 
the law of Dulong and Petit, which played an important role in the determination of 
atomic masses in the 1800s. This prediction is in good agreement with the data shown 
in Figure 17.4. 

17-5. We Can Express the Pressure in Terms of a Partition Function 

We will show in Section 19-6 that the pressure of a macroscopic system is given by 

(aE.) P.(N, V) == _ } } av 
N 

(17.30) 



17-5. We Can Express the Pressure in Terms of a Partition Function 

U sing the fact that the average pressure is given by 

(P) == " p.(N, V, fJ)P.(N, V) ~ ) ) 

.I 

we can write 

(17.31) 

This expression can be written in a more compact form. Let's start with 

Q(N, V, fJ) == L e-/3E/N,V) 

J 

and differentiate it with respect to V keeping Nand fJ fixed: 

Comparing this result with the second equality of Equation 17.31 shows that 

kBT (a Q ) (P) == -
Q(N, V,fJ) av N,/3 

or equivalently, 

(P) == kBT (a In Q) 
a V N,/3 

(17.32) 

Just as we equated the ensemble average of the energy with the observed energy, we 
equate the ensemble average pressure with the observed pressure, P == (P). Thus, we 
see that we can calculate the observed pressure if we know Q(N, V, fJ). 

We can use this result to derive the ideal-gas equation of state. First, consider a 
monatomic ideal gas. Recall from Equation 17.22 that Q(N, V, fJ) for a monatomic 
ideal gas is given by 

where 

(
2 )3/2 

q(V, f3) = h~; V 

Let's use this result to calculate the pressure of a monatomic ideal gas. To evaluate 
Equation 17.32, we write out In Q first for convenience: 

In Q == N In q - In N! 

3N (2lfm) == - In 2 + N In V - In N! 
2 h fJ 
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Because Nand {3 are fixed in Equation 17.32, we write In Q as 

Therefore, 

In Q = N In V + terms in Nand {3 only 

(
a In Q) 
a V N,{J 

N 

V 

and substituting this result into Equation 17.32 gives us 

NkBT 
p=--

V 

as you might have expected. 

Notice that the ideal-gas equation results from the fact that In Q = N In V + terms 
in Nand {3, which comes from the fact that q(V, T) is directly proportional to V in 

Equation 17.22. Example 17-2 shows that q (V, T) is directly proportional to V for a 

diatomic ideal gas also, and so P V = N kB T for a diatomic ideal gas. This is the case 
for a polyatomic ideal gas as well, so the ideal-gas equation of state results for any 

ideal gas, monatomic, diatomic, or polyatomic. 

EXAMPLE 17-4 
Calculate the equation of state associated with the partition function 

nm 2 1 (2 )
3N12 

Q(N, V, fJ) = N! h2 fJ (V - Nb)N efJaN 
IV 

where a and b are constants. Can you identify the resulting equation of state? 

SOL UTI 0 N: We use Equation 17.32 to calculate the equation of state. First, we 

evaluate In Q, which gives 

f3aN 2 

In Q = N In(V - Nb) + + terms in Nand f3 only 
V 

We now differentiate with respect to V, keeping Nand f3 constant, to get 

( 
a In Q) 
a V N,{3 

and so 
NkBT aN2 

p=---
V - Nb V2 

Bringing the last term to the left side and multiplying by V - N b gives us 

which is the van der Waals equation. 



17-6. The Partition Function of a System of Independent, 
Distinguishable Molecules Is the Product of Molecular 
Partition Functions 

The general results we have derived up to now are valid for arbitrary systems. To 
apply these equations, we need to have the set of eigenvalues {E.(N, V)} for the N-

J 

body Schrodinger equation. In general, this is an impossible task. For many important 
physical systems, however, writing the total energy of the system as a sum of individual 
energies is a good approximation. (See Section 3-9.) This procedure leads to a great 
simplification of the partition function and allows us to apply the results with relative 
ease. 

First, let's consider a system that consists of independent, distinguishable particles. 
Although atoms and molecules are certainly not distinguishable in general, they can be 

treated as such in a number of cases. An excellent example is that of a perfect crystal. 
In a perfect crystal, each atom is confined to one and only one lattice site, which we 
could, at least in principle, identify by a set of three coordinates. Because each particle, 
then, is confined to a lattice site and the lattice sites are distinguishable, the particles 
themselves are distinguishable. We can treat the vibration of each particle about its 
lattice site as independent to a fairly good approximation, just as we did for normal 
modes of polyatomic molecules. 

We will denote the individual particle energies by {e;}, where the superscript 
denotes the particle (they are distinguishable), and the subscript denotes the energy 
state of the particle. In this case, the total energy of the system E[ (N, V) can be 
written as 

El(N, V) == e~(V) + EJ(V) + E%(V) + ... 
, I 

V 

N terms 

and the system partition function becomes 

Q(N, V, T) = L e-f3E[ = L e-f3(£~+£J+£~+·) 
l i,j,k, ... 

Because the particles are distinguishable and independent, we can sum over i, j, k, 
independently, in which case Q(N, V, T) can be written as a product of individual 
summations (Problem 17-21): 

Q(N, V, T) = L e- f3£7 Le-f3£J Le-f3£~ ... 
i j k 

(17.33) 

where each of the q (V, T) is given by 

(17.34) 
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In many cases, the {C i} is a set of molecular energies; thus q (V, T) is called a molecular 
partition function. 

Equation 17.33 is an important result. It shows that if we can write the total 
energy as a sum of individual, independent terms, and if the atoms or molecules are 
distinguishable, then the system partition function Q (N, V, T) reduces to a product of 

molecular partition functions q(V, T). Because q(V, T) requires a knowledge of the 
allowed energies of only individual atoms or molecules, its evaluation is often feasible, 
as we will see for a number of cases in Chapter 18. 

If the energy states of all the atoms or molecules are the same (as for an atomic 
crystal), then Equation 17.33 becomes 

where 

Q(N, V, T) == [q(V, T)]N (
independent, distingUiShable) 

atoms or molecules 

q (V, T) == L e -Ej / k8
T 

} 

(17.35) 

The Einstein model of atomic crystals (Example 17-3) considers the atoms to be 
fixed at lattice sites, so Equation 17.35 should be applicable to that model. Notice that 
the partition function of that model (Equation 17.28) can be written in the form of 
Equation 17.35 if we let Uo == Vol N be the sublimation energy per atom at 0 K, in 
which case we have 

( 

e-f3hv/2 ) 3 N 

Q - e- fJuo 
- 1 -f3hv -e 

(17.36) 

17-7. The Partition Function of a System of Independent, 

Indistinguishable Atoms or Molecules Can Usually Be Written 

as [q(V, T)]N / N! 

Equation 17.35 is an attractive result, but atoms and molecules are, in general, 

not distinguishable; thus the utility of Equation 17.35 is severely limited. The re­

duction of a system partition function Q(N, V, T) to molecular partition functions 
q(V, T) becomes somewhat more complicated when the inherent indistinguishability 

of atoms and molecules cannot be ignored. For indistinguishable particles, the total 
. 

energy IS 

E, 'k == c, + c, + ck + ... 
I} ... I } 

\.. ,/ 

V' 

N terms 
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(note the lack of distinguishing superscripts, as in Equation 17.33) and the system 
partition function is 

Q(N, V, T) == L e-{J(£i+£j+£k+"') 

i,j,k, ... 

(17.37) 

Because the particles are indistinguishable, we cannot sum over i, j, k, ... separately 
as we did in Equation 17.33. To see why, we must consider a fundamental property of 
all particles. 

We learned in Chapter 8 that a consequence of the Pauli Exclusion Principle is that 
electronic wave functions must be antisymmetric under the interchange of two electrons 
and that no two electrons in an atom or a molecule can occupy the same energy state. 
The Pauli Exclusion Principle, as we have applied it to electrons, is part of a more 
general principle of nature that applies to all particles. All known particles fall into one 
of two classes: those whose wave functions must be symmetric under the interchange 
of two identical particles, and those whose wave functions must be antisymmetric 
under such an interchange. Particles of the first type are called bosons, and particles 
of the second type are called fermions. Experimentally, particles of integer spin are 
bosons and particles of half-integer spin are fermions. Thus, electrons, which have 
spin 1/2, behave as fermions and their wave functions must satisfy the antisymmetry 
requirement. Other examples of fermions are protons (spin 1/2) and neutrons (spin 
1/2). Examples ofbosons are photons (spin 1) and deuterons (spin 0). Although no two 
identical fermions can occupy the same single-particle energy state, there is no such 
restriction on bosons. These restrictions are important to recognize when we attempt 
to carry out the summation in Equation 17.37. 

Let's go back now to the summation in Equation 17.37 for the case of fermions. 
Because no two identical fermions can occupy the same single-particle energy state, 
terms in which two or more indices are the same cannot be included in the sum­
mation. Therefore, the indices i, j, k, ... are not independent of one another, so 
a direct evaluation of Q(N, V, T) by means of Equation 17.37 poses problems for 
fennions. 

EXAMPLE 17-5 
Consider a system of two noninteracting identical fermions, each of which has states 
with energies E I' 82, 8 3, and E 4' Enumerate the allowed total energies in the summation 
in Equation 17.37. 

SOL UTI 0 N: For this system 

4 

Q(2, V, T) = L e -(J(C'j+C'j) 

i,j=I 
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Of the 16 terms that would occur in an unrestricted evaluation of Q, only six are 
allowed for two identical fermions; these are the terms with energies 

£2 + £3 

£2 + £4 

£3 + £4 

The six terms in which the £. are written in reverse order are the same as those above 
J 

(because the particles are indistinguishable), and the four terms in which the £. are the 
J 

same are not allowed (because the particles are fermions). 

Bosons do not have the restriction that no two of the same type can occupy the 
same single-particle state, but the summation in Equation 17.37 is still complicated. 
To see why, consider a term in Equation 17.37 in which all the indices are the same 
except for one; for example, a term like 

E == c2 + C 10 + C 10 + C 10 + ... + £' 10 

~ v_-----------J 

N particles, N terms 

(in reality, these indices might be enormous numbers). Because the particles are indis­
tinguishable, the position of the term 8 2 is not important, and we could just as easily 

have 810 + 8 2 + c lO + 810 + ... + 810 or 810 + c lO + c2 + c lO + ... + 810 and so on. Be­
cause these terms all represent the same state, such a state should be included only 
once in Equation 17.37, but an unrestricted summation over all the indices (summing 
over i, j, k, ... independently) in Equation 17.37 would produce N terms of this type 
(the c2 can be located in any of the N positions). 

Now consider the other extreme in which all the N particles are in different molec­
ular states; that is, for example, a system with energy £ I + £2 + £3 + £4 + ... + £ N' 

Because the particles are indistinguishable, all N! arrangements obtained by permut­
ing these N terms are identical and should occur only once in Equation 17.37. Yet 
such terms will appear N! times in an unrestricted summation. Consequently, a direct 
evaluation of Q(N, V, T) by means of Equation 17.37 poses problems for bosons as 
well as fermions. 

EXAMPLE 17-6 
Redo Example 17-5 for bosons instead of fermions. 

SOL UTI 0 N: In this case there are 10 allowed terms: the six that are allowed in 
Example 17-5 and the four in which the £. are the same (bosons do not have the 

J 

restriction that no two can occupy the same state). 

Note that in every case, the terms in Equation 17.37 that cause difficulty are those 
in which two or more indices are the same. If it were not for such terms, we could carry 
out the summation in Equation 17.37 in an unrestricted manner (obtaining [q(V, T)]N 
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as in Section 17-6) and then divide by N! (to obtain [q(V, T)]N IN!) to account for 
the over-counting. For example, if we could ignore terms like £ 1 + £ l' £2 + £2' etc. in 
the evaluation of Q(2, V, T), there would be a total of 12 terms, the six enumerated 
in Example 17-5 and the six in which the energies are written in reverse order. By 
dividing by 2!, we would obtain the correct number of allowed terms. 

Certainly, if the number of quantum states available to any particle is much greater 
than the number of particles, it would be unlikely for any two particles to be in the 
same state. Although most of the quantum-mechanical systems we have studied have 
an infinite number of energy states, at any given temperature many of these will not be 
readily accessible because the energies of these states are much larger than kB T, which 
is roughly the average energy of a molecule. If, however, the number of quantum states 
with energies less than roughly kB T is much larger than the number of particles, then 
essentially all the terms in Equation 17.37 will contain c:'s with different indices, and 
so we can evaluate Q(N, V, T) to a good approximation by summing over i, j, k, ... 
independently in Equation 17.37 and then dividing by N! to get 

where 

Q(N V T) = [q(V, T)]N 
, , N! (

independent, indistingUiShable) 

atoms or molecules 

q(V, T) = L e-Ej/kBT 

} 

(17.38) 

(17.39) 

The number of translational states alone is usually sufficient to guarantee that the 
number of energy states available to any atom or molecule is greater than the number 
of particles in the system. Therefore, this procedure yields an excellent approximation 
in many cases. The criterion that the number of available states exceeds the number of 
particles so that Equation 17.38 can be used is 

(17.40) 

Notice that this criterion is favored by large particle mass, high temperature, and low 
density. 

Although our discussion at this point is limited to ideal gases (independent, in­
distinguishable particles), we show the values of (N I V)(h 2 18mkBT)3/2 in Table 17.1 
even for some liquids at their boiling points, just to show that Inequality 17.40 is easily 
satisfied in most cases. Note that the exceptional systems include liquid helium and 
liquid hydrogen (because of their small masses and low temperatures) and electrons in 
metals (because of their very small mass). These systems are the prototype examples of 
quantum systems that must be treated by special methods (which we will not discuss). 

When Equation 17.38 is valid, that is, when the number of available molecular states 
is much greater than the number of particles, we say that the particles obey Boltzmann 
statistics. As Inequality 17.40 indicates, Boltzmann statistics becomes increasingly 
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TABLE 17.1 
The quantity (N / V)(h 2 /Smk

B 
T)3/2 at a pressure of one bar for a number of simple 

systems. 

System 

Liquid helium 

Gaseous helium 

Gaseous helium 

Gaseous helium 

Liquid hydrogen 

Gaseous hydrogen 

Gaseous hydrogen 

Liquid neon 

Gaseous neon 

Liquid krypton 

Electrons in metals (N a) 

TIK 

4 

4 

20 

100 

20 

20 

100 

27 

27 

127 

300 

1.5 

0.11 

1.8 x 10-3 

3.3 X 10-5 

0.29 

5.1 x 10-3 

9.4 X 10-5 

1.0 X 10-2 

7.S X 10-5 

5.1 X 10-5 

1400 

valid with increasing temperature. Let's test Inequality 17.40 for N2 (g) at 20°C and 
one bar. Under these conditions, 

105 Pa 

(1.381 X 10-23 }·K-1)(293.2 K) 

== 2.470 X 1025 m-3 

and 
h2 (6.626 X 10-34 }'S)2 

8mksT - (8)(4.653 x 10-26 kg)(1.381 X 10-23 }·K-1)(293.2 K) 

== 2.913 x 10-22 m2 

and so 

== 1.23 X 10-7 

which is much less than unity. 
Let's test Inequality 17.40 for liquid nitrogen at its boiling point, -195. 8°C. 

Experimentally, the density of N2 (1) is 0.808 g. mL -1 at its boiling point. Therefore, 

N = (0.808 g.mL- 1) ( 1 mol N2 ) (6.022 x 10
23

) (10
6 

mL) 
V 28.02 g N2 1 mol 1 m3 

== 1.737 x 1028 m-3 
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and 

== 6.37 X 10.-4 

Thus, Equation 17.38 is valid, even for liquid nitrogen at its boiling point. 

17-8. A Molecular Partition Function Can Be Decomposed into 
Partition Functions for Each Degree of Freedom 

In this section, we will explore the similarity between a system partition function, 
Equation 17.14, and a molecular partition function, Equation 17.39. We will start by 
substituting Equation 17.38 into Equation 17.21: 

== N k T2 (a In q ) 
B aT v 

-F·lksT 

" e J == N ~ Cj -q-(V-,-T-) 
J 

(17.41) 

But Equation 17.38 is valid only for independent particles, so 

(E) == N (c) (17.42) 

where (£) is the average energy of anyone molecule. If we compare Equations 17.41 
and 17.42, we see that 

-ElksT e J 

(£) = I>i q(V, T) 
] 

(17.43) 

We can conclude from this equation that the probability that a molecule is in its jth 
molecular energy state, Jr., is given by 

J 

e 
~ -E/ksT 
L' e J 

./ 

(17.44) Jr. == ---
J q(V, T) 

Note how similar this equation is to Equation 17.13. 
Equation 17.44 can be reduced even further if we assume that the energy of a 

molecule can be written as 

C == c~rans + c~ot + E vib + cclec 
I .J k 'I (17.45) 
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Because the various energy terms are distinguishable here, we can apply the reasoning 
behind Equation 17.33 and write 

q (V, T) == qtransqrotqvibqelec (17.46) 

where, for example 

L _Etrans / k T 
q == e J B 

trans 
(17.47) 

j 

Note that the partition function for a diatomic molecule we used in Example 17-2 was 
expressed as 

where 

and 

If we substitute Equations 17.45 and 17.46 into Equation 17.44, we obtain 

JT 0 Ok! == lJ 0 

_Etrans/k T _ErOl/k T _Evib/k T _Ee1ec/k T e i B e J B ek Be I B 

q trans q rot q vi b q elec 

(17.48) 

where JT
ijk

! is the probability that a molecule is in the ith translational state, the jth 
rotational state, the kth vibrational state, and the lth electronic state. Now if we sum 
Equation 17.48 over i (all translational states), j (all rotational states), and I (all 
electronic states), we obtain 

_E vib 
! k T ek / B 

(L: _Etrans/k T) (L: _Erot/k T) (L: _selec/k T) _Evib/k T 
o e i B 0 e J B I e' B e k B 
I J 

q lrans q rotq vib q elec 

_[vib/ k T e k B 

(17.49) 
L: Evih/k T e k B 

k 
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where, as the notation suggests, 7T ;ib is the probability that a molecule is in its kth 
vibrational state. Furthermore, the average vibrational energy of a molecule is given by 

_svibjk T 
e J.: B 

(E vib
) == L Etb __ -

k qvib 

2 a In q °b == k T Vi 

B aT 
a In qvib 

a(3 
(17.50) 

Again, note the similarity with Equation 17.21. Of course, we also have the relations 

and 

(17.51) 

a lnq 
(Erot ) == k T2 rot 

B aT (17.52) 

EXAMPLE 17-7 
Use the partition function for a diatomic molecule given in Example 17-2 to calculate 
(£ vib). 

SOL UTI 0 N: According to Example 17-2, we can write 

and so 

e-f3hvj2 

qvib (T) == 1 _ e-f3hv 

O"b ( a In q Ob) 
( 8 VI ) == - a f3 VI 

hv hve-f3hv 

== "2 + I - e- f3hv 

in agreement with Equation 17.24. 

To this point, we have written partition functions as summations over energy states. 
Each state is represented by a wave function with an associated energy. Thus, we write 

j 

(states) 

(17.53) 
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We will call sets of states that have the same energy, levels. We can write q (V, T) as a 
summation over levels by including the degeneracy, g., of the level: 

} 

j 

(levels) 

(17.54) 

In the notation of Equation 17.53, the terms representing a degenerate level are repeated 
g. times, whereas in Equation 17.54, they are written once and multiplied by g .. For 

} } 

example, we learned in Section 5-8 (Equation 5.57) that the energy and degeneracy 
for a rigid rotator are 

and 

gJ==21+1 

Thus, we can write the rotational partition function by summing over levels: 

00 

q (T) == ""'(21 + l)e-1i2J(J+I)/2Ik B T 
rot ~ 

J=O 

(17.55) 

Including degeneracies explicitly as in Equation 17.54 is usually more convenient, so 
we will use Equation 17.54 rather than Equation 17.53 in later chapters. 

Problems 
17 -1. How would you describe an ensemble whose systems are one-liter containers of water at 

25°C? 

17 -2. Show that Equation 17.8 is equivalent to f (x + y) = f (x) f (y). In this problem, we will 
prove that f (x) ex eax

. First, take the logarithm of the above equation to obtain 

In f(x + y) = In f(x) + In fey) 

Differentiate both sides with respect to x (keeping y fixed) to get 

[ 
a In f(x + y)] = dIn f(x + y) [a(x + y)] 

ax " d(x + y) ax y 

dIn f(x + y) 

d(x + y) 

dIn f(x) 

dx 

N ow differentiate with respect to y (keeping x fixed) and show that 

dlnf(x) dlnf(y) 

dx dy 



Problems 

For this relation to be true for all x and y, each side must equal a constant, say a. Show that 

f (x) ex e{/X and fey) ex eO.\' 

17-3. Show that alia. = e(3(Ei -E,) implies that a. = Ce-(3Ej • 
I j 

17 -4. Prove to yourself that Li e- f3Ei = Lj e -f3 E
j • 

17 -5. Show that the partition function in Example 17-1 can be written as 

(
/3hY B~) (hY B~) Q(/3, B

7
) = 2 cosh ,. . = 2 cosh " 

~ 2 2k T 
B 

Use the fact that d cosh x I dx = sinh x to show that 

hyB~ /3hyB~ nyB"7 hy B7 

(E) = - 4. tanh "-. = - ,. tanh "-. 
2 2 2 2kB T 

17 -6. Use either the expression for (E) in Example 17-1 or the one in Problem 17-5 to show 

that 

nyB 
(E) ~ - z. 

2 
as T~O 

and that 

(E) ~ 0 as T~oo 

17 -7. Generalize the results of Example 17-1 to the case of a spin-l nucleus. Determine the 

low-temperature and high-temperature limits of (E). 

17 -8. If N is the number of protons aligned with a magnetic field Band N is the number of 
W z 0 

protons opposed to the field, show that 

Given that y = 26.7522 X 107 rad· T- 1 
'S-1 for a proton, calculate Nol N

w 
as a function of 

temperature for a field strength of 5.0 T. At what temperature is No = N
w

? Interpret this 
result physically. 

17 -9. In Section 17-3, we derived an expression for (E) for a monatomic ideal gas by applying 
Equation 17.20 to Q(N, V, T) given by Equation 17.22. Apply Equation 17.21 to 

1 (27TmkBT)3NI2 N 
Q(N, V, T) = N! h 2 V 

to derive the same result. Note that this expression for Q(N, V, T) is simply Equation 17.22 

with /3 replaced by 1 I kB T. 

17 -10. A gas absorbed on a surface can sometimes be modelled as a two-dilnensional ideal 

gas. We will learn in Chapter 18 that the partition function of a two-dimensional ideal 
. 

gas IS 

1 (27T InkB T) N N 
Q(N,A,T)=- '1 A 

N! h'-
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where A is the area of the surface. Derive an expression for (E) and compare your result 
with the three-dimensional result. 

17 -11. Although we will not do so in this book, it is possible to derive the partition function 
for a monatomic van der Waals gas. 

where a and b are the van del' Waals constants. Derive an expression for the energy of a 

monatomic van der Waals gas. 

17 -12. An approximate partition function for a gas of hard spheres can be obtained from the 

partition function of a monatomic gas by replacing V in Equation 17.22 (and the following 

equation) by V - b, where b is related to the volume of the N hard spheres. Derive 

expressions for the energy and the pressure of this system. 

17 -13. Use the partition function in Problem 17-10 to calculate the heat capacity of a two­

dimensional ideal gas. 

1 7 -14. Use the partition function for a monatomic van der Waals gas given in Problem 17-11 

to calculate the heat capacity of a monatomic van der Waals gas. Compare your result with 

that of a monatomic ideal gas. 

17 -15. Using the partition function given in Example 17-2, show that the pressure of an ideal 

diatomic gas obeys P V == N kB T, just as it does for a monatomic ideal gas. 

1 7 -16. Show that if a partition function is of the form 

Q(
N V T) == [q(V, T)]N 

, , N! 

and if q ( V, T) == f (T) V [as it does for a monatomic ideal gas (Equation 17.22) and a 

diatomic ideal gas (Example 17-2)], then the ideal-gas equation of state results. 

1 7 -17. Use Equation 17.27 and the value of v for 02 given in Table 5.1 to calculate the value 
of the molar heat capacity of 02 (g) from 300 K to 1000 K (see Figure 17.3). 

17 -18. Show that the heat capacity given by Equation 17.29 in Example 17-3 obeys a law of 

corresponding states. 

1 7 -19. Consider a system of independent, distinguishable particles that have only two quantum 

states with energy Eo (let Eo == 0) and E 1 . Show that the molar heat capacity of such a system 

is given by 

and that C v plotted against {JE passes through a maximum value at {JE, given by the 

solution to {JE /2 == coth {JE /2. Use a table of values of coth x (for example, the CRC 

Standard Mathematical Tables) to show that {JE == 2.40. 

17 -20. Deriving the partition function for an Einstein crystal is not difficult (see Example 

17-3). Each of the N atoms of the crystal is assumed to vibrate independently about its 



Problems 

lattice position, so that the crystal is pictured as N independent harmonic oscillators, each 

vibrating in three directions. The partition function of a harmonic oscillator is 

00 

qho(T) = L e-~(v+!)hv 
v=O 

00 

= e- f3hv/ 2 L e-j3vhv 

v=O 

This summation is easy to evaluate if you recognize it as the so-called geometric series 
(MathChapter I) 

Show that 

and that 

I 

I-x 

e-~hv/2 

qho (T) = I _ e-~hv 

( 

e-~hv/2 )3N 
Q = e- f3Uo 

1 -fJhv -e 

where Va simply represents the zero-of-energy, where all N atoms are infinitely separated. 

17 -21. Show that 

2 1 

S = L LXi yj = x(1 + y) + x 2 (1 + y) = (X + x 2)(1 + y) 
;=1 j=O 

by summing over j first and then over i. Now obtain the same result by writing S as a 
product of two separate summations. 

17 -22. Evaluate 

by summing over j first and then over i. Now obtain the same result by writing S as a 
product of two separate summations. 

17-23. How many terms are there in the following summations? 

3 2 3 2 

3. S = LLxiyj b. S = LLxiyj 
;=1 j=1 ;=1 j=O 

17 -24. Consider a system of two noninteracting identical fermions, each of which has states 

with energies £ l' £2' and £3' How many terms are there in the unrestricted evaluation of 
Q(2, V, T)? Enumerate the allowed total energies in the summation in Equation 17.37 (see 
Example 17-5). How many terms occur in Q(2, V, T) when the fermion restriction is taken 
into account? 

17 -25. Redo Problem 17-24 for the case of bosons instead of fermions. 
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17 -26. Consider a system of three noninteracting identical fermions, each of which has states 
with energies £ I' £2' and £3' How many terms are there in the unrestricted evaluation of 
Q(3, V, T)? Enumerate the allowed total energies in the summation of Equation 17.37 (see 
Example 17-5). How many terms occur in Q(3, V, T) when the fermion restriction is taken 
into account? 

17 -27. Redo Problem 17-26 for the case of bosons instead of fermions. 

17 -28. Evaluate (N j V) (h2 j8mkB T)3/2 (see Table 17.l) for 02 (g) at its normal boiling point, 

90.20 K. Use the ideal-gas equation of state to calculate the density of 02 (g) at 90.20 K. 

17-29. Evaluate (N j V)(h 2 j8mkB T)3/2 (see Table 17.1) for He(g) at its normal boiling point 

4.22 K. Use the ideal-gas equation of state to calculate the density of He(g) at 4.22 K. 

17-30. Evaluate (N j V)(h 2 j8mkB T)3/2 for the electrons in sodium metal at 298 K. Take the 
density of sodium to 0.97 g·mL -I. Compare your result with the value given in Table 17.1. 

17-31. Evaluate (NjV)(h2 j8nlkBT)3/2 (see Table 17.1) for liquid hydrogen at its normal 

boiling point 20.3 K. The density of H2 (1) at its boiling point is 0.067 g. mL -1 . 

17 -32. Because the molecules in an ideal gas are independent, the partition function of a 
mixture of monatomic ideal gases is of the form 

where 

j == 1,2 

Show that 

and that 

for a mixture of monatomic ideal gases. 

17 -33. We will learn in Chapter 18 that the rotational partition function of an asymmetric top 

molecule is given by 

where (J is a constant and lA' I B' and Ie are the three (distinct) moments of inertia. Show 

that the rotational contribution to the molar heat capacity is C V,rot == ~ R. 



Problems 

17 -34. The allowed energies of a harmonic oscillator are given by f I == (v + ~)h lJ. The corre-L _ 

sponding partition function is given by 

00 

(T) " (v+ 1 )11[1/ k8 T 
qvib == ~e 

v=o 

Let x == e-hv
/ kB T and use the formula for the summation of a geometric series (Problem 

17-20) to show that 

e -/ll'/2k B T 

qvib(T) == 1 _ e-hv/kBT 

17 -35. Derive an expression for the probability that a harmonic oscillator will be found in 

the vth state. Calculate the probability that the first few vibrational states are occupied for 

HCI(g) at 300 K. (See Table 5-1 and Problem 17-34.) 

17 -36. Show that the fraction of harmonic oscillators in the ground vibrational state is 

given by 

Calculate j~) for N
2
(g) at 300 K, 600 K, and 1000 K (see Table 5.1). 

1 7 -37. Use Equation 17.55 to show that the fraction of rigid rotators in the 1 th rotational level 

is given by 

Plot the fraction in the lth level relative to the 1 == 0 level (Ij l~)) against 1 for HCl(g) at 

300 K. Take 13 == 10.44 cm- I
. 

17-38. Equations 17.20 and 17.21 give the ensemble average of E, which we assert is the 

same as the experimentally observed value. In this problem, we will explore the standard 

deviation about (E) (MathChapter B). We start with either Equation 17.20 or 17.21: 

(E) == U == _ (a In Q ) == k T2 (a In Q ) 
a{3 N,V B aT N,V 

Differentiate again with respect to f3 or T to show that (MathChapter B) 

where C v is the heat capacity. To explore the relative magnitude of the spread about (E), 
consider 

a E (kB T 2C v) 1/2 

(E) (E) 

To get an idea of the size of this ratio, use the values of (E) and C v for a (monatomic) 

ideal gas, namel y, ~ N ks T and ; N kB' res pectivel y, and show that a E / (E) goes as N -I /2 . 

What does this trend say about the likely observed deviations from the average macroscopic 

energy? 
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17 -39. Following Problem 17-38, show that the variance about the average values of a 
rnolecular energy is given by 

and that a / (£) goes as order unity. What does this result say about the deviations from the 
£ 

average molecular energy? 

17 -40. Use the result of Problem 17-38 to show that C v is never negative. 

17 -41. The lowest electronic states of N a(g) are tabulated below. 

Term symbol Energy/em I Degeneracy 

') 

~SI/2 0.000 2 

2P
1

!J 16 956.183 2 
! '-,., 

-p 3/2 16 973.379 4 
1 

~SI/2 25 739.86 2 

Calculate the fraction of the atoms in each of these electronic states in a sample of Na(g) at 

1000 K. Repeat this calculation for a temperature of 2500 K. 

17 -42. The vibrational frequency of N aCI(g) is 159 .23 em-I. Calculate the molar heat capacity, 

C v , at 1000 K. (See Equation 17.27.) 

17 -43. The energies and degeneracies of the two lowest electronic states of atomic iodine are 

listed below. 

Energy / cm -I Degeneracy 

o 4 
7603.2 2 

What temperature is required so that 2% of the atoms are in the excited state? 



MATHCHAPTER 

SERIES AND LIMITS 

Frequently, we need to investigate the behavior of an equation for small values (or 
perhaps large values) of one of the variables in the equation. For example, we might 
want to know the low-frequency behavior of the Planck distribution law for blackbody 
radiation (Equation 1.2): 

(1.1) 

To do this , we first have to use the fact that eX can be written as the infinite series (i.e., 
a series containing an unending number of terms) 

00 x" X 2 x 3 

eX = z=- = l+x+-+- + ... 
n=O n! 2! 3! 

(1.2) 

and then realize that if x is small, then x 2
, x 3

, etc. are even smaller. We can express 
this result by writing 

where O(X2) is a bookkeeping symbol that reminds us we are neglecting terms involving 
X2 and higher powers of x. If we apply this result to Equation 1.1 , we have 

8nh v3dv 
p (T)dv - -co- ---------,---

I ' - c3 I + j3hv + O[(j3hV)2] - 1 

8nh v3dv 
;::::; -----c3 j3h V 

8nkB T 2 
--:3~V dv 

c 

Thus, we see that p/T) goes as v2 for small values of v. In this MathChapter, we will 
review some useful series and apply them to some physical problems. 723 

" 
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One of the most useful series we will use is the geometric series: 

1 00 

-- = LX" = I + x + x 2 + x 3 + ... 
I-x 

11=0 

Ixl < 1 (1.3) 

This result can be derived by algebraically dividing 1 by 1 - x, or by the following 

trick. Consider the finite series (i.e., a series with a finite number of terms) 

Now multiply SN by x: 

Now notice that 

or that 

S - xS = 1- X
N+1 

N N 

1 - X N+1 

SN = ---­
I-x 

If Ix I < I, then X
N+1 -+ 0 as N -+ 00, so we recover Equation 1.3. 

(1.4) 

Recovering Equation 1.3 from Equation 1.4 brings us to an important point re­

garding infinite series: Equation 1.3 is valid only if Ix I < 1. It makes no sense at all 
if Ix I > 1. We say that the infinite series in Equation 1.3 converges for Ix I < 1 and 

diverges for Ix I > 1. How can we tell whether a given infinite series converges or 
diverges? There are a number of so-called convergence tests, but one simple and useful 

one is the ratio test. To apply the ratio test, we form the ratio of the (n + l)th term, 
U

IJ
+1, to the nth term, u", and then let n become very large: 

u 
r = lim ,, + 1 (1.5) 

I/ ~OO u
ll 

If r < 1, the series converges; if r > 1, the series diverges; and if r = I , the test is 
inconclusive. Let 's apply this test to the geometric series (Equation 1.3). In this case, 

U = x lJ + 1 and u = x" so 11+ 1 11' 

r = lim 
X II 

11---* 00 
= Ixl 

Thus, we see that the series converges if Ix I < 1 and diverges if Ix I > 1. It actually 
diverges at x = I, but the ratio test does not tell us that. We would have to use a more 

sophisticated convergence test to determine the behavior at x = 1. 

For the exponential series (Equation 1.2), we have 

x,,+l/(n+l)! x 
r = lim = lim 

" ....-400 x"ln! 11 ->00 n + I 
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Thus, we conclude that the exponential series converges for all values of x. 
In Chapter 18, we encounter the summation 

00 

S = L e -uhv/kBT (1.6) 
u=o 

where J) represents the vibrational frequency of a diatomic molecule and the other 
symbols have their usual meanings. We can sum this series by letting 

in which case we have 

00 

s= LXv 
V=O 

The quantity x is less than I, and according to Equation 1.3, S = 1/ (1 - x), or 

(1.7) 

We say that S has been evaluated in closed form because its numerical evaluation 
requires only a finite number of steps, in contrast to Equation 1.6, which would require 
an infinite number of steps. 

A practical question that arises is how do we find the infinite series that corresponds 
to a given function. For example, how do we derive Equation 1.2? First, assume that 
the function f (x) can be expressed as a power series in x: 

f( x) = C + C x + C x 2 + C x .l + ... o 1 2 .1 

where the c
j 

are to be determined. Then let x = 0 and find that Co = /(0) . Now 
differentiate once with respect to x 

df 
- = C + 2c x + 3c x + ... dx 1 2 .1 2 

and let x = 0 to find that c1 = (df/dx),=1l" Differentiate again, 

d
2f 

-.,,- = 2c + 3 . 2c x + ... dx 2 2 3 

and let x = 0 to get C2 = (d 2 f/ dx 2 ).=0/2. Differentiate once more, 

d3f 
-d-X"'-3 = 3 . 2c3 + 4 . 3 . 2x + ... 

and let x = 0 to get c3 = Cd ) f / dX )) ,=u/3!. The general result is 

I (d ll f) c --
II n! dx" 

X= O 

(1.8) 
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so we can write 

. (df ) I (d"I) ) 1 (d }I) I(x) = j (0) + - , x + -I " x- + -I 3 X
3 + ... 

dx x= () 2. dx x=() 3. dx .1=0 

(1.9) 

Equation 1.9 is called the Maclaurin series of I (x). If we apply Equation 1.9 to 

I(x) = eX, we find that 

( dll~:) = I 
dx x= 1J 

so 

x 2 x 3 

e-' =I+x+-+-+ .. · 
2! 3! 

Some other important Maclaurin series, which can be obtained from a straightfor­
ward application of Equation I.9 (Problem 1-7) are 

and 

x 3 X-' x 7 

sinx=x--+---+ .. · 
3! 5! 7! 

x" X4 x6 

cos X = 1 - - + - - - + ... 
2! 4! 6! 

x" x } X4 
In(1 + x) = x - - + - - - + ... 

234 
-1<x < 1 

/1(/1-1) ') /1(/1-1)(/1-2) 1 
(I + X) " = I + I1X + x- + x + ... 

2! 3! 

(1.10) 

(1.11 ) 

(I.l2) 

x 2 < I (1.13) 

Series 1.10 and I.II converge for all values of x, but as indicated, Series I.l2 converges 
only for -1 < x < I and Series I.13 converges only for x 2 < 1. Note that if /1 is a 
positive integer in Series I.13 , the series truncates. For example, if /1 = 2 or 3, we have 

and 

(I + x) } = 1 + 3x + 3x2 + x 3 

Equation 1.13 for a positive integer is called the binomial expansion. If /1 is not a positive 
integer, the series continues indefinitely, and Equation 1.13 is called the binomial 
series. Any handbook of mathematical tables will have the Maclaurin series for many 
functions. Problem 1-13 discusses a Taylor series, which is an extension of a Maclaurin 

. 
senes. 

We can use the series presented here to derive a number of results used throughout 
the book. For example, the limit 

. 
sm x 

lim--
.1-> 0 X 
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occurs several times. Because this limit gives 0/0, we could use l'H6pital's rule , which 
tells us that 

d sinx 

sinx dx 
lim = lim = lim cosx = 1 
X-> 0 x x -> o dx x ----+ 0 

dx 

We could derive the same result by dividing Equation 1.10 by x and then letting x -+ O. 
(These two methods are really equivalent. See Problem 1-14.) 

We will do one final example involving series and limits. According to a theory by 
Debye, the temperature dependence of the molar heat capacity of a crystal is given by 

_ ( T ) 318D1T x 4ex dx 
C (T) = 9R -

v 8
0 

0 (eX - 1)2 
(I. 14) 

[n this equation, T is the kelvin temperature, R is the molar gas constant, and 8
0 

is a 
parameter characteristic of the particular crystal. The parameter 8

0 
has units of tem­

perature and is called the Debye temperature of the crystal. We want to determine both 
the low-temperature and the high-temperature limits of C v (T). In the low-temperature 
limit, the upper limit of the integral becomes very large. For large values of x, we 
can neglect 1 compared with eX in the denominator of the integrand, showing that the 
integrand goes as X 4 e- x for large x. But X4 e- x -+ 0 as x -+ 00, so the upper limit of 
the integral can safely be set to 00, giving 

- ( T )31
00 

x
4
e

X

dx lim C (T) = 9R -
T -4 0 v 8

0 
0 (eX - 1 f 

Whatever the value of the integral here, it is just a constant, so we see that 

C veT) -+ constant x T3 as T-+O 

This famous result for the low-temperature heat capacity of a crystal is called the 
T3 law. The low-temperature heat capacity goes to zero as T3. We will use the T3 law 
in Chapter 21 . 

Now let's look at the high-temperature limit. For high temperatures, the upper 
limit of the integral in Equation 1.14 becomes very small. Consequently, during the 
integration from 0 to 8

0
1 T, x is always small. Therefore, we can use Equation 1.2 for 

eX, giving 

( 
T) 3 I (8 )3 

=9R 8
0 

·3 ;: =3R 
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This result is called the Law of Dulong and Petit; the molar heat capacity of a crystal 
becomes 3R = 24.9 J ·K- '·mol - ' for monatomic crystals at high temperatures. By 
"high temperatures", we actually mean that T » eD' which for many substances is 
less than 1000 K. 

Problems 
1-1. Calculate the percentage difference between eX and I + x for x = 0.00'::0, 0.0100, 

0.0150, ... , 0.1000. 

1-2. Calculate the percentage difference between In( I + x) and x for x = 0.0050, 0.0100, 
0.0150, . .. , 0.1000. 

1-3. Write out the expansion of (I + X) I/ 2 through the quadratic term. 

1-4. Evaluate the series 

1-5. Show that 

1-6. Evaluate the series 

5 = L e - l v+ ~ )tJ/lI ' 

"=0 

I 2 1 -------=-, = I + 2x + 3x + 4x' + ... 
( I - x)-

I I I I 
5=-+-+-+-+ .. · 

2 4 8 16 

1-7. Use Equation 1.9 to derive Equations 1.10 and 1.11. 

1-8. Show that Equations I.2, \. 10, and I. II are consistent with the relation e,,1 = cos x + i sin x. 

1-9. In Example 17-3, we derived a simple formula for the molar heat capacity of a solid based 
on a model by Einstein: 

where R is the molar gas constant and e E = h 1) / kB is a constant, called the Einstein 
constant, that is characteristic of the solid . Show that this equation gives the Dulong and 
Petit limit (C v ~ 3 R) at high temperatures. 

1-10. Evaluate the limit of 

as x ~ O. 

1-11 . Evaluate the integral 



Problems 

for small values of a by expanding I in powers of a through quadratic terms. 

1-12. Prove that the series for sin x converges for all values of x. 

1-13. A Maclaurin series is an expansion about the point x = O. A series of the form 

is an expansion about the point Xo and is called a Taylor series. First show that Co = f (xo)' 

Now differentiate both sides of the above expansion with respect to x and then let x = Xo 

to show that e l = (dJ/dx )x=x
o
' Now show that 

1 (d" f) 
('" = n! dx" x =" 0 

and so 

1-14. Show that l'H6pital's rule amounts to forming a Taylor expansion of both the numerator 
and the denominator. Evaluate the limit 

. In(l +x)- x 
lIm ? 

.1" _ 0 x-

both ways. 

1-15. In Problem 18-45, we will need to sum the series 

and 

To sum the first one, start with (Equation 1.3) 

co I 
so=L x"= -­

I-x 
1'= 0 

Differentiate with respect to x and then multiply by x to obtain 

~ dso d ( I ) 
Sl = L VX " = x dx = x dx I _ x = 

11=0 

Using the same approach, show that 

00 

"\" 2 " 
S 2 = L v x = 

11 = 0 

x +x2 

(I - x)' 

x 
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William Francis Giauque was born on May 12, 1895, in Niagara Falls, Ontario, Canada, to 
American parents and died in 1982. After working for two years in the laboratory at Hooker 
Electro-Chemical Company in Niagara Falls, he entered the University of California at Berkeley 
with the intent of becoming a chemical engineer. He decided to study chemistry, however, and 
remained at Berkeley to receive his Ph.D. in chemistry with a minor in physics in 1922. His 
dissertation was on the behavior of materials at very low temperatures. Upon receiving his Ph .D. , 
Giauque accepted a faculty position in the College of Chemistry at Berkeley and remained 
there for the rest of hi s life. He made exhaustive and meticulous thermochemical studies that 
explored the Third Law of Thermodynamics. In particular, his very low temperature studies 
of the entropies of substances validated the Third Law. Giauque developed the technique 
of adiabatic demagnetization to achieve low temperatures. He achieved a temperature of 
0.25 K, and other research groups subsequently reached temperatures as low as 0.0014 K using 
Giauque 's technique. Together with his graduate student Herrick Johnston , he spectroscopically 
identified the two hitherto unknown oxygen isotopes 17 and 18 in 1929. He was awarded the 
Nobel Prize for chemistry in 1949 "for hi s contributions in the field of chemical thermodynamics, 
particularly concerning the behavior of substances at extremely low temperatures:' 



CHAPTER 

Partition Functions and Ideal Gases 

In this chapter, we will apply the general results of the preceding chapter to calculate 
the partition functions and heat capacities of ideal gases. We have shown in Section 
17-7 that if the number of available quantum states is much greater than the number 
of particles, we can write the partition function of the entire system in terms of the 
individual atomic or molecular partition functions: 

Q(N V T) == [q(V, T)]N 
, , N! 

This equation is particularly applicable to ideal gases because the molecules are inde­
pendent and the densities of gases that behave ideally are low enough that the inequality 
given by Equation 17.40 is satisfied. We will discuss a monatomic ideal gas first and 
then diatomic and polyatomic ideal gases. 

18-1. The Translational Partition Function of an Atom in a 
Monatomic Ideal Gas is (2nmkB T / h2)3/2 V 

The energy of an atom in an ideal monatomic gas can be written as the sum of its 
translational energy and its electronic energy 

£ .==£ +£ atomIC trans elec 

so the atomic partition function can be written as 

q (V, T) == qtrans (V, T)qelec (T) (18.1) 

We will evaluate the translational partition function first. 731 
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The translational energy states in a cubic container are given by (Section 3-9) 

( 18.2) 

We substitute Equation 18.2 into qtrans (Equation 17.47) to get 

(18.3) 

Because e a+h+c = e a 
e

h 
e

C
, we can write the triple summation as a product of three single 

summations: 

P 1 n = ex - x ex 
00 (RJ 2 2) 00 

qtrans ,~ p 8ma2 ,~ p 
x v 

Now, each of these three single summations is alike, because each one is simply 

(Xl (Rh2 2) P n 1 7 7 2 2 7 ~ exp - = e-{3h- ISnw- + e-4{3h- ISma + e-9{3h 18ma- + ... 
~ 8ma2 
n=I 

Thus, we can write Equation 18.3 as 

(18.4 ) 

This summation cannot be expressed in terms of any simple analytic function. This 
situation does not present any difficulty, however, for the following reason. Graphically, 
a summation such as L~ I in is equal to the sum of the areas under rectangles of unit 
width centered at 1, 2, 3, ... and of height 11' 12 , 13 , ... as shown in Figure 18.1. 
If the heights of successive rectangles differ by a very small amount, the area of the 
rectangles is essentially equal to the area under the continuous curve obtained by letting 
the summation index n be a continuous variable (Figure 18.1). Problem 18-2 helps 
you prove that the successive terms in the summation in Equation 18.4 do indeed differ 
very little from each other under most conditions. 

Thus, it is an excellent approximation to replace the summation in Equation 18.4 
by an integration: 

( 18.5) 

Note that the integral starts at n = 0, whereas the summation in Equation 18.4 starts 
at n = 1. For the small values of f3h 2 /8ma 2 we are considering here, the difference is 
negligible (Problem 18-41). If we denote f3h 2/8ma 2 by (1, the above integral becomes 
(see MathChapter B) 

[ 00 7 ( Jr ) 1/2 

10 e-
OIIr 

dn = 4a 
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FIG U R E 18.1 
An illustration of the approximation of a summation L~ I 1" by an integral. The summation is 
equal to the areas of the rectangles and the integral is equal to the area under the curve obtained 
by letting n be a continuous variable. 

so we have that 

V T - B V 
(

2nmk T) 3/2 
ql ran/ ' ) - h2 (18.6) 

where we have written V for a 3
• Note that qtfans is a function of V and T. 

We can calculate the average translational energy of an ideal-gas atom from this 
partition function by using Equation 17.51: 

(£ ) = k T2 (a In qtfans ) 
tfans BaT 

v 

= kB T2 (aaT [~ In T + terms independent of T ]) v 

= ~ kBT 

in agreement with what we found in Section 17-3. 

18-2. Most Atoms Are in the Ground Electronic State 
at Room Temperature 

(18.7) 

In this section, we wi ll investigate the electronic contributions to q ( V, T). It is more 
convenient to write the electronic partition function as a sum over levels rather than a 
sum over states (Section 17-8), so we write 

( 18.8) 
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where gei is the degeneracy, and Eei the energy of the ith electronic level. We first fix 
the arbitrary zero of energy such that £e1 == 0; that is, we will measure all electronic 
energies relative to the ground electronic state. The electronic contribution to q can 
then be written as 

(18.9) 

where Ee) is the energy of the jth electronic level relative to the ground state. Note that 
q I is a function of T but not of V. 

e ec 

As we have seen in Chapter 8, these £' s are typically of the order of tens of thousands 
of wave numbers. U sing the fact that 1.986 x 10-23 J == 1 em --I, the Boltzmann constant 

in wave numbers is kB == 0.6950 em I. K- 1 
. Thus, we see that typically 

40000 em I 1 
{3£ ~ ~ 

~ - ~ 

'dec 0.6950 em-I ·K- 1 T 

which is equal to 10 even for T == 1000 K. Therefore, e- fiEe2 in Equation 18.9 typically 

is around 10-5 for most atoms at ordinary telnperatures, so only the first term in the 

summation for qelec is significantly different from zero. There are some cases, however, 
such as the halogen atoms, for which the first excited state lies only a few hundred 

wave numbers above the ground state, so that several terms in qelec are necessary. Even 
in these cases, the sum in Equation 18.9 converges very rapidly. 

As we learned in Chapter 8, the electronic energies of atoms and ions are determined 
by atomic spectroscopy and are well tabulated. The standard reference, "Moore's 

tables," lists the energy levels and energies of many atoms and ions. Table 18.1 lists 
the first few levels for H, He, Li, and F. 

We can make some general observations from tables like Table 18.1. The noble gas 
atoms have a 1 So ground state with the first excited state of order of 105 

CITI 1 or higher; 
alkali metal atoms have a 2 SI/2 ground state with the next state of order of 104 em-lor 

higher; halogen atoms have a 2 P
3/2 

ground state with the next state, a 2 P
I/2 

state, only 

of order of 102 em -1 higher. Thus, at ordinary temperatures, the electronic partition 
function of noble gas atorns is essentially unity and that of alkali metal atoms is two, 
while those for halogen atoll1S consist of two terms. 

Using the data in Table 18.1, we can now calculate the fraction of helium atoms in 

the first triplet state 3 S I' This fraction is given by 

+ !1 F , + -fiF, + !? g e i'_ g e CJ ••• 
c el . e2 . e3 

3e -fiFe? 

(18.10) 

At 300 K, f3Ee2 == 770, so 12 ~ 10--334
. Even at 3000 K, 12 ~ 10-:n. This is typical of 

the noble gases. The energy separation between the ground and excited levels must 



TAB L E 18.1 
Some atomic energy levels.a 

Electron Term Degeneracy 
Atom configuration symbol ge == 21 + 1 energy fcm- I 

H Is 
') 

~ SI/2 2 O. 

2p 2 Pl/2 2 82258.907 

2s 2 SI/2 2 82258.942 

2p 2 P
3/2 4 82259.272 

He ls2 IS 
0 

1 O. 

ls2s 3S 
I 

3 159850.318 

IS 
0 

1 16627l.70 

Li Is22s 2 SI/2 2 O. 

ls22p 2 P
I/2 2 14903.66 

2p 
3/2 4 14904.00 

ls23s 2 SI/2 2 27206.12 

F ls22s 22p 5 2 P3/2 4 O. 

2 Pl/2 2 404.0 

ls22s22p4 3s 4 P
5/2 

6 102406.50 

4 P
3/2 4 10268l.24 

4 P
I/2 2 102841.20 

2 P
3/2 4 104 731.86 

2 P
I/2 2 105057.10 

a From C.E. Moore, "Atomic Energy Levels" Nat!. Bur. Std, eire. 1 467, 

U.S. Government Printing Office, Washington D.C., 1949 

be less than a few hundred cm -lor so before any population of the excited level is 
significant. 

EXAMPLE 18-1 
Using the data in Table 18.1, calculate the fraction of fluorine atoms in the first excited 
state at 300 K, 1000 K, and 2000 K. 

SOLUTION: Using the second line of Equation 18.10 with gel == 4, ge2 == 2, and 

g e3 == 6, we have 

2e- f3Ee2 

f == ------------------
2 4 + 2e- f3 F: e2 + 6e {3£e:, + ... 
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with Ee2 = 404.0 cm- 1 and Ed = 102406.50 em-I. We also have 

and 

404.0 em-I 581.3 K 

j3ce2 = (0.6950 em 1·K- 1 )T = T 

j3E = e3 

147300 K 

T 

Clearly, we can neglect the third term in the denominator of f
2

• 

The value of j~ for the various temperatures is 

2e -581/300 

f2 (T = 300 K) = 4 + 2e-581/300 = 0.0672 

2e -581 /l 000 

f 2 (T = 1000 K) = -581/1000 = 0.219 
4 + 2e -

f 2 (T = 2000 K) = 0.272 

Thus, the population of the first excited state is significant at these temperatures and so 
the first two terms of the summation in Equation 18.9 must be evaluated in determining 

qelec (T). 

For most atoms and molecules, the first two terms of the electronic partition 
function are sufficient, or 

q ( T) ~ g + g e-fJce'J 
elec e I e2 - (18.11) 

At temperatures at which the second term is not negligible with respect to the first term, 
we must check the possible contribution of higher terms as well. 

This completes our discussion of the partition function of monatomic ideal gases. 
In summary, we have 

where 

Q(N V 
. (qtransqelec) N 

, ,T) == ---
N! 

V T - . B V (
2Jrmk T)3/2 

q trans ( , ) - h 2 

(T) + fJEz + - e e ••• 
qelec - gel ge2 

(18.12) 

(18.13) 

We can now calculate some of the properties of a monatomic ideal gas. The average 
. 

energy IS 

(
a In Q) (a In q) 3 Ng E e- fJEe2 

U == k T2 == NkBT2 == 2NkBT + e2 e2 + ... 
BaT N, vaT v qe1ec 

(18.14) 
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The first term represents the average kinetic energy, and the second term represents the 
average electronic energy (in excess of the ground-state energy). The contribution of the 
electronic degrees of freedom to the average energy is small at ordinary temperatures. 
If we ignore the very small contribution from the electronic degrees of freedom, the 
molar heat capacity at constant volume is given by 

The pressure is 

c == v 
dU 

dT 
N,V 

3 
== -R 

2 

P - k T - Nk T (
a In Q) ( a In q ) 

- B av NT- B av T 
, 

== NkBT [~(ln V + terms not involving V)] av T 

NkBT 

V 
(18.15) 

which is the ideal gas equation of state. Note that Equation 18.15 results because 
q (V, T) is of the form f (T) V, and only the translational energy of the atoms contributes 
to the pressure. This is expected intuitively, because the pressure is due to bombardment 
of the walls of the container by the atoms and molecules of the gas. 

In the next few sections, we will treat a diatomic ideal gas. In addition to transla­
tional and electronic degrees of freedom, diatomic molecules also possess vibrational 
and rotational degrees of freedom. The general procedure would be to set up the 
Schrodinger equation for two nuclei and n electrons and to solve this equation for 
the set of eigenvalues of the diatomic molecule. Fortunately, a series of very good 
approximations can be used to reduce this complicated two-nuclei, n-electron prob­
lem to a set of simpler problems. The simplest of these approximations is the rigid 
rotator-harmonic oscillator approximation, which we described in Chapters Sand 13. 
We will set up this approximation in the next section and then discuss the vibrational 
and rotational partition functions within this approximation in Sections 18-4 and 18-5. 

18-3. The Energy of a Diatomic Molecule Can Be Approximated 
as a Sum of Separate Terms 

When treating diatomic or polyatomic molecules, we use the rigid rotator-harmonic 
oscillator approximation (Section 13-2). In this case, we can write the total energy 
of the molecule as a sum of its translational, rotational, vibrational, and electronic 

. 
energIes: 

£==E +E +E. +E 1 trans rot VI b e ec (18.16) 
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As for a monatomic ideal gas, the inequality given by Equation 17.40 is easily satisfied 
at normal temperatures, and so we can write 

Q(N V T) == [q(V, T)]N 
, , N! (18.17) 

Furthermore, Equation 18.16 allows us to write 

(18.18) 

so the partition function of a lTIolecular ideal gas is given by 

Q ( N. V T) = (q Irans q rol q vih q elee) N 
, ' , N! (18.19) 

The translational partition function of a diatomic molecule is similar to the result we 
found in Section 18-1 for an atom: 

( 18.20) 

Note that Equation 18.20 is essentially the same as Equation 18.6. The electronic 
partition function will be sirnilar to Equation 18.9. We will discuss the vibrational and 
rotational contributions to the partition function in the next two sections. Although 
Equation 18.19 is not exact, it is often a good approximation, particularly for small 
molecules. 

Before we consider q and (7 't ' we must choose a zero of enerbuy for the rotational, rot VI1 

vibrational, and electronic states. The natural choice for the zero of rotational energy 
is the J == 0 state, where the rotational energy is zero. In the vibrational case, however, 
we have two sensible choices. One is to take the zero of vibrational energy to be that 
of the ground state, and the other is take the zero to be the bottom of the internuclear 
potential well. In the first case, the energy of the ground vibrational state is zero, and 
in the second case it is h 1) /2. We will choose the zero of vibrational energy to be the 
bottom of the internuclear potential well of the lowest electronic state, so the energy 
of the ground vibrational state will be h 1) /2. 

Last, we take the zero of the electronic energy to be the separated atoms at rest 
in their ground electronic states (see Figure 18.2). Recall that the depth of the ground 
electronic state potential well is denoted by D(J (De is a positive number; see Section 13-

6), and so the energy of the ground electronic state is Eel == - De' and the electronic 
partition function is 

(18.21) 

where De and £ e2 are shown in Figure 18.2. We also introduced in Section 13-6 a 
quantity Do that is equal to De - 1 h v. As Figure 18.2 shows, Do is the energy difference 
between the lowest vibrational state and the dissociated molecule. The quantity Do can 
be measured spectroscopically, and values of Do and De for several diatomic molecules 
are given in Table 18.2. 
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o .----+-------=-~-;----.----
t i 

Do D 
+ e 

R 

Fie U R E 18.2 
The ground and first excited electronic states as a function of the internuclear separation, 
illustrating the quantities De and Do of the ground state and £ e2' The quantities De and Do are 
related by De == Do + h v 12 as shown in the figure. 

TAB L E 18.2 
Molecular constants for several diatomic molecules. These parameters were obtained from a 
variety of sources and do not represent the most accurate values because they were obtained 
under the rigid rotator-harmonic oscillator approximation. 

Electronic 
Molecule state 8

vib
/K 8 IK Do/kJ ·mol- I D IkJ·mol- 1 

rot e 

H2 11:+ 
g 6332 85.3 432.1 457.6 

D2 '"b+ 
f{ 

4394 42.7 435.6 453.9 

Cl2 
11:+ 

f{ 
805 0.351 239.2 242.3 

Br2 11:+ 
f{ 

463 0.116 190.1 191.9 

12 11:+ 
g 308 0.0537 148.8 150.3 

O2 
31: 

g 2256 2.07 493.6 503.0 

N2 11:+ 
R 

3374 2.88 941.6 953.0 

CO 12:+ 3103 2.77 1070 1085 

NO 2°,/2 2719 2.39 626.8 638.1 

HCl 12:+ 4227 15.02 427.8 445.2 

HBr 12:+ 3787 12.02 362.6 377.7 

HI '2:+ 3266 9.25 294.7 308.6 

Na2 '"b+ 
g 229 0.221 71.1 72.1 

K, '2:+ 133 0.081 53.5 54.1 .... g 
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18-4. Most Molecules Are in the Ground Vibrational State 

at Room Temperature 

In this section, we will evaluate the vibrational part of the partition function of a 
diatomic molecule under the harmonic-oscillator approximation. If we measure the 
vibrational energy levels relative to the bottom of the internuclear potential well, the 
energies are given by (Section 5-4) 

v == 0, 1, 2, ... (18.22) 

with v == (k/ f-L) 1/2 /2JT, where k is the force constant of the molecule and f-L is its 
reduced mass. The vibrational partition function qvib becomes 

(X) 

== e- f3hv /
2 L e- f3hvv 

v=O 

This summation can be evaluated easily by recognizing it to be a geometric series 
(MathChapter I): 

(X) 

L xn == 
n=O 

with x == e- f3hv < 1. Thus we can write 

so q vib (T) becomes 

1 

I-x 

(18.23) 

Note that this is the vibrational term encountered in Example 17-2, which presented the 
partition function for the rigid rotator-harmonic oscillator model of an ideal diatomic 
gas. If we introduce a quantity, 8 vib == hv/ kB' called the vibrational temperature, 

q vib (T) can be written as 

( 18.24) 

This is one of the rare cases in which q can be summed directly without having to 
approximate it by an integral, as we did for the translational case in Section 18-1 and 
will do shortly for the rotational case in Section 18-5. 
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We can calculate the average vibrational energy from qYib (T) 

d In q 'b (8 'b 0) 'b ) {E . ) == Nk T2 VI == Nk VI + .. VI 

vIb B dT B 2 e(.:<)vib IT - 1 
(18.25) 

Table 18.2 gives 8
Yib 

for several diatomic molecules. The vibrational contribution to 
the molar heat capacity is 

- 2 -(.:<) , IT e Vlb 

C - VI - R VI - d{E 'b) (8 'b) 
V.vib - dT - T (1 _ e (~vibIT)2 

( 18.26) 

Figure 18.3 shows the vibrational contribution of an ideal diatomic gas to the molar 
heat capacity as a function of temperature. The high temperature limit of Cy .vib is R, 

and Cy 'b is one-half of this value at Tj (0 'b == 0.34. 
,VI VI 

cz::: 
'-.. 

..0 

1.00 

.;: 0.50 
> 

Ie..; 

o.o~------~--------~--------~------~ 
o 0.50 1 .00 1 .50 2.00 

T / 8 Yib 

FIG U R E 18.3 
The vibrational contribution to the molar heat capacity of an ideal diatomic gas as a function of 
reduced temperature, T /8 vib . 

EXAMPLE 18-2 
Calculate the vibrational contribution to the molar heat capacity of N2 (g) at 1000 K. 
The experimental value is 3.43 J·K I ·mol- I

. 

SOLUTION: We use Equation 18.26 with 8
vib 

== 3374 K (Table 18.2). Thus, 

8 vib /T == 3.374 and 

C ' e-3,374 

V.vlb == (3.374)2 == 0.418 
R (1 - e-3,374)2 

or 

Cy .
Vib 

== (0.418)(8.314 J·K-'·mol- ' ) == 3.48 J.K-I.mol I 

The agreement with the experimental value is quite good. 
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An interesting quantity to calculate is the fraction of molecules in various vibra­
tional states. The fraction of molecules in the vth vibrational state is 

phl'(V+*) e .tv == ---
qvib 

If we substitute Equation 18.23 into this equation, we obtain 

The following example illustrates the use of this equation. 

EXAMPLE 18-3 

(18.27) 

p(-) . / T 
\"Ih I (18.28) 

Use Equation 18.28 to calculate the fraction of N2 (g) molecules in the v == 0 and v == 1 

vibrational states at 300 K. 

SOL UTI 0 N: We first calculate exp( -C--\ihl T) for 300 K: 

(-). 17' -rn' Kn()() K Ill') 1')1 10-'s e . \ ih! == e . - . ~ i - == e .-- == . _1 X -

Therefore, 

!t 1 --H IT 1 == - e \ihl .:::::; 
() 

and 

j ' ( I H T ') -H T 1 ') 1 x 10-5 
I == - e lih e lih .:::::; .~) 

Notice that essentially al1 the nitrogen nl0lecules are in the ground vibrational state at 

300 K. 

Figure 18.4 shows the population of vibrational levels of Br2 (g) at 300 K. Notice 
that most molecules are in the ground vibrational state and that the population of the 
higher vibrational states decreases exponentially. Bromine has a snlaller force constant 

and a larger mass (and hence a smaller value of e vih) than most diatomic lTIolecules, 
however (el. Table 18.2), so the population of excited vibrational states of Br2 (g) at a 
given temperature is greater than most other lTIolecules. 

We can use Equation 18.28 to calculate the fraction of molecules in all excited 

vibrational states. This quantity is given by L~ I Iv but because L~ 0 j~, == 1, we can 
write 

ex: 

f '"" f 1 f' 1 (1 H t / T) v>o == ~. 1,1 == -. 0 == - - e \1) 

l,=1 

or simply 

(18.29) 



1 .0 

o.o~~------~------~------~------~ 
o 1 2 3 4 

v 

FIG U R E 18.4 
The population of the vibrational levels of Br 2 (g) at 300 K. 

Table 18.3 gives the fraction of molecules in excited vibrational states for several 
diatomic molecules. 

TAB L E 18.3 
The fraction of molecules in excited vibrational states at 300 K and 
1000K. 

Gas e ·b/K fv>o (T == 300 K) fv>o (T == 1000 K) 
VI 

6215 1.01 x 10-9 2.00 X 10-3 

4227 7.59 x 10-7 1.46 X 10-2 

3374 1.30 x 10-5 3.43 X 10-2 

3103 3.22 x 10-5 4.49 X 10-2 

805 6.82 x 10-2 4.47 X 10-1 

308 3.58 x 10-1 7.35 X 10- 1 

18-5. Most Molecules Are in Excited Rotational States 

at Ordinary Temperatures 

The energy levels of a rigid rotator are given by (Section 5-8) 

h21(1+1) 
E ==---­

} J == 0, 1, 2, ... 
21 

(18.30a) 

where 1 is the moment of inertia of the rotator. Each energy level has a degeneracy of 

g} == 21 + 1 (18.30b) 
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Using Equations 18.30a and 18.30b, we can write the rotational partition function of a 
rigid rotator as 

ex:; 

q (T) == "\:'(21 + l)e-t3n2 ](J+I)/2! 
rot L....t 

J=O 

(18.31) 

where we sum over levels rather than states by including the degeneracy explicitly. For 

convenience, we introduce a quantity that has units of temperature and is called the 

rotational telnpe rature, B t: 
ro 

) li-
B ==--

rot 21 k 
B 

(18.32) 

where B == h/8n 2 I (Equation 5.62). Substituting Equation 18.32 into Equation 18.31 
. 

gIves 

ex:; 

q ( T) == "\:' (2 1 + 1) e - (0 rot J ( J + 1 ) / T 
rot L....t 

J=O 

(18.33) 

Unlike the harmonic-oscillator partition function, the summation in Equation 18.33 

cannot be written in closed form. However, as the data in Table 18.2 will verify, the 

value of B rot/ T is quite small at ordinary temperatures for diatomic molecules that 

do not contain hydrogen atoms. For example, B rot for CO(g) is 2.77 K, so B rot / T is 
about 10-2 at room temperature. Just as we were able to approximate the summation 

in Equation 18.4 very well by an integral because ex == f3h 2 /8ma 2 is typically small 

at normal temperatures, we are able to approximate the summation in Equation 18.33 

by an integral because B rot/ T is small for most molecules at ordinary temperatures. 
Therefore, it is an excellent approximation to write q rot (T) as 

This integral is easy to evaluate because if we let x == 1 (1 + 1), then dx == (21 + l)d 1 

and qrot (T) becomes 

qrot(T) = 100 

e-C-lmtx/T dx 

T 8n 2 IkB T 

C\ h 2 
'--~ rot 

Grot « T (18.34 ) 

Note that this is the rotational term encountered in Example 17-2, which presented the 
partition function for the rigid rotator-harmonic oscillator model of an ideal diatomic 

gas. This approximation improves as the temperature increases and is called the high­

temperature limit. For low temperatures or for molecules with large values of 8 rot' 

say H
2
(g) with 8 rot == 85.3 K, we can use Equation 18.33 directly. For example, the 

first four terms of Equation 18.33 are sufficient to calculate qrot (T) to within 0.1 % 
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for T < 38
rot

. For simplicity, we will use only the high-temperature limit, because 
Grot « T for most molecules at room temperature. (See Table 18.2.) 

The average rotational energy is 

(E ) == Nk T2 (dln
qrot

) == Nk T 
~ B dT B 

and the rotational contribution to the molar heat capacity is 

C == R V.rot 

A diatomic molecule has two rotational degrees of freedom, and each one contributes 

RI2 to C V.rot' 

We can also calculate the fraction of molecules in the jth rotational level: 

EXAMPLE 18-4 

(2 j + 1) e (~) raJ ( ) + 1 ) / T 

i}==------------­
qrot 

== (2 j + 1) (e rotl T)e-c:-)rot}(J+ 1)/ T ( 18.35) 

Use Equation 18.35 to calculate the population of the rotational levels of CO at 300 K. 

SOL UTI 0 N: Using 8 == 2.77 K from Table 18.2, we have that 8 / T == 0.00923 
rot rut 

at 300 K. Therefore, 

fJ == (21 + 1) (0.00923)e-o.00923J(l+1) 

We can present our results in the form of a table: 

1 f./ 

0 0.00923 

2 0.0437 

4 0.0691 

6 0.0814 

8 0.0807 

10 0.0702 

12 0.0547 

16 0.0247 

18 0.0145 

These results are plotted in Figure 18.5. 
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FIG U R E 18.5 
The fraction of molecules in the lth rotational level for CO at 300 K. 

Contrary to the case for vibrational levels, most molecules are in the excited 
rotational levels at ordinary temperatures. We can estimate the most probable value of 
J by treating Equation 18.35 as if J were continuous and by setting the derivative with 
respect to J equal to zero to obtain (Problem 18-18) 

( 
T ) 1/2 1 

Imp ~ 28 - 2 
rot 

(18.36) 

This equation gives a value of 7 for CO at 300 K (in agreement with Figure 18.5). 
We can also use Equation 18.35 to rationalize the observed intensities of the lines 

in the P and R branches of the vibrational-rotational spectrum of a diatomic molecule 
(Figure 13.2). Note that the envelope of the lines in Figure 18.5 is similar to the lines 
in the P and R branches in Figure 13.2. The reason the two figures are similar is that 
the intensities of the rotational lines are proportional to the number of molecules in the 
rotational level from which the transition occurs. Thus, we see that the shape of the P 
and R branches reflects the thermal population of rotational energy levels. 

18-6. Rotational Partition Functions Contain a Symmetry Number 

Although it is not apparent from our derivation of qrot (T), Equations 18.33 and 18.34 
apply only to heteronuclear diatomic molecules. The underlying reason is that the wave 
function of a homonuclear diatomic molecule must possess a certain symmetry with 
respect to the interchange of the two identical nuclei in the molecule. In particular, if the 
two nuclei have integral spins (bosons), the molecular wave function must be symmetric 
with respect to an interchange of the two nuclei; if the nuclei have half odd integer 
spin (fermions), the molecular wave function must be antisymmetric. This symmetry 
requirement has a profound effect on the population of the rotational energy levels of 
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a homonuclear diatomic molecule, which can be understood only by a careful analysis 
of the general symmetry properties of the wave function of a diatomic molecule. This 
analysis is somewhat involved and will not be done here, but we need the final result. 
At temperatures such that 8 rot « T, which we have seen applies to most molecules at 
ordinary temperatures, qrot for a homonuclear diatomic molecule is 

(18.37) 

Note that this equation is the same as Equation 18.34 for a heteronuclear diatomic 
molecule except for the factor of 2 in the denominator. This factor comes from the ad­
ditional symmetry of the homonuclear diatomic molecule; in particular, a homonuclear 
diatomic molecule has two indistinguishable orientations. There is a two-fold axis of 
symmetry perpendicular to the internuclear axis. 

Equations 18.34 and 18.37 can be written as one equation by writing qrot as 

T 
qrot(T):= 8 

(5~ 

(18.38) 
rot 

where (5 := 1 for a heteronuclear diatomic molecule and 2 for a homonuclear diatomic 
molecule. The factor (5 is called the symmetry number of the molecule and represents 
the number of indistinguishable orientations of the molecule. 

Having studied each contribution to the molecular partition function of a diatomic 
molecule, we can now include the rigid rotator-harmonic oscillator approximation in 
the partition function of a diatomic molecule to obtain 

(18.39) 

Remember that this expression requires that 8 rot « T, that only the ground electronic 
state is populated, that the zero of the electronic energy is taken to be the separated 
atoms at rest in their ground electronic states, and that the zero of energy for the 
vibrational energy is that at the bottom of the internuclear potential well of the lowest 
electronic state. Note that only qtrans is a function of V, and that this function is of the 
form f (T) V, which, as we have seen before, is responsible for the ideal-gas equation 
of state. 

EXAMPLE 18-5 
Derive an expression for the molar energy U of a diatomic ideal gas from Equa­
tion 18.39. Identify each of the terms. 

SOL UTI 0 N: We start with 

Q( N V T) = [q(V, T)]N 
, , N! 
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and 

_ 2 (a In Q) _ 2 (a In q ) U - ksT - NksT 
aT N,V aT v 

Using Equation 18.39 for q(V, T), we have 

3 8. D 
In q = In T + In T - Vlb - In( I - e-0

)vib/
T ) + e 

2 2T ksT 

+ terms not containing T 

Therefore, 

(
a In q) 3 I (0 . (8 . / T2)e .. -.(-)Vib/

T 

= _ + _ + Vlb + __ vlb~ ___ _ 

aT v 2T T 2T2 I - e (-\ib/ T 

D 
e 

and letting N = N A and N A ks = R for one mole, 

3 8 . 8 . e-(-)vib/ T 

U = -RT + RT + R Vlb + R Vlb - N D 
2 2 I - e (-)vib/ T A e 

( 18.40) 

The first term represents the average translational energy (RT /2 for each of the three 
translational degrees of freedom), the second term represents the average rotational 
energy (RT /2 for each of the two rotational degrees of freedom), the third term 
represents the zero-point vibrational energy, the fourth term represents the average 
vibrational energy in excess of the zero-point vibrational energy, and the last term 
reflects the electronic energy relative to the zero of electronic energy that we have 
chosen, namely the two separated atoms at rest in their ground electronic states. 

The heat capacity is obtained by differentiating Equation 18.40 with respect to T: 

C v 5 (8Vib )2 
R == 2 + T -( 1---e-C-)-vib-/ T-)-2 (18.41) 

Figure 17.3 presents a comparison of Equation 18.41 with experimental data for oxygen. 
The agreement is good and is typical of that found for other properties. The agreement 
can be improved considerably by including the first corrections to the rigid rotator­
harmonic oscillator model. These include effects such as centrifugal distortion and 
anharmonicity. The consideration of these effects introduces a new set of molecular 
constants, all of which can be determined spectroscopically and are well tabulated. The 
use of such additional parameters from spectroscopic data can give calculated values 
of the heat capacity that are actually more accurate than calorimetric ones. 



18-7. The Vibrational Partition Function of a Polyatomic Molecule Is 
a Product of Harmonic Oscillator Partition Functions for Each 
Normal Coordinate 

The discussion in Section 18-3 for diatomic molecules applies equally well to poly­
atomic molecules, and so 

Q(N V T) == [q(V, T)]N 
, , N! 

As before, the number of translational energy states alone is sufficient to guarantee that 
the number of energy states available to any molecule is much greater than the number 
of molecules in the system. 

As for diatomic molecules, we use a rigid rotator-harmonic oscillator approxima­
tion. This allows us to separate the rotational motion from the vibrational motion of the 
molecule, so that we can treat each one separately. Both problems are somewhat more 
complicated for polyatomic molecules than for diatomic molecules. Nevertheless, we 
can write the polyatomic analog of Equation 18.19: 

(18.42) 

In Equation 18.42, qtrans is given by 

V T - B V 
[

2][ Mk T]3/2 
q trans ( , ) - h 2 (18.43) 

where M is the total mass of the molecule. We choose as the zero of energy the n atoms 
completely separated in their ground electronic states. Thus, the energy of the ground 
electronic state is - De' and then the electronic partition function is 

D /k T q - 0 e e B + ... 
elec - Del (18.44) 

To calculate Q(N, V, T) we must investigate qrot and qvib' 

We learned in Section 13-9 that the vibrational motion of a poly atomic molecule 
can be expressed in terms of normal coordinates. By introducing normal coordinates, the 
vibrational motion of a polyatomic molecule can be expressed as a set of independent 

harmonic oscillators. Consequently, the vibrational energy of a polyatomic molecule 
can be written as 

~i == 0, 1, 2, ... (18.45) 

where v. is the vibrational frequency associated with the jth normal mode and Ct is the 
J 

number of vibrational degrees of freedom (3n - 5 for a linear molecule and 3n - 6 for 
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a nonlinear molecule, where n is the number of atoms in the molecule). Because the 
normal modes are independent, 

and 

a -f-) 'b .j2T e VI.j 

q vib = n (1 -("). IT) 
j=1 

- e Vlh.j 

a 

EVib == NkB L 
j=l 

a 

CV.vib == NkB L 
j=l 

(0 (0 (~) 'h ,IT 
H H , . e VI.j 

vib,j + _v_Ib_,J __ _ 

2 1 -(~) 'h ./ T - e VI.J 

(

8 )2 _(M) 'h ,IT 
vib,j __ e _VI _.J __ 

T (1 - e f-) vjh.J IT) 2 

where (0 'b ' is a characteristic vibrational temperature defined by 
VI ,J 

hv. e ==_J 
vib,j k 

B 

( 18.46) 

(18.47) 

(18.48) 

(18.49) 

Table 18.4 contains values of (0 vib,j for several poly atomic molecules. 

TAB L E 18.4 
Values of the characteristic rotational temperatures, the characteristic vibrational temperatures, 
Do for the ground state, and the symmetry number, a, for some polyatomic molecules. The 
numbers in parentheses indicate the degeneracy of that mode. 

Molecule (-1ro/K ~) 'b .lK Do/kJ.mol- 1 
VI .J 

CO2 0.561 3360, 954(2), 1890 1596 

H
2
O 40.1,20.9,13.4 5360,5160,2290 917.6 

NH3 13.6, 13.6,8.92 4800, 1360, 4880(2), 2330(2) 1158 

CI0
2 

2.50, 0.478, 0.400 1360,640,1600 378 

S02 2.92, 0.495, 0.422 1660, 750, 1960 1063 

N20 0.603 3200, 850(2), 1840 1104 

N0
2 

11.5, 0.624, 0.590 1900, 1080, 2330 928.0 

CH
4 

7.54, 7.54, 7.54 4170, 2180(2), 4320(3), 1870(3) 1642 

CH3CI 7.32,0.637,0.637 4270, 1950, 1050, 4380(2) 1551 

2140(2), 1460(2) 

CC14 0.0823, 0.0823, 0.0823 660, 310(2), 1120(3), 450(3) 1292 

EXAMPLE 18-6 
Calculate the contribution of each normal mode to the vibrational heat capacity of CO

2 

at 400 K. 

2 

2 

3 

2 

2 

1 

2 

12 

3 

12 



18-7. The Vibrational Partition Fu nction of a Polyatom ic Molecu Ie 

SOL UTI 0 N: The values of e "b " are given in Table 18.4. Note that the e "b = 954 K 
VI ,j VI 

mode (bending mode) is doubly degenerate. For t-)vib,j = 954 K (the doubly degerate 
bending mode)~ 

C V,j (954)2 e-954/400 
- - =0.635 

R - 400 (1 - e -954/400)2 

For e vib.j = 1890 K (the asymmetric stretch), 

C V.j (1890)2 e-J890/400 
----- = 0.202 

R 400 (1 - e-1890/4(0)2 

For e vib,j = 3360 K (the symmetric stretch), 

V,} = =0016 
C. (3360) 2 e -3360/400 

R 400 (1 - e -3360/400)2 . 

The total vibrational heat capacity at 400 K is 

CV,Vib = 2(0.635) + 0.202 + 0.016 = 1.488 
R 

Note that the contribution from each mode decreases as e 'b " increases. Because e "b " 
VI ,j VI,} 

is proportional to the frequency of the mode, it requires higher temperatures to excite 

modes with larger values of e "b ". The molar vibrational heat capacity from 200 K to 
VI ,j 

2000 K contributed by each mode is shown in Figure 18.6. 

1.0 

C< 
"-

.£J 0.5 .-
;;.. . 
> lu 

o.o~~~--~--------~--------~--------~ 
200 600 

FIG U R E 18.6 

1000 

TIK 

1400 1800 

The contribution of each normal mode to the molar vibrational heat capacity of CO
2

, The 
curve indicated by triangles corresponds to e vib,j = 954 K; the curve indicated by squares 
to e 'b " = 1890 K; and the curve indicated by circles to e 'h " = 3360 K. Note that modes with 

VI ,j Vi ,j 

smaller values of e 'b ., or lJ., contribute more at a given temperature. 
VI ,j j 
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18-8. The Form of the Rotational Partition Function of a Polyatomic 
Molecule Depends Upon the Shape of the Molecule 

In this section, we will discuss the rotational partition functions of poly atomic mole­
cules. Let's consider a linear polyatomic molecule first. In the rigid-rotator approxima­
tion, the energies and degeneracies of a linear polyatomic molecule are the same as for 
a diatomic molecule, E j == 1(1 + 1)h 2 /8][2 I with J == 0, 1, 2, ... and gj == 21 + 1. 
In this case, the moment of inertia I is 

n 

I == "m.d~ ~ .J } 
)=1 

where d. is the distance of the jth nucleus from the center of mass of the molecule. 
} 

Consequently, the rotational partition function of a linear poly atomic molecule is the 
same as that of a diatomic molecule, namely, 

8][2 I kB T 
qrot == a h 2 

T 

aC0 
(18.50) 

rot 

As before, we have introduced a symmetry number, which is unity for unsymmetrical 
molecules such as N20 and COS and equal to two for symmetrical molecules such as 
CO2 and C2H2 . Recall that the symmetry number is the number of different ways the 
molecule can be rotated into a configuration indistinguishable from the original. 

EXAMPLE 18-7 
What is the symmetry number of ammonia, NH3 ? 

SOL UTI 0 N: Ammonia is a trigonal pyramidal molecule and has the three indistin­
guishable orientations shown below looking down the three-fold axis of symmetry. 

Therefore, the symmetry number is three. 

In Chapter 13, we learned that the rotational properties of nonlinear polyatomic 
molecules depend upon the relative magnitudes of their principal moments of inertia. 
If all three principal moments of inertia are equal, the molecule is called a spherical 

top. If two of the three are equal, the molecule is called a symmetric top. If all three are 
different, the molecule is called an asymmetric top. Just as we defined a characteristic 
rotational temperature of a diatomic molecule by Equation 18.32, Grot == 112/2IkB' 



18-8. The Form of the Rotational Partition Function of a Polyatomic Molecule 

we define three characteristic rotational temperatures in terms of the three principal 
moments of inertia according to 

j == A, B, C (18.51) 

Thus, we have the various cases 

8 ==8 ==8 rot,A . rot,B rot.C spherical top 

8 ==8 =/-8 rot, A rot, B rot, C 
symmetric top 

8 =/-8 =/-8 rot, A rot,B rot,C 
asymmetric top 

The quantum-mechanical problem of a spherical top can be solved exactly to give 

E == J 

J(J + 1)1i 2 

21 

The rotational partition function is 

CX) 

J == 0, 1, 2, ... 

q (T) == '"'(2J + 1)2e-h
2
J(J+l)/2JkB T 

rot ~ 
J=O 

( 18.52) 

(18.53) 

For almost all spherical top molecules 6) rot « T at ordinary temperatures, so we convert 
the sum in Equation 18.53 to an integral: 

Note that we have included the symmetry number a. For 8 rot « T, the most important 
values of J are large (Problem 18-26), and so we may neglect 1 compared with J in 
the integrand of the above expression for q rot to obtain 

If we let 8 rot / T == G, we can write 

== ~ . _1 (;r) 1/2 

a 4a Q 

or, upon substituting 8 rot/ T for Q, 

;rI/2 ( T )3/2 
qrot(T) == a 8 

rot 

spherical top (18.54) 

753 



754 Chapter 18 I Partition Functions and Ideal Gases 

The corresponding expressions for a symmetric top and an asymmetric top are 

T T 

8 
rot. A 8 

rot.C 

and 

8 rot. A 8 rot.B 8 rot.C 

I '') I~ 

1/2 

symmetric top 

asymmetric top 

(18.55) 

(18.56) 

Notice how Equation 18.56 reduces to Equation 18.55 when 8 rot,A = 8rotB and how 
both Equations 18.55 and 18.56 reduce to Equation 18.54 when 8

rot
,A = 8rot.B = 8

rot
,c' 

Table 18.4 contains values of 8 rot, A ' 8 rot.B' and 8 rol.C for several polyatomic molecules. 
The average molar rotational energy of a nonlinear polyatomic molecule is 

U = N k T2 (dlnqrot(T)) 
rot A B dT 

(
dlnT3/2) 3RT = RT2 =--

dT 2 

or R T /2 for each rotational degree of freedom, and C V,rot = 3 R /2. 

18-9. Calculated Molar Heat Capacities Are in Very Good Agreement 
with Experimental Data 

We can now use the results of Sections 18-7 and 18-8 to construct q (V, T) for 
polyatomic molecules. For an ideal gas of linear polyatomic molecules, q (V, T) is the 
product of Equations 18.43, 18.44, 18.46, and 18.50: 

(
2rrMkBT)3/

2 T 
q(V, T) = h2 V . -a-8-

rot 

3/1-5 -0) "b .j2T 

n e Vl.} 

. 1 - e 0\ib.j IT 
./=1 

(18.57) 

The energy is 

(18.58) 

and the heat capacity is 

_V _ __ + _ + " vlb,j 
C 3 2 3n-S (C~ .. )2 e-0

)vib.j/T 

NkB - 2 2 b T (1 - e 0)Vib. j /
T )2 

(18.59) 



18-9. Calculated Molar Heat Capacities Are in Very Good Agreement with Experimental Data 

For an ideal gas of nonlinear polyatomic molecules, 

and 

( 
2n M kB T ) 3/2 n 1/2 

q (V, T) == 2 V . 
h (J 

1/2 

( 18.60) 

x 
3n-6 -0). .j2T e Ylb.J 

IT (l -(7 b IT) - e \I,/ j=1 . 

U 3 3 3L:n 
6 (e 'b ' e 'b '/ T) D _ _ _ + VI ,J + VI ,J _ e 

-N-k-T - 2 + 2 . 2T eC;')vib,j/T - 1 k T 
B )=1 B 

(18.61) 

v __ + _ + '"'" VIb,) 

C 3 3 3n--6 (e, ,)2 e-8Yib,j/T 

-N-k-
B 

- 2 2 b T (1 - e-0\ib. j / T )2 
( 18.62) 

EXAMPLE 18-8 
Calculate the molar heat capacity of gaseous water at 300 K. 

SOLUTION: We use Equation 18.62 with e 'b' = 2290 K, 5160 K, and 5360 K 
VI ,j 

(Table 18.4). For 8 vib,j = 2290 K, 

V,J = = 0 0282 
C, (2290)2 e2290/300 

R 300 (e2290/300 - 1)2 . 

Similarly C v .j R = l.00 X 10-5 for e 'b . = 5160 K and 5.56 x 10-6 for e 'b ' = 
,j VI ,j VI ,j 

5360 K. The total molar heat capacity of water at 300 K is 

C 
~ = 3.000 + 0.0282 + 1.00 x 10-5 + 5.56 X 10-6 = 3.028 
R 

The experimental value is 3.011. Notice that the vibrational degrees of freedom con­
tribute very little to the heat capacity of water at 300 K. The calculated and experimental 
values at 1000 K are 3.948 and 3.952, respectively. Figure 18.7 shows the molar heat 
capacity of water from 300 K to 1200 K. 

Table 18.5 gives the vibrational contribution to the molar heat capacity at 300 K 
for a variety of molecules of different shapes. It can be seen that the vibrational 
contributions are far from their high-temperature limits and that the agreement between 
the calculated and experimental values of C v / R is good. A calculation for more 
complicated molecules would show similar agreement between the calculated values 
and the experimental data. 
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4.2 

~ 3.8 
........... 

..f:j 

.,..... 
> 0 

, 

> 
1C,J 3.4 

0 

o 

3.0~~--~~~--~--~--~--~--~--~ 

300 500 700 900 1100 

TIK 

FIG U R E 18.7 
A comparison of the molar heat capacity of water vapor calculated from Equation 18.62 and 
the experimental value. The experimental data are indicated by the circles. 

TAB L E 18.5 
Vibrational contributions to the molar heat capacity of some polyatomic molecules at 300 K. 

Vibrational Total Total 

Contribution CvlR CvlR 

Molecule 0) 'b/K Degeneracy to C v Cy vib l R (calc) (exptl) 
VI , 

CO2 1890 1 0.073 

3360 1 0.000 

954 2 0.458 0.99 3.49 3.46 

N20 1840 1 0.082 

3200 1 0.003 

850 2 0.533 1.15 2.65 

NH3 4800 1 0.000 

1360 1 0.226 

4880 2 0.000 

2330 2 0.026 0.28 3.28 

CH
4 

4170 1 0.000 

2180 2 0.037 

4320 3 0.000 

1870 3 0.077 0.30 3.30 3.29 

H2O 2290 1 0.028 

5160 1 0.000 

5360 1 0.000 0.03 3.03 3.01 



Problems 

18-1. Equation 18.7 shows that (c
tran

) == ~kB T in three dimensions, and Problem 18-3 shows 

that (c
tran

) == ~kB T in one dimension and ~kB T in two dimensions. Show that typical 

values of translational quantum numbers at room temperature are 0 (109
) for m == 10-26 kg, 

a == 1 dm, and T == 300 K. 

18-2. Show that the difference between the successive terms in the summation in Equation 18.4 

is very small for m == 10-26 kg, a == 1 dm, and T == 300 K. Recall from Problem 18-1 that 

typical values of n are 0(109
). 

18-3. Show that 

a T == B a (
2nmk T) 1/2 

qtrans (,) h2 

in one dimension and that 

(
2nmkBT) 2 

qtrans (a, T) == h2 a 

in two dimensions. Use these results to show that (c
trans

) has a contribution of kB T 12 to its 

total value for each dimension. 

18-4. Using the data in Table 8.6, calculate the fraction of sodium atoms in the first excited 

state at 300 K, 1000 K, and 2000 K. 

18-5. Using the data in Table 18.1, evaluate the fraction of lithium atoms in the first excited 

state at 300 K, 1000 K, and 2000 K. 

18-6. Show that each dimension contributes RI2 to the molar translational heat capacity. 

18-7. Using the values of e
vib 

and Do in Table 18.2, calculate the vaues of De for CO, NO, 

and Kr 

18-8. Calculate the characteristic vibrational temperature 0) vib for H2 (g) and D2 (g) (V
H2 

== 
4401 em I and Vo == 3112 cm- I

). 
2 

18-9. Plot the vibrational contribution to the molar heat capacity ofCl
2 

(g) from 250 K to 1000 K. 

18-1 O. Plot the fraction of HCI(g) molecules in the first few vibrational states at 300 K 

and 1000 K. 

18-11. Calculate the fraction of molecules in the ground vibrational state and in all the excited 

states at 300 K for each of the molecules in Table 18.2. 

18-12. Calculate the value of the characteristic rotational temperature 0) rot for H2 (g) and D2 (g). 

(The bond lengths of H2 and D2 are 74.16 pm.) The atomic mass of deuterium is 2.014. 

18-13. The average molar rotational energy of a diatomic molecule is RT. Show that typical 

values of ] are given by ](] + 1) == T le
rot

. What are typical values of ] for N
2
(g) 

at 300 K? 
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18-14. There is a mathematical procedure to calculate the error in replacing a summation by 
an integral as we do for the translational and rotational partition functions. The formula is 
called the Euler-Maclaurin summation formula and goes as follows: 

b ib 
1 1 {df L fen) = f(n)dn + -{feb) + f(a)} - - -

n =0 a 2 12 d n 11 =a 

Apply this formula to Equation 18.33 to obtain 

T { 1 (8) 1 (8)2 [(8 .)3]} q (T) = - 1 + - ~ + - ~ + 0 ~ 
rot 8 3 T 15 T T 

rot 

Calculate the correction to replacing Equation 18.33 by an integral for N2 (g) at 300 K; 
H2 (g) at 300 K (being so light, H2 is an extreme example). 

18-15. Apply the Euler-Maclaurin summation formula (Problem 18-14) to the one-dimensional 

version of Equation 18.4 to obtain 

( 
2n n1 k T) 1/2 [ 1 h 

2 
] 2 2 

q (a T) = B a + _ + e -h 18ma ks T 
trans ' h 2 2 4Sma 2 k T 

B 

Show that the correction amounts to about 10-8 % for m = 10-26 kg, a = 1 dm, and 

T = 300 K. 

18-16. We were able to evaluate the vibrational partition function for a harmonic oscillator 

exactly by recognizing the summation as a geometric series. Apply the Euler-Maclaurin 

summation formula (Problem IS-14) to this case and show that 

,::XJ ::xJ 

'"" - R ( V + ! ) h \J (-) . 12 T '"" - v H . I T ~ e {/ 2 == e Vlb' ~ e vlh 

v=O v=O 

= e vih + - + + ... _(_) 12T [T 1 8 vib ] 

8
vib 

2 12T 

Show that the corrections to replacing the summation by an integration are very large for 
02 (g) at 300 K. Fortunately, we don't need to replace the summation by an integration in 

this case. 

18-17. Plot the fraction of NO(g) molecules in the various rotational levels at 300 K and 

at 1000 K. 

18-18. Show that the values of J at the maximum of a plot of f1 versus J (Equation 18.35) is 

given by 

( 
T ) 1/2 

Jmax ~ 28 
rot 

1 

2 

Hint: Treat J as a continuous variable. Use this result to verify the values of J at the maxima 

in the plots in Problem IS-17. 



Problems 

18-19. The experimental heat capacity of N2 (g) can be fit to the empirical formula 

over the temperature range 300 K < T < 1500 K. Plot C v (T) / R versus T over this range 
using Equation 18.41, and compare your results with the experimental curve. 

18-20. The experimental heat capacity of CO(g) can be fit to the empirical formula 

over the temperature range 300 K < T < 1500 K. Plot C v (T) / R versus T over this range 
using Equation 18.41, and compare your results with the experimental curve. 

18-21. Calculate the contribution of each normal mode to the molar vibrational heat capacity 

of Hz 0 (g) at 600 K. 

18-22. In analogy to the characteristic vibrational temperature, we can define a characteristic 

electronic temperature by 

c. 
B ==2 

elec,j k 
B 

where C ej is the energy of the j th excited electronic state relative to the ground state. Show 
that if we define the ground state to be the zero of energy, then 

(~) / T - (..) / T 
q == g + g e elec, I + g e elec,2 + ... 

elec 0 I 2 

The first and second excited electronic states of O(g) lie 158.2 cm- I and 226.5 cm I above 

the ground electronic state. Given go == 5, g I == 3, and g2 == 1, calculate the values of B elec, I' 

B elec,2' and qelec (ignoring any higher states) for O(g) at 5000 K. 

18-23. Determine the symmetry numbers for H20, HOD, CH
4

, SF
6

, C
2
H2, and C

2
H

4
• 

18-24. The HCN(g) molecule is a linear molecule, and the following constants determined 
spectroscopically are I == 18.816 X 10-47 kg·m2

, VI == 2096.7 cm I (HC-N stretch), v
2 

== 
713.46 cm- 1 (H-C-N bend, two-fold degeneracy), and V3 == 331l.47 cm- 1 (H-C stretch). 

Calculate the values of B t and B 'b and C v at 3000 K. ro VI 

18-25. The acetylene molecule is linear, the C=C bond length is 120.3 pm, and the C-H bond 
length is 106.0 pm. What is the symmetry number of acetylene? Determine the moment 
of inertia (Section 13-8) of acetylene and calculate the value of B rot . The fundamental 
frequencies of the normal modes are VI == 1975 cm- I

, v
2 

== 3370 cm- I
, V3 == 3277 cm- 1

, 

v4 == 729 cm- I
, and V5 == 600 cm- I

. The normal modes v
4 

and V5 are doubly degenerate. 

All the other modes are nondegenerate. Calculate B vib,j and C v at 300 K. 

18-26. Plot the summand in Equation 18.53 versus J, and show that the most important values 

of J are large for T » B
rot

• We use this fact in going from Equation 18.53 to Equation 18.54. 

18-27. Use the Euler-Maclaurin summation formula (Problem 18-14) to show that 

T- -- -O~ 
JT 1/2 ( T ) 3/2 1 (B) 

qroJ ) - a 8
ro

, + 6 + T 
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for a spherical top molecule. Show that the correction to replacing Equation 18.53 by an 
integral is about 1 % for CH4 and 0.001 % for CCl4 at 300 K. 

18-28. The N-N and N-O bond lengths in the (linear) molecule N
2
0 are 109.8 pm and 

121.8 pm, respectively. Calculate the center of mass and the moment of inertia of 14N I4N 160. 

Compare your answer with the value obtained from 8 in Table 18.4. 
rot 

18-29. N02 (g) is a bent triatomic molecule. The following data determined from spec­
troscopic measurements are VI = 1319.7 cm- I

, v
2 

= 749.8 cm- I
, V3 = 1617.75 cm- l

, 

Ao = 8.0012 cm- I
, Bo = 0.43304 cm- l

, and Co = 0.41040 cm- I
. Determine the three 

characteristic vibrational temperatures and the characteristic rotational temperatures for 

each of the principle axes of N02(g) at 1000 K. Calculate the value of C v at 1000 K. 

18-30. The experimental heat capacity of NH] (g) can be fit to the empirical formula 

over the temperature range 300 K < T < 1500 K. Plot C v (T) I R versus T over this range 

using Equation 18.62 and the molecular parameters in Table 18.4, and compare your results 
with the experimental curve. 

18-31. The experimental heat capacity of S02 (g) can be fit to the empirical formula 

1454.62 K 160351 K2 
Cv(T)IR=6.8711- T + T2 

over the temperature range 300 K < T < 1500 K. Plot C v (T) I R versus T over this range 

using Equation 18.62 and the molecular parameters in Table 18.4, and compare your results 

with the experimental curve. 

18-32. The experimental heat capacity of CH4 (g) can be fit to the empirical formula 

Cv(T)/R = l.099 + (7.27 x 10-3 K-1)T + (1.34 x 10-7 K-2)T2 

-(8.67 X 10- 10 K- 3)T 3 

over the temperature range 300 K < T < 1500 K. Plot C v(T)1 R versus T over this range 
using Equation 18.62 and the molecular parameters in Table 18.4, and compare your results 
with the experimental curve. 

18-33. Show that the moment of inertia of a diatomic molecule is /-LR;, where J1 is the reduced 

mass, and Re is the equilibrium bond length. 

18-34. Given that the values of 8
rot 

and 8 vib for H2 are 85.3 K and 6332 K, respectively, 

calculate these quantities for HD and D'). Hint: Use the Born-Oppenheimer approximation . ... 

18-35. Using the result for q (T) obtained in Problem 18-14, derive corrections to the ex-
rot 

pressions (E
rot

) = RT and CV,rot = R given in Section 18-5. Express your result in terms 

of powers of 8 rotl T. 

18-36. Show that the thermodynamic quantities P and C v are independent of the choice of a 

zero of energy. 



Problems 

18-37. Molecular nitrogen is heated in an electric arc. The spectroscopically determined relative 
populations of excited vibrational levels are listed below. 

v o 1 2 3 4 

1.000 0.200 0.040 0.008 0.002 

Is the nitrogen in thermodynamic equilibrium with respect to vibrational energy? What is 
the vibrational temperature of the gas? Is this value necessarily the same as the translational 
temperature? Why or why not? 

18-38. Consider a system of independent diatomic molecules constrained to move in a plane, 
that is, a two-dimensional ideal diatomic gas. How many degrees of freedom does a 
two-dimensional diatomic molecule have? Given that the energy eigenvalues of a two­
dimensional rigid rotator are 

J == 0, 1, 2, ... 

(where I is the moment of inertia of the molecule) with a degeneracy g J == 2 for all J 
except J == 0, derive an expression for the rotational partition function. The vibrational 
partition function is the same as for a three-dimensional diatomic gas. Write out 

and derive an expression for the average energy of this two-dimensional ideal diatomic gas. 

18-39. What molar constant-volume heat capacities would you expect under classical condi­
tions for the following gases: (a) Ne, (b) 02' (c) H

2
0, (d) CO2, and (e) CHCI

3
? 

18-40. In Chapter 13, we learned that the harmonic-oscillator model can be corrected to include 
anharmonicity. The energy of an anharmonic oscillator was given as (Equation 13.21) 

- ( 1) - - - ( 1)2 £ == v+- v -xv v+- + ... v 2 e e e 2 

where the frequency ve is expressed in cm- 1
• Substitute this expression for 8

v 
into the 

summation for the vibrational partition function to obtain 

Now expand the second factor in the summand, keeping only the linear term in iv, to 
e e 

obtain 

where 8vibl T == f3ve. Given that (Problem 1-15) 

fvx v = __ x __ 
v=o (1 - X)2 
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and 

show that 

where q 'b h (T) is the harmonic-oscillator partition function. Estimate the magnitude of 
VI , 0 

the correction for el2 (g) at 300 K, for which 8 vib = 805 K and xe ve = 2.675 cm- 1
• 

1 8-41. Prove that 

2 2 100 foo o e-,m dn ~ Ie-an dn 

if a is very small. Hint: Prove that 

2 2 

1
1 100 

o e-an dn« 0 e-an dn 

by expanding the exponential in the first integral. 

18-42. In this problem, we will derive an expression for the number of translational energy 

states with (translational) energy between £ and £ + de. This expression is essentially the 

degeneracy of the state whose energy is 

£ 
11 n n 

x y :: 
(1) 

The degeneracy is given by the number of ways the integer M = 8ma2 
£ / h 2 can be written 

as the sum of the squares of three positive integers. In general, this is an erratic and 
discontinuous function of M (the number of ways will be zero for many values of M), but 
it becomes smooth for large M, and we can derive a simple expression for it. Consider a 

three-dimensional space spanned by nx ' ny, and nz ' There is a one-to-one correspondence 
between energy states given by Equation 1 and the points in this n x' ny, n z space with 
coordinates given by positive integers. Figure 18.8 shows a two-dimensional version of this 
space. Equation 1 is an equation for a sphere of radius R = (8ma 2£/ h 2

)1/2 in this space 

We want to calculate the number of lattice points that lie at some fixed distance from the 
origin in this space. In general, this is very difficult, but for large R we can proceed as 

follows. We treat R, or £, as a continuous variable and ask for the number of lattice points 

between £ and E + /:).£. To calculate this quantity, it is convenient to first calculate the number 
of lattice points consistent with an energy < £. For large £, an excellent approximation can 

be made by equating the number of lattice points consistent with an energy < £ with the 

volume of one octant of a sphere of radius R. We take only one octant because n
x

' ny, and 



ny 

• • • • • • • • • • 
• • • • • • • 
• • • • • • 
• • • • • • • 
• • • • • • • 

• • • • • • • 
• • • • • • • 
• • • • • • • Fie U R E 18.8 

• • • • • • • A two-dimensional version of the (n x' ny, n z) 

• • • • • • 
space, the space with the quantum num-

• • bers n x' ny, and n z as axes. Each point 

nx 
corresponds to an energy of a particle in a 
(two-dimensional) box. 

n ~ are restricted to be positive integers. If we denote the number of such states by cI> (E), we .. , 
can write 

The number of states with energy between E and E + ~E (~E / E « 1) is 

WeE, ~E) == cI>(E + ~E) - cI>(E) 

Show that 

Show that if we take E == 3kB T /2, T == 300 K, m == 10-25 kg, a == 1 dm, and ~E to be 
0.010E (in other words 1 % of E), then WeE, ~E) is 0(1028

). So, even for a system as simple 
as a single particle in a box, the degeneracy can be very large at room temperature. 

18-43. The translational partition function can be written as a single integral over the energy E 

if we include the degeneracy 

q (V T) == 100 

W(E)e-£/kBT dE 
trans ' 

o 

where w(E)dE is the number of states with energy between E and E + dE. Using the result 
from the previous problem, show that qtrans (V, T) is the same as that given by Equation 18.6. 
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James Prescott Joule was born in Salford, near Manchester, England, on December 24, 1818, 
and died in 1889. He and his elder brother were tutored at home by John Dalton, then in 
his 70s. Joule 's father was a wealthy brewer, which allowed Joule freedom from having to 
seek employment. louie conducted his pioneering experiments in laboratories he built at his 
own expense in his home or in his father's brewery. From 1837 to 1847, he carried out a 
series of experiments that led to the general law of energy conservation and to the mechanical 
equivalent of heat. Joule announced all his measurements in a public lecture at St. Ann's 
Church in Manchester, England and, because his earlier reports had been rejected by the 
British Association, later had his lecture published in the Manchester Courier, a newspaper for 
which his brother wrote musical critiques. In 1847, he presented his results to the British 
Association meeting in Oxford, where the 22-year-old William Thomson (later Lord Kelvin) 
immediately appreciated the importance of Joule's work. Thomson later asked Joule to carry 
out experiments on the expansion of gases. This work led to the discovery of the Joule-Thomson 
effect, which demonstrated that a nonideal gas cools when undergoing a free expansion. Joule 
was elected to the Royal Society in 1850. Later in life, he suffered severe financial losses, and in 
1878 friends obtained a pension for him from the government. The SI unit of energy is named 
in his honor. 



CHAPTER 

The First Law of Thermodynamics 

Thermodynamics is the study of the various properties and, particularly, the relations 
between the various properties of systems in equilibrium. It is primarily an experimental 
science that was developed in the 1800s and still is of great practical value in many 
fields, such as chemistry, biology, geology, physics, and engineering. For example, 
we will use thermodynamics to show the quantitative relationship between the vapor 
pressure of a liquid and its heat of vaporization, or to show that if a gas obeys the 
equation of state P V = R T, then its energy depends only upon its temperature. One 
of the most important and fruitful applications of thermodynamics is the analysis of 
chemical equilibria, where thermodynamics can be used to determine the temperature 
and pressure that optimize the products of a given chemical reaction. No industrial 
process would ever be undertaken without a thorough thermodynamic analysis of the 
chemical reactions involved. 

All the results of thermodynamics are based on three fundamental laws. These 
laws summarize an enormous body of experimental data, and there are absolutely no 
known exceptions. In fact, Einstein said of thermodynamics: 

A theory is the more impressive the greater the simplicity of its premises is, 
the more different kinds of things it relates, and the more extended is its area 
of applicability. Therefore, the deep impression which classical thermodynamics 
made upon me. It is the only physical theory of universal content concerning 
which I am convinced that, within the framework of the applicability of its basic 
concepts, it will never be overthrown. I 

Einstein's assessment is worth comment. Realize that thermodynamics was developed 
in the 1800s before the atomic theory of matter was generally accepted. The laws 
and results of thermodynamics are not based on any atomic or molecular theory; they 

1 From "Albert Einstein: Philosopher-Scientist", edited by P.A. Schlipp, Open Court Publishing company, 
La Salle, IL (1973). 765 
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are independent of atomic and molecular models. The development of thermodynam­
ics along these lines is called classical thermodynamics. This character of classical 
thermodynamics is both a strength and a weakness. We can be assured that classical 
thermodynamic results will never need to be modified as our knowledge of atomic and 
molecular structure improves, but classical thermodynamics gives us only a limited 
insight at the molecular level. 

With the development of atomic and molecular theories in the late 1800s and early 
1900s, thermodynamics was given a molecular interpretation, or a molecular basis. 
This field is called statistical thermodynamics because it relates averages of molecular 
properties to macroscopic thermodynamic properties such as temperature or pressure. 
The material in Chapters 17 and 18 is actually an elementary treatment of statistical 
thermodynamics. Many of the results of statistical thermodynamics depend upon the 
molecular models used, so these results are not as solidly based as those of classical 
thermodynamics. Nevertheless, the intuitive advantage of having a molecular picture 
of certain quantities or processes is very convenient. Consequently, in our development 
of thermodynamics in this and the following chapters, we will use a mixture of classical 
and statistical thermodynamics, even though this approach will cost us some of the 
rigor of the results. 

The First Law of Thermodynamics is the law of conservation of energy applied to 
macroscopic systems. To present the first law, we must introduce the concepts of work 
and heat as they are used in thermodynamics. As we will see in the next section, work 
and heat are modes of energy transfer between a system and its surroundings. 

19-1. A Common Type of Work Is Pressure-Volume Work 

The concepts of work and heat play important roles in thermodynamics. Both work and 
heat refer to the manner in which energy is transferred between some system of interest 
and its surroundings. By system we mean that part of the world we are investigating 
and by surroundings we mean everything else. We define heat, q, to be the manner of 
energy transfer that results from a temperature difference between the system and its 
surroundings. Heat input to a system is considered a positive quantity; heat evolved 
by a system is considered a negative quantity. We define work, w, to be the transfer of 
energy between the system of interest and its surroundings as a result of the existence 
of unbalanced forces between the two. If the energy of the system is increased by the 
work, we say that work is done on the system by the surroundings, and we take it to 
be a positive quantity. On the other hand, if the energy of the system is decreased by 
the work, we say that the system does work on the surroundings, or that work is done 
by the system, and we take it to be a negative quantity. A common example of work in 
physical chemistry occurs during the expansion or compression of a gas as a result of 
the difference in pressures exerted by the gas and on the gas. 

An important aspect of work is that it can always be related to the raising or 
lowering of a mass in the surroundings. To see the consequences of this statement, 
consider the situation in Figure 19.1, where a gas is confined to a cylinder that exerts 
a force M g on the gas. In Figure 19.1 a, the initial pressure of the gas, Pi' is sufficient 



Initial state Final state Initial state Final state 

(a) (b) 

FIGURE 19.1 
The effect of work is equivalent to the raising or lowering of a mass in the surroundings. In 
(a) work is done by the system because the mass is raised, and in (b) work is done on the system 
because the mass is lowered. (The system is defined as the gas inside the piston.) 

to push the piston upward, so there are pins holding it in position. Now, remove the 
pins and allow the gas to lift the mass upward to the new position shown, and let the 
pressure of the gas now be Pr. In this process, the mass M has been raised a distance h, 
so the work done by the system is 

w = -Mgh 

The negative sign here is in accord with our convention that work done by a system 
is taken to be a negative quantity. If we divide M g by A, the area of the piston, and 
multiply h by A, then we have 

Mg 
w = - . Ah 

A 

But M g / A is the external pressure exerted on the gas and Ah is the change in volume 
experienced by the gas, so we have 

w = -~xt~ V (19.1) 

Note that 6.. V > 0 in an expansion, so w < O. Clearly, the external pressure must be 
less than the pressure of the inital state of the gas in order that the expansion occur. 

After the expansion, ~xt = Pr· 
Now consider the situation in Figure 19.1 b, where the initial pressure of the gas is 

less than the external pressure ~xt = Mg / A, so the gas is compressed when the pins 
are removed. In this case, the mass M is lowered a distance h, and the work is given by 

Mg 
w = -Mgh = - (Ah) = - p ~ V A ext 

But now 6.. V < 0, so w > O. After the compression, we have P = Pr. The work is 
exl 

positive because work is done on the gas when it is compressed. 
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If I;xt is not constant during the expansion, the work is given by 

(19.2) 

where the limits on the integral indicate an initial state and a final state; we must have 
knowledge of how ~xt varies with V along the path connecting these two states so we 
can carry out the integration in Equation 19.2. Equation 19.2 is applicable to either 
expansion or compression. If ~xt is constant, Equation 19.2 gives Equation 19.1 

w==-p (Vf,-V)==-P ~V 
ext 1 ext 

E X AMP L E 1 9-1 
Consider an ideal gas that occupies 1.00 dm3 at a pressure of 2.00 bar. If the gas is 

compressed isothermally at a constant external pressure, ~xt' so that the final volume 

is 0.500 dm3
, what is the smallest value P can have? Calculate the work involved 

ext 

using this value of P . 
ext 

SOL UTI 0 N: For a compression to occur, the value of ~xt must be at least as large 
as the final pressure of the gas. Given the inital pressure and volume, and the final 

volume, we can determine the final pressure. The final pressure of the gas is 

P. V (2.00 bar) (1.00 dm3
) 

p = I 1 = 1 = 4.00 bar 
f V

f 
0.500 dm-

This is the smallest value ~xt can be to compress the gas isothermally from 1.00 dm3 

to 0.500 dm3
. The work involved using this value of P is 

ext 

w = - P t ~ V = -(4.00 bar)(-0.500 dm3
) = 2.00 dm3

. bar 
ex 

= (2.00 dm3 .bar)(10-3 m3 
. dm-3)(105 Pa . bar 1) = 200 Pa . m3 = 200 J 

Of course, ~xt can be any value greater than 4.00 bar, so 200 J represents the smallest 

value of w for the isothermal compression at constant pressure from a volume of 

1.00 dm3 to 0.500 dm3
. 

Figure 19.2 illustrates the work involved in Example 19-1. As Equation 19.2 
implies, the work is the area under the curve of ~xt versus V. The smooth curve is an 
isotherm (P versus V at constant T) of an ideal gas; Figure 19.2a shows a constant­
pressure compression at an external pressure equal to ~, the final pressure of the gas; 
and Figure 19.2b shows one at an external pressure greater than ~" We see that the 
work is different for different values of Pt' 

ex 
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An illustration of the work involved in an isothermal constant-pressure compression from 
V = 1.00 dm3 to Vf = 0.500 dm3 at different values of P ! . The smooth curve is an isotherm 

I ex 

(P vs. V at constant T) for an ideal gas. In (a) Pex! is equal to Pf , the final pressure of the gas, 
and in (b) Pe" is larger than Pf = 4.00 bar, and pins must be used to stop the compression at 
V

f 
= 0.500 dm3

• Otherwise the gas would be compressed further, until it reaches the volume 
that corresponds to P on the isotherm. The work is equal to the area of the P - V rectangles. 

ext ext 

19-2. Work and Heat Are Not State Functions, but Energy 
Is a State Function 

Work and heat have a property that makes them quite different from energy. To ap­
preciate this difference, we must first discuss what we mean by the state of a system. 
We say that a system is in a definite state when all the variables needed to describe 
the system completely are defined. For example, the state of one mole of an ideal gas 

- -
can be described completely by specifying P, V, and T. In fact, because P, V , and T 
are related by P V = RT, any two of these three variables will suffice to specify the 
state of the gas. Other systems may require more variables, but usually only a few will 
suffice. A state function is a property that depends only upon the state of the system, 
and not upon how the system was brought to that state, or upon the history of the 
system. Energy is an example of a state function. An important mathematical property 
of a state function is that its differential can be integrated in a normal way: 

(19.3) 

As the notation suggests, the value of Ii V is independent of the path taken between the 
initial and final states I and 2; it depends only upon the initial and final states through 

liV = V2 - VI' 
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770 Chapter 19 / The First Law of Thermodynamics 

Work and heat are not state functions. For example, the external pressure used to 
compress a gas can have any value as long as it is large enough to compress the gas. 
Consequently, the work done on the gas, 

will depend upon the pressure used to compress the gas. The value of ?'xt must exceed 
the pressure of the gas to compress it. The minimum work required occurs when 
?'xt is just infinitesimally greater than the pressure of the gas at every stage of the 
compression, which means that the gas is essentially in equilibrium during the entire 
compression. In this special but important case, we can replace ?'xt by the pressure of 
the gas (P) in Equation 19.2. When ?'xt and P differ only infinitesimally, the process 
is called a reversible process because the process could be reversed (from compression 
to expansion) by decreasing the external pressure infinitesimally. Necessarily, a strictly 
reversible process would require an infinite time to carry out because the process must 
be adjusted by an infinitesimal amount at each stage. Nevertheless, a reversible process 
serves as a useful idealized limit. 

Figure 19.3 shows that a reversible, isothermal compression of a gas requires the 
minimum possible amount of work. Let wrev denote the reversible work. To calculate 
wrev for the compression of an ideal gas isothermally from VI to V2 , we use Equation 19.2 

FIG U R E 19.3 

L.. 
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. () -
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Hc\ cr\.hlc 
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0 .5 I () 

F / dm 1 

The work of isothermal compression is the area under the P.X! versus V curves shown in 
the figure. The external pressure must exceed the pressure of the gas in order to compress 
it. The minimum amount of work occurs when the expansion is carried out reversibly; that 
is, when p.xt is just infinitesimally greater than the pressure of the gas at every stage of 
the compression. The gray area is the minimum work needed to compress the gas from 
VI = 1.00 dm3 to V2 = 0.500 dm3

. The constant-pressure compression curves are the same as 
those in Figure 19.2. 



19- 2. Work and Heat Are Not State Functions, but Energy Is a State Function 

with P ex! replaced by the equilibrium value ofthe pressure ofthe gas, which is nRT / V 
for an ideal gas. Therefore, 

W =_/2 P dV=_/ 2nRTdv=_nRT/2 dV 
fev gas V V 

I I I 

V
2 = -nRTln-

VI 
(19.4) 

Because V
2 

< VI for compression, we see that wfev > 0 as it should be; in other words, 
we have done work on the gas. 

EXAMPLE 19-2 
Consider an ideal gas that occupies 1.00 dm3 at 2.00 bar. Calculate the work required 
to compress the gas isothermally to a volume of 0.667 dm3 at a constant pressure 
of 3.00 bar followed by another isothermal compression to 0.500 dm3 at a constant 
pressure of 4.00 bar (Figure 19.4). Compare the result with the work of compressing 
the gas isothermally and reversibly from 1.00 dm' to 0.500 dm3

. Compare both results 
to the one obtained in Example 19-1. 

SOL UTI 0 N: In the two-stage compression, b. V = - (1.00 - 0.667) dm3 in the first 
step and -(0.667 - 0.500) dm3 in the second step. Therefore, 

..... 
c;l 

.0 

" 

w = -(3 .00 bar)(-0.333 dm}) - (4.00 bar)(-0.167 dm3
) 

= 1.67dm3 ·bar= 167J 

.0 

0... 4 .0 

n . o ~--------~----------~--------~ 
D.n o. - I . () I . -

FIGURE 19.4 
An illustration of the constant-pressure compression of a gas as described in Example 19-2. 
The work required is given by the areas under the two rectangles. 
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772 Chapter 19 / The First Law of Thermodynamics 

We use Equation 19.4 for the reversible process 

V2 0.500 dm3 

UJ == -nRTln - == -nRTln ----
rev VI 1.00 dm3 

Because the gas is ideal and the process is isothermal, n R T is equal to either PI VI or 

P
2 
V

2
, both of which equal 2.00 dm3 

. bar, and so 

w == -(2.00 dm3
. bar) In 0.500 == 1.39 dm3

. bar == 139 J rev 

Note that w is less than that for the two-stage process and that the work for that 
rev 

process is less than the work required in Example 19-1 (200 J). (Compare Figures 19.2, 
19.3, and 19.4.) 

Just as the reversible isothermal compression of a gas requires the mInImum 
amount of work to be done on the gas, a reversible isothermal expansion requires the 
gas to do a maximum amount of work in the process. In a reversible expansion, the 
external pressure is infinitesimally less than the pressure of the gas at each stage. If ~xt 
were any larger, the expansion would not occur. The work involved in the reversible 
isothermal expansion of an ideal gas is also given by Equation 19.4. Because V2 > VI 
for expansion, we see that W rev < 0; the gas has done work on the surroundings, in fact, 
the maximum possible. 

EXAMPLE 19-3 
Derive an expression for the reversible isothermal work of an expansion of a van der 

Waals gas. 

SOL UTI 0 N: The expression for the reversible work is 

'") 

w == -J~ PdV rev 
I 

where 

nRT an 2 

P== ---
V - nb V2 

We substitute this expression for Pinto w to obtain rev 

w == -nRT - an 2 
-j2 dV j2 dV 

rev J V - n b I V2 

= -nRTln +an - --V2 - nb 2 ( 1 1 ) 
VI - nb V2 VI 

Note that this equation reduces to Equation 19.4 when a = b = O. 



19-3. The First Law of Thermodynamics Says the Energy Is 
a State Function 

Because the work involved in a process depends upon how the process is carried out, 
work is not a state function. Thus, we write 

(19.5) 

It makes no sense at all to write w2 ' wI' w2 - wI' or D..w. The value of w obtained in 
Equation 19.5 depends upon the path from state 1 to 2, so work is called a path function. 
Mathematically, 0 w in Equation 19.5 is called an inexact differential, as opposed to an 
exact differential like d V, which can be integrated in the normal way to obtain V2 - VI 
(see MathChapter H). 

Work and heat are defined only for processes in which energy is transferred between 
a system and its surroundings. Both work and heat are path functions. Although a system 
in a given state has a certain amount of energy, it does not possess work or heat. The 
difference between energy and work and heat can be summarized by writing 

(U is a state function) (19.6) 

(path function) (19.7) 

and 

(path function) (19.8) 

For a process in which energy is transferred both as work and heat, the law of 
conservation of energy says that the energy of the system obeys the equation 

dU==oq+ow (19.9) 

in differential form, or 

D..U == q + w (19.10) 

in integrated form. Equations 19.9 and 19.10 are statements of the First Law ofThermo­
dynamics. The First Law of Thermodynamics, which is essentially a statement of the 
law of conservation of energy, also says that even though oq and ow are separately path 
functions or inexact differentials, their sum is a state function or an exact differential. 
All state functions are exact differentials. 
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19-4. An Adiabatic Process Is a Process in Which No Energy as Heat 
Is Transferred 

Not only are work and heat not state functions, but we can prove that even reversible 
work and reversible heat are not state functions by a direct calculation. Consider the 
three paths, depicted in Figure 19.5, that occur between the same initial and final states, 

PI' VI' TI and P2 , V2 , T1• Path A involves a reversible isothermal expansion of an ideal 
gas from PI' VI' TI to P2 , V2 , TI. Because the energy of an ideal gas depends upon only 
the temperature (see Equation 18.40, for example), 

flU - ° A- (19.11) 

so 

8w = -8q rev, A rev, A 

for an isothermal process involving an ideal gas. Furthermore, because the process is 
reversible, 

RTI 
8w = -8q = - dV rev, A rev, A V (19.12) 

so 

j V2 dV V
2 

W = - = - R T - = - R T In -
rev,A qrev,A I V I V 

VI I 

(19.13) 

p 

v 
FIG U R E 19.5 
An illustration of three different pathways (A, B + C, and D + E) to take an ideal gas from 
PI' V]' T] to P

2
, V

2
' T]. In each case, the value of ~ U is the same (~U is a state function), but 

the values of q and ware different (q and ware path functions). 



19-4. An Adiabatic Process Is a Process in Which No Energy as Heat Is Transferred 

Note that wrev is negative (V
2 

> VI) because work is done by the gas. Furthermore, 
qrev is positive because energy as heat entered the system to maintain the temperature 
constant as the system used its energy to do the work. 

Another path (B + C) in Figure 19.5 consists of two parts. The first part (B) 
involves a reversible expansion from PI' VI' TI to P3 , V2, T2 and is carried out such that 
no energy as heat is transferred between the system and its surroundings. A process in 
which no energy as heat is transferred is called an adiabatic process. For an adiabatic 
process, q == 0, so 

dU == ow (19.14) 

Path C of the path B + C involves heating the gas reversibly at constant volume from 
P3 , V2 , T2 to P2, V2, TI. As stated above, ~ U depends upon only temperature; it is 
independent of P and V for an ideal gas. To calculate ~ U for a change from state 1 
of temperature Tl to state 2 of temperature T

2
, recall that the constant volume heat 

capacity is defined as (Equation 17.25) 

and therefore, for an ideal gas 

dU (au) 
dT = aT v = Cv(T) 

or dU == Cv(T)dT, which can be integrated to give 

We can now calculate the total work involved in the path B + C. Because process B 
is adiabatic, 

qrev,B == 0 (19.15) 
so 

i T? (au) il~ 
wrev,B == ~UB == - dT == Cv(T)dT 

T aT v T 
I I 

(19.16) 

For process C, no pressure-volume work is involved (it is a constant-volume process), 
so 

( 19.17) 

For the total path B + C, then 

(19.18) 
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and 

l
T2 

W - W W - T dT rev,B+C - rev,B + rev,C - C V () + 0 
TI 

[T2 

= iT CvCT)dT 
TI 

(19.19) 

Note that 

which is the same as in path A, because the energy U is a state function. However, 

wrev,A =1= wrev,B+C and qrev,A =1= qrev,B+C' because both work and heat are path functions. 

EXAMPLE 19-4 
Calculate ~U, W ,and q for the paths D + E in Figure 19.5, where D represents a 

rev rev 

reversible constant-pressure (PI) expansion of an ideal gas from VI' T] to V2 , T3 and 
E represents cooling the gas reversibly from T3 to TI at a constant volume V2 . 

SOL UTI 0 N: For path D, 

and 

For path E, 

W =0 rev,E 

and 

Therefore, for the overall process, 

w =W +w =-P(V,,-V) rev,D+E rev,D rev,E I _ I 



19-5. The Temperature of a Gas Decreases in a Reversible Adiabatic Expansion 

and 

Note that ~ U = 0 for all three processes indicated in Figure 19.5, but that wand rev 

q are different for each one. 
rev 

19-5. The Temperature of a Gas Decreases in a Reversible 
Adiabatic Expansion 

Path B in Figure 19.5 represents the reversible adiabatic expansion of an ideal gas from 
T

1
, V

1 
to T2 , V2. As the figure suggests, T2 < T1, which means that the gas cools during 

a (reversible) adiabatic expansion. We can determine the final temperature T2 for this 
process. For an adiabatic process, q = 0, and so 

dU = 8w = dw 

Note that the above expression tells us that 8w = dw is an exact differential when 
8q = O. Likewise, 8q = dq is an exact differential if 8w = O. The work done by the 
gas (the system) in the expansion is "paid for" by a decrease in the energy of the gas, 
which amounts to a decrease in the temperature of the gas. Because the work involved in 
a reversible expansion is maximum, the gas must suffer a maximum drop in temperature 
in a reversible adiabatic expansion. Recall that for an ideal gas, U depends only upon the 

- -
temperature and dU = Cv(T)dT = nCv(T)dT, where Cv(T) is the molar constant-
volume heat capacity. Using the fact that d w = - P d V = -n R T d V j V for a reversible 
expansion, the relation d U = d w gives 

nRT 
Cv(T)dT = - dV 

V 
(19.20) 

We divide both sides by T and n and integrate to obtain 

IT2 Cv(T) jV2 dV V2 --dT = -R - = -R In -
T T v V VI 

I I 

(19.21) 

We learned in Section 18-2 that C v = 3Rj2 for a monatomic ideal gas, so Equa­
tion 19.21 becomes 

or 
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(
mOnatomiC) 

ideal gas 
(19.22) 

Thus, the gas cools in a reversible adiabatic expansion (V2 > VI)' 

EXAMPLE 19-5 
Calculate the final temperature if argon (assumed to be ideal) at an initial temperature 

of 300 K expands reversibly and adiabatically from a volume of 50.0 L to 200 L. 

SOL UTI 0 N: First solve Equation 19.22 for T2/ T
I

, 

and then let Tl == 300 K, VI == 50.0 L, and V2 == 200 L to obtain 

(
50.0 L)2/3 

T2 == (300K) == 119 K 
200L 

We can express Equation 19.22 in terms of pressure and volume by using 
p V == n R T to eliminate TI and T2 : 

Upon taking both sides to the 2/3 power and rearranging, we obtain 

PI Vt
S

/3 == P2 V2')/3 (monatomic ideal gas) (19.23) 

This equation shows how the pressure and volume are related in a reversible, adiabatic 
process for an ideal monatomic gas. Compare this result to Boyle's law, which says 
that 

for an isothermal process. 

EXAMPLE 19-6 
Derive the analogs of Equations 19.22 and 19.23 for an ideal diatomic gas. Assume 

the temperature is such that the vibrational contribution to the heat capacity can be 

ignored. 



19-6. Work and Heat Have a Simple Molecular Interpretation 

SOL UTI 0 N: Assuming that C V,vib ~ 0, we have from Equation 18.41 that C v = 
5 R /2. Equation 19.20 for a diatomic ideal gas becomes 

5 R [T2 d T = 5 R In T2 = _ R In V; 
2 J~ T 2 ~ ~ 

so 

(diatomic ideal gas) 

Substituting T = PV / n R into the above equation gives 

or 

P ~7/5 _ P U7/ 5 
I I - 2 2 (diatomic ideal gas) 

19-6. Work and Heat Have a Simple Molecular Interpretation 

Let's go back to Equation 17.18 for the average energy of a macroscopic system, 

U == " p.(N, V, {3)E.(N, V) ~ J J 
(19.24) 

J 

with 

-{JE.(N,V) e J 

p/N, V, 13) = Q(N, V, 13) (19.25) 

Equation 19.24 represents the average energy of an equilibrium system that has the 
variables N, V, and T fixed. If we differentiate Equation 19.24, we obtain 

dU == " p.dE. + " E.dp. ~ J J ~ J J 
(19.26) 

J J 

Because E. == E. (N, V), we can view dE. as the change in E. due to a small change in 
J J J J 

the volume, dV, keeping N fixed. Therefore, substituting dE. == (aE.jaV)NdV into 
J J 

Equation 19.26 gives 

dU == "p. (aE
j

) dV + " E.dp. 
~ J av N ~ J J 

J J 

This result suggests we can interpret the first term in Equation 19.26 to be the average 
change in energy of the system caused by a small change in its volume, in other words, 
the average work. 
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Furthermore, if this change is done reversibly, so that the system remains essen­
tially in equilibrium at each stage, then the p. in Equation 19.26 will be given by 

} 

Equation 19.25 thoughout the entire process. We can emphasize this by writing 

dU == '"' p.(N, V, fJ) (aEi) dV + '"' E.(N, V)dp.(N, V, fJ) ~ .J av ~ } } 
i N j 

(19.27) 

If we compare this result with the macroscopic equation (Equation 19.9) 

dU == 8w +8q rev rev (19.28) 

we see that 

8w ==,",P.(N,V,R)(aEi ) dV 
rev ~ } fJ av N 

} 

(19.29) 

and 

8q == '"' E.(N, V)dp.(N, V, fJ) 
rev ~ } } 

(19.30) 
i 

Thus, we see that reversible work, 8 W , results from an infinitesimal change in the rev 

allowed energies of a system, without changing the probability distribution of its states. 
Reversible heat, on the other hand, results from a change in the probability distribution 
of the states of a system, without changing the allowed energies. 

If we compare Equation 19.29 with 

8w == -PdV rev 

we see that we can identify the pressure of the gas with 

(19.31) 

Recall that we used this equation without proof in Section 17-5 to show that P V == R T 
for one mole of an ideal gas. 

19-7. The Enthalpy Change Is Equal to the Energy Transferred as Heat 
in a Constant-Pressure Process Involving Only P- V Work 

For a reversible process in which the only work involved is pressure-volume work, the 
first law tells us that 

j
V2 

~U == q + w == q - PdV 
VI 

(19.32) 



19-7. The Enthalpy Change Is Equal to the Energy Transferred as Heat 

If the process is carried out at constant volume, then VI == V2 and 

(19.33) 

where the subscript V on q emphasizes that Equation 19.33 applies to a constant­
volume process. Thus, we see that ~ U can be measured experimentally by measuring 
the energy as heat (by means of a calorimeter) associated with a constant-volume 
process (in a rigid closed container). 

Many processes, particularly chemical reactions, are carried out at constant pres­
sure (open to the atmosphere). The energy as heat associated with a constant-pressure 
process, q p' is not equal to ~ U. It would be convenient to have a state function anal­
ogous to V so that we could write an expression like that in Equation 19.33. To this 
end, let P be constant in Equation 19.32 so that 

{ V2 

qp=~U+P"xtJ~ dV=~U+P~V 
VI 

(19.34) 

where we have used the subscript P on q p to emphasize that this is a constant-pressure 
process. This equation suggests that we define a new state function by 

H == V + PV (19.35) 

At constant pressure, 

~H == ~u + P~V (constant pressure) (19.36) 

Equation 19.34 shows that 

(19.37) 

Thus, this new state function H, called the enthalpy, plays the same role in a constant­
pressure process that U plays in a constant-volume process. The value of ~H can 
be determined experimentally by measuring the energy as heat associated with a 
constant-pressure process, or conversely, qp can be determined from ~H. Because 
most chemical reactions take place at constant pressure, the enthalpy is a practical and 
important thermodynamic function. 

Let's apply these results to the melting of ice at ooe and one atm. For this process, 
qp == 6.01 kJ·mol- l

. Using Equation 19.37, we find that 

~H == qp == 6.01 kJ·mol- 1 

where the overbar on H signifies that ~ H is a molar quantity. We can also calculate 
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the value of ~ U using Equation 19.36 and the fact that the molar volume of ice (V ) 
s 

is 0.0196 L·mol I and that of water (VI) is 0.0180 L·mol- I
: 

~U == ~H - p~ V 

== 6.01 kJ·mol- 1 
- (1 atm)(0.0180 L·mol- 1 

- 0.0196 L.mol- I
) 

== 6.01 kJ.mol- 1 - (1.60 x 10-3 L.atm.mol- I ) ( 8.314 J ) ( 1 ~J) 
0.08206 L·atm 10 J 

~ 6.01 kJ·mol- 1 

Thus, in this case, there is essentially no difference between ~ H and ~ U. 
Let's look at the vaporization of water at 1000 e and one atm. For this process, 

qp == 40.7 kJ·mol- 1
, VI == 0.0180 L·mol- I

, and Vg == 30.6 L·mol- I
• Therefore, 

~H == qp == 40.7 kJ·mol- 1 

But 

~ V == 30.6 L·mol 1 - 0.0180 L·mol- I == 30.6 L·mol- I 

so 

~u == ~H - p~ V 

== 40.7 kJ·mol ] - (1 atm)(30.6 L·mol- 1
) ( 

8.314J ) 
0.08206 L·atm 

== 37.6 kJ.mol I 

Notice that the numerical values of ~ H and ~ U are significantly different (~ 8 % ) 
in this case because ~ V for this process is fairly large. We can give a physical in­
terpretation of these results. Of the 40.7 kJ that are absorbed at constant pressure, 
37.6 kJ (qv == ~U) are used to overcome the intermolecular forces holding the water 
molecules in the liquid state (hydrogen bonds) and 3.1 kJ (40.7 kJ - 37.6 kJ) are used 
to increase the volume of the system against the atmospheric pressure. 

EXAMPLE 19-7 
The value of ~ H at 298 K and one bar for the reaction described by 

is -572 kJ. Calculate ~ U for this reaction as written. 

SOL UTI 0 N: Because the reaction is carried out at a constant pressure of 1.00 bar, 

~ H == q p == - 572 kJ. To calculate ~ U, we must first calculate ~ V. Initially, we have 

three moles of gas at 298 K and 1.00 bar, and so 

nRT 
v== --p 

== 74.3 L 

(3 mol)(0.08314 L·bar·K- 1 'mol- I )(298 K) 

1.00 bar 



19-8. Heat Capacity Is a Path Function 

Afterward, we have two moles of liquid water, whose volume is about 36 mL, which 

is negligible compared with 74.3 L. Thus, ~ V == -74.3 Land 

~u == ~H - p~ V 

== -572 kJ + (1.00 bar)(73.4 L) == -572 kJ + 7.43 kJ ( 
1 kJ ) 

10 bar· L 

== -565 kJ 

The numerical difference between ~ H and ~ U in this case is about 1 %. 

Example 19-7 is a special case of a general result for reactions or processes that 
involve ideal gases, which says that 

l::,. H == l::,. U + R T l::,. n gas 
(19.38) 

where 

l::,.n _ (number of moles Of) _ (number of moles Of) 
gas - gaseous products gaseous reactants 

As Example 19-7 implies, the numerical difference between l::,. Hand l::,. U is usually 
small. 

19-8. Heat Capacity Is a Path Function 

Recall that heat capacity is defined as the energy as heat required to raise the temperature 
of a substance by one kelvin. The heat capacity also depends upon the temperature T. 
Because the energy required to raise the temperature of a substance by one kelvin 
depends upon the amount of substance, heat capacity is an extensive quantity. Heat 
capacity is also a path function; for example, its value depends upon whether we heat 
the substance at constant volume or at constant pressure. If the substance is heated at 
constant volume, the added energy as heat is q v and the heat capacity is denoted by C v . 

Because l::,.U == qv' ev is given by 

C _ (au) ~ 
v - aT v 

(19.39) 

If the substance is heated at constant pressure, the added energy as heat is q p and the 
heat capacity is denoted by e p' Because l::,. H == q p' e p is given by 

e _ (aH) ~ 
p - aT p 

(19.40) 

We expect that C p is larger than C v because not only do we increase the temperature 
when we add energy as heat in a constant-pressure process, but we also do work against 
atmospheric pressure as the substance expands as it is heated. Calculating the difference 
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between C p and C v for an ideal gas is easy. We start with H == U + P V and replace 
PV by nRT to obtain 

H == U +nRT (ideal gas) (19.41) 

Notice that because U depends only upon the temperature (at constant n) for an ideal 
gas, H also depends only upon temperature. Thus, we can differentiate Equation 19.41 
with respect to temperature to obtain 

dH dU 
dT == dT + nR (19.42) 

But 

dH (aH) 
dT = aT p = C p (ideal gas) 

and 

- - C dU (au) 
dT - aT v - v 

(ideal gas) 

so Equation 19.42 becomes 

(ideal gas) (19.43) 

Recall from Chapter 17 that C v is 3 R /2 for one mole of a monatomic ideal gas 
and is approximately 3R for one mole of a nonlinear poly atomic ideal gas at room 

- -
temperature. Therefore, the difference between C p and C v is significant for gases. For 
solids and liquids, however, the difference is small. 

EXAMPLE 19-8 
We will prove generally that (Section 22-3) 

c - c- = T (ap) av ( -) P v aT - aT 
v P 

First, use this result to show that C P - C v = R for an ideal gas and then derive an 
- -

expression for C p - C v for a gas that obeys the equation of state 

PV = RT + B(T)P 

SOL UTI 0 N: For an ideal gas, P V = R T, so 

and 
R 

P 



19-8. Heat Capacity Is a Path Function 

and so 

To determine (a P / a T)-v for a gas that obeys the equation of state, P V == R T + 
B(T) P, we first solve for P. 

RT 
P== =----

V - B(T) 

and then differentiate with respect to temperature: 

Similarly, 

and 

(
ap) R RT dB 

aT -v == V - B(T) + [V - B(T)]2 dT 

P P dB 
==-+- -

T V - B(T) dT 

RT 
V == - + B(T) 

P 

( -) av R dB 

aT p = p + dT 

Therefore, using the equation for C p - C v given in the statement of this example, 

- - (ap) (av) C -c ==T - -
P v aT - aT 

v P 

[
p P dB] [R dB] 

== T T + V _ B(T) dT P + dT 

[ 
RT ] dB PT (dB)2 ==R+ _ +P -+_ --

V - B(T) dT V - B(T) dT 

(
dB) 1 (dB)2 2 ==R+2 - P+- -- P 
dT R dT 

where we have used the fact that P == RT /[V - B(T)] in going from the third line to 
the last line. Notice that this expression is the same as that for an ideal gas if B (T) is 
a constant. 
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19-9. Relative Enthalpies Can Be Determined from Heat Capacity 
Data and Heats of Transition 

By integrating Equation 19.40, we can calculate the difference in the enthalpy of a 
substance that does not change phase between two temperatures: 

(19.44) 

If we let T) == 0 K, we have 

T 

H(T) - H(O) == j Cp(T')dT' 
o 

(19.45) 

[Notice that we have written the integration variable in Equation 19.45 with a prime, 
which is standard mathematical notation used to distinguish an integration limit (T in 
this case) from the integration variable, T'.] It would appear from Equation 19.44 that 
if we had heat-capacity data from 0 K to any other temperature, T, we could calculate 
H (T) relative to H (0). That is not entirely true, however. Equation 19.45 is applicable 
to a temperature range in which no phase transitions occur. If there is a phase transition, 
we must add the enthalpy change for that transition because heat is absorbed without a 
change in T for a phase transition. For example, if T in Equation 19.45 is in the liquid 
region of a substance and the only phase change between 0 K and T is a solid-liquid 
transition, then 

j T [T 
H(T) - H(O) = '"' C~(T)dT + D.fus H + 17 C~(T')dT' 

o Tf· us 

(19.46) 

where C~ (T) and C~ (T) stand for the heat capacity of the solid and liquid phases, 
respectively, T

fus 
stands for the melting temperature, and L),fus H is the enthalpy change 

upon melting (the heat of fusion): 

L),fus H == HI (Tfus ) - H S (Tfus ) 

Figure 19.6 shows the molar heat capacity of benzene as a function of temperature. 
Notice that the plot of C p versus T is not continuous, but has jump discontinuities at the 
temperatures corresponding to phase transitions. The melting point and boiling point of 
benzene at one atm are 278.7 K and 353.2 K, respectively. As Equation 19.45 implies, 
the area under the curve in Figure 19.6 from 0 K to T < 278.7 K gives the molar 
enthalpy of solid benzene [relative to H (0)]. To calculate the molar enthalpy of liquid 
benzene, say, at 300 K and one atm, we take the area under the curve in Figure 19.6 
from 0 K to 300 K and add the molar enthalpy of fusion, which is 9.95 kJ· moll. 
Figure 19.7 shows the molar enthalpy of benzene as a function of temperature. Notice 

- -
that H (T) - H (0) increases smoothly within a phase and that there is a jump at a 
phase transition. 
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FIGURE 19.6 
The constant-pressure molar heat capacity of benzene from 0 K to 500 K. The melting point 
and boiling point of benzene at one atm are 278.7 K and 353.2 K, respectively 
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FIGURE 19.7 
The molar enthalpy of benzene [relative to H (0)] from 0 K to 500 K. 

19-10. Enthalpy Changes for Chemical Equations Are Additive 

Because most chemical reactions take place at constant pressure (open to the atmo­
sphere), the enthalpy change associated with chemical reactions, fl.rH, (the subscript r 
indicates that the enthalpy change is for a chemical reaction) plays a central role in ther­
mochemistry, which is the branch of thermodynamics that concerns the measurement 
of the evolution or absorption of energy as heat associated with chemical reactions. 
For example, the combustion of methane, 
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releases energy as heat and is called an exothermic reaction (exo = out). Most com­
bustion reactions are highly exothermic. The heat evolved in a combustion reaction 
is called the heat of combustion. Chemical reactions that absorb energy as heat are 
called endothermic reactions (endo = in). Exothermic and endothermic reactions are 
illustrated schematically in Figure 19.8. 

The enthalpy change for a chemical reaction can be viewed as the total enthalpy 
of the products minus the total enthalpy of the reactants: 

tJ.H==H -H r prod react (19.47) 

For an exothermic reaction, H d is less than H t' so tJ. H < O. Figure 19.8a represents pro re~ r 

an exothermic reaction; the enthalpy of the reactants is greater than the enthalpy of the 
products, so qp == tJ.rH < 0, and energy as heat is evolved as the reaction proceeds. 
For an endothermic reaction, H d is greater than H t' so Da H > O. Figure 19.8b 

~ re~ r 

represents an endothermic reaction; the enthalpy of the reactants is less than the enthalpy 
of the products, so q p == DarH> 0, and energy as heat must be supplied to drive the 
reaction up the enthalpy "hill." 

Let's consider several examples of chemical reactions carried out at one bar. For 
the combustion of one mole of methane to form one mole of CO

2 
(g) and two moles of 

H20(I), the value of tJ.rH is -890.36 kJ at 298 K. The negative value of tJ.rH tells us 
that the reaction gives off energy as heat and is therefore exothermic. 

An example of an endothermic reaction is the water-gas reaction: 

C(s) + H20(g) ~) CO(g) + H2(g) 

For this reaction, tJ. r H == + 131 kJ at 298 K, so energy as heat must be supplied to 
drive the reaction from left to right. 

An important and useful property of tJ.
r 
H for chemical equations is additivity. This 

property of ~r H follows directly from the fact that the enthalpy is a state function. 
If we add two chemical equations to obtain a third chemical equation, the value of 

Reactants 

Products 
>. 
~ 
~ 

ro 
I1rH < 0 ...c= 

~ 

~ I1 rH> 0 
~ 

Products Reactants 

(a) (b) 

FIGURE 19.8 
An enthalpy diagram for (a) an exothermic reaction and (b) and endothermic reaction. 
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~rH for the resulting equation is equal to the sum of the ~rH for the two equations 
being added together. The additivity of ~r H is best illustrated by example. Consider 
the following two chemical equations. 

C(s) + ~ 02(g) > CO(g) ~ H(I) == -110.5 kJ 
r 

(1) 

~ H(2) == -283.0 kJ 
r 

(2) 

If we add these two chemical equations as if they were algebraic equations, we get 

(3) 

The additive property of ~rH tells us that ~rH for Equation 3 is simply 

~ H(3) == ~ H(I) + ~ H(2) 
r r r 

== -110.5 kJ + (-283.0 kJ) == -393.5 kJ 

In effect, we can imagine Equations 1 and 2 as representing a two-step process with 
the same initial and final states as Equation 3. The total enthalpy change for the two 
equations together must, therefore, be the same as if the reaction proceeded in a single 
step. 

The additivity property of ~rH values is known as Hess's Law. Thus, if the 
values of ~rH(I) and ~rH(2) are known, we need not independently determine the 

experimental value of ~ H(3) because its value is equal to the sum ~ H(I) + ~ H(2). 
r r r 

Now let's consider the following combination of chemical equations. 

(1) 

(2) 

Because Equation 2 is simply the reverse of Equation 1, we conclude from Hess's Law 
that 

~rH(reverse) == -~rH(forward) (19.48) 

As an example of the application of Hess's Law, consider the use of 

~ H(I) == -640 kJ 
r 

(1) 

and 

~ H(2) == -887 kJ 
r (2) 

to calculate the value of ~r H for the equation 

PC13 (1) + Cl2 (g) > PCls (s) (3) 

789 



790 Chapter 19 / The First Law of Thermodynamics 

In this case, we add Equation 2 to the reverse of Equation 1 to obtain Equation 4: 

2 PC13 (I) + 2 C12 (g) ~> 2 PCls (s) 

Thus, from Hess's law, we obtain 

~rH(4) == ~rH(2) - ~rH(l) 

== -887 kJ + 640 kJ == -247 kJ 

We now multiply Equation 4 through by 1/2 to obtain Equation 3: 

and so 

I -247 kJ 
~ H(3) == -~ H(4)· == -- == -124 kJ 

r 2 r 2 

EXAMPLE 19-9 
The molar enthalpies of combustion of isobutane and n -butane are - 2869 kJ . mol- l and 
-2877 kJ 'mol- I

, respectively at 298K and one atm. Calculate ~rH for the conversion 
of one mole of n-butane to one mole of isobutane. 

SOL UTI 0 N: The equations for the two combustion reactions are 

(1) 

~ H (1) == -2877 kJ ·mol- l 
r 

and 

(2) 

~ H(2) == -2869 kJ omol- I 
r 

If we reverse the second equation and add the result to the first equation, then we 

obtain the desired equation 

n-C4H 1o (g) -+ i-C4H,o(g) (3) 

~ H(3) == ~ H(I) - ~ H(2) 
r r r 

== -2877 kJ ·mol- ' - (-2869 kJ· mol-I) == -8 kJ .mol I 

The heat of this reaction cannot be measured directly because competing reactions 

occur. 

(4) 

(3) 



19-11. Heats of Reactions Can Be Calculated from Tabulated 
Heats of Formation 

The enthalpy change of a chemical reaction, ~rH, depends upon the number of moles 
of the reactants. Recently, the physical chemistry division of the International Union 
of Pure and Applied Chemistry (IUPAC) has proposed a systematic procedure for 
tabulating reaction enthalpies. The standard reaction enthalpy of a chemical reaction 
is denoted by ~rHo and refers to the enthalpy change associated with one mole of a 
specified reagent when all reactants and products are in their standard states, which for 
a gas is the equivalent hypothetical ideal gas at a pressure of one bar at the temperature 
of interest. 

For example, consider the combustion of carbon to form carbon dioxide CO2 (g). 
(The standard state of a solid is the pure crystalline substance at one bar pressure at the 
temperature of interest.) The balanced reaction can be written in many ways, including 

C(s) + 02(g) ~> CO2(g) (19.49) 

and 

(19.50) 

The quantity ~rHo implies Equation 19.49 because only one mole of the (specified) 
reactant C(s) is combusted. The value of ~ HO for this reaction at 298 K is ~ H O == 

r r 

-393.5 kJ ·mol~[. The corresponding reaction enthalpy for Equation 19.50 is 

~ H == 2~ HO == -787.0 kJ r r 

We see that ~rH is an extensive quantity, whereas ~rHo is an intensive quantity. The 
advantage of the terminology is that it removes the ambiguity of how the balanced 
reaction corresponding to an enthalpy change is written. 

Certain subscripts are used in place of r to indicate specific types of processes. 
For example, the subscript "c" is used for a combustion reaction and "vap" is used for 
vaporization [e.g., H20(l) ---+ H

2
0(g)]. Table 19.1 lists many of the subscripts you will 

encounter. 
The standard molar enthalpy of formation, ~fHo, is a particularly useful quantity. 

This intensive quantity is the standard reaction enthalpy for the formation of one mole 
of a molecule from its constituent elements. The degree superscript tells us that all 
reactants and products are in their standard states. The value of ~fHo of H

2
0(1) is 

-285.8 kJ·mol~' at 298.15 K. This quantity implies that the balanced reaction is 
written as 

because ~fHo refers to the heat of formation of one mole of H
2
0(l). (The standard 

state for a liquid is the normal state of the liquid at one bar at the temperature of 
interest.) A value of ~fHo for H20(l) equal to -285.8 kJ ·mol- ' tells us that one mole 
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TABLE 19.1 
Common subscripts for the enthalpy changes of processes. 

Subscript 

vap 

sub 

fus 

trs 

mIX 

ads 

c 

f 

Reaction 

Vaporization, evaporation 

Sublimation 

Melting, fusion 

Transition between phases in general 

Mixing 

Adsorption 

Combustion 

Formation 

of H
2
0(l) lies 285.8 kJ "downhill" on the enthalpy scale relative to its constituent 

elements (Figure 19.9b) when the reactants and products are in their standard states. 
Most compounds cannot be formed directly from their elements. For example, an 

attempt to make the hydrocarbon acetylene (C2H2) by the direct reaction of carbon 
with hydrogen 

(19.51) 

yields not just C
2
H2 but a complex mixture of various hydrocarbons such as C2H4 and 

C
2
H

6
, among others. Nevertheless, we can determine the value of ~fHo for acetylene 

200 

-
I ........ 
0 C(S)+02(g) a 0 • 
~ 

~ 
-..... 
0 

~ -200 
4-

-<] 

CO 2 (g) 

-400 
(a) (b) (c) 

FIG U R E 19.9 
Standard enthalpy changes involved in the formation of CO2 (g), H20(l), and C2H2 (g) from 
their elements, based upon the convention that ~ f H 0 = 0 for a pure element in its stable form 
at one bar and at the temperature of interest. 
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by using Hess's Law, together with the available ~c HO data on combustion reactions. 
AIl three species in Equation 19.51 burn in oxygen, and at 298 K we have 

H ( ) + 10 () ) H20(I) Ac_. H O(2) == 285.8 kJ·mol- 1 
2g 2" 2g ti. (2) 

If we multiply Equation 1 by 2, reverse Equation 3, and add the results to Equation 2, 
we obtain 

with 

(4) 

== (2) (-393.5 kJ· mol- I) + (-285.8 kJ· mo 1- I) - (-1299.5 kJ . mo 1-1 ) 

== +226.7 kJ·mol- 1 

Note that the stoichiometric coefficients have no units in the IUPAC convention. Be­
cause Equation 4 represents the formation of one mole of C

2
H

2 
(g) from its elements, 

~fHO[C2H2(g)] == +226.7 kJ·mol- 1 at 298 K (Figure 19.9c). Thus, we see that we 
can obtain values of ~fHo even if the compound cannot be formed directly from its 

elements. 

EXAMPLE 19-10 
Given that the standard enthalpies of combustion of C(s), H2 (g), and CH4 (g) are 
-393.51 kJ 'mol- 1

, -285.83 kJ 'mol- 1
, and -890.36 kJ 'mol- I

, respectively, at 298 K, 
calculate the standard enthalpy of formation of methane, CH

4 
(g). 

SOL UTI 0 N: The chemical equations for the three combustion reactions are as 
follows: 

CH
4
(g) + 202(g) ---* CO2(g) + 2H20(l) ~cHO(3) = -890.36 kJ·mol- 1 (3) 

If we reverse Equation 3, mUltiply Equation 2 by 2, and add the results to Equation 1, 
we obtain the equation for the formation of CH

4 
(g) from its elements. 

C(s) + 2 H2 (g) ---* CH
4 
(g) (4) 
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== (-393.51 kJ·mol- l
) + (2)(-285.83 kJ·mol- l

) - (-890.36 kJ·mol- l
) 

== -74.81 kJ·mol- 1 

Because Equation (4) represents the formation of one mole of CH
4 
(g) directly from 

its elements, we have ~f H [CH
4 
(g)] == - 74.81 kJ· mol-I at 298 K. 

As suggested by Figure 19.9, we can set up a table of ~fHo values for compounds 
by setting the values of ~fHo for the elements equal to zero. That is, for each pure 
element in its stable form at one bar at the temperature of interest, we set ~fHo 
equal to zero. Thus, standard enthalpies of formation of compounds are given relative 
to the elements in their normal physical states at one bar. Table 19.2 lists values 
of ~fHo at 25°C for a number of substances. If you look at Table 19.2, you will 
see that ~fHO[C(diamond)] == + 1.897 kJ ·mol- 1

, ~fHO[Br2 (g)] == +30.907 kJ 'mol- 1
, 

and ~fHO[I2(g)] == +62.438 kJ·mol- l
. The values of ~fHo for these forms of the 

elements are not equal to zero because C( diamond), Br2 (g), and 12 (g) are not the 
normal physical states of these elements at 25°C and one bar. The normal physical 
states of these elements at 25°C and one bar are C(graphite), Br2 (l), and I2 (s). 

E X AMP L E 1 9-11 
Use Table 19.2 to calculate the molar enthalpy of vaporization ~vapHo of bromine at 
25°C. 

