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Preface

This volume of Advances in Neurobiology deals with the neurochemistry of disease.
Included are chapters on both human diseases and animal “model” diseases.

Sources of human tissue.
The three main sources of human neural tissues for chemical studies have been:

Brain obtained at autopsy
Brain obtained at biopsy or incidental to neurosurgery
Nonneural tissues containing molecules identical to those in clinically affected

brain or nerve

In theory, peripheral nerve is more available than brain, but chemical analyses of
peripheral nerves are relatively limited.

A major problem in doing chemistry on brain obtained at autopsy is the possibil-
ity of artifacts arising during the process of dying or in the interval between death
and chemical analysis: agonal or postmortem artifacts. During the first decades
of modern neurochemistry, this problem was considered so severe that few stud-
ies were done on autopsy material. Over 30 years ago, Davison and Bowen and
their coworkers at Queen Square in London recognized that it was possible to study
meaningfully in autopsy brain those molecules that were stable agonally and post-
mortem (Bowen et al., 1976). Their recognition that one of these proteins was the
enzyme choline acetyltransferase allowed them to make major discoveries about the
vulnerability of the cholinergic system in Alzheimer disease; that discovery has led
to the only available treatments for this common and devastating condition.

Davison and coworkers did extensive control experiments to ensure that they
were studying properties of the brain rather than artifacts that arose during the pro-
cess of dying or after death. Unfortunately subsequent workers have not always
adhered to those meticulous standards. It is relatively easy to obtain pieces of human
autopsy brain in a hospital or medical school from people who had a variety of
diseases of the brain as well as from “controls” free of brain disease detected clin-
ically during life. These are, of course, not truly “healthy controls.” They are, after
all, dead; they have to have died of something. The ease with which samples of
human brain can be obtained has, unfortunately, allowed publication of studies
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where control of sample quality has been sloppy. Interpretation of neurochemical
data obtained from autopsy brain must always take into account the possibility of
the agonal or postmortem artifacts that so worried earlier neurochemists.

Chemical measurements have also been made on human brain tissue obtained
from biopsies or from therapeutic surgery (Smith et al., 1983). Here, agonal and
postmortem artifacts are not a problem. However, the tissue available is limited.
Patient welfare rather than scientific utility must determine the amounts of tissue
available and the anatomical sites from which it comes.

An experimental approach that avoids concerns about the quality of brain tissue
is to study in available peripheral tissues genes or gene products that are identical
to those in neural tissues. Examples include blood cells and cultured skin fibrob-
lasts, and to a lesser extent biopsies of other tissues such as muscle (Bubber et al.,
2005). Most workers assume that genes are identical in all tissues examined from
an individual but worry about epigenetic modifications, to DNA as well as to post-
translational and posttranscriptional products. However, extensive data indicate that
study of proteins in peripheral tissues can often give critical information about those
molecules in the brain: the standard A striking example is the use of white blood
cells and cultured skin fibroblasts to elucidate enzyme defects in inborn errors of
metabolism. A well-known example is Tay–Sachs disease (GM2–gangliosidosis)
(Roe and Shur, 2007).

Animal tissues.
Brain and other tissue from sick experimental animals is as readily available as from
healthy animals. That includes transgenic and other animals with “model human
diseases.” But, it is vital to remember that mice are not men, nor are rats or other
experimental animals. For instance, triple transgenic mice have been crafted that
develop light microscopic lesions that mimic those of Alzheimer disease (AD).
(Pietropaolo et al., 2009). However, direct molecular studies document that such
triple gene mutations are not the cause of human AD (Tanzi et al., 1991). Treatments
have been identified that benefit “Alzheimer mice” (Sung et al., 2004) but not human
patients with this illness. (Petersen et al., 2005; Tabet et al., 2000)

Disease.
Neurochemical studies of illness of the brain typically involve comparing a set of
samples classified as “disease” versus a set of samples labeled “control.” Clinicians
or pathologists do the classification, not chemists. At the extremes of health or ill-
ness, it may seem easy to decide who is sick and who is not. In fact, the line is hard
to draw. If bizarre and often self-destructive behavior is a sign of mental illness, do
we classify adolescence as a form of madness? Are intestinal parasites found in the
majority of people in a population “normal” or a form of disease? We have been
treating hookworm even though this “germ of laziness” was once endemic in the
states of the old Confederacy. Social consensus is particularly important in labeling
as “sick” behaviors that are odd but not harmful. Certain sexual variants are consid-
ered worth treating in the United States but are thought of as harmless eccentricities
in England. (That shocked some of my fellow Americans who went for additional
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training in psychiatry at the Maudsley Hospital in London.) Soldiers who sacrifice
their lives intentionally for their comrades are not classified as suicidally insane.
Instead we give them medals.

Specific diseases.
For the last three centuries, it has been conventional to classify sick people as hav-
ing one or another specific disease. That includes illness of the nervous system,
psychiatric as well as neurological. In fact, the concept of specific diseases is a use-
ful but fundamentally unrealistic abstraction. It is one of those approximations that
comes out of the English Enlightenment, that are too useful to be discarded even
though they do not stand up to close analysis. Grouping patients according to their
“disease” helps to provide guidelines for their care, even though in fact every sick
person is different from every other sick person. Skilled care requires individualiza-
tion of care. The British psychiatrist R. E. Kendall has developed the logic of this
conundrum with great clarity (Kendall, 1975).

An historical aside may clarify the issues. In the medical tradition that went
from the ancients (Hippocrates and Galen) through the Middle Ages until the
Enlightenment, physicians basically thought about disease in terms of mechanism.
The conventional “theory of humors” was a crude attempt to describe illness in
terms of imbalances in body composition, before the invention of modern chemistry
and biochemistry.

The modern theory of “specific diseases” was developed in the 1600 s by an
English physician, Thomas Sydenham (Haas, 1996). His Latin was too weak for
him to study the medical literature of his time, but the professoriat at Oxford granted
him a medical degree anyway: his brother was one of Oliver Cromwell’s colonels.
Came the Restoration, and Sydenham had to make a living. Fortunately, he was a
genius. He recognized that specific patterns of signs and symptoms could define
clinical entities that typically responded to specific medications. His model was the
use of quinine to treat malaria, to treat “tertian and quartan fevers.” His concept of
specific diseases responding to specific medicines was so powerful that it has come
to dominate medicine.

In the later nineteenth and early twentieth century, German-speaking neuropsy-
chiatrists (“alienists”) defined neuropsychiatric diseases for which they could not
find a neuropathological substratum in terms of the aberrant behaviors. Although
sensible enough for the state of knowledge at that time, this approach has been
breaking down in recent decades. It is now clear that the same gene mutation
can lead to different psychiatric syndromes, to different “diseases” as they are
now defined. One classic example is the gene DISC 1, which can predispose to
“schizophrenia” as well as to “bipolar disease” (manic-depressive psychosis) and
“depression” (Chubb et al., 2008).

Perhaps more important, behavioral patterns alone do not predict response to
chemicals that act on the nervous system, that is, to medications (Blass, 2006). Thus,
behavioral manifestations do not identify specific diseases in the sense originally
defined by Sydenham. That is true even of the detailed behavioral classifications
created by the committees that write the Diagnostic and Statistical Manual of
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the American Psychiatric Association (the successive versions of DSM) (American
Psychiatric Association, 2000).

Neurobiology and specifically neurochemistry may—one hopes—give rise to
more biologically based and therefore presumably more clinically useful defini-
tions. The editors hope that this volume on the neurochemistry of disease will further
that aim.

White Plains, NY John P. Blass
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Mechanisms Versus Diagnoses

John P. Blass

Abstract Science is a branch of scholarship: it provides explanations for mate-
rial phenomena in terms of matter and energy. Medicine by contrast is a trade: it
applies scientific knowledge but also requires nonscientific skills such as empathy.
Neurochemistry is the science that deals with the molecules that make up nervous
systems and with their interactions. Neurology and psychiatry are the trades of those
who try to help people with diseases of the nervous system to heal. Scientists includ-
ing neurochemists have the luxury of taking the time needed to probe deeply into
the phenomena they study. Neurologists and psychiatrists more often face sharp con-
straints on how long they can take to try to help the sick human beings for whom they
care. Examples used to illustrate this distinction include psychoses and demyelinat-
ing diseases. The existence of a large and often impressive body of scholarship in
neurology and psychiatry can foster the illusion that these are scholarly rather than
fundamentally practical activities. For convenience, modern physicians conceptual-
ize the phenomena they see as discrete “diseases.” Sometimes their concepts turn
out to be scientifically valid. Often, sadly, they do not. The current chapter deals with
neurochemical mechanisms rather than listing abnormalities in molecules in clini-
cally defined “diseases.” Neurochemical mechanisms in sick people are real-world
entities that can be discovered by observation and whenever possible by experi-
mentation. “Diseases” are abstractions constructed by physicians and others to help
figure out what is wrong with patients and how to try to help. This chapter is on
the chemistry of nervous systems of people whose actions are unusual enough to
draw medical attention to them. It does not deal with such nonmaterial concepts as
“free will” or “the soul,” nor with the relationship of mind to brain. This limitation
is intentional and potentially powerful. A neurologist or psychiatrist armed with the
array of chemicals that constitute the modern pharmacopeia can do much more than
even the most sympathetic and understanding physician or other counselor who is
limited to “talk therapy.” Sigmund Freud and his fellow alienists in Vienna at the
turn of the last century yearned to have such medicines available. In general, the
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2 J.P. Blass

Viennese-trained psychiatrists who fled to the United States were perfectly willing
to use psychotropic medications, although they made sure to talk extensively to their
patients as well. Even the psychoanalysts in that group held to the slogan, “There
is also a brain.” Despite the disputes among “schools of psychoanalysis” that went
on with talmudic intensity, the able among those practitioners never forgot that their
goal was to aid the troubled individuals who came to them for help.
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1 Introduction

1.1 Focus of This Volume

This volume of the Handbook of Neurochemistry deals with chemical mecha-
nisms in the nervous systems of sick people. It is intentionally not a catalogue
of neurochemical phenomena in specific diseases, as those entities are currently
defined. Thus, there are no chapters on the “Neurochemistry of Depression” or
“Neurochemistry of Stroke.” The choice to focus on mechanisms rather than on
diseases deserves explication.

1.1.1 Contrasts Between Science and Clinical Medicine

Science is primarily a scholarly endeavor; the practice of medicine is primarily a
practical trade. Scientists try to find out more and more about the world, even if
doing so is time-consuming. Medicine, in contrast, depends more on what is useful
than on what is “true.” That includes the specialties of neurology and psychiatry.
The important information for medicine is that which enables medical practicioners
to decide how best to try to help individual sick people. Generally those decisions
must be made within a limited amount of time in order to be useful. Even the deci-
sion to do nothing is a decision that affects patient welfare. When possible, medical
decisions are based on scientific information, but where the science is lacking the
decisions still have to be made.
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Chemists are confident that knowledge about the molecules of which the material
world consists can help human beings to understand and deal with that world. We do
not doubt that molecules are real things, even if too small to be seen (at least without
an electron microscope). We believe that understanding the molecules that make
up the brain and how those molecules interact can help us understand our brains
and therefore ourselves. Many examples prove that alterations in the molecules that
make up human beings can lead to sickness, that is, to signs and symptoms that
cause significant disability in patients. We recognize that individual sick people,
like molecules, are real things.

“Diseases,” in contrast to molecules and to individual patients, are abstractions
(Kendell, 1975). The properties of molecules are determined by experimentation;
the properties of diseases are determined by consensus conferences. The names
and classifications of diseases are inventions of the human mind, developed for the
intellectual convenience of those of us who have been trying to take care of sick
people.

1.1.2 Utility of the Disease Concept

Physicians have found the concept of specific “diseases” to be a useful intellec-
tual construct, despite the sometimes tenuous relationship of specific diseases to
underlying reality. Medical practitioners rapidly experience the truism that every
patient differs significantly from every other patient. However, the concept of spe-
cific “diseases” allows physicians to classify patients into groups who are likely
to react in similar ways and specifically to respond to specific therapies. These
intellectual constructs change as more information becomes available. Disease clas-
sifications and therefore disease categories will almost certainly continue to change
as biology advances. The current rapid increases in understanding the chemistry and
molecular genetics of the nervous system are already changing the way dysfunc-
tions of the nervous system are thought of and therefore classified. For instance, the
“hereditary ataxias” presented an almost impenetrable forest of erudition as long as
differentiation among them depended on clinical signs and symptoms. Now that the
responsible genes have been discovered, classification is straightforward and so is
differential diagnosis (Duenas et al., 2006; Lodi et al., 2006). Both now depend on
laboratory studies of the molecular genetics.

Simply enumerating the chemical abnormalities in entities that are still defined
by clinical rather than biological criteria is unlikely to have lasting value, as those
categories become increasingly out of date and discarded. On the other hand, mech-
anisms that have been defined experimentally are not likely to stay scientifically
valid, although our understanding of them will, it is hoped, continue to deepen.

1.2 Historical Background

People attempting to heal the sick have almost always used the best knowledge of
the universe available to them to do so. For the priests of Aesculapius in ancient
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Greece, that was a mixture of mysticism and empiricism. (Aesculapius may orig-
inally have been an unusually skilled doctor, whose deification helped maintain a
flow of patients to the hospital [shrine] that he founded.) Today, physicians try to
use the more objective system of observations and interpretations that make up sci-
ence, including the science of neurochemistry. (Of course, the “art of medicine”
often still requires a certain amount of mumbo-jumbo. Many patients lack confi-
dence in a diagnosis and treatment unless it is described to them in long words of
Latin and Greek origin that they do not understand.)

1.2.1 Hippocratic Tradition

The Hippocratic tradition dominated medical practice from ancient times through
the middle ages and up to early modern times. This tradition is relatively easy to
adapt to modern molecular medicine. First, it is descriptive rather than theoretical.
Hippocratic physicians described the things that they could observe going wrong in
their patients so clearly and accurately that we can attribute many of the illnesses
they describe to agents discovered only within the last century or so. A classic
example is the “Plague of Athens,” which had major effects on the war between
Athens and Sparta. It is now thought to have been an outbreak of adult measles.
Hippocratic physicians recognized that groups of people often had the same sorts of
things going wrong with them, particularly during epidemics of what we now call
infectious diseases. In fact, one of the books in the Hippocratic corpus is entitled
“Epidemics.”

1.2.2 Theory of Humors

The ancient and medieval tradition was also crudely chemical, although the
chemistry of the time was terribly primitive compared to modern knowledge. It
emphasized the theory of humors. In health, the humors were in balance. In illness,
they were out of balance. Treatment consisted in restoring balance. For instance,
a person who had too much moisture needed treatments to help dry out enough to
regain balance. The medieval form of this theory of humors depended heavily on
the writings of Galen, who had been among other things physician to the emperor
Marcus Aurelius. Our chemistry is almost infinitely more complex, but the thrust
of modern mechanistic thinking has significant similarities. When a person today
retains water and salt, we typically prescribe a diuretic to “dry him out.” Our more
sophisticated concept of “balance of humors” is “healthy homeostasis.”

1.2.3 Sydenham’s Conceptualization of Specific Diseases

The modern theory of diseases as distinct entitites was popularized in the 1600s
in large part by a great English physician, Thomas Sydenham. He lived during the
era of the religious wars in Europe, and his brother was one of Oliver Cromwell’s
colonels. The faculty at Oxford gave Thomas the medical qualification he wanted
even though he was barely literate in Latin, the language in which the medical
literature of his time was written. Came the restoration of the Stuart monarchy,
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and Thomas had to make a living. He did so by practicing the profession whose
literature he couldn’t really read. Fortunately, he was a genius. Science at that time
was heavily a matter of classification, including classification of the new species
of plants and animals being discovered in the Americas and other continents pre-
viously unexplored by Europeans. Sydenham classified illnesses analogously to the
way Linnaeus was classifying plants.

Sydenham used two sets of criteria for his classifications: clinical signs and
symptoms and response to specific therapy. His model was what we now recog-
nize to be malaria. This disease typically causes high fevers every third or fourth
day, reflecting the life cycle of the parasites which we now recognize to cause it.
Sydenham characterized this clinical entity as “tertian fever” or “quartan fever.” He
recognized the value of treating it with extracts of cinchona bark, whose active prin-
ciple we now recognize to be quinine. This eminently practical approach—clinical
signs and symptoms indicating the need for a particular treatment—proved so useful
that it came to dominate medicine, not only in Britain but also in other countries.
Because Sydenham’s concept included response to a particular treatment (often a
medicine containing one or more critical molecules) it was to some extent a chem-
ical classification. However, it is worth noting that Sydenham himself felt that his
friend Dalton’s ideas about atoms had no significance for clinical medicine. Given
the medical ignorance of the time, his conclusion was correct when he made it.

1.2.4 Chemical and Biological Refinements of Sydenham’s Concepts

Over the succeeding centuries, developments in chemistry and biology led the con-
cept of what constituted a “disease” to depend less on purely clinical observations
and instead on more putatively “scientific” characteristics. The growth of chemistry,
especially the development of the chemistry of dyes during the nineteenth century,
led to the discovery of chemicals that stained human tissues obtained at autopsy.
The increased information that then came from pathology led to the definition of
diseases as “clinical-pathological” entities, that is, conditions in which a clincal pat-
tern was associated with a more or less specific anatomic pathology. This approach
still dominates neurology textbooks. Confusing clinical entities such as Alzheimer
disease are considered to be based on hard scientific definitions, inasmuch as they
are associated with characteristic neuropatholgical changes revealed by microscopic
examination after staining with appropriate dyes. Psychiatry has been considered a
“soft” specialty in part because of the lack of recognized anatomic pathology in the
brains of people with such major disorders as schizophrenia and depression. Now
that modern imaging techniques are increasingly identifying “objective” abnormal-
ities in the major mental illnesses, psychiatry has been described as becoming more
scientific.

Bacteriology and subsequently virology also led to important modifications of
Sydenham’s concept of diseases. Instead of such general classifications as “pthisis”
for inflammation of the lungs, physicians came to recognize more specific entities
such as “tuberculosis” or “diplococcus pneumoniae pneumonia.” The development
of convenient modern techniques for culturing pathogenic infectious agents and
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determining their sensitivities to specific antibiotics has allowed this biological
knowledge to become part of the daily practice of medicine. We recognize an infec-
tion with “multiple antibiotic-resistant staphylococcus aureus” (MRSA) as an entity
independent of the organ infected and the resulting anatomic pathology. However,
it is worth noting that the sensitivities to particular antibiotics of different strains of
the same species of bacteria now vary so much that rational treatment of infec-
tions still involves direct laboratory studies of the patient being treated, namely
culture of the responsible micro-organisms from the specific patient and tests of
its sensitivity to specific antibiotics. You and I may both have pneumonia, and both
your and my pneumonia may be due to infection with diplococcus pneumoniae,
but your pneumonia may respond to and be appropriately treated with penicillin
whereas mine needs to be treated with another antibiotic. Knowing that clini-
cally important difference early in the course of our treatment requires laboratory
tests.

1.2.5 Molecular Studies and Clinical Specificity

Modern biochemistry and particularly modern nucleic acid chemistry (molecular
genetics) are forcing practitioners to re-evaluate their concepts of what constitutes
specific diseases. Nowhere is this more evident than in diseases of the nervous sys-
tem. (Hereditary ataxias are an example discussed above; psychoses are an example
discussed below.)

It would have been convenient if abnormalities in specific genes were to have
led reliably to specific clinical symptoms and signs, that is, to specific “diseases.”
Unfortunately, they do not. The general pattern has been that when an abnormal
gene is associated with a clinically defined entity, investigators at first assume that
it is more or less specifically associated with the “disease” in which it was discov-
ered. Subsequent studies of larger populations with a larger variety of “diseases”
typically show that abnormalities of the gene in question turn out to occur in a
variety of different diseases and usually even in people who have no clinically sig-
nificant disability. “Diseases” defined clinically or even by a combination of clinical
and laboratory findings generally turn out, on extensive study, to be genetically
heterogeneous in two senses: different genes can lead to the same clinical pat-
tern, and abnormalities of a single gene can lead to different clinical syndromes.
Stated technically, epidemiologically based studies typically reveal that diseases
defined clinically are genetically heterogeneous, and the consequences of mutations
in a single gene most often turn out to be clinically heterogeneous. The following
paragraphs give examples of these complexities.

1.3 Example 1: Tay–Sachs Disease

A classical “homogeneous” inborn error of metabolism, namely Tay–Sachs disease
(GM2 gangliosidosis), provides a clear example.6
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1.3.1 Clinical Patterns

This condition was recognized clinically in the nineteenth century in infants of
Ashkenazi Jewish heritage, who suffered from a form of severe psychomotor
retardation in infancy and early death. These children were hard to distinguish
clinically from other infants who had other forms of devastating, early psychomo-
tor retardation with blindness, that is, other forms of “familial amaurotic idiocy.”
Differential clinical diagnosis depended on such clinical signs as an “exaggerated
startle response,” that is, an infant with Tay–Sachs disease was supposed to cry even
more than usual if startled by something like a loud clap of the physician’s hands.

1.3.2 Neuropathology, Neurochemistry, and Molecular Biology

Neuropathological observations subsequently allowed a more biological definition
of the subgroup of children with “true” Tay–Sachs disease. Light and then elec-
tron microscopy revealed characteristic “whorls” of material stored in their brain.
Subsequent neurochemical studies identified that material as GM2 ganglioside.
Enzymatic studies showed that Tay–Sachs disease was due to a lack of a functional
form of an enzyme that catalyzes the breakdown of GM2 ganglioside, namely hex-
osaminidase A. Molecular genetic studies demonstrated that this lack was due to
mutations in the HEXA gene that encodes this enzyme. Definitive clinical diagnosis
of Tay–Sachs disease now requires molecular genetic confirmation. The clinical
overlap among patients with “lipid storage diseases” is so great that a specific
diagnosis based on history and physical examination is no more than an informed
guess.

Thus neurochemistry and molecular biology appeared to have identified a bio-
logically homogeneous population who suffered from a particular constellation
of clinical signs and symptoms due to homozygous recessive inheritance of a
mutation-specific gene in a particular ethnic group, that is, from a specific “molecu-
lar disease.” Clinical applications of these neurochemical discoveries have allowed
Ashkenazi Jewish couples to be tested for carrier status even before the woman
becomes pregnant. Prenatal testing of cells obtained at amniocentesis from fetuses
at risk for this disease has allowed termination of the affected pregnancies in this
ethnic group for whom therapeutic abortion is religiously acceptable. This triumph
of modern medicine appeared to hold up as long as the chemical analyses were so
expensive and tedious that they were done largely in children who fit or were at
risk for the expected clinical characteristics. However, as cheaper and more auto-
mated procedures were developed that allowed testing of larger populations, the
associations between gene and ethnicity and gene and clinical syndrome both broke
down.

1.3.3 Genetic Variability

HEXA deficiency has turned out to be neither genetically nor ethnically homo-
geneous. A variety of different alterations—mutations—in the HEXA gene have
been associated with classic, infantile Tay–Sachs disease. The existence of different
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Table 1 Clinical presentations of HEXA deficiency

Psychomotor retardation Gravel et al. (1995)
Early infantile form
Late infantile form

Sandhoff disease Hendriksz et al. (2004)
Infantile form
Juvenile form

Juvenile progressive dystonia Meek et al. (1984)
Spinocerebellar disease (several clinical

syndromes)
Argov and Navon (1984), Oonk et al. (1979), and

Rapin et al. (1976)
Motor neuron disease Argov and Navon (1984) and Drory et al. (2003)
Focal muscular atrophy Iype et al. (2006)
Dementia Hammer (1998) and O’Neill et al. (1978)
Depression Hammer (1998) and Renshaw et al. (1992)
Schizophrenia Hammer (1998) and Rosebush et al. (1995)
Postpartum psychosis Lichtenberg et al. (1988)
Asymptomatic Navon et al. (1973)

This list is not exhaustive, nor is the citation of references. New syndromes associated with HEXA
deficiency are still appearing in the medical literature.

mutations in a single gene among different individuals and among different popula-
tions is, of course, the rule rather than the exception in studies of inherited diseases.
Clinically typical, HEXA-deficient Tay–Sachs disease occurs in a number of ethnic
groups. In some, the mutations tend to differ from those most frequently found in
Ashkenazi Jews. For instance, there is a “French Canadian” mutation as well as an
“Ashkenazi Jewish” mutation. (See Gravel et al., Table 1, for discussion and ref-
erences.) However, the overlaps in mutations among ethnic groups are wide. They
confirm the principle, well known to human geneticists, that genome studies tell
many of us things that we did not know, or want to know, or want our spouses
to know. (Genetic counselors are obligated to warn a family for whom molecular
genetic studies are recommended that for perhaps 15% of children, the supposed
father is not the biological father.)

1.3.4 Variations in Clinical Phenotype

More important for this discussion, abnormalities of the responsible HEXA gene
have now been associated with a dozen or more clinically distinct patterns (Table 1),
including “schizophrenia” and including people with no clinically significant dis-
ability. Put technically, “adult onset Tay–Sachs disease” is clinically pleomorphic.
A steady stream of reports continues to appear describing variant neurological
abnormalities in people with “adult onset Tay–Sachs disease.”

Systematic large studies of the incidence of HEXA abnormalities among patients
in common diagnostic categories such as “schizophrenia” are in short supply.
What studies have been done encourage further work (Goodman, 1994). Studies
of another inborn error of metabolism associated with “schizophrenia syndromes,”
metachromatic leukodystrophy, have shown a high incidence of abnormalities in



Mechanisms Versus Diagnoses 9

sulfatide metabolism. The abnormalities have been attributed to “pseudosulfatase
deficiency” (Alvarez et al., 1995; Galbraith et al., 1989; Herska et al., 1987).
Molecular genetic investigations have not been reported. There appears not to
have been a systematic study at the molecular genetic level of the incidence of
abnormalities in genes responsible for storage disorders such as Tay–Sachs dis-
ease and metachromatic leukodystrophy, what have previously been called “Type II
schizophrenics.” These unfortunate patients suffer from relentless, generally drug-
unresponsive, progressive psychoses which sooner or later turn into dementia, and
are associated with brain atrophy with enlarged ventricles. Type II schizophrenics
appear to have a progressive brain disease. One may speculate that some of them
have as yet unelucidated variants of disorders that in other, more severe forms lead
to progressive psychomotor failure in infancy or early childhood.

1.4 Example 2: Psychoses

The neurochemical and molecular genetic study of psychoses including schizophre-
nia is beset by problems of clinical definition.

1.4.1 Recognizing Psychosis

The first of these problems is deciding who is psychotic. The difficulty in defining
precise criteria for whether someone is crazy is summarized in an old Quaker saying:
“All the world is mad but me and Thee, and sometimes I doubt Thee.” Whole nations
can go mad, for instance, the paranoia of the highly educated German-speaking
world during the time of the Nazis. (The review of the movie Saving Private Ryan
in the Süddeutsche Zeitung pointed out that using the Nazis as a horrible exam-
ple is less controversial than using more up-to-date examples of insane cruelty
masking itself as politics.) Sets of diagnostic criteria for psychosis and for specific
psychoses continue to be promulgated, not least in the volumes of the Diagnostic
and Statistical Manual of the American Psychiatric Association (most recently DSM
IV-TR). Applying these criteria well requires skill and training.

Although the lines between mad, odd, and sane are hard to draw precisely,
common sense often allows easy classification. As usual, a clinical anecdote is
illustrative.

A woman suffering from a severe (masked) depression lost her appetite to the point where
her body weight fell to a dangerously low level (body mass index of 14.3). The neurologist
who saw her immediately arranged admission to a psychiatric hospital. The admitting resi-
dent there was concerned about whether the patient met DSM IV-TR criteria for depression,
and if so of what type. The neurologist responded, somewhat rudely: “Look, this lady has
nearly succeeded in starving herself to death. Please admit her and feed her, if necessary
through a tube, and treat her for depression. There will be plenty of time to worry about
how to classify her mental disease once she is no longer at imminent risk of death from an
infection or other complication of starvation.”
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1.4.2 Classification of Psychoses

Clinical observers have classified forms of madness in different ways over the cen-
turies. The Hippocratic physicians used the single category “delirium” for madness
whether an external cause could be recognized or not. In modern terms, they did not
distinguish between endogenous and exogenous psychoses, and between endoge-
nous and exogenous neurointoxicants. Instead they described what was happening
in individual patients or groups of patients. As knowledge of the molecular bases
of psychotic behavior increases, including endogenous chemical imbalances in the
brain, we may yet go back to a modernized version of their formulation.

The modern classification of madness goes back about a century, to the
German psychiatrist Bleuler. Among the mental disorders he classified that had
no neuropathological stigmata at that time were schizophrenia (thought disor-
der) and depression and manic-depressive disease (mood disorders). This dis-
tinction has persisted in psychiatry. It continues to be widely although not uni-
versally accepted. However, modern molecular studies are bringing the biology
of the distinction between “thought disorder” and “mood disorder” into serious
question.

1.4.3 The DISC1 Locus

DISC1 is an example of a gene that predisposes to both thought disorder and mood
disorder (Craddock et al., 2006; Porteus et al., 2006). The association of this gene
with schizophrenia was discovered in a family in whom the insanity was associ-
ated with a balanced translocation. A number of studies then demonstrated and
confirmed that abnormalities in this gene were associated with “typical” schizophre-
nia. Further studies showed that abnormalities in DISC1 were also associated with
manic-depressive (bipolar) psychosis. This was not too surprising, because the clini-
cal differential diagnosis between schizophrenia and bipolar disease can be difficult,
particularly while the sufferers are very crazy. Further studies then showed that
abnormalities in DISC1 were also associated with recurrent unipolar depression,
which is relatively easy to tell from schizophrenia and, with careful examination,
even from bipolar disorder. Porteus et al. (2006) concluded that: “DISC1 is a gen-
eralizable genetic risk factor for psychiatric illness that also influences cognition in
healthy subjects.”

1.4.4 Other Loci

Other loci also contribute to the risk of schizophrenia as well as other dis-
eases. Mutations in the neuroregulin 1 gene (NRG-1) are also associated with
both thought disorders and mood disorders (Green et al., 2005). Abnormalities in
the 15q13-q14 region of chromosome 15 predispose replicably to the existence
of schizophrenia, but also to bipolar disorder, schizoaffective disorder, Prader–
Willi syndrome (a developmental disorder associated with psychosis), and some
forms of juvenile epilepsy (Leonard and Freedman, 2006). Other loci associated
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with both “schizophrenia” and “bipolar disease” have been described on chromo-
some 13 and chromosome 22 and in relation to genes encoding components of
myelin.

1.4.5 Modifier Loci

Presumably, the variable clinical presentations of a single genetic abnormality
reflect the influences of other genes as well as of varying environmental events.
The effect of other parts of an individual’s genome have been referred to as
actions of “modifier genes” or “genetic background.” The effects of specific envi-
ronmental influences on the clinical expression of a variation in DNA are also
being delineated. A striking example is the combination of the interaction of the
Val158 allele of catechol-O-methyl transferase (COMT) and cannabis use in causing
“schizophrenia.” Whether the effects of this allele by itself are clinically signifi-
cant is controversial. However, it is clear that those who carry this allele and also
use cannabis during their adolescence have a tenfold increased risk of becom-
ing psychotic, compared to the general population (Caspi et al., 2005). Is their
psychosis “schizophrenia” or “cannabis toxicity?” Does it matter? As the late
Houston Merritt said about a patient presented to him as a diagnostic problem,
“We all know what is wrong with this person; we are just debating what to call
it.” These semantic problems can be an entertaining exercise in medical erudition,
but semantic distinctions should not alter the quality of the care we give to individual
patients.

1.4.6 Implications for Research on Mental Illness

The recognition that the same fundamental biological changes can lead to both
thought disorders (schizophrenias) and mood disorders (bipolar disease and some-
times unipolar depression) does not contradict clinical experience as much as
it brings into question interpretations of neurochemical research on these disor-
ders. Bleuler, one of the psychiatrists most responsible for the distinction between
thought disorders and mood disorders, himself recognized that the clinical distinc-
tion (“differential diagnosis”) between these conditions can be extremely difficult.
The standard emergency room pharmacological treatment for a patient with an acute
psychosis involves treatment suitable for both conditions. However, researchers
have in the past used patients with the diagnosis of “bipolar disorder” as “dis-
ease controls” for studies of “schizophrenia,” and vice versa. Several metabolites
discovered decades ago in the urine of mentally ill people were dismissed as “non-
specific findings” because their excretion was associated with both conditions. In
the light of modern molecular genetic discoveries, that interpretation may have been
wrong. The patients in the two categories may have had different clinical manifes-
tations of the same biological, neurochemical abnormality. Skolnick (2006), who
has extensive experience and expertise in the development of new pharmaceuticals,
has proposed that the best way now available for developing innovative treatments
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for complex illnesses such as psychoses is to define genetic risk factors and then
develop innovative new drugs based on the genetic information.

1.5 Example 3: Multiple Sclerosis and Demyelination

1.5.1 Clinical Patterns

The medical school definition of “multiple sclerosis” (MS) is demyelination within
the central nervous system that varies in space and time. The term refers to a dis-
order in which patches of demyelination develop during exacerbations. In the most
common forms of MS, exacerbations are separated by varying periods of time in
which the disease does not appear to progress. Whether progressive demyelination
without clear periods of remission should be considered a form of MS is a matter
of definition, about which clinicians specializing in the care of patients with this
disorder have argued. Conventional medical nomenclature classifies as distinct enti-
ties a number of disorders of myelin that can mimic MS clinically. These include,
for instance, the sometimes devastating demyelination localized to the pons or the
demyelination that can follow infectious diseases and/or vaccinations.

The precise meaning of the term“multiple sclerosis” is “many scars.” The words
themselves do not indicate that the scars are even in the nervous system, let alone in
myelin. The British terminology, “disseminated sclerosis,” is no more descriptive.
Charcot, who first distinguished this condition from other disorders of the nervous
system including syphilis, coined the slightly more precise French term, “sclerose
en plaque.”

An inconvenient but more descriptive name for this MS is “intermittent, patchy
demyelination.” This clumsy term makes clear that “multiple sclerosis” is unlikely
to be a single entity in terms of cause (etiology) or disease mechanisms (patho-
physiology). In principle, any conditions or combination of conditions that lead to
intermittent, patchy demyelination are forms of “multiple sclerosis.” If a clear cause
can be identified, the condition is by convention not referred to as multiple sclerosis.
The disease is therefore by definition of unclear etiology. The neurology literature
of the last 100 years contains confident declarations that multiple sclerosis has been
proven to be a viral disease, that it has been proven not to be a viral disease, that
it has been proven to be an immune disease, that immune mechanisms in multiple
sclerosis have been shown to be secondary to the disease process, and so on.

1.5.2 Proposed Mechanisms

Current opinions on cause and mechanism include the possibility that MS is often
due to a form of “molecular mimicry,” in which an immune response to an infective
or other exogenous agent leads to the formation of antibodies and/or cells that cross-
react destructively with components of normal myelin. “Molecular mimicry” is well
established in certain other disorders of the nervous system (Candler et al., 2006)
including paraneoplastic syndromes (Posner, 2003).
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1.5.3 Chemistry of Demyelination

In contrast to the confusion about what multiple sclerosis is or are, the chemistry
of demyelinating processes is rather well defined. (See Chapters XXX.) Whatever
the causes of “multiple sclerosis” eventually turn out to be, they lead to demyeli-
nating processes which will in all likelihood be very similar to or identical at
the neurochemical level with the demyelinating processes that have already been
elucidated. The information about the mechanisms of demyelination is based on
firm, robust, reproducible experimental observations. This information is likely to
expand, but what is now proven is unlikely to change. This solid science contrasts
with the theoretically rather vague although clinically useful clinical conceptualiza-
tion of “multiple sclerosis” as an entity. Describing the neurochemical correlates
of MS would be an exercise in phenomenology, and unstable phenomenology as
the clinical definition of this syndrome changes. Demyelination can, however, be
meaningfully discussed in terms of mechanistic neurochemistry.

1.6 Implications

The practice of medicine is a service profession, not a science. It has more in
common with a trade than with a branch of scholarship. The physician has the
responsibility of trying to keep in mind all the variables that pertain to the person he
or she is trying to help, and must choose within a relatively short time to do noth-
ing or to do something practical, such as prescribing a medication or giving advice.
The scientist has the responsibility and the luxury of taking the time to think deeply
about one aspect of a problem. There is truth to the cliché that scientists are paid to
think more and more about less and less (at least until they become senior enough
to have “administrative responsibilities” including raising large sums of money).

Science has undoubtedly contributed in major ways to the improvement of human
health, as documented by increasing longevity in developed countries. Not least
have been improvements in nutrition, in the safety of the water and food sup-
plies, and in maternal and child health including vaccination against communicable
plagues of childhood, such as diptheria. The mental health of both patients and
practitioners requires that we also believe in the value of curative medicine (as
do the profits of pharmaceutical companies). Unfortunately, there are observations
which temper that confidence. During a doctors’ strike in Israel some decades
ago, the death rate fell, with no compensatory blip before or after the time dur-
ing which everything but emergency medicine and the refilling of medications was
suspended. These data do not lead to a recommendation that the treatment of ill-
ness be suspended. They do suggest a seemly humility both among those of us who
practice medicine and those in the scientific community who provide the informa-
tion on which those of us who have practiced medicine claim to have based our
recommendations.

Medical practitioners should and will continue to adapt the information made
available by science to improve their treatment of patients. Scientists using the
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experimental method and drawing compelling conclusions from their data will con-
tinue to add to the body of definitive information on which medical practicitoners
can draw. This volume concentrates on the solid scientific studies of neurochemi-
cal mechanisms. It leaves to clinical textbooks the discussion of the classification
(nosology) of diseases and the discussion of biological abnormalities in those often
vaguely defined illnesses, as well as discussions of the interventions now believed
to be appropriate.
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Molecular Mechanisms of Neuronal Death

Elena M. Ribe, Lianna Heidt, Nike Beaubier, and Carol M. Troy

Abstract Cellular homeostasis, maintenance of the balance of life and death at the
cellular level, is essential for tissue integrity from development through senescence.
During development of the nervous system programmmed cell death is responsi-
ble for establishing the number of neurons and shaping the nervous system. After
development the majority of the postmitotic neurons should live for the life of
the organism. Aberrant neuronal death occurs in neurodegenerative diseases and
there is still no clear understanding of the mechanisms involved. In this chapter we
discuss the molecules and pathways that regulate the life and death of cells and illus-
trate how these pathways are potentially involved in neurodegenerative diseases. By
understanding the molecular mechanisms that regulate cell death we can then begin
to identify which pathways are dysregulated in neurodegenerative diseases.

Keywords Neuron death · Caspase · IAP · Smac/DIABLO · TNF · Fas · PIDD ·
RAIDD · Neurodegenerative disease
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1 Introduction

Cellular homeostasis, that is, the balance of life and death at the cellular level, is
a requirement for maintaining the integrity of tissues from development through
maturity. During development large numbers of superfluous cells are removed by
an active process termed programmed cell death (PCD) (Burek and Oppenheim,
1996). It was through the genetic studies of developmental death in C. elegans that
the genes required for PCD were identified (Hengartner and Horvitz, 1994). These
gene families are highly conserved from C. elegans to humans. Often PCD is used
interchangeably with apoptosis; this is not accurate, as PCD refers specifically to
developmental death. Apoptosis and necrosis were described as morphologically
distinct processes (Kerr et al., 1972). In apoptosis cellular changes include cell
membrane blebbing, cell shrinkage, chromatin condensation, and nuclear fragmen-
tation (Kerr et al., 1972). Eventually the cell disintegrates, generating the so-called
apoptotic bodies that will be engulfed via phagocytosis by nearby cells, thus avoid-
ing an inflammatory response in the surrounding tissue. This lack of inflammatory
response allows apoptosis to occur without damaging neighboring healthy cells. In
contrast, necrosis, in which the cell suffers a major insult leading to rapid swelling,
subsequent rupture of the plasma membrane and release of the intracellular contents
into the surrounding cellular environment causes a strong inflammatory response.
Apoptosis maintains physiological balance and its dysregulation results in patho-
logical conditions, such as neurodegenerative diseases, cancer, and autoimmune
disorders. Another mode of cell death is autophagy, which is characterized by the
formation of large autophagic vacuoles and little inflammation (Levine and Yuan,
2005). Most autophagy does not lead to cell death but is a mechanism by which
intracellular components are recycled (Yoshimori, 2007). Although the classifica-
tion of the different forms of cell death seems to be clear, the boundaries are not
so well defined in vivo and crosstalk can occur (Lockshin and Zakeri, 2004). With
this idea in mind, we discuss the pathways of apoptotic neuronal death that occur in
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acute and chronic pathological conditions such as Alzheimer’s disease, Parkinson’s
disease, Huntington’s disease, stroke/ischemic disease, and motor neuron diseases.

2 Caspases: Key Players in Apoptosis

Caspases are the main proteins involved in the execution of apoptosis (Troy and
Salvesen, 2002). They are a family of cysteine aspartate proteases with a conserved
QACXG motif at the active site. To date, 13 mammalian caspases have been iden-
tified (Lamkanfi et al., 2002). Synthesized as inactive precursors or zymogens, they
can be classified based on their structure, mode of activation, cleavage specificity,
and function. According to their function caspases can be subdivided into three
groups, shown in Fig. 1:
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Fig. 1 Mammalian caspases

(1) Inflammatory caspases: caspase-1, -4, -5, -11, -12, and -14.
(2) Initiator caspases: involved in the apoptotic process. These caspases, also

known as apical caspases, are structurally characterized by the presence of a
long prodomain at the N-terminal region containing different protein–protein
interaction motifs such as death effector domain (DED) found in caspase-8 and-
10 or caspase recruitment domain (CARD), present in caspase-2 and -9. Via
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these domains, caspases establish homotypic interactions with specific adaptor
molecules.

(3) Effector caspases: this group of proteases cleave cellular substrates during apop-
tosis. Due to their function in the apoptotic paradigm they are also known
as executioner caspases. They are characterized by the presence of short
prodomains. This group contains caspase-3, -6, and -7.

2.1 Caspase Activation

Synthesized as inactive precursors or zymogens, caspases require activation to exe-
cute apoptosis (Nicholson and Thornberry, 1997). Early studies suggested that all
caspases required proteolytic cleavage for their activation and that mature caspases
consisted of large (p18/20) and small (p10/12) subunits arranged in heterotetramers
containing two active sites (Walker et al., 1994). However, work on caspase-9
provided new insight into the mechanisms underlying caspase activation because
it demonstrated that the caspase-9 zymogen could have activity without cleavage
(Stennicke et al., 1999). Thus, the question, “How do caspases become activated?”
is critical.

2.2 Mechanisms of Activation

2.2.1 Effector Caspases

The common mechanism of activation of effector caspases (caspases-3, -6, and -7)
is through proteolytic cleavage at critical aspartic acid residues (Quan et al., 1996;
Riedl et al., 2001a) shown in Fig. 2. Effector caspases are activated by other
proteases, generally initiator caspases or granzyme B (an aspartate-specific serine
protease), or other effector caspases. This cleavage process has two steps. First,
a molecule of zymogen is cleaved at the linker region generating the p18/20 and
p10/12 subunits; this structure is partially active. Then, this intermediate interacts
with another heterodimer forming the active caspase. In this regard, cleavage of the
effector caspase is a measure of activation. Once effector caspases become active
they are able to cleave multiple substrates to induce cell death.

2.2.2 Initiator Caspases

Inactive initiator caspases exist as monomers and activation is achieved by
proximity-induced dimerization (Boatright and Salvesen, 2003) shown in Fig. 2.
Adaptor proteins, which interact with the prodomains of the caspases, bring the
caspase molecules into proximity. When initiator caspases dimerize, they undergo
conformational changes that result in an active enzyme without a requirement for
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cleavage. Thus, cleavage cannot be used as a measure of activation when study-
ing initiator caspases. Because caspase-9 is an initiator caspase that does not
require cleavage for its activation, some studies have used the cleavage of caspase-
3 as a surrogate measure for caspase-9 activation. However, caspase-8 can also
cleave caspase-3. Thus, caspase-3 cleavage/activity is not a specific measurement
of caspase-9 activation.

2.3 The Apoptosome

The most widely studied model is caspase-9 activation. Release of cytochrome
c from the mitochondria into the cytosol promotes the assembly of the apopto-
some, a complex composed of cytochrome c, Apaf-1 (Apoptosis protease-activating
factor-1), and caspase-9. The presence of Apaf-1, which is the specific adaptor for
caspase-9, recruits procaspase-9 to the apoptosome resulting in caspase-9 activation
(Bao and Shi, 2007; Riedl and Salvesen, 2007).

2.4 The DISC

A similar process occurs for caspase-8 activation. In this case, oligomerization of the
death adaptor protein Fas-Associated Death Domain (FADD) recruits procaspase-8
into the death-inducing signalling complex (DISC) allowing caspase-8 dimerization
and subsequent activation (Shi, 2006).
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2.5 The PIDDosome

An activating complex has also been identified for caspase-2, containing RAIDD
(RIP-associated ICH-1/CED-3 homologous protein with a death domain), the spe-
cific death adaptor for caspase-2, and PIDD (p53-induced protein with a death
domain) (Tinel and Tschopp, 2004; Park et al., 2007). This complex, termed the
PIDDosome, has not been shown to actually mediate caspase-2 dependent death
but rather, overexpression of PIDD can lead to cleavage of caspase-2 which is not
necessarily an indication of activation (Tinel et al., 2007). Overexpression of PIDD
does lead to death that is blocked in RAIDD-null cells (Berube et al., 2005). PIDD
can also complex with RIP1 and NEMO and induce activation of NFκB, suggesting
a dual function for PIDD in the regulation of survival and death (Janssens et al.,
2005). Caspase-2 has been shown to be critical for both trophic factor deprivation
and β-amyloid mediated neuronal death (Troy et al., 2000, 2001), shown in Fig. 3
and RAIDD is required for execution of trophic factor deprivation mediated death
(Wang et al., 2006).

Once dimerized in the activating complexes there is often autocleavage of the
caspase which, for caspase-2 and -8, has been shown to enhance caspase activity
(Chang et al., 2003; Baliga et al., 2004). As death proceeds and effector caspases are
activated there is subsequent cleavage of initiator caspases. This cleavage may lead
to further enhancement of caspase activity, as in the case of caspase-9 where the ini-
tial autocleavage of caspase-9 to the p37 fragment allows XIAP to bind and inhibit
activity, and the subsequent cleavage by caspase-3 to the p35 fragment relieves the
XIAP inhibition thus enhancing caspase-9 activity (Denault et al., 2007).

Caspase-2 and PIDD Signaling Pathways
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Fig. 3 Caspase-2 activation and PIDD signaling pathways
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2.6 The Inflammasome

The activation of the inflammatory caspases uses a mechanism resembling that of
the initiator caspases. The presence of a complex, known as the inflammasome
(Martinon et al., 2002), is required for activation of this set of proteases. The
recruitment of caspases into this complex results in their activation. For caspase-
1, the adaptor ASC (apoptosis-associated specklike protein containing a CARD)
is critical in inflammasome formation in response to a variety of stimuli, whereas
involvement of the adaptors Ipaf (ICE-protease-activating factor) and NALP3 is
stimulus-dependent (Mariathasan, 2007).

3 Apoptotic Routes: Intrinsic and Extrinsic Pathways

Cells undergoing apoptosis take one of two major pathways: the death receptor
(extrinsic) pathway, or the mitochondrial (intrinsic) pathway. Once the cell is dead,
the cellular contents form the apoptotic bodies, which are cleared by phagocytosis
in a process involving neighboring cells and/or macrophages. This intricate process
is tightly regulated so that there is a fine balance between prosurvival and prodeath
signals for each route in the apoptotic pathway.

3.1 The Extrinsic or Receptor-Mediated Pathway

The extrinsic or receptor-mediated pathway is activated when a death ligand binds
to its specific receptor on the cell membrane surface. The main death receptors are
all members of the tumor necrosis factor (TNF) superfamily of receptors, which
includes TNFR, Fas, p75, and TRAIL. All these receptors are characterized by
the presence of domains rich in cysteine, which mediate the binding between lig-
and and receptor. The receptors are synthesized as transmembrane homotrimers
and when they bind to their specific death ligand a DISC is formed. This com-
plex recruits death domain (DD)-containing adaptor proteins that interact with and
recruit procaspase-8, leading to caspase-8 activation. Caspase-8 activation results in
the cleavage and activation of downstream effector caspases which in turn cleave a
plethora of substrates, ultimately leading to cell death. Caspase-10, present only in
humans, is also activated in this way.

3.1.1 TNF Pathway

TNF is a proinflammatory cytokine produced mainly by macrophages. There are
two main types of receptors, TNF-R1 and TNF-R2. TNF-R2 is primarily found
in the immune system and is activated by membrane-bound TNF (Wajant et al.,
2003). However, TNF-R1, which is ubiquitously expressed, can be activated by
both membrane-bound and soluble TNF. When TNF binds to the TNF recep-
tor, TRADD (TNFRSF1A-associated via the death domain) is able to establish
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homophilic interaction with the DD of the TNF receptor (Hsu et al., 1995),
shown in Fig. 4. The binding of TRADD to the TNF receptor–ligand complex
facilitates the subsequent binding of TRAF2 (TNF receptor-associated factor 2)
and RIP1 (receptor-interacting kinase-1), a DD-containing serine threonine
kinase.

When TRAF2 and RIP1 bind to the complex, two sequential pathways are acti-
vated: the NFκB pathway and the activated caspase-8 pathway. In the first step of the
NFκB pathway, TNF activates the IκBα pathway in a process that depends on the
degradation of the inhibitor IκB by the proteasome. The Iκκ complex (IκB kinase)
mediates the phosphorylation of the inhibitor IκB. The Iκκ complex is formed by
two related IκB kinases, IκBα and IκBβ, and NFκB essential modulator (NEMO),
a regulatory protein also known as IκBγ. The roles of TRAF2 and RIP in the Iκκ

complex are recruitment and stabilization, respectively (Devin et al., 2003).
In nonstimulated cells, the Iκκ complex remains inactive in the cytoplasm

because of the binding of the IκB inhibitor. However, when the complex is recruited
to the TNF receptor it becomes active and it is able to phosphorylate the IκB
inhibitor which is in turn degraded via the proteasome (Aggarwal, 2003). The degra-
dation of the inhibitor frees the NFκB complex to translocate to the nucleus where
it activates transcription of several genes, including XIAP, c-IAP1, and c-IAP2
(Stehlik et al., 1998; Wajant, 2003).

Thus, TNF induces a strong prosurvival signal secondary to NFκB activation.
This is the main difference between TNF and Fas or TRAIL, which only medi-
ate apoptosis. TNF can have cytotoxic effects, but only when NFκB activation is
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inhibited. In the second (caspase-8) part of the pathway, TRADD, which is bound
to the TNF receptor, acts as a platform allowing the complex to interact with Fas-
associated death domain (Yeh et al., 1998; Thorburn, 2004). Once FADD is bound
to the complex, it recruits caspase-8 to form a cytoplasmic DISC protein com-
plex that finally ends with the death of the cell (Micheau and Tschopp, 2003).
The TNF receptor can also mediate an alternative pathway through the recruit-
ment of RAIDD, which facilitates the binding of RIP1, establishing homophilic
interactions via the DD found in both proteins (Duan and Dixit, 1997). This inter-
action mediates the recruitment of caspase-2 which in turn leads to apoptosis (Kim
et al., 2000). A complex of caspase-2 with TRAF2 and RIP1 has been found that
induces NFκB activation independent of caspase-2 enzymatic activity (Lamkanfi
et al., 2005).

3.1.2 FAS Pathway

Fas plays a key role in the regulation of apoptosis. The Fas–Fas ligand (FasL)
interaction has a special relevance because the initial characterization of the DISC
formation was discovered while studying this interaction (Kischkel et al., 1995).
When Fas ligand binds to its receptor, Fas, also known as CD95, a structural change
takes place facilitating the trimerization of the receptor, which then mediates the
recruitment of DD-containing proteins, in this case, FADD. FADD is a molecule
with a double nature because it not only contains a DD but also a DED through
which it establishes interactions with procaspase-8 (Chinnaiyan et al., 1995). Once
procaspase-8 is recruited into the DISC complex, it is autoproteolytically pro-
cessed by proximity-induced dimerization, which enhances the enzymatic activity
(Fig. 5). Another study shows that the DISC complex can also contain caspase-10
but that caspase-10 cannot completely replace the caspase-8 function in apoptosis
(Sprick et al., 2002). It appears that caspase-8 and -10 may have some nonredundant
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functions. People lacking caspase-10 can develop autoimmunolymphoproliferative
syndrome II (Rieux-Laucat et al., 2003).

Modulators of caspase-8 dependent apoptosis, specifically FLIP, have also been
identified in the DISC. FLIP is synthesized in two isoforms, short and long. Both
have DEDs in tandem and high homology to the N-terminus of caspase-8 (Irmler
et al., 1997). When FLIP is recruited into the DISC, it disrupts the complex and acts
as an inhibitor of caspase-8 so that caspase-8 cannot become active. This prevents
the cell from undergoing apoptosis. However, FLIP can also activate caspase-8 and
caspase-10 by forming heterodimers (Boatright et al., 2004).

3.1.3 TRAIL Pathway

Although its physiological role is not completely understood, TRAIL plays a role in
apoptosis in blood cells and in the immune system (Thomas and Hersey, 1998). Five
TRAIL receptors have been described, which can be divided in two groups: death-
inducing receptors and death-inhibitory receptors. As their own names indicate,
the first group is actively involved in the apoptotic response and the second group
has a defective cytoplasmic DD so they function as competitive inhibitors when
they bind to TRAIL. The cascade involving TRAIL is similar to the one induced
by Fas. TRAIL binds to its receptor initiating DISC formation and recruitment of
caspases-8 and -10 and FLIP. DISC formation generates the active conformation
of caspase-8 which in turn activates caspase-3 resulting in cell death. Although
there can be an interconnection between this main pathway and the NFκB path-
way, TRAIL is a weak inducer of the latter. As with the TNF receptor-mediated
pathway, the activation of NFκB is mediated by RIP1 and TRAF2 (Lin et al.,
2000). However, the prosurvival signal is completely masked by the strong apoptotic
response.

3.2 The Intrinsic Pathway

The intrinsic pathway is the death pathway followed when apoptosis is triggered by
death signals generated inside the cell (Fig. 6). In this pathway, mitochondria are the
key players, controlling the cell status based on which molecules are released from
the mitochondria into the cytoplasm. Because release of molecules from the mito-
chondria depends on the integrity of the mitochondrial membranes, mitochondrial
membrane permeabilization has a key role in the origin and progression of the intrin-
sic pathway. The Bcl-2 family controls the regulation of mitochondrial permeability
(Green and Amarante-Mendes, 1998; Green and Kroemer, 2004). This family is
characterized structurally by the presence of the Bcl-2 homology (BH) domain.
Family members such as Bcl-2, Bcl-Xl, or Bcl-w can have antiapoptotic effects
and contain 4 BH domains (BH1, 2, 3, 4) and a transmembrane domain.

Other proteins from the Bcl-2 family are proapoptotic. The proapoptotic group
is subclassified into BH3-only proteins (Bid), BH3-only with a transmembrane
domain (Bad, Bim, Bik, Bmf, Hrk, Nox, or Puma), and multi-BH (BH1, 2, 3)
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domains with a transmembrane domain (Bax, Bak, Bok) (Adams and Cory, 1998).
The BH3-only proteins trigger apoptosis induced by the lack of trophic support or
intracellular damage and thus work as damage sensors in the cell (Cheng et al.,
2001). Bcl-2, the prototype family member, is found in perinuclear membranes,
mitochondria, and endoplasmic reticulum (Korsmeyer et al., 1995). It has impor-
tant functions in controlling both calcium and mitochondrial membrane homeostasis
(Danial and Korsmeyer, 2004).

Following intracellular damage, members of the Bcl-2 family undergo oligomer-
ization and attach to the outer mitochondrial membrane. A good example is the case
of Bax and Bak. In healthy cells, Bax is present as a monomer in the cytoplasm
but during the apoptotic cascade, it oligomerizes and translocates to the outer mito-
chondrial membrane. Bak localization seems to be mitochondrial, even in healthy
cells, but undergoes conformational changes during apoptosis leading to its aggre-
gation (Danial and Korsmeyer, 2004). Once these proteins are inserted into the outer
mitochondrial membrane and become oligomerized, the mitochondrial membrane is
disrupted releasing intermembrane proteins, such as cytochrome c, into the cytosol,
which compromises cell viability. The involvement of cytochrome c in the apop-
totic cascade was initially surprising because cytochrome c is known as an essential
component of the respiratory chain. Thus, cytochrome c has a dual role. It promotes
the generation of ATP and cell viability while inside the mitochondria, and, when
outside the mitochondrial space in the cytosol it promotes cell death. Cytochrome c
is found in the mitochondrial interspace and its release is controlled by members of
the Bcl-2 family (Green and Amarante-Mendes, 1998; Chipuk et al., 2006). In this
context, the antiapoptotic Bcl-2 family members, Bcl-2 and Bcl-XL, will prevent
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the release of cytochrome c whereas the proapoptotic family members, Bax, Bak,
and Bid mediate its release (Kluck et al., 1997; Jurgensmeier et al., 1998; Luo et al.,
2005).

The exact mechanism mediating cytochrome c release is still not fully under-
stood. In general, it is believed that a change in the mitochondrial permeability pre-
cedes cytochrome c release. However, caspase activation and cytochrome c release
can occur before detecting any mitochondrial alteration (Green and Amarante-
Mendes, 1998). Because caspases can induce cytochrome c release, it also seems
possible that a small initial leakage of cytochrome c could cause caspase activation,
which in turn would promote the massive release of cytochrome c from the mito-
chondria. Either way, once cytochrome c is released into the cytoplasm it binds
to Apaf-1, which is the mammalian homologue of the C. elegans CED-4 (Zou
et al., 1997). Apaf-1 contains a CARD domain at its N-terminus that interacts with
the CARD domain of procaspase-9 (Li et al., 1997). Apaf-1 interacts with dATP
and cytochrome c and undergoes a conformational change forming a heptamer of
APAF-1 molecules that can then complex with pro-caspase-9 (Zou et al., 1999).

This multimeric complex formed by dATP, cytochrome c, Apaf-1, and
procaspase-9 is called the apoptosome. The recruitment of procaspase-9 via Apaf-
1 into the apoptosome allows the activation of caspase-9 by proximity-induced
dimerization. The active caspase-9 is now able to cleave downstream effector
caspase-3, -6, and-7, which then cleave myriad cellular substrates involved in DNA
metabolism, cytoskeletal and structural proteins, and regulators of the cell cycle, all
of which compromise cell integrity and lead to cell death when disrupted (Li et al.,
1997). However, cytochrome c is not the only molecule released from mitochondria
during the execution of the intrinsic pathway. Smac/Diablo is also released from
mitochondria into the cytoplasmic space where it binds to the BIR3 of XIAP, acts
as an IAP antagonist and ultimately leads to the activation of caspase-9 and -3 (Chai
et al., 2000; Verhagen et al., 2000). Omi/HtrA2 is also released from mitochondria
during apoptosis and although it functions, as does Smac/DIABLO, as a competi-
tive inhibitor of the IAPs, it seems to be a more potent inhibitor because Omi/HtrA2
not only binds to and inactivates the IAPs but can also proteolytically process them
(Yang et al., 2003). Other pro-apoptotic molecules are released from the mitochon-
dria and although their final consequences are cell disruption and death, these effects
are generally considered to be caspase-independent.

4 Natural Inhibitors of Caspase Activity

4.1 The Inhibitor of Apoptosis Proteins

Caspases kill cells by cleaving a broad spectrum of cellular substrates. To ensure that
the death pathway is not accidentally activated, caspase activity must be carefully
regulated to prevent aberrant caspase activation. Some members of the inhibitor of
apoptosis protein (IAP) family can suppress caspase activity thus avoiding unwanted
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apoptosis (Prunell and Troy, 2004). IAPs are phylogenetically highly conserved
from c. elegans to mammals. There are eight human genes identified that belong to
the IAP family (Fig. 7) (Deveraux and Reed, 1999): neuronal-apoptosis-inhibitory
protein (NAIP or BIRC1), c-IAP1 (BIRC2), c-IAP2 (BIRC3), XIAP (BIRC4), sur-
vivin (BIRC5), Apollon (BRUCE or BIRC6), melanoma-associated IAP (Livin or
BIRC7), and hILP-2 (TS-IAP or BIRC8). This family of proteins is characterized
by the baculovirus IAP repeat (BIR) domain. The BIR is a 65-amino-acid domain
with a high cysteine and histidine content.

There are two types of BIR domains (Salvesen and Duckett, 2002). Type I binds
to and inhibits caspases. Type II also binds to caspases, and in addition func-
tions in the cell cycle. The type II BIR domains are found in two mammal IAPs,
survivin (BIRC5) and BIRC6. Most of the IAPs also contain a RING domain at
the carboxy-terminus region which behaves as an E3 ubiquitin ligase. The RING
domain adds ubiquitin residues to target proteins so they will be degraded by the
proteasome. IAP-mediated protein ubiquitination has a crucial role in the regulation
of apoptosis because it can target the IAP itself and also enhance the antiapoptotic
effect by targeting proapoptotic molecules for degradation. In adddition to the RING
domain, c-IAP1 and c-IAP2 also contain a CARD domain located in the C-terminal
region between the RING domain and BIR3. The function of CARD domains in
these two IAPs is not yet known. Usually CARD motifs interact with other CARD-
containing proteins, but the classical location for these protein–protein interactions
is the N-terminus, not the middle of the structure as in the case of the IAPs.

The best-studied IAP is XIAP, which is the most potent IAP. It is an ubiquitously
expressed 56 kDa protein with 3 BIR domains and one RING domain. XIAP has



30 E.M. Ribe et al.

been shown to directly bind and inhibit caspase-3, -7, and -9 (Riedl et al., 2001b).
The protein–protein interactions between caspases and IAPs takes place via specific
regions within the IAP structure. XIAP–BIR3 domain interacts with caspase-9 and
XIAP–BIR2-linker binds caspase-3 and -7. Both BIR domains utilize a two-site
binding mechanism to inhibit caspases (Scott et al., 2005). One site has been defined
as the IAP-Binding Motif (IBM)–interacting groove. When caspase-3, -7, and -9 are
cleaved between the large and small subunits, the new small subunit N-terminus is
an IBM. This is an exosite, a functionally important site outside of the active site of
the enzyme. For inhibition of caspase-3 and -7 there is also an active-site directed
interaction, where a stretch of the linker domain of XIAP spans the active site of
the caspase. For caspase-9, the functional inhibitory interaction is via a helix found
right after the BIR3 domain. This interaction monomerizes caspase-9 and collapses
the active site. Because dimerization is essential for caspase-9 activity the enzyme
is inactivated (Shiozaki et al., 2003). XIAP is the most potent IAP with efficiency
100- to 1000-fold higher than the rest of the family members.

c-IAP1 and c-IAP2 are the closest paralogues of XIAP and can also bind to
caspases by the IBM grooves but are relatively poor inhibitors of caspase activ-
ity. The linker region preceding the BIR2 is not a good inhibitor of caspase-3 or -7
(Eckelman and Salvesen, 2006). The BIR3 domains of cIAPs have only one of the
four dimer interface–interacting residues required to inactivate caspase-9 and nei-
ther inhibits caspase-9 (Eckelman et al., 2006). IAPs can also be cleaved by caspases
that may affect their activity. When XIAP is cleaved between BIR2 and BIR3, the
BIR3-RING fragment becomes a more potent inhibitor of caspase-9 activity than
the whole molecule (Deveraux et al., 1999). The N-t cleaved fragment of XIAP
still has the ability to inhibit caspase-3 and-7, but to a much lesser extent than
full-length XIAP.