SOL UTI 0 N: The equation that represents the vaporization of one mole of bromine 
IS 

Therefore, 

~vapHO == ~fH [Br2(g)] - ~fHO[Br2(l)] 

== 30.907 kJ ·mol- l 

Note that this result is not the value of ~ HO at its normal boiling point of 58.8°C. yap 

The value of ~vapH at 58.8°C is 29.96 kJ ·mol 1. (We will learn how to calculate the 
temperature variation of ~ H in the next section.) 

We can use Hess's law to understand how enthaplies of formation are used to 
calculate enthalpy changes. Consider the general chemical equation 

aA+bB~>yY+zZ 
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TABLE 19.2 
Standard molar enthalpies of formation, ~f HO, for various 

substances at 25°C and one bar. 

Substance Formula !::"f HO /kJ . mol-I 

Acetylene C2H2 (g) +226.73 

Ammonia NH3 (g) -46.11 

Benzene C
6
H

6
(1) +49.03 

Bromine Br2 (g) +30.907 

Butane C4H
1O

(g) -125.6 

Carbon( diamond) C(s) +1.897 

Carbon(graphite) C(s) 0 

Carbon dioxide cO2 (g) -393.509 

Carbon monoxide CO(g) -110.5 

Cyclohexane C
6
H I2 (l) -156.4 

Ethane C2H
6

(g) 84.68 

Ethanol C2HsOH(1) -277.69 

Ethene C
2
H4 (g) +52.28 

Glucose C6H 12 0 6 (S) -1260 

Hexane C6 HI4 (1) -198.7 

Hydrazine N2H4 (1) +50.6 

N2H4 (g) +95.40 

Hydrogen bromide HBr(g) -36.3 

Hydrogen chloride HCI(g) -92.31 

Hydrogen fluoride HF(g) -273.3 

Hydrogen iodide HI(g) +26.5 

Hydrogen peroxide H
2
0

2 
(1) -187.8 

Iodine 12 (g) +62.438 

Methane CH4 (g) -74.81 

Methanol CH3OH(1) -239.1 

CH
3
OH(g) -201.5 

Nitrogen oxide NO(g) +90.37 
Nitrogen dioxide N02 (g) +33.85 

Dinitrogen tetraoxide N20 4 (g) +9.66 
N20 4(l) -19.5 

Octane CsHIS (1) -250.1 

Pentane CSHI2 (1) -173.5 

Propane C3H8(g) 103.8 

Sucrose CI2HnOIl (s) -2220 

Sulfur dioxide S02 (g) -296.8 

Sulfur trioxide S03 (g) -395.7 

Tetrachloromethane CCl4 (1) -135.44 

CCl4 (g) -102.9 

Water H2°(l) -285.83 

H2O(g) -24l.8 
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where a, b, y, and z are the number of moles of the respective species. We can 
calculate ~r H in two steps, as shown in the following diagram: 

Reactants 
a mol of A 
b mol of B 

-a~fHO [AJ 
Step 1 

-b~ fH o 
[B J Elements 

in their 
normal states 

... ... 

Step 2 

Products 
y mol of Y 
z mol of Z 

Y~fHO[YJ 

z~fHO[Z] 

First, we decompose compounds A and B into their constituent elements (step 1); and 
then we combine the elements to form the compounds Y and Z (step 2). In the first 
step, we have 

We have omitted the degree superscript on the ~rH because this value is not necessarily 
referenced to one mole of a particular reagent. The minus signs occur here because the 
reaction involved is the reverse of the formation of the compounds from their elements; 
we are forming the elements from the compounds. In the second step, we have 

The sum of ~rH(I) and ~rH(2) gives ~rH for the general equation: 

(19.52) 

Note that the right side of Equation 19.52 is the total enthalpy of the products minus 
the total enthalpy of the reactants (see Equation 19.47). 

When using Equation 19.52, you need to specify whether each substance is a gas, 
liquid, or solid because the value of ~f HO depends upon the physical state of the 
substance. Using Equation 19.52, we determine ~r H for the reaction 

at 298 K to be 

~rH == (2)~fHO[C02(g)] + (1)~fHO[H20(l)] 
- (1) ~fHO[C2H2 (g)] - (~) ~fHO[02 (g)] 

U sing the data in Table 19.2, we obtain 

~ H == (2)(-393.509 kJ 'mol- 1) + (1)(-285.83 kJ -mol I) 
r 

-(1)(+226.73 kJ·mol 1) - (~)(O kJ·mol- 1
) 

== -1299.58 kJ·mol- 1 
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Note that ~fHo [02 (g)] == 0 because the ~fHo value for any element in its stable state 
at 298 K and one bar is zero. To determine ~ H for 

r 

2C2H2(g) + 502 (g) ) 4C02 (g) + 2H2°(1) 

we multiply ~rH == -1299.58 kJ·mol I by 2 mol to obtain ~rH == -2599.16 kJ. 

EXAMPLE 19-12 
Use the b..fH o data in Table 19.2 to calculate the value of b..rH o for the combustion of 

liquid ethanol, C2HsOH(l), at 25°C: 

SOLUTION: Referring to Table 19.2, we find that b..
f
HO[C0

2
(g)] == -393.509 

kJ·mol- ' ; .6.
f
HO[H

2
0(l)] == -285.83kJ·mol- l; b..

f
HO[02(g)] == 0; and 

b..
f
HO[C2HsOH(l)] == -277.69 kJ· moll. Application of Equation 19.52 yields 

.6.
r
H O == (2)b..

f
HO[C0

2
(g)] + (3)b..

f
HO[H

2
°(l)] 

-(I)b..
f
HO[C

2
HsOH(l)] - (3)b..

f
HO[02(g)] 

== (2)(-393.509 kJ·mol- ' ) + (3)(-285.83 kJ.mol I) 

(1)(-277.69 kJ·mol- l
) - (3)(0) 

== -1366.82 kJ· mol- i 

19-12. The Temperature Dependence of ~rH Is Given in Terms of the 
Heat Capacities of the Reactants and Products 

Up to now, we have calculated reaction enthalpies at 25°C. We will see in this section 
that we can calculate ~rH at other temperatures if we have sufficient heat-capacity 
data. Consider the general reaction 

aA + b B ) Y Y + zZ 

We can express ~rH at a temperature T2 in the form 

~rH(T2) == y[Hy(T2 ) - Hy(O)] + z[Hz(T2 ) - Hz(O)] 

-a[HA (T2 ) - HA (0)] - b[HB(T2 ) - HB(O)] (19.53) 
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where, from Equation 19.45, 

(19.54) 

etc. Similarly, ~rH (T,) is given by 

~rH(T)) = y[Hy(T,) - Hy(O)] + z[Hz(T,) - Hz(O)] 

-a[HA (T,) - H/i (0)] - b[HB(T)) - HB(O)] (19.55) 

\\lith 

(19.56) 

etc. If we substitute Equation 19.54 into Equation 19.53 and Equation 19.56 into 

Equation 19.55, and then subtract the resultant ~rH (T)) from ~rH (T
2
), we obtain 

(19.57) 

where, as the notation suggests, 

(19.58) 

Thus, if we know ~r H at T" say 25°C, we can calculate ~r H at any other temperature 
using Equation 19.57. In writing Equation 19.57 we have assumed there are no phase 

transitions between TI and T2 • 

Equation 19.57 has a simple physical interpretation given by Figure 19.10. To 
calculate the value of ~r H at some temperature T2 given the value of ~r H at T), 
we can follow the path 1-2-3 in Figure 19.10. This pathway involves taking the 

-

I1 rH(T2 ) 
T2 -------.... ... T2 

11 rH (T1) 
Tl --------... ... Tl 

Path 2 

FIG U R E 19.10 
An illustration of Equation 19.57. Along path 1 we take the 
reactants from T2 to TI • Along path 2 we let the reaction 
occur at TI . Then along path 3, we bring the products from 
T\ back to T2 • Because ..6. H is a state function, we have 
that ..6. H (T2 ) = ..6. HI + /}. H2 + ..6. H 3 . 
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reactants from temperature T2 to T
1

, letting the reaction occur at T1, and then taking the 
products from Tl back to T

2
• The mathematical expressions for ~ H for each step are 

i
T) 

~ H3 == ~ C p (products)d T 
T] 

and so 

i
T2 

== ~rH(TI) + [Cp(products) - Cp(reactants)]dT 
T] 

As a simple application of Equation 19.57, consider 

Let's calculate ~fus HO of water at -10° C and one bar given that ~fus HO (0° C) == 
6.01kJ.mol-l,C~(s) == 37.7J·K- 1 ·mol- 1 andC~(l) == 75.3J·K- 1 ·mol-1.Becausethe 
equation is written in terms of one mole of reactant and the reactants and products are 
in their standard states, we use a superscript 0 on calculated thermodynamic quantities. 
Therefore, 

and 

-lODe 

~fusHO(-10°C) == ~fusHO(O°C) + 1 (37.6 J·K-I·mol 1) dT 
one 

== 6.01 kJ· mol I - 376 J. mol- 1 == 5.64 kJ ·mol- 1 

EXAMPLE 19-13 
The standard molar enthaply of formation, b..fH c

, ofNH3(g) is -46.11 kJ ·mol- l at 
25°C. Using the heat capacity data given below, calculate the standard molar heat of 

formation of NH3 (g) at 1000 K. 

C~(H2)/J·K-1 ·mol- I == 29.07 (0.837 x 10-3 K-1)T + (2.012 x 10-6 K- 2 )T2 

C~(N2)/J·K-I.mol-1 == 26.98 + (5.912 x 10-3 K-1)T - (0.3376 x 10-6 K- 2)T2 

C~(NH3)/J·K-I.mol I == 25.89 + (32.58 x 10-3 K-1)T - (3.046 x 10-6 K- 2 )T2 

where 298 K < T < 1500 K 
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SOL UTI 0 N: We use the equation 

The relevant chemical equation for the formation of one mole of NH3 (g) from its 
elements is 

and so 

1 N2(g) + ~ H2(g) ~ NH3(g) 

~C~(T)/J·K-I.mol-I == (1) Cp (NH3) - (1) C~(N2) - (~) C~(H2) 

== -31.21 + (30.88 x 10-3 K-1)T - (5.895 x 10-6 K- 2)T2 

The integral of ~ C p (T) is 

1
1000 K 

298 K 

so 

[-3l.21 + (30.88 x 10 3 K- 1
) T - (5.895 X 10-6 K-2) T2] dT 

== (-21.91 + 14.07 - 1.913) kJ·mol- 1 

== -9.75 kJ .mol I 

~fH (1000 K) == ~fHO(25°C) - 9.75 kJ·mol- 1 

== -46.11 kJ ·mol 1 - 9.75 kJ ·mol- 1 

== - 5 5.86 kJ . mol- I 

The pressure dependence of ~rH (which we will study in Chapter 22) is usually 
much smaller than its temperature dependence. 

Problems 

19-1. Suppose that a 10-kg mass of iron at 20°C is dropped from a height of 100 meters. What 

is the kinetic energy of the mass just before it hits the ground? What is its speed? What 

would be the final temperature of the mass if all its kinetic energy at impact is transformed 

into internal energy? Take the molar heat capacity of iron to be C p == 25.1 J. moll. K- 1 

and the gravitational acceleration constant to be 9.80 m· s -2. 

19-2. Consider an ideal gas that occupies 2.50 dm3 at a pressure of 3.00 bar. If the gas is 

compressed isothermally at a constant external pressure, ~xt' so that the final volume is 
0.500 dm3, calculate the smallest value Pext can have. Calculate the work involved using 

this value of Pt' ex 

19-3. A one-mole sample of CO2 (g) occupies 2.00 dm3 at a temperature of 300 K. If the gas 

is compressed isothermally at a constant external pressure, P
ext ' so that the final volume is 
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0.750 dm3
, calculate the smallest value ~xt can have, assuming that CO2 (g) satisfies the 

van der Waals equation of state under these conditions. Calculate the work involved using 

this value of Pext ' 

19-4. Calculate the work involved when one mole of an ideal gas is compressed reversibly 

from 1.00 bar to 5.00 bar at a constant temperature of 300 K. 

19-5. Calculate the work involved when one mole of an ideal gas is expanded reversibly from 

20.0 dm3 to 40.0 dm3 at a constant temperature of 300 K. 

19-6. Calculate the minimum amount of work required to compress 5.00 moles of an ideal gas 

isothermally at 300 K from a volume of 100 dm3 to 40.0 dm3
. 

19-7. Consider an ideal gas that occupies 2.25 L at 1.33 bar. Calculate the work required to 

compress the gas isothermally to a volume of 1.50 L at a constant pressure of 2.00 bar 

followed by another isothermal compression to 0.800 L at a constant pressure of 3.75 bar 

(Figure 19.4). Compare the result with the work of compressing the gas isothermally and 

reversibly from 2.25 L to 0.800 L. 

19-8. Show that for an isothermal reversible expansion from a molar volume V I to a final molar 

volume V 2' the work is given by 

for the Redlich-Kwong equation. 

19-9. Use the result of Problem 19-8 to calculate the work involved in the isothermal reversible 
expansion of one mole of CH

4 
(g) from a volume of 1.00 dm3

. mol-I to 5.00 dm3 ·mol- I at 

300 K. (See Table 16.4 for the values of A and B.) 

19-1 O. Repeat the calculation in Problem 19-9 for a van der Waals gas. 

19-11. Derive an expression for the reversible isothermal work of an expansion of a gas that 
obeys the Peng-Robinson equation of state. 

19-12. One mole of a monatomic ideal gas initially at a pressure of 2.00 bar and a temperature 

of 273 K is taken to a final pressure of 4.00 bar by the reversible path defined by P / V = 
constant. Calculate the values of ~ V, ~ H, q, and w for this process. Take C v to be equal 
to 12.5 J·mol- I ·K- 1

• 

19-13. The isothermal compressibility of a substance is given by 

13--- -1 (BV) 
V ap T 

(1) 

For an ideal gas, 13 == 1/ P, but for a liquid, f3 is fairly constant over a moderate pressure 
range. If 13 is constant, show that 

V --f3(P-P ) - == e 0 

~) 
(2) 
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where Vo is the volume at a pressure Po' Use this result to show that the reversible isothermal 
work of compressing a liquid from a volume Vo (at a pressure Po) to a volume V (at a 
pressure P) is given by 

(You need to use the fact that fin xdx == x In x - x.) 
The fact that liquids are incompressible is reflected by fJ being small, so that fJ (P -

Po) « 1 for moderate pressures. Show that 

fJVo(P - PO)2 2 
W == fJPo~/P - Po) + 2 + O(fJ ) 

= ,8Vo (p2 _ p(~) + 0(,82) 
2 

(4) 

Calculate the work required to compress one mole of toluene reversibly and isothermally 
from 10 bar to 100 bar at 208 C. Take the value of fJ to be 8.95 x 10-5 bar-I and the molar 

volume to be 0.106 L·mol I at 20G C. 

19-14. In the previous problem, you derived an expression for the reversible, isothermal work 
done when a liquid is compressed. Given that fJ is typically 0 (10-4

) bar-I, show that 

V / Vo ~ 1 for pressures up to about 100 bar. This result, of course, reflects the fact that 
liquids are not very compressible. We can exploit this result by substituting d V == - fJ V d P 
from the defining equation of fJ into w == - f P d V and then treating V as a constant. Show 

that this approximation gives Equation 4 of Problem 19-13. 

19-15. Show that 

for a reversible adiabatic expansion of an ideal gas. 

19-16. Show that 

V -b 
I 

V -b 
2 

for a reversible, adiabatic expansion of a monatomic gas that obeys the equation of state 

P (V - b) == RT. Extend this result to the case of a diatomic gas. 

19-17. Show that 

for a reversible adiabatic expansion of an ideal gas. 

19-1 8. Show that 
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for an adiabatic expansion of an ideal gas. Show that this formula reduces to Equation 19.23 

for a monatomic gas. 

19-19. Calculate the work involved when one mole of a monatomic ideal gas at 298 K expands 

reversibly and adiabatically from a pressure of 10.00 bar to a pressure of S.OO bar. 

19-20. A quantity of N2 (g) at 298 K is compressed reversibly and adiabatically from a volume 

of 20.0 dm3 to S.OO dm3
. Assuming ideal behavior, calculate the final temperature of the 

N2 (g)· Take C v = SRI2. 

19-21. A quantity of CH
4 
(g) at 298 K is compressed reversibly and adiabatically from SO.O bar 

to 200 bar. Assuming ideal behavior, calculate the final temperature of the CH4 (g). Take 

C v = 3R. 

19-22. One mole of ethane at 2SoC and one atm is heated to 1200°C at constant pressure. 

Assuming ideal behavior, calculate the values of w, q, ~U, and ~H given that the molar 

heat capacity of ethane is given by 

C pi R = 0.06436 + (2.137 x 10-2 K-1)T 

- (8.263 x 10-6 K- 2)T2 + (1.024 X 10-9 K- 3)T3 

over the above temperature range. Repeat the calculation for a constant-volume process. 

19-23. The value of ~ HO at 2ScC and one bar is +290.8 kJ for the reaction 
r 

2 ZnO(s) + 2 S(s) ~ 2 ZnS(s) + 02(g) 

Assuming ideal behavior, calculate the value of ~r U for this reaction. 

19-24. Liquid sodium is being considered as an engine coolant. How many grams of sodium 

are needed to absorb 1.0 MJ of heat if the temperature of the sodium is not to increase by 

more than IOcC. TakeC p = 30.8J·K- 1 ·mol- J forNa(l)and75.2J.K- 1 ·mol- 1 forH
2
0(l). 

19-25. A 2S.0-g sample of copper at 363 K is placed in 100.0 g of water at 293 K. The copper 
and water quickl y come to the same temperature by the process of heat transfer from copper 
to water. Calculate the final temperature of the water. The molar heat capacity of copper is 
24.5 J·K-1·mol- 1 and that of water is 7S.2 J·K-1·mol- l

. 

19-26. A IO.O-kg sample of liquid water is used to cool an engine. Calculate the heat removed 

(in joules) from the engine when the temperature of the water is raised from 293 K to 373 K. 
Take C p = 75.2 J. K- 1 . mol-I for H20(l). 

19-27. In this problem, we will derive a general relation between C p and C v' Start with 

U = U(P, T) and write 

dU=(BU) dP+(au) dT ap T aT p 
(1) 

We could also consider V and T to be the independent variables of U and write 

dU=(au) dV+(au) dT av T aT v 
(2) 
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Now take V = V (P, T) and substitute its expression for d V into Equation 2 to obtain 

dU = G~) T G~) T dP + [G~) T G~) p + G~) J dT 

Compare this result with Equation 1 to obtain 

(3) 

and 

(4) 

Last, substitute U = H - P V into the left side of Equation (4) and use the definitions of 

C p and C v to obtain 

Show that C p - C v = n R if (a U / a V) T = 0, as it is for an ideal gas. 

19-28. Following Problem 19-27, show that 

19-29. Starting with H = U + P V, show that 

(au) _ (a V) - -c -P -aT p aT p p 

Interpret this result physically. 

19-30. Given that (a u / a V) T = 0 for an ideal gas, prove that (3 H /3 V) T = 0 for an ideal gas. 

19-31. Given that (a u / a V)T = 0 for an ideal gas, prove that (3 C v / a V)T = 0 for an ideal gas. 

19-32. Show that C p - C v = n R if (a H / a P)T = 0, as is true for an ideal gas. 

19-33. Differentiate H = U + P V with respect to V at constant temperature to show that 
(3 H /3 V)T = 0 for an ideal gas. 

19-34. Given the following data for sodium, plot H (T) - H (0) against T for sodium: melting 

Point, 361 K; boiling point, 1156 K; ~f' HO = 2.60 kJ 'mol- 1
; ~ HO = 97.4 kJ 'mol- l

; 
us yap 

C pes) = 28.2 J·mol-I·K- 1
; CpO) = 32.7 J·mol-I·K- 1 ~ C peg) = 20.8 J·mol- I ·K- I

, 

19-35. The ~rHo values for the following equations are 

~ HO = -206 kJ·mol- 1 
r 

~ H = -136 kJ·mol- ' r 

Use these data to calculate the value of ~ H for the reaction described by 
r 
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19-36. Given the following data, 

i H2(g) + i F2(g) ~ HF(g) 

H2(g) + ~ 02(g) ~ H20(1) 

~ H == -273.3 kJ·mol- 1 
r 

~ HO == -285.8 kJ ·mol- I 
r 

calculate the value of ~ H for the reaction described by 
r 

19-37. The standard molar heats of combustion of the isomers m-xylene and p-xylene are 
-4553.9 kJ ·mol- l and -4556.8 kJ 'mol- 1

, respectively. Use these data, together with 
Hess's Law, to calculate the value of ~ H O for the reaction described by 

r 

m-xylene ~ p-xylene 

19-38. Given that ~rH8 == -2826.7 kJ for the combustion of 1.00 mol of fructose at 298.15 K, 

and the ~fHo data in Table 19.2, calculate the value of ~fHo for fructose at 298.15 K. 

19-39. Use the ~fHo data in Table 19.2 to calculate the value of ~c H for the combustion 
reactions described by the equations: 

3. CH30H(1) + ~ 02(g) ~ CO2 (g) + 2 H20(1) 

h. N2H4(1) + 02(g) N2 (g) + 2 H20(1) 

Compare the heat of combustion per gram of the fuels CH30H(1) and N2H4 (1). 

19-40. Using Table 19.2, calculate the heat required to vaporize 1.00 mol of CCl
4 
0) at 298 K. 

19-41. Using the ~fH data in Table 19.2, calculate the values of ~rHo for the following: 

3. C2H
4
(g) + H200) ~ C2H sOH(1) 

h. CH
4
(g) + 4 CI2(g) ~ CCI4(1) + 4 HCI(g) 

In each case, state whether the reaction is endothermic or exothermic. 

19-42. Use the following data to calculate the value of ~ H of water at 298 K and compare Yap 

Your answer to the one you obtain from Table 19.2: ~ H O at 373 K == 40.7 kJ·mol- I
., yap 

CpO) == 75.2J·mol- I ·K- 1
; Cp(g) == 33.6J·mol I·K- I

• 
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19-43. Use the following data and the data in Table 19.2 to calculate the standard reaction 

enthalpy of the water-gas reaction at 1273 K. Assume that the gases behave ideally under 
these conditions. 

C~[CO(g)]/R = 3.231 + (8.379 x 10-4 K-1)T - (9.86 x 10-8 K-2 )T2 

C~[H2(g)]/ R = 3.496 + (1.006 x 10-4 K-1)T + (2.42 x 10-7 K-2)T2 

C~[H20(g)]/ R = 3.652 + (1.156 x 10-3 K-1)T + (1.42 x 10-7 K-2)T2 

C~[C(s)]/ R = -0.6366 + (7.049 x 10-3 K-1)T - (5.20 x 10-6 K- 2 )T2 

+ (1.38 X 10-9 K-3)T3 

19-44. The standard molar enthalpy of formation of CO2 (g) at 298 K is -393.509 kJ· mol-I. 

Use the following data to calculate the value of ~fHo at 1000 K. Assume the gases behave 
ideally under these conditions. 

C~[C02(g)]/R = 2.593 + (7.661 x 10-3 K-1)T - (4.78 x 10-6 K-2)T2 

+ (1.16 X 10-9 K- 3)T3 

C~[02(g)]/ R = 3.094 + (1.561 x 10-3 K-1)T - (4.65 x 10-7 K-2)T2 

C;[C(s)]/ R = -0.6366 + (7.049 x 10-3 K-1)T - (5.20 x 10-6 K-2)T2 

+ (1.38 X 10-9 K-3)T3 

19-45. The value of the standard reaction enthalpy for 

CH4 (g) + 2 02(g) ~ CO2 (g) + 2 H20(g) 

IS - 802.2 kJ at 298 K. Use the heat-capacity data in Problems 19-43 and 19-44 in 

addition to 

C~[CH4(g)]/R = 2.099 + (7.272 x 10-3 K-1)T + (1.34 x 10-7 K-2)T2 

- (8.66 X 10-10 K-3 )T 3 

to derive a general equation for the value of ~rHo at any temperature between 300 K and 

1500 K. Plot ~rHo versus T. Assume that the gases behave ideally under these conditions. 

19-46. In all the calculations thus far, we have assumed the reaction takes place at constant 

temperature, so that any energy evolved as heat is absorbed by the surroundings. Suppose, 

however, that the reaction takes place under adiabatic conditions, so that all the energy 

released as heat stays within the system. In this case, the temperature of the system will 

increase, and the final temperature is called the adiabatic flame temperature. One relatively 

simple way to estimate this temperature is to suppose the reaction occurs at the initial 

temperature of the reactants and then determine to what temperature the products can be 

raised by the quantity ~rHo. Calculate the adiabatic flame temperature if one mole of 

CH
4 
(g) is burned in two moles of O2 (g) at an initial temperature of 298 K. Use the results 

of the previous problem. 



Problems 

19-47. Explain why the adiabatic flame temperature defined in the previous problem is also 

called the maximum flame temperature. 

19-48. How much energy as heat is required to raise the temperature of 2.00 moles of 02 (g) 
from 298 K to 1273 K at 1.00 bar? Take 

19-49. When one mole of an ideal gas is compressed adiabatically to one-half of its original 
volume, the temperature of the gas increases from 273 K to 433 K. Assuming that C v is 
independent of temperature, calculate the value of C v for this gas. 

19-50. Use the van der Waals equation to calculate the minimum work required to expand one 

mole of CO
2 
(g) isothermally from a volume of 0.100 dm3 to a volume of 100 dm3 at 273 K. 

Compare your result with that which you calculate assuming ideal behavior. 

19-51. Show that the work involved in a reversible, adiabatic pressure change of one mole of 

an ideal gas is given by 

where TI is the initial temperature and PI and P2 are the initial and final pressures, respec­
tively. 

19-52. In this problem, we will discuss a famous experiment called the Joule- Thomson exper­
iment. In the first half of the 19th century, Joule tried to measure the temperature change 
when a gas is expanded into a vacuum. The experimental setup was not sensitive enough, 

however, and he found that there was no temperature change, within the limits of his error. 
Soon afterward, Joule and Thomson devised a much more sensitive method for measuring 
the temperature change upon expansion. In their experilnents (see Figure 19.11), a constant 
applied pressure PI causes a quantity of gas to flow slowly from one chamber to another 

through a porous plug of silk or cotton. If a volume, VI' of gas is pushed through the 
porous plug, the work done on the gas is PI VI' The pressure on the other side of the plug 

Initial state 

>porous plug 

Final state 

FIGURE 19.11 
A schematic description of the Joule-Thomson experiment. 
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is maintained at P
2 , so if a volume V2 enters the right-side chamber, then the net work is 

given by 

The apparatus is constructed so that the entire process is adiabatic, so q == O. Use the First 

Law of Thermodynamics to show that 

or that ~ H == a for a Joule-Thomson expansion. 

Starting with 

dH == (aH) dP+ (aH) dT ap T aT p 
show that 

( aT) 1 (aH) ap H == - C
p 

ap T 

Interpret physically the derivative on the left side of this equation. This quantity is called 

the loule-Thomson coefficient and is denoted by J-L
JT

. In Problem 19-54 you will show that 

it equals zero for an ideal gas. Nonzero values of (a T / a P) H directly reflect intermolecular 

interactions. Most gases cool upon expansion [a positive value of (a T / a P) H] and a Joule­

Thomson expansion is used to liquefy gases. 

19 .. 53. The Joule-Thomson coefficient (Problem 19-52) depends upon the temperature and 

pressure, but assuming an average constant value of 0.15 K· bar I for N2 (g), calculate the 

drop in temperature if N 2 (g) undergoes a drop in pressure of 200 bar. 

19-54. Show that the Joule-Thomson coefficient (Problem 19-52) can be written as 

(aT) 1 [(au) (JV) (a(Pv))] 
J-L JT == a P H == - cpa v T aPT + aPT 

Show that (a T / a P) H == a for an ideal gas. 

19 .. 55. Use the rigid rotator-harmonic oscillator model and the data in Table 18.2 to plot 

C p (T) for CO(g) from 300 K to 1000 K. Compare your result with the expression given in 

Problem 19-43. 

19 .. 56. Use the rigid rotator-harmonic oscillator model and the data in Table 18.4 to plot 

C p (T) for CH
4 
(g) from 300 K to 1000 K. Compare your result with the expression given 

in Problem 19-45. 

19 .. 57. Why do you think the equations for the dependence of temperature on volume for a 

reversible adiabatic process (see Equation 19.22 and Example 19.6) depend upon whether 

the gas is a monatomic gas or a polyatomic gas? 



MATHCHAPTER 

THE BINOMIAL DISTRIBUTION AND 
STIRLING'S APPROXIMATION 

In the next chapter, we will learn about entropy, a thermodynamic state function that 
has a molecular interpretation of being a measure of the disorder of a system. In doing 
so, we will have to put the idea of the disorder of a system on a quantitative basis. 
A problem we will encounter is that of determining how many ways we can arrange 
N distinguishable objects such that there are n I objects in the first group, 112 objects in 
the second group, and so on, such that 

that is, such that all the objects are accounted for. This problem is actually a fairly 
standard one in statistics. 

Let's solve the problem of dividing the N distinguishable objects into two groups 
first and then generalize our results to any number of groups. First, we calculate the 
number of permutations of N distinguishable objects, that is, the number of possible 
different arrangements or ways to order N distinguishable objects. Let's choose one of 
the N objects and place it in the first position, one of the N - I remaining objects and 
place it in the second postion, and so on until all N objects are ordered. Clearly, there 
are N choices for the first position, N - I choices for the second position , and so on 
until finally there is only one object left for the Nth position. The totul number of ways 
of doing this ordering is the product of all the choices: 

N(N - l)(N - 2) . .. (2)(1) = N! 

Next, we calculate the number of ways of dividing N distinguishable objects into 
two groups, one containing NI objects and the other containing the N - NI = N2 
remaining objects. There are 

N(N - I) ... (N - NI + I ) 
\. j 

v 
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ways to form the first group. This product can be written more conveniently as 

N! 
N(N - I)(N - 2) ... (N - NI + 1) = --­

(N-NI)! 
(1.1 ) 

as can be seen by noting that 

N! = (N)(N - I) ... (N - NI + I) x (N - N I)! 

The number of ways of forming the second group is N2! = (N - N I)!. You might think 
that the total number of arrangements is the product of the two factors, N! / (N - N I )! 
and N2 !, but this product drastically overcounts the situation because the order in 
which we arrange the NI objects in the first group and the N2 objects in the second 
group is immaterial to the problem stated. All NI! orders of the first group and N2! 
orders of the second group correspond to just one division of N distinguishable objects 
into two groups containing NI and N2 objects. Therefore, we divide the product of 

N!/(N - N I)! and N2! by NI! and N2! to obtain 

N! 
WeN N)=----

I ' ~ (N-NI)!NI ! 
(1.2) 

where we let W(NI, N1
) denote the result. (Problem .1- 12 shows that 01 = I.) 

EXAMPLE J-1 
Use Equation 1.2 to calculate the number of ways of arranging four distinguishable 
objects into two groups, containing three objects and one object. Verify your result 

with an explicit enumeration. 

SOL UTI 0 N: We have N = 4, N, = 3, and N2 = I , and so Equation 1.2 gives 

4' 
W(3 I) = = 4 

, 3' I ! 

If we let a, b, e, and d be the four di stinguishable objects, the four arrangements are 
abc: d , abd : e, aed : b, and bed: a. There are no others. 

The combinatorial factor in Equation J .2 is called a binomjal coeffic ient because 
the expansion of the binomial (x + y) N is given by 

For example, 

N N! 
( X + ) N _ ~ x N, yN - N, 

. Y - L N '(N - N ) ' 
N -0 I ' I . ,-

(1 .3) 
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and 

3 3' 
3 3 2 2, ~ . N 1-N 

(x + y) = x + 3x y + 3xy + Y = ~ "X 'Y , 
N -0 N,.(3 - N,). ,-

Equation 1.3 may be written in a more symmetric form: 

(1.4) 

where the asterisk on the summation signs indicates that only terms with N, + N2 = N 
are included. This symmetric form of the binomial expansion suggests the form of the 
multinomial expansion given below in Equation 1.6. Simple numerical examples verify 
that Equations 1.3 and 1.4 are equivalent. 

The generalization of Equation 1.2 to the division of N distinguishable objects into 
r groups, the first containing N" the second containing N2 , and so on, is 

N! 
WeN"~ N2 , ••• , N) = -----

r N 'N '· .· N' , . 2 . r . 

(1.5) 

with N, + N2 + ... + N
r 

= N. This quantity is called a multinomial coefficient be­
cause it occurs in the multinomial expansion: 

where the asterisk indicates that only terms such that N, + N2 + ... + Nr = N are 
included. Note how Equation 1.6 is a straightforward generalization of Equation 1.4. 

EXAMPLE J-2 
Calculate the number of ways of dividing 10 distinguishable objects into three groups 
containing 2, 5, and 3 objects. 

SO L U TI 0 N : We use Equation 1.5: 

!O! 
WC2, 5, 3) = 215!3! = 2520 

If we use Equation 1.5 to calculate something like the number of ways of distribut­
ing Avogadro 's number of particles over their energy states, then we are forced to deal 
with factorials of huge numbers. Even the evaluation of IOO! would be a chore, never 
mind 1Q23 !, unless we have a good approximation for N!. We shall see that there is an 
approximation for N! that actually improves as N gets larger. Such an approximation 
is called an asymptotic approximation, that is , an approximation to a function that gets 
better as the argument of the function increases. 
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Because N! is a product, it is convenient to deal with In N! because the latter is 
a sum. The asymptotic expansion to In N! is called Stirling's approximation and is 
given by 

InN!=NlnN-N (1.7) 

which is surely a lot easier to use than calculating N! and then taking its logarithm. 

Table J.l shows the value of In N! versus Stirling's approximation for a number of 

values of N. Note that the agreement, which we express in terms of relative error, 
improves markedly with increasing N. 

EXAMPLE J-3 
A more refined version of Stirling's approximation (one we willnGt have to use in the 
next chapter) says that 

In N! = N In N - N + In(2n N)I /l 

Use this version of Stirling's approximation to calculate In N 1 for N = 10 and compare 
the relative error with that in Table 1.1. 

SOLUTION: For N = 10, 

In N! = N In N - N + In(2n N)I /2 = 15.096 

and using the value of In 10 1 from Table J.l , we see that 

15.104 - 15.096 
relative error = = 0.0005 

15.104 

The relative en'or is significantly smaller than that in Table J.I. The relative errors for 
the other entries in Table J.I are essentially zero for this extended version of Stirling's 
approximation. 

TABLE J.1 
A numerical comparison of In N! with Stirling 's approximation. 

N In N! N In N - N Relative error" 

10 15.104 13.026 0.l376 

SO 148.48 145.60 0.0194 

100 363.74 360.52 0.0089 

500 2611.3 2607.3 0.0015 

1000 5912.1 5907.7 0.0007 

"relative error = (In N! - N In N + N) / In N! 
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The proof of Stirling's approximation is not difficult. Because N! is given by 
N! = N(N - 1)(N - 2) ... (2)(1) , In N! is given by 

N 

InN! = Linn (1 .8) 
11 = 1 

Figure J.l shows In x plotted versus x for integer values of x. According to Equation J .8, 
the sum of the areas under the rectangles up to N in Figure 1.1 is In N!. Figure J. l 
also shows the continuous curve In x plotted on the same graph. Thus, In x is seen to 
form an envelope to the rectangles, and this envelope becomes a steadily smoother 
approximation to the rectangles as x increases. Therefore, we can approximate the 
area under these rectangles by the integral of In x . The area under In x will poorly 
approximate the rectangles only in the beginning. If N is large enough (we are deriving 
an asymptotic expansion), this area will make a negligible contribution to the total area. 
We may write, then, 

N i N 
InN! = ~Inn ~ I Inxdx = NlnN - N (N large) (1.9) 

which is Stirling's approximation to In N!. The lower limit could just as well have been 
taken as 0 in Equation 1.9, because N is large. (Remember that x In x --+ 0 as x --+ 0.) 
We will use Stirling's approximation frequently in the next few chapters. 

3 .0 - ---1'"" ...... ,..... 
,....-...... 

?""",.... 

p"'P'" 

r1-P'" 
:.- 1 .0 , 

-r 
-I 

1.0 i-
rf 

, , I I 

5 10 15 15 x 

FIGURE J.1 
A plot of In x versus x. The sum of the areas under the rectangles up to N is In N!. 
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Problems 
J-l. Use Equation 1.3 to write the expansion of (I + X) 5. Use Equation 1.4 to do the same thing. 

J-2. Use Equation 1.6 to write out the expression for (x + y + Z)2. Compare your result to the 
one that you obtain by multiplying (x + y + z) by (x + y + z). 

J-3. Use Equation 1.6 to write out the expression for (x + y + ,y . Compare your result to the 
one that you obtain by multiplying (x + y + Z)2 from Problem J-2 by itself. 

J-4. How many permutations of the letters a, b, c are there? 

J-5. The coefficients of the expansion of (I + x)" can be arranged in the following form: 

n 

o 
I 

2 
3 
4 I 

1 
4 

I I 
2 

3 3 
6 4 I 

Do you see a pattern in going from one row to the next? The triangular arrangement here 
is called Pascal's triangle. 

J-6. In how many ways can a committee of three be chosen from nine people? 

J-7. Calculate the relative error for N = 50 using the formula for Stirling 's approximation given 
in Example 1-3, and compare your result with that given in Table 1.1 using Equation 1.7. 
Take In N! to be 148.47776 (CRC Handbook afChemistry and Physics). 

I-B. Prove that x In x ....,. 0 as x ....,. o. 

J-9. Prove that the maximum value of WeN , N\ ) = N! / (N - N\)!N ,! is given by N\ = N / 2. 
(Hint: Treat N\ as a continuous variable.) 

J-l0. Prove that the maximum value of W(N 1, N2 , • • • , N,) in Equation 1.5 is given by N\ = 
N, = . . . = N, = N Jr. 

1-11. Prove that 

N N' 
'"' . N L.----=2 
k=() k! (N - k)! 

1-12. The quantity n! as we have defined it is defined only for positive integer values of n. 
Consider now the function of x defined by 

(1) 



Problems 

Integrate by parts (letting u = t x
-

I and dv = e- ' dt) to get 

rex) = (x - I) 100 

t r
-

2e- 'dt = (x - I)r(x - I) 
(I 

(2) 

Now use Equation 2 to show that rex) = (x - I)! if x is a positive integer. Although 
Equation 2 provides us with a general function that is equal to (n - I)! when x takes on 

integer values, it is defined just as well for non-integer values. For example, show that 
r(3 j 2), which in a sense is q)!, is equal to rr l

/
2j 2. Equation I can also be used to explain 

why O! = I. Let x = I in Equation I to show that r(I), which we can write as O!, is 

equal to I. The function rex) defined by Equation I is called the gamma fun ction and was 
introduced by Euler to generalize the idea of a factorial to general values of n. The gamma 
function arises in many problems in chemistry and physics. 
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Rudolf Clausius was born in Koslin, Prussia (now Koszalin, Poland), on January 2, 1822, 
and died in 1888. Although Clausius was initially attracted to history, he eventually received 
his Ph.D. in mathematical physics from the University of Halle in 1847. He held a position 
for several years at the University of Zurich but returned to Germany and in 1871 settled at the 
University of Bonn, where he remained for the rest of his life. Clausius is credited with creating 
the early foundations of thermodynamics. In 1850, he published his first great paper on the 
theory of heat, in which he rejected the then-current caloric theory and argued that the energy of 
a system is a thermodynamic state function. In 1865, he published his second landmark paper, 
in which he introduced another new thermodynamic state function , which he called entropy, 
and expressed the Second Law of Thermodynamics in terms of the entropy. Clausius also 
studied the kinetic theory of gases and made important contributions to it. He was chauvinistic 
and strongly defended German achievements against what he considered the infringements 
of others. Most of Clausius' work was done before 1870 because of two events in his life. In 
1870, he was wounded while serving in an ambulance corps in the Franco-Prussian War and 
suffered life-long pain from his injury. More tragically, his wife died in childbirth , and 
he assumed the responsibility of rai sing six young children. 



CHAPTER 

Entropy and the Second Law of 
Thermodynam i cs 

In this chapter, we will introduce and develop the concept of entropy. We will see that 
energy considerations alone are not sufficient to predict in which direction a process or 
a chemical reaction can occur spontaneously. We will demonstrate that isolated systems 
that are not in equilibrium will evolve in a direction that increases their disorder, and 
then we will introduce a thermodynamic state function called entropy that gives a 
quantitative measure of the disorder of a system. One statement of the Second Law 
of Thermodynamics, which governs the direction in which systems evolve to their 
equilibrium states, is that the entropy of an isolated system always increases as a result 
of any spontaneous (irreversible) process. In the second half of this chapter, we will 
give a quantitative molecular definition of entropy in terms of partition function. 

20-1. The Change of Energy Alone Is Not Sufficient to Determine the 
Direction of a Spontaneous Process 

For years, scientists wondered why some reactions or processes proceed spontaneously 
and others do not. We all know that under the right conditions iron rusts, and that objects 
do not spontaneously unrust. We all know that hydrogen and oxygen react explosively 
to form water but that an input of energy by means of electrolysis is required to 
decompose water into hydrogen and oxygen. At one time scientists believed that a 
criterion for a reaction or a process to proceed spontaneously was that it should be 
exothermic, or evolve energy. This belief was motivated by the fact that the products 
of an exothermic reaction lie at a lower energy or enthalpy than the reactants. After all, 
balls do roll downhill and opposite charges do attract each other. In fact, the variational 
principle of quantum mechanics (Section 7-1) is based upon the fact that a system will 
always seek its state of lowest energy. Mechanical systems evolve in such a way as to 
minimize their energy. 81 7 
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FIG U R E 20.1 
Two bulbs connected by a stopcock. Initially, one bulb contains a colored gas such as bromine 
and the other one is evacuated. When the two bulbs are connected by opening the stopcock, the 
bromine occupies both bulbs at a uniform pressure as seen by the uniform color. 

Now consider the situation in Figure 20.1 , however, where one bulb contains a 
gas at some low pressure at which it may be considered to behave ideally, and the 
other bulb is evacuated. When the two bulbs are connected by opening the stopcock 

between them, the gas will expand into the evacuated bulb until the pressures in 
the two bulbs are equal, at which time the system will be in equilibrium. Yet a careful 
determination of the thermal processes of this experiment shows that both 6. U and 6. H 
are essentially zero. Furthermore, the unaided reverse process has never been observed. 
Gases do not spontaneously occupy only part of a container, leaving the other part as a 
vacuum. 

Another example of a spontaneous process that is not exothermic is depicted in 
Figure 20.2, where two pure gases are separated by a stopcock. When the stopcock is 
opened, the two gases will mix, and both will eventually become evenly distributed 
between the two bulbs, in which case the system will be in equilibrium. Yet once again, 
the value of 6. U or 6. H for this process is essentially zero. Furthermore, the reverse 
process has never been observed. Mixtures of gases do not spontaneously unmix. 

There are many spontaneous endothermic processes. A simple example of a spon­
taneous endothermic reaction is the melting of ice at a temperature above DoC. This 
spontaneous process has a value of 6. rusHo equal to +6.0 kJ·mol - 1 when the tem­
perature is around DOC. An especially interesting endothermic chemical reaction is 
the reation of solid barium hydroxide, Ba(OH)2(s), with solid ammonium nitrate, 
NH

4
N0

3
(s): 

FIG U R E 20.2 
Two bulbs connected by a stopcock. Initially, each bulb is occupied by a pure gas, say bromine 
and nitrogen. When the two bulbs are connected by opening the stopcock, the two gases mix 
uniformly, so each bulb contains the same uniform mixture. 



20-2. Nonequilibrium Isolated Systems Evolve in a Direction That Increases Their Disorder 

The energy absorbed by mixing stoichiometric amounts of these two reagents in a test 
tube can cool the system to below _20DC. 

These and numerous other examples indicate that spontaneous processes have a 
direction that cannot be explained by the First Law of Thermodynamics. Of course, 
each of these processes obeys the First Law of Thermodynamics, but using this law, we 
cannot tell why one direction occurs spontaneously and its reverse does not. Although 
mechanical systems tend to achieve their state of lowest energy, clearly some other 
factor is involved that we have not yet discussed. 

20-2. Nonequilibrium Isolated Systems Evolve in a Direction That 
Increases Their Disorder 

If we examine the above processes from a microscopic or molecular point of view, we 
see that each one involves an increase in disorder or randomness of the system. For 
example, in Figure 20.1, the gas molecules in the final state are able to move over a 
volume that is twice as large as in the initial state. In a sense, locating any gas molecule 
in the final state is twice as difficult as in the initial state. Recall that we found that the 
number of accessible translational states increases with the volume of the container, 
Problem 18--42. A similar argument applies to the mixing of two gases. Not only is 
each gas spread over a larger volume, but they are also mixed together. Clearly the final 
(mixed) state is more disordered than the initial (separated) state. The melting of ice 
at a temperature greater than O°C also involves an increase in disorder. Our molecular 
picture of a solid being an ordered lattice array of its constituent particles and a liquid 
being a more random arrangement directly implies that the melting of ice involves an 
increase in disorder. 

These examples suggest that not only do systems evolve spontaneously in a direc­
tion that lowers their energy but that they also seek to increase their disorder. There is 
a competition between the tendency to minimize energy and to maximize disorder. If 
disorder is not a factor, as is the case for a simple mechanical system, then energy is 
the key factor and the direction of any spontaneous process is that which minimizes the 
energy. If energy is not a factor, however, as is the case when mixing two gases, then 
disorder is the key factor and the direction of any spontaneous process is that which 
maximizes the disorder. In general, some compromise between decreasing energy and 
increasing disorder must be met. 

What we need is to devise some particular property that puts this idea of disorder 
on a useful, quantitative basis. Like energy, we want this property to be a state function 
because then it will be a property of the state of the system, and not of its previous 
history. Thus, we will rule out heat, although the transfer of energy as heat to a system 
certainly does increase its disorder. To try to get an idea of what an appropriate function 
might be, let's consider, for simplicity, the heat transfer associated with a reversible, 
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small change in the temperature and volume of an ideal gas. From the First Law 
(Equation 19.9), we have 

8qrev == dU - 8wrev == Cv(T)dT + PdV 

nRT 
== Cy(T)dT + V dV (20.1 ) 

Example 19-4 showed us that 8Qrev is not a state function. In mathematical terms, this 
means that the right side of Equation 20.1 is not an exact differential; in other words, it 
can not be written as the derivative of some function of T and V (see MathChapter H). 
The first term, however, can be written as the derivative of a function of T because C y 

is a function of only temperature for an ideal gas, so C y (T)d T can be written as 

Cv(T)dT = d [f CvCT)dT + constant] 

The fact that the second term cannot be written as a derivative means that 

nRT (f nRT ) V d V -=f d V d V + constant 

because T depends upon V. It is really a work term, so the evaluation of w rev depends 
upon the path. If we divide Equation 20.1 by T, however, we get a very interesting 
result: 

8qrev 
T 

Cy(T)dT nR 
---+-dV 

T V 
(20.2) 

Notice now that 8qrev/ T is an exact differential. The right side can be written in the 
form 

[f C (T) f dV ] 
d v

T 
dT + nR V + constant 

so 8qrev/ T is the derivative of a state function that is a function of T and V (see also 
MathChapter H). If we let this state function be denoted by S, Equation 20.2 reads 

d S == 8Qrev 
T 

(20.3) 

Notice that the inexact differential 8Qrev has been converted to an exact differential by 
multiplying it by 1/ T. In mathematical terms, we say that 1/ T is an integrating factor 

of 8Qrev' 
The state function S that we have described here is called the entropy. Because 

entropy is a state function, ~ S == 0 for a cyclic process; that is, a process in which the 
final state is the same as the initial state. We can indicate this concept mathematically 

by writing 

(20.4) 



20-3. Unlike qrev' Entropy Is a State Function 

where the circle on the integral sign indicates a cyclic process. From Equation 20.3, 
we can also write 

1. 8Qrev == 0 r T 
(20.5) 

Equation 20.5 is a statement of the fact that 8qrev/ T is the derivative of a state function. 
Although we proved Equation 20.5 only for the case of an ideal gas, it is generally true 
(Problem 20-5). 

20-3. Unlike qrev t Entropy Is a State Function 

In the previous chapter, we calculated the reversible work and reversible heat for two 
processes that take place between the same initial and final states (Figure 20.3). The 
first process involved a reversible isothermal expansion of an ideal gas from PI' VI' TI 
to P

2
, V

2
, T) (path A). For this process (cf. Equations 19.12 and 19.13), 

and so 

p 

Fie U R E 20.3 

nRTI 
8qrev.A == d V 

V 

V2 q A == n R T) In -
rev. V 

I 

v 

(20.6) 

An illustration of three different paths (A, B+C, and D+E) from an initial state PI' VI' TI to 
a final state P2 , V2 , TI of an ideal gas. Path A represents a reversible isothermal expansion 
from PI' VI to P2 , V2 · Path B+C represents a reversible adiabatic expansion (B) from PI' VI' TI 
to P3 , V2 , T2 followed by reversibly heating the gas at constant volume (C) from P

3
, V

2
, T2 

to P2 , V2 , TI • Path D+E represents a reversible expansion at constant pressure PI (D) from 
PI' VI' TI to PI' V2, T.1 followed by a reversible cooling at constant volume V2 (E) from 
PI' V2 , ~ to P2 , V2 , T

J
• 
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The other process involved a reversible adiabatic expansion of an ideal gas from 
PI' VI' TI to P3 , V2 , T2 (path B), followed by heating the gas reversibly at constant 
volume from P3 , V2 , T2 to P2, V2, TI (path C). For this process (cf. Equations 19.15 
and 19.17), 

8q == 0 rev.B 

(20.7) 

and 

where T2 is given by (cf. Equation 19.21) 

l
T

7 C (T) V 
.~ v dT=-nRln-.1. 
T\ T VI 

(20.8) 

The point here is that q differs for the two paths, A and B + C, indicating that q is 
rev rev 

not a state function. 
Now let's evaluate 

~s == /2 8qrev 

1 T 

for these two paths. For path A from PI' T), VI to P2 , V2 , TI, we have, using Equa­
tion 20.6, 

(20.9) 

For the reversible adiabatic expansion from PI' VI' TI to P3 , V2, T2 (path B) followed 
by a reversible heating at constant volume from P3 , V2 , T2 to P2 , V2 , TI (path C), we 
have, using Equation 20.7, 

/

28 
~S == qrev.B == 0 

B T 
I 

and 

11 8 IT\ C (T) lT2 C (T) ~S == qrev.C == V dT == _ v dT 
c 2 T T T T T 

2 I 

But using Equation 20.8, ~SC turns out to be 



20-3. Unlike qrev l Entropy Is a State Function 

and so 

V2 V2 t1SB+C == t1SB + t1Sc == 0 + nR In - == nR In-
VI VI 

(20.10) 

Thus, we see that the t1 SA (Equation 20.9) is equal to t1 S B+C (Equation 20.10) and 
that the value of t1 S is independent of the path. 

EXAMPLE 20-1 
Calculate qrev and ~s for a reversible expansion of an ideal gas at constant pressure 
p) from T), VI to T}, V

2 
(path D in Figure 20.3) followed by a reversible cooling of 

the gas at constant volume V2 from PI' T3 to P2 , T) (path E). 

SOL UTI 0 N: For path D (cf. Example 19-4), 

(20.11) 

and so 

For path E, 8 w = 0, and so rev 

(20.12) 

and 

For the complete process (paths D + E), 

To calculate ~ S for path D, we use Equation 20.11 to write 

~S = f 8Qrev,D 
D T 

j T.l C (T) jV2 dV = v dT + p) _ 
T T v T 

I 1 

To evaluate the second integral here, we must know how T varies with V for this 
process. But this is given by PI V = n R T, so 

j r:l Cv(T) jV2 dV 
~SD= dT+nR-

T T v V 
I 1 

j T:. C (T) V 
= v d T + n R In --.1. 

T T V 
1 I 
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For path E, 8w = 0, and using Equation 20.12 for 8q E' gives rev rev, 

The value of ~ S for the complete process (paths D + E) is 

Notice that this is the very same result we obtained for paths A and B + C, once again 
suggesting that S is a state function. 

EXAMPLE 20-2 
We shall prove in Example 22-4 that similar to that found for an ideal gas, U is a 
function of only the temperature for a gas that obeys the equation of state 

RT 
P = =---

V-b 

where b is a constant that reflects the size of the molecules. Calculate qrev and ~ S for 
both the paths A and B + C in Figure 20.3 for one mole of such a gas. 

SOL UTI 0 N: Path A represents an isothermal expansion, so d U A = 0 because U 

depends only upon the temperature. Therefore, 

RT 
8q = -8w = PdV = _ dV 

rev, A rev,A V - b 

and 

The entropy change is given by 

-

~S = /2 8qrev,A = R [V2 !V = Rln ~2 -b 
A I T J~v V - b V - b 

1 I 

For path B, a reversible adiabatic expansion, q B = 0, so rev. 

~S =0 B 

For path C, 8wrev ,c = 0, and 

and 
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The molar entropy change is given by 

and so 

But T
2

, the temperature at the end of the reversible adiabatic expansion, can be found 

from 

dU==oq +8w rev rev 

Using the fact that dU == C v(T)dT and 8qrev == 0 gives 

RT 
Cv(T)dT == -PdV == -_ dV 

V-b 

Divide through by T and integrate from the initial state to the final state to get 

l T2 Cv(T) jV2 dV V2 - b 
--dT == -R _ == -R In =---

T T v V-b V -b 
I I I 

Substituting this result into the above expression for flS B+C gives 

V -b 
flS B+C == R In _2 __ 

V -b 
I 

Therefore, we see that even though qrev,A =1= qrev.B+C' nevertheless, 

flS A == flS B+C 

We will show several times in the following sections that the entropy is related to 
the disorder of a system, but for now, notice that if we add energy as heat to a system, 
then its entropy increases because its thermal disorder increases. Furthermore, notice 
that because d S == 8qrev / T, energy delivered as heat at a lower temperature contributes 
more to an entropy (disorder) increase than at a higher temperature. The lower the 
temperature, the lower the disorder, so the energy added as heat has proportionally 
more "order" to convert to "disorder." 

20-4. The Second Law of Thermodynamics States That the Entropy 

of an Isolated System Increases as a Result of a Spontaneous 

Process 

We all know that energy as heat will flow spontaneously from a region of high tem­
perature to a region of low temperature. Let's investigate the role entropy plays in this 
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process. Consider the two-compartment system shown in Figure 20.4, where parts A 
and B are large one-component systems. Both systems are at equilibrium, but they are 
not at equilibrium with each other. Let the temperatures of these two systems be TA 
and TB • The two systems are separated from each other by a rigid, heat-conducting wall 
so that energy as heat can flow from one system to the other, but the two-compartment 
system itself is isolated. When we call a system isolated, we mean that the system 
is separated from its surroundings by rigid walls that do not allow matter or energy 
to pass through them. We may picture the walls as rigid, totally non-heat conducting, 
and impervious to matter. Consequently, the system can do no work nor can work be 
done on the system, nor can it exhange energy as heat with the surroundings. The 
two-compartment system is described by the equations 

U A + U B == constant 

VA == constant VB == constant (20.13) 

Because VA and VB are fixed, we have for each separate system 

dUA == 8q + 8w == TAdSA (dVA == 0) rev rev 
(20.14) 

dUB ==8q +8w ==TBdSB (dVB==O) rev rev 

The entropy change of the two-compartment system is given by 

dS == dSA + dSB 
dUA dUB 

TA + TB 
(20.15) 

But dUA == -dUB because the two-compartment system is isolated, so we have 

dS-dU(~ __ I) 
- B TB TA 

(20.16) 

Experimentally, we know that if TB > TA, then dUB < 0 (energy as heat flows 
from system B to system A), in which case d S > O. Similarly, d S > 0 if TB < TA 

Fie U R E 20.4 
A two-compartment system in which A 
and B are large, one-component systems. 
Each system is at equilibrium, but they are 
not at equilibrium with each other. The 
two systems are separated from each other 
by a rigid, heat-conducting wall. The total 
two-compartment system itself is isolated. 
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because dUB> 0 in this case (energy as heat flows from system A to system B). We 

may interpret this result by saying that the spontaneous flow of energy as heat from 

a body at a higher temperature to a body at a lower temperature is governed by the 
condition d S > O. If TA = TB , then the two-compartment system is in equilibrium and 
dS = O. 

We can generalize this result by investigating the role entropy plays in governing 
the direction of any spontaneous process. To be able to focus on the entropy alone, we 
will consider an infinitesimal spontaneous change in an isolated system. We choose 
an isolated system because the energy remains constant in an isolated system, and 
we wish to separate the effect due to a change in energy from the effect due to a 
change in entropy. Because the energy remains constant, the driving force for any 
spontaneous process in an isolated system must be due to an increase in entropy, which 
we can express mathematically by d S > O. Because the system is isolated, this increase 
in entropy must be created within the system itself. Unlike energy, entropy is not 
necessarily conserved; it increases whenever a spontaneous process takes place. In fact, 
the entropy of an isolated system will continue to increase until no more spontaneous 
processes occur, in which case the system will be in equilibrium (Figure 20.5). Thus, 
we conclude that the entropy of an isolated system is a maximum when the system is in 
equilibrium. Consequently, d S = 0 at equilibrium. Furthermore, not only is d S = 0 in 
an isolated system at equilibrium, but d S = 0 for any reversible process in an isolated 
system because, by definition, a reversible process is one in which the system remains 
essentially in equilibrium during the entire process. To summarize our conclusions thus 
far, then, we write 

dS > 0 (spontaneous process in an isolated system) 
(20.17) 

d S = 0 (reversible process in an isolated system) 

Because we have considered an isolated system, no energy as heat can flow in 
or out of the system. For other types of systems, however, energy as heat can flow 
in or out, and it is convenient to view d S in any spontaneous infinitesimal process as 

s 

FIG U R E 20.5 

Smax Equilibrium 

Spontaneous 
processes 

t 

dS=O 

A schematic plot of entropy versus time for an isolated system. The entropy increases (d S > 0) 
until no more spontaneous processes occur, in which case the system is in equilibrium, and 
dS = O. 
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consisting of two parts. One part of d S is the entropy created by the irreversible process 
itself, and the other part is the entropy due to the energy as heat exchanged between 
the system and its surroundings. These two contributions account for the entire change 
in entropy. We will denote the part of d S that is created by the irreversible process by 
d Sprod because it is produced by the system. This quantity is always positive. We will 
denote the part of d S that is due to the exchange of energy as heat with the surroundings 
by d Scxch because it is due to exchange. This quantity is given by 8q IT, and it can be 
positive, negative, or zero. Note that 8q need not be 8qrev' The quantity 8q will be 8qrev 
if the exchange is reversible and 8qiIT if the exchange is irreversible. Thus, we write for 
any process 

dS == dS d + dS h pro exc 

== dS 8q 
prod + T 

For a reversible process, 8q == 8q ,d S d == 0, so rev pro 

d S == 8Qrev 
T 

(20.18) 

(20.19) 

in agreement with Equation 20.3. For an irreversible or spontaneous process, d Sprod > 0, 

dS h == 8q. IT, and so exc lIT 

8q. 
d S > lIT 

T 

Equations 20.19 and 20.20 can be written as one equation, 

dS > 8q 
- T 

or 

!1S > f 8q 
- T 

(20.20) 

(20.21) 

(20.22) 

where the equality sign holds for a reversible process and the inequality sign holds for 
an irreversible process. Equation 20.22 is one of a number of ways of expressing the 
Second Law of Thermodynamics and is called the Inequality of Clausius. 

A formal statement of the Second Law of Thermodynamics is as follows: 

There is a thermodynamic state function of a system called the entropy, S, such that for any 
change in the thermodynamic state of the system, 

dS> 8q 
- T 

where the equality sign applies if the change is carried out reversibly and the inequality sign 
applies if the change is carried out irreversibly at any stage. 

We can use Equation 20.22 to prove quite generally that the entropy of an isolated 
system always increases during a spontaneous (irreversible) process or that ~ S > O. 



Irreversible 

1 2 

Reversible 

FIG U R E 20.6 
A cyclic process in which the system is first isolated and undergoes an irreversible process 
from state 1 to state 2. Then the system is allowed to interact with its surroundings and is 
brought back to state 1 by some reversible path. Because entropy is a state function, ~ S == 0 
for a cyclic process. 

Consider a cyclic process (Figure 20.6) in which a system is first isolated and undergoes 
an irreversible process from state 1 to state 2. Now let the system interact with its 
surroundings and return to state 1 by any reversible path. Because S is a state function, 
~S = 0 for this cyclic process, so according to Equation 20.22, 

~S = 0 > j2 oqirr + {' oqrev 
I T 12 T 

The inequality applies because the cyclic process is irreversible from 1 to 2. The first 
integral here equals zero because the system is isolated, i.e., 8qirr = O. The second 
integral is by definition equal to S1 - S2' so we have 0 > S1 - S2' Because the final 
state is state 2 and the initial state is state 1, 

Thus we see that the entropy increases when the isolated system goes from state 1 to 
state 2 by a general irreversible process. 

Because the universe itself may be considered to be an isolated system and all 
naturally occurring processes are irreversible, one statement of the Second Law of 
Thermodynamics says that the entropy of the universe is constantly increasing. In fact, 
Clausius summarized the first two laws of thermodynamics by 

The energy of the Universe is constant; 

the entropy is tending to a maximum. 

20-5. The Most Famous Equation of Statistical Thermodynamics 
Is S == kB In W 

In this section, we will discuss the molecular interpretation of entropy more quantita­
tively than we have up to now. We have shown that entropy is a state function that is 
related to the disorder of a system. Disorder can be expressed in a number of ways, but 
the way that has turned out to be the most useful is the following. Consider an ensemble 
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of A isolated systems, each with energy E, volume V, and number of particles N. Re­
alize that whatever the value of E, it must be an eigenvalue of the Schrodinger equation 
for the system. As we discussed in Chapter 17, the energy is a function of N and V, so 

we can write E == E(N, V) (see, for example, Equations 17.2 and 17.3). Although all 

the systems have the same energy, they may be in different quantum states because of 
degeneracy. Let the degeneracy associated with the energy E be n (E), so that we can 
label the n (E) degenerate quantum states by j == 1, 2, ... , n (E). (The degeneracies 

of systems that consist of N particles tum out to be enormous; they are numbers of the 
order of eN for energies not too close to the ground-state energy.) Now, let a. be the 

} 

number of systems in the ensemble that are in the state j. Because the A systems of 
the ensemble are distinguishable, the number of ways of having a 1 systems in state 1, 
a2 systems in state 2, etc. is given by (MathChapter J) 

A! 

n. a.! 
} } 

(20.23) 

with 

If all A systems are in one particular state (a totally ordered arrangement), say state 1, 
then a l == A, a2 == a3 == ... == 0 and W == 1, which is the smallest value W can have. 
In the other extreme, when all the a. are equal (a disordered arrangement), W takes 

} 

on its largest value (Problem J-I0). Therefore, W can be taken to be a quantitative 
measure of the disorder of a systelTI. We will not set the entropy proportional to W, 
however, but to In W according to 

S == kB In W (20.24) 

where kB is the Boltzmann constant. Note that S == 0 for a completely ordered system 
(a

l 
== 1, a

2 
== a

3 
== .. ·0) and achieves a maximum value for a completely disordered 

system (a
l 

== a
2 

== a
3 

== ... ). Equation 20.24 was formulated by Boltzmann and is the 

most famous equation of statistical thermodynamics. In fact, this equation is the only 

inscription on a monument to Boltzmann in the central cemetary in Vienna. It gives us 

a quantitative relation between the thermodynamic quantity, entropy, and the statistical 

quantity, W. 
We set S equal to In W rather than W for the following reason. We want S to be 

such that the total entropy of a system that is made up of two parts (say A and B) is 

given by 
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In other words, we want S to be an extensive state function. Now if WA is the value 
of W for system A and Ws is the value of W for system B, WAB for the composite 

system is given by 

The entropy of the composite system is 

SAB == kB In WAB == kB In WA WB == kB In WA + kB In WB 

== SA + SB 

An alternate form of Equation 20.24 expresses S in terms of the degeneracy Q. We 
can determine this expression in the following way. Given no other information, there 
is no reason to choose one of the Q degenerate quantum states over any other; each one 

should occur in an ensemble with equal probability (this concept is actually one of the 
postulates of statistical thermodynamics). Consequently, we expect that the ensemble 
of isolated systems should contain equal numbers of systems in each quantum state. 

Because S is a maximum for an isolated system at equilibrium, W must also be 

a maximum. The value of W is maximized when all the a. are equal (Problem J-10). 
] 

Let the total number of systems in the ensemble be A == nQ and let each a. == n, so 
) 

that the set of Q degenerate quantum states is replicated n times in the ensemble. (We 
will never need the value of n.) Using Stirling's approximation (MathChapter J) in 
Equation 20.23, we get 

Q 

S bl == kB In W == kB[AlnA - ~ a.lna.] ensem e ~) .I 
j=l 

Q 

== kB [nQ In(n Q) - L (n In n)] == k B [nQ In(n Q) - Q (n In n)] 
j I 

The entropy of a typical system in the ensemble is given by S bl == AS t == ensem e sys em 

nQS t ,and so sys em 

(20.25) 

where we have dropped the subscript, system. Equation 20.25 is an alternate form 
of Equation 20.24 and relates entropy to disorder. As a concrete example, consider a 
system of N (distinguishable) spins (or dipoles) that can be oriented in one of two 

possible directions with equal probability. Then, each spin has a degeneracy of 2 

associated with it, and the degeneracy of the N spins is 2N. The entropy of this system 

is NkB In 2. We will use this result when we discuss the entropy of carbon monoxide 
at 0 K in Section 21-8. 

As another example of the use of Equation 20.25, Problem 20-23 has you show 
that 

Q(E) == c(N)f(E)VN 
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for an ideal gas of N particles, where c (N) is a function of Nand f (E) is a function 
of the energy. Now let's determine ~s for an isothermal expansion of one mole of an 
ideal gas from a volume VI to V

2
. 

~ S == ks In Q2 - ks In Q I 

Q
2 

c(N)f(E?)V;v 
== k In - == k In -

s Q} s c(N)f(E)) V
I
N 

But .f (E1) == f (E2) in this case because we are considering an isothermal expansion 
of an ideal gas, so E2 == E I. Therefore, we have for one mole 

in agreement with Equation 20.9. 

EXAMPLE 20-3 
Use the fact that 

0. (E) := c(N)f(E)V N 

for an ideal gas to show that the change in entropy (per mole) when two gases are 
mixed isothermally is given by 

(20.26) 

where Y
t 

and Y
2 

are the mole fractions of the two gases. 

SOL UTI 0 N: Consider the process depicted in Figure 20.2. Then ~mix S is given by 

~.S:=S. -s-s 
mix mixture I 2 

where 1 and 2 refer to N 2 (g) and Br 2 (g), respectively. The quantities 0. I and 0.2 are 
given by 

and 

Because the molecules in a mixture of ideal gases are independent of each other, 

Substitute these expressions for Q
N 

1 0.
8 

,and 0. . t into the above equation for 
') [') mix ure 

~ . S to get - -
mix 



Because V is proportional to n for an ideal gas, 

n 
_~l~ == Y

1 n l + n2 

and 

so we have 

~mix S == -kB Nl In Y1 - kB N2ln Y2 

== -Rnlln Y1 - Rn2ln Y2 

Now, finally divide by n I + n2 and R to get 

Note that ~mixS is always a positive quantity because Y1 and Y2 , being mole fractions, 

are always less than one. Thus, the isothermal mixing of two (ideal) gases is a sponta­

neous process. We will derive Equation 20.26 using classical thermodynamics in the 

next section. 

20-6. We Must Always Devise a Reversible Process to Calculate 

Entropy Changes 

The discussion so far has been fairly abstract, and it will be helpful at this point to 
illustrate the change of entropy in a spontaneous process by means of some calculations 
involving an ideal gas for simplicity. First, let's consider the situation in Figure 20.1, in 
which an ideal gas at T and VI is allowed to expand into a vacuum to a total volume of 
V2 • We use Equation 20.19 even though this is not a reversible process. Remember that 
because the entropy is a state function, it depends only upon the initial and final states 
and not upon the path between them. Equation 20.19 tells us that we can calculate /),. S 
by integrating 8qrev/ T over a reversible path, 

/

28 
/),. S == q rev 

I T 
(20.27) 

regardless of whether the process is reversible or not. Even though the irreversible 
process occurs adiabatically, we use a reversible path to calculate the entropy change 
from the state T, VI to T, V2 . This path will not represent the actual adiabatic process, 
which does not matter because we are interested in only the entropy change between 
the initial state and the final state. To calculate /),. S, then, we start with 

8q ==dU-8w rev rev 
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But dU = 0 for the expansion of an ideal gas into a vacuum because U depends upon 
only temperature and is independent of volume for an ideal gas. Therefore, we have 
8q = -8w . The reversible work is given by rev rev 

nRT 
8w = -PdV = - dV 

rev V 

so 

~s = /2 8qrev = _ /2 8wrcv = nR jV2 dV = nR In V2 

I TIT VI V VI 
(20.28) 

Note that ~ S > 0 because V2 > VI' Thus, we see that the entropy increases in the 
expansion of an ideal gas into a vacuum. 

Because Equation 20.19 tells us to calculate ~ S by expanding the gas reversibly 

and isothermally from VI to V2' Equation 20.28 holds for the reversible isothermal 
expansion. Because S is a state function, however, the value of ~S obtained from 

Equation 20.28 is the same as the value of ~S for the irreversible isothermal expansion 
from VI to V2 • How, then, do a reversible and an irreversible isothermal expansion 
differ? The answer lies in the value of ~S for the surroundings. (Remember that the 
condition ~ S > 0 applies to an isolated system. If the system is not isolated, then 

the condition ~S > 0 applies to the sum of the entropy changes in the system and its 
surroundings, in other words, the entire universe.) 

Let's look at the entropy change of the surroundings, ~SSUIT' for both a reversible 

and an irreversible isothermal expansion. During the reversible expansion, ~ U == 0 
(the process is isothermal and the gas is ideal) and the gas absorbs a quantity of 

energy as heat, qrev = -wrev = nRT In V2 / VI' from its surroundings. The entropy of 
the surroundings, therefore, decreases according to 

~s =_qrev =-nRln V2 

SUIT T V 
I 

The total entropy change is given by 

v V 
~ S t I = ~ S + ~ S = n R In --.l - n R In _2 = 0 

to a sys SUIT V V 
1 I 

as it should be because the entire process is carried out reversibly. 

In the irreversible expansion, ~ U = 0 (the process is isothermal and the gas is 

ideal). No work is done in the expansion, so w iIT = 0 and therefore, qirr = O. No energy 
as heat is delivered to the system by the surroundings and so 

~S =0 SUIT 

Thus, the total entropy change is given by 

V2 V') 
~ S I = ~ S + ~ S = n R In - + 0 = n R In -=:. 

tota sys SUIT V V 
I I 

and so ~ S > 0 as we expect for an irreversible process. 
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Did we use qirr == 0 to calculate ~ Ssurr in this process? We actually did because no 
work was done by the process. In the general case of an isothermal process in which 
no work is done (0 W == 0), the process is one of pure heat transfer and d U == oq == dq, 
where dq is an exact differential because U is a state function. Therefore, q is path 
independent and so we can use qirr to calculate the entropy is this particular case. 

EXAMPLE 20-4 
In Example 20-2 we stated that U is a function of only the temperature for a gas that 

obeys the equation of state 

RT 
P = ==.--

V b 

where b is a constant that reflects the size of the molecules. Calculate ~ S when one 

mole of such a gas at T and V I is allowed to expand into a vacuum to a total volume 

of V
2

. 

SOLUTION: We start with 

8q = dU - 8w 
rev rev 

Because U is a function of only the temperature, and hence is independent of the 

volume, d U = 0 for the expansion. Therefore, 

RT 
8q = -8w = PdV = _ dV 

rev rev V - b 

and 

12 8q ~V2 dV V - b 
~ S = rev = R _ -- = R In =-_2 __ 

I T v V-b V -b 
I I 

Once again, the entropy increases when a gas expands into a vacuum. 

Let's look at the mixing of two ideal gases, as depicted in Figure 20.2. Because the 
two gases are ideal, each acts independently of the other. Thus, we can consider each gas 

separately to expand from ~nitial to ~lnal' For nitrogen, we have (using Equation 20.28) 

and for bromine, 
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The total entropy change is 

Because V is proportional to n for an ideal gas, we can write the above equation as 

n n 
N2 BS 

b..S:= -nN R In ---- - n B R In ----
2 nN + n B r2 nN + n B , f, , f, - .:. 

(20.29) 

If we divide both sides by the total number of moles, n t I := nN + nB and introduce 
to a , f"') 

mole fractions "- .:. 

V := .-N 
2 ntotal 

then Equation 20.29 becomes 

and 
n 

Bf2 
Y :=-­

Br2 n 
total 

More generally, b.. mix S for the isothermal mixing of N ideal gases is given by 

N 

b.. . S := -R "y.ln y. 
mIx ~ J .J 

j=1 

(20.30) 

in agreement with Equation 20.26. Equation 20.30 says that b.. mix S > 0 because the 
arguments of the logarithms are less than unity. Thus, Equation 20.30 shows that there 
is an increase in entropy whenever ideal gases mix isothermally. 

Last, let's consider b.. S when two equal sized pieces of the same metal at different 
temperatures, Th and Tc' are brought into thermal contact and then isolated from their 
surroundings. Clearly, the two pieces of metal will come to the same final temperature, 
T, which can be calculated by 

heat lost by hotter piece := heat gained by colder piece 

Solving for T gives 

We now will calculate the entropy change for each piece of metal. Remember that we 
must calculate b.. S along a reversible path, even though the actual process is irreversible. 
As usual, we use Equation 20.19, 

d S := 8Qrev 
T 



20-6. We Must Always Devise a Reversible Process to Calculate Entropy Changes 

There is essentially no work done, so 8q rev == d U == C vd T. Therefore, 

If we take C v to be constant from T} to T2 , then 

(20.31) 

Now, for the initially hotter piece, T} == Th and T2 == (Th + Tc) /2, and so 

T+T 
~S == C In h c 

h v 2T 
h 

Similarly, 

T+T 
~s == C In h c 

c v 2T 
c 

The total change in entropy is given by 

~s == ~Sh + ~Sc 

= C In (Th + Tel 
v 4TT 

h c 

(20.32) 

We will now prove that (Th + Tc)2 > 4ThTc' and that ~S > O. Start with 

Add 4 Th ~ to both sides and obtain 

Therefore, the value of the argument of the logarithm in Equation 20.32 is greater than 
one, so we see that ~ S > 0 in this irreversible process. 

EXAMPLE 20-5 
The constant-pressure molar heat capacity of 02 (g) from 300 K to 1200 K is given by 

where T is in kelvins. Calculate the value of tl.S when one mole of 02 (g) is heated at 
constant pressure from 300 K to 1200 K. 
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SOL UTI 0 N: As usual, we start with Equation 20.19 

dS = oqrev 

T 

In this case, oq = Cp(T)dT, so rev 

f1S = - p dT i T) C (T) 

T T 
I 

U sing the given expression for C p (T), we have 

1200 K 1200 K - f 25.72 f f1S/J·K- 1 ·mol- 1 = T dT + (12.98 x 10-3 K-1)dT 

300 K 300 K 

1200 K - f (38.62 X 10-7 K-2)TdT 

300 K 

1200 K = 25.721n + (12.98 x 10-3 K- 1)(900 K) 
300 K 

- (38.62 X 10-7 K-2) [(1200 K)2 - (300 K)2] /2 

= 35.66 + 11.68 - 2.61 = 44.73 

Note the increase in entropy due to the increased thermal disorder. 

20-7. Thermodynamics Gives Us Insight into the Conversion of Heat 
into Work 

The concept of entropy and the Second Law of Thermodynamics was first developed 
by a French engineer named Sadi Carnot in the 1820s in a study of the efficiency of the 
newly developed steam engines and other types of heat engines. Although primarily 
of historical interest to chemists, the result of Carnot's analysis is still worth knowing. 
Basically, a steam engine works in a cyclic manner; in each cycle, it withdraws energy 
as heat from some high-temperature thermal reservoir, uses some of this energy to do 
work, and then discharges the rest of the energy as heat to a lower-temperature thermal 
reservoir. A schematic representation of a heat engine is shown in Figure 20.7. The 
maximum amount of work will be obtained if the cyclic process is carried out reversibly. 
Of course, the maximum amount of work cannot be acheived in practice because the 
reversible path is an idealized process, but the results will give us a measure of the 
maximum efficiency that can be expected. Because the process is cyclic and reversible, 

~u . =w+q +q =0 engme rev. h rev. c 
(20.33) 



Hot reservoir 

Th 

fiG U R E 20.7 

Hea t 
e ng lo e r-=-"-" 

old re e rvoir 

Tc 

A highly schematic illustration of a heat engine. Energy as heat (qh) is withdrawn from a 
high-temperature thermal reservoir at temperature T

h
• The engine does work (w) and delivers 

an amount of energy as heat (qc) to the lower-temperature reservoir at temperature Te' 

and 

f'..S engme 
8qrev. h + 8Qrev.c = 0 

Th Tc 
(20.34) 

where 8Qrev. h is the energy withdrawn reversibly as heat from the high-temperature 
reservoir at temperature Th , and 8Qrev.c is the energy discharged reversibly as heat to 
the lower-temperature reservoir at temperature Te' Note that the sign convention for 
energy transferred as heat means that 8Qrev. h is a positive quantity and that 8Qrev.e is a 
negative quantity. From Equation 20.33 , we have that the work done by the engine is 

-w = Qrev. h + Qrev.c 

The work done by the engine is a negative quantity, so -w is a positive quantity. We 
can define the efficiency of the process by the ratio of the work done by the engine 
divided by the amount of energy withdrawn as heat from the hot reservoir, or 

-w 
maximum efficiency = --

l1rev .h -+- l1rev.c 

Qrev. h 

Equation 20.34 says that l1rev.c = -Qrcv .h (Tj Th ), so the efficiency can be written as 

T T - T 
1--'-= h c 

Th Th 
maximum efficiency = (20.35) 

Equation 20.35 is really a remarkable result because it is independent of the specific 
design of the engine or of the working substance. For a heat engine working between 
373 K and 573 K, the maximum possible efficiency is 

. ffi . 200 maximum e clency = = 35% 
573 

In practice, the efficiency would be less due to factors such as friction. Equation 20.35 
indicates that a greater efficiency is obtained by engines working with a higher value 
of Th or a lower value of Te . 

Note that the efficiency equals zero if Th = Te , which says that no net work can 
be obtained from an isothermal cyclic process. This conclusion is known as Kelvin's 
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statement of the Second Law. A closed system operating in an isothermal cyclic 
manner cannot convert heat into work without some accompanying change in the 
surroundings. 

20-8. Entropy Can Be Expressed in Terms of a Partition Function 

We presented the equation S == kB In W in Section 20-5. This equation can be used as 
the starting point to derive most of the important results of statistical thermodynamics. 

For example, we can use it to derive an expression for the entropy in terms of the 
system partition function, Q (N, V, fJ), as we have for the energy and the pressure: 

U == k T2 (a In Q) == _ (a In Q) 
B aT N.V a{3 N.V 

(20.36) 

and 

(
a In Q) P-kT 

- B a V N.T 
(20.37) 

Substitute Equation 20.23 into Equation 20.24 and then use Stirling's approxima­

tion for the factorials (MathChapter J) to get 

A! 
S bl == kB In n = kB In A! - kB '" In a. ! 

ensem e . a. ! ~ J 
J } .I 

== kBAlnA - kBA - ks ~ a.lna. + kB '" a. L....- J.I L....- } 
.I 

== kBAlnA - kB I: a) Ina) 
J 

) 

(20.38) 

where we have used the fact that L a) == A and have subscripted S with "ensemble" 
to emphasize that it is the entropy of the entire ensemble of A systems. The entropy of 

a typical system is given by Ssystem == Sensemble/ A. If we use the fact that the probability 
of finding a system in the j th quantum state is given by 

a. 
J 

Pj == A 

and then substitute a. == Ap. into Equation 20.38, we obtain 
J } 

S bl == kBA In A - kg '" p.A In p.A ensem e L....- } . .I 
.I 

== kBA In A - kB '" p.A In p. - kB '" p.A In A L....- } J L....-.I (20.39) 
} } 



20-8. Entropy Can Be Expressed in Terms of a Partition Function 

But the last term here cancels with the first because 

" p. A In A == A In A " p. == A In A ~ J ~ j . . 
J j 

where we have used the facts that A In A is a constant and L. p. == 1. If we furthermore 
J J 

divide Equation 20.39 through by A, we obtain 

S ==-kB"p.lnp. 
system ~ j J 

(20.40) 
J 

Note that if all the p. 's are zero except for one (which must equal unity because". p. == 
j. L j J 

1), the system is completely ordered and S == O. Therefore, we see that according to 
our molecular picture of entropy, S == 0 for a perfectly ordered system. Problem 20-39 
asks you to show that S is a maximum when all the p. 's are equal, in which case the 

j 

system is maximally disordered. 

To derive an expression for S in terms of Q(N, V, T), we substitute 

-fJE.(N, V) e J 

p/N, V, (3) = Q(N, V, (3) 

into Equation 20.40 to obtain 

S == -kB "p.lnp. ~ J j 

J 

E -fJE 
.e j k In Q 

== f3 k
B 
L j + B L e- fJEj 

. QQ. 
j j 

U 
== - + kB In Q 

T 

(20.41) 

(20.42) 

We used the fact that f3k s == 1/ T to go from the third line to the last line. Using 
Equation 20.36 for U gives S in terms of the partition function, Q(N, V, T). 

(20.43) 

Recall from Chapter 18 that 

][ In B N I (2 k T) 3N12 

Q(N, V, T) == N! h2 V gel 
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for a monatomic ideal gas where all the atoms are in their ground electronic state. 
Using Equation 20.43, we obtain for the molar entropy of one mole of a monatomic 
ideal gas, 

(20.44) 

Applying Stirling's approximation to the last term gives 

Therefore, 

5 (21rmkBT)3/2 Vg e1 S = -R + R In 
2 h 2 N 

A 

(20.45) 

EXAMPLE 20-6 
Use Equation 20.45 to calculate the molar entropy of argon at 298.2 K and one bar, 

and compare your result with the experimental value of 154.8 J·K- 1 ·mol- I
• 

SOL UTI 0 N: At 298.2 K and one bar, 

and 

(6.022 X 1023 mol- I )(1 bar) 

(0.08314 L·bar·K- I ·mol- I )(298.2 K) 

== 2.429 X 1022 L -I == 2.429 X 1025 m-3 

(
27TmkBT)3/2 == [27T(0.03995 kg·mol 1)(1.3806 x 10-23 J.K- 1)(298.2 K)]3/2 

h2 (6.022 X 1023 mol- I )(6.626 x 10-34 J'S)2 

== (3.909 X 1021 m-2)3/2 

== 2.444 x 1032 m-3 

Therefore 

- == + In 
S 5 . [2.444 X 10

32 
m-

3
] 

R 2 2.429 x 1025 m 3 

== 18.62 

or 

S == (18.62)(8.314 J·K-1.mol- l
) == 154.8 J·K-1·mol- 1 

This value of S agrees exactly with the experimentally determined value. 



20-9. The Molecular Formula S = kB In W Is Analogous to the Thermodynamic Formula dS = 8qrev/ T 843 

EXAMPLE 20-7 
Show that Equation 20.45 gives Equation 20.26 for the molar entropy of mixing 

nitrogen and bromine as ideal gases. 

SOL UTI 0 N: First we write Equation 20.45 as 

s == N kB In V + terms not involving V 

The initial state is given by 

s==s +S 1 1,N2 I,Br2 

== nN R In VN + n B R In VB + terms not involving V 
2 2· r2 r2 

where we have written N kB == n R. The final state is given by 

s==s +S 2 2,N
2 

2.Br2 

== nN R In( VN + VB ) + n B R In( VN + VB ) + terms not involving V 
2 2 r2 r2 2 f2 

Therefore 

Because V is proportional to n for an ideal gas, we have 

nN 
~ . S == -nN R In 2 

mix 2 n + n 
N2 Br2 

n 
- n R In __ Br_2_ 

Br2 n + n 
N2 Br2 

Ifwe divide this result through by n
N2 

+ n
Bf2

, then we obtain Equation 20.26. 

20-9. The Molecular Formula S = kB In W Is Analogous to the 
Thermodynamic Formula dS = 8qrev/ T 

In this last section, we will show that Equation 20.24, or its equivalent, Equation 20.40, 
is consistent with our thermodynamic definition of the entropy. As a bonus, we will 
finally prove that fJ = 1/ kB T. 

If we differentiate Equation 20.40 with respect to p., we get 
J 

d S = -k8 L (dpj + In Pjdpj ) 
J 

But L dpj = 0 because L Pj = 1, so 

dS = -kB Lin Pjdpj 
J 

(20.46) 
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Now substitute Equation 20.41 into the In p. term in Equation 20.46 to obtain 
.J 

dS == -kB L [-fJEj(N, V) -In Q] dpj 
.J 

The term involving In Q drops out because 

) .J 

and so 

dS == fJ kB L Ej(N, V)dpj(N, V, fJ) 
.J 

(20.47) 

But we showed in Section 19--4 that ". E.(N, V)dp.(N, V, fJ) is the energy as heat L J J J 

that a system gains or loses in a reversible process, so Equation 20.47 becomes 

(20.48) 

Equation 20.48 shows, furthermore, that fJkB is an integrating factor of oqrev' or fJkB == 

1/ T, or fJ == 1/ kB T. Thus, we have finally proved that fJ == 1/ kB T. 
In the next chapter, we will discuss the experimental determination of the entropies 

of substances. 

Problems 
20-1. Show that 

if Y is a state function. 

20-2. Let z = z(x, y) and dz = xydx + y 2dy. Although dz is not an exact differential (why 
not?), what combination of dz and x and/or y is an exact differential? 

20-3. Use the criterion developed in MathChapter H to prove that 8Qrev in Equation 20.1 is not 

an exact differential (see also Problem H-ll). 

20-4. Use the criterion developed in MathChapter H to prove that 8qrev/ T in Equation 20.1 is 

an exact differential. 

20-5. In this problem, we will prove that Equation 20.5 is valid for an arbitrary system. To 

do this, consider an isolated system made up of two equilibrium subsystems, A and B, 

which are in thermal contact with each other; in other words, they can exchange energy 
as heat between themselves. Let subsystem A be an ideal gas and let subsystem B be 

arbitrary. Suppose now that an infinitesimal reversible process occurs in A accompanied by 

an exchange of energy as heat 8qrev (ideal). Simultaneously, another infinitesimal reversible 



Problems 

process takes place in B accompanied by an exchange of energy as heat 8qrev (arbitrary). 
Because the composite system is isolated, the First Law requires that 

8qrev (ideal) == - 8Qrev (arbitrary) 

Now use Equation 20.4 to prove that 

Therefore, we can say that the definition given by Equation 20.4 holds for any system. 

20-6. Calculate q and ~ S for a reversible cooling of one mole of an ideal gas at a constant rev 
volume VI from p)' VI' TI to P2 ' VI' T4 followed by a reversible expansion at constant 
pressure P2 from P2' VI' T4 to P2 ' V2 , T) (the final state for all the processes shown in 
Figure 20.3). Compare your result for ~S with those for paths A, B + C, and D + E in 

Figure 20.3. 

20-7 . Derive Equation 20.8 without referring to Chapter 19. 

20-8. Calculate the value of ~ S if one mole of an ideal gas is expanded reversibly and 
isothermally from 10.0 dm3 to 20.0 dm3

. Explain the sign of ~S. 

20 .. 9. Calculate the value of ~S if one mole of an ideal gas is expanded reversibly and 
isothermally from 1.00 bar to 0.100 bar. Explain the sign of ~S. 

20-10. Calculate the values of qrev and ~S along the path D + E in Figure 20.3 for one mole 
of a gas whose equation of state is given in Example 20-2. Compare your result with that 
obtained in Example 20-2. 

20-11. Show that ~SD+E is equal to ~S A and ~SB+C for the equation of state given in Exam­
ple 20-2. 

20-12. Calculate the values of qrev and ~ S along the path described in Problem 20-6 for one 
mole of a gas whose equation of state is given in Example 20-2. Compare your result with 
that obtained in Example 20-2. 

20-13. Show that 

T2 
~S == C pln-

TI 

for a constant-pressure process if C p is independent of temperature. Calculate the change 
in entropy of 2.00 moles of H

2
0(l) (C p == 75.2 J·K I'mol-I) if it is heated from 10cC 

to 90c C. 

20-14. Show that 

if one mole of an ideal gas is taken from T
I

, VI to T
2

, V
2

, assuming that C v is independent 
of temperature. Calculate the value of ~ S if one mole of N 2 (g) is expanded from 20.0 dm3 

at 273 K to 300 dm3 at 400 K. Take C p == 29.4 J. K- I . mol-I. 
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20-15. In this problem, we will consider a two-compartment system like that in Figure 20.4, 
except that the two subsystems have the same temperature but different pressures and the 
wall that separates them is flexible rather than rigid. Show that in this case, 

Interpret this result with regard to the sign of d VB when P
B 

> P
A 

and when P
B 

< P
A

. 

20-16. In this problem, we will illustrate the condition d S d > 0 with a concrete example. pro -

Consider the two-component system shown in Figure 20.8. Each compartment is in equi-
librium with a heat reservoir at different temperatures TI and T2 , and the two compartments 
are separated by a rigid heat-conducting wall. The total change of energy as heat of com­
partment I is 

where d<q, is the energy as heat exchanged with the reservoir and djq, is the energy as heat 
exchanged with compartment 2. Similarly, 

dq, = d q, +dq, _ e _ 1 _ 

Clearly, 

Show that the entropy change for the two-compartment system is given by 

dS = e 1+ e 2 +dql __ _ dG7 dG7 (I I) 
T, Tl I T, T2 

= dS +dS exc hange prod 

FIG U R E 20.8 
A two-compartment system with each compartment in contact with an (essentially infinite) heat 
reservoir, one at temperature TI and the other at temperature T2 . The two compartments are 
separated by a rigid heat-conducting wall. 



Problems 

where 

is the entropy exchanged with the reservoirs (surroundings) and 

is the entropy produced within the two-compartment system. Now show that the condition 

d Sprod > 0 implies that energy as heat flows spontaneously from a higher temperature to a 
lower temperature. The value of d S h ' however, has no restriction and can be positive, exc ange 

negative, or zero. 

20-1 7. Show that 

/),.S > ! 
- T 

for an isothermal process. What does this equation say about the sign of /),. S? Can /),. S 
decrease in a reversible isothermal process? Calculate the entropy change when one mole 
of an ideal gas is compressed reversibly and isothermally from a volume of 100 dm3 to 
50.0 dm3 at 300 K. 

20-18. Vaporization at the normal boiling point (Tvap) of a substance (the boiling point at 
one atm) can be regarded as a reversible process because if the temperature is decreased 

infinitesimally below Tvap ' all the vapor will condense to liquid, whereas if it is increased 

infinitesimally above Tvap ' all the liquid will vaporize. Calculate the entropy change when 

two moles of water vaporize at 100.0°C. The value of /),. H is 40.65 kJ ,mol-I. Comment yap 

on the sign of /),. S. yap 

20-19. Melting at the normal melting point (T
fus

) of a substance (the melting point at one atm) 
can be regarded as a reversible process because if the temperature is changed infinitesimally 
from exactly Tfus ' then the substance will either melt or freeze. Calculate the change in 
entropy when two moles of water melt at O°C. The value of /),.fusH is 6.01 kJ·mol- 1

• 

Compare your answer with the one you obtained in Problem 20-18. Why is /),. S much yap 

larger than /),.fus S? 

20-20. Consider a simple example of Equation 20.23 in which there are only two states, 
1 and 2. Show that W(a

1
, a2 ) is a maximum when at == a

2
, Hint: Consider In W, use 

Stirling's approximation, and treat a
1 

and a
2 

as continuous variables. 

20-21. Extend Problem 20-20 to the case of three states. Do you see how to generalize it to 
any number of states? 

20-22. Show that the system partition function can be written as a summation over levels by 
writing 

Q(N, V, T) == L Q(N, V, E)e- E
/ kBT 

E 
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Now consider the case of an isolated system, for which there is only one term in Q(N, V, T). 
Now substitute this special case for Q into Equation 20.43 to derive the equation S == 
k B In Q. 

20-23. In this problem, we will show that Q == c(N)f(E) VN for an ideal gas (Example 20-3). 

In Problem 18-42 we showed that the number of translational energy states between £ and 

£ + ~£ for a particle in a box can be calculated by considering a sphere in n
x

' ny, n;:: space, 

Show that for an N -particle system, the analogous expression is 

LN 2 2 2 8ma 2 E 2 
(n x /' + n y /, + n;::,') == 2 == R . .. . h 

j I 

or, in more convenient notation 

Thus, instead of dealing with a three-dimensional sphere as we did in Problem 18-42, here 

we must deal with a 3 N-dimensional sphere. Whatever the formula for the volume of a 

3N -dimensional sphere is (it is known), we can at least say that it is proportional to R3N. 

Show that this proportionality leads to the following expression for cP (E), the number of 

states with energy < E, 

where c(N) is a constant whose value depends upon N and V == a 3
. Now, following the 

argument developed in Problem 18-42, show that the number of states between E and 

E + ~ E (which is essentially Q) is given by 

Q == c(N)f(E) VN ~E 

3N I 
where fee) == ET- . 

20-24. Show that if a process involves only an isothermal transfer of energy as heat (pure heat 
transfer), then 

dS sys 

dq 

T 
(pure heat transfer) 

20-25. Calculate the change in entropy of the system and of the surroundings and the total 

change in entropy if one mole of an ideal gas is expanded isothermally and reversibly from 

a pressure of 10.0 bar to 2.00 bar at 300 K. 

20-26. Redo Problem 20-25 for an expansion into a VaCUUlTI, with an initial pressure of ] 0.0 bar 

and a final pressure of 2.00 bar. 

20-27. The molar heat capacity of I-butene can be expressed as 



Problems 

over the temperature range 300 K < T < 1500 K. Calculate the change in entropy when 

one mole of I-butene is heated from 300 K to 1000 K at constant pressure. 

20-28. Plot ~mix S against y) for the mixing of two ideal gases. At what value of y) is ~mix S a 

maximum? Can you give a physical interpretation of this result? 

20-29. Calculate the entropy of mixing if two moles of N2 (g) are mixed with one mole 02 (g) 

at the same temperature and pressure. Assume ideal behavior. 

20-30. Show that ~ . S = R In 2 if equal volumes of any two ideal gases under the same 
mix 

conditions are mixed. 

20-31. Derive the equation dU = TdS - PdV. Show that 

- dT dV 
dS=C -+R-

v T V 

for one mole of an ideal gas. Assuming that C v is independent of temperature, show that 

T, V 2 
~S = C v In -=- + R In -

T) VI 

for the change from T I , V I to T2 , V 2' Note that this equation is a combination of Equa­

tions 20.28 and 20.31. 

20-32. Derive the equation d H = T d S + V d P. Show that 

for the change of one mole of an ideal gas from T), PI to T
2

, P
2

, assuming that C p is 

independent of temperature. 

20-33. Calculate the change in entropy if one mole of S02 (g) at 300 K and 1.00 bar is heated 
to 1000 K and its pressure is decreased to 0.0 10 bar. Take the molar heat capacity of S02 (g) 

to be 

- 1454.6 K 160351 K2 
C p (T)/R=7.871- + 2 

T T 

20-34. In the derivation of Equation 20.32, argue that tlSc > 0 and ~Sh < O. Now show that 

by showing that 

20-35. We can use the equation S = kB In W to derive Equation 20.28. First, argue that the 

probability that an ideal-gas molecule is found in a subvolume V of some larger volume 
s 

V is ~\' / V. Because the molecules of an ideal gas are independent, the probability that 
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N ideal-gas molecules are found in V is (V,/ V)N. Now show that the change in entropy 
s s 

when the volume of one mole of an ideal gas changes isothermally from VI to V
2 

is 

V 
!1S == R In-2 

VI 

20-36. The relation n j ex: e -E/ kB T can be derived by starting with S == kB In W. Consider a gas 

with no molecules in the ground state and nj in the jth state. Now add an energy cj - Co 
to this system so that a molecule is promoted from the ground state to the jth state. If the 

volume of the gas is kept constant, then no work is done, so d U == dq, 

dq dU C,-Co d S == _ == _. _ == _.1 __ 

T T T 

Now, assuming that no and n j are large, show that 

== k. In } o· == k In ~ I
n.! n'} n 

B (n j + I)! (no - I)! B n j 

Equating the two expressions for d S, show that 

nj == e-(cj-Fo)/kBT 

no 

20-37. We can use Equation 20.24 to calculate the probability of observing fluctuations from 

the equilibrium state. Show that 

W - == e t1S/kB 

W eq 

where W represents the nonequilibrium state and !1 S is the entropy difference between 

the two states. We can interpret the ratio W / Weq as the probability of observing the 

nonequilibrium state. Given that the entropy of one mole of oxygen is 205.0 J·K I ·mol- 1 

at 25°C and one bar, calculate the probability of observing a decrease in entropy that is one 

millionth of a percent of this amount. 

20-38. Consider one mole of an ideal gas confined to a volume V. Calculate the probability 

that all the N A molecules of this ideal gas will be found to occupy one half of this volume, 

leaving the other half empty. 

20-39. Show that S given by Equation 20.40 is a maximum when all the p. are equal. 
system } 

Remember that L p. == I, so that 
} 

LPj lnpj == p)lnp) + P2 lnP2 + ... + Pn_llnPn I 

} 

+ (1 - PI - P2 - •.• - P
1l 

I) In(! - PI - P2 - •.• - Pn- I ) 

See also Problem 1-10. 



Problems 

20-40. Use Equation 20.45 to calculate the molar entropy of krypton at 298.2 K and one bar, 
and compare your result with the experimental value of 164.1 J. K- 1 

• mol-I. 

20-41. Use Equation 18.39 and the data in Table 18.2 to calculate the entropy of nitrogen at 
298.2 K and one bar. Compare your result with the experimental value of 191.6 J. K- I ·mol- l 

. 

20-42. Use Equation 18.57 and the data in Table 18.4 to calculate the entropy of CO2 (g) at 
298.2 K and one bar. Compare your result with the experimental value of213.8 J. K- I ·mol- I . 

20-43. Use Equation 18.60 and the data in Table 18.4 to calculate the entropy of NH3(g) at 
298.2 K and one bar. Compare your result with the experimental value of 192.8 J. K- 1 ·mol- l 

. 

20-44. Derive Equation 20.35. 

20-45. The boiling point of water at a pressure of 25 atm is 223°C. Compare the theoretical 

efficiencies of a steam engine operating between 200 e and the boiling point of water at 
1 atm and at 25 atm. 
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Walther Nernst was born in Briessen, Prussia (now Wabrzezno, Poland), on June 25, 1864, 
and died in 1941. Although he aspired to be a poet, his chemistry teacher kindled his interest 
in science. Between 1883 and 1887, Nernst studied physics with von Helmholtz, Boltzmann, 
and Kohlrausch. He received his doctorate in physics at the University of Wlirzburg in 1887. 
Nernst was Ostwald 's assistant at the University of Leibzig from 1887 to 1891 , after which 
he went to the University of Gottingen, where he established the Kaiser Wilhelm Institute for 
Physical Chemistry and Electrochemistry in 1894. Upon moving to the University of Berlin 
in 1905, Nernst began his studies of the behavior of substances at very low temperatures. He 
proposed one of the early versions of the Third Law of Thermodynamics, which says that 
the physical activities of substances tend to vanish as the temperature approaches absolute zero. 
The Third Law made it possible to calculate thermodynamic quantities such as equilibrium 
constants from thermal data. He was awarded the Nobel Prize for chemistry in 1920 "in 
recognition of his work in thermochemistry." He was an early automoblile enthusiast and served 
during World War I as a driver. Nernst lost both of his sons in World War I. His anti-Nazi stance 
in the 1930s led to increasing isolation, so he retired to his country home, where he died 
in 1941. 



CHAPTER 

Entropy and the Third Law 
of Thermodynamics 

In the previous chapter, we introduced the concept of entropy. We showed that entropy 
is created or generated whenever a spontaneous or irreversible process occurs in an 
isolated system. We also showed that the entropy of an isolated system that is not in 
equilibrium will increase until the system reaches equilibrium, from which time the 
entropy will remain constant. We expressed this condition mathematically by writing 
d S > 0 for a process that occurs at constant U and V. Although we calculated the 
change in entropy for a few processes, we did not attempt to calculate absolute values 
of the entropy of substances. (See Example 20-6 and Problems 20-41 through 20-43, 
however.) In this chapter, we will introduce the Third Law of Thermodynamics, so that 
we can calculate absolute values of the entropy of substances. 

21-1. Entropy Increases with Increasing Temperature 

We start with the First Law of Thermodynamics for a reversible process: 

dU ~ oq + ow 
rev rev 

Using the fact that oq ~ TdS and ow ~ -PdV, we obtain a combination of the 
rev rev 

First and Second Laws of Thermodynamics: 

dU ~ TdS - PdV (21.1 ) 

We can derive a number of relationships between thermodynamic quantities using 
the laws of thermodynamics and the fact that state functions are exact differentials. 
Example 21-1 derives the following two important relationships 

(21.2) 
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(21.3) 

EXAMPLE 21-1 
Express U as a function of V and T and then use this result and Equation 21.1 to 
derive Equations 21.2 and 21.3. 

SOL UTI 0 N: If we treat U as a function of V and T, its total derivative is (Math­
Chapter H) 

dU == (au) dT + (au) dV aT v av T 
(21.4) 

We substitute Equation 21.4 into Equation 21.1 and solve for d S to obtain 

dS == ~ (au) dT + ~ [p + (au) ] dV T aT v T av T 

U sing the definition that (a u / a T) v == C v' we obtain 

dS == v + - P + - dV C dT 1 [ (au)] 
T T av T 

If we compare this equation for d S with the total derivative of S == SeT, V), 

dS == (~) dT + (~) dV aT v av T 

we see that 

and 

Equation 21.2 tells us how S varies with temperature at constant volume. If we 
integrate with respect to T (keeping V constant), we obtain 

f T2 C (T)dT 
~S == SeT) - SeT) == . _v __ 

2 1 T 
T] 

(constant V) (21.5) 

Thus, if we know C v (T) as a function of T, we can calculate ~ S . Note that because 
C v is always positive, the entropy increases with increasing temperature. 

Equation 21.5 is restricted to constant volume. To derive a similar equation for 
constant pressure, we start with 

dH == d(U + PV) == dU + PdV + VdP 



21-2. The Third Law of Thermodynamics Says That the Entropy of a Perfect Crystal Is Zero at 0 K 

and substitute Equation 21.1 for d U to obtain 

dH == TdS + VdP (21.6) 

Proceeding in a similar manner as in Example 21-1 (Problem 21-1), we obtain 

(21.7) 

and 

(21.8) 

From Equation 21.7, we get 

(constant P) (21.9) 

Thus, if we know C p as a function of T, we can calculate ~ S. Most processes we 
will consider occur at constant pressure, so we will usually use Equation 21.9 to 
calculate ~ S. 

If we let T\ == 0 K in Equation 21.9, then we have 

i T C (T')dT' 
SeT) == S(O K) + P / 

o T 
(constant P) (21.10) 

Equation 21.10 tells us that we can calculate the entropy of a substance if we know 
S(O K) and Cp(T) from T == 0 K to the temperature of interest. (Notice once again 
that we use a prime on the variable of integration to distinguish it from an integration 
limit.) 

21-2. The Third Law of Thermodynamics Says That the Entropy 
of a Perfect Crystal Is Zero at 0 K 

Let's discuss S(O K) first. Around the turn of the century, the German chemist Walther 
Nernst, after studying numerous chemical reactions, postulated that ~rS ~ 0 as 
T ~ O. Nernst did not make any statement concerning the entropy of any particu­
lar substance at 0 K, only that all pure crystalline substances have the same entropy at 0 
K. We have added the "pure crystalline" condition here to avoid some apparent excep­
tions to Nernst's postulate that we will resolve later. In 1911, Planck, who incidentally 
did a great deal of research in thermodynamics (including his doctoral thesis), extended 
Nernst's postulate by postulating that the entropy of a pure substance approaches zero 
at 0 K. Planck's postulate is consistent with Nemst's but takes it further. There are 
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several equivalent statements of what is now called the Third Law of Thermodynamics, 
but the one we will use is 

Every substance has a finite positive entropy, but at zero kelvin the entropy may 
become zero, and does so in the case of a perfectly crystalline substance. 

The Third Law of Thermodynamics is unlike the first two laws in that it introduces no 
new state function. The first law gives us the energy and the second law gives us the 
entropy; the third law provides a numerical scale for entropy. 

Although the Third Law was formulated before the full development of the quan­
tum theory, it is much more plausible and intuitive if we think of it in terms of 
molecular quantum states or levels. One of our molecular formulas for the entropy is 
(Equation 20.24) 

(21.11 ) 

where W is the number of ways the total energy of a system may be distributed over 
its various energy states. At 0 K, we expect that the system will be in its lowest energy 
state. Therefore, W == 1 and S == O. Another way to see this result is to start with 
Equation 20.40 for S: 

S == -kB L Pj In Pj 
j 

(21.12) 

where p. is the probability of finding the system in the jth quantum state with energy 
J 

E .. At 0 K, there is no thermal energy, so we expect the system to be in the ground 
J 

state; thus, Po == 1 and all the other Pj's equal zero. Therefore, S in Equation 21.12 
equals zero. Even if the ground state has a degeneracy of n, say, then each of the n 
quantum states with energy Eo would have a probability of 1/ n, and S in Equation 21.12 
would be 

nil 
S (0 K) == -kB L - In - == kB In n 

j Inn 
(21.13) 

Even if the degeneracy of the ground state were as large as the Avogadro constant, S 
would be equal to only 7.56 x 10-22 J. K- 1 

• mol-I, which is well below a measurable 
value of S. 

Because the Third Law of Thermodynamics asserts that S(O K) == 0, we can write 
Equation 21.10 as 

iT C (T')dT' 
SeT) == P, 

o T 
(21.14) 



21-3. ~trsS == ~trsH/r;.rs at a Phase Transition 

We made a tacit assumption when we wrote Equation 21.14~ we assumed that there is 
no phase transition between 0 and T. Suppose there is such a transition at ~rs between 
o and T. We can calculate the entropy change upon the phase transition, ~trsS, by using 
the equation 

~ S == qrey 
trs T 

trs 

(21.15) 

A phase transition is a good example of a reversible process. A phase transition can 
be reversed by changing the temperature ever so slightly. In the melting of ice, for 
example, at one atm, the system will be all ice if T is just slightly less than 273.15 K 
and all liquid if T is just slightly greater than 273.15 K. Furthermore, a phase transition 
takes place at a fixed temperature, so Equation 21.15 becomes (recall that ~ H == q p 

for a phase transition) 

~ S == trs 

~ H trs 

~rs 
(21.16) 

EXAMPLE 21-2 
Calculate the molar entropy change upon melting and upon vaporization at one 
atm for H

2
0. Use ~t' H == 6.01 kJ ·mol- 1 at 273.15 K and ~ H == 40.7 kJ ·mol- 1 

us yap 

at 373.15 K. 

SO L UTI 0 N: Using Equation 21.16, we have 

6.01 kJ ·mol- 1 

~f S== ==22.0J·K- 1 ·mol- 1 

us 273.15 K 
and 

40.7 kJ· mol-I 
~ S == == 109 J·K-'·mol- I 

yap 373.15 K 

Note that L). S is much larger than L).f> . S. This makes sense molecularly because yap LIS 

the difference in disorder between a gas and a liquid phase is much greater than the 
difference in disorder between a liquid and a solid phase. 

To calculate S (T), we integrate C p (T) / T up to the first phase transition tempera­
ture, add a ~trs H / ~rs term for the phase transition, and then integrate C p (T) / T from 
the first phase transition temperature to the second, and so on. For example, if the 
substance has no solid-solid phase transition, we would have, for T greater than the 
boiling point, 

l
~>us esp' (T)dT ~. H jTvap Cl (T)dT 

SeT) == + tus + _P __ _ 

o T Tf·, T T 
us Ius 

~H, jT cg 
(TI.)dT' + yap + _p __ _ 

T T' 
yap Tvap 

(21.17) 
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where ~us is the melting point, C~ (T) is the heat capacity of the solid phase, Tvap is 
the boiling point, C~ (T) is the heat capacity of the liquid phase, C~ (T) is the heat 

capacity of the gaseous phase, and ~ fus H and ~ Hvap are the enthalpies of fusion and 
vaporization, respectively. 

21-4. The Third Law of Thermodynamics Asserts That C p ---+ 0 
as T ---+ 0 

It has been shown experimentally and theoretically that C~(T) ~ T3 as T ~ 0 for 
most nonmetallic crystals (C~ for metallic crystals goes as aT + b r3 as r ~ 0, where 
a and b are constants). This r3 temperature dependence is valid from 0 K to about 
15 K and is called the Debye T3 law, after the Dutch chemist Peter Debye, who first 
showed theoretically that C~(T) ~ T3 as T ~ 0 for nonmetallic solids. 

EXAMPLE 21-3 
According to the Debye theory, the low-temperature molar heat capacity of nonmetallic 
solids goes as 

o < T < ~ow 

where ~ow depends upon the particular solid, but is about 10K to 20 K for most 
solids, and eo is a constant characteristic of the solid. The parameter eo has ~nits 
of temperature and is called the Debye teTnperature of the solid. Show that if C p is 
given by the above expression, the low-temperature contribution to the molar entropy 
is given by 

- C (T) 
SeT) == -p-

3 
o < T < T..ow 

SOL UTI 0 N: Substitute the given expression for C p (T) into Equation 21.14 to get 

EXAMPLE 21-4 

-. iT C (T')dT' 12n
4 
R iT 

SeT) == p == 3 T'2dT' 
o T' seD 0 

12n 4 R T3 

58~ 3 
(21.18) 

Given that the molar heat capacity of solid chlorine is 3.39 j·K-1·mol- 1 at 14 K and 

obeys the Debye T3 law below 14 K, calculate the molar entropy of solid chlorine at 

14 K. 



21-5. Practical Absolute Entropies Can Be Determined Calorimetrica"y 

5 0 L UTI 0 N: We use Equation 21.18 and get 

- C peat 14 K) 
Seat 14 K) = --3--

3.39 1·K-1 .mol I ------ = 1.13 1.K- I .mol I 
3 

21-5. Practical Absolute Entropies Can Be Determined 
Calori metrically 

Given suitable heat capacity data and enthalpies of transition and transition temper­
atures, we can use Equation 21.17 to calculate entropies based on the convention of 
setting S(O K) == O. Such entropies are called third-law entropies, or practical absolute 
entropies. Table 21.1 gives the entropy ofN2(g) at 298.15 K. The entropy at 10.00 K 

was determined by using Equation 21.18 with C p == 6.15 J ·K- I ·mol- ' . At 35.61 K, the 
solid undergoes a phase change in crystalline structure with ~trsH == 0.2289 kJ 'mol- l

, 

so ~trsS == 6.43 J·K-l·mol- I
. At 63.15 K, N2(s) melts with ~fusH == 0.71 kJ·mol- l

, 

so ~f S == 11.2 J. K- ' . mol-I. Finally, N2 (1) at one atm boils at 77.36 K with ~ H == us yap 
5.57 kJ ·mol- 1

, giving ~vapS == 72.0 J ·K- I ·mol- l . For the regions between the phase 

transitions, C p(T)/T data were integrated numerically (Problem 21-14). According 
to Equation 21.17, the molar entropy is given by the area under the curve of C p (T) / T 

plotted against the temperature. 
The small correction at the end of Table 21.1 needs explaining. The values of 

entropies of gases presented in the literature are called standard entropies, which by 

TABLE 21.1 
The standard molar entropy of nitrogen at 298.15 K. 

Process 

a to 10.00 K 

10.00 to 35.61 K 

Transition 

35.61 to 63.15 K 

Fusion 

63.15 to 77.36 K 

Vaporization 

77.36 K to 298.15 K 

Correction for nonideality 

Total 

2.05 

25.79 

6.43 

23.41 

11.2 

11.46 

72.0 

39.25 

0.02 

191.6 
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convention are corrected for the nonideality of the gas at one bar. We will learn how 
to make this correction in Section 22-6. Recall that the standard state of a (real) gas at 
any temperature is that of the corresponding (hypothetical) ideal gas at one bar. 

Figure 21.1 shows the molar entropy of nitrogen plotted against temperature from 
OK to 400 K. Note that the molar entropy increases smoothly with temperature between 
phase transitions and that there are discontinuous jumps at each phase transition. Note 
also that the jump at the vaporization transition is much larger than the jump at the 
melting point. Figure 21.2 shows a similar plot for benzene. Note that benzene does 
not undergo any solid-solid phase transitions. 
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FIG U R E 21.2 
The molar entropy of benzene plotted against temperature from 0 K to 500 K. 



21-6. Practical Absolute Entropies of Gases Can Be Calculated from 
Part i t ion Fun ct ion s 

Recall from Section 20-8 that the entropy can be written as (Equation 20.43) 

S == kB In Q + kB T (
a In Q) 

aT N,V 

where Q (N, V, T) is the system partition function 

Q(N, V, T) == L e-Ej(N, V)/ksT 

.I 

(21.19) 

(21.20) 

Equation 21.19 is consistent with the Third Law of Thermodynamics. Let's write 
Equation 21.19 for S more explicitly by substituting Equation 21.20 into it: 

(21.21) 

We want to study the behavior of this equation as T -+ O. Assume for generality 
that the first n states have the same energy El == E2 == ... == En (in other words, 
that the ground state is n -fold degenerate) and that the next m states have the 
same energy En+l == En+2 == ... == En+m (the first excited state is m-fold degenerate), 
and so on. 

Let's look at the summations in Equations 21.21 as T -+ O. Writing out Equa­
tion 21.20 explicitly gives 

L e- E/ ksT == ne-E,/ksT + me-En+,/kST + ... 
.I 

Le-Ej/kST == e-E,/ksT [n +me-(En+,-E,)/ksT + ... J 
J 

But En+l - El > 0 (essentially by definition), so 

Therefore, as T -+ 0, 

L e- E/ ksT -+ ne-E,/ksT 

.I 
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In the limit of small T, then, the first terms in each summation in Equation 21.21 
dominate, and we have 

Thus, as T ~ 0, S is proportional to the logarithm of the degeneracy of the ground 
state (see Equation 21.13). As we argued in Section 21-2, even if n were as large as 
the Avogadro constant, S itself would be completely negligible. 

We learned in Chapter 17 (Equation 17.38) that 

Q( N V T) == [q(V, T)]N 
, , N! 

for an ideal gas. Furthermore, we learned in Chapter 18 that for a 
(1) monatomic ideal gas (Equation 18.13): 

(
27rmkBT)3/2 

q(V, T) == h2 V 'gel 

(2) diatomic ideal gas (Equation 18.39): 

_ (27rMkBT)3/2 . T 
q(V, T) - 2 V --

h a8 
rot 

(3) linear polyatomic ideal gas (Equation 18.57): 

(4) nonlinear polyatomic ideal gas (Equation 18.60): 

(21.22) 

(21.23) 

(21.24) 

(21.25) 

3n-6 8 'b ./2T e VI j 

IT · D/kT e I:' B 

1 -8..jT gel - e Vlb.j 

j=l 

(21.26) 
The various quantities in these equations are defined and discussed in Chapter 18. 

If we substitute Equation 21.22 into Equation 21.19, then we obtain 

S == N kB In q - kB In N! + N kB T (a In q ) 
aT v 

If we use Stirling's approximation for In N! (== N In N - N), then (Problem 21-27) 

S==Nk +Nk In[q(V,T)]+Nk T(aln
q

) 
B B N B aT v 

(21.27) 



21-6. Practical Absolute Entropies of Gases Can Be Calculated from Partition Functions 

Let's use Equations 21.27 and 21.24 to calculate the standard molar entropy of 

N2(g) at 298.15 K and compare the result with the value in Table 21.1 obtained from 

heat capacity data. If we substitute Equation 21.24 into Equation 21.27, we obtain 

Te + In 2E) -In(1 - e C-1Yib/
T

) 

rot 

(21.28) 

The first term represents the translational contribution to S, the second represents the 

rotational contribution, the third and fourth represent the vibrational contribution, and 

the last term represents the electronic contribution to S. The necessary parameters are 

8 == 2.88 K, 8"b == 3374 K, and g I == 1. At 298.15 K and one bar, the various rot Vl e 

factors are 

(
2JrMkBT)3/2 = [2Jr(4.653 X 10-26 kg)(1.3807 X 10-23 J.K- 1)(298.15 K)]3/2 

h2 (6.626 x 10-34 J. S)2 

== 1.436 X 1032 m-3 

V R T (0.083 14 L· bar . mol I. K - I ) (298. 15 K) 

NA NAP (6.022 x 1023 mol- 1)(1 bar) 

== 4.117 x 10-23 L == 4.117 x 10-26 m-3 

T e == (298.15 K)(2.71828) == 140.7 
28rot 2(2.88 K) 

8vibl T 
e8Yib/T - 1 

11.31 -4 

e 1 1.31 _ 1 == 1.380 x 10 

-0 

Thus, the standard molar entropy S at 298.15 K is 

-0 -0 -0 -0 -0 

S == Strans + Srot + Svib + Selec 

== (150.4 + 41.13 + 1.15 x 10-3 + 0) J. K- ' ·mol- I 

== 191.5 J·K- 1 ·mol- 1 

compared with the value of 191.6 J. K- 1 
• mol- 1 given in Table 21.1. The two values 

agree essentially exactly. This type of agreement is quite common, and in many cases the 
statistical thermodynamic value is more accurate than the calorimetric value. Table 21.2 

gives standard molar entropies for several substances. The accepted literature values 

are often a combination of statistical thermodynamic and calorimetric values. 

EXAMPLE 21-5 
Use the equations of this section to calculate the standard molar entropy of carbon 
dioxide at 298.15 K and compare the result with the value in Table 21.2. 
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TAB l E 21.2 

-0 

Standard molar entropies (S ) of various substances at 298.15 K. 

Substance SO jJ.K-1 .mol- I Substance SOjJ.K-1.mol-1 

Ag(s) 42.55 HCI(g) 186.9 

Ar(g) 154.8 HCN(g) 201.8 

Br2(g) 245.5 HI(g) 206.6 

Br2 (1) 152.2 H2O(g) 188.8 

C(s)(diamond) 2.38 H2°(l) 70.0 

C(s) (graphite) 5.74 Hg(l) 75.9 

CH
4
(g) 186.3 12 (s) 116.1 

C2H2(g) 200.9 12(g) 260.7 

C2H
4 
(g) 219.6 K(s) 64.7 

C2H6(g) 229.6 N2(g) 19l.6 

CH3OH(l) 126.8 Na(s) 5l.3 

CH3CI(g) 234.6 NH3(g) 192.8 

CO(g) 197.7 NO(g) 210.8 

CO2(g) 213.8 N02(g) 240.1 

CI2 (g) 223.1 °2(g) 205.2 

H2(g) 130.7 °3(g) 238.9 

HBr(g) 198.7 S02(g) 248.2 

SOL UTI 0 N: Carbon dioxide is a symmetric linear molecule with four vibrational 
degrees of freedom. We substitute Equation 21.25 into Equation 21.27 to obtain 

SO [(2nMkBT)3
/
2 V] (T) - == 1 + In - + In 

R h2 N (J8 A rot 

4 8.. 4 D 
'"""' vlb,j '"""' I (1 -(0 'b ,IT) + I + e - ~ - ~ n - e VI.J n g 
j=1 2T j=1 el kB T 

+ T _ + _ + '"""' Vlb,j + '"""' vlb,j. e 

[ 

3 1 4 8" 4 (8. ,jT2 )e-0
)Vib./

T D] 
2T T b 2T2 b 1 - e-(0vib ,/T - kBT2 

or 

SO 7 [(2nMkBT)3
/
2 V 1 (T) - == - + In - + In 

R 2 h 2 N (J8 
A rot 

4 [(8. . j T)e -0)vib./
T 1 + '"""' Vlb,j _ In( 1 - e -Hvib./T) + In g 

~ 1 -(~) 'b .IT el 
j=1 - e VI.J 

Paralleling the calculation for N2(g), we find that (2n MkB T j h2)3/2 == 2.826 X 

1032 m-3 and V j N A == 4.117 x 10-26 m-3. Using the value of 8
rot 

== 0.561 K from 

Table 18.4, we find that Tj28 == 265.8. Similarly, we use Table 18.4 to show that 
rot 
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the four values of e 'b ./ Tare 3.199 (twice), 6.338, and 11.27. Last, g 1 = 1. Putting 
VI .J . e 

all this together, we find that 

-0 

S 7 - = - + In [(2.826 x 1032 m-3)(4.117 x 10-26 m-3
)] + In 265.8 

R 2 

or 

[
3.19ge-

3
.
199 -3.199] [6.338e-

6
.
338 

+2 -3199 -In(l-e ) + -6338 1 - e ~. 1 - e .~ -

+ -In(! - e- 11.27) 
[ 

11.27e-11.27 ] 
1 - e 11.27 

= 3.5 + 16.27 + 5.58 + 2(0.178) + 0.01 + 0(10-4
) 

= 25.71 

SO = 25.71R = 213.8 J·K-I·mol- I 

which is in excellent agreement with the value in Table 21.2. 

21-7. The Values of Standard Molar Entropies Depend Upon 
Molecular Mass and Molecular Structure 

Let's look at the standard molar entropy values in Table 21.2 and try to determine some 
trends. First, notice that the standard molar entropies of the gaseous substances are the 
largest, and the standard molar entropies of the solid substances are the smallest. These 
values reflect the fact that solids are more ordered than liquids and gases. 

Now consider the standard molar entropies of the noble gases given in Table 21.3. 
The increase in standard molar entropy of the noble gases is a consequence of their 
increasing mass as we move down the periodic table. Thus, an increase in mass leads 
to an increase in thermal disorder (more translational energy levels are available) and a 
greater entropy. We know from quantum theory that the greater the molecular mass, the 

TABLE 21.3 
-0 

Standard molar entropies (S ) for the noble gases, the gaseous halogens, and the hydrogen 
halides at 298.15 K. 

Noble gas SO/1.K-I.rnol I Halogen SO/1.K-I.rno} I Hydrogen halide SO/1.K-I.rno} I 

He(g) 126.2 F
2
(g) 202.8 HF(g) 173.8 

Ne(g) 146.3 C1
2 

(g) 223.1 HC}(g) 186.9 

Ar(g) 154.8 Br2 (g) 245.5 HBr(g) 198.7 

Kr(g) 164.1 L, (g) 260.7 HI(g) 206.6 
"-

Xe(g) 169.7 
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more closely spaced are the energy levels. The same trend can be seen by comparing 
the standard molar entropies at 298.15 K of the gaseous halogens and hydrogen halides 
(see Table 21.3 and Figure 21.3). 

Generally speaking, the more atoms of a given type in a molecule, the greater 
is the capacity of the molecule to take up energy and thus the greater is its entropy 
(the greater the number of atoms, the more different ways in which the molecules can 
vibrate.) This trend is illustrated by the series C

2
H

2 
(g), C

2
H

4 
(g), and C

2
H

6 
(g), whose 

standard molar entropies in joules per kelvin per mole at 298.15 K are 201, 220, and 
230, respectively. For molecules with the same geometry and number of atoms, the 
standard molar entropy increases with increasing molecular mass. 

300 

-
I 
.--. 
0 

a 
• .-

I 200 
~ 

HX 

• 
~ 

----
Noble gases 

0 

IV') 

100 
1.0 2.0 3.0 4.0 5.0 6.0 

In M 

FIG U R E 21.3 
Standard molar entropies (5 ) for the noble gases, the gaseous halogens, and the hydrogen 
halides at 298.15 K plotted against In M, where M is the molecular mass. 

EXAMPLE 21-6 
Arrange the following molecules in order of increasing standard molar entropy: 
CH

2
CI

2
(g); CHCl

3
(g); CH

3
CI(g). 

SOL UTI 0 N: The number of atoms is the same in each case, but chlorine has a 
greater mass than hydrogen. Thus, we predict that 

This ordering is in agreement with the values of the standard molar entropies at 

298.15 K, which are in units of joules per kelvin per mole, 234.6, 270.2, and 295.7, 
respectively. 

An interesting comparison is given by the isomers acetone and trimethylene oxide 
(whose molecular structures are shown below), whose standard molar entropies for the 
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gaseous forms at 298.15 K are 298 J. K I. mol-I and 274 J. K- 1 
. mol-I, respectively. 

The entropy of acetone is higher than the entropy of trimethylene oxide because of 
the free rotation of the methyl groups about the carbon-carbon bonds in the acetone 
molecule. The relatively rigid ring structure of the trimethylene oxide molecule restricts 
the movement of the ring atoms. This restriction gives rise to a lower molar entropy 
because the capacity of the rigid isomer to take up energy is less than that of the more 
flexible acetone molecule, which has more possibilities for intermolecular motion. 
For molecules with approximately the same molecular masses, the more compact the 
molecule is, the smaller is its entropy. 

Note that Table 21.2 gives S 0 == 245.5 J. K- 1 
• mol- 1 for Br2 (g) at 298.15 K and 

one bar. But bromine is a liquid at 298.15 K and one bar, so where does such a value 
come from? Even though bromine is a liquid under these conditions, we can calculate 
-0 

S [Br2 (g)] according to the scheme outlined in Figure 21.4. Therefore, we need the 
values of the molar heat capacity of Br 2 (1) (75.69 J. K- 1 

• mol- 1 
), the molar heat capacity 

of Br2 (g) (36.02 J. K- 1 . mol I), the normal boiling point of Br2 (1) (332.0 K), and the 
molar enthalpy of vaporization at 332.0 K (29.54 kJ 'mol- 1

) • We start with Br2 (1) 

332.0 K 
Br 2 (1) ----~~ Br 2 (g) 

Path 2 

298.15 K 
Br 2 (1) ... Br 2 (g) 

FIG U R E 21.4 
-0 

The scheme used to calculate S [Br2 (g)] at 298.15 K. 
In Path 1, Br2 (1) is heated to its boiling point, 332.0 K. 
Then Br2 (1) is vaporized to Br2 (g) at 332.0 K (Path 2), and 
finally Br2 (g) is cooled from 332.0 K back to 298.15 K 
(Path 3). 
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at 298.15 K and heat it to its boiling point. The value of flS for this first step is 
(Equation 21.7) 

flS I == SI(332.0 K) - S'(298.15 K) = C~ In T2 
Tl 

332.0 K 
== (75.69 J·K- I 'mol- I) In == 8.140 J·K-I·mol- I 

298.15 K 

Now vaporize the bromine at its normal boiling point (step 2 in Figure 21.4): 

_ -g _I fl H 
flS2 == S (332.0 K) - S (332.0 K) == yap 

T yap 

== 88.98 J·K-I·mol- I 

Last, cool the gas from 332.0 K back to 298.15 K (step 3): 

29.54 kJ·mol- 1 

332.0 K 

- -0" -g -g 298.15 K 
flS 3 == S~(298.15 K) - S (332.0 K) == C; In 332.0 K 

298.15 
== (36.02 J·K- I 'mol- I) In == -3.87 J·K-I·mol- I 

332.0 

If we add these three steps and then add the results to S;98 [Br2 (1)] == 152.2 J. K- I . mol-I 
(Table 21.2), we obtain 

-0 -0 

S298[Br2(g)] == S298 [Br2 (I)] + flS I + flS 2 + flS 3 

== 152.2 J·K-I·mol- I + 8.14 J·K-I·mol- I 

+ 88.98 J·K-I·mol- I - 3.87 J·K-I·mol- I 

== 245.5 J·K-1·mol-1 

in agreement with the value ofBr2 (g) in Table 21.2. Incidentally, the spectroscopic value 
of S 0[Br2(g)], using Equation 21.24 and the data in Chapter 18 is 245.5 J·K-I·mol- l 

(Problem 21-33). 

21-8. The Spectroscopic Entropies of a Few Substances Do Not Agree 
with the Calorimetric Entropies 

Table 21.4 compares calculated values of the molar entropies of several polyatomic 

gases with those measured calorimetrically. Note again, that the agreement with exper­

iment is quite good. In fact, calculated values of the entropy are often more accurate 

than measured values, provided sophisticated enough spectroscopic models are used. 
There is, however, a class of molecules for which the type of agreement in Ta­

ble 21.4 is not found. For example, for carbon monoxide, S I == 160.3 J·K-I·mol- 1 
ca c 

and Sexp == 155.6 J·K-I·mol- I at its boiling point (81.6 K), for a discrepancy of 

4.7 J. K- I . mol-I. Other such discrepancies are found, and in all cases S 1 > S . 
ca c exp 



TABLE 21.4 
The standard molar entropies of several polyatomic gases at 298.15 K 
and one bar. 

Gas 

CO
2 

NH3 

N02 

CH
4 

C2H2 

C
2
H

4 

C2H6 

213.8 

192.8 

240.1 

186.3 

200.9 

219.6 

229.6 

S (exp)/J·K-1·mol-1 

213.7 

] 92.6 

240.2 

186.3 

200.8 

219.6 

229.5 

The difference S 1 - S is often referred to as residual entropy. The explanation ca c exp 

of these cases is the following. Carbon monoxide has a very small dipole moment 
(~ 4 x 10-31 C· m), so when carbon monoxide is crystallized, the molecules do not 

have a strong tendency to line up in an energetically favorable way. The resultant 
crystal, then, is a random mixture of the two possible orientations, CO and OC. As the 
crystal is cooled down toward 0 K, each molecule gets locked into its orientation and 
cannot realize the state of lowest energy with W == 1, that is, all the molecules oriented 
in the same direction. Instead, the number of configurations W of the crystal is 2N

, 

because each of the N molecules exists equally likely (almost equally likely because 
the dipole moment is so small) in two states. Thus, the molar entropy of the crystal at 
o K is S == R In 2 instead of zero. If R In 2 == 5.7 J. K- 1 

• mol- l is added to the exper­
imental entropy, the agreement in the case of carbon monoxide becomes satisfactory. 
If it were possible to obtain carbon monoxide in its true equilibrium state at T == 0 K, 
this discrepancy would not occur. A similar situation occurs with dinitrogen oxide, 

which is a linear molecule with the structure NNO. For H:)CD, the residual entropy is 
11.7 J. K- 1 ·mol- I 

, which is explained by realizing that each molecule of monodeuter­
ated methane can assume four different orientations in the low-temperature crystal, so 
S 'd I == R In 4 == 11.5 J. K- 1 

. moll, in very close agreement with the experimental res) ua 

value. 

21-9. Standard Entropies Can Be Used to Calculate Entropy Changes 
of Chemical Reactions 

One of the most important uses of tables of standard molar entropies is for the calcu­
lation of entropy changes of chemical reactions. These changes are calculated in much 
the same way we calculated standard enthalpy changes of reactions from standard 
molar enthalpies of formation in Chapter 19. For the general reaction 

aA+bB -> yY+zZ 

869 
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the standard entropy change is given by 

For example, using the values of So given in Table 21.2 for the substances in the 
reaction described by the chemical equation 

b..rSO == (1)SO[H20(l)] - (1)SO[H2(g)] - (~)SO[02(g)] 

== (1)(70.0 j·K-1·mol-1) - (1)(130.7 j·K-1·mol- 1
) - (~)(205.2 j·K-1·mol- l

) 

== -163.3 j. K- 1 ·mol-1 

This value of b..rSo represents the value of b..rS for the combustion of one mole of H2 (g) 
or the formation of one mole of H20(l), when all the reactants and products are in their 
standard states. The large negative value of b..rSo reflects the loss of gaseous reactants 
to produce a condensed phase, an ordering process. 

We will use tables of standard enthalpies of formation and standard entropies to 
calculate equilibrium constants of chemical reactions in Chapter 26. 

Problems 

21-1. Form the total derivative of H as a function of T and P and equate the result to d H in 

Equation 21.6 to derive Equations 21.7 and 21.8. 

21-2. The molar heat capacity of H20(l) has an approximately constant value of C p == 
75.4 J·K-1·mol- 1 from O°C to 100°C. Calculate ~S if two moles of H20(l) are heated 

from 10°C to 90°C at constant pressure. 

21-3. The molar heat capacity of butane can be expressed by 

over the temperature range 300 K < T < 1500 K. Calculate ~ S if one mole of butane is 

heated from 300 K to 1000 K at constant pressure. 

21-4. The molar heat capacity of C2H
4 
(g) can be expressed by 

6085.929 K 822826 K2 
Cv(T)/R == 16.4105 - T + --T-2-

over the temperature range 300 K < T < 1000 K. Calculate ~ S if one mole of ethene is 

heated from 300 K to 600 K at constant volume. 



Problems 

21-5 . Use the data in Problem 21-4 to calculate ~ S if one mole of ethene is heated from 300 K 

to 600 K at constant pressure. Assume ethene behaves ideally. 

21-6. We can calculate the difference in the results of Problems 21-4 and 21-5 in the following 

way. First, show that because C p - C v == R for an ideal gas, 

Check to see numerically that your answers to Problems 21-4 and 21-5 differ by R In 2 == 
0.693R == 5.76 J·K-1·mol- l

. 

21-7. The results of Problems 21-4 and 21-5 must be connected in the following way. Show 

that the two processes can be represented by the diagram 

p 

v 

where paths A and B represent the processes in Problems 21-5 and 21-4, respectively. 
N ow, path A is equivalent to the sum of paths Band C. Show that ~ Sc is given by 

and that the result given in Problem 21-6 follows. 

21-8. Use Equations 20.23 and 20.24 to show that S == 0 at 0 K, where every system will be in 

its ground state. 

21-9. Prove that S == -k B L p. In p. == 0 when PI == I and all the other p. == O. In other words, 
} } } 

prove that x In x -+ 0 as x -+ O. 
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21-10. It has been found experimentally that ~vapS ~ 88 J. K- 1 ·mol- I for many nonassociated 

liquids. This rough rule of thulnb is called Trouton 's rule. Use the following data to test the 
validity of Trouton' s rule. 

Substance t rus / C t,ap/ C ~fus H /kJ· mol- 1 ~ H /kJ·mol- 1 
Yap 

Pentane -129.7 36.06 8.42 25.79 

Hexane -95.3 68.73 13.08 28.85 

Heptane -90.6 98.5 14.16 31.77 

Ethy lene oxide -111.7 10.6 5.17 25.52 

Benzene 5.53 80.09 9.95 30.72 

Diethyl ether -116.3 34.5 7.27 26.52 

Tetrachloromethane -23 76.8 3.28 29.82 

Mercury -38.83 356.7 2.29 59.11 

Bromine -7.2 58.8 10.57 29.96 

21-11. Use the data in Problem 21-10 to calculate the value of ~fus S for each substance. 

21-12. Why is ~vapS > ~flls S? 

21-13. Show that if C~(r) ~ ret as T -+ 0, where ex is a positive constant, then SeT) -+ 0 

as T -+ O. 

21-14. Use the following data to calculate the standard molar entropy of N2 (g) at 298.15 K. 

C~[N2(SI)]/ R = -0.03165 + (0.05460 K-1)T + (3.520 x 10-3 K- 2)T2 

- (2.064 x 10--5 K-3 ) T3 

10 K < T < 35.61 K 

C~[N}(s~,)]/R = -0.1696 + (0.2379 K I)T - (4.214 x 10-3 K- 2)T2 
4. ~ 

+ (3.036 x 10-5 K-3
) T3 

35.61 K < T < 63.15 K 

Cp[N,O)]/ R = -18.44 + (1.053 K I) T - (0.0148 K-2
) T2 

- + (7.064 x 10-5 K-3 ) T3 

63.15 K < T < 77.36 K 

Cp[N,(g)]/ R = 3.500from77.36K < T < 1000K, Cp(T = 10.0K) = 6.15J·K- 1 ·mol-!, 
~. - -I - -\ 

~rs = 35.61 K, ~trsH = 0.2289 kJ·nlol ,~-us = 63.15 K, ~fllsH = 0.71 kJ·mol '~'ap = 
77.36 K, and ~vap H = 5.57 kJ· mor-!. The correction for nonideality (Problem 22-20) 

= 0.02 J. K- 1 ·mol- 1
• 



Problems 

21-15. Use the data in Problem 21-14 and C p[N
2
(g)]/ R == 3.307 + (6.29 x 10-4 K-- 1

) T for 

T > 77.36 K to plot the standard molar entropy of nitrogen as a function of temperature 

from 0 K to 1000 K. 

21-16. The molar heat capacities of solid, liquid, and gaseous chlorine can be expressed as 

C~[CI2(s)]/R == -1.545 + (0.1502 K-1)T - (1.179 x 10 ,) K-2 )T2 

+ (3.441 x 1 0-6 K - 3) T 3 

15K<T<172.12K 

C~[CI2(l)]/ R == 7.689 + (5.582 x 10-3 K-1)T - (1.954 x 10 :) K-2)T2 

172.12 K < T < 239.0 K 

C~[CI2(g)]/ R == 3.812 + (1.220 x 10-3 K-1)T - (4.856 x 10- 7 K- 2)T 2 

239.0 K < T < 1000 K 

Use the above molar heat capacities and ~'us == 172.12 K, ~fus H == 6.406 kJ . mol-I, Tyap == 
239.0 K, ~ H == 20.40 kJ 'mol- 1

, 8
0 

== 116 K and the correction for nonideality == yap 
0.502 J. K- 1 

• mol- 1 to calculate the standard molar entropy of chlorine at 298.15 K. Compare 

your result with the value given in Table 21.2. 

21-17. Use the data in Problem 21-16 to plot the standard molar entropy of chlorine as a 

function of temperature from 0 K to 1000 K. 

21-18. Use the following data to calculate the standard molar entropy of cyclopropane at 

298.15 K. 

C~[C3H6(S)]/ R == -1.921 + (0.1508 K-1)T - (9.670 x 10-4 K- 2 )T2 

+ (2.694 A 1 U- 6 K -J) T3 

15 K < T < 145.5 K 

C~[C3H6(l)]/ R == 5.624 + (4.493 x 10-2 K-1)T - (1.340 x 10-4 K- 2 )T2 

145.5 K < T < 240.3 K - -

C~[C3H6(g)]/ R == -1.793 + (3.277 x 10-2 K-1)T - (1.326 x 10-5 K- 2 )T2 

240.3 K < T < 1000 K 

~us == 145.5 K, Tyap == 240.3 K, ~fusH == 5.44 kJ·mol-- ' , ~yapH == 20U5 kJ·mol I. and 

8
0 

== 130 K. The correction for nonideality == 0.54 J. K- ' . moll. 

21-19 . Use the data in Problem 21-18 to plot the standard molar entropy of cyclopropane from 

OK to 1000 K. 

21-20. The constant-pressure molar heat capacity of N20 as a function of temperature is 

tabulated below. Dinitrogen oxide melts at 182.26 K with ~fus H == 6.54 kJ· n101- 1
, and 

boils at 184.67 K with ~ H == 16.53 kJ· mol- ' at one bar. Assuming the heat capacity yap 
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of solid dinitrogen oxide can be described by the Debye theory up to 15 K, calculate the 
molar entropy of N20(g) at its boiling point. 

T/K C p/J.K- 1 ·mol- I T/K C p/J.K-1.mol- 1 

15.17 2.90 120.29 45.10 
19.95 6.19 130.44 47.32 

25.81 10.89 141.07 48.91 

33.38 16.98 154.71 52.17 

42.61 23.13 164.82 54.02 

52.02 28.56 174.90 56.99 

57.35 30.75 180.75 58.83 

68.05 34.18 182.26 Melting point 

76.67 36.57 183.55 77.70 

87.06 38.87 183.71 77.45 

98.34 41.13 184.67 Boiling point 

109.12 42.84 

21-21. Methylammonium chloride occurs as three crystalline forms, called fJ, y, and Ci, between 

OK and 298.15 K. The constant-pressure molar heat capacity of methylammonium chloride 

as a function of temperature is tabulated below. The fJ ~ y transition occurs at 220.4 K 

with ~ H == 1.779 kJ· mol-I and the y ~ Ci transition occurs at 264.5 K with ~ H == 
trs trs 

2.818 kJ ·mol- I. Assuming the heat capacity of solid methylammonium chloride can be 

described by the Debye theory up to 12 K, calculate the molar entropy of methylammonium 

chloride at 298.15 K. 

T/K C p/J.K- 1 ·mol-1 T/K C p/J.K-1.mol- 1 

12 0.837 180 73.72 

15 1.59 200 77.95 

20 3.92 210 79.71 

30 10.53 220.4 fJ ~ y transition 

40 18.28 222 82.01 

50 25.92 230 82.84 

60 32.76 240 84.27 

70 38.95 260 87.03 

80 44.35 264.5 y ~ Ci transition 

90 49.08 270 88.16 

100 53.18 280 89.20 

120 59.50 290 90.16 

140 64.81 295 90.63 

160 69.45 

21-22. The constant-pressure molar heat capacity of chloroethane as a function of temperature 

is tabulated below. Chloroethane melts at 134.4 K with ~fus H == 4.45 kJ· mol-I, and boils 

at 286.2 K with ~ H == 24.65 kJ· mol- 1 at one bar. Furthermore, the heat capacity of solid yap 



Problems 

chloroethane can be described by the Debye theory up to 15 K. Use these data to calculate 

the molar entropy of chloroethane at its boiling point. 

T/K Cp/J.K-1.mol-1 T/K Cp/J.K-1.mol- 1 

15 5.65 130 84.60 

20 11.42 134.4 90.83 (solid) 

25 16.53 97.19 (liquid) 

30 21.21 140 96.86 

35 25.52 150 96.40 

40 29.62 160 96.02 

50 36.53 180 95.65 

60 42.47 200 95.77 

70 47.53 220 96.04 

80 52.63 240 97.78 

90 55.23 260 99.79 

100 59.66 280 102.09 

110 65.48 286.2 102.13 

120 73.55 

21-23. The constant-pressure molar heat capacity of nitromethane as a function of temperature 

is tabulated below. Nitromethane melts at 244.60 K with ~fus H == 9.70 kJ· mol-I, and boils 
at 374.34 K at one bar with ~ H == 38.27 kJ ·mol-1 . Furthermore, the heat capacity of yap 

solid nitromethane can be described by the Debye theory up to 15 K. Use these data to 

calculate the molar entropy of nitromethane at 298.15 K and one bar. The vapor pressure of 

nitromethane is 36.66 torr at 298.15 K. (Be sure to take into account ~ S for the isothermal 
compression of nitromethane from its vapor pressure to one bar at 298.15 K). 

T/K C p/J. K- 1 ·mol-1 T/K C p/J.K-1.mol- 1 

15 3.72 200 71.46 
20 8.66 220 75.23 
30 19.20 240 78.99 
40 28.87 244.60 melting point 
60 40.84 250 104.43 
80 47.99 260 104.64 

100 52.80 270 104.93 
120 56.74 280 105.31 
140 60.46 290 105.69 

160 64.06 300 106.06 
180 67.74 

21-24. Use the following data to calculate the standard molar entropy of CO(g) at its normal 

boiling point. Carbon monoxide undergoes a solid-solid phase transition at 61.6 K. Compare 
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your result with the calculated value of 160.3 J. K- 1 
. mol I. Why is there a discrepancy 

between the calculated value and the experimental value? 

C P[CO(Sl)]/ R = -2.820 + (0.3317 K-1)T - (6.408 x 10-3 K- 2)T2 

+ (6.002 X 10-5 K- 3)T3 

IOK<T<61.6K 

C P[CO(S2)]/ R = 2.436 + (0.05694 K-I)T 

61.6 K < T < 68.l K 

C p[CO(l)]/ R = 5.967 + (0.0330 K-I)T - (2.088 x 10-4 K- 2)T2 

68.IK<T<81.6K 

-- -\ 
and ~rs (Sl ---+ S2) = 61.6 K, I;·us = 68.1 K, Tvap = 81.6 K, ~fus H = 0.836 kJ ·mol , 

~trsH = 0.633 kJ·mol- l
, ~vapH - 6.04 kJ·mol- l

, 8
0 

= 79.5 K, and the correction for 
nonideality= 0.879 J. K- 1 ·mol- I

• 

21-25. The molar heat capacities of solid and liquid water can be expressed by 

C p[H
2
0(s)]/ R = -0.2985 + (2.896 x 10 2 K-I)T (8.6714 x 10-5 K- 2)T2 

+ (1.703 X 10-7 K )T3 

10K < T < 273.15 K 

C p[H
2
0(l)]/ R = 22.447 - (0.11639 K-I)T + (3.3312 x 10-4 K- 2)T2 

(3.1314 X 10-7 K-3)T3 

273. 15 K < T < 298.15 K 

and I;·us = 273.15 K, ~fus H = 6.007 kJ· mol- 1 
, ~vap H (T = 298.15 K) = 43.93 kJ 'mol- 1

, 

8 D = 192 K, the correction for nonideality - 0.32 J ·K-1 ·mol I, and the vapor pressure 

of H2 ° at 298. 15 K = 23.8 torr. Use these data to calculate the standard molar entropy of 
H

2
0(g) at 298.15 K. You need the vapor pressure of water at 298.15 K because that is the 

equilibrium pressure of H20(g) when it is vaporized at 298.15 K. You must include the 
value of ~s that results when you compress the H

2
0(g) from 23.8 torr to its standard value 

of one bar. Your answer should come out to be 185.6 J . K- 1 
• mol I, which does not agree 

exactly with the value in Table 21.2. There is a residual entropy associated with ice, which a 

detailed analysis of the structure of ice gives as ~Sresidual = R In(3/2) = 3.4 J. K- 1 
• mol-I, 

which is in good agreement with S calc - S exp' 

21-26. Use the data in Problem 21-25 and the empirical expression 

C p[H
2
0(g)]/ R = 3.652 + (1.156 x 10 K- 1

) T - (1.424 X 10-7 K-2
) T2 

300 K < T < 1000 K 

to plot the standard molar entropy of water from 0 K to 500 K. 

21-27. Show for an ideal gas that 

S = Rln - + RT - qe (3ln q ) 
NA aT v 



Problems 

21-28. Show that Equations 17.21 and 21.19 are consistent with Equations 2l.2 and 21.3. 

21-29. Substitute Equation 21.23 into Equation 21.19 and derive the equation (Problem 20-31) 

for one mole of a monatomic ideal gas. 

21-30. Use Equation 21.24 and the data in Chapter 18 to calculate the standard molar en­

tropy of C12 (g) at 298.15 K. Compare your answer with the experimental value of 
223.1 J. K- 1 ·mol- 1 

• 

21-31. Use Equation 21.24 and the data in Chapter 18 to calculate the standard molar entropy 

of CO(g) at its standard boiling point, 81.6 K. Compare your answer with the experimental 
value of 155.6 J. K- 1 

• mol-I. Why is there a discrepancy of about 5 J. K- I . mol-I? 

21-32. Use Equation 21.26 and the data in Chapter 18 to calculate the standard molar en­

tropy of NH3 (g) at 298.15 K. Compare your answer with the experimental value of 
192.8 J·K-1·mol- l

. 

21-33. Use Equation 21.24 and the data in Chapter 18 to calculate the standard molar en­
tropy of Br2 (g) at 298.15 K. Compare your answer with the experimental value of 
245.5 J·K- I ·mol- I. 

21-34. The vibrational and rotational constants for HF(g) within the harmonic oscillator-rigid 

rotator model are Vo == 3959 cm- I and Bo == 20.56 cm- I
. Calculate the standard molar 

entropy of HF(g) at 298.15 K. How does this value compare with that in Table 21.3? 

21-35. Calculate the standard molar entropy of H2 (g) and D2 (g) at 298.15 K given that the 

bond length of both diatomic molecules is 74.16 pm and the vibrational temperatures of 

H2 (g) and D2 (g) are 6215 K and 4394 K, respectively. Calculate the standard molar entropy 
ofHD(g) at 298.15 K (Re == 74.13 pm and 8

vib 
== 5496 K). 

21-36. Calculate the standard molar entropy of HCN(g) at 1000 K given that 1 == 1.8816 X 

10-46 kg.m2
, VI == 2096.70 em-I, v

2 
== 713.46 em-I, and V3 == 3311.47 em-I. Recall that 

HCN(g) is a linear triatomic molecule and therefore the bending mode, V" is doubly 
degenerate. 

21-37. Given that VI == 1321.3 cm- I, v
2 

== 750.8 cm- I, V3 == 1620.3 cm- 1
, Ao == 7.9971 cm- I, 

- l-
Eo == 0.4339 cm- ,and Co == 0.4103 cm- I, calculate the standard molar entropy ofN02(g) 
at 298.15 K. (Note that N02 (g) is a bent triatomic molecule.) How does your value compare 
with that in Table 21.2? 

21-38. In Problem 21-48, you are asked to calculate the value of ~rS() at 298.15 K using the 
data in Table 21.2 for the reaction described by 

Use the data in Table 18.2 to calculate the standard molar entropy of each of the substances 

in this reaction [see Example 21-5 for the calculation of the standard molar entropy of 

CO2 (g)]. Then use these results to calculate the standard entropy change for the above 

reaction. How does your answer compare with what you obtained in Problenl 21-48'1 
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21-39. Calculate the value of /).rSo for the reaction described by 

at 500 K using the data in Tables 18.2 and 18.4. 

21-40. In each case below, predict which molecule of the pair has the greater molar entropy 

under the same conditions (assume gaseous species). 

a. CO 

21-41. In each case below, predict which molecule of the pair has the greater molar entropy 

under the same conditions (assume gaseous species). 

21-42. Arrange the following reactions according to increasing values of /).rSo (do not consult 

any references). 

a. S(s) + 02(g) -+ S02(g) 

h. H2(g) +02(g) -+ H20 20) 

c. CO(g) + 3 H2 (g) -+ CH4 (g) + H200) 

d. C(s) + H20(g) -+ CO(g) + H2(g) 

21-43. Arrange the following reactions according to increasing values of /).rSo (do not consult 

any references). 

a. 2 H2(g) + 02(g) -+ 2 H20(l) 

c. K(s) + 02(g) -+ K02(s) 

h. NH3(g) + HC1(g) -+ NH
4
Cl(s) 

d. N2(g) + 3 H2(g) -+ 2 NH3(g) 

21-44. In Problem 21-40, you are asked to predict which molecule, CO(g) or CO2 (g), has the 

greater molar entropy. Use the data in Tables 18.2 and 18.4 to calculate the standard molar 

entropy of CO(g) and CO2 (g) at 298.15 K. Does this calculation confirm your intuition? 

Which degree of freedom makes the dominant contribution to the molar entropy of CO? 

Of CO2 ? 



Problems 

21-45. Table 2l.2 gives S 0[CH
3
0H(1)] = 126.8 J·K-I·mol- I at 298.15 K. Given that 

T = 337.7 K, ~ H(T
b

) = 36.5kJ·mol- l
, Cp [CH,OH(1)] = 8l.12J·K- 1 ·mol- l

, and yap yap _1 

Cp [CH
3
0H(g)] = 43.8 J·K-I·mol- I, calculate the value of S 0[CH

3
0H(g)] at 298.15 K 

and compare your answer with the experimental value of 239.8 J·K- I ·mol- I. 

21-46. Given the following data, T
f 

= 373.15 K, ~H (T ) = 40.65 kJ ·mol- I, Cp [H20(1)] = us yap yap 

75.3 J ·K- 1 ·mol- I, and C p [H20(g)] = 33.8 J. K- I ·mol- I, show that the values of S 0[H20(1)] 
-0 

and S [H2 O(g)] in Table 21.2 are consistent. 

21-47. Use the data in Table 21.2 to calculate the value of ~rSo for the following reactions at 

25°C and one bar. 

a. C(s, graphite) + 02 (g) ----* CO2 (g) 

h. CH4 (g) + 2 02 (g) ----* CO2 (g) + 2 H20(1) 

c. C2H2 (g) + H2 (g) ----* C2H
4 
(g) 

21-48. Use the data in Table 2l.2 to calculate the value of ~rSo for the following reactions at 

25°C and one bar. 

a. CO (g) + 2 H2 (g) ----* CH3 ° H (1) 

h. C(s, graphite) + H20(1) ----* CO(g) + H2(g) 

c. 2 CO(g) + 02 (g) ----* 2 CO2 (g) 
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Hermann von Helmholtz was born in Potsdam, Germany, on August 31, 1821, and 
died in 1894. Although he wanted to study physics, his family could not afford to send him 
to the University, so he studied medicine in Berlin because he could obtain state financial aid. 
He was, however, required to repay his stipend by service as a surgeon in the army for eight 
years. He was later appointed professor at the University of Konigsberg, and he also held 
positions at Bonn, Heidelberg, and Berlin. In 1885, in recognition of his position as the foremost 
scientist in Germany, he was appointed president of the newly founded Physico-Technical 
Institute in Berlin, an institution devoted to purely scientific research. Helmholtz was one 
of the greatest scientists of the 19th century, making important discoveries in physiology, 
optics, acoustics, electromagnetic theory, and thermodynamics. His work in physiology showed 
that physiological phenomena are based upon the laws of physics and not on some vague 
"vital force." In thermodynamics, he derived the equation now known as the Gibbs-Helmholtz 
equation, which we will discuss in this chapter. Helmholtz was always generous with his 
students and other scientists, but unfortunately he was a barely intelligible lecturer, even to 
the likes of Planck, who was a student in several of his classes. Helmholtz's great influence in 
German science was recognized by the Kaiser, who bestowed him with the title "von." 