IAPs have been extensively studied in the context of cancer because of the IAPs’
ability to regulate members of the NFκB family and because NFκB activation seems
to upregulate expression of IAPs (Stehlik et al., 1998). More recently, IAPs have
been implicated in neurodegenerative diseases. In sympathetic neurons deprived of
trophic factors XIAP inhibits caspase-3 activity (Troy et al., 2001) (Fig. 3). In motor
neurons damaged by sciatic nerve axotomy, there is a significant decrease in the
levels of endogenous XIAP and NAIP (Perrelet et al., 2004). Expression of NAIP is
increased in AD, whereas that of XIAP is decreased. Treatment with glial-derived
neurotrophic factor (GDNF) rescues this effect and promotes motor neuron survival
(Perrelet et al., 2002). Inhibition of XIAP or NAIP blocks the neuroprotective effect
of GDNF, pointing out a direct effect of IAP activity and motor neuron degeneration.
Similar results have been found in the case of ischemic injury where overexpression
of XIAP reduced the infarct size, the number of cells exhibiting apoptotic pheno-
type, and improved neurological activity (Xu et al., 1999). The fact that IAPs are
endogenous inhibitors of caspase activity makes them a good therapeutic target for
diseases characterized by excessive or premature cell death, such as stroke, AD, PD,
and other neurodegenerative disorders. IAPs may also participate in physiological
regulation of normal nervous system function. XIAP regulates activated caspase-3
in a songbird model of learning (Huesmann and Clayton, 2006).
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4.2 Natural Inhibitors of the Inhibitor of Apoptosis Proteins:
IAP Antagonists

After discovering that IAPs bind to and inhibit caspase activity, several stud-
ies focused on the isolation of endogenous regulators of IAP activity (Crook
et al., 1993; Birnbaum et al., 1994). The first molecule identified was the sec-
ond mitochondria-derived activator of caspases (Smac), also known as DIABLO,
an IAP binding protein that in healthy cells is found in mitochondria (Du et al.,
2000; Verhagen et al., 2000). This protein contains 239 amino acids. After stimu-
lation, Smac/DIABLO translocates from the mitochondria to the cytosol where it
binds to and blocks XIAP activity. This binding is associated with four hydrophobic
residues, Ala-Val-Pro-Ile, at the Smac/DIABLO N-terminus which form the IAP-
binding motif (Shi, 2002). Smac/DIABLO binds to the BIR3 domain of XIAP at the
same site as caspase-9 (Liu et al., 2000; Wu et al., 2000). Therefore, the interaction
of Smac/DIABLO with XIAP displaces caspase-9, thus abrogating the inhibitory
effect of XIAP on caspase-9 activity.

Smac/DIABLO is not the only regulator of IAP activity. Several studies in mam-
malian cells have demonstrated the presence of additional molecules that suppress
IAP activity in a similar fashion to Smac/DIABLO. The best-studied example is
Omi/HtrA2 (Suzuki et al., 2001; Hegde et al., 2002; Martins et al., 2002; van
Loo et al., 2002). This protein exhibits, as does Smac/DIABLO, mitochondrial
localization with cytoplasmic release upon stimulation.

Apart from IAPs, there are several nonmammalian regulators of caspases, which
are active-site specific inhibitors (Callus and Vaux, 2007). One example is a serpin
from the cowpox virus, cytokine response modifier A (crmA). CrmA forms a cova-
lent complex with the initiator caspase-1 and -8 resulting in irreversible inhibition
of these caspases. It also inhibits caspase-6 but less efficiently (Dobo et al., 2006).
The baculoviral protein p35 is a broad spectrum caspase inhibitor that irreversibly
inactivates caspases (Bump et al., 1995; Fisher et al., 1999).

4.3 Phosphorylation

Phosphorylation is the major form of posttranslational modification. It is important
to note that caspase activity differs from caspase activation. Activation refers to the
conformational changes that rearrange the caspase molecule leading to the active
enzyme. Caspase activity is defined as the ability of a caspase to cleave substrates.
Caspase phosphorylation is able to modulate caspase activity. A clear example is the
case of human caspase-9 which can be phosphorylated at a consensus sequence by
Akt, a serine-threonine kinase implicated in apoptosis suppression (Cardone et al.,
1998). Caspase-9 phosphorylation by Akt induces a modification in the caspase
structure rendering it unable to form the tetramer required for activity. There is also
evidence that phosphorylation may regulate caspase-2 activity (Nutt et al., 2005;
Shin et al., 2005).
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4.4 Nitrosylation

Caspases can also be modified by nitrosylation. S-nitrosylation of the active site
cysteine has been shown to inactivate multiple caspases (Mannick et al., 2001). The
physiological relevance of this mechanism is not yet fully understood.

5 ER-Stress

Although mitochondria are the main organelles involved in the intrinsic apoptotic
pathway, the endoplasmic reticulum (ER) also plays an important role. The ER is
the biggest intracellular reservoir of Ca2+ and Ca2+ functions as a second messenger
interconnecting the mitochondrial pathway with the ER. When a small amount of
cytochrome c is released from the mitochondria into the cytosol, there is uptake by
the ER which in turn responds by releasing Ca2+. This Ca2+ in turn disrupts the rest-
ing mitochondrial membrane potential and causes a massive release of cytochrome
c that activates caspases and leads to cell death. This apoptotic activation via Ca2+

efflux from the ER seems to be important in disorders such as AD and stroke (Rao
et al., 2004).

The main function of the ER is to ensure that only those proteins folded prop-
erly will be transported through the multivesicular secretory pathway. This property
is extremely important in the case of neurodegenerative diseases because most are
characterized by the presence of inclusion bodies formed from aberrantly folded
protein. Amyloid plaques (β-amyloid aggregates) and neurofibrillary tangles (intra-
cellular inclusions of hyperphosphorylated tau) are the sine qua non of Alzheimer’s
disease (AD), as are Lewy bodies (α-synuclein inclusions) in Parkinson’s dis-
ease (PD), Pick’s bodies (tau inclusions) in frontotemporal lobar degeneration, and
Hirano bodies, cytoplasmatic protein aggregates of actin and actin-associated pro-
teins, which are present in several neurodegenerative disorders such as AD and
Creutzfeldt–Jacob disease. When the ER is damaged it cannot correctly regulate the
accumulation of unfolded or misfolded proteins. This leads to a reduction in pro-
tein synthesis to prevent accumulation and activation of the chaperones that reside
in the ER so they can contribute to the proper folding of newly synthesised pro-
teins. There is also an increase in the degradation rate (Breckenridge et al., 2003).
However, if these compensatory changes are inadequate, cell integrity will become
compromised, leading to death.

Increasing evidence suggests that members of the Bcl-2 family may act not only
at the mitochondrial levels but also at the ER level. There is work that suggests
that Bak and Bax are involved in controlling Ca2+ homeostasis in the ER because
double knock-out mice for Bax and Bak exhibit impaired Ca2+ efflux from the ER
and uptake by the mitochondria; this is correlated with low levels of apoptotic cell
death (Nutt et al., 2002b, a). The relevance of these data to human neurodegenerative
disorders is not yet clear because so far only caspase-12 has been reported to become
activated after ER stress-induced apoptosis. There is evidence showing that both Bax
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and Bak are required in order to activate caspase-12 (Scorrano et al., 2003; Zong
et al., 2003). In this context, both Bcl-2 family members would promote Ca2+ efflux
from the ER, which in turn would permeabilize the outer mitochondrial membrane.
Caspase-12 would then be released from the ER into cytosolic space. However, these
studies were done in rodents, and there is no evidence that the caspase-12 protein
is expressed in humans, although several studies suggest that human caspase-4 may
have redundant functions with rodent caspase-12 (Hitomi et al., 2004).

6 Crosstalk Between the Intrinsic and Extrinsic Pathways

Although apoptosis proceeds through two major pathways in the cell that are ini-
tiated through the activation of different caspases forming different multimeric
complexes, both pathways converge on the activation of downstream caspases
(Danial and Korsmeyer, 2004). TRAIL employs the extrinsic pathway for trig-
gering apoptosis, but there is also involvement of the mitochondrial pathway. In
this paradigm, Smac/DIABLO is released from mitochondria, which block the
inhibitory effect of XIAP on caspase-3 activity, resulting in the execution of apop-
tosis mediated by TRAIL. A similar situation occurs in the case of Fas-mediated
apoptosis.

It is worth mentioning that in death receptor-mediated apoptosis, cells can be
divided into two groups depending on the requirement for mitochondria to induce
a complete apoptotic response. Type I cells do not require the mitochondrial path-
way because the recruitment of procaspase-8 into the DISC complex is enough to
fully activate caspase-8 which then activates effector caspases. However, Type II
cells are characterized by an incomplete apoptotic response unless mitochondria are
involved (Scaffidi et al., 1999). In this type of cell, efficient activation of effector
caspases requires the mitochondrial amplification loop (Fig. 5). Caspase-8 cleaves
cytosolic Bid, a BH3-only protein, which when cleaved to tBid is able to translo-
cate to the mitochondria and trigger release of the proapoptotic factors cytochrome
c and Smac/DIABLO (Li et al., 1998; Deng et al., 2002). The release of cytochrome
c triggers apoptosome formation, subsequent caspase-9 activation, and finally the
activation of effector caspases such as caspase-3.

Another positive feedback loop is established after DISC formation because this
complex allows caspase-8 autoactivation which in turn cleaves downstream effector
caspase-3. The cleavage of one caspase by another must be examined in relation
to the timing of the ongoing cellular events in order to understand the relevance of
these events. That is, as death proceeds, there is activation of initiator caspases—no
cleavage necessary—leading to activation by cleavage of effector caspases. Once
activated, the effector caspases may cleave initiator caspases, but this event is not
necessary for activity of initiator caspases and may even decrease activity under
certain conditions. Thus, as our knowledge of caspase activation increases, the prior
assumptions about caspase cascades must be re-evaluated.
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7 Neurodegenerative Diseases:
An Example of Dysregulated Apoptosis

Because neurons are not normally replaced during the lifespan of an organism, they
must possess very robust antiapoptotic mechanisms. If premature death of neurons
does occur, it leads to irreversible neurodegenerative diseases. Important examples
are Alzheimer’s disease, Parkinson’s disease, Huntington’s disease (HD), and amy-
otrophic lateral sclerosis (ALS), all of which are characterized by the loss of neurons
and the inability of the remaining ones to repopulate depleted areas of the brain.
There is still debate about the mechanisms leading to neuronal death in these dis-
eases, however, evidence is mounting that apoptosis is the major pathway (Jellinger
and Stadelmann, 2001; Ayala-Grosso et al., 2002; Ugolini et al., 2003; Cribbs et al.,
2004; Kermer et al., 2004). But the possibility that the apoptotic pathway coexists
with necrosis cannot be excluded (Yuan et al., 2003). A major criticism of the apop-
totic neuronal death hypothesis in neurodegenerative diseases is that most of the
studies carried out in postmortem human tissue fail to show a significant number of
neurons exhibiting the typical apoptotic phenotype. However, considering that the
period of time required for neurons to die is on the order of a few hours and that
brains from the end-stage of disease were losing neurons for decades, it actually
seems reasonable that only a small number of neurons would be found to exhibit the
morphological hallmarks of apoptotic death at any given time point.

Many reports correlate the increased expression of caspases and the presence of
cleaved caspases with certain types of degenerative diseases but the causal link has
not been shown. For example, the increased expression of caspase-1, -2, -3, -5, -6,
-7, -8, and -9 have been reported in AD (Chan and Mattson, 1999; LeBlanc et al.,
1999; Lu et al., 2000; Pompl et al., 2003), caspases-3, -8 and -9 in PD (Anglade
et al., 1997), caspases-1 and -3 in ALS (Pasinelli et al., 1998), and caspases-1 and -8
in HD (Sanchez et al., 1999). Altered expression levels of receptors and death lig-
ands suggest a role for death pathways in these disorders. It has been reported that
an increase in Fas expression may be harmful to both neurons and glia, and has
been associated with neurodegeneration in diseases such as AD, PD, ALS, and HD
(Barone and Parsons, 2000; Ugolini et al., 2003).

Following a similar trend, an up-regulation in the expression levels of TNF recep-
tors has been associated not only with those diseases already mentioned, but also
with prion disease and ischemic brain injury. It is not simply the change in the
expression levels of death ligands or receptors that is leading to increased apop-
tosis in these disorders. In certain cases, such as HD, spinocerebellar ataxia, and
spinal muscular atrophy, the polyQ expansions introduced into the protein as a result
of unstable CAG repeats in the target genes have a tendency to aggregate, form-
ing proteinaceous inclusions in the nuclei of the affected cells ultimately leading
to apoptosis (Martin et al., 1999). In these cases, the polyQ repeats are trigger-
ing ER stress because the aggregated proteins cannot be properly degraded. It has
also has been reported that these aggregates can bind to procaspase-8 and that this
binding leads to caspase-8 activation and subsequent cell death (Sanchez et al.,
1999). Due to the increasing life expectancy in developed nations, the incidence
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of neurodegenerative diseases of aging is increasing exponentially. Because AD is
the primary cause of dementia among the elderly population and ALS is the most
common adult onset disorder of motor neurons, we take a global overview of the
molecular mechanisms leading to neuronal cell death in both diseases.

7.1 Alzheimer’s Disease (AD)

Alzheimer’s disease is characterized by two main histopathological hallmarks,
senile plaques, which are extracellular accumulations of amyloid beta peptide (Aβ),
and neurofibrillary tangles (NFT), which are intracellular inclusions of hyperphos-
phorylated tau protein. Accompanying these features is a profound synaptic and
neuronal loss in specific vulnerable brain regions including the hippocampus and
entorhinal cortex (Terry et al., 1981; Small et al., 1997). Although the pathogene-
sis of AD is still being debated, it is generally agreed that Aβ peptide, especially
the longer 42 amino acid isoform, which is generated by proteolytic cleavage from
the amyloid precursor protein (APP), is the key player in the etiopathology of AD
(Hardy and Selkoe, 2002). Because the amyloid hypothesis states that the Aβ pep-
tide is highly neurotoxic, both NFT and neuronal death are considered secondary
elements caused by an imbalance between Aβ production and clearance (Hardy and
Higgins, 1992). This hypothesis has been revised because it originally postulated
that the most toxic species were the fibrillar peptides, but new evidence suggests
that the soluble oligomeric species may play a more critical role in the pathogenesis
and/or progression of the disease inasmuch as they are able to block basal synaptic
transmission, alter hippocampal long-term potentiation (LTP), and mediate neuronal
death (Lannfelt et al., 1995; Larson et al., 1999; Walsh et al., 2002; Walsh and
Selkoe, 2007).

Multiple studies have shown that several caspases are involved in Aβ-induced
neuronal cell death (Gervais et al., 1999; Troy et al., 2000; Allen et al., 2001).
Experimental evidence shows that the cytoplasmic tail of APP is cleaved by
caspases-3, -6, -7, and -8, and that senile plaques as well as degenerating neu-
rons are enriched in caspase-cleaved APP (Gervais et al., 1999; Zhang et al., 2000).
Moreover, both mitochondrial and ER dysfunction play an essential role in mediat-
ing cell death induced by Aβ peptides (Pereira et al., 1999). Neurons from caspase-2
null and caspase-12 null mice are resistant to Aβ-mediated neuronal cell death
(Nakagawa et al., 2000; Troy et al., 2000). Caspase-2 may be involved in mitochon-
drial permeabilization whereas caspase-12 acts at the level of the ER (Nakagawa
et al., 2000; Zhang et al., 2005).

Recent data suggest that the link between amyloid pathology and NFT degener-
ation may reside at the level of caspases because Aβ can promote the pathological
assembly of tau filaments in vitro by triggering the activation of caspases that
can cleave tau and contribute to the filament polymerization (Gamblin et al.,
2003; Rissman et al., 2004; Cotman et al., 2005). Aβ accumulation also triggers
caspase activation through disruption of the secretory pathway, thus generating
ER stress. Caspase activation at this level also cleaves tau, which precedes tau
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hyperphosphorylation, and seems to be an early event in AD tau pathology (Guo
et al., 2004; Rissman et al., 2004). The accumulation of Aβ can disrupt proteaso-
mal degradation and lead to activation of caspases (Blandini et al., 2006) which in
turn are able to cleave tau, thus contributing to the formation of the NFTs (Chung
et al., 2001; Gamblin et al., 2003; Rissman et al., 2004). Moreover, experimental
data suggest that when caspases are activated, proteosomal degradation is inhibited
in order to fully activate the apoptotic cascade, which provides an amplification
loop leading unequivocally to the death of the cell (Sun et al., 2004). In addition,
APP and Aβ can activate kinases (GSK-3β, SAPK/JNK, p38) that directly phos-
phorylate tau at certain residues contributing to tau hyperphosphorylation (Kins
et al., 2003; Ferrer et al., 2005). In this context, the proteolytic cleavage of tau
provides the link between Aβ and tau pathology. However, it is still unknown
whether tau processing is required and causal for neurodegeneration, or is a sec-
ondary event related to caspase activation in the degenerating cells. In conclusion,
multiple mechanisms coexist in the cell, which, when dysregulated, lead to neuronal
degeneration.

7.2 Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis is the most prevalent adult onset motor neuron disor-
der. The hallmark histophatological feature is the progressive loss of upper motor
neurons in the motor cortex and lower motor neurons in both the spinal cord and
brain stem, first described by Charcot in 1869. Accompanying the cell loss are intra-
cellular inclusions of ubiquitinated proteins and strong reactivity to neurofilament
markers in the axons (Ince et al., 1998). This is a multifactorial disorder with a
diversity of etiologic mechanisms, such as genetic factors, protein aggregation, and
oxidative stress, all contributing to the progression of the disease as well as cell
death of the injured motor neurons via apoptotic routes.

Although the vast majority of ALS is sporadic, a small subset of familial ALS
has been well studied. About 20% of the autosomal dominant familial cases have
mutations in superoxide dismutase 1 (SOD1) (Rosen et al., 1993). Although other
causal gene mutations have been identified in ALS, ALS 2 or alsin, ALS 4 or sen-
ataxin, and ALS 8 or VAPB, more than 100 mutations have been identified in the
SOD1 gene and SOD1 mutations are the most prevalent familial form of the disease
(Andersen et al., 2003). SOD1 is a 153 amino-acid-free radical scavenger whose
function is to transform superoxide free radicals into hydrogen peroxide. SOD1 is a
highly expressed protein representing about the 1% of total brain protein. The reason
why motor neurons are susceptible to damage in the presence of SOD1 mutations
remains unclear. It is thought that mutations in SOD1 do not generate a loss of
function, but on the contrary, may be toxic gain of function mutations. Very recent
work suggests that, although the motor neurons are more susceptible to death, the
presence of mutant SOD1 in the astrocytes induces death of motor neurons that
contain wild-type or mutant SOD1 (Di Giorgio et al., 2007; Nagai et al., 2007).
There has been enormous interest in understanding the role of oxidative stress in
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ALS because SOD1 encodes for an antioxidant enzyme. Although the relevance
of oxidative stress is not fully understood, it is believed that mutations in SOD1
promote a structural change that allows a higher rate of interaction between the
substrates and the active site of the enzyme, resulting in increased production of
free radical species. However, there are not sufficient experimental data supporting
this hypothesis because if SOD1 mutants cause peroxynitrite-dependent cell death
in vitro, it would be expected that reduction in the levels of peroxynitrite by inhi-
bition of neuronal nitric oxide synthase (nNOS) would improve the motor neuron
outcomes. However, these experiments did not show a decrease in motor neuron
damage (Facchinetti et al., 1999; Upton-Rice et al., 1999; Son et al., 2001).

Another possible event leading to ALS is mitochondrial dysfunction (Albers and
Beal, 2000; Menzies et al., 2002). Again, several properties converge at this level
because mitochondria are able to maintain Ca2+ homeostasis and are the source
of intracellular ATP. Mitochondria generate intracellular free radicals and can also
play a key role as mediators of the apoptotic pathway. Mitochondrial dysfunction
has been reported in vitro as well as in vivo. Expression of mutant SOD1 (G93A)
in a motor neuron cell line leads to mitochondrial abnormalities, not only at the
morphological level, but also at the biochemical level, with impaired activity of
complexes II and IV of the respiratory chain leading to the activation of apoptotic
mechanisms and subsequent cell death (Menzies et al., 2002; Takeuchi et al., 2002;
Fukada et al., 2004). In transgenic mice overexpressing mutant SOD1, mitochon-
drial vacuolization in motor neurons has been noted as an early event (Wong and
Strong, 1998). Impaired activity in several complexes of the respiratory chain and
reduced ATP synthesis have also been reported in murine models of the disease
(Jung et al., 2002; Mattiazzi et al., 2002). Moreover, translocation of cytochrome c
from mitochondria to the cytosolic space, triggering the apoptotic cascade, is a fea-
ture of these animals (Guegan et al., 2001; Zhu et al., 2002). Following this line of
thought, it has been described that the antiapoptotic protein Bcl-2 can interact with
aggregates of SOD1 in the spinal cord, thus decreasing the availability of Bcl-2 to
prevent apoptosis (Pasinelli et al., 2004).

Motor neurons can have extremely long axons that travel from the spinal cord
all the way to the target muscle. Preserving the morphology of these axons requires
the presence of structural proteins, such as neurofilaments. Neurofilaments are the
main component of the cytoskeleton in neurons and although their primary role is to
maintain cell shape, they are also involved in axonal transport and influence axonal
caliber. Inclusions of aberrantly assembled neurofilaments, phosphorylated or not,
in the cell bodies and axons of motor neurons is one of the histopathological hall-
marks of ALS (Ince et al., 1998). Transgenic mice carrying SOD1 mutations exhibit
abnormalities in neurofilament organization, as well as intracellular proteinaceous
inclusions, and reduced axonal transport in the ventral root (Tu et al., 1996; Zhang
et al., 1997). Moreover, more than 1% of sporadic ALS cases carry deletions or
expansion in the neurofilament NF-H gene (Meyer and Potter, 1995; Tomkins et al.,
1998).

It is not only NF-H filaments that are involved in the disease. Transgenic
mice overexpressing peripherin, an intermediate filament, develop late onset motor
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neuron degeneration and altered neurofilament assembly (Beaulieu et al., 1999).
This alteration in neurofilament structure, together with misfolded SOD1 proteins,
may lead to cellular stress, mediated mainly by the ER. This altered situation
reduces the ability of the proteasome to mediate protein degradation, thus com-
promising protein turnover in the cell, which in turn affects surrounding organelles,
such as mitochondria, and potentially activates and/or amplifies the apoptotic cas-
cade. Experimental evidence shows that motor neurons die mainly by apoptotic
mechanisms (Martin, 1999; Guegan et al., 2001; Sathasivam et al., 2001). The study
of cellular models of mutant SOD1 overexpression shows that these cells die via
a programmed cell death when exposed to oxidative stress (Cookson and Shaw,
1999). Moreover, the animal models overexpressing mutant SOD1 show an up-
regulation in expression and activation of caspase-1 and -3 in the spinal cord of
symptomatic animals (Li et al., 2000; Vukosavic et al., 2000). Although great strides
have been made in understanding the molecular mechanisms underlying the motor
neuron degeneration in ALS, the complex interplay among genetic factors, altered
axonal transport, oxidative stress, protein aggregation, and mitochondrial dysfunc-
tion make this multifactorial disease a very challenging disorder for therapeutic
intervention.

8 Dissecting Death Pathways in Vivo

The increasing number of transgenic and knock-out murine models available in the
last decade has offered the possibility of studying in vivo those proteins believed
to be associated with certain neurodegenerative disorders. These models provide a
more accurate view than the cellular models in which the microenvironment is abol-
ished. However, the in vivo models must also be interpreted with caution because
the knock-down of certain genes may induce genetic compensation by related fam-
ily members that could mask the effect of the exogenous genes. Overexpression may
be associated with lethality, or can induce artifacts due to the overexpression process
and not due to the introduction of the exogenous gene per se. We also have to keep
in mind the genetic background of the particular mouse because certain mutants can
be lethal on one background but perfectly viable on another. If we take the results
generated by these models with caution, understanding that the models try to mimic
neurodegenerative disorders but are still far from perfectly reproducing the pheno-
type of human diseases, the models can contribute to a better understanding of the
etiopathology of the disease, help untangle molecular mechanisms triggering the
degenerative process, and provide tools for the identification of potential therapeu-
tic targets. The value of culture systems in deciphering mechanisms should not be
underestimated. This is well-illustrated by recent studies of the role of astrocytes
in motor neuron death which showed that astrocytes expressing the mutant SOD1
protein induced death of motor neurons whether or not the neurons expressed the
mutant SOD1(Di Giorgio et al., 2007; Nagai et al., 2007). It is important to remem-
ber that any of the model systems under study are approximations of the diseases
and each have their own advantages and disadvantages as systems of study.
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Abstract The use of animals as models of neurodegenerative disorders has allowed
the determination of biological targets and biomarkers of several diseases, has
yielded new therapeutical perspectives, and is essential before performing novel
clinical assays. This review discusses the nature, use, and limits of animal models
and how to obtain them for several neurodegenerative disorders such as multiple sys-
tem atrophy, amyotrophic lateral sclerosis, and Huntington’s disease, with a special
emphasis on Parkinson’s and Alzheimer’s diseases. When possible, rodent, inverte-
brate and primate models are presented and discussed in relation to human disease.
Finally, we highlight discrepancies between animal models and human neuropathol-
ogy leading to question the pertinence of some of these findings to human disorders
probably because of the wide spectrum of parameters defining a disease. Another
point raised by these studies is the growing necessity to standardize the experimen-
tal procedures used to obtain an animal model, housing and breeding conditions,
assessments of phenotypes investigated and, ultimately the interpretation of results
obtained and their relevance to the pathology.
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1 Introduction

Given the inherent complexity of neuronal systems and the disease process, ani-
mal models have become mandatory in neuroscience research in general and for
understanding the pathogenesis of neurodegenerative diseases in particular. Indeed,
investigation of human pathologies relies mostly on postmortem human brains and
on clinical criteria that neither allow the identification of the causal chains that have
led to a disease nor the biological basis of a given pathology. Thus, animal models of
neurodegenerative disorders have become a widespread laboratory “tool”. Use and
housing of these models require animal facilities dedicated to research purposes and
that are controlled by specific policies, guidelines, and procedures at local, national,
and international levels. Whatever the country and the regulations, the accredita-
tion process is long and difficult to obtain and projects involving animal models are
reviewed on a regular basis to ensure the welfare of the animals, the appropriate-
ness of the species used for a given investigation, the adequacy of the experimental
procedures with the postulated hypothesis, and that a minimal number of animals is
used for a given study.

The use of primates is often dependent on the solidity of previous research
performed in lower species such as rodents (often mice and rats) but also worms
(Caenorhabditis elegans), flies (Drosophila Melanogaster), and zebrafish. Primate
animal models are still an essential step before reaching human clinical research
for obvious and frequently confirmed similarities between the two species, be it
behavioral (large clinical repertoire), anatomical, physiological, or genetic. Major
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constraints of an ethical, practical, and cost nature have limited the use of primates
to a few specialized centers. Thus, mainstream research in neurodegenerative dis-
ease has focused on rodent animal models that were used to better understand the
pathology and the underlying biological mechanisms, develop standardized diag-
noses (biological tests, identification of biomarkers, etc.), and search for potential
new treatments for these diseases. The use of rodent models was also strengthened
given the possibility of performing genetic manipulations to mimic some of the
genetic features of the diseases.

Here, we detail several animal models of neurodegenerative disorders with a spe-
cial focus on the two major ones in humans, namely Parkinson’s and Alzheimer’s
diseases. As detailed in this chapter, some animal models can present sponta-
neous syndromes, often due to analogous mutations with the human disease but are
more generally obtained following toxin injections, physical (mechanical lesions),
or genetic manipulations. Some animal models can mimic the behavioral conse-
quences of a given neurodegenerative disease with drawbacks related to specific
animal behavior that is only remotely related to humans. A disease gene-based
model (also referred to as an “etiological model”) can indeed reproduce the eti-
ology of a genetically determined form of a given disease, although adaptations that
can occur following a genetic manipulation throughout development can be quite
different between the animal and the human. Because manipulation of the mouse
genome has become standardized and available at relatively moderate costs, the use
of genetically altered mice strains to model neurodegenerative disorders has become
increasingly widespread. This use will tend to be generalized following the publica-
tion of the assembled mouse genome sequence (Botcherby, 2002). Transgenic mice
can be generated to overexpress a gene to reproduce a gain of function mutation, to
knock out a gene for a nonexpression mutation, and to mutate a gene to express an
altered protein. Many other variances are available where a gene is silenced during
development only or expressed/knocked-out in a specific brain area, for instance.
These transgenic mice are used to map disease features, determine genetic and
environmental factors that can precipitate disease progression, detail behavioral and
cellular consequences of altering the expression of a disease-related gene, and test
potential therapeutics.

Meticulous gene manipulations have generated a wealth of information regarding
the etiology of pathology, the identification of its biological basis and the behavioral
consequences of such a manipulation. However, increasing concern is raised as to
the adequacy of these animal models to human diseases. Indeed, it is safe to state
early in this book chapter that animal models generated so far fail to reproduce
faithfully the myriad biochemical, cellular, and behavioral changes reported in a
given neurodegenerative disease in humans. The ideal animal model reproducing
all hallmarks of a given neurodegenerative disorder is an unattainable aim, as it is
expected to develop specific and reproducible behavioral symptoms and biological
features related to the disease along with slow onset and selective cell loss. Instead,
an animal model is considered acceptable when it demonstrates its usefulness in
understanding the pathogenesis of a disease, its behavioral, cellular, and molecular
consequences and in exploring potential treatment avenues. This can sometimes
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be achieved even when animal models show striking differences with the human
pathology.

In this line, the general message that can be drawn throughout this review is
that we have reached a point in research using animal models where it has become
a pressing necessity to standardize not only the experimental procedures used to
obtain an animal model, but also the housing and breeding conditions, age and sex of
the animals, qualitative and quantitative assessments of phenotypes investigated and,
ultimately the interpretation of results obtained and their relevance to the pathology.

2 Alzheimer’s Disease (AD)

2.1 The Human Disease

Late-onset Alzheimer’s disease (AD) is the most prevalent subtype of age-related
dementia accounting for 60% of cases of dementia and with a mean prevalence
estimate of 3.4% (Kalaria et al., 2008). If growth in the older population continues,
it is projected that the prevalence of AD will nearly quadruple in the next 50 years,
by which time approximately 1 in 45 individuals will be afflicted with the disease
(Brookmeyer et al., 1998).

In AD, neurodegeneration targets specific brain regions early in its course,
especially cholinergic basal forebrain and medial temporal lobe structures. The
sequential involvement of the posterior cingulated, temporal, and parietal cortical
regions completes the progression of the disease. The neuropathological hall-
marks of AD include massive neuronal cell and synapse loss at specific sites
and the presence of senile plaques and neurofibrillary tangles (NFTs). The senile
plaques are formed from deposits of amyloid-β peptide (Aβ) that is derived from
the amyloid precursor protein (APP) whereas the NFTs contain hyperphosphory-
lated microtubule-associated protein (MAP) tau. Phosphorylation of both APP and
tau represents a biochemical link between the two characteristic lesions of AD
(Duyckaerts et al., 2008).

Most AD cases occur sporadically (SAD), although inheritance of certain suscep-
tibility genes enhances the risk. In early-onset familial AD (FAD), which accounts
for less than 5% of the total number of AD cases, autosomal dominant mutations
have been identified in three genes: APP, presenilin 1 (PS-1), and presenilin 2
(PS-2), each of which leads to an overabundance of Aβ (Gotz and Ittner, 2008). The
presenilins are components of the proteolytic γ-secretase complex that, together
with β-secretase, generates Aβ fragments from the cleavage of APP. Most FAD
cases are caused by mutations in PSEN1 and PSEN2, of which over 130 have
been identified. In SAD, various susceptibility genes have been identified, includ-
ing apolipoprotein E (ApoE). It is actually considered that the genetic risk factor
that accounts for more cases of AD than any other is the ApoE4 allele located on
chromosome 19 (Bertram and Tanzi, 2008).

Because neuropathological confirmation is required for the diagnosis of definite
AD, only diagnosis of probable and possible AD can be made in living patients
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according to the commonly used criteria for AD diagnosis. These include pro-
gressive memory loss with cognitive deficits in at least two cognitive domains
(McKhann et al., 1984). As the disease progresses, the characteristic clinical fea-
tures of aphasia, apraxia, and agnosia emerge along with consequent amnesia and
personality changes. At present, there are no known curative or preventive measures
for AD and current symptomatic treatments of AD are of limited benefit, as they are
not directed at the underlying biological basis of the disease.

2.2 Rodent Models

The identification of the genetic defects and mutations that cause FAD has led to the
generation of transgenic rodent AD models. Nowadays, mice are the most popular
animal models for AD, although rat models are developed as well. Furthermore,
invertebrate models of AD have been developed and are presented at the end of this
section.

2.2.1 Pharmacological Models of Alzheimer’s Disease

Aβ neurotoxicity is studied in rodents (mouse and rat) after intracerebral injections
of Aβ peptides (Aβ1–40/42, Aβ22/25–35) previously fibrillary aggregated by incuba-
tion at 37◦C for 4 days minimum. Usually, rodents are intracerebroventricularily
injected with a dose range between 3 and 9 nmol for a mouse and a dose of 15 nmol
for a rat (Maurice et al., 1996; Stepanichev et al., 2003). Some authors injected
the aggregated Aβ peptide directly into the hippocampus or into frontal and cin-
gulated cortices uni- or bilaterally (Cetin and Dincer, 2007; Gonzalo-Ruiz et al.,
2006). Examination of Congo red-stained tissue sections demonstrated the presence
of numerous amyloid deposits throughout the brain areas and a decrease in cre-
syl violet-stained cells indicating a significant cell loss. Furthermore, Aβ-injected
mice showed learning and memory deficits after 1 week postinjection (Fu et al.,
2006; Gonzalo-Ruiz et al., 2006; Maurice et al., 1996; Stepanichev et al., 2003).
Although these Aβ-injected rodent models did not encompass all of the neuropatho-
logical effects observed in AD, they are useful to understand the toxicity of amyloid
deposits, in particular in the cholinergic system, and to screen for neuroprotective
molecules active on the amyloid process (Fu et al., 2006; Gonzalo-Ruiz et al., 2006).

2.2.2 Transgenic Mouse Models of Alzheimer’s Disease

APP Mice

After the first discovery of the mutation in the APP gene by Hardy and Allsop
(1991), authors described the first NSEAPP mouse model of AD (Quon et al.,
1991). Then, other human APP transgenics were developed: PDAPP, Tg2576,
APP23, TgCRND8, and J20. The APP transgene carried one or two mutations at the
β-secretase site (Swedish mutation) and/or at the γ-secretase site (London mutation)
and was driven by various mouse promoters for gene coding for neuron-specific
enolase (NSE), platelet-derived growth factor (PDGF), the prion protein (Prp), or
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thymus antigen (Thy-1.2). For Thy-1.2, the thymus-specific intronic regulatory
element has been removed to target expression specifically to the mouse brain
(Andra et al., 1996). Most app transgenes utilize a cDNA encoding the APP695
isoform, which is the predominant species expressed in the brain, or the longer
APP751 species. Except for NSEAPP mice that show diffuse (preamyloid) plaques,
all others displayed amyloid plaques which resembled the mature (neuritic) plaques
characteristic of AD with positive thioflavin-S staining. These amyloid deposits
were observed at 6–12 months according to the model from the hippocampus to
cortical and limbic areas in a progressive manner showing regional specificity like
that seen in AD pathology. In TgCRND8 mice expressing both the Swedish and
London mutations under the Prp promoter, thioflavine-S-positive amyloid deposits
became evident by 3 months of age (Chishti et al., 2001). The amyloid plaques
were associated with dystrophic neurites, gliosis, and synaptic loss only in PDAPP
mice. Despite the extent of amyloid burden, clear neurodegeneration has not been
demonstrated except in the hippocampal CA1 region (14% of neuronal loss) of
14–18-month-old APP23 mice with an apparent correlation with senile plaques load
(Calhoun et al., 1999). A positive immunoreactivity of phosphorylated tau protein
was detected, however, no paired-helicoidal filament (PHFs) was noted in these
transgenic APP mice. To date, it seems that the APP23 mice are the only strain
to show a cerebral amyloid angiopathy (CAA). Clinically, the Aβ form of CAA is a
significant contributor to haemorrhagic stroke, and up to 90% of AD patients may
develop CAA over the disease course. Modest cholinergic deficits have also been
reported in aged APP23 mice (Boncristiano et al., 2002).

Behavioural studies described age-dependent cognitive deficits assessed by using
a Morris water maze. This behavioural test measures spatial reference memory. In
these transgenic APP mice, both their acquisition of hidden platform locations and
their retention of spatial reference information are affected (Table 1).

APP/PS-1 Mice

Most FAD cases are caused by the mutations in PS-1 and PS-2. Presenilins are
polytopic transmembrane proteins which are, in combination with three or other pro-
teins (aph-1, pen-2, and nicastrin), required for an efficient γ-secretase complex and
activity to generate amyloid peptides (Edbauer et al., 2003). Although pathogenic
mutations in APP and presenilins do not coexist in human AD, it was tempting to
cross APP and PS-1 mutant mice and to assess whether mutant PS-1 would cause
elevated Aβ levels. Overexpression alone of PS-1 M146L, M146V FAD-associated
mutations induced a selective increase of Aβ42 production. Crossing APP trans-
genic mice with PS-1 mutant mice causes an elevation of Aβ42/Aβ40 levels and
an acceleration of amyloid deposits by 4 months of age in APPSWE/PS-1dE9 mice
(Garcia-Alloza et al., 2006), by 6 months of age in PSAPP (Tg2576 mouse × PS-
1M146L mouse), compared to 9 months in Tg2576 mice and by 1 month of age
in TgCRND8/PS-1 mice compared to 3 months TgCRND8 mice (Chishti et al.,
2001; Holcomb et al., 1998). In various double APP/PS-1 transgenic mice, no clear
evidence for neurodegeneration in either frontal cortex or CA1 hippocampus was
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evident except in the model APPSL/PS-1M146L mice developed by Blanchard et al.
(2003) where a loss (35%) of neurons in the pyramidal cell layer of the hippocampus
was seen at 17 months of age (Schmitz et al., 2004). Recently, an intense sub-
cortical monoaminergic neurodegeneration (50% neuronal loss) was observed in
APPSWE/PS-1dE9 (Liu et al., 2008b). It is to be noted that none of these mouse
models showed any NFTs. However, many studies described a behavioural pheno-
type in various APP/PS-1 transgenic mice (Higgins and Jacobsen 2003; Janus and
Westaway 2001; Reiserer et al., 2007; Savonenko et al., 2005). In particular, the
performance on the Y-maze, that measures spatial working memory, was impaired
before amyloid deposits in PSAPP mice (Holcomb et al., 1999).

Taken together, these findings show that it is difficult to obtain a mouse model
reproducing AD perfectly, especially with both the neuronal loss and NFTs.
However, Casas et al. (2004) produced a new model with many features of AD,
the APPSL/PS-1 knock-in mice. These transgenic mice have two mutations in
the human APP gene at K670N/M671L and V717I sites corresponding to β- and
γ-secretase sites, respectively. In addition, their endogenous ps-1 gene carries the
M233T and L235P mutations known to be linked to very early onset FAD at 29 and
35 years of age, respectively. These mice displayed a massive neuronal loss (49%
in the ten-month-old APPSL/PS-1 KI mice) in the CA1 region of the hippocam-
pus with an intense neuronal apoptosis (Casas et al., 2004; Page et al., 2006). This
neuronal loss distribution closely parallels the strong intraneuronal Aβ immunos-
taining and intracellular thioflavine-S-positive material but does not correlate with
extracellular deposits (Christensen et al., 2008b). Furthermore, the authors also
described a loss of neurons (44%) in the dendate gyrus granule layer (Cotel et al.,
2008). The APPSL/PS-1 KI mouse model exhibits early robust brain and spinal
cord axonal degeneration (Wirths et al., 2007, 2006). At the same time-point, a dra-
matic age-dependent reduced ability to perform working memory and motor tasks is
observed. These mice are smaller and show development of a thoracolumbar kypho-
sis, together with an incremental loss of body weight (Wirths et al., 2008b). Onset of
the observed behavioural alterations correlates well with robust axonal degeneration
in brain and spinal cord and with abundant hippocampal CA1 neuron loss (Bayer
and Wirths 2008). Although our group detected hyperphosphorylated tau protein
in cell bodies of neurons in 11-month-old APPSL/PS-1 KI mice (unpublished data
obtained by G Page), NFTs were not reported yet.

Contrary to studies showing a minor loss of cholinergic interneurones in the
motor cortex of APPSWE/PS-1(deltaE9) mice (Perez et al., 2007), the APPSL/PS-1
KI mouse model shows a loss of choline acetyl transferase-positive neurons only in
the motor nuclei Mo5 (motor trigeminal nucleus) and 7 N (facial motor nucleus)
accumulating various intracellular Aβ species (Christensen et al., 2008a). The
cholinergic forebrain complex consisting of Ch1-4 showed no Aβ pathology, with
neither extracellular Aβ plaque deposition, nor intracellular accumulation of Aβ

peptides. These fibres from this region displayed swollen ChAT-positive dystrophic
neurites surrounding Aβ plaques in the cortex and hippocampal formation.

Another neuropathological alteration is the inflammatory processes, such as
microglial activation and astrocyte reactivity, that occurs early during the course of
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the disease (Eikelenboom et al., 2006). At the age of six months, the APPSL/PS-1 KI
mouse model upregulates different astro- and microglia markers in both brain and
spinal cord including GFAP, cathepsin D, members of the Toll-like receptors family,
TGFβ-1, and osteopontin (Casas et al., 2004; Damjanac et al., 2007; Wirths et al.,
2008a). Another interesting feature is the occurrence of ganglioside alterations and
an accumulation of ceramide species in the cerebral cortex of APPSL/PS1 KI mice
as it was shown in human AD brains (Barrier et al., 2007, 2008). As early as three
months, these lipid alterations were increased and could be linked to the massive
neuronal death observed at sixmonths (Table 1).

APP/BACE Mice

The type I transmembrane aspartyl proteinase β-site APP cleaving enzyme (BACE1)
was identified as the major β-secretase for generation of Aβ peptides by neurons
(Luo et al., 2003). BACE cleaves APP at Asp1 and Glu11, whereas subsequent
cleavage by γ-secretase gives rise to the Aβ (1–40/42) and Aβ (11–40/42) amyloid
peptides. Deficiency of BACE1 in a double transgenic combination with human
mutant APP rescued the early hippocampal memory deficits and correlated with
a dramatic reduction in Aβ levels (Ohno et al., 2004). On the other hand, mice
overexpressing BACE1 in addition to human wild-type (WT), APP, or mutant APP
increased the amyloidogenic processing of APP as revealed by increased levels of
the APP metabolites sAPPβ, β-CTF, and Aβ peptides (Willem et al., 2004). No CAA
was observed probably due to the higher rate of self-association and fibrillogenic
capacity of the shorter and less soluble N-truncated Aβ11–42 peptides that form
amyloid deposits in the parenchyma, indicating that BACE1 is in tight control of the
balance in amyloid pathology in brain, promoting either parenchyma or vasculature.

APP/ApoE Mice

In epidemiological investigations, it has been found that the ApoE4 allele is genet-
ically associated with sporadic AD with a frequency of 45% compared with 15%
in the general population (Corder et al., 1993). The pathological contributions of
ApoE to amyloid and tau pathology in AD have been studied in different types of
transgenic mice deficient in endogenous murine ApoE and/or overexpressed differ-
ent ApoE isoforms, including various combinations with mutant human APP and
PS-1 (Holtzman 2004). ApoE knock-out mice have significantly decreased synap-
tophysin and MAP 2 staining, supporting the role of ApoE in the maintenance of
synapses and dendrites during aging (Masliah et al., 1995). The finding that ApoE
deficiency delayed amyloid plaque deposition in mice, whereas overexpression of
human ApoE4 and not ApoE3 by transferring gene promoter accelerated plaque
formation in transgenic mice, suggested a gain of function of ApoE4 (Bales et al.,
1999; Carter et al., 2001). Authors showed that ApoE4 did not change the balance
of amyloidogenic to nonamyloidogenic pathways. Nevertheless, the levels of Aβ42
and Aβ40 increased by ApoE4 overexpression, indicating that ApoE4 acted down-
stream of the production of amyloid peptides, that is, slowed down the degradation
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and clearance of Aβ peptides (Van Dooren et al., 2006). Furthermore, the neuron-
specific proteolysis of ApoE4 was linked to increased phosphorylation of tau in the
brain of ApoE mice (Brecht et al., 2004). Another most interesting finding is the
development of CAA in the cortex, hippocampus, and thalamus of APP/ApoE4 and
APP/ApoE4/PS-1 mice (Fryer et al., 2003).

APP/ADAM Mice

The endoproteolysis of APP within the Aβ sequence by the α-secretase can pre-
clude the formation of any Aβ peptides. In addition, cleavage by α-secretase
releases the N-terminal soluble ectodomain of APP, known as APPα, which has
been claimed to exert neurotrophic and neuroprotective properties (Mattson, 1997).
Proteinases belonging to the ADAM family (A Desintegrin and Metalloproteinases)
were the main candidates as physiologically relevant α-secretases. ADAM10 and
ADAM17 single knock-outs have been shown to be lethal embryonically, whereas
ADAM9 knock-outs are viable. Transgenic mice are developed with overexpres-
sion of ADAM10 or a dominant negative catalytically inactive ADAM10 mutant
with human mutant APP in double transgenic mice. Moderate neuronal levels of
ADAM10 increased the secretion of APPα concomitantly with a reduction in the
production of Aβ peptides, preventing any deposition of amyloid plaques. long-term
potentiation (LTP) and cognitive deficits were also improved, suggesting a funda-
mental rescue of synaptic function via the increased activity of α-secretases (Postina
et al., 2004).

Tau and Tau/APP Mice

Although mutations in tau do not lead to AD, they produce dementia such
as frontotemporal dementia with Parkinsonism associated with chromosome 17
(FTDP-17). In AD and other tauopathies, the MAP tau protein is abnormally
hyperphosphorylated and is accumulated as intraneuronal tangles of PHF in cell
bodies of neurons. Furthermore, the number of tangles correlates significantly with
the degree of dementia, more so than the amyloid plaque numbers. Tau exists in
six isoforms (352–441 amino acids) by alternative splicing of exons 2, 3, and
10, with isoforms containing either three or four C-terminal tandem microtubule-
binding domain repeats and either no, one, or two shorter N-terminal domains
(Fig. 1). Preparations of PHFs from AD brains reveal only three isoforms of tau
corresponding to abnormally phosphorylated tau (Goedert et al., 1992).

Pathogenic mutations in the tau gene that cause FTD and FTDP-17 either reduce
the ability of tau to bind to microtubules or alter the splicing of exon 10 result-
ing in increased 4 repeat tau isoforms. The first transgenic tau models (ALZ7 line)
expressing wild-type human tau were generated in 1995 before pathogenic tau
mutations had been identified. Overexpressing the longest isoform of human tau
(4 repeats) under the human Thy-1 promoter resulted in hyperphosphorylation of
tau and somatodendritic localization (Gotz et al., 1995). There are no NFTs, but
these mice suffered from a severe axonopathy instead, with progressive paralysis of
the hindlimbs, extending to the forelimbs, and age-related increased impairment
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Fig. 1 Schematic
representation of six human
brain tau isoforms, White
boxes: three or four
tubulin-binding domains,
Grey boxes: inserts from exon
2 near the N-terminus,
Vertical lines in boxes: inserts
from exon 3 near the
N-terminus, and Black boxes:
inserts from exon 10 near the
N-terminus

in the performance of tasks such as beam walking and rotarod (Spittaels et al.,
1999). Overexpressing wild-type human 3 repeat tau under the mouse PrP promoter
also resulted in hyperphosphorylation of tau and axonopathy in the spinal cord with
NFTs in the hippocampus, amygdala, and entorhinal cortex, albeit at very old ages
(18–20 months) (Ishihara et al., 2001). Because overexpression of wild-type human
tau in mice replicated very limited aspects of tau pathology in AD, many groups
turned to the discovered pathogenic tau mutations for use in animal models. In 2000,
Lewis et al. (2000) published their JNPL3 mouse model where the transgene con-
tains the most common tau mutation (P301L) associated with FTDT-17 under the
mouse PrP promoter. These mice with no amyloid pathology developed NFTs asso-
ciated with astrogliosis, apoptosis in the spinal cord, and motor and behavioural
disturbances.

Before producing a bigenic APP/tau mouse model, some authors injected a
synthetic Aβ42 into the somatosensory cortex and contralateral hippocampus of
P301L mice resulting in a fivefold increase in NFT numbers in the amygdala,
which receives projections from both cortex and hippocampus (Gotz et al., 2001).
However, Aβ was not capable of inducing NFT formation in non-NFT-forming WT
tau transgenic mice (Gotz et al., 2001). Crossing Tg2576 mice with JNPL3 tau mice
resulted in a double transgenic mouse line showing a more than sevenfold increase
in NFT numbers at 9–11 months of age compared to JNPL3 mice. However, the
presence of tau did not affect amyloid pathology (Lewis et al., 2001). To address
the relationship of plaques and NFTs, Oddo et al. (2003) developed a triple trans-
genic mouse model named 3xTg-AD. These mice harbor mutations of APPSWE,
PS-1M146V KI, and tauP301L and develop senile plaques first in the cortex (around
3 months of age) that spread to the hippocampus by 6 months. Tangles develop
after amyloid pathology with hippocampal origin at 12 months of age and extend
to the cortex. This regional and temporal development of pathology closely mimics
the development of pathology in AD. These mice also exhibit synaptic dysfunc-
tion, including LTP deficits that precede senile plaques and tangles formation (Oddo
et al., 2003). In this triple transgenic model, cognitive deficits are observed whereas
no cell loss is depicted.

In vitro, many kinases can phosphorylate tau, but it is very difficult to establish
the equivalent in the brain in vivo and to define exactly which kinases are responsible
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for the phosphorylation of tau at precise amino acid residues. Two kinases that
are the most likely candidates in vivo are glycogen synthase kinase-3β (GSK-3β)
and cyclin-dependent kinase 5 (cdk-5). Neuronal overexpression of GSK-3β by
itself reduced the brain size without any phenotypic repercussion or development
of tauopathy despite increased phosphorylation of tau (Spittaels et al., 2000, 2002).
Surprisingly, in the tau-4R × GSK-3β double combination, the axonopathy was
practically completely rescued with elimination of axonal dilations in brain and
spinal cord, reduction in axonal degeneration and muscular atrophy, and the alle-
viation of all motor problems. The amount of tau associated with microtubules
was reduced by 50% compared to single htau-4R transgenic animals and unbound
tau was phosphorylated, leading to the conclusion that hyperphosphorylation of
protein tau does not cause tauopathy per se. Recently, two novel bigenic mouse
models, APPL/TauP301L with amyloid and tau pathology and GSK-3β/TauP301L
with tauopathy only showed remarkable parallels: aggravation of tauopathy, severe
cognitive and behavioural defects in young adults before the onset of amyloid
deposits or tauopathy and activated GSK-3β with pathological phospho-epitopes
of tau (S396/S404, characteristic GSK-3β motif). These findings indicate that Aβ

induces tauopathy through activation of GSK-3β (Terwel et al., 2008).
In addition, cdk-5 and its activating subunit p35 or its N-truncated p25 product

have been inactivated or expressed in transgenic mouse brain with various degrees
of success. The expression of cdk-5 with p35 and tau-4R in triple transgenic mice
has yielded no additional new insights to the problem. Then, inducible p25 mice
controlled by tetracycline displayed a dramatic neurodegeneration and neuroinflam-
mation. A 30% decrease in brain weight was evident in a three-month observation
period after the induction of p25 at the age of 6 weeks (Muyllaert et al., 2008;
Table 2).

2.2.3 Transgenic Rat Models of Alzheimer’s Disease

Parallel to the generation of transgenic mice, several transgenic rat models have
also been produced as rats are a better rodent model for studies involving neurobe-
havioural testing, cannulation, sampling of cerebrospinal fluid, electrophysiology,
neuroimaging, and cell-based transplant manipulations (Abbott 2004). The first
transgenic rat line was generated by Flood et al. (2007). Rats have human APPSL
and human PS1M146V gene mutations and developed amyloid deposits at 9 months
of age. APPSWE rat model was reported but no amyloid pathology was observed
except for a low intracellular accumulation of Aβ (Echeverria et al., 2004).
Another APPSWE rat model has been generated and produced mild, extracellu-
lar Aβ immunostaining and failed to develop compact, mature amyloid plaques
by the age of 22 months (Folkesson et al., 2007). Recently, the model of Flood
et al. (2007) has been more characterized: from the age of 9 months on, this rat
model of AD had amyloid deposits in both diffuse and compact forms associated
with activated microglia and reactive astrocytes; two months before the appearance
of amyloid plaques, impaired LTP was revealed on hippocampal slices, accompa-
nied by impaired spatial learning and memory in the Morris water maze; a mild
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amyloid angiopathy was also described on the leptomeningeal blood vessels (Liu
et al., 2008a).

2.3 Invertebrate Models

Species as diverse as the fly Drosophila Melanogaster, the nematode
Caenorhabditis elegans, and the sea lamprey Petromyzon marinus have been
employed to provide new insight into the pathogenesis of AD. As we also show in
other animal models of neurodegenerative disorders, these lower species offer sev-
eral advantages compared to rodent models. The sea lamprey was used to study the
degenerative changes linked to tau overexpression as it presents six giant neurons in
the hindbrain which resemble most large vertebrate neurons and are readily acces-
sible for manipulation (Hall et al., 1997). Flies and worms have other advantages:
easy and fast to breed, cheap, no ethical limitations, powerful genetics, and modifier
(suppressor and enhancer) screens and drug screenings are possible. These mod-
els are useful to understand the normal functions and regulation of APP, PS, and
tau genes. Genetic approaches could identify cellular processes that can suppress
Aβ- or tau-dependent pathology.

The fly APP homologue, APPL, does not contain the segment of APP cleaved to
generate pathogenic amyloid peptides. Therefore, some authors studied the physi-
ological functions of APP and APPL in Drosophila. Both proteins were shown to
function as vesicular receptors for kinesin 1, a motor-mediated anterograde vesi-
cle trafficking. Flies lacking APPL or overexpressed of WT and mutant APP have
axonal transport defects and only APP overexpression increased cell death in the
larval brain (Cauchi and van den Heuvel 2006). Other authors introduced FAD-
linked mutations at conserved residues in the Drosophila PS gene or overexpressed
APP/BACE and showed an increased neurotoxicity in the fly with production of
amyloid peptides (Sang and Jackson 2005). Modelling AD in the fly was also
attempted by delivering transgenes encoding Aβ40 and Aβ42 peptides. Results with
Aβ42 peptides specifically expressed in brain tissue showed a reduced longevity,
locomotor deficits, impaired olfactory memory, and neurodegeneration whereas
Aβ40 flies were not affected.

As for the fly, C. elegans has an APP homologue, APL-1. The RNAi knock-
down results in a more severe uncoordinated phenotype and genetic deletion results
in embryonic or larval lethality (Link, 2005; Segalat and Neri, 2003). Furthermore,
a transgenic C. elegans expressing human Aβ has been developed and shown
neurodegeneration, amyloid deposits, oxidative stress, and upregulation of many
stress-related genes (Wu and Luo, 2005). In contrast to APP, the deletion of the
worm tau homologue or the fly tau homologue does not result in any detectable
phenotype, probably due to compensation by other MAPs. Authors produced trans-
genic Drosophila and C. elegans by introducing either the normal human tau gene
or various mutant forms of the human tau gene. Invertebrate animals displayed
neurodegeneration, a shortened life span, axonal transport defects, vacuolization
in the cortex of the fly, and positive immunostaining for a series of NFT-specific
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epitopes without insoluble tau fibrils in Drosophila contrary to C. elegans (Gotz
et al., 2004).

2.4 Primate Models

2.4.1 Spontaneous Approaches

Although nonhuman primates do not spontaneously develop AD, age-related
behavioural and neurodegenerative changes occur in monkeys. Indeed, it has been
shown that nonhuman primates of several species exhibit cerebrovascular and
parenchymal Aβ amyloidosis but without or with paucity of tau lesions (Gearing
et al., 1994, 1997; Martin et al., 1991; Struble et al., 1985; Walker et al., 1990;
Wisniewski et al., 1973). Significant intraneuronal tau pathology was only recently
documented in an aged chimpanzee (Rosen et al., 2008). Although the lesion pro-
file in this chimpanzee differed somewhat from that in AD, the occurrence of both
tau-immunoreactive paired helical filaments and Aβ-amyloidosis indicates that the
molecular mechanisms for the pathogenesis of the two key hallmarks of AD, namely
NFTs and senile plaques, are present in aged chimpanzees. In this monkey, although
age probably played a role in the pathogeny of tauopathy, additional factors are sug-
gested to be involved because it is unusual to encounter tau-immunoreactive neurons
and processes in older animals (Gearing et al., 1994).

Similarly to brain pathology, it was also found that the monkeys undergo an age-
related decline in several domains of cognitive function (Bartus et al., 1979, 1978;
Lai et al., 1995; Moore et al., 2006; Rapp 1993, 1990; Voytko 1999). However, these
changes were not correlated with neuronal loss in memory-related brain regions
such as the hippocampus and entorhinal cortex (Peters et al., 1996) but with exten-
sive loss of neurons in subcortical cholinergic basal forebrain regions similar to
AD (Smith et al., 1999). The validity of these spontaneous models remains, how-
ever, questionable because by contrast to patients with AD in whom severe neuronal
cell loss in the hippocampus can be found, the brain of normal aging subjects dis-
played almost no neuron loss in this region (West et al., 1994). It can be concluded
that the neurodegenerative processes associated with normal aging and with AD
are qualitatively different and that human AD is not accelerated by aging but is a
distinct pathological process. The validity of such models is also weakened by the
lack of correlation between the degree of amyloid plaque accumulation and cogni-
tive decline in aged monkeys (Sloane et al., 1997). Therefore, the pathological and
cognitive changes observed in the aged nonhuman primates emphasize their value
as animal models for studies of human aging but question their relevance to the
human AD.

2.4.2 Lesioning Approaches

Lesioned animal models are based upon the assumption that the destruction of
basal forebrain cholinergic neurons by injection of a neurotoxin, such as ibotenic
acid, is sufficient to reproduce some of the cognitive impairments associated with
AD, mainly memory and learning deficits. Indeed, pathology in the basal forebrain
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cholinergic neurons is a prominent feature of AD and it may be responsible for
the severe memory deficits observed in these patients. Impaired learning abilities,
visual discrimination, and memory deficit were thus elicited following lesions of the
nucleus basalis of Meynert (NBM) (Irle and Markowitsch, 1987; Ridley et al., 1985;
Roberts et al., 1990). In other studies, however, large lesions of the NBM did not
impair memory or produced only transient mild deficit in visual recognition mem-
ory (Aigner et al., 1987, 1991; Voytko et al., 1994). Surprisingly, a cholinesterase
inhibitor (physostigmine) produced modest improvement in performance in the
control group but not in the experimental animals.

Thus, no consensual conclusion is available about the behavioural and cogni-
tive effects of basal forebrain cholinergic neuron lesions in nonhuman primates.
However, one has to keep in mind that AD is not solely a disease of the cholinergic
system.

2.4.3 Pharmacological Approaches

Based on evidence of modest improvements in cognitive function in patients with
AD and in normal human volunteers with the augmentation of central cholin-
ergic neurotransmission by cholinesterase inhibitors such as physostigmine and
tacrine, many animal studies have investigated the effects of systemic adminis-
trations of direct or indirect cholinergic modulators. The ability of cholinesterase
inhibitors to reverse cognitive impairments induced by the muscarinic antagonist
scopolamine has been demonstrated in nonhuman primates and has been the most
widely exploited approach used in preclinical animal assays to identify potential
therapies for AD (Aigner and Mishkin 1986; Bartus and Johnson 1976; Fitten et al.,
1988; Rupniak et al., 1991, 1989; Rupniak et al., 1997; Tang et al., 1997).

Although these models have provided a framework to understand AD and to test
the preclinical development of drugs to treat the cognitive symptoms, fundamen-
tal questions persist regarding the validity of measures of behavioural function in
animals in terms of reflecting clinically relevant measurements of cognition.

2.5 Perspectives

Several animal models of AD have been developed in species ranging from worms
to primates. Although none completely recapitulate the disease process, they have
proven to be useful models for neuropathological changes. As discussed below for
all animal models of neurodegenerative diseases, there is no perfect animal model
for AD. It all comes to the question that is to be answered. For instance, for screening
purposes of molecules against Aβ aggregation, one can use an Aβ-injected rodent; to
explore mechanisms involved in neuronal death, an animal model with amyloid and
tau pathology and neuronal loss such as APPSLPS-1 KI or Tau/APP mice are per-
haps better suited. However, it is important to note that amyloid plaques are probably
not at the origin of neuronal death inasmuch as the active vaccination in AD patients
did not rescue the cognitive impairment whereas amyloid plaques were suppressed
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or reduced in the brain of AD patients (Holmes et al., 2008). Many reports under-
lined that the intraneuronal accumulation of Aβ instead of extracellular Aβ deposits
triggers an early transient pathological event leading to neuronal loss in AD. It will
be interesting to study the transcriptome of APPSLPS-1 KI from the embryonic to
adult life (up six months where a massive neuronal loss is depicted) in order to find
new genes involved in the dysfunction of cell life. Furthermore, all findings in these
animal AD models open a new field of research to develop an AD animal model:
researchers may undertake the biological, molecular, and behavioural knowledge to
associate APP/PS-1 for Aβ accumulation with another molecular target involved in
neuronal death, cognitive deficits, or NFTs and inflammatory processes induced by
intracellular Aβ neurotoxicity.

3 Parkinson’s Disease (PD)

3.1 The Human Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
after AD. Although PD can develop at any age, it begins most commonly in older
adults, with a peak age at onset at around 60 years (von Campenhausen et al., 2005).
The likelihood of developing PD increases with age, with a lifetime risk of about
2% for men and 1.3% for women (Elbaz et al., 2002).

Most PD cases are sporadic, of unknown aetiology, but rare cases of monogenic
mutations show that there are multiple causes for the neuronal degeneration (Fahn,
2003). To date, more than seven genes are known to cause familial PD. Also, 13
genetic loci, PARK1-13, have been suggested for rare forms of the disease such as
autosomal dominant and autosomal recessive PD. The pathological hallmarks of PD
are the loss of the nigrostriatal dopamine (DA) neurons and the presence of intracel-
lular proteinacious alpha-synuclein-positive inclusions in surviving neurons termed
Lewy bodies (LB) and Lewy neurites (LN). A recently proposed staging procedure
of PD pathology suggests a premotor period in which typical pathological changes,
LB and LN, spread from the olfactory bulb and vagus nerve to lower brainstem
regions (stages 1–2), followed by a symptomatic period when pathological changes
involve the midbrain including the substantia nigra (stage 3), mesocortex (stage 4),
and neocortex (stages 5–6) (Braak et al., 2003).

When PD becomes clinically overt, tremor, rigidity, bradykinesia, and postural
instability are considered to be the cardinal signs of the disease. The course of the
disease is chronic and progressive, and may be considerably complicated by a wide
range of motor and nonmotor features, many of which contribute to increased dis-
ability as well as diminished quality of life in patients and caregivers (Schrag et al.,
2000).

α-synuclein is a 140-amino-acid protein that is encoded by a gene, SNCA, on
chromosome 4 and that is abundantly expressed in many parts of the brain and local-
ized mostly to presynaptic nerve terminals, mainly as an isoform of 140 amino acids.
Structurally, α-synuclein is composed of three domains, an N-terminal amphipathic
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region (residues 1–60), a central hydrophobic region known as the non-β-amyloid
component (residues 61–95) and a C-terminal acidic region (residues 96–140). Two
categories of mutations causing familiar forms of the PD are known in the SNCA
gene: point mutations, leading to missense variants in the encoded protein, and
whole-locus multiplications leading to severe overexpression of the wild-type pro-
tein (Cookson, 2005; Moore et al., 2005; Polymeropoulos et al., 1997; Singleton
et al., 2003; Spillantini and Goedert, 2000). Multiplications are rare, perhaps respon-
sible for 1% of the PD families compatible with autosomal dominant inheritance.
Point mutations are exceedingly rare: Ala53Thr is found in about 15 families of
Greek ancestry; Ala30Pro and Glu46Lys are present in single families of German
and Spanish origin, respectively.