CHAPTER 

Helmholtz and Gibbs Energies 

The criterion that dS > 0 for a spontaneous process and that dS = 0 for a reversible 
process applies only to an isolated system. Consequently, in the various processes we 
discussed in Chapter 20, we had to consider the entropy change of both the system 
and its surroundings to determine the sign of ~Stotal and establish whether a process 
is spontaneous or not. Although of great fundamental and theoretical importance, the 
criterion that d S > 0 in an isolated system is too restrictive for practical applications. 
In this chapter, we will introduce two new state functions that can be used to determine 
the direction of a spontaneous process in systems that are not isolated. 

22-1. The Sign of the Helmholtz Energy Change Determines the 
Direction of a Spontaneous Process in a System at Constant 
Volume and Temperature 

Let's consider a system with its volume and temperature held constant. The criterion 
that d S > 0 does not apply to a system at constant temperature and volume because 
the system is not isolated; a system must be in thermal contact with a thermal reservoir 
to be at constant temperature. If the criterion d S > 0 does not apply, then what is the 
criterion for a spontaneous process that we can use for a system at constant temperature 
and volume? Let's start with the expression of the First Law of Thermodynamics, 
Equation 19.9, 

dU = 8q + 8w (22.1 ) 

Because 8w = -PextdV and dV = 0 (constant volume), then 8w = O. Ifwe substitute 
Equation 20.3, d S > 8q / T, and 811) = 0 into Equation 22.1, we obtain 

dU < TdS (constant V) (22.2) 881 
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The equality holds for a reversible process and the inequality for an irreversible process. 
Note that if the system is isolated, then d U == 0 and we have d S > 0 as in Chapter 20. 
We can write Equation 22.2 as 

dU - TdS < 0 

If T and V are held constant, we can write this expression as 

d(U - T S) < 0 (constant T and V) (22.3) 

Equation 22.3 prompts us to define a new thermodynamic state function by 

A==U-TS (22.4) 

so Equation 22.3 becomes 

dA < 0 (constant T and V) (22.5) 

The quantity A is called the Helmholtz energy. In a system held at constant T and V, 
the Helmholtz energy will decrease until all the possible spontaneous processes have 
occurred, at which time the system will be in equilibrium and A will be a minimum. 
At equilibrium, dA == 0 (see Figure 22.1). Note that Equation 22.5 is the analog of the 
criterion that d S > 0 to occur in an isolated system (cf. Figures 20.5 and 22.1). 

For an isothermal change from one state to another, Equation 22.4 gives 

~A == ~U - T~S 

Using Equation 22.5, we see that 

A 

~A == ~U - T ~S < 0 

Spontaneous 
processes 

(constant T and V) 

Equilibrium 
A . ---------------------------------=---------

mIn 
dA = 0 

t 

FIGURE 22.1 

(22.6) 

(22.7) 

The Helmholtz energy, A, of a system will decrease during any spontaneous processes that 
occur at constant T and V and will achieve its minimum value at equilibrium. 



22-1. Direction of a Spontaneous Process in a System at Constant Volume and Temperature 

where the equality holds for a reversible change and the inequality holds for an irre­
versible, spontaneous change. A process for which ~A > 0 cannot take place spon­
taneously in a system at constant T and V. Consequently, something, such as work, 
must be done on the system to effect the change. 

Notice that if ~u < 0 and ~s > 0 in Equation 22.6, then both the energy change 
and the entropy change contribute to ~A being negative. But if they have the same 
sign, some sort of compromise must be reached and the value of ~A is a quantitative 
measure of whether a process is spontaneous or not. The Helmholtz energy repre­
sents this compromise between the tendency of a system to decrease its energy and 
to increase its entropy. Because ~S is multiplied by T, we see that the sign of ~u 
is more important at low temperatures but the sign of ~S is more important at high 
temperatures. 

We can apply the criterion that ~A < 0 for an irreversible (spontaneous) process 
in a system at constant T and V to the mixing of two ideal gases, which we discussed 
in Section 20-6. For that process, ~U == 0 and ~S == -Y) R In y) - Y2 R In Yr There­
fore, for the mixing of two ideal gases at constant T and V, ~A == RT (Y 1 In Y1 + 
y2 ln y

2
), which is a negative quantity because Y

t 
and Y2 are less than one. Thus, 

we see once again that the isothermal mixing of two ideal gases is a spontaneous 
process. 

In addition to serving as our criterion for spontaneity in a system at constant 
temperature and volume, the Helmholtz energy has an important physical interpretation. 
Let's start with Equation 22.6 

~A == ~u - T~S (22.8) 

for a spontaneous (irreversible) process, so that ~A < O. In this process, the initial and 
final states are well-defined equilibrium states, and there is no fundamental reason we 
have to follow an irreversible path to get from one state to the other. In fact, we can gain 
some considerable insight into the process if we look at any reversible path connecting 
these two states. For a reversible path we can replace ~s by qrev/ T, giving 

~A == ~u - qrev 

But according to the first law, ~u - qrev is equal to w rev ' so we have 

~A == W rev (isothermal, reversible) (22.9) 

If ~A < 0, the process will occur spontaneously and W rev represents the work that 
can be done by the system if this change is carried out reversibly. This quantity is 
the maximum work that could be obtained. If any irreversible process such as friction 
occurs, then the quantity of work that can be obtained will be less than w . If ~A > 0, 

rev 

the process will not occur spontaneously and w
rev 

represents the work that must be done 
on the system to produce the change in a reversible manner. If there is any irreversibility 
in the process, the quantity of work required will be even greater than w . 

rev 
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22-2. The Gibbs Energy Determines the Direction of a Spontaneous 
Process for a System at Constant Pressure and Temperature 

Most reactions occur at constant pressure rather than at constant volume because they 
are open to the atmosphere. Let's see what the criterion of spontaneity is for a system 
at constant temperature and pressure. Once again, we start with Equation 22.1, but now 
we substitute d S > 8q / T and 8 W == - P d V to obtain 

dU < TdS PdV 

or 

dU-TdS+PdV <0 

Because both T and P are constant, we can write this expression as 

d(U-TS+PV) <0 (constant T and P) (22.10) 

We now define a new thermodynatnic state function by 

G==U-TS+PV (22.11) 

so Equation 22.5 becomes 

dG < 0 (constant T and P) (22.12) 

Note that Equation 22.11 is the analog of Equation 22.4. 
The quantity G is called the Gibbs energy. In a system at constant T and P, the 

Gibbs energy will decrease as the result of any spontaneous processes until the system 
reaches equilibrium, where dG == O. A plot of G versus time for a system at constant 
T and P would be similar to the plot of A versus time for a system at constant T and 
V (Figure 22.1). Thus, we see that the Gibbs energy, G, is the analog of the Helmoltz 
energy, A, for a process that takes place at constant temperature and pressure. 

Equation 22.11 can also be written as 

G==H-TS (22.13) 

where H == U + P V is the enthalpy. Note that the enthalpy plays the same role in a 
constant T and P process that the energy U plays in a constant T and V process (cf. 
Equation 22.4). Note also that G can be written as 

G==A+PV (22.14) 

thus relating the Gibbs energy and the Helmholtz energy in the same manner that H 

and U are related. 



22-2. Direction of a Spontaneous Process for a System at Constant Pressure and Temperature 

The analog of Equation 22.7 is 

b,.G == b,.H - T b,.S < 0 (constant T and P) (22.15) 

The equality holds for a reversible process, whereas the inequality holds for an irre­
versible (spontaneous) process. If b,. H < 0 and b,.S > 0 in Equation 22.15, both terms 
in Equation 22.15 contribute to b,. G being negative. But if b,. Hand b,. S have the same 
sign, then b,. G == b,. H - T b,. S represents the compromise between the tendency of 
a system to decrease its enthalpy and to increase its entropy in a constant T and P 
process. Because of the factor of T multiplying b,.S in Equation 22.15, the b,.H term 
can dominate at low temperatures, whereas the T b,.S term can dominate at high tem­
peratures. Of course if b,. H > 0 and b,. S < 0, then b,. G > 0 at all telnperatures and the 
process is never spontaneous. 

An example of a reaction favored by its value of b,.rH but disfavored by its value 
of b,. S is 

r 

NH
3
(g) + HCl(g) ----+ NH

4
CI(s) 

The value of b,. H for this reaction at 298.15 K and one bar is -176.2 kJ, whereas 
r 

the corresponding value of b,.rS is -0.285 kJ· K- 1
, giving 8,.lG == b,.rH - T b,.rS == 

-91.21 kJ at 298.15 K. Therefore, this reaction proceeds spontaneously at 298.15 K 
and one bar. 

A process for which the sign of b,. G changes with a small change in temperature 
is the vaporization of a liquid at its normal boiling point. We represent this process by 

The expression for the molar Gibbs energy of vaporization, b,.yap G, for this process is 

b,.yapG == G[H20(g)] - G[H20(I)] 

==~ H-T~ S yap yap 

The molar enthalpy of vaporization of water at one atm near 100uC, 8,. yap H, is equal to 

40.65 kJ·mol I and b,. S == 108.9 J·K- 1 ·mol- I
• Thus. we can write b,. G as yap 'yap 

8,. vap G == 40.65 kJ·mol- 1 
- T(108.91·K- 1 ·mor- l

) 

At T == 373.15 K, 

b,.vapG == 40.65 kJ·mol 1_ (373.15 K)(108.9 J.K-I.mol 1) 

== 40.65 kJ ·mol 1 - 40.65 kJ .mol 1 == 0 

The fact that b,.vap G == 0 means that liquid and vapor water are in equilibrium with each 
other at one atm and 373.15 K. The molar Gibbs energy of liquid water is equal to the 
molar Gibbs energy of water vapor at 373.15 K and one atm. The transfer of one mole 
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of liquid water to water vapor under these conditions is a reversible process, and so 
~ G == O. yap 

Now let's consider a temperature less than the normal boiling point, say 363.15 K. 
At this temperature, ~vap G == + 1.10 kJ· mol-I. The positive sign means that the for­
mation of one mole of water vapor at one atm from one mole of liquid water at one 
atm and 363.15 K is not a spontaneous process. If the temperature is above the normal 
boiling point, however, say 383.15 K, then ~vapG == -1.08 kJ·mol- 1

• The negative 
sign means that the formation of one mole of water vapor from one mole of liquid 
water at one atm and 383.15 K is a spontaneous process. 

EXAMPLE 22-1 
The molar enthalpy of fusion of ice at 273.15 K and one atm is ~fus H = 6.01 kJ ·mol- 1 

, 

and the molar entropy of fusion under the same conditions is ~fus S = 22.0 J. K- 1 
• mol-I. 

- -
Show that ~fus G = 0 at 273.15 K and one atm, that ~fus G < 0 when the temperature is 
greater than 273.15 K, and that ~fus G > 0 when the temperature is less than 273.15 K. 

SOL UTI 0 N: Assuming that ~fus H and ~fus S do not vary appreciably around 
273.15 K, we can write 

If T = 273.15 K, then ~fus G = 0, indicating that ice and liquid water are in equilibrium 
with each other at 273.15 K and one atm. If T < 273.15 K, then ~fus G > 0, indicating 
that ice will not spontaneously melt under these conditions. If T > 273.15 K, then 

~fus G < 0, indicating that ice will melt under these conditions. 

The value of ~ G can be related to the maximum work that can be obtained from 
a process carried out at constant T and P. To show this, we start by differentiating 
G == U - T S + P V to get 

dG == dU - TdS - SdT + PdV + VdP 

and substitute d U == T d S + 8 W for d U to get rev 

dG == -SdT + VdP + 8w + PdV rev 

Because the reversible pressure-volume (P-V) work is -PdV, the quantity 8w rev + 
PdV is the reversible work other than P- V work (such as electrical work). Therefore, 

we can write d G as 

dG == -SdT + VdP + 8w PV non 

where 8 W nonPY represents the total work exclusive of P -V work. For a reversible process 

taking place at constant T and P, d G == 8 W nonPV' or 

~G == wnonPY (reversible, constant T and P) (22.16) 
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If ~ G < 0, the process will occur spontaneously, and W nonPV is the work exclusive 
of P- V work that can be done by the system if the change is carried out reversibly. 
This is the maximum work that can be obtained from the process. If any irreversibility 
occurs in the process, the quantity of work obtained will be less than the maximum. If 

~G > 0, the process will not occur spontaneously and wnonPV is the minimum work, 
exclusive of P- V work, that must be done on the system to make the process occur. 
For example, it is known experimentally that ~ G for the formation of one mole of 
H20(I) at 298.15 K and one bar from H2 (g) and 02 (g) at 298.15 K and one bar is 
-237.1 kJ·mol I. Thus, a maximum of 237.1 kJ·mol- 1 of useful work (that is, work 
exclusive of P- V work) can be obtained from the spontaneous reaction 

H2 (g, 1 bar, 298.15 K) + 4 02 (g, 1 bar, 298.15 K) ----+) H20(I, 1 bar, 298.15 K) 

Conversely, it would require at least 237.1 kJ ·mol- 1 of energy to drive the (nonspon­
taneous) reaction 

H20(I, 1 bar, 298.15 K) ----+) H2(g, 1 bar, 298.15 K) + ~ 02(g, 1 bar, 298.15 K) 

EXAMPLE 22-2 
The value of ~ G for the decomposition of one mole of H2 0(1) to H2 (g) and 02 (g) at 
one bar and 298.15 K is +237.1 kJ·mol- l

. Calculate the minimum voltage required 
to decompose one mole of H20(1) to H2(g) and 02(g) at one bar and 298.15 K by 
electrolysis. 

SOL UTI 0 N: Electrolysis represents the non- P - V work required to carry out the 
decomposition, so we write 

~G == w PV == +237.1 kJ·mol- 1 
non 

You might remember from physics that electrical work is given by charge x voltage. 
The charge involved in electrolyzing one mole of H

2
0(1) can be determined from the 

chemical equation of the reaction 

The oxidation state of hydrogen goes from + 1 to 0 and that of oxygen goes from - 2 to 
O. Thus two electrons are transferred per H20(l) molecule, or two times the Avogadro 
constant of electrons per mole. The total charge of two moles of electrons is 

total charge == (1.602 x 10- 19 C·e 1)(12.044 x 1023 e) == 1.929 x 105 C 

The minimum voltage, f, required to decompose one mole is given by 

f == ~G 
1.929 x lOs C 

237.1 X 103 J·mol- I 

1.929 x lOs C 
== 1.23 volts 

where we have used the fact that one joule is a coulomb times a volt (1 J == 1 C V). 
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22-3. Maxwell Relations Provide Several Useful 
Thermodynamic Formulas 

A number of the thermodynamic functions we have defined cannot be measured directly. 
Consequently, we need to be able to express these quantities in terms of others that 
can be experimentally determined. To do so, we start with the definitions of A and G, 
Equations 22.4 and 22.11. Differentiate Equation 22.4 to obtain 

dA == dU - TdS - SdT 

For a reversible process, d U == T d S - P d V, so 

dA == -PdV - SdT (22.17) 

By comparing Equation 22.17 with the formal total derivative of A == A (V, T), 

dA==(aA) dV+(aA) dT 
av T aT v 

we see that 

(
aA) - --P 
av T 

and ( aA) ==-S 
aT v 

(22.18a, b) 

Now if we use the fact that the cross derivatives of A are equal (MathChapter H), 

we find that 

(22.19) 

Equation 22.19, which is obtained by equating the second cross partial derivatives 
of A, is called a Maxwell relation. There are many useful Maxwell relations involving 
various thermodynamic quantities. Equation 22.19 is particularly useful because it 
allows us to determine how the entropy of a substance changes with volume if we 
know its equation of state. Integrating Equation 22.19 at constant T, we have 

i
v
; (ap) 

~S == - dV 
v aT v 

I 

(constant T) (22.20) 

We have applied the condition of constant T to Equation 22.20 because we have 
integrated (a S / a V) T; in other words, T is held constant in the derivative, so T must 
be held constant when we integrate. 
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The molar entropy of ethane at 400 K plotted against density (p = 1/ V). The value of S at 
400 K is 246.45 J ·mol- I ·K- I

. 

Equation 22.20 allows us to determine the entropy of a substance as a function 
of volume or density (recall that p = 1/ V) from P-V-T data. If we let VI in Equa­
tion 22.20 be very large, where the gas is sure to behave ideally, then Equation 22.20 
becomes 

SeT, V) - Sid = fY (ap) dV' 
y id aT y 

Figure 22.2 plots the molar entropy of ethane at 400 K versus density. (Problem 22-3 
involves calculating the molar entropy as a function of density using the van der Waals 
equation and the Redlich-Kwong equation.) 

We can also use Equation 22.20 to derive an equation we derived earlier in Sec­
tion 20-3 by another method. For an ideal gas, (ap /aT)y = nR/ V, so 

f
Y2 dV V 

/).S = nR - = nR In ~ 
Yl V VI 

(isothermal process) (22.21) 

EXAMPLE 22-3 
Calculate ~ S for an isothermal expansion from V I to V 2 for a gas that obeys the 
equation of state 

P(V -b) = RT 

SOL UTI 0 N: We use Equation 22.20 to obtain 

- -

/),.s = [V2 (ap) dV = R [VI _dV = Rln V2 - b 
J-v a T v J-v V - b V - b 
III 
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Note that we derived this equation in Example 20-2, but we had to be told that d U == 0 
in an isothermal process for a gas obeying the above equation of state. We did not need 
this information to derive our result here. 

We have previously stated that the energy of an ideal gas depends only upon tem­
perature. This statement is not generally true for real gases. Suppose we want to know 
how the energy of a gas changes with volume at constant temperature. Unfortunately, 
this quantity cannot be measured directly. We can use Equation 22.19, however, to de­
rive a practical equation for (a v I a V) T; in other words, we can derive an equation that 
tells us how the energy of a substance varies with its volume at constant temperature 
in terms of readily measurable quantities. We differentiate Equation 22.4 with respect 
to V at constant temperature to obtain 

Substituting Equation 22.18a for (aAla V)T and Equation 22.19 for (aSia V)T gives 

(av) == _p + T (ap) 
av T aT v 

(22.22) 

Equation 22.22 gives (a v I a V) T in terms of P - V - T data. Equations like Equation 
22.22 that relate thermodynamic functions to functions of P, V, and T are sometimes 
called thermodynamic equations of state. 

We can integrate Equation 22.22 with respect to V to determine U relative to the 
ideal gas value, 

VeT, V) _ Uid = [v' [T (ap) - p] dV' 
lV'd aT v 

(constant T) 

where Vid is a large volume, where the gas is sure to behave ideally. This equation 
along with the P - V -T data gives us V as a function of pressure. Figure 22.3 shows V 
plotted against pressure for ethane at 400 K. Problem 22-4 involves calculating V as 
a function of volume for the van der Waals equation and the Redlich-Kwong equation. 
We can also use Equation 22.22 to show that the energy of an ideal gas is independent 
of the volume at constant temperature. For an ideal gas, (a Pia T) v == n R I V, so 

- == -P + T- == -P + P == 0 (av) nR 
av T V 

which proves that the energy of an ideal gas depends only upon temperature. 
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EXAMPLE 22-4 
In Example 20-2, we stated we would prove later that the energy of a gas that obeys 
the equation of state 

P(V - b) == RT 

is independent of the volume. Use Equation 22.22 to prove this. 

SOLUTION: For P(V - b) == RT, 

(ap) == 
aT -v 

R 

V -b 

and so 

( -) au RT 
av T == -P + v - b == -P + P == 0 

EXAMPLE 22-5 
Evaluate (aU /a V)T for one mole of a Redlich-Kwong gas. 

SOL UTI 0 N: Recall that the Redlich-Kwong equation (Equation 16.7) is 

RT A 
P == =---

V-B 

Therefore, 
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and so 

au ap 3A ( -) av T = T (aT )v - p = 2T 1/ 2V(V + B) 

We derived the equation 

in Problem 19-27. Using Equation 22.22 for (a U /3 V)T' we obtain 

c - C == T (ap) (3V) 
P v aT aT v P 

(22.23) 

For an ideal gas (ap jaT)v == nR/ V and (aV jaT) p == nRj P, and so C p - Cv == nR, 
in agreement with Equation 19.43. 

An alternative equation for C p - C v that is more convenient than Equation 22.23 
for solids and liquids is (Problem 22-11) 

C _ C == -T (aV)2 (3P) 
P v aT 3V 

P T 

(22.24) 

Each of the partial derivatives here can be expressed in terms of familiar tabulated 
physical quantities. The isothermal compressibility of a substance is defined as 

1 (av) K == -- -
V ap T 

(22.25) 

and the coefficient of thermal expansion is defined as 

a=~(~~)p (22.26) 

Using these definitions, Equation 22.24 becomes 

(22.27) 

EXAMPLE 22-6 
The coefficient of thermal expansion, ex, of copper at 298 K is 5.00 x 10-5 K- 1 

, and its 
isothermal compressibility, K, is 7.85 x 10-7 atm -I . Given that the density of copper 

is 8.92 g·cm-3 at 298 K, calculate the value of C p - C v for copper. 

SOL UTI 0 N: For copper, the molar volume, V, is given by 

- 63.54 g. mol- 1 

V=-----
8.92 g.cm-3 

= 7.12 cm3 ·mol 1 = 7.12 X 10-3 L·mol- 1 
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and 

(5.00 X 10-5 K- 1)2(298 K)(7.12 x 10-3 L.mol- l
) 

C p - C v = ---------7=---=-)-----
7.85 x 10- atm-

= 6.76 X 10-3 L·atm·K-1·mol- 1 

= 0.684 J·K-1·mol- 1 

The experimental value of C p is 24.43 J. K- 1 ·mol- t
• Note that C p - C v is small 

- -
compared with C p (or C v) and is also much smaller for solids than for gases, as you 
might expect. 

22-4. The Enthalpy of an Ideal Gas Is Independent of Pressure 

Equation 22.18a can be used directly to give the volume dependence of the Helmholtz 
energy. By integrating at constant temperature, we have 

(constant T) (22.28) 

For the case of an ideal gas, we have 

f V2 dV V 
~A = -nRT - = -nRTln~ 

VI V VI 
(constant T) (22.29) 

Notice that this result is - T times Equation 22.21 for ~S. This result must be so 
because ~u = 0 for an ideal gas at constant T, so ~A = -T ~S. 

If we differentiate Equation 22.11, G = U - T S + p V, and substitute d U = 
TdS - PdV, we get 

dG = -SdT + VdP 

By comparing Equation 22.30 with 

we see that 

dG = (aG) dT + (aG) dP aT p ap T 

(JG) = -S and 
aT p 

( aG) - -V 
ap T 

(22.30) 

(22.31a, b) 

Note that Equation 22.31a says that G decreases with increasing temperature (be­
cause S > 0) and that Equation 22.31 b says that G increases with increasing pressure 
(because V > 0). 
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If we now take cross derivatives of G as we did for A in the previous section, we 
find that 

(22.32) 

This Maxwell relation gives us an equation we can use to calculate the pressure 
dependence of S. We integrate Equation 22.32 with T constant to get 

J,
P

2 (av) ~S == - - dP 
P aT P 

I 

(constant T) (22.33) 

Equation 22.33 can be used to obtain the molar entropy as a function of pressure by 
integrating (a v / aT) P data from some low pressure, where the gas is sure to behave 
ideally, to some arbitrary pressure. Figure 22.4 shows the molar entropy of ethane at 
400 K obtained in this way plotted against pressure. 
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The molar entropy of ethane at 400 K plotted against pressure. The value of Sid at 400 K is 
246.45 J ·mol- I ·K- I

. 

For an ideal gas, (a v / aT) P == n R / P, so Equation 22.33 gives us 

~S == -nR - == -nR In ---.l J,
P

2 dP P 

PI P PI 

This results is not really a new one for us because if we let P2 == n R T / V2 and PI == 
nRT / VI' we obtain Equation 22.21. 
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EXAMPLE 22-7 
Use the virial expansion in the pressure 

'J Z = 1 + B P + B P- + ... 2P 3P 

to derive a virial expansion for ~ S for a reversible isothermal change in pressure. 

SOL UTI 0 N: Solve the above equation for V: 

RT 
V=-+RTB +RTB P+··· P 2P 3P 

and write 

(
av) R ( dB2P ) ( dB3P ) - =-+R B +T +R B +T P+··· 
aT P 2P dT 3P dT 

P 

Substitute this result into Equation 22.33 and integrate from PI to P2 to obtain 

- P2 ( dB2P ) R ( dB3P ) 2 ~S = -In - - R B + T P - - B + T P + ... 
P 2P dT 2 3P dT 

I 

We can also use Equations 22.31 to show that the enthalpy of an ideal gas is 
independent of the pressure, just as its energy is independent of the volume. First, we 
differentiate Equation 22.13 with respect to P at constant T to obtain 

Now use Equation 22.31b for (aGjap)T and Equation 22.32 for (aSjap)T to obtain 

(
aH) _V_T(av) 
ap T aT p 

(22.34) 

Note that Equation 22.34 is the analog of Equation 22.22. Equation 22.34 is also called 
a thermodynamic equation of state. It allows us to calculate the pressure dependence 
of H from P- V -T data (Such data for ethane at 400 K are shown in Figure 22.5). For 
an ideal gas, (a V jaT) p = nRj P, so (aHjap)T = o. 

EXAMPLE 22-8 
Evaluate (aH /ap)T for a gas whose equation of state is 

PV = RT + B(T)P 

SOLUTION: We have 

( -) av R dB 

aT p = p + dT 
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so Equation 22.34 gives us 

or 

aH - av RT RT dB ( -) ( -) ap T = V - T aT p = p + B(T) - P - T dT 

aH dB ( -) = B(T) - T­
ap dT 

T 

Note that (a H /a P)T = 0 when B(T) = O. 

-
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The molar enthalpy of ethane at 400 K plotted against pressure. The value of Hid at 400 K is 
17.867 kJ· mol-I. 

22-5. The Various Thermodynamic Functions Have Natural 
Independent Variables 

We may seem to be deriving a lot of equations in this chapter, but they can be organized 
neatly by recognizing that the energy, enthalpy, entropy, Helmholtz energy, and Gibbs 
energy depend upon natural sets of variables. For example, Equation 21.1 summarizes 
the First and Second Laws of Thermodynamics by 

dU == TdS - PdV (22.35) 

Note that when S and V are considered to be the independent variables of U, then the 
total derivative of U, 

dU == (au) dS + (au) dV 
as v a V s 

(22.36) 
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takes on a simple form, in the sense that the coefficients of dS and dV are simple 
thermodynamic functions. Consequently, we say that the natural variables of U are S 
and V, and we have 

(au) - -T 
as v 

and (au) =_p 
av s 

(22.37) 

This concept of natural variables is particularly clear if we consider V and T instead of 
S and V to be the independent variables of U, in which case we get (cf. Equation 22.22) 

(22.38) 

Certainly U can be considered to be a function of V and T, but its total derivative is 
not as simple as if it were considered to be a function of S and V (cf. Equation 22.36). 
Equation 22.35 also gives us that a criterion for a spontaneous process is that dU < 0 
for a system at constant S and V. 

We can write Equation 22.35 in terms of d S rather than d U to get 

1 P 
dS = -dU + -dV 

T T 
(22.39) 

which suggests that the natural variables of S are U and V. Furthermore, the criterion 
for a spontaneous process is that dS > 0 at constant U and V (Equation 22.2 for an 
isolated system). Equation 22.39 gives us 

1 

T 
and ( as) 

av u 

P 

T 

The total derivative of the enthalpy is given by (Equation 21.6) 

dH = TdS + VdP 

(22.40) 

(22.41) 

which suggests that the natural variables of Hare Sand P. The criterion of spontaneity 
involving H is that d H < 0 at constant Sand P. 

The total derivative of the Helmholtz energy is 

dA = -SdT - PdV (22.42) 

from which we obtain 

(aA) = -S and 
aT v (aA) =_P 

av T 
(22.43) 

Equation 22.42, plus the spontaneity criterion that d A < 0 at constant T and V, suggest 
that T and V are the natural variables of A. The Maxwell relations obtained from 
Equation 22.43 are useful because the variables held constant are more experimentally 
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controllable than are S and V, as in Equations 22.37, or U and V, as in Equations 22.40. 
The Maxwell relation from Equations 22.43 is 

(22.44) 

which allows us to calculate the volume dependence of S in terms of P- V -T data (see 
Figure 22.2). 

Last, let's consider the Gibbs energy, whose total derivative is 

dG = -SdT + VdP (22.45) 

Equation 22.45, plus the spontaneity criterion d G < 0 for a system at constant T and 
P, tell us that the natural variables of G are T and P. Equation 22.45 gives us 

(aG) = -S and 
aT p 

(aG) - -V 
ap T 

The Maxwell relation we obtain from Equations 22.46 is 

(22.46) 

(22.47) 

which we can use to calculate the pressure dependence of S in terms of P -V -T data 

(Figure 22.4). 
This section is meant to provide both a summary of many of the equations we have 

derived so far and a way to bring some order to them. You do not need to memorize 
these equations because they can all be obtained from Equation 22.35: 

dU = TdS - PdV (22.48) 

which is nothing more than the First and Second Laws of Thermodynamics expressed 
as one equation. If we add d (P V) to both sides of this equation, we obtain 

d(U + PV) = TdS - PdV + VdP + PdV 

or 

dH = TdS+ VdP (22.49) 

If we subtract d (T S) from both sides of Equation 22.48, we have 

d(U - TS) = TdS - PdV - TdS - SdT 

or 

dA = -SdT - PdV (22.50) 
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If we add d (P V) and subtract d (T S) from Equation 22.48, or subtract d (T S) from 
Equation 22.49, or add d (P V) to Equation 22.50, we get 

dG = -SdT + VdP (22.51) 

The other equations of this section follow by comparing the total derivative of each 
function in terms of its natural variables to the above equations for d U, d H, dA, and 
d G. Table 22.1 summarizes some of the principal equations we have derived in this 
and previous chapters. 

TAB L E 22.1 
The four principal thermodynamic energies, their differential expressions, and 
the corresponding Maxwell relations. 

Thermodynamic 
energy 

U 

H 

A 

G 

Differential 
expressIon 

dU = TdS - PdV 

dH = TdS + VdP 

dA = -SdT - PdV 

dG = -SdT + VdP 

Corresponding 
Maxwell relations 

22-6. The Standard State for a Gas at Any Temperature Is the 
Hypothetical Ideal Gas at One Bar 

One of the most important applications of Equation 22.33 involves the correction 
for nonideality that we make to obtain the standard molar entropies of gases. The 
standard molar entropies of gases tabulated in the literature are expressed in terms of a 
hypothetical ideal gas at one bar and at the same temperature. This correction is usually 
small and is obtained in the following two-step procedure (Figure 22.6). We first take 
our real gas from its pressure of one bar to some very low pressure p id , where it is sure 
to behave ideally. We use Equation 22.33 to do this, giving 

pid 

S(pid) - S( I bar) = - j 
I bar 

= j 1 bar 

pid 

av 
aT 

av 
aT 

dP 
p 

dP (constant T) (22.52) 
p 
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FIG U R E 22.6 

Real gas = ideal gas 
very low pressure (pid) 

Eqn. 22.52 using 
real gas 

equation of state 

Real gas 
1 bar 

Eqn. 22.53 using 
ideal gas 

equation of state 

Hypothetical ---------i.. ideal gas 
Correction 

for non-ideality 
1 bar 

The scheme to bring the experimental entropies of gases to the standard state of a (hypothetical) 
ideal gas at the same temperature. 

The superscript "id" on P emphasizes that this value is for conditions for which the gas 
behaves ideally. The quantity (8 V /8 T) p can be determined from the equation of state 
of the actual gas. We now calculate the change in entropy as we increase the pressure 
back to one bar, but taking the gas to be ideal. We use Equation 22.52 for this process, 
but with (8 V /8 T) p == R/ P, giving 

1
1 bar R 

SO(1 bar) - S(pid) == - -dP 
pid P 

(22.53) 

The superscript 0 of So (1 bar) emphasizes that this is the standard molar entropy of the 
gas. We add Equations 22.52 and 22.53 to get 

1
1 bar 

So (at 1 bar) - S(at 1 bar) = pid 

av 
aT 

p 

R 
dP (22.54) 

P 

In Equation 22.54, S is the molar entropy we calculate from heat-capacity data and 
heats of transitions (Section 21-3), and SO is the molar entropy of the corresponding 
hypothetical ideal gas at one bar. 

Equation 22.54 tells us that we can calculate the necessary correction to obtain the 
standard entropy if we know the equation of state. Because the pressures involved are 
around one bar, we can use the virial expansion using only the second virial coefficient. 
Using Equation 16.22, 

PV B2v (T) 
-==1+ P+··· 
RT RT 

(22.55) 



22-7. The Gibbs-Helmholtz Equation Describes the Temperature Dependence of the Gibbs Energy 

we have 

av 
aT 

p 

R dB2V ==-+ + ... 
P dT 

Substituting this result into Equation 22.54 gives 

- dB2 SO(at 1 bar) == Seat 1 bar) + v x (1 bar) + ... 
dT 

(22.56) 

where we have neglected pid with respect to one bar. The second term on the right side 
of Equation 22.56 represents the correction that we add to S to get So. 

We can use Equation 22.56 to calculate the nonideality correction to the entropy 
ofN

2
(g) at 298.15 K that we used in Table 21.1. The experimental value of dB2v /dT 

for N
2
(g) at 298.15 K and one bar is 0.192 cm3 ·mol-1 ·K- 1

• Therefore, the correction 
for nonideality is given by 

correction for nonideality == (0.192 cm3 ·mol- l .K- I )(1 bar) 

== 0.192 cm3 ·bar·mol- I ·K- I 

== (0.192 cm3 ·bar·mol-1·K-1
) 

(
1 dm3)3 ( 8.314J·mol- 1 ·K- 1 

) 

x 10 cm 0.08314 dm3 ·bar·mol- I .K- 1 

== 0.02 J. K- 1 ·mol- l 

which is what was used in Table 21.1. The correction in this case is rather small, but that 
is not always so. If second virial coefficent data are not available, then an approximate 
equation of state can be used (Problems 22-20 through 22-22). 

22-7. The Gibbs-Helmholtz Equation Describes the Temperature 
Dependence of the Gibbs Energy 

Both of Equations 22.31 are useful because they tell us how the Gibbs energy varies 
with pressure and with temperature. Let's look at Equation 22.31b first. We can use 
Equation 22.31b to calculate the pressure dependence of the Gibbs energy: 

(constant T) (22.57) 

For one mole of an ideal gas, we have 

- j P
2 dP P 

~ G == R T - == R T In -.l 
PI P PI 

(22.58) 
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We could have obtained the same result by using 

~G = ~H - T~S (isothermal) 

For an isothermal change in an ideal gas, ~H = 0 and ~S is given by Equation 22.21. 
It is customary to let PI = 1 bar (exactly) in Equation 22.58 and to write it in the 

form 

G(T, P) == GO(T) + RT In(P /1 bar) (22.59) 

where GO(T) is called the standard molar Gibbs energy. The standard molar Gibbs 
energy in this case is the Gibbs energy of one mole of the ideal gas at a pressure of 
one bar. Note that GO(T) depends upon only the temperature. Equation 22.59 gives 
the Gibbs energy of an ideal gas relative to the standard Gibbs energy. According to 
Equation 22.59, G(T, P) - GO(T) increases logarithmically with P, which we have 
seen is entirely an entropic effect for an ideal gas (because H is independent of P for 
an ideal gas). We will see in Chapter 24 that Equation 22.59 plays a central role in 
chemical equilibria involving gas-phase reactions. 

EXAMPLE 22-9 
Solids and liquids are fairly incompressible, so V in Equation 22.57 may be taken to 
be constant to a good approximation in this case. Derive an expression for G(T, P) 

analogous to Equation 22.59 for a solid or a liquid. 

SOL UTI 0 N: We integrate Equation 22.57 at constant T to get 

We let PI == 1 bar and G(P1 == 1 bar, T) == GO(T) to get 

G(T, P) == GO(T) + V(P - 1) 

where P must be expressed in bars. In this case, G(T, P) increases linearly with P, but 
because the volume of a condensed phase is much smaller than that of a gas, the slope 

- --
of G(T, P) versus P, or (aG /a P)T == V, is very small. Consequently, at ordinary 
pressures G( T, P) is almost independent of pressure and is approximately equal to 
GO (T) for a condensed phase. 

Equation 22.31a determines the temperature dependence of the Gibbs energy. We 
can derive a useful equation for the temperature dependence of G by starting with 
Equation 22.31a (Problem 22-24), but an easier way is to start with G == H - T Sand 
divide by T to obtain 

G H 
-==--S 
T T 
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N ow differentiate partially with respect to T keeping P fixed: 

( aG/T) H 1 (aH) (as) 
aT p = - T2 + T aT p - aT p 

These last two terms cancel because of the relation (as/aT)p = Cp(T)/T (Equa­
tion 21.7), so we have 

(
aG/T) 

aT p 

H 
(22.60) 

Equation 22.60 is called the Gibbs-Helmholtz equation. This equation can be directly 
applied to any process, in which case it becomes 

( a~G/T) aT p 
(22.61) 

This equation is simply another form of the Gibbs-Helmholtz equation. We will use 
Equations 22.60 and 22.61 a number of times in the following chapters. For exam­
ple, Equation 22.61 is used in Chapter 26 to derive an equation for the temperature 
dependence of an equilibrium constant. 

We can determine the Gibbs energy as a function of temperature directly from 
equations we derived in Chapters 19 and 21. In Chapter 19, we learned how to calculate 
the enthalpy of a substance as a function of temperature in terms of its heat capacity 
and its various heats of transition. For example, if there exists only one solid phase, so 
that there are no solid-solid phase transitions between T = 0 K and its melting point, 
then (Equation 19.46) 

H(T) - H(O)= lTf"'C~(T)dT + !1fus H 

+ I T

,"p Cpr (T)dT + ~ H 
yap 

T
fus 

(22.62) 

+ iT C~(TI)dT' 
vap 

for a temperature above the boiling point, where Figure 19.7 shows H(T) - H(O) 
versus T for benzene. We calculate H (T) relative to H (0) because it is not possible to 
calculate an absolute enthalpy; H (0) is essentially our zero of energy. 
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In Chapter 21, we learned to calculate absolute entropies according to Equa­
ti 0 n 21. 1 7), 

S(T)= P dT + fus l
~'us cs (T) ~ H 

o T ~'us 

j Tvap C' (T) ~ I' H + P dT + \ap 

T T T 
fus yap 

(22.63) 

+ PdT' j T cg (T') 

T T' 
yap 

Figure 21.2 shows S(T) versus T for benzene. We can use Equations 22.62 and 22.63 
- -

to calculate G(T) - H(O) because 

G(T) - H(O) = H(T) - H(O) - T S(T) 

Figure 22.7 shows G(T) - H (0) versus T for benzene. There are several features 
- -

of Figure 22.7 to appreciate. First note that G(T) - H (0) decreases with increasing 
- -

T. Furthermore, G (T) - H (0) is a continuous function of temperature, even at a phase 

transition. To see that this is so, consider the equation (Equation 21.16) 

~ H 
~ S= trs 

trs T 
trs 

Because ~t G = ~t H - T
t 
~t S, we see that ~t G = 0, indicating that the two rs rs rs rs rs 

phases are in equilibrium with each other. Two phases in equilibrium with each other 
have the same value of G, so G (T) is continuous at a phase transition. Figure 22.7 
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A plot of G(T) - H (0) versus T for benzene. Note that G(T) - H (0) is continuous but its 
derivative (the slope of the curve) is discontinuous at the phase transitions. 
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also shows that there is a discontinuity in the slope at each phase transition. (Benzene 
melts at 278.7 K and boils at 353.2 K at one atm.) We can understand why there is 
a discontinuity in the slope of G (T) versus T at each phase transition by looking at 
Equation 22.31a 

(aG) ==-S 
aT p 

Because entropy is an intrinsically positive quantity, the slope of G (T) versus T is 
negative. Furthermore, because S(gas) > S(liquid) > S(solid), the slopes within each 

single phase region increase in going from solid to liquid to gas, so the slope, (a G / aT) p' 

is discontinuous in passing from one phase to another. 
The values of HO(T) - HO(D), SO(T), and GO(T) - HO(D) are tabulated for a 

variety of substances. We will use these values to calculate equilibrium constants in 
Chapter 26. 

22-8. Fugacity Is a Measure of the Nonideality of a Gas 

In the previous section, we showed that the molar Gibbs energy of an ideal gas is given 
by 

P 
G(T, P) == GO(T) + RT In -po (22.64) 

The pressure po is equal to one bar and GO(T) is called the standard molar Gibbs 
energy. Recall that this equation is derived by starting with 

aG 
ap 

T 

==v (22.65) 

and then integrating, using the ideal gas expression, RT / P, for V. Let's now generalize 
Equation 22.64 to the case of a real gas. 

We could start with the virial expansion, 

PV 7 

-R-T == 1 + B2P (T)P + B3P(T)P~ + ... 

and substitute this into Equation 22.65 to obtain a virial expansion for the molar Gibbs 
energy, 

i

p 

iP dP' i
P 

i
P 

. dG == RT . ,+ RT B2P (T) . dP' + RT B3P(T) P'dP' 
pld pld P pld pid 
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where we are integrating from some low pressure, say pid, where the gas is sure to 

behave ideally, to some arbitrary pressure P. The result of the integration is 

- -, P RT B (T)p2 
G(T, P) == GeT, pld) + RT In -'d + RT B,p(T)P + 3P + ... (22.66) 

pI ~ 2 

Now according to Equation 22.64, G(T, p id ) == GO(T) + RT In pid / po, where GO(T) 

is the molar Gibbs energy of an ideal gas at a pressure of po == 1 bar. Therefore, 

Equation 22.66 can be written as 

_ P RTB (T)p2 
G(T, P) = G (T) + RT In po + RT B2P (T)P + 3; + . . . (22.67) 

Equation 22.67 is the generalization of Equation 22.64 to any real gas. Although 

Equation 22.67 is exact, it differs for each gas, depending upon the values of B
2P 

(T), 

B3P (T), and so on. It turns out to be much more convenient, particularly for calculations 
involving chemical equilibria, as we will see in Chapter 24, to maintain the form of 

Equation 22.64 by defining a new thermodynamic function, f (P, T), called fugacity, 

by the equation 

G(T, P) = GO(T) + RT in f(~~ T) (22.68) 

The nonideality is buried in f(P, T). Because all gases behave ideally as P ---+ 0, 
fugacity must have the property that 

as P~O 

so that Equation 22.68 reduces to Equation 22.64. 
Equations 22.67 and 22.68 are equivalent if 

(22.69) 

It might seem at this point that we are just going in circles, but by incorporating 

the nonideality of a gas through its fugacity, we can preserve the thermodynamic 

equations we have derived for ideal gases and write those corresponding to a real gas 

by simply replacing P / po by f / fO. All we need at this stage is a straightforward way 

to determine the fugacity of a gas at any pressure and temperature. Before looking 

into this, however, we must discuss the choice of the standard state in Equation 22.68. 

Being a type of energy, the Gibbs energy must always be taken relative to some chosen 

standard state. 

Note that the standard molar Gibbs energy GO (T) is taken to be the same quantity 

in Equations 22.64 and 22.68. The standard state in Equation 22.64 is the ideal gas at 

one bar, so this must be the standard state in Equation 22.68 as well. Thus, the standard 

state of the real gas in Equation 22.68 is taken to be the corresponding ideal gas at 

one bar; in other words, the standard state of the real gas is one bar after it has been 

adjusted to ideal behavior. In an equation, we have that fO == pc. Note that this choice 
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is also suggested by Equation 22.69, because otherwise f(P, T) would not reduce to 

P when B2P (T) = B3P (T) = O. 
This choice of standard state not only allows all gases to be brought to a single 

common state, but also leads to a procedure to calculate f (P, T) at any pressure and 
temperature. To do so, consider the scheme in Figure 22.8, which depicts the difference 
in molar Gibbs energy between a real gas at P and T and an ideal gas at P and T. 
We can calculate this difference by starting with the real gas at P and T and then 
calculating the change in Gibbs energy when the pressure is reduced to essentially zero 

(step 2), where the gas is certain to behave ideally. Then we calculate the change in 

Gibbs energy as we compress the gas back to pressure P, but taking the gas to behave 

ideally (step 3). The sum of steps 2 and 3, then, will be the difference in Gibbs energy 
of an ideal gas at P and T and the real gas at P and T (step 1). In an equation, we have 

- -id -
~GI = G (T, P) - G(T, P) (22.70) 

Substituting Equations 22.64 and 22.68 into Equation 22.70, we have 

- P f 
~ G = R T In - - R TIn -

I po fO 

But the standard state of the real gas has been chosen such that fO = po = 1 bar, so 

P 
~GI = RTln-

f 
(22.71) 

We now use Equation 22.65 to calculate the change in the Gibbs energy along steps 2 
and 3: 

FIG U R E 22.8 

- iP~O (aG) iP~O-
~ G 2 = - d G = V d p' 

P ap T P 

- i P 
-id i P 

RT ~ G 3 = V d p' = I d p' 
p~o p~o P 

Real gas 
(T,P) 

___ L1_G_1 -----1.... Ide a I gas 
(T,P) 

Real gas 
(T,P~ 0) 

Ideal gas 
(T,P~ 0) 

An illustration of the scheme used to relate the fugacity of a gas to its standard state, which is a 
(hypothetical) ideal gas at P == 1 bar and the temperature T of interest. 
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The sum of ~ G 2 and ~ G 3 gives another expression for ~ G J 

- - - l P 

(RT -) ~GI == ~G2 + ~G3 == -I - V dpl 
p---:,.o P 

Equating this expression for ~ G I to ~ G I in Equation 22.71, we have 

p jP 
In f = 0 p' RT 

1 V 
dP' 

or 

f jP 
In P = 0 RT 

dP' pI 
V 1 

(22.72) 

Given either P - V -T data or the equation of state of the real gas, Equation 22.72 

allows us to calculate the ratio of the fugacity to the pressure of a gas at any pressure 

and temperature. Note that if the gas behaves ideally under the conditions of interest 

(in other words, if V == V
id 

in Equation 22.72), then In f / P == 0, or f == P. Therefore, 
the extent of the deviation of f / P from unity is a direct indication of the extent of 
the deviation of the gas from ideal behavior. The ratio f / P is called the fugacity 

coefficient, y, 

For an ideal gas, y == 1. 

f 
y ==­p (22.73) 

By introducing the compressibility factor, Z == PV / RT, Equation 22.72 can be 

written as 

j p Z-1 
In y == , d pI 

o P 
(22.74) 

Even though the lower limit here is P == 0, the integrand is finite (Problem 22-27). 
Furthermore, (Z - 1) / P == 0 for an ideal gas (Problem 22-27), and hence In y == 0 

and f == P. Figure 22.9 shows (Z - 1)/ P plotted against P for CO (g) at 200 K. 

According to Equation 22.74, the area under this curve from 0 to P is equal to In y at 

the pressure P. Figure 22.10 shows the resulting values of y == f / P plotted against 

the pressure for CO(g) at 200 K. 
We can also calculate the fugacity if we know the equation of state of the gas. 
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A plot of (Z - 1) / P versus P for CO(g) at 200 K. The area under this curve from P = a to P 
gives In y at the pressure P. 
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FIG U R E 22.10 
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A plot of y = f / P against P for CO(g) at 200 K. These values of f / P were obtained from a 
numerical integration of (Z - 1) / P shown in Figure 22.9. 

EXAMPLE 22-10 
Derive an expression for the fugacity of a gas that obeys the equation of state 

P(V-b)=RT 

where b is a constant. 
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SOL UTI 0 N: We solve for V and substitute into Equation 22.72 to get 

l
p 

b bP 
lny == -dP == 

o RT RT 

or 

y == ebPj RT 

Problems 22-33 through 22-38 derive expressions for In y for the van def Waals 

equation and the Redlich-Kwong equation. 

We can write Equation 22.74 in a form that shows that the fugacity coefficient 
is a function of the reduced pressure and the reduced temperature. If we change the 
integration variable to PR = P / Pc' where Pc is the critical pressure of the gas, then 
Equation 22.74 takes the form 

rPR 

In y = 10 
Z - 1 

(22.75) 

Now recall from Chapter 16 that, to a good approximation for most gases, the com­
pressibility factor Z is a universal function of PR and TR (see Figure 16.10). Therefore, 
the right side of Equation 22.75, and so In y itself, is also a universal function of PR 

and T
R

• Figure 22.11 shows the experimental values of y for many gases as a family 
of curves of constant TR plotted against PR . 

EXAMPLE 22-11 
Use Figure 22.11 and Table 16.5 to estimate the fugacity of nitrogen at 623 K and 

1000 atm. 

SOL UTI 0 N: We find from Table 16.5 that T == 126.2 K and P == 33.6 atm for c c 

N 2 (g). Therefore TR == 4.94 at 623 K and PR == 29.8 at 1000 atm. Reading from the 
curves in Figure 22.11, we find that y ~ 1.7. At 1000 atm and 623 K, the fugacity of 

nitrogen is 1700 atm. 

Problems 
22-1. The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) 

is 30.72 kJ·mol- l
. Assuming that ~'lapH and ~'lapS stay constant at their values at 

80.09°C, calculate the value of ~ G at 75.0°C, 80.09°C, and 85.0cC. Interpret these 'lap 
results physically. 

22-2. Redo Problem 22-1 without assumin~ that ~ H and ~ S do not vary with temperature. 
~ 'lap yap 

Take the molar heat capacities of liquid and gaseous benzene to be 136.3 J. K I. mol 1 
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FIG U R E 22.11 
The fugacity coefficients of gases plotted against the reduced pressure, P / Pc' for various values 
of the reduced temperature, T / ~. 

and 82.4 J. K- t 
• mol- 1

, respectively. Compare your results with those you obtained in 
Problem 22-1. Are any of your physcial interpretations different? 

22-3. Substitute (a P / a T)-v from the van der Waals equation into Equation 22.19 and integrate 
-id -

from V to V to obtain 

- - -id V - b 
SeT, V) - S (T) = R In -Od-

Vi -b 
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Now let V id == RT / P id, P id == po == one bar, and V id » b to obtain 

- - -id RT/po 
SeT, V) - S (T) == -R In --

V-b 
-id 

Given that S == 246.35 J·mol-I·K- 1 for ethane at 400 K, show that 

- - 33.258 L·mol- I 
S(V)/J·mol- I ·K-1 == 246.35 - 8.31451n ==--------

V - 0.065144 L·mol- 1 

Calculate S as a function of p == 1/ V for ethane at 400 K and compare your results with 
the experimental results shown in Figure 22.2. 

Show that 

- - I I 33 258 L·mol- I 

S(V)/J·mol- ·K- == 246.35 - 8.31451n --.-----
V - 0.045153 L· mo I-I 

V + 0.045153 L·mol- I 
- 13.681n _ 

V 

for the Redlich-Kwong equation for ethane at 400 K. Calculate S as a function of p == 1/ V 

and compare your results with the experimental results shown in Figure 22.2. 

22-4. Use the van der Waals equation to derive 

- - -id a 
VeT, V) - V (T) == -== 

V 

Use this result along with the van der Waals equation to calculate the value of V as a 
function of V for ethane at 400 K, given that V id == 14.55 kJ ·mol- I 

. To do this, specify V 

(from 0.0700 L·mol- I to 7.00 L·mol- I, see Figure 22.2), calculate both V(V) and P(V), 

and plot V (V) versus P (V). Compare your result with the experimental data in Figure 22.3. 
Use the Redlich-Kwong equation to derive 

- id 3A V + B 
VeT, V) - V (T) == - 1/') In 

2BT ~ V 

Repeat the above calculation for ethane at 400 K. 

22-5. Show that (a V / a V) T == 0 for a gas that obeys an equation of state of the form P f (V) == 
R T. Give two examples of such equations of state that appear in the text. 

22-6. Show that 

22-7. Use the result of the previous problem to show that 

dB
2V 

~ V == - T d T (P2 - PI) + ... 

Use Equation 16.41 for the square-well potential to show that 

2rra 3 N 8 
~ V == - A (A 3 - 1) ee/ kB T (p - P ) + ... 

3 k T 2 I 
B 



Problems 

Given that a == 327.7 pm, £/ kB == 95.2 K, and A == 1.58 for N2 (g), calculate the value of 
/)..U for a pressure increase from 1.00 bar to 10.0 bar at 300 K. 

22-8. Determine C p - C v for a gas that obeys the equation of state P (V - b) == R T. 

22-9. The coefficient of thermal expansion of water at 25°C is 2.572 x 10-4 K- 1
, and its 

isothermal compressibility is 4.525 x 10-5 bar-I. Calculate the value of C p - C v for one 
mole of water at 25°C. The density of water at 25°C is 0.99705 g.mL -I. 

22-10. Use Equation 22.22 to show that 

Show that (acv/a V)T == 0 for an ideal gas and a van def Waals gas, and that 

( acv ) 

av T 

3A 

for a Redlich-Kwong gas. 

22-11. In this problem you will derive the equation (Equation 22.24) 

( aV)2 (ap) 
C p - Cv = -T aT p av T 

To start, consider V to be a function of T and P and write out d V. Now divide through 
by d T at constant volume (d V == 0) and then substitute the expression for (a P / a T) v that 
you obtain into Equation 22.23 to get the above expression. 

22-12. The quantity (a u / a V) T has units of pressure and is called the internal pressure, which 
is a measure of the intermolecular forces within the body of a substance. It is equal to zero 
for an ideal gas, is nonzero but relatively small for dense gases, and is relatively large for 
liquids, particularly those whose molecular interactions are strong. Use the following data 
to calculate the internal pressure of ethane as a function of pressure at 280 K. Compare your 

values with the values you obtain from the van der Waals equation and the Redlich-Kwong 
equation. 

P/bar (a P /a T)y/bar. K- 1 V /dm3 ·mol- I P/bar (ap /aT)y/bar.K- 1 V /dm3 ·mol-1 

4.458 0.01740 5.000 307.14 6.9933 0.06410 
47.343 4.1673 0.07526 437.40 7.9029 0.06173 
98.790 4.9840 0.07143 545.33 8.5653 0.06024 

157.45 5.6736 0.06849 672.92 9.2770 0.05882 

22-13. Show that 

(
aH) 2 (dB2P dB3P ) - == -RT + P + ... ap dT dT 

T 

dB 
== B

2v
(T) - T 2V + O(P) 

dT 
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Use Equation 16.41 for the square-well potential to obtain 

Given that (J = 327.7 pm, E/ kB 95.~K, and A = 1.58 for N2 (g), calculate the value of 

(3H /ap)T at 300 K. Evaluate b,.H = H(P = 10.0 bar) - R(P = 1.0 bar). Compare your 
result with 8.724 kJ· mol I, the value of H (T) - H (0) for nitrogen at 300 K. 

22-14. Show that the enthalpy is a function of only the temperature for a gas that obeys the 
equation of state P(V - bT) = RT, where b is a constant. 

22-15. Use your results for the van der Waals equation and the Redlich-Kwong equation in 
- -

Problem 22-4 to calculate H (T, V) as a function of volume for ethane at 400 K. In each 

case, use the equation H = U + P V. Compare your results with the experimental data 

shown in Figure 22.5. 

22-16. Use Equation 22.34 to show that 

Use a virial expansion in P to show that 

Use the square-well second virial coefficient (Equation 16.41) and the parameters given in 

Problem 22-13 to calculate the value of (aC p/ap)T for N2 (g) at DoC. Now calculate C p 

at 100 atm and OCC, using C ~ = SR/2. 

22-17. Show that the molar enthalpy of a substance at pressure P relative to its value at one bar 

is given by 

H(T. P) = H(T, P=l bar) + jP [v T (:~) J dP' 

Calculate the value of H (T, P) - H (T, P = 1 bar) at DoC and 100 bar for mercury given 

that the molar volume of mercury varies with temperature according to 

where t is the Celsius temperature. Assume that V (0) does not vary with pressure over this 

range and express your answer in units of kJ ·mol- l
. 

22-18. Show that 

dH = [v - T (:~) JdP +CpdT 

What does this equation tell you about the natural variables of H? 



Problems 

22-19. What are the natural variables of the entropy? 

22-20. Experimentally determined entropies are commonly adjusted for nonideality by using 

an equation of state called the (modified) Berthelot equation: 

I e 6 c --. - 1--PV 9 PT ( T2) 
R T - + 128 Pc T T2 

Show that this equation leads to the correction 

27 RT3 
SO(at one bar) = Seat one bar) + - \ (1 bar) 

32 P T-
c 

This result needs only the critical data for the substance. Use this equation along with the 

critical data in Table 16.5 to calculate the nonideality correction for N2 (g) at 298.15 K. 

Compare your result with the value used in Table 21.1. 

22-21. Use the result of Problem 22-20 along with the critical data in Table 16.5 to determine 

the nonideality correction for CO(g) at its normal boiling point, 81.6 K. Compare your 

result with the value used in Problem 21-24. 

22-22. Use the result of Problem 22-20 along with the critical data in Table 16.5 to determine 

the nonideality correction for Cl2 (g) at its normal boiling point, 239 K. Compare your result 

with the value used in Problem 21-16. 

22-23. Derive the equation 

(
a(A/T)) 

aT v 

u 

which is a Gibbs-Helmholtz equation for A. 

22-24. We can derive the Gibbs-Helmholtz equation directly from Equation 22.31a in the 

following way. Start with (a G / aT) p = - Sand substitue for S from G = H - T S to 
obtain 

1 (3G) __ G 
T aT p T2 

H 

Now show that the left side is equal to (a [G / T]/ aT) p to get the Gibbs-Helmholtz equation. 

22-25. Use the following data for benzene to plot G(T) - H(O) versus T. [In this case we will 
ignore the (usually small) corrections due to non ideality of the gas phase.] 

Go = 130.5 K OK<T<13K 

13 K < T < 278.6 K 

-1 
Cp(T)/R = 12.713 + (1.974 x 10-3 K-')T - (4.766 x 10-5 K-2)T2 

278.6 K < T < 353.2 K 
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353.2 K < T < 1000 K 

Tfi = 278.68 K us ~fi H = 9.95 kJ ·mol-1 
us 

T = 353.24 K yap ~ H = 30.72 kJ·mol- 1 
yap 

22-26. Use the following data for propene to plot G(T) - H(O) versus T. [In this case we will 
ignore the (usually small) corrections due to nonideality of the gas phase.] 

12 4 ( T )3 C~(T)I R = Jr _ 
5 e D 

e -lOOK D- OK < T < 15 K 

-s 
C p(T)1 R = -1.663 + (0.001112 K-I)T - (9.791 X 10-4 K-2)T2 + (3.740 X 10-6 K-3)T3 

15 K < T < 87.90 K 

C~(T)I R = 15.935 - (0.08677 K-1)T + (4.294 x 10-4 K-2)T2 
- (6.276 X 10-7 K-3)T3 

87.90 K < T < 225.46 K 

C;(T)I R = 1.4970 + (2.266 x 10-2 K-1)T - (5.725 x 10-6 K- 2)T2 

225.46 K < T < 1000 K 

Tfi = 87.90 K us 
~f H = 3.00 kJ ·mol-1 

us 

T = 225.46 K yap ~ H = 18.42 kJ ·mol- t 
yap 

22-27. Use a virial expansion for Z to prove (a) that the integrand in Equation 22.74 is finite 
as P ~ 0, and (b) that (Z - 1)/ P = 0 for an ideal gas. 

22-28. Derive a virial expansion in the pressure for In y. 

22-29. The compressibility factor for ethane at 600 K can be fit to the expression 

Z = 1.0000 - 0.OOO612(P Ibar) + 2.661 x 10-6(P /bar) 2 

- 1.390 x 10-9 (P Ibar) 3 
- 1.077 x 10-13 (P Ibar)4 

for 0 < P Ibar < 600. Use this expression to determine the fugacity coefficient of ethane 

as a function of pressure at 600 K. 

22-30. Use Figure 22.11 and the data in Table 16.5 to estimate the fugacity of ethane at 360 K 

and 1000 atm. 

22-31. Use the following data for ethane at 360 K to plot the fugacity coefficient against 

pressure. 



Problems 

p/mol·dm-3 Plbar p/mol·dm-3 Plbar p/mol·dm-3 Plbar 

l.20 3l.031 6.00 97.767 10.80 197.643 

2.40 53.940 7.20 112.115 12.00 266.858 

3.60 71.099 8.40 130.149 13.00 381.344 

4.80 84.892 9.60 156.078 14.40 566.335 

Compare your result with the result you obtained in Problem 22-30. 

22-32. Use the following data for N
2
(g) at O°C to plot the fugacity coefficient as a function of 

pressure. 

Platm Z = PV/RT Platm Z = PV/RT Platm Z = PV/RT 

200 1.0390 1000 2.0700 1800 3.0861 

400 1.2570 1200 2.3352 2000 3.3270 

600 1.5260 1400 2.5942 2200 3.5640 

800 1.8016 1600 2.8456 2400 3.8004 

22-33. It might appear that we can't use Equation 22.72 to determine the fugacity of a van der 

Waals gas because the van der Waals equation is a cubic equation in V, so we can't solve 

it analytically for V to carry out the integration in Equation 22.72. We can get around this 

problem, however, by integrating Equation 22.72 by parts. First show that 

- lV -/ P R T In y = P V - R T - P d V - R T In -:-d 
V id pi 

where P id ---+ 0, V id ---+ 00, and p id V id ---+ R T. Substitute P from the van der Waals 

equation into the first term and the integral on the right side of the above equation and 
integrate to obtain 

RTV a V - b a P 
RT In y = _ - == - RT - RT In. - == - RT In-. 

V - b V V Id _ b V P Id 

N ow use the fact that V id ----+ 00 and that P id V id = R T to show that 

[ 
a(-V - b)] b 2a 

In y = - In 1 - -2 + - - --
RTV V - b RTV 

This equation gives the fugacity coefficient of a van der Waals gas as a function of V. You 

can use the van der Waals equation itself to calculate P from V, so the above equation, in 

conjunction with the van der Waals equation, gives In y as a function of pressure. 

22-34. Use the final equation in Problem 22-33 along with the van der Waals equation to plot 

In y against pressure for CO(g) at 200 K. Compare your result with Figure 22.10. 
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22-35. Show that the expression for In y for the van der Waals equation (Problem 22-33) can 

be written in the reduced form 

1 
Iny == ---

3 V-I 
R 

[ 
3(3 VR - I)] -- - In 1 - ----

4 VR TR 8TR vi 
9 

Use this equation along with the van der Waals equation in reduced form (Equation 16.19) 
to plot y against PR for TR == 1.00 and 2.00 and compare your results with Figure 22.11. 

22-36. Use the method outlined in Problem 22-33 to show that 

B 
In y == =--­

V-B 

for the Redlich-Kwong equation. You need to use the standard integral 

J dx· 

x(a +bx) 
1 a + bx 

== --In ---
a x 

22-37. Show that In y for the Redlich-Kwong equation (see Problem 22-36) can be written in 

the reduced form 

0.25992 1.2824 
In y == =------

V R - 0.25992 Tin (V R + 0.25992) 

4.9340. V R + 0.25992 [ 
- 111 In - - In 1 

~./~ V 
R R 

1.2824(V R - 0.25992) ] 

Ti/
2 

V R (V R + 0.25992) 

22-38. Use the expression for In y in reduced fonn given in Problem 22-37 along with the 
Redlich-Kwong equation in reduced form (Example 16-7) to plot In y versus P

R 
for 

TR == 1.00 and 2.00 and compare your results with those you obtained in Problem 22-35 
for the van der Waals equation. 

22-39. Compare In y for the van der Waals equation (Problem 22-33) with the values of In y 

for ethane at 600 K (Problem 22-29). 

22-40. Compare In y for the Redlich-Kwong equation (Problem 22-36) with the values of In y 

for ethane at 600 K (Problem 22-29). 

22-41. We can use the equation (a s / a U) v == 1/ T to illustrate the consequence of the fact 

that entropy always increases during an irreversible adiabatic process. Consider a two­

compartment system enclosed by rigid adiabatic walls, and let the two compartments 

be separated by a rigid heat-conducting wall. We assume that each compartment is at 

equilibrium but that they are not in equilibrium with each other. Because no work can be 

done by this two-compartment system (rigid walls) and no energy as heat can be exchanged 

with the surroundings (adiabatic walls), 

u == u + U == constant I 2 



Problems 

Show that 

because the entropy of each compartment can change only as a result of a change in energy. 

Now show that 

dS = dV (~ - ~) > 0 ITT -
) 2 

Use this result to discuss the direction of the flow of energy as heat from one temperature 

to another. 

22-42. Modify the argument in Problem 22--41 to the case in which the two compartments are 

separated by a nonrigid, insulating wall. Derive the result 

dS = - - - dV (
PI P2) 
T) T2 1 

Use this result to discuss the direction of a volume change under an isothermal pressure 

difference. 

22-43. In this problem, we will derive virial expansions for V, H, S, A, and G. Substitute 

into Equation 22.65 and integrate from a small pressure, P id, to P to obtain 

- - id P RT B3P 2 
G(T, P) - G(T, P ) = RTln p id + RTB2p P + 2 P + ... 

Now use Equation 22.64 (realize that P = P id in Equation 22.64) to get 

RTB 
G(T,P)-GO(T)=RTlnP+RTB2p P+ 23Pp2+... (1) 

at po = 1 bar. Now use Equation 22.3la to get 

SeT P) _ SO(T) = -R In P _ d(RT B2P ) P _ ~ d(RT B3P ) p2 + ... 
, dT 2 dT (2) 

at po = 1 bar. Now use G = H - T S to get 

- 2 d B2 P R T2 d B,} P 2 
H(T, P) - HO(T) = -RT dT P - _1 P + ... 

2 dT 
(3) 

Now use the fact that C P = (aH faT) P to get 

C (T, P) - Co (T) = -RT 2 2P + T 2P P - - 2 3P + T 3P p2 + ... - [ dB d
2 
B] R T [ dB d

2 
B ] 

P P dT dT2 2 dT dT2 

(4) 
We can obtain expansions for V and A by using the equation H = V + P V = V + R T Z 

- - - -
and G == A + PV == A + RTZ. Show that 

V - VO = -RT B + T 2P P - RT B + _ 3P p2 + ... - (dB ) ( T dB ) 
2P dT 3P 2 dT 

(5) 
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and 

(6) 

at po == 1 bar. 

22-44. In this problem, we will derive the equation 

H(T, P) - W(T) = RT(Z - 1) + Iv: [T C;) \' -p] dV' 

where V id is a very large (molar) volume, where the gas is sure to behave ideally. Start with 

d H == T d S + V d P to derive 

- -T - +V-(aH) (as) (ap) 
av T av T av T 

and use one of the Maxwell relations for (aSia V)T to obtain 

Now integrate by parts from an ideal-gas limit to an arbitrary limit to obtain the desired 

equation. 

22-45. Using the result of Problem 22-44, show that H is independent of volume for an ideal 

gas. What about a gas whose equation of state is P( V - b) == RT? Does U depend upon 

volume for this equation of state? Account for any difference. 

22-46. Using the result of Problem 22-44, show that 

RTb 2a 
H-H 

V - b V 

for the van der Waals equation. 

22-47. Using the result of Problem 22-44, show that 

H-H RTB 

V-B 

for the Redlich-Kwong equation. 

A 3A V + B 

TI/2(V + B) 2BTI/2 In V 

22-48. We introduced the Joule-Thomson effect and the Joule-Thomson coefficient in Prob­

lems 19-52 through 19-54. The Joule-Thomson coefficient is defined by 

1 (aH) Cp ap T 



Problems 

and is a direct measure of the expected tenlperature change when a gas is expanded through 

a throttle. We can use one of the equations derived in this chapter to obtain a convenient 

working equation for f.L JT . Show that 

Use this result to show that f.L J T == 0 for an ideal gas. 

22-49. Use the virial equation of state of the form 

PV B2V (T) 
-==1+ p+ ... 
RT RT 

to show that 

1 [ d B2V ] 
/1JT = C~d T dT - B2V + O(P) 

It so happens that B
2V 

is negative and dB
2V

/dT is positive for T* < 3.5 (see Figure 16.15) 

so that f1JT is positive for low temperatures. Therefore, the gas will cool upon expansion 

under these conditions. (See Problem 22-48.) 

22-50. Show that 

for a gas that obeys the equation of state P (V - b) == RT. (See Problem 22-48). 

22-51. The second virial coefficient for a square-well potential is (Equation 16.41) 

Show that 

where bo == 2na 3 N A /3. Given the following square-well parameters, calculate f1rr at O°C 
and compare your values with the given experimental values. Take C p == 5 R /2 for Ar and 

7 R/2 for N2 and CO2 , 

Gas b /cm3 .mol- 1 
0 c/ kB f.LJT(exptl) /K· atm- I 

Ar 39.87 1.85 69.4 0.43 

N2 45.29 1.87 53.7 0.26 
CO2 75.79 1.83 119 1.3 

22-52. The telnperature at which the Joule-Thomson coefficient changes sign is called the 

Joule- Tholnson inversion telnperature, ~. The low-pressure Joule-Thomson inversion tem­

perature for the square-well potential is obtained by setting f.L
J 
T == 0 in Problem 22-51. This 

procedure leads to an equation for k B T / c in terms of A 3 that cannot be solved analytically. 

Solve the equation numerically to calculate ~ for the three gases given in the previous 
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problem. The experimental values are 794 K, 621 K, and 1500 K for Ar, N
2

, and CO
2

, 

respectively. 

22-53. Use the data in Problem 22-51 to estimate the temperature drop when each of the gases 

undergoes an expansion for 100 atm to one atm. 

22-54. When a rubber band is stretched, it exerts a restoring force, f, which is a function of 

its length L and its temperature T. The work involved is given by 

w = f f(L, T)dL (1) 

Why is there no negative sign in front of the integral, as there is in Equation 19.2 for P - V 

work? Given that the volume change upon stretching a rubber band is negligible, show that 

dU == TdS + fdL (2) 

and that 

(3) 

U sing the definition A == U - T S, show that Equation 2 becomes 

dA == -SdT + fdL (4) 

and derive the Maxwell relation 

(:~)L=-G~)T (5) 

Substitute Equation 5 into Equation 3 to obtain the analog of Equation 22.22 

(au) '. (af ) - =:f-T-
aL T' aT L 

For many elastic systems, the observed temperature-dependence of the force is linear. 

We define an ideal rubber band by 

f == T¢(L) (ideal rubber band) (6) 

Show that (a U / a L) T == 0 for an ideal rubber band. Compare this result with (a u / a V) T == 0 

for an ideal gas. 
Now let's consider what happens when we stretch a rubber band quickly (and, hence, 

adiabatically). In this case, d U == du) == f d L. Use the fact that U depends upon only the 

temperature for an ideal rubber band to show that 

dU == (au) dT == fdL 
aT . 

L 

(7) 

The quantity (a U / aT) L is a heat capacity, so Equation 7 becomes 

(8) 

Argue now that if a rubber band is suddenly stretched, then its temperature will rise. Verify 

this result by holding a rubber band against your upper lip and stretching it quickly. 



Problems 

22-55. Derive an expression for ~S for the reversible, isothermal change of one mole of a 
gas that obeys van der Waals equation. Use your result to calculate ~ S for the isothermal 
compression of one mole of ethane from 10.0 dm3 to 1.00 dm3 at 400 K. Compare your 
result to what you would get using the ideal-gas equation. 

22-56. Derive an expression for ~S for the reversible, isothermal change of one mole of a gas 
that obeys the Redlich-Kwong equation (Equation 16.7). Use your result to calculate ~S 
for the isothermal compression of one mole of ethane from 10.0 dm3 to 1.00 dm3 at 400 K. 
Compare your result with the result you would get using the ideal-gas equation. 
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Josiah Willard Gibbs was born in New Haven, Connecticut, on February II , 1839, and 
died there in 1903. He received his Ph.D. in engineering from Yale University in 1863, the 
second doctorate in science and the first in engineering awarded in the United States. He 
stayed on at Yale, for years without salary, and remained there for the rest of hi s life. In 1878, 
Gibbs published a long, original treatise on thermodynamics titled "On the Equilibrium of 
Heterogeneous Substances" in the Transactions of the Connecticut Academy of Sciences. In 
addition to introducing the concept of chemical potential, Gibbs introduced what is now called 
the Gibbs phase rule, which relates the number of components (C) and the number of phases 
(P) in a system to the number of degrees of freedom (F, the number of variables such as 
temperature and pressure that can be varied independently) by the equation F = C + 2 - P. 
Between its austere writing style and the obscurity of the journal in which it was published, 
however, this important work was not as widely appreciated as it deserved. Fortunately, 
Gibbs sent copies to a number of prominent European scientists. Maxwell and van der Waals 
immediately appreciated the signifance of the work and made it known in Europe. Eventually, 
Gibbs received the recognition that was his due, and Yale finally offered him a salaried position 
in 1880. Gibbs was an unassuming, modest person, living in New Haven in his fami ly home his 
entire life . 



CHAPTER 

Phase Equilibria 

The relation between all the phases of a substance at various temperatures and pressures 
can be concisely represented by a phase diagram. In this chapter, we will study the 
information presented by phase diagrams and the thermodynamic consequences of this 
information. In particular, we will analyze the temperature and pressure dependence 
of a substance in terms of its Gibbs energy, particularly using the fact that a phase with 
the lower Gibbs energy will always be the more stable one. 

Many thermodynamic systems of interest consist of two or more phases in equi­
librium with each other. For example, both the solid and liquid phases of a substance 
are in equilibrium with each other at its melting point. Thus, an analysis of such a 
system as a function of temperature and pressure gives the pressure-dependence of 
the melting point. One of the many unusual properties of water is that the melting 
point of ice decreases with increasing pressure. We will see in this chapter that this 
property is a direct consequence of the fact that water expands upon freezing, or 
that the molar volume of liquid water is less than that of ice. We will also derive 
an expression that allows us to calculate the vapor pressure of a liquid as a function 
of temperature from a knowledge of its enthalpy of vaporization. These results can 
all be understood using a quantity called the chemical potential, which is one of the 
most useful functions of chemical thermodynamics. We will see that chemical po­
tential is analogous to electric potential. Just as electric current flows from a region 
of high electric potential to a region of low electric potential, matter flows from a 
region of high chemical potential to a region of low chemical potential. In the last 
section of the chapter, we will derive a statistical thermodynamic expression for the 
chemical potential and show how to calculate it in terms of molecular or spectroscopic 
quantities. 925 
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23-1. A Phase Diagram Summarizes the Solid-Liquid-Gas Behavior 
of a Substance 

You might recall from general chemistry that we can summarize the solid-liquid­
gas behavior of a substance by means of a phase diagram, which indicates under 
what conditions of pressure and temperature the various states of matter of a sub­
stance exist in equilibrium. Figure 23.1 shows the phase diagram of benzene, a typical 
substance. Note that there are three principal regions in this phase diagram. Any 
point within one of these regions specifies a pressure and a temperature at which the 
single phase exists in equilibrium. For example, according to Figure 23.1, benzene 
exists as a solid at 60 torr and 260 K (point A), and as a gas at 60 torr and 300 K 
(point B). 

The lines that separate the three regions indicate pressures and temperatures at 
which two phases can coexist at equilibrium. For example, at all points along the line 
that separates the solid and gas regions (line CF), benzene exists as a solid and a gas 
in equilibrium with each other. This line is called the solid-gas coexistence curve. As 
such, it specifies the vapor pressure of solid benzene as a function of temperature. 
Similarly, the line that separates the liquid and gas regions (line FD) gives the vapor 
pressure of liquid benzene as a function of temperature, and the line that separates 
the solid and liquid regions (line FE) gives the melting point of benzene as a function 
of pressure. Notice that the three lines in the phase diagram intersect at one point 
(point F), at which solid, liquid, and gaseous benzene coexist at equilibrium. This 
point is called the triple point, which occurs at 278.7 K (S.SOC) and 36.1 torr for 
benzene. 
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23-1. A Phase Diagram Summarizes the Solid-liquid-Gas Behavior of a Substance 

EXAMPLE 23-1 
Experimentally, the vapor pressure of liquid benzene is given by 

4110 K 
In( P /torr) == - T + 18.33 273 K < T < 300 K 

and the vapor pressure of solid benzene is given by 

5319 K 
In(P /torr) == - T + 22.67 250 K < T < 280 K 

Calculate the pressure and the temperature at the triple point of benzene. 

SOL UTI 0 N: Solid, liquid, and gaseous benzene coexist at the triple point. Therefore, 
at the triple point, these two equations for the vapor pressure must give the same value. 

Setting the two expressions above for In P equal to each other gives 

4110 K 5319 K 
-- + 18.33 == - + 22.67 

T T 

or T == 278.7 K, or 5.5 C. The pressure at the triple point is given by In(P /torr) == 3.58 

or P == 36.1 torr. 

Within a single-phase region, both the pressure and the temperature must be 
specified, and we say that there are two degrees of freedom within a single-phase 
region of a pure substance. Along any of the coexistence curves, either the pressure or 
the temperature alone is sufficient to specify a point on the curve, so we say that there 
is one degree of freedom. The triple point is a fixed point, so there are no degrees of 
freedom there. If we think of P and T as degrees of freedom of the system, then the 
number of degrees of freedom, f, at any point in a phase diagram of a pure substance 
is given by f = 3 - p, where p is the number of phases that coexist at equilibrium at 
that point. 

If we start on the pressure axis at 760 torr (2.88 on the vertical axis in Figure 23.1b) 
and move horizontally to the right in the phase diagram of benzene, we can see how 
benzene behaves with increasing temperature at a constant pressure of 760 torr (one 
atmosphere). For temperatures below 278.7 K, benzene exists as a solid. At 27S.7 K 
(5.5 D C), we reach the solid-liquid coexistence curve, and benzene melts at this point. 
This point is called the normal melting point. (The melting point at a pressure of 
one bar is called the standard melting point.) Then for temperatures between 278.7 K 
and 353.2 K (SO.l DC), benzene exists as a liquid. At the liquid-gas coexistence curve 
(353.2 K), benzene boils and then exists as a gas at temperatures higher than 353.2 K. 
Note that if we were to start at a pressure less than 760 torr (but above the triple 
point), the melting point is about the same as it is at 760 torr (because the solid-liquid 
coexistence curve is so steep), but the boiling point is lower than 353.2 K. Similarly, at 
a pressure greater than 760 torr, the melting point is about the same as it is at 760 torr, 
but the boiling point is greater than 353.2 K. Thus, the liquid-gas coexistence curve 
may also be interpreted as the boiling point of benzene as a function of pressure and the 

927 
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solid-liquid coexistence curve as the melting point as a function of pressure. Figure 23.2 
shows the melting point of benzene plotted against pressure up to 10000 atm. The slope 
of this curve is 0.0293 °C· atm I around 760 torr, which shows that the melting point 
is fairly insensitive to pressure. The melting point of benzene increases by about one 
degree in going from a pressure of 1 atm to 34 atm. By contrast, Figure 23.3 is a plot 
of the boiling point of benzene as a function of pressure; it shows that the boiling 
point depends strongly upon pressure. For example, the normal atmospheric pressure 
at an elevation of 10000 feet (3 100 meters) is 500 torr, so according to Figure 23.3, 
benzene boils at 67c C at this elevation. (Recall that the boiling point is defined to be 
that temperature at which the vapor pressure equals the atmospheric pressure.) The 
boiling point at exactly one atm is called the normal boiling point. The boiling point at 
exactly one bar is called the standard boiling point. 
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FIG U R E 23.2 
A plot of the melting point of benzene 
as a function of pressure. Notice that 
the melting point increases slowly with 
pressure. (Note that the scales of the 
horizontal axes in Figures 23.2 and 23.3 
are very different.) 

FIG U R E 23.3 
A plot of the boiling point of benzene 
as a function of pressure. Notice that 
the boiling point depends strongly on 
the pressure. (Note that the scales of the 
horizontal axes in Figures 23.2 and 23.3 
are different.) 



23-1. A Phase Diagram Summarizes the Solid-Liquid-Gas Behavior of a Substance 

EXAMPLE 23-2 
The vapor pressure of benzene can be expressed by the empirical formula 

3884 K 
In(? Itorr) == - T + 17.63 

Use this formula to show that benzene boils at 67 C when the atmospheric pressure is 

500 torr. 

SOL UTI 0 N: Benzene boils when its vapor pressure is equal to the atmospheric 

pressure. Therefore P == 500 torr, so we have 

3884K 
In 500 == - + 17.63 

T 

or T == 340.2 K, or 67.1 °C. 

Example 23-1 shows that the pressure at the triple point of benzene is 36.1 torr. 
Note from Figure 23.1 that if the pressure is less than 36.1 torr, benzene does not melt 
as we increase the temperature, but rather sublimes~ that is, it passes directly from 
the solid phase to the gaseous phase. If the pressure at the triple point happens to be 
greater than one atm for a substance, it will sublime rather than melt at one atm. A 
noted substance with this property is carbon dioxide, whose solid phase is called dry 
ice because it doesn't liquefy at atmospheric pressure. Figure 23.4 shows the phase 
diagram for carbon dioxide. The triple point pressure of CO2 is 5.11 atm, and so we 
see that CO

2 
sublimes at one atm. The normal sublimation temperature of CO2 is 

195 K (-78°C). 
Figure 23.5 shows the phase diagram for water. Water has the unusual property 

that its melting point decreases with increasing pressure (Figure 23.6). This behavior 
is reflected in the phase diagram of water by the slope of the solid-liquid coexistence 
curve. Although it is difficult to see in the phase diagram because the slope of the solid­
liquid coexistence curve is so large, it does point upward to the left (has a negative 
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Fie U R E 23.4 
The phase diagram of carbon dioxide. 
Note that the triple point pressure of 
carbon dioxide is greater than one atm. 
Consequently, carbon dioxide sublimes at 
atmospheric pressure. 
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Fie U R E 23.6 
A plot of the melting point of water versus pressure. The melting point of water decreases with 
. . 
IncreasIng pressure. 

slope). Numerically, the slope of the curve around one atm is -130 atm·K- I
. We will 

see in Section 23-3 that the reason the melting point of water decreases with increasing 
pressure is that the molar volume of ice is greater than that of water under the same 
conditions. Antimony and bismuth are two other such substances that expand upon 
freezing. Most substances, however, contract upon freezing. 

In each of Figures 23.1 (benzene), 23.4 (carbon dioxide), and 23.5 (water), the 
liquid-gas coexistence curve ends abruptly at the critical point. (Recall that we discussed 
the critical behavior of gases in Section 16-3.) As the critical point is approached along 
the liquid-gas coexistence curve, the difference between the liquid phase and gaseous 
phase becomes increasingly less distinct until the difference disappears entirely at the 



23-1. A Phase Diagram Summarizes the Solid-Liquid-Gas Behavior of a Substance 

critical point. For example, if we plot the densities of the liquid and vapor phases in 
equilibrium with each other along the liquid-vapor coexistence curve (such densities 
are called orthobaric densities), we see that these densities approach each other and 
become equal at the critical point (Figure 23.7). The liquid phase and vapor phase 
simply merge into a single fluid phase. Similarly, the molar enthalpy of vaporization 
decreases along this curve. 

Figure 23.8 shows experimental values of the molar enthalpy of vaporization of 
benzene plotted against temperature. Notice that the value of ~vap H decreases with 
increasing temperature and drops to zero at the critical temperature (289°C for benzene). 
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The data in Figure 23.8 reflect the fact that the difference between a liquid and its vapor 
decreases as the critical point is approached. Because the two phases become less 
and less distinct as the critical point is approached and then merge into one phase 

at the critical point, ~yap S == S (gas) - S (liquid) becomes zero at the critical point. 
Therefore ~ H == T ~ S also becomes zero there. Above the critical point, there is yap Yap 

no distinction between a liquid and a gas, and a gas cannot be liquefied no matter how 
great the pressure. 

A nice lecture demonstration illustrates the idea of the critical temperature. First, 
fill a glass tube with a liquid such as sulfur hexafluoride. (The critical temperature 
of sulfur hexafluoride is 45.5c C, which is a convenient temperature to achieve.) After 
evacuating all the air so that the tube contains only pure sulfur hexafluoride, seal off 
the tube. Below 45.5°C, the tube will contain two layers, the liquid phase and the 
gas phase separated by a meniscus. Now, as the tube and its contents are warmed, 
the meniscus becomes less distinct and just as the critical temperature is reached, the 
meniscus disappears entirely and the tube becomes transparent [SF 6 (g) is colorless]. 
When the tube and its contents are cooled, the liquid phase and the meniscus suddenly 
appear at the critical temperature. 

A fluid very near its critical point constantly changes from a liquid to a vapor 
state, causing fluctuations in the density from one region to another. These fluctuations 
scatter light very strongly (somewhat like a finely dispersed fog) and the system appears 
milky. This effect is known as critical opalescence. These fluctuations are difficult to 
study experimentally because gravity causes the density fluctuations to be distorted. To 
overcome the effect of gravity, a team of scientists, engineers, and technicians designed 
an experiment to measure the laser light scattered by xenon at its critical point on board 
the Columbia space shuttle. After several preliminary experiments, they were able to 
measure the details of the fluctuations to within microkelvins of the critical temperature 
of xenon (289.72 K) on the March 1996 flight of Columbia. No other microgravity 
experiment has logged as many hours as this one, and the results will provide us 
with a detailed understanding of the liquid-vapor phase transition and the liquid-vapor 
interface. 

Because of the existence of a critical point, a gas can be transformed into a liquid 
without ever passing through a two-phase state. Simply start in the gas region of the 
phase diagram and go into the liquid region by traveling out around the critical point. 
The gas passes gradually and continuously into the liquid state without a two-phase 
region appearing and without any apparent condensation. 

You might wonder if the solid-liquid coexistence curve ends abruptly as the liquid­
gas coexistence curve does. The very nature of a critical point requires that we pass from 
one phase to the other in a gradual, continual manner. Because the gas and liquid phases 
are both fluid phases, the difference between them is purely one of degree rather than 
actual structure. On the other hand, a liquid phase and a solid phase, or two different 
solid phases for that matter, are qualitatively different because they have intrinsically 
different structures. It is not possible to pass from one phase to the other in a gradual, 
continual manner. A critical point, therefore, cannot exist for such phases, and the 
coexistence curve separating these phases must continue indefinitely or intersect the 
coexistence curves of other phases. In fact, many substances exhibit a variety of solid 
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The phase diagram for water at high pressures showing six stable phases of ice. 

phases at high pressures, and Figure 23.9 shows the high-pressure phase diagram of 
water, showing various distinct solid phases. Ice (I) is the "normal" ice that occurs at 
one atm, and the other ices are different crystalline forms of solid H20 that are stable 
at very high pressures. Note, for example, that ice (VII) is stable at temperatures well 
above O°C, and even above 100°C, but it is formed only at high pressures. 

23-2. The Gibbs Energy of a Substance Has a Close Connection 
to Its Phase Diagram 

Recall Figure 22.7 where the molar Gibbs energy of benzene is plotted against tem­
perature. As the figure shows, the molar Gibbs energy is a continuous function of 
temperature, but there is a discontinuity in the slope of G(T) versus T at each phase 
transition. Figure 23.l0a is a magnification of a plot of G(T) versus T in the re­
gion around the melting point of benzene (279 K). The dashed extensions represent the 
Gibbs energy of the supercooled liquid and the (hypothetical) superheated solid. Picture 
moving along the curve of G (T) versus T in Figure 23.1 Oa with increasing tempera-

- --s 
ture. Along the solid-phase branch, G(T) decreases with a slope (aG /a T) p == -5'. 
When we reach the melting point, we switch to the liquid branch because the Gibbs 
energy of the liquid phase is lower than that of the solid phase. The slope of the liquid 

- -I -J -s 
branch is steeper than that of the solid branch because (a G / aT) p == - Sand S > S . 
Therefore, the molar Gibbs energy of the liquid phase must be lower than that of the 
solid phase at higher temperatures. The dashed extension of the solid branch represents 
the (hypothetical) superheated solid, and even if it were to occur, it would be unstable 
relative to the liquid and would convert to liquid. The dashed lines represent what are 
called metastable states. Figure 23.1 Ob shows the transition from liquid to gas at the 
normal boiling point (353 K) of benzene. The boiling point occurs when the liquid and 
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gas branches of the G (T) versus T curves intersect. The slope of the gas branch is 
-g -\ 

steeper than that of the liquid branch because S > S , and so the molar Gibbs energy 
of the gas must be lower than that of the liquid at higher temperatures. 

We can see from the equation G == H - T S why the solid phase is favored at 
low temperatures whereas the gaseous phase is favored at high temperatures. At low 
temperatures, the T S term is small compared with H; thus, a solid phase is favored 
at low temperatures because it has the lowest enthalpy of the three phases. At high 
temperatures, on the other hand, H is small compared with the T S term, so we see 
that the gas phase with its relatively large entropy is favored at high temperatures. The 
liquid phase, which is intermediate in both energy and disorder to the solid and gaseous 
phases, is favored at intermediate temperatures. 

It is also instructive to look at the molar Gibbs energy as a function of pressure at a 
- -

fixed temperature. Recall that (a G / a P) T == V, so that the slope of G versus P is always 
-g -\ -s 

positive. For most substances, V ~ »V > V ,so the slope of the gas branch is much 
greater than that of a liquid branch, which in turn is greater than that of a solid branch. 
Figure 23.11a sketches a plot of G(P) against P showing the gas, liquid, and solid 
branches at a temperature just greater than the triple-point temperature. As we increase 
the pressure, we move along the gas branch of G(P) until we hit the liquid branch, at 
which point the gas condenses to a liquid. As we continue to increase the pressure, we 
reach the solid branch, which necessarily lies lower than that of the liquid branch. The 
path we have just followed in Figure 23.11 a corresponds to moving up along a vertical 
line that lies just to the right of the triple point in the phase diagram of a "normal" sub-

-s -\ 
stance like benzene. For a substance such as water, however, V' > V at least for mod-
erate pressures, so a plot of G (P) against P looks like that given in Figure 23.11 b. Trac­
ing along the curve for G(P) for increasing pressures in Figure 23.11b corresponds to 
moving up a vertical line just to the left of the triple point in the phase diagram of water. 
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A plot of G (P) against P showing the gas, liquid, and solid branches at a temperature near 

the triple point. (a) A "normal" substance (V S < V I) is depicted at a temperature above the 
triple-point temperature, where we see a gas-liquid-solid progression with increasing pressure. 
(b) A substance like water (V s > V I) is depicted at a temperature lower than the triple point 
temperature, where we see a gas-solid-liquid progression. 

Figure 23.12 shows the behavior of G (P) versus P at a number of temperatures for 
a normal substance such as benzene. Part (a) shows G(P) versus P for a temperature 
less than the triple-point temperature in Figure 23.1. In this case, we go directly from 
the gas phase to the solid phase as we increase the pressure. The molar Gibbs energy 
of the liquid phase at these temperatures lies higher than that of either the solid or gas 
phase and does not enter the picture. Part (b) shows the molar Gibbs energy situation 
at the triple-point temperature. At the triple point, the curves for the Gibbs energies of 
each of the three phases intersect, and for a "normal" substance like benzene, the Gibbs 
energy of the solid phase lies lower than that of the liquid phase for pressures above 
the triple-point pressure. Part (c) shows the Gibbs energies at a temperature slightly 
less than the critical temperature. Notice that the slopes of the gas and liquid branches 
are almost the same at the point of intersection. The reason for this sinlilarity is that 
the slopes of the curves, (aG/a P)T' are equal to the molar volumes of the two phases, 
which are approaching each other as the critical point is approached. Part (d) shows 
the Gibbs energies at a temperature greater than the critical temperature. In this case, 
G( P) varies smoothly with pressure. There is no discontinuity in the slope in this case 
because only a single fluid phase is involved. 

23-3. The Chemical Potentials of a Pure Substance in Two Phases 
in Equilibrium Are Equal 

Consider a system consisting of two phases of a pure substance in equilibrium with 
each other. For example, we might have water vapor in equilibrium with liquid water. 
The Gibbs energy of this system is given by G == G1 + Gg, where G1 and Gg are the 
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A plot of G (P) against P at a number of temperatures for a "normal" substance like benzene. 
In (a) the temperature is less than the triple-point temperature; in (b) the temperature is equal to 
the triple-point temperature; in (c) the temperature is a little less than the critical temperature; 
and in (d) the temperature is greater than the critical temperature. 

Gibbs energies of the liquid phase and the gas phase, respectively. Now, suppose that 
dn moles are transferred from the liquid phase to the vapor phase, while T and Pare 
kept constant. The infinitesimal change in Gibbs energy for this process is 

(
aGg) (aGl) 

dG== g dn g + 1 dn
1 

an P,T an P,T 

(23.1 ) 

But dn 1 == -dn g for the transfer of dn moles from the liquid phase to the vapor phase, 
so Equation 23.1 becomes 

(23.2) 



23-3. The Chemical Potentials of a Pure Substance in Two Phases in Equilibriunl Are Equal 

The partial derivatives in Equation 23.2 are central quantities in the treatment of 
equilibria. They are called chemical potentials and are denoted by f1g and f11: 

(del) 
and f11 == I 

an F.T 

(23.3 ) 

In terms of chemical potentials, then, Equation 23.2 reads 

(constant T and P) (23.4 ) 

If the two phases are in equilibrium with each other, then d G == 0, and because dn g =1= 0, 
we find that {Lg == JL I

. Thus, we find that if two phases of a single substance are in 
equilibrium with each other, then the chemical potentials of that substance in the two 
phases are equal. 

If the two phases are not in equilibrium with each other, a spontaneous transfer 
of matter from one phase to the other will occur in the direction such that de < O. If 
{Lg > JL I

, the term in parentheses in Equation 23.4 is positive, so dn g must be negative 
in order that d G < 0. In other words, matter will transfer from the vapor phase to the 
liquid phase, or from the phase with higher chemical potential to the phase with lower 
chemical potential. If, on the other hand, f1g < f11, then dn g will be positive, meaning 
that matter will transfer from the liquid phase to the vapor phase. Once again~ the 
transfer occurs from the phase with higher chemical potential to the phase with lower 

chemical potential. Notice that chemical potential is analogous to electric potential. Just 
as electric current flows from a higher electric potential to a lower electric potential, 
matter "flows" from a higher chemical potential to a lower chenlical potential (see 
Problem 23-19). 

Although we have defined chemical potential quite generally in Equation 23.3, it 
takes on a simple, familiar form for a pure substance. Because e , like U, H, and S, 
is an extensive thermodynamic function, G is proportional to the size of a systeIll, or 
G ex n. We can express this proportionality by the equation G == 11f1(T, P). Note that 
this equation is consistent with the definition of f1 (T, P) because 

(
aG) (anJL(T. P)) (L == - == ~ == f1(T P) 
an P.T an T.P , 

(23.5) 

Therefore, for a single, pure substance, f1 is the same quantity as lhe Illolar Gibbs 
energy and (L(T, P) is an intensive quantity like temperature and pressure. 

We can use the fact that the chemical potentials of a single substance in two phases 
in equilibrium are equal to derive an expression for the variation of equilibrium pressure 
with temperature for any two phases of a given pure substance. Let the two phases be 
a and f3, so that 

(equilibrium between phases) (23.6) 

937 



938 Chapter 23 / Phase Equilibria 

Now take the total derivative of both sides of Equation 23.6 

(23.7) 

Because f-.L is simply the molar Gibbs energy for a single substance, we have in analogy 
with Equations 22.31 

that 

( aG) - -v ap T 

aG 
ap 

T 

==V 

and 

and 

( aG) ==-s 
aT p 

aG 
aT == -s (23.8) 

p 

where V and S are the molar volume and the molar entropy, respectively. We substitute 
this result into Equation 23.7 to obtain 

Solving for d P / d T gives 

dP 

dT 

-(3 -a 
S - S 

-(3 -a 
V - V 

~ S 
trs (23.9) 

~ V 
trs 

Equation 23.9 applies to two phases in equilibrium with each other, so we may use the 
- -

fact that ~trs S == ~trs H / T and write 

dP 

dT 

~ H 
trs (23.10) 

T ~trs V 

Equation 23.10 is called the Clapeyron equation, and relates the slope of the two-phase 
- -

boundary line in a phase diagram with the values of ~trsH and ~trs V for a transition 
between these two phases. 

Let's use Equation 23.10 to calculate the slope of the solid-liquid coexistence curve 
for benzene around one atm (Figure 23.1). The molar enthalpy of fusion of benzene 
at its normal melting point (278.7 K) is 9.95 kJ 'mol- I

, and ~fus V under the same 
conditions is 10.3 cm3 ·mol- I

• Thus, d P /dT at the normal melting point of benzene is 

dP 9950J·mol- 1 (10Cm)3 (0.08206dm3.atm.mol- I .K- J
) 

dT == (278.68 K)(10.3 cm3.mol- l
) 1 dm 8.314 J·mol 1·K- 1 

== 34.2 atm·K- 1 



23-3. The Chemical Potentials of a Pure Substance in Two Phases in Equilibrium Are Equal 

We can take the reciprocal of this result to obtain 

dT 
- == 0.0292 K·atm- l 

dP 

Thus, we see that the melting point of benzene increases by 0.0292 K per atmosphere 
- -

of pressure around one atm. If .6.
fus 

Hand .6.
fus 

V were independent of pressure, we 
could use this result to predict that the melting point of benzene at 1000 atm is 29.2 K 
higher than it is at one atm, or 307.9 K. The experimental value is 306.4 K, so our 

- -
assumption of constant ~fus H and ~fus V is fairly satisfactory. Figure 23.2 shows the 
experimental melting point of benzene versus pressure up to 10000 atm. You can see 
from the figure that the slope is not quite constant. 

EXAMPLE 23-3 
Determine the value of dT jd P for ice at its normal melting point. The molar enthalpy 
of fusion of ice at 273.15 K and one atm is 6010 J. mol-I, and ~fus V under the same 
conditions is -1.63 cm3 

• mol I (recall that unlike most substances water expands upon 

freezing, so that ~fus V == Vi - V
S 

< 0.) Estimate the melting point of ice at 1000 atm. 

SOL UTI 0 N: We use the reciprocal of Equation 23.10: 

dT T ~fus V 

dP ~fusH 

(273.2 K)(-1.63 cm3 ·mol 

6010 J·mol-1 
I) (10 cm)3 

Idm 

( 
8.314J·mol-I·K-1 ) 

x 0.08206 dm3 .atm.mol- I .K-1 

== -0.00751 K·atm- I 

Assuming that dT j d P is constant up to 1000 atm, we find that ~ T == -7.51 K, or that 
the melting point of ice at 1000 atm is 265.6 K. The experimental value is 263.7 K. 
The discrepancy arises from our assumption that the values of ~fus V and ~fus Hare 
independent of pressure. Figure 23.6 shows the experimental melting point of ice 
versus pressure up to 2000 atm. 

Notice that the melting point of ice decreases with increasing pressure, so that the 
slope of the solid-liquid equilibrium curve in the pressure-temperature phase diagram 
of water has a negative slope. Equation 23.10 shows that this slope is a direct result of 
the fact that .6. fus V is negative for this case. 

Equation 23.10 can be used to estimate the molar volume of a liquid at its boiling 
point. 
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EXAMPLE 23-4 
The vapor pressure of benzene is found to obey the empirical equation 

3229.86 K 118345 K2 
In( P Itorr) == 16.725 - - 2 

T T 

from 298.2 K to its normal boiling point 353.24 K. Given that the molar enthalpy of 

vaporization at 353.24 K is 30.8 kJ ·mol- 1 and that the molar volume of liquid benzene 

at 353.24 K is 96.0 cm3
. moll, use the above equation to determine the molar volume 

of the vapor at its equilibrium pressure at 353.24 K and compare this value with the 
ideal-gas value. 

SOL UTI 0 N: We start with Equation 23.10, which we solve for ~ V yap 

~ H yap 
~ V== ----

yap T(d P IdT) 

Using the above empirical vapor pressure equation at T == 353.24 K, 

dP (3229.86K 2366.90K2) 
dT == P T2 + T3 

Therefore, 

== (760 torr)(0.0312 K- 1
) == 23.75 torr·K- 1 == 0.0312 atm·K- 1 

30800 J ·mol- 1 

~ V== --------------------
Yap (353.24 K) (0.0312 atm· K- 1

) 

== (2790 J.atm- I .mol I) (0.08206 L.atm) 
8.314 J 

== 27.6 L·mol- 1 

The molar volume of the vapor is 

v g == ~ V + V I == 27.5 L·mol- 1 + 0.0960 L·mol- I 
yap 

== 27.7 L·mol- 1 

The corresponding value from the ideal gas equation is 

-0 RT 
V

C 

==-
P 

(0.08206 L·atm·K- 1 ·mol- I )(353.24 K) 

1 atm 

== 29.0 L·mol- I 

which is slightly larger than the actual value. 



23-4. The Clausius-Clapeyron Equation Gives the Vapor Pressure 
of a Substance As a Function of Temperature 

When we used Equation 23.10 to calculate the variation of the melting points of ice 
- -

(Example 23-3) and benzene, we assumed that ~trs H and ~trs V do not vary appreciably 
with pressure. Although this approximation is fairly satisfactory for solid-liquid and 
solid-solid transitions over a small ~ T, it is not satisfactory for liquid-gas and solid­
gas transitions because the molar volume of a gas varies strongly with pressure. If the 
temperature is not too near the critical point, however, Equation 23.10 can be cast into 
a very useful form for condensed phase-gas phase transitions. 

Let's apply Equation 23.10 to a liquid-vapor equilibrium. In this case, we have 

dP 

dT 

~ H yap 
(23.11) 

Equation 23.11 gives the slope of the liquid-vapor equilibrium line in the phase diagram 

of the substance. As long as we are not too near the critical point, V g » V I, so that we 
-1 -g 

can neglect V compared with V in the denominator of Equation 23.11. Furthermore, 
if the vapor pressure is not too high (once again, if we are not too close to the 
critical point), we can assume the vapor is ideal and replace V g by R T / P, so that 
Equation 23.11 becomes 

1 dP 

PdT 

dIn P 

dT 
(23.12) 

This equation, which was first derived by Clausius in 1850, is known as the ('lausius­
Clapeyron equation. Remember that we have neglected the molar volume of the liquid 
compared with the molar volume of the gas and that we assumed the vapor can be 
treated as an ideal gas. Nevertheless, Equation 23.12 has the advantage of being lllore 
convenient to use than Equation 23.10. As might be expected, however, Equation 23.10 
is more accurate than Equation 23.12. 

The real advantage of Equation 23.12 is that it can be readily integrated. If we 
assume f1yapH does not vary with temperature over the integration limits of T, Equa­
tion 23.12 becomes 

(23.13) 

Equation 23.13 can be used to calculate the vapor pressure at some temperature gi ven the 
molar enthalpy of vaporization and the vapor pressure at some other temperature. For 
example, the normal boiling point of benzene is 353.2 K and ~ H == 30.8 kJ ·mol- I

. _ yap 

Assuming ~yapH does not vary with temperature, let's calculate the vapor pressure of 
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benzene at 373.2 K. We substitute P, == 760 torr, T, == 353.2 K, and T2 == 373.2 K into 
Equation 23.13 to obtain 

P (30800 J·mol-
l 

) ( 19.8 K ) 
In 760 = 8.314J.K-1 .mol I (353.2 K)(373.2 K) 

== 0.556 

or P == 1330 torr. The experimental value is 1360 torr. 

EXAMPLE 23-5 
The vapor pressure of water at 363.2 K is 529 torr. Use Equation 23.13 to determine 
the average value of ~ H of water between 363.2 K and 373.2 K. yap 

SOL UTI 0 N: We use the fact that the normal boiling point of water is 373.2 K 
(P == 760 torr) and write 

760 ~yapH 10.0 K 
In - == -------------

529 8.314 J. K- 1 ·mol- 1 (363.2 K)(373.2 K) 

or 

~ H == 40.8 kJ .mol I yap 

The value of ~ H for water at its normal boiling point is 40.65 kJ ·mol- 1 
• Yap 

If we integrate Equation 23.12 indefinitely rather than between definite limits, we 

obtain (assuming ~ H is constant) yap 

~ H yap 
In P == - + constant 

RT 
(23.14) 

Equation 23.14 says that a plot of the logarithm of the vapor pressure against the 
reciprocal of the kelvin temperature should be a straight line with a slope of - ~yap H / R. 
Figure 23.13 shows such a plot for benzene over the temperature range 313 K to 353 K. 
The slope of the line gives ~yapH == 32.3 kJ ·mol I. This value represents an average 

value of ~ H over the given temperature interval. The value of ~ H at the normal 
~ y~ 

boiling point (353 K) is 30.8 kJ ·mol-'. 
- -

We can recognize that ~ H varies with temperature by writing ~ H in the yap yap 

form 

- 2 
~ H == A + BT + CT + ... yap 

where A, B, C, ... are constants. If this equation is substituted into Equation 23.12, 
then integration gives 

ABC 
In P == - + -In T + -T + k + O(T2) 

RT R R 
(23.15) 
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A plot of the logarithm of the vapor pressure of liquid benzene against the reciprocal kelvin 
temperature over a temperature range of 313 K to 353 K . 

where k is an integration constant. Equation 23.15 expresses the variation of vapor 
pressure over a larger temperature range than Equation 23.14. Thus, a plot of In P 

against 1/ T will not be exactly linear, in agreement with the experimental data for 
most liquids and solids over an extended temperature range. For example, the vapor 
pressure of solid ammonia in torr is found to obey the equation 

4124.4 K 
In(P/torr) == - T - 1.81630ln(T/ K) + 34.4834 (23.16) 

from 146 K to 195 K. 

EXAMPLE 23-6 
Use the Clausius-Clapeyron equation and Equation 23.16 to determine the molar 
enthalpy of sublimation of ammonia from 146 K to 195 K. 

SOL UTI 0 N: According to Equation 23.12 

dIn P 

dT 

U sing Equation 23. 16 for In P gives us 

~subH 4124.4K2 1.8163K 

RT2 T2 T 

or 

~subH = (4124.4 K)R - (1.8163)RT 

= 34.29 kJ . mol-I - (0.015 1 kJ . mol I. K - I ) T 

146K<T<195K 
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The Clausius-Clapeyron equation can be used to show that the slope of the solid­
gas coexistence curve must be greater than the slope of the liquid-gas coexistence curve 
near the triple point, where these two curves meet. According to Equation 23.12, the 
slope of the solid-gas curve is given by 

dp s ~ H __ == ps sub 

dT RT2 

and the slope of the liquid-gas curve is given by 

d pi I /),.yap H 
-- == p ---
dT RT2 

(23.17) 

(23.18) 

At the triple point, ps and pi, the vapor pressures of the solid and liquid, respectively, 
are equal, so the ratio of the slopes from Equations 23.17 and 23.18 is 

~ H sub (23.19) 
~ H yap 

at the triple point. Because enthalpy is a state function, the enthalpy change in going 
directly from the solid phase to the gas phase is the same as first going from the solid 
phase to the liquid phase and then going from the liquid phase to the gas phase. In an 
equation, we have 

/),. H == /),. H + /),. H sub fus yap (23.20) 

where the three ~ H s must all be evaluated at the same temperature. If we substitute 
Equation 23.20 into Equation 23.19, we see that 

Thus, we see that the slope of the solid-gas curve is greater than that of the liquid-gas 
curve at the triple point. 

EXAMPLE 23-7 
The vapor pressures of solid and liquid ammonia near the triple point are given by 

and 

1630 K 
log(pSjtorr) == 10.0 - T 

1330 K 
log(pljtorr) == 8.46 - -­

T 

Calculate the ratio of the slopes of the solid-gas curve and the liquid-gas curve at the 

triple point. 



23-5. Chemical Potential Can Be Evaluated From a Partition Function 

SOL UTI 0 N: The derivatives of both expressions at the triple point are 

and 

dpl (1330K) 
- == (2.303P ) 2 == 3.52 torr·K- 1 

dT tp T 
tp 

so the ratio of the slopes is 4.31/3.52 = l.22. 

23-5. Chemical Potential Can Be Evaluated From a Partition Function 

In this section, we will derive a convenient formula for the chemical potential in terms 
of a partition function. Recall that the corresponding forlllulas for the energy and 
entropy are (see Equations 17.21 and 20.43) 

2(alnQ) U-kT 
- B aT N,V 

(23.21) 

and 

(23.22) 

Using the fact that the Helmholtz energy A is equal to U - T S, Equations 23.21 and 
23.22 give 

(23.23) 

Let's now include N in our discussion of natural variables, and write 

dA== - dT+ - dV+ - dN (aA) (aA) (aA) 
aT N,V av N,T aN T.V 

== -SdT - PdV + - dN ( aA ') 
aN T.V 

(23.24 ) 

The last term in Equation 23.24 is expressed in terms of N, the number of molecules in 
the system. It is more conventional to express this quantity in terms of n, the number 
of moles in the system. We can do this by noting that 

(aA) (aA) - dN == - dn 
aN T,V an LV 
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because nand N differ by a constant factor of the Avogadro constant. Therefore, we 
may write Equation 23.24 in the form 

dA == -SdT - PdV + (aA) dn 
an T,V 

(23.25) 

We'll now show that (aAjan)T,V isjust another way of writing the chemical potential, 
J-t. Ifwe add d (P V) to both sides of Equation 23.25 and use the equation G == A + P V, 
we get 

dG == dA + d(PV) == -SdT + VdP + (aA) dn 
an T,V 

But if we compare this result to the total derivative of G == G(T, P, n), 

dG == (aG) dT + (aG) dP + (aG) dn 
aT P,N ap T,N an T,P 

== -SdT + VdP + J-tdn 

we see that 

(23.26) 

Thus, we can use either G or A to determine J-t as long as we keep the natural variables 

of each one fixed when we take the partial derivative with respect to n. 
We can now substitute Equation 23.23 into Equation 23.26 to obtain 

J-t == -kBT (a In Q) == -RT (a In Q) 
an V.T aN Y.T 

(23.27) 

We have gone from the second term to the third term by multipying kB and n by the 
Avogadro constant. Equation 23.27 takes on a fairly simple form for an ideal gas. If 
we substitute the ideal-gas expression 

Q(N V T) == [q(V, T)]N 
, , N! 

into In Q, we can write 

In Q == N In q - N In N + N 

where we have used Stirling's approximation for In N!. If we substitute this result into 

Equation 23.27, we obtain 

J-t == - R T (In q - In N - 1 + 1) 

== -RTln q(V, T) (ideal gas) 
N 

(23.28) 



23-5. Chemical Potential Can Be Evaluated From a Partition Function 

Recall now that q ( V, T) ex V for an ideal gas, and so we can write Equation 23.28 as 

(23.29) 

where q (V, T) / V is a function of temperature only. Equation 23.29 also gives us 
an equation for G because G = nJL. We can make Equation 23.29 look exactly like 
Equation 22.59 if we substitute kB T / p for V / N: 

JL = -RTln [(~) k~] 
= -RTln[(~)kBTJ +RTlnP (23.30) 

If we compare this equation with 

(23.31) 

we see that 

(23.32) 

Once again, recall that q / V is a function of T only for an ideal gas. 
To calculate /-L ° (T), we must remember that P is expressed relative to the standard 

state pressure po, which is equal to one bar or 105 Pa. We emphasize this convention 
by writing Equation 23.31 as 

P 
/-L(T, P) = JLO(T) + RT In-po 

If we compare Equation 23.33 with Equation 23.30, we see that 

JL O(T) = -RT In [( ~ ) kB T ] + RT In po 

= -RTln [( ~) k;:] 

(23.33) 

(23.34 ) 

The argument of the logarithm in Equation 23.34 is unitless, as it must be. Equa­
tion 23.34 gives us a molecular formula to calculate JLO(T), or GO(T). For example, 
for Ar(g) at 298.15 K: 

q(V, T) = (2nmkB T)3/2 
V h2 

== [(2JT)(0.03995 kg·mol- I )(1.3806 x 10-23 J.K- 1)(298.15 K)]3/2 

(6.022 x 1023 mol 1)(6.626 x 10 34 J'S)2 

== 2.444 X 1032 m 3 
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and 

RT 
N po 

A 
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(8.314 J ·mol- l ·K- 1)(298.15 K) 

(6.022 X 1023 mol- I )(1.00 X 105 Pa) 

== 4.116 X 10-26 m3 

R T == (8.314 J . K - I • moll) (298. 15 K) == 2479 J . mol 1 

and so 

JLO(298.15 K) == -(2479 J·mol- 1
) In [(2.444 X 1032 m-3)(4.116 X 10-26 m3

)] 

== -(2479 J ·mol 1) In[1.006 X 107] 

== -3.997 X 104 J·mol 1 == -39.97 kJ·mol- 1 

This result is in excellent agreement with the experimental value of -39.97 kJ· mol I. 

Being essentially an energy, the value of the chemical potential must be based 
upon some choice of a zero of energy. The chemical potential we have just calculated 
is based upon the ground state of the atom being zero. For diatomic molecules, we have 
chosen the ground-state energy (vibrational and electronic) to be - Do' as illustrated 
in Figure 18.2. In tabulating values of JL 0 (T), it is customary to take the ground-state 
energy of the molecule rather than the separated atoms as in Figure 18.2 to be the zero 
of energy. To see how this definition of the zero of energy changes the form of the 
partition function, write 

j 

If we factor out e -col kB T, we have 

q(V, T) == e-EolkBT[l + e-(c\-co)lkBT + e (E: 2 -co)/kB T + ... J 

== e colkoT qO(V, T) (23.35) 

where we have written qO (V, T) to emphasize that the ground-state energy of the 
molecule is taken to be zero. Substituting this result into Equation 23.34 gives 

JLO(T) - Eo == -RTln [ (~) k;:] 

== -RTln [( ~) N:: O ] 
(23.36) 



Problems 

The partition function qO (V, T) for a diatomic molecule is 

o . _ (2nmksT)3/2 . T 
q (V, T) - 2 V 

h a8 
rot 

1 
(23.37) 

1 H.·bIT . gel - e VI 

Notice that this expression is the same as Equation 18.39 except for the factor of 
e-hlJ/2kBT e D)k8 T == eDolkBT in Equation 18.39, which accounts for the ground-state 

energy being taken to be -Do' The ground-state energy associated with qO( V, T) 

given by Equation 23.37 is zero. Let's use Equation 23.36 along with Equation 23.37 
to calculate fLo - Eo for HI(g) at 298.15 K in the harmonic oscillator-rigid rotator 
approximation, with Grot == 9.25 K and 8 vib == 3266 K (Table 18.2). 'fherefore, 

and 

qO(V, T) == [(2JT)(O.1279 kg.mol- I)(l.3806 x 102.1 ].K- 1)(298.15 K)]3 /
2 

V (6.022 X 1023 mor- I )(6.626 x 10-34 
J'S)2 

x (298.15 K) 1 
9.25 K 1 _ e-3266 K/298.IS K 

== 4.51 X 1034 m-3 

RT 
N po 

A 

(8.314 J·mol I·K-1)(298.15 K) 

(6.022 x 1023 mol I) (105 Pa) 

== 4.116 x 10-26 m3 

fLO(298.15 K) - Eo == -(8.314 J.mol- I ·K- 1)(298.15 K) In(I.86 x 109
) 

== -52.90 kJ·mol- 1 

The literature value, which includes anharmonic and nonrigid rotator effects, is 
-52.94 kJ ·mol- I

. We will use values of fLO(T) - Eo when we discuss chernical 
equilibria in Chapter 24. 

Problems 

23-1. Sketch the phase diagram for oxygen using the following data: triple point, 54.3 K and 

1.14 torr; critical point, 154.6 K and 37828 torr; normal melting point, 218.4c C; and 
normal boiling point, -182.9°C. Does oxygen melt under an applied pressure as water 
does? 

23-2. Sketch the phase diagram for 12 given the following data: triple point, 113()C and 0.12 

atm; critical point, 5120 C and 116 atm; normal melting point, 1140 C; normal boiling point, 
184°C; and density of liquid> density of solid. 
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FIG U R E 23.14 
A density-temperature phase diagram of benzene. 

23-3. Figure 23.14 shows a density-temperature phase diagram for benzene. Using the follow­
ing data for the triple point and the critical point, interpret this phase diagram. Why is the 

triple point indicated by a line in this type of phase diagram? 

TIK 

Triple point 278.680 

Critical point 561.75 

Normal freezing point 278.68 

Normal boiling point 353.240 

Plbar 

0.04785 

48.7575 

1.01325 

1.01325 

p/mol·L- 1 

Vapor Liquid 

0.002074 

3.90 

0.035687 

11.4766 

3.90 

10.4075 

23-4. The vapor pressures of solid and liquid chlorine are given by 

3777 K 
In(PSjtorr) == 24.320 - -T-

2669 K 
In(p1jtorr) == 17.892 - -­

T 

where T is the absolute temperature. Calculate the temperature and pressure at the triple 

point of chlorine. 

23-5. The pressure along the melting curve from the triple-point temperature to an arbitrary 

temperature can be fit empirically by the Simon equation, which is 

where a and Ci are constants whose values depend upon the substance. Given that Ptp == 
0.04785 bar, I;p == 278.68 K, a == 4237, and a == 2.3 for benzene, plot P against T and 
compare your result with that given in Figure 23.2. 



Problems 

23-6. The slope of the melting curve of methane is given by 

d P == (0.08446 bar. K-1.85 ) TO.85 

dT 

from the triple point to arbitrary temperatures. Using the fact that the temperature and 
pressure at the triple point are 90.68 K and 0.1174 bar, calculate the melting pressure of 
methane at 300 K. 

23-7. The vapor pressure of methanol along the entire liquid-vapor coexistence curve can be 
expressed very accurately by the empirical equation 

10.752849 
In(P /bar) == - + 16.758207 - 3.603425x 

x 

+4.373232x2 -2.381377x3 +4.572199(1-x)1.70 

where x == T/ T , and T == 512.60 K. Use this formula to show that the normal boiling 
c c 

point of methanol is 337.67 K. 

23-8. The standard boiling point of a liquid is the temperature at which the vapor pressure is 
exactly one bar. Use the empirical formula given in the previous problem to show that the 
standard boiling point of methanol is 337.33 K. 

23-9. The vapor pressure of benzene along the liquid-vapor coexistence curve can be accurately 
expressed by the empirical expression 

10.655375 
In(P /bar) == - + 23.941912 - 22.388714x 

x 

+ 20.2085593x2 
- 7.219556x 3 + 4.84728(1 - x) 1.70 

where x == T / Z, and Z == 561.75 K. Use this formula to show that the normal boiling 
point of benzene is 353.24 K. Use the above expression to calculate the standard boiling 
point of benzene. 

23-10. Plot the following data for the densities of liquid and gaseous ethane in equilibrium with 
each other as a function of temperature, and determine the critical temperature of ethane. 

T/K pl/mol·dm-3 pg /mol.dm-3 T/K pl/mol.dm-3 pg /mol·dm-3 

100.00 21.341 1.336 x 10-3 283.15 12.458 2.067 
140.00 19.857 0.03303 293.15 11.297 2.880 
180.00 18.279 0.05413 298.15 10.499 3.502 
220.00 16.499 0.2999 302.15 9.544 4.307 
240.00 15.464 0.5799 304.15 8.737 5.030 
260.00 14.261 1.051 304.65 8.387 5.328 
270.00 13.549 1.401 305.15 7.830 5.866 

23-11. Use the data in the preceding problem to plot (pI + pg) /2 against T - T, with T == 
c c 

305.4 K. The resulting straight line is an empirical law called the law of rectilinear diame-

ters. If this curve is plotted on the same figure as in the preceding problem, the intersection 
of the two curves gives the critical density, Pc' 
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952 Chapter 23 / Phase Equilibria 

23-12. Use the data in Problem 23-10 to plot (pi - pg) against (T - T) 1/3 with T == 305.4 K. 
c c 

What does this plot tell you? 

23-13. The densities of the coexisting liquid and vapor phases of methanol from the triple point 
to the critical point are accurately given by the empirical expressions 

and 

I 

~ - 1 == 2.51709( I - x )0.350 + 2.466694( 1 - x) 
Pc 

- 3.066818( 1 - x 2
) + 1.325077(1 - x 3

) 

Pg 1 - x 
In - == -10.619689 - 2.556682( 1 - x )0.350 

Pc X 

+ 3.881454(1 - x) + 4.795568(1 - X)2 

where Pc == 8.40 mol·L- 1 and x == T/Tc' where Tc == 512.60 K. Use these expressions to 
plot pi and pg against temperature, as in Figure 23.7. Now plot (pi + pg) /2 against T. 
Show that this line intersects the pi and pg curves at T == T . 

c 

23-14. Use the expressions given in the previous problem to plot (pI - pg)/2 against 

(Tc - T) 1/3. Do you get a reasonably straight line? If not, determine the value of the 

exponent of (Tc - T) that gives the best straight line. 

23-15. The molar enthalpy of vaporization of ethane can be expressed as 

6 

~ H(T)/kJ'mol- 1 == " A.xi 
yap ~ J 

j=l 

where Al = 12.857, A2 = 5.409, A3 = 33.835, A4 = -97.520, As = 100.849, A6 = 
-37.933, and x = (T - T) 1/3/(T - T ) 1/3 where the critical temperature T = 305.4 K 

c c tp _ c 

and the triple point temperature T = 90.35 K. Plot ~ H (T) versus T and show that the 
tp yap 

curve is similar to that of Figure 23.8. 

23-16. Fit the following data for argon to a cubic polynomial in T. Use your result to determine 

the critical temperature. Repeat using a fifth-degree polynomial. 

T/K ~ H/J.mol 1 
yap T/K ~ H /J·mol- I 

yap 

83.80 6573.8 122.0 4928.7 

86.0 6508.4 126.0 4665.0 

90.0 6381.8 130.0 4367.7 

94.0 6245.2 134.0 4024.7 

98.0 6097.7 138.0 3618.8 

102.0 5938.8 142.0 3118.2 

106.0 5767.6 146.0 2436.3 

110.0 5583.0 148.0 1944.5 

114.0 5383.5 149.0 1610.2 

118.0 5166.5 150.0 113l.5 



Problems 

23-17. Use the following data for methanol at one atm to plot G versus T around the normal 

boiling point (337.668 K). What is the value of t!,.vapH? 

TjK H jkJ.mol- t SjJ·mol- 1 ·K- 1 

240 4.7183 112.259 

280 7.7071 123.870 

300 9.3082 129.375 

320 10.9933 134.756 

330 11.8671 137.412 

337.668 12.5509 139.437 

337.668 47.8100 243.856 

350 48.5113 245.937 

360 49.0631 247.492 

380 50.1458 250.419 

400 51.2257 253.189 

23-18. In this problem, we will sketch G versus P for the solid, liquid, and gaseous phases for 

a generic ideal substance as in Figure 23.11. Let V s == 0.600, V I == 0.850, and RT == 2.5, 

in arbitrary units. Now show that 

-s -s 
G == 0.600(P - Po) + Go 
-I -I 
G == 0.850(P - Po) + Go 

and 
-g -g 
G ~ == 2.5In(P j Po) + Go 

-s -I -g 
where Po == 1 and G ~, Go' and Go are the respective zeros of energy. Show that if we 
(arbitrarily) choose the solid and liquid phases to be in equilibrium at P == 2.00 and the 

liquid and gaseous phases to be in equilibrium at P == 1.00, then we obtain 

G~~ - G~ == 0.250 

and 

from which we obtain (by adding these two results) 

-5 -g 
Go Go == 0.250 

-s-I -g -D 

Now we can express G , G ,and G in terms of a common zero of energy, G;, which we 

must do to compare them with each other and to plot them on the same graph. Show that 

-s -g 
G - Go == 0.600(P - 1) + 0.250 

-J -g 
G - Go == 0.850(P - 1) 

-g -g 
G - Go == 2.51n P 

Plot these on the same graph from P == 0.100 to 3.00 and compare your result with 

Figure 23.11. 
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23-19. In this problem, we will demonstrate that entropy always increases when there is 
a material flow from a region of higher concentration to one of lower concentration. 
(Compare with Problems 22-41 and 22-42.) Consider a two-compartment system enclosed 
by rigid, impermeable, adiabatic walls, and let the two compartments be separated by a rigid, 
insulating, but permeable wall. We assume that the two compartments are in equilibrium 
but that they are not in equilibirum with each other. Show that 

U
I 

= constant, U2 = constant, V2 = constant, 

and 

n I + n2 = constant 

for this system. Now show that 

dU P fJ-
dS = - + -dV - -dn 

T T T 

in general, and that 

= dn - - - > 0 (
112 fJ- 1 ) 

ITT -

for this system. Use this result to discuss the direction of a (isothermal) material flow under 
a chemical potential difference. 

23-20. Determine the value of d Tid P for water at its normal boiling point of 373.15 K given 
that the molar enthalpy of vaporization is 40.65 kJ· mol-I, and the densities of the liquid 
and vapor are 0.9584 g·mL -I and 0.6010 g.L- I

, respectively. Estimate the boiling point of 
water at 2 atm. 

23-21. The orthobaric densities of liquid and gaseous ethyl acetate are 0.826 g·mL -I and 
0.00319 g·mL -\, respectively, at its normal boiling point (77.11 DC). The rate of change of 
vapor pressure with temperature is 23.0 torr· K I at the normal boiling point. Estimate the 
molar enthalpy of vaporization of ethyl acetate at its normal boiling point. 

23-22. The vapor pressure of mercury from 400°C to 1300°C can be expressed by 

7060.7 K 
In(P Itorr) = - T + 17.85 

The density of the vapor at its normal boiling point is 3.82 g. L -I and that of the liquid is 

12.7 g·mL- I
. Estimate the molar enthalpy of vaporization of mercury at its normal boiling 

point. 

23-23. The pressures at the solid-liquid coexistence boundary of propane are given by the 

empirical equation 

P = -718 + 2.38565T1.283 



Problems 

where P is in bars and T is in kelvins. Given that Tfus == 85.46 K and L).fusH == 3.53 kJ ·mol- t 
, 

calculate L).fus V at 85.46 K. 

23-24. Use the vapor pressure data given in Problem 23-7 and the density data given in 

Problem 23-13 to calculate L).vapH for methanol from the triple point (175.6 K) to the 
critical point (512.6 K). Plot your result. 

23-25. Use the result of the previous problem to plot L).vapS of methanol from the triple point 

to the critical point. 

23-26. Use the vapor pressure data for methanol given in Problem 23-7 to plot In P against 1/ T. 
U sing your calculations from Problem 23-24, over what temperature range do you think 

the Clausius-Clapeyron equation will be valid? 

23-27. The molar enthalpy of vaporization of water is 40.65 kJ· mol- 1 at its normal boiling 

point. Use the Clausius-Clapeyron equation to calculate the vapor pressure of water at 

110°C. The experimental value is 1075 torr. 

23-28. The vapor pressure of benzaldehyde is 400 torr at 154°C and its normal boiling 

point is 179°C. Estimate its molar enthalpy of vaporization. The experimental value is 
42.50 kJ ·mol- I . 

23-29. Use the following data to estimate the normal boiling point and the molar enthalpy of 
vaporization of lead. 

T /K 1500 1600 1700 1800 1900 

P /torr 19.72 48.48 107.2 217.7 408.2 

23-30. The vapor pressure of solid iodine is given by 

8090.0 K 
In(P /atm) == - - 2.013In(T /K) + 32.908 

T 

Use this equation to calculate the normal sublimation temperature and the molar enthalpy 

of sublimation of 12 (s) at 25°C. The experimental value of L).subH is 62.23 kJ· mol-I. 

23-31. Fit the following vapor pressure data of ice to an equation of the form 

a 
In P == - - + b In T + cT 

T 
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where T is temperature in kelvins. Use your result to determine the molar enthalpy of 
sublimation of ice at O°C. 

t JOC P jtorr ljOC P jtorr 

-10.0 1.950 -4.8 3.065 
- 9.6 2.021 -4.4 3.171 
- 9.2 2.093 -4.0 3.280 
- 8.8 2.168 -3.6 3.393 
- 8.4 2.246 -3.2 3.509 
- 8.0 2.326 -2.8 3.630 
- 7.6 2.408 -2.4 3.753 
- 7.2 2.493 -2.0 3.880 
- 6.8 2.581 -1.6 4.012 
- 6.4 2.672 -1.2 4.147 
- 6.0 2.765 -0.8 4.287 
- 5.6 2.862 -0.4 4.431 
- 5.2 2.962 0.0 4.579 

23-32. The following table gives the vapor pressure data for liquid palladium as a function of 
temperature: 

T jK P jbar 

1587 1.002 x 10-9 

1624 2.152 x 10-9 

1841 7.499 x 10-8 

Estimate the molar enthalpy of vaporization of palladium. 

23-33. The sublimation pressure of CO
2 

at 138.85 K and 158.75 K is 1.33 X 10-3 bar and 
2.66 x 10-2 bar, respectively. Estimate the molar enthalpy of sublimation of CO

2
, 

23-34. The vapor pressures of solid and liquid hydrogen iodide can be expressed empirically as 

2906.2 K 
In(PSjtorr) = - + 19.020 

T 

and 

2595.7 K 
In(p1jtorr) = - + 17.572 

T 

Calculate the ratio of the slopes of the solid-gas curve and the liquid-gas curve at the triple 
point. 

23-35. Given that the normal melting point, the critical temperature, and the critical pressure of 
hydrogen iodide are 222 K, 424 K and 82.0 atm, respectively, use the data in the previous 
problem to sketch the phase diagram of hydrogen iodide. 

23-36. Consider the phase change 

C(graphite) ¢ C(diamond) 



Problems 

Given that ~ GO/J.mol- I == 1895 + 3.363T, calculate ~ HO and ~ So. Calculate the pres-
r r r 

sure at which diamond and graphite are in equilibrium with each other at 25°C. Take the 
density of diamond and graphite to be 3.51 g.cm-3 and 2.25 g·cm-3

, respectively. Assume 

that both diamond and graphite are incompressible. 

23-37. Use Equation 23.36 to calculate fJ-0 - Eo for Kr(g) at 298.15 K. The literature value is 
-42.72 kJ ·mol- l

. 

23-38. Show that Equations 23.30 and 23.32 for fJ-(T, P) for a monatomic ideal gas are equiv-
- - - -

alent to using the relation G == H - T S with H == 5 R T /2 and S given by Equation 20.45. 

23-39. Use Equation 23.37 and the molecular parameters in Table 18.2 to calculate fJ-c - Eo 
for N2 (g) at 298.15 K. The literature value is -48.46 kJ· mol-I. 

23-40. Use Equation 23.37 and the molecular parameters in Table 18.2 to calculate j.L0 - Eo 
for CO(g) at 298.15 K. The literature value is -50.26 kJ·mol- 1

• 

23-41. Use Equation 18.60 [without the factor of exp(De/kBT)] and the molecular parame­
ters in Table 18.4 to calculate J..l ° - Eo for CH4 (g) at 298.15 K. The literature value is 
-45.51 kJ·mol- l

. 

23-42. When we refer to the equilibrium vapor pressure of a liquid, we tacitly assume that 
some of the liquid has evaporated into a vacuum and that equilibrium is then achieved. 

Suppose, however, that we are able by some means to exert an additional pressure on the 
surface of the liquid. One way to do this is to introduce an insoluble, inert gas into the space 

above the liquid. In this problem, we will investigate how the equilibrium vapor pressure 

of a liquid depends upon the total pressure exerted on it. 
Consider a liquid and a vapor in equilibrium with each other, so that J..l1 == j.Lg. Show 

that 

because the two phases are at the same temperature. Assuming that the vapor may be treated 

as an ideal gas and that V 1 does not vary appreciably with pressure, show that 

pg(at pI == P) V J pi 
In ==--

pg(at pI == 0) RT 

Use this equation to calculate the vapor pressure of water at a total pressure of 10.0 atm at 
25°C. Take pg (at pI == 0) == 0.0313 atm. 

23-43. Using the fact that the vapor pressure of a liquid does not vary appreciably with the 
total pressure, show that the final result of the previous problem can be written as 

-I I 
VP 

RT 

Hint: Let pg (at P == pI) == pg (at P == 0) + ~ P and use the fact that ~ P is small. Calculate 

~ P for water at a total pressure of 10.0 atm at 25°C. Compare your answer with the one 
you obtained in the previous problem. 

23-44. In this problem, we will show that the vapor pressure of a droplet is not the same as the 

vapor pressure of a relatively large body of liquid. Consider a spherical droplet of liquid of 
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radius r in equilibrium with a vapor at a pressure P, and a flat surface of the same liquid 
in equilibrium with a vapor at a pressure Po' Show that the change in Gibbs energy for the 
isothermal transfer of dn moles of the liquid from the flat surface to the droplet is 

P 
dG = dnRTln-

Po 

This change in Gibbs energy is due to the change in surface energy of the droplet (the 
change in surface energy of the large, flat surface is negligible). Show that 

P 
dnRT In - = ydA 

Po 

where y is the surface tension of the liquid and dAis the change in the surface area of a 
droplet. Assuming the droplet is spherical, show that 

and finally that 

4nr2dr 
dn = -1 

V 
dA = 8nrdr 

-I 
P 2yV 

In- =--
Po rRT 

(1) 

Because the right side is positive, we see that the vapor pressure of a droplet is greater than 
that of a planar surface. What if r ~ oo? 

23-45. Use Equation 1 of Problem 23-44 to calculate the vapor pressure at 25°C of droplets of 
water of radius 1.0 x 10-5 cm. Take the surface tension of water to be 7.20 x 10-4 J. m -2. 

23-46. Figure 23.15 shows reduced pressure, PR , plotted against reduced volume, V R' for the 
van der Waals equation at a reduced temperature, T

R
, of 0.85. The so-called van der Waals 

loop apparent in the figure will occur for any reduced temperature less than unity and is 
a consequence of the simplified form of the van der Waals equation. It turns out that any 
analytic equation of state (one that can be written as a Maclaurin expansion in the reduced 
density, 1/ V R) will give loops for subcritical temperatures (T

R 
< 1). The correct behavior 

as the pressure is increased is given by the path abdfg in Figure 23.15. The horizontal 
region bdf, not given by the van der Waals equation, represents the condensation of the 
gas to a liquid at a fixed pressure. We can draw the horizontal line (called a tie line) at the 
correct position by recognizing that the chemical potentials of the liquid and the vapor must 
be equal at the points band f. Using this requirement, Maxwell showed that the horizontal 
line representing condensation should be drawn such that the areas of the loops above and 
below the line must be equal. To prove Maxwell's equal-area construction rule, integrate 

(a 11-/ a P)r = V by parts along the path bcdef and use the fact that 11-1 (the value of f-L at 
point f) = 11- g (the value of f-L at point b) to obtain 

I -I -g 1 -11- - 11- g = Po (V - V ) - P d V 
bcdef 

= { (Po-P)dV 
lbcdef 

where Po is the pressure corresponding to the tie line. Interpret this result. 
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FIG U R E 23.15 
A plot of reduced pressure, P

R
, versus reduced volume, V R' for the van der Waals equation at a 

reduced temperature, T
R

, of 0.85. 

23-47. The isothermal compressibility, KT , is defined by 

1 (av) 
KT == - V 3P T 

Because (3 P j a V) T == 0 at the critical point, K T diverges there. A question that has generated 
a great deal of experimental and theoretical research is the question of the manner in which 

KT diverges as T approaches Te' Does it diverge as In(T - Te) or perhaps as (T - Te)-Y 

where y is some critical exponent? An early theory of the behavior of thermodynamic 

functions such as KT very near the critical point was proposed by van der Waals, who 

predicted that KT diverges as (T - Te)-I . To see how van der Waals arrived at this prediction, 
- -

we consider the (double) Taylor expansion of the pressure P (V, T) about Te and Ve: 

- - (3P) 1 (a 2 p) P(V,T)==P(V,T)+(T-T) - +-(T-T)2 2 
c e e aT 2 e aT 

e e 

- - ( a2 P) 1 - - 3 (a 3 P ) +(T-T)(V-V) +-(V-V) + ... 
e e avaT 6 c -3 

c av c 

Why are there no terms in (V - V ) or (V - V )2? Write this Taylor series as 
e c 

N ow show that 

(
3P) - - 2 -== == c(T - T) + 3d(V - V J + ... av Tee (

T ---+ Tc ) 
V---+V 

c 

and that 

-ljV 
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Now let V = V to obtain c 

1 
Kr ex 

T-T c 

Accurate experimental measurements of K r as T ~ Z suggest that K r diverges a little more 
strongly than (T - Tc)-I. In particular, it is found that Kr ~ (T - Tc)-Y where y = l.24. 

Thus, the theory of van der Waals, although qualitatively correct, is not quantitatively 
correct. 

23-48. We can use the ideas of the previous problem to predict how the difference in the 
densities (pI and pg) of the coexisting liquid and vapor states (orthobaric densities) behave 
as T ~ T. Substitute 

c 

into the Maxwell equal-area construction (Problem 23-46) to get 

Po = Pc + a(T - Tc) + b(T - Ty + ~ (T - T)(V 1+ V g - 2V) 

d -g -! -I - 2 -I -g -
+4[(V -Vc)-+(V -Vc)](V +V -2Vc)+'" (2) 

-I - -g 

For P < Pc' Equation 1 gives loops and so has three roots, V , V c' and V'-- for P = Po' 

We can obtain a first approximation to these roots by assuming that V c ~ 1 (V I + V g) in 
Equation 2 and writing 

To this approximation, the three roots to Equation 1 are obtained from 

Show that the three roots are 

- - ) - ( C ) 1/2 1/2 V = V = V - - (T - T) 
1 CdC 

V,., = V 
~ C 

V = V g = V + (C)1/2 (T _ T)1/2 
3 cdC 

Now show that 

cr I ( C) 1/2 
V C 

- V = 2 d (Tc - T)1/2 (
T < Tc ) 
T~T 

c 

and that this equation is equivalent to 

(
T < Tc ) 
T~T 

c 



Problems 

Thus, the van der Waals theory predicts that the critical exponent in this case is 1/2. It has 
been shown experimentally that 

where f3 == 0.324. Thus, as in the previous problem, although qualitatively correct, the van 
der Waals theory is not quantitatively correct. 

23-49. The following data give the temperature, the vapor pressure, and the density of the 
coexisting vapor phase of butane. Use the van der Waals equation and the Redlich-Kwong 
equation to calculate the vapor pressure and compare your result with the experimental 
values given below. 

T/K P/bar pg /mol.L- 1 

200 0.0195 0.00117 
210 0.0405 0.00233 
220 0.0781 0.00430 
230 0.1410 0.00746 
240 0.2408 0.01225 
250 0.3915 0.01924 
260 0.6099 0.02905 
270 0.9155 0.04239 
280 1.330 0.06008 

23-50. The following data give the temperature, the vapor pressure, and the density of the 
coexisting vapor phase of benzene. Use the van der Waals equation and the Redlich-Kwong 
equation to calculate the vapor pressure and compare your result with the experimental val­
ues given below. Use Equations 16.17 and 16.18 with ~ == 561.75 K and Pc == 48.7575 bar 
to calculate the van der Waals parameters and the Redlich-Kwong parameters. 

T/K P/bar pg /mol·L- 1 

290.0 0.0860 0.00359 
300.0 0.1381 0.00558 
310.0 0.2139 0.00839 
320.0 0.3205 0.01223 
330.0 0.4666 0.01734 
340.0 0.6615 0.02399 
350.0 0.9161 0.03248 
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Joel Hildebrand was born in Camden, NJ, on November 16, 1881, and died in 1983. He 
received his Ph.D. in chemistry from the University of Pennsylvania in 1906. After spending a 
year at the University of Berlin with Nernst, he returned to the University of Pennsylvania as 
an instructor. In 1913, he joined the Department of Chemistry at the University of California at 
Berkeley, where he stayed for the remainder of his life. Although he officially retired in 1952, 
he remained professionally active until his death, publishing his last paper in 1981. Hildebrand 
made significant contributions to the fields of liquids and nonelectrolyte solutions. He retained 
a long interest in deviations from ideal solutions (Raoult's law) and the theory of regular 
solutions. His books, The Solubility of Nonelectrolytes and Regular Solutions, published with 
Robert Scott, were standard references in the field. Hildebrand was a famed, excellent teacher of 
general chemistry at Berkeley. His general chemistry text, Principles of Chemistry, influenced 
other schools to place greater emphasis on principles and less on the memorization of specific 
material in the teaching of general chemistry. Hildebrand was a great lover of the outdoors and 
especially enjoyed skiing and camping. He managed the U.S. Olympic Ski Team in 1936, was 
President of the Sierra Club from 1937 to 1940, and wrote a book on camping with his daughter 
Louise, Camp Catering or, How to rustle grub for hikers, campers, mountaineers, canoeists, 
hunters, skiers, and fishermen. 



CHAPTER 

Solutions I: Liquid-Liquid Solutions 

In this and the next chapter, we will apply our thermodynamic principles to solutions. 
This chapter focuses on solutions that consist of two volatile liquids, such as alcohol­
water solutions. We will first discuss partial molar quantities, which provide the most 
convenient set of thermodynamic variables to describe solutions. This discussion will 
lead to the Gibbs-Duhem equation, which gives us a relation between the change in 
the properties of one component of a solution in terms of the change in the properties 
of the other component. The simplest model of a solution is an ideal solution, in which 
both components obey Raoult's law over the entire composition range. Although a few 
solutions behave almost ideally, most solutions are not ideal. Just as nonideal gases 
can be described in terms of fugacity, nonideal solutions can be described in terms of a 
quantity called activity. Activity must be calculated with respect to a specific standard 
state, and in Section 24-8 we introduce two commonly-used standard states: a solvent, 
or Raoult's law standard state, and a solute, or Henry's law standard state. 

24-1. Partial Molar Quantities Are Important Thermodynamic 
Properties of Solutions 

Up to this point, we have discussed the thermodynamics of only one-component sys­
tems. We will now discuss the thermodynamics of multicomponent systems, although, 
for simplicity, we will discuss only systems of two components. Most of the con­
cepts and results we will develop are applicable to multicomponent systems. Let's 
consider a solution consisting of n I moles of component 1 and n

2 
moles of compo­

nent 2. The Gibbs energy of this solution is a function of T and P and the two mole 
numbers n I and n2 • We emphasize this dependence of G on these variables by writing 
G = G (T, P, n I' n2 ). The total derivative of G is given by 

dG= - dT+ - dP (aG) (aG) 
aT P,ll] ,1l2 a P T,ll] ,n

2 

+ (aG) dn
l 
+ (aG) dn", an an k 

1 P,T,f1
2 

2 P,T,ll] 

(24.1 ) 
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If the composition of the solution is fixed, so that dn I == dn 2 == 0, then Equation 24.1 
is the same as Equation 22.30, and we have 

(~~) =-S(P,T,n 1,n2) 

P·11 1·11 2 

and 

As in the previous chapter, the partial derivatives of G with respect to mole numbers 
are called chemical potentials, or partial molar Gibbs energies. The standard notation 
for chemical potential is /1, so we can write Equation 24.1 as 

where 

/1. == /1.(T, P, n 1 , n 7 ) == 
J J -

aG 
an. 

J 

(24.2) 

== G. 
J 

(24.3) 

T,P,n . ../.. . 
Ii} 

We will see that the chemical potential of each component in the solution plays a 
central role in determining the thermodynamic properties of the solution. 

Other extensive thermodynamic variables have associated partial molar values, 
although only the partial molar Gibbs energy is given a special symbol and name. For 

example, (a S / an j) T, P ,11.~. is called the partial molar entropy and is denoted by Sj' and 
I,} _ 

(a v /anj)T,p,ni-f} is called the partial molar volume and is denoted by lj. Generally, 

if Y == Y (T, P, n I ' n2 ) is some extensive thermodynamic property, then its associated 
partial molar quantity, denoted by Y., is by definition 

./ 

Y. == Y.(T, P, n l , n,.J == 
J } -

ay 
an. 

J 

(24.4 ) 

T,P,n . ../.. . 
Ii} 

Physically, the partial molar quantity Y. is a measure of how Y changes when n. is 
J } 

changed while keeping T, P, and the other mole numbers fixed. 
Partial molar quantities are intensive thermodynamic quantities. In fact, for a 

pure system, the chemical potential is just the Gibbs energy per mole. We can use 
the intensive property of partial molar quantities to derive one of the most important 
relations for solutions. As a concrete example, we will consider a binary solution, 
that is, one composed of two different liquids. The Gibbs energy of a binary solution 
(Equation 24.2) is 
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At constant T and P, we have 

(24.5) 

Now, imagine that we increase the size of the system uniformly by means of a scale 
parameter A such that dn l == nldA and dn

2 
== n

2
dA. Note that as we vary A from 0 to 1, 

the number of moles of components 1 and 2 varies from 0 to n 1 and 0 to n2 , respectively. 
Because G depends extensively on n I and n

2
, we must have that d G == Gd'A. Therefore, 

the total Gibbs energy varies from 0 to some final value G as A is varied. Introducing 
dA into Equation 24.5 gives 

Because G, n l' and n2 are final values (and so do not depend upon A) and 111 and JL 2 

are intensive variables (and so do not depend upon the size parameter A), we can write 
the above equation as 

or, upon integration, 

(24.6) 

Note that G == JLn for a one-component system, which shows once again that JL is the 
Gibbs energy per mole for a pure system, or more generally, that the partial molar 
quantity of any extensive thermodynamic quantity of a pure substance is its molar 
value. 

Partial molar quantities have a particularly nice physical interpretation in terms of 
volume, for which the equivalent equation to Equation 24.6 would be 

(24.7) 

Now, when I-propanol and water are mixed, the final volume of the solution is not equal 
to the sum of the volumes of pure I-propanol and water. We can use Equation 24.7 
to calculate the final volume of a solution of any composition if we know the partial 
molar volumes of I-propanol and water at that composition. Figure 24.1 shows the 
partial molar volumes of I-propanol and water as a function of the mole fraction of 
I-propanol in I-propanol/water solutions at 20o e. We can use this figure to estimate 
the final volume of solution when 100 mL of I-propanol is mixed with 100 mL of 
water at 20oe. The densities of I-propanol and water at 200 e are 0.803 g·mL -1 and 
0.998 g·mL -I, respectively. Using these densities, we see that 100 mL each of 1-
propanol and water corresponds to a mole fraction of I-propanol of 0.194. Referring 
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Fie U R E 24.1 
The partial molar volumes of I-propanol and water in a I-propanol/water solution at 20Ge 
plotted against the mole fraction of I-propanol in the solution. 

to Figure 24.1, we see that this corresponds to roughly VI-propanol == 72 mL·mol 1 and 

V t == 18 mL· mol-I. Thus, the final volume of the solution is wa er 

V==nV +nV 1 I-propanol 2 water 

( 
80.3g ) ( 99.8g ) == I (72 mL·mol- l

) + I (18 mL· mol- 1
) 

60.09 g·mol- 18.02 g·mol-

== 196 mL 

compared with a total volume of200 mL before mixing. Problems 24-8 through 24-12 
involve the determination of partial molar volumes from solution data. 

24-2. The Gibbs-Duhem Equation Relates the Change in the 
Chemical Potential of One Component of a Solution to the 
Change in the Chemical Potential of the Other 

Most of our thermodynamic formulas for single-component systems (pure substances) 
have analogous formulas in terms of partial molar quantities. For example, if we start 
with G == H - T S and differentiate with respect to nj keeping T, P, and n i =4- j fixed, 
we obtain 

aG aH as 
-T an. an. an. 

} T,P,l1'1 ' J T,P.fl'1- . J T.P.n'1- ' 
I } I } I } 

or 

JL. == G. == H. - TS. 
J } ) J 

(24.8) 
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Furthermore, by using the fact that cross second partial derivatives are equal, we get 

as 
= a:

j 
(- ~~) P,n; = - aaT 

aG (aM) S. = = - al P,n. } an. an. 
} T,p,n'-j= . } T,P,n'-j= . I 

I J I .I 

and 

av 
= a:

j 
(~~)T,n; = aap 

aG (aM) v. = = a; T,n. ) an. an. 
.I T,P,n ... } T,P,n· i · I 

I =r= J I J 

If we substitute these two results into 

(
aJL.) (aJ-L.) d J-L. = ) d T + } dP 

.I aT ap 
P,Il. T,n. 

I I 

we obtain 

dJL. = -S.dT + V.dP 
} } ) 

(24.9) 

which is an extension of Equation 22.30 to multicomponent systems. 

EXAMPLE 24-1 
Derive an equation for the temperature dependence of IL. (T, P) in analogy with the 

} 

Gibbs-Helmholtz equation (Equation 22.60). 

SOL UTI 0 N: The Gibbs-Helmholtz equation is (Equation 22.60) 

H 

Now differentiate with respect to 11. and interchange the order of differentiation on the 
J 

left side to get 

H. 
J --

T2 

where H. is the partial molar enthalpy of component j. 
} 

We will now derive one of the most useful equations involving partial molar 
quantities. First we differentiate Equation 24.6 

and subtract Equation 24.5 to get 

(constant T and P) (24.10) 
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If we divide both sides by n I + n 2' we have 

(constant T and P) (24.11 ) 

where x I and x 2 are mole fractions. Either of Equations 24.10 or 24.11 is called the 
Gibbs-Duhem equation. The Gibbs-Duhem equation tells us that if we know the 
chemical potential of one component as a function of composition, we can determine 
the other. For example, suppose we were to know that 

over the whole range of x2 (0 to 1). A superscript * is the IUPAC notation for a property 
of a pure substance, so in this equation, I-l; == 1-l2 (x2 == 1) is the chemical potential 
of pure component 2. We can differentiate 1-l2 with respect to x2 and substitute into 
Equation 24.11 to get 

X 2 x2 dl-l == --dl-l, == -RT-dlnx 
I x - X 2 

I I 

X2 dX2 dX2 == -RT--- == -RT-

But dX2 == -dx I (because Xl + x2 == 1), so 

dx 
dl-l

1 
== RT-I 

Xl 

where 0 <Xl < 1 because 0 < X 2 < 1. Now integrate both sides from Xl == 1 (pure 
component 1) to arbitrary X I to get 

where I-l ~ == I-ll (x I == 1). We will see later in this chapter that this result says that if one 
component of a binary solution obeys Raoult's law over the complete concentration 
range, the other component does also. 

EXAMPLE 24-2 
Derive a Gibbs-Duhem type of equation for the volume of a binary solution. 

SOL UTI 0 N: We start with Equation 24.7, which is the analog of Equation 24.6 

and differentiate (at constant T and P) to obtain 

Subtract the analog of Equation 24.5 

(constant T and P) 
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to obtain 

(constant T and P) 

This equation says that if we know the change in the partial molar volume of one 
component of a binary system over a range of composition, we can determine the 
change in the partial molar volume of the other component over the same range. 

24-3. At Equilibrium, the Chemical Potential of Each Component Has 
the Same Value in Each Phase in Which the Component Appears 

Consider a binary solution of two liquids that is in equilibrium with its vapor phase, 
which contains both components. Examples are a solution of I-propanol and water 
or a solution of benzene and toluene, each in equilibrium with its vapor. We wish to 
generalize our treatment in the previous chapter, in which we treated a pure liquid in 
equilibrium with its vapor phase, and develop the criterion for equilibrium in a binary 
solution. The Gibbs energy of the solution and its vapor is 

G == G s1n + Gvap 

Let n~ln, n;ln and n ~ap, n;a
p be the mole numbers of each component in each phase. For 

generality, let j denote either component 1 or 2, so n. denotes the number of moles of 
J 

component j. Now suppose that dn. moles of component j are transferred from the 
J 

solution to the vapor at constant T and P, so that dn ;ap == +dn. and dn~ln == -dn .. The 
J J J 

accompanying change in the Gibbs energy is 

dG == dGsln + dGvap 

3GsIn 

an~ln 
J T,P,n.-4. . 

'-r .I 

(
3G

vaP) dn~In + dn ~ap 
J a yap J n· 

J T,P,n . ..,J.' . [-r } 

_ sInd sIn + vapd yap _ (vap sIn)d yap 
- fl· n. II. n· - II. - II. n· 

J J fA'J J fA'J fA'J J 

If the transfer from the solution to the vapor occurs spontaneously, then d G < O. 
Furthermore, dn;ap > 0, so fL;ap must be less than fL]ln in order that dG < O. Therefore, 
molecules of component j move spontaneously from the phase of higher chemical 
potential (solution) to that of lower chemical potential (vapor). Similarly, if fL;ap > fL ;In, 

then molecules of component j move spontaneously from the vapor phase to the 
solution phase (dn;ap 

< 0). At equilibrium, where dG == 0, we have that 

(24.12) 

Equation 24.12 holds for each component. Although we have discussed a solution in 
equilibrium with its vapor phase, our choice of phases was arbitrary, so Equation 24.12 
is valid for the equilibrium between any two phases in which component j occurs. 
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The important result here is that Equation 24.12 says that the chemical potential of 
each component in the liquid solution phase can be measured by the chemical potential 
of that component in the vapor phase. If the pressure of the vapor phase is low enough 
that we can consider it to be ideal, then Equation 24.12 becomes 

j1 ~ln == j1 ,:ap == j1 ~ (T) + RT In P 
J .1 j .1 

(24.13) 

where the standard state is taken to be ljo == 1 bar. For pure component j, Equa­
tion 24.13 becomes 

j1:(I) == j1:(vap) == j1~(T) + RT In P* 
j j j j 

(24.14) 

where the superscript * represents pure (liquid) component j. Thus, for example, 
j1; (l) is the chemical potential and lj* is the vapor pressure of pure j. If we subtract 
Equation 24.14 from Equation 24.13, we obtain 

p 
j1~ln == j1:(I) + RT In _.1 

j J P* 
.1 

(24.15) 

Equation 24.15 is a central equation in the study of binary solutions. Note that j1 ~Jn ~ J-L: 
.1 J 

as P ---+ P*. Strictly speaking, we should use fugacities (Section 22-8) instead of 
J J 

pressures in Equation 24.15, but usually the magnitudes of vapor pressures are such 
that pressures are quite adequate. For example, the vapor pressure of water at 293.15 K 
is 17.4 torr, or 0.0232 bar. 

24-4. The Components of an Ideal Solution Obey Raoult's Law 
for All Concentrations 

A few solutions have the property that the partial vapor pressure of each component is 
given by the simple equation 

P == x.P* 
J J J 

(24.16) 

Equation 24.16 is called Raoult's law, and a solution that obeys Raoult's law over the 
entire composition range is said to be an ideal solution. 

The molecular picture behind an ideal binary solution is that the two types of 
molecules are randomly distributed throughout the solution. Such a distribution will 
occur if (1) the molecules are roughly the same size and shape, and (2) the intermolec­
ular forces in the pure liquids 1 and 2 and in a mixture of 1 and 2 are all similar. 
We expect ideal-solution behavior only when the molecules of the two components 
are similar. For example, benzene and toluene, a-xylene and p-xylene, hexane and 
heptane, and bromoethane and iodoethane form essentially ideal solutions. Figure 24.2 
depicts an ideal solution, in which the two types of molecules are randomly distributed. 
The mole fraction x. reflects the fraction of the solution surface that is occupied by 

J 



FIG U R E 24.2 
A molecular depiction of an ideal solution. The two types of 
molecules are distributed throughout the solution in a random 
manner. 

j molecules. Because the j molecules on the surface are the molecules that can escape 
into the vapor phase, the partial pressure P is just x, P

j
, * . 

J j 

According to Raoult's law (Equation 24.16) and Equation 24.15, the chemical 
potential of component j in the solution is given by 

}J.t~ln = }J.t~(l) + RT lnx, 
} j J 

(24.17) 

Equation 24.17 also serves to define an ideal solution if it is valid for all values of x, 
} 

(0 < Xj < 1). Furthermore, we showed in Section 24-2 that if one component obeys 
Equation 24.17 from x, = 0 to x, = 1, then so does the other. 

j J 

The total vapor pressure over an ideal solution is given by 

Ptotal = PI + P2 = XI Pt + X 2 P2* = (1 - x 2)Pt + X 2 P2* 

= Pt + X 2 (P2* - Pt) (24.18) 

Therefore, a plot of Plotal against x 2 (or x I) will be a straight line as shown in Figure 24.3. 
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FIG U R E 24.3 
A plot of Pt t I against Xb for a solution of benzene and toluene at 40°C. This plot shows o a enzene 
that a benzene/toluene solution is essentially ideal. 
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EXAMPLE 24-3 
I-propanol and 2-propanol form essentially an ideal solution at all concentrations at 

25°C. Letting the subscripts 1 and 2 denote I-propanol and 2-propanol, respectively, 

and given that Pt == 20.9 torr and P2* == 45.2 torr at 25°C, calculate the total vapor 

pressure and the composition of the vapor phase at x 2 == 0.75. 

SOL UTI 0 N: We use Equation 24.18: 

== (0.25)(20.9 torr) + (0.75)(45.2 torr) 

== 39.1 torr 

Let y. denote the mole fraction of each component in the vapor phase. Then, by 
) 

Dalton's law of partial pressures, 

Xl Pt == (0.25)(20.9 torr) == 0.13 
P 39.1 torr total 

Similarly, 

X 2 P2* == (0.75)(45.2 torr) == 0.87 
P 39.1 torr total 

Note that Y1 + Y2 == 1. Also note that the vapor is richer than the solution in the more 

volatile component. 

Problem 24-15 has you expand Example 24-3 by calculating Ptotal as a function of 
x 2 (the mole fraction of2-propanol in the liquid phase) and as a function of Y2 (the mole 
fraction of 2-propanol in the vapor phase), and then plotting Ptota] against x

2 
and Y

2
. The 

resulting plot, which is shown in Figure 24.4, is called a pressure-composition diagram. 
The upper curve shows the total vapor pressure as a function of the composition of 
the liquid phase (the liquid curve), and the lower curve shows the total vapor pressure 
as a function of the composition of the vapor phase (the vapor curve). Now let's see 
what happens when you start at the point Pa , X a in Figure 24.4 and lower the pressure. 
At the point Pa , X a' the pressure exceeds the vapor pressure of the solution, so the 
region above the liquid curve consists of one (liquid) phase. As the pressure is lowered, 
we reach the point A, where liquid starts to vaporize. Along the line AB, the system 
consists of liquid and vapor in equilibrium with each other. At the point B, all the liquid 
has vaporized, and the region below the vapor curve consists of one (vapor) phase. 

Let's consider the point C in the liquid-vapor region. Point C lies on a line con­
necting the composition of liquid (x

2 
== 0.75) and vapor (Y

2 
== 0.87) phases that we 

calculated in Example 24-3. Such a line is called a tie line. The overall composition 
of the two-phase (liquid-vapor) system is x

a
' We can determine the relative amounts 
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FIG lJ R E 24.4 
A pressure-composition diagram for a I-propanoI/2-propanol solution, which forms an 
essentially ideal solution at 25°C. This figure can be calculated using the approach in 
Example 24-3. The upper curve (called the liquid curve) represents Ptotal versus x 2 , the mole 
fraction of 2-propanol in the liquid phase, and the lower curve (called the vapor curve) represents 
Ptotal versus Y2' the mole fraction of 2-propanol in the vapor phase. The two points marked 
by x represent the values of x

2 
and Y

2 
from Example 24-3. 

of liquid and vapor phase in the following way. The mole fractions in the liquid and 
vapor phases are 

and Y2 == yap + yap n 1 n2 
n yap 

where n yap and n 1 are the total number of moles in the vapor and liquid phases, 
respectively. The overall mole fraction at x a is given by the total number of moles of 
component 2 divided by the total number of moles 

X a 

I + yap n2 n2 

n l + n yap 

Using a material balance of the number of moles of component 2, we have 

or 

yap n 

v -x • 2 a 

x -x a 2 

(24.19) 

This equation represents what is called the lever rule because nyap (Y
2 

- xa) == n1(xa -
x2 ) can be interpreted as a balance of each value of "n" times the distance from each 
curve to the point C in Figure 24.4. Note that n1 == 0 when xa == Y

2 
(vapor curve) and 

that n yap == 0 when x == x,., (liquid curve). 
a "-
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EXAMPLE 24-4 
Calculate the relative amounts of liquid and vapor phases at an overall composition of 
0.80 for the values in Example 24-3. 

SOL UTI 0 N: In this case, x == 0.80, x, == 0.75, and y, == 0.87 (see Example 24-3), u _ _ 

so 

n' 
n vap 

0.87 - 0.80 
---- == 1.6 
0.80 - 0.75 

According to Example 24-3, the mole fraction of 2-propanol in the vapor phase 

in equilibrium with a l-propano1l2-propanol solution is greater than the mole fraction 

of 2-propanol in the solution. We can display the composition of the solution and 

vapor phases at various temperatures by a diagram called a temperature-composition 
diagram. To construct such a diagram, we choose some total ambient pressure such as 
760 torr and write 

or 

760 torr == Xl Pt + X 2 P2* == XI Pt + (1 - X I )P2* 

== P2* - XI (P2* - Pt) 

P')* - 760 torr 
"-X ==----­

I P* - P* 2 I 

We then choose some temperature between the boiling points of the two components 
and solve the above equation for Xl' the compositon of the solution that will give a total 
pressure of 760 torr. A plot of temperature against X 1 shows the boiling temperature 
(at Ptata1 == 760 torr) of a solution as a function of its composition (x 1). Such a curve, 
labeled the solution curve, is shown in Figure 24.5. For example, at t == 90°C, Pt (the 
vapor pressure of I-propanol) == 575 torr and P2* (the vapor pressure of 2-propanol) 
== 1027 torr. Therefore, 

X == I 

P2* - 760 torr 

P* - P* 2 I 

1027 torr - 760 torr 
------ ==0.59 
1027 torr - 575 torr 

The point corresponding to t == 90c C and Xl == 0.59 is labeled by point a in Figure 24.5. 
We can also calculate the corresponding composition of the vapor phase as a function of 

temperature. The mole fraction of component 1 in the vapor phase is given by Dalton's 

law 

PI 
Y == 

I 760 torr 

xlPt 

760 torr 
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Fie U R E 24.5 
A temperature-composition diagram of a I-propanoI/2-propanol solution, which is essentially 
an ideal solution. The boiling point of I-propanol is 97.2°C and that of 2-propanol is 82.3°C. 

because the total pressure is taken (arbitrarily) to be 760 torr. We saw above that 
Xl == 0.59 at 90oe, so we have that 

YI == (0.59) (575 torr) / (760 torr) == 0.45 

which is labelled by point b in Figure 24.5. 

EXAMPLE 24-5 
The vapor pressures (in torr) of I-propanol and 2-propanol as a function of the Celsius 
temperature, t, are given by the empirical formulas 

and 

3452.06 
In Pt == 18.0699 - -t +-20-4-.6-4 

3640.25 
In P')* == 18.6919 - ----

~ t + 219.61 

Use these formulas to calculate Xl and Y
1 

at 93.0°C, and compare your results with the 
values given in Figure 24.5. 

SOLUTION: At 93.0°C, 

3452.06 
In Pt == 18.0699 - == 6.472 

93.0 + 204.64 

or Pt == 647 torr. Similarly, P2* == 1150 torr. Therefore, 

P2* - 760 torr 
X == ----­

I P* - P* 2 1 

1150 torr - 760 torr 
------- == 0.77 
1150 torr - 647 torr 
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and 

XI Pt (0.77) (647 torr) 
y = = = 0.65 

I 760 torr 760 torr 

in agreement with the values shown in Figure 24.5. 

The temperature-composition diagram can be used to illustrate the process of 
fractional distillation, in which a vapor is condensed and then re-evaporated many 
times (Figure 24.6). If we were to start with a l-propanoI/2-propanol solution that has 
a mole fraction of 0.59 in I-propanol (point a in Figure 24.5), the mole fraction of 1-
propanol in the vapor will be 0.45 (point b). If this vapor is condensed (point c) and then 
re-evaporated, then the mole fraction of I -propanol in the vapor phase will be about 
0.30 (point d). As this process is continued, the vapor becomes increasingly richer in 
2-propanol, eventually resulting in pure 2-propanol. A fractional distillation column 
differs from an ordinary distillation column in that the former is packed with glass beads, 
which provide a large surface area for the repeated condensation-evaporation process. 

We can calculate the change in thermodynamic properties upon forming an ideal 
solution from its pure components. Let's take the Gibbs energy as an example. We 
define the Gibbs energy of mixing by 

f'... . G = Gs1"(T, P, n
1

, n
2

) - G~ (T , P, n l ) - G; CT, P, n?) mix _ (24.20) 
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FIG U R E 24.6 

A simple fractional distillation column. Because 
repeated condensation and re-evaporation occur along 
the entire column, the vapor becomes progresively 
richer in the more volatile component as it moves up 
the column. 



24-5. Most Solutions Are Not Ideal 

where G~ and G; are the Gibbs energies of the pure components. Using Equation 24.17 
for an ideal solution gives 

~ . Gid == n II sIn + n II sIn - n II * - n J1 * 
m I x 1 fA' 1 2 fA' 2 I fA' I 2 2 

(24.21 ) 

This quantity is always negative because XI and x2 are less than one. In other words, 
an ideal solution will always form spontaneously from its separate components. The 
entropy of mixing of an ideal solution is given by 

(24.22) 

Note that this result for an ideal solution is the same as Equation 20.26 for the mixing of 
ideal gases. This similarity is due to the fact that in both cases the molecules in the final 
solution are randomly mixed. Nevertheless, you should realize that an ideal solution 
and a mixture of ideal gases differ markedly in the interactions involved. Although 
the molecules do not interact in a mixture of ideal gases, they interact strongly in an 
ideal solution. In an ideal solution, the interactions in the mixture and those in the pure 
liquids are essentially identical. 

The volume change upon mixing of an ideal solution is given by 

( a~ Gid) 
~ . Vid == mix == 0 

mix ap 
T,n) ,Tl2 

(24.23) 

and the enthalpy of mixing is (see Equations 24.21 and 24.22) 

(24.24) 

Therefore, there is no volume change upon mixing, nor is there any energy as heat 
absorbed or evolved when an ideal solution is formed from its pure components. Both 
Equations 24.23 and 24.24 result from the facts that the molecules are roughly the same 
size and shape (hence ~ . Vid == 0) and that the various interaction energies are the 

mIX 

same (hence ~ . Hid == 0). Equations 24.23 and 24.24 are indeed observed to be true mix 

experimentally for ideal solutions. For most solutions, however, ~ . H and ~ . V do 
mix mix 

not equal zero. 

24-5. Most Solutions Are Not Ideal 

Ideal solutions are not very common. Figures 24.7 and 24.S show vapor pressure 
diagrams for carbon disulfide/dimethoxymethane [(CH30)2CH2J solutions and tri­
chloromethane/acetone solutions, respectively. The behavior in Figure 24.7 shows 
so-called positive deviations from Raoult' s law because the partial vapor pressures 
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FIG U R E 24.7 
The vapor pressure diagram of a carbon disulfide/dimethoxymethane solution at 25° C. This 
system shows positive deviations from ideal, or Raoult's law, behavior. 
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FIG U R E 24.8 
The vapor pressure diagram of a trichloromethane/acetone solution at 25°C. This system shows 
negative deviations from ideal, or Raoult's law, behavior. 

of carbon disulfide and dimethoxymethane are greater than predicted on the ba­
sis of Raoult's law. Physically, positive deviations occur because carbon disulfide­
dimethoxymethane interactions are more repulsive than either carbon disulfide-carbon 
disulfide or dimethoxymethane-dimethoxymethane interactions. Negative deviations, 
on the other hand, like those shown in Figure 24.8 for a trichloromethane/acetone solu­
tion, are due to stronger unlike-molecule interactions than like-molecule interactions. 
Problem 24-36 asks you to show that if one component of a binary solution exhibits 
positive deviations from ideal behavior, then the other component must do likewise. 



" Raoult's law 
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Xalcohol 

Fie U R E 24.9 
The vapor pressure diagram of alcohol/water solutions as a function of the number of carbon 
atoms in the alcohols, showing increasing deviation from ideal behavior. The dashed line 
corresponds to methanol, the dotted line to ethanol, and the dashed-dotted line to I-propanol. 

Figure 24.9 shows plots of methanol, ethanol, and I-propanol vapor pressures in 
alcohol/water solutions. Note that the positive deviation from ideal behavior increases 
with the size of the hydrocarbon part of the alcohol. This behavior occurs because the 
water-hydrocarbon (repulsive) interactions become increasingly prevalent as the size 
of the hydrocarbon chain increases. 

There are some important features to notice in Figures 24.7 and 24.8. Let's focus 
on component 1. The vapor pressure of component 1 approaches its Raoult's law value 
as x I approaches 1. In an equation, we have that 

(24.25) 

Although we deduced Equation 24.25 from Figures 24.7 and 24.8, it is generally true. 
Physically, this behavior may be attributed to the fact that there are so few component -2 
molecules that most component-l molecules see only other component-l molecules, so 
that the solution behaves ideally. Raoult's law behavior is not observed for component 1 
as XI --+ 0 in Figures 24.7 and 24.8, however. Although not easily seen in Figures 24.7 
and 24.8, the vapor pressure of component 1 as XI --+ 0 is linear in xI' but the slope is 
not equal to Pt as in Equation 24.25. We emphasize this behavior by writing 

-~) 0 (24.26) 

In the special case of an ideal solution, kH, I == Pt, but ordinarily kH, I =1= Pt. Equa­
tion 24.26 is called Henry '5 law, and kH, I is called the Henry's law constant of 
component 1. As X I --+ 0, the component-l molecules are completely surrounded 
by component -2 molecules, and the value of kH I reflects the intermolecular interac-

, 

tions between the two components. As X I --+ 1, on the other hand, the component-l 
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980 Chapter 24 / Solutions I: Liquid-Liquid Solutions 

molecules are completely surrounded by component-l molecules, and Pt is what re­
flects the intermolecular interactions in the pure liquid. Although we have focussed 
our discussion on component 1 in Figures 24.7 and 24.8, the same situtation holds for 
component 2. Equations 24.25 and 24.26 can be written as 

P --+) x.P* as x. --+) 1 
j j j j 

P --+) X .k
H 

. as x. ) 0 
j j ,j j 

(24.27) 

Thus, in a vapor pressure diagram of a solution of two volatile liquids, the vapor pressure 
of each component approaches Raoult's law as the mole fraction of that component 
approaches one and Henry's law as the mole fraction approaches zero. 

EXAMPLE 24-6 
The vapor pressure (in torr) of component lover a binary solution is given by 

o < x < 1 - \-

Determine the vapor pressure (Pt) and the Henry's law constant (k
H

,\) of pure com­
ponent 1. 

SOL UTI 0 N: In the limit that x I ----+ 1, the exponential factor ----+ 1 because x 2 ----+ 0 

as x I ----+ 1. Therefore, 

so Pt = 180 torr. As x I ----+ 0, on the other hand, the exponential factor approaches 
e3

/
2 because x

2 
~ 1 as x I ----+ O. Thus, we have 

p ~ 180e3
/
2x = 807x 

I I I 

and kH 1 = 807 torr. , 

We will now show that the Henry's law behavior of component 2 as x2 ~ 0 
is a thermodynamic consequence of the Raoult's law behavior of component 1 as 
Xl ~ 1. To prove this connection, we will start with the Gibbs-Duhem equation 
(Equation 24.11) 

(constant T and P) 

Now, assuming that the vapor phase may be treated as an ideal gas, both chemical 

potentials can be expressed as 

J.L . (T, P) == J.L ~ (T) + R T In P 
j j j 



24-6. The Gibbs-Duhem Equation Relates the Vapor Pressures of the Two Components 

(Recall that the argument of the logarithm is actually PI po, where po is one bar.) Now 
) 

this form of J-L. (T, P) allows us to write 
] 

and 

Substitute these two expressions into the Gibbs-Duhem equation to get 

(24.28) 

But dX l == -dx2 (because Xl + x2 == 1), so Equation 24.28 becomes 

(24.29) 

which is another form of the Gibbs-Duhem equation. If component 1 obeys Raoult's 

law as Xl -+ 1, then PI -+ Xl Pt and (a In Pllaxl)T,p == 11xl' so the left side of Equa­
tion 24.29 becomes unity. Thus, we have the condition 

We now integrate this expression indefinitely to get 

In P2 == In x 2 + constant as X I -+ 1 or x2 -+ 0 

or 

Thus, we see that if component 1 obeys Raoult's law as Xl -+ 1, then component 2 
must obey Henry's law as x 2 -+ O. Problem 24-32 has you prove the converse: if 
component 2 obeys Henry's law as x

2 
-+ 0, then component 1 must obey Raoult's law 

as Xl -+ 1. 

24-6. The Gibbs-Duhem Equation Relates the Vapor Pressures of the 
Two Components of a Volatile Binary Solution 

The following example shows that if we know the vapor pressure curve of one of the 
components over the entire composition range, we can calculate the vapor pressure of 
the other component. 
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EXAMPLE 24-7 
The vapor pressure curve of one of the components (say component 1) of a nonideal 

binary solution can often be represented empirically by (see Figure 24.10) 

° < x < 1 - \-

where a and f3 are parameters that are used to fit the data. Show that the vapor pressure 

of component 2 is necessarily given by 

° < x < 1 - 2-

where y == a + 3 f3 /2 and 8 == - f3. Notice that the parameters a and f3 must in some 

manner reflect the extent of the nonideality of the solution because both PI and P
2 

reduce to the ideal solution expressions when a == f3 == 0. Furthermore, note that 

PI ----+ x} Pt eCi+fi as x I ----+ ° (x2 ----+ 1), so the Henry's law constant of component 1 is 
k

H
.
I 

== Pt eCi+fi. Similarly, we find that k
H

.
2 

== P2* e
a +f1 / 2

• 

SOL UTI 0 N: We use the Gibbs-Duhem equation 

along with (Equation 24.13) 

,,-.... 
!--. 
!--. 

0 
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'-" 

Q....-
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20 

J-l i == 111 + R T In PI 

== 11\ + RT In Pt + RT lnx} 

+aRT(1-x
l
)2 +f3 RT(1-x

l
)3 

/ 
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Fie U R E 24.10 
A plot of PI == x I Pt ecyx;+fix~ for Pt == 100 torr and various values of a and f3. The values of a 
and f3 for the five curves, top to bottom, are 1.0, 0.60~ 0.80, 0.60; 0.60, 0.20; 0,0 (ideal solution); 
and -0.80, 0.60. 



24-6. The Gibbs-Duhem Equation Relates the Vapor Pressures of the Two Components 

Differentiate this equation with respect to x I and substitute the result into the above 
Gibbs-Duhem equation to obtain 

N ow change variables from x I to x 2 

and integrate from x 2 == 1 to arbitrary x2 and use the fact that 1-12 == 1-1; when x2 == 1 
to get 

U sing the fact that 1-12 == 1-12 + R T In P2 and that 1-1; == f-L~ + R T In P2*' we see that 

or 

I P I P* I 2 3f3 2 f3 3 n / == n 2 + nx') + aX I + -Xl - XI - ~ 2 

We could also have used Equation 24.29 to do this problem (Problem 24-33). 

Figure 24.11 shows the boiling-point diagram of a benzene/ethanol system, in 
which the boiling points of benzene/ethanol solutions (at one atm) are plotted against 
the mole fraction of ethanol. Figure 24.11 shows that if you were to start with a 
solution with an ethanol mole fraction of 0.2, for example, then repeated evaporation­
condensation would lead to a mixture consisting of a mole fraction of about 0.4 that 
cannot be separated by further fractional distillation. 

Such a mixture, for which there is no change in composition upon boiling, is called 
an azeotrope. Thus, it is not possible to achieve a separation of a benzene/ethanol 
solution by distillation into pure benzene and pure ethanol. If we start out at an ethanol 
mole fraction of 0.2, we would obtain a separation of pure benzene and the azeotrope. 
Similarly, if we started out with an ethanol mole fraction of 0.8, we would achieve a 
separation of pure ethanol and the benzene/ethanol azeotrope. 

As our final topic in this section on nonideal solutions, let's consider the case in 
which the positive deviations from ideal behavior become increasingly large, as often 
occurs as the temperature is lowered. Figure 24.12 illustrates typical vapor pressure 
behavior for a series of temperatures, where T3 > Tc > T2 > T). The vertical axis is 
P2/ P2*, so each curve is "normalized" by the vapor pressure of pure component 2 at each 
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FIG U R E 24.12 
An illustration of the critical behavior of a 
binary solution as a function of temperature 
(T., > Tc > T2 > T)). 

temperature. Therefore, all the curves meet at P2/ P2* == 1 at x2 == 1. For temperature 
~, which is greater than Tc' the slope of the P2 versus x 2 curve is everywhere positive. 
At Tc' the curve has an inflection point, where a P2/ aX2 == 0 and a2 P2/ axi == O. For the 
temperatures Tl and T2 , which are less than T

c
' the curves have a horizontal portion that 

becomes wider as the temperature is lowered. The temperature Tc is called the critical 
temperature or consulate temperature, and as we will now discuss, the consulate 
temperature is the temperature below which the two liquids are not miscible in all 
proportions. 

Let's follow the T2 curve in Figure 24.12 as we start with pure component 1 
(x

2 
== 0) and add component 2. Up to the point x~, the added component 2 simply 



24-6. The Gibbs--Duhern Equation Relates the Vapor Pressures of the Two Components 

dissolves in component 1 to form a single solution phase. Above the concentration 
x~, however, two separate or immiscible solution phases form, one of composition .... 

x~ and one of composition x~. As x 2 is increased from x~ to x~, the two phases must 
maintain a constant mole fraction of component 2 (x~ and x~) and therefore, the relative 
proportions of the two phases change, with the volume of the phase of composition 
x~ increasing and the volume of the phase of composition x~ decreasing. The overall 
composition of the two phases together is given by the value of x 2 . When x 2 > x~, we 
obtain a single solution phase. 

We can derive a lever rule to calculate the relative amounts of the two phases in 
the following way. Consider some overall composition x

2
, which lies between x~ and 

x~. Let n't, n; and n';, n~ be the number of moles of the two components in the phases 
of composition x~ and x~, respectively. Then, the mole fraction of component 2 in each 
phase is 

and 

and the overall mole fraction of component -2 is 

, " n 2 + n 2 

U sing material balance of the number of moles of component 2 allows us to write 

We can rearrange this material balance equation to give 

n' 

" 
(24.30) 

n 

Equation 24.30 gives the relative total number of moles in each phase. Note that if 
x 2 == x~, then n' == 0, and if x 2 == x~, then n" == O. As Equation 24.30 shows, when x 2 

reaches x~, the phase of composition x~ disappears, and there is a single solution phase 
of composition x 2 == x~. For x 2 > x~, there is a single solution phase of composition x

2
• 

Thus, at a temperature T2 , the two liquids are immiscible when x
2 

is between x~ 
and x~ but are miscible for x 2 < x~ and x 2 > x~. Similar behavior occurs at other 
temperatures less than Tc' and Figure 24.12 summarizes this behavior. The heavy 
curve in Figure 24.12 is called a coexistence curve. Points inside the coexistence curve 
represent two solution phases, whereas points below the coexistence curve represent 
one solution phase. Problem 24-43 has you determine the coexistence curve for a 
simple model system. 

We can display the results illustrated by Figure 24.12 in a temperature-composition 
diagram (Figure 24.13a). The curve separating the one-phase region from the two-phase 
region is the coexistence curve. The temperature Tc' the temperature above which the 
two liquids are totally miscible, is the consulate temperature. The coexistence curve in 
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(a) A temperature-composition diagram for the system illustrated in Figure 24.12. 
(b) A temperature-composition diagram for a water/phenol system. 

Figure 24.13a looks "upside down" compared with the one in Figure 24.12, but note that 
the temperature decreases as you go up in Figure 24.12, whereas they decrease as you 
go down in Figure 24.13. Figure 24.13b shows a coexistence curve for a water/phenol 

system. 

24-7. The Central Thermodynamic Quantity for Nonideal Solutions Is 
the Activity 

The chemical potential of component j in a liquid solution is given by (Equation 24.15) 

p 
1I~ln == II: + RT In -) 
fA-' ) fA-' ) P * 

) 

(24.31 ) 

if we assume, as usual, that the vapor pressures involved are low enough that the vapors 

can be considered to behave ideally (otherwise, we replace the partial pressures by 

partial fugacities). An ideal solution is one in which P == x. P* for all concentrations, 
} } } 

so that Equation 24.31 becomes 

IL ~ln == Jl: + R T In x. (ideal solution) 
} } ) 

(24.32) 

Equation 24.31 is still valid for a nonideal solution, but the relation between ~ / IJ* 
and composition is more complicated than simply P == x. P*. For example, we saw in 

) )) 

Example 24-7 that partial vapor pressure data are often fit by an expression like 

(24.33) 



24-7. The Central Thermodynamic Quantity for Nonideal Solutions Is the Activity 

The exponential factor here accounts for the nonideality of the system. The chemical 
potential of component 1 in this case is given by 

* 1 2 fJ"R 3 f-l] == f-lJ + RT nx] + aRTx2 + TX2 + ... (24.34 ) 

In Section 22-8, we introduced the idea of fugacity to preserve the form of the thermo­
dynamic equations we had derived for ideal gases. We will follow a similar procedure 
for solutions, using an ideal solution as our standard. 

To carryover the form of Equation 24.32 to nonideal solutions, we define a quantity 
called the activity by the equation 

(24.35) 

where f-l; is the chemical potential, or the molar Gibbs energy, of the pure liquid. 
Equation 24.35 is the generalization of Equation 24.32 to nonideal solutions. The first 
of Equations 24.27 says that P == x. P*, as x. ----+ 1. If we substitute this result into 

J J) ) 

Equation 24.31, we obtain 

JL ~ln == f-l*: + RT In x. 
)) J 

(as x. ----+ 1) 
J 

If we compare this equation with Equation 24.35, which is valid at all concentrations, 
we can define the activity of component j by 

P 
a. == -) 

.I P* 
} 

(ideal vapor) (24.36) 

such that a. ----+ x. as x. ----+ 1. In other words, the activity of a pure liquid is unity (at 
j J J 

a total pressure of one bar and at the temperature of interest). For an ideal solution, 
P == x. Pj' * for all concentrations, and so the activity of component i in an ideal solution 

) ) 

is given by a. == x .. In a nonideal solution, a. still is equal to P / P *, but this ratio is no 
J } .J .J ) 

longer equal to x ., although a. ----+ x. as x. ----+ 1. 
) ))) 

According to Equations 24.33 and 24.36, the activity of component 1 can be 
represented empirically by 

Note that a] ----+ 1 as x] ----+ 1 (x2 ----+ 0). The ratio a
j 

/ Xj can be used as a measure of 
the deviation of the solution from ideality. This ratio is called the activity coefficient of 
component j and is denoted by y.: 

.I 

a. 
y. == ~ 

J X. 
J 

(24.37) 
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If y. == 1 for all concentrations, the solution is ideal. If y. =f 1, the solution is not 
} J 

ideal. For example, the partial vapor pressures of chlorobenzene in equilibrium with a 
chlorobenzene/l-nitropropane solution at 75°C are listed below: 

XI 0.119 0.289 0.460 0.691 1.00 
PI/torr 19.0 41.9 62.4 86.4 119 

According to these data, the vapor pressure of pure chlorobenzene at 75°C is 119 torr, 
so the activities and activity coefficients are as follows: 

XI 

a l (== PI / Pt) 

YI (== aI/xl) 

0.119 0.289 
0.160 0.352 
1.34 1.22 

0.460 0.691 
0.524 0.726 
1.14 1.05 

1.00 
1.00 
1.00 

Figure 24.14 shows the activity coefficient of chlorobenzene in 1-nitropropane at 75°C 
plotted against the mole fraction of chlorobenzene. 

Activity is really just another way of expressing chemical potential because the 
two quantities are directly related to each other through fJ.,. == fJ., ': + R T In a .. Therefore, 

] J J 

just as the chemical potential of one component of a binary solution is related to the 
chemical potential of the other component by way of the Gibbs-Duhem equation, the 
activities are related to each other by 

(24.38) 

For example, if a] == Xl over the entire composition range, meaning that component 1 
obeys Raoult's law over the entire composition range, then 

Integrate from x2 == 1 to arbitrary x2 and use the fact that a2 -+ 1 as x2 -+ 1 to get 

<:) 
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FIG U R E 24.14 
The activity coefficient of chlorobenzene in 
I-nitropropane at 75c C plotted against the 
mole fraction of chlorobenzene. 



24-8. Activities Must Be Calculated with Respect to Standard States 

or a
2 

== x
2

. Thus, we see once again that if one component obeys Raoult's law over the 
entire composition range, the other component will also. 

EXAMPLE 24-8 
Show that if 

then 

SOL UTI 0 N: We first differentiate In a l with respect to Xl: 

and substitute into Equation 24.38 to obtain 

Now change the integration variable from x I to X 2 : 

dx; 
d In a; == -~ - 2a(l - x;)dx

2 ~ x '-
2 

and integrate from x
2 

== 1 (where a
2 

== l) to arbitrary x
2

: 

or 

24-8. Activities Must Be Calculated with Respect to Standard States 

In one sense, there are two types of binary solutions, those in which the two components 
are miscible in all proportions and those in which they are not. Only in the latter case are 
the designations "solvent" and "solute" unambiguous. As we will see in this section, 
the different nature of these two types of solutions leads us to define different standard 
states. 
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Although we have not said so explicitly, we have tacitly assumed both components 

of the solutions we have considered thus far exist as pure liquids at the temperatures 

of the solutions. We have defined the activity of each component by (Equation 24.36) 

p 
a. == -j 

j P.* 
j 

(ideal vapor) (24.39) 

so that a. ---+ x. as x. ---+ 1 and a. == 1 when P == p.*. An activity defined by Equa-
.I .I j .I .1.1 

tion 24.39 is said to be based upon a solvent, or Raoult's law standard state. Because 

of the relation (Equation 24.35) J-l. == J-l: + R T In a., the chemical potential of compo-
j j j 

nent j is also based upon a solvent, or Raoult's law, standard state. You need to realize 

that activities or chemical potentials are meaningless unless it is clear just what has 

been used as the standard state. If the two liquids are miscible in all proportions, there is 

no distinction between solvent and solute and a solvent standard state is normally used. 

If, on the other hand, one component is sparingly soluble in the other, then picking a 
standard state based upon Henry's law instead of Raoult's law is more convenient. To 

see how we define the activity in this case, we start with Equation 24.31 

P 
1/ ~In == 1/: + R T In -.I 
1""'.1 rj P* 

.I 

(24.40) 

Because component j is sparingly soluble, we use the second of Equations 24.27, 

which says that P ---+ x .kH . as x. ---+ 0, where kH . is the Henry's law constant of 
.I .I . .1.1 • .I 

component j. If we substitute the limiting value x .kH . into Equation 24.40 for P, we 
.I . .I .I 

obtain 

. x.kH · 
1/ ~ln == 1/: + R T In .I . .1 
1""') 1""'./ P * 

.I 

(x. ---+ 0) 
.I 

kH . 
== 1/: + RT In .j + RT lnx. 

1""'.1 P* j 
(x. ---+ 0) 

.I 
j 

We define the activity of component j by 

. kH . 
J-l ~ln == J-l: + RT In . .1 + RT In a. 
.1.1 P* .I 

j 

(24.41) 

(24.42) 

so that a. ---+ x. as x. ---+ 0, as can be seen by comparing Equations 24.41 and 24.42 . 
.I .I .I 

Equation 24.42 becomes equivalent to Equation 24.35 if we define a. by 
j 

P 
./ a. == 

.I kH. j 

and choose the standard state such that 

(ideal vapor) 

kH . 
1I:==II:+RTln ,.I 
1""'.1 1""'./ P* 

.I 

(24.43) 
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or such that kH . == p *. The standard state in this case requires that kH . == P
j
. *. This 

,j j .j 

standard state may not exist in practice, so it is called a hypothetical standard state. 
Nevertheless, the definition of activity involving Henry's law for dilute components 
given by Equation 24.43 is natural and useful. 

The numerical value of an activity or an activity coefficient depends upon the 
choice of standard state. Table 24.1 lists vapor pressure data for carbon disulfide/di­
methoxymethane solutions at 35.2°C, and these data are plotted in Figure 24.15. Notice 
that both curves approach Raoult's law as their corresponding mole fractions approach 
unity. The dashed lines in the figure represent the linear regions as the corresponding 
mole fractions approach zero. The slopes of these lines give the Henry's law constant for 

each component. The values come out to be kH,es') == 1130 torr and kH,dimeth == 1500 torr. 
We can use these values and the values of the vapor pressures of the pure components 
to calculate activities and activity coefficients based upon each standard state. For 

example, Table 24.1 gives Pes,) == 407.0 torr and Pdimeth == 277.8 torr at xes" == 0.6827. 
_ L 

Therefore, 

(R) 
Qcs == 

2 P~s 

TAB L E 24.1 

2 

Vapor pressure 

407.0 torr 
--- == 0.7911 
514.5 torr 

data of carbon 
disulfide/dimethoxymethane solutions at 
35.2°C 

xes 
2 

Pes Itorr 
2 

Pdimeth/torr 

0.0000 0.000 587.7 

0.0489 54.5 558.3 

0.1030 109.3 529.1 

0.1640 159.5 500.4 

0.2710 234.8 451.2 

0.3470 277.6 412.7 

0.4536 324.8 378.0 

0.4946 340.2 360.8 

0.5393 357.2 342.2 

0.6071 381.9 313.3 

0.6827 407.0 277.8 

0.7377 424.3 250.1 

0.7950 442.3 217.4 

0.8445 458.1 184.9 

0.9108 481.8 124.2 

0.9554 501.0 65.1 

1.0000 514.5 0.000 
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Fie U R E 24.15 
Vapor pressures of carbon disulfide and dimethoxymethane over their solutions at 3S.2°C. The 
solid straight lines represent ideal behavior, and the dashed lines represent the Henry's law 
behavior for each component as the corresponding mole fractions approach zero. 

and 

(R) Pdimeth 277.8 torr 
adimeth == == 0.4727 

Pd~ll1eth 587.7 torr 

with 

(R) 

0.7911 (R) 
acs 

2 == 1 .159 Yes· == 
2 X

CS2 
0.6827 

and 

(R) 0.4727 (R) adimeth 
Ydimeth == == 1.490 

X dimeth 0.3173 

where the superscript (R) simply emphasizes that these values are based upon a Raoult's 
law, or solvent, standard state. 

Similarly, 

(H) P cS
2 

407.0 torr 
acs == == 0.360 

2 k 1130 torr 
H,CS J 

P 277.8 torr 
(H) dimeth == 0.185 

adill1eth == k 1500 torr 
H.dill1eth 

0.360 

0.6827 
== 0.527 
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and 

(H) 

(H) adimcth 
Ydimcth == 

Xdimeth 

0.185 
-- == 0.583 
0.3173 

where the superscript (H) simply emphasizes that these values are based upon a Henry's 
law, or solute, standard state. Figure 24.16a shows the Raoult's law, or solvent-based, 
activities, and Figure 24.16b shows the Henry's law, or solute-based, activities plotted 
against the mole fraction of carbon disulfide. We will see in the next chapter that a 
solute, or Henry's law, standard state is particularly appropriate for a substance that 
does not exist as a liquid at one bar and at the temperature of the solution under 
study. 

The activity coefficients based upon the Raoult's law standard state (which is 
the usual standard state for miscible liquids) are plotted in Figure 24.17. Notice that 

Yes ~ 1 as xes ~ 1 and that it goes to 2.2 as xes ~ O. Both of these limiting values 
2 -~ 7 

may be deducea from the definition of y. (Equation 24.37) 
.I 

a. P 
Yj == ~ == .I * 
. x. x.P 

.I ) .I 

Now P ~ P* as x. ~ 1, and so y. ~ 1 as x. ~ 1. At the other limit, however, P ~ 
.I .1.1 .I J .I 

x.kH . as x. ~ 0, so we see that y. ~ kH ·1 P* as x. ~ O. The value of kH for CS;(I) 
.I ,.I .I J,.J.J .I -

is 1130 torr, so Yes ~ kH es 1 p~s == (1130 torr/514.5 torr) == 2.2, in agreement with 
2 '2 2 

Figure 24.17. The activity coefficient of dimethoxymethane approaches 2.5 as xdimeth ~ 

o (xes2 ~ 1), in agreement with Ydimeth ~ kH,dimethl Pd~mcth == (1500 torr/587.7 torr) == 
2.5. 

1.0 

0.2 

0.0 1.0 

(a) 

FIG U R E 24.16 

0.5 

~ 0.3 
::r: --
~ 

0.1 

0.0 1 .0 

(b) 

(a) The Raoult's law activities of carbon disulfide and dimethoxymethane in carbon disul­
fide/dimethoxymethane solutions at 35 .2°C plotted against the mole fraction of carbon disulfide. 
(b) The Henry's law activities for the same system. 
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Fie U R E 24.17 
The Raoult's law activity coefficients of carbon disulfide (solid line) and dimethoxymethane 
(dashed line) plotted against xes for carbon disulfide/dimethoxymethane solutions at 35.2°C. 

2 

24-9. We Can Calculate the Gibbs Energy of Mixing of Binary 
Solutions in Terms of the Activity Coefficients 

Recall from Equation 24.21 that 

But, according to Equations 24.35 and 24.37, 

jJ~ln == jJ: + RT Ina. == jJ: + RT lnx. + RT In y. 
} } } } } } 

so 

(24.44) 

(24.45) 

If we divide Equation 24.45 by the total number of moles, n I + n 2 , we obtain the molar 

Gibbs energy ojmixing, ~mixG. 

(24.46) 

The first two terms here represent the Gibbs energy of mixing of an ideal solution. 

EXAMPLE 24-9 
Use Equation 24.46 to derive a formula for ~ . G for a binary solution in which the 

nllX 

vapor pressure can be expressed by 

2 2 
P == X P1* e

cxx2 and P == x P* ecxxl 
I 1 2 2 2 
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SOL UTI 0 N: According to the above expressions for PI and P2 , 

P } 
y == I == eC(x2 

I x P* 
I I 

and 

Substitute these expressions into Equation 24.46 to obtain 

But 

so 

~mix G I R T == X I In XI + x2 In x2 + ax 1 x2 
(24.47) 

Molecular theories of binary solutions show that the parameter Ci, which is unitless, 
has the form of an energy divided by RT. Therefore, we will write Ci as w / R T, where 
w is a constant whose value we will not need. With this substitution, Equation 24.47 
can be written as 

~.G 
mIx (24.48) 
11) 

Figure 24.18 shows plots of ~mixG/w for several values of RT /w. Note that the 
slopes of all the curves equal zero at the midpoint, x I == X 2 == 1/2. The curve for 
RT /w == 0.50 is special in the sense that curves for values of RT /w greater than 0.50 

0.00 

-0.05 

~ 
""""""-

It:.:) 
- 0.10 x .-.-c:: 

<1 

O. IS 

-0.20~------~------~------~----~ 
0.00 0.25 0.75 1.00 

FIG U R E 24.18 
Plots of ~mix G Iv) for RT Iw == 0.60 (bottom curve), RT /11) == 0.50 (middle curve), and 
RT Iw == 0.40 (top curve). 
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are concave upward for all values of x I' whereas curves for values of RT I w less than 
0.50 are concave downward at XI == 1/2. In mathematical terms, a2(~mixG Iw)lax~ is 
positive (a minimum) at X I == x 2 == 112 for the curves that lie below the curve with 

RT Iw == 0.50, whereas a2(~mixGlw)/ax~ is negative (a maximum) at XI == x2 == 1/2 
for curves that lie above it. The region where a2(~mix G I w) I ax~ is negative is similar 
to the loops of the van der Waals equation or the Redlich-Kwong equation when 
T < Tc (Figure 16.8), and in this case corresponds to a region in which the two liquids 
are not miscible. The critical value RT I w == 0.50 corresponds to a solution critical 
temperature, Tc' where the two liquids are miscible in all proportions at temperatures 
above Tc == 0.50w I R and immiscible at temperatures below Tc == 0.50w I R. 

Let's consider the curve with RT Iw == 0.40 in Figure 24.18. The two minima 
represent two immiscible solutions in equilibrium with each other. The compositions 
of these two solutions are given by the values of X I at each minimum. Using Equa­
tion 24.47, we have 

a(~ . Glw) RT 
miX == - [In X I - In( 1 - X I)] + (1 - 2x 1) == 0 
aX I W 

(24.49) 

as the condition for the extrema of ~mix G I w. First note that x I == 112 solves Equa­
tion 24.49 for any value of RT I w, which accounts for the fact that all the curves 
in Figure 24.18 have either a maxilllum or a minimum at x I == 1/2. By plotting 
(RT Iw)[lnxi -In(l - XI)] + (1 - 2x l ) against XI for various values of RT Iw, you 
can see that only XI == 1/2 satisfies Equation 24.49 for RT Iw > 0.50, whereas two 
other roots occur for RT Iw < 0.50. The two roots give the composition of the two 
miscible solutions in equilibrium with each other. For the case in which RT Iw == 0.40, 
the two values of XI are 0.145 and 0.855. Figure 24.19 shows the mole fraction of 
component 1 in each of the two immiscible solutions as a function of temperature 
(RT Iw). Note that Figure 24.19 is similar to Figure 24.13. 

EXAMPLE 24-10 
Use Equation 24.49 to calculate the composition of the two immiscible solutions in 
equilibrium with each other at a temperature given by RT /w == 0.40. 

SO L UTI 0 N: We use the Newton-Raphson method that we introduced in Math­
Chapter G. The function f (x) of Equation G.I is 

RT 
f(x) == -[lnx -In(1 - x)] + I - 2x 

w 

Equation G.I becomes 

RT 

x == x -n+1 11 

- [In x In (I - x )] + 1 - 2x w 11 n n 

RT [ I ] - -2 
11) xCI-x) 

n II 

with RT /w == 0.40. For one of the solutions, we start with Xo == 0.100 and get 



0.50 

0.40 

~ 
~ 0.30 
C< 

0.20 

O.OO~----~------~------~------~ 
0.00 0.25 0.50 0.75 1 .00 

FIG U R E 24.19 
A temperature-composition diagram for a binary system for which ~mix G / UJ = 
(R T / w) (x 1 In Xl + x

2 
In x

2
) + Xl x

2 
(Equation 24.48). The curve gives the compositions 

of the two immiscible solutions as a function of temperature. There is only one homogeneous 
phase in the region above the curve, and there are two imn1iscible solutions in equilibrium with 
each other in the region below the curve. 

n x f (x
n

) f' (x,) 
11 

0 0.100 0.07889 2.4444 

1 0.132 -0.01695 1.4851 

2 0.144 -0.001370 1.2509 

3 0.145 -0.000017 1.2305 

4 0.145 

For the other solution, we start with Xo = 0.900 and get 

n x f(x,) f' (x
n

) 
11 

0 0.900 0.07889 2.4444 

1 0.868 0.01695 1.4851 

2 0.856 0.00137 1.2509 

3 0.855 0.000017 1.2305 

4 0.855 

in agreement with Figure 24.19. 

Many solutions can be described by the Equation 24.47, and such solutions are 
called regular solutions. Problems 24-37 through 24 45 involve regular solutions. 
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To focus on the effect of nonideality, we define an excess Gibbs energy oj 
mixing, GE

: 

GE =: ~ . G - ~ . G id 
InlX mIx (24.50) 

We see from Equation 24.45 that 

If we divide by the total number of moles n I + n2 , we obtain the molar excess Gibbs 
-E 

energy ojmixing, G : 

(24.51 ) 

For ~mix G given by Equation 24.47, 

(24.52) 

According to Equation 24.52, a plot of G E against x I is a parabola that is symmetric 

about the vertical line at x 1=:1/2. 
We can use Yes and Ydimeth that we calculated for Figure 24.17 to calculate the 

} 

value of G E for a ~arbon disulfide/dimethoxymethane solution at 35.2°C, which is 

shown in Figure 24.20. Note that the plot of G E versus xes is not symmetric about 

xes, = 1/2. This asymmetry implies that f3 -4 0 in the empiric~1 vapor pressure formula 
(Equation 24.33). 

We will continue our discussion of solutions in the next chapter, where we focus on 
solutions in which the two components are not soluble in all proportions. In particular, 

0.25 -

0.20 
-

I -0 0.15 
E 
• 
~ 

~ 0.10 
""-

U.l 

I~ 
0.05 

O.OO~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ 
0.0 0.2 0.4 0.6 0.8 1 .0 

FIG U R E 24.20 
The molar excess Gibbs energy of mixing of carbon disulfide/dimethoxymethane solutions at 
35.2°C plotted against the mole fraction of carbon disulfide. 



Problems 

we will discuss solutions of solids in liquids, where the terms solute and solvent are 
meaningful. 

Problems 
24-1. In the text, we went from Equation 24.5 to 24.6 using a physical argument involving 

varying the size of the system while keeping T and P fixed. We could also have used a 

mathematical process called Euler's theorem. Before we can learn about Euler's theorem, 

we must first define a hon10geneous function. A function f (z I' Z2' ... , Z N) is said to be 
homogeneous if 

Argue that extensive thermodynamic quantities are homogeneous functions of their exten­
sive variables. 

24-2. Euler's theorem says that if f (z I' Z2' ... , Z N) is homogeneous, then 

Prove Euler's theorem by differentiating the equation in Problem 24-1 with respect to A 
and then setting A == 1. 

Apply Euler's theorem to G == G (n I' n 2 , T, P) to derive Equation 24.6. (Hint: Because 
T and P are intensive variables, they are simply irrevelant variables in this case.) 

24-3. Use Euler's theorem (Problem 24-2) to prove that 

for any extensive quantity Y. 

24-4. Apply Euler's theorem to U == U(S, V, n). Do you recognize the resulting equation? 

24-5. Apply Euler's theorem to A == A(T, V, n). Do you recognize the resulting equation? 

24-6. Apply Euler's theorem to V == V (T, P, n I' n 2 ) to derive Equation 24.7. 

24-7. The properties of many solutions are given as a function of the mass percent of the 
components. If we let the mass percent of component 2 be A

2
, derive a relation between 

A2 and the mole fractions, x I and x 2 · 

24-8. The CRC Handbook of Chemistry and Physics gives the densities of many aqueous 

solutions as a function of the mass percentage of solute. If we denote the density by p and 
the mass percentage of component 2 by A

7
, the Handbook gives p == p(A

7
) (in g.mL -1). - -

Show that the quantity V == (n\ M1 + 11 2 M2 )/ p(A2 ) is the volume of the solution containing 
n I moles of component 1 and n 2 moles of component 2, where M

j 
is the molar mass of 

component j . Now show that 

999 
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and 

Show that 

in agreement with Equation 24.7. 

24-9. The density (in g. ml I) of a I-propanol/water solution at 20G e as a function of A
2

, the 

mass percentage of I-propanol, can be expressed as 

where 

7 

peA,) == "a.Ai 
- ~ J 

au == 0.99823 

a
l 

== -0.0020577 

Ci
2 

== 1.0021 x 10-4 

0'3 == -5.9518 X 10-6 

j=O 

a
4 

== 1.5312 x 10-7 

as == -2.0365 x 10-9 

a
6 

== 1.3741 x 10- 11 

0'7 == -3.7278 X 10- 14 

Use this expression to plot VH,o and VI-propanol versus A 2 , and compare your values with 
those in Figure 24.1. -

24-10. Given the density of a binary solution as a function of the mole fraction of component 2 

[p == p (x
2
)], show that the volume of the solution containing n I moles of component 1 and 

n2 moles of component 2 is given by V == (niMI + 11 2M 2)/ p(x2), where ~i is the molar 
mass of component j. Now show that 

and 

Show that 

in agreement with Equation 24.7. 

24-11. The density (in g. mL -\) of a I-propanol/water solution at 200 e as a function of x 2, the 

mole fraction of I-propanol, can be expressed as 

4 

p (x2 ) == L ajxi 
)=0 



Problems 

where 

a o == 0.99823 a
3 

== -0.17163 

a, == -0.48503 a
4 

== -0.01387 

a
2 

== 0.47518 

Use this expression to calculate the values of V H
2
0 and VI-propanol as a function of x 2 

according to the equation in Problem 24-10. 

24-12. Use the data in the CRC Handbook of Chelnistry and Physics to curve fit the density 
of a water/glycerol solution to a fifth-order polynomial in the mole fraction of glycerol, 

and then determine the partial molar volumes of water and glycerol as a function of mole 

fraction. Plot your result. 

24-13. Just before Example 24-2, we showed that if one component of a binary solution 

obeys Raoult's law over the entire composition range, the other C0111pOnent does also. 

Now show that if /-L 2 == 1-1; + RT In x2 for x2 .min < x 2 < 1, then 1-1, == 1-1', + RT In Xl for 

o < X I < 1 - x 2,min' Notice that for the range over which 1-12 obeys the simple form given, 

/-L I obeys a similarly simple form. If we let x2,min == 0, we obtain 1-1 [ == 1-1 ~ + RT In Xl 

(0 < x, < 1). 

24-14. Continue the calculations in Example 24-3 to obtain Y2 as a function of x 2 by varying 
x

2 
from 0 to 1. Plot your result. 

24-15. Use your results from Problem 24-14 to construct the pressure-composition diagram 
in Figure 24.4. 

24-16. Calculate the relative amounts of liquid and vapor phases at an overall cOInposition 

of 0.50 for one of the pair of values, x 2 == 0.38 and Y2 == 0.57, that you obtained in 
Problem 24-14. 

24-17. In this problem, we will derive analytic expressions for the pressure-composition curves 
in Figure 24.4. The liquid (upper) curve is just 

which is a straight line, as seen in Figure 24.4. Solve the equation 

for x 2 in terms of Y2 and substitute into Equation (1) to obtain 

P*P* 
P == 1 2 

total P* _ Y (p.* _ P*) 
2 2 2 I 

Plot this result versus Y2 and show that it gives the vapor (lower) curve in Figure 24.4. 

24-18. Prove that Y2 > x 2 if P2* > Pt and that Y2 < x 2 if P2* < Pt. Interpret this result 
physically. 
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24-19. Tetrachloromethane and trichloroethylene form essentially ideal solutions at 40°C at all 

concentrations. Given that the vapor pressure of tetrachloromethane and trichloroethylene 

at 40°C are 214 torr and 138 torr, respectively, plot the pressure-composition diagram for 

this system (see Problem 24-17). 

24-20. The vapor pressures oftetrachloromethane (1) and trichloroethylene (2) between 76.8°C 

and 87.2'-'C can be expressed empirically by the formulas 

and 

2790.78 
In(PI* Itorr) == 15.8401 - --­

t + 226.4 

2345.4 
In(P)*/torr) == 15.0124 - ---

- t + 192.7 

where t is the Celsius temperature. Assuming that tetrachloromethane and trichloroethylene 

form an ideal solution at all compositions, calculate the values of XI and Y
I 

at 82.0°C (at 

an ambient pressure of 760 torr). 

24-21. Use the data in Problem 24-20 to construct the entire temperature-composition diagram 

of a tetrachloromethane/trichlororethylene solution. 

24-22. The vapor pressures of benzene and toluene between 80~)C and II OCC as a function of 

the Kelvin temperature are given by the empirical formulas 

* 3856.6 K 
In(Pbenz/torr) == - T + 17.551 

and 

4514.6 K 
In(Pt~l/torr) == - T + 18.397 

Assuming that benzene and toluene form an ideal solution, use these formulas to construct 

a temperature-composition diagram of this system at an ambient pressure of 760 torr. 

24-23. Construct the temperature-composition diagram for I-propanol and 2-propanol in Fig­
ure 24.5 by varying t from 82.3 C (the boiling point of 2-propanol) to 97.2°C (the boiling 

point of I-propanol), calculating the values of (I) Pt and P2* at each temperature (see 

Example 24-5), (2) Xl according to XI == (P2* - 760)/(P2* - Pt), and (3) Y
l 

according to 

Y1 == XI P1* 1760. Now plot t versus Xl and Yl on the same graph to obtain the temperature­

composition diagram. 

- -* -* 24-24. Prove that V. == V. for an ideal solution, where V. is the molar volume of pure com-
} } ) 

ponent j. 

24-25. The volume of mixing of miscible liquids is defined as the volume of the solution minus 

the volume of the individual pure components. Show that 

~ . V == "X. (V. - V.*) 
mIx ~ /' / / 

-x 

at constant P and T, where ~. is the molar volume of pure component i. Show that 

~ . V == 0 for an ideal solution (see Problem 24-24). 
mIx 



Problems 

24-26. Suppose the vapor pressures of the two components of a binary solution are given by 

and 

Given that PI* == 75.0 torr and P2* == 160 torr, calculate the total vapor pressure and the 
composition of the vapor phase at XI == 0.40. 

24-27. Plot YI versus X I for the system described in the previous problem. Why does the curve 
lie below the straight line connecting the origin with the point X I == 1, Y I == I? Describe a 
system for which the curve would lie above the diagonal line. 

24-28. Use the expressions for PI and P
2 

given in Problem 24-26 to construct a pressure­
composition diagram. 

24-29. The vapor pressure (in torr) of the two components in a binary solution are given by 

and 

P == 140x eO.35x~ -0.1 ()x~ 
2 2 

Determine the values of Pt, P2*, kH. I , and kH,2' 

24-30. Suppose the vapor pressure of the two components of a binary solution are given by 

and 

Show that k == P* eCY+f3 and k == P* eCY +f3 / 2 
H.I I H.2 2 . 

24-31. The empirical expression for the vapor pressure that we used in Examples 24-6 and 
24-7, for example, 

is sometimes called the Margules equation. Use Equation 24.29 to prove that there can be 
no linear term in the exponential factor in PI' for otherwise P

2 
will not satisfy Henry's law 

as x
2 
~ O. 

24-32. In the text, we showed that the Henry's law behavior of component 2 as x
2 
~ 0 is 

a direct consequence of the Raoult's law behavior of component 1 as x I ~ 1. In this 
problem, we will prove the converse: the Raoult's law behavior of component 1 as XI ~ 1 
is a direct consequence of the Henry's law behavior of component 2 as x

2 
~ O. Show that 

the chemical potential of component 2 as x
2 
~ 0 is 

1003 
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Differentiate 1-l2 with respect to x2 and substitute the result into the Gibbs-Duhem equation 
to obtain 

x
2 

---+ 0 

Integrate this expression from x I == I to x I ~ I and use the fact that I-l, (x, == 1) == I-l ~ to 
obtain 

which is the Raoult's law expression for chemical potential. 

24-33. In Example 24-7, we saw that if 

then 

Show that this result follows directly from Equation 24.29. 

24-34. Suppose we express the vapor pressures of the components of a binary solution by 

and 

Use the Gibbs-Duhem equation or Equation 24.29 to prove that ex must equal f3. 

24-35. Use Equation 24.29 to show that if one component of a binary solution obeys Raoult's 
law for all concentrations, then the other component also obeys Raoult's law for all con­
centrations. 

24-36. Use Equation 24.29 to show that if one component of a binary solution has positive 
deviations from Raoult's law, then the other component must also. 

The following nine problems develop the idea of a regular solution. 

24-37. If the vapor pressures of the two components in a binary solution are given by 

p == x PI*ewxi/RT 
I I 

and 
') 

P == x P*ewxj/RT 
2 2 2 

show that 

RT 
~ . G/w == ~ . G/(n, + n2 )w == -[x,lnx, + x2 lnx2] + X 1X 2 flUX tnJX W 



Problems 

and 

~ . H/w == ~ . H/(n 1 + n,,)w == XIX" mIx mIx ~ ~ 

A solution that satisfies these equations is called a regular solution. A statistical thermody­

namic model of binary solutions shows that w is given by 

where c .. is the interaction energy between molecules of components i and j. Note that 
I} 

w == 0 if c
12 

== (c
l 
I + c

22
) /2, which means that energetically, molecules of components 1 

and 2 "like" the opposite molecules as well as their own. 

24-38. Prove that ~ . G, ~ . S, and ~ . H in the previous problem are symnletric about the 
mix mix mix 

point X I == X2 == 1/2. 

') 

24-39. Plot P
I

/ Pt == xteWXi/RT versus XI for RT /w == 0.60,0.50,0.45,0.40, and 0.35. Note 

that some of the curves have regions where the slope is negative. The following problem 
has you show that this behavior occurs when RT /11) < 0.50. These regions are similar to 
the loops of the van der Waals equation or the Redlich-Kwong equation when T < Tc 
(Figure 16.8), and in this case correspond to regions in which the two liquids are not 

miscible. The critical value RT / w == 0.50 corresponds to a solution critical temperature. 

24-40 Differentiate P == X P* ew
(l-x\)2 / RT with respect to x to prove that P has a maximum 

• I I I I I 

or a minimum at the points XI == ~ ± ~(1 - 2~T)I/2. Show that RT/w < 0.50 for either a 

maximum or a minimum to occur. Do the positions of these extrema when RT / w == 0.35 
correspond to the plot you obtained in the previous problem? 

24-41. Plot ~mix G jw in Problem 24-37 versus XI for RT /w == 0.60,0.50,0.45,0.40, and 0.35. 
Note that some of the curves have regions where a2 ~ . G /3X21 < O. These regions corre-

nux 

spond to regions in which the two liquids are not miscible. Show that RT /w == 0.50 is a 
critical value, in the sense that unstable regions occur only when RT /w < 0.50. (See the 
previous problem.) 

24-42. Plot both P1/Pt == xleO'x~ and P2/P2* == x
2
e(of for RT/w == 1/0' == 0.60,0.50,0.45, 

0.40, and 0.35. Prove that the loops occur for values of RT /w < 0.50. 

24-43. Plot both PljPt == xleO'xi and P2/P2* == x2eO'x~ for RT/w == IjQ' == 0.40. The loops 
indicate regions in which the two liquids are not miscible, as explained in Problem 24-

39. Draw a horizontal line connecting the left-side and the right-side intersections of the 

two curves. This line, which connects states in which the vapor pressure (or chemical 
potential) of each component is the same in the two solutions of ditferent composition, 

') 

corresponds to one of the horizontal lines in Figure 24.12. Now set PI / Pt == X I eO'x2 equal 
") 

to P2 j P2* == x2 eO'xi and solve for Q' in terms of x I . Plot R T j w == 1/ Q' against x I and obtain 
a coexistence curve like the one in Figure 24.19. 
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24-44. The molar enthalpies of mixing of solutions of tetrachloromethane (1) and cyclohexane 
(2) at 25°C are listed below. 

XI ~ . H /J·mol- I 
mIx 

0.0657 37.8 
0.2335 107.9 
0.3495 134.9 
0.4745 146.7 
0.5955 141.6 
0.7213 118.6 
0.8529 73.6 

Plot ~mix H / x 2 against x I according to Problem 24-37. Do tetrachloromethane and cyclo­
hexane form a regular solution? 

24-45. The molar enthalpies of mixing of solutions of tetrahydrofuran and trichloromethane at 
25 C are listed below. 

X THF ~. H/J·mol 1 
fmx 

0.0568 -0.469 
0.1802 -1.374 
0.3301 - 2.118 

0.4508 -2.398 
0.5702 -2.383 
0.7432 -1.888 
0.8231 -1.465 
0.9162 -0.802 

Do tetrahydrofuran and trichloromethane form a regular solution? 

24-46. Derive the equation 

by starting with Equation 24.11. Use this equation to obtain the same result as in Exam­
ple 24-8. 

24-47. The vapor pressure data for carbon disulfide in Table 24.1 can be curve fit by 

Using the results of Example 24-7, show that the vapor pressure of dimethoxymethane is 
given by 

-E 
Now plot P2 versus x

2 
and compare the result with the data in Table 24.l. Plot G 

against Xl' Is the plot symmetric about a vertical line at x I == 1/2? Do carbon disulfide 
and dimethoxymethane form a regular solution at 35.2°C? 



Problems 

24-48. A mixture of trichloromethane and acetone with xacet == 0.713 has a total vapor pressure 

of 220.5 torr at 28.2°C, and the mole fraction of acetone in the vapor is Yacet == 0.818. Given 

that the vapor pressure of pure trichloromethane at 28.2°C is 221.8 torr, calculate the activity 

and the activity coefficient (based upon a Raoult's law standard state) of trichloromethane 

in the mixture. Assume the vapor behaves ideally. 

24-49. Consider a binary solution for which the vapor pressure (in torr) of one of the components 

(say component 1) is given empirically by 

Calculate the activity and the activity coefficient of component 1 when x I == 0.25 based on 

a solvent and a solute standard state. 

24-50. Some vapor pressure data for ethanol/water solutions at 25°C are listed below. 

x ethanol P /torr ethanol P water/torr 

0.00 0.00 23.78 

0.02 4.28 23.31 

0.05 9.96 22.67 

0.08 14.84 22.07 

0.10 17.65 21.70 

0.20 27.02 20.25 

0.30 31.23 19.34 
0.40 33.93 18.50 
0.50 36.86 17.29 

0.60 40.23 15.53 
0.70 43.94 13.16 
0.80 48.24 9.89 
0.90 53.45 5.38 
0.93 55.14 3.83 
0.96 56.87 2.23 
0.98 58.02 1.13 

1.00 59.20 0.00 

Plot these data to determine the Henry's law constant for ethanol in water and for water in 
ethanol at 25°C. 

24-51. Using the data in Problem 24-50, plot the activity coefficients (based upon Raoult's 

law) of both ethanol and water against the mole fraction of ethanol. 

24-52. Using the data in Problem 24-50, plot G E/ RT against xH o. Is a water/ethanol solution 
1 

at 25°C a regular solution? ~ 
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24-53. Some vapor pressure data for a 2-propanol/benzene solution at 25c C are 

X2-propanol P2_propanol/torr Ptotal / torr 

0.000 0.0 94.4 
0.059 12.9 104.5 
0.146 22.4 109.0 
0.362 27.6 108.4 
0.521 30.4 105.8 
0.700 36.4 99.8 
0.836 39.5 84.0 
0.924 42.2 66.4 
1.000 44.0 44.0 

Plot the activities and the activity coefficients of 2-propanol and benzene relative to a 
Raoult's law standard state versus the mole fraction of 2-propanol. 

24-54. Using the data in Problem 24-53, plot G E/ RT versus x2-propanol' 

24-55. Excess thermodynanlic quantities are defined relative to the values the quantities would 
have if the pure components formed an ideal solution at the same given temperature and 
pressure. For example, we saw that (Equation 24.47) 

Show that 

GE 

----- == XI In YI + x2ln Y2 (n I + n 2 )RT 

SE ( a In YI a In y, ) 
----==-(xIlnY1+x,lnyJ- T Xl +x2 ~ 
(n

l 
+ n

2
)R ~ ~ aT aT 

24-56. Show that 

and 

SE 
---- ==0 
(n l + r1 2)R 

HE 
== WX I X 2 (n l +n2) 

for a regular solution (see Problem 24-37). 

24-57. Example 24-7 expresses the vapor pressures of the two components of a binary solution 
as 

and 



Problems 

Show that these expressions are equivalent to 

and 

U sing these expressions for the activity coefficients, derive an expression for G E in terms 

of a and f3. Show that your expression reduces to that for G E for a regular solution. 

24-58. Prove that the maxima or minima of ~ . G defined in Problem 24-37 occur at XI == mix 

X 2 == 1/2 for any value of RT /w. Now prove that 

> a for RT /w > 0.50 

for RT /w == 0.50 

< a for RT /w < 0.50 

at X I == x 2 == 1/2. Is this result consistent with the graphs you obtained in Problem 24-41 ? 

24-59. Use the data in Table 24.1 to plot Figures 24.15 through 24.17. 
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Peter Debye (left) was born in Maastricht, the Netherlalllds , on March 24, 1884 and died 
in 1966. Debye was originally trained as an electrical engineer but turned his attention to 
physics, receiving his Ph.D. from the University of Munich in 1908. After holding positions in 
Switzerland, the Netherlands, and Germany, he moved to the University of Berlin in the early 
1930s. Although he had been assured that he would be able retain his Dutch citizenship, Debye 
found that he would be unable to continue his work in Berlin unless he became a German 
citizen. He refused and left Germany in 1939 for Cornell University, where he remained for the 
rest of his life, becoming an American citizen in 1946. Debye was awarded the Nobel Prize 
for chemistry in 1936 "for his contributions to our knowledge of molecular structure through 
his investigations on dipok moments and on the diffraction of X rays and electrons in gases." 
Erich Huckel (right) was born in Gottingen, Germany, on August 19, 1896 and died in 1980. 
He received his Ph.D. in physics from the University of Gottingen in 1921. He later worked 
with Peter Debye in Zurich, and together they developed a theory for the thermodynamic 
properties of solutions of strong electrolytes that is now known as the Debye-HUckel theory. 
HUckel also developed HUckel molecular orbital theory, which we learned in Chapter 10 applies 
to conjugated and aromatic molecules. HUckel was appointed professor of theoretical physics 
at the University of Marburg in 1937, where he remained until hi s retirement. 



CHAPTER 

Solutions II: Solid-Liquid Solutions 

In the previous chapter, we studied binary solutions, such as ethanol/water solutions, 
in which the two components were miscible in all proportions. In such solutions, either 
component can be treated as a solvent. In this chapter, we will study solutions in which 
one of the components is present at much smaller concentrations than the other, so that 
the terms "solute" and "solvent" are meaningful. We will introduce a solute standard 
state based upon Henry's law such that the activity of the solute becomes equal to its 
concentration as its concentration goes to zero. In the first few sections, we will study 
solutions of nonelectrolytes, and then solutions of electrolytes. Unlike for solutions 
of nonelectrolytes, we will be able to present exact expressions for the activities and 
activity coefficients in dilute solutions of electrolytes. In Sections 25-3 and 25-4, we 
will discuss the colligative properties of solutions, such as osmotic pressure, as well as 
the depression of the freezing point and elevation of the boiling point of a solvent by 
the addition of solute. 

25-1. We Use a Raoult's Law Standard State for the Solvent and a 
Henry's Law Standard State for the Solute for Solutions of Solids 
Dissolved in Liquids 

In Section 24-8, we considered solutions in which one of the components is only 
sparingly soluble in the other. In cases such as these, we use the terms solute for the 
sparingly soluble component and solvent for the component in excess. We customarily 
denote solvent quantities by a subscript 1 and solute quantities by a subscript 2. The 
activities we defined for the solvent and solute are such that a, ~ Xl as XI ~ 1 and 
a2 ~ x 2 as x 2 ~ O. Recall that a l is defined with respect to a Raoult's law standard 
state (Equation 24.39) 

PI 
a ==-

1 P* 
I 

(Raoult's law standard state) (25.1 ) 
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and that a2 is defined with respect to a Henry's law standard state (Equation 24.43) 

p,,! 
a == -

2x k 
H,x 

(Henry's law standard state) (25.2) 

where the subscript x emphasizes that a2x and kH,x are based on a mole fraction scale 
(P2 == kH,xX2)· Even if the solute does not have a measurable vapor pressure, defining the 
activity by Equation 25.2 is nevertheless convenient because the ratio is still meaningful; 

even though P2 and kH,2 may be exceedingly small, the ratio P
2

/ k H.
2 

is finite. 
Although we have defined the activities of the solvent and solute in terms of mole 

fractions, the use of mole fractions to express the concentration of a solute in a dilute 
solution is not numerically convenient. A more convenient unit is molality (m), which 
is defined as the number of moles of solute per 1000 grams of solvent. In an equation, 
we have 

n2 
111 == ------

1000 g sol vent 
(25.3) 

where n 2 is the number of moles of solute (subscript 2). Note that the units of molality 
are mol·kg- I. We say that a solution containing 2.00 moles of NaCI in 1.00 kg of water 
is 2.00 molal, or that it is a 2.00 mol· kg-I NaCI(aq) solution. The relation between the 
mole fraction of solute (x

2
) and molality (m) is 

m 

1000 g'kg I 
-----+m 

M) 

(25.4) 

where M) is the molar mass (g·mol- l
) of the solvent. The term 1000 g.kg-) / M) is 

the number of moles of solvent (n I) in 1000 g of solvent and m, by definition, is the 
number of moles of solute in 1000 g of solvent. In the case of water, 1000 g,kg-) / M) 

is equal to 55,506 mol· kg -I , so Equation 25.4 becomes 

m 
x == --------

2 55.506 mol·kg- ' + m 
(25,5) 

Note that x
2 

and m are directly proportional to each other if m « 55.506 mol, kg ), 
which is the case for dilute solutions. 

EXAMPLE 25-1 
Calculate the mole fraction of a 0.200 mol· kg- 1 Cl2H2201 I (aq) solution. 

SOL UTI 0 N: The solution contains 0.200 moles of sucrose per 1000.0 g of water. 

The mole fraction of sucrose is 

0.200 mol -----..:-::---:::-------- == 0.000359 
1000.0 g 

-----1 + 0.200 mol 
18.02 g·mol-



25-1. Raoult's and Henry's Standard State La\vs 

We define the solute activity in terms of molality by requiring that 

a ---+) In as m ~) a 
2m 

(25.6) 

where the subscript In emphasizes that a7 is based on a molality scale. We can express 
_f71 

Henry's law in terms of the molality rather than the mole fraction by P2 == kH.m m, 

where once again the subscript m emphasizes that kH.
m 

is based on a molality scale. In 

terms of k
H

.
m

, the activity of the solute is defined by 

P') 
a == "-

2m k 
H,m 

(25.7) 

Another common concentration unit is molarity (c), which is the number of moles 

of solute per 1000 mL of solution. In an equation, 

n
2 c== -------------

1000 mL solution 
(25.8) 

Note that molarity has units of mol· L -I. We say that a solution containing 2.00 moles 

of NaCI in 1.00 liter of solution is a 2.00-molar solution, or that it is a 2.00 mol· L -I 

N aCl( aq) solution. 

We define the solute activity in terms of molarity by requiring that 

a
2e 

----+) C as c ) a (25.9) 

where the subscript c emphasizes that a2e is based on a molarity scale. We can express 

Henry's law in terms of the molarity rather than the mole fraction of solute by P2 == 

kH,cc, where once again the subscript c emphasizes that kH,c is based on a molarity 

scale. In terms of kH,e' the activity of the solute is defined by 

P, 
a ==_ .... 

2c k 
H.c 

(25.10) 

Converting from molarity to molality is easy if we know the density of the solution, 
which is available for many solutions in handbooks. For example, the density of a 
2.450 mol· L -1 aqueous sucrose solution at 20C C is 1.3103 g. mL 1. Thus, there are 

838.6 g of sucrose in 1000 mL of solution, which has a total mass of 1310.3 g. Of 
these 1310.3 g, 838.6 g are due to sucrose, so 1310.3 g - 838.6 g == 471.7 g are due 
to water. The molality then is given by 

2.450 mol sucrose 1000 g H ° 
In == x ____ 2_ == 5.194 mol.kg 1 

471.7 g H20 kg H20 

EXAMPLE 25-2 
The density (in g. mL -I) of an aqueous sucrose solution can be expressed as 

p/g·mL -1 = 0.9982 + (0.1160 kg.mol-')m - (0.0156 kg2 'mol-2 )n1 2 

o < 111 < 6 mol· kg I 

1013 



1014 Chapter 25 / Solutions II: Solid-Liquid Solutions 

Calculate the molarity of a 2.00-molal aqueous sucrose solution. 

SOL UTI 0 N: A 2.00-molal aqueous sucrose solution contains 2.00 moles (684.6 g) 

of sucrose per 1000 g of H20, or 2.00 moles of sucrose in 1684.6 g of solution. The 
density of the solution is given by 

p/g.mL- ' == 0.9982 + (0.1160 kg.mol- I )(2.00 mol· kg-I ) 

- (0.0156 kg2 ·mol-2)(4.00 mof·kg-2
) 

+ (0.0011 kg3
. mol J) (8.00 mol3

. kg-3
) 

== 1.177 

so the volume of the solution is 

mass v == --­
density 

1684.6 g == 1432 mL 
1.177 g.mL- 1 

Therefore, the molarity of the solution is 

2.00 mol sucrose I 
c == == 1. 40 mol· L -

1.432 L 

Problem 25-5 asks you to derive a general relation between c and n1. 

EXAMPLE 25-3 
Given the density (p) of the solution in g. mL -I, derive a general relation between x

2 

and c. 

SOL UTI 0 N: Consider exactly a one liter sample of the solution. In this case, C == n
2

, 

the number of moles of solute in the one-liter sample. The mass of the solution is 
given by 

mass of the solution per liter == (1000 mL·L-I)p 

so the mass of the solvent is 

mass of the solvent per liter == mass of the solution - mass of the solute 

== (1000 mL·L -I)p - CM2 

where M 2 is the molar mass (g. moll) of the solute. Therefore, n" the number of 

moles of sol vent, is 

so 

( 1 000 mL· L -I ) P - c M 2 
n == ---------

1 

112 
X == ---

2 111 + n 2 

c 

( 1000 mL· L -I ) P - c M, ---------- + C 

M, 

(25.11) 



25-2. The Activity of a Nonvolati Ie Sol ute 

Table 25.1 summarizes the equations for the activities we have defined for the var­
ious concentration scales. In each case, the activity coefficient y is defined by dividing 
the activity by the appropriate concentration. Thus, for example, Ym = a2m / m. Prob­
lem 25-12 asks you to derive a relation between the various solute activity coefficients 
in Table 25.1. 

25-2. The Activity of a Nonvolatile Solute Can Be Obtained from the 
Vapor Pressure of the Solvent 

The equations for the solute activities in Table 25.1 are applicable to nonvolatile as 
well as volatile solutes. The vapor pressure of a nonvolatile solute is so low, however, 
that these equations are not practical to use. Fortunately, the Gibbs-Duhem equa­
tion provides us with a way to determine the activity of a nonvolatile solute from a 
measurement of the activity of the solvent. We will illustrate this procedure using an 

TAB l E 25.1 
A summary of the equations for the activities used for the various concentration scales for 
dilute solutions. 

Solvent-Raoult's law standard state 

PI 
a ==-

1 P* 
1 

a l y==-
1 X 

I 

Solute-Henry's law standard state 

Mole fraction scale 

P2 
a ==-

2x k 
H.x 

a 
2x y? ==-

_x X 
2 

Molality scale 

P2 
a ==--

2m k 
H.m 

a 
y.., == ~ 
~m m 

Molarity scale 

P2 a ==-
2c k 

Kc 

a2e 
Y2e == -

c 

(Raoult's law) 

(Henry's law) 

a; ~ m as In ~ 0 
.. 111 

(Henry's law) 

(Henry's law) 
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aqueous solution of sucrose. According to a Raoult's law standard state, the activity 

of the water is given by PI / Pt. Now let's consider a dilute solution, in which case 
a I = Xl' We now want to relate a

l 
to the molality of the solute, m. For a dilute solution, 

m « 55.506 mol·kg- I, so we can neglect m compared with 55.506 mol. kg-I in the 

denominator of Equation 25.5 and write 

m 
X ~-------

2 55.506 mol.kg ] 

Therefore, for small concentrations, 

(25.12) 

where we have used the fact that In(1 - x
2

) ~ -x
2 

for small values of x
2

• 

Table 25.2 and Figure 25.1 give experimental data for the vapor pressure of water 

in equilibrium with an aqueous sucrose solution at 25°C as a function of molality and 

mole fraction, respectively. The equilibrium vapor pressure of pure water at 25°C is 

23.756 torr, so a I = PI / Pt = p] /23.756 is given in the third column of Table 25.2. 
Equation 25.12 relates a] to the molality m for only a dilute solution. For example, 

Table 25.2 shows that a l = 0.93276 at 3.00 molal, whereas Equation 25.12 gives 
In a) = -0.054048, or a) = 0.9474. To account for this discrepancy, we now define a 
quantity 1, called the osmotic coefficient, by 

m¢ 
In a = - -------

I 55.506 mol.kg- l 
(25.13) 

Note that ¢ = 1 if the solution behaves as an ideal dilute solution. Thus, the deviation 

of ¢ from unity is a measure of the non ideality of the solution. 

FIGURE 25.1 

24 

;.... 
;.... 22 o 

1 .00 0.95 0.90 

The vapor pressure of water in equilibrium with an aqueous sucrose solution at 25°C plotted 
against the mole fraction of water. Note that Raoult's law (the straight line in the figure) holds 
from x = 1.00 to about 0.97, but that deviations occur at lower values of x t . 

water wa er 
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TAB L E 25.2 
The vapor pressure of water (PI) in equilibrium with an aqueous sucrose solution at 
25°C as a function of molality (m). Additional data are the activity of the water (a I)' 
the osmotic coefficient (¢), and the activity coefficient (Y2m) of the sucrose. 

m/mol.kg I PI/torr a l Y2m In Y 2m 

0.00 23.756 1.00000 1.0000 1.000 0.0000 

0.10 23.713 0.99819 1.0056 1.017 0.0169 

0.20 23.669 0.99634 1.0176 1.034 0.0334 

0.30 23.625 0.99448 1.0241 1.051 0.0497 

0.40 23.580 0.99258 1.0335 1.068 0.0658 

0.50 23.534 0.99067 1.0406 1.085 0.0816 

0.60 23.488 0.98872 1.0494 1.105 0.0998 

0.70 23.441 0.98672 1.0601 1.125 0.1178 

0.80 23.393 0.98472 1.0683 1.144 0.1345 

0.90 23.344 0.98267 1.0782 1.165 0.1527 

l.00 23.295 0.98059 1.0880 1.185 0.1723 

1.20 23.194 0.97634 1.1075 1.233 0.2095 

1.40 23.089 0.97193 1.1288 1.283 0.2492 

1.60 22.982 0.96740 1.1498 1.335 0.2889 

1.80 22.872 0.96280 1.1690 1.387 0.3271 

2.00 22.760 0.95807 1.1888 1.442 0.3660 

2.50 22.466 0.94569 1.2398 1.590 0.4637 

3.00 22.159 0.93276 1.2879 1.751 0.5602 

3.50 21.840 0.91933 1.3339 1.924 0.6544 

4.00 21.515 0.90567 1.3749 2.101 0.7424 

4.50 21.183 0.89170 1.4139 2.310 0.8372 

5.00 20.848 0.87760 1.4494 2.481 0.9087 

5.50 20.511 0.86340 1.4823 2.680 0.9858 

6.00 20.176 0.84930 1.5111 3.878 1.3553 

EXAMPLE 25-4 
Using the data in Table 25.2, calculate the value of ¢ at 1.00 mol.kg- I

. 

SOL UTI 0 N: We simply use Equation 25.13 and find that 

(55.506 mol· kg I) In(0.98059) 
¢ == - == 1.0880 

1.00mo1.kg I 

in agreement with the entry in Table 25.2. 
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1.4 

1.2 

1.0~--~----~----~----~----~--~ 
0.0 2.0 4.0 6.0 

m / mol.kg- l 

FIG U R E 25.2 
The osmotic coefficient (¢) of an aqueous sucrose solution at 25°C plotted against the molality 
(m). The magnitutde of the deviation of the value of ¢ from unity is a measure of the nonideality 
of the solution. 

Figure 25.2 shows ¢ for an aqueous sucrose solution at 25°C plotted against m. 
Note that the solution becomes increasingly nonideal as m increases. 

The fifth column in Table 25.2 gives the activity coefficient of the sucrose calculated 
from the activity of the water, or from the osmotic coefficient, by means of the Gibbs­

Duhem equation, 

In terms of molality, m, n I == 55.506 mol and n
2 

== m, so the Gibbs-Duhem equation 
becomes 

(55.506 mol· kg-I)d In a
l 
+ md In a2 == 0 (25.14) 

Using Equation 25.13, we see that (55.506 mol·kg l)dlna} == -d(m¢). If we substi­
tute this result and a2m == Y2m m (Table 25.1) into Equation 25.14, we obtain 

d(m¢) == md In(y2m m) 

or 

md¢ + ¢dm == m(d In Y2m + d lnm) 

We can rewrite this equation as 

¢-1 
din Y2 == d¢ + dm 

m m 

We now integrate from m == 0 (where Y2m == ¢ == 1) to arbitrary m to get 

1m (¢ -1) 
In Y2m == ¢ - 1 + 0 m' dm' (25.15) 



25-2. The Activity of a Nonvolatile Solute 

Equation 25.15 allows us to calculate the activity coefficient of the solute from the data 
on the vapor pressure of the solvent. The vapor pressure of the solvent gives us the 
activity of the solvent from Equation 25.1; then the osmotic coefficient ¢ is calculated 
from Equation 25.13, and In Y2m is determined from Equation 25.15. 

The data for ¢ in Table 25.2 can be fit with a polynomial in the molality. If we 
choose (arbitrarily) a 5th-degree polynomial, we find that (Problem 25-18) 

¢ = 1.00000 + (0.07349 kg·mol-l)m + (0.019783 kg2 ·mol-2)m2 

- (0.005688 kg3 ·mol-3
)n1 3 + (6.036 x 10-4 kg4 ·mol-4)m4 

o < m < 6 mol.kg- 1 

We can substitute this expression into Equation 25.15 to obtain In Y
2m

. 

EXAMPLE 25-5 
Use the above polynomial fit for ¢ and Equation 25.15 to calculate the value of Y2m 

for a 1.00-molal aqueous sucrose solution. 

SOL UTI 0 N: First, we need to evaluate the integral in Equation 25.15 (neglecting 
to write the units in the coefficients of the powers of m): 

so 

[ (¢ : 1 ) dm = [[0.07349 + 0.OI9783m - 0.005688m2 

+ 6.036 x 10-4m 3 
- 2.517 x 10-5m 4 ]dm 

0.019783 0.005688 
= 0.07349 + --2- 3 

6.036 X 10-4 

+ 4 
== 0.08163 

2.517 X 10-5 

5 

In Y2m = ¢ -1 + l' (¢ : I ) dm 

= 0.08816 + 0.08163 = 0.1698 

or Y2m = 1.185, in agreement with the entry in Table 25.2. 

The values of In Y2m and Y2m given in Table 25.2 have been calculated using the 
procedure in Example 25-5. Figure 25.3 shows In Y

2m 
plotted against m for an aqueous 

sucrose solution at 25°C. 
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1.2 -

0.8 

0.4 -

o.o~----------~--------~----------~ 
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m / mol.kg- 1 

Fie U R E 25.3 
The logarithm of the activity coefficient (In y, ) of sucrose in an aqueous sucrose solution at 

... In 

25°C plotted against the molality (m). 

25-3. Colligative Properties Are Solution Properties That Depend 
Only Upon the Number Density of Solute Particles 

A number of solution properties, called colligative properties, depend, at least in dilute 
solution, upon only the number of solute particles, and not upon their kind. Colligative 
properties include the lowering of the vapor pressure of a solvent by the addition of 
a solute, the elevation of the boiling point of a solution by a nonvolatile solute, the 
depression of the freezing point of a solution by a solute, and osmotic pressure. We 
will discuss only freezing-point depression and osmotic pressure. 

At the freezing point of a solution, solid solvent is in equilibrium with the solvent 
in solution. The thermodynamic condition of this equilibrium is that 

S (T ) == sln(T,) 1-11 . fus 1-11 fus 

where as usual the subscript 1 denotes solvent and T
fus 

is the freezing point of the 
solution. We use Equation 24.35 for 1-1, to obtain 

We have written 1-111 for f.l~ simply to compare it with 1-1~. Solving for In a" we get 

(25.16) 

Now differentiate with respect to temperature and use the Gibbs-Helmholtz equation 
(Example 24-1), 



25-3. Colligative Properties Are Solution Properties 

to obtain 

(25.17) 

-I -s -
where we have used the fact that HI - H ~ == ~fus H for the pure solvent. If we integrate 
Equation 25.17 from pure solvent, where a l == 1, T == Tf: s ' to a solution with arbitrary 

values of at and T fus ' we obtain 

1 Trus ~, H 
In a == tus dT 

1 T* RT2 
fus 

(25.18) 

Equation 25.18 can be used to determine the activity of the solvent in a solution 

(Problem 25-20). 
You may have calculated freezing-point depressions in general chemistry using 

the formula 

~Tf' == Kt,m us 
(25.19) 

where K
f 

is a constant, called the freezing-point depression constant, whose value de­

pends upon the solvent. We can derive Equation 25.19 from Equation 25.18 by making a 

few approximations appropriate to dilute solutions. If the solution is sufficiently dilute, 

then Ina} == lnxi == In(l - x2 ) ~ -x2 , and if we assume that ~fusH is independent of 

temperature over the temperature range (Tfus ' Tf: s)' we obtain 

~t' H (Tf' - Tf* ) == ~ ; T,* us 
fus fus 

(25.20) 

Because x2 and ~fus H are positive quantities, we see immediately that T
fus 

- Tf : s < 0, 
or that T

fus 
< ~':s. Thus, we find that the addition of a solute will lower the freezing 

point of a solution. We can express x 2 in terms of molality by using Equation 25.4, 

M1m 
x - -------------~ ---------

2 - 1000 g.kg 1 1000 g.kg 1 

----+m 
M

J 

m 
(25.21) 

for small values of m (dilute solution). Furthermore, because Tf : s - T
fus 

is usually only 

a few degrees (dilute solution once again), we can replace T
fus 

in the denominator of 

Equation 25.20 by Tf : s to a good approximation to get finally (Problem 25-23) 

~T, == Tf* - T, == Kfm tus us ius (25.22) 
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where 

(25.23) 

We can calculate the value of K
f 

for water. 

K == (18.02 g.mol- 1
) (8.314 J·K- 1 .mol- I )(273.2 K)2 

flOOD g.kg- 1 6.01 kJ·mol- 1 

== 1.86 K· kg.mol 1 

Equation 25.22 tells us that the freezing point of a 0.20-molal solution of sucrose in 
water is -(1.86 K· kg.mol- l

) (0.20 mol· kg-I) == -0.37 K. 

EXAMPLE 25-6 
Calculate the value of K

f 
for cyclohexane, whose freezing point is 279.6 K and molar 

enthalpy of fusion is 2.68 kJ ·mol- l 
. 

SOL UTI 0 N: ~e use Equation 25-23 with MI == 84.16 g·mol- l and the above values 

of Tf: s and L\ fus H . 

K == (84.16 g.mol- I
) (8.314 J·K- 1·mol- I )(279.6 K)2 

flOOD g.kg- ' 2680 J·mol- 1 

== 20.4 K·kg·mol- l 

Thus, the freezing point of a 0.20-molal solution of hexane in cyclohexane is 4.1 K 

lower than the freezing point of pure cyclohexane, or T
fus 

== 275.5 K. 

We can derive an expression for the boiling-point elevation of a solution containing 
a nonvolatile solute. The analog of Equation 25.22 is (Problem 25-25) 

(25.24) 

where the boiling-point elevation constant is given by 

(25.25) 

The value of Kb for water is only 0.512 K.kg·mol- l
, so the boiling point elevation is 

a rather small effect for aqueous solutions. 



25-4. Osmotic Pressure Can Be Used to Determine the Molecular 
Masses of Polymers 

Figure 25.4 illustrates the development of osmotic pressure. In the initial state, we have 
pure water on the left and an aqueous sucrose solution on the right. The two liquids are 
separated by a membrane containing pores that allow water molecules but not solute 
molecules to pass through. Such a membrane is called a semipermeable membrane. 
(Many biological cells are surrounded by membranes semipermeable to water.) The 
levels of the two liquids in Figure 25.4 are initially the same, but water will pass 
through the semipermeable membrane until the chemical potentials of the water on the 
two sides of the membrane are equal. This process results in the situation shown in 
the equilibrium state, where the two liquid levels are no longer equal. The hydrostatic 
pressure head that is built up is called osmotic pressure. 

Because the water is free to pass through the semipermeable membrane, the chem­
ical potential of the water must be the same on the two sides of the membrane at 
equilibrium. In other words, the chemical potential of the pure water at a pressure P 
must equal the chemical potential of the water in the solution at a pressure P + nand 
an activity a l . In an equation, 

f.L~(T , P) = f.L ~ln(T, P + n, a l ) 

= f.L~ (T , P + n) + RT In a l 

Diluted 
ucro ' e 
olulion 

uc rose 
. o lu tion 

Pure 
water 

f=\ - - - - - -

Ri g id sem iperm eable 
membrane 

Initial tate qui l ibrium ta te 

FIG U R E 25.4 

Hyd r stati c 
pres . ure 
head = n 

(25.26) 

Passage of water through a rigid, semipermeable membrane separating pure water from an 
aqueous sucrose solution. The water passes through the membrane until the chemical potential 
of the water in the aqueous sucrose solution equals that of the pure water. The chemical 
potential of water in the sucrose solution increases as the hydrostatic pressure above the solution 
. 
mcreases. 
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where GI == PI / Pt. We can rewrite Equation 25.26. as 

J-l~(T, P + n) - IL~(T, P) + RT In at == 0 (25.27) 

The first two terms in Equation 25.27 are the difference in the chemical potential of 
the pure solvent at two different pressures. Equation 23.8 

(23.8) 

-* where VI is the molar volume of the pure solvent, tells us how the chemical potential 

varies with pressure. We can use Equation 23.8 to evaluate J-l~(T, P + n) - J-l~(T, P) 
by integrating both sides from P to P + n to get 

(25.28) 

If we substitute Equation 25.28 into Equation 25.27, we obtain 

rp
+

n 

Jp V*dP' + RT lna l = 0 (25.29) 

Assuming VI * does not vary with applied pressure, we can write Equation 25.29 as 

-* nVt + RT lna l == 0 (25.30) 

Furthermore, if the solution is dilute, then a l ~ x I == 1 - x2 ' with x 2 small. Therefore, 
we can write In a

l 
as In(l - x

2
) ~ -x2 , so that Equation 25.30 becomes 

-* nV1 == RTx2 

Furthermore, because x2 is small, n 2 « n t and 

Substitute this into the above equation to get 

where we have replaced n I VI * by the total volume of the solution, V (dilute solution), 

The above equation is usually written as 

n == cRT (25.31) 



25-5. Solutions of Electrolytes Are Nonideal at Relatively Low Concentrations 

where c is the molarity, n
2

/ V, of the solution. Equation 25.31 is called the van't Hoff 
equation for osmotic pressure. Using this equation, we calculate the osmotic pressure 
of a 0.1 OO-molar aqueous solution of sucrose at 20°C to be 

n == (0.100 mol·L -')(0.08206 L·atm·K-' ·mol-')(293.2 K) 

== 2.40 atm 

Thus, we see that osmotic pressure is a large effect. Because of this, osmotic pressure 
can be used to determine molecular masses of solutes, particularly solutes with large 
molecular masses such as polymers and proteins. 

EXAMPLE 25-7 
It is found that 2.20 g of a certain polymer dissolved in enough water to make 300 mL 
of solution has an osmotic pressure of7.45 torr at 20oe. Determine the molecular mass 
of the polymer. 

SOL UTI 0 N: The molarity of the solution is given by 

IT 7.45 torr/760 torr.atm I 
c == - == --------------

RT (0.08206 L·atm·K I ·mol- I )(293.2 K) 

== 4.07 X 10-4 mol·L- ' 

Therefore, there are 4.07 x 10-4 moles of polymer per liter of solution, or 
(0.300) (4.07 x 10-4

) == 1.22 x 10-4 moles per 300 mL of solution. Thus, we find that 
1.22 x 10-4 moles corresponds to 2.20 g, or that the molecular mass is 18,000. 

If a pressure in excess of 26 atm is applied to seawater at 15°C, the chemical 
potential of the water in the seawater will exceed that of pure water. Consequently, 
pure water can be obtained from seawater by using a rigid semipermeable membrane 
and an applied pressure in excess of the osmotic pressure of 26 atm. This process is 
known as reverse osmosis. Reverse osmosis units are commercially available and are 
used to obtain fresh water from salt water using a variety of semipermeable membranes, 
the most common of which is cellulose acetate. 

25-5. Solutions of Electrolytes Are Nonideal at Relatively 
Low Concentrations 

When sodium chloride dissolves in water, the solution contains sodium ions and chlo­
ride ions and essentially no undissociated sodium chloride. The ions interact with 
each other through a coulombic potential, which varies as 1/ r. We should compare 
this interaction with the one between neutral solute molecules (nonelectrolytes) such 
as sucrose, where the interaction varies as something like 1/ r6. Thus, the interaction 
between ions in solution is effective over a much greater distance than the interaction 
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between neutral solute particles, so solutions of electrolytes deviate from ideal behavior 
more strongly and at lower concentrations than do solutions of nonelectrolytes. Fig­
ure 25.5 shows In Y2m for sucrose, sodium chloride, and calcium chloride plotted versus 
molality. Note that CaCl2 (aq) appears to behave more nonideally than NaCI(aq), which 
in tum behaves more nonideally than sucrose. The charge of +2 on the calcium ion 
leads to a stronger coulombic interaction and hence a stronger deviation from ideality 
than for NaCl. At 0.100 mol· kg-I, the activity coefficient of sucrose is 0.998, whereas 
that ofCaCI2 (aq) is 0.518 and that of NaCI(aq) is 0.778. 

Before we discuss the determination of activity coefficients for electrolytes, we 
must first introduce notation needed to describe the thermodynamic properties of 
solutions of electrolytes. Consider the general salt C A ,which dissociates into v+ 

v + v 

cations and v_anions per formula unit as in 

where v +z+ + v _z_ == 0 by electroneutrality. For example, v + == 1 and v _ == 2 for 
CaCl2 and v + == 2 and v == 1 for Na2SO 4' Therefore, CaCl2 is called a 1-2 electrolyte 
and N a

2 
SO 4 is called a 2-1 electrolyte. We write the chemical potential of the salt in 

terms of the chemical potentials of its constituent ions according to 

(25.32) 

where 

(25.33) 

3.0 

2.0 

sucrose 

0.0 
NaCI 

-1.0~--~----~----~----~----~----~ 
0.0 2.0 4.0 6.0 

FIG U R E 25.5 
The logarithm of the activity coefficient (In Y2m) of aqueous solutions of sucrose, sodium 
chloride, and calcium chloride plotted against molality (m.) at 25°C. Note that the electrolyte 
solutions deviate from ideality (In Y2m == 0) much more strongly than does sucrose at small 
concentrations. 
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and 

j).,+ = f1~ + RT In a+ 
(25.34) 

j)., _ = j)., 0 + R T In a 

The superscript zeros here represent the chosen standard state, which we can leave 
unspecified at this point but is usually taken to be the solute or Henry's law standard 
state. If we substitute Equations 25.34 into Equation 25.32 and equate the result to 
Equation 25.33, we obtain 

where we have used the relation j).,~ = v +j).,~ + v _j).,~ in analogy with Equation 25.32. 
We can rewrite the above equation as 

(25.35) 

For many of the formulas that occur in the thermodynamics of solutions of elec­
trolytes, it is convenient to define a quantity a±, called the mean ionic activity, by 

(25.36) 

where v = v + + v . Note that a± is raised to the same power as the sum of the exponents 
in the last term in Equation 25.36, For example, we write 

and 

a = a±3 = a a2 
CaC1

2 
+ -

Even though we cannot determine activities of single ions, we can still define single-ion 
activity coefficients by 

where m + and m _ are the molalities of the individual ions, which are given by 
m+ = v+m and m = v_m. If we substitute these expressions for a+ and a into 
Equation 25.36, we get 

(25.37) 

In analogy with the definition of the mean ionic activity a± in Equation 25.36, we 
define a mean ionic molality m± by 

v v 
m IJ +m -

± =m+ (25.38) 
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and a mean ionic activity coefficient y ± by 

(25.39) 

Again, notice that the sum of the exponents on both sides of Equations 25.38 and 25.39 
are the same. Given these definitions, we can now write Equation 25.37 as 

(25.40) 

EXAMPLE 25-8 
Write out Equation 25.40 explicitly for CaCI

2
• 

SOL UTI 0 N: In this case, lJ + = 1 and lJ = 2. Furthermore, according to the equa­
tion 

H2°(l) 
CaCl

2 
(s) ~ Ca2+ (aq) + 2 CI- (aq) 

we see that m+ = nz and m_ = 2m. Thus, 

The relations between a2 , m, and y ± for other types of electrolytes are given in 
Table 25.3. 

TAB L E 25.3 
The relations between the activity of a strong electrolyte, its molality, and its mean ionic 
activity coefficient for various types of strong electrolytes. 

Type 

1-1 

KCI(aq) 

1-2 
C CI ( ) 2 3 3 3 ( ) ( )2 3 () (2 )2 3 4 3 3 a 2 aq a2 = a+Q_ = Q± = m±y± = m+ m_ y± = m m y± = m y± 

1-3 

LaCI3 (aq) a2 = a+a~ = a! = m~Y1 = (m+)(m_)3y~ = (m)(3m)3y~ == 27m4y~ 
2-1 

Na2S04 (aq) Q2 = a!a_ = Q! = (m+)2(m )y~ = (2m)2(m)Yl == 41n
3
yl 

2-2 

Z SO ( ) 2 2 2 ( ) ( ) 2 2 2 n 4 aq a2 = Q+Q_ = Q± = nl±Y± = m+ m y± = m y± 

3-1 
N F (CN) ( ) 3 4 4 4 ( )3 ( ) 4 (3)3 ( ) 4 27 4 4 a3 e 6 aq Q2 == a+Q_ = a± = m±y± = m+ m_ y± = m m y± = m y± 
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Mean ionic activity coefficients can be determined experimentally by the same 
methods used for the activity coefficients of nonelectrolytes. We will illustrate their 
determination from the measurement of the vapor pressure of the solvent as we did 
for an aqueous sucrose solution in Section 25-2. In analogy with Equation 25.13, we 
define an osmotic coefficient for aqueous electrolyte solutions by 

vm¢ 
In a == - -------

1 55.506 mol.kg I 
(25.41) 

Notice that this equation differs from Equation 25.13 by the inclusion of a factor of v 
here. Equation 25.41 reduces to Equation 25.13 for nonelectrolyte solutions because 
v == 1 in that case. Problem 25-34 asks you to show that with this factor of v, ¢ ---+ 1 
as m ---+ 0 for solutions of electrolytes or nonelectrolytes. Starting with Equation 25.41 
and the Gibbs-Duhem equation, you can derive the analog of Equation 25.15 straight­
forwardly: 

[ffl(¢_l) , 
In y ± == ¢ - 1 + 10 m' dm (25.42) 

Table 25.4 gives the vapor pressure of an aqueous solution of NaCI as a function 
of molality. Also included in the table are activities of the water (calculated from 

TAB l E 25.4 
The vapor pressure (PH 0)' activity of the water (aw )' osmotic coefficient (¢), 

and logarithm of the m~an ionic activity coefficient (In y ±) of the NaCl in an 
aqueous solution of NaCl at 25°C as a function of molality (nl). 

m/mol.kg- I PH o/torr a In y± 
2 w 

0.000 23.76 1.0000 1.0000 0.0000 

0.200 23.60 0.9934 0.9245 -0.3079 

0.400 23.44 0.9868 0.9205 -0.3685 

0.600 23.29 0.9802 0.9227 -0.3977 

0.800 23.13 0.9736 0.9285 -0.4143 

1.000 22.97 0.9669 0.9353 -0.4234 

1.400 22.64 0.9532 0.9502 -0.4267 

1.800 22.30 0.9389 0.9721 -0.4166 

2.200 21.96 0.9242 0.9944 -0.3972 

2.600 21.59 0.9089 1.0196 -0.3709 

3.000 21.22 0.8932 1.0449 -0.3396 

3.400 20.83 0.8769 1.0723 -0.3046 

3.800 20.43 0.8600 1.1015 -0.2666 

4.400 19.81 0.8339 1.1457 -0.2053 

5.000 19.17 0.8068 1.1916 -0.1389 
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a l == PI / Pt), osmotic coefficients (calculated from Equation 25.41), and mean ionic 
activity coefficients (calculated from Equation 25.42). 

For sucrose in Section 25-2, we curve fit ¢ to a polynomial in m and then used 
that polynomial to calculate the value of Y2m' As we will see in Section 25-6, the 
osmotic coefficient of electrolytes is better described by an expression of the form (a 
polynomial in m 1/2) 

¢ == 1 + am 1/2 + bm + cm3/2 + ... 

The osmotic coefficient data for sodium chloride given in Table 25.4 can be fit by 

¢ == 1 - (0.3920 kg l /
2 .mol 1/2)ml/2 + (0.7780 kg.mol-I)m 

- (0.8374 kg3
/
2 ·mol 3/2)m 3/2 + (0.5326 kg2 .mol-2)m2 

- (0.1673 kg5/2 ·mol-5
/
2)m 5

/
2 + (0.0206 kg3 ·mol-3)m3 

o < m < 5.0 mol.kg- 1 (25.43) 

This expression for ¢ along with Equation 25.42 were used to calculate the values of 
In Y ± given in Table 25.4. 

EXAMPLE 25-9 
Verify the entry for In y ± at 1.00 molal in Table 25.4. 

SOL UTI 0 N: We first write (neglecting the units in the coefficients of the powers of 
m in Equation 25.43) 

[In (¢ 1) 2m
3

/
2 

Jo :;, dm' = - (0. 3920)(2m 1/2) + 0.7780m - (0.8374) 3 

m 2 2mS/
2 m 3 

+ (0.5326) 2 - (0.1673) 5 + (0.0206) 3 

and add this result to ¢ - 1 to obtain 

5m3/ 2 

In y± == -(0.3920)(3m 1/2) + (0.7780)(2m) - (0.8374) 3 

3m2 7m S
/
2 4m3 

+ (0.5326) 2 - (0.1673) 5 + (0.0206) 3 

Thus, at 1.00 molal, In y ± == -0.4234, or y ± == 0.655. 

The formulas we derived in Section 25-3 for the colligative properties of solutions 
of nonelectrolytes take on a slightly different form for solutions of electrolytes. The 



25-6. The Debye-Huckel Theory 

difference lies in Equation 25.21 for x
2

• For a strong electrolyte that dissociates into v + 

cations and v_anions per formula unit, the mole fraction of solute particles is given by 

vmM} 
x - -------------- ~ --------

2 - 1000 g. kg -1 1000 g. kg I 

------- + vm 
Ml 

vm 
(25.44) 

Note that the right side here contains a factor of v. If this expression for x
2 

is carried 
through in derivations of the formulas for the colligative effects, we obtain 

/). Tt, = v Kfm us 

/).T = vKbm yap 

and 

n = veRT 

EXAMPLE 25-10 

(25.45) 

(25.46) 

(25.47) 

A 0.050-molal aqueous solution of K3Fe(CN)6 has a freezing point of -0.36°C. How 
many ions are formed per formula unit of K

3
Fe(CN)6? 

SOL UTI 0 N: We can solve Equation 25.45 for v to obtain 

_____ 0_.3_6_
0

C _____ == 3.9 
(1.86°C·kg·mol 1)(0.050 mol·kg- I

) 

Thus, the dissolution process of K
3
Fe(CN)6 can be written as 

25-6. The Debye-Huckel Theory Gives an Exact Expression for In y± 
for Very Dilute Solutions 

In the previous section, we expressed the osmotic coefficient for solutions of electrolytes 
in the form ¢ = 1 + am 1/2 + bm + ... rather than as a simple polynomial in m as we 
did for sucrose in Section 25-2. The reason we did so is that in 1925, Peter Debye 
and Erich Huckel showed theoretically that at low concentrations, the logarithm of the 
activity coefficient of ion j is given by 

(25.48) 
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and that the logarithm of the mean ionic activity coefficient is given by (see Prob­
lems 25-50 through 25-58) 

(25.49) 

where q + == z+ e and q _ == Z e are the charges on the cations and anions, E r is the 
(unitless) relative permittivity of the solvent, and K is given by 

(25.50) 

where s is the number of ionic species and N. / V is the number density of species j . If 
} 

we convert N./ V to molarity, Equation 25.50 becomes 
} 

It is customary to define a quantity Ie' called the ionic strength, by 

1 s 

I == - '" z~c. c 2 ~ } } 
j=l 

(25.51) 

(25.52) 

where c. is the molarity of the j th ionic species, in which case (Problem 25-46) 
} 

(25.53) 

EXAMPLE 25-11 
First show that K has units of m -I and then show that In y ± in Equation 25.49 is 
unitIess, as it must be. 

SOLUTION: We start with Equation 25.50. Theunitsofqj areC,so areC2 ·s2 ·kg- l ·m-3
, 

kB are J·K- 1 == kg·m2 .s-2 .K- 1
, Tare K, and Nj/V are m-3

• Therefore, the units of 
K2 are 

or 

U sing Equation 25.49 for In y ±' 
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Equation 25.49 is called the Debye-Htickel limiting law because it is the exact 
form that In y ± takes on for all electrolyte solutions for sufficiently low concentrations. 
Just what is meant by "sufficiently low concentrations" depends upon the system. Note 
that In y ± goes as K in Equation 25.49, that K goes as ~.I /2 in Equation 25.53, and 
that Ic l

/
2 goes as C

I
/
2 in Equation 25.52. Consequently, In y ± varies as C

I
/
2

. This C
I
/
2 

dependence is typical for electrolyte solutions, so when we curve fit ¢ in Section 25-5, 
we fit it to a polynomial in C

1
/
2 (or m 1

/
2

) instead of c (or m). 
Most of the experimental data for In y ± are given in terms of molality rather than 

molarity. In Figure 25.6, we plot In y ± versus m 1/2 for a number of 1-1 electrolytes. 
Note that all the curves merge into a single straight line at small concentrations, in 
accord with the limiting law nature of Equation 25.49. At small concentrations where 
the limiting law is valid, the molality and molarity scales differ by only a multiplicative 
constant, so a linear plot in C

1
/
2 is also linear in m 1/2 (Problem 25-5). 

The quantity K in Equation 25.50 is a central quantity in the Debye-Huckel theory 
and has the following physical interpretation. Consider an ion with charge qi situated 
at the origin of a spherical coordinate system. According to Debye and Huckel (see 
also Problem 25-51), the net charge in a spherical shell of radius r and thickness dr 
surrounding this central ion is 

(25.54) 

If we integrate this expression from 0 to 00, we obtain 

This result simply says that the total charge surrounding an ion of charge qi is equal 
and of the opposite sign to qi. In other words, it expresses the electroneutrality of the 

FIG U R E 25.6 

] .0 

0.5 

~I 

~ 0.0 
...... 

0.5 
--'~ -........ ""'=::-- .-- ----- .... ~------ .... : ::::-- ---- -::-:-:-: --- - - -----------------------

LiCl 

NaCI 

KCI 
RbCl 

1.0~----~------~----~------~----~--
0.0 0.5 1 . a 1 .5 2.0 2.5 

II; / ]1/2 k 1/2 m - rno • g 

Values of In y ± versus m 1/2 for aqueous alkali halide solutions at 25°C. Note that even 
though the four curves are different, they all merge into one, the Debye-Hiickel limiting law 
(Equation 25.49) at small concentrations. 
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solution. Equation 25.54, which is plotted in Figure 25.7, shows that there is a diffuse 
shell of net charge of opposite sign surrounding any given ion in solution. We say that 
Equation 25.54 describes an ionic atmosphere about the central ion. Furthermore, the 
maximum in the curve in Figure 25.7 occurs at r == K 1, so we say that K -1 , which 
Example 25-11 shows has units of m, is a measure of the thickness of the ionic 
atmosphere. 

For a 1-1 electrolyte in aqueous solution at 25°C, a handy formula for K is 
(Problem 25-53) 

1 304 pm 
(25.55) 

K 

where c is the molarity of the solution. The thickness of the ionic atmosphere in a 0.010 
molar solution is approximately 3000 pm, or about 10 times the size of a typical ion. 

For an aqueous solution at 25°C, Equation 25.49 becomes (Problem 25-59) 

(25.56) 

According to Equation 25.52, Z. is related to the concentration, but the relation itself 
depends upon the type of electrolyte. For example, for a 1-1 electrolyte, z+ == 1, 
z_ == -1, c+ == c, and c_ == c, so I == c. For a 1-2 electrolyte such as CaCI2 , z+ == 2, 
z == -1, c + == c, and c _ == 2c, so Ie == i (4c + 2c) == 3c. Generally, Ie is equal to some 
numerical factor times c, where the value of the numerical factor depends upon the 
type of salt. Therefore, Equation 25.56 says that a plot of In y ± versus C

I
/
2 should be a 

straight line and that the slope of the line should depend upon the type of electrolyte. 
The slope will be -1.173 for a 1-1 electrolyte and -(1.173)(2)(3 1

/
2

) == -4.06 for 

FIG U R E 25.7 

0.4 

O.O~-----------------J----~~----------~ 

o 5 
1(r 

10 

A plot of the net charge in a spherical shell of radius r and thickness dr surrounding a central 
ion of charge qi' This plot illustrates the ionic atmosphere that surrounds each ion in solution. 
The maximum here corresponds to r = K -\ . 



25-7. The Mean Spherical Approximation 

a 1-2 electrolyte. Figure 25.8 shows a plot of In y± versus C
1
/
2 for NaCI(aq) and 

CaCl
2 
(aq). Notice that the plots are indeed linear for small concentrations and that 

deviations from linear behavior occur at higher concentrations [C 1
/
2 ~ 0.05 mol· L -I 

or c == 0.003 mol· L -I for CaCl
2 
(aq) and C I

/
2 ~ 0.15 mol· L -lor C == 0.02 mol· L -I for 

N aCI( aq) J. The slopes of the two linear portions are in the ratio of 4.06 to 1.17. 

25-7. The Mean Spherical Approximation Is an Extension of the 
Debye-Huckel Theory to Higher Concentrations 

The Debye-Htickel theory assumes that the ions are simply point ions (zero radii) 
and that they interact with a purely coulombic potential [U(r) == z+z e2 j47TEoErrJ. 
In addition, the solvent is considered a continuous medium with a uniform relative 
permittivity Er (78.54 for water at 25°C). Although the assumptions of point ions and 
a continuum solvent may seem crude, they are quite satisfactory when the ions are far 
apart from each other on the average, as they are in very dilute solutions. Consequently, 
the Debye-Htickel expression for In y ± given by Equation 25.49 is exact in the limit of 
small concentrations. There is no corresponding theory for solutions of nonelectrolytes 
because, being neutral species, nonelectrolyte molecules do not interact with each other 
to any significant extent until they approach each other relatively closely, where the 
solvent can hardly be assumed to be a continuous medium. 

Figure 25.8 emphasizes that the Debye-Htickel theory is a limiting law. It should 
not be considered a quantitative theory with which to calculate activity coefficients 
except at very low concentrations. Nevertheless, the Debye-Htickel theory has played 
an invaluable role as a strict limiting law that all electrolyte solutions obey. In addition, 
any theory that attempts to describe solutions at higher concentrations must reduce to 
Equation 25.49 for small concentrations. Many attempts have been made to construct 

0.0 

-0.2 

~l 
-0.4 

C -
-0.6 

0.0 0.1 0.2 0.3 0.4 0.5 

FIG U R E 25.8 
A plot of the logarithm of the mean ionic activity coefficient (In y ±) for NaCI(aq) and CaCl

2 
(aq) 

at 25°C versus C
I
/
2

• Note that both curves approach the Debye-Hiickellimiting law (the straight 
lines) as the molarity goes to zero. 
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theories for more concentrated electrolyte solutions, but most have met with only 
limited success. One early attempt is called the Extended Debye-Hiickel theory, in 
which Equation 25.49 is modified to be 

In = _1.173\z+z \(lc/mol·L -1)1/2 

y± 1 + Ujrnol.L -1)1/2 
(25.57) 

This expression becomes Equation 25.49 in the limit of small concentrations because 
1//2 becomes negligible compared with unity in the denominator of Equation 25.57 in 
this limit. 

EXAMPLE 25-12 
Use Equation 25.57 to calculate In y± for 0.050 molar LiCI(aq), and compare the result 
with that obtained from Equation 25.49. The accepted experimental value is -0.191. 

SOL UTI 0 N: For a 1-1 salt such as LiCI, Z. == C, so 

In y ± == -1.173(0.050) 1/2 == -0.262 

and 

1.173 (0.050) 1/2 
In y == - . == -0.214 

± 1 + (0.050) 1/2 

Although Equation 25.57 provides some improvement over the Debye-Htickellimiting 
law, it is not very accurate even at 0.050 molar. At 0.200 molar, Equation 25.57 gives 
-0.362 for In y ± versus the experimental value of -0.274. 

Another semiempirical expression for In y ± that has been widely used to fit exper­
imental data is 

(25.58) 

where C is a parameter whose value depends upon the electrolyte. Although Equa­
tion 25.58 can be used to fit experimental In y ± data up to one molar or so, C is still 
strictly an adjustable parameter. 

In the 1970s, significant advances were made in the theory of electrolyte solutions. 
Most of the work on these theories is based on a model called the primitive model, 
in which the ions are considered hard spheres with charges at their centers and the 
solvent is considered a continuous medium with a uniform relative permittivity. In 
spite of the obvious deficiencies of this model, it addresses the long-range coulombic 
interactions between the ions and their short-range repulsion. These turn out to be 
major considerations, and as we will see, the primitive model can give quite satisfactory 
agreement with experimental data over a fairly large concentration range. 



Problems 

Most of these theories that have been developed require numerical solutions to 
fairly complicated equations, but one is notable in that it provides analytic expressions 
for the various thermodynamic properties of electrolyte solutions. The name of this 
theory, the mean spherical approximation (MSA), derives from its original formulation, 
and the theory can be viewed as a Debye-Htickel theory in which the finite (nonzero) 
size of the ions is accounted for in a fairly rigorous manner. A central result of the 
mean spherical approximation is that 

(25.59) 

where In y~l is an electrostatic (coulombic) contribution to In y ± and In y HS is a hard­
sphere (finite-size) contribution. For solutions of I-I electrolytes, In y~l is given by 

x(1 + 2X)1/2 - X - x 2 

lny~l~ ----------~----
4npd3 (25.60) 

where p is the number density of charged particles, d is the sum of the radius of a 
cation and an anion, and x ~ Kd, where K is given by Equation 25.53. Although it is not 
obvious by casual inspection, Equation 25.59 reduces to the Debye-Htickel limiting 
law, Equation 25.49, in the limit of small concentrations (Problem 25-60). The hard 
sphere contribution to In y ± is given by 

where y ~ npd3 /6. 

9 ') 3:1 
4y - -y~ + -y-

In yHS ~ 4 8 

(1- ~y 
(25.61) 

In spite of the fact that Equations 25.60 and 25.61 are somewhat lengthy, they are 
easy to use because once d has been chosen, they give In y ± in terms of the molarity c. 
Figure 25.9 shows experimental values of In y± for NaCI(aq) at 25°C and In y± as 
calculated from Equation 25.59 with d ~ 320 pm. 

Given essentially one adjustable parameter (the sum of the ionic radii), the agree­
ment is seen to be quite good. We also show the results for the more commonly seen 
Equation 25.57 in Figure 25.9. 

Problems 
25-1. The density of a glycerol/water solution that is 40.0% glycerol by mass is 1.101 g. mL -I at 

20°C. Calculate the molality and the molarity of glycerol in the solution at 20°C. Calculate 
the molality at GOC. 

25-2. Concentrated sulfuric acid is sold as a solution that is 98.0% sulfuric acid and 2.0% water 

by mass. Given that the density is 1.84 g·mL -I, calculate the molarity of concentrated 

sulfuric acid. 
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FIGURE 25.9 

~I 
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-0.4 
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0.0 0.1 0.2 0.3 0.4 

A comparison of In y± from the mean spherical approximation (Equation 25.59) with 
experimental data for NaCI(aq) at 25°C. The line labelled EDH is the extended Debye-Hlickel 
theory result, Equation 25.57. The value of d, the sum of the radii of the cation and anion, is 
taken to be 320 pm. 

25-3. Concentrated phosphoric acid is sold as a solution that is 850/0 phosphoric acid and 15% 
water by mass. Given that the molarity is 15 mol· L -I , calculate the density of concentrated 
phosphoric acid. 

25-4. Calculate the mole fraction of glucose in an aqueous solution that is 0.500 molal in 
glucose. 

25-5. Show that the relation between molarity and molality for a solution with a single solute is 

(1000 ll1L·L- 1)pm 
c= ---------------

1000 g·kg- I + mM2 

where c is the molarity, m is the molality, p is the density of the solution in g. mL -I , and 
M 2 is the molar mass (g. mol-I) of the solute. 

25-6. The CRC Handbook of Chemistry and Physics has tables of "concentrative properties of 
aqueous solutions" for many solutions. Some entries for CsCI(s) are 

AI% plg.mL -I c/mol·L- 1 

l.00 l.0058 0.060 
5.00 1.0374 0.308 

10.00 1.0798 0.641 
20.00 l.1756 1.396 
40.00 1.4226 3.380 

where A is the mass percent of the solute, p is the density of the solution, and c is the 
molarity. Using these data, calculate the molality at each concentration. 

25-7. Derive a relation between the mass percentage (A) of a solute in a solution and its 
molality (m). Calculate the molality of an aqueous sucrose solution that is 18% sucrose by 
mass. 



Problems 

25-8. Derive a relation between the mole fraction of the solvent and the molality of a solution. 

25-9. The volume of an aqueous sodium chloride solution at 25°C can be expressed as 

v /mL == 1001.70 + (17.298 kg·mol-1)m + (0.9777 kg2 ·mol-2 )m 2 

o < m < 6 mol.kg- 1 

where m is the molality. Calculate the molarity of a solution that is 3.00 molal in sodium 

chloride. 

25-10. If x;: , moo, and COO are the mole fraction, molality, and molarity, respectively, of a solute 

at infinite dilution, show that 

1000 g·kg-1 (1000 mL· L-1 )P1 

where MI is the molar mass (g·mol- I
) and PI is the density (g.mL- 1

) of the solvent. Note 

that mole fraction, molality, and molarity are all directly proportional to each other at low 

concentrations. 

25-11. Consider two solutions whose solute activities are a~ and a~, referred to the same 

standard state. Show that the difference in the chemical potentials of these two solutions 

is independent of the standard state and depends only upon the ratio a~/ a~. Now choose 

one of these solutions to be at an arbitrary concentration and the other at a very dilute 

concentration (essentially infinitely dilute) and argue that 

Y2 In m 

25-12. Use Equations 25.4, 25.11, and the results of the previous two problems to show that 

where P is the density of the solution. Thus, we see that the three different activity coeffi­
cients are related to one another. 

25-13. Use Equations 25.4, 25.11, and the results of Problem 25-12 to derive 

Given that the density of an aqueous citric acid (M
2 

== 192.12 g. mol-I) solution at 20°C is 
given by 

p/g·mL -I == 0.99823 + (0.077102 L·mol-1)c 

o < c < 1.772 mol·L- 1 

plot Y2m / Y2c versus c . Up to what concentration do Y
2m 

and Y
2c 

differ by 2%? 
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25-14. The CRC Handbook of Chemistry and Physics gives a table of mass percent of sucrose in 
an aqueous solution and its corresponding molarity at 25°C. Use these data to plot molality 
versus molarity for an aqueous sucrose solution. 

25-15. Using the data in Table 25.2, calculate the activity coefficient of water (on a mole 
fraction basis) at a sucrose concentration of 3.00 molal. 

25-16. Using the data in Table 25.2, plot the activity coefficient of water against the mole 
fraction of water. 

25-17. Using the data in Table 25.2, calculate the value of ¢ at each value of m and reproduce 
Figure 25.2. 

25-18. Fit the data for the osmotic coefficient of sucrose in Table 25.2 to a 4th-degree polyno­
mial and calculate the value of y., for a I.OO-molal solution. Compare your result with the 

...,nl 

one obtained in Example 25-5. 

25-19. Using the data for sucrose given in Table 25.2, determine the value of In Y2m at 3.00 molal 
by plotting (¢ - 1) / m versus m and determining the area under the curve by numerical 
integration (MathChapter G) rather than by curve fitting ¢ first. Compare your result with 
the value given in Table 25.2. 

25-20. Equation 25.18 can be used to determine the activity of the solvent at its freezing point. 
Assuming that ~C; is independent of temperature, show that 

where ~fus H (Tf: s ) is the molar enthalpy of fusion at the freezing point of the pure solvent 
(Tf: s ) and ~C~ is the difference in the molar heat capacities of liquid and solid solvent. 
Using Equation 25.18, show that 

~fus H (Tf:J 1 (~fUS H (Tf:J ~C~) 2 - In a == () + - () + ... 
I R(7'* )2 R(7'* )2 T* 2 lfus lfus fus 

- * -I -\ -1 \ -s -1-\ 
25-21. Take~fusH(TfuJ = 6.01kJ·mol ,C p = 75.2J·K ·mol ,andC p = 37.6J·K ·mol 

to show that the equation for - In a 1 in the previous problem becomes 

for an aqueous solution. The freezing point depression of a 1.95-molal aqueous sucrose 
solution is 4.45°C. Calculate the value of at at this concentration. Compare your result with 
the value in Table 25.2. The value you calculated in this problem is for O°C, whereas the 
value in Table 25.2 is for 25°C, but the difference is fairly small because at does not vary 

greatly with temperature (Problem 25-61). 

25 .. 22. The freezing point of a 5.0-molal aqueous glycerol (1 ,2,3-propanetriol) solution is 

-10.6°C. Calculate the activity of water at O°C in this solution. (See Problems 25-20 and 
25-21.) 

25-23. Show that replacing Tfus by Tf: s in the denominator of (Tfus - Tf:J / Tf:s Tfus (see Equa­
tion 25.20) gives -e /(Tr:s)2 - ()2/(Tf:J 3 + ... where e = Tf : s - Tfus ' 



Problems 

25-24. Calculate the value of the freezing point depression constant for nitrobenzene, whose 
freezing point is 5.7°C and whose molar enthalpy of fusion is 11.59 kJ ·mol- I 

. 

25-25. Use an argument similar to the one we used to derive Equations 25.22 and 25.23 to 
derive Equations 25.24 and 25.25. 

25-26. Calculate the boiling point elevation constant for cyclohexane given that Tvap == 354 K 

and ~ H == 29.97 kJ .mol I. yap 

25-27. A solution containing 1.470 g of dichlorobenzene in 50.00 g of benzene boils at 80.60°C 
at a pressure of 1.00 bar. The boiling point of pure benzene is 80.09 J C, and the molar 
enthalpy of vaporization of pure benzene is 32.0 kJ· mol-I. Determine the molecular mass 
of dichlorobenzene from these data. 

25-28. Consider the following phase diagram for a typical pure substance. Label the region 
corresponding to each phase. Illustrate how this diagram changes for a dilute solution of a 
nonvolatile solute. 

1 .0 

N ow demonstrate that the boiling point increases and the freezing point decreases as a 
result of the dissolution of the solute. 

25-29. A solution containing 0.80 g of a protein in 100 mL of a solution has an osmotic pressure 
of 2.06 torr at 25°C. What is the molecular mass of the protein? 

25-30. Show that the osmotic pressure of an aqueous solution can be written as 

n== - ¢ RT ( m ) 
v* 55.506 mol.kg- 1 

25-31. According to Table 25.2, the activity of the water in a 2.00-molal sucrose solution is 
0.95807. What external pressure must be applied to the solution at 25.0°C to make the 
activity of the water in the solution the same as that in pure water at 25.0°C and 1 atm? 
Take the density of water to be 0.997 g.mL -I. 

25-32. Show that a2 == a~ == m2y~ for a 2-2 salt such as CuS0
4 

and that a
2 

== a! == 27m4y~ 
for a 1-3 salt such as LaCI

3
. 
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25-33. Verify the following table: 

Type of salt Example I 
m 

1-1 KC] m 

1-2 CaCl2 3m 

2-1 K2S0
4 3m 

2-2 MgS0
4 4m 

1-3 LaC]3 6m 

3-1 Na3P0
4 6m 

Show that the general result for 1m is Iz+z_l(l1+ + 11 )nl/2. 

25-34. Show that the inclusion of the factor 11 in Equation 25.41 allows ¢ ~ 1 as m ~ 0 for 
solutions of electrolytes as well as nonelectrolytes. [Hint: Realize that x

2 
involves the total 

number of moles of solute particles (see Equation 25.44)]. 

25-35. Use Equation 25.41 and the Gibbs-Duhem equation to derive Equation 25.42. 

25-36. The osmotic coefficient of CaCl2 (aq) solutions can be expressed as 

¢ == 1.0000 - (1.2083 kgl/2.mol-l/2)ml/2 + (3.2215 kg·mol- 1)m 

o < m < 5.00 mol.kg- I 

Use this expression to calculate and plot In y ± as a function of m 1/2. 

25-37. Use Equation 25.43 to calculate In y± for NaCI(aq) at 25°C as a function of molality 
and plot it versus In I /2. Compare your results with those in Table 25.4. 

25-38. In Problem 25- I 9, you determined In Y2m for sucrose by calculating the area under the 
curve of ¢ - 1 versus 111. When dealing with solutions of electrolytes, it is better numerically 
to plot (¢ I) / m 1/2 versus m 1/2 because of the natural dependence of ¢ on m 1/2. Show 
that 

__ ~ 1/2 11/1
1/2 

fh - 1 
In y ± -- ¢ - I + 20

m 
1/2 dm 

25-39. Use the data in Table 25.4 to calculate In y± for NaCI(aq) at 25°C by plotting (¢ -
1) / m 1/2 against nI I

/
2 and determine the area under the curve by numerical integration 

(MathChapter G). COlnpare your values of In y ± with those you obtained in Problem 25-37 
where you calculated In y ± from a curve-fit expression of ¢ as a polynomial in m 1/2. 



Problems 

25-40. Don Juan Pond in the Wright Valley of Antarctica freezes at -57°C. The major solute 

in the pond is CaC12. Estimate the concentration of CaCl2 in the pond water. 

25-41. A solution of mercury(II) chloride is a poor conductor of electricity. A 40.7-g sample 
of HgCl2 is dissolved in 100.0 g of water, and the freezing point of the solution is found to 
be -2.83°C. Explain why HgCl2 in solution is a poor conductor of electricity. 

25-42. The freezing point of a 0.25-molal aqueous solution of Mayer's reagent, K2HgI4' is found 
to be -1.41 ac. Suggest a possible dissociation reaction that takes place when K2HgI4 is 

dissolved in water. 

25-43. Given the following freezing-point depression data, determine the number of ions 

produced per formula unit when the indicated substance is dissolved in water to produce a 
1.00-molal solution. 

Interpret your results. 

Formula 

PtCl2 ·4NH
3 

PtCl2 ·3NH
3 

PtCl2 ·2NH
3 

KPtCl
3 

·NH
3 

K2PtCl
4 

~T/K 

5.58 

3.72 

1.86 
3.72 

5.58 

25-44. An aqueous solution of NaCI has an ionic strength of 0.315 mol·L- I
. At what concen­

tration will an aqueous solution of K2S0
4 

have the same ionic strength? 

25-45. Derive the "practical" formula for K2 given by Equation 25.53. 

25-46. Some authors define ionic strength in terms of molality rather than molarity, in which 
case 

1 s 

I ==-"z~m. 
m 2 ~ J J 

)=1 

Show that this definition modifies Equation 25.53 for dilute solutions to be 

where p is the density of the solvent (in g·mL -\). 

25-47. Show that 

for an aqueous solution at 25°C, where 1m is the ionic strength expressed in terms of 

molality. Take c
r 

to be 78.54 and the density of water to be 0.99707 g·mL- I
. 

25-48. Calculate the value of In y ± for a O.OIO-molar NaCI(aq) solution at 25°C. The experi­
mental value is -0.103. Take c

r 
== 78.54 for H20(l) at 25°C. 
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25-49. Derive the general equation 

1 lnI ¢=1+- m'dlny± 
m 0 

(Hint: See the derivation in Problem 25-35.) Use this result to show that 

for the Debye-Htickel theory. 

In y± 
¢=1+-

3 

In the next nine problems we will develop the Debye-Hiickel theory of ionic solutions 

and derive Equations 25.48 and 25.49. 

25-50. In the Debye-Htickel theory, the ions are modeled as point ions, and the solvent is 

modeled as a continuous medium (no structure) with a relative permittivity Cr' Consider 
an ion of type i (i = a cation or an anion) situated at the origin of a spherical coordinate 
system. The presence of this ion at the origin will attract ions of opposite charge and repel 
ions of the same charge. Let «j (r) be the number of ions of type j (j = a cation or an 
anion) situated at a distance r from the central ion of type i (a cation or an anion). We can 
use a Boltzmann factor to say that 

where N
j 

/ V is the bulk number density of j ions and w
ij 

(r) is the interaction energy 
of an i ion with a j ion. This interaction energy will be electrostatic in origin, so let 
w .. (r) = q.1/I. (r), where q. is the charge on the ion of type J' and 1/1. (r) is the electrostatic 

IJ J I J I 

potential due to the central ion of type i. 
A fundamental equation from physics that relates a spherically symmetric electrostatic 

potential o/i (r) to a spherically symmetric charge density Pi (r) is Poisson's equation 

(1) 

where C r is the relative permittivity of the solvent. In our case, Pi (r) is the charge density 
around the central ion. First, show that 

p.(r) = ~ "q.N .. (r) = "q.C.e-Qj 1/!;(r)/kB T 
I V ~ J IJ ~ J J 

J J 

where C. is the bulk number density of species j (C. = N. / V). Linearize the exponential 
J J J 

term and use the condition of electroneutrality to show that 

q~C. 
p.(r) = -1/I.(r)" J J 

I I L: kBT 
(2) 

Now substitute Pi (r) into Poisson's equation to get 

1 d ( 2 d 1/Ij ) 2 - - r - = K 1/I.(r) 
r2 dr dr I 

(3) 



Problems 

where 

(4) 

Show that Equation 3 can be written as 

d 2 

-2 [rl/l.(r)] == K2[rl/l.(r)] 
dr I I 

Now show that the only solution for l/I
i 
(r) that is finite for large values of r is 

(5) 

where A is a constant. Use the fact that if the concentration is very small, then l/Ii (r) is just 

Coulomb's law and so A == qi /4n cOcr and 

(6) 

Equation 6 is a central result of the Debye-Hiickel theory. The factor of e-Kr modulates the 
resulting Coulombic potential, so Equation 6 is called a screened Coulombic potential. 

25-51. Use Equations 2 and 6 of the previous problem to show that the net charge in a spherical 
shell of radius r surrounding a central ion of type i is 

P.(r)dr == p.(r)4nr2dr == -q.K2re-Kr dr 
I I I 

as in Equation 25.54. Why is 

25-52. Use the result of the previous problem to show that the most probable value of r is 1/ K. 

25-53. Show that 

r mp 

1 304 pm 

K 

where c is the molarity of an aqueous solution of a 1 I electrolyte at 25°C. Take c
r 

== 78.54 
for H

2
0(1) at 25°C. 

25-54. Show that 

1 
r == - == 430 pm 

mp K 

for a 0.50-molar aqueous solution of a 1-1 electrolyte at 25°C. Take C == 78.54 for H" 0(1) 
r ~ 

at 25°C. 

25-55. How does the thickness of the ionic atmosphere compare for a 1-1 electrolyte and a 
2-2 electrolyte? 
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25-56. In this problem, we will calculate the total electrostatic energy of an electrolyte solution 
in the Debye-Htickel theory. Use the equations in Problem 25-50 to show that the number 
of ions of type j in a spherical shell of radii rand r + d r about a central ion of type i is 

( 
N. (r)) w / k T (q .1/1. (r)) 

1.1 4nr 2dr = C.e-CJj'i(r) 8 4nr 2dr ~ C. 1 _ .I I 4nr 2dr 
V .I .I kT 

B 

(1) 

The total Coulombic interaction between the central ion of type i and the ions of type j 
in the spherical shell is N. (r)u .. (r )4n r2 dr / V where u .. (r) = q.q. /4n EoE r. To determine 

IJ· 1.1 IJ I .I r 

the electrostatic interaction energy of all the ions in the solution with the central ion (of 

type i), V i
el

, sum «j(r)uij(r)/ V over all types of ions in a spherical shell and then integrate 
over all spherical shells to get 

100 (" N.(r)u .. (r)) v.eJ = L...t 1.1 IJ 4nr2dr 
1 0 , V 

.I 

L c·q·q·l°C ( q.1/I.(r)) .1 1 .1 1.1 I d = - r r 
j EOEr 0 kB T 

Use electroneutrality to show that 

Now, using Equation 6 of Problem 25-50, show that the interaction of all ions with the 
central ion (of type i) is given by 

Now argue that the total electrostatic energy is 

el _ I L el _ VkB TK
3 

V - - N.V. - --~-
2. i I 8n 

I 

Why is there a factor of 1/2 in this equation? Wouldn't you be overcounting the energy 
otherwise? 

25-57. We derived an expression for vel in the previous problem. Use the Gibbs-Helmholtz 
equation for A (Problem 22-23) to show that 

Ad = _ VkB TK
3 

12n 

25-58. If we assume that the electrostatic interactions are the sole cause of the nonideality of 

an electrolyte solution, then we can say that 

( 
aA e

)) 
f.-L~J = = RT In y.e) 

J an. J 
.I T. V 

or that 

el (a A el) el 
f.-L. = = kB T In y . 

.I aN. ..1 

J T.V 



Problems 

Use the result you got for A el in the previous problem to show that 

Use the formula 

to show that 

') 

Kq': 
k T In y.el = _ J 

B .J 8JT E E o r 

v + In y + + v In y_ 
In y = -------

± v + v + -

Use the electroneutrality condition v + q + + v _ q _ = 0 to rewrite In y ± as 

in agreement with Equation 25.49. 

25-59. Derive Equation 25.56 from Equation 25.49. 

25-60. Show that Equation 25.59 reduces to Equation 25.49 for small concentrations. 

25-61. In this problem, we will investigate the temperature dependence of activities. Starting 

with the equation J.L I == J.L r + RT In a I' show that 

where H~ is the molar enthalpy of the pure solvent (at one bar) and H I is its partial molar 

enthalpy in the solution. The difference between H~ and H I is small for dilute solutions, 
so a

l 
is fairly independent of temperature. 

25-62. Henry's law says that the pressure of a gas in equilibrium with a nonelectrolyte solution 
of the gas in a liquid is proportional to the molality of the gas in the solution for sufficiently 
dilute solutions. What form do you think Henry's law takes on for a gas such as HCl(g) 
dissolved in water? Use the following data for HCl(g) at 258 C to test your prediction. 

P Hel /10- 11 bar nz
HC

)/10-3 mol.kg- I 

0.147 1.81 
0.238 2.32 

0.443 3.19 

0.663 3.93 

0.851 4.47 
1.08 5.06 

1.62 6.25 
1.93 6.84 
2.08 7.12 
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Gilbert Newton Lewis was born in West Newton, Massachusetts, on October 25, 1875, and 
died in 1946. In 1899, he received his Ph.D. from Harvard University, and after spending a year 
studying in Germany, he returned to Harvard as an instructor. Lewis left Harvard in 1904 to 
become Superintendent of Weights and Measures in the Philippines, and a year later he moved 
to The Massachusetts Institute of Technology. In 1912, he accepted the position of Dean of 
the College of Chemistry at the University of California at Berkeley, which he developed into 
one of the finest teaching and research departments in the world. He remained at Berkeley for 
the rest of his life, suffering a fatal heart attack in his laboratory. Lewis was one of America's 
outstanding chemists, certainly the finest not to receive a Nobel Prize. Lewis made many 
important contributions in chemistry. In the 1920s, he introduced Lewis formulas and described 
a covalent bond (which he named) as a shared pair of electrons. His work on the application 
of thermodynamics to physical chemistry culminated in his outstanding 1923 text, coauthored 
with Merle Randall , Thermodynamics and the Free Energy of Chemical Substances, from which 
a generation of chemists learned thermodynamics. Lewis was a dynamic individual who was 
responsible for development of many outstanding chemists, several of whom became members 
of the Berkeley faculty. His department produced a remarkable number of Nobel Prize winners. 



CHAPTER 

Chemical Equilibrium 

One of the most important applications of thermodynamics is to chemical reactions at 
equilibrium. Thermodynamics enables us to predict with confidence the equilibrium 
pressures or concentrations of reaction mixtures. In this chapter we shall derive a 
relation between the standard Gibbs energy change and the equilibrium constant for a 
chemical reaction. We shall also learn how to predict the direction in which a chemical 
reaction will proceed if we start with arbitrary concentrations of reactants and products. 
We have developed all the necessary thermodynamic concepts in previous chapters. 
The underlying fundamental idea is that ~G == 0 for a system in equilibrium at constant 
temperature and pressure, and that the sign of ~G determines whether or not a given 
process or chemical reaction will occur spontaneously at constant T and P. 

26-1. Chemical Equilibrium Results When the Gibbs Energy Is a 
Minimum with Respect to the Extent of Reaction 

For simplicity, we shall discuss gas-phase reactions first. Consider the general gas­
phase reaction, which is described by the balanced equation 

We define a quantity ~, called the extent of reaction, such that the numbers of 
moles of the reactants and products are given by 

nA == nAO - VA~ 
n B == n BO - VB~ 
\, I 

V' 

reactants 

ny == nyO + Vy~ 
nz == nZO + Vz~ , ~ 

v 

products 

(26.1 ) 

where n jO is the initial number of moles for each species. Recall from Chapter 19 
that stoichiometric coefficients do not have units. Consequently, Equations 26.1 indi­
cate that ~ has units of moles. As the reaction proceeds from reactants to products, 1049 



1050 Chapter 26 / Chemical Equilibrium 

~ varies from 0 to some maximum value dictated by the stoichiometry of the reaction. 
For example, if n AO and n BO in Equations 26.1 are equal to v A moles and VB moles, 
respectively, then ~ will vary from 0 to one mole. Differentiation of Equations 26.1 
. 

gIves 

dnA == -vAd~ 
dnB == -vBd~ 
\ ~ 

'V 

reactants 

dny == Vyd~ 
dn z == vzd~ 
\... .I 

v 

products 

(26.2) 

The negative si~ns indicate that the reactants are disappearing and the positive signs 
indicate that the products are being formed as the reaction progresses from reactants 

to products. 
Now let's consider a system containing reactants and products at constant T and P. 

The Gibbs energy for this multicomponent system is a function of T, P, n A' nB, ny, 

and nz' which we can express mathematically as G == G(T, P, nA, nB, ny, nz). The 
total derivative of G is given by 

dG = (~~) dT + (~~) dP + (:~) dnA 
P.I1,' T·Il

I
, A T.P.n .. A 

, ' J~ 

where the subscript nj in the first two partial derivatives stands for n A' nB, ny, and nz. 

Using Equations 22.31 for (JGjJT)p.n, and (JGjJP)T.n,' dG becomes 
J J 

where 

with similar expressions for M
B

, My, and Mz. For a reaction that takes place at constant 
T and P, d G becomes 

dG == L Mjdnj == MAdn A + MBdn B + Mydny + Mzdn z (constant T and P) (26.3) 
J 

Substitute Equations 26.2 into Equation 26.3 to obtain 

dG == -vAMAd~ - VBMBd~ + VyMyd~ + VzMzd~ 

== (VyMy + vzMz - vAM A - VBMB)d~ (constant T and P) (26.4) 

or 

(26.5) 



26-1. Chemical Equilibrium Results When the Gibbs Energy Is a Minimum 

We shall denote the right side of Equation 26.5 by ~r G, so that 

( a G) == ~r G == vy/-l y + vz/-l z - v A/-l A - VBtt8 
a~ T,P 

(26.6) 

The quantity ~r G is defined as the change in Gibbs energy when the extent of reaction 

changes by one mole. The units of ~r G are then J. moll. The quantity ~r G has 

meaning only if the balanced chemical equation is specified. 

If we assume that all the partial pressures are low enough that we can consider 

each species to behave ideally, then we can use Equation 23.33 [tt·(T, P) == tt7(T) + 
J 

RT In(P./ PO)] for the tt.(T, P), in which case Equation 26.6 becomes 
J ) 

or 

where 

and 

~ G == ~ GO + RT In Q 
r r 

(P y / PO) J)y (P
z

/ pO),}z 

Q = (PAl PO)"A(PBI PTs 

(26.7) 

(26.8) 

(26.9) 

The quantity ~r GO (T) is the change in standard Gibbs energy for the reaction 

between unmixed reactants in their standard states at temperature T and a pressure of 

one bar to form unmixed products in their standard states at the same temperature T 
and a pressure of one bar. Because the standard pressure pO in Equation 26.9 is 

taken to be one bar, the PO's are usually not displayed. It must be remembered, 

however, that all the pressures are referred to one bar, and that Q consequently is 
unitless. 

When the reaction system is in equilibrium, the Gibbs energy must be a minimum 

with respect to any displacement of the reaction from its equilibrium position, and so 

Equation 26.5 becomes 

(~~) = f':...rG = 0 (equilibrium) 
T.P 

(26.10) 

Setting ~r G == 0 in Equation 26.7 gives 

(26.11) 

eq 

1051 
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where 

(26.12) 

eq 

and where the subscript eq emphasizes that the pressures in Equations 26.11 and 26.12 
are the pressures at equilibrium. The quantity K p (T) is called the equilibriunl constant 
of the reaction. Although we have used an eq subscript for emphasis, this notation is 
not normally used and K p (T) is written without the subscript. Equilibrium-constant 
expressions imply that the pressures are their equilibrium values. The value of K p 

cannot be evaluated unless the balanced chemical reaction to which it refers and the 
standard states of each of the reactants and products are given. 

EXAMPLE 26-1 
Write out the equilibrium-constant expression for the reaction that is represented by 

the equation 

SOL UTI 0 N: According to Equation 26.12, 

where all the pressures are referred to the standard pressure of one bar. Note that if we 
had written the equation for the reaction as 

then we would have obtained 

which is the square root of our previous expression. Thus, we see that the form of 
K p (T) and its subsequent numerical value depend upon how we write the chemical 

equation that describes the reaction. 



26-2. An Equilibrium Constant Is a Function of Temperature Only 

Equation 26.11 says that regardless of the initial pressures of the reactants and products, 
at equilibrium the ratio of their partial pressures raised to their respective stoichiomet­
ric coefficients will be a fixed value at a given temperature. Consider the reaction 

described by 

PCIs (g) ~ PCI} (g) + Cl2 (g) (26.13 ) 

The equilibrium-constant expression for this reaction is 

(26.14) 

Suppose that initially we have one mole of pel5 (g) and no PCl3 (g) or el2 (g). When 

the reaction occurs to an extent ~, there will be (1 - ~) moles of pel
5 
(g), ~ moles of 

PCl
3 
(g), and ~ moles of Cl

2 
(g) in the reaction mixture and the total number of moles 

will be (1 + ~). If we let ~eq be the extent of reaction at equilibrium, then the partial 
pressures of each species will be 

~ P 
P == P == eq 

PCl1 CI2 1 + t 
Seq 

(1 - ~ )P 
P == eq 

PCls 1 + t 
Seq 

where P is the total pressure. The equilibrium-constant expression is 

Kp(T) = ~;q P 
1 - ~e2q 

(26.15) 

It might appear from this result that K p (T) depends upon the total pressure, but 
this is not so. As Equation 26.11 shows, K p (T) is a function of only the temperature, 

and so is a constant value at a fixed temperature. Therefore, if P changes, then ~eq 

must change so that K p (T) in Equation 26.15 remains constant. Figure 26.1 shows ~eq 

plotted against P at 200°C, where K p == 5.4. Note that ~eq decreases uniformly with 
increasing P, indicating that the equilibrium is shifted from the product side to the 
reactant side of Equation 26.13 or that less PCIs is dissociated. This effect of pressure 

on the position of equilibrium is an example of Le Chatelier's principle, which you 

learned in general chemistry. Le Chatelier's principle can be stated as follows: If a 

chemical reaction at equilibrium is subjected to a change in conditions that displaces it 

from equilibrium, then the reaction adjusts toward a new equilibrium state. The reaction 

proceeds in the direction that - at least partially - offsets the change in conditions. 

Thus, an increase in pressure shifts the equilibrium in Equation 26.13 such that the 

total number of moles decreases. 

1053 
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A plot of the fraction of PCIs (g) that is dissociated at equilibrium, ~ ,against total pressure P _ eq 

for the reaction given by Equation 26.13 at 200°C. 

EXAMPLE 26-2 
Consider the association of potassium atoms in the vapor phase to form dimers. 

2 K(g) ¢ K2 (g) 

Suppose we start with 2 moles of K(g) and no dimers. Derive an expression for K p (T) 

in terms of ~eq' the extent of reaction at equilibrium, and the pressure P. 

SOL UTI 0 N: At equilibrium, there will be 2( 1 - ~ ) moles of K(g) and ~ moles 
eq eq 

of K
2
(g). The total number of moles will be (2 - ~eq)' The partial pressure of each 

species will be 

and 

2(1 - ~ )P 
P :=: eq 

K 2 - ~ 

~eqP 
P :=:----

K2 2 - ~ 
eq 

eq 

If P decreases, then t (2 - t )/4(1 - ~ )2 must decrease, which occurs by ~ de-Seq . Seq eq eq 

creasing. If P increases, then ~ (2 - ~ ) / 4( I - ~ )2 must increase, which occurs by eq eq eq 

~ increasing [( 1 - ~ ) becoming smaller]. eq eq 

We subscripted the equilibrium constant defined by Equation 26.12 with a P to 
emphasize that it is expressed in terms of equilibrium pressures. We can also express 



26-2. An Equilibrium Constant Is a Function of Temperature Only 

the equilibrium constant in terms of densities or concentrations by using the ideal-gas 
relation P = cRT where c is the concentration, n / V. Thus, we can rewrite K p as 

(26.16) 

Just as we relate the pressures in the expression for K p to some standard pressure po, 
we must relate the concentrations in Equation 26.16 to some standard concentration co, 
often taken to be 1 mol· L -1 . If we multiply and divide each concentration in Equation 
26.16 by co, we can write 

(26.17) 

where 
(c /cOrJy(c /CO)Vz 

K = y z 
c (cA/cOrJA(cB/cOrJB 

(26.18) 

Both K p and Kc in Equation 26.17 are unitless, as is the factor (CO RT / PO)VY+VZ-VA -VB. 

The actual choices of po and CO determine the units of R to use in Equation 26.17. If 
pO is taken to be one bar and CO to be one mol· L -1 (as is often the case), then the factor 
CO RT / pO = RT /L.bar·mol- 1 and R must be expressed as 0.083145 L.bar.mol 1. 

Equation 26.17 provides a relation between K p and Kc for ideal gases. Just as we 
don't display the pO's in Equation 26.9 because most often po = one bar, we don't 
display the pos and cOs in Equation 26.18 because most often CO = one mol·L- 1

• You 
must always be aware, however, of which reference states are being used in K p and K c 

when converting the numerical value of one to the other. 

EXAMPLE 26-3 
The value of K p (T) (based upon a standard state of one bar) for the reaction de­

scribed by 

NH3 (g) ¢ ~H2(g) + ~N2(g) 

is 1.36 X 10-3 at 298.15 K. Determine the corresponding value of Kc(T) (based upon 
a standard state of one mol· L -\). 

SOL UTI 0 N: In this case, v A = 1, Vy = 3/2, and Vz = 1/2, so Equation 26.17 gives 

The conversion factor at 298.15 K is 

C
O R T ( 1 mol· L -\ ) (0.083 145 L· bar· rno 1- \. K - I ) (298. 15 K) 

po IbM 

= 24.79 

and so Kc = K p/24.79 = 5.49 x 10-5
. 
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26-3. Standard Gibbs Energies of Formation Can Be Used to 
Calculate Equilibrium Constants 

Notice that combining Equations 26.8 and 26.11 gives a relation between f1j(T), 

the standard chemical potentials of the reactants and products, and the equilibrium 

constant, K p . In particular, K p is related to the difference between the standard chemical 
potentials of the products and reactants. Because a chemical potential is an energy (it 
is the molar Gibbs energy of a pure substance), its value must be referred to some 
(arbitrary) zero of energy. A convenient choice of a zero of energy is based on the 
procedure that we used to set up a table of standard molar enthalpies of formation 
(Table 19.2) in Section 19-11. Recall that we defined the standard molar enthalpy of 
formation of a substance as the energy as heat involved when one mole of the substance 
is formed directly from its constituent elements in their most stable form at one bar 
and the temperature of interest. For example, the value of ~rH for 

is -285.8 kJ when all the species are at 298.15 K and one bar, and so we write 
~fHO[H20(l)] = -285.8 kJ·mol- 1 at 298.15 K. By convention, we also have that 

~fHO[H2(g)] = ~fHO[02(g)] = 0 for H2(g) and 02(g) at 298.15 K and one bar. We 
also set up a table of practical absolute entropies of substances (Table 21.2) in Sec­
tion 21-9, and so because 

we can also set up a table of values of ~fG2. Then for a reaction such as 

we have 

(26.19) 

Table 26.1 lists values of ~fGo at 298.15 K and one bar for a variety of substances, 
and much more extensive tables are available (see Section 26.9). 

EXAMPLE 26-4 
Using the data in Table 26.1, calculate /}.r G (T) and K p at 298.15 K for 

SOL UTI 0 N: From Equation 26.19, 

/}.r GO = (1) /}.fG"[H2 (g)] + (~) /}.fGO[N2 (g)] - (1)/}.fGO[NH3 (g)] 

= (~) (0) + (~) (0) - (1) ( - 16.367 kJ . mol I) 

= 16.367 kJ ·mol- I 
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TABLE 26.1 
Standard molar Gibbs energies of formation, br.fG o

, for various 
substances at 298.15 K and one bar. 

Substance Formula br.fG c /kJ ·mol-1 

acetylene C2H2(g) 209.20 

ammonIa NH
3
(g) -16.367 

benzene C6
H6 (1) 124.35 

bromine Br2 (g) 3.126 

butane C
4
H 1O (g) 17.15 

carbon( diamond) C(s) 2.900 

carbon(graphite) C(s) 0 

carbon dioxide cO
2 
(g) -394.389 

carbon monoxide CO(g) 137.163 

ethane C2H
6
(g) -32.82 

ethanol C2HsOH(1) -174.78 

ethene C
2
H

4 
(g) 68.421 

glucose C
6
H l2 0

6 
(s) 910.52 

hydrogen bromide HBr(g) -53.513 

hydrogen chloride HC1(g) -95.300 

hydrogen fluoride HF(g) -274.646 

hydrogen iodide HI(g) 1.560 

hydrogen peroxide H20 2 (1) 105.445 

iodine 12 (g) 19.325 

methane CH
4 
(g) -50.768 

methanol CH
3
OH(1) -166.27 

CH
3
OH(g) -161.96 

nitrogen oxide NO(g) 86.600 

nitrogen dioxide N02(g) 51.258 

dinitrogen tetraoxide N20
4
(g) 97.787 

N20
4 

(1) 97.521 

propane C3HS(g) -23.47 

sucrose CI2H22011 (s) -1544.65 

sulfur dioxide S02(g) -300.125 

sulfur trioxide S03(g) -371.016 

tetrachloromethane CC1
4 

(1) -65.21 

CC1
4 
(g) -53.617 

water H2°(1) -237.141 

H"O(g) -228.582 .. 
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and from Equation 26. 11 

InKp(T) == 
RT 

t:::.G 
r 

16.367 X 103 J.rnol I 

(8.3145 J·K- 1 ·rnol- 1)(298.15 K) 

== -6.602 

or K p == 1.36 X 10-3 at 298.15 K. 