Three missense mutations in α-synuclein gene (A53T, A30P, and E46K;
Polymeropoulos et al., 1997; Zarranz et al., 2004), in addition to genomic tripli-
cations of a region of α-synuclein gene, are associated with autosomal dominant
PD (Singleton et al., 2003). α-Synuclein has an increased propensity to aggregate
due to its hydrophobic non-β-amyloid component domain. The presence of fibrillar
α-synuclein as a major structural component of LB in PD suggests a role of aggre-
gated α-synuclein in disease pathogenesis (Spillantini et al., 1998a). Recent studies
provide compelling evidence of non-β-amyloid component domain and a truncated
form of α-synuclein in mediating neurodegeneration in vivo.

3.2 Rodent Animal Models

There are both toxin and genetic animal models of PD. Many different toxins
are used to generate DA degeneration. The most frequently used toxins in rodent
models of PD are 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1, 2, 3,
6-tetrahydropyridine (MPTP).

3.2.1 The 6-OHDA Model

6-OHDA shares some structural similarities with DA and norepinephrine, and has
a high affinity for several membrane transporters such as the DA (DAT) and nore-
pinephrine transporters (NET) (Bezard et al., 1999; Breese and Traylor 1971; Pifl
et al., 1993). 6-OHDA cannot cross the blood–brain barrier and must therefore be
injected directly into the brain (Sachs and Jonsson, 1975). Once inside the neurons,
it is rapidly oxidized into 6-OHDA-quinone and hydrogen peroxide, both of which
are highly toxic (Saner and Thoenen, 1971) as they inhibit the mitochondrial respira-
tory chain enzyme complex I and IV, thus causing neurodegeneration of DA neurons
(Glinka and Youdim, 1995; Ichitani et al., 1991). The extent of loss of DA neurons
and their striatal terminals is dependent upon the dose of the toxin injected and
the site of toxin injection. The toxin can be injected intrastriatally, into the median
forebrain bundle (MFB, that comprises the nigrostriatal tract), or directly into the
subsantia nigra (SN). This toxin does not produce LB-like inclusions (Dauer and
Przedborski, 2003).
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Striatal Injection

6-OHDA delivered into the striatal DA terminals has been widely used to examine
neuroprotective strategies. Unilateral delivery of 6-OHDA into the striatum pro-
duces a slow and progressive retrograde degeneration of DA neurons. One major
advantage of this model is that it damages only DA neurons projecting to the stria-
tum, allowing for examination of neuroprotective strategies. In addition, because
in the striatum there are no NE terminals, this allows 6-OHDA to be specific to
DA neurons. One drawback to a striatal injection to model PD is that behavioural
deficits are more subtle and thus can be difficult to detect. In addition, depending on
the degree of DA depletion in the striatum, animals were reported to recover within
several days, unless the lesion extends 80%. This recovery is attributed to compen-
satory mechanisms (increased release, decreased reuptake) of residual DA neurons
and to changes in crossed projections from the contralateral hemisphere.

Medial Forebrain Bundle Injection

6-OHDA placed along the MFB produces a rapid degeneration of DA neurons
and terminals where a loss of DA levels in the striatum can be detected 24 h
after 6-OHDA injection and a significant loss of DA neurons in the SN by 3 days
post-6-OHDA. In addition to producing a large cell death to the nigrostriatal path-
way, unilateral MFB injections produce reliable, long-lasting behavioural deficits.
A major issue regarding placement of 6-OHDA along the MFB is that of specificity.
Because 6-OHDA is a catecholamine analogue and not simply an analogue of DA,
when placed in the MFB, 6-OHDA can produce damage to NE terminals. In order
to create specific damage only to DA neurons, 6-OHDA can be used in conjunction
with a NE uptake inhibitor (such as dismethylimipramine), thereby blocking entry
of 6-OHDA into NE terminals. Another drawback to the MFB lesion is that it can
produce (depending on dose) a rather large and rapid cell death that can sometimes
overwhelm potential neuroprotective strategies that may take longer time periods
to produce beneficial effects. In addition, because of the speed with which MFB
lesions produce death of DA neurons, it does not closely mimic the chronic course
of the clinical condition.

Substantia Nigra Injection

The injection of 6-OHDA in the SN destroys the DA cell bodies within a few
hours and before degeneration of striatal terminals (Jeon et al., 1995). Injection
of 6-OHDA to the ventral midbrain produces a nearly complete destruction of SN
neurons and striatal tyrosine hydroxylase (TH)-immunoreactive terminals. Delivery
of 6-OHDA into the SN appears to be a more useful approach for testing cell
replacement therapies (Hirsch et al., 2003).

Behavioural Impairment Following 6-OHDA Lesions

In the unilateral 6-OHDA model, also known as the “hemiparkinson model,”
the intact hemisphere serves as an internal control structure (Perese et al., 1989;
Schwarting and Huston, 1996). Among the motor tests used following 6-OHDA
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lesions, the “gold standard” measures the extent of a DA lesion following
administration of the DA precursor, L-DOPA, or DA agonists, such as apomor-
phine (Ungerstedt and Arbuthnott, 1970) and counting the number of rotations.
Amphetamines have been termed indirect DA agonists, because they affect DA
receptors indirectly by increasing the extracellular availability of endogenous stri-
atal DA (Jones et al., 1998). Amphetamine treatment can induce ipsilateral rotations;
the direction of turning is attributed to the release of DA in the unlesioned hemi-
sphere. Apomorphine is a DA receptor agonist which stimulates both classes of DA
receptors (D1, D2). Apomorphine treatment can induce contralateral rotations; the
direction of turning is attributed to the stimulation of supersensitive D1-receptor and
D2-receptor, especially in the lesioned hemisphere.

This approach easily allows the control of the extent of DA lesion and evaluates
the power of therapeutic treatments, a major advantage of the 6-OHDA model of
PD (Beal, 2001). The other deficit in 6-OHDA lesioned animal models is sensory
neglect to visual, tactile, or olfactory stimuli that can be evaluated as the thresholds
for leg withdrawal to footshocks. This behavior is believed to be due to damage in
the lateral hypothalamus through which the ascending fibres of mesencephalic DA
neurons pass. In addition, many researchers use the forepaw usage deficit contralat-
eral to the side of the lesion as a method to evaluate the behavioural consequences of
6-OHDA and the potential efficiency of neuroprotective agents or cell transplanta-
tion strategies. Contralateral deficits with massive lesions were also observed in the
“staircase” test, where the rat has to reach downwards for food with either only the
left or the right paw. Behavioural asymmetries following unilateral 6-HAD lesions
were also found in swimming rats tested in circular pools (for a complete review of
this issue see Schwarting and Huston 1996).

In summary, the 6-OHDA model does not mimic all pathological and clinical
features of human Parkinsonism. It induces DA neuron death, whereas the formation
of cytoplasmatic inclusions (LB) does not occur. However, these models are very
useful for testing cell replacement therapies or neuroprotective treatments.

3.2.2 The MPTP Model

It was in the late 1970s that a by-product of a synthetic drug, MPTP, was identified
as a cause of Parkinsonism in drug addicts (Langston et al., 1983). The subsequent
identification of MPTP as a dopaminergic toxin led to it becoming the most widely
used toxin to mimic the clinical and pathological hallmarks of PD. MPTP is highly
lipophilic and readily crosses the blood–brain barrier. After administration, MPTP
is metabolized in astrocytes to its active metabolite 1-methyl-4-phenylpyridinium
(MPP+) by the monoamine oxidase B (MAO B), an enzyme involved in monoamine
degradation (Nicklas et al., 1985; Przedborski and Vila 2003). MPP+ is selectively
taken up by the DAT and is accumulated in mitochondria where it inhibits complex I
of the electron transport chain (Langston et al., 1984b; Mizuno et al., 1987; Nicklas
et al., 1985). This reduces ATP production and causes an increase in free-radical
production. Dopaminergic neurons in SNc are particularly vulnerable to the action
of MPTP (Giovanni et al., 1991). In rodents, MPTP is systemically administered,
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either intraperitonealy or subcutaneously, and with repeated injections. There are
marked species differences in susceptibility to the neurotoxic effects of MPTP. For
instance, rats are resistant to MPTP toxicity as their catecholamine neurons seem to
better cope with, and survive, impaired energy metabolism.

Mice strains vary widely in their sensitivity to the toxin. When administered
with multiple high MPTP doses, they exhibit striatal DA reductions, SN neuron
loss, and behavioural impairment (Heikkila et al., 1984). However, depending on
the endpoint tested, MPTP effects in mice vary with dose, route, number, and timing
of injections, as well as gender, age (Jarvis and Wagner 1985), and strain (Tipton
and Singer 1993).

The MPP+, the toxic metabolite of MPTP can also be used to obtain animal mod-
els of PD. Systemic administration of MPP+ does not damage central DA neurons,
because it does not readily cross the blood–brain barrier due to its charge. However,
its direct injection into the brain effectively destroys much of the DA nigrostriatal
pathway.

The rotarod and open field locomotion tests are used to evaluate the motor deficits
following MPTP treatments. These tests are only effective if they are employed
shortly after treatment when the mice are still intoxicated by MPTP. Mice tested later
show no deficit on the rotarod (Meredith and Kang 2006). More sensitive measures,
such as gait analysis, or the pole or grid tests, have been able to detect DA loss as
low as 50% (Meredith and Kang 2006). However, motor deficits do not correlate
well with the extent of DA neuronal loss, striatal DA levels, or the dose of MPTP
(Rousselet et al., 2003).

Today, MPTP represents the most important and most frequently used
Parkinsonian toxin applied in animal models (Beal, 2001; Przedborski et al., 2001).
The major advantage of the MPTP is that it directly causes a specific intoxication
of dopaminergic structures and it induces in humans symptoms virtually identical
to PD (Przedborski and Vila, 2003). The major drawback of MPTP is that the cell
loss is strain-, age-, and gender-dependent in mice (Smeyne et al., 2005; Sundstrom
et al., 1987).

3.2.3 Genetic Rodent Models of PD

PD is generally a sporadic disorder, but in a significant proportion of cases (10–15%
in most studies) it runs in families without a clearcut Mendelian pattern. Currently,
there have been 13 defined loci identified as associated with high-penetrant auto-
somal dominant or recessive PD, of which causative mutations in specific genes
have been identified. These genes include α-synuclein, parkin, ubiquitin carboxyl-
terminal esterase L1 (UCH-L1), PTEN-induced putative kinase 1 (PINK1), DJ-1,
and leucine-rich repeat kinase 2 (LRRK2). As outlined in Table 3, most of these
mutations can be characterized by an early onset of disease.

PD Caused by Mutations in the α-Synuclein Gene (PARK1)

Overexpression of α-synuclein lacking residues 71–82 failed to aggregate and form
oligomeric species in the Drosophila model of the disorder resulting in an absence
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Table 3 Summary of the Eight Main Mutations Leading to Parkinson’s Disease

Locus Chromosome Gene Inheritance Lewy Bodies

PARK1 4q21 a-synuclein Dominant Yes
PARK2 6q25 parkin Recessive No (only 1 case)
PARK3 2p13 Unknown Dominant Yes
PARK4 4q21 a-synuclein Dominant Yes
PARK5 4p14 UCH-L1 Dominant Unknown
PARK6 1p35–36 PINK1 Recessive Unknown
PARK7 1p36 DJ-1 Recessive Unknown
PARK8 12q12 LRRK2 (dardarian) Dominant Variable

of dopaminergic pathology as no loss of tyrosine hydroxylase-positive neurons was
observed. The expression of a truncated form of α-synuclein showed an enhanced
ability to aggregate into large inclusions bodies, an increased accumulation of high
molecular weight alpha-synuclein species, and an enhanced neurotoxicity in vivo
(Periquet et al., 2007). To investigate the function of α-synuclein in mice, several
transgenic mice lacking α-synuclein or expressing either WT or mutated (A30P,
A53T, or both) human α-synuclein were generated.

The first line of α-synuclein knock-out mice displays a reduced level of DA
in the striatum (Abeliovich et al., 2000), however, behavioural assessment did not
reveal any major impairment. The second line of α-synuclein-null mice generated
by Dauer et al. (2002) were completely resistant to MPTP intoxication, likely due
to an incapacity of MPP+ to inhibit complex I in these mice. A third line of α-
synuclein knock-out mice generated showed a partial protection to MPTP-induced
striatal DA loss and an increased methamphetamine-induced DA depletion (Schluter
et al., 2003).

Expression of truncated α-synuclein under the TH promoter led to nigrostriatal
pathology (Tofaris et al., 2006). Expression of amino acids 1–130 of the human
protein with the A53T mutation caused embryonic loss of DA neurons in the SN
whereas expression of the full-length protein did not (Wakamatsu et al., 2008).
Expression of amino acids 1–120 of the wild-type human protein on a α-synuclein
null background only led to decreased striatal DA without loss of DA neurons in
SN (Tofaris et al., 2006). Although several α-synuclein-null mice and transgenic
overexpression mutations have been created, none exhibited consistent neuronal
degeneration of DA terminals.

PD Caused by Mutations in the Parkin Gene (PARK2)

The parkin gene, which maps to chromosome 6, encodes a 465 amino acid pro-
tein containing an N-terminal ubiquitin-like domain, a central linker region, and
C-terminal RING domain. The parkin protein functions as an E3 ubiquitin protein
ligase, and is involved in the degradation of cellular proteins by the proteasomal
pathway. The loss of parkin’s E3 ligase activity due to mutations leads to autoso-
mal recessive juvenile PD (Kitada et al., 1998; Shimura et al., 2000; Zhang et al.,
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2000). Mutations in parkin were first identified in 1998 in Japanese patients with
autosomal recessive juvenile Parkinsonism (Kitada et al., 1998). About 50% of
the mutations found in parkin are point mutations. The remaining 50% consist of
genomic rearrangements. By targeting different exons of the parkin gene, several
parkin knock-out mice were generated. In mice, exon 3 deletion did not affect the
number of nigral DA neurons. However, the mice exhibited behavioural deficits that
are associated with the basal ganglia function and have decreased DA release in
response to amphetamine (Goldberg et al., 2003). Similar to exon 3 deletion, exon
7 deletion did not affect the nigral neuron numbers, but decreased TH-producing
cells in the locus coeruleus (Von Coelln et al., 2004). Mice with a knock-out of exon
2 exhibited age-related declines in striatal DA and an increase in D1/D2 receptor
binding. Behavioural testing and immuno-labeling of dopaminergic nigral neurons
revealed no abnormalities compared to WT mice (Sato et al., 2006). Overall, parkin
knock-out mice fail to develop a Parkinsonian phenotype, but the different knock-
out models generated may provide means to examine the role of parkin in protein
turnover, oxidative stress, and mitochondrial dysfunction.

PTEN-Induced Kinase-1 (PINK1) Mutations

The protein PTEN-induced putative kinase 1 (PINK1) was identified to be gene-
associated with the PARK6 locus on chromosome 1p36 that is linked to a rare
familial form of PD (Valente et al., 2004). Mutations in the PINK1 are a com-
mon cause of autosomal recessive PD (Hatano et al., 2004). PINK1 contains 8
exons and encodes a protein of 581 amino acids with a mitochondrial targeting
motif and a serine–threonine protein kinase domain. Most reported mutations were
distributed throughout the serine–threonine protein kinase domain. Thus, loss of
function of kinase activity of PINK1 is the most probable disease mechanism
(Silvestri et al., 2005; Valente et al., 2004). To date, no mammalian in vivo stud-
ies of PINK1 loss of function have been reported. However, PINK1 loss-of-function
mutants in Drosophila result in mitochondrial morphological defects in the male
germline, muscle, and DA neurons as well as reduced ATP content (Park et al.,
2006). These phenotypic effects were attributed to severe mitochondrial dysfunction
such as enlargement and fragmentation of christae.

DJ-1 (PARK7) Mutations

The PARK7 locus, localized on chromosome 1p36, has been linked with autoso-
mal recessive early-onset PD. Recent studies have identified mutations in the DJ-1
gene, associated with the PARK7 locus (Bonifati et al., 2003). The first mutations
described were a large chromosomal deletion in a Dutch family and a L166P point
mutation in an Italian family (Bonifati et al., 2003). DJ-1 is a highly conserved
and ubiquitous protein that is widely expressed in both neurons and glia (Bader
et al., 2005). DJ-1 knock-out mice show motor impairments and nigrostriatal DA
dysfunction associated with reduced DA overflow, resulting in increased reuptake
of DA by the DAT (Chen et al., 2005; Goldberg et al., 2005). In agreement with
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the observations that DJ-1 knock-out mice have enhanced DA reuptake capacity,
DJ-1 knock-out mice have enhanced sensitivity to MPTP, which led to increased
striatal DA denervation (Kim et al., 2005; Manning-Bog et al., 2007). However,
DJ-1 knock-out mice lack SN degeneration, suggesting that loss of DJ-1 function
might confer increased susceptibility to Parkinsonism as a result of underlying SN
dysfunction.

LRRK2/Dardarin Mutations

Genomewide linkage analysis of a Japanese family with autosomal dominant PD
identified a linkage with a genetic locus located on chromosome 12, which has
been termed PARK8 (Funayama et al., 2002). Mutations in the leucine-rich repeat
kinase 2 gene (the protein has been named dardarin) have been identified in families
with autosomal dominant late onset PD (Paisan-Ruiz et al., 2004; Zimprich et al.,
2004a, b). The neuropathology associated with LRRK2 mutation consists of nigral
neuronal degeneration and gliosis but with variable intraneuronal protein inclusions
including LB, tau-positive NFTs, ubiquitin-positive intranuclear and cytoplasmic
inclusions, or the absence of distinctive inclusions/aggregates (Funayama et al.,
2002; Giasson et al., 2006; Khan et al., 2005; Rajput et al., 2006; Ross et al., 2006;
Wszolek et al., 2004). These observations have led to the suggestion that LRRK2
could be a critical central regulator of protein aggregation and deposition relevant to
a wide array of neurodegenerative disorders (Taylor et al., 2006). Within the nigros-
triatal pathway, LRRK2 is localized at high levels to medium-sized spiny output
projection neurons, cholinergic interneurons, and various GABAergic interneuronal
subtypes in the caudate putamen, but at markedly lower levels in DA neurons of
the SNc (Biskup et al., 2006; Higashi et al., 2007a, b). Drosophila LRRK2 mutants
displayed reduced female fertility and fecundity, impaired locomotor activity, and
a progressive reduction in TH immunostaining and aberrant morphology in certain
DA clusters despite normal numbers of DA neurons (Lee et al., 2007). These results
suggest that LRRK2 is critical for the integrity of dopaminergic neurons and intact
locomotive activity in Drosophila.

3.3 Nonhuman Primate Models

Initial primate models were developed by using toxins that specifically targeted
DA neurons, the most successful of which was MPTP (Langston et al., 1984a).
In monkeys, MPTP produces an irreversible and severe Parkinsonian syndrome
characterized by all of the features of PD, including tremor, rigidity, slowness
of movement, postural instability, and freezing. In these animals, the beneficial
response to levodopa and development of long-term motor complications to medi-
cal therapy, namely dyskinesias, are virtually identical to those seen in PD patients
(Bezard et al., 2001; Jenner 2003; Langston et al., 1984a). The findings that
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the MPTP nonhuman primates exhibit cognitive deficits and autonomic distur-
bances comparable to patients with PD (Goldstein et al., 2003; Schneider and
Pope-Coleman, 1995) bring this model closer to the idiopathic PD.

Mutations in the α-synuclein gene have been shown to cause familiar PD, sug-
gesting that abnormal accumulation of α-synuclein may trigger neurodegeneration
(Polymeropoulos et al., 1997). Inasmuch as one of the limitations of the MPTP
nonhuman primate model of PD is the absence of the progressive development of
the α-synuclein pathology that is the hallmark of idiopathic PD, overexpression of
α-synuclein was recently achieved in nonhuman primates. Indeed, unilateral injec-
tion of human α-synuclein expressing viral vectors into the SN of adult marmosets
caused selective loss of DA neurons accompanied by α-synuclein-positive cyto-
plasmic inclusions and degenerative changes in TH-positive axons and dendrites as
well as motor impairment reminiscent of DA denervation (Kirik et al., 2003). This
model did not, however, display the wider clinical Parkinsonian repertoire that can
be elicited in the MPTP-lesioned monkey and was not challenged with levodopa to
test the reversibility of its motor impairment. In addition to valuably complement-
ing the existing nonhuman primate models, this approach will pave the way for the
refining of new therapeutic strategies.

4 Multiple System Atrophy (MSA)

4.1 The Human Disease

Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disorder
of unknown etiology characterized by autonomic failure and motor impairment
resulting from levodopa unresponsive Parkinsonism, cerebellar ataxia, and pyrami-
dal signs. Eighty percent of cases show predominant Parkinsonism (MSA-P) due to
underlying striatonigral degeneration (SND), and the remaining 20% develop pre-
dominant cerebellar ataxia (MSA-C) associated with olivopontocerebellar atrophy
(Wenning et al., 2004). These features result from progressive multisystem neu-
ronal loss that is associated with oligodendroglial α-synuclein inclusions (Lantos
1998). There is a lack of effective therapies particularly for the motor features of
MSA. Most patients deteriorate rapidly and survival beyond 10 years after disease
onset is unusual. MSA is less common than PD as epidemiological studies esti-
mate a prevalence of 1.9–4.9 people per 100,000 (Chrysostome et al., 2004; Schrag
et al., 1999).

Histopathologically, there is variable neuron loss in the striatum, SNc, cere-
bellum, pons, inferior olives, and intermediolateral column of the spinal cord.
Glial pathology includes astrogliosis, microglial activation, and argyrophilic oligo-
dendroglial cytoplasmic inclusions (GCIs) (Papp et al., 1989). In MSA brains,
α-synuclein aggregates in the cytoplasm, axons, and nuclei of neurons, and in the
nuclei of oligodendroglia (Benarroch 2002; Fearnley and Lees 1990; Lantos 1998;
Wenning et al., 1997). Thus, in contrast to neuronal α-synuclein inclusions in PD,
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MSA is also characterised by oligodendroglial α-synuclein inclusion pathology,
suggesting a unique but poorly understood pathogenic mechanism that could ulti-
mately lead to neuron loss via disturbance of axonal function (Wenning et al., 2008).

4.2 Rodent Animal Models

Inasmuch as the major, although not the only, histopathological feature of MSA-P
is nigral and striatal degeneration, the most evident and direct approach to generate
animal models of this disease is with double nigral and striatal lesions using specific
toxins. This can be achieved by either stereotaxic or systemic lesions. Stereotaxic
lesions are essentially performed unilaterally to obtain impairment in paw reach-
ing behaviour and a rotational behaviour induced by either amphetamine or the DA
receptor agonist apomorphine. In this case, SNc lesion is done simultaneously or
before striatal lesion. For this, DA neurons within the SNc can be stereotaxically
lesioned with 6-OHDA applied within the striatum or the MFB. Striatal lesion is
usually obtained by stereotaxical injection within the striatum of quinolinic acid
(QA). QA is a tryptophan metabolite and a glutamate NMDA agonist with potent
excitotoxic effects. Once injected into the striatum QA preferentially induces loss
of medium spiny GABAergic neurons, that constitute 90% of the striatal neurons,
while sparing most of the remaining interneurons (Figueredo-Cardenas et al., 1998;
Foster et al., 1983; Ghorayeb et al., 2001; Stone 1993). This model was first devel-
oped by the group of Wenning et al. (1996) that administered 6-OHDA into the
left MFB of male Wistar rats, followed 3–4 weeks later by intrastriatal injection of
QA into the ipsilateral striatum. The model was used to test the potential efficiency
of striatal fetal allografts derived from striatal primordium alone or combined with
cografts of ventral mesencephalon. They showed that cografted rats have a reduc-
tion in amphetamine-induced rotation but do not improve deficits of more complex
behavior. These stereotaxic unilateral double lesion approaches were instrumental
in evaluating neuroprotection efficiency and transplantation strategies but they bear
several drawbacks as they are invasive, with immediate histological consequences,
as opposed to the progressive nature of the disease, and they do not mimic the
clinical symptoms observed in the human pathology.

Some of these limitations may be circumvented with systemic lesions that
have also been extensively performed to produce animal models of this disorder
and that provide a more dynamic approach of the neurodegenerative process and
the subsequent behavioural consequences (Fernagut et al., 2004; Stefanova et al.,
2003). In these approaches, DA neurons are degenerated following MPTP systemic
injection that induces PD-like syndromes in several species including mice and
primates (Burns et al., 1983). Selective damage of the striatum is obtained with
3-nitropropionic acid (3-NP), a mycotoxin inhibitor of succinate dehydrogenase
(SDH) in most species Przedborski (Alexi et al., 1998; Brouillet et al., 1999), and
thus that induces metabolic failure by inhibiting mitochondrial respiration (Alexi
et al., 1998; Brouillet et al., 1999; Brouillet and Hantraye 1995; Guyot et al., 1997;
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Ludolph et al., 1991). The susceptibility, nature (apoptotic or necrotic), and extent of
the striatal damage depend upon the species, animal strain, age, dose administered,
and administration schedule (acute versus chronic) (Alexi et al., 1998; Ouary et al.,
2000; Pang and Geddes 1997). In mice, 3-NP produces an acute early oxidative
stress followed by an apoptotic striatal neuronal death in the following days (Kim
and Chan 2001). Mice lesioned with this protocol developed severe and long-lasting
motor disorders as assessed with rotarod, pole test, and general locomotor activity
measures. Striatal and nigral damage were also evident with significant neuronal
loss and astroglial activation (Fernagut et al., 2004).

In general, these double-lesion approaches are considered by many to be too sim-
plistic as they fail to model the MSA pathology closely. For instance, the lesional
approach does not induce GCIs inclusions, one of the hallmarks of MSA that is
believed to be involved in neurodegeneration (Papp et al., 1989). In this line, the dis-
covery that GCIs contain a significant level of α-synuclein (Spillantini et al., 1998b;
Wakabayashi et al., 1998) has led to the development of transgenic animal models
overexpressing this protein under the control of the proteolipid-protein (Kahle et al.,
2002) or the 20,30-cyclic nucleotide 30-phosphodiesterase promoter (Yazawa et al.,
2005). However, none of the generated mice showed a major degeneration in the
nigrostriatal pathway although some showed a moderate loss of nigral DA neurons.

Another drawback to the use of the double-lesion models is that neurotoxins can
interact, rendering it difficult to control and replicate the extent of the lesion. To
overcome these interactions, a model striatonigral degeneration which uses a single
unilateral administration of 1-methyl-4-phenylpyridinium ion (MPP+) into the rat
striatum has been developed (Ghorayeb et al., 2002). This resulted in both nigral
and striatal degeneration and motor behaviour impairments in relation to this double
degeneration.

Researchers also applied 3-NP to α-synuclein transgenic animals hoping to
induce striatal degeneration as well. These lesioned transgenic mice showed severe
loss of nigral and striatal neurons in addition to astrogliosis and microglial activa-
tion reminiscent of the pathology of MSA and thus are considered to be closer to
the human disease; they are currently used to test the efficiency of neuroprotective
agents (Stefanova et al., 2008).

The fortuitous discovery that transgenic mice overexpressing the α1B-adrenergic
receptor bear several features in common with MSA, spurred curiosity among
researchers, as implication of the NE transmission in the pathogenesis of MSA was
never previously suspected (Zuscik et al., 2000). Although the group that has devel-
oped these mice do acknowledge that MSA is not due to a mutated form of this
receptor, this transgenic model may nevertheless be useful in dissecting the neuro-
transmission pathway that might be implicated in this disease. Transgenic mice for
this receptor show prominent cerebellum and medulla neurodegeneration as well
as moderate to significant degeneration in the basal ganglia, periaqueducal gray,
spinal cord, thalamus, and cerebral cortex. Brain regions showed positive staining
for ubiquitin and α-synuclein, two proteins typically found in inclusion bodies, and
caspase-3 expression was documented in the white matter tracts of the striatum
and cerebellum. Behaviourally, these transgenic mice had reproductive problems,
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reduced weight, and reduced locomotor activity that was age related. In addition,
these mice showed increased seizures with age and a generalized pattern of brain
damage not found in MSA.

4.3 Primate Animal Models

The first effort to model SND as the core neuropathology underlying MSA-P in
nonhuman primates was based on the use of selective nigral and striatal neurotox-
ins, as previously performed to mimic PD and Huntington’s disease in monkeys
(Brouillet et al., 1999; Langston et al., 1984a). Systemic and sequential chronic
administration of the mitochondrial inhibitor 3-NP and MPTP in one nonhuman pri-
mate reproduced levodopa-unresponsive Parkinsonism and SND-like pathological
changes characteristic of MSA-P (Ghorayeb et al., 2000). Indeed, the administration
of MPTP induced a marked levodopa-sensitive Parkinsonian syndrome associated
with akinesia, bilateral rigidity, and flexed posture as well as tremor episodes. The
subsequent chronic intoxication with 3-NP resulted in a progressive further deteri-
oration of the motor status, and, after the appearance of lower limb dystonia and an
abrupt aggravation of Parkinsonism, the dopaminergic responsiveness disappeared
except for levodopa-induced orofacial dyskinesias. Histopathologically, this sequen-
tial intoxication produced a severe degeneration of the SNc and of the dorsolateral
putamen and head of the caudate nucleus comparable with that found in MSA-
P. Although this double-lesion primate model of SND may serve as a preclinical
testbed for the evaluation of novel therapeutic strategies in MSA-P, its reliability
and validity were not tested further.

5 Amyotrophic Lateral Sclerosis (ALS)

5.1 The Human Disease

Amyotrophic lateral sclerosis (ALS) is one of the major forms of motor neuron dis-
ease (MND), a heterogeneous group of degenerative disorders causing progressive
motor neuron death leading to paralysis and death. Amyotrophic lateral sclerosis is
a relatively rare disease with a reported population incidence of between 1.5 and
2.5 per 100,000 per year (Logroscino et al., 2008). This fatal disease results from
the degeneration of motor neurons in the motor cortex, brainstem, and spinal cord.
The pathogenesis of MND is poorly understood and may include genetic and/or
environmental factors, with a common end-stage outcome. There are currently no
significant treatments to alter the fatal outcome.

About 10% of ALS cases are familial (FALS), with a Mendelian pattern of inher-
itance. About 20% of these cases are associated with mutations in the copper/zinc
superoxide dismutase 1 gene (SOD1) (Valdmanis and Rouleau 2008). To date, more
than 100 different mutations within all exons of the SOD1 gene and its introns have
been identified as being involved in the development of chromosome 21q-linked
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FALS. The remaining 90% of ALS cases are classified as sporadic (SALS), although
there is accumulating evidence that subpopulations of patients with SALS have
common inherited susceptibility genes (Greenway et al., 2006).

In SALS, degeneration of the corticospinal tracts in the anterior and lateral
columns of the spinal cord is particularly evident. The cytopathology of the affected
motor neurons in SALS is characterized by the following two important intracyto-
plasmic inclusions: the Bunina bodies, which are small eosinophilic intraneuronal
inclusions in the remaining lower motor neurons, are generally considered to be
a specific pathological hallmark of ALS. Although the nature and significance of
Bunina bodies in ALS are not yet clear, the bodies may be abnormal accumulations
of unknown proteinous materials (Okamoto et al., 2008). Skeins-like inclusions
(SLIs) and round hyaline inclusions (RHIs) in the remaining anterior horn cells are
another pathological characteristic finding of ALS. Both inclusions are detected by
ubiquitin immunohistochemistry but are negative for phosphorylated neurofilament
protein and SOD1.