26-4. A Plot of the Gibbs Energy of a Reaction Mixture Against the 
Extent of Reaction Is a Minimum at Equilibrium 

In this section we shall treat a concrete example of the Gibbs energy of a reaction 

mixture as a function of the extent of reaction. Consider the thermal decomposition of 
N

2
0

4
(g) to N0

2
(g) at 298.15 K, which we represent by the equation 

Suppose we start with one mole of N20
4
(g) and no N02 (g). Then as the reaction 

proceeds, nN 0 ' the number of moles of N20 4 (g), will be given by 1 - ~ and n NO will 
242 

be given by 2~. Note that nN 0 == 1 mol and n NO == 0 when ~ == 0 and that nN 0 == 0 
2 4 2 2 4 

and n
NO 

== 2 mol when ~ == 1 mol. The Gibbs energy of the reaction mixture is given by 
2 

G(~) == (1 - ~)GN 0 + 2~Gr--;o 
2 4 2 

(26.20) 
== (1 - ~)GN 0 + 2~G~o + (1 - ~)RT In PN 0 + 2~ RT In PNO .:. 4 2 2 4 2 

If the reaction is carried out at a constant total pressure of one bar, then 

The total number of moles in the reaction mixture is (1 - ~) + 2~ == 1 + ~, and so we 
have 

and 

Thus, Equation 26.20 becomes 

1 - ~ 2~ 
G(~) == (1 - ~)G~ 0 + 2~G~o + (1 - ~)RT In + 2~ RT In --

24':' 1+~ l+~ 

According to Section 26-3, we can choose our standard states such that G~204 == 
~fG~204 and G~02 == ~fG~O.:.' so G(~) becomes 

1 - ~ 2~ 
G(~) == (1 - ~)~fG~ 0 + 2~ ~fG~O + (1 - ~)RT In + 2~ RT In --

24 ':2 1+~ 1+~ 
(26.21 ) 



26-4. A Plot of the Gibbs Energy 

Equation 26.21 gives the Gibbs energy of the reaction mixture, G, as a function 

of the extent of the reaction, ~. Using the values of ~fG~204 and ~fG~02 given in 
Table 26.1, Equation 26.21 becomes 

G (~) == (1 - ~) (97 .787 kJ· mo 1- I) + 2~ (51.258 kJ . mo 1- 1 ) 

+(1-0RTln l-~ +2~RTln-2-~-
- l+~ 1+~ 

(26.22) 

where RT == 2.4790 kJ ·mol- ' . Figure 26.2 shows G(~) plotted against ~. The mini­

mum in the plot, or the equilibrium state, occurs at ~eq == 0.1892 mol. Thus, the reaction 

will proceed from ~ == 0 to ~ == ~eq == 0.1892 mol, where equilibrium is established. 

The equilibrium constant is given by 

[2~eq/ (1 + ~eq) ]2 

(1 - ~ eq) / (1 + ~ eq) 

4~2 
__ e

q
-
2 

== 0.148 
1 - ~eq 

We can compare this result to the one that we obtain from ~fGo == -RT In K P' or 

~ GO 
InK == ___ f_ 

P RT 

or K P == 0.148. 

..-
I -0 

a 
• 
~ 

~ 

--~ 
lJ.j) 

'-' 

U 

FIG U R E 26.2 

104 

102 

100 

98 

(2)(~fGO[N02(g)]) - (1)(~fGO[N204(g)]) 

(8.3145 J·K-1 ·mol-')(298.15 K) 

4.729 x 103 J ·mol- ' == - == - 1 .9076 
(8.3145 J·K- 1 ·mol- I )(298.15 K) 

96~----~------~----~------~---~ 
0.0 0.2 0.4 0.6 0.8 1 .0 

~ / mol 

A plot of the Gibbs energy of the reaction mixture versus the extent of reaction for 
N2 °4 (g) ¢ 2 N02 (g) at 298.15 K and one bar. 

1059 



1060 Chapter 26 / Chemical Equilibrium 

We can also differentiate Equation 26.22 with respect to ~ explicitly to obtain 

( _aG_) == (2)(51.258 kJ.mol I) _ 97.787 kJ.mol- 1 _ RT In _1 =_~ 
a~ T.P 1 + ~ 

+2RTln 2~ +(I_~)RT(I+~)[_ 1 _ .1-~,] 
l+~ l-~ 1+~ (1+~)~ 

+ 2~ RT C ; ~) [1 ! ~ -(1 ; ~? ] (26.23) 

We can replace (1 - ~)/(l +~) in the first logarithm term by PN 0 and 2~ 1(1 +~) 
2 4 

in the second logarithm term by P
NO 

. Furthermore, a little algebra shows that the last 
'1 

two terms add up to zero, and so Equation 26.23 becomes 

At equilibrium, a G I a~ == 0 and we get Equation 26.11. 
We can also evaluate ~eq explicitly by setting Equation 26.23 equal to zero. Using 

the fact that the last two terms in Equation 26.23 add up to zero, we have 

(2)(51.258 kJ'mol-') - 97.787 kJ·mol ' 
----------------------------==In 

(8.3145 J·mol I·K-')(298.15 K) 

1 - ~ eq 

I + ~eq 

or 

1.9076 == In 

or 

1 ~2 
--2 _eq == e 1.9076 == 6.7371 
4~eq 

or ~eq == 0.1892, in agreement with Figure 26.2. Problems 26-18 through 26-21 ask 
you to carry out a similar analysis for two other gas-phase reactions. 

26-5. The Ratio of the Reaction Quotient to the Equilibrium Constant 
Determines the Direction in Which a Reaction Will Proceed 

Consider the general reaction described by the equation 



26-5. The Ratio of the Reaction Quotient to the Equilibrium Constant 

Equation 26.7 for this reaction scheme is 

(26.24) 

Realize that the pressures in this equation are not necessarily equilibrium pressures, 
but are arbitrary. Equation 26.24 gives the value of ~rG when v A moles of A(g) at 
pressure P A react with VB moles of B(g) at pressure PB to produce Vy moles of Y (g) 
at pressure Py and Vz moles of Z(g) at pressure Pz. If all the pressures happen to be 
one bar, then the logarithm term in Equation 26.24 will be zero and ~rG will be equal 
to ~r GO; in other words, the Gibbs energy change will be equal to the standard Gibbs 
energy change. If, on the other hand, the pressures are the equilibrium pressures, then 
~r G will equal zero and we obtain Equation 26.11. 

We can write Equation 26.24 in more concise form by introducing a quantity called 
the reaction quotient Q p (see Equation 26.9) 

and using Equation 26.11 for ~r GO: 

~r G == - R T In K p + R T In Q p 

== RT In(Qp/ K p) 

(26.25) 

(26.26) 

Realize that even though Q p has the form of an equilibrium constant, the pressures are 
arbitrary. 

At equilibrium, ~r G == 0 and Q p == K p' If Q p < K P' then Q p must increase as 
the system proceeds toward equilibrium, which means that the partial pressures of 
the products must increase and those of the reactants must decrease. In other words, 
the reaction proceeds from left to right as written. In terms of ~r G, if Q p < K P' 

then ~r G < 0, indicating that the reaction is spontaneous from left to right as written. 
Conversely, if Q p > K P' then Q p must decrease as the reaction proceeds to equilibrium 
and so the pressures of the products must decrease and those of the reactants must 
increase. In terms of ~r G, if Q p > K P' then ~r G > 0, indicating that the reaction is 
spontaneous from right to left as written. 

EXAMPLE 26-5 
The equilibrium constant for the reaction described by 

is K p == 10 at 960 K. Calculate ~r G and indicate in which direction the reaction will 
proceed spontaneously for 
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SOL UTI 0 N: We first calculate the reaction quotient under these conditions. Ac­
cording to Equation 26.25, 

Note that these quantities are unitless because the pressures are taken relative to one 
bar. Using Equation 26.26, we have 

~ G == RT In Qp 
r K 

p 

5.0 X 10-2 

== (8.314 J . K- ' · mol- 1)(960 K) In 
10 

== -42.3 kJ· moI- 1 

The fact that ~r G < 0 implies that the reaction will proceed from left to right as 

written. This may also be seen from the fact that Q p < K p' 

26-6. The Sign of ~rG And Not That of ~rGo Determines the 
Direction of Reaction Spontaneity 

It is important to appreciate the difference between ~r G and ~r GO. The superscript 0 

on ~rGo emphasizes that this is the value of ~rG when all the reactants and products 
are unmixed at partial pressures equal to one bar; ~r GO is the standard Gibbs energy 
change. If ~rGo < 0, then K p > 1, meaning that the reaction will proceed from reac­
tants to products if all the species are mixed at one bar partial pressures. If ~r GO > 0, 
then K p < 1, meaning that the reaction will proceed from products to reactants if all 
the species are mixed at one bar partial pressures. The fact that ~rGo > 0 does not 
mean that the reaction will not proceed from reactants to products if the species are 
mixed under all conditions. For example, consider the reaction described by 

for which ~rGo = 4.729 kJ·mol- 1 at 298.15 K. The corresponding value of Kp(T) 

is 0.148. The fact that ~rGo = +4.729 kJ·mol- 1 does not mean that no N
2
0

4
(g) will 

dissociate when we place some of it in a reaction vessel at 298.15 K. The value of ~r G 
for the dissociation of N 2 °4 (g) is given by 

~ G = ~ GO + RT In Qp 
r r 

(26.27) 

Let's say that we fill a container with N2 0 4 (g) and no N02 (g). Initially then, the loga­
rithm term and ~r G in Equation 26.27 will be essentially negative infinity. Therefore, 
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the dissociation of N20
4 
(g) takes place spontaneously. The partial pressure of N20 4 (g) 

decreases and that of N02 (g) increases until equilibrium is reached. The equilibrium 

state is determined by the condition ~r G == 0, at which point Q p == K p' Thus, ini­
tially ~r G has a large negative value and increases to zero as the reaction goes to 
equilibri urn. 

We should point out here that even though ~r G < 0, the reaction may not occur 
at a detectable rate. For example, consider the reaction given by 

The value of ~rGo at 25°C for this reaction is -237 kJ per mole of H20(I) formed. 
Consequently, H20(l) at one bar and 25°C is much more stable than a mixture of 
H2 (g) and 02 (g) under those conditions. Yet, a mixture of H2 (g) and 02 (g) can be kept 
indefinitely. If a spark or a catalyst is introduced into this mixture, however, then the 

reaction occurs explosively. This observation serves to illustrate an important point: 
The "no" of thermodynamics is emphatic. If thermodynamics says that a certain process 
will not occur spontaneously, then it will not occur. The "yes" of thermodynamics, on 
the other hand, is actually a "maybe". The fact that a process will occur spontaneously 

does not imply that it will necessarily occur at a detectable rate. We shall study the 
rates of chemical reactions in Chapters 28 through 31. 

26-7. The Variation of an Equilibrium Constant with Temperature Is 
Given by the Van't Hoff Equation 

We can use the Gibbs-Helmoltz equation (Equation 22.61) 

(26.28) 

to derive an equation for the temperature dependence of K p (T). Substitute !1GO(T) == 
-RT In K p (T) into Equation 26.28 to obtain 

!1H 
r (26.29) 

Note that if ~rHo > ° (endothermic reaction), then K p (T) increases with tempera­
ture, and if ~rH() < ° (exothermic reaction), then K p (T) decreases with increasing 
temperature. This is another example of Le Chatelier's principle. 

Equation 26.29 can be integrated to give 

(26.30) 
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If the temperature range is small enough that we can consider fl.rHo to be a constant, 
then we can write 

K P CT2 ) 6. rHo ( 1 1 ) 
In K p (T,) = - R T2 - TI 

(26.31) 

Equation 26.31 suggests that a plot of In K p (T) versus 1/ T should be a straight line with 
a slope of -6.rHo / R over a sufficiently small temperature range. Figure 26.3 shows 
such a plot for the reaction H2 (g) + CO2 (g) ~ CO(g) + H20(g) over the temperature 
range 600°C to 900°C. 

0..... 

~ 
C -

FIG U R E 26.3 

0.0 

-0.8 

0.8 1 .0 

1000 K / T 

1 .2 

A plot of In K p (T) versus 1/ T for the reaction H2 (g) + CO2 (g) ~ CO(g) + H20(g) over the 
temperature range 600°C to 900°C. The circles represent experimental data 

EXAMPLE 26-6 
Given that ~rH has an average value of -69.8 kJ· mol lover the temperature range 
500 K to 700 K for the reaction described by 

PCl
3 
(g) + Cl2 (g) ~ PCls (g) 

estimate K p at 700 K given that K p == 0.0408 at 500 K. 

SOL UTI 0 N: We use Equation 26.31 with the above values 

In p 
K -69.8 x 103 J ·mol- I 

( 1 

0.0408 8.3145 J·K- 1 ·mo1- 1 700 K 50~K) 
== -4.80 

or 

K p (T) == (0.0408)e- 4
.
S0 == 3.36 x 10-4 

Note that the reaction is exothermic and so K p (T == 700 K) is less than K p (T == 500 K). 
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In Section 19-12 we discussed the temperature variation of ~rHo. In particular, 
we derived the equation 

(26.32) 

where ~ C; is the difference between the heat capacities of the products and reactants. 
Experimental heat capacity data over temperature ranges are often presented as poly­
nomials in the temperature, and if this is the case, then ~rHo (T) can be expressed in 
the form (see Example 19-13) 

(26.33) 

If this form for ~rHo (T) is substituted into Equation 26.29, and both sides integrated 
indefinitely, then we find that 

a f3 y 8T2 

InK (T) = --- + -In T + -T + + A 
P RT R R 2R 

(26.34 ) 

The constants a through 8 are known from Equation 26.33 and A is an integration con­
stant that can be evaluated from a knowledge of K p (T) at some particular temperature. 
We could also have integrated Equation 26.29 from some temperature T] at which the 
value of K p (T) is known to an arbitrary temperature T to obtain 

(26.35) 

Equations 26.34 and 26.35 are generalizations of Equation 26.31 to the case where 
the temperature dependence of ~rHo is not ignored. Equation 26.34 shows that if 
In K p (T) is plotted against 1/ T, then the slope is not constant, but has a slight curvature. 
Figure 26.4 shows In K p (T) plotted versus 1/ T for the ammonia synthesis reaction. 
Note that In K p (T) does not vary linearly with 1/ T, showing that ~rHo is temperature 
dependent. 

EXAMPLE 26-7 
Consider the reaction described by 

The molar heat capacities of N
2
(g), H

2
(g), and NH3(g) can be expressed in the form 

C p [N
2
(g)]/J·K- 1 .mol- 1 == 24.98 + 5.912 x 10-3T - 0.3376 x 10-6T2 

C~[H2(g)]/J·K-l.mol I == 29.07 - 0.8368 x 10-3T + 2.012 x 10-6T2 

C~[NH3(g)]/J·K-I.mol-1 == 25.93 + 32.58 x 10-3T - 3.046 x 10-6T2 
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over the temperature range 300 K to 1500 K. Given that ~fHO[NH3(g)] == 
-46.11 kJ· mol I at 300 K and that K p == 6.55 x 10-3 at 725 K, derive a general 

expression for the variation of K p (T) with temperature in the form of Equation 26.34. 

SOL UTI 0 N: We first use Equation 26.32 

with T\ == 300 K and ~rH (T
1 

== 300 K) == -46.11 kJ ·mol- I and 

Integration gives 

~rHO(T)/J.mol-1 == -46.11 X 103 + r t>.Cp(T)dT 
1300 K 

== - 46. 1 I x 103 - 3 1. 1 7 (T - 300) 

30.88 X 10-3 5.895 X 10-6 

+ (T 2 
- (300)2) - (T 3 - (300)3) 

2 3 

or 

Now we use Equation 26.35 with T\ == 725 K and K p (T == 725K) == 6.55 x 10-3. 

iT ~ H (T') 
InKp (T)==lnK p (T==725K)+ r ,2 dT' 

725 RT 

== -5.028 + ~ [+38.10 (~ - _1_) - 31.17(ln T - In 725) 
R T 725 

1.965 X 10-6 
] 

+ 15.44 x 10-3 (T - 725) - 2 (T 2 
- (725)2) 

4583 
== 12.06 + - 3.7491n T + 1.857 x 10-3T - 0.118 x 10-6 T 2 

T 

This equation was used to generate Figure 26.4. At 600 K, In K p == - 3.21, or K p == 
0.040, in excellent agreement with the experimental value of 0.041. 

It is interesting to compare the results of this section to those of Section 23-4, 
where we derived the Clausius-Clapeyron equation, Equation 23.13. Note that Equa­
tions 26.31 and 23.13 are essentially the same because the vaporization of a liquid can 
be represented by the "chemical equation" 

X(l) ~ X(g) 



FIG U R E 26.4 
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A plot of In K p (T) versus 1/ T for the ammonia synthesis reaction, ~ H2 (g) + ~ N2 (g) ~ 
NH} (g). 

26-8. We Can Calculate Equilibrium Constants in Terms of 
Partition Functions 

An important chemical application of statistical thermodynamics is the calculation of 
equilibrium constants in terms of molecular parameters. Consider the general homo­
geneous gas-phase chemical reaction 

in a reaction vessel at fixed volume and temperature. In this case we have (cf. Equation 

23.26) 

(constant T and V) 

instead of Equation 26.3. Introducing the extent of reaction through Equations 26.2, 
however, leads to the same condition for chemical equilbrium as in Section 26-1, 

(26.36) 

We now introduce statistical thermodynamics through the relation between the chem­
ical potential and a partition function. In a mixture of ideal gases, the species are 
independent, and so the partition function of the mixture is a product of the partition 
functions of the individual components. Thus 
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The chemical potential of each species is given by an equation such as (Problem 26-33) 

(
alnQ) qA(V,T) 

J-l == -RT == -RT In ---
A aN N 

A N .. V,T A 
J 

(26.37) 

where Stirling's approximation has been used for NA!. The N
j 

subscript on the partial 
derivative indicates that the numbers of particles of the other species are held fixed. 
Equation 26.37 simply says that the chemical potential of one species of an ideal gas 
mixture is calculated as if the other species were not present. This, of course, is the 
case for an ideal gas mixture. 

If we substitute Equation 26.37 into Equation 26.36, then we get 

(26.38) 

For an ideal gas, the molecular partition function is of the form f (T) V (Section 18-6) 
so that q / V is a function of temperature only. If we divide each factor on both sides of 
Equation 26.38 by VVj and denote the number density N./ V by p., then we have 

} } 

(qy / V) Vy (qz/ V) Vz 

(qA/ V)VA (qB/ V)LJB 
(26.39) 

Note that Kc is a function of temperature only. Recall that K peT) and Kc(T) are related 
by (Equation 26.17) 

By means of Equation 26.17 and Equation 26.39, along with the results of Chap­
ter 18, we can calculate equilibrium constants in terms of molecular parameters. This 
is best illustrated by means of examples. 

A. A Chemical Reaction Involving Diatomic Molecules 

We shall calculate the equilibrium constant for the reaction 

H2 (g) + 12 (g) ¢ 2 HI(g) 

from 500 K to 1000 K. The equilibrium constant is given by 

(26.40) 
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U sing Equation 18.39 for the molecular partition functions gives 

K (T) == 

3/2 

(8 H1 )2 
rot 

H2 . 12 ., 
(1 - e - (--) vib / T ) (1 - e - ( .. ) vib / I ) 

(1 - e (~)~~/T)2 

(26.41) 

where we have replaced De in Equation 18.39 by Do + hvj2 (Figure 18.2). All the 
necessary parameters are given in Table 18.2. Table 26.2 gives the numerical values 
of K p (T) and Figure 26.5 shows In K plotted versus 1 j T. From the slope of the line 
in Figure 26.5 we get ~rH == -12.9 kJ . mol I compared to the experimental value of 
-13.4 kJ ·mol I. The discrepancy is due to the inadequacy of the rigid rotator-harmonic 
oscillator approximation at these temperatures. 

6.0 -

2.0~ ________ ~ __________ ~ __________ ~ 

0.0 1.0 2.0 3.0 

1000 K / T 

FIG U R E 26.5 
The logarithm of the equilibrium constant versus 1/ T for the reaction H2 (g) + 12 (g) ¢ 2 Hl(g). 
The line is calculated from Equation 26.41 and the circles are the experimental values. 

TAB L E 26.2 
The values of K p (T) for the reaction described by H2 (g) + 12 (g) ~ 2 Hl(g) 
calculated according to Equation 26.41. 

TIK 

500 

750 

1000 

1250 

1500 

Kp(T) 

138 

51.1 

28.5 

19.1 

14.2 

In K peT) 

4.92 

3.93 

3.35 

2.95 

2.65 
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B. A Reaction Involving Polyatomic Molecules 

As an example of a reaction involving a polyatomic molecule, consider the reaction 

whose equilibrium constant is given by 

(qH 01 V) 
K (T) - ___ 2 ---

c - (q 1 V) (q 1 V) 1/2 
H2 O2 

(26.42) 

It is almost as convenient to calculate each partition function separately as to substitute 

them into K c first. The necessary parameters are given in Tables 18.2 and 18.4. At 

1500 K, the three partition functions are (Equations 18.39 and 18.60) 

qH (T, V) 
2 

V 

V 

and 

V 

2 k T 3/2 
nmo B T 

2 

L,H..,O nH)O n H20 
"-":I ro~. A \""'J ro~. B "MJ rot, C 

(26.43) 

(26.44) 

(26.45) 

The factor of 3 occurs in q021 V because the ground state of 02 is 3~g • 

Notice that each of the above q(T, V)I V has units of m 3. This tells us that the 

reference state in this (molecular) case is a concentrations of one molecule per cubic 

meter, or that CO == one molecule·m-3
. Using the values of Do from Table 18.2 and 

18.4, the value of Kc at 1500 K is Kc == 2.34 x 10-7
. To convert to K P' we divide Kc 

by 

(

C
O RT)1/2 = [(1 m 3)(8.3145 J.mol- I .K- 1)(1500K)]1/2 

NA pc (6.022 X 1023 mol 1)(105 Pa) 

== 4.55 x 10- 13 

to obtain K p == 5.14 x 105
, based upon a one bar standard state. 



TAB L E 26.3 
The logarithm of the equilibrium constant for 
the reaction H2(g) + ~ 02(g) ~ H20 (g) 

TIK 

1000 

1500 

2000 

23.5 

13.1 

8.52 

In K p(exp) 

23.3 

13.2 

8.15 

Table 26.3 compares the calculated values of In K p with experimental data. Al­
though the agreement is fairly good, the agreement can be considerably improved by 
using more sophisticated spectroscopic models. At high temperatures, the rotational 
energies of the molecules are high enough to warrant centrifugal distortion effects and 
other extensions of the simple rigid rotator-harmonic oscillator approximation. 

26-9. Molecular Partition Functions and Related Thermodynamic 
Data Are Extensively Tabulated 

In the previous section we have seen that the rigid rotator-harmonic oscillator approx­
imation can be used to calculate equilibrium constants in reasonably good agreement 
with experiment, and because of the simplicity of the model, the calculations in­
volved are not extensive. If greater accuracy is desired, however, one must include 
corrections to the rigid rotator-harmonic oscillator model, and the calculations be­
come increasingly more laborious. It is natural, then, that a number of numerical 
tables of partition functions has evolved, and in this section we shall discuss the 
use of such tables. These tables are actually much more extensive than a compi­
lation of partition functions. They include many experimentally determined values 
of thermodynamic properties, often complemented by theoretical calculations. The 
thermodynamic tables that we are about to discuss in this section, then, represent a 
collection of the thermodynamic and/or statistical thermodynamic properties of many 
substances. 

One of the most extensive tabulations of the thermochemical properties of sub­
stances is an American Chemical Society publication, Journal of Physical Chemical 
Reference Data, volume 14, supplement 1, 1985, usually referred to as the JANAF 
(joint, army, navy, air force) tables. Each species listed has about a full page of 
thermodynamic/spectroscopic data, and Table 26.4 is a replica of the entry for am­
monia. Note that the fourth and fifth columns of thermodynamic data are headed 
by -{G - HO(Tr)}/T and HO - HO(T). Recall that the value of an energy must 
be referred to some fixed reference point (such as a zero of energy). The refer­
ence point used in the JANAF tables is the standard molar enthalpy at 298.15 K. 
Consequently, GO (T) and HO (T) are expressed relative to that value, as expressed 
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c • 1 
< 
~ ... ... 
rn 
c 
'V 
~ ... .. 

IDRAL GAS III - 17.030~2 
r -1 

AfHO(O ~) - -38.907 ~ 0.4 kJ mol 

A
t
H"(298.15 K) - -45.898 1 0.4 kJ mol- 1 

S·(298.15 K) - 192.774 1 0.025 J K- I mol-1 

Entbalpy of Formation 

Vibrational Frequencies and Degeneracies 
-1 

U, elD 
-1 -1 -1 

~, c. V, em ~, em 

3506 (l) 1022(1 ) 3577(2) 

Ground State Quantum Weight: 

1691(2) 

a{internal) - 2 

,,(ellternal) - 3 Point Group: 

Bond Length: 
C3V " 
N-H - 1.0124 A 

Bond Angle: 106.67" 

Product of the M~ents of Inertia: IAIBIC - 0.0348 K 10-
117 

g3 cm
6 

2nd and 3rd law analyses of equilibrium data for the reaction 1/2N
2

(g)+3/2H 2 (g) • NH 3 (g) cited in the previous JANAP 

evaluation (1) plus more recent work of Schulz and Schaefer (~) were made using the revised thermal functions tor NH 3 (g). All of 

the previously cited work in reaction calorimetry plus the early work of Berthelot (!, ~) and Thomsen (~) were reevaluated. No 

significant differences in the 3rd law calculations of the equilibrium data or in the corrections to the flow calorimetry data of 

Haber and Tamaru (~) and Wittig and Schmatz (~) were foun~. Thus, the D.l kcal discrepancy between the results of the 

equilibrium and reaction calorimetry measurements remains unresolve~. The previous JANAF selection (1) for A t HO(296.t5 K) of 

NH
3

(g) was adopted. A recent evaluation (!!) which includes new indirect calorimetry (unpublished) further confirms this 

selection. 

Source 

Larson. Dodge (1' 
Haber et al. (~) 

Haber, Maschke (i) 
Schulz, Schaefer (~) 

Berthelot (!) 

Berthelot (!D 
Thomsen (~) 

Becker. Roth (10) 
Haber et a 1. (il) 
Haber, Tamaru (l2) 
Witti~, SChmatz-r~) 

Method 

AfH O (298.15 K) 

kcd moC I 
6

t
H"(298.15 1() 

!l.cal mol- 1° 
-10.70:!:0.11 

-10.88tO.15 
Kp(!J from Kp(10-I,OOO atm, 600-BOO K) -10.88 

Kp(!) from 1(;(30 atm, 800-1200 K) -10.86 

Kp(1 atm, 900-1400 K) -10.B5 

Kp(1 atm, 567-673 K) -10.87 

- 1 0 • 6'H 0 • 2'<! 

-10.7810.20 

[ndire~t; Reaction of Br 2 (aq) and NH3 (aq) -tl.4 

Indirect; Reaction of 02(g) with ~3(g) -12.1 

Indirect; Reactlon of 02(g) with NH 3 (g) -11.9 

Indirect; Heat of combustlon oKal.tes -11.00tO.15 
Plow calorimetry at 298 K -11.10tO.05 
Plow calorimetry (739-932 K) -10.97tO.008 
Flow calorimetry at 832 K -10.9910.05 

6S"(obs.-calc. 298.15 K)" 
cal (-1 mol- 1 

+0.24:!:0.15
a 

_0.O'HO.15 b 

0.20tO.19c 

D.14l0.3d 

"2nd law analysis assumlng 6c~(cal K- l mol-I, equals <a) -3.672+0.00591(T-700), (b) -1.?36+0.00404(T-I00D). 

(c) -0.855+0.00305(T-II00), (d) 3.287+0.00651(T-600). 

Heat Capacity and Entropy 
The thermodynamic functions differ from those of the 1965 JANAP table (1) in belng taken directly form the later and more 

complete work of Haar (~). Haar treated in detail the contributlon of the highly anha~onic ~ut-ot-plane Vibrational mode, 

tncludin~ lts large coupllng with rotatlon and lts coupling wlth the other vibrational modes. Haar's values of C· pass through a 
p -1 

shallow maximum between 4000 .nd 5000 K; they were elltrapolated from 5000 to 6000 K by assuming a constant value (19.300 cal K 
mol-I). A summary of Haar's estimated uncertalntles and of the dlfferences of the 1965 table from the present table (In cal K-

1 

mol-I) ls as follows: 

L....!. 
1000 
3000 
5000 

Uncertainties (Haar, 15) 

C" 
;> 

0.006 
0.10 
0.6 

S· 

0.006 
0.06 
0.04 

1965 Table minus This Table 

C· 
;> 

-0.034 
+0.142 
+1.775 

~ 
-0.033 
-0.122 
+0.265 

The National Bureau of Standards prepared thls table (~) by crltical analysls of data exi~ttng ln 1972. Using the results 

of Haar (li) and dfK" selected by NBS (li), we recalculate the table ln terms of R~1.987192 cal K-
l 

1001-
1 

(l!) and current JANAP 

reference states for the elements. 
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TIl: 
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100 
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298.15 

300 
100 
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600 
700 
800 
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1000 

1100 
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1300 
ltOO 
1500 

1600 
1700 
1800 
1900 
2000 

2100 
2200 
2300 
2400 
2500 

2600 
2700 
2800 
2900 
3000 

3100 
3200 
3300 
HOO 
3500 

3600 
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3800 
3900 
1000 

tIOO 
.200 
1300 
HOO 
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j600 
noo 
1800 
1900 
5000 

5100 
5200 
5300 
5jOO 
5500 

5600 
5700 
5800 
5900 
6000 

o. 
33.284 
33.757 

35.652 

35.701 
38.716 
12.048 

15.293 
18.351 
51.235 
53.948 
56.191 

58.859 
61.018 
63.057 
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66.561 

68.079 
69.152 
70.695 
71.818 
72.833 

73.751 
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75.330 
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78.529 
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80.'00 
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80.751 
80.751 
80.751 
80.751 

80.751 
80.751 
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80.751 
80.751 

SO -IGo-H°(Tr))1T 
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178.990 

192.771 
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216. ta6 
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266.907 
271.142 
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279.957 
283.962 
287.815 
291.525 

295.101 
298.552 
301.881 
305.10. 
308.220 

311.236 
3U .158 
316.991 
319.740 
322.109 

325.001 
327.521 
329.972 
332.358 
331.a80 

336.942 
339.1 H 
311 .297 
313.395 
315.441 

311 .439 
3iS .391 
351.297 
353.161 
354.983 

356.765 
358.508 
360.213 
361.882 
363.517 

365.117 
366.685 
368.223 
369.732 
371.21& 

372.669 
374.098 
375.503 
376.883 
378.210 

INFINITE 
223.211 
195.962 

192.774 

192.775 
194.209 
197.021 

200.302 
203.727 
207.160 
210.513 
213.819 

217.069 
220.197 
223.236 
226.187 
229 .051 

231.840 
231.549 
237.184 
239.718 
212.2U 

2U.677 
2H .048 
2'9.360 
251.816 
253.818 

255.969 
258.070 
260.124 
262.132 
264.097 

266.020 
267.903 
269.747 
271.554 
273.321 

275.080 
216.763 
278.133 
280.072 
281.680 

28 3 .260 
284.811 
286.335 
287.833 
289.305 

290.752 
292.175 
293.575 
294.952 
296.307 

297.6U 
298.951 
300.246 
301.519 
302.773 

304.008 
305.225 
306 •• 25 
307.607 
308.773 

PREVIOUS: June 1977 

StaaUrd Slate ~ _ pO .. '.1 MP. 

r------- II ... 01- 1 
-----..... 

-10.0'5 
-6.737 
-3.391 

O. 

0.086 
3.781 
7.819 

12.188 
16.812 
21.853 
27.113 
32.637 

38.&06 
44.102 
50.609 
57.008 
63.582 

70.315 
77.193 
81.201 
91.328 
98.561 

105.891 
113.309 
120.805 
128.372 
136.005 

113.695 
151.138 
159.228 
167.062 
171.933 

1B2.8tO 
190.778 
198.741 
206.734 
211.715 

222.776 
230.821 
238.B86 
216.960 
255.013 

283.136 
271.234 
279.337 
287.142 
295.550 

303.656 
311.761 
319.862 
327.958 
336.0j8 

314 .127 
352.202 
360.277 
368.352 
376.428 

384.503 
392.578 
100.653 
108.728 
116.803 

&fH O 

-38.907 
-U .550 
-43.703 

-45.898 

-45.939 
-48.0U 
- 49.857 

-51.371 
-52.618 
-53.621 
-54.Hl 
-55.013 

-55.151 
-55.716 
-55.917 
-55.982 
-55.954 

-55.8 t7 
-55.672 
-55.139 
-55.157 
-5j.833 

-5·t.n3 
-5L084 
-53.671 
-53.238 
-52.789 

-52.329 
-51.860 
-51.386 
-50.909 
-50.133 

- 49 .959 
-49.191 
-49.030 
-48.578 
- .8 .139 

-47.713 
- 47 .302 
-46.908 
-j6.531 
-46.180 

-15.8 t7 
- j5 .539 
-45.25( 
-41.996 
-H.764 

-411.561 
-H.387 
- 14.242 
-U.129 
-U.Ot? 

-iJ .999 
-13.979 
-&3.982 
-U .006 
-H.049 

-44.112 
- U .193 
-44 .291 
-U •• 04 
-41.531 

-38 .907 
-3& .031 
-25.679 

-16.367 

-16.183 
-5.911 

'.800 

15.879 
27.190 
38.662 
50.247 
61.910 

73.625 
85.373 
97.1 U 

108.918 
120.696 

132.169 
144.234 
155.986 
167.725 
179.:&17 

191.152 
202.840 
21 .. 509 
228.160 
237.792 

219.106 
261.003 
272.581 
28LIt3 
295.689 

307.218 
318.733 
330.233 
3U .719 
353.191 

384.652 
376.101 
387.539 
398.967 
nO.385 

121.795 
133.198 
U •• 593 
155.981 
187.361 

H8.H3 
'90.117 
501.188 
512.856 
521.223 

535.587 
546.951 
558.315 
569.680 
581.0U 

592.nO 
603.778 
615.147 
626.516 
637.889 

CURRENT: June 1977 

INPINITE 
17.777 
6.707 

2.867 

2.818 
0.776 

-0.501 

-1.382 
-2.029 
-2.52' 
- 2.916 
-3.231 

-3.'96 
-3.716 
-3.903 
- 4.06 I 
-4.203 

-1.325 
-4.432 
- 4 .527 
-4.611 
-"687 

-4.755 
-1.816 
-4.872 
-4.922 
-4.968 

-5.011 
-5.049 
-5.085 
-5.118 
-5.118 

-5.177 
-5.203 
-5.227 
-5.250 
-5.271 

-5.291 
-5.310 
-5.327 
-5.344 
-5.359 

-5.371 
-5.388 
-5.401 
-5.U3 
-5.'25 

-5.136 
-5.U7 
-5.'57 
-5.'67 
-5.n7 

-5.486 
-5.'94 
-5.503 
-5.511 
-5.518 

-5.526 
-5.533 
-5.540 
-5.5t? 
-5.553 
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26-9. Molecular Partition Functions and Related Thermodynamic Data Are Extensively Tabulated 

by the headings -{GO(T) - HO(298.15 K)}/T and HO(T) - HO(298.15 K). Ta­
ble 26.4 gives -{GO(T) - HO(298.15 K)}/T for ammonia at a number of temper­
atures. The ratio {GO(T) - HO(298.15 K)}/T rather than {GO(T) - HO(298.15 K)} 
is given because {Go (T) - HO (298.15 K)} / T varies more slowly with tempera­
ture, and hence the tables are easier to interpolate. It is not necessary to specify 
a reference point for the heat capacity or the entropy, as indicated by the head­
ings to the second and third columns. The sixth and seventh columns give values 
of ~fHo and ~fGo at various temperatures. We learned in Section 26-3 that these 
data can be used to calculate values of ~ HO, ~ GO, and equilibrium constants of 

r r 

reactions. 
Because GO (T) and HO (T) are expressed relative to HO (298.15 K) in Table 26.4, 

we must express the molecular partition function q (V, T) relative to a zero of energy. 
Recall that in Section 23-5 we wrote q (V, T) as 

q(V, T) == Le-E/ kBT == e-cO/kBT + e-cl/kBT + ... 
j 

== e-Eo/kBT(1 + e (E\-EO)/kBT + ... ) 

== e-Eo/kBT qO(V, T) (26.46) 

where qO (V, T) is a molecular partition function in which the ground state energy is 
taken to be zero. If we substitute Equation 26.46 into Equation 17.41, then we obtain 

(26.47) 

For one mole of an ideal gas, H == HO(T) == U + PV == U + RT, and so Equation 
26.47 becomes 

(26.48) 

where H; == NACo. Because qO(V, T) is the molecular partition function in which the 
ground state energy is taken to be zero, qO (V, T) is given by either Equation 18.57 or 
18.60, without the factors of e 8 vib ,j/2T and eDe/kBT, which represent the ground state of 

the molecule. Using either Equation 18.57 or 18.60, Equation 26.48 becomes 

3 2 L R8 'b' HO(T) - H; == -RT + -RT + VI.j + RT 
2 2 (M) ,'b .j T 1 ' e \I.} -

j 

7 "R8 'b ' 
== - RT + ~ (><), .j ~ ,j (linear molecule) 

2 . e Vlb.J - I 
j 

(26.49a) 
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1074 Chapter 26 I Chemical Equilibrium 

or 

3 3 '" R8 'b . HO(T) - H; == -RT + -RT + ~ e ;~ .j +RT 
2 2 . e vib .. / - 1 

j 

'" R8 'b . == 4RT + ~ 0) . ./~1 .j (nonlinear molecule) 
, e 'db.} - 1 

j 

(26.49b) 

Note that there are no terms involving 8 vib,jl2T or Del kBT in Equations 26.49 as 
there are in Equations 18.58 and 18.61 because we have taken the energy of the ground 
vibrational state to be zero. 

We can use Equation 26.49b and the parameters in Table 18.4 to calculate 
HO(298.15 K) - H; for ammonia 

HO(298.15 K) - H; == 4(8.3145 J.mol- I ·K- 1)(298.15 K) 

_I -I [ 4800 K 
+(8.3145 J ·mol . K ) e4800/298,15 _ 1 

+ + +----
1360 K (2)(4880 K) (2)(2330 K) ] 

e 1360/298,15 - 1 e4880/298,15 - 1 e2330/298,15 - 1 

== 10.05 kJ ·mol- I 

The very first entry in the fifth column in Table 26.4 is -10.045 kJ·mol- l
. This 

value represents HO(O K) - HO(298.15 K), which is the negative of HO(298.15 K) -

HO (0 K) that we just calculated because HoC == HO (0 K). Thus, the value given by 

Equation 26.49b and the value given in Table 26.4 are in excellent agreement. 

EXAMPLE 26-8 
Use Equation 26.49b and the parameters in Table 18.4 to calculate HC(T) - H~ for 
NH) (g) at 1000 K and one bar. Compare your result to Table 26.4. 

SOL UTI 0 N: Equation 26.49b gives 

H (1000 K) - H; == 42.290 kJ .mol 1 

Table 26.4 gives 

H(~ - H (298.15 K) == HO(O K) - HO(298.15 K) == -10.045 kJ·mol- 1 (1) 

and 

H (1000 K) - H C (298.15 K) == 32.637 kJ ·mol- 1 (2) 

If we subtract Equation 1 from Equation 2, then we obtain 

HO(1000 K) - H; == 42.682 kJ ·mol- 1 
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The value obtained from Table 26.4 is more accurate than the value calculated from 
Equation 26.49b. At 1000 K, the ammonia molecule is excited enough that the rigid 
rotator-harmonic oscillator approximation begins to beconle unsatisfactory. 

We can also use the data in Table 26.4 to calculate the value of qO(V, T) for 

ammonia. Recall from Section 23-5 that we derived the equation (Equation 23.36) 

':). ° {(qO) RT } ~ (T) - Eo == -RT In V NAP" (26.50) 

where E~ == N A Eo == H; and po == 1 bar == 105 Pa. Equation 26.50 is valid only for an 
ideal gas, and recall that q(V, T)/ V, or qO(V, T)/ V, is a function of temperature only 

for an ideal gas. Equation 26.50 clearly displays the fact that the chemical potential is 
calculated relative to some zero of energy. 

Because GO == ~ ° for a pure substance, we can write Equation 26.50 as 

° ° {(qO) RT } G - H == -RT In -° V N po 
A 

(26.51 ) 

It is easy to show that GO --+ H~ as T --+ 0 (because T In T --+ 0 as T --+ 0), and so 
H~ is also the standard Gibbs energy at 0 K. 

According to Equation 26.51 

qo RT 
-(G HoO)/RT - ==e 

V N pO 
A 

or 

H/;)/ RT (26.52a) 

where po == 105 Pa. The fourth column in Table 26.4 gives - {Go - HO (298.15 K)} / T 
instead of - (Go - H;) / T, but the first entry of the fifth column gives H;­
HO (298.15 K). Therefore, the exponential in Equation 26.52a can be obtained from 

exponent in 

Equation 26.52a 

fourth column in 

Table 26.4 
first entry of fifth 

column in Table 26.4 

divided by T 

(26.52b) 
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1076 Chapter 26 / Chemical Equilibrium 

Let's use Equations 26.52 to calculate qO(V, T) for ammonia at 500 K. Substituting 
the data in Table 26.4 into Equation 26.52b gives 

(G - H~) . 1 I -10.045 kJ.mol 1 
- == 197.021 J·K- 'mol- + ------

500 K 500 K 
== 176.931 J. K- 1 ·mol- I 

If we substitute this value into Equation 26.52a, then we obtain 

T1 -I· 5 == (6.022 x 10""- mol )(10 Pa) e(176.931 j.K- 1.mo)-I)/8.314 J.mol I.K-l 

(8.314J·mol 1 ·K- 1)(500K) 

== 2.53 x 1034 m-3 

Equation 18.60 gives (Problem 26-48) 

O(V T) 
q , == 2.59 X 1034 m-3 

V 

The value given by Equations 26.52 is the more accurate because Equation 18.60 is 
based on the rigid rotator-harmonic oscillator approximation. 

EXAMPLE 26-9 
The JANAF tables give _[Go - H (298.15 K)]/T == 23l.002 J·mol-I·K- 1 and 

H; - H (298.15 K) == -8.683 kJ·mol- 1 for 02(g) at 1500 K. Use these data and 

Equations 26.52 to calculate qO (V, T) / V for 02 (g) at 1500 K. 

SOL UTI 0 N: Equation 26.52b gives 

G - Ho I -8.683 kJ .mol I 
--- == 231.002 J·mol-'·K- + ------

T 1500 K 

== 225.093 J ·mol- I ·K- 1 

and Equation 26.52a gives 

qO(V, T) (6.022 X 10
23 

mol-
1
)(105 Pa) e(225.093 J.K- 1.mol-')/8.314 j.mol-1.K-1 

V (8.314 J. mol-I . K -I ) ( 1500 K) 

== 2.76 X 1036 m-3 

The value calculated in the previous section is 2.79 x 1036 m -3. 

Lastly, the thermodynamic data in the JANAF tables can also be used to calculate 
values of Do for molecules. Table 26.4 gives ~fHO(O K) == -38.907 kJ ·mol- 1 for 
NH3 (g). The chemical equation that represents this process is 
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The entries in the JANAF tables for H(g) and N(g) give Ll l' HO (0 K) == 216.035 kJ· mol- l 

and 470.82 kJ· moll, respectively. These values correspond to the equations 

(2) 

and 

(3) 

If we subtract Equation 1 from the sum of Equation 3 and three times Equation 2, then 
we obtain 

NH3 (g) ~ N(g) + 3 R(g) 

Lll'HO(O K) == 38.907 kJ·mol- 1 + (3)(216.035 kJ·mol- 1
) + 470.82 kJ·mol- 1 

== 1157.83 kJ ·mol- 1 

The value given in Table 18.4 is 1158 kJ . mol-I. 

EXAMPLE 26-10 
The JANAF tables give b..jHO(O K) for RI(g), R(g), and I(g) to be 28.535 kJ ·mol- l

, 

216.035 kJ·mol- l
, and 107.16 kJ·mol- l

, respectively. Calculate the value of Do for 
HI(g). 

SOL UTI 0 N: The above data can be presented as 

~ H2 (g) + ~ 1
2
(s) ~ HI(g) b..fHO(O K) == 28.535 kJ ·mol- 1 (1) 

~ H
2
(g) ~ R(g) b..fHO(O K) == 216.035 kJ·mol I (2) 

~ 12 (s) ~ I(g) b..fH o (0 K) == 107.16 kJ· mol- 1 (3) 

If we subtract Equation 1 from the sum of Equations 2 and 3, then we obtain 

RI(g) ~ H(g) + I(g) b..fHO(O K) == 294.66 kJ·mol- 1 

The value given in Table 18.2 is 294.7 kJ· moll. 

The thermodynamic tables contain a great deal of thermodynamic and/or statistical 
thermodynamic data. Their use requires a little practice, but it is well worth the effort. 
Problems 26-45 through 26-58 are meant to supply this practice. 
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26-10. Equilibrium Constants for Real Gases Are Expressed in Terms 

of Partial Fugacities 

Up to this point in this chapter, we have discussed equilibria in systems of ideal 
gases only. In this section, we shall discuss equilibria in systems of nonideal gases. In 
Section 22-8 we introduced the idea of fugacity through the equation 

f 
{L(T, P) = {L0(T) + RT In r (26.53) 

where jvL ° (T) is the chemical potential of the corresponding ideal gas at one bar. Once 
again to simplify the notation we shall not display the fO in the rest of this chapter. 
Therefore, Equation 26.53 can be written in the form 

jvL ( T, P) == jvL ° ( T) + R T In f (26.54) 

Consequently, we must keep in mind that f is taken relative to its standard state. In a 
mixture of gases, we would have 

jvL . (T, P) == jvL ~ (T) + R T In f· 
J J J 

(26.55) 

Because the molecules in a mixture of gases in which the gases do not behave ideally 
are not independent of one another, the partial fugacity of each gas generally depends 
upon the concentrations of all the other gases in the mixture. 

N ow let's consider the general gas-phase reaction 

The change in Gibbs energy upon converting the reactants at arbitrary partial pressures 
to products at arbitrary partial pressures is 

If we substitute Equation 26.55 into this equation, then we get 

(26.56) 

where 

Note that Equation 26.56 is the generalization of Equation 26.24 to a system of non­
ideal gases. Realize that the values of the fugacities at this point are arbitrary, and not 
necessarily equilibrium values. If the reaction system is in equilibrium, then ~r G == 0 
and all the fugacities take on their equilibrium values. Equation 26.56 becomes 

(26.57) 
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where the equilibrium constant K
f 

is given by 

(26.58) 

Once again notice that the equilibrium constant is a function of temperature only, as 
dictated by Equation 26.57. 

The equilibrium constant defined by Equation 26.57 is called a thermodynamic 
equilibrium constant. Equation 26.57, which relates K f to ~r GO is exact, being valid for 
real gases as well as ideal gases. At low pressures we can replace the partial fugacities 
by partial pressures to obtain K p' but we should expect this approximation to fail 
at high pressures. The formulas to calculate partial fugacities from equation-of-state 
data are extensions of the formulas in Section 22-8 where we calculated fugacities for 
pure gases. In order to obtain the partial fugacities to use in Equation 26.58 we need 
rather extensive pressure-volume data for the mixture of reacting gases. These data are 
available for the important industrial reaction 

Table 26.5 shows both K p and K f as a function of the total pressure of the reaction 
mixture. Note that K p is not a constant, but that K

f 
is fairly constant with increasing 

total pressure. The results shown in Table 26.5 emphasize that we must use fugacities 
and not pressures when dealing with systems at high pressures. 

TAB L E 26.5 
Values of K p and K

f 
as a function of total pressure for 

the ammonia synthesis equilibrium at 4500 C. 

total pressure/bar K p/l0-3 K
f
/l0- 3 

10 6.59 6.55 

30 6.76 6.59 

50 6.90 6.50 

100 7.25 6.36 

300 8.84 6.08 

600 12.94 6.42 

EXAMPLE 26-11 
The equilibrium constants K p and K

f 
can be related by a quantity K y' such that 

K f == K y K p and K y has the form of an equilibrium constant, but involving activity 
coefficients, y .. First derive an expression for K and then evaluate it at the various 

} y 

pressures given in Table 26.5. 
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SOL UTI 0 N: The relation between pressure and fugacity is given by 

j, == y.P. 
J J J 

If we substitute this expression into Equation 26.58, then we obtain 

(y;y P;y) (y;'Z P;'Z) 

K f = (y;A P;A)(y~'" P;") 

( 
l'y l,'Z) (pl,'Y pVZ) yy yz y , z 

== l' l' • l' V == K , . K P 

Y AyS pApS r 
A B A B 

where we have used the standard state j == P ==] bar. Using the data in Table 26.5, 

we see that 

Plbar 10 30 50 100 300 600 

K 0.994 0.975 y 0.942 0.877 0.688 0.496 

The deviation of K from unity is a measure of the nonideality of the system. 
y 

26-11. Thermodynamic Equilibrium Constants Are Expressed in 
Terms of Activities 

In the previous section we discussed the condition of equilibrium for a reaction system 
consisting of real gases. The central result was the introduction of K

f
, in which the 

equilibrium constant is expressed in terms of partial fugacites. In this section we shall 
derive a similar expression for general equilibrium systems, consisting of gases, solids, 
liquids, and/or solutions. The starting point is Equation 24.35, which we write as 

/-l. == jL~(T) + RT Ina . 
.1.1 .I 

(26.59) 

where a. is the activity of species j and /-l ~ is the chemical potential of the standard 
.I .J 

state. This equation essentially defines the activity, a .. Recall that we discussed two 
.I 

different standard states in Chapters 24 and 25: a Raoult's law standard state, in which 
a. ---+ x. as x. ---+ I, in which case jL~ == /-l):, the chemical potential of pure component 

.I J .I .I 

j; and a Henry's law standard state, in which a. ---+ m. or a. ---+ c. as nl. ---+ 0 or 
.I .I .I .I .I 

C. ---+ 0, in which case jL c: is the chemical potential of the (hypothetical) corresponding 
J } 

ideal solution at unit molality or unit molarity. Although Equation 26.55 is restricted 
to gases, Equation 26.59 is general. In fact, we can include Equation 26.55 as a special 
case of Equation 26.59 by defining the activity of a gas by the relation aj == fj / f/. In 
this case, jL j (T) in Equation 26.59 is the corresponding (hypothetical) ideal gas at one 
bar and at the temperature of interest. Agreeing to set a. == f· / ft simply allows us to 

.J ). 

treat gases, liquids, solids, (and solutions) in the same notation. 
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N ow let's consider the general reaction 

The change in Gibbs energy for converting A and B in arbitrary states to Y and Z in 
arbitrary states is given by 

If we substitute Equation 26.59 into this equation, then we obtain 

Vy Vz a a ~ 

~ G == ~ GO + RT In ~ : 
r r A B aA aB 

(26.60) 

where 

Equation 26.60 is called the Lewis equation, after the great thermodynamicist G. N. 
Lewis, who first introduced the concept of activity and pioneered the rigorous thermo­
dynamic analysis of chemical equilibria. Note that Equation 26.60 is a generalization 
of Equation 26.56 to a non-ideal system, which may consist of condensed phases and 
solutions as well as gases. Realize that the activities at this point are arbitrary, and not 
necessarily the equilibrium activites. Just as we did in Section 26-5 for the case of a 
reaction system of ideal gases, we introduce a reaction quotient, or an activity quotient, 
in this case, by 

(26.61 ) 

U sing this notation, we can write Equation 26.60 as 

~ G == ~ GO + RT In Q 
r r a 

(26.62) 

According to Equation 26.59, a. == 1 when a substance is in its standard state. 
J 

Therefore, if all the reactants and products in a reaction mixture are in their standard 
states, then all the a. == 1 in Equation 26.61 and so Q == 1, giving ~ G == ~ GO. If 

Jar r 

the reaction system is at equilibrium at fixed T and P, then ~r G == 0, and we have 

(26.63) 

where Q denotes Q in which all the activities have their equilibrium values. In a,eq a 

analogy with Section 26-5, we denote Q by K 
a,eq a 

K (T) == a v v a Aa B 
A B 

(26.64) 
eq 
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which we call a thermodynamic equilibrium constant. Equation 26.57 becomes 

~ GO == -RT In K 
r a (26.65) 

Equation 26.65 is completely general and rigorous, and applies to any system in 
equilibrium. Note that for a reaction involving only gases, ai == ii' and Ka (T) == 
K f (T), Equation 26.58, and Equation 26.65 is equivalent to Equation 26.57. Equations 
26.64 and 26.65 are more general than Equations 26.57 and 26.58 because the reactants 
can be in any phase. The application of this equation is best done by example. 

Let's consider a heterogeneous system such as the water-gas reaction 

which is used in the industrial production of hydrogen. The (thermodynamic) equilib­
rium constant for this equation is 

K 
a 

a . a 
COig) H2 (g) 

aC(s) a H-, O(g) 

icO(g) i H2 (g) 

aC(s) i H20(g) 

Although we have dealt with fugacities of gases earlier, we have not dealt with activities 
of pure solids and liquids. We must first choose a standard state for a pure condensed 
phase, which we choose to be the pure substance in its normal state at one bar and at 
the temperature of interest. To calculate the activity, we start with 

- -v (
3J-L) 
ap T 

and the constant-temperature derivative of Equation 26.59 

d J-L == R T d In a 

If we write Equation 26.66 as 

dJ-L==VdP 

and introduce Equation 26.67, then we have 

V 
dIna == -dP 

RT 

(constant T) 

(constant T) 

(constant T) 

(26.66) 

(26.67) 

We now integrate from the chosen standard state (a == 1, P == 1 bar) to an arbitrary 
state to obtain 

1
a jP V dina' == d P' 

a=1 1 RT 
(constant T) 



26-11. Thermodynamic Equilibrium Constants Are Expressed in Terms of Activities 

or 

1 jP-Ina == - VdP' 
RT I 

(constant T) (26.68) 

For a condensed phase, V is essentially a constant over a moderate pressure range, and 
so Equation 26.68 becomes 

EXAMPLE 26-12 

V 
Ina == -(P - 1) 

RT 

Calculate the activity of C(s) in the form of coke at 100 bar and 1000°C. 

(26.69) 

SOL UTI 0 N: The density of coke at 1000°C is about 1.5 g. cm -3, and so its molar 

volume, V, is 8.0 cm3 ·mol- I
• From Equation 26.69 

(8.0 cm3 ·mol- 1 )(1 dm3 /1000 cm3)(99 bar) 
In a == == 0.0076 

(0.08206 dm3 ·bar.K- 1·mol- I )(1273 K) 

or a == 1.01. Note that the activity is essentially unity even at 100 bar. 

According to Example 26-12, the activity of a pure condensed phase is unity at 
moderate pressures. Consequently, the activities of pure solids and liquids are normally 
not included in equilibrium constant expressions (as you may recall from general 
chemistry). For example, for the reaction 

the equilibrium constant is given by 

fco(g) f H2 (g) PCO(g) PH) (g) 
K == ~ ---------

f H20 (g) P H
2
0(g) 

if the pressures are low enough. However, there are cases where the activities cannot 
be set to unity, as the following Example shows. 

EXAMPLE 26-13 
The change in the standard molar Gibbs energy for the conversion of graphite into 
diamond is 2.900 kJ ·mol 1 at 298.15 K. The density of graphite is 2.27 g.cm-3 and 
that of diamond is 3.52 g·cm-3 at 298.15 K. At what pressure will these two forms of 
carbon be at equilibrium at 298.15 K? 

SOL UTI 0 N: We can represent the process by the chemical equation 

C(graphite) ~ C(diamond) 
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for which 

~ G = -RT In K = -RT In adiamond 
r {/ 

a h" grap He 

Using Equation 26.69, we have 

or 

2900J·mol- 1 

(8.3145 J·mol- 1 ·K- 1)(298.15 K) 

(3.41 em3 ·mol I - 5.29 cm3 ·mol 1)(1 dm3 /1000 cm3)(p - 1) bar 

(0.083145 dm3
• bar· mol-l . K- 1 )(298.15 K) 

Solving the expression for P gives 

P = l.54 X 104 bar ~ 15000 bar 

26-12. The Use of Activities Makes a Significant Difference in 
Sol ubi I ity Calcu lations I nvolvi ng Ion ic Species 

Equation 26.65 can also be applied to reactions that take place in solution. For example, 
let's consider the dissociation of an aqueous solution that is O. 100 molar in acetic acid, 
CH

3
COOH(aq), for which K == 1.74 x 10-5 on a molarity scale. The equation for the 

reaction is 

and the equilibirum-constant expression is 

aCH COOH 
.3 

== 1.74 X 10-5 (26.70) 

Being a neutral species at a concentration of around 0.100 molar, the undissociated 
acetic acid has an activity coefficient of essentially unity and so aHAc == CHAco For the 
ions, we use the fact that (Table 25.3) 

and so Equation 26.70 becomes 

1.74xlO-5 

') (26.71) 
y± 



26-12. Differences in Solubility Calculations Involving Ionic Species 

As a first approximation, we shall set all the activity coefficients equal to unity and 
write 

K 
CH 0+ CAc-

3 == 1.74 X 10-5 mol.L- 1 
c 

CHAc 

From the following set-up 

initial 0.100 mol· L -I ~o o 
equilibrium 0.100 mol·L -1 - X x x 

we get 

') 

x"" 
------1-- == 1.74 X 10-5 mol·L- 1 

0.100mol·L -x 

or x == 1.31 x 10-3 mol· L -1, for a pH of 2.88. This is the type of calculation that is 
done in general chemistry. 

Now let's not set y ± equal to unity. For y ±' we shall use Equation 25.57 

In == _1.173Iz+z_I(/cl mol·L- 1
)1/2 

y ± 1 + (l) rno 1· L -I ) 1/2 

where the ionic strength Ie is given by 

In order to calculate Ie we must know cH+ or C Ac-' but we cannot determine either 
of these from Equation 26.71 because it contains y~. We can solve this problem by 
iteration, however. We first calculate y ± using the values of c

H
+ and C Ac- that we 

obtained above by letting y ± == 1: 

1.173(1.31 X 10-3)1/2 
In y == - == -0.0410 

± 1 + (1.31 X 10-3)1/2 

or y~ == 0.921. We now use this value in the right-hand side of Equation 26.71, and 
write 

0.100 mol·L -I - X 

1.74 X 10-5 mol·L- 1 

0.921 

Solving for x, we find that x == 1.365 x 10-3 mol· L -1. We now use this value to 
calculate a new value of y~ (= 0.920), and use this value in Equation 26.71 to calculate 
a new value of x (== 1.366 X 10-3 mol·L- 1

). Cycling through once more gives y~ == 
0.920 and x == 1.366 x 10-3 mol· L- 1 

, and so we find that x == 1.37 X 10-3 mol· L- 1 

(to three significant figures) and pH = 2.86. Thus we see that we calculate a pH of 
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2.86 using activities and a pH of 2.88 ignoring activities, not a significant difference. 
Fortunately the myriad of pH calculations that you did in general chemistry were 
sufficiently accurate. This is not necessarily the case for solubility calculations, as we 
shall now see. 

The solubility product, Ksp ' of BaF2(s) in water at 25°C is 1.7 x 10-6
, and the 

associated chemical equation is 

The equilibrium constant expression is 

aB 2+aF
2

- == K == 1.7 X 10-6 
a sp 

Using the formula (Table 25.3) 

we have 

1.7 X 10-6 

y~ 
(26.72) 

If we set y± == 1, and let s be the solubility of BaF2 (s), then CBa2+ == sand cF- == 2s, 
and we have 

ors == (1.7 x 10-6 moI3 .L-3j4)1/3 == 7.52 x 10-3 mol·L- 1.Wenowcalculatetheionic 
strength using this value of s to obtain 

1 
Ie = 2 (4s + 2s) = 3s = 0.0226 mo\·L- 1 

U sing this value of Ie in Equation 25.57 gives y ± == 0.736. Substitute this value into 
Equation 26.55 to get 

1.7 x 10-6 mol3 . L -3 
4s 3 == ---------------

0.399 

and so s == 0.0102 mol·L- i
. Cycling through again gives y± == 0.705 and s == 0.0107 

mol·L -1. Once more gives y± == 0.700 and s == 0.0107 mol·L -1 and one last iteration 
gives y± == 0.700 and s == 0.011 mol·L -I to two significant figures. Notice that in this 
case there is over a 30% difference between calculating s with and without the inclusion 
of activity coefficients. 

EXAMPLE 26-14 
Calculate the solubility of TIBr0

3 
(s) in pure water and in an aqueous solution that is 

0.500 mol·L- 1 in KN0
3
(aq). Ksp == 1.72 X 10-4 for TIBr0

3 
(s). 



Problems 

SOL UTI 0 N: The equation for the dissolution of TIBrO~ (s) is 

with 

aTI+aBrO~ = cTI+cBro~ y~ = s2y~ = 1.72 X 10-
4 

. . 

Letting y ± = 1 at first, we find that s = 0.0131 mol· L -\ . Using this value of s, we get 

Ie = sand y ± = 0.887 for TIBr0
3 
(s) in pure water. Using this value of y ± in the Ksp 

expression gives s = 0.0148 mol·L -I. Subsequent iterations give s = 0.0149 mol.L -1. 

For the case with 0.500 mol·L -I KN0
3
(aq), we write 

1 
I = - (s + s + 0.500 mol·L -I + 0.500 mol·L -1) = S + 0.500 mol·L- 1 

e 2 

Because s is much less than 0.500 mol· L -I , we intially let Ie = 0.500 mol· L -I , which 

gives y ± = 0.616. Using this value in the solubility product expression gives s = 
0.0213 mol·L -1. Now Ie = 0.5213 mol·L -1 and y± = 0.612 and s = 0.0214 mol. L -1. 

Subsequent iterations give s = 0.0214 mol·L -\. Notice that the solubility of TIBr0
3 
(s) 

is significantly enhanced in the 0.500 molar KN0
3 
(aq) even though the KN0

3 
(aq) 

does not participate in the dissolution reaction. If we had not included the activity 

coefficients, we would have gotten no effect at all. 

Problems 
26-1. Express the concentrations of each species in the following chemical equations in terms 

of the extent of reaction, ~. The initial conditions are given under each equation. 

S02CI2(g) ~ S02(g) + Cl2 (g) a. ~ 

(1) no 0 0 
(2) no n

1 0 

2 SO) (g) ~ 2 SO" (g) + °2(g) b. ~ .. 
(1) no 0 0 
(2) no 0 n

l 

N
2
(g) + 202(g) ~ N

2
0 4 (g) c. ~ 

(1) no 2no 0 
(2) no no 0 

26-2. Write out the equilibrium-constant expression for the reaction that is described by the 
equation 

Compare your result to what you get if the reaction is represented by 
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26-3. Consider the dissociation of N 2 °
4 
(g) into N0

2 
(g) described by 

Assuming that we start with no moles of N
2
0

4
(g) and no N0

2
(g), show that the extent of 

reaction, ~cq' at equilibrium is given by 

C ( ) 1/2 Seq K p 

-;;;; = K p + 4P 

Plot ~eq/ no against P given that K p = 6.1 at 100°C. Is your result In accord with 
Le Chatelier's principle? 

26-4. In Problem 26-3 you plotted the extent of reaction at equilibrium against the total pressure 

for the dissociation of N2 °4 (g) to N02 (g). You found that ~eq decreases as P increases, in 
accord with Le Chatelier's principle. Now let's introduce n. moles of an inert gas into 

mert 

the system. Assuming that we start with no moles of N
2
0

4
(g) and no N0

2
(g), derive an 

expression for ~eq/ no in terms of P and the ratio r = n inert / nO" As in Problem 26-3, let 

K p = 6.1 and plot ~eq/ no versus P for r = 0, r = 0.50, r = 1.0, and r = 2.0. Show that 
introducing an inert gas into the reaction mixture at constant pressure has the same effect as 

lowering the pressure. What is the effect of introducing an inert gas into a reaction system 

at constant volume? 

26-5. Re-do Problem 26-3 with no moles ofN
2
0 4 (g) and n

1 
moles ofN02 (g) initially. Let 

n 1/ no = 0.50 and 2.0. 

26-6. Consider the ammonia-synthesis reaction, which can be described by 

Suppose initially there are no moles of N2(g) and 3no moles of H2 (g) and no NH3 (g). 
Derive an expression for K p (T) in terms of the equilibrium value of the extent of reaction, 

~eq' and the pressure, P. Use this expression to discuss how ~eq/ no varies with P and relate 
your conclusions to Le Chatelier's principle. 

26-7. Nitrosyl chloride, NOCI, decomposes according to 

2 NOCl(g) ~ 2 NO(g) + Cl
2 
(g) 

Assuming that we start with no moles of NOCI(g) and no NO(g) or Cl2 (g), derive an 

expression for K p in terms of the equilibrium value of the extent of reaction, ~eq' and the 

pressure, P. Given that K p = 2.00 x 10-4
, calculate ~eq/ no when P = 0.080 bar. What is 

the new value of ~eq/ no at equilibrium when P = O. 160 bar? Is this result in accord with 

Le Chatelier's principle? 

26-8. The value of K p at 1000°C for the decomposition of carbonyl dichloride (phosgene) 

according to 

COCI
2
(g) ~ CO(g) + CI2 (g) 



Problems 

is 34.8 if the standard state is taken to be one bar. What would the value of K p be if for 

some reason the standard state were taken to be 0.500 bar? What does this result say about 

the numerical values of equilibrium constants? 

26-9. Most gas-phase equilibrium constants in the recent chemical literature were calculated 

assuming a standard state pressure of one atmosphere. Show that the corresponding equi­

librium constant for a standard state pressure of one bar is given by 

where ~ \J is the sum of the stoichiometric coefficients of the products minus that of the 

reactants. 

26-10. Using the data in Table 26.1, calculate ~rGO(T) and K p (T) at 25°C for 

(a) N20
4
(g) ~ 2N02(g) 

(b) H
2
(g)+I2(g) ¢ 2HI(g) 

(c) 3 H2 (g) + N2 (g) ~ 2 NH3 (g) 

26-11. Calculate the value of Kc (T) based upon a one mol· L -1 standard state for each of the 

equations in Problem 26-10. 

26-12. Derive a relation between K p and Kc for the following: 

(a) CO(g) + Cl
2 
(g) ¢ COCl

2 
(g) 

(b) CO(g) + 3 fI2(g) ¢ CH
4 
(g) + H20(g) 

(c) 2 BrCI(g) ¢ Br
2
(g) + CI

2
(g) 

26-13. Consider the dissociation reaction of 12 (g) described by 

12 (g) ~ 2 leg) 

The total pressure and the partial pressure of 12 (g) at 1400°C have been measured to be 

36.0 torr and 28.1 torr, respectively. Use these data to calculate K p (one bar standard state) 
and Kc (one mol· L -I standard state) at 1400°C. 

26-14. Show that 

dInK ~ U 
c r --- ---

dT RT2 

for a reaction involving ideal gases. 

26-15. Consider the gas-phase reaction for the synthesis of methanol from CO (g) and H2 (g) 

The value of the equilibrium constant K p at 500 K is 6.23 X 10-3
. Initially equimolar 

amounts of CO(g) and H2 (g) are introduced into the reaction vessel. Determine the value 

of ~eq/ no at equilibrium at 500 K and 30 bar. 
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26 .. 16. Consider the two equations 

(1) CO(g) + H20(g) ¢ CO2 (g) + H2(g) K) 

(2) CH4 (g) + H20(g) ¢ CO(g) + 3 H2 (g) K2 

Show that K3 == K) K2 for the sum of these two equations 

(3) CH4 (g) + 2H20(g) ¢ CO
2
(g) + 4H2(g) K3 

How do you explain the fact that you would add the values of ~r GO but multiply the 

equilibrium constants when adding Equations 1 and 2 to get Equation 3. 

26-17. Given: 

2 BrCI(g) ¢ Cl2 (g) + Br2 (g) 

2IBr(g) ¢ Br 2 (g) + 12 (g) 

Determine K p for the reaction 

K p == 0.169 

K p == 0.0149 

BrCI (g) + ~ 12 (g) ¢ IBr(g) + 1 Cl2 (g) 

26 .. 18. Consider the reaction described by 

at 500 K and a total pressure of one bar. Suppose that we start with one mole each of Cl2 (g) 

and Br2 (g) and no BrCI(g). Show that 

where ~ is the extent of reaction. Given that G~rCI == -3.694 kJ ·mol- J at 500 K, plot G(~) 
versus ~. DitTerentiate G(~) with respect to ~ and show that the minimum value of G(~) 

occurs at t == 0.549. Also show that ':! eq 

2 2 and that K p == 4~eq/(1 - ~eq) == 5.9. 

26 .. 19. Consider the reaction described by 

2H20(g) ¢ 2H2(g) + °2(g) 

at 4000 K and a total pressure of one bar. Suppose that we start with two moles of H20(g) 

and no H2 (g) or 02 (g). Show that 

G(~) = 2(1 - ~)G~ 0 + 2~G~ + ~G~ + 2(1 - ~)RT In 2(1 - ~) 
2 2 2 2+~ 

+2~RTln 2~ +~RTln ~ 
2+~ 2+~ 



Problems 

where ~ is the extent of reaction. Given that fl.fGO[H20(g)] = -18.334 kJ ·mol-1 at 4000 K, 
plot G(~) against ~. Differentiate G(~) with respect to ~ and show that the minimum value 
of G(t=) occurs at ~ = 0.553. Also show that ':) eq 

(8G) P~ Po _ = t6.. GO + RT In 2 2 

8~ T.P r P~ 0 
2 

and that K P = ~~~/(2 + ~eq)(1 - ~eq)2 = 0.333. 

26-20. Consider the reaction described by 

at 500 K and a total pressure of one bar. Suppose that we start with three moles of H2 (g), 

one mole of N2 (g), and no NH3 (g). Show that 

where ~ is the extent of reaction. Given that G~H = 4.800 kJ· mol- l at 500 K (see Ta-
3 

ble 26.4), plot G(~) versus ~. Differentiate G(~) with respect to ~ and show that the 
minimum value of G(~) occurs at ~ = 0.158. Also show that eq 

and that K p = 16~;q (2 - ~eq)2 /27 (1 - ~eq)4 = 0.10. 

26-21. Suppose that we have a mixture of the gases H2(g), CO2(g), CO(g), and H20(g) at 

1260 K, with PH = 0.55 bar, Peo = 0.20 bar, Peo = 1.25 bar, and PH 0 = 0.10 bar. Is 
272 

the reaction described by the equation 

at equilibrium under these conditions? If not, in what direction will the reaction proceed to 
attain equilibrium? 

26-22. Given that K p = 2.21 x 104 at 25 C for the equation 

predict the direction in which a reaction mixture for which PeH30H = 10.0 bar, P
H2 

= 

0.10 bar, and Peo = 0.0050 bar proceeds to attain equilibrium. 

26-23. The value of K p for a gas-phase reaction doubles when the temperature is increased 
from 300 K to 400 K at a fixed pressure. What is the value of t6..

r
H o for this reaction? 

26-24. The value of t6.. r HO is 34.78 kJ· mol-I at 1000 K for the reaction described by 
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Given that the value of K p is 0.236 at 800 K, estimate the value of K p at 1200 K, assuming 
that ~rHo is independent of temperature. 

26-25. The value of ~ H is -12.93 kJ ·mol 1 at 800 K for 
r 

Assuming that ~rH is independent of temperature, calculate K p at 700 K given that 

K p == 29.1 at 1000 K. 

26-26. The equilibrium constant for the reaction described by 

can be expressed by the empirical formula 

11790 K 
In K == -6.375 + 0.6415In(T /K) - --T-

Use this formula to determine ~ H as a function of temperature. Calculate ~ H at 25 c C 
r r 

and compare your result to the one you obtain from Table 19.2. 

26-27. Use the following data for the reaction described by 

2 HI(g) ~ H2 (g) + 12 (g) 

to obtain ~ H at 400c C. 
r 

T /K 500 600 700 800 

K p / 1 0 - 2 0.78 1. 24 1. 76 2.3 1 

26-28. Consider the reaction described by 

CO
2
(g) + H

2
(g) ¢ CO(g) + H

2
0(g) 

The molar heat capacitites of CO2 (g), H2 (g), CO(g), and H20(g) can be expressed by 

C p[C0
2
(g)]/ R == 3.127 + (5.231 x 10-3 K-1)T - (1.784 x 10-6 K- 2 )T 2 

C p[H
2
(g)]/ R == 3.496 - (l.006 x 10-4 K-1)T + (2.419 x 10-7 K- 2 )T2 

C p[CO(g)]/ R == 3.191 + (9.239 x 10-4 K-1)T - (l.41 x 10-7 K-2 )T 2 

C p [H
2
0(g)]/R == 3.651 + (1.156 x 10-3 K-1)T + (1.424 x 10-7 K- 2)T2 

over the temperature range 300 K to 1500 K. Given that 

substance CO
2 
(g) H2 (g) CO(g) 

~fH /kJ.mol- 1 -393.523 o -110.516 -241.844 

at 300 K and that K p == 0.695 at 1000 K, derive a general expression for the variation of 

K p (T) with temperature in the form of Equation 26.34. 



Problems 

26-29. The temperature dependence of the equilibrium constant K p for the reaction described 

by 

is given by the equation 

2505 K 3.477 x 106 K2 
In Kp(T) == -2.395 - T + T2 300 K < T < 600 K 

Calculate the values of !1
r
G , !1

r
H o

, and !1
r
So for this reaction at 525 K. 

26-30. At 2000 K and one bar, water vapor is 0.53% dissociated. At 2100 K and one bar, it 

is 0.88% dissociated. Calculate the value of !1 H for the dissociation of water at one bar, 
r 

assuming that the enthalpy of reaction is constant over the range from 2000 K to 2100 K. 

26-31. The following table gives the standard molar Gibbs energy of formation of CI(g) at 

three different temperatures. 

TjK 1000 2000 3000 

56.297 

Use these data to determine the value of K p at each temperature for the reaction described by 

~ Cl
2 
(g) ¢ CI (g) 

Assuming that !1
r
H is temperature independent, determine the value of !1

r
H o from these 

data. Combine your results to determine !1
r
So at each temperature. Interpret your results. 

26-32. The following experimental data were determined for the reaction described by 

T jK 800 825 900 953 1000 

In K p 3.263 -3.007 -1.899 -1.173 -0.591 

Calculate !1
r
G o

, !1
r
H o

, and !1
r
So for this reaction at 900 K. State any assumptions that you 

make. 

26-33. Show that 

if 

J-L == -RTln q(V, T) 
N 

Q(N V T) == [q(V, T)]N 
, , N! 

26-34. Use Equation 26.40 to calculate K (T) at 750 K for the reaction described by H2 (g) + 
12 (g) ¢ 2 HI(g). Use the molecular parameters given in Table 18.2. Compare your value 

to the one given in Table 26.2 and the experimental value shown in Figure 26.5. 
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26-35. Use the statistical thermodynamic formulas of Section 26-8 to calculate K p (T) at 
900 K, 1000 K, 1100 K, and 1200 K for the association of N a(g) to form dimers, N a

2 
(g) 

according to the equation 

Use your result at 1000 K to calculate the fraction of sodium atoms that form dimers at a 

total pressure of one bar. The experimental values of K p (T) are 

T /K 900 1000 1100 1200 

Kp 1.32 0.47 0.21 0.10 

Plot In K p against 1 j T to determine the value of ~r HO . 

26 .. 36. Using the data in Table 18.2, calculate K p at 2000 K for the reaction described by the 

equation 

CO2 (g) ~ CO(g) + ~ 02 (g) 

The experimental value is 1.3 x 10-3
. 

26-37. Using the data in Tables 18.2 and 18.4, calculate the equilibrium constant for the water 

gas reaction 

at 900 K and 1200 K. The experimental values at these two temperatures are 0.43 and 1.37, 

respectively. 

26-38. Using the data in Tables 18.2 and 18.4, calculate the equilibrium constant for the reaction 

at 700 K. The accepted value is 8.75 x 10-5 (see Table 26.4). 

26-39. Calculate the equilibrium constant K p for the reaction 

12 (g) ~ 21(g) 

using the data in Table 18.2 and the fact that the ground electronic state of the iodine 

atom is 2P
3

/ 2 and that the first excited electronic state ePI/2) lies 7580 cm- I higher. The 

experimental values of K pare 

TjK 800 900 1000 1100 1200 

K p 3.05 X 10-5 3.94 X 10-4 3.08 X 10-3 1.66 X 10-2 6.79 X 10-2 

Plot In K p against 1 j T to determine the value of ~rHo. The experimental value IS 

153.8 kJ·mol- l
. 

26-40. Consider the reaction given by 



Problems 

Using the Born-Oppenheimer approximation and the molecular parameters in Table 18.2, 

show that 

K (T) = 4.24e-77 .7 KIT 

Compare your predictions using this equation to the data in the JANAF tables. 

26-41. Using the harmonic oscillator-rigid rotator approximation, show that 

(
mH mBr )3/2 (a 2 

) ( (e
HBr

).2 ) K(T) = 2 2 HBr rot 

m2 a a eH2eBr2 
HBr H2 Br2 H rot H rot 

for the reaction described by 

2 HBr(g) ¢ H2 (g) + Br2 (g) 

Using the values of e ,e 'b' and Do given in Table 18.2, calculate K at 500 K, 1000 K, rot VI 

1500 K, and 2000 K. Plot In K against II T and determine the value of !3.
r
Ho. 

26-42. Use Equation 26.49b to calculate He(T) - H; for NH3(g) from 300 K to 6000 K and 

compare your values to those given in Table 26.4 by plotting them on the same graph. 

26-43. Use the JANAF tables to calculate K p at 1000 K for the reaction described by 

H2 (g) + 12 (g) ¢ 2 HI(g) 

Compare your results to the value given in Table 26.2. 

26-44. Use the JANAF tables to plot In K p versus 1 I T from 900 K to 1200 K for the reaction 

described by 

and compare your results to those obtained in Problem 26-35. 

26-45. In Problem 26-36 we calculated K p for the decomposition of CO
2 

(g) to CO (g) and 

O2 (g) at 2000 K. Use the JANAF tables to calculate K p and compare your result to the one 

that you obtained in Problem 26-36. 

26-46. You calculated K p at 700 K for the ammonia synthesis reaction in Problem 26-38. Use 

the data in Table 26.4 to calculate K p and compare your result to the one that you obtained 

in Problem 26-38. 

26-47. The JANAF tables give the following data for I(g) at one bar: 

TIK 800 900 1000 1100 1200 

!3.
f
GO IkJ ·mol- I 34.580 29.039 24.039 18.741 13.428 
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Calculate K p for the reaction described by 

L,(g) ~ 21(g) 

and compare your results to the values given in Problem 26-39. 

26-48. Use Equation 18.60 to calculate the value of qO (V, T) / V given in the text (page 1076) 

for NH3 (g) at 500 K. 

26-49. The JANAF tables give the following data for Ar(g) at 298.15 K and one bar: 

and 

G - H'·'(298.15 K 
-------) == 154.845 J ·mol- I ·K- 1 

T 

H (j (0 K) - H (298. 15 K) == - 6. 1 97 kJ· mol I 

Use these data to calculate qO (V, T) / V and compare your result to what you obtain using 

Equation 18.13. 

26-50. Use the JANAF tables to calculate qO(V, T)/ V for CO
2 
(g) at 500 K and one bar and 

compare your result to what you obtain using Equation 18.57 (with the ground state energy 

taken to be zero). 

26-51. Use the JANAF tables to calculate qO(V, T)/ V for CH
4
(g) at 1000 K and one bar and 

compare your result to what you obtain using Equation 18.60 (with the ground state energy 

taken to be zero). 

26-52. Use the JANAF tables to calculate qO(V, T)/ V for H
2
0(g) at 1500 K and one bar and 

compare your result to what you obtain using Equation 26.45. Why do you think there is 

some discrepancy? 

26-53. The JANAF tables give the following data: 

H(g) CI(g) HCI(g) 

.6.fH~ (0 K) /kJ 'lTIol- 1 216.035 119.621 -92.127 

Use these data to calculate Do for HCI(g) and compare your value to the one in Table 18.2. 

26-54. The JANAF tables give the following data: 

C(g) H(g) 

.6.
f
H (0 K) /kJ· mol- J 71l.19 216.035 -66.9] 1 

Use these data to calculate Do for CH
4 
(g) and compare your value to the one in Table 18.4. 

26-55. Use the JANAF tables to calculate Do for CO2 (g) and compare your result to the one 

given in Table 18.4. 

26-56. A determination of K (see Example 26-11) requires a knowledge of the fugacity of 
y 

each gas in the equilibrium mixture. These data are not usually available, but a useful 

approximation is to take the fugacity coefficient of a gaseous constituent of a mixture 

to be equal to the value for the pure gas at the total pressure of the Inixture. Using this 



Problems 

approximation, we can use Figure 22. I I to determine y for each gas and then calculate 

K . In this problem we shall apply this approximation to the data in Table 26.5. First 
y 

use Figure 22.11 to estimate that YH, == 1.05, YN, == 1.05, and that Y~H~ == 0.95 at a total 

pressure of 100 bar and a temperature of 450u C-. In this case K y == 0.'86, in fairly good 
agreement with the value given in Example 26-11. Now calculate K at 600 bar and 

y 

compare your result with the value given in Example 26-11. 

26-57. Recall from general chemistry that Le Chfttelier's principle says that pressure has no 

effect on a gaseous equilibrium system such as 

in which the total number of moles of reactants is equal to the total number of moles of 

product in the chemical equation. The thermodynamic equilibrium constant in this case is 

If the four gases behaved ideally, then pressure would have no effect on the position of 
equilibrium. However, because of deviations from ideal behavior, a shift in the equilibrium 

composition will occur when the pressure is changed. To see this, use the approximation 

introduced in Problem 26-56 to estimate K at 900 K and 500 bar. Note that K under these 
y y 

conditions is greater than Kyat one bar, where K y ~ 1 (ideal behavior). Consequently, 

argue that an increase in pressure causes the equilibrium to shift to the left in this case. 

26-58. Calculate the activity of H,O(1) as a function of pressure from one bar to 100 bar at 

20.0°C. Take the density of H
2
0(l) to be 0.9982 g·mL -\ and assume that it is incompress­

ible. 

26-59. Consider the dissociation of HgO(s,red) to Hg(g) and 02 (g) according to 

HgO(s, red) ~ Hg(g) + * 0, (g) 
"- ~. 

If we start with only HgO(s,red), then assuming ideal behavior, show that 

_ 2 3/2 
Kp - -----V--2 P 3- I 

where P is the total pressure. Given the following "dissociation pressure" of HgO(s,red) at 
various temperatures, plot In K p versus I IT. 

tlOC Platm t()C Platm 

360 0.1185 430 0.6550 
370 0.1422 440 0.8450 
380 0.1858 450 1.067 

390 0.2370 460 1.339 
400 0.3040 470 1.674 
410 0.3990 480 2.081 
420 0.5095 
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An excellent curve fit to the plot of In K p against 1 I T is given by 

4.0222 X 105 K 
In K,) == -172.94 + -----. T 

2.9839 X 108 K2 7.0527 X 1010 K3 
------------+------------T2 T3 

630 K < T < 750 K 

Use this expression to determine ~rH as a function of temperature in the interval 630 K < 

T < 750 K. Given that 

829.931 K 
C~[02(g)]IR == 4.8919 - --T-.-

C p [Hg(g)]1 R == 2.500 

C p[HgO(s, red)]1 R == 5.2995 

26-60. Consider the dissociation of Ag2 O(s) to Ag(s) and 02 (g) according to 

Given the following "dissociation pressure" data: 

t r; C 1 73 1 78 1 83 188 

p Itorr 422 509 605 717 

Express K p in terms of P (in torr) and plot In K p versus I IT. An exceillent curve fit to 

these data is given by 

5612.7 K 2.0953 x 106 K2 
In K,:J == 0.9692 + 2 T T· 

Use this expression to derive an equation for ~r H from 445 K < T < 460 K. Now use 

the following heat capacity data: 

C p[02(g)]1 R == 3.27 + (5.03 x 10-4 K-1)T 

Cp[Ag(s)]IR == 2.82 + (7.55 x 10-4 K-1)T 

C~[Ag20(s)]IR == 6.98 + (4.48 x 10-3 K-1)T 

to calculate ~rH', ~rS , and ~rG at 298 K. 

26-61. Calciunl carbonate occurs as two crystalline forms, calcite and aragonite. The value of 

~ G for the transition 
r 

CaCO] (calcite) ¢ CaC0
3 
(aragonite) 

is +1.04 kJ·mol- I at 25:CC. The density of calcite at 25 C is 2.710 g.cm-3 and that of 

aragonite is 2.930 g. em -3. At what pressure will these two forms of CaCO') be at equilbrium 

at 25 C. 



Problems 

26-62. The decomposition of ammonium carbamate, NH
2
COONH

4 
takes place according to 

Show that if all the NH3 (g) and CO
2 
(g) result from the decomposition of ammonium 

carbamate, then K p = (4/27)P 3
, where P is the total pressure at equilibrium. 

26-63. Calculate the solubility of LiF(s) in water at 25°C. Compare your result to the one you 
obtain by using concentrations instead of activities. Take Ksp = 1.7 x 10-3

. 

26-64. Calculate the solubility of CaF
2
(s) in a solution that is 0.0150 molar in MgS0

4
(aq). 

Take K = 3.9 X 10- 11 for CaF
2
(s). 

sp 

26-65. Calculate the solubility ofCaF
2
(s) in a solution that is 0.050-molar in NaF(aq). Compare 

your result to the one you obtain by using concentrations instead of activities. Take Ksp = 
3.9 X 10-11 forCaF

2
(s). 
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James Clerk Maxwell was horn in Edinburgh, Scotland, on November 13, 1831, but was raised 
at the family estate in Glenlair, 30 miles south of Glasgow, and died there in 1879. Maxwell is 
one of the foremost scientists of modern times, making contributions to many fields of science. 
[n 1873, in his Treatise on Electricity and Magnetism, he presented his theory of electricity 
and magnetism in mathematical form, which is succinctly summarized by the famous Maxwell 's 
equations. Maxwell calculated that the speed of propagation of an electromagnetic field is the 
same as that of the speed of light, which lead him to postulate that light is an electromagnetic 
phenomenon. Maxwell also performed experiments on color vision and demonstrated the first 
color photograph to the Royal Society in 1861 . He also applied the methods of probability to 
describe the properties of gases, and he was able to show that the velocities of the molecules of 
a gas follow what we now call a Maxwell-Boltzmann distribution. Maxwell also investigated, 
both theoretically and experimentally with his wife, the effect of temperature and pressure on 
the viscosity, thermal conductivity, and diffusion of gases. These experiments gave a means to 
estimate the values of the Avogadro constant and atomic properties such as size and mass. In 
1871, Maxwell became the first Cavendish Professor of Physics at Cambridge University. He 
died of abdominal cancer, the same disease that caused the death of his mother at the same age . 



CHAPTER 

The Ki netic Theory of Gases 

The fact that all gases obey the ideal gas equation when the pressure is sufficiently low 
implies that the form of the equation is independent of the nature of the gas itself. In this 
chapter we shall introduce a simple model of gases in which we picture the molecules 
of a gas to be in constant, incessant motion, colliding with each other and with the walls 
of the container. Because this model focuses on the motion of the molecules, it is called 
the kinetic theory of gases. For simplicity, we shall assume that the molecules behave 

as hard spheres, so that there are no interactions between the particles except for the 
very short durations of time when they collide with each other. In the first section we 
shall present a simplified treatment of the collisions of the individual molecules with 
the walls of their container and show how this leads to the ideal gas equation. Then we 
shall derive an expression for the distribution of the speeds of the molecules in a gas, 
the so-called Maxwell-Boltzmann distribution. Then we shall consider the collisions 
of the molecules with the walls in a somewhat more detailed treatment than in the first 
section, and derive an expression for the collision frequency of the molecules with 
the walls. Finally, we shall introduce the concept of the mean-free-path and derive 
expressions for the frequency of collisions of a single molecule and the total collision 
frequency (per unit volume) of all the lTIolecules. 

27-1. The Average Translational Kinetic Energy of the Molecules in a 
Gas Is Directly Proportional to the Kelvin Temperature 

The pressure that a gas exerts on the walls of its container is due to the collisions that the 
particles of the gas make with the walls. Let's consider one of the molecules of the gas 
(call it molecule 1) as it moves throughout its container, as illustrated in Figure 27.1. 
We have assumed that the container is a rectangular parallelepiped of sides a, b, and 
c for simplicity, but it is not necessary to do so. The velocity of the molecule has 

components U lx' U I y' and U L::' We can treat the motion along the x -direction first and 11 01 
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FIG U R E 27.1 
A molecule with its x-component of velocity equal to U Ix moving perpendicular to one face of 
a rectangular parallelepiped of lengths a, b, and c. 

then extend the result to an arbitrary direction afterwards. Suppose that the molecule is 
moving from left to right in Figure 27.1 so that U I x is positive. The x-component of the 
momentum of the particle is m u Ix' We assume that when the particle collides with the 
right-hand wall shown in Figure 27.1, the motion of the particle is reversed so that its 
momentum now is -mUlr' In other words, we are assuming here that the collisions of 
the particle with the walls are perfectly elastic. The change in momentum, !:1 (mu J), 
then is !:1(mu l) = mUir - (-m u l) = 2mu

lr
. If the distance between the two walls 

perpendicular to the x-direction is a, then the time elapsed between collisions with the 
right-hand wall is !:1f = 2a I U Ix because the molecule travels a distance 2a to arrive 
back at the right-hand wall. Recall that Newton's second law of motion says that the 
rate of change of momentum is equal to a force. The rate of change of momentum due 
to collisions with the right-hand wall is 

!:1(mu IX> 
!:1t 

2mu lx 

2alu Ir 

2 mu lx 

a 

and so the force that molecule I exerts on the right-hand wall is 

2 mu lx 

a 

(27.1 ) 

The area of the wall is be (see Figure 27. J) and so the pressure exerted on the wall is 

FI 
p=-

I be 

where V = abe is the volume of the container. 

(27.2) 

Each of the other molecules exerts a similar pressure, and so the total pressure on 

the right-hand wall is 

N N 2 

L L
mu. 

p = p. = JX 
J V 

)= 1 )= 1 

(27.3) 
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where N is the total number of molecules. The sum of the u~ divided by N is the 
JX 

average value of u;, and if we denote the average by (u:), then we can write 

1 N 
(u

2
) ==. - '" u~ 

x N L..t JX 
j 1 

(27.4) 

If we introduce Equation 27.4 into Equation 27.3, then we obtain 

(27.5) 

We arbitrarily chose to work with the x-direction, but we could just as well have 
chosen the y- or z-direction. Because the X-, y-, and z-directions are equivalent, it must 
be that 

(27.6) 

Equation 27.6 is a statement of the fact that a homogeneous gas is isotropic; it has 
the same properties in any direction. Furthermore, the total speed u of any molecule 
satisfies 

and so 

(27.7) 

Equation 27.7 along with Equation 27.6 says that 

(27.8) 

We substitute this result into Equation 27.5 to obtain 

(27.9) 

Equation 27.9 is a fundamental equation of the kinetic theory of gases, relating a 
macroscopic property, P V, on the left-hand side with a molecular property, m (u 2

), on 
the right-hand side. We learned in Chapter 18 that the average translational (kinetic) 
energy of an ideal gas is ~ RT per mole, or ~kB T per molecule. In an equation, we have 

or, if we multiply both sides by the Avogadro constant 

(27.10) 
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The product NAm == M, the molar mass of the gas. Consequently, we can write 

(27.11) 

If we substitute Equation 27.11 into Equation 27.9, then we obtain the ideal gas 
equation. 

EXAMPLE 27-1 
Use Equation 27.10 to calculate the average translational energy of one mole of an 
ideal gas at 25 C. 

SOLUTION: We use R == 8.314 J·mol-I·K- I and obtain 

(KE) == ~(8.314 J·mol-I·K 1)(298 K) == 3.72 kJ.mol 1 

We can use Equation 27.11 to estimate the average speed of a gas molecule at a 
temperature T. We first solve Equation 27.11 for (u 2

) to obtain 

') 3RT 
{u-) == -M- (27.12) 

The units of (u 2
) are m2

. s 2. To obtain a quantity that has units of m· s 1, we take the 
square root of (u 2

): 

(27.13) 

The quantity (u 2
) 1/2 is the square root of the mean value of u 2 and is called the 

root-mean-square speed. If we denote the root-mean-square speed by u ,then Equa-rms 

tion 27.13 becomes 

(
3RT) 1/2 

u rms == M (27.14) 

EXAMPLE 27-2 
Calculate the root-mean-square speed of a nitrogen molecule at 25°C. 

SOL UTI 0 N: We must use a value of R having the units such that u will have rms 

units ofm·s- I
. Ifwe use the value R == 8.314 J·mol I·K-

I and be sure to express the 
molar mass in units of kg· mol-I, then U rms will have units of m· s -I . Therefore 

u == (3 x 8.314 J -11101- 1. K- I x 298 K) 1/2 

rms 0.02802 kg.mol I 

( 
J ) 1/2 ( k 2 -2) 1/2 = 2.65 X 105 kg = 2.65 X 105 g.:g.S 

== 515 m·s- I 
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Notice that we have used the fact that 1 J = 1 kg.m2 
·S-2. 

We have called u
rms 

an estimate of the average speed because generally (u 2) =f=. (U)2, 

and so U -i- (u). We shall see in Section 27-3, however, that u and (u) differ by rms -r- rrns 

less than 10%. Typical average molecular speeds at room temperature are of the order 
of hundreds of meters per second, as shown in Table 27.1. Although we shall not prove 

it here, the speed of sound, usound' in a monatomic ideal gas is given by 

(
5RT) 1/2 

Usound == 3M (27.15) 

which differs from urrns by about 30%. The speed of sound in argon at 25°C is 346 m.s 1, 

or 770 miles per hour. 
Before leaving this section, we should consider the assumptions that we made 

in deriving Equation 27.9. We assumed that the collisions with the wall are perfectly 
elastic. This cannot really be the case because the wall is made up of molecules, which 
are in thennal motion, and so some collisions will be more or less energetic than others, 
depending upon the direction of the motion of the molecules of the wall with respect 
to the colliding molecule. On the average, however, the gas molecules will bounce off 
the wall with the same speed they had beforehand because the molecules of the wall 
must be at the same temperature and so have the same average translational energy as 
the gas molecules if the system is in thennal equilibrium. We also tacitly assumed that 
the molecules of the gas do not collide with each other as they travel from one wall to 
the other in Figure 27.1. But if the gas is in equilibrium, on the average, any collision 
that deflects the path of a molecule from that shown in Figure 27.1 will be balanced by 
a collision that replaces the molecule. 

TABLE 27.1 
Average speeds (Equation 27.42) and root-mean-square speeds (Equation 27.14) of gas 
molecules at 25°C. Notice that the ratio of (u) to u is about 0.92. 

nns 

Gas 

NH3 

CO2 

He 

H2 
CH4 

N2 

°2 
SF

6 

(u)/m·s- 1 

609 

379 

1260 

1770 

627 

475 

444 
208 

u /m.s- 1 
rms 

661 

411 

1360 

1920 

681 

515 

482 
226 
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It so happens that many of the quantities of the kinetic theory of gases can be 
derived at a number of levels of rigor, varying from very elementary treatments, in 
which all the molecules are assumed to have the same (average) speed and move 

only along the X-, y-, and z-directions, to very sophisticated treatments that make 
no unnecessary assumptions. An interesting thing is that the results of these various 

derivations differ only by constant factors of the order of unity. One can generate pages 

of algebra to get a more exact equation, which may have the very same dependence on 
temperature and pressure as the simple equation but differs by a factor like 21/2 or 3/8. 

In order to introduce the basic ideas of the kinetic theory of gases in this chapter, we 
shall usually present the more elementary derivations, but we shall present a slightly 
fancier derivation of Equation 27.9 in Section 27-4. 

27-2. The Distribution of the Components of Molecular Speeds Are 
Described by a Gaussian Distribution 

As we implied in the previous section, all molecules in a gas do not have the same speed. 
Experimentally, the molecular speeds in a gas are described by the curves in Figure 27.2, 

where the distribution of molecular speeds is plotted against u . Notice that a greater 

fraction of molecules has higher speeds as the temperature increases. In this section 
we derive a theoretical equation for the distribution of the components of molecular 
velocities and in the next section we shall derive an equation for the distribution of 
molecular speeds. These distributions were first derived somewhat heuristically by 

the Scottish physicist James Clerk Maxwell in 1860 and later more rigorously by the 

Austrian physicist Ludwig Boltzmann. They are collectively now called the Maxwell­

Boltzmann distribution. It is interesting to note that Maxwell derived the distribution 
law long before it was verified experimentally. 

2.0 300 K 

1 .5 -

0 
0 
0 1000 K ........ 
.......... 1 .0 
----::::s 
'-" 
~ 

0.5 -

o.o~--------~--------~~------~------~ 
o 500 1000 1500 2000 

u / m. s 1 

fiGURE 27.2 
The distribution of molecular speeds in nitrogen at 300 K and 1000 K. 
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Let h(ux' uy' uz)duXduydu
Z 

be the fraction of molecules that have velocity com­
ponents between Ux and U x + dux' uy and uy + du y , and U z and U z + du z' or the prob­
ability that anyone molecule has such velocity components. A key step in Maxwell's 
derivation is to assume that the probability that the x-component of the velocity of a 
molecule has a given value is completely independent of the values of the y-component 
or the z-component. In other words, he assumed that the probability distributions in 
each of the three directions are independent of each other. This assumption, which 
is perhaps less than obvious, can be avoided at the expense of a much more lengthy 
derivation, but it turns out to be correct. In terms of an equation, the assumption that 
the three components of the velocity are statistically independent becomes 

(27.16) 

where f(u
x

)' f(u y), and f(u z) are the probability distributions of the individual 
components. The probability distribution in each of the three directions is the same 
because the gas is isotropic. Furthermore, because the gas is isotropic, the function 
h (u x' U y' u z) must depend only upon the speed or the magnitude of the velocity u, 
whose square is given by (MathChapter C) 

(27.17) 

Therefore, we can write Equation 27.16 as 

(27.18) 

Taking the logarithm of Equation 27.18 gives 

(27.19) 

Differentiating Equation 27.19 with respect to u x gives 

( 
B In h (u ) ) == d In f (u x) 

au du 
x u ,u X 

I' ~ 

(27.20) 

Because the function h depends upon u, we would like to rewrite it as a derivative with 
respect to u rather than u x' To do this, we write 

(
Blnh) ==dlnh(Bu) 
au du au 

x u ,U x u,u 
v z y z 

Ux din h 

u du 
(27.21) 

where we have used Equation 27.17 to replace au/au
x 

by ux/u (Problem 27-10). 
Substituting Equation 27.21 into the left side of Equation 27.20 gives 

dIn h(u) 

udu 

din f(u
x

) 

u du 
x x 
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The three probability distributions f(u
x
)' feu J, and feu ) are all the same, so 

) ~ 

dlnh(u) 

udu 

dIn f(u
x

) 

u du 
x x 

dlnf(u,J 

u du 
" " 

(27.22) 

Because ux ' uy ' and u:: are independent of one another, Equation 27.22 must be equal 
to a constant. Defining this constant to be -2y, we find that 

or upon integration 

dIn f(u.) 
___ J_ == -2y 

u.du. 
J .J 

) 

f (u .) == A e - Y Uj 
J 

(27.23) 

J ==X,y,z (27.24) 

We have written -y instead of y in Equation 27.23 in anticipation that y must be a 
positive quantity. (See Problem 27-11.) 

We shall now use j' (u.\") as a specific example to determine the two constants A 
and y. We can determine A in terms of y by realizing that 

f: fCu)du x = 1 (27.25) 

because f (u
x

) is a probability distribution. Substituting Equation 27.24 into Equa­

tion 27.25 gives 

(27.26) 

., 
The integrand f (u.

l
) == e-Yll~ is an even function of U

x 
(MathChapter B) and so 

(27.27) 

We have encountered this integral many times (e.g., MathChapter B), and using Equa­

ti on B .16, we find that 

OC jCx) ( ) 1/2 
A f . e YU~du. == 2A . e-YU~du == 2A ~ == 1 

-oc .\ () x 4y 
(27.28) 

or A == (y jrr)I/2. Therefore, f(u
x

) is given by 

( 
y ) 1/2 ., f (u .) == - e-YU~ 

.\ rr 
(27.29) 

with a similar result for f (u y ) and f (u;:). 
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We can now determine y by using Equations 27.8 and 27.12, which together say 
that (u 2

) == RT j M. In terms of f (u .), the average of u 2 is given by (MathChapter B) 
x x x 

RT /00.. y 1/2 /00. 7 (u~) == == u~f(u )du, == (-) u~e-yu~du, .\ M .t X .\ n .X J: -00 -00 
(27.30) 

Notice once again that the integrand in Equation 27.30 is an even function of u
x

' so 

that 

RT joc) y 1/2joo') .2 

(u 2
) ==. == 2 u~f(u .)du. == 2 (-) u~e-yu'du. 

x M 0'\ x.\ n 0'\ .\ 
(27.31) 

The integral here is discussed in MathChapter B, and using Equation B.20 gives 

RT ==2(y)1/2._1 (n)1/2 
M n 4y y 

or that y == Mj2RT. Therefore Equation 27.29 becomes 

I 

2y 

f (u .) == e Mu~/2RT 
( 

M ) 1/2 
.\ 2n RT 

(27.32) 

Equation 27.32 is plotted in Figure 27.3. The areas under the curves in Figure 27.3 
are unity because the probability distribution is normalized. Figure 27.3 shows that as 
the temperature increases, more molecules are likely to be found with higher values 

of u
x

' Note that f (u)) plotted in Figure 27.3 does not look like the experimental 
curves shown in Figure 27.2. This is because f (u ) is the distribution function for one 

x 

component of the molecular velocity, whereas the curves in Figure 27.2 represent the 
distribution in the overall molecular speed, which is given by u == (u; + u~. + u~) 1/2. 
The range of a component of velocity is -00 to 00 as shown in Figure 27.3 because 

1 .5 
300 K 

g 1.0 
o 

1000 K 

;:s 
~ 0.5 

o . 0 I...--_....::::::::=---_~=---___ l.--___ __=:::_..L__.::::::::::::.. _ ___.J 

-2000 -1000 o 1000 2000 

uri m.s- I 

FIG U R E 27.3 
The distribution of a component of the velocity of a nitrogen molecule at 300 K and 1000 K. 
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the molecule may be moving in a positive or a negative direction. The range of the 
overall speed is 0 to 00 as shown in Figure 27.2 because the length of the velocity 
vector, u == (u~ + u~ + ( 2

) 1/2, is an intrinsically positive quantity. We shall derive an 
x -' ~, 

expression for the distribution of molecular speeds in the next section. 
We have written f(ux) in Equation 27.32 in terms of the molar mass M and 

the molar gas constant R. Because f (u x) describes the probability distribution of the 
components of molecular velocities, it is common to re-write Equation 27.32 in the 
form 

( )

1/2 
In 2 f(u.) == e-mur/2kBT 

,\ 27Tk T 
B 

(27.33) 

where m is the mass (in kilograms) of one molecule and kB is the Boltzmann constant. 
As we have seen, the Boltzmann constant appears in a great many of the equations 
of physical chemistry, often in the combination kB T, which has units of energy. In 
fact, notice that the argument of the exponential function in Equation 27.33 is the x­
component of the kinetic energy divided by kB T, which is unitless as it must be. Notice 
also that we have simply replaced M / R in Equation 27.32 with m / kB by dividing both 
M and R by the Avogadro constant. 

We can use Equation 27.33 to calculate the average value of u
x

' which is given by 

Ix () 1/2 I (X) (u ) == . u j'(u )du == m u e-mu~/2kBT du 
x ~ ,r x x 27T k T x x 

-x B-OO 
(27.34) 

The integrand is an odd function of II ., and so (u ) == O. Physically, this result is due x x 

to the fact that a molecule is equally likely to be moving in a positive x-direction as in 
a negative x-direction. 

EXAMPLE 27-3 
Determine the average value of u2 and of ~mu~, the x-component of the kinetic energy. 

,\ ... ,\ 

SOL UTI 0 N: The average value of u: is given by 

Because the integrand is an even function of ux ' we can write 

( )
1/21X 111 1 .. 2 , 

(u 2 ) == 2 . . u~e-lI1u,)2kBT du 
,\ 2rr k T _\ X 

B 0 

Using Equation B.20 with CL == 111/2k
B 

T, we find that 

1 kBT RT 
(u __ ) == == -

_\ 111 M 



27-2. The Distribution of the Components of Molecular Speeds Are Described by a Gaussian Distribution 

The average x -component of the kinetic energy of a molecule is 

(27.35) 

with a similar result for the y- and z-components. 

Equation 27.35 implies that 

The total kinetic energy is given by 

These two equations show that the total kinetic energy of 3kB T 12 is divided equally 
into the X-, y-, and z-components, as you might expect because the gas is isotropic. 

Most experimental observations depend upon averages of molecular speeds, but 
there are a few that depend upon the entire distribution itself. One of these involves the 
shapes of the spectral lines in the emission spectra of atoms and molecules. Ideally, 
spectral lines are very narrow, being broadened by the finite lifetime of the excited 
states. However, lifetime broadening is often not the major source of the observed 
width of a spectral line. The lines are also broadened because of the motion of the 
molecules emitting the radiation. If an atom or molecule at rest emits radiation of 
frequency vo' then due to the Doppler effect, the frequency measured by a stationary 
observer will be 

v ~ va (1 + U;) (27.36) 

if the atom or molecule is moving away or toward the observer with speed u
x

' where c 
is the speed of light. If one observes the radiation emitted from a gas at a temperature T, 
then it is found that the spectral line at Vo will be spread out by the Maxwell distribution 
of u x of the molecule emitting the radiation.U sing Equation 27.36, the distribution in 
u x can be converted to a distribution in v. Substituting the relation U

x 
== c( v - vo) Ivo 

from Equation 27.36 into Equation 27.33 gives 

(27.37) 

for the observed shape of the spectral line. The form of I ( v) is that of a Gaussian curve 
centered at va with a variance given by (see MathChapter B) 

where M is the molar mass. Sodium emits light of frequency 5 x 10 14 Hz correspond­
ing to the transition from the 3 p 2P

3
/
2 

excited state to the 3s 2S
1
/
2 

ground state. The 
emission from a cell containing a low pressure of sodium vapor at 500 K, a, which is 
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1112 Chapter 27 / The Kineti c Theory of C ases 

a measure of the width of this spectral emission , is about 7 x 108 Hz. If the sodium 
atoms were stationary, then the measured value of (J would be about 1.0 x 106 Hz. 
The broadening of spectral lines due to the distribution of molecular velocities is called 
Doppler broadening. 

27-3. The Distribution of Molecular Speeds Is Given by the 
Maxwell-Boltzmann Distribution 

So far we have derived the probability distribution for a given component of the 
molecular velocity. Because a homogeneous gas is isotropic, the direction in whitch a 

molecule moves has no physical consequence on the properties of the gas; only the 
magnitude of u, the speed, is relevant. Therefore, in this section we shall derive the 
distribution of molecular speeds. We define a function F(u) by 

F (u)du = f(u ) duJ(u)duJ(u)du z (27.38) 

Ifwe substitute Equation 27.33 and its analogs for Lt, and U z into Equation 27.38, then 
we obtain 

( )

3/ 2 
m (2 2 2 / ?k T F(u)du = e- III " ,+U,.+ IL ) - B du du du 

2rr k T x , , 
B 

(27.39) 

We need to convert the right-hand side of Equation 27.39 to the form F(u)du , which 
is the probability that a molecule has a speed between u and u + duo In order to do this , 
consider a rectangular coordinate system in which the distances along the axes are Lt" 

FIG U R E 27.4 

, 
I Ll , ' -, , 
, 

_ _ _ _ _ _ _ _ _ __ .v 

(a) 

"II 

, 

An illustration of velocity space. (a) A cartesian representation in which a point is specified by 
the values of u" U ,,' and U z and the differential "volume" element is d LI,d u "du , . The molecular 
velocity is a vector of length (u ~ + u ~ + U:)1 /2. (b) A spherical representation in which the 
"volume" element is a spherical 'shell of rad'ius u and thickness , du, with a volume 4][ u2 d U. 



27-3. The Distribution of Molecular Speeds Is Given by the Maxwell-Boltzmann Distribution 

u_r ' and uz' the three components of the velocity, as shown in Figure 27.4a. The molecu­
lar velocity, u, which is a vector quantity with components ux ' u v' and u z' is shown in the 
figure, and the length ofu is u == (u; + u~ + u;,) 1/2. The space described by this coordi­
nate system is called a velocity space, and is simply the analog of the three-dimensional 
space described by the x, y, z coordinate system. Just as dxdydz is an infinitesimal 
volume element in ordinary space, du du ,due is an infinitesimal "volume" element in 

x } ,,_ 

velocity space. Because a gas is isotropic, it is more convenient to use spherical coor-
dinates rather than cartesian coordinates (see Figure 27.4) to describe the distribution 
of molecular speeds. In ordinary space, the infinitesimal volume element is 47Tr 2dr, 
which is the volume of a spherical shell of radius r and thickness dr. In our velocity 
space, the analogous infinitesimal volume element is 47T u2du (Figure 27 .4b). Thus, in 
Equation 27.39 we replace u: + u~ + u;' by u2 and duXduydu

Z 
by 47TU 2du to obtain 

F(u)du == 47T m u?e-mu2/2ksT du 
( )

3/2 

2nkB T 
(27.40) 

Equation 27.40 gives the probability distribution of a molecule having a speed 
between u and u + duo Note that unlike Equation 27.39 for the probability distribution 
of a component of the velocity, Equation 27.40 has a factor of u2

. In addition, realize 
that although the range of a component of the speed is - 00 to 00, the range of u, which 
is an intrinsically positive quantity, is 0 to 00. 

EXAMPLE 27-4 
Show that Equation 27.40 is normalized. 

SOLUTION: We use Equation B.20 with a = mj2kB T: 

We can also calculate averages of u. For example, the average speed is given by 
(MathChapter B) 

(u) == 100 

u F (u )du = 4JT ( m ) 3/

2

100 u3 e-nn/ 12kB T du 
o 27Tk8T 0 

(27.41) 

The appropriate standard integral is (See Table 27.2 for a collection of the integrals 
that we have used.) 

X 2n+1 e-CX );._2 dx == n. 1
00 , 

o 2an+ 1 
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1114 Chapter 27 / The Kinetic Theory of Gases 

and so Equation 27.41 becomes 

(u) == 4n ( m )3/2. ~ (2ksT)2 = (8kBT)I/2 = (8RT)J/2 
2n ks T 2 m n m n M 

(27.42) 

Notice that this value differs slightly from u
rms 

== (3k
B 
T / m) 1/2 ~ in fact, the ratio of (u) 

to u is (8/3n)I/2 == 0.92. 
rms 

We can derive the value of u directly from Equation 27.40: 
rms 

By referring to Table 27.2, we see that 

(u 2 ) == 4n . _ B B 
( 

m )3/2 1.3 (2k T)2 (2nk T)I/2 
2nkBT 8 m m 

3kB T 

m 

By definition, u
rms 

== (u 2) 1/2 == (3k
S 

T / m) 1/2 == (3RT / M) 1/2, which is what we ob­

tained earlier. 
One other characteristic speed is the most probable speed. The most probable 

speed, u mp ' is given by the maximum value of F(u), which is found by setting the 
derivative of F (u) equal to zero. 

TABLE 27.2 
Some integrals that occur frequently in the kinetic theory of gases. 

100 

x 2/l e-a
.r

2 
dx 1·3·5··· (2n - 1) Crf2 

2n+la n a 
n > 1 

1
00 n! 

o X
2/l+ 1 e-ax2 dx n>O 

2an+1 

l x 

x/l/2e-ax dx 
n(n - 2)(n - 4)··· (1) crf2 

(2a) (11+ 1 )/2 a 
n odd 

(nI2) ! 
a(n+2)/2 n even 



27-3. The Distribution of Molecular Speeds Is Given by the Maxwell-Boltzmann Distribution 

For d F (u ) / d u to be equal to zero, the factor in brackets must equal zero, and so we 
have 

(27.43) 

Notice that all the characteristic speeds that we have encountered, u ,(u), and u , rms mp 

are of the form (constant· kB T / m) 1/2 or (constant· RT / M) 1/2. 

We can express the Maxwell-Boltzmann distribution in terms of kinetic energy, 
£ == mu2 /2, rather than speed by setting u == (2£ / m) 1/2. In this case, du == d£ / (2m£) 1/2 

and Equation 27.40 becomes 

F(£)d£ == 4rr ( m )3/2. _2£ . e-E:/kBT __ d_£_ 
2nkBT m (2m£)1/2 

(27.44 ) 

EXAMPLE 27-5 
Show that the distribution given by Equation 27.44 is normalized. 

SOL UTI 0 N: We need to show that 

The necessary integral here is the third entry in Table 27.2 with n == 1. 

100 1 (Jr) 1/2 
X 1/2e-ax dx == - -

o 2a a 

and so 

2Jr kB T 1/2 --- . . (Jrk T) == 1 
(Jr kB T)3/2 2 B 

In addition it is straightforward to show that (we use the third entry in Table 27.2 with 
n == 3) 

100 2lf 100 

(£) ==- . £J(£)d£ == £3/2e s/kBT d£ 
( If k T)3/2 o B 0 

in agreement with Equation 27.10. 
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27-4. The Frequency of Collisions that a Gas Makes with a Wall Is 
Proportional to its Number Density and to the Average 
Molecular Speed 

In this section we shall derive an expression for the frequency of collisions that the 
molecules of a gas make with the walls of its container. Such a quantity is central to 

the theory of the rates of surface reactions. The geometry that we shall use to derive 
the desired equation is shown in Figure 27.5. Figure 27.5 shows an oblique cylinder 
of slant height udt with a base area A making an angle e with the normal to the 
wall. This cylinder has been constructed to enclose all those molecules that will strike 
the area at an angle e with a speed u in the time interval dt. The volume of such a 
cylinder is its base area (A) times its vertical height (ucosedt) or (Audt)cose. The 
number of molecules in this cylinder is p(Audt) cos e, where p is the number density, 
N / V. The fraction of molecules that have a speed between u and u + du is F(u)du 

and the fraction travelling within a solid angle bounded by e and e + de and ¢ and 
¢ + d¢ is sin eded¢ / 47f, where the factor 47f represents a complete solid angle (see 
MathChapter D). The product of the above factors gives the number of molecules, 
dN

coll
' colliding with the area A from the specified direction in the time interval dt: 

sin eded¢ 
dN II = p(Audt)cose· F(u)du· ----

co 47f 

If we divide Equation 27.45 by Adt, then we have 

FIG U R E 27.5 

d _ ~ dNcoll 

Zeoli - A dt = ..!!...- u F (u )du . cos e sin eded¢ 
47f 

I 

H .. dl 

Approac hin g 
mol ec u le 

--f-~<:--¥---- - - .II 

x I ¢ 

(27.45) 

(27.46) 

The geometry used to calculate the rate of collisions of the molecules of a gas with the walls 
of the container. Note that e varies from 0 to 7f / 2 because molecules strike the wall from only 
one side . 



27-4. The Frequency of Collisions that a Gas Makes with a Wall 

where dZ
eoll 

is the number of the collisions per unit time per unit area with the wall by 
molecules whose speeds are in the range u and u + du and whose direction lies within 
the solid angle sin 8d8d¢. Notice that Equation 27.46 has a factor of u 3 

(F (u) has a 
factor of u2

), as compared to a factor of u2 in Equation 27.40. Figure 27.6 shows the 
two (unnormalized) functions u2e-mu2/2ksT and u3e-mu2/2ksT plotted against the speed 

) ) 

u. Notice that the function u3e-mu-/2kBT peaks at higher speeds than does u2e-nnr/2k8T. 

(Problem 27-28 has you show that u 3 e-
mu2 

/2kB T peaks at ump == (3k
B 
T / m) 1/2 and that 

u 2 e -mu
2 

/
2k

s T peaks at u mp == (2k
B 
T / m) 1/2.) From a physical point of view, this means 

that the molecules that strike a plane of area A are travelling at higher speeds than the 
molecules in a gas in general. The reason for this is that the molecules travelling at 
higher speeds are more likely to strike the area A in a given time. 

If we integrate Equation 27.46 over all possible speeds and directions, then we 
obtain 

p 100 1lf/2 12lf 
Zeoll==- uF(u)du cos(}sin(}d8 d¢ 

4][ 0 0 0 

(27.47) 

Notice that we integrate e from 0 to ][ /2 because the molecules strike the wall from 
one side only. The integral involving u is equal to (u), the integral over e is equal 
to 1/2, and that over ¢ is 2][, so that we we have for the collision frequency per unit 

area, zeoli 

~ _ 1 dNcoll == P (u) 
"'coli - A dt 4 (27.48) 

Problems 27-49 through 27-52 discuss several applications of Equation 27.48. 

0.4 / ..... 

I 

I 
0.2 I 
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\ 

\ 
\ , , , 

o.o~~------~--------~----~~~--------~ 
o 2 3 4 

u 

FIGURE 27.6 
A plot of u2e-mu2/2k8T (solid line) and u3e-mu2/2kBT (dashed line) against the speed u, in units of 
(kBT /nl)1/2. Notice that u3e-mu2j2kBT peaks at higher values of u than does u2e-mu2j2kBT. 
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1118 Chapter 27 / The Kinetic Theory of Gases 

EXAMPLE 27-6 
Use Equation 27.48 to calculate the collision frequency per unit area for nitrogen at 
25°C and one bar. 

SOL UTI 0 N: The number density is given by 

(6.022 X 1023 mol- I )(1 bar) 

(0.08314 L·bar·mol- I ·K- 1)(298 K) 

== 2.43 x 1022 L -I == 2.43 x 1025 m-3 

and 

(
8RT)1/2 (8(8.314 J.K- 1 'mol- I )(298 K))1/2 

(u) == == 
Jr M Jr (0.02802 kg) 

== 475 m.s I 

Therefore 

We can use Equation 27.48 to rederive Equation 27.9. The component of mom en­
tum perpendicular to the wall is mu cos e, and if we assume that the collisions with 
the wall are elastic, then the change of momentum upon each collision is 2mu cos e 

(Figure 27.7). The pressure exerted on the wall by those molecules whose speed is 
between u and u + du and whose direction lies in the solid angle sin eded¢ is equal 
to the product of the momentum change per collision and the frequency of collisions 
per unit area (Equation 27.46) 

d P == (2mu cos e)dzcoll 

== (2mu cos e) ~uF(u)ducosesineded¢ 
4n 

FIGURE 27.7 
An elastic collision of a molecule with a wall. The 
component of velocity perpendicular to the wall is 
reversed in the collision. Thus, the total change in 
momentum is 2mu cos e. 



27-5. The Maxwell-Boltzmann Distribution Has Been Verified Experimentally 

We integrate this expression over all values of e and ¢ (remember that 0 < e < rr /2) 

l IT /2 12Jr 2rr 
cos2 e sin ede d¢ == -

o 0 3 

and use the fact that 

to get 

17 1 2 
P == -pm(u~) == -Nm(u ) 

3 3V 

in agreement with Equation 27.9. 

27-5. The Maxwell-Boltzmann Distribution Has Been 
Verified Experi mentally 

The Maxwell-Boltzmann distribution has been verified experimentally in a number 
of different experiments, but one of the most straightforward is due to Kusch and his 

coworkers at Columbia University in the 1950s. Their experimental set-up, sketched in 

Figure 27.8, consists of a furnace with a very small hole that allowed a beam of atoms 

(such as potassium) to emerge into an evacuated chamber. The beam passed through 
a pair of collimating slits and then through a velocity-selector, which allowed only 

those atoms with a given speed to reach a detector. The velocity selector (Figure 27.9) 
consisted of a set of rotating discs with slits cut in them in such a way that only 

those atoms with the right speed could pass through. Atoms of a given speed could be 

FIGURE 27.8 

Collimating 
slits 

I I 
Gas ------

I I 

Vacuum 

r--L-------IL...-.L......,- - - - - - 0 D e tee tor 

Velocity 
selector 

Pump 

A schematic illustration of an apparatus used for an experimental test of the Maxwell-Boltzmann 
distribution. 
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FIGURE 27.9 
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A sketch of a velocity selector. Only those atoms travelling at the right speed can pass through 
the set of rotating disks. 

selected by rotating the disks at the appropriate frequency. The intensity measured at 
the detector gives the relative fraction of atoms with a given speed. 

A comparison of the experimenltal results for gaseous potassium atoms and the 
prediction of the Maxwell-Boltzmann distribution is shown in Figure 27.10. The circles 
are the experimental data and the solid line is the predicted measured flux of potassium 
atoms as a function of the speed based upon the Maxwell-Boltzmann distribution of 
the emerging beam. The agreement between the two is seen to be excellent. Kusch 
was awarded the Nobel Prize in physics in 1955 for his work involving atomic and 
molecular beams . 
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FIGURE 27.10 
An experimental test of the Maxwell-Boltzmann distribution of molecular speeds. The solid line 
is computed according to the Maxwell-Boltzmann distribution and tbe points are experimental 
data of Miller and Kusch. 



27-6. The Mean Free Path Is the Average Distance a Molecule Travels 
Between Collisions 

When we discuss the theory of the rates of gas-phase chemical reactions in Chapter 30, 
we shall need to know about the frequency of collisions between the molecules in a 
gas. First let's consider the frequency of collisions of a single gas-phase molecule. As 
usual, we shall treat the molecules as hard spheres of diameter d. Furthermore, we 
shall assume that all the other molecules are stationary, and then take into account 
that all the molecules are moving relative to each other at the end of the derivation. 
As our molecule travels along, it sweeps out a cylinder of diameter 2d such that it 
will collide with any molecule whose center lies within this cylinder. This so-called 
collision cylinder is shown in Figure 27.11. Because there will be a collison if the 
center of our molecule comes within a distance d of the center of one of the other 
molecules, each of these molecules presents a target of effective radius d , and hence 
an area or a collision cross section equal to 7r d 2

• Figure 27. 11 illustrates that the radius 
of the collision cylinder is d, which is the diameter of the molecules. We shall denote 
the hard-sphere collision cross section 7r d 2 by the Greek letter a. The volume of the 
collision cylinder is equal to its cross section (a) times its length ((u )dt), or a (u )dt. 
Because a collision will occur whenever the center of another molecule lies within this 
cylinder, the number of collisions that this molecule makes is equal to the number of 
molecules within the collision cylinder. If the number density of molecules is p, then 
the number of collisions in the time interval dt is 

d N coII = pa (u )dt 

>d 

f--'" - . 

<d 
>d 

rea a 

J USI hil 
.Il1 'l mi ss 

FIG U R E 27.11 
The collision cylinder swept out by a gas molecule as it travels through the gas. A collision will 
occur whenever the center of another molecule lies within the cylinder. 
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or the collision frequency, Z A' is 

coil ( ) B 
dN (8k T) 1/2 

ZA - --d-t- == pa u == pa Tfm (27.49) 

Equation 27.49 is not quite correct because we assumed that all the molecules 
except the one that we were considering were stationary. We learned in Section 5-2 
that we can treat the motion of two bodies of masses m 1 and m

2 
moving with respect 

to each other by the motion of one body with a reduced mass f--L == m 1 m
2

/ (m 1 + m
2

) 

moving with respect to the other one being fixed. Thus, we can take into account that all 
the molecules are moving relative to each other by replacing m by f--L in Equation 27.49. 
If the masses of the two colliding molecules are the same, then f-1 == m /2 and the 
average relative speed, (u,J, is given by 

Thus, the correct expression for Z A is 

(27.50) 

EXAMPLE 27-7 
Use Equation 27.50 to calculate the collision frequency of a single nitrogen molecule 
in nitrogen at 25 C and one bar. 

SOL UTI 0 N: According to Table 27.3, a == 0.450 x 10- 18 m2 for nitrogen. The 
number density of nitrogen at 25 C and one bar was calculated in Example 27-6 to 
be p == 2.43 X 1025 m-3 and the average speed was calculated to be (u) == 475 m·s- I

. 

The collision frequency then is 

Z A == 21/2 (2.43 x 1025 m-3
) (0.450 x 10- 18 m2) (475 m· S-I) 

== 7.3 x 109 
S I 

To put this result into physical perspective, recall from Chapter 5 that a typical vibra­
tional frequency of a diatomic molecule is about 1013 1014 

S - 1 , and so we see that a 

typical diatomic molecule vibrates thousands of times between collisions (one bar and 
25°C). 

We should point out that the reciprocal of ZA is a measure of the average time between 
collisions. Thus, at one bar (Example 27-7), on average a nitrogen molecule has a 
collision every 1.4 x 10 10 S at 25°C. 

We can determine the average distance that a molecule travels between collisions, 
its mean free path, l, by realizing that if a molecule travels at an average speed of (u) 



TAB L E 27.3 
Collision diameters~ d(pm) and 
collision cross sections a (nm2) for 
various molecules. 

Gas d/pm 
') 

a/nm~ 

He 210 0.140 

Ar 370 0.430 

Xe 490 0.750 

H2 270 0.230 

N2 380 0.450 

°2 360 0.410 

Cl2 540 0.920 

CH
4 

410 0.530 

C
2
H

4 
430 0.580 

meters per second and makes Z A collisions in one second, then the average distance 
travelled between collisions is given by 

I _ _ (u) _ __ {_u)_ 
- ZA - 21/2pa(u) 

1 

If we replace p by its ideal gas value (p == P N AI RT), then we have 

RT 
/- ---­

< - 21/2N a P 
A 

(27.51) 

Equation 27.51 shows that at a given temperature, the mean free path is inversely 
proportional to the pressure. For nitrogen at 25°C and one bar, I is equal to 6.5 x 10-8 m, 
which is about 200 times the effective diameter of a nitrogen molecule. 

EXAMPLE 27-8 
Calculate the mean free path of a hydrogen molecule at 298 K at the low pressure of 
10-5 torr. 

SOL UTI 0 N: According to Table 27.3, a = 0.230 x 10- 18 m2 for Hr Using Equa­

tion 27.51 gives 

(0.08206 L·atm·mol- I ·K- 1 )(298 K) 
1= ---------------------------------------------------

21/2(6.022 X 1023 mol 1)(0.230 x 10- 18 m2)(1 x 10-5torr)(latm/760 torr) 

= 9500 L·m-2 = 9.5 m 

where we have used the fact that 1 L = 10-3 m3
. 

1123 



1124 Chapter 27 / The Kinetic Theory of Gases 

We can get another physical interpretation of mean free path from the following 
argument. Once again, consider the cylinder that a molecule sweeps out as it moves 
along and let the direction of motion be along the x-axis. Furthermore, consider each 
molecule whose center lies within the cylinder to be a target. The number of such 
targets in a plane of unit area perpendicular to the x-direction and of thickness dx is 
pdx, where p is the number density of molecules in the gas. Neglecting overlap, the 
total target area presented by these molecules is the collision cross section of each 
target (a) times the total number of targets (pd x), or a pdx. The probability that our 
one molecule will suffer a collision then is the ratio of this area to the total area 
(unit area): 

probability of a collision == a pdx (27.52) 

Now consider a beam of no molecules travelling with equal velocities in the 
positive direction and let them all start at x == O. Furthermore, let n (x) be the number 
of molecules that travel a distance x without a collision. The number of molecules 
that undergo a collision between x and x + dx is the number of molecules reaching x, 
n (x), multiplied by the probability of a collision in dx (Equation 27.52), and so 

number of molecules that 
undergo a collision between == n (x)O" pdx 

x and x + dx 

But a collision removes molecules from the beam. So this quantity is also equal to 
n(x) - n(x + dx), the number that reach x minus the number that reach x + dx. 

Therefore, we can write 

n(x) - n(x + dx) == O"pn(x)dx 

We divide both sides by dx and use the definition 

n(x + dx) - n(x) dn 

to get 

The solution to this equation is 

dx dx 

dn 
- == -apn(x) 
dx 

(27.53) 

But O"p is just the reciprocal of the mean free path (without the factor of 21/2 that 
comes about when we allow all the molecules to be moving), and so we can write 
Equation 27.53 as 

(27.54) 



27-6. The Mean Free Path Is the Average Distance a Molecule Travels Between Collisions 

The number of molecules that collide in the interval x and x + dx is n (x) - n (x + dx), 

and so the probability p(x )dx that one of the initial no molecules will collide in this 
interval is 

n(x) - n(x + dx) 1 dn 
p(x)dx == == ---dx 

no no dx 

1 == -e-x/1dx 
I 

(27.55) 

It is easy to show that Equation 27.55 is normalized and also to show that (x) == I, as 
you might expect. 

EXAMPLE 27-9 
Determine the distance at which one half of the molecules will have been scattered 

from a beam consisting initially of no molecules. 

SOL UTI 0 N: We shall use Equation 27.55. Let the distance be d and write 

or d == I (In 2) == 0.693l. Thus, one half of the molecules will be scattered before they 

travel 70% of the mean-free-path. 

Figure 27.12 shows the probability that a molecule collides before it travels a distance x 

plotted against x / I. 
One other quantity that we shall introduce in this section is the total collision 

frequency per unit volume, Z AA' among all the molecules in a gas. This is another 
quantity that is involved in the theory of the rates of gas-phase reactions. If Z A is the 
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FIGURE 27.12 

1 .0 --

0.5 

o.o----------~--------~--------~--------~ o 2 

xiI 
3 4 

The probability that a molecule will collide before it travels a distance x versus x / I. 
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collision frequency of one particular molecule, then the total collision frequency per 
unit volume is obtained by multiplying ZA by the number density of molecules, p, and 
then dividing by 2 in order to avoid counting a collision between a pair of similar 
molecules as two distinct collisions. Thus we have from Equation 27.50 

(27.56) 

For nitrogen at 25°C and one bar, Z AA == 8.9 X 1034 
S-I· m 3. In a gas consisting of 

two types of molecules, say A and B, then the collision frequency per unit volume is 
given by 

(27.57) 

where 

and (27.58) 

EXAMPLE 27-10 
Calculate the frequency of nitrogen-nitrogen collisions in one cubic centimeter of air 

at one bar and 20D C. Assume that 80% of the molecules are nitrogen molecules. 

SOL UTI 0 N: The partial pressure of nitrogen is 0.80 bar and the number density is 

(6.022 X 1023 mol- I)(0.80 bar) 

(0.08314 L· bar· rno 1-1 . K I) (293 K) 

= 2.0 X 1022 L -I = 2.0 X 1025 m-3 

The average speed is 

(
8RT)1/2 [8(8.314 J.K- 1)(293 K)]1/2 

(u) = = 
J[ M J[ (0.02802 kg) 

=470m.s I 

We use aN = 4.50 x 10- 19 m2 from Table 27.3 and so 
2 

( 4.50 x 1 0 - 19 m 2 ) ( 4 70 m· s -\ ) (2.0 x 1 025 m - 3) 2 

Z = ---------------------------------
N2 ,N2 21/2 

= 6.0 X 1034 S-I ·m-3 = 6.0 x 1028 S-I ·cm-3 



27-7. The Rate of a Gas-Phase Chemical Reaction Depends Upon 
the Rate of Collisions in Which the Relative Kinetic Energy 

Exceeds Some Critical Value. 

In Example 27-10, we calculated that the number of collisions between molecules at 
one bar and 20°C is about 6 x 1028 

S I. cm -3, or about 108 mol· dm 3. S \. Consider 

now a gas-phase chemical reaction A + B ---+ products. If every collision led to a 
reaction, then the reaction would proceed at a rate of 108 mol· dm 3. S -\ and one mole 
per liter would be consumed in 10-8 seconds, which is much faster than most rates of 
chemical reactions. When we study the theory of the rates of chemical reactions in the 
gas phase in Chapter 30, one of the assumptions that we shall make is that the relative 
energy of two colliding molecules must exceed a certain critical value in order for a 
reaction to occur. Thus, we shall need to know not just the total frequency of collisions, 
Equation 27.57, but those in which the relative energy of the two colliding molecules 
exceeds a certain critical value. 

To derive this result, we shall start with Equation 27.46 for the collision frequency 
of the molecules of a gas with a wall. Although the collisions of the molecules of a 
gas with a wall is certainly not the same as the collisions of the molecules of a gas 
with each other, the physical result that molecules travelling at higher speeds are more 
likely to strike the wall in a given time carries over to the case of collisions between 
molecules. Mathematically, the importance of molecules travelling at higher speeds is 

') 

seen through the factor u3 e-mu
- 12ks T, as shown in Figure 27.6. We can take into account 

that the molecules collide with each other rather than with a stationary wall by replacing 
m by the reduced mass J.L = mAmB/(m A + InB)' Thus, we shall write that the collision 
frequency per unit volume between molecules A and B in which they collide with a 
relative speed between u

r 
and u

r 
+ dU

r 
is proportional to u~e-llu;/2ksT, or 

(27.59) 

where A is a proportionality constant. Equation 27.59 is simply the differential form of 
Equation 27.57. We can determine A by requiring that the integral of Equation 27.59 
over all relative speeds be equal to ZAB given by Equation 27.57. Therefore, we write 

(27.60) 

where the integral is given in Table 27.2. Solving Equation 27.60 for A gives 
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and so Equation 27.59 becomes 

(27.61) 

This expression represents the collision frequency per unit volume between molecules 
of types A and B with relative speeds in the range ur and U r + dUro Notice that this 
distribution has a factor of U:' which reflects the fact that molecules with higher relative 
speeds collide more frequently. The factor 

'") 

IJ.U~/2kBT u3du 
r r 

in Equation 27.61 is proportional to the probability that the molecules have a relative 
speed between ur and u,. + dUro 

EXAMPLE 27-11 
Derive an expression for the collision frequency per unit volume in which the relative 

kinetic energy exceeds sonle critical value c('. 

SOL UTI 0 N: We start with Equation 27.61 and convert to relative kinetic energy, 

8,. == l1u;'/2. Solving for u,., 

and substituting into Equation 27.61 gives 

(27.62) 

This expression represents the collision frequency per unit volume in which the relative 

kinetic energies of the colliding particles are between cr and C r + d Cr' 

To find the collision frequency per unit volume in which the realtive kinetic energy 

exceeds c
c

' we integrate Equation 27.62 from Cc to 00, using 

to get 

(27.63) 

Note that this quantity varies essentially as e -F) kB T 



Problems 
27 -1. Calculate the average translational energy of one mole of ethane at 400 K, assuming ideal 

behavior. Compare your result to U id for ethane at 400 K given in Figure 22.3. 

27 -2. Calculate the root-mean-square speed of a nitrogen molecule at 200 K, 300 K, 500 K, 
and 1000 K. 

27 -3. If the temperature of a gas is doubled, by how much is the root-mean-square speed of the 
molecules increased? 

27 -4. The speed of sound in air at sea level at 20C C is about 770 mph. Compare this value with 
the root-mean-square speed of nitrogen and oxygen molecules at 20°C. 

27 -S. Arrange the following gases in order of increasing root-mean-square speed at the same 
temperature: 02' N2, H20, CO2, N02, 235UF6, and 238UF6. 

27 -6. Consider a mixture of H2 (g) and 12 (g). Calculate the ratio of the root-mean-square speed 
of H2 (g) and 12 (g) molecules in the reaction mixture. 

27 -7. The speed of sound in an ideal monatomic gas is given by 

(
5RT) 1/2 

Usound == 3M 

Derive an equation for the ratio urms/usound' Calculate the root-mean-square speed for an 
argon atom at 20c C and compare your answer to the speed of sound in argon. 

27 -8. Calculate the speed of sound in argon at 25 C. 

27 -9. The speed of sound in an ideal polyatomic gas is given by 

( 
Y RT) 1/2 

Usound == M 

where y == C p / c v' Calculate the speed of sound in nitrogen at 25c C. 

27-10. Use Equation 27.17 to prove that au/au. == u /u . 
. \ X 

27 -11. Give a physical argument why y in Equation 27.24 must be a positive quantity. 

27 -12. We can use Equation 27.33 to calculate the probability that the x-component of the 
velocity of a molecule lies within some range. For example, show that the probability that 

-u.ro < U x < u.d) is given by 

( )

1/2 n1 uxo ~ 
Prob{-u < u < u } == J e-mu

;/2kB T du 
xO - x - xO 2n k T x 

B -u xO 

( )

1/2 n1 uxO ) = 2 [ e-mu ;/2kB T du, 
2nkB T 10 . 
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Now let lnu; /2kB T = w 2 to get the cleaner-looking expression 

_ < < _ -w 2 1W

O 2 Prob{ U xO - U x - uxo } - n 1/2 0 e dw 

where Wo = (fn/2kBT)I/2u xo ' 

It so happens that the above integral cannot be evaluated in terms of any function that 
we have encountered up to now. It is customary to express the integral in terms of a new 
function called the error junction, which is defined by 

2 1z 
J erf(z) = 1/2 e-x~ dx 

n 0 

(1) 

The error function can be evaluated as a function of z by evaluating its defining integral 

numerically. Some values of erf(z) are 

7 erf(z) z erf(z) "" 

0.20 0.22270 l.20 0.91031 

0.40 0.42839 l.40 0.95229 

0.60 0.60386 l.60 0.97635 

0.80 0.74210 1.80 0.98909 

l.00 0.84270 2.00 0.99532 

Now show that 

27-13. Use the result of Problem 27-12 to show that 

27-14. Use the result of Problem 27-12 to calculate Prob{u
x 

> +(kBT/ln)I/2} and 
Prob{u

x 
> +(2k

B 
T / m) I/Z}. 

27 -15. Use the result of Problem 27-12 to plot the probability that -uxo < u
x 

< uxo against 
uxo / (2k

B 
T / m) 1/2. 

27 -16. Use Simpson's rule or any other numerical integration routine to verify the values of 

erf(z) given in Problem 27-12. Plot erf(z) against z. 

27 -17. Derive an expression for the average value of the positive values of u x ' 

27 -18. This problem deals with the idea of the escape velocity of a particle from a body such 

as the Earth's surface. Recall from your course in physics that the potential energy of two 

masses, m I and n"l2' separated by a distance r is given by 

Gm m 
VCr) = _ I 2 

r 



Problems 

(note the similarity with Coulomb's law) where G == 6.67 X 10-11 J.m·kg- I is called the 

gravitional constant. Suppose a particle of nlass m has a velocity u perpendicular to the 

Earth's surface. Show that the minimum velocity that the particle must have in order to 

escape the Earth's surface (its escape velocity) is given by 

u == (2~Mear1h) 1/2 

earth 

Given that M h == 5.98 x 1024 kg is the mass of the Earth and R rt.h == 6.36 x 106 m is its earl ea 

mean radius, calculate the escape velocity of a hydrogen molecule and a nitrogen molecule. 
What temperature would each of these molecules have to have so that their average speed 

exceeds their escape velocity? 

27 -19. Repeat the calculation in the previous problem for the moon's surface. Take the mass 

of the moon to be 7.35 x 1022 kg and its radius to be 1.74 x 106 m. 

27 -20. Show that the variance of Equation 27.37 is given by a 2 == lJ(~kB T I mc2
. Calcuate a for 

the 3 p 2 P
3

/ 2 to 3s 2 SI/2 transition in atomic sodium vapor (see Figure 8.4) at 500 K. 

27 -21. Show that the distribution of speeds for a two-dimensional gas is given by 

(Recall that the area element in plane polar coordinates is rdrde.) 

27 -22 . Use the formula in the previous problem to derive formulas for (u) and (u 2
) for a 

two-dimensional gas. Compare your result for (u 2
) to (u;) + (u:,). 

27 -23. Use the formula in Problem 27-21 to calculate the probability that u > U o for a two­

dimensional gas. 

27 -24. Show that the probability that a molecule has a speed less than or equal to U o lS 

given by 

where Xo == (m 12kB T) 1/2UO" This integral cannot be expressed in terms of any simple 
function and must be integrated numerically. Use Simpson's rule or any other integration 
routine to evaluate Prob{ u < (2k

B 
T / In) 1/2}. 

27-25. Using Simpson's rule or any other integration routine, plot Prob{u < uo} against 
uol (m 12kB T) 1/2. (see Problem 27-24.) 

27 -26. What is the most probable kinetic energy for a molecule in the gas phase? 

27-27. Derive an expression for a~ == (82
) - (8)2 from Equation 27.44. Now form the ratio 

to 

(TEl (8). What does this say about the fluctuations in 8? 

27 -28. Compare the most probable speed of a molecule that collides with a small surface area 

with the most probable speed of a molecule in the bulk of the gas phase. 
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27 -29. Use Equation 27.48 to calculate the collision frequency per unit area for helium at 100 K 
and 10- 6 torr. 

27 -30. Calculate the average speed of a molecule that strikes a small surface area. How does 
this value compare to the average speed of all the molecules? 

27-31. How long will it take for an initially clean surface to become 1.0% covered if it is bathed 
by an atmosphere of nitrogen at 77 K and one bar? Assume that every nitrogen molecule 
that strikes the surface sticks and that a nitrogen molecule covers an area of 1.1 x 105 pm2

. 

27 -32. Calculate the number of methane molecules at 2Y C and one torr that strike a 1.0 cm2 

surface in one mi II isecond. 

27 -33. Consider the velocity selector shown in Figure 27 .9. Let the distance between successive 
disks be h, the rotational frequency be v (in units of Hz), and the angle between the slits of 
successive di sks be e (in degrees). Derive the following condition for a molecule traveling 
with speed u to pass through successive slits: 

360vh 
u= - - -e 

Typical values of hand e are 2 cm and 2 . respectively, so u = 3.6v. By varying v from 0 
to about 500 Hz, you can select speeds from 0 to over 1500 m· S- I . 

27-34. The figure below illustrates another method that has been used to determine the dis­
tribution of molecular speeds. A pulse of molecules collimated from a hot oven enters a 
rotating hollow drum. Let R be the radius of the drum, v be its rotational frequency, and 5 

be the distance through which the drum rotates during the time it takes for a molecule to 
travel from the entrance slit to the inner surface of the drum. Show that 

where u is the speed of the molecule. 

Pul se of 
1110 lecules-~~·" 

(a) 

4][ R1v 
5= ---

u 

o ..., 
Q. 

I leeu l >~ 
depo ited o n 
drU I11 surf~ e 

(b ) 



Problems 

Use Equation 27.46 to show that the distribution of molecular speeds emerging from 
the oven is proportional to u 3 e -mu

2
/2k B T d u. Now show that the distribution of molecules 

striking the inner surface of the cylinder is given by 

A . (4 R2 )2 j?k T· 2 
I (5) d 5 == - e -J!1 Jr V - B .~ d 5 

55 

where A is simply a proportionality constant. Plot I versus s for various values of 
4][ R2

lJ / (2k
B 

T / m) 1/2, say 0.1, 1, and 3. Experimental data are quantitatively described 
by the above equation. 

27-35. Use Equation 27.49 to calculate the collision frequency of a single hydrogen molecule 
at 25 C and (a) one torr and (b) one bar. 

27 -36. On the average, what is the time between collisions of a xenon atom at 300 K and 
(a) one torr and (b) one bar. 

27 -37. What is the probability that an oxygen molecule at 25° C and one bar will travel (a) 1.00 x 

10-5 mm, (b) l.00 x 10-3 mm, and (c) l.00 mm without undergoing a collision? 

27 -38. Repeat the calculation in the previous problem for a pressure of one torr. 

27-39. At an altitude of 150 km, the pressure is about 2 x 10-6 torr and the temperature is 
about 500 K. Assuming for simplicity that the air consists entirely of nitrogen, calculate 
the mean free path under these conditions. What is the average collision frequency? 

27 .. 40. The following table gives the pressure and temperature of the Earth's upper atmosphere 
as a function of altitude: 

al ti tude/km P /mbar T/K 

20.0 56 220 

40.0 3.2 260 

60.0 0.28 260 

80.0 0.013 180 

Assuming for simplicity that air consists entirely of nitrogen, calculate the mean free path 
at each of these conditions. 

27 -41. Interstellar space has an average temperature of about 10 K and an average density 
of hydrogen atoms of about one hydrogen atom per cubic meter. Compute the mean free 
path of a hydrogen atom in interstellar space. Take the diameter of a hydrogen atom to 
be 100 pm. 

27 .. 42. Calculate the pressures at which the mean free path of a hydrogen molecule will be 
100 /Lm, 1.00 mm, and 1.00 m at 20G C. 

27 .. 43. Derive an expression for the distance, d, at which a fraction f of the molecules will 
have been scattered from a beam consisting initially of no molecules. Plot d against f. 
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27 -44. Calculate the frequency of nitrogen-oxygen collisions per dm3 in air at the conditions 
given in Problem 27-40. Assume in this case that 80% of the molecules are nitrogen 
molecules. 

27-45. Use Equation 27.58 to show that 

27 -46. Modify the derivation of Equation 27.49 to consider the collision frequency of a 
molecule of type A with B molecules in a mixture of A and B. Derive Equation 27.57 
directly from your answer. 

27 -47. Consider a mixture of methane and nitrogen in a 10.0 dm3 container at 300 K with partial 
pressures P

CH 
== 65.0 mbar and P

N 
== 30.0 mbar. Use the equation that you derived in the 

4 [ 2 

previous problem to calculate the collision frequency of a methane molecule with nitrogen 
molecules. Also calculate the frequency of methane-nitrogen collisions per dm3

. 

27 -48. Calculate the average relative kinetic energy with which the molecules in a gas collide. 

The following four problems deal with molecular effusion. 

27 -49. Equation 27.48 gives us the frequency of collisions that the molecules of a gas make 
with a surface area of the walls of the container. Suppose now we make a very small hole 
in the wall. If the mean free path of the gas is much larger than the width of the hole, any 
molecule that strikes the hole will leave the container without undergoing any collisions 
along the way. In this case, the molecules leave the container individually, independently 
of the others. The rate of flow through the hole will be small enough that the remaining 
gas is unaffected, and remains essentially in equilibrium. This process is called molecular 
effusion. Equation 27.48 can be applied to calculate the rate of molecular effusion. Show 
that Equation 27.48 can be expressed as 

P 
effusion flux == ----­

(2nmkB T)I/2 (2n M RT)I/2 
(1) 

where P is the pressure of the gas. Calculate the number of nitrogen molecules that effuse 
per second through a round hole of 0.010 mm diameter if the gas is at 25 C C and one bar. 

27 -50. Equation 1 of the previous problem can be used to determine vapor pressures of sub­
stances with very low vapor pressures. This was done by Irving Langmuir to measure the 
vapor pressure of tungsten at various temperatures in his investigation of tungsten filaments 
in light bulbs and vacuum tubes. (Langmuir, who was awarded the Nobel Prize in chemistry 
in 1932, worked for General Electric.) He estimated the rate of effusion by weighing the 
tungsten filament at the beginning and the end of each experimental run. Langmuir did 
these experiments around 1913, but his data appear in the CRC Handbook of Chelnistry 

and Physics to this day. Use the following data to determine the vapor pressure of tungsten 
at each temperature and then determine the molar enthalpy of vaporization of tungsten. 



Problems 

TjK 

1200 

1600 

2000 

2400 

2800 

3200 

effusion fluxjg'm- 2 .s I 

3.21 X 10-23 

1.25 x 10- 14 

1.76 X 10-9 

4.26 X 10-6 

1.10 X 10-3 

6.38 x 10-3 

27 -51. The vapor pressure of mercury can be determined by the effusion technique described 

in the previous problem. Given that 0.126 mg of mercury passed through a small hole of 

area 1.65 mm2 in 2.25 hours at O°C, calculate the vapor pressure of mercury in torr. 

27-52. We can use Equation 1 of Problem 27-49 to derive an expression for the pressure as a 
function of time for an ideal gas that is effusing from its container. First show that 

dN PA 
rate of effusion = --- = If! 

d t (2n lnkB T) ~ 

where N is the number of molecules effusing and A is the area of the hole. At constant T 
and V, 

Now show that 

P(t) = P(O)e-at 

where a = (kB T j2n m) 1/2 Aj V. Note that the pressure of the gas decreases exponentially 
with time. 

27 -53. How would you interpret the velocity distribution 

m m 2 2 

( )

3/2 [ 
h v v v - ex - v - a v - b v ( x' y' z) - 2rr kB T P 2k B T {( x ) + (y ) + ( , 
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Svante Arrhenius was born in Wijk near Uppsala, Sweden, on February 19, 1859, and 
died in 1927. Arrhenius ' name appears in all physical chemistry texts because of his equation 
that describes the temperature dependence of a reaction rate constant in terms of activation 
energy. Even more famous , however, is his work dealing with the properties of solutions of 
weak electrolytes. He received his doctorate in 1884 from the University of Uppsala for his 
dissertation on the theory of electrolytic solutions. Hi s thesis work was quite controversial and 
was not immediately accepted; in fact , he barely obtained his doctorate. He then received a 
traveling scholarship, which allowed him to spend five years studying in Europe with Ostwald, 
Boltzmann, and van't Hoff. Upon his return, he could not obtain a university position because 
of the controversy surrounding his thesis, and he became a teacher at the Technical High School 
in Stockholm. Two years later, his position was elevated to professor at the University of 
Stockholm after he underwent an oral examination by a hostile committee. Ostwald and van't 
Hoff were instrumental in gaining acceptance of hi s work and they published his paper "On the 
Dissociation of Substances in Aqueous Solutions" in the first issue of their journal , ZeitschriJt 
fur Physikalische Chemie. In 1904, Arrhenius became the first director of the newly created 
Nobel Institute for Physical Research in Stockholm. In 1903, he was awarded the Nobel Prize 
for chemistry "for his electrolytic theory of dissociations." 



CHAPTER 

Chemical Kinetics I: Rate Laws 

This chapter begins our study of the area of physical chemistry known as chemi­
cal kinetics. Our development of chemical kinetics will differ from our presentation 
of quantum mechanics and thermodynamics. In developing quantum mechanics, we 
started with a small set of postulates, and classical thermodynamics is built upon just 
three laws. If we had our choice, we would certainly develop chemical kinetics starting 
with a few very simple principles. Unfortunately, this is not yet possible. The field of 
chemical kinetics has not yet matured to a point where a set of unifying principles has 
been identified, but the current search for such a set contributes to the excitement of 
modern research in the field. 

Presently, there are many different theoretical models for describing how chemical 
reactions occur. None is perfect, but each has its merits. Several provide a microscopic 
picture of how chemical reactions take place. Thus, in chemical kinetics, you must 
become familiar with different ideas and sometimes concepts that seem unrelated. 
Bear in mind that this situation is common in scientific disciplines in which further 
research is needed in order to provide a more fundamental understanding of the subject. 

This chapter presents some of the phenomenological concepts of chemical kinetics. 
You will learn that the time-dependence of the reactant and product concentrations 
during a chemical reaction can be described by differential equations known as rate 
laws. A rate law serves to define a rate constant, which is one of the most important 
parameters used to describe the dynamics of chemical reactions. You will also learn 
that rate laws are determined from experimental data, and we will discuss some of the 
experimental techniques used to deduce rate laws. We will examine several rate laws 
and show how they can be integrated to give mathematical expressions for the time­
dependent concentrations. Finally, you will learn that rate constants are temperature 
dependent and how to describe this behavior mathematically. 1137 
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28-1. The Time Dependence of a Chemical Reaction Is Described 
by a Rate Law 

Consider the general chemical reaction described by 

Recall that we defined the extent of reaction, ~, in Chapter 26 such that 

n A (t) == n A (0) - V A ~ (t) 

ny(t) == ny(O) + Vy~(t) 

n B (t) == nB (0) - VB~ (t) 

nz(t) == nz(O) + Vz~(t) 

(28.1 ) 

(28.2) 

where n. (0) denotes the initial values of n .. The extent of reaction, ~, has units of moles 
J } 

and connects the amount of reaction that has occurred to the stoichiometry dictated by 

the balanced chemical equation. The change in n . (t) with time is then given by 
.I 

dnA(t) d~(t) 
-- ==-v 

dt A dt 

dny(t) d~(t) 
-- == v 

dt y dt 

dnB(t) d~(t) 
--==-V --

dt B dt 

dnz(t) d~(t) 
--==V--

dt z dt 

(28.3) 

Most experimental techniques measure concentration as a function of time. If the 

volume, V, of the system is constant, then dividing Equations 28.3 by V gives the 
corresponding expressions for the time-dependent concentrations, 

1 dnA(t) 

V dt 

1 dny(t) 

V dt 

d[A] 

dt 

dry] 

dt 

vAd~(t) 
----

V dt 

Vy d~(t) 

V dt 

I dnB(t) 

V dt 

1 dnz(t) 

V dt 

d[B] 
dt 

d[Z] 
dt 

vBd~(t) 
--

V dt 

Vz d~(t) 

V dt 

(28.4 ) 

where [A], for example, is equal to n A (t) / V. The above expressions are used to define 
the rate of reaction, v (t): 

vet) == _~ d[A] == _~ d[B] = ~ dry] = ~ d[Z] = ~ d~ (28.5) 
v A dt VB dt Vy dt Vz dt V dt 

Note that all the quantities in Equation 28.5 are positive. For example, the rate of 

reaction for 

(28.6) 

is given by 

1 d[NO] d[02] 1 d[N02] 
vet) == - 2 dt == - dt == 2 dt (28.7) 



28-1. The Time Dependence of a Chemical Reaction Is Described by a Rate Law 

For most chemical reactions, v (t) is related to the concentrations of the various 
chemical species present at time t. The relationship between v (t) and the concentrations 
is called the rate law. Rate laws must be determined from experimental measurements. 
Rate laws cannot, in general, be deduced from the balanced chemical reaction. For 
example, experimental studies reveal that the reaction between nitrogen monoxide and 
oxygen to form nitrogen dioxide, Equation 28.6, obeys the rate law 

(28.8) 

where k is a constant. Equation 28.8 shows that the rate is proportional to [NO]2[02]' 

The proportionality constant, k, is called the rate constant for the reaction. For this 
particular rate law, the rate depends differently on the concentrations of the two reac­
tants. A doubling of the oxygen concentration results in a doubling of the reaction rate, 
whereas a doubling of the nitrogen monoxide concentration causes a quadrupling of 
the reaction rate. 

The rate laws often have the form 

(28.9) 

where [A], [B], ... are the concentrations of the various reactants and the exponents, 
or orders, mA' ms ' "', are constants (see Table 28.1). We say that the rate law 
given by Equation 28.9 is mAth order in A, ms th order in B, etc. For example, the 
rate law given by Equation 28.8 is second order in NO and first order in O2 , and 
the rate law given by the third entry in Table 28.1 is 3/2 order in CH

3 
CHO. For 

many of the reactions listed in Table 28.1, the order of the reactant differs from its 
stoichiometric coefficient in the balanced chemical reaction; this is often the case. The 
examples listed in Table 28.1 are all gas-phase chemical reactions; however, the rate 
law concept applies to all reactions regardless of the phases of the reactants, products, 
and surrounding medium. When the rate law can be written as in Equation 28.9, the 
sum of the exponents is commonly referred to as the overall order of the chemical 
reaction. For example, the rate la'N given in Equation 28.8 has an overall reaction order 
of three. 

TAB L E 28.1 
Examples of gas-phase chemical reactions and their corresponding rate laws 

Chemical reaction 

H2 (g) + 12 (g) ~ 2 HI(g) 

2NO(g) +02(g) ~ 2N02(g) 

CH
3
CHO(g) ~ CH

4
(g) + CO(g) 

N02 (g) + CO(g) ~ CO
2
(g) + NO(g) 

CI
2
(g) + CO(g) ~ CI

2
CO(g) 

2 NO(g) + 2H
2

(g) ~ N
2
(g) + 2 H

2
0(g) 

Rate law 

v = k[H
2

] [1
2

] 

v = k[NOfr02] 

v = k[CH CHO]3/2 
:I 

V = k[N02f 
v = k [CI2]3/2 [CO] 

V = k[NO]2[H,] 
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TAB L E 28.2 
The orders and units of reaction rate constants, k, for different rate laws 

Rate law 

v==k 

v == k[A] 

v == k[Af 

v == k[A][B] 

v == k[A] 1/2 

v == k[A][B]1/2 

Order 

o 
1 

2 

1 in [A] 

I in [B] 

overall: 2 

1/2 

1 in [A] 

1/2 in [B] 

overall: 3/2 

Units of k 

dm .mol.s I 
-\ s 

dm 3 • mol-I . s 1 

dm3 ·mol- I 'S-I 

dm-3/2.molI/2.s 1 

The units of a rate constant depend on the form of the rate law. Table 28.2 gives 
some examples of rate laws, their overall orders, and the corresponding units of their 
reaction rate constants. 

EXAMPLE 28-1 
The standard SI unit of concentration is mol· dm -3. In the scientific literature, we 

frequently encounter units of mol· L -I for reactions in solution and molecule· cm-3 

for gas-phase reactions. A liter is equivalent to a dm3
, so mol· L -I is equivalent to 

mol· dm -3, but how do we convert the older unit of molecule· cm -3 to SI units? 

SOL UTI 0 N: One molecule· cm -3 corresponds to 

( 
_ _ 1 -I) (10

dm
Cm)3 (1 molecule· cm -3) n 

6.022 x 10-- molecule· mol 

== 1.661 x 10-21 mol·dm-3 

Thus, for example, a concentration of 2.00 x 1020 molecule· cm -3 corresponds to 

I ~ (1.66IXI0-2I
mol.dm-3

) 
(2.00 x 10,,-0 molecule·cm-·') 1 == 0.332 mol.dm 3 

1 molecule·cm-· 

Many rate laws cannot be written in the form of Equation 28.9. For example, the 
rate law for the reaction 

H2 (g) + Br 2 (g) -----+> 2 HBr(g) (28.10) 
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is given by 

k'[H ][Br ] 1/2 
vet) - 2 2 

- 1 + kl/[HBr] [Br
2

] I 
(28.11) 

where k' and kl/ are constants. In this case, the concept of reaction order has no meaning. 
We will show in Chapter 29 that such a complicated rate law tells us that the chemical 
reaction occurs by a multistep process. 

28-2. Rate Laws Must Be Determined Experimentally 

In this section, we will examine two experimental techniques that chemists use to de­
termine rate laws. For discussion purposes, we consider the general chemical equation 

(28.12) 

and assume that the rate law has the form 

(28.13) 

If we knew the reaction orders m A and m
B

, then a measurement of the rate as a function 
of concentrations would enable us to determine the rate constant k. Our problem, then, 
is how to determine the values of m A and m B • 

Suppose the initial reaction mixture has a large excess concentration of A. In this 
case, the concentration of A remains essentially constant as the reaction takes place. 
Equation 28.13 therefore simplifies to 

(28.14) 

where k' = k[A]l1lA is a constant. The order of B can then be determined by measuring 
the rate as a function of [B]. The only requirement is that A always be in large excess 
so that k' remains constant. Likewise, if B is initially present in large excess, then 
Equation 28.13 simplifies to 

(28.15) 

where k" = k[B] l1l
o is a constant. The order of A can then be determined by measuring 

the rate as a function of [A]. This technique is called the method of isolation and can 
be extended to reactions that involve more than two reactants. 

Sometimes it is not possible to have a reactant in excess. We still need to be able 
to determine the orders of the various reactants but cannot use the method of isolation. 
Ideally, if we have many measurements of the rate, d[A]/ dt, at various concentrations 
of [A] and [B], the orders of the reactants and the rate constant could be determined 
directly by fitting the data to Equation 28.13. Unfortunately, it is not possible to measure 
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the differential, d[A]/ dt. We can, however, measure the concentration change for a 
finite time period, ~t; in other words, we can measure ~[A]/ ~t. If we equate such a 
measurement to the reaction rate, then 

(28.16) 

The approximate equality between d[A]/dt and ~[A]/ ~t is more accurate the shorter 
the time period of the measurement and is exact as ~t -+ 0 (this is just the definition 
of a derivative). Consider what happens if two different measurements of the initial 
rate (from t == 0 to t == t) are made in which the initial concentration of A, [A]o' is the 
same and the initial concentration of B is varied. The rates of reaction for these two 
sets of initial conditions are given by 

(28.17) 

and 

(28.18) 

where the subscripts 1 and 2 are used to distinguish between the two different ex­
periments with different initial concentrations of [B]. If we divide Equation 28.17 by 
Equation 28.18, take the logarithm of both sides, and then solve for mE' we obtain 

v 
In-l 

V 2 In == ---
B [B]) 

In-­
[B]2 

(28.19) 

Clearly, if [B] is held fixed and the initial concentration of A is varied, the order m A 

can be determined in a similar manner. This procedure for determining the reaction 
orders is called the method of initial rates. 

EXAMPLE 28-2 
Consider the following initial rate data for the reaction 

Run [N0
2
]o/mol.dm-3 [F

2
]o/mol.dm-3 vo/mol.dm-3 ·S-l 

1 1.15 1.15 6.12 x 10-4 

2 1.72 1.15 1.36 x 10-3 

3 1.] 5 2.30 1.22 x 10-3 
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where [N02]o and [F2]o are the intial concentrations ofN02(g) and F2 (g) and Vo is the 
initial rate. Determine the reaction rate law and the value of the rate constant. 

SOL UTI 0 N: We assume the rate law has the form 

To use the method of initial rates, we must also assume that the measured initial rate 

is given by the rate law in which the concentrations are the initial concentrations, or 

(1) 

To determine m
F 

we measure the initial rate at a constant initial concentration of N02, 
') 

[N02JO' and vary the initial concentration ofF2, [F
2

]Q" Runs 1 and 3 in the above table 

provide the results of such an experiment. Using Equation 28.19, we obtain 

6.12 X 10-4 mol·dm-3 'S-I 
In ---------­

l. 22 x 1 0 - 3 mol· dm - 3 • S 1 

l.15 mol·dm-3 

In------
2.30 mol· dm-3 

-0.690 = 0.996 
-0.693 

To determine m
NO 

' we carry out two experiments at a constant value of [F2]o and 

vary the value of [!~r02]O' Runs 1 and 2 are two such experiments. Using an expression 

analogous to Equation 28.19 for m
F 

' we find 
2 

1.36 X 10-3 mol·dm-3 -S-I 
In ----------

6.12 x 10-4 mol.dm-3 .s 1 

0.799 

1.72 mol·dm-3 

In------
1.15 mol·dm-3 

-- = 1.98 
0.403 

Assuming the orders are integer valued, the rate law is 

Solving Equations 1 for the rate constant gives 
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U sing the first set of data in the table, we obtain 

6.12 X 10-4 mol·dm-3 ·s- 1 

k==------------
(1.15 mol·dm-3 )2(1.15 mol.dm-3

) 

== 4.02 x 10-4 dm6 ·mol-2. s I 

The other two sets of data give 4.00 x 10-4 dln6 ·mol-2·s I and 4.01 x 10-4 

dm6. mol-2
. S-I. The average rate constant for the three sets of data is 4.01 X 

10-4 dm6.mol-2.s 1. 

In using either the method of isolation or the method of initial rates, we have 

tacitly assumed that the reactants can be mixed in any desired proportions and the 

reaction rate can then be measured. In the laboratory, two solutions can be thoroughly 

mixed in approximately a millisecond. For many reactions, the time required to mix 
the reactants is long compared with the reaction process itself, and thus the rate law 
and rate constant cannot be determined using either of the techniques discussed in this 

section. To study fast reactions, different experimental approaches must be used. We 
will discuss some techniques that are used to study faster reactions, called relaxation 

methods, in Section 28-7. But first, we need to learn more about the properties of rate 

laws. 

28-3. First-Order Reactions Show an Exponential Decay of Reactant 
Concentration with Time 

Consider the reactions given by Equation 28.20, where A and B denote the reactants: 

A + B ----+) products (28.20) 

This chemical equation does not tell us anything about its rate law. Suppose the rate 
law is first order in [ A]. Then 

d[A] 
vet) == - == k[A] 

dt 
(28.21) 

If the concentration of A is [A]o at time t == 0 and [A] at time t, this equation can be 

integrated to give 

[A] 
In == -kt 

[A]o 
(28.22) 

or 

(28.23) 
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Equation 28.23 shows that [AJ decays exponentially with time from its initial value of 

[AJo to zero (see Figure 28.1a). Rearranging Equation 28.22 gives 

In[AJ == In[AJo - kt (28.24) 

which shows that a plot of In [ A] versus t will yield a straight line of slope -k and 

intercept In[A]o (see Figure 28.1 b). 

The chemical reaction given by 

obeys the first-order rate law 

d[N 0] 
v (t) == - 2 S == k [N ° ] dt 2 S 

Table 28.3 gives the measured concentration of N
2
0

S
(g) as a function of time for this 

reaction at 318 K. Figure 28.2 shows a plot of In[N20 s] versus time. The plot is linear, 

which is expected for a first-order reaction (Equation 28.24). From the slope of the line 
in Figure 28.2, we obtain a rate constant of k == 3.04 X 10-2 min-I. 

The length of time required for half of the reactant to disappear is called the ha?f­
life of the reaction and is written as t 1/ 2 • For the first-order reaction considered above, 

Equation 28.22 can be used to derive a relationship between the rate constant k and the 
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(a) (b) 

Fie U R E 28.1 
Kinetic plots for a first-order chemical reaction. (a) [A] is plotted as a func­
tion of t for values of the rate constant k of 0.0125 S-l (dotted line), 0.0250 S-l 

(dashed line), 0.0500 S-I (long dashed line), and 0.100 S-I (solid line). (b) 
The curves in part (a) are plotted as In [A] versus t. The slope of the 
line is equal to -k (see Equation 28.24). 

............. 

200 
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TAB l E 28.3 
The concentration [N

2
0

S
] and In[N20 s] as a function of time for the 

reaction N20 S (g) ---+ 2N02(g) + ~ 02(g) at 318 K. 

tlmin 

FIG U R E 28.2 

o 
10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

~ 

~ 

I a 
"'d 

• -0 

a 
.......... 

-4 

-5 

r--, -6 
VI 

0 
C"l 

Z 
~ 

~ -7 
$:l -

0 

[N
2
0

S
]/10-2 mol·dm-3 In([N2 Os ]/mol· dm -3) 

1.24 -4.39 

0.92 -4.69 

0.68 -4.99 

0.50 -5.30 

0.37 -5.60 

0.28 -5.88 

0.20 -6.21 

0.15 -6.50 

0.11 -6.81 

0.08 -7.13 

0.06 -7.42 

20 40 60 80 100 

t I min 

A plot of In[N20 s] versus time for the reaction N20 S (g) ---+ 2N02(g) + ~ 02(g) at 318 K. 
The plot gives a straight line, consistent with a first-order rate law. The slope of the plot gives 
k == 3.04 X 10-2 min-I. (The data plotted are given in Table 28.3.) 

half-life tl/2" At time t == tl/2' the concentration of A equals [A]o/2. Substituting these 
values into Equation 28.22 gives us 

1 
In 2 == -kt l / 2 
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or 

In 2 0.693 
tl/2 = k = k (28.25) 

Also note that the half-life of a first-order reaction is independent of the initial amount 
of the reactant, [A]o' Figure 28.3 shows a plot of [N20 S] as a function of time, where 
the values of [N

2
0

S
] given in Table 28.3 are indicated in units of reaction half-lives. 

1.2 

~ 
I 

S 1.0 
""d 
• -a 0.8 

N , 
o 0.6 --.... 
r---"1 

01£1 0.4 
N 

Z 
L...-J 0.2 

Fie U R E 28.3 

o.o+---~--~~~~~--~~ 

A plot of [N
2
0

S
] versus time for the reaction 

N20 S (g) --+ 2N02 (g) + ~ 02(g) at 318 K. 
The solid line is the best fit of Equation 28.23 
to the data given in Table 28.3. The concen­
tration of N

2
0

S 
in increments of the reaction 

half-life (23 min) is also indicated. 
o 20 40 60 

t / min 
80 100 

Examples of gas-phase chemical reactions that exhibit first-order rate laws are given 
in Table 28.4 along with their measured rate constants. Notice that even though the 
time-dependence of the reactant concentrations for all these reactions can be described 
by Equation 28.23, the values of the rate constants vary over many orders of magnitude. 
Hence, a particular rate law does not provide any information on the magnitude of the 
rate constant. 

EXAMPLE 28-3 
The rate law for the reaction described by 

is first order in the concentration of N
2
0

2
(g). Derive an expression for the time­

dependent behavior of [NO], the product concentration. 

SOL UTI 0 N: The rate of formation of NO is given by the rate law 

1 d[NO] 
v == - == k [N ° ] 2 dt 2 2 

(1) 
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The rate law for the disappearance of N20 2 is first order, so we can use Equation 28.23 
to describe [N20 2], which allows us to rewrite Equation 1 as 

d[NO] 
-- = 2k[N ° ] e-kr 

dt 2 2 0 

Separating the time and concentration variables gives us 

Integrating [NO] from [NO]o = 0 to [NO] and the time variable from 0 to t gives us 

(remember that [N20
2

]O is a constant) 

TAB L E 28.4 
The reaction rate constants, k, for a variety of first-order gas-phase chemical reactions at 500 K 
and 700 K. 

Reaction 

/ somerizations 

cyclopropane ~ propene 

cyclopropene ~ propyne 

cis-but-2-ene ~ trans-but-2-ene 

CH
3
NC ~ CH

3
CN 

vinyl allyl ether ~ pent-4-enal 

Decolnpos itions 

cyclobutane ~ 2 ethene 

ethylene oxide ~ CH
3
CHO, CH

2
0, CH2CO 

ethyl fluoride ~ HF + ethene 

ethyl chloride ~ HCl + ethene 

ethyl bromide ~ HBr + ethene 

ethy 1 iodide ~ HI + ethene 

isopropy I ether ~ propene + isopropy lalcohol 

k/s- I at 500 K k/s- I at 700 K 

7.85 x 10- 14 1.13 X 10-5 

5.67 x 10-4 13.5 

2.20 x 10- 14 1.50 X 10-6 

6.19 x 10-4 38.5 

2.17 x 10-2 141 

1.77 X 10- 12 1.12 X 10-4 

l.79 X 10- 11 2.19 X 10-4 

l.57 x 10- 13 4.68 X 10-6 

3.36 X 10- 12 6.20 x 10-5 

8.06 X 10- 1 I 4.32 X 10-4 

l.07 X 10-9 4.06 X 10-3 

6.76 X 10- 14 5.44 X 10-3 

28-4. The Rate Laws for Different Reaction Orders Predict Different 

Behaviors for Time-Dependent Reactant Concentrations 

What are the time dependencies of concentrations for rate laws that are not first order? 
Do the concentrations of the reactants still decay exponentially with time? If the 
reactant concentrations were to decay exponentially regardless of order, experimental 
measurements of concentration as a function of time would not provide any insight 
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into the reaction order. If, however, different reaction orders exhibit different functional 

forms for the time dependence of reactant concentrations, experimental measurements 

of the rate as a function of initial concentrations can in principle be used to deduce 

information about reaction order. 
Consider the equation 

A + B ) products (28.26) 

where experimental data reveal that the rate law is 

(28.27) 

We now want to derive an expression for [A] from Equation 28.27. By separating the 

concentration and time variables and then integrating the resulting expression assuming 

that the initial concentration of A at t == 0 is [A]o and at time t later is [A], we get 

1 

[A] 

1 
[A]a + kt (28.28) 

This result predicts that for a second-order reaction, a plot of l/[A] versus t will yield 

a straight line of slope k and intercept 1/ [A]o' 

The reaction 

NOBr(g) ) NO(g) + ~ Br2 (g) 

is found to obey the rate law 

v == k [NOBr]2 

Table 28.5 gives the time-dependent concentration of NOBr(g), and Figure 28.4 shows 

a plot of 1/[NOBr] versus time. The graph shows that 1/[NOBr] varies linearly with 
time, consistent with Equation 28.28. The value of the rate constant, given by the slope 
of the line, is equal to 2.01 dm3 ·mol- l 

·S-I. 

TAB L E 28.5 
Kinetic data for the reaction NOBr(g) ---+ NO(g) + ~ Be) (g). 

~ .... 

tis 

o 
6.2 

10.8 

14.7 

20.0 

24.6 

[NOBr ]/mol· dm-3 

0.0250 

0.0191 

0.0162 

0.0144 

0.0125 

0.0112 

40.0 

52.3 

61.7 

69.9 

80.0 

89.3 
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FIG U R E 28.4 
A plot of 1/[NOBr] versus time for the re­
action NOBr(g)-*NO(g) + 1 Br2(g). The 
experimental data are given in Table 28.5. 
The linear dependence of 1/[NOBr] on 
time is consistent with a second-order rate 
law, Equation 28.28. The value of the rate 
constant, given by the slope of the line, is 
equal to 2.01 dm3 ·mol- I 

·S-I. 

The following example shows how the reaction rate law can be found by combining 
the method of isolation and the predictions of integrated rate laws. 

EXAMPLE 28-4 
The reaction between carbon disulfide and ozone 

CS2 (g) + 2 0 3 (g) ------? CO2 (g) + 2 S02 (g) 

was studied using a large excess of CS2. The pressure of ozone as a function of time 

is given in the following table. Is the reaction first order or second order with respect 

to ozone? 

Time / s Ozone pressure/torr 

o l.76 
30 l.04 
60 0.79 
120 0.52 
180 0.37 
240 0.29 

SOL UTI 0 N: We first assume that the rate law has the general form 

Because CS2 is present in excess, [CS2] is essentially constant and we can write 

m rn o 
V == k' [0 ] °3 ex Po 3 

3 3 

(This is the method of isolation.) From Section 28--3, if rno == 1 (first order), then 
3 

In Po versus time is linear. If rno == 2 (second order), then 1/ Po versus time is 
3 3 3 

linear. These two plots are presented below. The plot of In Po versus time is not linear, 
3 
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whereas the plot of 1 / Po versus time is linear. Therefore, the reaction is second order 
• • :I 
In ozone concentratIon. 

1 . a 
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~ ~ 
I- ~ 

0 
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0 0.0 
~ 
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........... 

~ 
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......-I 

o 
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~ 
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0 
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t / s t / s 

The half-life of a second-order reaction can be determined from Equation 28.28. 

Setting t = tl/2 and [A]t = [A]o/2 gives us 
1/2 

1 
t =--

1/2 k[A]o 
(28.29) 

Notice that the half-life depends on the initial concentration of the reactant for a second­
order reaction. This relation is different from that found for a first -order reaction, for 
which the half-life is independent of concentration (Equation 28.25). 

Finally, consider the reaction 

A + B ) products (28.30) 

for the case in which experimental data reveal that the rate law is 

_d[A] = _d[B] = k[A][B] 
dt dt 

(28.31 ) 

This rate law is first order in each reactant and second order overall. The rate law 
given by Equation 28.31 is more difficult to integrate, and the details are addressed in 
Problem 28-24. The resulting integrated rate law is 

kt = 
1 In [A] [B]o 

[A]o - [B]o [B][A]o 
(28.32) 

If [A]o = [B]o' Equation 28.32 is indeterminate. Problem 28-25 shows that the inte­
grated rate law for the case when [A]o = [B]o is 

1 

[A] 

1 
-+kt 
[A]o 

I 
or 

[B] 

1 
[B]o + kt (28.33) 
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consistent with Equation 28.28. Table 28.6 lists the rate constants for a variety of 
reactions that follow a second-order rate law. 

TAB L E 28.6 
Reaction rate constants for second-order gas-phase reactions at 500 K. 

Reaction 

2 HI (g) -0 H~ (g) + L) (g) 
L.. ~ 

2 NOCl(g) -0 2 NO(g) + C12 (g) 

N02 (g) + 03 (g) -0 NOj (g) + 02 (g) 

NO(g) + C12 (g) -0 NOCl(g) + Cl(g) 

NO(g) + 03(g) -0 N02 (g) + 02(g) 

OJ (g) + CjHg (g) -0 CjH70(g) + H02 (g) 

28-5. Reactions Can Also Be Reversible 

4.91 X 10-9 

0.363 

5.92 x 106 

5.32 

5.70 x 107 

14.98 

Consider the isomerization reaction of cis-l,2-dichloroethene to form trans-l ,2-di­
chloroethene, If we start with a sample of pure cis-l ,2-dichloroethene, we find that the 
reaction does not go to completion but generates an equilibrium mixture between the 
two geometrical isomers. Similarly, if we start with pure trans-l ,2-dichloroethene, we 
obtain the same equilibrium mixture. In both experiments, the final concentrations of the 
two isomers are dictated by the equilibrium constant for the reaction. When a reaction 
occurs in both directions, we say that the reaction is reversible. (Be careful not to 
confuse this definition of the word "reversible" with that for a thermodynamic process.) 

To indicate that a kinetic process is reversible, we explicitly draw two arrows, 
one representing the forward reaction and one representing the reverse reaction. The 
rate constants for the two reactions, kl and k_l' are written next to the arrow they are 
associated with. We will use a positive subscript for the rate constant of a forward 
reaction and a negative subscript for a rate constant of a reverse reaction. The reaction 
discussed above is a specific example of the general reaction scheme 

(28.34) 

For any initial concentrations, [AJo and [BJo' the chemical system must go to equi­
librium. At equilibrium, the ratio of the concentrations of A and B is given by the 

equilibrium-constant expression, 

[BJeq 
K ==--

C [AJ 
eq 

(28.35) 
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For the concentrations of A and B to remain constant at their equilibrium values, both 

d[A]/ dt and d[B]/ dt must equal zero. Thus, the kinetic conditions for Equation 28.34 
to be at equilibrium is that 

__ d[A_] == d[B] == 0 
dt dt 

(28.36) 

This result is important, and we will use it extensively in the next chapter when we 

discuss reaction mechanisms. Even though the concentrations of A and B are constant 

at equilibrium, A is converted to Band B is converted to A but in such a way that 

there is no net change in the concentrations of either A or B. The equilibrium state is a 

dynamic equilibrium. 
We now examine the specific case in which the rate law for Equation 28.34 is first 

order in both [A] and [B]. The rate is then given by 

d [A] = k I [A 1 - k 1 [B] 
dt -

(28.37) 

Unlike the rate laws considered so far, Equation 28.37 expresses the rate as a sum of 

two terms. The first term is the rate at which A reacts to form B. The second term is the 

rate at which B reacts to form A. The difference in sign of these two terms reflects that 

the forward reaction depletes the concentration of A and the back reaction increases 
the concentration of A with time. 

If [A] == [A]o and [B] == 0 at time t == 0, the stoichiometry of Equation 28.34 
requires that [B] == [A]o - [A], and Equation 28.37 becomes 

d[A] 
dt == (k l + k 1 )[A] - k_1 [Alo (28.38) 

Integrating this rate law subject to the above initial conditions gives us (Problem 28-32) 

(28.39) 

where [A]eq is the concentration of A at equilibrium. By bringing [A]cq to the left side 
and then taking logarithms, we can rewrite Equation 28.39 as 

(28.40) 

which tells us that a plot of In([A] - [A]eq) as a function of time has a slope of 

-(k] + k_ 1) and an intercept ofln([A]o - [A1eq)' From such an analysis of the kinetic 

data, the sum of the rate constants k I + k -I is determined. Generally, however, we 

want to determine kl and k_1 individually. We can do this by taking advantage of 

the connection between the rate law and the equilibrium constant. At equilibrium, 

-d[A]/dt == 0 and the rate law, Equation 28.37, becomes 

k [A] == k [B] 1 eq -1 eq (28.41) 
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or 

kl [B]eq 
-- -K - -
k [A] C 

1 eq 
(28.42) 

If we know the sum kl + k~l and the value of Kc' both rate constants can be uniquely 

determined. Figure 28.5 shows a plot of [A]/[A]o and [B]/[A]o for the reversible 

reaction given by Equation 28.34 subject to the inital conditions [A] = [A]o and [B] = 0 

at time t = O. Because [A] + [B] = [A]o' the concentration ofB is given by [A]o - [A]. 
The rate constants for the forward and reverse reactions are k} = 2.25 X 10-2 

S-l 

and k 1 = 1.50 X 10-2 
S-l. The value of [A] decreases from [A]/[A]o = 1.000 to 

[A]/[A]o = [A]eq/[A]o = 0.400, and the value of [B] increases from [B]o/[A]o = 0 

to [B]/[A]o = [B]eq/[A]O = 0.600. At equilibrium, the values of the concentrations 

satisfy the relationship K = [B] / [A] = kl / k 1 = 1.50. c eq eq -

1 .0 

0 
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~ 0.8 
~ 

........... 
,......-, 

~ 0.6 --------
~ 

. '" 
0 
~ 0.4 ~ 
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/ 
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~ I 

0.0 
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Fie U R E 28.5 
The time dependence of [A]/[A]o (solid line) and [B]/[A]o (dashed line) for the reversible 
reaction given by Equation 28.34 subject to the inital conditions [A] == [A]a and [B] == 0 at 
time t == O. The rate constants for the forward and reverse reaction are kl == 2.25 X 10-2 

S-I 

and k_1 == 1.50 X 10-2 
S-I. 

EXAMPLE 28-5 
The reaction cis-2-butene to trans-2-butene is first order in both directions. At 25 c C, 
the equilibrium constant is 0.406 and the forward rate constant is 4.21 x 10-4 

S I. 

Starting with a sample of the pure cis isomer with [cis]o == 0.115 mol·dm-3
, how long 

would it take for half the equilibrium amount of the trans isomer to form? 



28-6. The Rate Constants of a Reversible Reaction Can Be Determined Using Relaxation Methods 

SOL UTI 0 N: We represent the reaction by 

. k, 
ClS~ trans 
~ 

k , 

Because the reaction is first order in both directions, 

[trans] k 
K == eq == _I == 0.406 

C [ci s] k 1 
eq -

Solving for the reverse rate constant gives 

4.21 X 10-4 s 1 
k == == 1. 04 x 10-3 

S - 1 
-I 0.406 

By mass balance, [ci s]o == [ci s] + [trans] . Therefore, eq eq 

[trans] 
eq 

[trans] eq [trans] 
eq == 0.406 

0.115 mol·dm-3 
- [trans] [cis] eq [cis]o - [trans] eq eq 

or [trans] == 0.0332 mol·dm-3
. The concentration of cis at equilibrium is then 

eq 

0.115mol·dm-3 
- 0.0332mol·dm-3 == 0.082mol·dm-3

. Half the equilibrium amount 
of the trans isomer is 0.0166 mol·dm-3

, which corresponds to a cis concentration of 
0.115 mol·dm-3 

- 0.0166 mol·dm-3 == 0.098 mol·dm-3
. Equation 28.40 can now be 

used to find the time required for half the equilibrium amount of the trans isomer to 

form. Solving Equation 28.40 for time, t, gives 

[cis ]() - [cis] 
In 

eq 
t == ---

k I + k 1 [ cis] - [c is] eq 

1 

From the above calculations, [cis]o == 0.115 mol·dm-3
, [cis] == 0.082 mol·dm-3

, eq 

and [ci s] == 0.098 mol· dm when the concentration of the trans isomer is at half its 

equilibrium value. Substituting these values into the above equation gives 

( 
1 ) 0.115 mol·dm-3 

- 0.082 mol·dm-3 

t == 4.21 X 10-4 s 1 + 1.04 X 10-3 s I In 0.098 mol·dm-3 
- 0.082 mol.dm-3 

== 490 s 

28-6. The Rate Constants of a Reversible Reaction Can Be 
Determined Using Relaxation Methods 

In Section 28-2, we discussed two experimental techniques used to determine the rate 
law for a chemical reaction provided that the half-life is long compared with the time 
needed to mix the two reactants. The same constraint applies to the study of reversible 
reactions. If equilibrium is achieved faster than the reactants can be thoroughly mixed, 
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the method of isolation or the method of initial rates cannot be used to determine the 
rate law. For example, suppose we wanted to study the reaction 

k
j 

H+(aq) + OH-(aq) ~ H
2
0(I) (28.43) 

k j 

We could consider mixing a strong acid with a strong base and then monitoring 
the time dependence of the pH of the solution as the neutralization reaction occurs. 
Unfortunately, it requires about a millisecond to thoroughly mix two solutions, and this 
amount of time is orders of magnitude longer than the time needed for Equation 28.43 
to reach equilibrium (Example 28-6). 

EXAMPLE 28-6 
The rate constant k) for the reaction described by 

k 

H+(aq) + OH-(aq) .¢. H
2
0(l) 

k I 

is 1.4 x 1011 dm3
. mol I. S -I. Calculate the half life of this reaction if the initial 

conditions are 

(a) [H+]o == [OH ]0 == 0.10 mol·dm-3 

(b) [H+]o == [OH-]o == 1.0 x 10-7 m01·dm-3 

SOL UTI 0 N: This reaction goes essentially to completion, so it is of the form of 

Equation 28.30 with [A]a == [B]()" The integrated rate law is given by Equation 28.33, 

and if we set [A] == [A]o/2 or [B] == [B]o/2 in Equation 28.33, then we have that tl/2 == 

1/(k
l 
[A]o) == l/(k. [B]o) as in Equation 28.29, Therefore, for the initial conditions in 

(a), we have 

1 1 
t == - --------------------------------

1/2 k. [A]o (1.4 x lOll dm3 ·mol-I·s 1)(0.10 mol·dm ) 

== 7. 1 x 10- II S 

For the initial conditions in (b), we have 

1 I 
t == - -------------------------------------

1/2 kl[A]o (1.4 x lOll dm3 .mol- l .s- I)(1.0 x 10-7 mol·dm-3 ) 

== 7.1 x 10-5 s 

In both cases [note that (b) corresponds to pure water at 298 K], the half-life is much 

shorter than the time required to mix the reactants (10-3 s). Thus, we cannot use mixing 

techniques to study this reaction. 
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The limitations revealed in Example 28-6 can be overcome using experimental 
techniques known as relaxation methods. Relaxation methods are fundamentally differ­
ent from the experimental approaches discussed so far in this chapter. The general idea 
is to start with a chemical system initially in equilibrium at some specified temperature 
and pressure. The conditions are then suddenly changed so that the system is no longer 

at equilibrium. There are many different ways to shift the equilibrium. Temperature, 

pressure, pH, and pOH jump methods have been developed and used effectively to 

study kinetic processes. Here, we examine the most common relaxation method used 

to study reaction kinetics in solution, the temperature-jump relaxation technique. In a 
temperature-jump experiment, the temperature of the equilibrium reaction mixture is 

suddenly changed at constant pressure. Following the sudden change in temperature, 

the chemical system responds by relaxing to a new equilibrium state that corresponds 

to the new temperature. We will see that the rate constants for the forward and reverse 

reactions are related to the time required for the system to relax to its new equilibrium 

state. 
Experimentally, the temperature of a solution can be increased by about 5 K in 

one microsecond by discharging a high-voltage capacitor through the reaction solu­

tion. Given that the equilibrium constant depends exponentially on the inverse of the 

temperature (recall from Section 26-1 that In K p == -~rGo / RT), such a perturbation 

can cause a significant change in equilibrium concentrations. 
Before discussing the acid-base reaction of water (Equation 28.43), we first con­

sider the simple general equilibrium reaction described by 

(28.44) 

where the rates for the forward and reverse reactions are assumed to be first order in 

the reactants. Initially, this chemical system is in equilibrium at temperature T
1

, where 
the concentrations of A and Bare [A]Leg and [B]l,eq' respectively. Now consider what 
happens if we rapidly jump the temperature from T\ to T

2
• From Equation 26.31, we 

see that the equilibrium concentration of B increases following the temperature jump 
if ~rHo for the reaction is positive and decreases if ~rHo is negative. (If ~rHo == 0, 
the equilibrium constant is temperature independent and we cannot learn anything 
by performing a temperature-jump relaxation experiment.) For the purpose of plot­
ting the time evolution of the reaction following the temperature jump, we will as­

sume that ~ HO < 0, and we denote the equilibrium concentrations at T2 by [A]2 
r .eg 

and [B ]2,eq' 
We have assumed that the rates of the forward and reverse reactions are first order 

in the reactants, so the rate law for Equation 28.44 is 

d[B] == k\ [AJ - k I [B] 
dt 

(28.45) 
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We now want to write Equation 28.45 so that it applies to a system that has just been 
subjected to a perturbation to a new equilibrium state. To do this, let 

[A] == [Al2,eq + ~[A] 

[B] == [B]2,eq + ~[B] 
(28.46) 

Substitute these equations into Equation 28.45 to obtain (recall that [A]2 and [B]2 ,eq ,eq 
are constants) 

d~[B] 
-- == k, [A]2 + k} ~[A] - k_, [B]2 - k_l ~[B] dt ,eq ,eq (28.47) 

According to Equation 28.44, the sum of the concentrations of A and B remains 
constant during the experiment, so ~([A] + [B]) == ~[A] + ~[B] == O. Furthermore, 
[A]2,eq and [B]2,eq satisfy Equation 28.42 (k, [A]2,eq == k 1 [B]2,eq)' so Equation 28.47 
becomes 

(28.48) 

Integrating Equation 28.48 subject to the condition that [B] == [B] 1 at t == 0, or that ,eq 
~[B] at time t == 0 is equal to ~[B]o == [B], - [B]2 gives us ,eq ,eq 

(28.49) 

where 

1 
(28.50) 

is called the relaxation time. Note that T has units of time and is a measure of how long 
it takes for ~ [B] to decay to 1/ e of its initial value. 

Figure 28.6 shows a plot of ~[B] versus time for a typical temperature-jump 
experiment. From Equation 28.49, we see that a plot of In(~[B]/ ~[B]o) versus t is 
linear and has a slope of -(k) + k_

1
), which is the negative of the sum of the forward 

and reverse rate constants for the reaction at T2 • If we know the equilibrium constant 
at T2 and the rate laws for the forward and reverse reactions, then the rate constants k) 
and k 1 can be independently determined. 

We now return to consider the chemical reaction given by Equation 28.43. The 
general form of this specific reaction is 

A+B (28.51) 



Fie U R E 28.6 

Initial 
equilibrium 

state 
.------ Temperature jump 

~ Relaxation time 
[ B ] 1 ,e q ----:-1----,....-.. ~-----)o.. : r = 1 / ( k I + k I) 

[B]2,eq 

L\[B]O t 

1 
: 8 [B] 

: ~ 
- - - - - - - - - - - - - - T - - - - - - - - - - - - - - -~-------

I 

o 
t 

Final 
equilibrium 

state 

The time-dependent change in [B] following a temperature-jump experiment for the chemical 
system given by Equation 28.44, where the rate laws for the forward and reverse reaction 
are first order in the reactants. The plot assumes that ~ HO < 0, whereby [B]2 < [B] 1 • r .eq .eq 

Following the temperature jump, the value of [B] decays exponentially from [B] Leq to [B ]2.eq' 

The time constant for this exponential decay is given by 1/ (k1 + k 1) 

If we assume that both the forward and reverse reactions are first order in their respective 

reactants, the rate law is 

d[P] = k [A][B] k_l [P] 
dt ) 

(28.52) 

If we take ~[P] to be equal to [P] - [P]2.eq' then (Problem 28-33) 

(28.53) 

where r, the relaxation time, is given by 

1 
(28.54) 

Equation 28.53 predicts that a plot of In(~[P]/ ~[P]o) against t is linear and has a 

slope of -k. ([A]2,eq + [B]2,eq) - k ). For chemical reactions that can be described by 
Equation 28.51 and obey the rate law given by Equation 28.52, the values of k) and 

k • can be uniquely determined by plotting ~ [P] against t for samples containing dif­

ferent total concentrations, [A]2.eq + [B]2,eq' The dissociation reaction of water, Equa­
tion 28.43, satisfies these conditions. It is important to realize that the dynamics of the 

dissociation of water could not be studied until relaxation techniques were developed. 
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Because the dissociation of water increases with increasing temperature, the concentra­
tions of H+ (aq) and OH (aq) increase following a temperature jump, causing a mea­
surable increase in the conductivity of the solution. Time-dependent conductivity mea­
surements following a temperature jump to a final temperature of T2 = 298 K revealed a 
relaxation time of r = 3.7 x 10-5 s. From this measured relaxation time and the equi­
librium constant (Kc = [H

2
0]/ Kw = [H

2
0]/[H+][OH-] = 5.49 x 10'5 mol-' ·dm-3 

at 298 K) for the dissociation reaction, the second-order rate constant was found to be 
k I = 1.4 x 101

' dm3
. mol I. S 1, which is one of the largest rate constants ever mea­

sured. Table 28.7 presents a list of rate constants for reversible acid-base reactions that 
were determined from relaxation measurements. 

TAB L E 28.7 
Rate constants for reversible acid-base reactions in water at 298 K. 

Reaction 

H+(aq) + OH-(aq) ¢ H
2
0(l) 

H+(aq) + HC03(aq) ¢ H
2
C03(aq) 

H+(aq) + CH3COO-(aq) ¢ CH3COOH(aq) 

H+(aq) + C
6
HsCOO-(aq) ¢ C

6
H

5
COOH(aq) 

H+(aq) + NH3(aq) ¢ NHtCaq) 

H+(aq) + Me
1
N(aq) ¢ Me

3
NH+(aq) 

- -
H+(aq) + HC03(aq) ¢ CO

2
(aq) + H

2
0(l) 

EXAMPLE 28-7 

k/dm3 .mol-I.s I 

1.4 X lOll 

4.7 X 1010 

4.5 X 1010 

3.5 X 1010 

4.3 X 1010 

2.5 X 1010 

5.6 X 104 

Use the data in Table 28.7 to calculate the relaxation time for the reaction 

k_/S-I 

2.5 X 10-5 

8 X 106 

7.8 X 105 

2.2 X 106 

2.5 X 101 

4 

4.3 X 10-2 

for a temperature-jump experiment to a final temperature of 298 K.The solution was 
initally prepared by adding 0.015 moles of benzoic acid to water such that a liter of 
total solution was made. Assume that both the forward and reverse reactions are first 
order in each of the reactants. 

SOL UTI 0 N: If we assume that both the forward and reverse reactions are first order 
in their respective reactants, the relaxation time is given by Equation 28.54 or 

1 
r = ---------------------------

kl ([H+]2,eQ + [C6HsCOO-]2,eq) + k_1 
(1) 
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From Table 28.7, k] == 3.5 X 1010 dm3 ·mol- I -s ' and k I == 2.2 X 106 
S-I at 298 K. 

The equilibrium constant is Kc == kl / k_, == 1.6 X 104 dm3 ·mol- I
. The initial concen­

tration of benzoic acid is 0.015 mol·dm-3
, and therefore at equilibrium (at 298 K) 

4 1 I 0.015 mol·dm-3 
- x 

Kc == 1.6 x 10 dm- ·mol- == 2 
X 

where x is the concentration of dissociated acid. Solving the above expression for x 
. 

gIves 

x == [H+]2 == [C
6
HsCOO-]2 == 9.4 X 10-4 mol·dm-3 

,eq ,eq 

Substituting these values into Equation 1 gives a relaxation time of 

1 
r == ----------------------------------------------------

(3.5 X 1010 dm3 ·mol- l .s-')((2)(9.4 x 10-4 mol·dm- 3» + 2.2 x 106 
S-l 

== 1.5 X 10-8 s 

28-7. Rate Constants Are Usually Strongly Temperature Dependent 

The rates of chemical reactions almost always depend strongly upon the temperature. 
Figure 28.7 shows the temperature dependence of the rates of several types of reactions. 
The temperature dependence shown in (a) is the most common, and is the one we will 
discuss in detail. The other two curves in the figure illustrate (b) a reaction that becomes 
explosive at some threshold temperature and (c) an enzyme-controlled reaction, where 
the enzyme becomes deactivated at higher temperatures. 

The temperature dependence of the rate of a reaction is due to the temperature 
dependence of the rate constant of the reaction. For the commonly occuring case 

Temperature 

(a) (b) (c) 

FIG U R E 28.7 
Some examples of the temperature dependence of reaction rates. (a) The most commonly 
occuring type, where the rate increases essentially exponentially with the reciprocal of the 
temperature. (b) A reaction that becomes explosive at some threshold temperature. (c) An 
enzyme-controlled reaction, where the enzyme becomes deactivated at higher temperatures. 
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illustrated in Figure 28.7 a, the temperature dependence of the rate constant is described 
approximately by the empirical equation 

dInk 

dT 

E 
a (28.55) 

where Ea has units of energy. If Ea is independent of temperature, Equation 28.55 can 
be integrated to give 

E 
In k == In A ___ a 

RT 
(28.56) 

or 

(28.57) 

where A is a constant. The constant A is commonly called the pre-exponential factor, 
and E a is called the activation energy. Equation 28.56 predicts that a plot of In k as a 
function of 1/ T is linear with an intercept of In A and a slope of -Ea/ R. Figure 28.8 
shows a plot of In k versus 1/ T for the reaction 2 HI(g) ~ H2 (g) + 12 (g). The solid 
line is the best fit of a straight line to the experimental data (circles). The slope of this 
best-fit line gives an activation energy of 184 kJ ·mol- I

. From the intercept, A is found 
to be 7.94 x 1010 dm3 ·mol- I 

·S-I. 

~ -4 
1 

-
I 

o 
E -8 

r. 

8 
"'d 
-... 
~ -12 FIG U R E 28.8 

-16~----~------~----~--
1 .2 1.4 1.6 1 .8 

1000 K / T 

EXAMPLE 28-8 
The rate constant for the reaction 

A plot of In k against 1/ T for the reaction 
2 HI (g) ---+ H2 (g) + 12 (g). The best fit of 
the experimental data to a straight line 
gives A == 7.94 X 1010 dm3 ·mol-I·s I and 
E == 184 kJ ·mol- 1 

• 
a 

2 HI (g) ~ H') (g) + L, (g) - ~ 

is 1.22 X 10-6 dm3 ·moL- 1 ·s- 1 at 575 K and 2.50 x 10-3 dm3 ·mol-I·s- I at 716 K. 

Estimate the value of E from these data. 
a 
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SOL UTI 0 N: Assuming the activation energy and the pre-exponential factor are 
temperature independent, the rate constants k(T

1
) and k(T

2
) for the same reaction at 

temperatures T) and T
2

, respectively, are given by 

and 

Dividing the first equation by the second equation and taking the logarithm of the 
results gives us 

Solving this expression for E a and substituting in the above data gives us 

In the 1880s, the Swedish chemist Svante Arrhenius found that Equation 28.57 
describes the temperature dependence of the rate constants for many reactions, and 
he used it to develop a general model for how reactions occur. Arrhenius noticed that 
the magnitude of the temperature effect on reaction rates was much too large to be 
explained in terms of only a change in the translational energy of the reactants. Thus, 
for a reaction to occur, it requires more than just a collision between reactants. Because 
of his contribution to the field of chemical kinetics, Equation 28.57 is now called the 
Arrhenius equation. 

If we think of the activation energy as the energy that must be provided to enable 
the reactant(s) to react, we can describe a chemical reaction in terms of the simple 
energy diagram shown in Figure 28.9. We say that the chemical reaction proceeds from 
reactant to products along a reaction coordinate. The reaction coordinate is generally 
multidimensional, representing the bond lengths and bond angles associated with the 
chemical process. In some instances, the reaction coordinate is obvious. For example, 
for the thermal dissociation of 12 (g), the reaction coordinate is the I-I bond length. For 
most chemical reactions, however, the reaction coordinate is difficult to visualize. 

Although the Arrhenius equation is used extensively to determine the activation 
energies of chemical reactions, the plot of In k versus 1/ T for some reactions is not 
linear. Such nonlinear behavior can now be justified theoretically, and many modern 
theories of reaction rates predict that rate constants behave like 

(28.58) 

where a, E', and m are temperature-independent constants. Depending on the assump­
tions of the rate theory, the constant m takes on different values, e.g., 1, 1/2, -1/2. If 
m is known, the constant E' can be found from the slope of a plot of In(k/ Tm) versus 
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Reactants 

Products 

Reaction coordinate 

FIG U R E 28.9 
A schematic drawing of the energy profile of a chemical reaction. To transform into products, 
the reactants must acquire energy in excess the activation barrier. The reaction coordinate 
represents the changes in bond lengths and bond angles that occur as the chemical reaction 
proceeds from reactants to products. 

1/ T. If m is not known, the value of m is very difficult to determine from experimental 
data because the exponential dependence of k(T) on 1/ T usually dominates the power 
dependence on T. In the next section, we will explore one commonly used model, 
transition-state theory, that predicts an equation of the form given by Equation 28.58. 

EXAMPLE 28-9 
What is the relationship between the Arrhenius activation energy, E a' and pre­
exponential factor, A, and the constants nz, a, and E' in Equation 28.58? 

SOL UTI 0 N: Using Equation 28.55, we can define the activation energy to be 

2dlnk 
E == RT 

a dT 

Substituting Equation 28.58 into this expression gives 

E==E'+n1RT a 

(28.59) 

Solving for E' and substituting the result into Equation 28.58 and then comparing the 

result with Equation 28.57 shows that 



28-8. Transition-State Theory Can Be Used to Estimate Reaction 

Rate Constants 

In this section, we will briefly discuss a theory of reaction rates called activated-colnplex 
theory or transition-state theory. This theory was developed in the 1930s, principally 
by Henry Eyring, and focuses on the transient species in the vicinity of the top of the 
activation barrier to reaction. This species is called the activated complex or transition 
state, from which the theory derives its names. 

Consider the reaction 

where the rate law is given by 

A+B >P 

d[P] = k[A][B] 
dt 

(28.60) 

Activated complex theory proposes that the reactants and the activated complex are in 
equilibrium with each other and that we model the reaction by the two-step process 

A + B ~ AB + --+> p (28.61) 

.L 

The species AB + is the activated complex. The equilibrium-constant expression be-
tween the reactants and the activated complex is (Section 26-2) 

K ± . -
c 

[AB+]/cO 

[AJ/ CO [B]/ CO 

[AB+]cO 

[AJ[BJ 
(28.62) 

where CO is the standard-state concentration (often taken to be 1.00 mol· dm-3
). Using 

the results of Section 26-8, K(~ may be written in terms of partition functions 

(28.63) 

where the qA' qs' and q+ are the partition functions of A, B, and AB +, respectively. 
The activated complex is assumed to be stable throughout a small region of width 8 

centered at the barrier top (Figure 28.10). The two-step process given by Equation 28.61 
predicts that the rate of the reaction will be the product of the concentration of the 
activated complex [AB+] and v

c
' the frequency with which these complexes cross over 

the barrier top, or 

d[P] .l. -- == V [AB+·]-
dt C 

(28.64) 
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~I 

A+B 

Products 

Reaction coordinate 

FIG U R E 28.10 
A one-dimensional energy diagram for the reaction given by Equation 28.61. The activated 
complex, AB+, is defined to exist in the small region 8, centered around the barrier top. 

Equations 28.64 and 28.60 give two different, yet equivalent, expressions for the 
.1. 

reaction rate. Solving Equation 28.62 for [AB +] and substituting the resulting expression 
into Equation 28.64, and then equating the result to Equation 28.60 gives us 

or 

.1. 

\J K+ 
k == c c 

o 
C 

(28.65) 

Note that k has units of (concentration)-I ·S-I. 
In writing Equation 28.64, we have implied that the motion of the reacting system 

over the barrier top is a one-dimensional translational motion. The translational partition 
function, q ,corresponding to one-dimensional translational motion is (Problem trans 

18-3) 

(2rr m+ k T) 1/2 
- B 8 

qtrans - h (28.66) 

where m+ is the mass of the activated complex. We can write the partition function 

of the activated complex as q+ == qtransqi~p where qi~t accounts for all the remaining 
degrees of freedom of the activated complex. We can now rewrite Equation 28.63 as 

(28.67) 
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Substituting Equation 28.67 into Equation 28.65 gives us the following expression for 
the reaction rate constant 

k = v (2nmt k8 T) 1/2 8 (qi~t/ V)CC 

C hcO (qA/ V) (qB/ V) 
(28.68) 

Equation 28.68 contains two quantities, Vc and 8, that are not well defined and are 
difficult to determine. Their product, however, can be equated to the average speed 
with which the activated complex crosses the barrier, (u

ac
)' where (u

ac
) == v

c
8. Because 

we have assumed that the reactants and activated complex are in equilibrium, we can 
use a (one-dimensional) Maxwell-Boltzmann distribution (Equation 27.33) to calculate 

(u ac )' or 

100 (:j: )1 /2100 + ') ( k T )1/2 
(u, ) == uf (u )du == m ue-m -

tu
- j2kBT du == B t 

ac 2n k T 2nm' o B 0 

(28.69) 

Note that we have integrated over only positive values of u because we are considering 
only those activated complexes that pass over the barrier in the direction of reactants 
to products. Substituting Equation 28.69 into Equation 28.68 for v

c
8 gives us the 

transition-state theory expression for the rate constant 

(28.70) 

where K+ is the "equilibrium constant" for the formation of the transition state from 
the reactants, but the motion along the reaction coordinate excluded in qi~t. 

We define the standard Gibbs energy of activation, ~:j: GO, to be the change in 
Gibbs energy in going from the reactants at a concentration CO to the transition state at 
a concentration co. The relation between ~ + GO and K-+ is 

(28.71) 

We can use Equation 28.71 to express the rate constant k in terms of ~:j: GO. Solving 
Equation 28.71 for K+ and substituting the result into Equation 28.70 gives us 

k T ~-k(T) == B e-t5.-'-C IRT 

hcO 
(28.72) 

We can express ~ -+ GO in terms of ~:j: HO , the standard enthalpy of activation, and ~ + So , 
the standard entropy of activation, by introducing 

(28.73) 

which, upon substitution into Equation 28.72, gives us 

(28.74) 
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We can express the Arrhenius activation energy Ea in terms of ~+ HO and the 
Arrhenius A factor in terms of ~:j: SO. Differentiating the logarithm of Equation 28.70 
with respect to temperature gives 

dIn k 1 dIn K+ 

dT = T + dT 
(28.75) 

Using the fact that d In Kc/dT = ~u / RT2 for an ideal-gas system (see Problem 26-
14), we can rewrite Equation 28.75 as 

dInk 1 ~tuo 

dT = T + RT2 
(28.76) 

Furthermore, ~+Ho = ~+uo + ~tpv = ~+uo + RT~tn = ~tuo - RT,forthere­

action given by Equation 28.61, and so we can rewrite Equation 28.76 as 

dInk 

dT 
(28.77) 

Comparing Equation 28.77 with 28.55 gives us 

E = ~+Ho + 2RT 
a (28.78) 

Solving this expression for ~ + HO and substituting the result into Equation 28.74 gives 
us 

(28.79) 

Thus, in terms of the thermodynamic interpretation of transition-state theory, the 
Arrhenius A factor is given by 

(28.80) 

EXAMPLE 28-10 
The Arrhenius activation energy and pre-exponential factor for the reaction 

H (g) + Br') (g) ---+ HBr(g) + Br(g) 
.... 

are 15.5 kJ·mol- 1 and 1.09 x lOll dm3 ·mol I·S I, respectively. What are the values 
/j, + HO and /j, + SC: at 1000 K based on a standard state of 1.00 mol·dm-3 ? Assume 
ideal-gas behavior. 

SOL UTI 0 N: Equations 28.78 and 28.80 give 

/j, + H = E - 2RT 
a 

= 15.5 kJ . mol I - (2) (8.314 J . m 0 1-1 . K - I ) ( 1000 K) 

= -1. 13 kJ· mol I 
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and 

.!. hAeo 
~+So = Rln--

e2k T 
B 

= (8.314 J·mol-I.K- 1
) 

x In {(6.626 x 10-34 J'S)(1.09. X lOll dm3 ·mo]-I· s-I)(1.00 mOl.dm-3
)} 

e2(1.381 x 10-23 J·K-I)(IOOO K) 

= -60.3 J.K-I.mol I 

Note that the value of ~ t So, like that of an equilibrium constant, depends upon the 
choice of standard state. 

Values of ~ t So give information about the relative structures of the activated 
complex and the reactants. A positive value indicates that the structure of the activated 
complex is less ordered than the reactants, whereas a negative value indicates that its 
structure is more ordered than the reactants. 

Problems 

28-1. For each of the following chemical reactions, calculate the equilibrium extent of reaction 
at 298.15 K and one bar. (See Section 26-4.) 

(a) H
2
(g) + Cl

2
(g) ¢ 2 HCl(g) ~rGo = -190.54 kJ·mol- 1 

Initial amounts: one mole of H2(g) and CI2(g) and no HCl(g). 

~ GO = 173.22 kJ ·mol-1 
r 

Initial amounts: one mole of N2 (g) and 02 (g) and no NO(g). 

28-2. Dinitrogen oxide, N
2
0, decomposes according to the equation 

Under certain conditions at 900 K, the rate of reaction is 6.16 x 10-6 mol· dm-3 
. s 1 

Calculate the values of d[N20]/dt, d[N2 ]/dt, and d[02]/dt. 

28-3. Suppose the reaction in Problem 28-2 is carried out in a 2.67 dm3 container. Calculate 
the value of d~ /dt corresponding to the rate of reaction of 6.16 x 10-6 mol·dm-3 ·S-I. 

28-4. The oxidation of hydrogen peroxide by permanganate occurs according to the equation 

Define v, the rate of reaction, in terms of each of the reactants and products. 

28-5. The second-order rate constant for the reaction 
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is l.26 X 10- 15 cm3 ·molecule- I 
. S-I. Determine the value of the rate constant in units of 

dm3 ·mol- I ·S-I. 

28-6. The definition of the rate of reaction in terms of molar concentration (Equation 28.5) 
assumes that the volume remains constant during the course of the reaction. Derive an 

expression for the rate of reaction in terms of the molar concentration of a reactant A for 

the case in which the volume changes during the course of the reaction. 

28-7. Derive the integrated rate law for a reaction that is zero order in reactant concentration. 

28-8. Determine the rate law for the reaction described by 

NO(g) + H") (g) ~ products ... 

from the initial rate data tabulated below. 

Po (H2) /torr Po (NO)/torr vo/torr.s- I 

400 159 34 
400 300 125 
289 400 160 
205 400 110 
147 400 79 

Calculate the rate constant for this reaction. 

28-9. Sulfuryl chloride decomposes according to the equation 

Determine the order of the reaction with respect to S02Cl2 (g) from the following initial-rate 

data collected at 298.15 K 

[S02CI2]o/mol.dm-3 0.10 0.37 0.76 1.22 

vo/mol.dm-3 .s- 1 2.24 x 10-6 8.29 X 10-6 l.71 X 10-5 2.75 X 10-5 

Calculate the rate constant for this reaction at 298.15 K. 

28-1 o. Consider the reaction described by 

for which the following initial rate data were obtained at 298.15 K. 

l.21 x 10-4 

1.46 X 10-4 

1.66 X 10-4 

1.83 X 10-4 

l.05 X 10-5 

2.28 x 10-5 

l.02 X 10-5 

3.11 x 10-5 

2.11 X 10- II 

5.53 X 10- 11 

2.82 X 10-11 

9.44 X 10- 11 

Determine the rate law for the reaction and the rate constant at 298.15 K. Assume the orders 

are integers. 
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28-11. Consider the base-catalyzed reaction 

Use the following initial-rate data to determine the rate law and the corresponding rate 
constant for the reaction. 

[OCl-]/mol·dm-3 

l.62 X 10-3 

1.62 X 10-3 

2.71 X 10-3 

1.62 X 10-3 

28-12. The reaction 

l.62 X 10-3 

2.88 x 10-3 

1.62 X 10-3 

2.88 X 10-3 

[OH ]/mol·dm-3 vo/mol.dm-3 . S-I 

0.52 3.06 x 10-4 

0.52 5.44 x 10-4 

0.84 3.16 x 10-4 

0.91 3.11 x 10-4 

is first order and has a rate constant of 2.24 x 10-5 
S-I at 320c C. Calculate the half-life of 

the reaction. What fraction of a sample of S02Cl2 (g) remains after being heated for 5.00 
hours at 320°C? How long will a sample of S02Cl2 (g) need to be maintained at 320°C to 
decompose 92.0% of the initial amount present? 

28-13. The half-life for the following gas-phase decomposition reaction 

H2C - CHCH2CH2CH3 

I I 
H2C-CH2 

is found to be independent of the initial concentration of the reactant. Determine the rate 
law and integrated rate law for this reaction. 

28-14. Hydrogen peroxide, H
2
0 2, decomposes in water by a first-order kinetic process. 

A 0.156-mol·dm-3 solution of H
2
0

2 
in water has an initial rate of l.14 x 

10-5 mol·dm-3
. S-I. Calculate the rate constant for the decomposition reaction and the 

half-life of the decomposition reaction. 

28-15. A first-order reaction is 24.0% complete in 19.7 minutes. How long will the reaction 
take to be 85.5% complete? Calculate the rate constant for the reaction. 

28-16. The nucleophilic substitution reaction 

was studied in cyclohexane solution at 300 K. The rate law was found to be first order in 
PhS02S02Ph. For an initial concentration of [PhS0

2
S0

2
Ph]o = 3.15 x 10-5 mol·dm-3

, 

the following rate data were observed. Determine the rate law and the rate constant for this 
reaction. 

1.0 2.4 5.6 

0.085 0.17 0.41 0.95 

1171 



1172 Chapter 28 / Chemical Kinetics I: Rate Laws 

28-17. Show that if A reacts to form either B or C according to 

k 
A~B or 

k 
A~C 

then 

Now show that tl/2' the half-life of A, is given by 

0.693 
t =---
1/2 k + k 

I 2 

Show that [B]/[C] = kl / k2 for all times t. For the set of initial conditions [A] = [A]o' 
[B]o = [C]o = 0, and k2 = 4k l , plot [A], [B], and [C] as a function of time on the same 
graph. 

The following six problems deal with the decay of radioactive isotopes, which is a first­

order process. Therefore, if N (t) is the number of a radioactive isotope at time t, then 

N(t) = N(O)e- kt
, where N(O) is the corresponding number at t = O. In dealing with 

radioactive decay, we use the half-life, tl/2 = 0.693/ k, almost exclusively to describe the 
rate of decay (the kinetics of decay). 

28-18. You order a sample of Na
3
P0

4 
containing the radioisotope phosphorus-32 (t

1
/
2 
= 

14.3 days). If the shipment is delayed in transit for two weeks, how much of the original 
activity will remain when you receive the sample? 

28-19. Copper-64 (t1/2 = 12.8 h) is used in brain scans for tumors and in studies of Wilson's 
disease (a genetic disorder characterized by the inability to metabolize copper). Calculate 
the number of days required for an administered dose of copper-64 to drop to 0.10% of the 
initial value injected. Assume no loss of copper-64 except by radioactive decay. 

28-20. Sulfur-38 can be incorporated into proteins to follow certain aspects of protein 
metabolism. If a protein sample initially has an activity of 10000 disintegrations· min-I, 
calculate the activity 6.00 h later. The half-life of sulfur-38 is 2.84 h. Hint: Use the fact 
that the rate of decay is proportional to N (t) for a first-order process. 

28-21. The radioisotope phosphorus-32 can be incorporated into nucleic acids to follow certain 
aspects of their metabolism. If a nucleic acid sample initially has an activity of 40000 
disintegrations· min-I, calculate the activity 220 h later. The half-life of phosphorus-32 
is 14.28 d. Hint: Use the fact that the rate of decay is proportional to N (t) for a first -order 
process. 

28-22. Uranium-238 decays to lead-206 with a half-life of 4.51 x 109 y. A sample of ocean 
sediment is found to contain 1.50 mg of uranium-238 and 0.460 mg of lead-206. Estimate 
the age of the sediment assuming that lead-206 is formed only by the decay of uranium 
and that lead-206 does not itself decay. 
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28 .. 23. Potassium-argon dating is used in geology and archeology to date sedimentary rocks. 
Potassium-40 decays by two different paths 

4°K ~ 40Ca + 0 e (89.3%) 
19 20 I 

40K ~ 4°Ar + °e (10.7%) 
19 18 I 

The overall half-life for the decay of potassium-40 is 1.3 x 109 y. Estimate the age of 
sedimentary rocks with an argon-40 to potassium-40 ratio of 0.0102. (See Problem 28-
17.) 

28 .. 24. In this problem, we will derive Equation 28.32 from the rate law (Equation 28.31) 

_ d[A] == k[A][B] 
dt 

(1) 

Use the reaction stoichiometry of Equation 28.30 to show that [B] == [B]o - [A]o + [A]. 
Use this result to show that Equation 1 can be written as 

- d[A] = k[A]([B]o - [A]o + [AJ) 
dt 

N ow separate the variables and then integrate the resulting equation subject to its initial 
conditions to obtain the desired result, Equation 28.32: 

kt == 1 In [Al[BJo 
[A]o - [BJo [BJ[A]o 

28-25. Equation 28.32 is indeterminate if [AJo == [B]o' Use L'Hopital's rule to show that 
Equation 28.32 reduces to Equation 28.33 when [Alo == [BJo' (Hint: Let [AJ == [BJ + x and 
[AJo == [BJo + x.). 

28-26. Uranyl nitrate decomposes according to 

The rate law for this reaction is first order in the concentration of uranyl nitrate. The 
following data were recorded for the reaction at 25.0°C. 

tlmin o 20.0 60.0 180.0 360.0 

[U02 (N0
3
)2]/mol.dm-3 0.01413 0.01096 0.00758 0.00302 0.00055 

Calculate the rate constant for this reaction at 25.0°C. 

28-27. The data for the decomposition of uranyl nitrate (Problem 28-26) at 350°C are tabulated 
below 

tlmin o 6.0 10.0 17.0 30.0 60.0 

[U02(N03)2]/mo!.dm-3 0.03802 0.02951 0.02089 0.01259 0.00631 0.00191 

Calculate the rate constant for this reaction at 350°C. 
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28-28. The following data are obtained for the reaction 

at 900 K. 

tis o 3146 6494 13933 

[N20J/mol.dm~3 0.521 0.416 0.343 0.246 

The rate law for this reaction is second order in N20 concentration. Calculate the rate 
constant for this decomposition reaction. 

28-29. Consider a chemical reaction 

that obeys the rate law 

A~products 

_ d[A] == k[Af 
dt 

where n, the reaction order, can be any number except n == 1. Separate the concentration 

and time variables and then integrate the resulting expression assuming the concentration 

of A is [AJo at time t == 0 and is [AJ at time t to show that 

n =I=- 1 (1) 

Use Equation 1 to show that the half-life of a reaction of order n is 

1 2f1 I - 1 
ktl/' == I "- n - 1 [A];;~ 

n=l=-1 (2) 

Show that this result reduces to Equation 28.29 when n == 2. 

28-30. Show that Equation 1 of Problem 28-29 can be written in the form 

x 

where x == n - 1. Now use L'Hopital's rule to show that 

[AJ 
In == -kt 

[A]o 

for n == 1. (Remember that d aX / d x == aX In a.) 

28-31. The following data were obtained for the reaction 

[N20Jo/mol.dm~3 1.674 x 10-3 4.458 X 10-3 9.300 X 10-3 1.155 X 10-2 

tl/2/s 1200 470 230 190 
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Assume the rate law for this reaction is 

d[N 0] 
_ 2 = k[N')OY 

dt ~ 

and use Equation 2 of Problem 28-29 to determine the reaction order of N20 by plotting 

In tl/2 against In[A]o' Calculate the rate constant for this decomposition reaction. 

28-32. We will derive Equation 28.39 from Equation 28.38 in this problem. Rearrange Equa­

tion 28.38 to become 

___ d_[A_] ___ = -dt 
(k l + k I )[A] - k_1 [A]o 

and integrate to obtain 

In{ (k
l 
+ k_1 )[A] - k_1 [A]o} = -(k l + k I)t + constant 

or 

where c is a constant. Show that c = k I [A]o and that 

(1) 

Now let t ~ 00 and show that 

(k l + k I)[A] 
[A] = eq 

() k 
I 

and 
k [A] 

[A] - [A] = I eq 
o eq k 

-I 

Use these results in Equation 1 to obtain Equation 28.39. 

28-33. Consider the general chemical reaction 

If we assume that both the forward and reverse reactions are first order in their respective 
reactants, the rate law is given by (Equation 28.52) 

d[P] = k [A][B] - k [P] 
dt I -I 

(1) 

Now consider the response of this chemical reaction to a temperature jump. Let [A] = 
[A]" + ~[A], [B] = [BL + ~[B], and [P] = [P]" + ~[P], where the subscript "2,eq" 

L.,eq L..eq ... ,eq 

refers to the new equilibrium state. Now use the fact that ~[A] = ~[B] = -~[P] to show 

that Equation 1 becomes 

d~[P] 
-- = k [A] [B] - k [P] d t I 2. eq 2. eq - I .. 2. eq 

- {k l ([A]2.eq + [Bl2.eq ) + k I }~[P] + o(~[pf) 

1175 



1176 Chapter 28 / Chemical Kinetics I: Rate Laws 

Show that the first terms on the right side of this equation cancel and that Equations 28.53 
and 28.54 result. 

28-34. The equilibrium constant for the reaction 

k 

H-+- (aq) + OH- (aq) -¢: H)OO) 
k 1 

at 25 C is Kc = [H
2
0]/[H+][OH ] = 5.49 X 1015 mol- l ·dm3

. The time-dependent con­

ductivity of the solution following a temperature jump to a final temperature of 25 C shows 

a relaxation time of T = 3.7 x 10-5 s. Determine the values of the rate constants k) and 

k ). At 25°C, the density of water is p = 0.997 g·cm-3
. 

28-35. The equilibrium constant for the reaction 

k 

0+ (aq) + 00- (aq) -¢: O
2
°0) 

k_1 

at 25°C is Kc = 4.08 X 1016 mol-I ·dIn3
. The rate constant k_1 is independently found to be 

2.52 x 10-6 S-I. What do you predict for the observed relaxation time for a temperature­

jump experiment to a final temperature of 25 C? The density of O2 ° is P = 1.104 g. em-3 

at 25 C. 

28-36. Consider the ehemcial reaction described by 

"I 2 A(aq) ¢ D(aq) 

" 1 

If we assume the forward reaction is second order and the reverse reaction is first order, the 

rate law is given by 

dlD] . . = k rAJ' - k [0] 
dt I· -I 

( 1 ) 

Now consider the response of this chemical reaction to a temperature jump. Let [A] = 

[A]) + ~[A] and [0] = [Dl, + ~[D], where the subscript "2,eq" refers to the new 
~,eq _,eq 

equilibrium state. Now use the fact that ~[A] = -2~[D] to show that Equation 1 becomes 

_d~_lD_] = -(4k
l
[Al" +k ,)~[D]+ O(~[Df) 

d t -.t:4 

Show that if we ignore the O(~[Df) term, then 

28-37. In Problem 28-36, you showed that the relaxation time for the dimerization reaction 
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is given by T == 1 I (4k 1 [A ]2,eg + k 1)' Show that this equation can be rewritten as 

where [S]o == 2[D] + [AJ == 2[D]2,eg + [A]2,eg' 

28-38. The first step in the assembly of the protein yeast phosphoglycerate mutase is a reversible 

dimerization of a polypeptide, 

2 A(aq) 

where A is the polypeptide and D is the dimer. Suppose that a 1.43 x 10-5 mol·dm-3 

solution of A is prepared and allowed to come to equilibrium at 280 K. Once equilibrium is 

achieved, the temperature of the solution is jumped to 293 K. The rate constants k I and k I 

for the dimerization reaction at 293 K are 6.25 x 103 dm3 ·mol- I 
'S-1 and 6.00 x 10-3 

S-I, 

respectively. Calculate the value of the relaxation time observed in the experiment. (Hint: 
See Problem 28-37.) 

28-39. Does the Arrhenius A factor always have the same units as the reaction rate constant? 

28-40. Use the results of Problems 28-26 and 28-27 to calculate the values of E and A for 
a 

the decomposition of uranyl nitrate. 

28-41. The experimental rate constants for the reaction described by 

at various temperatures are tabulated below. 

TIK 292 296 321 333 343 363 

k/l08 dm3 ·mol I·S I 1.24 1.32 1.81 2.08 2.29 2.75 

Determine the values of the Arrhenius parameters A and E a for this reaction. 

28-42. The Arrhenius parameters for the reaction described by 

are A == 5.01 X 1010 dm3 ·mol- l ·s I and E == 4.18 kJ·mol I. Determine the value of the 
a 

rate constant for this reaction at 298 K. 

28-43. At what temperature will the reaction described in Problem 28-42 have a rate constant 

that is twice that at 298 K? 

28-44. The rate constants for the reaction 

CHCl
2 
(g) + C1

2 
(g) --* CHCl

3 
(g) + CI(g) 
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at different telnperatures are tabulated below 

T IK 357 400 458 524 533 615 

k/l07 dm3 ·mol I·S I 1.72 2.53 3.82 5.20 5.61 7.65 

Calculate the values of the Arrhenius parameters A and E a for this reaction. 

28-45. The rate constant for the chemical reaction 

doubles from 22.50°C to 27.47DC. Determine the activation energy of the reaction. Assume 
the pre-exponential factor is independent of temperature. 

28-46. Show that if A reacts to form either B or C according to 

k 
A B or 

k 
A~C 

then Ea, the observed activation energy for the disappearance of A, is given by 

E==k\E\+k2 E2 

a k + k 
I 2 

where E I is the activation energy for the first reaction and E2 is the activation energy for 
the second reaction. 

28-47. Cyclohexane interconverts between a "chair" and a "boat" structure. The activation 

parameters for the reaction from the chair to the boat form of the molecule are ~:j: H == 
3 1.38 kJ . mol I and ~ :j: So == 16.74 J. K- 1 

• Calculate the standard Gibbs energy of activation 

and the rate constant for this reaction at 325 K. 

28-48. The gas-phase rearrangement reaction 

vinyl allyl ether ---+ allyl acetone 

has a rate constant of 6.015 x 10-5 
S -I at 420 K and a rate constant of 2.971 x 10-3 

S I at 

470 K. Calculate the values of the Arrhenius parameters A and Ea' Calculate the values of 
~:} HO and ~:1: So at 420 K. (Assume ideal-gas behavior.) 

28-49. The kinetics of a chemical reaction can be followed by a variety of experimental 

techniques, including optical spectroscopy, NMR spectroscopy, conductivity, resistivity, 

pressure changes, and volume changes. When using these techniques, we do not measure 

the concentration itself but we know that the observed signal is proportional to the concen­

tration; the exact proportionality constant depends on the experimental technique and the 

species present in the chemical system. Consider the general reaction given by 

where we assume that A is the limiting reagent so that [A] ~ 0 as t ~ 00. Let Pi be the 
proportionality constant for the contribution of species i to S, the measured signal from the 
instrument. Explain why at any time t during the reaction, S is given by 

(1) 
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Show that the initial and final readings from the instrument are given by 

and 

Combine Equations ] through 3 to show that 

Set) - S(oo) 
[A] == [AJ ---­

o S(O) - S(oo) 

(2) 

(Hint: Be sure to express [B], [Y], and [Z] in terms of their initial values, [A] and [AJa") 

28-50. Use the result of Problem 28-49 to show that for the first-order rate law, v == k[A], the 
time-dependent signal is given by 

Set) == S(oo) + [S(O) - S(oo)]e-kt 

28-51. Use the result of Problem 28-49 to show that for the second-order rate law, v == k[A]2, 

the time-dependent signal is given by 

S(O) - S(oo) 
S(t) == S(oo) + ---­

I + [AJokt 

28-52. Because there is a substantial increase in the volume of the solution as the reaction 
proceeds, the decomposition of diacetone alcohol can be followed by a dilatometer, a 
device that measures the volume of a sample as a function of time. The instrument readings 
at various times are tabulated below. 

Time/s o 24.4 35.0 48.0 64.8 75.8 133.4 00 

S /arbitrary units 8.0 20.0 24.0 28.0 32.0 34.0 40.0 43.3 

Use the expressions derived in Problems 28-50 and 28-51 to determine if the decomposition 
reaction is a first- or second-order process. 

28-53. In Problem 28-49, we assumed that A reacted completely so that [AJ --+ 0 as t --+ 00. 

Show that if the reaction does not go to completion but establishes an equilibrium instead, 
then 

A - A A . _ A- Set) - S(oo) 
[ J - [ J eq + {[ ] 0 [] eq} S (0) - S ( 00 ) 

where [AJ is the equilibrium concentration of A. eq 

1179 



, 

•• 

• 

Sherwood Rowland (top left), Mario Molina (top right), and Paul Crutzen (bottom) 
received the Nobel Prize for chemistry in 1995 "for their work in atmospheric chem­
istry, particularly concerning the formation and decomposition of ozone." F. Sherwood 
Rowland was born in Delaware, Ohio, on June 28, 1927, and received his Ph.D. from the 
University of Chicago in 1951. After serving as an instructor at Princeton University, he 
joined the faculty at the University of Kansas in 1956. [n 1964, he went to the University 
of California at Irvine, where he was the founding chairman and where he remains today. 
His current research interests are atmospheric and environmental chemistry. Mario J. Molina 
was born in Mexico City, Mexico, on March 19, 1943. After receiving his Ph.D. from the 
University of California at Berkeley in 1972, he joined Rowland as a postdoctoral fellow at 
UC Irvine and worked with him on the studies of chlorine and ftuorochloromethane in the 
atmosphere. In 1989, he joined the faculty of The Massachusetts Institute of Technology, where 
he currently remains. Molina donated a major part of his share of the Nobel Prize to help 
scholars from developing nations conduct environmental research at MIT. Paul J. Crutzen 
was born in Amsterdam, the Netherlands, on December 3, 1933. He received his Ph.D. in 
meteorology in 1968 and his D.Sc. in 1973 from the University of Stockholm. After spending 
1974 to 1980 at the National Center for Atmospheric Research at Boulder, Colorado, he 
returned to his current position at the Max Planck Institute for Chemistry at Mainz. 



CHAPTER 

Chern ical Ki netics II: 
Reaction Mechanisms 

In this chapter, we consider how reactants are converted to products. We begin by 
discussing elementary reactions, which are defined as chemical reactions that occur in 
a single step. We will show that the rate law for an elementary reaction can be deduced 
from the reaction stoichiometry. We will then discuss complex reactions, or reactions 
that do not occur by a single step. One of the major goals of chemical kinetics is to 
determine the mechanisn1, or sequence of elementary reactions, by which a complex 
reaction occurs. We will discuss several commonly encountered reaction mechanisms 
and learn some of the approximations used to derive the rate law for a complex 
reaction from a proposed reaction mechanism. We will then examine the mechanisms 
of "unimolecular" reactions and chain reactions. Finally, we will discuss chemical 
catalysis, with an emphasis on the biochemical reactions catalyzed by enzymes. 

29-1. A Mechanism Is a Sequence of Single-Step Chemical Reactions 
Called Elementary Reactions 

Many chemical reactions involve reaction intermediates, and the overall kinetic process 
can be written as 

reactants > intermediates > products 

As an example of this type of reaction, consider the chemical reaction given by 

(29.1 ) 

This reaction does not occur in a single step but proceeds by the following two-step 
process: 

k ., 
N0

3 
(g) + CO(g) -> N0

2 
(g) + CO

2 
(g) 

(29.2) 

(29.3) 1181 
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Neither of the two steps, Equations 29.2 and 29.3, is thought to involve any reaction 
intermediates. A reaction that does not involve any intermediates occurs in a single 
step and is called an elementary reaction. We say that the chemical reaction given by 
Equation 29.1 is a complex reaction whose mechanism is given by the sequence of 
elementary chemical reactions given by Equations 29.2 and 29.3. 

We want to distinguish complex reactions from elementary reactions. From this 
point on, the arrows =} and '¢= will be used to indicate reactions currently thought to 
be elementary. The arrows ~ and ~ will be used to indicate complex reactions. Only 
a few complex reactions have been studied in great enough detail that the elementary 
steps are known with certainty. 

The molecularity of an elementary reaction is defined to be the number of reactant 
molecules involved in the chemical reaction. Elementary reactions that involve one, 
two, and three molecules are termed unimolecular, bimolecular, and termolecular re­
actions, respectively. These terms should be used to describe only elementary reactions. 
In Chapter 28, we learned that rate laws must be determined experimentally; however, 
we will now see that the rate law for an elementary reaction can be deduced from the 
balanced chemical equation itself. 

Because an elementary reaction does not involve the formation of a reaction 
intermediate, the products must be formed directly from the reactants. Thus, for a 
unimolecular reaction, 

A ===> products 

the rate can depend only on the concentration of A molecules that are available to react. 
Therefore, the rate law for a unimolecular reaction is first order in the reactant, or 

v == k[A] 

For both bimolecular and termolecular reactions, the reactants must collide for the 
reaction to occur. To have a collision and also not form any reaction intermediates, 
an elementary reaction must be one in which all the reactants collide simultaneously, 
with the reaction occuring immediately upon this collision. The rate of the reaction will 
therefore depend on the collision frequency between the required reactants. In our study 
of the kinetic theory of gases in Chapter 27, we learned that the collision frequency is 
proportional to the number densities, or the concentrations, of the colliding molecules 
(Equation 27.57). Therefore, for the bimolecular reaction 

A + B ===> products 

the rate of reaction must be given by 

v == k[A][B] 

The rate law for a bimolecular reaction is first order in each of the two reactants and 
second order overall. 



29-2. The Principle of Detailed Balance 

Similarly, the termolecular reaction 

A + B + C ==} products 

must have a rate law that is first order in each of the three reactants and third order 
overall, or 

v == k[A][B][C] 

The probability of having a simultaneous collision between all the reactants decreases 
with increasing molecularity of the reaction. No elementary reaction with a molecularity 
greater than three is known, and the overwhelming majority of elementary reactions 
are bimolecular. 

EXAMPLE 29-1 
Deduce the rate laws for the following reactions. 

k 
a) 2NO(g) + 02(g) ~ N20 4 (g) 

k 
b) 03 (g) + CI(g) ===} CIO(g) + 02 (g) 

k 
c) N02 (g) + F2 (g) ===} N02F(g) + F(g) 

SOL UTI 0 N: a) The type of arrow used in this chemical equation indicates that this 
reaction is not an elementary reaction. Therefore, we need experimental data to deduce 
the rate law. 

b) The type of arrow used in the chemical equation indicates that this reaction is an 
elementary reaction. Therefore, the rate law is 

c) This reaction is also a bimolecular elementary reaction and the rate law is 

29-2. The Principle of Detailed Balance States that when a Complex 
Reaction Is at Equilibrium, the Rate of the Forward Process Is 
Equal to the Rate of the Reverse Process for Each and Every 
Step of the Reaction Mechanism 

We now show that the equilibrium constant for an elementary reaction is equal to the 
ratio of the forward and reverse rate constants. Consider the general reversible reaction 
for which the forward process and the reverse process are each bimolecular 

kl 

A+B<~ ~>C+D (29.4) 
k_l 

1183 



1184 Chapter 29 / Chemical Kinetics II: Reaction Mechanisms 

We will encounter such reactions many times in our study of chemical kinetics. We 
refer to this type of reaction as a reversible elelnentary reaction, which signifies that the 
reaction occurs in both the forward and reverse directions to a significant extent and that 
the reaction in each direction is an elementary reaction. Because both the forward and 
reverse reactions of the chemical reaction in Equations 29.4 are elementary bimolecular 
reactions, the rates of the forward and reverse reactions, v 1 and v -I' are 

At equilibrium, VI == V -I' so 

VI == kl [A][B] 

v I == k_1 [C][D] 

k [AJ [B] - k [C] [0] 1 eq .. eq - - I· eq eq (29.5) 

The subscript "eq" emphasizes that the concentrations of A, B, C, and D are those at 
equilibrium. The equilibrium constant Kc is given by 

so Equation 29.5 becomes 

[C]eq [D]eq 
K == ----

c [A] [B] eq eq 

(29.6) 

The relationship Kc == k 1/ k I holds for all reversible elementary reactions and is 
commonly called the principle of detailed balance. This principle applies only to 
elementary reactions at equilibrium. If the reaction is not an elementary reaction, Kc 

need not be equal to kl / k I' 

Although the principle of detailed balance does not apply to a complex reaction, it 
must apply to each step of the mechanism of a complex reaction because each step is, 
by definition, an elementary reaction. This is an important point and must be kept in 
mind when deriving an expression for the equilibrium constant from rate laws. As an 
example, consider the reversible equilibrium reaction 

A~B (29.7) 

Assume that the mechanism for this reaction consists of the following two competing 

steps: 

k 
I 

A+C< ~>B+C 
k I 

(29.8) 
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and 

(29.9) 

We will consider several real examples of such a reaction mechanism when we discuss 
enzyme catalysis in Section 29-9 and surface catalysis in Chapter 31. Note that one 
of the elementary steps of the reaction mechanism is written in a form that is identical 
to the overall complex reaction. The difference is that Equations 29.7 accounts for 
all the possible chemical pathways for the reaction A ~ B. Because there are two 
pathways by which the reaction can occur, Equations 29.7 cannot be an elementary 
reaction. However, an elementary reaction equivalent to Equations 29.7 can be one of 
the possible reaction pathways. This is why the elementary step, Equations 29.9, has 
the same form as the overall complex reaction. 

According to the principle of detailed balance, when the overall reaction, Equa­
tions 29.7, is at equilibrium, each step of the reaction mechanism must also be at 
equilibrium. Therefore, at equilibrium, 

(29.10) 

and 

V". := k2 [A] := V 2 := k 2[B] 
L eq - - eq (29.11) 

The equilibrium conditions given by Equations 29.10 and 29.11 become 

[B] eq . k\ 
----K :=-

[A] . C k 
eq \ 

(29.12) 

and 

[BJ eq k2 
----K :=-
[AJ . C k 

eq -2 

(29.13) 

Equating Equations 29.12 and 29.13 gives us 

(29.14) 

Because of the principle of detailed balance, the four rate constants k 1 ,k I' k2' and 
k -2 are not independent of one another. The equation for the overall reaction is given 
by the sum of two steps of the mechanism (Equations 29.8 and 29.9), so we also have 

(29.15) 

at equilibrium. Example 29-2 uses Equation 29.15 to derive the equilibrium constant 
for the overall reaction. This derivation demonstrates the importance of detailed balance 
in treating the kinetics of equilibrium reactions. 
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EXAMPLE 29-2 
Show that the equilibrium condition given by Equation 29.15 also gives 

[B Jeq k, 

[AJ eq k_, 

for the reaction described by Equations 29.7 through 29.9. 

SOL UTI 0 N: Equation 29.15 states that at equilibrium 

The rate laws for the elementary steps (Equations 29.8 and 29.9) are as follows: 

v, == k, [A][C] 

V_I ==k ,[BHCJ 

v2. == k2 [A] 

V_2 == k_2.[B] 

Substituting these expressions into Equation 29.15 gives us at equilibrium 

k [A] [e] k [A] - k [B] [C] k [B] 1 eq eq + 2. eq - - 1 eq eq + -2. eq 

which can be rearranged to give 

kl [C]eq + k:. 

k _ I [C] eq + k - 2. 

( 1 ) 

Note that this expression depends on [C]eq' To eliminate [C]eq from this equation, we 
use the relationship between the rate constants, Equation 29.14, that results from the 

application of the principle of detailed balance to this kinetic mechanism. Specifically, 

factoring k, out of the numerator and k lout of the denominator of Equation (1) 

gIves us 

[B]eq 
K ==--

C [A] . eq 

k I ([ C] eq + k:. / k 1 ) 

k ,( [ C] eq + k 2/ k _ 1 ) 

Equation 29. 14 shows that 

which upon substitution into Equation 2, gives us 

[8 leq k, 
K ==--

C [A] k , 
eq 

as expected. 

(2) 
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EXAMPLE 29-3 
The chemical reaction described by 

occurs by the two-step mechanism 

k I 

H
2
(g) + ICI(g) ~ HI(g) + HCI(g) 

k 
-I 

k, 

HI(g) + ICI(g) d HCI(g) + I2 (g) 
k -2 

(1) 

(2) 

(3) 

Use the principle of detailed balance to show that the equilibrium constant for Equa­

tion 1 is the product of the equilibrium constants of Equations 2 and 3. 

SOL UTI 0 N: The equilibrium constant for Equation 1, Kc I' is given by , 

When the reaction is at equilibrium, the principle of detailed balance requires that 

Equations 2 and 3 also be at equilibrium. The equilibrium-constant expressions for 

Equations 2 and 3 are 

[HI] [HCI] K = . eq eq 
(',2 [H] [ICI] 

2 eq eq 

and 

K = [HCl]eq [I2]eq 
(',3 [HI] [ICI] eq eq 

The product Kc.2 Kc,3 is 

K K _ ([HI]eq [HCI]eq) ([HCI]eq [12]eq) 
c,2 (',3 - [H] [ICI] [HI] [ICI] 

2 eq eq cq eq 

[HCI]~q [I2]eq 
') 

[H2]eq [ICI]~q 

= K(',I 

Note that the overall reaction, Equation 1, is the sum of the reactions given by Equa­

tions 2 and 3. The equilibriulTI constant for Equation 1, on the other hand, is the product 

of the equilibrium constants for Equations 2 and 3. 
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29-3. When Are Consecutive and Single-Step Reactions 

Distinguishable? 

Consider the thermal decolnposition of gaseous OCIO to form chlorine atoms and 
oxygen molecules 

OCIO(g) ~ CI(g) + O2 (g) 

This reaction occurs by the following two-step mechanism 

II. 
I 

OCIO(g) -< >- CIOO(g) 

k ., 
II. 
~l 

CIOO(g) <~ - >- CI(g) + O
2 
(g) 

k -' 

(29.16) 

(29.17) 

Experimental studies of these reactions show that VI» v _I and that v2 » v -2' Because 
of the relative magnitudes of these reaction rates, the overall reaction goes essentially 
to completion, and an excellent approximation is to ignore the back reactions and 
model the mechanism of this reaction by a sequence of two irreversible elementary 
reactions, or 

k k 

OCIO(g) ==* CIOO(g) ~ CI(g) + 02(g) 

Many complex reactions occur by such a sequence of elementary reactions. 
Consider a general complex reaction described by 

(29.l8) 

where kobs is the experimentally observed rate constant for the reaction. Of course, 
we cannot determine the rate law from this chemical equation, but suppose that the 
reaction occurs by the two-step mechanism 

(29.19) 

k 
I~P (29.20) 

II. II. 

(This mechanism is often written on a single line as A ~ I :::d:} P.) Because each 
step of this mechanism is an elementary reaction, the rate laws for each species, A, I, 
and Pare 

d[A] == -k [A] 
dt I 

(29.21) 

d:;J = k I [A] - k2 [I] (29.22) 

d[P] = k
1
[I] 

dt ~ 
(29.23) 
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These coupled differential equations (the solution to Equation 29.22 depends on the 

solution to Equation 29.21, and the solution to Equation 29.23 depends on the solution to 

Equation 29.22) can be solved analytically (Problem 29-5). Equations 29.24 through 

29.26 give the solutions assuming that the initial concentrations at time t == 0 are 

[A] == [A]o and [1]0 == [P]o == O. 

[A] == [A]oe-kjt 

[I] = k, [A]o (e-kj ' _ e-k2') 

k2 - k J 

(29.24) 

(29.25) 

(29.26) 

One question that should be considered is whether or not it is always possible to 

distinguish the individual steps of a sequential reaction. In other words, when can this 

two-step consecutive reaction mechanism be distinguished unambiguously from the 

one-step reaction, 

k 

A ==* P 

Note that [A] decays exponentially with time for both the single-step and two-step 

reaction schemes. Thus, measurement of the decay kinetics of [A] will not provide 

data that can distinguish between a single-step and a multistep process. However, 

the number of steps involved affects the appearance of the product. For a single-step 

reaction, [P] is given by (see Example 28-3) 

(29.27) 

Equation 29.27 appears to be different from Equation 29.26, but consider what happens 

if k2 is much greater than k I' When k2 » k I' we can neglect k I compared with k2 in the 
denominator of Equation 29.26, and the term involving e-k2 ' will decay much faster 
than the term involving e-k]t, so [P] given by Equation 29.26 becomes 

[P] = [Alo { 1 + k, ~ k2 (k2e-
kjt 

- k,e-
k
/) } 

~ [A]o { I + -~2 k2e-
kjf 

} 

== [A]o(l - e-k]t) 

This result is identical to Equation 29.27. The single-step and a two-step reaction 

mechanism are therefore indistinguishable when k2 » k J. Thus, the observation of 

identical rate constants for the decay of the reactant and the growth of the product does 

not necessarily mean that no chemical intermediates arise along the reaction path. This 

exemplifies one of the difficulties in establishing that a chemical reaction is really an 

elementary reaction. 
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If one step in a reaction mechanism is much slower than any of the other steps, 
that step effectively controls the overall reaction rate and is called the rate-determining 
step. Not all reaction mechanisms have a rate-determining step, but when one does 
occur, the overall reaction rate is limited by the rate-determining step. For example, re­
consider the reaction between N02 (g) and CO(g) to form NO(g) and CO

2 
(g) (Equation 

29.1) : 

k 
N0

2 
(g) + CO(g) ()b~> NO(g) + CO

2 
(g) 

Recall from Section 29-1 that this reaction occurs by the two-step mechanism 

k 
N02 (g) + N02 (g) ::::::h} N0

3 
(g) + NO(g) 

k 
NO~(g) + CO(g) ~ NO,(g) + CO,(g) 

~- .....,.:-

The first step turns out to be much slower than the second, or v I « v2• Because the 
reaction proceeds through both steps sequentially, the first step acts as a bottleneck and 
therefore is rate determining. In this particular case, the rate of the overall reaction will 
be given by the rate of the rate-determining step, or 

which is the experimentally observed rate law. In effect, the CO(g) molecules have to 
wait around for N0

3 
(g) molecules to be produced. Once formed, the N0

3 
(g) molecules 

are consumed rapidly by reaction with CO(g). 

EXAMPLE 29-4 
Can a single-step and two-step mechanism be distinguished when the second step of 

the two-step reaction scheme is rate determining? 

SOL UTI 0 N: Before we examine the rate laws, let us use our intuition to answer 

this question. Consider what happens if the rate of the second step of a two-step 

mechanism is rate determining. In this case, the reactant will disappear before any 

appreciable amount of product is formed. On the other hand, for a single-step process, 

the rate at which the reactants disappear and the rate at which the product is formed 

must be the same. Therefore, we expect that there are conditions under which these two 

processes can be distinguished if we monitor both the decay of A and the formation 

of P. 
Let us first examine the exact solution for [P] (Equation 29.26) 



29-4. The Steady-State Approximation Simplifies Rate Expressions 

Consider what happens to this expression when k2 « k I' First, 

1 1 
---~-

Second, 

because the factor containing e -k 1 t will decay much more rapidly than the factor 

containing e -k2t. Thus, when k2 « k I' Equation 29.26 can be simplified to 

This equation has the same functional form as [P J for a single-step reaction (Equa­

tion 29.27), except that it depends upon k2' the rate constant for the second step of the 
mechanism. For a single-step reaction, the kinetics of A and P depend upon the same 
rate constant. For the two-step mechanism in which the second step is rate determining, 
the kinetics of A depend upon k I and the kinetics of P depend upon k2 . Therefore, 
if we measure both the decay kinetics of A and the formation kinetics of P, we can 

distinguish between a single-step and two-step mechanislTI when the second step of 

the two-step reaction scheme is rate determining. 

29-4. The Steady-State Approximation Simplifies Rate Expressions by 
Assuming that d[I]/dt = 0, where I Is a Reaction Intermediate 

Reconsider the reaction mechanism 

(29.28) 

for the initial conditions [A] == [A]o' and [1]0 == [P]o == O. In Section 29-3, we discussed 
the time-dependent behavior of the concentration of the reactant, [A], and product, [P]. 
We now discuss the time-dependent behavior of the concentration of the intermedi­
ate, [I]. The concentration of I varies with the relative magnitudes of the rate constants 
k, and k2 • Equation 29.25 gives the dependence of [I] on the reaction rate constants, kl 
and k2' and Figure 29.1 shows plots of [I] versus time for two different relationships 
between k I and k2 • The data plotted in Figure 29.1 a show that if k 1 == 10 k2' then [1] 
builds up and then decays. In other words, the value of [I] changes significantly over 
the course of the reaction. In contrast, if the second step is much faster than the first 
step, very little of the intermediate can build up. This type of behavior is shown in 
Figure 29.1 b, where we have taken k2 == 10k I ; here, we see that [I] builds up quickly to 
a very small concentration that remains relatively constant during the course of the re­
action. In this latter case, we can reasonably make the approximation that d[IJI dt == 0, 
which means that we can equate the rate equation associated with this intermediate to 
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[A]o [P] [A]o 
[P] 

[ I ] 
__ --------.;~=____"[ I J 

t t 

(a) (b) 

FIGURE 29.1 
k k 

Concentration profiles for the consecutive reaction scheme A ~ I =:} P with initial concen-
trations [AJ == [A]o' and [1]0 == [PJ() == O. (a) k) == lOk2: The concentration of I rises and 
then decays, changing significantly during the course of the reaction; (b) k2 == 10k I: The 
concentration of I rapidly builds up to a constant, but negligible, concentration that persists for 
a large extent of the reaction. In this case, the steady-state approximation can be applied to [I]. 

zero. This procedure is called the steady-state approximation and can greatly simplify 
the mathematics associated with a particular kinetic model. 

For the above two-step mechanism, the rate laws for A, I, and P are given by 
Equations 29.21 through 29.23. If we invoke the steady-state approximation, then 
d[I]/ dt == 0 and Equation 29.22 becomes 

(29.29) 

where the subscript "ss" is used to emphasize that this is the concentration of I obtained 
by assuming the steady-state approximation. The time-dependent concentration of A 
is given by Equation 29.24, 

which upon substitution into Equation 29.29 gives 

k 
[I] == _1 [A] e-k , f 

ss k 0 
J 

(29.30) 

Note that the steady-state approximation assumes that d[I]/ dt == O. But the result of 
using the steady-state approximation, Equation 29.30, is a time-dependent expression 
for [I]. We therefore need to consider when the expression in Equation 29.30 satisfies 
the assumption that d[I]/ dt == 0. Evaluating d[I]/ dt from Equation 29.30 gives us 

(29.31) 



29-4. The Steady-State Approximation Simplifies Rate Expressions 

We see that the differential d[I]/ dt approaches zero as k;[AJo/ k2 goes to zero. There­
fore, the steady-state approximation is a reasonable assumption for treating the kinetics 
of the reaction scheme given by Equation 29.28 if k2 » k;[A]o' 

The concentration of P is given by [A]o - [AJ - [I] or it can also be found by 
substituting Equation 29.30 into Equation 29.23 and integrating (Problem 29-6). Both 
approaches give 

(29.32) 

If we compare Equation 29.32 with the exact solution for [PJ (Equation 29.26), we see 
that the exact solution reduces to Equation 29.32 only if k2 » k\. In other words, we 
have found that for this two-step mechanism, the steady-state assumption corresponds 
to the case in which the intermediate is so reactive that [I] ~ O. 

Figure 29.2 shows a plot of the calculated time-dependent concentrations of A, 
I, and P for k2 == 10k \ using the exact expressions and those expressions obtained 
from applying the steady-state approximation. The plot shows that the approximate 
solutions are in excellent agreement with the exact solutions. Problem 29-7 asks you 
to compute the exact and approximate solutions for k2 == 2k \. As you might expect 
from the above discussion, you will learn by doing this problem that the steady-state 
approximation is a poor approximation when the rate constants of the two steps are 
comparable. 

1.0 r--__ 

0.8 
[A] I [AJ o 

0.6 

0.4 

0.2 [I]/[AJ o 

2 

Fie U R E 29.2 

-1 

, , 

, , , 

[P] I [AJ o 

o 1 

The quantities [A]/[A]o' [I]/[A]o' and [P]/[A]o are plotted as a function of 10g(k
J 
t) for the case 

k k 
in which k2 == 10k I for the reaction scheme A =:} I ~ P. The solid lines are the concentrations 
obtained using the steady-state approximation. The dashed lines are the exact solutions to the 
rate equations. The logarithmic time scale exaggerates the differences between the approximate 
and exact solutions. The agreement between the exact solutions and those obtained using the 
steady-state approximation is nearly quantitative in this case. 
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EXAMPLE 29-5 
The decomposition of ozone 

occurs by the reaction mechanism 

where M is a molecule that can exchange energy with the reacting ozone molecule 

through a collision, but M itself does not react. Use this mechanism to derive the rate 

law for d[03]/dt assuming that the intermediate O(g) concentration can be treated by 

the steady-state approximation. 

SOL UTI 0 N: The rate equations for 0
3 
(g) and O(g) are 

and 

Invoking the steady-state approximation for the intermediate O(g) means that we set 

d[O]/dt == O. Setting d[O]/dt == 0 and solving the resulting expression for [0] gives 
us 

Substituting this result into the rate equation for 0
3 

then gives us 

Note the complexity of this rate law compared with what we have encountered so far. 

Because the steady-state approximation simplifies the mathematics, you might 
be tempted to use it solely for that reason. As we have pointed out, however, this 
approximation makes assumptions about the relative magnitudes of the rate constants 
for different steps of the reaction mechanism. The validity of such assumptions must 
be experimentally confirmed before the steady-state approximation should be used. 



29-5. The Rate Law for a Complex Reaction Does Not Imply a 
Unique Mechanism 

Recall that the rate law of a complex reaction provides information on how the rate of 
reaction depends on concentration, but it does not tell us how the reaction occurs. In 

general chemistry, you may have learned that the rate law for a complex reaction can be 
derived by combining the rate laws for the individual elementary steps. Problems 29-

9 through 29-17 involve deriving the rate laws for a number of complex reactions 
from the reaction mechanisms. Here we explore the question of whether or not the 
empirically determined rate law implies a unique reaction mechanism. Consider the 
oxidation of nitrogen monoxide to form nitrogen dioxide according to 

k 
2 NO(g) + 02 (g) ob\ 2 N02 (g) (29.33) 

Measurements of the rate of appearance of the N0
2 
(g) product reveal a rate law of the 

form 

1 d[NO ] 
- 2 == k [NO]2[O] 
2 dt obs 2 

(29.34) 

Note that this rate law is consistent with the conclusion that the reaction is an elementary 
termolecular reaction. Experimental studies confirm, however, that the reaction given 
by Equation 29.33 is not an elementary reaction, which we have indicated by using the 
appropriate arrow in writing the chemical equation. 

We will now consider two possible lnechanism for this reaction. We will derive 
the rate laws associated with these two reaction mechanisms, and then compare these 
rate laws to the experimentally observed rate law. 

M echanisln 1: 

k 
I 

NO(g) + 0; (g) < >NO~ (g) 
- k ' 

~I 

k 
N0

3 
(g) + NO(g) ~ 2 N0

2 
(g) 

(fast equilibrium) (29.35) 

(rate determining) (29.36) 

Mechanism 1 proposes that the first step of the reaction is a rapidly established equi­
librium between the reactants and the nitrogen trioxide radical (N0

3
). The second step 

is a slow reaction between nitrogen trioxide and nitrogen rnonoxide, and this step is 

rate determining. 

The first step of this mechanism (Equation 29.35) is assumed to establish equilib­
rium and to remain there as the subsequent step of the mechanism takes place, so we 
can write 

k) 
K ==­

(',1 k 
-1 

[N0
3

] 

[NO][O,] 
(29.37) 
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The rate law for the second step of the mechanism (Equation 29.36) is 

1 d[NO ] 
- . 2 == k)[NO ][NO] 
2 cit - 3 

(29.38) 

Because the second step of the mechanism is rate determining, Equation 29.38 gives 
the rate law of the overall reaction. We now need to relate the concentration of the 
intermediate species, N0

3
, to the concentrations of the reactants. This relationship 

can be determined using the equilibrium condition given by Equation 29.37. Solving 
Equation 29.37 for [NO)] and substituting the result into Equation 29.38 gives us the 
following rate law for the chemical reaction. 

1 d[NO ] 
- 2 == k K [NO]2[O] 
2 dt 2 c, I 2 

(29.39) 

This rate law is in agreement with the experimental rate law, Equation 29.34, if kobs == 
k2 K c. , • The experimentally determined rate constant is, therefore, not a rate constant for 
anyone particular step of the reaction mechanism but is a product of the rate constant 
for the second step of the mechanism and the equilibrium constant of the first step of 
the mechanism. 

We now consider a different proposed mechanism for how the reaction in Equa­
tion 29.33 occurs. 

Mechanism 2: 

kl 

NO(g) + NO(g) -< > N20 2 (g) (29.40) 
k_1 

(29.41) 

Mechanism 2 involves the formation of the intermediate chemical species N20 2 (g). 
It is assumed that the steady-state approximation is valid, or in other words, the 
concentration of N20 2 (g) is time independent, so that d[N20 2 ]/dt == O. Using this 
mechanism, the rate laws for [NO] and [N

2
0 2] are 

(29.42) 

and 

(29.43) 

and the rate of reaction is given by 

(29.44) 
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The rate of appearance of N0
2 
(g), Equation 29.44, depends upon the concentration of 

the intermediate species, N
2
0

2
(g). Once again, we need to express the rate in terms of 

the concentrations of the reactants, [NO] and [0,,], to compare the predicted and exper-
"-

imental rate laws. Using the steady-state approxilnation for the intermediate species 
N,O" means that we can set Equation 29.43 equal to zero. Setting Equation 29.43 equal - "-

to zero and solving for [N20 2] gives 

(29.45) 

Recall that the use of the steady-state approximation requires that [N20 2] be constant 
in time. One way this condition can be met is if v -I' the rate of the back reaction 
in Equation 29.40, is much larger than both VI' the rate of the forward reaction in 
Equation 29.40, and v2 ' the rate of the reaction in Equation 29.41. Then, only a 
negligible and essentially constant amount ofN2 02 is ever present, satisfying the steady­

state assumption. Under these conditions, k_1 [N20 2] » k2[N20 2][02] or k I » k2 [02]' 
and Equation 29.45 simplifies to 

k 
[N20 21 = f-[N012 

-\ 

Substituting this result into Equation 29.44 gives 

kk 
: '[NOf[02J = k2 Kc., [NOP[021 
-I 

(29.46) 
2 dt 

This rate law also agrees with the experimental rate law, Equation 29.34, if kObs == k2 Kc,\' 
We have found that both mechanisms are in agreement with the observed rate law. To 
distinguish between these two reaction mechanisms would then require additional 
information. For example, if you showed that NO} (g) existed in the reaction flask, then 
you could discount Mechanism 2. Another approach could involve introducing reagents 
to the reaction mixture that would react with the reactive NO} (g) radical to form stable 
products that could be isolated and characterized, thereby proving that NO] (g) was 
generated in the reaction flask. Currently, the experimental data favor Mechanism 2. 

EXAMPLE 29-6 
In the above discussion, the concentration of N2 02 (g) satisfies the steady-state ap­

proximation if v ~.l is nluch larger than both v 1 and v2 • The steady-state approximation 
would also apply if v2 is much larger than both v 1 and v -I' What is the predicted rate 
law for this reaction mechanism under these latter conditions? 
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SOL UTI 0 N: Equation 29.45 gives an expression for [N
2
0

2
] when its concentration 

is treated by the steady-state approximation. If v2 is much larger than both v I and V_I ' 

then k2[02] »k I' and Equation 29.45 simplifies to 

Substituting this result into Equation 29.44 gives us the rate law 

This rate law is different from the experimental rate law. This result tells us that 

even though there are two possible relationships between the rates of the steps of the 

reaction mechanism such that the steady-state approximation applies to the reaction 

intermediate species N20 2 (g), only one of these sets of conditions is consistent with 

the observed rate law. 

Our study of the oxidation of nitrogen monoxide points out some of the difficulties 
in deriving mechanisms to explain experimental rate laws. First, although the exper­
imentally determined rate law has the mathematical form of an elementary reaction 
(Equation 29.34), it is not an elementary reaction. This confirms once again that the 
observed rate law is not by itself sufficient to prove that a reaction is elementary. Sec­

ond, the experimental rate law can be accounted for by two different mechanisms, so 

we see that a rate law does not imply a unique mechanism. A mechanism is only a 
hypothesis of how the reaction proceeds. The ability of a mechanism to account for 
an experimental rate law is only the first step in establishing that the mechanism is 
correct. Ultimately, verifying a reaction mechanism requires intensive experimental 
verification of each elementary step. 

29-6. The Lindemann Mechanism Explains How Unimolecular 

Reactions Occur 

If the reaction described by 

is an elementary reaction, then it must obey the rate law 

_d[_C_H_3N_C_J == -k [CH NCJ 
d t obs 3 

(29.47) 

(29.48) 

A close examination of this and many other supposed unimolecular reactions reveals 
that the rate law given by Equation 29.48 is valid only at high concentration. At low 
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concentration, the experimental data for this reaction are consistent with the second­
order rate law 

d[CH NC] 
__ 3 _ == -k [CH NC]2 

dt obs 3 
(29.49) 

Equation 29.49 is not the rate law for a unimolecular reaction, and we are forced to 
reexamine the initial statement that reactions such as that given by Equation 29.47 are 
elementary. 

The data given in Table 29.1 show that the activation energies of "unimolecular" 
reactions can be quite large compared with kg T. To understand how these reactions 
occur, we need to identify the source of energy that enables the reacting molecule to 
overcome the energy barrier to reaction. A mechanism that predicts the rate law given 
by Equation 29.48 at high gas concentration and the rate law given by Equation 29.49 
at low gas concentration was proposed independently by the British chemists J. A. 
Christiansen in 1921 and F. A. Lindemann in 1922. Their work underlies the current 
theory of unimolecular reaction rates. The mechanism is generally referred to as the 
Lindemann mechanism. 

Lindemann proposed that the energy source for a unimolecular reaction such as that 
described by Equation 29.47 results from bimolecular collisions. He further postulated 
that there must be a time lag between the collision (or energizing step) and the ensuing 
reaction. Depending on the collision rate in the gas and the time lag before reaction, 

TABLE 29.1 
Arrhenius parameters for unimolecular reactions. The rate constants for these reactions 
at 500 K and 700 K are given in Table 28.4. 

Reaction 

Isome rizations 

Cyclopropane ==} propene 

Cyclopropene ==} propyne 

cis-But-2-ene ==} trans-but-2-ene 

CH
3
NC ~ CH

3
CN 

Vinyl allyl ether ==} pent-4-enal 

Decompositions 

Cyclobutane ==} 2 ethene 

Ethylene oxide ==} CH
3
CHO, CH

2
0, CH

2
CO 

Ethyl fluoride ==} HF + ethene 

Ethyl chloride::::} HCl + ethene 

Ethyl bromide ==} HBr + ethene 

Ethyl iodide ==} HI + ethene 

Isopropyl ether ==} propene + isopropanol 

35.7 274 

29.9 147 

3l.8 263 

31.3 131 

26.9 128 

35.9 262 

32.5 238 

30.9 251 

32.2 244 

31.1 226 

32.5 221 

33.6 266 
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the molecule could possibly undergo a deactivating bimolecular collision before it 
has a chance to react. In terms of chemical equations, the Lindemann mechanism for 
unimolecular reactions of the form A(g) --+ B (g) is 

k) 

A(g) + M(g) ~ > A(g)* + M(g) (29.50) 
k I 

k 
A(g)* ~ B(g) (29.51) 

The symbol A(g)* in Equations 29.50 and 29.51 represents an energized reactant 
molecule, and M(g) is the collision partner. The molecule M(g) can be a second reactant 
molecule, a product molecule, or a nonreactive buffer gas such as N, (g) or Ar(g) . ... 

Based on the Lindemann mechanism, the rate of product formation is given by 

d[B] = k [A*] 
dt 2 

(29.52) 

Because collisions both energize A(g) and de-energize A (g) *, the concentration of 
A(g)* at any given time will be very small, and we can reasonably invoke the steady­
state approximation. In that case, 

_d[_A_*] = 0 = k [A][M] - k [A*][M] - k [A*] 
dt 1 -I 2 

(29.53) 

Equation 29.53 can be solved for [A *], 

(29.54) 

Substituting Equation 29.54 into Equation 29.52 gives us the following rate law for the 
overall reacti on 

where 

d[B] 
dt 

d[AJ 

dt 

k1k2[MJ 
k ==----

nbs k2 + k 1 [M] 

(29.55) 

(29.56) 

We see that kobs depends on [M] and is therefore concentration dependent. At sufficiently 
high concentrations, we expect that v -I' the rate of collisional deactivation, will be 
greater than v2, the rate of reaction. In this case, we have k_,[M][A*] »k2[A*] or 

k _) [M] » k2 and kobs simplifies to 

k,k2 
k ==--

obs k 
-\ 

(29.57) 
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The rate law for the overall reaction (Equation 29.55) then becomes d[B]/ dt == 
kl k2 [A]/ k I' In this high-concentration limit, the reaction rate is first order in A. 
At sufficiently low concentrations, we expect that v2 , the rate of reaction, will be 
greater than v -I' the rate of collisional deactivation. This means that k2 »k I [M), and 
therefore at low concentration, kobs simplifies to 

k == k [M) 
obs 1 

(29.58) 

The rate law for the overall reaction in this case becomes d [B] / d t == k 1 [M) [A]. In this 
low-concentration limit, the rate law is first order in both A and M and has an overall 
reaction order of two. One of the great successes of the Lindemann mechanism was 
its ability to predict the experimentally observed change from first-order kinetics to 
second-order kinetics with decreasing concentration. Figure 29.3 shows a plot of the 
observed rate constant, k

obs
' for the isomerization reaction CH

3
NC(g) -+ CH

3
CN(g) at 

472.5 K as a function of [CH
3
NC]. The low-concentration data show that kObS depends 

linearly on concentration (Equation 29.58), and data at high concentration show that 
k

ohs 
is independent of concentration (Equation 29.57). In the region between these 

two limiting behaviors, k2 is comparable with k 1 [M], and neither of the limiting 
expressions discussed above describes the kinetics. 

I 

2.0 I 

/ Equation 29.57 
______ ..1_ , 

00 
J PJo , 0 

I 0 
J 

1.5 
, 

0 I 

~ 
, 0 

- I 

I 
, 

C/J /8& 
-........ 'n 

VJ OV 
..0 

1.0 
0 

0 ,D 
~ 
'-' 

b1) 

0 
~ 

0.5 Equation 29.58 

0.0 

-4.5 -2.5 -0.5 

log ([CH 3 NC] / mol.dm- 3 ) 

FIG U R E 29.3 
A plot of the concentration dependence of the unimolecular rate constant for the isomerization 
reaction of methylisocyanide at 472.5 K. At low concentration, the rate constant varies linearly 
with concentration, as predicted by Equation 29.58. At high concentration, the rate constant is 
independent of concentration, in agreement with Equation 29.57. 
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EXAMPLE 29-7 
This example explores the connection between the observed activation parameters 

for a chemical reaction and the activation parameters of the individual steps of the 

reaction mechanism. Specifically, suppose that the rate constant for each step of the 
Lindemann mechanism shows Arrhenius behavior. How are the measured values of A 
and E a related to the pre-exponential factors and activation energies for the individual 

steps of the mechanism for the high-concentration reaction? 

SOL UTI 0 N: At high concentration, kobs == k I k2/ k I' Denoting the experimentally 

measured values of A and Ea by Aobs and Ea,obs' we have (Equation 28.57) 

E /RT k == A e - u.obs 
obs obs 

If each step of the reaction mechanism shows Arrhenius behavior, then each of the rate 

constants, k I' k \' and k2 can be written in terms of an Arrhenius equation, 

E jRT k == A e u.1 
I I 

k A -E jRT == ea.-I 
-I -\ 

Substituting these equations into kobs == k, k2/ k 1 shows that 

and 

E~l.obs == Ea, I + Ea .1 - Ea , I 

AIA2 
Aobs == -­

A_I 

We now see that measured values for Aobs and Ea,Obs do not correspond to a single step 
of the reaction but are influenced by each step of the reaction mechanism. 

Although the Lindemann mechanism predicts the correct qualitative behavior of 
the reaction rate with concentration, it fails to provide quantitative agreement with 
experimental data over a range of concentrations. This failure results from the fact that 
this mechanism does not address the details of how the energy transfer process takes 
place, only that it occurs. Modern theories of both intramolecular and intermolecular 
energy transfers are able to bring these general ideas into quantitative agreement with 
the observed rates of chemical reactions. 
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Consider the reaction between hydrogen and bromine to produce hydrogen bromide. 
The balanced chemical equation that describes this reaction is 

H
2
(g) + Br

2
(g) ~ 2HBr(g) 

The experimentally determined rate law is 

1 d[HBr] 

2 dt 1 + k'[HBr][Br
2

] I 

(29.59) 

(29.60) 

where k and k' are constants. The rate law given by Equation 29.60 depends on both the 
reactant and product concentrations. Because the product appears in the denominator 
of the rate expression, its accumulation decreases the reaction rate. 

Detailed kinetic studies of this reaction have resulted in the following proposed 
mechanism: 

Initiation: 
k( 

Br2 (g) + M(g) ===> 2 Br(g) + M(g) (1) 

Propagation: Br(g) + H2 (g) HBr(g) + H (g) (2) 

k 
H (g) + Br 2 (g) ====* HBr(g) + Br(g) (3) 

k 

Inhibition: 
~J 

(4) HBr(g) + H(g) =:::::} Br(g) + H2 (g) 

k 
HBr(g) + Br(g) ~ H(g) + Br2(g) (5) 

k 
Termination: 2 Br(g) + M(g) ~ Br2(g) + M(g) (6) 

The first step, Equation 1, is a bimolecular reaction in which M(g) is a molecule that 
collides with the Br 2 (g) molecule, thereby imparting the energy necessary to break 
the chemical bond. Equations 2 through 5 reveal how HBr(g) is both formed and 
destroyed. Note that one of the products of Equation 2 is a reactant in Equation 3. Both 
formation reactions ofHBr(g) generate a chemical species that can go on to react to form 
HBr(g). These reactions therefore serve to propagate the further formation ofHBr(g). 
Reactions of this type are called chain reactions . Now consider the back reactions 
of Equations 2 and 3, which are given in Equations 4 and 5. These two reactions 
destroy HBr and thereby inhibit product formation. Note that one of the products of 
Equation 4 is a reactant in Equation 5 and that one of the products in Equation 5 
is a reactant in Equation 4. The inhibition reactions are also chain reactions. These 
inhibition reactions have been studied in great detail. The reaction HBr(g) + Br(g) 
(Equation 5) is endothermic by nearly 170 kJ· mol-I, whereas the reaction HBr(g) + 
H(g) (Equation 4) is exothermic by approximately 70 kJ ·mol- I

. Because the reaction 
given by Equation 5 requires such a relatively large input of energy compared with 
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the reaction given by Equation 4, the contribution of the reaction in Equation 5 to the 
overall chemistry is negligible and assuming that k -3 ~ 0 is a good approximation. 

We now derive the rate law that corresponds to this mechanism. We will want to 
compare our result with the experimentally determined rate law, Equation 29.60, so 
we must derive an expression for d[HBr]/dt in terms of the reactants [H2] and [Br2] 
and the product [HBr] from the above mechanism. Because each step of the above 
mechanism is an elementary reaction, we can write the rate laws for [HBr], [H], and 
[Br]. Using the mechanism given by Equations I through 4, and 6, the rate laws for 
[HBr], [H], and [Br] ignoring Equation 5 are 

d[HBr] 
dt == k2[Br][H2] - k 2[HBr][H] + k3[H][Br2] (29.61) 

d[H] 
_. == k,[Br][H2] - k_2[HBr][H] - k,[H][Br2] 

d t '- _1 

(29.62) 

and 

_d[_B_r] == 2k] [Br,][M] - 2k I [Br]2[M] - k2[Br][H,] 
dt '- ~ 

+k 2[HBr][H] + k3[H][Br2] (29.63) 

The factor of 2 in the first two terms arises because of the stoichiometry of Equations 1 

and 6. {For Equation 1, (1/2)d[Br]/dt == k][Br2][M], ord[Br]/dt == 2k][Br2][M].} To 
simplify this problem, we apply the steady-state approximation to the two reactive 

intermediates Br(g) and H(g) so that d[Br]/ dt == d[H]/ dt == O. Recall from the dis­
cussion in Section 29-4 that this approximation needs to be justified by independent 
experimental measurements. Deriving a rate law consistent with the experimental rate 
law does not in itself justify the use of such an approximation. Applying the steady-state 
approximation to [H] gives us 

(29.64) 

and likewise for [Br] we obtain 

d[Br] 
-- == 0 == 2k [Br ][M] 2k_l [Br]2[M] - k2[Br][H2] 

dt ] 2 

+k_
2
[HBr][H] + k

3
[H][Br2] (29.65) 

The goal now is to use Equations 29.64 and 29.65 to find expressions for [H] and [Br] 
in terms of the reactants and products of the reaction. Then we can substitute these 

expressions into Equation 29.61 and thereby obtain the predicted rate law of the overall 
reaction in terms of the concentrations of the reactants and products. 

Note that the three terms on the right side of Equation 29.64 are the negatives of 
the last three terms on the right side of Equation 29.65. By adding Equations 29.64 to 
29.65, we obtain 
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and solving this expression for [Br] gives us 

(29.66) 

We can obtain an expression for [H] in terms of the concentrations of the reactants and 
products by substituting Equation 29.66 into Equation 29.64. This procedure gives us 

Combining Equations 29.61, 29.66, and 29.67 gives us the rate law 

1 d[HBr] 

2 dt 

(29.67) 

(29.68) 

This rate law has the same functional form as the experimentally derived rate law. 
Comparing Equations 29.68 and 29.60 shows us that the measured constants k and 
k' are related to the rate constants of the reaction mechanism by k == k2 K(~,/12 and 

k' == k_2/ k3 • 

EXAMPLE 29-8 
In the initial stages of the reaction described by 

H2 (g) + Br:2 (g) ¢ 2 HBr(g) 

the observed rate law is 

1 d[HBr] - == k [H] [B r ] 1/2 
2 dt obs 2 2 

Show that this result is consistent with the rate law given by Equation 29.68, and 
determine kobs in terms of the rate constants of the mechanism. 

SOL UTI 0 N: In the initial stages of the reaction [HBr] « [Br2], and as a result 

k 2 -=- [HBr][Br1 ] I « 1 
k -

:I 

This result allows us to simplify the denolninator of Equation 29.68, obtaining the 

result 

1 d[HBr] I; - == k K./2[H ][Br ]1/2 
2 dt 2 {, I 2 2 

The measured rate constant, k
obs

' is equal to k2 K(~,/12 

Problems 29-24 through 29-32 consider several different types of chemical reactions 
that involve chain reactions. 
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29-8. A Catalyst Affects the Mechanism and Activation Energy of a 
Chemical Reaction 

We know that the rate of a reaction can usually be increased by increasing the tempera­
ture and that there are practical limitations to the effects of temperature (Section 28-7). 
For example, reactions in solution are constrained to the temperature range between 
the melting and boiling point of the solvent. An entirely different approach to making 
reactions go faster would be to enable the reaction to proceed by a different mechanism 
that has a lower activation energy. This is the general idea behind a chemical catalyst. 
A catalyst is a substance that participates in the chemical reaction but is not consumed 
in the process. By participation in the reaction, a catalyst provides a new mechanism 
by which the reaction can occur. The trick is to develop a catalyst that gives rise to a 
reaction path with a negligible activation barrier. If the catalyst is in the same phase 
as the reactants and products, the reaction is an example of homogeneous catalysis. If 
the catalyst is in a different phase from the reactants and products, the reaction is an 
example of heterogeneous catalysis. 

Because a catalyst is not consumed by the chemical reaction, the exothermicity 
or endothermicity of the chemical reaction is not altered by the presence of a catalyst. 
Figure 29.4 illustrates how a changes in mechanism can influence the reaction rate. 
Here we see that the mechanism made possible by the catalyst has a lower activation 
energy than the reaction mechanism in the absence of the catalyst. Because the reaction 
rate depends exponentially on the activation energy (see Section 28-6), small changes 
in the height of the activation barrier result in substantial changes in the reaction rate. 
Because the mechanisms of the catalyzed and uncatalyzed reactions are different, they 

Fie U R E 29.4 

Reactants 

- - -
/ 

\ 

\ 

No catalyst 

Catalyst 

Products 

Reaction coordinates 

A schematic illustration of the energy curves for an exothermic reaction with and without a 
catalyst. The role of the catalyst is to lower the activation energy of a chemical reaction by 
making a new mechanism accessible by which the reaction can occur. Because the mechanisms 
of the catalyzed and uncatalyzed reactions are different, they will occur along different reaction 
coordinates. 
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correspond to different reaction coordinates. Hence, we use the plural "coordinates" 
for the horizontal axis label of Figure 29.4. Figure 29.4 shows that the catalyst lowers 
the activation energy for both the forward and reverse reactions so that the rates of both 
forward and reverse reaction rates are increased. 

Consider the reaction, 

A ) products 

Addition of a catalyst creates a new reaction pathway that competes with that of the 
uncatalyzed mechanism. The overall reaction mechanism then involves two competing 

reactions 

k 
A > products 

k 
A + catalyst cat> products + catalyst 

If each of these competing reactions is an elementary process, the rate law for the 
overall reaction is given by the sum of the two terms. 

d[A] 
dt == k[A] + kcat[A] [catalyst] 

The first term on the right side of this equation in the rate expression is the rate law 

for the uncatalyzed reaction, and the second term is the rate law for the mechanism 
involving the catalyst. In most cases, catalysts enhance reaction rates by many orders of 
magnitude, and therefore only the rate law for the catalyzed reaction need be considered 
in analyzing experimental data. 

As an example of homogeneous catalysis, consider the oxidation-reduction re­
action between aqueous cerium(IV) ions, Ce4+ (aq) , and aqueous thallium(I) ions, 
TI+ (aq): 

In the absence of a catalyst, this reaction is a termolecular elementary reaction; it occurs 
very slowly and its rate law is 

The slow rate is a consequence of the requirement that the reactive event involves a 

simultaneous collision of one thallium and two cerium ions, which has a low probability 
of occurring. Addition of Mn2+ (aq) to the solution catalyzes the above reaction. The 

facile oxidation and reduction reactions of the manganese ion open up a new reaction 
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pathway by which cerium(IV) can oxidize thallium(I). The new reaction pathway 
involves only bimolecular reactions and occurs by the following mechanism 

k 
Ce4+(aq) + Mn2+(aq) ~ Mn3+(aq) + Ce3+(aq) 

Ce4+(aq) + Mn3+(aq) ===> Mn4+(aq) + Ce3+(aq) 

Mn4+(aq) + TI+(aq) ===> Mn2+(aq) + TI3+(aq) 

(rate determining) 

Because the first step of this reaction mechanism is rate determining, the rate law for 
the catalyzed reaction is 

v == k [Ce4+] [Mn2+] 
cat 

The overall rate law for the reaction in the presence of the manganese catalyst is then 
given by 

The first term in the rate expression is the rate law for the uncatalyzed reaction, and 
the second term is the rate law for the mechanism involving the catalyst. 

As an example of heterogeneous catalysis, we consider the synthesis of ammonia 
from H2 (g) and N2 (g) 

The activation balTier for this reaction in the gas phase is roughly given by the dis­
sociation energy of the N

2
(g) bond, ~ 940 kJ·mol- 1

• Even though ~rGo at 300 K is 
-32.4 kJ· mol I for this reaction, the barrier to reaction is so large that a mixture of 
H2 (g) and N2 (g) can be stored indefinitely without producing any appreciable amount 
of ammonia. In the presence of an iron surface, however, the net activation energy 
for the synthesis of ammonia from H2 (g) and N2 (g) is ~ 80 kJ· moll, more than an 
order of magnitude less than that of the gas-phase reaction. The mechanism of the 
surface-catalyzed synthesis of ammonia is fairly complicated and will be discussed 
in detail along with other heterogeneous surface-catalyzed gas-phase reactions in the 
second half of Chapter 31. 

As a final example, we consider the destruction of stratospheric ozone by chlorine 
atoms. A naturally occurring reaction for the destruction of ozone in the stratosphere 
is given by 

In the presence of chlorine atoms, the following two reactions readily occur 

0 3 (g) + CI(g) ===> CIO(g) + O2 (g) 

CIO(g) + O(g) ===> O2 (g) + CI(g) 
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The net result of this two-step cycle is the destruction of an ozone molecule without 
consuming the chlorine atom. Therefore, the chlorine atom is a catalyst for ozone 
destruction. Because the reactants are all in the gas-phase, this is an example of 
a homogeneous catalysis reaction. Eventually, the chlorine atoms react with other 
molecules in the stratosphere. In fact, at any given time, most of the chlorine in the 
stratosphere is bound up in the reservoir molecules HCI(g) and CION02 (g), which are 

formed by the reactions 

CI(g) + CH4 (g) ====> HCI(g) + CH3 (g) 

CIO(g) + N02(g) ====> CION02 

In the gas phase, these reservoir molecules are fairly unreactive toward one another. 
The surface of the polar stratospheric clouds catalyzes the reaction between HCI(g) 
and CION0

2 
(g), however, forming molecular chlorine by the reaction 

HCI(g) + CION0
2 
(g) ----+) Cl

2 
(g) + HN0

3 
(g) 

(
surface of polar ) 

stratospheric clouds 

Because the reactants and cloud particles are in different phases, this reaction is a het­
erogeneous catalyzed reaction. The Cl

2 
(g) formed by this reaction is photodissociated 

by the sunlight, thereby regenerating destructive chlorine atoms. 

29-9. The Michaelis-Menten Mechanism Is a Reaction Mechanism 
for Enzyme Catalysis 

One of the most important classes of catalyzed reactions consists of the biological 
processes that involve enzymes. Enzymes are protein molecules that catalyze specific 

biochemical reactions. Without enzymes, many of the reactions necessary to sustain 
life would occur at negligible rates and life as we know it would cease to exist. The 
reactant molecule acted upon by an enzyme is called the substrate. The region of the 
enzyme where the substrate reacts is called the active site. The active site is only a 
small part of the enzyme molecule. For example, consider the enzyme hexokinase, 
which catalyzes the reaction of glucose to glucose-6-phosphate. The overall chemical 
reaction that occurs is given by 

H .A----O H 

OH 

R OR 

Glucose 

+ ATP 

CH20P032-

.A----O 

R OH 

H 

OR 

Glucose 6-phosphate 

+ ADP + H+ 
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where ATP and ADP are abbreviations for the molecules adenosine triphosphate 
and adenosine diphosphate, respectively. Figure 29.5a shows a space-filling model of 
hexokinase. We see that the enzyme has a cleft, which is the location of the active site 
of the enzyme. The glucose molecule enters this cleft, and the enzyme closes around 
the active site. Figure 29.5b shows the corresponding space-filling model when the 
active site is occupied by a glucose molecule and the enzyme has closed around the 
substrate. The specificity of an enzyme depends in part on the geometry of the active 
site and the spatial constraints imposed on this region by the overall structure of the 
enzyme molecule. 

(3) (b) 

FIG U R E 29.5 

Space-filling model of the two conformations of hexokinase. (a) The active site is not 
occupied. There is a cleft in the enzyme structure that allows the substrate molecule 
(glucose) to access the active site. (b) The active site is occupied. The enzyme has closeD 
around the substrate. 

Experimental studies reveal that the rate law for many enzyme-catalyzed reactions 
has the form 

deS] 
dl 

k[S] 
K + [S] 

(29.69) 

where [S] is the substrate concentration and k and K are constants. A simple mechanism 
that accounts for this rate law was proposed by Leonor Michaelis and Maude Menten 
in 1913. Their mechanism, given by Equation 29.70, is a two-step process that involves 
formation of an intermediate complex between the enzyme and the substrate, denoted 
by ES (see, for example, Figure 29.5b) 

k k I , 

E + S .; ;. ES <: - > E + P 
k - 2 

(29.70) 



29-9. The Michaelis-Menten Mechanism Is a Reaction Mechanism for Enzyme Catalysis 

The Michaelis-Menten mechanism gives rise to the following rate expressions for [S], 
[ES], and [P] 

d[:r
S

] = (k2 + k_J )[ES] - kI [E][S] - k_2[E][P] 

d[P] = k
2
[ES] - k_,)[E][P] 

dt -

(29.71) 

(29.72) 

(29.73) 

For this reaction scheme, the enzyme exists either as free enzyme, [E], or as part of an 
enzyme-substrate complex, [ES]. Because the enzyme is a catalyst and is not consumed 
by the reaction process, the sum of these two concentrations is constant and equal to 
the initial enzyme concentration, [E]o; in an equation 

[E]o = [ES] + [E] (29.74) 

We can use Equation 29.74 to rewrite Equation 29.72 as 

(29.75) 

When the enzyme is mixed with a large excess of substrate, there is an initial period 
during which the concentration of the enzyme-substrate complex, [ES], builds up. 
Michaelis and Menten postulated that the equilibrium concentration of this complex is 
rapidly achieved, after which [ES] remains essentially constant during the course of the 
reaction, satisfying the requirement of the steady-state approximation for this interme­
diate species. Assuming the steady-state approximation enables us to set d[ES]/ dt = 0, 
after which Equation 29.75 can be solved to give the following expression for [ES] in 
terms of the reaction rate constants and [E]o' [S], and [P] 

kI [S] + k 2[P] 
[ES] - - [E] 

- k [S] + k [P] + k + k 0 
1 -2 -\ 2 

(29.76) 

Substituting this result into Equation 29.71 and using Equation 29.74 gives us 

dt 

k1k2 [S] - k Jk_2[P] [E] 

kl [S] + k_2[P] + k_l + k2 0 
(29.77) 

d[S] 
V=---

If the experimental measurements of the reaction rate are taken during the time period 
when only a small percentage (1-30/0) of the substrate is converted to product, then 
[S] ~ [S]o and [P] ~ 0, and Equation 29.77 simplifies to 

d[S] 
V=---

dt 

k2 [S]o [E]o 

Km + [S]o 
(29.78) 
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where K m = (k 1 + k2 ) / k l • The quantity Km is called the Michaelis constant. Enzyme 
kinetics are generally studied by measuring the initial rate as a function of substrate 
concentration for a fixed enzyme concentration, the conditions necessary to validate 
that Equation 29.78 is applicable. 

Equation 29.78 shows that the initial rate for an enzyme-catalyzed reaction is first 
order in substrate at low substrate concentrations (K »[5]0) and then becomes zero 

111 

order in substrate at high substrate concentrations (Km « [5]0)' The zero-order rate 
law occurs because there is so much substrate relative to enzyme that essentially all the 
enzyme molecules are tied up with substrate at any instant, so the rate is independent 
of substrate concentration. At high values of [5]0' Equation 29.78 becomes 

d[S] = k [E] 
dt 2 0 

(29.79) 

which is the maximum rate the reaction can achieve. Thus, v ,the maximum rate for max 
the Michaelis-Menton mechanism, is given by vmax = k

2
[E]0' 

The turnover nU111ber is defined as the maximum rate divided by the concentration 
of enzyme active sites. The turnover number is therefore the maximum number of 
substrate molecules that can be converted into product molecules per unit time by an 
enzyme molecule. The concentration of enzyme active sites is not necessarily equal 
to the concentration of enzyme present because some enzymes have more than one 
active site. If the enzyme has a single active site, the turnover number is given by 
vmax/[E]o = k2 • Table 29.2 lists the turnover numbers of a few enzymes. 

TAB l E 29.2 
Turnover numbers of some enzymes. 

Enzyme 

Catalase 

Acety lcholinesterase 

f3 -Lactamase 

Fumarase 

Rec A protein 

EXAMPLE 29-9 

Substrate 

H20 2 

Acetylcholine 

Penicillin 

Fumarate 

ATP 

Turnover numberls- I 

4.0 X 107 

1.4 X 105 

2000 

800 

0.4 

The enzyme carbonic anhydrase catalyzes both the forward and the reverse reactions 

for the hydration of CO
2 

according to 

Carbon dioxide is produced in tissue as one of the final products of respiration. It 

then diffuses into the blood system, where it is converted to the bicarbonate ion by 



Problems 

carbonic anhydrase. The reverse reactions occur in the lungs, where CO2 (g) is expelled. 
Carbonic anhydrase has a single active site, and its molecular mass is 30000 g. mol-I. 
If 8.0 j.tg of carbonic anhydrase catalyze the hydration of 0.146 g of CO2 in 30 seconds 
at 37°C, what is the turnover number of the enzyme (in units of S-I)? 

SOL UTI 0 N: To calculate the turnover number, we need to determine the ratio of 
the number of moles of CO

2 
that react per second to the number of moles of enzyme 

present. The number of moles of enzyme present is 

8.0 X 10-6 g 
number of moles of enzyme = I = 2.7 X 10- 10 mol 

30000g·mol-

The number of moles of CO2 reacted in 30 seconds is given by 

0.146 g 
----I = 3.3 X 10-3 mol 
44 g·mol-

or a rate of 1.1 x 10-4 mol· s I. The turnover number is then 

1.1 X 10-4 mol·s- ' 5 1 
turnover number = = 4.1 x 10s-

2.7 X 10- 10 mol 

Thus, we see that each carbonic anhydrase molecule converts 410000 CO2 molecules 
to HCO~ (aq) per second! It is one of the fastest working enzymes known. (See Problem 
29-40, however.) 

Problems 
29-1. Give the units of the rate constant for a unimolecular, bimolecular, and termolecular 

reaction. 

29-2. Determine the rate law for the following reaction 

k 
F(g) + D2 (g) ==:} FD(g) + D(g) 

Give the units of k. Determine the molecularity of this reaction. 

29-3. Determine the rate law for the reaction 

k 
I(g) + I(g) + M(g) ==:} I') (g) + M(g) ... 

where M is any molecule present in the reaction container. Give the units of k. Determine 
the molecularity of this reaction. Is this reaction identical to 

k 
leg) + leg) ==:} 12 (g) 

Explain. 

29-4. For T < 500 K, the reaction 

k 
N02(g) + CO(g) ~ CO2(g) + NO(g) 

1213 
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has the rate law 

d[CO ] 
_---.-.;2=_. = k [N ° f dt obs 2 

Show that the following mechanism is consistent with the observed rate law 

k 
N0

2
(g) + N0

2
(g) =:h} N0

3
(g) + NO(g) (rate determining) 

k 
N0

3 
(g) + CO(g) d} CO

2 
(g) + N0

2 
(g) 

Express kObS in terms of k I and k2 · 

29-5. Solve Equation 29.21 to obtain [AJ = [A]oe- k1t
, and substitute this result into Equa­

tion 29.22 to obtain 

d[l] -k t dt + k2 [1] = k\ [A]oe I 

This equation is of the form (see the CRC Handbook of Standard Mathematical Tables, for 
example) 

dv(x) 
.~ + p(x)y(x) = q(x) 
dx 

a linear, first-order differential equation whose general solution is 

y(x)e"(X) = f q(x)eh(X)dx + c 

where h (x) = f p (x )dx and c is a constant. Show that this solution leads to Equation 29.25. 

29-6. Verify that Equation 29.32 is obtained if Equation 29.30 is substituted into Equation 29.23 
and the resulting expression is integrated. 

29-7. Consider the reaction mechanism 

where [AJ = [AJo and [1]0 =[P]o = 0 at time t = O. Use the exact solution to this kinetic 
scheme (Equations 29.24 through 29.26) to plot the time dependence of [A]/[A]o' [I]/[A]o' 
and [P] / [P]o versus log k \ t for the case k2 = 2 k \. On the same graph, plot the time de­

pendence of [A]/[A]o' [1]/[1]0' and [P]/[P]o using the expressions for [AJ, [I], and [P] 
obtained assuming the steady-state approximation for [I]. Based on your results, can you 
use the steady-state approximation to model the kinetics of this reaction mechanism when 

k2 = 2k,? 

29-8. Consider the mechanism for the decomposition of ozone presented in Example 29-5. 

Explain why either (a) v 1 » v2 and v _I » v \ or (b) v2 » v I and v2 » v \ must be true 
for the steady-state approximation to apply. The rate law for the decomposition reaction is 
found to be 

d[03] = -k [0 ][M] 
dt obs 3 

Is this rate law consistent with the conditions given by either (a) or (b) or both? 



Problems 

29-9. Consider the reaction mechanism 

(1) 

(2) 

Write the expression for d[P]1 dt, the rate of product formation. Assume equilibrium is 

established in the first reaction before any appreciable amount of product is formed, and 

thereby show that 

where K c is the equilibrium constant for step (1) of the reaction mechanism. This assumption 
is called the fast-equilibrium approximation. 

29-10. The rate law for the reaction of para-hydrogen to ortho-hydrogen 

. 
IS 

d[ortho-H2 ] 1/2 
---- == k b,[para-H2 ]-

dt 0 S 

Show that the following mechanism is consistent with this rate law. 

kl 

para-H2 (g) ~ 2 H(g) (fast equilibrium) (1) 
k 
-I 

k, 
H(g) + para-H

2
(g) =====;. ortho-H

2
(g) + H(g) (2) 

Express kobs in terms of the rate constants for the individual steps of the reaction mechanism. 

29-11. Consider the decomposition reaction of N 2 ° 5 (g) 

A proposed mechanism for this reaction is 

k
J 

N20S(g) ~ N02(g) + N03 (g) 
k I 

k 
N02 (g) + N03 (g) ~ NO(g) + N02 (g) + 02 (g) 

k 
N0

3 
(g) + NO(g) d::} 2 N0

2 
(g) 

Assume that the steady-state approximation applies to both the NO(g) and N0
3 
(g) reaction 

intermediates to show that this mechanism is consistent with the experimentally observed 
rate law 

d[02] == k [N ° ] 
dt obs 2 5 

Express kobs in terms of the rate constants for the individual steps of the reaction mechanism. 

1215 
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29-12. The rate law for the reaction between CO(g) and CI
2
(g) to form phosgene (CI

2
CO) 

IS 

d[Cl CO] 
2 == k [CI f/2[CO] 

dt ohs 2 

Show that the following mechanism is consistent with this rate law. 

k ] 

Cl2 (g) + M(g) ~ 2 CI(g) + M(g) 
k -] 

k ') 

CI(g) + CO(g) + M(g) ~ CICO(g) + M(g) 
k .., 

(fast equilibrium) 

(fast equilibrium) 

(slow) 

where M is any gas molecule present in the reaction container. Express kobs in terms of the 
rate constants for the individual steps of the reaction mechanism. 

29-13. Nitramide (02NNH2) decomposes in water according to the chemical equation 

The experimentally determined rate law for this reaction is 

A proposed mechanism for this reaction is 

k] 

02NNH2(aq) ~ 02NNH-(aq) + H+(aq) 
k I 

(fast equilibrium) 

(slow) 

(fast) 

Is this mechanism consistent with the observed rate law? If so, what is the relationship 
between kobs and the rate constants for the individual steps of the mechanism? 

29-14. What would you predict for the rate law for the reaction mechanism in Problem 29-13 
if, instead of a fast equilibrium followed by a slow step, you assumed that the concentration 
of 02NNH- (aq) was such that the steady-state approximation could be applied to this 
reaction intermediate? 



Problems 

29-15. The rate law for the hydrolysis of ethyl acetate by aqueous sodium hydroxide at 298 K 

IS 

Despite the form of this rate law, this reaction is not an elementary reaction but is believed 
to occur by the following mechanism 

k
J 

CH
3
COOCH2CH

3
(aq) + OH-(aq) ~ CHjCO (OH)OCH

2
CH

3
(aq) 

k J 

k, 
CHjCO (OH)OCH2CH

3
(aq) ==::::} CH

3
C02H(aq) + CH

3
CH

2
0 (aq) 

Under what conditions does this mechanism give the observed rate law? For those con­

ditions, express kobs in terms of the rate constants for the individual steps of the reaction 
mechanism. 

29-1 6. The decomposition of perbenzoic acid in water 

is proposed to occur by the following mechanism 

k 
I 

C6HsC0
3
H(aq) ~ C6HsCO~(aq) + H+(aq) 

k_l k 

C6HsC0
3
H(aq) + C

6
HsCO;-(aq) ~ C6HsC0

2
H(aq) 

+C6HsCO;-(aq) + °2(g) 
k 

C
6
HsCO;-(aq) + H+(aq) ~ C

6
HsC02H(aq) 

Derive an expression for the rate of formation of 02 in terms of the reactant concentration 
and [H+]. 

29-1 7. The rate law for the reaction described by 

. 
IS 

d[
N

21 == k [H ][NO]2 
dt obs 2 

Below is a proposed mechanism for this reaction 
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Under what conditions does this mechanism give the observed rate law? Express kobs in 

terms of the rate constants for the individual steps of the mechanism. 

29-18. A second proposed mechanism for the reaction discussed in Problem 29-17 is 

Under what conditions does this mechanism give the observed rate law? Express kObs in 

terms of the rate constants for the individual steps of the mechanism. Do you favor this 

mechanism or that given in Problem 29-17? Explain your reasoning. 

29-19. An alternative mechanism for the chemical reaction 

kobs 
Cl

2 
(g) + CO(g) -+ Cl

2 
CO(g) 

(see Problem 29-12) is 

k 
I 

Cl2 (g) + M(g) ~ 2 CI(g) + M(g) 
k 

I 

k ') 

CI(g) + CI2(g) ~ Cl3 (g) 
k_2 

k 
Cl3 (g) + CO(g) ~ Cl2 CO(g) + CI(g) 

(fast equilibrium) 

(fast equilibrium) 

where M is any molecule present in the reaction chamber. Show that this mechanism also 
gives the observed rate law. How would you go about determining whether this mechanism 

or the one given in Problem 29-12 is correct? 

29-20. The Lindemann reaction mechanism for the isomerization reaction 

IS k 
I 

CH3NC(g) + M(g) ~ CH3NC*(g) + M(g) 
k -\ 

Under what conditions does the steady-state approximation apply to CH
3
NC*? 

29-21. In Section 29-6 we examined the unimolecular reaction 

CH1NC(g) ===} CH
3
CN(g) 

- -

Consider this reaction carried out in the presence of a helium buffer gas. The collision of 

a CH3NC molecule with either another CH
3
NC molecule or a helium atom can energize 

the molecule, thereby leading to reaction. If the energizing reactions involving a CH3NC 



Problems 

molecule and a He atom occur with different rates, the reaction mechanism would be given 

by 

k] 

CH3NC(g) + CH3NC(g) ~ CH3NC*(g) + CH3NC(g) 
k_l 

k2 

CH3NC(g) + He(g) ~ CH3NC*(g) + He(g) 

k 
CH3NC*(g) ~ CH3CN 

, ' 

Apply the steady-state approximation to the intermediate species, CH
3
NC*(g), to show that 

d[CH
3
CN] 

dt 

Show that this equation is equivalent to Equation 29.55 when [He] = O. 

29-22. Consider the reaction and mechanism given in Problem 29-10. The activation energy for 

the dissociation of H2 (g) [step (1)] is given by Do' the dissociation energy. If the activation 

energy of step (2) of the mechanism is E 2 , show that Ea,ObS' the experimentally determined 

activation energy, is given by 

D 
E =E +_0 

a,obs 2 2 

Also show that Aobs ' the experimentally determined Arrhenius pre-exponential factor, is 

given by 

A 
A -A _I 

( )

1/2 

obs - 2 A_l 

where Ai is the Arrhenius pre-exponential factor corresponding to the rate constant ki . 

29-23. The thermal decomposition of ethylene oxide occurs by the mechanism 

k] 
H2 COCH2 (g) =:::::} H2 COCH (g) + H (g) 

k7 
H2COCH(g) ==:} CH3(g) + CO(g) 

k4 
CH3 (g) + H2 COCH(g) =====> products 

Which of these reaction(s) are the initiation, propagation, and termination step(s) of the 

reaction mechanism? Show that if the intermediates CH
3 

and H2 COCH are treated by the 

steady-state approximation, the rate law, d[products]/ dt, is first order in ethylene oxide 

concentration. 

The next six problems exalnine the kinetics of the thermal decomposition of acetaldehyde. 

29-24. A proposed mechanism for the thermal decomposition of acetaldehyde 

k 
CH

3
CHO(g) ~ CH

4
(g) + CO(g) 

1219 
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k 
CHJCHO(g) ::::::h} CHJ (g) + CHO(g) 

k 
CHJ(g) + CH3CHO(g) ~ CH4 (g) + CHJCO(g) 

(1) 

(2) 

(3) 

(4) 

Is this reaction a chain reaction? If so, identify the initiation, propagation, inhibition, and 
termination step(s). Determine the rate laws for CH

4 
(g), CH

3 
(g), and CH

3
CO(g). Show 

that if you assume the steady-state approxinlation for the intermediate species, CH
3 
(g) and 

CH
3 
CO(g), the rate law for methane formation is given by 

d[CH ] (k) 1/2 
__ 4_ == _I kJ [CH CHof/2 

dt 2k ~ 3 
-+ 

29-25. Suppose that we replace the termination step (Equation 4) of the mechanism in Prob­
lem 29-24 with the termination reaction 

k 

2 CH]CO(g) ====* CH3COCOCH3 

Determine the rate laws for CO(g), CH~ (g), and CHjCO(g). Once again, assume that the . . 

steady-state approximation can be applied to the intermediates CH j (g) and CHjCO(g), and 
. . 

show that in this case the rate of formation of CO is given by 

d[CO] (k) 1/2 
== .1 k [CH CHO] 1/2 

dt k 3 . 3 
4 

29-26. The chain length y of a chain reaction is defined as the rate of the overall reaction 
divided by the rate of the initiation step. Give a physical interpretation of the chain length. 
Show that y for the reaction mechanism and rate law given in Problem 29-25 is 

( 
1 ) 1/2 

Y = k . [CH CHO] 1/2 
3 k k 3 

I 4 

29-27. Show that the chain length y (see Problem 29-26) for the reaction mechanism and the 
rate law given in Problem 29-24 is 

( 
I ) 1/2 

Y == kJ . [CH CHO]I/2 
~ k k 3 

I 4 

29-28. Consider the mechanism for the thermal decomposition of acetaldehyde given in Prob­

lem 29-24. Show that E
obs

' the measured Arrhenius activation energy for the overall 
reaction, is given by 

where Ei is the activation energy of the ith step of the reaction mechanism. How is Aobs ' the 

measured Arrhenius pre-exponential factor for the overall reaction, related to the Arrhenius 
pre-exponential factors for the individual steps of the reaction mechanism? 



Problems 

29-29. Consider the mechanism for the thermal decomposition of acetaldehyde given in Prob­

lem 29-25. Show that E obs' the measured Arrhenius activation energy for the overall 

reaction, is given by 

E = E + 1.(E - E ) obs 3 2 1 4 

where Ei is the activation energy of the ith step of the reaction mechanism. How is Aobs ' the 

measured Arrhenius pre-exponential factor for the overall reaction, related to the Arrhenius 

pre-exponential factors for the individual steps of the reaction mechanism? 

29-30. Consider the reaction between H2 (g) and Br2 (g) discussed in Section 29-7. Justify why 

we ignored the H2 (g) dissociation reaction in favor of the Br2 (g) dissociation reaction as 

being the initiating step of the reaction mechanism. 

29-31. In Section 29-7, we considered the chain reaction between H2 (g) and Br 2 (g). Consider 

the related chain reaction between H2 (g) and Cl2 (g). 

2 HCI(g) 

The mechanism for this reaction is 

Cl2 (g) + M(g) 2 CI(g) + M(g) 

k 
CI(g) + H2 (g) :d:} HCI(g) + H(g) 

k, 
H(g) + CI2(g) ~ HCI(g) + CI(g) 

k 
2CI(g) + M(g) ~ CI2 (g) + M(g) 

(1) 

(2) 

(3) 

(4) 

Label the initiation, propagation, and termination step(s). Use the following bond dissoci­

ation data to explain why it is reasonable not to include the analogous inhibition steps in 

this mechanism that are included in the mechanism for the chain reaction involving Br 2 (g) 

Molecule Do/kJ ·mol- I 

H2 432 

HBr 363 

HCI 428 

Br2 190 

Cl2 239 

29-32. Derive the rate law for v = (1/2)(d[HCI]/dt) for the mechanism of the 

2 HCI(g) 

reaction given in Problem 29-31. 

29-33. It is possible to initiate chain reactions using photochemical reactions. For example, in 

place of the thermal initiation reaction for the Br2 (g) + H2 (g) chain reaction 

k 
Br2 (g) + M :::::h} 2 Br(g) + M 
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we could have the photochemical initiation reaction 

Br2 (g) + h v===}2 Br(g) 

Ifwe assume that all the incident light is absorbed by the Br2 molecules and that the quantum 
yield for photodissociation is 1.00, then how does the photochemical rate of dissociation 
of Br2 depend on labs' the number of photons per unit time per unit volume? How does 
d[Br]/ dt, the rate of formation of Br, depend on labs? If you assume that the chain reaction 
is initiated only by the photochemical generation of Br, then how does d[HBr]/dt depend 

on labs? 

29-34. In Section 29-9, we derived the Michaelis-Menton rate law for enzyme catalysis. The 
derivation presented there is limited to the case in which only the rate of the initial reaction 
is measured so that [S] == [S]o and [P] = O. We will now determine the Michaelis-Menton 
rate law by a different approach. Recall that the Michaelis-Menton mechanism is 

k , 
E+S~ES 

k 
I 

k 
ES ~ E+P 

The rate law for this reaction is v == k
2
[ES]. Write the rate expression for [ES]. Show that 

if you apply the steady-state approximation to this intermediate, then 

[ES] == [E][S] 
K 

111 

where K is the Michaelis constant. Now show that 
m 

[E] == [E] + [E][S] 
() K 

m 

(1) 

(2) 

(Hint: The enzyme is not consumed.) Solve Equation 2 for [E] and substitute the result into 
Equation 1 and thereby show that 

v == k2 [E]o [S] 

Km + [S] 
(3) 

If the rate is measured during a time period when only a small amount of substrate is 
consumed, then [S] == [S]o and Equation 3 reduces to the Michaelis-Menton rate law given 
by Equation 29.78. 

29-35. The ability of enzymes to catalyze reactions can be hindered by inhibitor molecules. One 
of the mechanisms by which an inhibitor molecule works is by competing with the substrate 
molecule for binding to the active site of the enzyme. We can include this inhibition reaction 
in a modified Michaelis-Menton mechanism for enzyme catalysis. 

k, 

E+S~ES 
k I 

L, 

E+I~EI 
k_2 

(1) 

(2) 



Problems 

(3) 

In Equation 2, I is the inhibitor molecule and EI is the enzyme-inhibitor complex. We will 
consider the case where reaction (2) is always in equilibrium. Determine the rate laws for 
[S], [ES], [EI], and [Pl. Show that if the steady-state assumption is applied to ES, then 

[ES] == [E][S] 
K 

111 

where Km is the Michaelis constant, Km == (k I + k3)/ k,. Now show that material balance 
for the enzyme gives 

[E] == [E] + [E][ S] + [E] [I] K 
o K I 

111 

where K[ == [EI]/[E][I] is the equilibrium constant for step (2) of the above reaction 
mechanism. Use this result to show that the initial reaction rate is given by 

dt 
(4) 

d[P] 
v ==--

where K:n == Km(1 + K[[I]). Note that the second expression in Equation 4 has the same 

functional form as the Michaelis-Menton equation. Does Equation 4 reduce to the expected 
result when [I] ~ O? 

29-36. Antibiotic-resistant bacteria have an enzyme, penicillinase, that catalyzes the decom­
position of the antibiotic. The molecular mass of penicillinase is 30000 g. mol-I. The 

turnover number of the enzyme at 28 C is 2000 s-' . If 6.4 f,ig of penicillinase catalyzes the 
destruction of 3.11 mg of amoxicillin, an antibiotic with a molecular mass of 364 g'mol-', 
in 20 seconds at 28c C, how many active sites does the enzyme have? 