In FALS, two types can be discriminated by histopathology. One type of FALS
is neuropathologically identical to SALS, and frequently contains Bunina bod-
ies. The other form of FALS is that showing posterior column involvement in
addition to the pathological features of SALS (Valdmanis and Rouleau, 2008).
Neuropathologically, this entity is characterized by the presence of LB-like hya-
line inclusions (LBHIs) in the anterior horn cells throughout the spinal cord. It is to
be noted that many SOD1-mutated FALS cases are of the posterior column involve-
ment type with neuronal LBHIs and mild corticospinal tract involvement, in contrast
to severe degeneration of the lower motor neurons (Kato, 2008).

5.2 Animal Models

Several rodent animal models of ALS have been generated targeting a set of pro-
teins ranging from the SOD1 gene to genes causing neurofilament abnormalities
or defects in microtubule-based transport (Cozzolino et al., 2008; Julien and Kriz
2006; Kato, 2008). To date, SOD1 mutants are widely considered as the closest
mutants to the human pathology despite the fact that it is still debated how muta-
tions in SOD1 gene may lead to ALS syndromes. In this line, an impressive number
of SOD1 transgenic rodents expressing various SOD1 mutations have been gener-
ated, most replicating rather efficiently many behavioural and anatomical features
of ALS. Because the pathology is believed to be due to a gain of function follow-
ing SOD1 mutation, the main difference in these lines seems to be the number of
copies of SOD1 mRNA expressed. Indeed, the toxicity of the SOD1 mutation does
not seem to be related to a decreased enzymatic activity as some mutants actually
show an increased activity whereas knock-out animals for SOD1 show almost no
motor neuron death (Reaume et al., 1996).

Studies on transgenic mice expressing various SOD1 mutants have generated a
wealth of information. Although no clear picture can be drawn, it is now admitted
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that multiple cascades of events are involved in motor neuron death that are inde-
pendent of the enzymatic activity involving the copper catalytic site but related to
the aggregation of misfolded mutant SOD1 (Chou et al., 1998; Hyun et al., 2003;
Jonsson et al., 2004; Takamiya et al., 2003). How this is related to the events
leading to neuron death is yet to be determined, especially given the wide variety
of biochemical alterations ranging from excitotoxicity through alerted glutamate
transmission, oxidative damage, defects in calcium homeostatsis, caspase activa-
tion, mitochondrial malfunction, and cytoskeleton alterations (Guegan et al., 2001;
Howland et al., 2002; Liu et al., 2004; Swerdlow et al., 1998; Van Den Bosch
et al., 2006). The level of expression of SOD1 seems to be proportional to the life
span of the animals; that is, the more copies they express, the shorter time they
live, with some animals having up to 40 times increase in the mRNA levels of
SOD1 (Jonsson et al., 2006). A caveat of this approach is that one can question
the validity of such models inasmuch as high levels of SOD1 protein can pro-
duce histopathological artefacts such as the formation of vacuoles. Another factor
that should be considered regarding the SOD1 protein is its stability and degrada-
tion rate especially in the spinal cord so that even with low levels of protein some
mutants show significant motor neuron loss (Sato et al., 2005). This further bolsters
the protein aggregation hypothesis as a key element in the histopathology of the
disease.

Most of the SOD-1 transgenic mice express motor deficits that start with a mild
tremor followed by atrophy of hind limb muscles ultimately leading to a complete
paralysis where mice can no longer sustain themselves and are thus sacrificed. The
early histopathological feature in SOD1 transgenic mice is formation of perikarya,
axonal, and dendritic vacuoles (Wong et al., 1995) that appear before neuronal loss
and astrocytosis as early as 4–6 weeks of age in the G93A mice where glycine is
substituted to alanine at position 93 (Zhang et al., 1997). At this time-point, mice
are still asymptomatic as the first symptoms appear at 3 months of age when loss
of large motor neurons is observed in the spinal cord with massive vacuolization.
At 5 months of age, mice are paralyzed most probably due to the substantial loss of
motor neurons accompanied by marked gliosis, intracellular inclusions reminiscent
of LB, and phosphorylated neurofilaments filling few motor neurons (for a review
of cell death features in ALS see Cleveland, 1999).

Nonneuronal abnormalities are also thought to be involved in ALS (Bruijn et al.,
1997; Howland et al., 2002; Lin et al., 1998; Nagai et al., 2007; Rothstein et al.,
1995). For instance, altered reuptake of glutamate by astrocytes through gluta-
mate transporter EAAT2 was observed in mice or rats expressing mutant SOD1
(Vermeiren et al., 2006). This should lead to increased extracellular glutamate
and thus substantial activation of glutamate receptors and subsequent increase in
intracellular Ca++ homeostasis. Increased cytokine levels indicating inflammatory
processes through microglial activation were also reported in transgenic SOD1
mutant mice (Hensley and Floyd, 2002) and in human tissues (Henkel et al.,
2004) suggesting that motor neuron degeneration implicates the inflammation pro-
cesses. As mentioned above, motor neurons of ALS patients contain spheroids
that are axonal inclusion bodies essentially composed of intermediate filaments.



Animal Models of Neurodegenerative Diseases 79

Neurofilament and peripherin mutations were reported in rare forms of ALS (Gros-
Louis et al., 2004; Leung et al., 2004), leading researchers to develop animal models
bearing these mutations (Millecamps et al., 2006). Although these mice devel-
oped no evident MND, some exhibited moderate sensorimotor and spatial deficits
probably due to the observed reduction in conduction velocity.

Patients with an autosomal recessive form of juvenile ALS show deletion muta-
tions in ALS2 gene coding for alsin, a protein that seems to be involved in the Ras
transduction pathway (Yang et al., 2001). ALS2 knock-out mice, however, show
mild behavioural abnormalities especially in motor coordination accompanied by
discrete and age-related loss of cerebellar Purkinke cells (Cai et al., 2008).

Presently, there is no currently available nonhuman primate model of ALS.
Transgenic rodent models that exhibit many of the pathological changes in human
ALS provide useful tools for drug testing and essays of genetic manipulations as
no effective treatment for ALS has yet been found. Animal models with lower gene
copy number encoding the mutant SOD1 proteins and with slower and later onset of
disease may prove more appropriate to the human pathology. In addition, one might
also question the validity of the mutant SOD1 mice as models of gene defects that
account for only 2% of ALS cases.

6 Huntington’s Disease (HD)

6.1 The Human Disease

Huntington’s disease (HD) is an inherited autosomal dominant progressive neu-
rodegenerative disease that is commonly diagnosed at the age of 35–50 years.
Typically, onset of symptoms is in middle age, but the disorder can manifest
at any time between infancy and senescence. Its prevalence in North America
and Europe varies between 0.5 and 10/100,000; it is highest in populations of
western European origin and lowest in African and Asian populations (Harper,
1992).

The underlying genetic cause is an expanded trinucleotide CAG repeat of more
than 36 units in the IT15 (for “interesting transcript”) gene encoding the hunt-
ingtin (HTT) protein in chromosome 4 (1993). This will lead to the production
of mutant HTT protein with an abnormally long polyglutamine residue (polyQ).
The disease occurs when the critical threshold of about 37 polyQ is exceeded.
One important characteristic of HD pathology is the vulnerability of a particu-
lar brain region, the caudate–putamen, despite similar expression of the mutated
HTT protein with expanded polyQ in other brain areas. The ensuing degenera-
tion with atrophy, neuronal loss, and gliosis, initially involves the striatum, then
the cerebral cortex, and eventually degeneration may appear throughout the brain
as a constellation of the toxic effect of the mutation and the ensuing secondary
changes (Albin, 1995; Vonsattel et al., 2008). Interestingly, not all striatal cells
are equally affected by the degenerative process. Immunocytochemical studies
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combined with neurochemical analysis have consistently shown that HD prefer-
entially affects the GABAergic medium-sized spiny neurons, leaving the other
subpopulations of striatal cells largely unaffected, at least in the early course of the
disease (Cicchetti et al., 1996). Given that these neurons constitute up to 90% of the
striatal neurons in total, the consequences of this degeneration are devastating (Jaber
et al., 1996).

The actual causative pathway from the HD gene mutation to neuronal dys-
function and loss has not yet been established but two pathogenic processes have
been suggested as the basis for neurodegeneration in HD. One process involves
interaction of mutant HTT with other proteins to confer a toxic gain of func-
tion. Alternatively, mutant HTT might homodimerize or heterodimerize to build a
poorly soluble HTT protein that aggregates within ubiquitinated neuronal intranu-
clear inclusions and dystrophic neuritis in the HD cortex and striatum (DiFiglia
et al., 1997).

Clinically, HD is increasingly recognized as a phenotypically heterogeneous
disorder. Its motor features can be conceptually divided into positive and nega-
tive. Positive motor features are those characterized by excessive movement, such
as chorea and dystonia; conversely, negative motor signs describe a poverty of
movement, including bradykinesia and apraxia. These motor symptoms, along with
personality changes and cognitive decline, form the classic triad of HD symptoms.
Myoclonus, tics, and tremor can also occur as part of the clinical spectrum of HD
as well as choreoathetotic movements in the oro-bucco-facial regions that progres-
sively interfere with the voluntary control of vocalisation, chewing, and swallowing.
General intellectual abilities show a mild diffuse impairment within one year of
onset of overt motor signs, but as the disease progresses, a more severe exacerba-
tion of the early impairments produces a general intellectual state that will approach
the range of mental retardation. The diagnosis of HD is established on the basis
of genetic testing and to date there is no treatment available to modify the natural
course of the disease.

6.2 Rodent Animal Models

Mouse models of HD can be classified into several different categories: (1) trans-
genic mice expressing exon-1 fragments of the human HTT gene containing polyQ
mutations in addition to both alleles of murine wild-type huntingtin (Hdh); (2)
knock-in mice with pathogenic CAG repeats inserted within the existing murine
Hdh gene; and (3) mice that express the full-length human HTT gene in addition to
the murine Hdh.

The first reported transgenic HD mouse was the R6 mouse that overex-
presses exon 1 of the mutated human HTT gene under the control of the human
corresponding promoter (Mangiarini et al., 1996). This inserted gene harbored up to
120–150 CAG-repeats and the transgene is expressed at 31% of endogenous levels.
These mice show a slow progression of the disease and limited nuclear inclusions.
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Many lines of R6 mice were generated afterwards; they differed mostly by the length
of the repeats and by the level of expression of the transgene. To date, the most used
mice are probably the R6/2 mice that contain 150 CAG repeats and that express
the transgene at 75% of endogenous levels although the R6/1 line, with a lower
number of repeats and expression rate, shows a more progressive course of disease.
The R6/2 mice show weight loss and progressive and homogeneous motor deficits
that start as early as 5–6 weeks and that become overt by 8 weeks (Carter et al.,
1999). These behavioural phenotypes include tremor, clasping, convulsions that can
be quantified on rotarod tests, grip strength, and general locomotor activity assess-
ment. Life expectancy of these mice is rather short (death occurs at 10–15 weeks of
age), probably due to the extensive length of the CAG repeats which lead researchers
to draw a parallel with the juvenile form of HD. Survival rates of R6/2 mice were
used by researchers in neuroprotective studies and were shown to correlate well with
improved motor behaviour (Dedeoglu et al., 2003; Jin et al., 2005). Histologically,
these mice show cortical cerebellar and striatal atrophy, but with very little if any cell
loss (Turmaine et al., 2000). Protein aggregates and inclusions containing ubiquitine
and HTT proteins were also observed but with an extent and distribution beyond
what is found in HD (Davies et al., 1997). In addition, the HTT protein was found
within the nucleus of cortical and subcortical neurons as also found in postmortem
studies of HD patients’ brain and other CAG-repeat diseases (DiFiglia et al., 1997;
Gutekunst et al., 1999). Interestingly, as shown by the team of A. Hannan, these
mice when raised in an enriched environment show marked behavioural recovery
and reduced volume loss implicating environmental conditions in this archetypical
genetic disorder (reviewed in Laviola et al., 2008). Another line of mice in this cat-
egory is the N171-82Q mice that harbor a longer N-terminal fragment of HTT than
R6/2 mice with 82 polyQ (Schilling et al., 1999). These mice show striatal atrophy
and a greater degree of cell loss but with more heterogeneity in the phenotype than
R6/2 mice.

Interestingly, a rat model of transgenic HD with a truncated HTT fragment with
51 repeats under the control of the native HTT promoter exhibits adult-onset neu-
rological phenotypes with progressive motor dysfunction and typical pathological
alterations in the form of nuclear inclusions in the brain and shrinkage in striatal
volume as well as reduced glucose consumption (von Horsten et al., 2003). The dis-
tribution of nuclear inclusions is rather limited as they were observed mainly in the
striatum and globus pallidus; neuronal loss is moderate. These rats show progressive
weight loss and die prematurely.

The second category of mice with insertions of repeats within the mouse HTT
gene showed a discrete behavioural phenotype that was evident only when measures
were performed during the night cycle, that is, when mice are known to be gener-
ally more active (Menalled and Chesselet, 2002). The mice with 111 CAG repeats
inserted into the murine HD gene have a progressively developing nuclear pheno-
type that is specific for striatal neurons (Wheeler et al., 2000). These ubiquinated
nuclear inclusions are seldom found in 10–18-month-old mice. Some reactive glio-
sis was reported but with no cell loss or reduction in the brain volume whatever the
region.
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Several lines of mice belonging to the third category (i.e, that harbor the full-
length IT15 gene) have been generated. The HD48Q and HD89Q transgenic mice
have an insertion of the full-length human IT15 gene under the control of the
cytomegalovirus promoter (CMV). They show a progressive behavioural phenotype
and striatal but also Purkinje neuronal loss, with a small degree of nuclear inclusions
(Reddy et al., 1998).

Alternative cloning vectors have been developed; they can be used for genomic
fragments of up to 2 mb for the yeast artificial chromosomes (YAC) (Slow et al.,
2003) and up to 100 kb for bacterial artificial chromosomes (BAC) (Giraldo and
Montoliu, 2001). The YAC transgenic mice expressing the human IT15 gene with
48–128 repeats show a slow disease progression with motor abnormalities that range
from initial hyperactivity, to impaired motor coordination and finally to hypokinesia.
These behavioural changes are accompanied by almost exclusive striatal cell loss as
well as nuclear and neuropil aggregates but in a lesser extension than the R6/2 mice.
The BAC mice with 226 CAG repeats show tremor, head bobbing, and curling at
3 months of age followed by hypoactivity at 6 months of age, then death. Selective
striatal and cerebral cortex neuronal loss was documented.

6.3 Invertebrate Animal Models

Drosophila and Caenorhabditis elegans animal models were also used by
researchers for screening purposes of genes and pathways that might be involved
in neurodegenerative diseases or that might help manage the disorder. The use of
these simple models, that present nevertheless several features of neuronal functions
in higher organisms, has increased recently as they offer a unique opportunity to
dissect detailed mechanisms related to the development of neurodegenerative disor-
ders. The first reports of polyQ repeat reported insertions of fragments of the human
HTT gene that resulted in perinuclear cytoplasmic protein aggregation with repeats
up to 150-fold but not with a lower number of repeats (2–95) (Faber et al., 1999;
Satyal et al., 2000). This model has been used to identify evolutionary conserved
suppressors of polyQ toxicity such as PQE-1 which invalidation exacerbated neu-
rodegeneration and cell death and which overexpression was protective (Faber et al.,
1999).

PolyQ insertions in Drosophila animal models yielded cell death and aggregate
formation. Suppressor screen studies identified protein folding and clearance, RNA
maturation, and gene expression as essential steps in HD (Kazemi-Esfarjani and
Benzer, 2000). Indeed, two suppressors were identified that contain a chaperone-
related J domain. One suppressor gene, dHDJ1, is homologous to human heat
shock protein 40/HDJ1 whereas the second, dTPR2, is homologous to the human
tetratricopeptide repeat protein 2.

However, caution needs to be exercised when interpreting results obtained in
these simple animal models as they do not express the mutant gene in the same
cellular phenotype as in humans and intracellular pathways can sometimes be very
different from higher model organisms.
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6.4 Primate Animal Models

6.4.1 Lesioning Approaches

Earlier studies of HD most often used direct intrastriatal injection of kainaite or
QA, a non-NMDA, and NMDA glutamate agonists, to mimic the axon-sparing stri-
atal lesion observed in HD (Ferrante et al., 1993; McGeer and McGeer, 1976).
However, as excitotoxic striatal lesions do not elicit persistent spontaneous motor
symptoms this has led to the generation of toxin-induced models to study mitochon-
drial impairment and excitotoxicity-induced cell death, which are both mechanisms
of degeneration seen in the HD brain. These models, most of them based on 3-NP
lesioning, are often used in HD studies (Brouillet et al., 1999). Interestingly, whereas
the neurodegenerative effects were preferentially localized within the striatum, the
decrease in SDH activity for a given dose of 3-NP was shown to be homogeneously
distributed throughout the brain (Brouillet et al., 1998). The toxic effects of 3-NP
in the human were first discovered when farmers from China ingested sugarcane
contaminated with the fungus Arthrinium. The metabolism of this fungus produces
3-NP which invariably caused cell death in the caudate and putamen with conse-
quent appearance of persistent and severe dystonia in these intoxicated individuals
(Ludolph et al., 1991).

Systemic injection of 3-NP in nonhuman primates showed that a partial but pro-
longed energy impairment induced by the toxin is sufficient to replicate most of the
clinical and pathophysiological hallmarks of HD, including spontaneous choreiform
and dystonic movements, frontal-type cognitive deficits, and progressive hetero-
geneous striatal degeneration with preferential degeneration of the medium-sized
spiny GABAergic neurons and a relative sparing of interneurons and afferents, as
observed in HD striatum (Brouillet et al., 1999).

6.4.2 Genetic Approaches

Genetic approaches using either local transfer of mutated HTT into the monkey
striatum (Palfi et al., 2007) or, more interestingly, gene introduction into oocytes
(Yang et al., 2008) seem to be the way forward in establishing HD models which
closely replicate the pathogenesis of the human disease. By inserting a virus vec-
tor carrying part of the mutated human HTT gene, with 84 CAG repeats, into
unfertilised monkey egg cells, a transgenic model of HD in a rhesus macaque that
expresses polyQ-expanded HTT was developed. Hallmark features of HD, includ-
ing nuclear inclusions and neuropil aggregates, were observed in the brains of this
model. Additionally, the transgenic monkeys showed important clinical features of
HD, including dystonia and chorea (Yang et al., 2008). Because the nonhuman pri-
mates show neuroanatomical and behavioural characteristics that closely resemble
those of humans, a transgenic model in monkeys may prove to be the gold-standard
animal model of neurodegenerative diseases and pave the way to generating nonhu-
man primate models for other neurological conditions that are caused by single-gene
mutations, such as familial forms of PD, AD, and ALS.



84 I. Ghorayeb et al.

7 Conclusion

The tremendous amount of research focused on animal models of neurodegenerative
diseases, and the impressive amount of data generated, clearly illustrate the signif-
icance of their use as a valuable research tool. However, research performed so
far has also highlighted discrepancies between models and human neuropathology
leading to question the pertinence of some of these findings to human disorders.
As detailed above, a given pathology can be mirrored by numerous different ani-
mal models and determining which data obtained from these models are relevant to
human pathology is problematic. Indeed, a mouse model simply carrying a human
mutation or lesion is far from replicating the constellation of clinical symptoms,
the pathogenic cascades, and the neuroanatomic and neuropathological changes
observed in human pathology. This is especially true when the human pathology has
no spontaneous equivalent in animals, which the case for most neurodegenerative
disorders.

In addition, the nature of the alteration performed in these models to mimic a
neurodegenerative disorder, as well as features inherent to the animal models and
their housing conditions, also constitute a drawback. For instance, animal models
are often young males that are of an inbred species, thus almost genetically identi-
cal, and living in a very standardized environment. This is hardly the case of patients
suffering from a neurodegenerative disorder. Given the tremendous amount of data
currently available pointing to the implication of gender and gene/environment
interactions in modulating brain function, one must use caution before translating
findings in these animal models to human disorders (Laviola et al., 2008).

Furthermore, the question addressed and the methodology used in the explo-
ration of animal models are among the main factors of variance between clinical
research, mostly performed on human subjects and postmortem brains, and more
fundamental research on mouse models. A clear and consensus definition of the cri-
teria needed for a given animal model to be considered adequate is hard to reach
among scientists and clinicians even for “straightforward pathologies” such as PD
implicating mainly, but not only, degeneration of the nigral DA neurons or for HD
due to a well-defined genetic mutation. This is due to the wide spectrum of param-
eters defining a disease such as its onset, the related behavioural consequences, and
the underlying neuropathological features, rendering difficult the quest of gener-
ating the ultimate animal model. The challenge of obtaining such an ideal animal
model is even greater in psychiatric disorders where the closest model to a human
pathology is the drug addiction one, as attempts to model complex illnesses such as
schizophrenia or depression remain, at best, unsatisfactory. Animal models are nev-
ertheless still generated, sometimes following exquisite and complex constructions,
mainly because of the complexities of the human brain and of disease processes and
the inherent technical limitations of exploring the human disease by means other
than on postmortem brains. Although medical imagery procedures have gained sig-
nificant and impressive advances this last decade, they do not provide elements to
determine the pathogenesis of a disease or the causal chains involved. Thus, and
despite their current limitations, animal models of neurodegenerative diseases are
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still essential elements in the laborious attempts to determine the etiology of a given
disease, understand its progression, and the relationship between the observed clin-
ical phenotypes and the histological features or hallmarks of the disease. A growing
need is now acknowledged to combine-join-converge research programs between
clinicians and basic researchers who should reach for a consensual language. This
should help extrapolate findings obtained in animal models to the human pathol-
ogy and identify and apply means that will prevent or delay, if not cure, the
disease.
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1 Introduction

The consequences of malnutrition on the central nervous system are diverse and
depend to a significant extent on the stage of development or maturity of the brain
as well as on the severity of the nutritional deficiency. For example, vitamin deficien-
cies result in a wide range of neuropathology and neuropsychiatric symptomatology
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depending upon the nature and extent of the vitamin deficiency. The most com-
mon vitamin deficiency disorders are those associated with the group B vitamins,
particularly thiamine (vitamin B1). The likelihood of multiple vitamin deficiencies
should be borne in mind.

This review chapter summarizes current knowledge on vitamin deficiencies,
examines the role of vitamins in cellular function, and reviews current mechanisms
involved in the pathogenesis of brain dysfunction in vitamin deficiencies.

2 Thiamine (Vitamin B1)

Thiamine is a water-soluble vitamin and is also known as vitamin B1, or aneurin
(Fig. 1). Both the pyrimidine and thiazole moieties are necessary for biological
activity, which is maximal when only one methylene group bridges the two moieties.
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CH2 –– CH2 –– OH

N N
+

2
3

5
6

4
4

52

3

Fig. 1 Structure of thiamine

Thiamine status is influenced by the diet and by a variety of other factors,
including its bioavailability in food products, ethanol consumption, the presence
of antithiamine factors in the diet as well as folate and protein status. Ingested thi-
amine is fairly well absorbed, rapidly converted to phosphorylated forms, stored
poorly, and excreted in the urine in a variety of hydrolyzed and oxidized products
(TanPhaichitr et al., 1999).

In developed countries, clinical thiamine deficiency occurs most commonly in
alcoholics and in patients with grossly impaired nutritional status associated with,
for example, gastrointestinal disease or AIDS (Butterworth, 2006). Thiamine defi-
ciency may result from inadequate dietary intake of the vitamin. Chronic alcohol
consumption can result in thiamine deficiency by causing inadequate nutritional
thiamine intake, decreased absorption from the gastrointestinal tract, and impaired
thiamine utilization in the cells. People differ in their susceptibility to thiamine defi-
ciency and different brain regions may be more or less sensitive to this condition.
Thiamine deficiency is more common in developing countries where polished rice
is the staple diet. Peripheral nerve damage (neuropathy) is a common consequence
of thiamine deficiency. The neuropathy tends to be worse distally than proximally,
involves myelin more than axons, and is often painful. The neuropathy is linked to
multiple deficiencies of water-soluble vitamins that often occur together in foods
and are known as the vitamin B complex.
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2.1 Thiamine Deficiency-Related Neurological Disorders

Beriberi (infantile and adult) and Wernicke’s encephalopathy (WE) are clinical
manifestations attributed to thiamine deficiency. Beriberi is characterized by periph-
eral neuropathy including sensory, motor, and reflex functions affecting the distal
segments of limbs more severely than proximal ones (TanPhaichitr, 1985). WE is
a metabolic disease due to thiamine deficiency and is characterized by lesions in
the thalamus, hypothalamus (including mammillary nuclei), and cerebellum (Victor
et al., 1971; Harper and Butterworth, 1997).

WE is seriously underdiagnosed both in alcoholic and nonalcoholic patients. It
has been estimated that in alcoholic patients, the diagnosis of WE is missed in
up to 80% of cases (Harper, 1979). Similarly, a review of the literature describ-
ing WE patients with HIV–AIDS revealed that 80% of cases had again not been
adequately diagnosed clinically during life (Butterworth et al., 1991). The princi-
pal reason for its consistent underdiagnosis results from the overuse of the classical
textbook definition of WE which requires that a triad of neuropsychiatric symp-
toms (ophthalmoplegia, ataxia, global confusional state) be present for diagnosis. In
practice, it is rare that this triad of symptoms is present; rather, many patients diag-
nosed subsequently with WE present only with psychomotor slowing or apathy. In
the meantime, a definitive diagnosis of WE can nowadays be accurately made using
magnetic resonance imaging (MRI) (Charness and DeLaPaz, 1987).

Korsakoff’s psychosis is considered by some to represent a progression of WE.
It is characterized by a striking loss of working memory with relatively little loss
of reference memory. Prompt treatment of Wernicke’s syndrome with thiamine
is believed to prevent the development of Korsakoff’s syndrome, but the latter
responds little if at all to treatment with thiamine.

Abnormalities of thiamine-related processes have also been reported in a wide
range of neurodegenerative diseases. Brain tissue from patients with Alzheimer
Disease (AD) contains decreased concentrations of thiamine diphosphate (TDP)
(Héroux et al., 1996) and TDPase activities are reduced by up to 60% in this material
(Rao et al., 1993). Furthermore, activities of TDP-dependent enzymes are decreased
in AD brains (Gibson et al., 1988; Butterworth and Besnard, 1990) with activities
of alpha-ketoglutarate dehydrogenase (αKGDH) showing particularly low levels in
patients with both genetic and sporadic forms of the disease. In patients bearing the
epsilon 4 allele of the apolipoprotein E gene, the correlation between αKGDH activ-
ity and clinical dementia rating is 0.7 (Gibson et al., 1988). Amyloid-β peptide (Aβ)
is an important component of senile plaques in AD. There is increasing evidence
to suggest that excess Aβ production is the cause of AD and a recent study showed
that exposure of isolated brain mitochondria to Aβ caused a significant reduction
in activities of the thiamine-dependent enzymes αKGDH and pyruvate dehydroge-
nase complex (PDHC) (Casley et al., 2002; see Section 2.2.1), suggesting that these
changes contribute to neuronal cell death in AD. Reduced activities of αKGDH have
also been described in Parkinson’s disease (Mizuno et al., 1994) and progressive
subnuclear palsy (Albers et al., 2000).
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Several thiamine antagonists including oxythiamine, pyrithiamine, and
amprolium cause thiamine deficiency in animals. The most extensive studies of thi-
amine deficiency in laboratory animals have utilized rats and mice. Dietary thiamine
deficiency is induced with artificial diets complete in all food stuffs except thiamine.
Because thiamine deficiency induces loss of appetite, each control animal must be
pair-fed to equal food consumption by the thiamine-deficient group of animals. The
thiamine antagonists oxythiamine and pyrithiamine are converted to catalytically
inactive pyrophosphates that compete for TDP binding sites on the enzymes. Mice
fed with combinations of pyrithiamine and a low-thiamine diet develop abnormal
neurological responses within 5–7 days and overt neurological symptoms by day 8
or 9; death often occurs by day 10. In pyrithiamine-treated rats, abnormalities of
motor performance occur by day 3, additional neurological symptoms by day 12,
and death within 2 weeks (Butterworth, 2006).

2.2 Thiamine and Cell Metabolism/Function

2.2.1 Thiamine as Enzyme Cofactor

Thiamine uptaken into the cell is phosphorylated to TDP by the enzyme thiamine
pyrophosphokinase. TDP is then further phosphorylated to thiamine triphosphate
(TTP) or is dephosphorylated to thiamine monophosphate (TMP).

Evidence suggests that thiamine phosphorylation/dephosphorylation is a com-
partmentalized process in the brain. Thiamine phosphate esters are significantly
more concentrated in neurons compared to other brain cells (Laforenza et al., 1988).
Moreover, TDPase activities are twentyfold higher in neurons whereas TMPase is
expressed primarily by glial cells. In nerve terminals, TTP is rapidly synthesized
from TDP by the action of TDP phosphoryltransferase but the TTP ester does not
accumulate to high concentrations; rather it is rapidly hydrolysed to TDP by the
action of TTPase, an enzyme which is also enriched in nerve terminals. Nerve stim-
ulation results in release of thiamine which is mainly in the form of TMP (Cooper
and Pincus, 1979). Taken together, these findings suggest that trafficking of thiamine
and TMP occurs between neurons and astrocytes in brain as shown in a simplified
schematic manner in Fig. 2.

TDP-dependent enzymes include transketolase, an enzyme component of the
pentose shunt pathway, pyruvate dehydrogenase complex, and αKGDH a tricar-
boxylic acid cycle enzyme (Fig. 3). Branched-chain ketoacid dehydrogenases are
also TDP-dependent.

Given the mitochondrial localization of pyruvate and α-ketoglutarate dehy-
drogenase, it is not surprising that thiamine deficiency has multiple metabolic
consequences including lactate accumulation (Peters, 1936; Navarro et al., 2005),
alanine increases (Butterworth and Héroux, 1989), and reduced synthesis of high-
energy phosphates (Aikawa et al., 1984). Inasmuch as an effective tricarboxylic acid
cycle is imperative for the synthesis of neurotransmitters (acetylcholine, glutamate,
GABA) in brain, thiamine deficiency leads to impairments in their synthesis (Gibson
and Blass, 1985; Butterworth and Héroux, 1989; Navarro et al., 2005) (Fig. 3).
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Fig. 2 Intercellular trafficking and thiamine and thiamine esters in brain. TMP: thiamine
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Fig. 3 TDP-dependent enzymes involved in brain glucose oxidation and the pentose shunt path-
way. Impairment of TDP-dependent enzymes leads to decreased synthesis of neurotransmitters
(acetylcholine, glutamate, GABA, aspartate), cellular energy compromise, and lactate accumu-
lation. PDHC: Pyruvate dehydrogenase complex, αKGDH: α Ketoglurarate dehydrogenase, TK:
Transkelotase
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Addition of thiamine to thiamine-free cellular preparations or to animals early in the
progression of thiamine deficiency results in a rapid normalisation of function and
of neurotransmitter synthesis. This reversible metabolic phenomenon is generally
referred to as the “biochemical lesion” in thiamine deficiency.

2.2.2 Thiamine as a Component of Neural Membranes

Electrical stimulation of a wide range of nerve preparations results in thiamine
release suggesting a role for the vitamin in membrane function that is independent
of its enzyme cofactor role mediated by TDP. TDP is further phosphorylated to thi-
amine triphosphate (Fig. 2). Although its precise role has yet to be elucidated, it has
been proposed that TTP activates high-conductance chloride channels (Bettendorf,
1994). TTP also appears to have regulatory properties on proteins involved in the
clustering of acetylcholine receptors (Gautam et al., 1995).

2.3 Neuronal Cell Death in Thiamine Deficiency

Chronic thiamine deficiency leads to two distinct types of neuropathological lesions.
The first type is characterized by neuronal disintegration, vascular endothelial cell
swelling, and sparing of the neuropil. This type of damage is seen in the thalamus
and inferior olives. On the other hand, destruction of the neuropil, endothelial cell
swelling, and neuronal sparing occur in periventricular brainstem nuclei (Torvik,
1985; Harper and Butterworth, 1997). Several mechanisms have been proposed
to explain the selective neuronal cell damage and loss due to thiamine deficiency.
These mechanisms include cellular energy failure, oxidative/nitrosative stress, focal
lactic acidosis, NMDA receptor-mediated excitotoxicity, and blood–brain barrier
breakdown.

2.3.1 Cellular Energy Failure

Both WE in humans (Butterworth et al., 1993) and experimental thiamine deficiency
(Butterworth and Héroux, 1989) are characterised by decreases in brain concentra-
tions of TDP and a reduction in activities of TDP-dependent enzymes. Prolonged
reduction in activity of αKGDH in the brain due to thiamine deficiency results in a
decreased glucose (pyruvate) oxidation and a switch from tricarboxylic acid cycle
flux to glycolysis in an attempt to maintain high-energy phosphates. This results
in increased synthesis of brain alanine and lactate (Navarro et al., 2005). Studies
of oxidative metabolism in isolated brain mitochondria from thiamine-deficient rats
show decreased respiration using α-ketoglutarate as a substrate but no such changes
in respiration using succinate (Parker et al., 1984). This finding is consistent with
decreased activities of αKGDH (see Fig. 3).

Direct measurement of high-energy phosphates in the brains of thiamine-
deficient animals reveals early losses of ATP in brainstem (Aikawa et al., 1984). The
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focal accumulation of lactate in vulnerable brain structures may result in reduced
pH (Hakim, 1984), a situation that is exacerbated following glucose loading of
thiamine-deficient animals (Navarro et al., 2005).

2.3.2 Oxidative/Nitrosative Stress

Accumulation of reactive oxygen species has been reported in the thiamine-deficient
brain (Langlais et al., 1997). Other indicators consistent with oxidative/nitrosative
stress in the brain due to thiamine deficiency include reports of early activation of
microglia (Todd and Butterworth, 1999; Gibson and Zhang, 2002) and increased
expression of inducible nitric oxide synthase leading to increased nitrotyrosine
immunoreactivity in vulnerable brain regions (Calingasan et al., 1998) as well
as reports of increased expression of hemoxygenase-1 and inter-cellular adhesion
molecule-1 (Gibson and Zhang, 2002). There is evidence to suggest that vas-
cular factors also contribute to thiamine deficiency-related brain damage. Such
factors include increases of endothelial nitric oxide synthase (eNOS) (Kruse et al.,
2004). Moreover, targeted disruption (knock-down) of the eNOS gene attenuates
the neuronal cell death in thiamine-deficient mice (Gibson and Zhang, 2002). eNOS
knock-down but not knock-down of iNOS or nNOS leads to a reduction in protein
tyrosine nitration (Beauchesne et al., 2009), suggesting a major role of eNOS as the
source of nitric oxide-related nitrosative stress in thiamine deficiency.

Thiamine-dependent enzymes and processes are modified in the brains of
patients with a wide range of neurodegenerative diseases (see Section 2.1) where
the decline in enzyme activity is linked to the neuropathology and symptoms of
these disorders. In addition to the finding that thiamine deficiency leads to oxida-
tive stress (above), it has been proposed that oxidative stress causes disruption of
thiamine-dependent processes (Gibson and Zhang, 2002). These authors proposed
that the interaction of thiamine with oxidative processes is part of a cascade of events
leading to neurodegeneration and, conversely, the reversal of the effects of thiamine
deficiency by antioxidants together with the amelioration of other forms of oxidative
stress by thiamine suggest that thiamine acts as a site-directed antioxidant.

2.3.3 NMDA Receptor-Mediated Excitotoxicity

The nature of the brain lesions observed in chronic thiamine deficiency resem-
bles those described in excitotoxic brain injury mediated by the NMDA receptor
(Langlais and Mair, 1990). Evidence consistent with a role of excitotoxicity in the
pathogenesis of thiamine deficiency-related brain damage includes the finding of
increased extracellular glutamate in brain regions that are particularly vulnerable to
thiamine deficiency (Hazell et al., 1993) and the report that pretreatment with the
NMDA receptor antagonist MK801 leads to significant neuroprotection (Langlais
and Mair, 1990). One possible explanation for the increased extracellular brain con-
centrations of glutamate in thiamine deficiency is the reported loss in expression of
high-affinity astrocytic glutamate transporters in vulnerable brain regions (Hazell
et al., 2001).
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2.3.4 The Blood–Brain Barrier Disruption

Haemorrhagic lesions are characteristic of experimental thiamine deficiency and
WE in humans indicative of a breakdown of the blood–brain barrier (BBB). A
study using immunoglobulin G (IgG) as an indicator of BBB integrity in thiamine-
deficient rats revealed increased IgG immunoreactivity in the inferior colliculus and
inferior olive prior to the onset of cell death in these regions (Calingasan et al.,
1995). Similar early changes of BBB have been reported in the thiamine-deficient
mouse (Harata and Iwasaki, 1995) microglial activation leading to the release of
reactive oxygen species and cytokines are early cellular events with the potential to
lead to BBB breakdown in thiamine deficiency (Todd and Butterworth, 1999).

3 Pyridoxine (Vitamin B6)

Vitamin B6 or pyridoxine participates in over 100 enzymatic reactions as the cofac-
tor, pyridoxal phosphate (PLP). It exists in three forms: the alcohol, the amine, or
the aldehyde. Pyridoxal phosphate is an essential cofactor for enzymes involved in
the synthesis of many neurotransmitters.

Pyridoxine has been used to counteract nausea during pregnancy. Mothers who
use pyridoxine supplements give birth to babies with higher pyridoxine require-
ments. Pyridoxine dependency has been reported in some newborns with seizures
and pyridoxine treatment reverses the seizure activity in these infants (Bernstein,
1990). A number of commonly used drugs are pyridoxine antagonists. These
include isoniazid, hydralazine, cycloserine, and penicillamine. Use of these drugs
can result in peripheral neuropathy, seizures, and other neurological sequelae.
Coadministration of pyridoxine reverses these side effects without affecting the effi-
cacy of the initial treatment. MRI and positron emission tomographic studies in
pyridoxine-deficient patients reveal diffuse structural abnormalities with progres-
sive dilatation of the ventricular system and atrophy of the cerebral cortex and white
matter (Gospe and Hecht, 1998; Shih et al., 1996). Pyridoxine deficiency in the
rat leads to decreased dendritic arborization and reduced numbers of synapses and
myelinated axons (Fig. 4) (Gerster, 1996).

Paradoxically, pyridoxine itself can also cause pathology in the central nervous
system consisting of necrosis of dorsal root ganglia neurons and a centrifugal axonal
atrophy and breakdown of peripheral and central sensory axons (Xu et al., 1989).
This may occur at doses as low as 200–500 mg/d. However, in clinical trials using
100–150 mg/d to treat carpal tunnel syndrome, no toxicity was reported, suggesting
that this a safe dose in adults. On the other hand, there are insufficient data to
recommend long-term use of pyridoxine in children.

Pyridoxine plays a role in (1) the control of the hypothalamo-pituitary end-organ
system, (2) melatonin synthesis, and (3) convulsive seizure activity. Neurological
deficits resulting from pyridoxine deficiency can largely be explained by decreased
activity of glutamic acid decarboxylase, 5-hydroxytryptophan decarboxylase, and
ornithine decarboxylase (Dakshinamurti et al., 1990). The products of these



Vitamin Deficiencies 111

DIET (mg/kg)

0.6 1.0 7.0

12

15

A
G

E
 (

d
ay

s)

Fig. 4 Decreased dendritic arborisation in pyridoxine deficiency. Figure shows reduced Purkinje
cells arborisation at 12 and 15 days in rat pups fed 0.6, 1.0, and 7 mg pyridoxine/Kg diet (modified
from Chang et al., 1981)

enzymes are GABA, serotonin, and putrescine, respectively. Putrescine is a
precursor of the polyamines, spermidine and spermine. Spermidine and spermine
function as allosteric modulators of NMDA receptors, potentiating NMDA currents
when glycine and glutamate are saturating. Dihydroxyphenylalanine decarboxylase,
which also requires PLP as a cofactor, is less sensitive to pyridoxine deficiency.

The hypothalamus contains high concentrations of the monoamines dopamine
and serotonin and these neurotransmitters have inhibitory or excitatory effects,
respectively, on the anterior pituitary. For example, thyroid-stimulating hormone
(TSH) secretion is increased by serotoninergic and decreased by dopaminergic acti-
vation. Pyridoxine deficiency in rats is associated with low levels of PLP in the
hypothalamus, with no change in dopamine concentrations, but decreased levels of
serotonin (Dakshinamurti et al., 1990). This correlates with decreased thyroid status
and decreased pituitary TSH. Treatment with pyridoxine returns these parameters to
normal.

Melatonin is produced in the pineal gland from tryptophan in a four-step reaction
sequence depicted in Fig. 5. The pineal gland regulates diurnal variation of various
physiological processes through the secretion of melatonin. Pyridoxine deficiency
results in decreased concentrations of N-acetylserotonin and melatonin in the pineal
gland during the dark phase (Dakshinamurti et al., 1990). Melatonin also acts at the
level of the hypothalamus, resulting in increased prolactin release. Physiological
levels of prolactin result in the initiation of lactation in females. Dopamine has an
inhibitory effect resulting in decreased prolactin release. Mild pyridoxine deficiency
results in decreased prolactin secretion as dopamine levels are not changed despite
decreases in serotonin.

When pyridoxine deficiency is induced in pregnant rats, spontaneous convul-
sions are seen in the offspring at 3–4 days of age. Seizures are of short duration,
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but occur at frequent intervals. Brain analysis indicates decreased PLP and glu-
tamic acid decarboxylase (Dakshinamurti et al., 1990). When pyridoxine deficiency
is induced in female rats during lactation, the rat pups develop abnormal EEG
recordings at 3–5 weeks of age. This is associated with increased 3H-GABA bind-
ing to GABAa receptors and 3H-Baclofen to GABAb receptors, suggested to be
due to increased receptor sensitivity resulting from chronic decreased synaptic
GABA. These changes correlated with decreased PLP and GABA in the cerebel-
lum of deficient rats. In another study using pyridoxine-deficient adult male rats,
it was demonstrated that picrotoxin, a GABAa receptor antagonist, injected into
the ventro-posterior-lateral thalamic nucleus, resulted in a reduced threshold for
seizure activity (Dakshinamurti et al., 1990). The decreased inhibitory effect due
to decreased GABA, combined with the accumulation of glutamic acid resulting
from decreased decarboxylase activity is a likely explanation for the seizure activity
seen in pyridoxine-deficient rats.

4 Cobalamin (Vitamin B12)

Vitamin B12 or cobalamin is present in meat and dairy products. Following
ingestion, it is transformed into either methylcobalamin or adenosyl-cobalamin.
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The former is the cytosolic form and is responsible for a number of important
methylation reactions such as the conversion of homocysteine to methionine, an
important precursor of S-adenosylmethionine which in turn is required for the
production of some neurotransmitters (norepinephrine and glutamate), as well as
the maintenance of myelin. Adenosyl-cobalamin is a mitochondrial cofactor for
methylmalonyl-CoA mutase. Vitamin B12 deficiency results in both hematological
(pernicious anemia) and neurological changes. Treatment of B12 deficiency results
in the reversal of the anemia, but may or may not reverse the neurological con-
sequences. To further complicate the picture, B12 deficiency is usually diagnosed
following a blood test demonstrating megaloblastic changes associated with low
serum B12. Unfortunately, in up to 25% of patients, the neurological symptoms
precede or are the only signs of B12 deficiency. Consequently, the diagnosis is
frequently missed (Carmel, 2005).

Vitamin B12 deficiency results in subacute combined degeneration of the spinal
cord. It is characterized by muscle weakness, parasthesias, various mental problems,
and more rarely, visual disturbances. Neuropathological examination demonstrates
a spongy appearance in the white matter due to distention of the myelin sheath. In
later stages, there is evidence of axonal disintegration. Microscopically, there are
multifocal vacuolated and demyelinated lesions in the white matter of the spinal
cord affecting the posterior and lateral columns in particular. Early lesions consist
of swelling of myelin sheaths; fibres of highest diameter are predominantly affected.
Ultrastructural studies are limited to experimental animal models. In nonhuman
primates, the neuropathology is indistinguishable topographically and microscop-
ically from that of subacute combined degeneration of the spinal cord in humans.
The degeneration of myelin is characterized by separation of myelin lamellae and
the formation of intramyelinic vacuoles leading to destruction of the myelin sheath
(Agamanolis et al., 1978).

There are only two enzyme reactions that require a cobalamin cofactor, and inhi-
bition of neither of these reactions can easily explain the neurological consequences
of B12 deficiency. A number of hypotheses have been proposed. For example, it
has been suggested that the formation of branched chain fatty acids caused by the
accumulation of propionyl-CoA via the inhibition of methylmalonyl-CoA mutase
results in abnormal composition of the myelin sheath (Carmel, 2005). Propionyl-
CoA can substitute for acetyl-CoA in the acetyl-CoA synthetase reaction, the first
step in fatty acid synthesis. However, inherited disorders of cobalamin metabolism
which result in much higher accumulations of propionyl-CoA do not result in sub-
acute combined degeneration of the spinal cord. An explanation consistent with
methylcobalamin deficiency, is that the lack of methylcobalamin traps methylte-
trahydrofolate as shown in Fig. 6. This depletes methylenetetrahydrofolate which
is necessary for thymidylate synthesis thus affecting DNA synthesis as well as
decreasing the syntheis of S-adenosyl-methionine which is a methyl donor to brain
lipids. More recently, the role of homocysteine has been investigated. Homocysteine
accumulates as a result of the inhibition of methionine synthase which requires
methylcobalamin as a cofactor (Briddon, 2003). It has been suggested that homo-
cysteine is a better functional marker of B12 deficiency than serum B12 levels (Bates
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et al., 1997). However, the inherited disorder of homocystinuria with much higher
homocysteine levels does not result in subacute combined degeneration.

Vitamin B12 deficiency has been linked to increased cytokine production, in par-
ticular the myelinolytic tumor necrosis factor-alpha (TNFα), suggesting that inflam-
mation may be the source of the neurological damage (Miller, 2002; Scalabrino
et al., 2003, 2005). In a rat model of subacute combined degeneration, increased
TNFα production was observed, as well as decreased neurotrophic factors, epider-
mal growth factor, and interleukin-6 production. This was associated with myelin
vacuolation in the central nervous system (Scalabrino et al., 2003, 2005). Although
changes in cytokine production are well documented, along with a number of well-
defined neurochemical abnormalities, the exact mechanism to explain the selective
neuropathological damage caused by B12 deficiency is still unknown.

5 Niacin (Vitamin B3)

Niacin and niacinamide refer to nicotinic acid and its amide. Nicotinic acid is a
pyridine derivative synthesized from tryptophan.

Experimental niacin deficiency usually requires a diet high in corn. Zein, the
major storage protein of American corn, contains little tryptophan. Ingestion of corn
can therefore be expected to raise the ratio, relative to tryptophan, of other long chain
neutral amino acids that compete for the same carrier. Corn-fed dogs develop “black
tongue,” with prominent abnormalities implicating the gastrointestinal system
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(Gibson and Blass, 1985). Also, antiniacin compounds can induce deficiency states
within days in rodents on a normal diet. Neurological symptoms are more obvious
in rats with antimetabolite-induced niacin deficiencies than in the corn-fed dogs.

Niacin deficiency causes pellagra which includes mental symptoms and was
once common in areas where American corn was a dietary staple. Addition of
purified niacin to the diet has largely abolished the disorder. Pellagra is associ-
ated with the “four Ds”: dermatitis, diarrhea, dementia, and death. Dietary niacin
deficiency reduces the levels of NAD and NADP coenzymes in the brain. Niacin
requirements can be modified by genetic and environmental factors. Hartnup syn-
drome is a hereditary disorder in which tryptophan transport is impaired and niacin
requirements increase. A chronic toxic delirium may be the only clinical abnormal-
ity, at least early in the course of the disorder. The delirium may resemble some
forms of schizophrenia (Gibson and Blass, 1985). Neuropathological changes seen
in pellagra are restricted to neurons and the characteristic finding is chromatoly-
sis. Affected neurons are ballooned, there is loss of Nissl substance, and the nuclei
are located eccentrically. Although the issue of chromatolysis has been debated
(Harper and Butterworth, 1997) the consensus now is that the brain regions and
lesion characteristics are a function of the nature of the underlying cause (dietary,
alcohol-related, or isoniazid toxicity).

At present, pellagra is encountered most often in patients with chronic alco-
holism, often referred to as alcoholic pellagra encephalopathy (APE). APE patients
often show only disturbances of consciousness, but may also manifest myoclonus
and ataxia. Administration of niacin is recommended in APE patients showing
myoclonus and ataxia even without the classical symptoms found in endemic
pellagra patients (Sakai et al., 2006).

Epidemiological studies suggest that niacin may be implicated in the pathogen-
esis of Parkinson’s disease via the following process. NAD produced from niacin
releases nicotinamide via poly(ADP-ribosyl)ation which is activated in Parkinson’s
disease. Released excess nicotinamide is methylated to 1-methylnicotinamide
(MNA) in the cytoplasm by nicotinamide N-methyltransferase. MNA destroys sev-
eral subunits of complex I via superoxide formation. This can destroy complex I
subunits either directly or indirectly via mitochondrial DNA damage, and stimu-
lates poly(ADP-ribosyl)ation. It has been proposed that this implicates nicotinamide
as a potential causal agent in the development of Parkinson’s disease (Fukushima
et al., 2004).

6 Folic Acid (Vitamin B9)

Folate (pteroylglutamic acid) is essential for the synthesis and methylation of DNA
during fetal and early postnatal development (Nunn et al., 1986). Folate defi-
ciency may result from poor diet, malabsorption, from treatment with anticonvulsant
drugs such as phenytoin or primidone, as well as from antifolate drugs such as
methotrexate. Folate deficiency during pregnancy leads to an increased prevalence
of fetal malformations such as spina bifida and related neural tube defects. Findings
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from two multicentre trials confirmed that folate supplements starting periconcep-
tionally and continuing through pregnancy reduce the risk of neural tube defects
(Werler et al., 1993; MRC Vitamin Study, 1991).

Studies in experimental animals suggest that folate deficiency during gestation
and lactation results in alterations of myelin lipids (Hirono and Wada, 1978). Studies
in the developing rat central nervous system suggest that folate uptake and storage
depend upon a folate-binding protein (10-formyltetrahydrofolate dehydrogenase)
which is preferentially localized in glial cells (Martinasevic et al., 1999).

7 Antioxidant Vitamins

Oxidative stress has been clearly implicated in a wide range of human diseases by an
impressive body of scientific evidence. Oxidative stress is an imbalance in the equi-
librium status of pro-oxidant/antioxidant systems in cells (Sies, 1985) and comes
from external sources such as ionizing radiation, toxins, drugs, chemicals and envi-
ronmental pollutants, or endogenous sources resulting from (patho)physiological
metabolism of the cell. Antioxidant compounds can be classified into several gen-
eral categories: (1) antioxidant enzymes such as superoxide dismutase, glutathione
peroxidase, catalase, and heme-oxygenase, (2) antioxidants such as vitamin E (α-
tocopherol), vitamin C (ascorbic acid), and carotenoids, (3) secondary antioxidants
including selenium, zinc, riboflavin, and manganese and, finally, (4) antioxidants
such as flavonoids, coenzyme Q, lipoic acid, albumin, and bilirubin. Deficiency of
any antioxidant vitamin or nutrient has the potential to lead to an imbalance which
may to cause oxidative stress.

7.1 α-Tocopherol (Vitamin E)

α-Tocopherol is a lipid-soluble vitamin which is an effective antioxidant. Vitamin
E consists of two groups of lipid-soluble compounds: tocopherol and tocotrienol.
In humans, α-tocopherol predominates and is considered the more active form of
the vitamin. Vitamin E was first isolated as a factor that prevented infertility in
rats (Evans and Bishop, 1922). It can inhibit the peroxidation of polyunsaturated
fatty acids and it stimulates prostacyclin synthesis which promotes vasodilation
and platelet aggregation. Vitamin E also protects membrane structure. Vitamin E
deficiency is quite rare. Nevertheless, pure vitamin E deficiency secondary to defi-
ciencies in absorption have been described (Traber, 2006). Vitamin E deficiency can
occur with abetalipoproteinemia, cholestatic liver disease, fat malabsorption, celiac
disease, cystic fibrosis, and small bowel resection. The typical neurological syn-
drome in humans is a spinocerebellar degeneration, with loss of reflexes, ataxia, and
impaired vibration and position sense.

A severe and chronic deficiency of vitamin E is associated with a characteristic
neurological syndrome with typical clinical, neuropathological, and electrophysio-
logical abnormalities in both humans and experimental animals. Chronic vitamin E
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deficiency (38 weeks) in mice decreases superoxide radical production in multiple
regions of male brain (Cuddihy et al., 2004). These results suggest that α-tocopherol
can act as a nonclassic uncoupler. Significant impairment in neural and visual func-
tion are observed in vitamin E-deficient rats after approximately 8 months (Hayton
and Muller, 2004). Low serum vitamin E is associated with demyelinating motor–
sensory neuropathy related to spinocerebellar ataxia (Puri et al., 2005). Vitamin
E supplementation leads to clinical and electrophysiological recovery of sensory
conduction and evoked potentials; motor nerve conduction, however, shows only
partial recovery. Vitamin E deficiency has also been associated with an increase in
lipid peroxidation and protein oxidation in the rat brain (Jolitha et al., 2006). The
concentration of free malondialdehyde (an indicator of lipid peroxidation) is signif-
icantly increased in tissues from vitamin E-deficient compared to control animals.
This is consistent with a deficiency of α-tocopherol causing increased lipid perox-
idation leading to abnormal neural electrophysiology (Hayton and Muller, 2004).
A longitudinal study recently showed significant improvements in growth and a
number of electrophysiological parameters of both neural and visual function after
repletion with vitamin E (Hayton et al., 2006). It was suggested that vitamin E could
play a role in hypothalamo–pituitary system regulation. Early vitamin E supple-
mentation may provide considerable improvement of neurological signs and other
associated abnormalities (Marzouki et al., 2005).

A wide range of cell culture, animal, and human epidemiological studies are
suggestive of a role of vitamin E in brain function and in the prevention of
neurodegeneration. It was recently suggested that vitamin E deficiency results in
transcriptional alterations in the cerebral cortex of the rat which are consistent with
the observed neurological and electrophysiological alterations (Hyland et al., 2006).
Vitamin E deficiency was shown to have a strong impact on gene expression in the
hippocampus. An important number of genes found to be regulated by vitamin E are
associated with hormones and hormone metabolism, and clearance of amyloid-beta
and advanced glycated end-products. A protective effect of vitamin E in AD pro-
gression has been reported (Rota et al., 2005). A recent study strongly supports the
hypothesis of an impairment of lipophilic antioxidant delivery to neuronal cells in
AD which could facilitate oxidative stress (Mas et al., 2006). Low-plasma vitamin
E concentrations may represent a higher risk of developing dementia in subsequent
years (Helmer et al., 2003).

The retention and secretion of vitamin E are regulated by α-tocopherol trans-
fer protein (αTP) in the brain. Dysfunction of αTP results in deficiency of vitamin
E in humans and mice, and increased oxidative stress in mouse brain. Ataxia
with isolated vitamin E deficiency (AVED) is an autosomal recessive neurode-
generative disorder due to mutations in the αTP protein gene on chromosome
8q13. This genetic disorder is characterized by neurological symptoms often
with a striking resemblance to those of Friedrich’s ataxia. AVED patients have
progressive spinocerebellar symptoms and markedly reduced plasma levels of
vitamin E (Mariotti et al., 2004). Vitamin E supplementation therapy allows
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stabilization of the neurological conditions in most of the patients. However, devel-
opment of spasticity and retinitis pigmentosa can appear during therapy (Mariotti
et al., 2004).

7.2 Ascorbic Acid (Vitamin C)

Vitamin C is used as the generic descriptor for all compounds exhibiting quali-
tatively the biological activity of ascorbic acid. Ascorbic acid is an unsaturated
sugar derivative that is a potent reducing agent. The oxidation of ascorbic acid
to dehydroascorbic acid is reversible (Fig. 7). Both forms are biologically active.
Because dehydroascorbic acid is readily reduced in vivo, it possesses vitamin C
(anti-scurvy) activity, whereas diketogulonic acid, a metabolite, has no activity.
Vitamin C has many functions in the organism, not least of which is the absorption
and metabolism of iron. It is an effective antioxidant. Ascorbic acid participates in
neurotransmitter synthesis as well as the synthesis of collagen. Vitamin C is neces-
sary for the synthesis of carnitine and facilitates immune functions. Finally, ascorbic
acid participates in the hydroxylation of catecholamines. The uptake of ascorbic acid
into synaptosomes requires glucose and oxygen; uptake into the brain appears to be
via the cerebrospinal fluid rather than the blood. Fatigue and emotional changes are
common in the full-blown deficiency disease scurvy, but diffuse disease of the small
blood vessels with small haemorrhages is much more striking.

Ascorbic acid has been implicated in many neurological diseases. There is a
strong inverse relation between serum vitamin C concentration and stroke incidence
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(Sanchez-Moreno et al., 2004). Epidemiological evidence links adequate vitamin
C ingestion with decreased risk of suffering from a stroke. Inversely, decreased
plasma antioxidant status is associated with increased neurological damage follow-
ing a stroke. It was recently shown that dehydroascorbic acid, the oxidized form of
vitamin C which is a superoxide scavenger, normalizes several markers of oxidative
stress and inflammation in acute hyperglycemic focal cerebral ischemia in the rat
(Bémeur et al., 2005). It was also demonstrated that intraventricular ascorbic acid
injection is neuroprotective after hypoxic-ischemic brain injury in rats (Miura et al.,
2006). Vitamin C is also able to protect the hypothalamus from oxidative stress
induced in rats by an environmental toxicant (Muthuvel et al., 2006). Ascorbic acid
confers protection from increased free-radical activity in the brain of spontaneously
hypertensive rats by improving total antioxidant and superoxide dismutase status,
thus preventing high blood pressure and its complications (Newaz et al., 2005).
Also, intravenous cerebroprotective doses of citrate/sorbitol-stabilized DHA are cor-
related with increased brain ascorbate levels and a suppression of excessive lipid
peroxidation (Mack et al., 2006).

A case-control study showed that plasma vitamin C levels were lower in subjects
with dementia compared to controls, which was not explained by their dietary vita-
min C intakes (Charlton et al., 2004). Low brain ascorbic acid and glutathione levels
associated with a perturbation of the dopaminergic system actively participate in the
development of some cognitive deficits affecting schizophrenic patients (Castagné
et al., 2004). It has been proposed that low ascorbate in striatal extracellular fluid
may contribute to Huntington’s disease symptoms (Rebec et al., 2006) and evidence
suggests that the level of extracellular ascorbate plays a critical role in regulating
corticostriatal glutamate transmission (Rebec et al., 2005). A recent study suggested
that ascorbate could participate in normalizing neuronal function in Huntington’s
disease (Rebec et al., 2006).

Antioxidant vitamins, particularly vitamins E and C may act synergistically. A
short period of combined deficiency of vitamins E and C causes profound central
nervous system dysfunction in guinea pigs (Burk et al., 2006). The damage con-
sists mainly of nerve cell death, axonal degeneration, vascular injury, and associated
glial cell responses. These findings suggest that the paralysis and death caused by
combined deficiency of vitamins E and C in these animals is caused by severe dam-
age to brainstem and spinal cord. Also, a recent study demonstrated that vitamin E
and vitamin C prevented oxidative stress due to maternal hyperphenylalaninemia,
(an inborn error of intermediary metabolism) in the brains of rat pups (Martínez-
Cruz et al., 2006). Pretreatment with α-tocopherol and ascorbic acid prevents the
impairment of energy metabolism caused by hyperargininemia in the cerebellum
and hippocampus of rats (Delwing et al., 2006). Vitamin C and E administration,
alone or in combination, increases striatal catalase activity in rats subjected to oral
dyskinesias, which are implicated in a series of neuropathologies and associated
with increased oxidative stress. A beneficial effect of these vitamins on reserpine-
induced oral dyskinesia in rats has also been reported (Faria et al., 2005) and a recent
study suggested that vitamins C and E hold promise in helping prevent AD (Frank
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and Gupta, 2005). Finally, low brain glutathione and ascorbic acid levels associ-
ated with a perturbation of the dopaminergic system may actively participate in the
development of some cognitive deficits affecting schizophrenic patients (Castagné
et al., 2004).

7.3 Carotenoids

Carotenoids are plant pigments which constitute more than 600 compounds, most of
them being lipid-soluble and which contribute significantly to the nutritional bene-
fits of fruit and vegetable consumption. β-carotene is the most common form of the
vitamin and is the precursor of vitamin A. β-cryptoxanthine is another precursor of
vitamin A. The latter is a powerful lipid-soluble antioxidant which protects cellular
membranes from oxidative stress. Vitamin A is carried into the plasma by retinal
binding protein which is synthesized in the liver.

Decreased carotenoid concentrations are associated with increased risk of stroke
(Leppälä et al., 1999) and vitamin A levels are decreased in stroke patients
(Cherubini et al., 2000). Plasma concentrations of alpha- and beta-carotene are
lower in patients with acute ischemic stroke than in healthy controls and are nega-
tively correlated with neurological deficits in stroke patients (Chang et al., 2005).
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Brain Edema in Neurological Diseases

Eduardo Candelario-Jalil, Saeid Taheri, and Gary A. Rosenberg

Abstract In the brain, the transport of water and solute is precisely regulated.
This maintains a stable and unique microenvironment that is critical to brain func-
tion. Cerebral edema results from the excess of fluid in the brain’s intra- and
extracellular spaces. This occurs in response to a wide variety of insults, includ-
ing cerebral ischemia, hypoxia, infection, brain tumors, and neuroinflammation.
Cytotoxic edema leads to intracellular swelling without alterations in vascular per-
meability. Vasogenic edema is associated with damage to the blood–brain barrier.
These types of edema rarely exist in isolation. In most neuropathological conditions,
one type of edema predominates, but both coexist. This chapter focuses on the major
molecular mechanisms triggering brain edema, including alterations in ion chan-
nels and transporters, matrix metalloproteinases, tight junction protein degradation,
free radicals, and products of the arachidonic acid metabolism. We review present
knowledge of the contribution to brain edema of molecules such as aquaporins,
vasopressin, vascular endothelial growth factor, angiopoietins, and bradykinin. We
further examine brain imaging modalities that have revolutionized clinical diagnosis
of cerebral edema. Finally, we provide a critical evaluation of the current strategies
for the treatment of brain edema.

Keywords Vasogenic edema · Neurovascular unit · Matrix metallopro-
teinases · Aquaporins · Blood–brain barrier · Imaging
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1 Introduction

Cerebral edema occurs in response to a wide variety of insults, including ischemia,
hypoxia, infection, and noninfectious inflammation. Shifts in brain water, which is
the basis of the cellular swelling, are due to osmotic forces, and result in increases
in intra- and extracellular spaces. A reasonable amount of tissue swelling can be
tolerated in most parts of the body, however, the restrictions imposed by the rigid
tentorium and bony skull cause life-threatening herniation with relatively small
increases in the brain compartments. Two early anatomists, Monroe (1733–1817)
and Kellie (1758–1829), recognized that increased intracranial pressure due to
swelling in the cerebrospinal fluid (CSF), blood, or brain tissue compartments could
increase intracranial pressure; the concept of limited expansion capacity of the
intracranial contents is called the Monroe–Kellie doctrine.

Brain cell integrity depends on a continuous supply of oxygen and glucose in
order to perform chemiosmotic work that maintains the cell membranes. Loss of
ATP causes failure of the ATPase-mediated electrolyte pumps that remove sodium
in exchange for potassium with the result that osmotic pressure builds up within
the cell and cytotoxic edema occurs. If the cellular membrane remains intact, the
swollen cell can survive. Once the membranes break down, however, preservation of
function is no longer possible. Another type of edema occurs with damage to blood
vessels by trauma, ischemia, hypertension, or infections, which disrupt the endothe-
lial tight junctions allowing fluid and toxins to cross the blood–brain barrier (BBB)
and enter the brain. Linearly arranged white matter tracts serve as conduits for fluid
to move from one place to another within the brain. Leaky blood vessels cause fluid
to be transported between white matter tracts, which is referred to as vasogenic
edema. A third type of edema results from the transependymal flow of fluid into the
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brain; this type of extracellular edema is referred to as interstitial edema (Klatzo,
1967; Fishman, 1975; Kimelberg, 1995; Rosenberg and Yang, 2007).