29-37. Show that the inverse of Equation 29.78 is 

11K 1 _== __ +_t_rl_ 
V V v [S] max max 0 

(I) 

This equation is called the Lineweaver-Burk equation. In Example 29-9, we examined the 
reaction for the hydration of CO

2 
that is catalyzed by the enzyme carbonic anhydrase. For 

a total enzyme concentration of 2.32 x 1 0-~9 mol·dm-3
, the following data were obtained. 

v/mol·dm 'S-I 

2.78 x 10-5 

5.00 X 10-5 

8.33 x 10-5 

1.66 X 10-4 

1.25 
2.50 

5.00 

20.00 

Plot these data according to Equation 1, and detennine the values of K , the Michaelis 
111 

constant, and k2' the rate constant for product formation from the enzyme-substrate complex 
from the slope and intercept of the best -fit line to the plotted data. 

29-38. Carbonic anhydrase catalyzes the reaction 
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Data for the reverse dehydration reaction using a total enzynle concentration of 2.32 x 
10-9 mol· dm -3 are given below 

1.05 X 10-5 

2.22 x 10-5 

3.45 x 10-5 

4.17xl0-5 

2.00 

5.00 

10.00 

15.00 

Use the approach discussed in Problem 29-37 to determine the values of K ,the Michaelis 
m 

constant, and k2' the rate of product formation from the enzyme substrate complex. 

29-39. Show that the Michaelis-Menton mechanism for enzyme catalysis gives v = (1 /2)v
max 

when [S]o = Km' 

29-40. The protein catalase catalyzes the reaction 

and has a Michaelis constant of K == 25 x 10-3 mol- dm :1 and a turnover number of 
III 

4.0 x 107 
S '. Calculate the initial rate of this reaction if the total enzyme concentration is 

0.016 x 10-6 mo]· dm -3 and the initial substrate concentration is 4.32 x 10-6 mol· dm -3. 

Calculate v for this enzyme. Catalase has a single active site. max 

29-41. The presence of 4.8 x 10-6 mol· dm -3 of a competitive inhibitor decreases the initial 

rate calculated in Problem 29-40 by a factor of 3.6. Calculate K
1
, the equilibrium constant 

for the binding reaction between the enzyme and the inhibitor. (Hint: See Problem 29-35.) 

29-42. The turnover number for acetylcholinesterase, an enzyme with a single active site 
that metabolizes acetylcholine, is 1.4 x 104 

S-I. How many grams of acetylcholine can 
2.16 x 10-6 g of acetylcholinesterase metabolize in one hour? (Take the molecular mass of 
the enzyme to be 4.2 x 104 g.mol- 1

; acetylcholine has the molecular formula C7N02Hi6') 

29-43. Consider the following mechanism for the recolnbination of bromine atoms to form 

nlolecular bromine 

k 
1 

2 Br(g) ~ Br; (g) 
k -I 
k 

Br;(g) + M(g) ~ Bc,(g) + M(g) - -

The first step results in formation of an energized bromine molecule. This excess energy is 

then removed by a collision with a molecule M in the sample. Show that if the steady-state 

approximation is applied to Br; (g), then 

d[Br] 

dt 

2k,k2 [Brf[M] 

k I + k2 [M] 

Detennine the limiting expression for d[Br]/dt when v2 »v I' Determine the limiting 

expression for d[BrJ/ dt when v2 « v _I' 

29-44. A mechanism for the recombination of bromine atoms to form molecular bromine is 

given in Problem 29-43. When this reaction occurs in the presence of a large excess of 
buffer gas, a negative activation energy is measured. Because M(g), the buffer gas molecule, 



Problems 

is responsible for the deactivation of Br; (g) but is not consumed itself by the reaction, we 
can consider it to be a catalyst. Below are the measured rate constants for this reaction in 
the presence of the same concentration of excess Ne(g) and CCl

4 
(g) buffer gases at several 

temperatures. Which gas is the better catalyst for this reaction? 

Ne CCI 
4 

T/K k /mol-2.dm6 .s 1 
obs 

k /mol-2 .dm6 .s- 1 
obs 

367 1.07 x 109 1.01 X 10 lO 

349 1.15 x 109 1.21 X 1010 

322 1.31 x 109 1.64 x 10 10 

297 1.50 x 109 2.28 x 1010 

Why do you think there is a difference in the "catalytic" behavior of these two buffer gases? 

29-45. The standard Gibbs energy change of reaction for 

2H2 (g) + O2 (g) --+ 2 H2 0(g) 

is -457.2 kJ at 298 K. At room temperature, however, this reaction does not occur and 

mixtures of gaseous hydrogen and oxygen are stable. Explain why this is so. Is such a 
mixture indefinitely stable? 

29-46. The HF(g) chemical laser is based on the reaction 

The mechanism for this reaction involves the elelnentary steps 

~rH /kJ·mol I at 298K 
k 

I 

(1) F2 (g) + M (g) ~ 2 F(g) + M(g) +159 
k I 

k ) 

(2) F(g) + H2(g) ~ HF(g) + R(g) -134 
k -2 

k~ 

(3) H(g) + F2(g) ==* HF(g) + F(g) -411 

Comment on why the reaction H2 (g) + M(g) -+ 2 H(g) + M(g) is not included in the 
mechanism of the HF(g) laser even though it produces a reactant that could participate in 
step (3) of the reaction mechanism. Derive the rate law for d[HF]/ dt for the above mech­
anism assuming that the steady-state approximation can be applied to both intermediate 
species, F(g) and H(g). 

29-47. A mechanism for ozone creation and destruction in the stratosphere is 

02(g) + hv ~ O(g) + O(g) 

k 
O(g) + 02(g) + M(g) ~ 03(g) + M(g) 

0., (g) + hv ~ O,(g) + O(g) 
~ ~ 
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where we have used the symbol i to indicate that the rate constant is for a photochemical 
reaction. Determine the rate expressions for d[O]/ dt and d[03]/ dt. Assume that both 

intermediate species, O(g) and °3 (g), can be treated by the steady-state approximation and 
thereby show that 

(1) 

and 

(2) 

Now substitute Equation 1 into Equation 2 and solve the resulting quadratic formula for 

[01] to obtain 

Typical values for these parameters at an altitude of 30 km are it = 2.51 x 10-12 s I, 

i3 = 3.16 x 10-4 
S-I, k2 = 1.99 x 10-33 cm6

. molecule-2
. S-I, k4 = 1.26 X 10- 15 cm3

. 

molecule I 'S-I, [OJ = 3.16 x 1017 molecule·cm-3, and [M] = 3.98 x 1017 

molecule· cm-3
. Find [03] and [0] at an altitude of 30 km using Equations 1 and 2. 

Was the use of the steady-state assulllption justified? 

In the next four problellls, vve vl'ill eJ:(lInine the explosive reaction 

29-48. A simplified mechanisnl for this reaction is 

electric spark + H2 (g) ====? 2 H (g) 

k 
H(g) + 02(g) ==* OH(g) + O(g) 

k 
O(g) + H2(g) ~ OH(g) + H(g) 

k , 
H2 (g) + OH(g) ===? H20(g) + H(g) 

k 
H(g) + O,(g) + M(g) ~ HO,(g) + M(g) 

~ -

(1) 

(2) 

(3) 

(4) 

(5) 

A reaction that produces more molecules that can participate in chain-propagation 

steps than it consumes is called a branching chain reaction. Label the branching chain 

reaction(s), inititation reaction(s), propagation reaction(s), and termination reaction(s) for 

this mechanism. Use the following bond dissociation energies to evaluate the energy change 

for steps (2) and (3) 

Molecule Do/kl.mol I 

H2 432 

°2 493 

OH 424 



Problems 

29-49. Using the mechanism given in Problem 29-48, determine the rate expression for [H] 
when the initiation step involves an electric spark that gives rise to a rate 10 of the hydrogen 
atom production. Determine the rate expresions for [OH] and [0]. Assume that [0] :::::; 
[OH] « [H], so now we can apply the steady-state approximation to the intermediate 
species, O(g) and OH(g). Show that this use of the steady-state approximation gives 

and 

Use these results and your rate expression for [H] to show that 

29-50. Consider the result of Problem 29-49. The rate of hydrogen atom production has a 
functional dependence of 

d[H] 
-d-t- = 10 + (a - ,B)[H] (1) 

Which step(s) of the chemical reaction are responsible for the magnitudes of a and ,B? We 
can envision two solutions to this rate law, one for a > ,B and one for a < ,B. For a < ,B 
show that the solution to Equation I becomes 

I 
[H] = f3 0 ex (I - e (~-fX)I) 

Plot [H] as a function of time. Determine the slope of the plot at short times. Determine the 
final steady-state value of [H]. 

29-51. We now consider the solution to the equation (Problem 29-50) 

d[H] 
-- = 10 + (a ,B)[H] 

dt 

when a > f3. Show that the solution to this differential equation is given by 

I 
[H] = 0 (e(a- f3 )t - 1) 

a f3 

Plot [H] as a function of time. Describe the differences observed between this plot and 
that obtained in Problem 29-50. Which case do you think is characteristic of a chemical 
explosion? 
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Yuan Lee (top left), Dudley Herschbach (right), and John Polanyi (bottom left) were awarded 
the Nobel Prize for chemistry in 1986 "for their contributions to the understanding of the 
dynamics of chemical elementary processes." Yuan T. Lee was born in Hsinchu , Taiwan, on 
November 29, 1936. He received his Ph.D. from the University of California at Berkeley under 
Dudley Herschbach in 1965. After spending six years at the University of Chicago, he returned 
to Berkeley as a professor of chemistry. He returned to Taiwan in 1994 as President of Academia 
Sinica, which is similar to being president of the National Academy of Sciences. While Lee 
continues to study the dynamics of simple elementary reactions, he has also turned his attention 
to the exploration of the reactions of large molecules in molecular beams. Dudley Herschbach 
was born in San Jose, California, on June 18, 1932. He received his Ph.D. in chemical physics 
from Harvard University under E. Bright Wilson, Jr. in 1958. After teaching several years at 
the University of California at Berkeley, he returned to Harvard in 1963, where he remains 
today. He pioneered the use of molecular beams to study chemical kinetics, especially the 
reaction between potassium and iodomethane. Herschbach has demonstrated a special concern 
for undergraduates by serving as com aster with his wife at one of the residence halls at Harvard, 
ajob that involves 40 hours a week outside of teaching and research. John C. Polanyi was born 
on January 23 , 1929, in Berlin, Germany, but grew up in Manchester, England. He received 
his Ph.D. from the University of Manchester in 1952. In 1956, he joined the faculty of the 
University of Toronto, Canada, where he is today. Polanyi developed the technique of infrared 
chemiluminescence to study the products of reactions. In addition to his scientific papers, he 
has published almost one hundred articles on science policy, on the control of armaments, and 
on the impact of science on society. 



CHAPTER 

Gas-Phase Reaction Dynamics 

Bimolecular gas-phase reactions are among the simplest elementary kinetic processes 
that occur in nature. In this chapter, we will examine some of the current models 
that are used to describe the molecular aspects of bimolecular gas-phase reactions. 
First, we will modify the collision theory presented in Chapter 27 and define the rate 
constant in terms of a reaction cross section. We will then examine experimentally 
measured reaction cross sections for several gas-phase reactions. The simplest gas­
phase reaction is the hydrogen exchange reaction HA + HB-Hc ::::} HA-HS + Hc' This 
reaction has been studied in great detail and the experimental data for it are often used 
to test theories of gas-phase chemical reactions. 

In this chapter, however, we have chosen to focus our discussion on the reac­
tion F(g) + D2 (g) ::::} DF(g) + D(g). From a study of this reaction, we will not only 
learn the same concepts that underlie the H(g) + H2 (g) exchange reaction but will 
also learn about molecular processes that can occur in reactions in which ~r Ua < O. 
The reaction F(g) + D2 (g) therefore serves as an excellent system for studying the 
molecular details of gas-phase reactions. We will examine data obtained from crossed 
molecular beam spectroscopy experiments and learn how such measurements reveal 
the chemical dynamics of reactive collisions. We will then see that contemporary 
quantum-mechanical calculations can provide a detailed description of the reaction 
path by which the F(g) + D2 (g) reactants become the DF(g) + D(g) products. 

30-1. The Rate of a Bimolecular Gas-Phase Reaction Can Be 

Calculated Using Hard-Sphere Collision Theory and an 

Energy-Dependent Reaction Cross Section 

The rate of the general bimolecular elementary gas-phase reaction 

k 
A(g) + B(g) ====> products (30.1 ) 1229 
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is given by 

d[A] 
v == - == k[A][B] 

dt 
(30.2) 

Hard-sphere collision theory can be used to estimate the rate constant k. Using the naive 
assumption that every collision between the hard spheres A and B yields products, the 
rate of reaction is given by the collision frequency per unit volume (Equation 27.57) 

(30.3) 

In Equation 30.3, a AB is the hard-sphere collision cross section of A and B molecules, 
(u

r
) is the average relative speed of a colliding pair of A and B molecules, and P A 

and PB are the nUlllber densities of A and B molecules in the sample, respectively. 
Recall from Section 27-6 that the hard-sphere collision cross section a AB is given by 

a AB == Jr d;'B' where dAB is the sum of the radii of the two colliding spheres. Being a 
collision frequency per unit volume, Z AB has the units of collisions· m -3 . S-1 , where the 
"units" collisions is not usually included. Because we are assuming that every collision 
leads to a reaction, Z AB also gives us the number of product molecules formed per unit 
volume per unit time. Comparison of Equations 30.2 and 30.3 shows that we can define 
the rate constant as 

(30.4 ) 

The units of k are given by the units of ZAB/ PAPB' or molecules·m-3·s l/(molecules· 
m 3)2 == molecules- 1·m3·s- 1

. To obtain k in the more commonly used units of dm3.mol 1. 

S-I, we need to multiply the right side of Equation 30.4 by NA and by (10 dm·m- I
)3, 

gIvIng 

(30.5) 

where a AB has units of m2 and (u r) has units of m· S-I . 

EXAMPLE 30-1 
Use hard-sphere collision theory to calculate the rate constant for the reaction 

at 298 K. Express the rate constant in units of dm3
. mol I. S-I . 

SOL UTI 0 N: The hard-sphere collision theory rate constant in units of dm3 
. mol-I. s I 

is given by Equation 30.5. Using the first of Equations 27.58 and the data in Table 27.3 

gIves 

J 

:2 (270 pm + 430 pm)~ 
a == ndAB == n 

AB 2 
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The average relative speed of the reactants is given by the second of Equations 27.58 

(
8k T) 1/2 

(u ) == B 
r JIM 

The reduced mass is 

and therefore, 

[
(8)(1.381 X 10-23 J.K- I)(298 K)]1/2 

(u ) -
r - (n)(3.12 x 10-27 kg) 

== 1. 83 x I 03 m· s 1 

Substituting our calculated values of a AB and (u r ) into Equation 30.5 gives 

k == (1000 dm3 ·m-3 )(6.022 x 1023 mol 1)(3.85 x 10- 19 m2)(1.83 x 103 m.s I) 

== 4.24 X lOll dm3 .mol- I 
'8-

1 

The experimental rate constant for this reaction at 298 K is 3.49 x 10-26 dm} . moll. s I, 

more than 30 orders of magnitude smaller than the hard-sphere collision theory 

prediction! 

As we noted in Section 27-7, and demonstrated in Example 30-1, the calculated 
rate constants using naive hard-sphere collision theory are often significantly larger 
than the experimental rate constants. In addition, because (u

r
) ex: T I /2, Equation 30.4 

predicts that k should show a temperature dependence of T 1/2, whereas the Arrhenius 
equation predicts and experimental measurements generally show that k is exponen­
tially dependent on 1/ T. 

In deriving the naive hard-sphere collision theory, we assumed that each pair 
of reactants approaches one another with a relative speed of (u

r
). In a mixture of 

reactive gases, pairs of reactant molecules approach one another with a distribution of 
speeds. As two molecules collide, the valence electrons of the two molecules repel one 
another, so no reaction can occur unless the relative speed is sufficient to overcome 
this repulsive force. We make our first improvement to collision theory by taking into 
account the dependence of the reaction rate on the relative speed, or the energy, of the 
collision. We take this dependence into account by arbitrarily introducing in place of 
the collision cross section (JAB in Equation 30.4 a reaction cross section, denoted by 
(Jr(u r), that depends on the relative speed of the reactants. We will thus write the rate 
constant for molecules that collide with a relative speed of u

r 
by an expression similar 

to Equation 30.4, 

k(u ) == U (5 (u ) 
r r r r 

(30.6) 
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To calculate the observed rate constant, we must average over all possible collision 
speeds, so we write the observed rate constant as 

(30.7) 

where f (u r) is the distribution of relative speeds in the gas sample. From the kinetic 
theory of gases (Section 27-7), urf(ur)dur is given by 

( )
3/2 (2)1/2 

U feu )du == J-L - u~e-I1·U;/2k8T du 
r r r kT JT I r 

B 

(30.8) 

To compare Equation 30.7 with the traditional Arrhenius form of k, we need to change 
the dependent variable from u

r 
to E r, the relative kinetic energy. The relative speed, u

r
' 

is related to the relative kinetic energy, E r' by 

so 

( 
1 ) 1/2 

and du == dE 
r 2{iE

r 
r 

(30.9) 

Using the relationships given in Equations 30.9, we can use Equation 30.8 to write 

( 
2 ) 3/2 ( 1 ) 1/2 , 

U feu )du == - E e-- E)k8 7 dE 
r r r k8 T {iT[ r r 

(30.10) 

Substituting Equation 30.10 into Equation 30.7 gives us 

( 
2 )3/2 ( 1 ) 1/21

00 

k == - dE Ee E/ k8T a(E) 
k T IIJT r r r r 

B ~ 0 

(30.11) 

To evaluate k, we need a model for ar(E), the energy dependence of the reaction 
cross section. The simplest model is to assume that only those collisions for which the 
relative kinetic energy exceeds a threshold energy, Eo' are reactive. In this case, 

a (E ) == r r 
(30.12) 



30-1. The Rate of a Bimolecular Gas-Phase Reaction 

and 

( 
2 ) 3/2 ( 1 ) 1/2 f 00 k = - dEE e E/ ks T Jr d 2 

k T r r AB 
B fl,Jr Eo 

(30.13) 

where (JAB = Jr d;B is the hard-sphere collision cross section. Equation 30.13 is identical 
to that obtained for the collision rate between pairs of hard spheres whose relative 
energies exceed a certain threshold energy, Eo (Equation 27.63). This result is expected 
because we have assumed that all collisions for which Er > Eo are reactive. The 
important point to recognize here is that the present treatment accounts for the energy 
requirements of the reaction through (Jr(Er). We can therefore explore different models 
for (Jr (E

r
), which will then give different expressions for the rate constant. The validity 

of any given model must, of course, be tested experimentally. 

EXAMPLE 30-2 
We saw in Example 30-1 that Equation 30.5 gives a value of 4.24 x 10 II dm3 

. mol I. S-I 

at 298K compared with the experimental value of 3.49 x 10-26 dm3 
. mol-I . S~-1 for the 

reaction H
2
(g) + C

2
H

4
(g) ====} C

2
H

6
(g). What value of Eo in Equation 30.13 gives 

the experimental value of k? 

SOLUTION: Letting k = 3.49 X 10-26 dm3 ·mol- l ·s I in Equation 30.13 gives us 

Letting x = Eol k8 T, we have 

8.23 X 10-38 - e -\(1 +x) 

which is satisfied by x = 89.9. At 298 K, 

Eo = Xk8T 

= (89.9)(1.381 x 10-23 J·K- 1)(298 K) 

= 3.70 x 10- 19 J = 223 kJ ·mol- I 

The experimental value of the activation energy is 180 kJ· mol-I. 
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30-2. A Reaction Cross Section Depends Upon the Impact Parameter 

The simple energy-dependent reaction cross section given by Equation 30.12 is not 
realistic. To see why this is so, consider the following two collision geometries 

where the arrows indicate the direction from which the molecules approach the point 
of collision. When the relative collision energy is the same for these two cases, Equa­
tion 30. L2 predicts that both collision geometries will have the same reaction cross 
section. But in the bottom case, the particles graze one another, and in the top case, 
the two particles collide head-on. The grazing colli sion provides almost no energy for 
reaction because most of the energy remains in the forward translational motion of 
each reactant. Ln contrast, for the head-on collision, the molecules come to a stop and, 
in principle, all the relative kinetic energy becomes available for reaction. These two 
collision geometries suggest that a more reasonable model for O',(E) is one in which 
the cross section depends on the component of the relative kinetic energy that lies along 
the line that joins the centers of the colliding molecules, as illustrated in Figure 30.1. 
This is called the line-of-centers model for O',.(EJ If we denote the relative kinetic 
energy along the line of centers by E1oe ' then we are assuming that a reaction occurs 
when E1o(' > E(l' 

h 

J 

B 

FIG U R E 30.1 
The collision geometry between two hard spheres. Molecules A and B, of radii r A and r B' 

respectively, approach one another with a relative velocity of "r = "A - us' The distance 
between the lines drawn through the centers of the two molecules that lie along their respective 
velocity vectors (dashed lines) is given by b and is called the impact parameter. The relative 
kinetic energy in the direction of the line that joins the centers of the two spheres is E1ac ' 



30-2. A Reaction Cross Section Depends Upon the Impact Parameter 

To determine (Jr(E) for the line-of-centers model, consider the geometry shown in 
Figure 30.1. The A and B molecules travel toward one another with a relative velocity 
u

r 
== u A - DB and hence a relative kinetic energy of Er == (1/2)fLu;. We now draw 

a line through the center of each molecule that lies along the velocity vector of that 
molecule (the dashed lines in Figure 30.1). The inzpact paranzeter b is defined as the 
perpendicular distance between these two dashed lines. We see that the two molecules 
will collide only if the impact parameter is less than the sum of the radii of the colliding 
molecules, or less than the collision diameter dAB' In an equation, a collision will occur 
if b < r A + r B == dAB' If the impact parameter exceeds the collision diameter, b > dAB' 

the molecules will miss one another as they pass. For a fixed relative kinetic energy 
between A and B, the kinetic energy along the line of centers when a collision occurs 
depends on the impact parameter. For example if b == 0, the two molecules hit head-on, 
and all the relative kinetic energy lies along the line of centers, E

10c 
== E

r
• At the other 

extreme, when b > dAB' none of the relative kinetic energy lies along the line of centers 
as the two reactants pass one another without colliding and the collision cross section 
must then be equal to zero. 

The derivation of the energy dependence of the reaction cross section for the 
line-of-centers model is a bit involved geometrically. The final result is 

o 
(J (E ) == 

r r 
nd2 (I_Eo) 

AB E 
r 

(30.14 ) 

Note that Equation 30.14 for (Jr(E) differs from Equation 30.12 by a multiplicative 

factor of (1 - Eo/ Er)' 
The measured energy dependence of the reaction cross section for the chemical 

reaction, 

Ne+ (g) + CO(g) ====> Ne(g) + C+ (g) + O(g) 

is shown in Figure 30.2. The cross section for this reaction exhibits a threshold energy 
of about 8 kJ . mol-I. Below a collision energy of about 8 kJ· mol-I, no reaction occurs. 
Above this energy, the reaction cross section increases with increasing collision energy 
and then levels off when the collision energy is greater than about 60 kJ ·mol- ' . This 
type of behavior is consistent with that predicted by the lines-of-center model for the 
reaction cross section (Equation 30.14). 

Substituting Equation 30.14 for the cross section into Equation 30.11 gives the 
following expression for the rate constant (Problem 30-3). 

(30.15) 

Note that this expression for k differs from Equation 30.13 by a factor of (1 + Eo/ kB T). 
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Collision energy / kJ -mol- l 

The experimentally determined cross section as 
a function of collision energy for the reaction 
Ne+(g) + CO(g) =} Ne(g) + C+(g) + O(g) . 
The reaction cross section shows a threshold 
energy of ~ 8 kJ· m 0 I-I. The dependence of 
the reaction cross section on the relative kinetic 
energy of the collision is consistent with the 
line-of-centers model. 

EXAMPLE 30-3 
How is the threshold energy Eo for the line-of-centers collision theory rate constant 

related to the Arrhenius activation energy, Ea? 

SO L UTI 0 N: The Arrhenius activation energy, E
a

, is given by (see Equation 28.55) 

') d In k 
E==kT---

a B dT 

Using the rate constant from Equation 30.15 in Equation 28.55 gives us 

E==kT2- In B Jrd2 _ 0 d { [ (8k T) I j2 ] E} 
a B d T JT JJ- AB kB T 

== k T2 ~ {In T 1j2 - Eo + terms not involving T} 
B dT kBT 

== Eo + ~kBT 

Combining this result with the collision-theory rate constant given by Equation 30.15 
also shows that the Arrhenius A factor is given by 

A == (u)(5 el
/
2 

r AB 

Table 30.1 lists observed and calculated pre-exponential factors for several bi­

molecular reactions. The calculated values using Equation 30.15 exceed the experi­

mentally determined values of the pre-exponential factors, often by several orders of 

magnitude. In recent years, the function CYr(E) has been determined experimentally 

for many chemical reactions over a large range of collision energies. Although most 

reactions exhibit a threshold energy, the general shape of the energy dependence of 



TAB L E 30.1 
Experimental Arrhenius pre-exponential factors and activation energies for some bimolecular 
gas-phase reactions. The experimental pre-exponential factors are compared with those 
calculated using hard-sphere collision theory. 

Reaction 

NO(g) + 03 (g) ~ N02 (g) + 02 (g) 

NO(g) + 03 (g) ~ N03 (g) + O(g) 

F2(g) + CI02 (g) ~ FCI02(g) + F(g) 

2 CIO(g) ~ CI2(g) + 02(g) 

H2 (g) + C2H4 (g) ~ C2H6 (g) 

A/dm3 ·mol- I 
'S-I 

Observed Calculated 

7.94 x 108 5.01 X 1010 

6.31 x 10 9 6.31 x 1010 

3.16 X 107 5.01 X 1010 

6.31 x 107 2.50 X 1010 

1.24 X 106 7.30 X lOll 

Ea/kJ ·mol- 1 

10.5 

29.3 

35.6 

0 

180 

the reaction cross section is not well approximated by Equation 30.14. The conclusion 
from these studies is that the molecular details of gas-phase reactions cannot be de­
scribed accurately by the simple hard-sphere collision theories we have discussed so 
far. 

30-3. The Rate Constant for a Gas-Phase Chemical Reaction May 
Depend on the Orientations of the Colliding Molecules 

The data in Table 30.1 show that hard-sphere collision theory does not accurately 
account for the magnitude of the Arrhenius A factor. One of the fundamental flaws 
of this model is the assumption that every collision of sufficient energy is reactive. In 
addition to an energy requirement, the reacting molecules may need to collide with 
a specific orientation for the chemical reaction to occur. Several experimental studies 
have verified the importance of molecular orientation in determining whether or not a 
collision is reactive. For example, consider the reaction 

Rb(g) + CH3I(g) ::::::::::> RbI (g) + CH
3 
(g) 

Experimental studies reveal that this reaction occurs only when the rubidium atom 
collides with the iodomethane molecule in the vicinity of the iodine atom (Figure 30.3). 
Collisions between the rubidium atom and the methyl end of the molecule do not lead 
to reaction. This set of collision geometries is indicated by the cone of nonreactivity in 
Figure 30.3. Because hard-sphere collision theory does not take the collision geometry 
into account, the theory must overestimate the rate constant for reactions that are 
orientation dependent. Such a steric requirement is physically important for many 
chemical reactions; however, steric factors alone cannot account for the significant 
differences observed between the experimental and calculated Arrhenius A factors in 
Table 30.1. 
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The elementary reaction Rb(g) + CH] J (g) =} RbJ(g) + CH, (g) occurs only for a subset of the 
possible colli sion geometries. The rubidium atom must collide with the iodomethane molecule 
in the vicinity of the iodine atom for a reaction to occur. For those reactants that collide within 
the cone of nonreactivity, no reaction occurs. 

30-4. The Internal Energy of the Reactants Can Affect the Cross 
Section of a Reaction 

The reaction cross section for many gas-phase reactions is dependent on the internal 
energy of the reacting molecules. Consider the data plotted in Figure 30.4. In this 
figure, the reaction cross section for the reaction of the hydrogen molecular ion with 
atomic helium 

H~ (g) + He (g) ===} HeH+(g) + H(g) 

is plotted as a function of total energy. The total energy available for this reaction is 
the combined kinetic and vibrational energy of the reactants. Each curve plotted in 
Figure 30.4 corresponds to the reactant Hi (g) in a specific vibrational state. Several 
interesting features appear in these data. For the vibrational states v = 0 to v = 3, 
there is a threshold energy of about 70 kJ · mol - I. For Hi (g) molecules that have a 
vibrational quantum number of v = 0 to v = 3, the total vibrational energy is less 
than Eo' Additional translational energy is required for the reaction to occur, and the 
data reveal an energy threshold for the reaction. However, Hi (g) molecules that have 
a vibrational quantum number of v = 4 or v = 5 have sufficient internal energy to 

react because E Vib > Eo' and so additional translational energy is not needed for these 
molecules to react. This is why a threshold energy is not observed when the Hi (g) 
molecule has a vibrational quantum number of v > 4. At a constant total energy, the 
reaction cross sections for Hi (g) in the v = 4 or v = 5 level are much larger than that 
observed for this reactant in the v = 0 to v = 3 levels. We see that for a constant total 
energy, the value of a, depends strongly on the vibrational state of the reactant. 
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The reaction cross section for Hi (g) + He(g) ==} HeH+ (g) + H(g) is plotted as a function of 
total energy. The different curves plotted correspond to the reactant molecule Hi (g) in different 
vibrational states; v is the vibrational quantum number. At a fixed total energy, the reaction 
cross section depends on the vibrational state of Hi (g), demonstrating the importance of the 
internal modes on the cross section for the reaction. 

We know from our study of quantum mechanics that the internal energy of a 

molecule is distributed among the discrete rotational, vibrational, and electronic states. 

Data such as that shown in Figure 30.4 tell us that chemical reactivity depends not 

only on the total energy of the reacting molecules but also on how that energy is 
distributed among these internal energy levels. Simple hard-sphere collision theory 

considers only the translational energy of the reacting molecules. Energy can also be 

exchanged between the different degrees of freedom during the reactive collision; for 

example, vibrational energy can be converted into translational energy and vice versa. 

To understand gas-phase reaction dynamics we must consider how all the degrees of 
freedom of the reacting systems evolve during a reactive collision. 

30-5. A Reactive Collision Can Be Described in a Center-of-Mass 
Coordinate System 

Consider the collision and subsequent scattering process for the bimolecular reaction 

A (g) + B (g) ::::::::} C (g) + D (g) 
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For simplicity, we will assume there are no intermolecular forces between the separated 
reactants and separated products. Before the collision, molecules A and B are traveling 
with a velocity of "A and uB ' respectively. The collision generates molecules C and D, 
which then move away from each other with velocities U c and u

O
' respectively. We will 

describe the collision process in the center-of-mass coordinate system. The idea is to 
view the collision from the center of mass of the two colliding molecules. Recall from 
Section 5--2 that the center of mass lies along the vector r == r A - r B that connects the 
centers of the two colliding molecules. The location of R, the center of mass, along 
this vector depends on the masses of the two molecules, and is defined by 

(30.16) 

where M is the total mass, M == nl A + nIB' If the two masses are equal, then nl A == fn B , 

and the center of mass sits halfway between A and B on the vector r. If nI A > nIB then 
the center of mass sits closer to A than to B. 

The velocity is the time derivative of the position vector and therefore, "em' the 
velocity of the center of mass, is defined by the time derivative of Equation 30.16, or 

(30.17) 

The total kinetic energy is given by the sum of the kinetic energies of the reactants. 

(30.18) 

Example 30-4 shows that Equation 30.18 can be rewritten as 

(30.19) 

where Il is the reduced mass and ur == Iurl == IUA - uB I is the relative speed of the two 
molecules. If there are no external forces acting on the reactant molecules, the kinetic 
energy of the center of mass is constant (Section 5.2). 

EXAMPLE 30-4 
Show that Equation 30.19 follows from Equation 30.18. 

SOL UTI 0 N: We start with Equation 30.18 

(1) 

and want to rewrite this equation in tenns of ucm and Lir' The equations for oem and or 

are 

rnA In B ° == -u +-u em M A M B 
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and 

If we multiply U
CI11 

by M 1mB and then add the result to u" we obtain 

I11B 
U = U + U A elll -M- r (2) 

Similarly, mUltiplying u
cm 

by M I m A and subtracting from u, gives us 

(3) 

Substituting Equations 2 and 3 into Equation I gives 

rn A ( InB)2 mB ( 111 A )2 KE - - - U + -u + - U - - u 
reau - 2 e l11 M r 2 CIll M' 

1M 2 J 2 = "2 U C I11 + 'i /-LU , 

where /-L is the reduced mass, /-L = m AInB I M. 

Figure 30.5 shows a series of snapshots of a bimolecular collision as viewed along 
the motion of the center of mass. Figure 30.5 implies that the center-of-mass motion 
is constant during the entire collision, a fact we will soon prove. The relative velocity, 
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The details of a bimolecular collision viewed at various times along the center-of-mass motion. 
The velocities of the reactants A and B and products C and D can be divided into a component 
that lies along the center of mass and a relative velocity component that lies in the plane defined 
by 1234. The center-of-mass velocity remains constant before, during, and after the colli sion, 
and therefore the molecules remain in a plane that travels at the speed of the center of mass. 
Only the relative component of the velocity is important in determining the energy available 
for the reaction. In the left two snapshots, molecules A and B are approaching one another in 
the 1234 plane. The collision occurs in the middle snapshot. The right two snapshots show the 
products moving apart in the 1234 plane. The direction of the relative velocity of the reactants 
and products can be different. 
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on the other hand, changes during the collision. The colliding molecules move in the 
plane defined by 1234, which itself is moving at the velocity of the center of mass. 
Equation 30.19 tells us that the kinetic energy is composed of two contributions; one 
due to the motion of the center of mass and one due to the relative motion of the 
two colliding molecules. Only the component of the kinetic energy that lies along 
the collision direction, or (1/2) I1U;, is available for the reaction. The center-of-mass 
velocity does not affect the distance between the two reacting molecules and therefore 
has no effect on the chemical reaction. After the collision, the center of mass is given by 

(30.20) 

and the center-of-mass velocity is given by 

U em 
(30.21) 

As shown in Figure 30.5, the product molecules of a collision can move away from the 
center of mass in a direction different from that by which the reactants approached the 
center of mass. The kinetic energy of the products is (Problem 30-12) 

KE 1 M 2 1 1 12 

. d == -:;- U em + -::;11 U r pro... ~ 
(30.22) 

where 11' and u~ are the reduced mass and relative speed of the product molecules. There 
are no primes on M and u

em 
because the total mass is conserved and the center-of-mass 

velocity does not change during the collision. Linear momentum must be conserved in 
the collision, so 

(30.23) 

Using Equation 30.23, we see that Equations 30.21 and 30.17 are the same, confirming 
that the velocity of the center of mass is unaffected by the reactive collision. The energy 
associated with the motion of the center of mass is therefore constant, and from this 
point on, we will ignore this constant contribution to the total kinetic energy. 

Because energy must be conserved, 

E + I 2 E + I .' ,2 - U - - U 
reaet,int 211 r - prod, int 211 r 

(30.24 ) 

where E . and Ed' are the total internal energies of the reactants and products, 
react lOt pro ,Int 

respectively. This internal energy takes into account all the degrees of freedom other 

than translation. 

EXAMPLE 30-5 
Consider the reaction 

F(g) + O2 (g) ==* OF(g) + O(g) 
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where the relative kinetic energy of the reactants is KEreaet = 7.62 kJ ·mol I. Treat­

ing the reactants and products as hard spheres gives Ed' t - E t . t = D (D2) -pro ,In reae ,In· e 

De(DF) = -140 kJ ·mol- I
. Calculate the relative speed of the products. Then use 

Equations 1 and 2 of Problem 30-11 to determine the values of IUoF - u em I and 

IUD - ueml, the speeds of each product relative to the center of mass. [Recall that De 
is the energy difference between the minimum of the potential-energy curve and the 

dissociated atoms in their ground states (see Section 13-6).] 

SOL UTI 0 N: The relative kinetic energy of the reactants corresponds to a relative 

speed of 

u = (2 KEreaet) 1/2 

r Il 

The reduced mass of the reactants is 

so 

[ 
(2)(7.62 X 103 J.mol- I) ]1/2 

U r = (5.52 X 10-27 kg)(6.022 X 1023 mol-I) 

= 2. 14 x 103 m· S-I 

The relative speed of the products can now be found using Equation 30.24. Solving 
this equation for u~ gives us 

(1) 

where J1-' is the reduced mass of the products 

Thus 

/ r 5.52 x 10-27 kg 
u r = L 27 (2.14 x 103 m· s 1)2 

3.05 x 10- kg 

(2) (-1.40 x 105 J. mol I) ] 1/2 

(3.05 x 10-27 kg) (6.022 x 1023 mol I) 

= 1. 27 x 104 m· s - I 

The speeds of the products relative to the center of mass, IUoF ueml and IuD - ueml, 
are given by Equations 1 and 2 of Problem 30.1 I. 

nl 0 , nl o , 
IUDF - ueml = M IUrl = M ur 

2.014 amu 
= (1.27 x 104 m·s- I

) 
23.03 amu 

= 1. 1 I x 1 03 m· s I 
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and 

m In 
10 -u /- ~lu!l- ~u! o em - M r - M r 

21.01 amu 
= ( 1. 27 X 1 04 m· s I) 

23.03 amu 

= 1. 16 X 1 04 m· s 1 

The energy and momentum conservation laws enable us to define the velocity 
of the products but not the angle between the vectors "r and "~. In principle, the 
product molecules can scatter in any direction from the point of collision. We will 
learn, however, that many reactions exhibit highly anisotropic scattering angles. Such 
data provide unique insight into the molecular details of the reactive collision. Before 
we examine how we theoretically describe the angular distribution of the products, 
we will discuss some of the experimental approaches used to provide data on reactive 
collisions. 

30-6. Reactive Collisions Can Be Studied Using Crossed Molecular 
Beam Mach i nes 

One of the most important experimental techniques used to study the molecular dy­
namics of bimolecular gas-phase reactions is the crossed molecular beanz method. 

The basic design of a crossed molecular beam apparatus is shown in Figure 30.6a. 
The experimental device is designed to cross a beam of A molecules with a beam 
of B molecules at a specific location inside a large vacuum chamber. The product 
molecules are then detected using a mass spectrometer. In some crossed molecular 
beam machines, the detector can be rotated in the plane defined by the two molecular 
beams, thereby allowing the measurement of the angular distribution of the scattered 
products. The mass spectrometer can also be set to measure a specific molecular mass 
so that individual product molecules are detected. 

Supersonic molecular beams are used to produce the velocities of the molecules 
in the reactant beams. A schematic diagram of a supersonic molecular beam source 
is shown in Figure 30.6b. A supersonic molecular beam can be generated by taking a 
high-pressure, dilute mixture of the reactant molecule of interest in an inert carrier gas 
(He and Ne are commonly used) and pulsing the mixture through a small nozzle into the 
vacuum chamber. A small pinhole, known as a skimmer, is located a few centimeters 
away from where the molecules enter the vacuum chamber through the nozzle. Only 
those molecules that pass through the small hole in the skimmer enter the remainder 
of the vacuum chamber. This procedure creates a collimated beam of molecules. The 
beam is supersonic because the pressure conditions inside the vacuum chamber are 
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(a) A schematic diagram of a crossed molecular beam machine. Each reactant is introduced 
into the vacuum chamber by a molecular beam source. The two molecular beams collide at 
the collision region. The product molecules then travel away from the collision region . A 
mass spectrometer detector is located at a fixed distance away from the collision region and is 
used to detect product molecules . The detector can be moved so that the number of molecules 
leaving the collision region at dilfferent angles can be determined. (b) A schematic drawing of 
a supersonic molecular beam source. The reactant is expanded along with an inert gas through 
a small orifice into the vacuum chamber. A skimmer is used so that a collimated beam of 
molecules is directed toward the collision region. 

such that the molecules in the beam move at a speed greater than the speed of sound 
(Problems 30-13 and 30-14). 

A supersonic molecular beam has several important advantages that make it ideal 
for crossed-beam studies. Figure 30.7 shows a plot of the Maxwell-Boltzmann distri­
bution of molecular speeds for N2 (g) at 300 K and the speed distribution observed from 
a supersonic molecular beam of N/g) in helium at 300 K. The supersonic expansion 
generates a collection of molecules with a high translational energy but a very small 
spread in molecular speeds. In addition, molecules can be prepared with low rotational 
and vibrational energies. 

Thus, in crossed molecular-beam experiments, "r is specified by the velocities of 
the reactants. By varying the conditions under which the molecular beams are generated, 
experimentalists can change the relative velocities of the reactants and thereby change 
the collision energy. By measuring the product yield as a function of collision energy, 
the energy-dependent reaction cross section, aJ E,), can be determined. 

The product molecules formed from reactive collisions travel away from the col­

lision region. Their motion is determined by the conservation laws for mass, linear 
momentum, and energy. If we measure the number of molecules of a particular re­
action product that arrive at the detector as a function of time after the collision, we 
can resolve the velocity distribution of the product molecules. If we measure the total 
number of product molecules as a function of the scattering angle, we can determine 
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the angular distribution of the product molecules. From these two types of experiments, 

many of the molecular details of gas-phase reactive collisions can be determined. 
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The Maxwell-Boltzmann velocity distribution of N2 (g) molecules at 300 K is compared with 
the velocity distribution generated by a supersonic expansion of a gaseous mixture of N2 (g) in 
He(g) at 300 K. The molecular beam produces a narrow, nonequilibrium velocity distribution. 

30-7. The Reaction F(g) + D2 (g) =} DF(g) + D(g) Can Produce 
Vibrationally Excited DF(g) Molecules 

In this and several of the following sections, we will be concerned with the reaction 

F(g) + D2 (g) ===} DF(g) + D(g) (30.25) 

Figure 30.8 shows a one-dimensional energy diagram for this reaction. The energy 
diagram reflects only the changes in potential energy. Diagrams that indicate how the 
potential energy changes as the reaction proceeds along the reaction coordinate are 

called potential energy diagralns. The energy of the lowest vibrational state of D2 (g) 

and the energies of the first six vibrational states of DF(g) are also shown. In drawing 

these energy states, we have assumed that the vibrational motion of both D2 (g) and 

DF(g) is harmonic. 

We consider here the reaction energetics when the reactant D2 (g) is in its ground 

vibrational state, with an internal energy of (1 j2)h Vo . Figure 30.8 shows that the , 

reaction can produce DF(g) in several of its low vibrational states. We will write the 

overall reaction as 

F(g) + D2 (v == 0) ===} DF( v) + D(g) (30.26) 
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A potential-energy diagram for the reaction F(g) + 02(V == 0) ::::::} OF(v) + O(g). The vi­
brational states of the O

2 
(g) reactant and OF(g) product are indicated and labeled by their 

vibrational quantum numbers. The potential-energy diagram shows that the difference between 
the ground electronic state energies of O

2 
(g) and OF(g) is De (0

2
) - De (OF) == -140 kJ· mol I. 

The reaction has an activation energy barrier of about 7 kJ· mol I. 

where the vibrational state of the reactant is specified but the vibrational state(s) of the 
product is left unspecified and must be determined experimentally. The total energy 
available for the reaction, E

tot
' is the sum of the internal energy of the reactants, E int , 

and the relative translational energy of the reactants, Etrans' Because energy must be 
conserved, 

E == E + E. == E' + E: tot trans Int trans Int 
(30.27) 

where E;nt and E;rans are the internal energy (rotational, vibrational, and electronic) and 
relative translational energy of the product molecules, respectively. For a given total 
energy, a change in the internal energy of the products, E;nt' must be balanced by a 
corresponding change in their relative translational energy, E:rans ' Thus for a fixed total 
collision energy, DF(g) molecules generated in different vibrational states move away 
from the collision region with different velocities. We will find it useful to consider 
separately the rotational, vibrational, and electronic contributions to Eint and E;nt' We 
can write Equation 30.27 as 

E == E + E + E. + E == E' + E' + E'. + E' tot trans rot vlb elec trans rot Vlb elec (30.28) 

For the reaction given by Equation 30.26, where the reactants and products are in their 
ground electronic states, Ee1ec == -De(D2 ) and E~lcc == -De(DF). 
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EXAMPLE 30-6 
Consider the reaction 

F(g) + D2 (v == 0) ====} DF( v) + D(g) 

where the relative translational energy of the reactants is 7.62 kJ· mol-I. Assuming 

the reactants and products are in their ground electronic states and ground rotational 

states, determine the range of possible vibrational states of the product, DF(g). Treat 

the vibrational motion of both D2 (g) and DF(g) as harmonic with 1)0, == 2990 cm- J 

and 1)OF == 2907 cm I. [De(D
2

) - De(DF) == 140 kJ ·mol I.J -

SOL UTI 0 N: Energy must be conserved by this reaction. Using Equation 30.28 and 

assuming that the reactants and products are in their ground electronic and rotational 

states gives us 

Solving for E:rans gives us 

E' == E + E. - E'. - [D (D ) - D (DF)] trans trans Vlb Vlb e 2 e .. (1) 

The reactant D2 (g) is in its ground vibrational state, so E vib == 1 h Vo, == 17.9 kJ . mol-I. 
Thus, Equation I gives -

E;rans == 7.62 kJ·mol- 1 + 17.9 kJ·mol 1 E~ib + 140 kJ·mol- 1 

== 166 kJ· mol I - E~ib 

Translational energy is an intrinsically positive quantity, so the reaction occurs only 

if E~'ib < 166 kJ ·mol- 1
• Assuming that the vibrational motion of DF(g) is harmonic 

. 
gIves us 

E ~ib == (v + ~) h V OF == (v + 1) (34.8 kJ . mol I) < 166 kJ . mol I 

from which we find that v < 4. We will see shortly that this result is in agreement with 

experimental data. 

30-8. The Velocity and Angular Distribution of the Products of a 
Reactive Collision Provide a Molecular Picture of the Chemical 

Reaction 

We will now examine the crossed molecular beam data for the reaction described by 
F(g) + D2 (v == 0) ====} DF( v) + D(g) for the case in which the relative translational 
energy of the reactants is 7.62 kJ 'lnol I. In Example 30-6, we found that for this 
value of the relative translational energy of the reactants, the product DF(g) could be 
produced in the vibrational states from v == 0 through v == 4. We will now describe 
this reaction using the center-of-mass coordinate system presented in Section 30-5. 
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After a reactive collision between F(g) and D2 (g), the velocities of both the DF(g) 
molecule and the D(g) atom are determined by the dynamics of the reactant collision 
and point away from the center of mass. We know from Section 30-5 that the product 
velocities, "~F and "~, are not independent and are related by conservation laws. Ln 
principle, the products can separate in any direction consistent with the conservation 
laws for mass, momentum, and energy. In practice, only a small subset of these allowed 
directions are observed for this reaction. We need to find a way to describe the angular 
dependence of how the product molecules leave the site of the reactive collision. 

Figure 30.9 examines the collision between molecules A and B viewed along the 
relative velocity vector for a fixed value of the impact parameter b. For simplicity, we 
take molecule B to be fixed in space and then look at how it collides with an approaching 
molecule A that is moving at the relative velocity "e Because molecule B is spherical , 
the scattering center is cylindrically symmetric to molecule A. This fact means that 
the angle ¢ for the collision between molecules A and B takes on all possible values 
with equal probability. Unlike the angle ¢, the angle e in Figure 30.9 depends on the 
details of the chemical reaction process. We will see that this angle can be determined 
experimentally from crossed molecular beam data. 

Before we examine the experimental crossed molecular beam data for the F(g) + 
D/g) reaction, we need to consider how the experimental data depend on the internal 
vibrational energy of the DF(g) molecule. Only a fixed amount of energy is available 
to the products, and this energy must be partitioned between the internal states and 
the translational kinetic energy of the product molecules. Therefore, the translational 
kinetic energy, and hence the velocity, of the DF(g) product must decrease when excited 
vibrational states become populated. 

FIG U R E 30.9 
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The angular distribution resulting from the bimolecular collision between molecules A and B 
as seen from the B molecule before and after the colli sion. For a fixed value of b, the impact 
parameter, the reactants and products take on all possible angles ¢ with equal probability, 
thereby forming a cone around the relative velocity vector "r The angle e, however, depends 
on the dynamics of the reaction and must be determined experimentally. 
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EXAMPLE 30-7 
Re-examine the F(g) + D1 (v = 0) DF( v) + D(g) reaction, where the relative ... 
translational energy of the reactants is 7.62 kJ·mol I and De(D

2
) - De(DF) = 

-140 kJ·mol- l
. Determine the value of I"OF - "cOli for DF(g) molecules produced 

in the vibrational levels from v = 0 through v = 4. (Assume that the reactants and 

products are in their ground electronic and rotational states and that the vibrational 

motion of both D2 and DF is harmonic with vo') = 2990 em -I and VOF = 2907 em -I.) 

SOL UTI 0 N: Assuming that the reactants are in their ground electronic and rota­

tional states, Equation 30.28 gives us 

E;rans + E~ib = Etrans + EYib [De(D2 ) - De(DF)] 

= 7.62 kJ·mol-1 + 17.9 kJ·mol 1+ 140 kJ.mol I 

= 166 kJ· mol I 

If we assume that the vibrational motion of the DF(g) molecule is harmonic, then 

The reduced mass of the products is {1' = 1.84 X 10-3 kg·mol- 1 (Example 30-5). 
Solving Equation 1 for u~ gives 

u' = {( 2 ) (1. 66 x 1 05 

r 1.84 X 10-3 kg.mol- ' 

- [v + ~] [3.48 x 104
]) J. mol ~ 1 } 

1/2 

Problem 30-11 shows that the relative velocity of the DF(g) molecule and the center­

of-mass is given by 

In o , m 0 ! 

I" -" 1= -Iu I=-u OF em M r M r 

The values of u~ and I"OF - "em I for DF(g) produced in the vibrational states v = 0 
through v = 4 are tabulated below. 

v , 1104 -\ u m·s r ' IUoF - ucmll 102 m·s- I 

0 1.27 11.1 
I 1.11 9.71 
2 0.927 8. 11 
3 0.693 6.06 
4 0.320 2.80 

Example 30-7 shows that the velocity of the DF(g) molecule depends on the 
vibrational state of the product. This means that in a crossed molecular beam apparatus, 
the time required for the DF(g) molecule to travel from the collision region to the mass 
spectrometer will depend on its vibrational state. Figure 30.10 illustrates the type of 
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data observed if the mass spectrometer signal is plotted as a function of time. The 
graph reveals four distinguishable peaks. These four peaks correspond to product 
molecules that traveled away from the reaction site in the same direction but with 
different speeds, and therefore arrived at the mass spectrometer at different times. The 
first peak corresponds to those molecules that left the reaction site with the highest 
speed. These molecules have the largest translational energy and therefore the least 
amount of internal vibrational energy. Subsequent peaks correspond to molecules with 
a smaller translational energy and greater internal vibrational energy. The area under a 
peak is proportional to the total number of product molecules in that vibrational state. 
If we compare the areas of the different peaks, the relative populations of the different 
vibrational states can be determined. 

The dependence of reaction product formation on the angle e (shown in Fig­
ure 30.9) can be determined by moving the detector in the plane defined by the two 
molecular beams (see Figure 30.6a). Thus, we can determine the relative populations 
of each vibrational state for all possible scattering angles. Rather than in a three­
dimensional picture that depicts all the reaction trajectories, the data are commonly 
represented in a two-dimensional polar contour plot. Figure 30.11 shows the contour 
plot for the reaction between F(g) and D') (v = 0), for which the relative translational 

.... 

energy of the reactants is 7.62 kJ . mol-I. The center of mass sits at the center of the con-
tour plot. The distance from the origin to any point in the polar plot is the speed of the 
DF(g) molecule relative to the center of mass, l"oF - "em I. Below the plot, the arrows 
indicate the directions with which the reactants approach each other. The horizontal 
axis of the contour plot lies along the relative velocity vector of the reactants. The 
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The number of DF(g) molecules detected by a mass spectrometer is plotted as a function of 
time after the reaction between F(g) and D~ (g) in a crossed molecular beam study. The initial 
relative kinetic energy of the reactants is 7.62 kJ . mol I. The DF(g) molecules with the highest 
translational energy, and therefore the least amount of vibrational energy, arrive at the detector 
first. Because the total energy is constant, DF(g) molecules produced in an excited vibrational 
state must have a lower translational energy. Therefore, the different peaks observed in the plot 
correspond to DF(g) molecules in different vibrational states. There is no peak at v = 0 because 
no DF(g) molecules are produced in the v = 0 vibrational state under these conditions. 
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A contour map of the angular and speed distributions for the product molecule OF for the 
reaction F(g) + 0 2(V = 0), for which the relative translational energy of the reactants is 
7.62 kJ· mol -I . The center of mass is fixed at the origin. The dashed circles correspond to the 
maximum relative speeds a OF(g) molecule can have for the indicated vibrational state. The 
data reveal that the product molecules preferentially scatter back in the direction of the incident 
fluorine atom, a scattering angle of e = 1800

• The arrows at the bottom of the figure show the 
direction with which each reactant molecule approaches each other. 

angles indicated in Figure 30.11 are the scattering angles e. In an atom-molecule reac­
tion, we take e = 00 to lie along the direction defined by the trajectory of the incident 
atom. An angle of e = 00 corresponds to a collision in which the F(g) atom collides 
with the D

2
(g) molecule and the DF(g) product molecule travels in the same direction 

as the incident F(g) atom. An angle of e = 1800 corresponds to a collision in which 
the F(g) atom collides with the D

2
(g) molecule, reacts, and then the DF(g) molecule 

bounces back opposite to the incident direction of the F(g) atom (Figure 30.12). 
The contours in Figure 30. II represent a constant number of DF(g) product 

molecules. The dashed circles in Figure 30.11 correspond to the maximum relative 
speed allowed for a product molecule in a given vibrational state. An increase in the 
diameter of this circle corresponds to an increase in the relative speed of the product 
molecule. Recall that the total energy is fixed, so the speed of the DF(g) molecule de­
creases with increasing vibrational quantum number. Thus, the diameters of the circles 
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Fie U R E 30.12 
An illustration of the atom-molecule reaction F(g) + D2 (g) in which (a) e == OD and 
(b) e == 180c

. 

decrease with increasing vibrational quantum number. Notice that the data show that a 
large number of product molecules have speeds between the dashed circles. The dashed 
circles shown in Figure 30.11 correspond to the case where there is internal energy 
only in the vibrational states of the molecule, in which case the rotational energy cor­
responding to these circles is Erot == 0, with J == O. If DF(g) is produced in an excited 
rotational state, we would expect to observe a speed that has an value intermediate 
between two of the dashed circles. For example, the region between the dashed circles 
labeled v == 3 and v == 4 in Figure 30.11 (see point A in the figure) corresponds to a 
DF(g) molecule that has a vibrational quantum number v == 3 but is also rotationally 
excited. If we know the energy spacing of the rotational states, the rotational energy 
distribution can also be determined from the contour map, see Example 30-8. 

EXAMPLE 30-8 
From the analysis of the speed contour plot shown in Figure 30.11, Point A is found 

to correspond to a DF(g) molecule with a total rotational and vibrational energy of 
11493.6 em-i. Using the following data for DF(g), determine the rotational level of 
the molecule assuming the vibrational quantum number is v == 3. 

2998.3 45.71 11.007 0.293 

SOL UTI 0 N: The vibrational and rotational energies of a diatomic molecule are 

given by Equations 13.21 and 13.17 

Evib(V) == ve (v + ~) - veote (v + ~)2 

E fO,(J, v) = [Be a e (v + D ] J (J + I) 
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The total rotational-vibrational energy of the OF(g) molecule is then the sum of the 

vibrational and rotational energies: 

EVib (v) + Ero/J. v) 

= v" (v + ~) - v)" (v + D2 + [ B" - iXc (v + DJ J (J + I) (I) 

Substituting the above spectroscopic data into Equation 1 and setting v == 3 gives us 

11 493.6 cm I == 9934.1 cm- I + (9.982 cm-I)J (J + 1) 

which simplifies to 

J(J + 1) == 156 

from which we find that J == 12. Point A on the contour plot given in Figure 30.1 1 

corresponds to a population of OF(g) molecules with the quantum numbers v == 3 and 

J == 12. 

The experimental data in Figure 30.11 reveal three important features of the reac­
tion. First, we see that the product preferentially scatters backward, toward the direction 

of the incident fluorine atom, a scattering angle of e == 1800
• These data suggest that the 

fluorine atom undergoes a nearly head-on collision with the D') (g) molecule and then 
"-

bounces backward after abstracting one of the deuterium atoms. This type of reaction is 
called a rebound reaction. Second, an analysis of this contour map reveals that the most 
probable product of the reaction is DF( v == 3). Third, there is considerable population 
between the dashed circles, indicating that a variety of rotational levels of the DF(g) 
molecule are populated by the reaction. 

The relative populations of the first five vibrational states deserve a bit more 
attention. Note the lack of contour lines between the dashed circles for v == 0 and 
v == 1. This result means that no product molecules are formed in the ground vibrational 
state. The populations determined from the contour diagram are given in Table 30.2 
and corresponds to those shown in Figure 30.11. This product distribution cannot be 

TAB l E 30.2 
The observed relative populations of the vth vibrational state to the 
v == 3 state of OF( v) for the reaction F(g) + O

2 
(g) ::::} OF(g) + O(g), in 

which the relative translational energy of the reactants is 7.62 kJ· mol-I. 

Vibrational quantum number 

o 
1 

2 

3 

4 

Relative population 

0.00 

0.02 

0.44 

1.00 

0.49 
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described by a Boltzmann distribution (see Example 30-9), and we say that the reaction 

generates a nonequilibrium product distribution. 

EXAMPLE 30-9 
Determine the populations of DF( v) relative to DF( v == 3) for v == 0 through v == 4, 

assuming that the overall distribution is in thermal equilibrium at 300 K. (Assume the 

vibrational motion of DF(g) is harmonic with V
DF 

== 2907 cm -1 .) 

SOL UTI 0 N: If the DF(g) molecules are at thermal equilibriulTI, the ratio of the 

populations of DF(g) molecules in two vibrational levels is given by the Boltzmann 

distribution. Thus, 

N(v) 

N(v==3) 

The calculated relative populations are tabulated below 

Vibrational quantum number N (v) / N (v == 3) 

o 1.44 X 1018 

I 1.28 x 10 12 

2 1.75 X 106 

3 1.00 
4 8.84 x 10-7 

The values of N (v) / N (v == 3) for a sample at thermal equilibrium are significantly 

different from the relative populations determined for the chemical reaction F(g) + 
0') (g) :::::} DF(g) + D(g) (see Table 30.2). Note in particular that the v == 0 state is 

"-

the most populous in the thermal distribution, whereas the reaction generates no 

population in the v == 0 state. The vibrational distribution of the reaction product 

cannot be described by a Boltzmann distribution. 

30-9. Not All Gas-Phase Chemical Reactions Are Rebound Reactions 

Figure 30.13 shows the velocity contour map for the reaction 

K(g) + 1
2
(g) ~ KI(g) + leg) 

in which the initial relative translational energy between the reactants is 15.13 kJ· mol-I. 

Unlike in the F(g) + D" (g) reaction, \ve can see that the product diatomic molecule in ... 
this case, KI(g), is preferentially scattered in the forward direction, along the direction 

of the incident K(g) atom. This type of reaction, in which the incident atom abstracts part 
of a molecule and keeps going in the forward direction, is called a stripping reaction. 

The mechanism of stripping reactions is interesting. The reaction cross section 
for the K(g) + 12 (g) reaction is 1.25 x 106 pm2

. Assuming the radius of K(g) and 

I" (g) are 205 pm and 250 pm, respectively, the hard-sphere collision cross section 
.... 
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FIG U R E 30.13 

1000 

"-

800 ~ . 
$' 

600~ 
~ 

400 ~v 
I 
"'-

200 ~~ 
~ 

OO~H-~~~~~~~~~----------

~ Center 
of mass 

K 

A contour map of the angular and velocity distributions for the product molecule KI(g) for 
the reaction K(g) + 12 (g) -----* KI (g) + 1 (g), in which the relative translational energy of the 
reactants is 15.13 kJ· mol-I. In this stripping reaction, the product molecules continue going in 
the direction of the incident potassium atom, a scattering angle near e == 0°. The numbers that 
label the contours are a measure of the relative number of KI(g) molecules. 

is JT diB == 6.S x 105 pm2
. The measured reaction cross section is twice as large as 

the hard-sphere estimate. If the approaching potassium atom and iodine molecule 
were to travel in straight lines at the maximum impact parameter corresponding to 
this experimentally determined reaction cross-section, these reactants would miss one 
another. The fact that a reaction occurs indicates that the trajectories of the reacting 
molecules are affected by a long-range potential that draws them together. We would 
not expect the van der Waals interactions between the potassium atom and the iodine 
molecule to be strong enough to cause such a large effect. Research shows that this 
reaction involves the transfer of an electron between the two reactants, which takes 
place before the reactants collide. Thus, the first step of the reaction occurs when the 
reactants are still separated and produces a pair of ions, 

The ions are then attracted to one another through a Coulomb potential. The more 
energetically stable products KI(g) + leg) are formed when the two ions collide. The 
KI(g) moves off in the same direction as the incident potassium ion. This mechanism 
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has been coined the harpoon mechanism because the potassium atom uses its electron 
like a harpoon to draw in the 12 (g) molecule. 

Figure 30.14 shows the results for the reactive scattering reaction 

O(g) + Br
2
(g) ===} BrO(g) + Br(g) 

carried out with a relative translational kinetic energy of 12.55 kJ· mol-I. The data 
show that the product molecule BrO(g) is forward and back scattered with equal 
intensity. Thus, neither mechanism discussed so far can account for this observed 
behavior. In fact, no simple hit-and-run collision picture can explain this result. To 
display such a symmetric forward- and back-scattered product distribution, the reacting 
molecules need to "forget" the original collision geometry. This is possible only if the 
collision results in the formation of an atom-molecule complex, whose lifetime is long 
compared with its rotational period. This long lifetime allows the complex to rotate 
many times before generating products. In this case, the angular distribution of the 
product molecules becomes independent of their initial collision geometry. 

o 

FIG U R E 30.14 
A contour map of the angular and velocity distributions for the product molecule OBr(g) from 
the reaction of O(g) + Br2 (g), in which the relative translational energy of the reactants is 
12.55 kJ ·mol- I

. The numbers that label the contours indicate the relative number of BrO(g) 
molecules observed. 
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30-10. The Potential-Energy Surface for the Reaction 
F(g) + D2(g) =} DF(g) + D(g) Can Be Calculated Using 

Quantum Mechanics 

In Chapter 9, we learned that the potential energy of a diatomic molecule depends on 

only the distance between the two bonded atoms. Thus, the potential-energy surface for 

a diatomic molecule such as D, (g) or DF(g) can be plotted in two dimensions by plotting 
"-

the potential energy as a function of the bond length. The word "surface" is a misnomer 

in this case. A diatomic molecule has only one geometric parameter, the bond length. 

Using the term "potential-energy curve" when the potential energy depends on a single 

parameter and the word "surface" when the potential energy depends on more than 

one geometric parameter is more appropriate. Figure 30.15 shows the potential-energy 

curve for D2 (g). 
The potential energy of a polyatomic molecule depends on more than one variable 

because there is more than one bond length that can be varied. We will also need to 

specify the bond angles( s). For example, consider a water molecule. The geometry of 

a water molecule is completely specified by three geometric parameters, r O-H ' r O-H ' 
A A 

and the angle a between the two O-H bonds. 

The potential energy of a water molecule is a function of these three parameters, or 

V == V (r O-H ,r O-H ,a). A plot of the complete potential-energy surface of a water 

molecule th~refor~ requires four axes, one axis for the value of the potential energy 

200-
-

Fie U R E 30.15 
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The potential-energy curve of D2 (g). The zero of energy is defined to be that of the two 
separated atoms. The minimum of the potential-energy curve corresponds to the equilibrium 
bond length of the D2 (g) molecule. 
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and one axis for each of the three geometric parameters. The potential-energy surface 
is four-dimensional. Because we are limited to three dimensions for plotting functions, 
we cannot draw the entire potential-energy surface of a water molecule in a single plot. 
We can, however, draw parts of the potential-energy surface. We can fix one of the 
geometric parameters, for example, the angle ex, and then draw a three-dimensional 

plot of V (r O~H ,r O~H ,ex == constant). Such a plot is a cross-sectional cut of the full 
A B 

potential-energy surface. A cross-sectional plot teaches us how the potential energy of 
the molecule changes when we vary some of the geometric variables while holding 

others constant. For example, a three-dimensional plot of V (r O-H ,r O-H ,ex == constant) 
A B 

as a function of r O-H and r O-H tells us how the potential energy of a water molecule 
changes when the bo~d lengths

B 

r O-H and r O-H are varied at a constant bond angle of ex. 
A B 

If we made a series of cross-sectional plots for different values of ex, we could see how 
the potential energy depends upon the bond angle. 

We encounter a similar limitation in viewing the potential-energy surfaces for 
simple chemical reactions as we did for a water molecule. Let us return to a discussion 
of the chemical reaction 

where the subscripts A and B are used so that we can differentiate between the two 
deuterium atoms. When the reactants are at infinite separation, there are no attractive 
or repulsive forces between the fluorine atom and the D2 (g) molecule, so the potential­
energy surface for the reaction is the same as that for an isolated D2 (g) molecule. 
Likewise, when the products are at infinite separation, the potential-energy surface 
for the reaction is the same as that for the isolated DF(g) molecule. As the reaction 

occurs, however, r OF' the distance between the fluorine atom and D A' decreases and r 0 ' 
2 

the distance between D A and DB' increases, and the potential energy depends on both 
distances. The potential energy also depends on the angle at \vhich the fluorine atom 
approaches the D2 (g) molecule. We define the collision angle f3 between the fluorine 
atom and D2 (g) molecule to be that between the lines that lie along the F-D A and 
D A -DB bonds. In Figure 30.16, we show three different ways the fluorine atom can 
approach the D') (g) molecule: linear ([3 == 180°), bent ([3 == 135°), and perpendicular 

L 

(fJ == 900

). 

F , 
, 

, , 

/3=180 0 , , , 

F ---------- D A -- DB 

FIG U R E 30.1 6 
Three different collision angles, f3, for the reactants F (g) + D 2 (g). 

F 

I 

:/3=90 0 

I 

I 
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Because the potential-energy surface for this reaction depends on two distances 
(r DF and r D ) and one collision angle (13), a four-dimensional coordinate system is 

2 

needed to plot the complete surface. To view the potential-energy surface, we have to 
fix the value of one of the geometric parameters and then plot the dependence of the 
potential energy on the two remaining variables. We could make a series of such plots 
for different values of the fixed variable to see how the potential surface depends on 
all three geometric parameters. 

The potential-energy surface for a chemical reaction can be calculated using the 
electronic structure techniques discussed in Chapter 11 for polyatomic molecules. By 
performing such a calculation for a number of different nuclear configurations, we 
can obtain the potential energy as a function of the nuclear coordinates. Figure 30.17 
presents a contour diagram of the calculated potential-energy surface for the reaction 

F(g) + D2 (g) ===> DF(g) + D(g) 

where the collision angle 13 is set to 1800
, the experimental value determined from 

the crossed-molecular beam data (see Section 30-8). Such a geometry is said to be 
collinear. Each line in the contour map corresponds to a constant value of the energy. 
The zero of energy has been arbitrarily assigned to the reactants at infinite separation. 

Fie U R E 30.17 
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An energy contour map for the reaction F(g) + D2 (g) ==> DF(g) + D(g) at a collision geometry 
of f3 = 1800

, using the Born-Oppenheimer approximation to calculate the potential-energy 
surface. The numbers for the energy contours are in units of kJ . mol-I. The zero of energy is 
defined as the infinitely separated reactants. Point B is the location of the transition state of 
the reaction. The cross-sectional cuts through this surface indicated by the lines at A and C 
correspond to potential-energy curves for the isolated D2 (g) and DF(g) molecules, respectively. 
The dashed line is the mimimum energy pathway for the reaction. 



Problems 

At r DF == A in Figure 30.17, the reactants are at a large separation, and the potential­
energy surface is identical to the potential-energy curve for an isolated D2 (g) molecule 
and F(g) atom. In other words, if we plotted the cross-sectional plot of this surface 
V(rD ,rDF , f3 == 180°) as a function of ro ' we would obtain Figure 30.15. Likewise, 

, 7 

at r 0 - == C in Figure 30.17, the products are at a large separation and a cross-sectional 
2 

plot of V (r 0 ' r DF' f3 == 180°) as a function of r DF is identical to the potential-energy , 
curve for an isolated DF(g) molecule. 

Let's now follow the minimum energy path from the reactants to the products, 
given by the dashed line in Figure 30.17. We see that as the reactants approach one 
another, the distance r 0 remains fairly constant, the distance r DF decreases, and the 

7 

potential energy increases, reaching a maximum at point B. After passing through 
point B, the products have been formed, the distance r OF decreases slightly and then 
remains constant, the distance r 0 increases, and the potential energy decreases. The 
calculated potential-energy surfabe has an energy barrier between the reactants and 
products. The minimum height of this energy barrier (about 7 kJ· mol-I) occurs at 
point B, which is called the transition state. The transition state separates the reactants 
from the products. It sits at a unique point on the potential-energy surface. If we follow 
the minimum energy path from the transition state to either the separated reactants or the 
separated products, the energy decreases. If we move away from the transition state in 
the direction perpendicular to this minimum energy path, the energy increases. Thus, in 
one direction, the transition state is an energy maximum; in the perpendicular direction, 
the transition state is an energy minimum. Such points are called saddle points because 
the surface in the vicinity of the point has the shape of a saddle. The transition state for 
a chemical reaction usually sits at a saddle point on the potential-energy surface. 

Problems 
30-1. Calculate the hard-sphere collision theory rate constant for the reaction 

NO(g) + C12 (g) NOCl(g) + Cl(g) 

at 300 K. The collision diameters of NO and Cl
2 

are 370 pm and 540 pm, respectively. 
The Arrhenius parameters for the reaction are A == 3.981 x 109 dm3

. mol-I. s I and E == 
a 

84.9 kJ· mol-I. Calculate the ratio of the hard-sphere collision theory rate constant to the 
experimental rate constant at 300 K. 

30-2. Compare a plot of crr(Er)/nd;'B given by Equation 30.14 to the data shown in Figure 
30.2. 

30-3. Show that Equation 30.15, the rate constant for the line-of-centers model, is obtained by 

substituting Equation 30.14, the reaction cross section for the line-of-centers model, into 

Equation 30.11 and then integrating the resulting expression. 

30-4. The Arrhenius parameters for the reaction 

NO(g) + 03 (g) ====} N02 (g) + 02 (g) 
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are A == 7.94 x 109 dm3 
. mol-i. s I and E a == 10.5 kJ . mol I. Assuming the line-of-centers 

model, calculate the values of Eo' the threshold energy, and (JAB' the hard-sphere reaction 

cross section, for this reaction at 1000 K. 

30-5. Consider the following bimolecular reaction at 3000 K: 

The experimentally determined Arrhenius pre-exponential factor is A == 3.5 X 

109 dm3 ·mol I 'S-I, and the activation energy is Ea == 213.4 kJ ·mol- I
• The hard-sphere 

collision diameter of O
2 

is 360 pm and that for CO is 370 pm. Calculate the value of the hard 

sphere line-of-centers model rate constant at 3000 K and compare it with the experimental 

rate constant. Also compare the calculated and experimental A values. 

30-6. The threshold energy, Eo' for the reaction 

Hi (g) + He(g) ====} HeH+ (g) + H(g) 

is 70.0 kJ· mol-I. Determine the lo\vest vibrational level of Hi (g) such that the VI­

brational energy of the reactants exceeds EO' The spectroscopic constants for Hi are 

v == 2321.7 cm I and v x == 66.2 cm- I
. 

e e e 

30-7. Calculate the total kinetic energy of an F(g) atom moving at a speed of 2500 m· s I 

toward a head-on collision with a stationary 0, (g) molecule. (Assume the reactants are 
.... 

hard spheres.) 

30-8. A F(g) atom and a D2 (g) molecule are moving toward a head-on collision with one 

another. The F(g) atom has a speed of 1540 m· s I. Calculate the speed of the D2 (g) 

molecule so that the total kinetic energy is the same as that in Problem 30-7. (Assume the 

reactants are hard spheres.) 

30-9. In Problem 30-7, you calculated the total kinetic energy for a F(g) atom moving at a 

speed of 2500 m· s I toward a head-on collision with a stationary D2 (v == 0) molecule. 
Determine the ratio of the total kinetic energy to the zero-point vibrational energy of the 

D2 (g) molecule given that Vo == 2990 cm I. 
') 

30-10. Consider the head-on collision between a F(g) atom and a stationary D2 (g) molecule. 
Estimate the minimum speed of the F(g) atom so that its kinetic energy exceeds the bond 

dissociation energy of D2 (g). (The value of Do for D2 is 435.6 kJ· mol-I.) 

30-11. Following Example 30-4, show that the equations 

and 

lead to 

and 

m In 
u == C u + DU 

em M C M 0 

mo 
u ==u + u 

C em M r 

u == U o em 

Inc 
-u 
M r 

(1) 

(2) 



Problems 

30-12. Derive Equation 30.22. 

30-13. The speed of sound, us' in a fluid is given by 

2 
Us == 

MKT 

yV 
(1) 

where y == CplCv' M is the molar mass, and KT == -(lIV)(al!lap)T is the isothermal 
compressibility of the fluid. Assuming ideal behavior, calculate the speed of sound inN2 (g) 
at 25°C. Take C p == 7 R 12. The measured value is 348 m· s I. 

30-14. The speed of sound, us' in a fluid is given by Equation 1 of Problem 30-13. In addition, 
- -
C p and C v are related by (Equation 22.27) 

where a == (11 V) (a via T) p is the coefficient of thermal expansion. Given that C p == 
135.6 J·K-1·mol- l

, KT == 9.44 X 10- 10 Pa ',a == 1.237 x 10-3 K- ' , and the density p == 
0.8765 g·mL -I for benzene at one atm and 20°C, calculate the speed of sound in benzene. 

The measured value is 1320 m· s -I . 

30-15. The peak speed of the l110lecules in a supersonic molecular beam of a carrier gas is well 
approximated by 

u == (2 R T ) 1/2 ( Y ) 1/2 

peak M y - 1 

where T is the temperature of the source chamber of the gas mixture, M is the molar mass 

of the carrier gas, and y is the ratio of the heat capacities, y == C piC v' of the carrier gas. 
Determine the peak velocity for a benzene molecule in a supersonic neon beam in which 

the source chamber of the gas is maintained at 300 K. Repeat the calculation for a helium 
beam under the same conditions. Assume that He(g) and N e(g) can be treated as ideal 
gases. 

30-16. Estimate the temperature required so that the average speed of a benzene molecule in a 
gas cell is the same as that for a benzene molecule in a helium supersonic molecular beam 
generated under the conditions stated in Problem 30-15. 

30-17. Show that for the general reaction 

A(g) + BC(g) ===} AB(g) + C(g) 

Equation 30.28 can be written as 

E == ~f1U~r') + F(l) + G(v) + T 
lOl !. e 

== 1f1U~2 + FI(]) + G'(v) + T; 

within the harmonic oscillator-rigid rotator approximation where T
e

, G (v), and F (J) are 
the electronic, vibrational, and rotational terms of the diatomic reactant, BC(g), and T;, 
G' (v), and F' (J) are the corresponding terms for the diatomic product, AB(g). 
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30-18. Consider the reaction 

Cl(g) + H2 (v == 0) ====} HC1(v) + H(g) 

where D (HI) - D (HCI) == 12.4 kJ ·mol- 1 
• Assume there is no activation barrier to the e _ e 

reaction. Model the reactants as hard spheres (no vibrational motion) and calculate the 

minimum value of the relative speed required for reaction to occur. If we model H2 (g) and 

HCI(g) as hard-sphere harmonic oscillators with v
H 

== 4159 cm- I and V
HC1 

== 2886 cm- I
, 

J 

calculate the minimum value of the relative speed required for reaction to occur. 

30-19. The reaction H(g) + F2 (v == 0) ==> HF(g) + F(g) produces vibrationally excited HF 

molecules. Determine the minimum value of the relative kinetic energy such that HF(g) 

molecules in the v == 12 vibrational state are produced. The following are the vibrational 

spectroscopic constants for HF and F/ : V (HF) == 4138.32 cm- I
, v (F/ ) == 916.64 cm- I

, 
~ e e _ 

vexe(HF) == 89.88 cm- I
, v

e
x

e
(F

2
) == 11.24 cm- I

, Do(HF) == 566.2 kJ·mol I, and Do(F2) == 
154.6 kJ ·mol- I

. 

30-20. Consider the energetics of the reaction 

F(g) + H2 (v == 0) ====} HF( v) + H(g) 

where the relative translational energy of the reactants is 7.62 kJ· mol I, and De (H2) -

De (HF) == -140 kJ· mol-I . Determine the range of possible vibrational states of the product 

HF(g) molecule. Assume the vibrational motion of both H2 (g) and HF(g) is harmonic with 

vH == 4159 cm- 1 and VHF == 3959 cm- 1
• 

2 

30-21. In Example 30-5 we calculated the speeds of the products relative to the center of mass, 

IU
OF 

- ueml and IuD - ueml, for the reaction F(g) + D2(g) ====} DF(g) + D(g) assuming 
that the reactants and products could be treated as hard spheres. Now calculate these 

quantities taking into account the zero-point vibrational energies of D2(g) and DF(g). 
Assume that the vibrational motion of D2(g) and DF(g) is harmonic with vD == 2990 cm- I 

') 

and V
OF 

== 2907 cm- l
, respectively. How different are your results from the hard-sphere 

calculations presented in Example 30-57 

The following four problems consider the reaction 

CI(g) + HBr(v == 0) ====} HC1(v) + Br(g) 

where the relative translational energy of the reactants is 9.21 kJ ·mol I, the difference 

D (HBr) - D (HCI) == -67.2 kJ·mol- l
, and the activation energyfior this reaction is 

e e 

~ 6 kJ .mol I. 

30-22. Determine the range of possible vibrational states of the product molecule, HC1(g). The 

spectroscopic constants for HBr(g) and HC1(g) are 

v /cm I V i /cm- 1 
e e e 

HBr 2648.98 45.22 

HCI 2990.95 52.82 

Draw a diagram for this reaction that is similar to that shown in Figure 30.8 for the 

F(g) + D2 (g) reaction. 



Problems 

30-23. Calculate the value of I"HCI - "em l, the speed of the HCl(g) molecule relative to the 
center of mass, for each of the possible vibrational states of HCl(g) in Problem 30-22. 

30-24. Determine the speeds for a HCl(g) molecule relative to the center of mass I"HCI - "em I 
in the v == 0, J == 0 and v == 0, J == 1 states. The rotational constants for HCl(g) are 
B == 10.59 cm 1 and ii == 0.307 cm I. 

e e 

30-25. Using the data in Problem 30-24, determine the value of J . , the minimum value of J, mm 

such that the kinetic energy of a HCl( v == 0, J == J min) molecule is greater than the kinetic 
energy of an HCl( v == 1, J == 0) molecule. [Note that if this reaction produces HCl( v == 

0, J > J
min

), then these molecules have relative speeds characteristic of an HCl(v == 1) 

molecule, affecting the analysis of the product velocity contour plots.] 

30-26. Using the data given in Table 13.2, estimate the minimum value of the relative speed of 

the reactants so that the following reactions occur: 

HCl( v == 0) + Br(g) ::::=} HBr( v == 0) + Cl(g) 

and 

HCl(v == 1) + Br(g) ::::=} HBr(v == 0) + Cl(g) 

30-27. Do the values of the radii of the dashed circles in Figure 30.11 increase, decrease, 

or remain the same as the relative translational energy of the reactants is increased from 

7.62 kJ . mol-I? Determine the percentage change, if any, in the radius of the dashed circle for 

v == 0 if the relative translational energy is doubled from 7.62 kJ· mol I to 15.24 kJ· mol-I. 

30-28. Figure 30.11 presents the contour map for the product molecule DF(g) for the reaction 

between F(g) and D2 (v == 0). The dashed lines correspond to the expected speeds for DF(g) 
molecules in those vibrational states when J, the rotational quantum number, equals O. The 

regions between two circles then correspond to molecules that are rotationally excited. 
Determine the minimum value for J such that a DF( v == 2) molecule has a relative speed 
expected for a DF( v == 3) molecule. The spectroscopic constants for DF(g) are given in 
Example 30-8. Does your result suggest that there could be a problem encountered in the 
analysis of the scattering data for this reaction? 

30-29. For the reaction Cl(g) + H2(g) ::::} HCl(g) + H(g), D
e
(H

2
) - De(HCl) == 12.4 

kJ·mol- l
. Assuming that the relative kinetic energy is 8.52 kJ· mol-I and that the H2(g) re­

actant is prepared in a v == 3, J == 0 state, what are the possible vibrational states of HCl(g)? 
The vibrational spectroscopic constants for H2 (g) and HCl(g) are ve (H2) == 4401.21 cm- l

, 

ve(HCl) == 2990.95 cm- I
, v

e
xe(H

2
) == 121.34 cm I, and vexe(HCl) == 52.82 cm I. 

30-30. Suppose that the reaction given in Problem 30-29 produces HCl(g) in v == v
max

' the 

highest possible vibrational state under the given conditions. Determine the largest possible 

value of J for the HCl( v == vmax ' J) molecule. The rotational constants of HCl(g) are 
B == 10.59 cm- 1 and & == 0.307 cm 1. 

e e 

30-31. Consider the product velocity distribution for the reaction between K(g) and 

12 (v == 0) at a relative translational energy of 15.13 kJ· mol-I shown in Figure 30.13. 

Assume that the vibrational motion of 12 (g) and KI(g) is harmonic with V 12 == 213 cm-\ 
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and VKI == 185 em I. Given that D (' (1
2

) - De (KI) == - 171 kJ· mol I, determine the max­
imum vibrational quantum number for the product KI(g). Now determine the speed of a 
KI( v == 0) molecule relative to the center of mass. Repeat the calculation for the KI( v == I) 
molecule. 00 the data in the contour map support a conclusion that KI(g) is produced in a 
distribution of vibrational levels? 

30-32. Below is a plot of the LiCl(g) product velocity distribution for the reaction 

Li(g) + HCI(v == 0) :::::::} LiCI(v) + H(g) 

recorded at a relative translational energy of 38.49 kJ· mol-I. Is this reaction an example 
of a rebound reaction, a stripping reaction, or a reaction in which a long-lived complex 
(relative to the rotational period of the complex) is formed between the reactants before 
any product molecules are produced? Explain your reasoning. 

30-33. Shown below are the velocity contour plots of the N20+ (g) product recorded at two 
different relative translational energies for the reaction 

N~ (g) + OJ (v == 0) :::::::} N,O+ (v) + O(g) 
"'-.... ..... 

The scale between the two plots indicating 1000 m· s I applies to both plots. 



+ 

1000 m_s- 1 

(a) 

The value of De(N
2
D+) - De(Ni) - De(D

2
) is equal to 96 kJ·mol- l

. The relative transla­
tional energy of the reactants is 301.02 kJ· mol-I and 781.49 kJ· mol-I for the left and right 
contour plots, respectively. Propose an explanation for why N

2
D+ (g) product molecules 

observed with low relative velocities are present in (a) but absent in (b). 

30-34. The reaction between Ca(g) and F 2 (g) generates an electronically excited product 
according to the equation 

The radii of Cae So) and F
2
(g) are 100 pm and 370 pm, respectively. Determine the hard­

sphere collision cross section. The cross section for this reaction is > 106 pm2
. Propose a 

mechanism for this reaction. 

30-35. Consider the reaction described in Problem 30-34. The product CaF*(B2~+) relaxes to 

its electronic ground state by fluorescence. Explain how you could determine the vibrational 
states of the product from a measurement of the fluorescence spectrum. 

30-36. For the reaction 

the peak of the fluorescence spectrum corresponds to emission from the v' == 10 level 
of the B2 ~ + state to the vI! == 10 level of the ground electronic state of CaF*. Calculate 
the wavelength of this emission line. The spectroscopic constants for the B2~+ state are 
T == 18 844.5 em-I, v~ == 566.1 em-I, and v'i' == 2.80 em-I and those for the ground state e < e e 

are v~' == 581.1 em-I and v;i~' == 2.74cm- l
. In what part of the electromagnetic spectrum 

will you observe this emission? 
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30-37. Describe the potential-energy surfaces for the reactions 

HI(v) + H(g) 

and 

30-38. The following plot depicts the potential-energy surface for the isomerization reaction 

8 
0.. 

---:..... 

OCIO(g) ::::::::} CIOO(g) 

400 

-------300 

200-

100 

o ~~ ...... ~~~~~~~~--~--~~~~~~ 
-400 200 o 

r/pm 

200 400 

The contour map is a plot of the potential energy as a function of the location of an oxygen 

atom around a diatomic CIO of fixed bond length. The energy spacing betwen contour 
lines is 38.6 kJ· mol I. Label the location of the oxygen atom in the reactant (OCIO) 

and product (CIOO) molecules. Draw the minimum energy path for the isomerization 
reaction. Which isomer is more stable? Estimate the range for the height of the activation 
barrier for this isomerization reaction from the potential-energy surface. Is the energy 
barrier to isomerization less than, greater than, or equal to the barrier for dissociation into 
O(g) + CIO(g)? 

30-39. The opacity function PCb) is defined as the fraction of collisions with impact param­
eter b that lead to reaction. The reaction cross section is related to the opacity function by 

(f, = ('" 2n:bP(b)db 
10 

Justify this expression. Assume that the opacity function is given by 

PCb) = g 
Show that this opacity function gives the hard-sphere collision theory model for (Jr' 

30-40. The opacity function is defined in Problem 30-39. Determine an expression for bmax in 

terms of dAB' Eo' and Er so that an opacity function given by 

PCb) = g b<b - max 

b>h max 



Problems 

yields the reaction cross section (Jr (E,J for the line-of-centers model (Equation 30.14). 

30-41. For the reaction H(g) + H2 (g), the opacity function (defined in Problem 30-39) is 

rrb 

PCb) == 
Acos--

2b 
max 

o 

b<b - max 

b>b max 

where A is a constant. Derive an expression for the reaction cross section in terms of b . max 

30-42. Explain how the F(g) + D2 (g) reaction can be exploited to make a chemical laser. (Hint: 
See Table 30.2 and Section 15--4.) 

30-43. A quantum-mechanical calculation of the potential-energy surface for the collinear 
hydrogen atom exchange reaction described by H A (g) + HB He (g) ===} H A HB (g) + He (g) 
gives a reaction barrier that lies 58.75 kJ· mol-I above the bottom of the potential well 
of the reactants. Calculate the minimum relative speed for the collision between H(g) and 
H2 (v = 0) so that the hydrogen-atom exchange reaction occurs. Assume that the vibrational 
motion of H2 (g) is harmonic. 

30-44. Below is a drawing of the contour plot of the potential-energy surface of the collinear 
H(g) + H2 (g) reaction in the vicinity of the transition state. We take r 12 and r23 to be the 
bond length of H2 reactant and product, respectively. Label the location of the transition 
state. Draw a dashed line that indicates the lowest energy path for the reaction. Draw a two­
dimensional representation of the reaction path in which you plot V (r

I2
, r

23
) as a function 

of r
l2 

- r
23

. 

]20 

1]0 

a 
~ ]00 

('1 -~ 
90 

80 

I 

80 90 100 1]0 120 

r23 / pm 

30-45. Repeat the calculation in Problem 30--43 for the reaction 

H(g) + D2 (v = 0) ====} HD( v = 0) + D(g) 

Assume that the vibrational motion of D J (g) is harmonic. 
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Dorothy Crowfoot Hodgkin was born in Cairo, Egypt, on May 12, 1910, and died in 1994. 
She received her doctorate in 1934 from Cambridge University for her dissertation on X-ray 
crystallography of large molecules . While a graduate student, she recorded the first X-ray 
diffraction pattern from a protein (pepsin) crystal. She later determined the three-dimensional 
structures of a number of biologically important molecules such as cholesterol, penicillin, 
vitamin B

12
, and zinc insulin (which contains almost 800 atoms). In 1965, Hodgkin was 

awarded the Order of Merit, the highest civilian honor in the United Kingdom, the second 
woman after Florence Nightingale to be thus honored. In 1970, she became the chancellor 
of Bristol University, where she established the Hodgkin Scholarship and Hodgkin House, in 
honor of her husband, for students from third world countries. She was actively involved in the 
campaign for peace and disarmament and served as the president of the Pugwash Conference 
on Science and World Affairs in the 1970s. In 1964, Hodgkin was awarded the Nobel Prize 
for chemistry "for her determinations by X-ray techniques of the structure of important 
biological substances." 



CHAPTER 

Solids and Surface Chemistry 

In this chapter, we examine some of the modern topics in solid-state chemistry. In the 
first half, we discuss the structure of crystals. We will learn that X -ray diffraction can 
be used to determine the structure of atomic and molecular crystals. We will show that 
the X-ray diffraction pattern of a crystal reflects the periodic distribution of the electron 
density in the crystal. In the case of molecular crystals, the X-ray data allow for the 
determination of molecular bond lengths and bond angles. 

In the second half of this chapter, we give an introduction to surface chemistry, 
which is the study of how the surfaces of solids catalyze chemical reactions. For 
example, the cracking of large molecules in crude oil is carried out in the presence 
of alumina silicate catalysts, commonly known as zeolites. Zeolites are particularly 
effective at converting olefins and cycloparaffins to the paraffins and aromatics used 
in gasoline and jet fuel. Improving the efficacy of catalytic reactions is an important 
area of both academic and industrial research. A mere 1 % increase in the conversion 
efficiency of catalytic cracking would reduce U.S. oil imports by 22 million barrels 
per year. 

The reaction between H2 and N2 to form NH3 does not occur to any appreciable 
extent in the gas phase, but it readily occurs in the presence of an iron catalyst that 
is doped with K20 and interspersed with Al2 0 3 , This reaction is of great importance 
to society because ammonia is the starting point for the synthesis of all common bulk 
fertilizers. Understanding the details of these types of reactions requires a knowledge 
of how molecules chemically interact with surfaces. 

31-1. The Unit Cell Is the Fundamental Building Block of a Crystal 

Figure 31.1 shows the arrangement of the atoms in a crystal of copper. From this 
arrangement, we can see that the crystal possesses a periodic structure, and we should 
take advantage of this periodicity to describe its structure. We define a unit cell to be 
the smallest collection of atoms (or molecules) in the crystal such that the replication 1271 
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FIGURE 31.1 

A schematic illustration of the location of the 
copper atoms in a copper crystal. Note the periodic 
arrangement of the atoms. 

of the unit cell in three dimensions generates the entire crystal. In other words, we 
will describe the crystal by a repeating pattern of unit cells. Figure 31.2 illustrates 
in two dimensions how a unit cell can generate a crystal lattice. Clearly, a unit cell 
cannot have any arbitrary shape. For example, we cannot have a spherical unit cell 
because there would be gaps between the spheres when this unit cell is replicated in 
three dimensions. It is also impossible to generate a crystal lattice by a unit cell that 
has a five-fold symmetry axis (Problem 31-43). The unit cell must be a geometric 
structure that fills all space when replicated. Figure 31.3 shows the structure of the 

Two-dimensional lattice 

Unit cell 

FIGURE 31.2 
A two-dimensional illustration of the generation of a crystal lattice by a unit cell. 

unit cell of crystalline copper. The unit cell for this crystalline arrangement is a cube. 
Copper atoms are centered on both the corners of the cube and at the faces of the 
cube. If we were to replicate this unit cell in three dimensions, we would obtain the 
structure shown in Figure 31.1. Note that each of the eight corner copper atoms is 
shared by eight neighboring unit cells, and each of the atoms centered at the six faces 
of the cube is shared by two neighboring unit cells (see Figure 31.3). Thus, there are 
(1 / 8)8 + (1/ 2)6 = 4 copper atoms per unit cell. 



a) ( b 

FIG U R E 31.3 

'I. a lom 

/ 

F ur al oms per unil cell: 
al oms l ouch along a race diagona l 

(c) 

The packing of copper atoms in a copper crystal. (a) The set of atoms that contribute to a 
unit cell of the crystal. The unit cell is a cube. (b,c) Copper atoms are centered on the corners 
and at the faces of the cube. Each copper atom is therefore shared between neighboring unit 
cells. (b) The unit cell for a three-dimensional lattice model of copper, where each atom of the 
crystal is associated with a lattice point. (c) The fractions of each copper atom shown in (a) that 
contribute to the unit cell of the crystal. 

EXAMPLE 31-1 
Figure 31.4 shows the unit cell of a potassium crystal. How many atoms are there in 
such a unit cel]? 

SOL UTI 0 N: As Figure 31.4 shows, there are atoms at each corner and one in the 
center of the (cubic) unit cell. The atoms at the corners are shared by eight unit 
cells, and the one in the center lies entirely within the unit cell. Therefore, there are 
(1/8)8 + I = 2 atoms per unit cell of potassium. 

Figures 31.3 and 31.4 are two examples of cubic unit cells. The unit cell in 
Figure 31.3 is called a face-centered cubic unit cell because there are atoms centered 
at the faces of the cube in addition to the atoms at the comers. The unit cell shown in 
Figure 31.4 is called a body-centered cubic unit cell because there is an atom at the 
center of the cube in addition to the atoms at the comers. Only one other type of cubic 
unit cell is possible (Figure 31.5), one calkd a primitive cubic unit cell. Polonium is 
the only element whose crystals have a primitive cubic unit cell. Note that there is only 
one atom per unit cell in a primjtive cubic unit cell. 

So far we have discussed only cubic unit cells. The most general unit cell is a three­
dimensional parallelepiped (Figure 31.6a). We will take the lower left comer of the 
unit cell as the origin of a coordinate system, with the positive a , b, and c axes pointing 
from this origin along the sides of the unit cell. We can describe the geometry of the 
unit cell by specifying a, b, and c, its lengths along the a, b, and c axes, respectively, 
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Tw ,110m, per unit cell : 
atom touch along the main diagonal 

(a) (b) (c) 

FIGURE 31.4 
The packing of potassium atoms in a potassium crystal. (a) The set of atoms that contribute 
to a unit cell of the crystal. The unit cell is a cube. (b,c) Potassium atoms are centered on the 
corners and at the center of the cube. (b) The unit cell for a three-dimensional lattice model of 
potassium, where each atom of the crystal is associated with a lattice point. (c) The fractions of 
each potassium atom shown in (a) that contribute to the unit cell of the crystal. 

and its angles ex , {3 , and y between pairs of axes. Figure 31.6b shows that this unit cell 
generates a three-dimensional solid when replicated in three dimensions . 

You might think there is an infinite number of unit cells that can be lIsed to generate 
crystal lattices. but in 1848, the French physicist August Bravais proved that only 14 

One 8tom per unit ce l l: 
atoms touch along edge of the cube 

(a ( b ) (c) 

FIG U R E 31.5 
The packing of polonium atoms in a polonium crystal. (a) The set of atoms that contribute to a 
unit cell of the crystal. The unit cell is a cube. (b,c) Polonium atoms are centered on the corners 
of the cube. (b) The unit cell for a three-dimensional lattice model of polonium, where each 
atom of the crystal is associated with a lattice point. (c) The fractions of each polonium atom 
shown in (a) that contribute to the unit cell of the crystal. 



c 

a 
a 

(a) (b) 

FIGURE 31.6 
(a) The general shape of a unit cell. We take the bottom left corner of the unit cell to be the 
origin of the 3, b, c coordinate system. The unit cell is defined by a, b, and c, its length along 
the a, b, and c axes, respectively, and the angles a, f3, and y between pairs of axes. (b) By 
replicating the unit cell in three dimensions, a crystal lattice is generated. 

distinct unit cells are necessary to generate all possible crystal lattices. These 14 so­
called Bravais lattices are shown in Figure 31.7. In this chapter, we will focus our 
discussion on the lattices that have orthogonal axes, a == f3 == y == 900

• Note that the 
three cubic Bravais lattices are the primitive cubic (Figure 31.5), the body-centered 
cubic (Figure 31.4), and the face-centered cubic (Figure 31.3) lattices. 

EXAMPLE 31-2 
Copper, which crystallizes as a face-centered cubic lattice, has a density of 8.930 g ·cm-3 

at 20°C. Calculate the radius of a copper atom, assuming that the atoms touch along a 

face diagonal, as shown in Figure 31.3c. Such a radius is called the crystallographic 
radius. 

SOL UTI 0 N: There are four atoms per unit cell, so the mass of a unit cell is 

(4)(63.55 g.mol-- I
) ') 

mass unit cell == 'Ji I == 4.221 x 1 0-2~ g 
6.022 x 10"'-- mol-

and so its volume is 

4.221 X 10-22 g ) 
V. == == 4.727 X 10--3 cm3 

UnIt cell 8.930 g.cm-3 

Because the unit cell is cubic, a, the length of an edge, is given by the cube root of 

V. II' or UnIt ce 

a == (V. )1/3 == 3.616 x 10-8 cm == 361.6 pm 
unit cell 
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F 
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Trigonal 
a=b=c 
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or 
a=b 
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Y= 120° 
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0 
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0 
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0 

R 

Triclinic 
a7=.b7=.c 
a7=./37=.Y 

Monoclinic 
a7=.b7=.c 

y7=. a= /3= 90° 

Orthorhombic 
a7=.b7=.c 

a= /3= Y= 90° 

Tetragonal 
a=b7=.c 

a= /3= Y= 90° 

Cubic 
a=b=c 

a= /3= Y= 90° 

The 14 Bravais lattices. These 14 unit cells generate all the possible three-dimensional crystal 
lattices. The lattices are organized into columns, where P refers to a primitive unit cell (one 
lattice point per unit cell), I refers to a body-centered unit cell, C refers to an end-centered 
unit cell, F refers to a face-centered unit cell, and R refers to a rhombohedral unit cell. The 14 
Bravais lattices are organized into seven classes (triclinic, monoclinic, orthorhombic, tetragonal, 
hexagonal, trigonal, and cubic) by the general geometric features of the lengths of the three 
sides of the parallelepiped and the angles between the 3, b, and c axes of the unit cells. 



31-1. The Unit Cell Is the Fundamental Building Block of a Crystal 

Figure 31.3c shows that the effective radius of an atom in a face-centered cubic lattice 
is given by one-fourth of the length of the diagonal of a face. The length of the diagonal 
is given by 

d == (2) 1/2a == 511.4 pm 

so the crystallographic radius of a copper atom is (511.4 pm) /4 == 127.8 pm. 

EXAMPLE 31-3 
What fraction of the volume of the unit cell is occupied by copper atoms? Assume 
each atom is a hard sphere in contact with its nearest neighbor. 

SOL UTI 0 N: Recall that copper crystallizes in a face-centered cubic structure. Let 
a be the length of the sides of the cubic unit cell. The total volume of the unit cell is 
a3 

• Consider one of the six identical faces of the unit cell shown below. 

T 
a 

1 

If r is the radius of a copper atom, then by the Pythagorean theorem, we have 

or 

The volume of a copper atom in terms of a, the length of the unit cell, is then 

4 na3 

V == nr 3 

3 6(8) 1/2 

There are a total of four copper atoms per unit cell, so the fraction of occupied volume 
IS 

4V 
fraction occupied == -3 == 0.740 

a 

A crystal lattice is a network of points that reflects the symmetry of the represen­
tative crystal. The points are mathematical constructs and do not necessarily depict 
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atoms. Generally, the lattice points may represent a single atom, a molecule , or even a 
collection of atoms or molecules in the crystal. The unit cell is then formed by connect­
ing lattice points and is usually the smallest parallelepiped of lattice points such that the 
replication of the unit cell in three dimensions generates the entire lattice. For example, 
each atom in the copper crystal could be represented by a lattice point in the unit cell 
given by Figure 31.3b. In this case, we have simply replaced each copper atom in the 
crystal by a single lattice point. Now consider the face-centered cubic unit cell of crys­
talline C

60 
molecules, Figure 31.8. Rather than describing the location of each of the 

atoms of each C60 molecule, we can associate a lattice point with a single C60 molecule 
and then represent the unit cell by the si mple structure shown in Figure 31.8b. In this 
case, the lattice point represents the location of a molecule in the crystal. 

1411 pm 

1411 pm 

q.. ).:; 1\ 
t 

"- ~ 
1f. '" 

~ 
1'. 
~I.~ 

1411 pm 

(a ) (b 

FIG U R E 31.8 

(a) A face of the face-centered cubic unit cell of crystalline C
60

. A C60 molecule is centered 
on each comer and at the face. The center-to-center distance between C60 molecules on one 
of the sides of the cube is 1411 pm. If we associate each C

60 
molecule with a point on a 

three-dimensional lattice, the unit cell in terms of these lattice points is given by the structure 
shown in (b). Because each lattice point represents one C

60 
molecule, the distance between 

lattice points along the side of the unit cell is 14 J I pm. 

31-2. The Orientation of a Lattice Plane Is Described by its 
Miller Indices 

The coordinates of the atoms contained in a unit cell are expressed in units of a, b, 
and c, the lengths of three edges of the unit cell. For example, consider the primitive 
cube unit cell (Figure 31.5). If we take the lattice point at the bottom left corner to be 
the origin of the crystal coordinate system, the coordinates of this point are Oa, Ob , Oc, 
which we will write as (0,0,0). We see that moving a distance a along the a axis from 
the origin takes us to the lattice point la , Ob , Oc , or (I ,0,0). The remaining lattice points 
of the primi tive cubic unit cell are (0,1,0), (0,0,1), (I , I ,0), (1 ,0,1), (0, I , I) , and (1 ,1, I). 



31-2. The Orientation of a Lattice Plane Is Described by its Miller Indices 

EXAMPLE 31-4 

What are tbe coordinates of the lattice points in the body-centered cubic unit cell? 

SOL UTI 0 N: The body-centered cubic unit cell has lattice points at each of the eight 

corners of the cube and a lattice point at the center of the cube. The lattice points at the 

corners are separated by the length of the edges of the unit cell, so these lattice points 

have the same coordinates as those of the primitive cubic unit cell, or (0,0,0), (1,0,0), 

(0, 1,0), (0,0, I), (I, I ,0), (1,0, I) , (0, I, I), and (1 ,1, I). The lattice point at the center of 

the cube is located at a distance of 112 the length of all three edges of the unit cell, or 

(1/2,1/2,1/2). 

Because of the periodicity of the crystal lattice, we can view the lattice as being 
comprised of sets of equally spaced parallel planes containing lattice points (Fig­
ure 31.9). Although this particular description of the crystal lattice may seem to be 
just another arbitrary way of looking at the crystal structure, it is important for un­
derstanding X-ray diffraction patterns and relating these patterns to the distances and 
angles between atoms and molecules in the crystal. As for the coordinates of the lattice 
points, we would like to describe a set of parallel crystallographic planes in terms of 
the lengths of the three sides of the unit cell. Consider a plane that intersects the a, b, 
and c axes of a unit cell at points a' , b', and c'. For example, the planes in Figure 31. 9b 
intersect the a axis at a, intersect the b axis at b, and are parallel to the c axis (that 
is, the planes intersect the c axis at infinity). Thus, a' , b' , and c' in this case are a, b, 
and 00. We designate the plane by the three indices 

a 
h= -

a' 
b 

k= -
b' 

c 
l =-, 

c 
(31.1 ) 

which in the case of Figure 31.9b are I, I, and 0, which we write as 110. Thus, we 
refer to the planes shown in Figure 31. 9b as the 110 planes. Similarly, the planes in 
Figure 31.9c intersect the a, b, and c axes at a' = a, b' = b, and c' = c, so in this case 
h = 1, k = 1, and l = I and the planes are called the III planes. 

c 
b 

iL-_+ a 

FIG U R E 31.9 

100 plane s 

(n 

110 plane 

(b) 

III plane 

(c) 

Various sets of equally spaced parallel planes for a primitive cubic lattice. The indices hkl are 
associated with a family of parallel planes separated by a distance al h along the a axis, bl k 
along the b axis, and cl I along the c axis, where a, b, and c are the lengths of the sides of the 
unit cell. (a) 100 planes (b) 110 planes (c) III planes . 
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The three indices h, k, and I that we use to specify parallel planes through a 
crystal lattice are called Miller indices. These indices uniquely specify a set of parallel 
planes within a crystal. The Miller indices are associated with a family of parallel 
planes separated by a distance a j h along the a axis , b j k along the b axis , and cj l 
along the c axis . Figure 31. lOa illustrates the set of 220 planes of a cubic lattice. 
The darkened plane intersects the a., b, and c axes at a' = a j2, b' = bj 2, and c' = 
00, so h = 2, l = 2, and I = 0 and the planes are called the 220 planes. The set 
of 220 planes are separated by a distance of a j 2 and b j 2 along the a and b axes 
of the crystal, respectively. Now cOlllsider the set of planes shown in Figure 31.1 Ob. 
Taking the origin of the coordinate system of the unit cell to be at the lower left 
corner of the cube, the darkened plane intersects the crystal axes of the unit cell 
at a' = a, b' = b , and c' = - c, so Equations 31.1 give h = k = I and l = -1. By 
convention, we designate negative indices by the con'esponding number with a bar 

- -
over it, hence the designation Ill . Figure 31.lOb illustrates the set of III planes of a 
cubic lattice. 

We give without proof that d , the perpendicular distance between adjacent hkl 
planes for a orthorhombic unit cell (see Figure 31.7), is given by 

(31.2) 

For a cubic unit cell (a = b = c), Equation 31.2 simplifies to 

(31.3) 

c 
b 

"-----.... a 

(a) (b) 

FIGURE 31.10 
(a) An illustration of the set of parallel 220 planes of a cubic lattice. The highlighted plane 
intersects the crystal axes at a' = a / 2, b' = b / 2, and c' = 00, hence the designation 220. (b) An 

illustration of the set of parallel 111 planes of a cubic lattice. The highlighted plane intersects 
the crystal axes of the unit cell at a' = a, b' = b, and c' = - c, hence the designation Ill . 



31 -3 . The Spacing Between Lattice Planes Can Be Determined from X-Ray Diffraction Measurements 

EXAMPLE 31-5 
Consider an orthorhombic unit cell with dimensions 0 = 487 pm, b = 646 pm, and 
c = 415 pm. Calculate the perpendicular distance between (a) the 110 planes and (b) 
the 222 planes of this crystal. 

SOL UTI 0 N: The sets of parallel I J 0 and 222 planes that cross an orthorhombic 
unit cell are shown below. 

c 
b 

"-----. a 

I 10 222 

We can find the perpendicular distances between adjacent planes using Equation 31.2. 
For the 110 planes, we have 

I h2 e f 
-=-+-+-
d2 

0
2 b2 c2 

I I 0 = + + 1 = 6.61 X 10- 6 pm- 2 

(487 pm)2 (646 pm)2 (415 pm)· 

or d = 389 pm. For the 222 planes, a similar calculation gives d = 142 pm. 

31-3. The Spacing Between Lattice Planes Can Be Determined from 
X-Ray Diffraction Measurements 

The structure of a crystal can be determined using the technique of X-ray diffraction. 
X-rays are generated by bombarding a metal target (often copper) with high-energy 
electrons inside a vacuum tube. Collisions between the high-energy electrons and 
copper atoms generate electronically excited copper cations, which then relax back to 
their ground state by emitting a photon. The radiation emitted consists of two closely 
spaced lines at 154.433 pm and 154.051 pm. One of these is then directed at a single 
crystal. The crystal mount can be rotated, enabling the experimenter to orient the 
incident X·rays with respect to the three crystallographic axes. Most ofthe X-rays pass 
straight through the crystal. A small amount of the radiation, however, is diffracted by 
the crystal, and the pattern of this diffracted light is recorded by a two-dimensional 
array detector. The image recorded on the detector is called the diffraction pattern. 
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FIGURE 31.11 
The X-ray diffraction pattern observed from a single crystalline sample of tungsten. 
The unit cell of tungsten is a body-centered cube. 

Figure 31.11 shows the X-ray diffraction pattern from a single crystal of tungsten. We 

see that the pattern is a collection of spots of varying intensity. We will now learn 

that the positions and intensities of the diffraction spots are determined by the spacing 

between the different sets of parallel hkl planes of the crystal lattice. 

Consider two lattice points Al and A2 (Figure 31.12) that lie in neighboring hkl 

planes and lie along the a axis of the crystal and are separated by a' . (For example, 

the planes might be perpendicular to the plane of Figure 3l.l2.) Let a o be the angle 

of incidence of the X-ray beam and a be the angle of diffraction. Now consider an 

observer situated at the angle a. If aj ao' the X-rays diffracted from lattice point Al 

B 

a 

a'=a/II 

FIGURE 31.12 
An illustration of the scattering from lattice points along the a axis contained in adjacent hkl 
planes. (For example, the hkl planes might be perpendicular to the plane of the figure.) The hkl 
planes are parallel , so ao' the angle of incidence of the X-ray radiation , is the same for each 
lattice point. The X-rays then scatter from these lattice points at an angle a. 



31-3. The Spacing Between Lattice Planes Can Be Determined from X-Ray Diffraction Measurements 

travel a different total path length in reaching the observer than those diffracted from 

lattice point A
2

• This difference in the path length, ~, is given by 

(31.4 ) 

in Figure 31.12. If the distance ~ is equal to an integral multiple of the wavelength of 

the X-ray radiation, the two diffracted beams will interfere constructively. If ~ is not 

equal to an integral multiple of the wavelength of the X-ray radiation, the two beams 

interfere destructively. If we extend this argument to include diffraction from all the 

atoms in the row shown in Figure 31.12, then to observe a diffraction signal, the light 

diffracted from each atom in the row must interfere constructively. This means that the 

crystal plane must be oriented with respect to the incident X-rays so that ~ is equal to 

an integral multiple of the wavelength of the X -ray radiation, or that ~ == nA, where n is 

an integer. Now suppose that this condition is satisfied for a particular set of hkl planes 

in the crystal. From the geometry shown in Figure 31.12, we have A2B == a' cos ao and 

Al C == a' cos a, so we can write Equation 31.4 as 

~ == a' (cos a - cos ao) == nA (31.5) 

The distance between lattice points along the a axis in neighboring hkl planes is given 

by a' == aj h, where a is the length of the unit cell along the a axis. We can therefore 

rewrite Equation 31.5 in terms of the Miller index and the unit cell length, 

a(cosa - cosao) == nhA (31.6) 

The diffraction spots that correspond to n == 1 are called first-order reflections; the 

diffraction spots that correspond to n == 2 are called second-order reflections, and so 
on. 

There is an equation similar to Equation 31.6 for each of the other two axes of the 

crystal. If we take f30 and Yo to be the angles of incidence of the X-ray radiation with 
respect to the band c axes of the crystal and f3 and y as the corresponding diffraction 
angles, the equations for first-order diffraction from the lattice points along the band 
c axes in a set of parallel hkl planes are given by 

b (cos jJ - cos f3o) == kA (31.7) 

and 

c(cos y - cos Yo) == lA (31.8) 

Equations 31.6 through 31.8 were originally derived by the German physicist Max von 

Laue and are collectively called the von Laue equations. 

As an example of how to use the von Laue equations, we will consider the diffraction 

pattern obtained when an X -ray beam is directed at a crystal whose unit cell is a primitive 

cubic. We will orient the crystal such that the incident X-rays are perpendicular to the 
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a axis of the crystal. In this case, ao' the angle between the X-rays and the a axis of the 
crystal is 90°, and the von Laue equations for first-order diffraction become 

a cosa = hA (31.9) 

a(cos f3 - cos f3o) = kA (31.10) 

a(cos y - cos Yo) = fA (31.11 ) 

Consider the set of parallel planes hOO. Equation 31.9 tells us that each value of h 
corresponds to a specific value of the scattering angle a. For h = 0, cos a = 0 and 

a = 90°; for h = 1, cosa = A/a~ for h = 2, cosa = 2A/a; etc. Furthermore, f3 = f30 

and y = Yo because k = 0 and f = O. Thus, the von Laue equations show that when the 
crystal is oriented with its a axis perpendicular to the incident X-rays, the hOO planes 
will give rise to a set of diffraction spots that lie along a line that is perpendicular 
to the direction of the incident X-rays and parallel to the a axis of the crystal (see 
Figure 31.13). For h = 0, cos a = 0, so a = 90°, meaning the X-ray beam passes 
straight through the crystal (see Figure 31.13). Positive values of h give a series of 
diffraction spots through positive values of a, where a is given by cos a = hA / a with 
h = 1, 2, .... Negative values of h give a series of diffraction spots through negative 
values of a. Thus, we obtain the diffraction pattern shown in Figure 31.13. 

Example 31-6 shows how we can use the spacing between the 000 and 100 
diffraction spots to determine the spacing between lattice points along the a axis of the 
unit cell. If we were to collect diffraction information for the crystal oriented with the 
incident X -rays perpendicular to both the band c axes, we could determine the lattice 
spacing along these axes in a similar manner. 

i 
FICURE 31.13 
An illustration of the X-ray diffraction pattern from the hOO planes of a crystal in which the 
incident X-rays are perpendicular to the a axis of the crystal. 



31-3. The Spacing Between Lattice Planes Can Be Determined from X-Ray Diffraction Measurements 

EXAMPLE 31-6 
The detector in an X-ray diffractometer is located 5.00 cm from the crystal. A crystal 
whose unit cell is a primitive cube is oriented such that its a axis is perpendicular to the 
incident X-rays. The distance between the detected spots corresponding to diffraction 
from the origin and 100 planes of the crystal is 2.25 cm. The A == 154.433 pm line of 
copper is used as the X-ray source. What is the length of the unit cell along the a axis? 

SOL UTI 0 N: The geometry of this experiment is shown below. 

h = 1 

a 

2.25 em 

X-ray 

5.00 em h=O 
a 

i 
The incident X -rays are perpendicular to the a axis of the crystal, so the scattering 
pattern from the hOO planes will look like that shown in Figure 31.13. The scattering 

from the origin planes passes straight through the crystal. The angle ex corresponding 
to the diffraction from the 100 planes is given by Equation 31.9 

a cos a == A 

We can solve this equation for the cell constant a, 

a ==-- (1) 
cos ex 

The above drawing shows that tan a == 5.00/2.25 or ex == tan-I (5.00/2.25) == 65.77°. 
Substituting this into Equation 1 gives us 

154.433 pm 
a == == 376.37 pm 

cos 65.77° 

For an arbitrary hkl plane, the direction of diffraction with respect to the a axis is 
the same as that for the hOD planes. But there is also diffraction with respect to the band 
c axes. Thus, the diffraction spots from an hkl plane will lie along the surface of a cone 
that makes an angle ex with respect to the plane defined by the direction of the incident 
X-rays and a axis of the crystal (Figure 31.14). The exact location of the diffraction spot 
along this cone depends on the scattering angles f3 and y , which depend on the values 
of k and I and are determined by Equations 31.7 and 31.8. Figure 31.15 illustrates the 
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17=2 

h=1 
X-ray 

h=O 

r 
I 

~-
h =-1 a 

h = 2 

FIGURE 31.14 
The scattering from the hkl planes in the crystal, where the incident X-rays are perpendicular 
to the a axis of the crystal. The filled dots represent the scattering from the hOO planes (see 
Figure 31.13). For hkl planes where k and/or l are not equal to zero, the scattering angle with 
respect to the crystal a axis is the same as that for the h 00 plane. Thus, diffraction spots from 
the hkl planes lie along the surface of a cone of constant scattering angle a with respect to the 
crystal a axis. The exact location of the spot from a particular hkl plane is determined by the 
van Laue equations. 

a 

FIGURE 31.15 
The diffraction spots from some of the hkl planes of a primitive cubic crystal whose a axis 
is oriented perpendicular to the incident X-rays. Each spot corresponds to unique values of 
the diffraction angles a, f3, and y. The diffraction angles can be determined by the van Laue 
equations. 

location of the diffraction spots from some of the hkl planes of the primitive cubic 
crystal we have been discussing. 

You might have learned in general chemistry that the English chemist William 
Bragg developed an alternative way of looking at X-ray diffraction. Bragg modeled the 
diffraction of X-rays from crystals as originating from the reflection of X-rays from 



31-3. The Spacing Between Lattice Planes Can Be Determined from X-Ray Diffraction Measurements 

the various sets of parallel hkllattice planes. The derivation of his equation is given in 

Problem 31-29, and the result is 

A = 2 (~) sine (31.12) 

where e is the angle of incidence (and reflection) of the X-rays with respect to the 
lattice plane, A is the wavelength of the X -ray radiation, and n == 1, 2, ... is the order 
of the reflection. Equation 31.3 gives d in terms of the Miller indices for a cubic unit 
cell, and so we can write Equation 31.12 as 

(31.13) 

EXAMPLE 31-7 
Silver crystallizes in a face-centered-cubic structure with a unit cell length of 408.6 pm. 

Use the Bragg equation to calculate the first few observed diffraction angles from the 

III planes using X-radiation with a wavelength of 154.433 pm. 

SOL UTI 0 N: The smallest diffraction angle occurs for n == 1 (first-order diffraction), 

so Equation 31.13 gives 

A 2 . (154.433 pm)2 
sin2 () == - (h 2 + k2 + [2) == , (3) 

4a2 4(408.6 pm)"-

== 0.1071 

or () == 19.11 . The next smallest diffraction angle occurs for 11 == 2 (second-order 
diffraction), so 

sin2 
() == (4) (0.1 071) == 0.4284 

Equation 31.12 can be derived from the von Laue equations, so the two approaches are 
equivalent ways of viewing the origin of the observed diffraction patterns (Problems 
31--44 and 31--45). 

We see from the von Laue equations that the angle of diffraction depends on the 
incident angle, the dimensions of the unit cell, the wavelength of the X-ray radiation, 
and the Miller indices. In practice, diffraction spots are not observed from all hkl planes 
of the crystal lattice. For example, an atomic crystal whose unit cell is body-centered 
cubic shows no diffraction from the hkl planes in which h + k + I is an odd number. 
In addition, the intensity of the diffraction spots corresponding to different hkl planes 
can vary significantly. To understand which lattice planes give rise to diffraction spots 
and what determines the intensity of these spots, we need to examine the details of how 
atoms diffract X-rays. 
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31-4. The Total Scattering Intensity Is Related to the Periodic 
Structure of the Electron Density in the Crystal 

X-rays are scattered by the electrons in crystals. Because both the number of electrons 
and the size of the atomic orbitals vary from atom to atom, different atoms have different 
scattering efficiencies. The scattering factor of an atom, f, is defined by 

f == 4;r per) r 2dr l Xl sinkr 

o kr 
(31.14 ) 

where p (r) is the spherically symmetric electron density (number of electrons per unit 
volume) of the atom and k == (4][ / A) sin e, where () is the scattering angle and A is 
the wavelength of the X-radiation. The wavelength of the X-radiation used to record 
diffraction patterns is comparable with the size of an atom, so the scattering from 
different regions of an atom interfere with each other. The integrand in Equation 31.14 
takes this interference into account through the factor sin (kr) / kr. Figure 31.16 shows 
a plot of f as a function of sin e / A for different atoms. 

f 

30 

Br 

Fe 2+ 

Ca 2+ 

20 
CI 

1 0 

FIGURE 31.16 

04=~~~~--~~~!-

The dependence of the scattering factors on the 
number of electrons and the angle of diffraction. The 
scattering factor for e = 0 is equal to the total number 
of electrons on the atom or ion. 

0.0 0.4 0.8 1.2 

sin e / A 

EXAMPLE 31-8 
Show that the scattering factor of an atom in the direction e = 0 is equal to the total 

number of electrons on the atoln. 

SOL UTI 0 N: A scattering angle of e = 0 means that the X-rays pass straight 

through the atom. If e = 0, then k = (47T / A) sin e = 0, and the term sin(kr) / kr 
in Equation 31.14 is indeterminate. To evaluate the integrand, we need to evaluate 

limkr~() (sin kr / kr). If we express sin kr in terms of a power series in kr (see Math­

Chapter I), then 

(kr)3 
sin kr kr - + ... 

lim = lim 3! = 1 + O[(kr)2] 
kr~O kr kr----70 kr 



31-4. Total Scattering Intensity Is Related to the Periodic Structure of the Electron Density in the Crystal 

Thus, Equation 31.14 becomes 

f = 4][ t'" p(r)r2dr 
in 

The integrand is the product of the electron density and the spherical volume element 
4n r2 dr, which upon integration gives the total nUlnber of electrons in the atom. 

Now let's consider the one-dimensional lattice shown in Figure 31.17. This lattice 
consists of two different types of atoms, 1 and 2, with scattering factors II and 1

2
, 

respectively. The distance betweeen successive 1 atoms or successive 2 atoms is a / h, 
where a is the length of the unit cell along the a axis, and the distance between 
successive 1 and 2 atoms is x. If the crystal is oriented such that Equation 31.6, the von 
Laue equation governing scattering from atoms along the a axis, is satisfied, then the 
difference in path length traveled by X-rays diffracted by successive 1 atoms, ~11' (or 
successive 2 atoms, ~22) is given by (see Equation 31.5), 

(31.15) 

where we have taken n = 1. However, the difference in path length traveled by X-rays 
diffracted by successive 1 and 2 atoms is given by 

FIGURE 31.17 

~12 = x(cosa - cosao) 

I~I 
I 2 

I'" .1 alh I 

\ 

\ 

I+--~I 
a Ih ' 

\ 

\ 

\ 

\ 

\ , 
/ \ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

(31.16) 

2 
a 

An illustration of the scattering from a lattice consisting of two different types of atoms. 
The distance between the successive 1 atoms and successive 2 atoms is a / h and the distance 
between successive 1 atoms and 2 atoms is x. 
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and is not equal to an integral number of wavelengths. The difference in path lengths 
traveled by the X-rays scattered from the successive 1 and 2 atoms can be found by 
rearranging Equation 31.15 to give 

Ah 
cos a - cos ao == -

a 

and then substituting this result into Equation 31.16 

Ahx 
~12 ==-­

a 
(31.17) 

This difference in path length corresponds to a phase difference between the diffracted 
beams from successive 1 and 2 atoms of 

~)2 Ahx/a 
¢ == 2n- == 2n--

A A 

2nhx 
(31.18) 

a 

The amplitude of the light scattered from successive 1 and 2 atoms is then 

A == II coswt + 12 cos(wt + ¢) (31.19) 

where II and 12 are the scattering factors of atoms 1 and 2, respectively, and w is 
the angular frequency of the X-ray radiation. For convenience, we will use expo­
nential functions instead of cosine functions (see MathChapter A) to describe the 
time-dependent behavior of the electric field, whereby we can write Equation 31.19 as 

(31.20) 

Recall that the detected intensity is proportional to the square of the magnitude of the 
amplitude (Problem 3-31), so 

I ex I A 12 == [II e iWf + I
2
e i (wf+¢)] [II e iwt + I

2
e- i

(wt+¢)] 

== j'2 + I f ei
¢ + f f e- i

¢ + j2 
I I 2 ' I 2 2 

(31.21) 

The first two terms of Equation 31.21 reflect the constructive interference of the X-rays 
scattered from the set of parallel planes through the 1 atoms and 2 atoms, respectively. 
The third term takes into account the interference of the scattering from these two 
sets of parallel planes. We see from this result that the intensity does not depend on 
the frequency of the X -radiation but only on the phase difference between the two 
diffracted beams. We can therefore ignore the eievr term in Equation 31.20, and define 
F (h), the structure factor along the a axis of the crystal, to be 

(31.22) 

where ¢ is given by Equation 31.18. The intensity (Equation 31.21) is then proportional 
to IF(h)12. 
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Generalizing Equation 31.22 to three dimensions for a unit cell that contains atoms 
of type j located at points x., y., and z ., gives us 

} } .I 

F(hkl) ::= '""'" j'.e2rri(hxj/a+kYj/h+l;j/c) 
L..t .J 

j 

(31.23) 

where Q, b, and c are the lengths of the three sides of the unit cell, f. is the scattering 
.J 

factor of an atom of type j, and hkl are the Miller indices of the diffracting planes. The 
coordinates x., y., and z. are commonly expressed in units of a, b, and c, the lengths 

} } } 

of the unit cells, in which case Equation 31.23 can be written as 

F(hkl) == L ~e2rri(hX;+kY;+1Z.~) (31.24) 
.J 

where x~ == x. / Q, y~ == y. / b, and z'· == z· / c. The quantityF (hkl) is called the structure 
J .J .J.J J.J 

factor of the crystal. Generalizing Equation 31.21 to three dimensions shows that the 
intensity of a diffraction spot from a crystal is proportional to the square the magnitude 
of the structure factor, so that I ex 1 F (hkl) 12. Thus, if F (hkl) == 0 for any set of Miller 
indices h, k, and I, then those planes will not give rise to an observable diffraction spot. 
The following Example illustrates such a result. 

EXAMPLE 31-9 
Derive an expression for the structure factor for a body-centered cubic unit cell of 
identical atoms. Do all the hkl planes of the crystal lattice give rise to diffraction spots? 

SOL UTI 0 N: In Example 31-4, we showed that the coordinates of the lattice points 
in a body-centered cubic unit cell are (0,0,0), (1,0,0), (0, 1,0), (0,0,1), (1,1,0), (1,0,1), 
(0,1,1), (1,1,1), and (1/2,1/2,1/2). The unit of distance is a, the length of the side of 
the cubic unit cell, so these coordinates correspond to those given in Equation 31.24. 

Each corner lattice point is shared by 8 unit cells, so we must multiply the scatter­
ing efficiency of each corner lattice point by 1/8. Using Equation 31.24 and setting 

a = b = c because the unit cell is cubic gives us 

F(hkl) = ~ f[e 2ni (O+O+O) + e2ni (h+O+O) + e 2ni (O+k+O) 

+ e2n i (0+0+/) + e2n i (h+k+O) + e2;r i (h+O+/) + e2;riW+k+/) 

Nowe2ni = cos 2n + i sin 2n = 1 and eni = -1, so the above expression simplifies to 

But III = 1 for all n, so 

F(hkl) = ~f[8] + f( 1)I1+k+1 = f[1 + ( l)h+k+/] 

If h + k + I is an even number, then F (hkl) = 2f. If h + k + I is an odd number, 
then F (hkl) = 0. Thus, only the lattice planes such that h + k + I is even give rise to 
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a diffraction spot. Problem 31 - 37 shows that there will be reflections for all integer 
values of h, k , and I for a primitive cubic unit cell and that there will be reflections if 

/7, k, and l are either all even or all odd for a face-centered cubic unit cell. 

Sodium chloride and potassium chloride crystallize in two interpenetrating face­
centered cubic lattices (see Figure 31.18a for NaCl). There are 27 ions that contribute 
to the unit cell. Each cation centered on the corners of the unit cell is shared by eight 
unit cells. The cations centered at the faces are shared between two unit cells. Thus, 
there are (1 / 8)8 + 1/ 2(6) = 4 cations per unit cell. The anion in the center of the unit 
cell is completely contained within the unit cell. The remaining anions are centered on 
the edges of the unit cell and are therefore shared between four unit cells. Thus, there 
are 1 + (1 / 4) 12 = 4 chloride ions per unit cell, or four NaCI or KCI units per unit cell. 

( a ) I U I 

( b ) s I 

FIGURE 31.18 
Space-filling and ball-and-stick representations of the unit cells of (a) NaCI and (b) CsCI. The 
different crystalline structures in the two cases are a direct consequence of the relative sizes of 
the cations and anions. 

We can determine the structure factors for sodium chloride or potassium chloride 
using Equation 31 .24. Let f + and j~ be the scattering factors for the cations and 
anions, respectively. By substituting the locations of the various ions contained in the 
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unit cell into Equation 31.24 (Problem 31-41), the structure factor for sodium chloride 
or potassium chloride is found to be 

F (hkl) == 1+[1 + (_l)h+k + (-1 )h+1 + (-1 )k+/] 

+ 1_[(-l)h+k+1 + (_I)h + (_l)k + (_1)/] (31.25) 

Equation 31.25 shows that 

F(hkl) == 4(1+ + 1_) h, k, and I are all even 
(31.26) 

F(hkl) == 4(1+ - 1_) h, k, and I are all odd 

If two of the indices are even and the third index is odd (or two of the indices are odd 
and the third index is even), then F (hkl) == O. Because the intensity is proportional 
to the square of the magnitude of the structure factor, Equations 31.26 show that the 
intensity of the diffraction spots from the all-even hkl planes will be greater than the 
intensity of the diffraction spots from the all-odd hkl planes. This result is what is 
observed. 

Equations 31.26 also reveal that if the scattering factors of the two ions are nearly 
the same, the scattering from the all-odd hkl planes will be very weak. As mentioned 
above, potassium chloride also crystallizes in a face-centered cubic lattice. But unlike 
NaCI(s), KCI(s) shows no diffraction spots corresponding to scattering from the hkl 
planes where h, k, and I are all odd. Because K+ and CI- are isoelectronic, the scattering 
factors of these two ions are essentially identical. As a result, the structure factor for 
the scattering from the all-odd hkl planes is essentially zero (see Equations 31.26). 

Figure 31.18b shows the structure ofCsCI(s), which is the same as forCsBr(s) and 
CsI(s). The scattering factor for this type of unit cell is (Problem 31-42) 

F(hkl) == (1+ + 1_) h, k, and I are all even or 
just one of them is even 

F(hkl) == (1+ - 1_) h, k, and I are all odd or 
just one of them is odd 

31-5. The Structure Factor and the Electron Density Are Related 
by a Fourier Transform 

In the previous section, we modeled the crystal as a set of atoms located at points 
(x., y., z.) of the unit cell. We then defined the structure factor in terms of the scat-

1 1 1 

tering of X-rays from atoms located at each of the positions in the unit cell. In both 
atomic and molecular crystals, the electron density is not localized at individual points 
within the unit cell. Thus, our model for X-ray diffraction in terms of point scatter­
ers is somewhat simplistic. Instead, we should consider the unit cell of the crystal to 

1293 



1294 Chapter 31 / Solids and Surface Chemistry 

have a continuous electron density distribution p (x, y, z). The structure factor (Equa­
tion 31.23) is no longer simply a sum over discrete atoms but now becomes an integral 
over the continuous electron density distribution in the unit cell: 

1°1h1C F(hkl) == p(x, y, z)e2;ri(hx/a+ky /b+l:/C)dxdydz 

000 
(31.27) 

The entire crystal is built by replicating the unit cell in three dimensions. Each replicated 
unit cell has an identical structure factor, and so for a crystal of dimensions A, B, and 
C along the a, b, and c axes, respectively, 

F (hkl) ex 1A 1 B 1c 
p (x, y, z)e2rri (hx/a+k

y
/b+lz/cl dxdydz 

000 

The electron density p (x, y, z) is zero outside the crystal. Thus, the limits of these 
integrals can be changed to run from - 00 to 00 without affecting the value of the 
integral 

F (hkl) ex i: i: i: p (x, y, z)e2rri
(hx/a+k

y
/b+lz/c) dxdydz (31.28) 

Equation 31.28 shows that F (hkl) is related to p (x, y, z) by what is called a Fourier 
transform. One of the consequences of this Fourier transform relation is that p (x, y, z) 

is given by 

Xi CX) CX) 

p (x, y, z) == L L L F (hkl)e- 2;ruhx/a+k.v/b+lz/c) (31.29) 
h=-oo k= 00 l=-oc 

As we learned in Section 31-4, / (hkl), the intensity of scattered X-radiation from 
the hkl plane of the crystal, is proportional to the square of the magnitude of the struc­
ture factor, / (hkl) ex 1 F (hkl) 12. Experimental diffraction patterns give IF (hkl) 12. To 
calculate p (x, y, z) using Equation 31.29 requires that we determine F (hkl). Because 
F (hkl) is a complex quantity, we can write F (hkl) in terms of the sum 

F(hkl) == A(hkl) + i B(hkl) 

The intensity is then 

/(hkl) ex IF(hkl)1 2 == [A(hkl) + iB(hkl)][A(hkl) - iB(hkl)] 

== [A(hkl)]2 + [B(hkl)]2 

(31.30) 

(31.31) 

Unfortunately, A(hkl) and B(hkl) are not determined individually by a diffraction 
experiment. Only the sum of their squares is measured. The problem of determining 
A(hkl) and B(hkl) from the measurement of / (hkl) is called the phase problem. Crys­
tallographers have developed several methods for circumventing the phase problem. 
Figure 31.19 shows an electron-density map of benzoic acid that was determined from 
the X -ray diffraction pattern of a single crystal of benzoic acid. Each contour line in 



FIGURE 31.19 
An electron-density map of a benzoic acid molecule determined from the X-ray diffraction 
pattern of a benzoic acid crystal. Each contour line corresponds to a constant value of the 
electron density. The location of the nuclei are readily deduced from this electron-density map 
and are represented by the vertices of the solid lines. 

the figure corresponds to a constant value of the electron density. The positions of the 
nuclei are readily deduced from the electron-density map, from which bond length and 
bond angle information can be determined. Today, crystallographers can obtain and 
interpret electron-density maps of large chemical systems including strands of DNA 
and proteins. 

31-6. A Gas Molecule Can Physisorb or Chemisorb to a Solid Surface 

In 1834, the English chemist Michael Faraday suggested that the first step of a surface­
catalyzed reaction was the sticking of the reactant molecule to the solid surface. 
Originally, it was believed that the main effect of the surface is to produce a local 
reactant concentration that is much higher than in the gas phase. Because the rate law 
depends on reactant concentration, this effect would then lead to an increased rate of 
reaction. Today, researchers have confirmed that the sticking of molecules to a surface 
is indeed the first step of surface-catalyzed reactions. As we will learn in the remainder 
of this chapter, however, the solid surface plays a much more important role than simply 
increasing the apparent concentration of reactant molecules. 

A molecule approaching a surface experiences an attractive potential. The process 
of trapping molecules or atoms that are incident on a surface is called adsorption. The 
adsorbed molecule or atom is called the adsorbate, and the surface is referred to as the 
substrate. Adsorption is always an exotherlnic process, and so ~adsH < O. 

There are two types of adsorption processes that need to be distinguished. The first 
is called physisorption (physical adsorption). In physisorption, the attractive forces 
between the substrate and the adsorbate arise from van der Waals interactions. This 
process leads to a weak interaction between the adsorbate and the substrate, and 
the strength of the substrate-adsorbate bond is typically less than 20 kJ· mol-I. The 
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adsorbate-substrate bond is long compared with the length of the bonds in the bulk 
solid. 

The second type of adsorption is called chemisorption (chemical adsorption) and 
was first proposed by the American chemist Irving Langmuir in 1916. In chemisorp­
tion, the adsorbate is bound to the substrate by covalent or ionic forces, much like those 
that occur between the bonded atoms of a molecule. In chemisorption, a bond of the 
molecule is broken and new chemical bonds are formed between the molecular frag­
ments and the substrate. Unlike in physisorption, the strength of the substrate-adsorbate 
bond for a chemisorbed substrate is large; values between 250 and 500 kJ . mol- 1 are typ­
ical. In addition, the length of the substrate-adsorbate bond is shorter for a chemisorbed 
molecule than for a physisorbed molecule. Because chemisorption involves the forma­
tion of chemical bonds to the surface, only a single layer of molecules, or a monolayer, 
can chemisorb to the surface. 

Lennard-Jones originally modeled the physisorbed and chemisorbed states in terms 
of one-dimensional potential-energy curves. Such a model assumes that the substrate 
has only one type of binding site and that neither the angle at which the adsorbate ap­
proaches the substrate nor the orientation of the adsorbate with respect to the substrate 
is important. If so, the potential energy depends only on z, the distance between the 
substrate and the adsorbate. Figure 31.20 shows a plot of one-dimensional potential­
energy curves for the adsorption of a diatomic molecule, AB, on a surface. We define 
V (z) = 0 to correspond to the infinite separation of the substrate and the diatomic 
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One-dimensional potential-energy curves for the physisorption of molecule AB (solid line) and 
the dissociative chemisorption of AB (dashed line). The quantity Z is the distance from the 
surface. In the physisorbed state, the molecule AB is bound to the surface by van der Waals 
forces. In the chemisorbed state, the AB bond is broken, and the individual atoms are bound 
covalently to metal atoms on the surface. The points zch and Zph are the surface-molecule bond 

lengths for a chemisorbed and physisorbed molecule, respectively. The two potential curves 
cross at ze' The activation energy for the conversion from physisorption to chemisorption is 
measured from the bottom of the physisorbed potential and is Ea' 
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molecule. Consider first the physisorbed potential-energy curve. As the distance be­
tween the adsorbate and substrate decreases, the molecule experiences an attractive 
force, so the potential energy becomes negative. The potential energy reaches a min­
imum at Zph (ph for physisorption), and for distances less than Zph' the potential is 
repulsive. The distance Zph is the equilibrium substrate-adsorbate bond length for the 
physisorbed molecule. 

Now consider the chemisorbed potential-energy curve. The chemisorption of a di­
atomic molecule involves breaking the molecular bond between the two atoms and then 
fonning bonds between the atomic fragments and the substrate. This process is com­
monly referred to as dissociative chemisorption. Compared with the physisorbed po­
tential, the chemisorbed potential will have a deeper well depth and a shorter substrate­
adsorbate bond length, zch (ch for chemisorption), (Figure 31.20). Direct desorption 
of the atoms from the substrate generates free atoms in the gas phase. Thus, for large 
values of z, the chemisorbed potential is positive and at infinite separation, the energy 
difference between the chemisorbed and physisorbed potential is simply the diatomic 
bond strength. 

Because the substrate-adsorbate bond length for the physisorbed molecule is larger 
than the chemisorbed molecule, molecules that chemisorb to a surface can be initially 
trapped in a physisorbed state. In this case, the physisorbed molecule is referred to as 
a precursor to the chemisorbed molecule. We see that the two potential-energy curves 
in Figure 31.20 cross at a distance Zc from the surface. If the molecule can hop from 
one potential-energy surface to the other at the point zc' we can think of the molecule 
moving from the physisorbed state to the chemisorbed state as a chemical reaction with 
an activation energy of Ea' For the curve crossing shown in Figure 31.20, the barrier 
to chemisorption is less than the strength of the substrate -AB bond. There are cases 
known, for example H2 on the 110 surface of copper, for which the energy at the curve 
crossing is greater than the substrate -AB bond strength (Problem 31-46). 

31-7. Isotherms Are Plots of Surface Coverage as a Function of Gas 
Pressure at Constant Temperature 

A plot of surface coverage as a function of gas pressure at constant temperature is called 
an adsorption isotherm. In this section, we will learn that adsorption isotherms can be 
used to determine the equilibrium constant for the adsorption-desorption reaction, the 
concentration of surface sites available for adsorption, and the enthalpy of adsorption. 

The simplest expression for an adsorption isotherm was first derived by Langmuir 
in 1918. Langmuir assumed that the adsorbed molecules do not interact with one 
another, that the enthalpy of adsorption was independent of surface coverage, and that 
there are a finite number of surface sites where a molecule can adsorb. The process of 
adsorption and desorption is depicted by the reversible elementary process 

k 

~ A(g) + S(s) {=:=:: A-S(s) K 
kd 

k a 
c 

[A-S] 

[A][S] 
(31.32) 
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where ka and kd are the rate constants for adsorption and desorption, respectively. 
The fact that ka and kd are constants independent of the extent of surface coverage 
implies that the adsorbed molecules do not interact with one another. Let ao be the 
concentration of surface sites in units of m -2. If the fraction of surface sites occupied 
by an adsorbate is e, then a, the adsorbate concentration on the surface, is eao' and 
the concentration of empty surface sites is given by ao - eao =: (1 - e)ao. We now 
assume that the rate of desorption is proportional to the number of occupied surface 
sites and that the rate of adsorption from the gas phase is proportional to both the 
number of available (unoccupied) surface sites and the number density of molecules in 
the gas phase. Mathematically, the rates of desorption and adsorption are given by 

(31.33) 

and 

(31.34) 

where [AJ is the number density or the concentration of A(g). At equilibrium, these 
rates must be equal, so 

or 

1 1 
() = 1 + K)AJ (31.35) 

where K c =: kal kd is the concentration equilibrium constant for Equation 31.32. Gener­
ally the pressure of A(g) and not the concentration of A(g) is measured. If the pressure 
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FIGURE 31.21 
A plot of Equation 31.36, showing that 
the fraction of the surface covered, (), is a 
nonlinear function of the gas pressure. 
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of A(g) is low enough that the ideal-gas law can be used, then LA] == PAl kB T. If we 
define b == Kel kB T, Equation 31.35 becomes 

1 1 
e - 1 + -bP-

A 

(31.36) 

Equation 31.36 is called the Langmuir adsorption isotherm. Figure 31.21 shows a plot 
of e versus b P A' Note that e approaches unity, corresponding to the adsorption of a 
monolayer on the surface, as the pressure becomes large. Example 31-10 shows how 
b and the total number of surface sites available can be determined from the Langmuir 
adsorption isotherm. 

EXAMPLE 31-10 
Experimental adsorption data are often tabulated as the equivalent volume of gas, V, 

that will adsorb onto the surface at a particular temperature and pressure. Typically, 

this volume of adsorbed gas is tabulated as the volume that the gas would occupy under 

a pressure of one atmosphere at 273.15 K (O°C). Langmuir studied the adsorption of 

N
2
(g) onto a mica surface at 273.l5 K. From the data presented below, determine the 

values of b and V m' the volume of gas that corresponds to a monolayer coverage. Use 
this value of V to determine the total number of surface sites. 

111 

P /10- 12 torr V /10-8 m3 

2.55 3.39 

1.79 3.17 
1.30 2.89 

0.98 2.62 

0.71 2.45 
0.46 1.95 
0.30 1.55 

0.21 1.23 

SOL UTI 0 N: A monolayer of coverage corresponds to e = 1. When e = 1, the 
volume V is adsorbed onto the surface. The value of e is then related to V by 

111 n1 

v e=­
V m 

Substituting this expression for e into Equation 31.36 and rearranging the result gives 
us 

1 1 1 

V PbV + V 
m 111 

From this equation, we see that a plot of 1/ V versus 1/ P will have a slope of 1/ b V m 

and an intercept of 1/ V m' The figure below shows such a plot. 
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The intercept of the fitted line is 0.252, giving ~n == 3.96 X 10-8 m3
. The slope of the 

fitted line is 1 .18 x 10-5 torr· m -3, from which we find b == 2.14 x 1012 torr-I. 
At O.OO~)C and 1.00 atm, 1 mol of gas occupies 2.24 x 10-2 m3

. Thus, the number 

of moles of gas in the volume V m is 

3.96 X 10-8 m3 

-------- == 1.77 x 10-6 mol 
2.24 x 10-2 m3 ·mol- I 

which corresponds to 

(6.022 X 1023 mol- I )(1.77 x 10-6 mol) == 1.06 x 1018 molecules 

Because each molecule occupies a single surface site, there are 1.06 x 1018 sites on 
the surface. If the lnica substrate were a 0.01 O-m square, the concentration of surface 
sites would be 

1.06 X 1018 molecules 22 -2 
(To == 2 == 1. 06 x 10m 

(0.010 m) 

Figure 31.22 shows that experimental data for the adsorption of oxygen and carbon 
monoxide on a silica surface are well described by the Langmuir adsorption isotherm. 
Example 31-11 derives the adsorption isotherm for the case in which a diatomic 

.~ 

C/J 
....... 
'''''; 

= ~ 

~ 
~ 

ro 
~ 

....... 
'''''; 

.,.D 
~ 

ro 
'-" 

CD 
............ -

1 ~' \:) 
/ 

0'1/ 
P oC 

/ ,,\.) / 

/ IX o u 

G 

'(\ \, 
\0 

CO 

lIP (arbitrary units) 

o°C 
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A plot of 1/ e, the inverse of the fraction of 
surface sites occupied, as a function of 1/ P 
for 02 (g) and CO adsorbed on silica. The data 
are well described by the Langmuir adsorption 
isotherm (Equation 31.36). The solid lines 
are the best fit of the Langmuir adsorption 
isotherm to the experimental data. 
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molecule dissociates upon adsorption to the surface. Langmuir adsorption isotherms 
can be derived for many different kinetic models of adsorption. 

EXAMPLE 31-11 
Derive the Langmuir adsorption isotherm for the case in which a diatomic molecule 
dissociates upon adsorption to the surface. 

SOL UTI 0 N: This reaction can be written as 

k 

A
2
(g) + 2S(s) d 2A-S(s) 

k d 

K 
k 

c 
a [A-sf 

[A2][sf 

Because two surface sites are involved in the adsorption and desorption process, the 

rates of adsorption, Va' and desorption, Vel' are 

At equilibrium, these rates are equal, and so 

from which we find 

In terms of P
A 

' the pressure of A
2

, 
2 

where b A == K cl kB T. We can rewrite Equation 1 as 
2 

(1) 

from which we see that a plot of 1 If) versus 1 I P ~/2 will yield a straight line of slope 
2 

1 I b ~2 and intercept 1. 
2 

The reciprocal of the rate constant kd in the Langmuir adsorption isotherm has 
an interesting physical interpretation. Consider the one-dimensional potential-energy 
curve shown in Figure 31.23. We see that an energy equal to Eads == -tl.adsH must 
be added to the system to break the adsorbate-substrate bond. Experimentally, k

d
, the 
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FIGURE 31.23 
A one-dimensional potential-energy curve for molecular adsorption. The well depth, E

ads
' is 

the negative of the heat of adsorption, ~adsH. 

rate constant for the desorption of a molecule from a surface, obeys an Arrhenius-like 
. 

expressIon 

k I E jRT == T e ads d () (31.37) 

where Eads == - ~ads H, the enthalpy of adsorption, and To is a constant whose value is 
typically ~ 10- 12 s. The reciprocal of k

d
, which has units of time, is called the residence 

time, T, of a molecule on the surface. Equation 31.37 can be expressed in terms of T 

by taking its reciprocal: 

EXAMPLE 31-12 

E jRT 
T == T e ads o (31.38) 

The enthalpy of adsorption of CO on palladium is -146 kJ ·mol- I
. Estimate the 

residence time of a CO molecule on a palladium surface at 300 K and 500 K. (Assume 

that To == 1.0 X 10- 12 s.) 

SOL UTI 0 N: The residence time is given by Equation 31.38 

E 'RT 
T == r e 'ads/ o 

At T == 300 K 

{ 
146 X 103 J·mol- I 

} 
T == 1.0 X 10- 12 s ex 

( ) p (8.3 14 J . rno I-I . K -I ) (300 K) 

== 2.6 X 10 13 s 

and at T == 500 K 

{ 
146 x 103 J. rn 0 I-I } 

T == 1.0 X 10- 12 s ex 
( ) p (8.3 14 J . mo I-I . K -I ) (500 K) 

== 1800 s 

Notice that the residence time is very temperature sensitive. 



31-8. Rate La\vs for Surface-Catalyzed Gas--Phase Reactions 

Recall that the Langmuir adsorption isotherm applies only to a monolayer. In many 

cases, molecules can adsorb on top of other adsorbed molecules. There are lTIodels that 

can account for this multilayer adsorption~ one is presented in Problem 31-68. 

31-8. The Langmuir Adsorption Isotherm Can Be Used to Derive Rate 
Laws for Surface-Catalyzed Gas-Phase Reactions 

Consider the surface catalysis of the first-order gas-phase reaction 

k 
A(g) 0[1,> B (g) 

such that the observed rate law is given by 

G_I[B_] == k P 
dt obs A 

(31.39) 

We will propose that this reaction occurs by the following two-step mechanislTI 

k k 
A(g) ~ ACads) :::::h} B(g) 

The first step is the adsorption of A(g) onto the surface. Once adsorbed, the molecule 

reacts to form products, which then immediately desorb into the gas phase. The rate 

law for the second step of the reaction mechanism can be written as 

(31.40) 

where a
A 

is the surface concentration of A. If there is a total of ao surface sites, then 

a A == (Joe. Using a Langmuir adsorption isotherm to describe e (Equations 31.35 and 

31.36), the rate law becomes 

d[B] == k ()oKc[A] == k tJObPA 

dt 11+K
c
[A] 11+bPA 

(31.41) 

At low gas pressures, b P A « 1, and the rate law becomes first order in reactant pressure, 

(31.42) 

and we have rationalized the observed rate law. 

For high gas pressures, b I~A » 1 and Equation 31.41 becomes zero order in the 

reactant pressure, 

d[B] 
--==ka ==k d t I 0 nbs 

(31.43) 

Thus, the proposed mechanisrll Inakes the experimentally verifiable prediction that 

the rate should approach an upper limit as the pressure increases. Most reactions are 

studied at low pressure and according to Equation 31.42 the observed rate constant 
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is equal to the product kl (Job. To determine the rate constant, k" both (Jo and b must 
be independently determined. We know from Example 31-10 that these values can be 
obtained from adsorption isotherm data. 

The same general approach can be used to derive expressions for the rate laws for 
the surface catalysis of bimolecular gas-phase reactions. Two general mechanisms, the 
Langn1uir-Hinshelwood mechanisln and the Eley-Rideal mechanisnl, are commonly 
used to describe how surfaces catalyze bimolecular gas-phase reactions. Here we 
illustrate these models by applying them to the oxidation reaction of CO(g) by O

2 
(g) 

on a surface of platinum. The balanced equation for the oxidation reaction between 
CO(g) and OJ (g) is 

"-

2 CO(g) + O
2 
(g) ----.-+) 2 CO

2 
(g) (31.44) 

The Langmuir-Hinshelwood mechanism for the above reaction is as follows: 

CO(g) <~ :> CO( ads) 

k 
CO(ads) + O(ads) ~ CO

2
(g) 

In this mechanism, both reactants compete for surface sites. The CO(g) molecule ad­
sorbs molecularly and O

2 
(g) dissociatively chemisorbs. A reaction then occurs between 

an adsorbed CO molecule and an adsorbed 0 atom, producing molecular CO, (g), which 
"-

immediately desorbs from the platinum surface. If we assume ideal-gas behavior, that 
the first two steps of the mechanism are in instantaneous equilibrium during the course 
of the reaction, and that the third step of the above mechanism is rate determining, then 
the rate law for the Langmuir-Hinshelwood mechanism is (Problem 31-57) 

k b b ll2p P 1/2 
3 CO 0, eo 0, 

- -v = -------------------
(1 + b 1/2 P 1/2 + b p )2 

O2 O2 co co 
(31.45) 

where k3 is the rate constant for the third step of the mechanism, beo = Keo/ kB T, 
bo = Ko / kB T, and Keo and Ko are the equilibrium constants for the first two steps 
of

2

the La~gmuir-Hinshelwood m~chanism. 

EXAMPLE 31-13 
Consider the rate law given by Equation 31.45. Determine the form of rate law if (a) 

the surface is sparsely covered with reactants, and (b) the adsorption of CO(g) is much 
more extensive than the adsorption of 02 (g) to the surface. 

SOL UTI 0 N: This example asks that we consider limiting cases for the general rate 
expression given by Equation 31.45. 
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(a) If the surface is sparsely covered, then b~2 p~~2 + beoPeo « 1, so the denominator 
of Equation 31.45 is approximately 1 and the rate is 

(b) If the adsorption of CO(g) is lTIuch more extensive than the adsorption of 02 (g) 
to the surface, the denominator of the rate law in Equation 31.45 is dominated by the 

b eo P eo term, and the rate law becomes 

k bI/2 pI/2 
3 02 02 

beoPco 

The Eley-Rideal mechanism proposes that the oxidation occurs by the following 
three-step mechanism: 

CO(g) -< ~> CO( ads) 

k 
CO(g) + O(ads) ~ CO2 (g) 

Even though both CO(g) and 02(g) can adsorb onto the surface, the reaction does 
not occur between adsorbed reactants. In the Eley-Rideal mechanism, the 02 (g) dis­
sociatively chemisorbs to the surface. A subsequent collision between a gas-phase 
CO molecule and an adsorbed ° atom then generates gaseous CO2 ' In other words, 
the CO(g) molecule abstracts an ° atom from the surface. If we assume ideal-gas 
behavior, that the first two steps of this mechanism are in instantaneous equilibrium 
during the course of the reaction, and that the third step of the above mechanism is rate 
determining, then the rate law for this mechanism is (Problem 31-58) 

(31.46) 

EXAMPLE 31-14 
Consider the reaction given by Equation 31.44. Plot the predictions of the two models, 
Equations 31.45 and 31.46 as a function of the partial pressure of CO(g) at a fixed 
pressure of 02 (g). 

SOL UTI 0 N: Let us first consider the limiting expressions for the rate laws when 

Peo « P
02 

and when Peo » Po,' 
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(a) The LanglTIuir-Hinshelwood rate law: If Peo « Po,' we can neglect beoPeo in the 
denominator of Equation 31.45 to obtain -

for a fixed pressure of 02 (g). If Peo » P O
2

' then 

for a fixed pressure of 02 (g) and large values of Peo ' 

(b) The Eley-Rideal rate law: If P eo « Po" then we can neglect b eo P eo in the 
denominator of Equation 31.46 to obtain . 

for a fixed pressure of 02(g)· If Peo » Po ' then 
2 

k b b l/2p pl/2 
3 eo O2 eo O2 v ;::::::;: ------- ;::::::;: constant 

1 + beoPeo 

for a fixed pressure of 02(g) and large values of Peo ' Thus, we see that both rate laws 

predict the same behavior when Peo « Po but different behavior for Peo » Po . The 
2 2 

variation of the rate with CO(g) concentration at fixed 0') (g) concentrations for the 
"-

two rate laws are shown below. 

Langmuir-Hinshelwood mechanism 
-

I 
r.fJ 

• 
(",""" 

I 

a 
"'d 
• .--< 

o 
a 

ex::1l Pco 

1 
Peo (at constant Po) 

Eley-Rideal mechanism 

ex:: constant 

Pea (at constant Po) 

These two mechanisms can then be distinguished by measuring the rate of the 

reaction, d Peo / dt, as a function of Peo at a constant pressure of 02 (g). 
2 

Detailed studies of the reaction given by Equation 31.44 show that it occurs 
by the Langmuir-Hinshelwood mechanism. To date~ most of the surface-catalyzed 
bimolecular gas-phase reactions that have been studied in detail are believed to occur 
by the Langmuir-Hinshelwood mechanism, although some do occur by the Eley-Rideal 
mechanism. 



31-9. The Structure of a Surface Is Different from that of a Bulk Solid 

Up to this point , we have ignored the microscopic structure of the surface. The simplest 
model of a surface is to assume that the surface is perfectly flat and that the distance 
between atoms is the same as in the bulk solid. But are surfaces really flat, and are the 
distances between atoms unaffected by their location? These questions are central to 
a molecular understanding of surface chemistry. For example, if the surface is not flat 
and there are many different types of surface sites, the enthalpy of adsorption may vary 
among these sites. Different adsorption sites may have different barriers to desorption 
and may also exhibit different reactivity. Understanding chemical reactions on surfaces 
requires that we have a detailed understanding of the atomic structure of the surface. 

As a result of the invention of various forms of surface-sensitive spectroscopies, 
we now know that most surfaces are not flat. The atomic structure of a surface is char­
acterized by numerous irregularities that can give the surface a significant roughness. 
For example, Figure 31.24 shows a picture of a zinc surface obtained using a technique 
called scanning electron microscopy. Although this picture does not afford atomic res­
olution, it shows that the surface is not flat. Zinc atoms located along the ledges have a 
different number of neighboring atoms from those that sit in the middle of a terrace. In 
addition, the ledges are not straight but have kinks , so atoms at different points along a 
ledge can also have a different number of neighboring atoms. Figure 31.25 illustrates 
some of the structural imperfections found on surfaces. Terraces, steps, and adatoms 
(single atoms) create a number of distinguishable sites where molecules can adsorb. 

Many surface-sensitive spectroscopies probe the surface with low-energy elec­
trons. One of the most important of these techniques is known as low-energy electron 

10 II 

FIG U R E 31 .24 

A scanning electron micrograph of a zinc surface. The surface is not flat but consists of 
a series of hexagonal-shaped terraces. The edge of each terrace is rugged, indicating that 
the zinc atoms do not sit in perfectly aligned rows along any given terrace. 
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FIG U R E 31.25 
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An illustration of some of the poss ible structural defects that occur on a surface. The surface 
is characterized by ledges, steps, and terraces. The steps can be one or many rows of atoms. 
The steps also need not be straight, which gives rise to kinks. Single atoms, or adatoms, may 
sit anywhere on a terrace. There can also be vacancies in the terrace, leaving small holes in the 
surface. These holes are indicated by the dotted cubes. 

diffraction, or LEEO, spectroscopy. Electrons with kinetic energies in the range of 
5000 to 10000 kJ·mol - 1 are commonly called low-energy electrons and penetrate the 
surface of a metal to only about 500 pm. This penetration corresponds to only a few 
atomic layers. When low-energy electrons strike a surface, they scatter. Some of the 
electrons scatter elastically, that is, without any loss of energy; others scatter inelasti­
cally, exchanging their kinetic energy with the vibrational modes of the metal lattice. 
If the de Broglie wavelength of the electrons is comparable with the distances between 
atomic planes in the metal , the elastically scattered electrons can be diffracted. Because 
the electrons penetrate only a few atomic layers from the surface, the diffraction pattern 
is determined by the atomic structure near and at the surface. 

The structure of a crystal surface depends upon how the crystal is cut. We specify 
the structure of the surface by specifying the three Miller indices hkl for the plane of 
the surface that corresponds to the crystal plane in the bulk metal. Thus a III surface 
means that the atoms on the face of the crystal have the same structure that they have 
in the III crystallographic plane (see Section 31-2). Figure 31.26 shows a LEEO 
diffraction pattern for the III surface of platinum. The sharp diffraction spots in the 
LEEO pattern can be used to determine the distance between atoms on and near the 
surface. The analysis of the LEEO diffraction pattern is similar to that used to analyze 
X-ray diffraction patterns. LEEO studies of many surfaces find that surface atoms 
generally occupy sites that are shifted from the atomic positions in the bulk. Most 
atomic metals exhibit a significant contraction , up to 40%, of the interIayer ctistance 
between the first and second layers of atoms. There is often a compensating expansion 
between the second and third layer of about I %, and a smaller but measurable expansion 
between the third and fourth layer. 



(a) (b) 

FIG U R E 31.26 
(a) A LEED pattern for the III surface of platinum. (b) A schematic diagram of the 111 surface 
of platinum. 

31-10. The Reaction Between H2(g) and N2 (g) to Produce NH3(g) 

Can Be Surface Catalyzed 

One of the most thoroughly studied surface-catalyzed reactions is the synthesis of 

NH3(g) from Hz(g) and Nz(g) , 

For this reaction to take place, the Nz bond must be broken; thus, the activation barrier 
is on the order of the dissociation energy of N

2
, which is 941.6 kJ· mol- I. Even though 

~rGo for this reaction is -32.37 kJ·mo!- 1 at 300 K, the barrier to reaction is so large 
that a mixture of Hz (g) and NzCg) can be stored indefinitely without producing any 
appreciable amount of ammonia. But on an iron surface, Nz (g) dissociates with an 
activation energy of::::::: 10 kJ· mol - I. Iron also readily dissociatively chemisorbs Hz (g). 
The adsorbed N atoms and H atoms then diffuse and can react to form NH(ads), 
NH2(ads), and finally NH3(ads), which desorbs into the gas phase. Experimental 
studies provide convincing support that the following steps contribute to the reaction 
mechanism: 

H2(g) + 2 S(s).: > 2 H(ads) 

N/g) <: > N/ads) (physisorption) 

N2(ads) + 2 S(s) <: > 2 N(ads) (dissociative chemisorption) 

N(ads) + H(ads) « ~> NH(ads) 

NH(ads) + H(ads) <: ~> NH
2
(ads) 

NH/ads) + H(ads) « ~> NH3(ads) 
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The rate of the surface-catalyzed synthesis of ammonia is sensitive to both the 
barrier for dissociative chemisorption of N2 from the physisorbed precursor state and 
to the strength of the resulting metal-nitrogen bond. This activation energy and bond 
strength varies with djfferent metals and therefore the rate of reaction depends on the 
particular catalyst used. Figure 31.27 shows the relative rates of ammonia synthesis for 
different transition-metal catalysts. The shape of the curve has led to such plots being 
called volcano curves. With an increasing number of d electrons in the metal catalyst, 
the strength of the metal-nitrogen bond decreases, and thus the rate of NH3 (g) product 
should increase. But with increasing number of d electrons, the activation energy for 
the dissociative chemisorption of N2 (g) increases, causjng a decrease in the rate of 
NH3 (g) production. These two opposing effects lead to the observed volcano curve. 

The rate of a surface-catalyzed reaction is also sensitive to the particular surface, 
as specified by its Miller indices. Figure 31.28 shows the relative rates of NH3 (g) 
production for five different surfaces of iron. A negligible yield of NH} (g) is observed 
on the smooth 110 surface, and the rough 111 surface has the highest yield. Thus, 
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The relative rates of ammonia synthesis for different 
transition-metal catalysts. The shape of the plotted data 
is influenced by the opposing effects of the strength of 
the surface nitrogen bond and the activation energy of 
the dissociative chemisorption of N2 (g) as the number 
of d electron in the metal catalyst is increased. 
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different iron surfaces. 



Problems 

in addition to being sensitIve to different metal catalysts, the synthesis of NH3 (g) 
on an iron surface is sensitive to the microscopic structure of the surface. Extensive 
experimental studies show that this result stems from changes in the activation barriers 
for the dissociative chemisorption of N2 (g) to the surface. 

Problems 
31-1. Polonium is the only metal that exists as a simple cubic lattice. Given that the length of 

a side of the unit cell of polonium is 334.7 pm at 25°C, calculate the density of polonium. 

31-2. Consider the packing of hard spheres of radius R in a primitive cubic lattice, a face­
centered cubic lattice, and a body-centered cubic lattice. Show that Ci, the length of the unit 
cell, and f, the fraction of the volume of the unit cell occupied by the spheres, are given as 
listed. 

Unit cell a f 

Primitive cubic 2R 7f /6 
Face-centered cubic 4R/~ 7f~/6 
Body-centered cubic 4R/~ 7f~/8 

31-3. Tantalum forms a body-centered cubic unit cell with a == 330.2 pm. Calculate the crys­
tallographic radius of a tantalum atom. 

31-4. Nickel forms a face-centered cubic unit cell with a == 351.8 pm. Calculate the crystallo­
graphic radius of a nickel atom. 

31-5. Copper, which crystallizes as a face-centered cubic lattice, has a crystallographic radius 
of 127.8 pm. Calculate the density of copper. 

31-6. Europium, which crystall izes as a body-centered cubic lattice, has a density of 
5.243 g.cm-3 at 20nc. Calculate the crystallographic radius of a europium atom at 20u C. 

31-7. Potassium crystallizes as a body-centered cubic lattice, and the length of a unit cell is 
533.3 pm. Given that the density of potassium is 0.8560 g·cn1-3

, calculate the Avogadro 
constant. 

31-8. CeriUlTI crystallizes as a face-centered cubic lattice, and the length of a unit cell is 
516.0 pm. Given that the density of cerium is 6.773 g·cm 3, calculate the Avogadro 
constant. 

31-9. Given that the density of KBf is 2.75 g·cm-3 and that the length of an edge of a cubic 
unit cell is 654 pm, determine how many formula units of KBr there are in a unit cell. Does 
the unit cell have a NaCl or a CsC) structure? (See Figure 31.18.) 

31-10. Crystalline potassium fluoride has the NaC) type of structure shown in Figure 31.18a. 
Given that the density of KF(s) is 2.481 g. cm --3 at 20"C, calculate the unit cell length 
and the nearest-neighbor distance in KF(s). (The nearest-neighbor distance is the shortest 
distance between the centers of any two adjacent ions in the lattice.) 
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31-11. The crystalline structure of sodium chloride can be described by two interpenetrating 
face-centered cubic structures (see Figure 31.ISa) with four formula units per unit cell. 

Given that the length of a unit cell is 564.1 pm at 20°C, calculate the density of NaCI(s). 
The Ii terature value is 2. 163 g. cm -3. 

31-12. Determine the Miller indices of each set of lines shown in the figure below. 

B t • • 
, 

I 

b 

• • a 

C 
~ • I 

'----y------' 

A 

31-13. Determine the Miller indices of each set of lines shown in the figure below. 

B 
~ 

• • • 

• _. ---. • • 
~}c 

• • •• ------e-----
b 

• • a 

• • • 

• 

'----y------' 

o 

• 
}A 

• • 

-
31-14. Sketch the following planes in a two-din1ensional square lattice: (a) 0 I , (b) 21 , (c) 11, 

(d) 32. 

-
31-15. What is the relation between the 11 planes and the 11 planes of a two-dimensional 

square lattice? 

- -
31-16. What is the relation between the 11 planes and the II planes of a two-dimensional 

square lattice? 



Problems 

31-17. In this problem, we will derive a two-dimensional version of Equation 31.2. Using the 
figure below, show that 

Now show that 

and that 

b/ k 
tana = -­

a/h 

d 
and sma = --

\ 

1 tan- a 
1 I + tan- a 

a/ h 

Equation 31.2 is the extension of this result to three dimensions. 

31-18. Determine the Miller indices of the four planes shown in the figure below. 

'/. 4 

?, 
, 

Iy, 

IY7 --, ' 

1(1 1I 
--~ 5 

31-19. Sketch the following planes in a three-dimensional cubic lattice: (a) OIl, (b) 110, (c) 
211 , (d) 222. 
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31-20. Determine the Miller indices of the plane that intersects the crystal axes at (a) (a , 2b, 3c), 
(b) (a, b, -c), and (c) (2a, b, c). 

-
31-21. Calculate the separation between the (a) 100 planes, (b) 111 planes, and (c) 121 planes 

in a cubic lattice whose unit cell length is 529.8 pm. 

31-22. The distance between the 211 planes in barium is 204.9 pm. Given that barium forms a 

body-centered cubic lattice, calculate the density of barium. 

31-23. Gold crystallizes as a face-centered cubic crystal. Calculate the surface number density 
of gold atoms in the 100 planes. Take the length of the unit cell (Figure 31.3) to be 407.9 pm. 

31-24. Chromium crystallizes as a body-centered cubic structure with a density of 7.20 g. cm-3 

at 20°C. Calculate the length of a unit cell and the distance between successive 110, 200, 
and 111 planes. 

31-25. A single crystal of NaCI is oriented such that the incident X-rays are perpendicular to 

the a axis of the crystal. The distance between the spots corresponding to diffraction from 

the origin and 100 planes is 14.8 mm, and the detector is located 52.0 mm from the crystal. 

Calculate the value of a, the length of the unit cell along the a axis. Take the wavelength of 

the X-radiation to be A == 154.433 pm. 

31-26. Silver crystallizes as a face-centered cubic structure with a unit cell length of 408.6 pm. 
The single crystal of silver is oriented such that the incident X-rays are perpendicular to the 
c axis of the crystal. The detector is located 29.5 mm from the crystal. What is the distance 
between the diffraction spots from the 001 and 002 planes on the face of the detector for 
(a) the A == 154.433-pm line of copper, and (b) the A == 70.926-pm line of a molybdenum 
X-ray source? Which X-ray source gives you the better spatial resolution between the 

diffraction spots? 

31-27. The X-ray diffraction angles for the first-order diffraction spot from the 111 planes of a 
cubic crystal with a == 380.5 pm are observed to be a == 18.79°, fJ == 0°, and y == 0°. How 
is the crystal oriented? Take the wavelength of the X-radiation to be A == 154.433 pm. 

31-28. The unit cell of topaz is orthorhombic with a == 839 pm, b == 879 pm, and c == 465 pm. 
Calculate the values of the Bragg X-ray diffraction angles from the 110, 101, 111, and 222 
planes. Take the wavelength of the X-radiation to be A == 154.433 pm. 

31-29. In this problem, we will derive the Bragg equation, Equation 31.12. William and 
Lawrence Bragg (father and son) assumed that X-rays are scattered by successive planes 

of atoms within a crystal (see the following figure). 

So S 

e A 

t I \ 
I I \ 

I I \ 
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I I \ 
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P I 
I 
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Problems 

Each set of planes reflects the X-rays specularly; that is, the angle of incidence is equal 

to the angle of reflection, as shown in the figure. The X-radiation reflected from the lower 

plane in the figure travels a distance P Q R longer than the X -radiation reflected by the upper 

layer. Show that P Q R == 2e1 sin e, and argue that 2e1 sin e Inust be an integral number of 

wavelengths for constructive interference and hence a diffraction pattern to be observed. 

31-30. The Bragg diffraction angle of the second-order reflection from the 222 planes of a 

potassium crystal is e == 27.43 when X-radiation of wavelength A == 70.926 pm is used. 

Given that potassium exists as a body-centered cubic lattice, determine the length of the 

unit cell and the density of the crystal. 

31-31. The crystalline structure of CuS0
4 
(s) is orthorhombic with unit cell dimensions of 

a == 488.2 pm, b == 665.7 pm, and c == 831.6 pm. Calculate the value of e, the first-order 

Bragg diffraction angle, from the 100 planes, the 110 planes, and the III planes if CuSO 4 (s) 

is irradiated with X-rays with A == 154.433 pm. 

31-32. One experimental method of collecting X-ray diffraction data, (called the porvder 
method) involves irradiating a crystalline powder rather than a single crystal. The vari­

ous sets of reflecting planes in a powder will be essentially randomly oriented so that there 

will always be planes oriented such that they will reflect the monochromatic X-radiation. 

The crystallites whose particular hkl planes are oriented at the Bragg diffraction angle, e, to 

the incident beam will reflect the bean1 constructively. In this problem, we will illustrate the 

procedure that can be used for indexing the planes that give rise to observed reflections and 

consequently leads to the determination of the type of unit cell. This method is limited to 

cubic, tetragonal, and orthorhombic crystals (all unit cell angles are 90:'). We will illustrate 

the method for a cubic unit cell. 

First, show that the Bragg equation can be written as 

for a cubic unit cell. Then we tabulate the diffraction-angle data in order of increasing 

values of sin2 e. We then search for the smallest sets of 11, k, and 1 that are in the same ratios 
as the values of sin2 e. We then compare these values of h, k, and I with the allowed values 

given in Problem 31-38 to determine the type of unit cell. 

Lead is known to crystallize in one of the cubic structures. Suppose that a powder 

sample of lead gives Bragg reflections at the following angles: 15.66, 18.17 , 26.13°, 

31.11 ,32.71 ,and 38.59', using X-radiation with A == 154.433 pIn. Now form a table of 

increasing values of sin2 e, divide by the sma]]est value, convert the resulting values to 

integer values by mUltiplying by a common integer factor, and then determine the possible 

values of h, k, and I. For example, the first two entries in such a table are listed below. 

Division by Conversion to Possible value 
. 'e sln- 0.0729 integer value of hkl 

0.0729 I 3 III 
0.0972 1.33 4 200 

Complete this table, determine the type of cubic unit cell for lead, and determine its length. 
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31-33. The X-ray powder diffraction patterns of NaCI(s) and KCI(s), both of which have the 

structures given in Figure 31.18a, are shown below. 
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Given that NaCi and KCI have the same crystal structure, explain the differences between 

the two sets of data. Realize that the value of fK + is almost equal to f Cl - because K+ and 
CI - are isoelectronic. 

31-34. Iridium crystals have a cubic unit cell. The first six observed Bragg diffraction angles 

from a powered sample using X-rays with A = 165.8 pm are 21 .96",25.59°, 37.65°,45.74°, 

48.42°, and 59.74". Use the method outlined in Problem 31 - 32 to determine the type of 

cubic unit cell and its length. 

31-35. The density oftantallum at 20°C is 16.69 g.cm- 3
, and its unit cell is cubic. Given that 

the first five observed Bragg diffraction angles are e = 19.31 °, 27.88°, 34.9SO, 41.41 ", 
and 47 .69°, find the type of unit cell and its length. Take the wavelength of the X-radiation 

to be A = 154.433 pm. 

31-36. The density of silver at 20°C is 10.50 g·cm- .1, and its unit cell is cubic. Given that 

the first five observed Bragg diffraction angles are e = 19.10°,22.17°, 32.33°, 38.82°, and 

40.88°, find the type of unit cell and its length. Take the wavelength of the X-radiation to 

be A = 154.433 pm. 

31-37. Derive an expression for the structure factor of a primitive cubic unit cell and a face­

centered cubic unit cell. Show that there will be observed reflections for a primitive unit 

cell for all integer values of 11, k, and I and reflections for a face-centered-cubic unit cell 

only if 11, k , and 1 are either all even or all odd. 

31-38. Use the results of the previous problem and Example 31-9 to verify the entries in the 

following table. 



Problems 

Cubic lattice type for which 

Miller indices (hkl) a reflection is observed 

100 pc 

11O pc bcc 

111 pc fcc 

200 pc fcc bcc 

210 pc 

211 pc bcc 

220 pc fcc bcc 

300 pc 

221 pc 

310 pc bcc 

311 pc fcc 

222 pc fcc bcc 

320 pc 

321 pc bcc 

400 pc fcc bcc 

31-39. The X-ray diffraction pattern of a cubic crystalline substance shows data that correspond 

to reflections from the 110, 200, 220, 310, 222, and 400 planes. What type of cubic unit 

cell does the substance have? (Hint: See the table in Problem 31-38.) 

31-40. Chromium is either a face-centered cubic or a body-centered cubic crystalline solid. 

Given that it has the following observed successive values of d: 203.8 pm, 144.2 pm, 

117.7 pm, 102.0 pm, 91.20 pm, and 83.25 pm, determine the type of cubic unit cell, the 

length of the unit cell, and the density. (Hint: See the table in Problem 31-38.) 

31-41. In this problem, we will derive the structure factor for a sodium chloride-type unit cell. 
First, show that the coordinates of the cations at the eight corners are (0,0,0), (1,0,0), (0,1,0), 

(0,0,1), (1,1,0), (1,0,1), (0,1, 1 ,), and (1,1,1) and those at the six faces are (1,1,0), (1,0,1), 

(0,±,1), (1,1,1), (1,l ,±), and (l,±,±). Silnilarly, show that the coordinates of the anions 

along the 12 edges are (± ,0,0), (0, l,O), (0,0, ~), (l, 1,0), (1, ± ,0), (0, ~ ,1), (± ,0, 1), (1,0, l), 

(0,1, l), (l, 1,1), (1, l, 1), and (1,1, l) and those of the anion at the center of the unit cell are 

(l, ~,1)· Now show that 
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= 1+[1 + (_I)h+k + (_1)17+1 + (_I)k+f] 

+ 1_ [( _1)11 + ( _1)k + (-1/ + (-1 )h+k+/] 

Finally, show that 

F(hkl) = 4(1+ + j~) 

if h, k, and I are all even; that 

if h, k, and I are all odd, and that F(hkl) = 0 otherwise. 

31-42. Show that 

if h, k, and I are all even 
or just one of them is even 

= 1+ - j~ if all are odd 
or just one is odd 

for the CsCI(s) crystal structure shown in Figure 31.18b. Cesium bromide and cesium io­
dide have the same crystal structure as cesium chloride. Compare the expected diffraction 
patterns of cesium chloride and cesium iodide. Recall that Cs+ and 1- are isoelectronic. 

31-43. In this problem, we will prove that a crystal lattice can have only one-, two-, three-, 

four-, and six-fold axes of symmetry. Consider the following figure, where PI' P
2

, and P3 
are three lattice points, each separated by the lattice vector a. 

P' I P' 2 

• • , I 

\ I 

, I 
\ I 

I 
\ I 
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I 
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I 
\ I 

• 
¢{\/~¢ 

• a a 
Pl P, P3 

"-

If the lattice has n-fold symmetry, then both a clockwise and a counter-clockwise rotation 

by ¢ = 3608 
/ n about the point P

2 
will lead to the points P; and P;, which must be lattice 

points (because of the fact that the lattice has an n-fold axis of symmetry). Show that the 

vector distance P; P; must satisfy the relation 

2acos¢ = Na 

where N is a positive or negative integer. Now show that the only values of ¢ that satsify the 

above relation are 3600 (n = 1),180° (n = 2),1200 (n = 3),90° (n = 4), and 60° (n = 6), 
corresponding to N = 2, -2, -1, 0, and 1, respectively. 



Problems 

31-44. The von Laue equations are often expressed in vector notation. The following figure 

illustrates the X-ray scattering from two lattice points PI and P2 · 

S 

Let So be a unit vector in the direction of the incident radiation and s be a unit vector in the 

direction of the scattered X-radiation. Show that the difference in the path lengths of the 

waves scattered from PI and P2 is given by 

8==PA-PB==r·s-r·s ==r·S I 2 0 

where S == s - so' Because PI and P2 are lattice points, r must be expressible as ma + 
nb + pc, where m, n, and p are integers, and a, b, and c are the unit cell axes. Show 

that the fact that 8 must be an integral multiple of the wavelength A leads to the equa­

tions 

a . S == hA 

b . S == kA 

c . S == fA 

where h, k, and f are integers. These equations are the von Laue equations in vector 

notation. 

31-45. We can derive the Bragg equation from the von Laue equations derived in the previous 
problem. First show that S == S - So bisects the angle between So and s and is normal to 

the plane from which the X-radiation would be specularly reflected (the angle of incidence 
equals the angle of reflection). Now show that the distance from the origin of the a, b, and 

c axes to the hkl plane is given by 

a S b S 
d==-·-==-· 

c S A 
. -

h lSI k lSI I lSI lSI 

Last, show that lSI == [(s - so) . (s - so)] 1/2 == [2 2 cos 28] 1/2 == 2 sin 8, which leads to 

the Bragg equation d == A /2 sin 8. 

31-46. The enthalpy of adsorption for H2 adsorbed on a surface of copper is - 54.4 kJ· mol-I. 

The activation energy for going from the physisorbed state to the chemisorbed state is 

29.3 kJ· mol I, and the curve crossing between these two potentials occurs at V (z) == 
21 kJ· mol-I. Draw a schematic representation similar to that in Figure 31.20 for the case 

of H2 interacting with copper. 
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31-47. In Section 27-4, we showed that the collision frequency per unit area is (Equa­
tion 27.48) 

p(u) 
( 1) ZeolI = -4-

Use Equation 1 and the ideal-gas law to show that iN' the number of molecules striking a 
surface of unit area (1 m2

) in one second, is 

PN
A J =-----

N (2rr M RT) 1/2 

where M is the molar nlass of the molecule, P is the pressure of the gas, and T is the 

telnperature. How many nitrogen molecules will strike a 1.00-cm2 surface in 1.00 s at 

298.1 K and a gas pressure of 1.05 x 10-6 Pa? 

31-48. One lang111uir corresponds to an exposure of a surface to a gas at a pressure of 

1.00 x 10-6 torr for 1 second at 298.15 K. Define one langmuir in units of pascals in­

stead of torr. How many nitrogen nlolecules will strike a surface of area 1.00 cm2 when 

exposed to 1.00 langmuir? (See Problem 31-47.) 

31-49. If the density of surface sites is 2.40 x 10 14 cln-2 and every molecule that strikes the 

surface adsorbs to one of these sites, determine the fraction of a monolayer created by the 

exposure of a 1.00-cm2 surface to 1.00 x 10-4 langmuir of N2 (g) at 298.15 K. 

31-50. For conducting surface experiments it is important to maintain a clean surface. Sup­

pose that a 1.50-cm2 surface is placed inside a high-vacuum chamber at 298.15 K 

and the pressure inside the chalnber is 1.00 x 10- 12 torr. If the density of the sur­

face sites is 1.30 x 10 16 em and we assume that the only gas in the chamber is 

H
2
0 and that each of the H) 0 molecules that strike the surface adsorbs to one sur­

face site, how long will it be until 1.000/0 of the surface sites are occupied by wa­
ter? 

31-51. Use the results of Example 31-12 to deternline the rate of desorption of CO from 

palladi urn at 300 K and 500 K. 

31-52. The following data were obtained for the adsorption ofN2(g) to a piece of solid graphite 

at 197 K. The tabulated volumes are the volumes that the adsorbed gas would occupy at 

O.OODC and one bar 

P/bar 3.54 10.13 16.92 26.04 29.94 

V /10-4 m] 328 456 497 527 536 

Determine the values of V and b using the Langmuir adsorption isotherm. The total 
III '-' 

mass of the carbon solid is 1325 g. Determine the fraction of the carbon atoms that 

are accessible as binding sites if you assume that each surface atom can adsorb one 

N2 molecule. 

31-53. The first-order surface reaction 

A (g) ====} A (ads) ====} B (g) 



Problems 

has a rate of 1.8 x 10-4 ITIOI· dm :1. S-I . The surface has a dimension of 1.00 cm by 3.50 em. 

Calculate the rate of reaction if the dimensions of the two sides of the surface were each 

doubled. [AsSUITIe that A(g) is in excess.] 

31-54. Consider the reaction scheme 

k k 
A(g) + S =::::h} A-S :d} peg) 

for which the rate law is 

where e A is the fraction of surface sites occupied by A molecules. Use the Langmuir ad­

sorption isotherm (Equation 31.35) to obtain an expression for the reaction rate in terms 

of Kc and [A]. Under what conditions will the reaction be first order in the concentration 

of A? 

31-55. Consider a surface-catalyzed bimolecular reaction between molecules A and B that has 

a rate law of the form 

where e A is the fraction of surface sites occupied by reactant A and 8B is the fraction 
of surface sites occupied by reactant B. A ITIechanism consistent with this reaction is as 

follows: 
A 

ka 

A(g) + S(s) ~ A-S(s) 
kA 

d 

kB 
a 

B(g) + S(s) ~ B-S(s) 
kB 

d 

A-S(s) + B-S(s) 

(fast equilibrium) (1) 

(fast equilibriuITI) (2) 

products 

Take K A and K B to be the equilibriuITI constants for Equations 1 and 2, respectively. Derive 

expressions for e A and 8
8 

in terms of [AJ, [B J, K A' and K B' Use your results to show that 
the rate law can be written as 

k
3
K

A
K

B
[A][B] 

v = -----------------
(1 + KAlA] + K B [B])2 

31-56. Reconsider the surface-catalyzed biITIolecular reaction in Problem 31-55. If A(g) and 

B(g) do not COITIpete for surface sites, but instead each ITIolecule uniquely binds to a 

different type of surface site, show that the rate law is given by 

k
3
K

A
K

B
[A][B] 

v = -------------------
(1 + K A [A]) (1 + K B [B ]) 
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31-57. In this problem we derive Equation 31.45, the rate law for the oxidation reaction 

2 CO(g) + 02 (g) ~ 2 CO2 (g) assuming that the reaction occurs by the Langmuir-Hinshel­
wood mechanism. The overall rate law for this mechanism is 

Show that 

(K
02 

[02]) 1/2 
e = ---------------------

0, ] + (Ko, [02]) 1/2 + Kco[CO] 

and 

Use these expressions and the relationship b = Kef kB T to obtain the rate law given by 
Equation 31.45. (Assume ideal-gas behavior.) 

31-58. In this problem we derive Equation 31.46, the rate law for the oxidation reaction 

2 CO(g) + 02 (g) ~ 2 CO2 (g) assuming that the reaction occurs by the Eley-Rideal 

mechanism. The overall rate law for this mechanism is 

Assuming that both CO(g) and 02 (g) compete for adsorption sites, show that 

V= --------------------
1 + K~~2[02]1/2 + Kco[CO] 

Use the relationship between Kc and b and the ideal-gas law to show that this equation is 
equivalent to Equation 31.46. 

31-59. The hydrogenation of ethene on copper obeys the rate law 

where k and K are constants. Mechanistic studies show that the reaction occurs by the 

Langmuir-Hinshelwood mechanism. How are k and K related to the rate constants for 

the individual steps of the reaction mechanism? What can you conclude about the relative 

adsorption of H2 (g) and C2 H4 (g) to the copper surface from the form of the observed rate 

law? 

31-60. The iron-catalyzed exchange reaction 

NHl(g) + 0') (g) ~ NH')D(g) + HO(g) - ~ ~ 

obeys the rate law 



Problems 

Is this rate law consistent with either the Eley-Rideal or Langmuir-Hinshelwood mech­

anisms? How are k and K related to the rate constants of the individual steps of the 

mechanism you chose? What does the rate law tell you about the relative adsorption of 

D2 (g) and NH3 (g) to the iron surface? 

31-61. Consider the surface-catalyzed exchange reaction 

2HD(g) 

Experimental studies show that this reaction occurs by the Langmuir-Hinshelwood mech­

anism by which both H2 (g) and D2 (g) first dissociatively chemisorb to the surface. The 
rate-determining step is the reaction between the adsorbed Hand D atoms. Derive an 

expression for the rate law for this reaction in terms of the gas-phase pressures of H2 (g) 

and D2 (g). (Assume ideal-gas behavior.) 

31-62. LEED spectroscopy records the intensities and locations of electrons that are diffracted 
from a surface. For an electron to diffract, its de Broglie wavelength must be less than twice 

the distance between the atomic planes in the solid (see Section 31-9). Show that the de 
Broglie wavelength of an electron accelerated through a potential difference of ¢ volts is 
given by 

(
1.504 X 106 V) 1/2 

A/pm = 
¢ 

31-63. The distance between the 100 planes of a nickel substrate, whose surface is a 100 plane, 

is 351.8 pm. Calculate the minimum accelerating potential so that electrons can diffract 

from the crystal. Calculate the kinetic energy of these electrons. (Hint: See Problem 31-
62.) 

31-64. The distance between the 111 surface of silver and the second layer of atoms is 
235 pm, the same as in the bulk. If electrons with a kinetic energy of 8.77 eV strike 
the surface, will an electron diffraction pattern be observed? (Hint: See Problem 31-
62.) 

31-65. Figure 31.28 shows the relative rates of ammonia synthesis for five different surfaces of 
iron. Iron crystallizes as a body-centered cubic structure. Draw a schematic representation 
of the atomic arrangement of the 100,110, and III surfaces. (Hint: See Figure 31.9.) 
Determine the center-to-center distance between nearest neighbor atoms on the surface in 
units of a, the dimension of the unit cell. 

31-66. The Freundlich adsorption isotherm is given by 

where k and a are constants. Can the data in Problem 31-52 be described by the Freundlich 
adsorption isotherm? Determine the best-fit values of k and a to the data. 

31-67. Show that if () « 1, the Langmuir adsorption isotherm reduces to the Freundlich ad­
sorption isotherm (Problem 31-66) with k = b V and a = 1. 

m 
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31-68. Multilayer physisorption is often described by the BET adsorption isothenn 

P I (c 1) P 
--+----
cV V cP* m m 

V(P* - P) 

where P* is the vapor pressure of the adsorbate at the temperature of the experiment, Vm is 

the volume corresponding to a monolayer of coverage on the surface, V is the total volume 

adsorbed at pressure P, and c is a constant. Rewrite the equation for the BET adsorption 

isotherm in the form 

V 
-==f(P/P*) 
V m 

Plot V / Vm versus P / P* for c == 0.1, 1.0, 10, and 100. Discuss the shapes of the 

curves. 

31-69. The energy of adsorption, Eads ' can be measured by the technique of tenlperature pro­

grarnnled desorption (TPD). In a TPD experiment, the temperature of a surface with bound 

adsorbate is changed according to the equation 

T == ~) + at (1) 

where ~) is the initial temperature, a is a constant that determines the rate at which 

the temperature is changed, and t is the time. A mass spectr0l11eter is used to mea­

sure the concentration of molecules that desorb from the surface. The analysis of TPD 

data depends on the kinetic model for desorption. Consider a first-order desorption pro­

cess 

II: 
M-S(s) ~ M(g) + S(s) 

Write an expression for the rate law for desorption. Use Equation 1, Equation 31.37, and 

your rate law to show that your rate law can be written as 

d[M-S] [M-S] I E jRT --- == - (T e ads ) 

dT a 0 
(2) 

With increasing telnperature, d[M-S]/ d t initially increases, then reaches a maximum, after 

which it decreases. Let T == T be the temperature corresponding to the maximum rate 
max 

of desorption. Use Equation 2 to show that at ~nax 

Eads To I -E jRT -- == -e ad~ max 
'1 

R~~ax a 
(3) 

(Hint: Remember that [M-S] is a function of T.) 

31-70. Show that Equation 3 of Problem 31-69 can be written as 

2ln T - In a == max 

E 
ads 

E + In ads 

RrO I RT max 

What are the slope and intercept of a plot of (2 In ~llax - In a) versus I / ~nax ? The max­

irTIum desorption rates of CO from the III surface of palladium as a function of the 

rate of heating of the palladium surface are given below. Determine the values of E ads 



Problems 

and T(~ I from these data. Use the results to determine k
d

, the desorption rate constant, at 
600K. 

a/K.s- 1 
T.mlx/K 

26.0 500 
20.1 496 
16.5 493 
11.0 487 

31-71. At a heating rate of 10 K·s- 1
, the maximum rate of desorption of CO from a 

Pd(s) surface occurs at 625 K. Calculate the value of E
ads

' assuming that the desorp­
tion is a first-order process and that To == 1.40 x 10- I2 s. (See Problems 31-69 and 
31-70). 
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Answers to the Numerical Problems 

Chapter 1 

1-1. v == 1.50 X 1015 Hz) 

V == 5.00 X 104 cm- I
, E == 9.93 X 10- 19 J 

1 -2. v == 3 x 1013 Hz, A == 
1 x 10-5 m E == 2 x 10-20 J , 

1-3. v==2.0xl0 1O Hz,A== 
1.5 x 10-2 m, E == 1.3 X 10-23 J 

1-6. (a) Amax == 9.67 x 10-6m 

(b) A == 9.67 X 10-7 m 
max 

(C) A == 2.90 X 10-7 m 
max 

1 -7. T == 1. 12 x 104 K 

1-8. A == 3 x 10- to m 
max 

1-9. E == 2 X 10- 15 J 

1-11. (a) 1.07 x 1016 photons 

(b) 5.40 x 1015 photons 

(c) 2.68 x 1015 photons 

1-12. A == LOx 10-5 m 
max 

1-13. 4.738 x 1014 Hz; 3.139 X 10- 19 J 

1-14. 1.70 x 1015 photon.s- I 

1-15. 5300 K 

1-16. ¢ == 3.52 X 10- 19 J, 

K.E. == 1.33 x 10- 19 J 

1-17. K.E. == 2.89 X 10- 19 J 

1-18. ¢ == 7.35 X 10- 19 J, 

v 0 == 1. 11 x 1015 Hz 
1 -1 9. h == 6.60 x 10-34 J. s, 

¢ == 3.59 X 10- 19 J 

1-20. 121.56 nm, 102.571 nm, 97.2526 nm 

1-21. n == 3 

1-22. n == 2 

1-24. 91.2 nm, 2.18 X 10- 18 J 

1-25. (a) 0.123 nm (b) 2.86 X 10-3 nm 

(c) 0.332 nm 

1-26. (a) 1.602 x 10- 17 J. electron I, 1.23 X 

10- 10 m (b) 6.02 x 10- 18 J 

1-27. 0.082 V 

1-28. 1.28 x 10- 18 J la particle, 5.08 pm 

1-29. 2500 K 

1-33. 54.4 eV, 5 250 kJ ·mol- I 

1-34. VI == 2.187x 106 m·s I, v2 == 1.093 x 

106 m·s I, V3 == 7.290 X 105 m·s- I 

1-35. 3.6 x 107 m.s I 

1-36. 6.6 x 10-23 kg.m.s- I compared to 

1.992 x 10-24 kg·m·s- I 

1-38. 2.9 x 10-23 s 

1-39. 7 x 10-25 J 

1-40. 7 x 10-22 J 

1-44. H(g), 3.18 x 104 K 

MathChapter A 
A -1. ( a) 2 - IIi (b) i (c) i e - 2 (d) 2 - i v'2 

A-2. (a) x (b) x 2 - 4y2 (c) 4xy (d) x2 + 4y2 

(e) 0 

A-3. (a) 6e irr / 2 (b) 3v'2 e-O.340i (c) J5 el. lli 

(d) J T[2 + e2 eO.713i 
1 1 

A-4. (a) v'2 + i v'2 (b) -3 + 3v'3i 

(c) v'2(1 - i) (d) 2 

A-12. e- rrj2 

A-14. x == 2, -1 ± i v'3 

Chapter 2 

2-1. (a) y(x) == c le
3x + c

2
ex 

(b) y(x) == c
i 
+ c

2
e-6x (c) y(x) == c1 e-3x 

(d) y(x) == c
l
eC- I+J2)X + c

2
e( 1-v!2)x 

(e) y(x) == c1e
2x + c2ex 

2-2. (a) y(x) == 2e2x 

(b) y(x) == _3e2x + 2e3x (c) y(x) == 2e2x 

2-4. (a)x(t) == Va sinwt 
w 

(b) x(t) == A cos wt + Va sin wt 
(V 

2-5. c i ==Asin¢==Bcos1jr; 

c2 == A cos ¢ == - B sin 1jr 

2-6. (a) y(x) == e-X (c
3 

cosx + c
4 

sinx) 

(b) y(x) == e3X (c
3 

cos4x + c
4 

sin4x) 

(c) y(x) == e-f)x (c
3 

cos WX + c
4 

sin wx) 1327 
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( d) y (x) == e 2x (c os x - sin x) 

2-7. The motion is oscillatory with 

frequency (1/2Jr)(k/nl)I/2 and amplitude 

v 0 (In / k) 1/2. 

l1JrX 
2-9. 1jr(x) == A sin - n == 1, 2\ ... 

a 
2-13. 1j;(x I Y) == 

11 JrX . l1 y JrY 
A sin -,\-' - sIn -'-

n == 1, 2, ... x . 

b a 11 == 1, 2, ... \' ." 

2 -1 4. 1j; (x I y, z) == 

l1JrX nJrY I1JrZ 11.\==1,2, .. . 
A sin.\ sin .' sin:' 11 == I, 2, .. . 

abc \' 
11_ == 1, 2, ... 

E==- ~+-" +~ 
h

2 
(112 112, n

2 
) 

8n7 a 2 b2 c2 

2-17. height == v~ /2g, time to return 

== 2vo/g 

2-19. e(t) == Aoe fJ/2m cos(wt + ¢) where 

/ ", w == v (g / I) - (A / 2,n ) ~ . If A - > 4171- g / I, 

then the solution is 

e(t) == e-Af/2111(cleO'f + c2e-O't), where 

a == /(A/2nl)2 - (g/l) isreal. Therefore, 

there is no oscillatory motion if , , 
A ~ > 4111 - g / I. 

MathChapter 8 

8-1. a /2 

a 2 / cr 
8-2. 

12 
, / 

2n""Jr-

8-3. 1/2 

8-6. CknTy/2 
Jr nl 

8-7. ;?k T 
2 B 

Chapter 3 

3-1. (a) ±x2 (b) e-{/X (X3 - (
3

) (c) 9/4 

(d) 6xy 2z4 + 2X 3Z4 + 12x3 y 2z2 

3-2. (a) Nonlinear (b) Nonlinear (c) Linear 

(d) Nonlinear (e) Linear (f) Nonlinear 

3-3. (a) _w2 (b) iev (c) a 2 + 2a + 3 (d) 6 

. "2 d
4 

3-5. (a) A ==-
dx 4 

", d l d, 
(b) A ~ == -2 + 2x - + I + x-
, dx dx 

Answers to the Numerical Problems 

3-9. m 1/2 

3-13. No 

3-19. No , 
a a-, 

3-20. (x) == ,(x-) == 
2 3 

h2 

3-21. (p) == 0, (p2) == -7 

a-

, 
a'" 

--, 
8Jr-

3-26. 1,2,I,L (1,1,1); (2,1,1)(1,2,1); (2,2,1); 

(1,1,2) 

3-27. 1.52 x 104 cm- I
, [(25 - 20)h2/8ma2

] 

3 ... 32. a == 0 a == 00 
!, ' x 

MathChapter C 

C-1. J14 
C-2. (x 2 + y2) 1/2 , (x2 + y2 + Z2) 1/2 

C-3. cos IT == 0 , 
~ 

C-6. 10ge 

C-7. 5i + 5j - 5k; -5i - 5j + 5k 

Chapter 4 

4-1. (a) A == (1/ Jr) I /4 (b) not normalizable 

( c) A == (1 /2Jr) 1/2 (d) not normalizable 

(e) A == 2 

4-2. (a) A == 21J7i (b) normalized 

(c) normalized 

4-5. (a) unacceptable (not normalizable) 

(b) acceptable (c) acceptable (d) 

unacceptable (not normalizable) 

4-6. (E) == 6Tz 2 /nla 2
, (E2) == 126Tz4/n12a4

, 

) 90h4 

and af; == 2 4 
In a 

/1
2 (n2 n~) 

4-8. (p) == 0, a,; == 4 a'; + b; 

5Tz2 ( I 1 ) 
4-9. (E) == - )' + -:) 

111 cr b-

4-14. (a) commutes (b) does not commute 

(c) does not commute (d) does not 

commute 
" " 

4-15. P and Q must commute 
~ A ~ ~ ~ A d 

4-16. (a) [A, B] == ABf BAf == 2 dx 
~ A ~ A 

(b) [A, B] == 2 (c) [A, B]f == - f(O) 
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A " d 
(d) [A, B] == 4x dx + 3 

4-17. The subscripts occur as x, y, z and as 

cyclic permutations of x, y, z. 

4-20. [x, P, ] = 0, [x, pxJ = -in, 

[ y, PI' ] = - in, [ y, Px ] = 0 

4-21. Yes 

4-22. Yes 

4-23. 0,0 
A A 

4-24. [A, B] == 0 

4-26. The results gives Newton's equation, 

In an average sense. 

4-29. No 

4-32. i d / dx is Hermitian, d 2 
/ dx 2 is 

Hermitian, id2 
/ dx 2 is not Hermitian 

4-36. 0.52 (vo == 1.966) 

4-37. 4/(4 + uo) 

MathChapter 0 

0-2. (1, ~,O), (1, ~, ~), (1,0,</», (l,rr,</» 

0-3. (a) a sphere of radius 5 centered at the 

origin (b) a cone about the z axis (c) the 

y-z plane 

0-4. 2rr a 3 /3 
'1 

0 .. 5. 2rra':' 

0-6. 4/15 

0-10. 0, 1/3 

0-11. 8rr /3 

Chapter 5 

5-3. the period, which is the time it takes to 

undergo one cycle, == 2rr / w == 1/ v 
5-7. 9.104 432 x 10-31 kg; 0.050/0 

5-9. 479 N·m- I 

5-10. 1.81 x 10 10 m- I 

5-11. V (x) == 
D [f3 2 

X 
2 

- fJ 3 
X 3 + ,7

2 
fJ 4 

X 
4 + 0 (x 5 )] ; 

Y == -6Df33 

5-12. i == 0.01962; vi == 56.59 cm I 

5-13. k == 385 N·m- I
, T == l/v == 

1.30 x 10- 14 s 

5-14. vobs == 321 cm I, Co == 3.19 X 10-21 J 

5 .. 22. Arms == (1i/4rrcv/-l) 1/2; H
2

: 8.719 pm; 

3sCesCl: 4.170 pm; 14N14N: 3.215 pm 

5-33. J.L ~ 10-25 kg, r == 10- 10 m, and so 

I ~ 10-45 kg·m2
, B ~ 1010 Hz 

5-34. 3.35 x 10-47 kg· m2
, 142 pm 

5-35. 113 pm ( 3 ) 1/2 

5-37. (a) 0; (b) 27z 2 4n cos 8; (c) and 

') ( 3 ) 1/2 . 
(d) 21i- 8n sin e e±[(P; all four 

functions are eigenfunctions of i 2 

5-44. The mass of an electron in 

Equation 1.22 is replaced by the reduced 

mass of a hydrogen atom 

5-45. 109 677.6 cm I 

5-46. /-l == 9.106 909 x 10-31 kg; 

109707.3 cm- I 

5-47. 1.000 270 

Chapter 6 

6-10. The charge distribution of a 

completely filled subshell is spherically 

symmetric. 

6-12. See Equations 6.37. 

6-15. otherwise Land L would be known 

exactly; no 

6-20. 0.762 

x y 

6-21. 1.3ao; 2.7ao 
6-28. (r)20 == 6ao; (r)21 == 5ao 
6-29. £2; they are not unique 

6-32. Yes (see Problem 6-10) 
') 

6-33. n-

6-34. 1312kJ·mol I; 5248kJ.mol-1 

6-35. the two values of E differ by 111 / /-l, 
n e 

where /-l is the reduced mass 

6-36. 0.999 728 

6-44. C'm2's- l
, 9.274007x 10-24 C·m2 ·s- 1 

6-46. 1.391 x 10-22 J versus 1.635 x 10- 18 J 

6-47. 35 possible transitions; 5 transitions 

for 11111 == 0 ; 10 transitions for 11m == ± 1 

MathChapter E 

E-1. 5,5,5 

E-2. -5,-5 

E-3. 0, 0 

E-4. X4 - 3x2 == 0; X == 0, 0, ±v'3 

E-5. X4 4x2 == 0; X == 0, 0, ±2 
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E-6. COS
2 e + sin2 e == 1 

E-7. (~, i) 
E-8. (1,3, -4) 

Chapter 7 

7-3. f3 == (kJL/7712)1/2, 

E == (7 1/2 /5)71(k/ JL)1/2 == 0.529 71(k/ fl)J/2 

7-4. 0 

7-5. a . == 3m e2/8E()rr71 2: mIn e . , 
Emin == -(3/8)(e~/4rrEoao) 

7-6. C2 == O,a == l/ao' E . == E t min exac 

7 -7. i 71 (k / JL) 1/ 2, the exact result 

7-8. a . == (lIk)1/2/271 E . == ~71(k/II)1/2. 
mill r , mIn 2 r , 

a . == (3 I1 k/712)1/4 E . == 31
/
271(k/ II )1/2. 

mm r 'min r, 

e-ar2 == e-ax2 e-ay2 e-a
;2 is the exact 

function 
1/1 1 n ~/;1 

7-9. a . == (6 c/712)'/3 E . == (J.!..) " C "TI . 
mIn JL 'min 256 

[ 

J ) k ] 1/4 
7-10. A . == (JT~ _ 1 fl,? ; 

min 6 271-

1 (' ) 1/2 E . == II? JT~ - 1 71w == 0.568 71w 
min 2 - 6 

h
2 

( 1 1 ) 7 -11. E == 2 + VOQ - + 2" and 
8nla 4 rr 

h2 Va 
--2 + _0_. The relative magnitude of 
2ma 4 
these two roots depends upon the relative 

magnitudes of h 2 /ma 2 and Vaa. 

7 -12. f/a == l.6546, E . == 0.681671 2/ nla2; 
mIn , ) 

l/a == 0.68353, E . == 0.6219 71~/ ma~ 
mm 

7 -13. Aa == 0.92423, E . == 0.6381 71 2
/ nla2

; 
mm 

AQ == l.1689, E . == 0.843271 2
/ nla2 

mIll 

7-14. 5712 /ma 2 

7 -1 5. 771 2 
/ m a 2 

7-16. 

3 78 
E == 71w + 2 

2 32a 

1 [ 2 3 71w8 11 82
] 1/2 

-- (271w) + - + --
2 2 a 2 64 a 4 

1 8 2 
==-71w+ 2+0(8) 

2 32a 

7 -21. b /3 2a 2 

7-22. b/2 

7-23. ~E == 0, 

Answers to the Numerical Problems 

_ Voa (~ 1 - c,osnrr) 7 -24. !:J. E - + 'J 2 
2 2 n-rr 

3c k 
7-25. ~E - --

- 4a2 4a 

7-27. a == D/32, b == -D/33, C == 7Df34/12; 

3c ,15c 
!:J.E(v==O) == -,; ~E(v== 1) == -,; 

4a- 4a-
39c 

~E(v==2) == -, 
4a-

Chapter 8 
8-9 S == 2>- 3/2 e r/(4rr)1/2 

• 100 ~ , 

S == (2)-)5/2 re ~r/(96rr)1/2 
200 ~ 

S2IO == (3)1/2(2s-)5 /2re-sr cose/(96JT)1/2 

8-17. because the effective Hamiltonian 

operator depends only upon r 

8-18. because the radial dependence of the 

effective Hamiltonian operator differs 

from the Hamiltonian operator of a 

hydrogen atom 

8-22. 0 and 1/2 

8-23. The eigenvalues are zero. 

8-25. E(triplet) == 2.12414Eh == 
-466 195 cm I 

E(singlet) == -2.03635Eh == -446927 cm-· I 

E(ground state) == -2.7500Eh == 
-603 555 cm- I 

E(triplet~ ground state) == 137 370 cm- I 

E (singlet ~ ground state) == 156 630 cm- I 

, ) 

8-26. ""P3/2,-PI/2 

8-28. (1 x 1)('S) + (3 x 3)CP) + 
(1 x 5)(,D) == 15 

8-29. 45; (1 x 1)(,S) + (1 x 5)(,D) + 
(3 x 3)CP) + (3 x 7)CP) + 
(1 x 9)('0) == 45 

8-30. Ip 3p 3p 3p. 3p 
I' 2' I' 0' 0 

8-31. 20; ID2' 3D
3
,3D

2
, 3D I ; 3DI 

8 32 1 SID 10 3p 3p 3p 3p 3p 
- • 0' 2' 4' 2' I' 0' 4' 3' 

3p .3p , , , 
... -

8-33. 2p 2p 2D 2D 4S ·-is 
3/2' 1/2' 5/2' 3/2' 3/2' 3/2 

8-34. [Ne]3s2
• IS , 0 

8-35. 3P2 (see ProblelTI 8-32) 

8-36. 1 S o 
8-37. 3P2: fivefold degenerate, 3p,: threefold 

degenerate, 3P
O

: singly degenerate, IPI: 

threefold degenerate 



Answers to the Numerical Problems 

8-38. 2p ~ Is, 0.355 cm- I
; 3p ~ Is, 

0.108 cm I; 4p ~ Is, 0.046 cm- I 

8-39. 18 459 A 
sharp series 

11 404 A 
11 381 A 
6 160.7 A 
6 154.1 A 
5 153.4 A 
5 148.8 A 

principal series 

5 595.9 A 
5 889.9 A 
3 303.0 A 
3 302.4 A 
2 853.0 A 
2 852.8 A 

diffuse series fundamental series 

8 194.7 A 18 459 A 
8 183.2 A 
5 688.1 A 12 679 A 
5 682.6 A 
4982.8 A 
4978.5 A 

8-46. 2.91 n3cm- 1 

8-47. 2P3/2' Spin orbit coupling increases 

with increasing atomic number. 

Chapter 9 

9-4. (is
A 

- IsB )IJ2(1 - S) 

9-12. N2 has a bond order of 3; Ni has a 

bond order of 5/2. 

9-13. F2 has a bond order of 1; Fi has a 

bond order of 3/2. 

9-14. The relative bond orders are 3, 5/2, 

and 5/2. 

9-15. The bond order of C
2 

is 2; that of C;:- is 

5/2. 

9-17. The bond order of NO+ is 3; that of 

NO is 5/2. 

9-18. 3 

9-21. 6, Cr
2 

9-22. 2p X,O 

9-23. 3.40 x 10- 18 J 

9-25. bond order: 3; diamagnetic 

9-26. bond order: 1; paramagnetic 

9-30. See Table 9.6. 

9-31. See Table 9.6. 

9-32. 3n; In 

9-33. -1 Eh per atom, 0.625 

9-34. 19.4 x 10-30 C·m 

9-35. 19.4 x 10-30 C·m 

9-36. 2.55 x 10-29 C·m, 76.0% 

9-38. 0.181e 

9-39. 0.43e on H. -0.43e on F; 0.17e on H, 

-0.17e on Cl; 0.12e on H, -0.12e on Br; 

0.054e on H, -0.054e on I 

9-41. 1)D = 9.332 X 1013 Hz, 
-, 

D~2 - 439.8 kJ ·mol- I 

Chapter 10 

10-4. 1200 

10-6. ~2 = (2s - 2pz.)/v'2 

10-9. 109.47° 

1 0 -11. 1 04.5 c 

10-12. 1/1
1 

= 0.8945(0.5004 . 2s + 0.6122 . 

2p7 + 0.7907 . 2p ,); 
~ -

1/12 = 0.8945(0.5004 . 2s + 0.6122· 

2P7 - 0.7907 · 2p v) 
~ . 

1 0-13. Both descriptions are correct. 

1 0-15. Small changes in the bond angle will 

not result in net overlap between the lobes 

of the orbitals, so the energies will remain 

unchanged. 

10-18. (a) linear (b) linear (c) bent 

1 0-19 . (a) bent (b) bent (c) linear 

10-20. 1 sx' a nonbonding core electron 

orbital 

10-22. Take the molecule to sit in the x- y 

plane, then the orbitals involved are 2s, 

2 Px' and 2 p y on the central X atom and 

the 1 s orbitals on each hydrogen atom. 

10-23. (a) planar (b) pyramidal (c) 

pyramidal (d) pyramidal 

10-25. E± = (a ± /3)/(1 ± S); 

1/1± = (2P z.
A 

± 2pz.B)/[Jr::-2(~I--:-±-S-:-:::-:-)] 

10-30. X4 - 4x2 = 0; X = 2, 0, 0, - 2; 

E = a + 2/3, a, a, a - 2/3 The ground 

state is predicted to be a triplet state; the 

two molecules have the same stability. 

Cyclobutadiene has no delocalization 

energy. 

1331 
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10-31. X4 3x 2 == 0; x == vS, 0, 0, vS; 
E == a +.J3j3, a, a, a vSf3; 

E;r - 2(0' + vS/-3) + 20' == 40' + 2vSj3; 

Edeloe == -0.5359j3 

10-32. X4 - 5x 2 + 4x == 0; 

x==I,O, ;±t~; 
E;r == 2(0' + 2.562f3) + 20' == 
40' + 5.124f3; Edeloe == 1.124f3 

10-35. 100' + 13.68f3 

10-36. 3.68j3 

10-37. For the triangular geometry, 

x 3 3x + 2 == O. EH+ == 20' + 4j3, 

EH == 30' + 3j3, EH J == 40' + 2j3; for the 
J ~ 

linear geometry, x 3 ~ 2x == O. 

EHt == 20' + 2~j3, E == 30' + 2~f3 
,) H~ , 

EH; = 40' + 2~fJ; therefore, Ht is 

triangular, H~ is linear, and H3 is 

triangular. 

10-41. radical:E . -0.828f3·q -q-deloe ' I - ,-

q3 == I; p~ == Pi~ == 0.707 -

cation: 

Edeloe == 0.828j3; ql == q3 == 1/2; q, == 1; 
P~ == P2~ == 0.707 -

. 
anIon: 

E de IDe == O. 828 j3; q I == q 3 == 3/2; q 7 == 1; 
P~ == P2~~ == O. 707 ~ 

10-42. qn == 1; P,~ == 2/3. Benzene is a 

symmetric molecule 

10-43. (b) for hexatriene 

EI == a + 1.802j3 E2 == a + 1.247 f3 

E3 == a + 0.4450j3 E4 == 
a - 0.4450fJ E5 == a - 1.247 fJ 

E6 == a - 1.802 R . E. == 0 9880P., 1--' 'deloe . {J , 

Edcloe per carbon atom = 0.1647 for 
octatetraene 

EI == a + 1.879j3 E2 == a + 1.532f3 

E3 == a + j3 E4 == a + 0.3473j3 E_ == ) 

a - 0.3473j3 E6 == a - f3 E7 == 
a 1.532f3 E8 == a - 1.879j3; 

E uelne == 1.5 I 7 j3; E deloe per carbon atom = 
0.1896 (c) benzene 

10-45. 
E, - EN == 2f3(cos _IT_ - cos ;rN ) -----+ 

. N+I N+I 

2f3 (cos 0 - COS][) == 4j3 

Answers to the Numerical Problems 

1 0-46. a conductor 

Chapter 11 

11-14. a == a(s == 1.00)S2 == 
(0.2709) (1.24)2 == 0.4166 

11-15. a lsl == (0.10982)(1.24)2 == 0.1688; 

a ls2 == (0.40578)(1.24)2 == 0.6239; 

0'1.1'3 == (2.2777) ( 1.24)2 == 3.425 

11-16. ¢3s == -2.51831¢~F(r, 3.18649) + 
6.15890¢~F (r, 1.19427) + 
1.060 18¢~t (r, 4.2037) + 

, GF d3p ¢3s (r, 1.42657); 

¢3p == 1.42993¢~; (r, 3.18649) + 
3.23572¢;~; (r, 1.19427) + 
7 .43507 ¢~; (r, 4.20377) + 
d' ,.hGF( 3ptf/3p r, 1.42657) 

11-18. C (0, 0, 0); CI (0,0,178.1); H 
. a 

(-103.66,0, -35.59); Hb (51.84, -89.78, 

-35.59); He (51.84, 89.78, -35.59) 

11-19. kH'l == 641.4 N 'm- I
, keo == 

2403 N ~ m 1, kN == 3151 N· m- I 

1 

11-20. (a) ¢(r) == (1280's /rr 3)1/4xe-ar
2

; 

(b) ¢(r) == (2048a7/9rr3)1/4xle-ar2 

11 .. 21. 2Pr,noradialnodes 

11-23. 3d 7 ! x- r-

11-24. Using a surn of three functions with 

different values of zeta to fit one of the 

functions in a basis set. 

11-25.0,-2,+1 

11-26. 4.70 x 10-30 C· m' , 
4.702 X 10--30 C·nl 

11-2? (I a, )2 (2a, )"(3a, )2 (4a, )2 (1 b)2 (Sa, )2 

(1 b 1 )- (2b
2

) \ 3a I ; inner valence electrons 

11-29. 1 D == 1 X 10- 18 esu·cm == 
(1 x 10- 18 esu·cm)( 1.6022 x 

10- 19 C/4.803 x 10- 10 esu) (m/ 100 cm) == 
3.336 x 10-30 C·m 

MathChapter F 

5 -3 -2 
F-1. C == -11 4 -6 

-3 -1 -1 



Answers to the Numerical Problems 

-7 6 1 

o == 19 -2 12 

6 5 5 
" " 

F-4. If A, B, and C corrrespond to Lx' L y ' 

and i 'C' respectively, then the results are 

similar to the commutation relations of 
"I'. " 

Lx' L y ' and Lz· 
F-7. det C3 == 1; Tr C3 == - 1 ; 

deta == -1' Tra == 0; deta' == -1; v 'v v 

Tr a~ == 0; det a~1 == -1; Tr a~1 == 0 

F 8 C ! 1/ 

-. 3' a v ' a v ' a v 

F-9. A-I = (~ ~); 

1 A-I == __ 
4 

1 -2 -1 

1 -6 3 

-2 4-2 

F-12. x == 24/13, Y == -19/13, and 

z == -8/13 

Chapter 12 

12-3. E, C3 , 3C2 , ah , 3av ' S3 
12-7. c~ is a counter-clockwise rotation by 

2700 and C;; I is a clockwise rotation 

by 90°. 

12-9. 16 

12-10. 24 
" 12-11. C2,a~,av 

12-12. a' a v' v 

12-15. See Equation F.2. 
A " " 

12-16. Eu x == ux ' C2ux == -ux ' avu x == ux ' 

" I au ==-u v x x 
" " 12-17. ER.r == Rx ' C2 Rx == -Rx , 

a R == -R a'R == R 
v x x' v x x 

12-21. r == 4A2 + 2E + 2T) + T2 

12-22. r == 8AI + 5A 2 + 6B) + 8B2 

12-23. r == All + A; + 3E' + 2A~ + E" 

12-24. no 

12-25. ¢2 == 1/f1 - 1/12 + 1/f3 - 1/14 + 1/15 - 1/f6 
" " 
E¢2 == ¢2; C6¢2 == 
1/16 - 1/11 + 1/12 - 1/13 + 1/14 - 1/15 == -¢2; 

C3¢2 == 1/15 -1/16 + 1/11 - 1/12 + 1/13 - 1/14 == 
" 

¢2; C2¢2 == 

1/14 - 1/15 + 1/16 - 1/11 + 1/12 - 1/13 == -¢2; 

c~ == -1/11 + 1/16 - 1/15 + 1/14 - 1/13 + 1/f2 == 

A 

-¢2; C~¢2 == 

-1/12 + 1/11 -1/16 + 1/15 -1/14 + 1/13 == ¢2: 
i¢2 == -1/14 + 1/15 - 1/16 + 1/11 - 1/12 + 1/13 == 

¢,; a¢, == ... ... 

1/12 - 1/11 + 1/16 - 1/15 + 1/14 - 1/13 == -¢2 
12-26. H33 == (1 + j3, H34 == 0, H44 == (1 + j3, 

S33 == S~4 == 1, S34 == 0; (x + 1)2 == 0 

12-27. Number of nodes of 

¢2 > ¢4 == ¢3 > ¢6 == ¢s > ¢l; ¢I (A 2u )' 

¢ 2 (B 2g ), ¢ 3 ( E I g ), ¢ 4 ( E I g ), ¢ 5 ( E 2u ) , 

¢6 (E2u ) 

12-29. r == B + EI + A2 + E, ; breaks 2g g u ... u 

down into two 1 x 1 and two 2 x 2 

determinants 

12-30. r == A + B, + E breaks down 
2u u g 

into two 1 x 1 determinants and one 2 x 2 

determinant 

12-31. ¢I == (1/11 + 1/13)/~' ¢2 == 1/12' 

¢3 == (0/1 - 1/13) /~. 
HII == H22 == H33 == (1, HI2 == ~{3, 
HI3 == H23 == 0; (x 2 - 2)(x) == 0; 

E == (1 ± ~j3, (1 

12-35. See Problem 12-36. 
" " 12-36. E f even (x) == f even ' a f even (x) == f even ; 

E fOdd (x) == fodd (x), a fodd (x) == - fodd (x) 
12-37. r == 4 1 - 2 - 4 - 1 2, 

1/ I! 

r == 2A, + E ; ... 

¢I == (1/12 + 1/13 + 1/14)/~' 1/11' 
(21/12 -1/13 -1/14)/v'6, 

(21/1 7, - 1/12 - 1/14) / v'6; HII == H22 == (1, 

HI2 == ~{3, H.B == H44 == (1, 
H34 == -aI2, S34 == -1/2. 
E == 2(a + ~,B) + 2a == 4a + 2~,B 

Jf 

12-38. r == 4 0 0 - 4, r == 2B + 2A ; g II 

¢I == (0/1 -1/I4)/~, 
¢, == (1/1, - 1/13) /~, 
¢: == (1/1~ + 1/1~)/~, ¢4 == (1/12 + 1/13)/~' 
HI I == a - j3, H 22 == (1, H 12 == 0, 

H33 == a + /3, H44 == a, H34 == 2{3, 
(x - 1)(x)(x2 + X - 4) == O~ EJf == 

2(a + 2.562j3) + 2(1 == 4a + 5.124{3 

12-39. See Problem 12-31. 

Chapter 13 

13-1. 127 pm 

1333 
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13-2. 305 pm 

13-3. l.96xl0 11 s 1,l.96xl05 MHz, 
6.54 em-I 

13-4. 1.36 x 1 011 revolution· s 1 

13-5. 2E == 2.96 em-I 

13-6. 1.896 x 10-46 kg· m2 

13-7. 84.0 N ·m- I ~ l.20 x 10- 13 s 
13-8. 321 em-I, 3.19 x 10-21 J 

13-9. 3.21 pm 

13-11. 

vR == 2160.0 em 1 + (3.87 em I)(J + 1); 

v R == 2160. 0 em I - (3.87 em -\ ) J 

13-12. 

vR == 936.7 em 1 + (l.52 em-I)(J + 1) 

J == 0,1,2, ... ; vp == 936.7 em-I -

( l.52 em-I) (J + I) J == 0, I, 2, ... 

13-13. VR(O~ I) == 2905.57 em-I; 

v
R

(1 ~ 2) == 2925.22 em-I; 

V p (1 ~ 0) == 2864.43 em I: 

vp(2~ 1) == 2842.93 em-I 

13-14. Eo == 8.35em- l
; B) == 8.12 em-I; 

B == 8.47 em-I; a == 0.23 em I 
(:' e 

- -I 13-15. BHI == 6.428 em ; 

IHI == 4.355 X 10-47 kg.m2
; 

- -I 
Re,HJ == 16l.9 pm; BOI == 3.254 em ; 
lor == 8.602 x 10-47 kg·m2

; 

Re,OI == 161.7 pm 
13-16. yes 

Molecule 74Ge32S 72Ge32S 

(v, J ==O)jem I 0.372 372 0.375 496 
(v, J == l)jem- 1 0.744 742 0.750 990 

~ v jem I 0.372 370 0.375 494 

13-17. 
B == 10.40 em-I; jj == 4.55 X 10-4 em I 

13-18. 
B == l.9227 em-I; jj == 6.53 X 10-6 em I 

13-19. 0 ~ 1 : 2l.1847 em I; 1 ~ 2 : 

42.3566 em-I; 2 ~ 3 : 

63.5030 em-I; 3 ~ 4 : 84.6110 em-I 

13-20. jj == 37 200 em-I 
e 

13-21. 69 or 70 

13-22. 490N·m- 1 

13-24. v == 2169.0 em-); i v == 13.0 em 1 
e e e 

Answers to the Numerical Problems 

13-25. 2558.539 em I; 5026.642 em-I; 

7404.309 em I; 969l.54 em-I 

13-26. v == 2989 em-I. V _t == 51.6 em- I 
e ' e e 

13-27. V == 384.1 em '; vi == 1.45 em-I 
e e e 

13-28. f == 65 080.3 em 1 
e 

1 3 -29. E;) == 65 833. 13 em - 1 , 

Eg == 1081.58 cm- I , 

vobs (0 ~ 0) == 64 751.55 em I 

vobs(O~ I) == 66230.85 em-I, 
vobs (0 ~ 2) == 67 675.35 em-I, 

vobs(O~ 3) == 69 085.05 em 1 

13-30. a == 0.00592 cm- I
; 0.82004 eIn- 1 

e 

1 3 31 -, 1126 2 -, -! -I 8 0 -I 
- • lJ(:' == . em ;xelJe == . em 

13-32. v;} == 267.76 em -I; .:t;, v;' == 0.04 em 1 

13-33. (a) 3,3,9 (b) 3, 2, 4 (c) 3,3,30 (d) 3, 

3,6 

13-34. HCI, CH
3
I, and H

2
0 

13-35. symmetric top, spherical top, 

asymmetric top, spherical top 

13-36. prolate, oblate, oblate, prolate 

13-38. 

).? - A (2 eos2 e + 8 sin2 e + 8 eos2 e + 
2 sin2 8) + 16 eos4 8 + 68 eos2 8 sin2 e + 
16 sin4 e - 36 sin2 e eos2 8 == 
A2 lOA + 16(cos2 8 + sin2 8)2 == 
" A~-IOA+16==0;A==2, 8 

13-42. ~j2 

13-43. IjJ2 

13-44. 

r3N == 12 0 2 2 2==3A 1 +A2 +4E; 
r 'b == 2A, + 2E; all modes infrared active 

VI 

1 3-45. r 3N == 15 - 1 3 3 == 

5A, + 2A2 + 4B
J 

+ 4B2; 

r vib == 4AI + A2 + 2BI + 2B2 ; the A2 
mode is infrared inactive. 

13-46. r 3N == 18 0 0 6 == 

6A + 3B + 3A + 6B ; g g II l{ 

r 'b == 5A + B + 2A + 4B ; A and 
VI g g l! l{ g 

B modes infrared inactive 
g 

1 3 -47. r 3 N == 15 1 - 1 - 3 - 1 - 3 -

I 5 3 1 == A) + A" + BI + B" + g -g g -g 

Eg + 2Au + B2L{ + 3E
lI

; r vib == 

A 1g + B'g + B2g + A2l! + B2L{ + 2Eu; A 1g , 

BI ' B2 ' and B" modes infrared inactive g g ,-U 
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13-48. r 3N == 15 0 - 1 - 1 3 == 

A] + E + T] + 3T2 ; 

r yib == AI + E + 2T2 ; AI and E Inodes 
infrared inactive 

- I -
13-50. Bo == 1.9163 cm ; B] == 

1.8986 cm- I
; B == 1.92515 cm- I

; 
e 

i == 1.454 X 10-46 kg·m2; 
e 

R == 113.0 pm 
e 

Chapter 14 

14-2. 8.41 T 

14-3. 6.341 T 
14-4. I H 7.05 T, 2H 45.9 T, I3C 28.0 T, 14N 

97.5 T, 31p 17.4 T 

14-5. 500 MHz or 12 T 

14-6. 2200 Hz 

14-7. Use the equation 

~v == (60.0 MHz)~8 x 10-6
. 

14-15. y has units of T- I 
. S-I , Bo has units 

of T, I has units of J. s, and J has units of 
st. 

14-26. The centers of the doublets occur at 

vo(1 - al) and vo(1 - a 2), so they are 

separated by Vo lal - a21. 
14-33. Let J == 0 in Table 14.6. 

VI_2 == V3~4 == vo(1 - at); 

Vt~3 == V2~4 == vo(l - a2 ) 

Chapter 15 

15-1. fluorescence 
15-3. J-I· rn2· s 1,J-l· m4· s-1 

15-9. 1.1 x 10-29 C·m 

15-10. 9.98 x 1019 J-I·m2·s-2~ 

7.68 x 10-30 C·m 

15-12. (A
32 

+ A
31

)-1 

15-13. 81.9 ns 
15-14. 3S 

I 

15-15. 0.904 Eh == 198000 cm I 

15-16. 3392.242 nm (in vacuo); 3391.3 in 

au 

15-18. 36; (3 x 5) + (1 x 5) + (3 x 3) + 

(1 x 3)+(3 x 1)+(1 x 1) ==36 

15-19. 560 kW; 5.49 x 1018 photons 

15-20. 3.71 x 1020 atoms; E == 106 J; 

1.06 x 1012 W 

15-21. 760-nm pulse 

15-22. 5.36 x 10]9 photons, 1.3% 

15-23. forbidden in the harmonic oscillator 

approximation. 

15-24. 6.52 x 1021 photons 

15-25. 961.57 cm- I, 962.34 crn- I
; forbidden 

in the rigid rotator approximation. 

15-26. 160 nm; 
1.0 x 10-4 J; 8.10 x 1013 photons 

1 5 -27. 1 7 300 cm -I; J == 0 

15-28. 0.30 

15-29. 79.7 s 

15-30. 1.10 x 1015 molecules destroyed· s I; 

9.12 W 

15-31. 1.965 x 105 J 

15-32. 
~ v == 1.59 x 1013 S-l; ~ V == 159 s 1; no 

15-33. 610 m·s- I 

15-34. 388 nm; 15.12 cm- 1 
; no 

15-35. 4.06 x 10 13 photons 

15-36. 532.05 nrn; 8.035 x 1017 photons; 

4.018 x 1017 photons 

15-37. 358.4 nm 

15-38. A: unitless; £: m2 ·mol- l
; A == 0.602; 

£ == 629 m2 ·mol- 1
; 8.3% 

15-39. m2
; a == 2.303£/ N A; 

2.41 X 10-2 ] m2 

15-40. m2
. mol I; K == 2.303£; 

K == 1450 m2 ·mol- I 

lS-41.m· mol-I; a 1/2 == 1.66/ ~ 1)1/2 

MathChapter G 

G-1. 0.8596 

G-2. 1.4142 

G-3. 4.965 

G-4. 0.615 atm 

G-5. 0.077 780 

G-6. 0.3473, 1.532, -1.879 

G-7. 0.0750 

G-11. In2 == 0.693 147; n == 10 

G-12. 0.886 2269 

G-13. 6.493 94 

Chapter 16 

16-1. 2.98 x 106 atm, 3.02 x 106 bar 

1335 
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16-2. 7.39 x 1 02 torr~ 0.972 atm 

16-3. 1.00 atm 

16-4. -40' 

16-6. 3.24 x 104 molecules. 1. 85 X 

10 19 cm3 .mol 1 

16-7. 44.10 

16-9. YH = 0.77, YN = 0.23 
2 2 

16-10. 2.2 bar, 2.2 bar 

16-11. CI
2 

16-12. 62.3639 dm3 ·torr· K- 1 
• mol 1 

16-15. 0.04998 dm3 ·mol- I
; 

0.03865 dm3
• mol 1 ~ 0.01663 dm3

• mol 1 

16-16. 353 bar; 8008 bar; 438 bar; 284 bar 

1 6-1 7. 1031 bar; 411 bar 
1 6 -1 8. 1 O. 00 mol· L -I; 1 0.28 mo I . L - 1 

16-19. 1570 bar; -4250 bar 

16-21. R-K: 345 bar; P-R: 129 bar 

16-22. 0.07073 L·mol- I
, 0.07897 L.mol I, 

0.2167 L·mol I; 14.14 mol.L -I; 

4.615 mol· L I. 

16-23. RK: 20.13 mol·L- 1, 5.148 mol.L -I; 

PR: 23. 61 mol· L I, 5.5 64 mol· L - I 

16-24. vdW: 4.786 mol·L -1,0.5741 
mol.L -I; 

RK: 6.823 mol·L -1,0.6078 mol·L-- 1
; 

PR: 8.116 mol· L -I, 0.6321 mol· L -I 

16-35. V ~ 78.5 em3 ·mo]-I 

16-37. 0.00150 bar I 

16-38. -5.33 x 10-3 dn13 .mol I 

16-40. 1 kJ vs. 100 kJ 

16-43. Yes 
16-44. -15.15 cm} .mol I 

16-45. -60 cm3
• mol 1 

16-52. 

(C.m)2(m3)/(C2 .s2 .kg- 1.m 3)(mo) = 

kg·m2 ·S-I = J 

16-54. 

5.86 x 10-78 J·m6
; 1.35 x 10-77 J·m6 

MathChapter H 

H-l. K = 1 I P 

H-2. a = liT 

H-4. ~NkBT = ~nRT 
H-7. 0; al V2; 3AI2T 1

/
2 V(V + B) 

H-9. 0; 0; -3AI4T3
/
2 V (V + B) 

Answers to the Numerical Problems 

H-l0. exact 

H-ll. inexact; exact 

Chapter 17 

17-7. -hyBz.'O 

17 -8. exp( -0.010 KI T) 

17-10. (£) = NkBT 
J 3 aN--

17-11. (£) = 2NkBT - V 

Nk T 
17-12. 3Nk T P = B 

2 B' V - b 
17-13. NkB 

17-14. ~ N kB 

17 -18. C v is a function of T* = Tie E' 

where (0£ - hvlkB 

17-23. (a) 6 (b) 9 (c) 12 

17-24. 9 total, 3 allowed 

17 -25. 6 allowed terms 

17 -26. 27 total, 1 allowed 

17 -27. 10 allowed terms 

17-28. 1.94 x 10-0 

17 -29. 0.0928 

17-30. 1420 

17-31. 0.286 
1 7 -3 5 . ftl = e h l' l' / k B T (1 _ e h l' / k B T ) 

1 7 -36. 1. 000, 0.9962, 0.9650 

17 -41. 

Term Fraction of Fraction of 

symbol atoms, 1000 K atoms, 2500 K 

1.00 

2.55 X 10- 11 

4.97 X 10- 11 

8.27 X 10- 17 

17-42. 29.06 J·mol- I ·K- 1 

17-43. 3420 K 

MathChapter 1 

1.00 

5.79 X 10-5 

l.15 x 10-4 

3.69 X 10-7 

1-1. 1.25 x 10-30/0,4.97 x 10-3 0/0, ... , 

0.468% 

1-2. 0.24980/0, 0.4992%, .... 4.921 % 
x x 2 

1-3. 1 + - + O(x 3
) 

2 8 



Answers to the Numerical Problems 

1-4 
_1 Rhv e 2'"' 

• 1 - e -1)111' 

1-6. 1 

1-10. 1 
a 3 a4 

1-11. - - - + ... 
3 4 

1-12. 

[X 211+3 I (2n + 3) !]/[X 2n+1 I (2n + I)!] ~ 

x 21n2 

Chapter 18 

18-4. 12 (T == 300K) == 4.8 x 10-36
; 

12 (T == 1 000 K) == 2.5 x 10 1 1 ; 

1
2
(T ==2000K) == 5.0 x 10-6 

18-5. j~ (T == 300K) == 9.0 x 10-32 ; 

12 (T == 1 000 K) == 4.9 x 1 0- 10 ; 

12 (T == 2000K) == 2.2 x 10-5 

18-7. De==Do+iR8vibCO: 
1 083 kJ· moll; NO: 638.1 kJ· mo 1- 1 ; 

K
2

: 54.1 kJ·mol- 1 

18-8. 6332 K, 4478 K 

18-10. Iv>o == 7.6 X 10-7 at 300 K; 

Iv>o == 1.46 X 10-2 at 1000 K 

18-11. Iv>o == e (..)vib
IT == 1.01 X 10-9 for 

H2 ; 0.0683 for C12 ; 0.358 for 12 ; etc. 

18-12. 87.6 K, 43.8 K 

18-13. 9 or 10 

18-14. N
2

: 0.32%; H
2

: 9.45% 

18-16. ~ 20% 

18-18. NO(g) at 300 K, lmax == 7; at 1000 K 

1 == 14 max 
18-21. 8·b . == 5360 K: 

VI • ./ 

(C vjl R) == 1.05 x 10-2
; 

- -2 8 'b ' == 5160 K: (Cv·1 R) == 1.36 x 10 ; 
VI • .1 J 

e 'b . == 2290 K: (Cv·1 R) == 3.35 x 10- 1 
VI ,./ J 

18-22. e elec.1 == 227.6 K; 0) elec,2 == 325.9 K; 
q == 5 + 3e 227,6 KIT + e-325 .9 KIT == elec 
8.803 at 5000 K 

18-23. 2, 1, 12, 24, 2, 4 

18-24. e t == 2.141 K; e 'b 1 == 3016 K; ro VI , 

8 vib.2 == 1026 K; C-jvib.3 == 4765 K; 

CvIR==6.21 
18-25. 2; 2.368 x 10-46 kg'In2

; 1.702 K; 

2842 K; 4849 K; 4715 K; 1049 K; 

863.3 K; 4.34R 

18-28. I == 6.746 x 10-46 kg· m2
, 

Brot == 0.597 K 

18-29. see Table 18.4; 5.304R 

18-34. (~) 'b 0 == 4480 K; 8 0 == 42.7 K; 
VI . 2 rot 2 

C0vib.HD == 5484K~ 8 rot.HD == 64.0 K 

T I(C0 t ) 18-35. Inq leT) == In - + - ~ 
ro 8 3 T 

1 (e)2 rot 
+ 90 ;ot + ... 

18-37. yes~2140K~no 

18-38. 4 degrees of freedom; 
3 RC0 . R8 . e-(..)vib IT 

U == - RT + Vlb + __ vl_b __ 
2 2 1 - e-(..)vib IT 

18-39. (a) 3RI2 (b) 7 RI2 (c) 6R (d) 13RI2 

(e) 12R 

18-40. 0.52% 

Chapter 19 
19-1. KE==9.80kJ;u==44.3m.s I; 

22.2°C 

19-2. 15.0 bar; 3000 J 

19-3. 28.8 bar; 3.60 J 

19-4. 4.01 kJ 

1 9 -5. - 1. 73 kJ 

19-6. 11.4 kJ 

19-7. +413 J; +309 J; they differ because w 

is a path function 

19-9. -3.93 kJ ·mol- I 

19-10. 3.92 kJ ·mol- I 

19 -1 2. VI == 1 1. 35 L; V2 == 22.70 L; T2 == 

1090 K; ~u == 10.2 kJ 'mol- 1
; !)'H == 

1 7.0 kJ . mol I; q == 13.6 kJ; w == - 3.40 kJ 
19-13. 418 J 

1 9 -19. T2 == 226 K, tv == 898 J 
19-20. 519 K 
19-21. 421 K 

1 9 -22. q p == 1 22.9 kJ . mol I, 

~H == 122.9 kJ 'mol- I
, 

~ U == 1 13. 1 kJ . moll, 

71) == - 9 . 8 kJ . moll; 

qv == 113.1 kJ ·mol- I
, 

!)'H == 122.9 kJ ·mol- I
, 

~ U == 1 1 3. l.kI . mol I, W == 0 
19-23. ~ U . 288.3 kJ·mol- 1 

r 

19-24. 74.6 kg 

19-25. 295 K 

19-26. 3340 kJ 

19 -35. ~ H == 41 6 kJ 
r 

1337 
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19-36. ~ H = -521.6 kl 
r 

19-37. ~ H = +2.9 kl 
r 

19-38. 

~ H [fructose] = +1249.3 kl·mol- I 
r 

19-39. methanol: - 22. 7 kl· g-I ; 

N
2
H

4
(l) = -19.4 kl·g- 1 

19-40. 32.5 kl 

19-41. (a) -44.14 kl, exothermic 

(b) -429.87 kl, exothermic 

19-42. 43.8 kl .mol- I
; 44.0 kl ·mol- I from 

Table 19.2 

19-43. 136.964 kl ·mol- I 

19-44. -394.378 kl ·mol- 1 

19-46. 4040 K 

19-48. 64.795 kl· mol 1 

19-49. 1.50R 

19-50. -13.3 kl; -15.7 kl 

19-53. Drops by 30 K 

MathChapter J 
J-1. x 5 + 5x4 + 10x3 + 10x2 + 5x + 1 

J-2. x 2 + 2xy + 2xz + y2 + 2yz + Z2 

J-3. X4 + 4x 3 Y + 4x 3z + 6x 2 y2 + 12x2yz + 
6X 2Z2 + 4xy3 + 12xy2z + 12xyz2 + 
4YZ 3 + 6y2z2 + 4y3z + y4 + 4xz3 + Z4 

J-4. 6 

J-5. Each number in a row is the sum of the 

two numbers above it. 

J-6. 84 

J-7. 1.12 x 10-5 vs. 0.0194 in Table 1.1 

Chapter 20 

20-2. dz/y 

20-6. 

qrev = fT
4 C v(T)dT + fT

I 

C v(T)dT 
_ TI ~ 

t
v) V 

- _ - P
2
dV; ~S = Rln.-l 

VI VI 
20-8. 5.761· K- 1

; positive because the gas is 

expanding 

20-9. 19.1 1· K- 1 
; positive because the gas is 

expanding 

20-1 o. q = - PI ( V I - V I ) ; rev _ 

(V - b) ~ S = R In ==-_2_ 

V -b 
I 

Answers to the Numerical Problems 

20-12. qrev = - P2 (V 2 - V I); 

(V -b) ~S = R In ==-=-2_ 
V -b 

1 

20-13. ~S=37.41·K-I 

20-14. ~S = 30.6 1·K-1 ·mol- 1 

20-17. ~ S can be positive or negative for an 

isothermal process; ~S = -5.76 1· K- I 

20-18. ~S = 217.9 l·K- ' 
20-19. ~ S = 44.0 1 . K- ' 
20-25. ~S = 13.41·K- 1

• 
sys ' 

~S =-13.41·K-1.~S =0 
SUIT ' tot 

20-26.~S =O'~S = 13.41·K- ' · SUIT 'sys ' 

~Stot = 13.4 1· K- I 

20-27. ~S = 192.78 l·K- ' .mol I 

20-28. y 1 = 0.5 
- -I 20-29. ~ . S = 5.291· K 

mIx 

20-33. ~S = 95.6 1·K-1 ·mol- 1 

20-37. exp(-1.5 X 1017
) 

20-38. (1/2)NA 

20-40. 164.1 1· K- ' .mol I 

20-41. 191.6 l·K- ' ·mol- ' 
20-42. 213.8 1·K- 1 ·mol- 1 

20-43. 193.1 1.K- ' .mol I 

20-45. 21 % at 1 atm; 41 % at 25 atm 

Chapter 21 

21-2. 37.51·K- 1 

21-3. 192.61· K- 1 

21-4. 38.751· K- 1 

21 -5. 44.5 1 1· K - I 

21-10. 

Substance ~ S / 1· K- I ·mol- I 
yap 

Pentane 83.41 

Hexane 84.39 

Heptane 85.5 

Ethylene oxide 89.9 

Benzene 86.97 

Diethyl ether 86.2 

Tetrachloromethane 85.2 

Mercury 93.85 

Bromine 90.3 
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21-11. 

Substance /j.fus S I 1· K- I . mol I 

Pentane 58.7 

Hexane 73.5 

Heptane 77.6 

Ethylene oxide 32.0 

Benzene 35.7 

Diethyl ether 46.3 

Tetrachloromethane 13 

Mercury 

Bromine 

21-14. 192.051·K- I·mol- 1 

9.77 

40 

21-16. 223.21· K- I ·mol- I compared to 

223.11·K- 1 ·mol- 1 

21-18. 237.81.K- 1 .m01 I 

21-20. 196.7 1· K- 1 ·mol- I 

21-21. 139.31·K- 1 ·mol- 1 

21-22. 272.6 l·K- 1 ·mol- 1 

21-23. 274.31.K- I.mol I 

21-24. 154.7 l·K- I·mol- l
; residual entropy 

21-25. 185.61·K-I ·mol- 1 

21-30. 222.81·K- 1 ·mol- 1 

21-31. 159.9 J·K-I·mol- I
; residual entropy 

21-32. 193.11·K- 1·mol- 1 

21-33. 245.4 1· K- 1 
• mol I 

21-34. 173.7 j·K-I·mol- 1 

21-35. 

SO(H
2

, 298.15K) == 130.3 1.K- I.mol I; 

SO (°
2

, 298.15K) == 144.7 1· K I. m01- 1 
; 

SCJ(HD, 298K) == 143.5 1 ·K- I .mol I 

21-36. 253.6 J. K- I . mo] I. The 

experimental value is 253.7 l·K- I·mol- l
. 

21-37. 234.3 1· K- I . mol-I. The 

experimental value is 240.1 1· K- I . mol I. 

The difference is due to residual entropy. 

21-38. -172.7 J.K-I.mol I 

21-39. -49.6J.K- ' .mol I 

21-40. (a) CO
2 

(b) CH
3
CH

2
CH

3 

(c) CH
3
CH

2
CH

2
CH

2
CH] 

21-41. (a) O2° (b) CH3CH20H 

(c) CH3CH2CH2CH2NH2 

21-42. (d) > (a) > (b) > (c) 

21-43. (c) > (b) ~ (d) > (a) 

21-44. translational for both 

21-45. 239.51·K- 1 ·mol- 1 

21-46. 188.21·K- I·mol- 1 

21-47. (a) 2.86 J. K- I . mol- 1 

(b) -242.91·K I ·mol- I 

(c) -112.0 l·K- I·mol- 1 

21-48. (a) - 332.3 1· K- I . mol-I 

(b) 252.661 ·K- I ·mol- I 

(c) 173 1·K- 1 .mol I 

Chapter 22 

22-1. /j. G (80.0geC) == 0', yap 

~ G (75.0°C) == 0.441 kl· mol I. 
v~ , 

/j.
vap

G(85.0°C) == -0.428 kl·mol- I 

22-2. /j. G (80.09°C) == 0; yap 

/j. G(75.0Cl C) == +444 J ·mol- I ., yap 

/j. G(85.0')C) == -425 l·mol I; no yap 
- -

22-5. PV == RT and P(V - b) == RT 

22 -7 . -0.0513 kl· mol-I 

22-8. R 

22-9.7.87 x JO-3 dm3 ·bar- I ·K- 1 == 
0.787 l·K- ' .mol I 

22-13. -0.0552 kJ ·mol- I 

22-16. (ae pia P)T == 
4.47 X 10-4 dm3. mol I. K- ' ; 

C p == 25.21 J·K- 1 ·mol- I 

22-17. 138.1 J·mol- 1 

22-19. V and U 

22-20. 0.0156 J ·K- 1 ·mol- I 

22-21.0.866J·K- 1·mol- 1 

22-22. 0.4661· K I ·mol- I 

22-30. y ~ 0.63 

22-51. 

Gas Ar 

f-lJT (theor.) IK· atm- I 0.44 

f-l
JT

( exp.) IK· atm-\ 0.43 

Percent Difference 3.4 

N2 

0.24 

0.26 

6.6 

1339 

CO
2 

1.38 

1.3 

6.6 
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22-52. 

Gas Ar N2 CO2 

r:(theor.)/K 791 634 1310 

r:(exp.)/K 794 621 1500 

Percent Difference 0.378 2.09 12.7 

22-53. Ar: 42.6 K, N2: 25.7 K, CO2: 129 K. 
22 -55. - 1 9.7 J . K - I . mol I vers us 

-19.1 J. K- 1 ·mol 1 for an ideal gas. 

22-56. -20.0 J. K 1 ·mol- ' versus 

19.1 J ·K- ' ·mol- ' for an ideal gas. 

Chapter 23 

23-1. No. Its normal melting point is higher 

than the triple point temperature. 

23-4. 11.1 torr, 172.4 K 

23-6. 1556 bar 

23-9. 352.8 K 

23-10. T == 305.4 K c 

23-16. T == 152K c 

23-17. ~ H == 35.26 kJ ·mol ' yap 

23-20. dT/dP == 27.9 K·atm I; at 2 atm, 

the boiling point is about 127. 9'C 
23 -21. 29.5 kJ . rna 1- , 

23-22. 59.62 kJ ·mol- I 

23-23. 383 cmJ 
. mol I 

23-27. 1070 torr 
23-28. 41.2 kJ· mol I 

23-29. T == 2010 K; Yap 

~ H == 1 79.6 kJ· rna 1 I yap 

23-30. T,<;ub == 386 K; 
~sub H == 62.3 kJ .mol I 

23-31. 50.96 kJ .mol I 

23 -32. 41 0.8 kJ . rna 1- , 

23-33. ~subH == 27.6 kJ· mol I 

23-34. 1.12 

23-36. ~ H == 1895 J .mol- I; 
r 

~ S{) == -3.363 J ·mol I; P == 15000 atm 
r 

23-37. 42.72 kJ ·mol- I 

23-39. -48.43 kJ ·mol- I 

23-40. -50.25 kJ ·mol- I 

23 -41 . 45.53 kJ· mol 1 

23-42. 0.0315 atm 

23-43. 0.0315 atm 

23-45. 0.0313 atm 

Answers to the Numerical Problems 

Chapter 24 

24-4. G == fln == U - T S + P V 

24-5. G == fln == A + PV 
24-16. nl 

/ n Yap == 0.58 

24-18. The vapor phase is richer in the more 

volatile component. 

24-20. x I == 0.463; YI == 0.542 

24-26. Plotal == 140 torr; Y I == 0.26 

24-27. YI < XI because Pt < P2* 

24-29. Pt == 120 torr; P2* == 140 torr; 

kH,1 == 162 torr; kH ,2 == 180 torr 
24-44. Yes 

24-45. No 

24-47. G / R == 0.8149x l x2 (1 + 0.4183x
l
) 

is not symmetric about X I == x 2 == 1/2. 

24-48. at(r~) == 0.181: Yt;~) == 0.631 

24-49. Pt == 78.8 torr; PI == 
30.6 torr; aiR) == 0.39; y/R) == 1.6; kH,1 == 
180.7 torr; a ~H) == 0.17; y/H) == 0.68 

24-52. No 

24-57. G / RT == x l x2 [a + 11(1 - XI /2)] 

Chapter 25 

25-1. 4.78ITIol·L- I
; 7.24mol·kg-'; 

molality is independent of ten1perature 

25-2. 18.4 mol·L- 1 

25-3. 1.7 g.mL- 1 

25-4. 0.00893 

25-6. 0.060 mol·kg I; 0.313 mol.kg-'; 

0.660 mol· kg I; 1.484 mol. kg-I; 

3.960 mol.kg- I 

25-7. 0.73 mol.kg- I 

25-9. 2.83 mol· L -I 

25-15. XI == 0.9487; Yl == 0.983 

25-18. Y2 == 1.186 
f11 

25-19. ¢ - 1 == 0.2879; the integral 

== 0.272; In y, == 0.560; y) == 1. 75 
_nl ... f11 

25-21. 0.958 

25-22. 0.902 

25-24. 6.87 K·kg·mol-' 

25-26. 2.93 K· kg.mol- I 

25-27. Kb == 2.53 K·kg·mol '; 147 

25-29. 72 000 

25-31. 58.0 atm 
25-40. 10 mol· kg , 
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25-41. The value of v comes out to be 1.02, 

which means that HgCl2 (aq) is 

undissociated at the given conditions. 

25-42. v = 3; 

K2HgI4 (aq) 2 K+ (aq) + HgI;- (aq) 

25-43. Pt(NH3)~+ (aq) , 2 CI (aq) 

Pt(NH3)3Cl+(aq), CI (aq) 

Pt(NH3)2CI2 (aq) 

K+(aq), Pt(NH
3
)CI3 (aq) 

2 K+(aq), PtCI~-(aq) 

25-44. One third of 0.315 mol· L -I, or 

0.105 mol·L- 1 

25-48. 0.889 

25-51. electroneutrality 

25-55. The thickness of the ionic 

atmosphere of a 1-1 electrolyte is twice as 

large as that of a 2-2 electrolyte. 

25-62. The pressure is proportional to the 

molality squared because HCI(aq) 

dissociates into H+ (aq) and CI- (aq). 

Chapter 26 

26-1. (a)(I);no-~,~,~;(2);no-~' 

n l + ~, ~ 
(b) (1); no - 2~, 2~, ~ (2); no - 2~, 2~, 

n l + g 
(c) (1); no - g, 2no - 2~, ~ (2); no - g, 
no - 2g, g 
26-2. The equilibrium-constant expression 

for the second reaction is the square root 

of that of the first reaction. 

26-3. Yes, g decreases with increasing P. 
eq 

26-6. g increases as P increases, in accord eq 

with Le Chatelier's principle 

26-7. geqlno = 0.0783 at P = 0.080 bar; 

~ Ina = 0.0.633 at P = 0.160 bar; g eq eq 

decreases as P increases, in accord with 

Le Chatelier's principle 

26-8. K p = 17.4; the values of equilibrium 

constants depend upon the reference state 

26-10. (a) ~ G = 4.729 kJ 'mol- I
; 

r 

K p = 0.148 

(b) ~rG = -16.205 kJ'mol-'; Kp = 690 

(c) ~ GO = -32.734 kJ· mol-I; 
r 

K p = 6.80 x 105 

26-11. (a) Kc = 5.97 x 10-3
; (b) Kc = 690; 

(c) Kc = 4. 17 x 108 

26-13. K p = 2.94 x 10-3
; 

K = 2.11 x 10-5 
(' 

26-15. ~eq = 0.31 

26-17. K3 = 3.37 

26-21. The reaction as written will proceed 

to the right. 

26-22. The reaction as written will proceed 

to the left. 

26 .. 23. ~ H = 6.91 kJ .mol 1 
r 

26-24. K p = 1.35 

26-25. K p = 14.9 

26-26. ~ HO = 99.6 kJ ·mol- I 
r 

26-27. ~ HO = 12.02 kJ.mol I 
r 

26-29. ~ GO = -23.78 kJ 'mol- I; 
r 

~ H = - 89.30 kJ . mol-I; 
r 

~ So = -124.8 J·mol- 1 ·K- 1 
r 

26-30. ~ H = 266.5 kJ ·mol- I 
r 

26-31. K p = 3.889 X 10-4,0.7367,9.554; 

~ H = 125.9 kJ.mol 1; ~ So = 
r r 

60.61 J. K I. m 0 I-I , 60.41 J. K -1 . m 0 I-I , 

60.73 J. K- 1 ·mol- I 

26-3 2. ~ r G 0 = 14.21 kJ . moll, 

~ H = 90.2 kJ 'mol- I, 
r 

~ So = 84.5 J·K-1·mol- 1 
r 

26-34. K = 52.29 

26-35. K p (900 K) = 1.47, 

K p ( 1000 K) = 0.52, K p (1 100 K) = 0.22, 

K p (1200 K) = 0.11,; 

~H =-76.8kJ·mol- 1 
r 

26-36. 1.46 x 10-3 

26-37. K p (900 K) = 0.56; 

Kp(1200 K) = 1.66 

26-38. K p = ] 2.3 X 10-5 

26-39. ~ H = 153.8 kJ·mol- 1 
r 

26-41. ~ H = 98.8 kJ· mol I 
r 

26-43. K = 3.37 

26-44. At 900 K, K p (JANAF) = 1.28, 

K p (Problenl 24-35) = 1.47 

At 1000 K, K p (JANAF) = 0.472, 

K p (Problem 24-35) = 0.52 

At 1100 K, K p (JANAF) = 0.208, 

K p (Problem 24-35) == 0.22 

1341 



1342 

26-45. K p (JANAF) = 1.32 x 10-3
, 

K p (Problem 24-36) = 1.46 x 10-3 

26-46. Kp(JANAF) = 8.75 x 10-5
, 

K p(Problem 24-38) = 12.3 x 10-5 

26-47. 

T/K Kp(JANAF) K p (Problem 24-39) 

800 3.05 x 10-5 3.14 X 10-5 

900 4.26 x 10-4 4.08 X 10-4 

1000 3.08 x 10-3 3.19 x 10-3 

1100 1.66 x 10-2 1.72 X 10-2 

1200 6.78 x 10-2 7.07 X 10-2 

26-49. 2.443 x 1032 m-3 

26-50. 3.84 x 1035 m-3 versus 

3.86 x 1035 m-3 

26-51. 1.87 x 1035 m-3 versus 

1. 91 x 1035 m 3 

26-52. 5.66 x 1035 m-3 versus 

5.51 x 1035 m-3 

26-53. Do = 427.8 kJ ·mol- 1 

26-54. Do = 1642 kJ· mol- 1 

26-55. Do = 1598 kJ·mol- 1 

26 .. 56. K ~ 0.53 
y 

26-57. Ky ~ 1.1 ~ therefore K p at 500 bar 

must be smaller than K p at one bar 

26-58. ]n a = 1.08 at 100 bar 

26-59. ~ HO = 159.2 kJ 'mol- 1
; 

r 

~ So = 217.7 J·mol-I·K-I~ 
r 

~ GO = 94.3 kJ·mol- 1 
r 

26-60. ~Ho = 31.67 kJ .mol I; 
r 

~ So = 96.51 J·mol I·K-I~ 
r 

~ GO = 2.910 kJ ·mol-1 
r 

26-61. 3800 bar 

26 .. 63. 0.051 mol·L- 1 

26-64. 3.4 x 10-4 mol·L- 1 

26-65. 3.3 x 10-4 mol·L- I 

Chapter 27 

27 -1. 4.99 kJ· mol- 1 compared to 

14.55 kJ ·mol- I 

27-2. 421.9 m·s 1,516.8 m·s- I
, 

667.2 m·s- I
, 943.5 m·s- I 

27-3. y'2 

Answers to the Numerical Problems 

27 -4. u
rms 

(N
2

) = 511 m· S-I; 

U (O.J = 478 m·s- I 
rms _ 

27-5 238UF < 235UF < NO < CO < 
• 6 622 

02 < N2 < H 20 

27-6. (m
I 

/m
H 

)1/2 = 11.2 
2 2 

27-7. (9/5)1/2 = 1.34 

27-8. 321 m·s- I 

27-9. y = 7/5; U d = 352 m·s- I 
soun 

27-11. otherwise f(u
x

) would not be finite 

as u -+ 00. 
x 

27-12. prob = erf(l) = 0.84270 

27-1 4. ~ [1 - erf ( y'2)] ~ O. 17; 

~[1 - erf(I)] = 0.079 

27-1 7. (kB T / 2n m ) 1/2 

27 -18. v = 11 200 m· S-1 " 
escape 

TH = 11 900 K; TN = 166 000 K 
2 2 

27-19. v =2370m.s- I ;T
H 

=537K; 
escape ) 

TN = 7460 K ~ 
2 

27-20. a = 7.26 x 108 
S-1 

27-22. (u) = (n RT /2M)I/2, 

(u 2 )=2RT/M 
27-23. e-mu~/2kBT 

27 -24. 0.4276 

27-26. kBT/2 

27-27. (£,2) = 15(kB T)2/4; ae /(£') = ,}2/3 

27 -28. (3k
B 

T / m) 1/2 compared to 

(2k
B 

T / m) 1/2 in the bulk gas 

27-29. Z = 1.76 X 1019 m-2 ·s-1 
colI 

27 -30. (9n ks T /8m) 1/2 compared to 

(8k
B 

T /n m) 1/2 in the bulk gas. 

27-31. 1.6 x 10- 11 s to cover 1.0% of one 

square meter 

27 -32. 5.1 x 1017 

27-35. (a) ZA = 1.32 X 107 s I 

(b) Z A = 9.89 x 109 
S I 

27-36. (a) t = 1.88 X 10-7 
S 

(b) t = 2.51 X 10- 10 s 

27-37. (a) 0.869 (b) 7.60 x 10-7 (c) ~ 0 

27-38. (a) ~ 1 (b) 0.98 (c) 7.90 x 10-9 

27-39. I = 40.7 m; 15. 1 S-I 

27-40. 8.52 x 10-7 m; 1.76 x 10-5 m; 

2.01 x 10-4 m~ 3.00 x 10-3 m 

27-41. 2 x 1019 m 



Answers to the Numerical Problems 

27 -42. 124 Pa = 1.24 x 10--3 bar; 

12.4 Pa = 1.24 x 10-4 bar; 

0.0124 Pa = 1.24 x 10-7 bar 

27 -44. 1.30 x 1032 m--3 . S-I ; 

3.32 x 1 029 m - 3 . S - I ; 

2.54 X 1027 m 'S-I; 9.51 X 1024 m-3 .s 1 

27-47. ZCH = 2.80 X 108 S-I; 
.4 

ZN = 4.39 X 1032 m-3 'S-I 
2 

27-48. 2k8 T 

27 -49. 2.26 x 10 17 

27-50. ~ H=772kJ·mol- ' yap 

27-51. 1.88 x 10-5 torr 

Chapter 28 

28-1. (a) ~ ~ 1 mol. The reaction 
eq 

essentially goes to completion. 

(b) ~ = 3.37 X 10- 16 mol. The reaction 
eq 

essentially does not occur. 

28-2. d[N20]/dt = 
-1.23 x 10-5 mol·dm-3 'S--I, 

d[N
2
]/dt = 1.23 x 10-5 mol·dm 'S-I, 

d[02 J/ dt = 6.16 x 10--6 mol·dm-3 -S-I 

28-3. 1.64 x 10-5 mol· s I 

28-5.7.59 x 105 dm3 .mol- l .s I 

28-6. 
1 d[A] 

v = ----
VA dt 

28-7. [A] - [AJo = -kt 

28-8. v = k[NOf[H2L 

[A] dV 

V A V dt 

k = 3.40 x 10-6 torr-2.s I 

28-9. v = k[S02CI2], k = 2.25 X 10-5 S-I 

28-10. v = k[Cr(H20)~+][SCN-]; 
k = 1.66 x 10-2 dm3 - mol-I. S-I 

28-11. v = [OCI-][I-]/[OH-]; k = 60.6 S-I 

28-12. tl/2 = 3.09 x 104 s; 66.8% will 

remain after 5.00 h; 31.3 h to react 92.0% 

28-13. first order 

28-14. k = 7.31 X 10-5 S-I, tl/2 = 2.63 h 

28-15. k = 1.39 X 10-2 min-I, 139 m 

28 ... 16. v = k[PhS0
2
S0

2
Ph][N

2
H2], 

k = 5.4 x I 05 dm] . s - I . ill 0 I-I 

28-18. 50.7% 

28-19. t = 128 h 

28-20. 2310 disintegration· min- I 

28-21. 26000 disintegration· min-I 

28-22. 1.97 x 109 Y 

28-23. 1.71 x 108 Y 

28-26. 0.00882 min 1 

28-27. 0.0505 rnin I 

28-28. 1.54 x 10-4 mol· dm-3 . S-1 

28-31. second order in N
2
0; 

k = 0.47 mol 1 .dm3 .s I 

28-34. kl = 1.4 X lO" mol 

k2 = 2.4 x 10-5 
S 1 

28-35. r = 1.32 x 10-4 
S 

1 • dm3 _ s 1. , 

28-38. 15.2 s 

28-39. Yes. 

28-40. Ea = 8.29 kJ 'mol- I, 

A = 0.250 min-- ' 

28-41. A = 7.39 X 109 dm3 -mol 

E =9.90kJ·mol- 1 
a 

28-42. 9.27 x 109 dm3 ·mol- I 'S-I 

28-43. 506 K 

I -I 
. S , 

28-44. A = 5.94 X 108 dm3 ·mol- I 'S-I, 

E = 10.5 kJ· rno 1- I 
a 

28-45. 103.1 kJ·mol- l
; 

A=6.0x 108dm3 ·mol l ·s- 1 

28-47. ~ + GO = 25.94 kJ· moll , 

k = 4.59 x 108 
S I 

28-48. A = 4.98 X lOll S-I; 

E = 128 _ 0 kJ . mo 1- I ; 
(J 

~ t- H 0 = 124.5 kJ . mo 1- I ; 

~t-So=-32.IJ.mol-I.K 1 

28-52. first-order 

Chapter 29 

29-1. unimolecular: s I; bimolecular: 

dm] . rnol- 1 • s I; termolecular: 

dm6 ·mol-2 'S-I 

29-2. v = k[F][D2]; units of k: 
drn3.mol-l.s I 

29-3. v = k[M][lf; units of k: 
drn6 .mol 2' S-1 

29-4. kobs = k I 
29-7. No. 

29-8. consistent with conditions (b) 

29-10. kobs = k
2
(k

l
/k_

I
)1/2 

29-11. kobs = kl k2/(2k2 + k_ l ) 

29-12. kobs = k]k2kII/2/ k_2k!!1
2 

29-13. yes; kobs = k2kl / k I 

1343 



1344 

29-14. No. 

29-15. fast equilibrium for step 1 ~ 

k ohs == k 2 k) / k _ ) 

29-16. d[02] == k2k) [C6HSCO]H]2 
dt k ) [H+] 

29-17. Assume steady-state for N 2 O. 

kohs == kl 
29-18. fast equilibrium step 1; steady state 

for N2 0; k b == k k / k o s 2 1 I 

29-23. initiation step, (1); propagation steps, 

(2) and (3); termination step (4) 

29-24. a chain reaction. Initiation step, (1)~ 

propagation steps, (2) and (3); termination 

step, (4) 

29 -28. A nbs == A 2 ( A I / A 4) 1/
2 

29-29. A
ohs 

== A
3
(A

I
/ A4)1/2 

29-31. initiation: step 1; propagation: 

steps 2 and 3; termination: step 4 

29-32. 
I d[HCl]/dt == k (k /k )1/2[H ][CI ]1/2 
2 . 2 14 2 2 

29-33. ~ d[HBr] == k ( 2IadS) 1/2 

2 dt 2 k_1 
[H,J 

X ~ 

1 + (k_2/ k3)[HBr]/[Br2] 

29-36. one 

29-37. K == 9.94 X 10-3 mol·dln- 3
. 

nl ' 

k, == 1.07 x 105 
S I ... 

29-38. K == 1.31 x 10--2 mol· dn1-3
. 

m ' 

k2 == 3.42 x 104 S-I 

29-40. v == 0.64 mol.dm-3 .s I 
max 

Vo == 1. 11 x 10-4 mol· dm -3 . S I 

29-41. K{ == 5.4 x 105 mol·dm--3 

29-42. 0.38 g 

29-44. CCl
4 

is the better catalyst 

29-47. [0
3

] == 2.23 x 10 13 molecule·cm-3
; 

[0] == 2.82 X 107 molecule.cm 3 

29-48. branching chains, (2) and (3); 

initiation step, (1); termination step, (5); 

step 2, 69 kJ· mol-I; step 3, 8 kJ· mol I 

Chapter 30 

30-1. 

Answers to the Numerical Problems 

k == 6.59 X 10-6 dm3 ·mol- 1 ·S-I. exp , 

ratio == 3.26 x 1016 

30-4. E() == 6.34 kJ· mol-I. (J == , AB 

7.47 x 10-21 In2 

30-5. k == 6.7 X 105 dm3 ·mol ) ·S-I. exp , 

k . == I 65 x 108 d 3. 1-1. -I. 
theoretH:al' m rna s, 

A theoretical == 5.20 X lOll dm3 ·mol I·S-I. 

The ratio of the theoretical and 

experimental values of k is 250 and the 

ratio of the theoretical and experimental 

values of A is ~ 250. 

30-6. 3 

30-7. 9.86 x 10-20 J 

30-8. 4280 m· s I 

30-9. 3.2 

30-10. 6770m·s- 1 

30-13. 352m·s- ' 
30-14. 1330m·s- 1 

30-15. In neon: 786 m· S-I ; in helium: 

1770 m·s- I 

30-1 6. I I 600 K 

30-1 8. 361 0 m· s - I ; 2240 m· s - I 

30-1 9. 33.73 kJ· mol I 

30-20. v == 0, 1, 2, and 3 

30-21. u ~ == 1. 27 x 1 04 m· s - I ; 

IUOF-ueml == 1.11 X 103 m.s I; 
IU

02 
- ueml == 1.16 X 104 m·s- I These 

results are identical to those in 

Example 28-50. 

30-22. v == 0, 1, and 2 

30-23. 

v u~/ 103m. S-I I "HC) - U em I / 103 
m . s I 

0 2.437 1.673 

1 1.785 1.225 

2 0.7281 0.5000 

30-24. For v == 0, J == 0, 

IUHC1 - ueml == 1672 m·s I; for 

v == 0, J == 1, IUHel - "em I == 1671 m· s I 

30-25. J. == 17 mill 

30-26. u/ v == 0) == 2310 m· s I; U (v == 1) == 
r 

1580 m·s ) 

30-27. increase; radius increases by J2 
30-28. J == 16 



Answers to the Numerical Problems 

30-29. 0, 1, 2, 3, and 4 

30-30. J == 10 

30-31. v == 84; at v == 0, 

IUKI - ueml == 988 m·s I; at v == 1, 

IUKI - ueml == 982 m 'S-I; yes 

30-32. stripping reaction 

30-34. 6.94 x 105 pm2
; harpoon mechanism 

30-36. 18 680.4 cm- I; 535 nm green light 

(visible) 

(
E) 1/2 

30-40. b == d 1 __ 0 
max AB E 

r 

30-41. a == 4Ab~ax (1 - 2/n) 

30-43. 9820 m· S-I 

30-45. 10070m·s-1 

Chapter 31 

31 -1. 9.26 g. cm 3 

31-3. 143.0 pm 

31-4. 124.4 pm 

31-5. 8.935 g·cm-J 

31-6. 198.4 pm 

31-7. 6.022 x 1023 mor- I 

31-8. 6.022 x 1023 mol- ' 
31-9. NaCI 

31-10. 268.9 pm 

31-11. 2.163 g·cm-3 

31-12. (a)10,(b)11,(c)12 

31 -1 3 . (a) 13 , (b) 1 1 , (c) 0 1 , (d) 32 

31-15. They are perpendicular to each other. 

31-16. They are the same. 

31-18. (a) 111, (b) 110, (c) 5 4 10, (d) 224 

31-20. (a) 632, (b) Ill, (c) 122 

31-21.532.8 pm (100); 307.6 pm (111); 

217.5 pm (121) 

31-22. 3.607 g.cm-3 

31-23. 1.20 x 10 15 cm-2 

31-24. 288.4 pm; 203.9 pm (110); 144.2 pm 

(200); 166.5 pm (11 ]) 

31-25. 564.1 pm 

31-26. 22.02 mm (A == 154.433 pm); 

5.721 mm (A == 70.926 pm) 

31-27. ao == 57.26°; f3
0 

== 53.55 ; 

Yo == 53.55° 

31-28. 7.309° (1 JO), 10.948 (101),12.08 

(Ill), 24.73° (222) 

31-30. 533.4 pm; 0.8556 g·cm 

31 -31. e I 00 == 9. 1 00°, e I 10 == 1 1. 3 1 , 

elll == 12.53° 

31-32. fcc, 495.5 pm 

31-33. K +, Cl- have the same structure 

factor so lines with h, k, I all odd do not 

appear in the KCl data. 

31-34. fcc, 383.8 pm 

31-35. bcc, 330.2 pm 

31-36. fcc, 408.6 pm 

31-37. primitive F(hkl) == f 
31-39. bcc 

31-40. bcc, 288.2 pm, 7.215 g ·cm-3 

31-47. 3.03 x 1012 molecules 

31-48. 1.33 x 10-4 Pa, 3.83 x 1014 

molecules 

31-49. 0.016% 

31-50. ~ 76 h 

31 -51. k d (300 K) == 3.8 x 1 0 -14 S -I ; 

ku(500 K) == 5.6 X 10-4 S-I 

31-52. 2.30/0 

31 .. 53. v == 7.2 X 10-4 mol·dm 3· S I. The 

rate increases by a factor of 4. 

31-54. first order if Ke[A] « 1 

31-59. k==k3K~/2K. K==K CH 
2 C2H4 ' C2H4 ' 2 4 

adsorbs more extensively than H2 to the 

surface. 

31-60. Langmuir-Hinshelwood mechanism , 

K == K NH3 ; k == k3 K NH1 K 6~2, NH3 adsords 
to the surface more extensively than D

2
. 

31 -63. 3.04 V, 293 kJ· rna] I 

31-64. Yes 

31-65. 100, a; 110, v0.a/2; Ill, v0.a 

31-66. a == 0.22, k == 0.026 m3 

31-70. Eads == 125 kJ'mol- ' , kd == 280 S-I 

31-71. 146 kJ· mol-I 
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( 1970) and from Accounts of Chemical 
Research 1, 217 (1968). Copyright 1970 and 
1968 American Chemical Society. 

Prob. 30.38: With permission from J.N. Murrell 
et aI., Molecular Potential Energy Functions. 
Copyright 1984 John Wiley & Sons Limited. 

Fig. 31.24: Courtesy of G.A. Somorjai and 
Berkeley Lab Ref. No. XBB6874166. From 
G .A. Somorjai, Introduction to Surface 
Chelnistry and Catalysis, copyright 1994. 
Reprinted by permission of John Wiley & 
Sons, Inc. 

Figs. 31.27 and 31.28: Courtesy of G.A. 
Somorjai. From G.A. Somorjai, Introduction 
to Surface Chemistry and Catalysis, 
copyright 1994. Reprinted by permission of 
John Wiley & Sons, Inc. 

Prob. 31.33: From Alberty, Physical Chemistry: 
Second Edition, copyright 1996. Reprinted 
by permission of John Wiley & Sons, Inc. 



A 
A2 spin system, 570.lf 
AB spin system, 569 
absolute entropy, 859 
absolute value, 32 
absorption cross section, 625 
activated complex, 1165 
activated complex theory, 1165 if. 
activation energy, 1162 
active site, 1209 
activity, 986, 1015, 1027 if. 

condensed phase, 1083 
temperature dependence, 1047 

activity coefficient, 987 
activity of a dilute solution, 1015, 10I5t 
activity quotient, 108 I 
adiabatic flame temperature, 806 
adiabatic process, 774.1f 

temperature change, 777 if. 
adsorbate, 1295 
adsorption, 1295 
adsorption isotherm, 1297 
amplitude, 40, 159 
angular distribution diagram, 1251 if. 
angular momentum, 1 11, 118 if. 

commutation relations, I 37, 221 
angular momentum components 

Cartesian coordinates, 120, 119t 
spherical coordinates, 201 

angular momentum operator, I 19t 
angular momentum quantum number, 209 
angular speed, 174 
angUlar-speed distribution contour map, 

1252f, I 256j: I257j: 1267f, I 266f 
angular velocity, 119 
anharmonic oscillator, 504 if. 

selection rule, 506 
anharmonic terms, 164 
anharmonicity constant, 505 
antibonding orbital, 333 

Index 

antisymmetric wave function, 286 
Arrhenius equation, 1163 
Arrhenius, Svante (bio), 1136 
associated Laguerre polynomials, 206, 207t 
associated Legendre functions, 196, 197 t, 220 

orthonormality condition, 197 
recursion formula, 220 

asymmetric top, 515, 752 
atn10sphere (unit), atm, 639 
atomic interchange integral, 3 I3 
atomic term symbol 292, if., 299t 
atomic units, 275 
average speed, n10lecule in a gas, 1114 
average value, 64, 66 

quantum mechanical, 86 if. , 122 
AX spin system, 569 
axis of symmetry, 455 
azeotrope, 983 

B 
Balmer series, 12, I3, 14, 27 
Balmer's formula, 12 
bar (unit), 639 
basis of a group representation, 470 
basis set, 412 
Beer-Lambert law, 625 
Berthelot equation, 915 
BET adsorption isotherm, 1324 
bimolecular collision, 1241f 
bimolecular reaction, 1182 
binary solution, 964 
binding energy, 331 
binomial coefficient, 810 
binomial expansion, 726 
binomial series, 726 
Birge-Sponer plot, 539 
blackbody, 3 
blackbody radiation 3, if. 
block diagonal form, 455 
body-centered cubic unit cell, 1273f 1349 
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bohr (unit), 276 
Bohr atom, 18 ff 
Bohr first orbit, 20 
Bohr formula, energy, 20, 21, 28 
Bohr frequency condition, 22, 530 
Bohr magneton, 226 
Bohr, Niels (bio), 190 
Bohr orbit, 20 

speed, 28 
Bohr radius, 20 
boiling point elevation, 1022 
boiling point elevation constant, 1022 
Boltzmann constant, 3 
Boltzmann factor, 693 
Boltzmann, Ludwig (bio), 692 
Boltzmann statistics, 711 
bond order, 341 
bonding orbital, 333 
Born probabilistic interpretation, 80 
Born-Oppenheimer approximation, 323 ff 
boson, 709 ff 
boundary conditions, 40 
Boy Ie temperature, 659 
Bracket series, 13, 14 
Bragg equation, 1286, 1314 
Bravais lattice, 1275-1276 
butadiene, 82 

C 
calcite-aragonite equilibrium, 1099 
canonical ensemble, 694, 695/ 
carbon dioxide laser, 608/, 622 
Carnot cycle, 838-839 
catalyst, 1206 

heterogeneous, 1206 
homogeneous, 1206 
surface, 1208 

center-of-mass coordinate, 162, 180 
center-of-mass coordinate system, 1239 ff 
center of symmetry, 456 
central moment, 65 
centrifugal distortion constant, 503 
centrifugal force, 18, 29 
chain length, 1220 
chain reaction, 1203 
character, 471 
character table, 471 

of C
2h

, 473 

of C2v ' 471 
of C3v ' 473 
of D

3h
, 474 

of D
4h

, 474 
of D

6h
, 475 

ofT
d
,475 

chemical potential, 937, 964 
partition function, 945 ff 

chemical shift, 558, 560t 
and electro negativity, 561 

chemisorption, 1296 
dissociative, 1297 

Clapeyron equation, 938 
classical physics, 2 
classical thermodynamics, 766 

Index 

classical turning point, 511 
Clausius-Clapeyron equation, 941 ff, 1066 
Clausius inequality, 828 
Clausius, Rudolf (bio), 816 
Clausius, statement of the second law, 828 
CO2 laser, 608J, 622, 623 
coexistence curve, 649, 985 
cofactor, 232 
coherence, 607 
colligative properties, 1020 ff 
collision cross section, 1121, 1231 
collision cylinder, 1121 
collision frequency, 1122 

with a wall, 1117 
collision geometry, 1237 
collision theory, hard sphere, 1230 
commutation relations, angular momentum, 

221 
commutator, 132 
commute, 79, 445 
compatible matrices, 445 
complex conjugate, 32 
complex number, 31 

Cartesian representation, 34 
imaginary part, 31 
polar representation, 34 
real part, 3 1 

complex plane, 33 
complex reaction, 1182 
compressibility factor, 642 
compressibility, isothermal, 689, 892, 959 
configuration interaction, 426 
conservative system, 161 
consulate temperature, 984 
contour maps, 352, 353 
convergence test, 724 
coordinate system 

left-handed, 106 
right-handed, 106 

correction for nonideality 900 ff, 915 
correlation energy, 283, 292, 426 
correspondence principle, 86 
corresponding states, law of, 655, 657/ 



Index 

fugacity, 910 
Redlich-Kwong equation, 656 
second virial coefficient, 663, 680-681 
van der Waals equation, 656 

Coulomb integral, 309, 330, 368, 391 
Coulomb potential, 20, 191 
Coulomb's law, 18 
Cramer's rule, 237, 239 
critical constants, 653t 

and Peng-Robinson parameters, 677 
and Redlich-Kwong parameters, 652 ff., 

676 
and van der Waals constants, 652 ff. 

critical exponent, 959 
critical opalescence, 932 
critical point, 658 ff., 930 
critical temperature, 984, 648 ff. 
cross derivative, 685 
cross product, 110 
cross section, reaction, 123] 

line-of-centers, 1234-1235 
crossed molecular beam method, 1244-1245 
Crutzen, Paul (bio), 1180 
crystallographic radius, 1275 
Curl, Robert (bio), 452 
cyclic conjugated polyenes, 408 
cyclic process, 820 

o 
d orbitals, 217, 217f, 225 
d2 s p3 hybrid orbitals, 377, 378 
Dalton's law of partial pressures, 674 
de Broglie formula, 74 
de Broglie, Louis (bio), 38 
de Broglie wavelength, 15, 27, 28 
debye, D (unit of dipole moment), 439 
Debye-Htickel K, defined, 1032 
Debye-Htickel theory, 1031 ff, 1044 if 
Debye, Peter, 1010 
Debye T3 law, 858 
Debye temperature, 727, 858 
Debye theory of heat capacity, 727, 858 
decadic absorbance, 625 
degeneracy, 121 

particle in a cube, 94 
rectangular membrane, 54 

degree of freedom, 519 
delocalization energy, 395 
8 orbital, 364 
L\ state, 355 
De Moivre's formula, 35 
detailed balance, principle of, 1184 
determinant, 23 I ff. 

determinantal equation, 234, 239 
determinantal wave function, 289 
determinants, properties, 234 if. 
diagonal matrix, 446 
diamagnetic, 344 
dihedral axis, 458 
dipole moment, 366, 408, 544 
dispersion force, 665 ff. 
distillation, 976 
Doppler broadening, 1111-1112 
Doppler effect, 1111 
dot product, 108 
double-zeta basis set, 4] 8 
doublet, atomic spectra, 304 
doublet, NMR, 563 
dynamic equilibrium, 1153 
dynamical variable, 115 

E 
effective nuclear charge, 249 
Ehrenfest theorem, 139, 185 
eigenfunction, 77, 96 
eigenvalue, 77 
eigenvalue equation, 122 
eigenvalue problem, 77 
Einstein coefficients, 596, 620-62 I 
Einstein crystal, 703, 7 18, 728 
einstein (unit), 624 
electromagnetic spectrum, 25, 496 
electron diffraction, 17 
electron microscope, 18 
electron volt, e V, 9 
electronic partition function, 733 ff. 
elementary reaction, I 182 
Eley-Rideal mechanism, 1304 ff. 
elliptic coordinates, 362 
endothermic reaction, 788 
energy 

particle in a cube, 94 
particle in a one-dimensional box, 81 
particle in a three-dimensional box, 93 

energy levels, hydrogen atom, 206 
energy of the hydrogen atom, 20 
ensemble, 694 ff. 
ensemble average, 700 
enthalpy, 781 

pressure dependence, 895, 914 
temperature dependence, 797 ff. 
virial expansion, 919 

enthalpy change of mixing, 977 
entropy, 820 

and disorder, 829 ff. 
and heat flow, 846 
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and partition function~ 861 ff. 
of mixing, 836, 977 
virial expansion, 919 

entropy production~ 828 
enzyme, 1209 
equilibrium bond length, 164 
equilibrium constant, 1052 

concentrations, 1055 
conversion, 1055 
fugacity, 1078 ff., 
partition function, 1067 if 
thermodynamic, 1079, 1081 

equivalent protons, 570 if 
Ernst, Richard (bio), 547 
error function, 1130 
escape velocity, 1130-1131 
Euler-Maclaurin summation formula, 758 
Euler's formula, 33, 36 
Euler's theorem, 999 
even function, 68 
exact differential, 688, 773 
excess enthalpy of mixing, 1008 
excess entropy of mixi ng, 1008 
excess Gibbs energy of mixing, 998 
exchange integral, 313, 331, 391 
excited state lifetime, 28 
exothermic reaction, 788 
extended Debye-Hlickel theory, 1036 
extensive quantity, 638, 965 
extent of reaction, 1049, 1138 

F 
face centered cubic unit cell, 1273f 
fermion, 709 ff. 
fine structure, 304 
finite potential well, 144 
First Law of Thermodynamics, 773 
first-order correction to E(O), 258, 266 
first-order reaction, 1144 if. 
first-order reflection, 1283 
first-order spectra, NMR, 569 
flame temperature, adiabatic, 806 
fluorescence, 593 
fluorescence lifetime, 602 
Fock operator, 290, 417 
Fock, Vladimir (bio), 240 
force constant, 158, 168, 169t 
Fourier transform, 1294 
fractional distillation, 976 
fractional Jr -electronic charge, 407 
Franck-Condon principle, 511 if 
free-electron model, 83, 97 
free particle, 80, 89, 102 ff. 

freezing point depression, 1021 
freezing point depression constant, 1021 
Freundlich adsorption isotherm, 1323 
fugacity, 905 ff. 

and equation of state, 908 
and law of corresponding states, 910 
equilbrium constant, 1078 ff. 
Redlich-Kwong equation, 918, 
van der Waals equation, 917 
virial expansion, 906 

fugacity coefficient, 908 
virial expansion, 916 

fundamental mode, 48 
fundamental vibrational frequency, 168 

G 
gain medium, 604 
GAMESS, 427 
gamma function, 815 
gauss, G, (unit), 551 
GAUSSIAN 94, 425, 427 ff. 
Gaussian distribution, 67, 70 
Gaussian integral, 434 
Gaussian-type orbital, 413 
generating operator, group, 484 
geometric series, 724 
gerade, 337, 358 
Giauque, William (bio), 730 
Gibbs-Duhen equation, 966 ff, 981 
Gibbs energy~ 884 if. 

and extent of reaction, 1058 ff., 1090 
virial expansion, 919 

Index 

Gibbs energy of mixing, 976, 994 if. 
Gibbs-Helmholtz equation, 901 ff., 915, 967, 

1046 
Gibbs, J. Willard (bio), 924 
Gibbs phase rule, 924 
graphite-diamond equilibrium, 1083 
gravitational acceleration constant, 648 
great orthogonality theorem, the, 492 
group, definition, 460 
group multiplication table, 462 
group representation, 466 

H 
half-life, 1145 
half-life and rate constant 

first-order reaction, 1147 
second-order reaction, 1151 

Hamiltonian operator, 78 
hydrogen atom, 191 ff. 
separable, 95 
unperturbed, 257 



Index 

hard sphere collision theory, 1230 
hard sphere potential, 670 

second virial coefficient" 671 
harmonic, first, 48 
harmonic oscillator, 157 jj:, 497 

classical, 56, 179, 180 
potential energy, 160, 1601 
root-mean-square displacement, 183 

harmonic oscillator energy levels, 166 
harmonic oscillator selection rule, 497, 533 if. 
harmonic oscillator wave functions, 169 if. , 

170t 
harmonic, second, 48 
harpoon reaction, 1257 
hartree (unit), 276 
Hartree, Douglas (bio), 240 
Hartree-Fock approxilnation, 281 
Hartree-Fock equation, 282 
Hartree-Fock Hamiltonian operator, 282 
Hartree-Fock limit, 281, 351 
Hartree-Fock orbitals, 283, 291, 351 
heat, 766 
heat capacity, 702, 783 

Debyetheory, 727,858 
Einstein theory, 703, 718, 728 
virial expansion, 919 
volume dependence, 913 

heat engine, efficiency, 839 
heat of combustion, 788 
Heisenberg Uncertainty Principle, 23 ff, 90 
Heisenberg, Werner (bio), 114 
helium atom 

correlation energy, 283 
determinantal wave function, 289 
energy-level diagram, 3031 
excited-state calculation, 3 12 if. 
Hartree-Fock theory, 282 
perturbation theory, 260, 270, 271 
Schrodinger equation, 219 
spin orbitals, 289 
variational theory, 248, 279 

helium-neon laser, 609 if., 621 
Helmholtz energy, 882 if 

virial expansion, 920 
Helmholtz, Hermann von (bio), 880 
Henry's law, 979, 1047 
Henry's law constant, 979 
Henry's law standard state, 990, 991 
Hermite, differential equation, 166 
Hermite polynomial recursion formula, 183 
Hennite polynomials, 170, 170t, 172 
Hermitian operator, 130, 139, 140 
Herschbach, Dudley (bio), 1288 

hertz, Hz, 9, 25 
Herzberg, Gerhard (bio), 494 
Hess's law, 789 
heterogeneous catalyst, 1206 
HF gas laser, 622 
Hildebrand, Joel, 962 
Hodgkin, Dorothy (bio), 1270 
homogeneous catalyst, 1206 
homogeneous function, 999 
Hooke's law, 56, 157 if. 
Huckel energy level diagram 

of benzene, 398 
of butadiene, 395 

Huckel, Erich, 1010 
HUckel molecular orbital theory, 391 
Huckel molecular orbitals 

of benzene, 398-399, 
of butadiene, 396 

HUckel secular determinant, 392 
Hund's rules, 301 
hybrid orbitals, 371 if. 

group theory, 493 
hydrogen atom 

energy-level diagram, 211 
energy levels, 206 
Hamiltonian operator, 191 if. 
radial equation, 206 
radial function normalization condition, 

207 
radial functions, 223 
Schrodinger equation, 191 if 
wave function orthonormality condition, 

207 
hydrogen fluoride laser, 622 
hydrogen molecular ion, 325 
hydrogenlike atomic wave functions 

complex, 208t 
real, 218t 

hyperfine coupling, 614 
hyperfine interaction, 614 

I 
ideal-gas equation of state, 637 
ideal rubber band, 922 
ideal solution, 970 if. 
identity matrix, 446 
imaginary unit, 31 
impact parameter, 1235 
improper rotation, 456 
inequality of Clausius, 828 
inexact differential, 688, 773 
infrared active, 521, 535 if. 
infrared inactive, 521, 535 ff. 
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inhibition, enzyme, 1203 
inhibition reaction, 1203 
inhibitor molecule, 1203 
initial rates, method of, 1142 
initiation reaction, 1203 
integrating factor, 820 
intensity of a wave, 100 if. 
intensive quantity, 638 
inter-electronic repulsion, 219 
internal conversion, 593 
internal pressure, 913 
intersystem crossing, 593 
inverse of a matrix, 450 
inverse matrix, 446 
inversion temperature, louIe -Thomson, 921 
ionic atmosphere, 1034, 1045 
ionic strength, 1032 
ionization energy, 346 
irreducible representation, 466 
isolated system, 826 
isolation, method of, 1141 
isotherm, 648 
iteration, 627 

J 
lANAF tables, 1071 if. , 1072t 
louIe, lames (bio), 764 
louIe-Thomson coefficient 808, 920-921 
louIe-Thomson experiment, 807 
louie-Thomson inversion temperature, 921 

K 
kelvin (unit), K, 640 
kinetic energy operator, 78, 119t 
Koopmans' approximation, 291, 310 
Kroenecker delta, 98, 129, 136 
Kroto, Harold (bio), 452 

L 
ladder operator 

angular momentum, 229 
harmonic oscillator, 188 

Laguerre's differential equation, 206 
Laguerre polynomials, 206, 207t 
Langmuir adsorption isotherm, 1297.1f. 
langmuir (unit), 1320 
Langmuir-Hinshelwood mechanism, 1304 
Laplacian operator, 90-91 

spherical coordinates, 175, 192 
laser, 599 if. 
laser cavity, 605 
laser-induced fluorescence, 619 
law of corresponding states, 655, 657f. 

Index 

fugacity, 910 
Redl ich-K wong equation, 656 
second virial coefficient, 663, 680-681 
van der Waals equation, 656 

law of rectilinear diameters, 951 
LeAO molecular orbital, 326 
Ie Chatelier's principle, 1053, 1063, 1080 
Lee, Yuan (bio), 1228 
LEEO spectroscopy, 1307 
Legendre polynomials, 195, 195t, 220 
Legendre's differential equation, 195, 220 
Lennard-lones parameters, 663t 
Lennard-lones potential, 662, 679 
Lennard-lones second virial coefficient, 662 
lever rule, 973 
Lewis equation, 1081 
Lewis, G.N. (bio), 1048 
lifetime, excited-state, 28 
Lindemann mechanism, 1198 if. 
line-of-centers model 1234 1235 
linear algebraic equations, 

homogeneous, 236 
inhomogeneous, 236 

linear combination of atomic orbitals, 326 
linear conjugated polyene, 408 
linear momentum, 118 
Lineweaver-Burk equation, 1223 
London dispersion force, 665 ff. 
low-energy electron diffraction spectroscopy, 

1307 
lowering operator 

angular momentum, 229 
harmonic oscillator, 188 
spin, 319 

L-S coupling, 302, 316-317 
Lyman series, 13, 14, 27 

M 
Maclaurin series, 726 
magnetic dipole, 225, 548-549 
magnetic moment, 548 
magnetic quantum number, 209 
magnetogyric ratio, 550 
Margules equation, 1003 
matrix, 442 
matrix algebra, 442 
matrix element, 251, 442 
matrix multiplication, 443-444 
maximum available work, 883 
Maxwell-Boltzmann distribution, 1106 if. , 

1113 
experimental verification, 1119-1120, 

1132 



Index 

Maxwell equal-area construction, 649, 958 
Maxwell, James (bio), 1100 
Maxwell relation, 888 ff 
mean free path, 1 121 

and distance traveled 1124-1125 
mean ionic activity, 1027 
mean ionic activity coefficient, 1028 
mean spherical approximation, 1037 
mean value, 64 
mechanism of reaction, 1182 
melting point curve, 926 
membrane, vibrating, 49 ff. 
method of initial rates, 1142 
method of isolation, 1141 
Michaelis constant, 1212 
Michaelis-Menton mechanism, 1209 ff., 

1222-1223 
microstate, 295 
microwave spectroscopy, 177 
Miller indices, 1278 ff. 
mirror plane, 455 
mixing, entropy of, 836 
molality, 1012 
molar absorption coefficient, 625 
molar gas constant, 641, 642t 
molarity, 1013 
molecular effusion, 1134 
molecular interpretation of heat, 780 
molecular interpretation of work, 780 
molecular-orbital energy-level diagram 

of BeH
2

, 383 
of CH

4
, 388 

of C
2
H4 , 389 

of HF, 350 
of H

2
0, 386 

molecular orbital theory, 325 
molecular partition function, 708 
molecular term symbol, 355 ff. 
molecularity, 1182 
Molina, Mario (bio), 1180 
moment of inertia, 120, 174, 184, 514-516, 

753 
momentum, free particle, 103 
momentum operator, 79, 119t 
monolayer, 1296 
Moore, Charlotte (bio), 274 
Morse potential, 164, 165 f, 181, 268 
Morse potential, energy levels, 181 
Mullikan population analysis, 438 
Mullikin, Robert (bio), 322 
multicenter integrals, 412 
multinomial coefficient, 811 
multinomial expansion, 811 

multiplet splitting, 576 
multiplets, NMR, 562 ff. 

N 
N roots of unity, 36 
n + 1 rule, 573 ff. 
n-fold rotation axis of symmetry, 456 
napierian absorbance, 625 
napierian absorption coefficient, 625 
natural variables, 896 ff. 
Nernst, Walther (bio), 852 
N ewton-Raphson method, 627 ff. 
Newton's equation, 115 
NMR selection rules, 589 
NMR spectrum 

of chloroethane, 574 
of 1, I-dichloroethane, 575 
of dichloromethane, 570 
of iodomethane, 556 
of methyl acetate, 561 
of methyl formate, 557 
of 1,2,3-trichlorobenzene, 585 
of 1,1 ,2-trichloroethane, 562 

nodal line, 53 
node, 48 
non-P- V work, 886-887 
nonideal solutions, 977 ff. 
nonlinear optical materials, 625 
nonradiative transition, 593 
nonrigid rotator, 503 
normal boiling point, 928 
normal coordinate, 520 
normal melting point, 927 
normal mode, 61, 520 

and group theory, 535-536 
normal modes 

coupled pendulums, 62 
rectangular membrane, 53, 54 
vibrating string, 39 ff., 100 ff. 

normalization condition, 63, 66, 84, 116 
normalization constant, 84 
nuclear fireball, 26 
nuclear g factor, 550 
nuclear magneton, 550 
nuclear spin, 548 
nuclear spin ladder operators, 586 ff. 
nuclear spin operations, 566t 
nuclear spin operators, 586 ff. 
number operator, 188 

o 
oblate symmetric top, 516 

energy, 517 
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observable, 115, 118 
odd function, 68 
opacity function, 1268 
operator, 75 

linear, 76, 96, 117 
operators, quantum mechanical, 119t 
orbital, 281 
orbital energies, 291, 310 
orbital exponent (S-), 412 
order, group, 460 
order, rate law, 1049 
orthobaric densities, 93 1 
orthogonal matrix, 449 
orthogonality, 98, 128 
orthonormal set, 128 
orthonormality, 98 
osmotic coefficient, 1016, 1029 
osmotic pressure, 1023 
overlap integral, 327, 363, 368, 435 
overtone, 48, 504 if. 
ozone balance, 1226 

p 
P branch, 500 
p orbitals, 213 ff. 
parallel band, 522 
paramagnetic, 344 
partial derivative, 683 
partial molar volume, 964-965 
partial pressure, 674 
particle in a box, 80 it: 
particle in a finite well, 263, 269 
particle in a ring, 185 
particle in a spherical box, 263, 268 
particle in a three dimensional box, 90 if. 
partition function, 697 if. 

and energy, 698 
and entropy, 841, 863 
and pressure, 705 
atomic, 862 
chemical potential, 945 if. 
diatomic molecule, 747, 862 
electronic, 733 if. , 
equilibrium constant, 1067 if. 
independent, distinguishable particles, 708 
independent, indistinguishable particles 

711, 
linear polyatomic molecule, 754, 862 
molecular, 708 
nonlinear polyatomic molecule, 755, 862 
nuclear spin system, 717 
rotational, 744 if 
translational, 732 

van der Waals equation, 706 
vibrational, 740 if. 

partial molar quantity, 963 if. 
pascal (unit), Pa, 638 
Pascal's triangle, 814 
Paschen series, 13, 14, 27 
path function, 773 
Pauli Exclusion Principle, 83, 286 
Pauling, Linus (bio), 370 
pendulum, 60, 61 
pendulums, coupled, 61 
Peng-Robinson equation, 645, 677 
period of vibration, 182 
permittivity of free space, 18 
permutation, 809 
perpendicular band, 521 
perturbati on term, 257 
perturbation theory, 257 if. 

helium atom, 260, 270, 271 
time dependent, 528, if. 

phase angle, 33, 48, 159 
phase diagram, 926 if. 
phase problem, 1294 
phase rule, 924 
phosphorescence, 593 
photochemical reaction, 615 
photodimerization, 615 
photodissociation, 615 
photoelectric effect, 7 
photoelectron spectroscopy, 346, 387 
photoelectron spectrum 

of CH
4 

,388, 
of C

2
H

4
, 390 

of CO, 348 
of H

2
CO, 439 

of H
2
0, 387 

of N
2

, 347 
of NH3 432 

photoexcitation, 618 
photoisomerization, 615 
physisorption, 1296 
JT bond order, 407 
n state, 355 
JT -electron approximation, 391 
JT electronic energy, 392 
JT orbital, 339 
Pickeri ng series, 28 
Planck constant, 4 
Planck distribution law, 5, 26, 30 
Planck, Max (bio), 1 
plane of symmetry, 455 
plane polar coordinates, 184 
point group, 458 

Index 
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Poisson's equation, 1044 
Polanyi, John (bio), 1228 
polarizability, 667 
polarizability volume 667, 6681 
polarization effect, 422 
Pople, John (bio), 410 
population inversion, 60 I 
porphyrin, 99 
position operator, 119t 
postulates of quantum mechanics, 115 
potential energy diagram, 1246 
potential energy surface, 1258 ff., 1269 
powder method, 1315 
precurser, 1297 
pre-exponential factor, 1162 
pressure-composition diagram, 972 
pressure units, 649t 
primitive cubic unit cell, 1274f 
primitive model, 1036 
principal axis, 458, 515 
principal momentum of inertia, 514 ff. 
principal quantum number, 209 
principle of detailed balance, 1184 
probability, defined, 63 
probability density, 64 
probe pulse, 616 
prolate symmetric top, 516 

energy, 517 
propagation reqction, 1203 
pump pulse, 616 
pump source, 603 

Q 
Q branch, 522 
quantum number, 81 
quantum yield, 615 

R 
R branch, 500 
radial equation, 206 
radial functions, hydrogen atom, 223 
radiant density, 3 
radiant density energy, 596 
radiant power, 606 
radiative lifetime, 602 
radiative transition, 593 
radioactive decay, 1172 
raising operator, 

angular momentum, 229 
hannonic oscillator, 188 
spin, 319 

Raoult's Law, 970 ff. 
positive deviations, 978 

negative deviations, 978 
Raoult's law standard state, 990 
rate constant, 1139 

temperature dependence, 1161 ff. 
units 1140t 

rate constant and half-life, 1147 
first-order reaction, 1147 
second-order reaction, 1151 

rate-determining step, 1190 
rate law, 1139 
rate of reaction, 1138 
ratio test, 724 
Rayleigh-Jeans law, 3, 26 
reaction coordinate, 1163 
reaction cross section, 1231 
reaction mechanisnl, 1181 ff. 
reaction quotient, 1061 
rebound reaction, 1254 
rectilinear diameters, law of, 951 
recursion formula, associated Legendre 

functions, 220 
Redlich-Kwong equation, 645, 676 
Redlich-Kwong equation parameters, 646t 
reduced mass, 162, 174, 181, 189 
reduced quantities, 655 
reducible representation, 466 

decomposition, 478 ff. 
reflecting barrier, 140-142 
reflection coefficient, 142 
reflection operator, 104, 184 
regular solution, 997, 1104 ff. 
relative coordinate, 162, 180 
relative speed, average, 1122 
relaxation methods, 1155 jf., 1175-1177 
relaxation time, 1158-1159 
representation, group, 466 
residual entropy, 869 
resonance denominator, 530 
resonance integral, 391 
resonance time, 1302 
resonator, 609 
restricted Hartree-Fock, 428 
reverse osmosis, 1025 
reversible process, 770 
reversible reaction, 1152 
rigid rotator, 126, 497, 

degeneracy, 176, 
energy levels, 173 ff., 176, 
Hamiltonian operator, 175 
nl0del 173,ff. 
Schrodinger equation, 176, 199 
selection rule, 177, 498, 531 ff. 

Ritz combination rule, 14 
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root-mean-square speed, 1104, 11 05t 
Roothaan equations, 417 
Roothaan-Hartree-Fock equations, 412 
rotation-reflection axis, 456 
rotational constant, 178, 498 
rotational degree of freedom, 519 
rotational kinetic energy, 120t 
rotational levels, population, 745-746 
rotational partition function, 744 ff. 
rotational temperature, 744 
rotational term, 497 
rotational-vibrational spectrum, 500 
Rowland, Sherwood (bio), 1180 
rubber elasticity, 922 
ruby laser, 605, 622 
Russell-Saunders coupling, 293 
Rydberg constant, 12, 22 
Rydberg formula, 12, 22, 27 

s 
s orbitals, 209 
saddle point, 1261 
scalar product, 108 
scanning electron microscopy, 1307 
scattering factor, atomic, 1288 
SCF method, 282 
SCF-LCAO-MO, 349 ff., 412 
Schrodinger equation, 73 ff. 

harmonic oscillator, 166 
helium atom, 219 
hydrogen atom, 191 ff. 
particle in a ring, 185 
rigid rotator, 176, 199 
time dependent, 125 
time independent, 75, 125 

Schrodinger, Erwin (bio), 72 
screened Coulombic potential, 1045 
second central moment, 65 
Second Law of Thermodynamcis, 828 
second moment, 65, 66 
second-order reaction 1149 ff. 
second-order reflection, 1283 
second-order spectra, NMR, 576 ff. 
second virial coefficient, 658, 660, 664 
secular determinant, 252 
secular equation, 252 
selection rule, 167, 527 ff. 

harmonic oscillator, 497, 533 ff. 
rigid rotator, 177, 531 ff. 

selection rules 
NMR, 589 
symmetric top, 517 

self-consistent-field method, 282 

semipermeable membrane, 1023 
separable Hamiltonian operator, 95 
separation constant, 40 
separation of variables, 40 ff., 91 ff. 
series limit, 12, 27 
shielding constant, 556 
a-bond framework, 391 
a orbital, 337 
~ state, 355 
Simon equation, 950 
Simpson's rule, 632 
singular matrix, 447 
Sirius, 6, 26 
6-31 G basis set, 421 
6-31 G* basis set, 422 
6-31 G** basis set, 422 

Index 

Slater determinantal wave function, 289, 412 
Slater orbital, 280, 351, 412 
Smalley, Richard (bio), 452 
solar spectrum, 7 
solid angle, 152 f 
solid-gas coexistence curve, 926 
solubility, 1086, 1087 
solute, 1011 
solvent, 1011 
s p hybrid orbitals, 372 jf 
s p2 hybrid orbitals, 374 jf 
Sp3 hybrid orbitals, 375 ff. 
SPARTAN, 427 
spatial amplitude, 74 
spectral radiant density energy, 596 
spectral resolution, 613 
spectroscopic parameters, 499t 
speed of sound, 1105 
spherical coordinate system, I47f 
spherical coordinates, 147 ff. 

differential area, 149 
volume element, 148f 

spherical harmonics, 198, 198t 
orthonormality condition, 198 

spherical shell, 149f 
spherical top, 515, 752 
spin eigenfunctions, 285 
spin operator, 284 
spin orbital, 285 
spin-orbit coupling, 302, 316 -317 
spin-orbit interaction, 302-303 
spin quantum number, 284 
spin-spin coupling, 562 ff. 
spin-spin coupling constant, 563 
spin-spin interaction, 563 
spin variable, 285 
split-valence basis set, 419 



Index 

splitting pattern of a three-spin system, 584 
splitting pattern of a two-spin system, 581 
spontaneous emission, 597 
spontaneous process, 817 if. 
square well potential, 671 

second virial coefficient, 671 
standard boiling point, 928 
standard deviation, 65 
standard entropy, 859, 864t, 869t 
standard Gibbs energies of formation, 1057 t 
standard Gibbs energy change, 1051, 1062 
standard melting point, 927 
standard molar enthalpy of formation, 791, 

795t 
standard reaction enthalpy, 791 
standard state, 1080 
standard state of a gas, 899 if. 
standard state of a solution, 989 if. 
standing wave, 49, 50 
state function, 116, 769 
stationary state, 126 
stationary state wave function, 75 
statistical thermodynamics, 766 
steady state approximation, 1191 if. 
Stefan-Boltzmann law, 30 
stimulated emission, 597 
Stirling's approximation, 812 ff. 
STO-3G basis set, 415 
STO-6G basis set, 416 
stripping reaction, 1255 
structure factor, 1291, 1293 if. , 1317-1318 
sublimation, 929 
substrate, 1209, 1295 
supersonic molecular beam, 1244 ff., 1263 

velocity distribution, 1246f 
surface catalyzed reaction, 1303 ff. 
surroundings, 766 
symmetric top, 515, 752 

selection rules, 517 
symmetry axis, 455 
symmetry element, 455 
symmetry number, 747 
symmetry operation, 456 
symmetry orbital, 455 
system, 766 

T 
Taylor series, 729 
temperature jump technique, 1157 
temperature-programmed desorption, 1324 
temperature-composition diagram, 974 
term symbol, atomic, 292 if., 299t 
termination reaction, 1203 

termolecular reaction, 1182 
tesla, T (unit), 226, 550 
tetrahedral bond angle, 400 
thermochemistry, 787 
thermodynamic energy 

virial expansion, 919 
volume dependence, 890 

thermodynamic equilibrium constant, 1079, 
1082 

Third Law of Thermodynamics, 855 if. 
three-level system, laser, 603 
threshhold frequency, 7 
tie line, 972 
time-dependent perturbation theory, 528 ff. 
time-resolved experiment, 618 
time-resolved spectroscopy, 616 
TMS, tetramethylsilane, 557 
torque, 113 
torr (unit), 639 
total collision frequency, 1125 if. 
total derivative, 686 
trace, matrix, 448 
trajectory, 115 
transition dipole moment, 530 
transition state, 1165, 1261 
transition-state theory, 1165 ff. 
translational degree of freedom, 519 
translational partition function, 732 
transmission coefficient, 142 
transpose of a matrix, 449 
trapezoidal approximation, 631 
traveling wave, 49, 50, 58 
trial function, 242 
triple point, 926 
triple-zeta basis set, 438 
triplet, NMR, 563 
triplet S state, 296 
trivial solution, 42, 238 
Trouton's rule, 872 
tunneling, 142 
turnover number, 1212 
two-body problem, 163, 181 
two-center integral, 362 

U 
ultraviolent catastrophe, 4 
Uncertainty Principle, 88 if. , 103, 133, 166 
ungerade, 338, 358 
uniform distribution, 67 
unimolecular reaction, 1182, 1198 ff. 

mechanism, 1200 
unit cell, 1271 

body-centered cubic, 1274f, 
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face-centered cubic, 1273f, 
hexagonal, 1276 
monoclinic, 1276 
orthorhombic, 1276 
primitive cubic, 1274f, 
rhomohedral, 1276 
tetragonal, 1276 
triclinic, 1276 
trigonal, 1276 
volume fraction, 1311 

unit matrix, 446 
unit vector, 106 
unperturbed Hamiltonian operator, 257 
Unsold theorem, 220 

V 
v' prime progresssion, 510 
van der Waals constants, 643, 644t 
van der Waals equation, 643 
van der Waals, Johannes (bio), 636 
van Laue equations, 1283, 1319 
van't Hoff equation, equilibrium constant, 

1063 
van't Hoff equation, osmotic pressure, 1025 
vapor pressure and extermal pressure, 957 
vapor pressure of a drop, 958 
variance, 65, 66 
variational method, 241 if. 

helium atom, 248, 272 
variational parameters, 242 
variational principle, 242 

proof, 261 
vector, 105 it 

component, 107 
length, 107 

vector addition, 105 
vector product, 110 
velocity selector, 1132 
velocity space, 1] 13 
vibrating membrane, 49 if. 
vibration-rotation interaction, 501 if. 
vibrational degree of freedom, 519 
vibrational partition function, 740 if. 

vibrational relaxation, 593 
vibrational states, population, 742 
vibrational temperature, 740 
vibrational term, 487 
vibronic transition, 507 
virial coefficient, 658 
virial equation of state, 658 
virial expansion, 658 
virial theorem, 223, 224 
virtual particle, 28 
volcano curve, 1310 
volume change of rnixing, 977 

W 
Walsh correlation diagram, 384 if. 

of AH2, 385 
of XH3 , 404 
of XY 2,403 

watt, W (unit), 26, 606 
wave equation, classical, 39 if., 74 
wave function, ] 16 

probabilistic interpretation, 116 
stationary state, 75 
well-behaved, 117 

Index 

wave functions, harmonic oscillator, 169 if. , 
170t 

wave particle duality of light, 15 
wavenumber, II, 497 
Wien displacement law, 5, 26 
Wilson, E. Bright (bio), 156 
work, 766 if. 
work function, 8, 26, 27 

X 
X-ray diffraction, 128] 
X-ray diffraction pattern, 1281 
y 
YAG laser, 605, 622, 624 

Z 
Zare, Richard (bio), 590 
Zeeman effect, 209, 227 
zero point energy, 166 
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