Knowledge of the mechanisms of edema formation have expanded dramatically
in the past few years with discovery of important molecular mechanisms involved
in water movement across membranes and degradation of tight junction proteins in
endothelial cells. Many of the concepts regarding brain edema are well established
and based on a large body of work that was done in the past 50 years, and has been
summarized in several monographs (Katzman and Pappius, 1973; Rapoport, 1976;
Rosenberg, 1990; Fishman, 1992). Our goal is to refer to that work, but to emphasize
the more recent studies based on advances in molecular biology and brain imaging
that will lead to novel therapies (Rabinstein, 2006; Bardutzky and Schwab, 2007;
Zador et al., 2007).

2 Water Homeostasis in the Brain:
Physiology of the Brain Fluids

Water flow in the central nervous system (CNS) is unique, and regulation of water
balance is of paramount importance for brain functions. For most tissues, there
is a conveying water flow into the tissue at the interface of the endothelial cells
of blood vessels, bringing in hydrophilic substances and electrolytes (Kimelberg,
2004). Selectively permeable membranes keep plasma proteins and charged sub-
stances within the vasculature. It is estimated that 93% of plasma proteins are
retained in the vascular space, which create an osmotic driving force in the venous
capillaries for the return of fluid to the blood (Kimelberg, 2004). However, due
to the presence of the BBB, water flow occurs differently in the CNS, maintain-
ing a stable and unique microenvironment for the normal function of neurons and
other cells.

Brain and blood interactions occur at three interfaces: endothelial cells, which
form the major site of the BBB, the choroid plexus ependymal cell lining, and the
arachnoid granulations. These sites are key in regulating the exchange of substances
between brain and blood, thus maintaining the composition of brain electrolytes, as
well as the content of proteins and other substances.

Brain vascular endothelial cells are linked by tight junction proteins creating
high-resistance junctions between cells that effectively prevent the movement of
hydrophilic substances, including electrolytes, such as Na+ and K+. Water moves
across the lipid bilayer of endothelial cells through simple diffusion and vesicu-
lar transport (Tait et al., 2008). However, specialized water channels are formed by
molecules called aquaporins (AQPs), which are highly expressed in blood–brain
interfaces to facilitate the transport of water across cell membranes.

Transport of water into the cerebrospinal fluid (CSF) and interstitial fluid (ISF)
forms the source of the CSF that fills the cerebral ventricles and the subarachnoid
spaces around the brain and spinal cord. Early studies by Weed and Cushing iden-
tified the CSF as a “Third Circulation,” functioning along with the fluid between
the cells, the ISF, as the lymph of the brain (Weed, 1935, 1938). The ISF circulates
between the cells and drains into the CSF; it is formed osmotically by the extrusion
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of sodium by the sodium–potassium ATPase pump in endothelial cell membranes
(Abbott, 2004). The CSF is secreted by the choroid plexi into the ventricles and is
also derived from the ISF produced mainly by the brain capillaries. The ISF com-
municate with the CSF through gaps between cells forming the ependymal lining
of the ventricles. The CSF is eventually drained across the arachnoid granulations
that protrude into the sagital sinus, thus completing the circulation of the CSF and
ISF (Klatzo, 1994; Abbott, 2004). An alternative model of CSF circulation has been
proposed, implying that the main absorption of CSF occurs through the brain cap-
illaries and bulk flow through the arachnoid granulations is only a complementary
outlet route for CSF (Greitz and Hannerz, 1996; Greitz et al., 1997).

Water transport from the vasculature into the ventricle is facilitated by
aquaporin-1 (AQP1) highly expressed in the apical (ventricular-facing) membrane
of the choroid plexus, and via AQP4 in the ependymal lining of the ventricles (Zador
et al., 2007). Deletion of AQP1 reduces by fivefold osmotically induced water trans-
port in the choroid plexus (Oshio et al., 2005). CSF production is significantly
reduced in AQP1-deficient mice, but only by 20–25%, indicating a substantial con-
tribution of extrachoroidal fluid production by the brain parenchyma (Zador et al.,
2007). Fluid from the subarachnoid space is drained through the arachnoid granula-
tions into the low-pressure venous sinus that exit the cranium. Astrocytic processes
lining the pial membrane heavily express AQP4 which facilitate water flux into the
subarachnoid space (Zador et al., 2007). Excess ISF is also eliminated by a tran-
scapillary (AQP4-rich) route into the blood (Greitz et al., 1997; Tait et al., 2008).

3 The Neurovascular Unit and Tight Junction Proteins

Normal function of the brain depends on the BBB, which provides a highly selective
barrier between the blood and the brain parenchyma that creates a special microen-
vironment crucial for brain homeostasis. Endothelial cells, astrocytes, perivascular
microglia, neurons, and pericytes comprise the neurovascular unit (Fig. 1) (Ballabh

�
Fig. 1 Cellular and molecular constituents of the neurovascular unit. The blood–brain barrier
(BBB) is formed by endothelial cells, which are surrounded by the basal lamina and the astro-
cytic end-feet processes. The perivascular astrocytes provide the connection between the neurons
and the BBB. Astrocytic processes heavily express aquaporin 4 (AQP4). Within the basal lamina
reside the pericytes, which are important in BBB stability. The basal lamina provides structural
integrity to the capillaries and is mainly composed of type IV collagen, fibronectin, heparin sul-
fate, laminin, and entactin. Perivascular microglial cells make contact with cerebral microvessels
and modulate the functioning of the BBB. The tight junctions and adherent junctions connect
brain endothelial cells, and confer the low paracellular permeability of the BBB. The tight junction
proteins (TJPs) form an intricate complex of proteins linked to the actin cytoskeleton. Claudins
and occludin have four transmembrane domains with two extracellular loops, which are impor-
tant in forming the “seal” between two adjacent endothelial cells. These proteins associate with
the cytoskeleton via accessory proteins such as zona occludens ZO-1, ZO-2, AF6, and cingulin.
The junctional adhesion molecule (JAM) family forms part of the TJPs, and mediates attachment
of cell membranes via homophilic interactions. The most important components of the adherent
junctions are vascular endothelial (VE)-cadherin and platelet endothelial cell adhesion molecule-1
(PECAM-1). VE-cadherin is linked to the actin cytoskeleton via catenins
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Fig. 1 (Continued)
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et al., 2004; Hawkins and Davis, 2005). Unlike peripheral microvasculature, brain
capillaries are not fenestrated and contain very few endocytic vesicles suggesting
limited diffusion and transcellular transport (Ballabh et al., 2004; Zador et al., 2007).
Trafficking of molecules across the BBB occurs via active transport. Only small
lipophilic molecules are allowed to diffuse passively from the vascular space into
the brain.

During CNS development, brain blood vessels acquire the unique characteristics
that distinguish them from peripheral capillaries. The tight junctions and adherent
junctions connect brain endothelial cells (Fig. 1). Although disruption of adherent
junction proteins can lead to increased BBB permeability, it is primarily the tight
junction proteins (TJPs) that confer the low paracellular permeability and high elec-
trical resistance of the BBB (Bazzoni and Dejana, 2004; Hawkins and Davis, 2005;
Zlokovic, 2008). Tight junctions between the endothelial cells create the unique
membrane properties of the cerebral capillaries by greatly increasing the electrical
resistance, which blocks transport of nonlipid soluble substances.

The TJPs form an intricate complex of transmembrane (occludin, claudins, junc-
tional adhesion molecule-1) and cytoplasmic (zona occludens-1 and -2, cingulin,
AF-6, and 7H6) proteins linked to the cytoskeleton (Hawkins and Davis, 2005)
(Fig. 1). Occludin was the first TJP discovered. It is a 60- to 65-kDa protein with
four transmembrane domains and two extracellular loops that span the cleft between
adjacent endothelial cells (Furuse et al., 1993; Hirase et al., 1997; Hawkins and
Davis, 2005). Occludin is highly expressed in cerebral endothelium (Fig. 2) and
sparsely distributed in nonneural endothelia (Hirase et al., 1997). The phosphory-
lation state of occludin regulates its association with the cell membrane (Hirase
et al., 2001). In experimental autoimmune encephalomyelitis, a model of multiple
sclerosis, occludin dephosphorylation precedes the neurological deterioration and
increased leakage of plasma proteins across the BBB (Morgan et al., 2007). The
C-terminal cytoplasmic domain of occludin is involved in its association with the
cytoskeleton via accessory proteins such as zona occludens ZO-1 and ZO-2 (Furuse
et al., 1993).

The claudins are a large family of at least 24 members. Claudin-5, -3, and -12
are localized at the BBB (Wolburg and Lippoldt, 2002; Nitta et al., 2003) and it
is still debatable whether claudin-1 is present at the BBB. The extracellular tails
of claudins from adjacent cells self-assemble to form the tight junctions that are
“zip-locked” together (Nitta et al., 2003; Krause et al., 2008; Piontek et al., 2008).
The junctional adhesion molecule (JAM) family forms part of the TJPs (Fig. 1).
They are believed to mediate the early attachment of adjacent cell membranes via
homophilic interactions (Dejana et al., 2000; Bazzoni and Dejana, 2004) and may
regulate transendothelial leukocyte migration (Del Maschio et al., 1999), but the
function of JAM in the mature BBB is largely undefined.

The adherent junctions are ubiquitously found in the cerebral vasculature and
mediate several functions, including the adhesion of endothelial cells to each other,
contact inhibition during remodeling, and growth of the vasculature, and medi-
ate in part the regulation of paracellular permeability (Hawkins and Davis, 2005).
The most important components of the adherent junctions are vascular endothelial
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Fig. 2 Confocal micrographs showing the immunoreactivity for the tight junction proteins,
claudin-5 (a) and occludin (b) in rat brain microvessels. Claudin-5 (red) in blood vessels is sep-
arated from the astrocytes (glial fibrillary acidic protein, GFAP, in green) surrounding them. The
merged images show that claudin-5 and GFAP staining are separate (Panel (a), far right). (b)
Occludin is highly expressed in the cerebral endothelium. Occludin expression and GFAP staining
are co-localized around blood vessels in the rat brain. Scale bars indicate 10 μm. Modified from
Yang et al. (2007)

(VE)-cadherin and platelet endothelial cell adhesion molecule-1 (PECAM-1). VE-
cadherin is an endothelial-specific Ca2+-regulated protein that is linked to the
cytoskeleton via catenins (Fig. 1). PECAM-1, also known as CD31, is a key partici-
pant in the migration of blood-borne cells across the BBB. Changes in the adherent
junction proteins can lead to increased paracellular permeability (Abbruscato and
Davis, 1999) and leukocyte trafficking in the CNS (Newman, 1994; Garrido-Urbani
et al., 2008).

On the abluminal surface of the endothelial cells is a thin layer of basal lamina
composed mainly of type IV collagen, fibronectin, heparan sulfate, laminin, and
entactin. Entactin (also termed nidogen) is a basement membrane glycoprotein that
connects type IV collagen and laminin to add a structural element to the capillary,
and plays a role in cell interactions with the extracellular matrix. Fibronectin from
the cells joins the basal lamina to the endothelium. Basal lamina provide structure
through type IV collagen, charge barriers by heparan sulfate, and binding sites on
the laminin and fibronectin molecules (Zlokovic, 2008).

Within the basal lamina reside the pericytes (Fig. 1). Mesenchymal in origin,
pericytes form an incomplete envelopment around the endothelial cells and within
the microvascular basement membrane of capillaries and postcapillary venules. Cell
bodies and cytoplasmic processes of pericytes, as well as the endothelial cells, are
enveloped by the same basal lamina, except for where they make direct contact with
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each other (Diaz-Flores et al., 1991). They are important in BBB stability as well
as angiogenesis. They have been implicated in blood flow regulation at the capillary
level (Hirschi and D’Amore, 1996). Their expression of smooth muscle actin (SMA)
and desmin, two proteins found in smooth muscle cells, and their adherence to the
endovascular cells make them very strong candidates for blood flow regulators in
the microvasculature (Hirschi and D’Amore, 1996). Pericytes are contractile and
seem to serve as a smooth muscle equivalent in the brain capillaries. They also dis-
play several macrophage properties including phagocytosis and antigen presentation
(Thomas, 1999). Interaction between pericytes and endothelial cells is important for
the maturation, remodeling, and maintenance of the vascular system via the secre-
tion of growth factors or modulation of the extracellular matrix (Lai and Kuo, 2005).
There is also evidence that pericytes are involved in the transport across the BBB
and the regulation of vascular permeability (Hirschi and D’Amore, 1996; Thomas,
1999; Dore-Duffy, 2008).

Surrounding the endothelia and basal lamina are the astrocytic foot processes,
which have multiple ion transporters and channels, and heavily express AQP4, sug-
gesting that these processes facilitate ion and water transport across the BBB (Zador
et al., 2007) (Fig. 1). Neurons and perivascular microglia are the other cellular com-
ponents of the neurovascular unit. In the adult brain neurons, which are not in direct
contact with endothelial cells, probably exert an influence indirectly. However,
astrocytes directly mediate the neurovascular connections by enwrapping their foot
processes around brain microvessels (Kim et al., 2006; Kaur and Ling, 2008).
Neuronal activity modulates cerebral blood flow, and astrocytes mediate this pro-
cess (Anderson and Nedergaard, 2003; Schipke and Kettenmann, 2004). Astrocytes
by releasing vasoactive molecules mediate the neuron–astrocyte–endothelial signal-
ing pathway and play a profound role in coupling blood flow to neuronal activity
(Jakovcevic and Harder, 2007; Koehler et al., 2009).

Perivascular microglia make contact with cerebral microvessels and modulate
the functioning of the neurovascular unit (Kaur and Ling, 2008). There are two
important sources of microglia in the brain. During development, leptomeningeal
mesenchymal cells enter the brain and transform into microglia (Bechmann et al.,
2007). Circulating monocytes provide another major source of brain microglia
(Bechmann et al., 2005, 2007). Perivascular microglial cells, which are bone
marrow derived, continuously turn over in the CNS, and are immunoregulatory
cells that connect the CNS with the peripheral immune system (Williams et al.,
2001). Microglia are phagocytic cells with the capability of antigen presentation.
They rapidly respond to a wide variety of stimuli including inflammation and
hypoxia/ischemia (Block et al., 2007; del Zoppo et al., 2007). Activated microglia
release several inflammatory factors, which modulate the permeability properties of
the neurovascular unit (Stoll and Jander, 1999; Block et al., 2007).

There are complex interactions among the different cellular components of the
neurovascular unit and the extracellular matrix, determining its permeability prop-
erties during both physiological and pathological conditions. This highlights the
severe limitations of cell culture-based models to mimic neurological diseases asso-
ciated with BBB disruption. Transwell culture systems of endothelial cells alone
rarely achieve adequate transendothelial electrical resistance (TEER). Cocultures of
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astrocytes with endothelial cells reach higher levels of TEER. The incorporation of
luminal structures into the coculture system provides a flow component that most
closely mimics the in vivo situation (Krizanac-Bengez et al., 2006).

4 Cytotoxic Brain Edema

Brain edema is defined as an abnormal accumulation of fluid associated with vol-
umetric enlargement of the brain (Klatzo, 1967). Excess fluid can accumulate
in the intracellular or extracellular spaces. Two types of brain edema have been
defined based on the site of damage and where the fluid accumulates. Cytotoxic
edema results in intracellular swelling without alterations in vascular permeability.
Vasogenic edema is associated with damage to the BBB leading to flow of water and
plasma constituents into the brain. These types of edema rarely exist in isolation;
typically, one type of edema dominates the other, but both co-exist.

Cytotoxic edema, which results from pathological processes that interfere with
the normal function of cell membranes, constricts the extracellular space, constrain-
ing movement of fluid between the cells. The swelling is predominantly localized to
the glial processes around brain capillaries with sparing of the neurons (Kimelberg,
2004; Zador et al., 2007). The main reason for this is the presence of a high den-
sity of AQP4 in the astrocytic foot processes that make astrocytes swell rapidly in
response to an osmotic gradient.

The forces driving water flow to form cytotoxic edema are osmotic, generated in
brain injury conditions (ischemia, trauma, hypoxia) by disturbances in ionic home-
ostasis due to failure of the Na+/K+ ATPase and/or dramatic influx of Na+ and Ca2+

via ionotropic glutamate receptors (excitotoxicity) and other ionic channels. These
pathological alterations in cellular ionic homeostasis result in Na+ and water flow
from the intravascular and extracellular space into the intracellular compartment.

5 Vasogenic Brain Edema

The key feature of vasogenic edema is the breakdown of the BBB and subse-
quent leakage of the intravascular fluid into the extracellular space of the brain
parenchyma resulting in expansion of the extracellular space. Vasogenic edema
moves more readily in between the linearly arranged fibers that form the white mat-
ter. The gray matter restricts water movement because of the dense nature of the
neuropil, whereas the more loosely connected long fiber tracts can be separated to
allow edema fluid to flow. Because of the lack of cell damage in vasogenic edema,
once the damage to the blood vessel resolves, there may be a return to normal in
the edematous tissue. This is generally not the case in cytotoxic edema, which is
due to direct injury to the cells. White matter fiber tracts provide conduits for the
bulk flow of vasogenic edema (Cserr and Ostrach, 1974; Rosenberg et al., 1980).
Characteristic patterns of increased water in the projections of the white matter
beneath the cortical ribbon can be readily observed in certain MRI pulse sequences
(Fig. 3).
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Fig. 3 (a) T2-weighted MR image with anatomical location of the WM damage in a rat model
of chronic hypoperfusion induced by permanent ligation of the bilateral common carotid arteries.
WM damage is seen as a subtle region of diffuse signal loss in the medial corpus callosum (arrow).
The region of damage is variable between rats and varies from medial WM loss in some rats to
lateral in others or a more generalized bilateral signal loss. (b) ADC map reconstructed from raw
DWI MRI data slice matched to the T2w images. The ADC map shows bilateral regions of increase
ADC values (hyperintense region on the map) with the region of higher signal more pronounced
on the right side (arrow). (c) Image generated by overlaying converted multicolor ADC map over
structural T2w image, showing the increased ADC in the white matter (corpus callosum—white
arrow). Taken from Sood et al. (2009)

6 Role of Aquaporins in Brain Edema

Aquaporins (AQPs) are a family of at least 13 members of small membrane-
spanning proteins that assemble in cell membranes as homotetramers (Verkman
and Mitra, 2000; Agre et al., 2002; Verkman, 2005). Each monomer is approxi-
mately 30 kDa and six α-helical domains with cytosolically oriented amino- and
carboxy-termini surround the water pore (Verkman and Mitra, 2000). AQPs can
transport water in both directions (Tait et al., 2008). Early experiments demonstrat-
ing that erythrocyte membranes are more permeable to water than expected from
water diffusion through a lipid bilayer provided the first experimental evidence of
the existence of AQPs (Sidel and Solomon, 1957).

The principal AQP in mammalian brain is AQP4. Brain AQP4 is heavily
expressed at the borders between brain parenchyma and major fluid compartments
including astrocytic foot processes, glia limitans, ependymal cells, and subependy-
mal astrocytes (Nielsen et al., 1997; Rash et al., 1998; Badaut et al., 2002). This
distribution pattern indicates that AQP4 controls water flow into and out of the brain
(Tait et al., 2008). AQP1 is expressed in the apical membrane of the choroid plexus
and plays an important role in CSF formation (Boassa et al., 2006; Zador et al.,
2007; Tait et al., 2008). There is controversy about whether AQP9 is expressed in the
brain (Zador et al., 2007; Tait et al., 2008). However, a recent study using mice with
targeted deletion of the AQP9 gene provides conclusive evidence for expression of
AQP9 in neurons (Mylonakou et al., 2009).

Water moving from the blood into the brain through an intact BBB has to cross
three membranes: luminal and abluminal endothelial cell membranes, and the mem-
brane of the astrocyte foot processes (Kimelberg, 2004; Tait et al., 2008). High
density of AQP4 is present in the vascular-facing astrocytic membranes. Although



Brain Edema in Neurological Disease 135

at a lower density, AQP4 is also expressed in endothelial cell membranes. Because
of the close apposition of the astrocytic foot processes and their high density of
AQP4, water that crosses the BBB will rapidly and preferentially end up in the
perivascular astrocyte (Kimelberg, 2004).

AQP4 is likely to be one of the most abundant molecules at the brain–blood
interface and has been shown to play an important role in edema associated with
many brain pathologies (Badaut et al., 2002; Zeynalov et al., 2008). In a clinically
relevant model of ischemic stroke, AQP4 knock-out mice had decreased cerebral
edema and improved outcome. In AQP4-deficient mice, brain tissue water content
and swelling of pericapillary astrocytic foot processes were significantly reduced in
comparison with wild-type controls (Manley et al., 2000). Similarly, in a model of
water intoxication, AQP4-null mice display a decreased brain water content and
a significant improvement in survival (Manley et al., 2000; Zador et al., 2007).
Significantly reduced brain edema after cerebral ischemia and water intoxication
has been reported in α-syntrophin-deficient mice, which have reduced AQP4 expres-
sion in astrocyte foot processes (Amiry-Moghaddam et al., 2003, 2004). Transgenic
mice overexpressing endothelin-1 in astrocytes showed more BBB disruption with
increased water accumulation and brain edema possibly because of elevated AQP4
expression in astrocytic end-feet following temporary focal cerebral ischemia (Lo
et al., 2005).

Deletion of AQP4 reduces edema in models in which cytotoxic edema is
the predominant pathophysiological mechanism. However, in conditions in which
vasogenic edema is significant, AQP4 deletion exacerbates brain edema (Zador
et al., 2007). AQP4 function has been demonstrated to be of great impor-
tance in the clearance of extracellular fluid and resolution of vasogenic edema
(Papadopoulos et al., 2004; Zador et al., 2007). AQP4 deletion results in increased
brain swelling in vasogenic edema because of impaired removal of excess brain
water through glial limitans and ependymal barriers. AQP4-deficient mice have
higher intracranial pressure (ICP) and brain water content after continuous intra-
parenchymal fluid infusion. In a freeze-injury model of vasogenic brain edema,
AQP4-deficient mice had remarkably worse clinical outcome, higher ICP, and
greater brain water content. Similarly, in a brain tumor edema model involving
stereotactic implantation of melanoma cells, tumor growth was comparable in
wild-type and AQP4-deficient mice. However, AQP4-deficient mice had higher
ICP and corresponding accelerated neurological deterioration (Papadopoulos et al.,
2004; Zador et al., 2007). Results from these studies indicate that AQP4-mediated
transcellular water movement is crucial for fluid clearance in vasogenic brain
edema.

Together, these studies emphasize the importance of AQPs in water flux and brain
edema formation and suggest that AQPs are potential targets for drug development.
In addition to controlling brain water balance, AQPs participate in cell migration and
neuronal excitability (Papadopoulos and Verkman, 2008; Tait et al., 2008). The com-
plex involvement of AQPs in multiple aspects of brain function, and the opposite
role of AQPs in cytotoxic and vasogenic edema, will require greater understanding
before AQPs can be considered targets of therapy.
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7 Injury Cascade in Brain Edema: Molecular Mechanisms

Following brain injury, a cascade of highly interconnected pathological events
triggers edema (Fig. 4). Alteration of ionic homeostasis due to metabolic fail-
ure is the main process resulting in cytotoxic edema. In addition to the injury
occurring at the cell membrane, there are other molecular mechanisms involv-
ing the extracellular matrix and endothelial cells that lead to the breakdown of
the BBB associated with vasogenic edema. Although the number of molecules
involved in cell death is large, the timing of expression results in a cascade
effect that evolves over days and weeks. The initial events result in loss of
energy stores, fall in ATP, and rise in extracellular glutamate. Excitation of mem-
brane glutamate channels allows Ca2+ to enter the cell, triggering mitochondrial
damage and induction of cytokines, proteases, and free radicals. The final com-
mon pathways of cell death involve acid hydrolases and neutral proteases, such
as plasminogen activator/plasmin and matrix metalloproteinases (MMPs). Free
radicals of nitrogen and oxygen add to the damage. Other molecules that are
involved in these cascades include vasopressin V1a receptors, bradykinin, and
prostaglandins.

Fig. 4 Molecular cascade involved in cerebral edema. The time course of events is depicted at
the top of the drawing beginning with the initiating ischemic event and progressing over sev-
eral weeks. In the first hours, there is energy failure with Ca2+ and glutamate entering the cells.
The cell swelling produces cytotoxic edema. HIF-1α is formed. Furin, an intracellular convertase
that activates membrane type metalloproteinase (MT1-MMP), is formed. The activated MT1-
MMP activates the constitutively expressed MMP-2. Reversible opening of the BBB occurs. After
24–48 h there is formation of a second group of molecules that turn on cassettes of genes. The
cytokines include TNF-α and IL-1β, which activate transcription factors to induce MMP-3 and
MMP-9. The second wave of MMPs leads to irreversible damage to the BBB with delayed vaso-
genic edema. Induction of caspases occurs in the nucleus and apoptosis takes place. Finally,
angiogenesis and neurogenesis participate in the repair process



Brain Edema in Neurological Disease 137

7.1 Cation Channels Involved in Cytotoxic Edema

The Na+/K+ ATPase is the main active transport mechanism responsible for main-
taining ionic homeostasis, and this process involves continuous expenditure of ATP.
Normal cell volume depends on the constant extrusion of intracellular Na+ by the
Na+/K+ ATPase. Ischemia/hypoxia results in abrogation of mitochondrial oxidative
phosphorylation, and a rapid loss of ATP compromising the cellular ionic home-
ostasis. Sodium ion influx drives Cl– influx via chloride channels, resulting in an
increased osmolarity inside the cell that drives inflow of water mainly via AQP
channels (Badaut et al., 2002; Amiry-Moghaddam and Ottersen, 2003; Liang et al.,
2007). Membrane blebbing is a characteristic morphological alteration of cytotoxic
edema. Oncosis (from the Greek oncos, meaning swelling) describes the cell death
induced by cytotoxic edema. No significant alterations in the BBB are seen in the
initial stages of cytotoxic edema, and fluid movement from the extracellular space
into the cell does not lead to any change in total brain volume (Liang et al., 2007).

Shortly after middle cerebral artery occlusion (MCAO), cytotoxic edema occurs.
Swelling of astrocytes is more prominent than neuronal swelling. Astrocytes are
highly vulnerable to cytotoxic edema because they are involved in clearance of K+

and glutamate, which cause high osmolarity and promote water inflow. Moreover,
the expression of high levels of AQP4 in astrocytes makes them selectively vulner-
able to pathological swelling following ischemia/hypoxia (Liang et al., 2007; Zador
et al., 2007).

Cerebral tissue acidosis following ischemia or traumatic brain injury contributes
to cytotoxic brain edema formation. In vitro lactacidosis induces swelling of
glial cells by intracellular Na+- and Cl– accumulation by the Na+/H+-antiporter,
Cl–/HCO3

– antiporters, and the Na+–K+–2Cl– cotransport (Staub et al., 1990;
Ringel et al., 2006a).

Many studies have shown that pharmacological blockade of ion channels, includ-
ing nonselective cation channels, reduces cytotoxic edema and ischemic brain injury
in animal models of focal ischemia (Hoehn-Berlage et al., 1997; Miller, 2004; Liang
et al., 2007). The following cation channels have been shown to participate in the
development of cytotoxic edema following brain injury: NMDA receptor chan-
nel, acid-sensing ion channels (ASIC), sulfonylurea receptor 1 (SUR1)-regulated
NCCa-ATP channels, TRP channels, and the electroneutral cotransporter NKCC
channel.

The SUR1-regulated NCCa-ATP channel has recently received much attention
due to growing evidence from preclinical and clinical studies demonstrating the
therapeutic potential of blocking SUR1 by sulfonylureas such as glibenclamide (gly-
buride) in conditions associated with cytotoxic edema, such as ischemic stroke and
spinal cord injury (Kunte et al., 2007; Simard et al., 2007, 2008; Simard et al.,
2009b, a). The SUR1-regulated NCCa-ATP channel is not constitutively expressed
in the CNS, but is strongly upregulated under conditions of hypoxia or injury
in all members of the neurovascular unit. The SUR1-regulated NCCa-ATP channel
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conducts all inorganic monovalent cations and opening of this channel induces a
strong inward current that depolarizes the cell completely and leads to oncotic cell
swelling (Simard et al., 2008). In a rodent model of massive ischemic stroke with
malignant cerebral edema, pharmacological blockade of SUR1-regulated NCCa-ATP
channel with glibenclamide reduced mortality and cerebral edema by half (Simard
et al., 2006).

7.2 Role of MMPs in the Formation of Vasogenic Edema

Several recent reviews have been published on MMPs in brain injury (Ning et al.,
2008; Candelario-Jalil et al., 2009; Rosenberg, 2009). This section focuses only on
their role in BBB disruption and formation of vasogenic edema.

Proteases contribute to the inflammatory response to injury, forming a final com-
mon pathway that leads to BBB breakdown, hemorrhage, and cell death. After
traumatic and ischemic injuries, there is a buildup of lactate, which is increased with
hyperglycemia. Acidosis leads to release of acid hydrolases, which are destructive
enzymes that attack cellular components, including membranes, resulting in cell
necrosis. In situations where the pH remains neutral, increases in intracellular cal-
cium and cytokines cause induction of neutral proteases. The main neutral proteases
are the extracellular matrix-degrading MMPs, plasminogen activator/plasmin, and
caspases.

Matrix metalloproteinases are a gene family of 26 zinc-dependent proteases that
act on the extracellular matrix during injury and repair (Yong, 2005). Normally they
contribute to the remodeling of extracellular matrix, angiogenesis, and neurogenesis
(Wang et al., 2006). The MMPs are produced in a latent form and remain inactive
until they are activated by other proteases or free radicals (Cunningham et al., 2005;
Liu and Rosenberg, 2005). During an inflammatory response as part of an injury,
inducible MMPs with AP-1 and NF-κB sites in their gene promoter regions, are
induced by cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β

(IL-1β) (Rosenberg, 2002). MMPs break down the basal lamina and tight junction
proteins, opening the BBB and leading to hemorrhage (Yang et al., 2007). The plas-
minogen activator/plasmin system contributes to the vascular injury directly and
indirectly by activating the MMPs (Cuzner and Opdenakker, 1999).

As part of the neuroinflammatory response in brain hypoxia–ischemia, multi-
ple sclerosis, and CNS infections, MMPs mediate the increased permeability of the
BBB, which leads to vasogenic edema. MMPs attack proteins of the extracellular
matrix including collagen type IV, laminin, fibronectin, and proteoglycans (Asahi
et al., 2001; Rosenberg, 2002; Gu et al., 2005). Degradation of basal lamina com-
ponents by MMPs compromises the structural integrity of capillaries. Proteolytic
weakening of the vessel walls may also increase risks of rupture and hemor-
rhage (Mun-Bryce and Rosenberg, 1998). In addition, tight junction proteins in
endothelial cells are susceptible to MMP proteolysis. Occludin, claudin-5, and ZO-
1 are vulnerable to attack by MMPs in ischemic brain injury (Asahi et al., 2001;
Rosenberg and Yang, 2007; Yang et al., 2007; McColl et al., 2008; Liu et al.,
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2009), neuroinflammation (Gurney et al., 2006; Reijerkerk et al., 2006), and gliomas
(Ishihara et al., 2008).

The plasminogen/plasmin system acts in synergy with the MMPs. Plasmin is an
activator of several MMPs. This is important in the treatment of acute stroke with
tissue plasminogen activator (tPA). The risk of hemorrhagic conversion after tPA
treatment is increased when the time between stroke onset and the injection of the
drug is over 1 h; as the time increases, the risk of BBB disruption with hemorrhage
leading to death, also increases. The tPA lyses the fibrin clot in the blood vessel and
restores flow to the ischemic brain tissue. When the BBB is opened, as occurs in the
early stages of a stroke due to the production of MMP-2, the tPA escapes into the
brain tissue where it activates MMP-9. Inhibitors to MMPs block the opening of the
BBB and reduce the risk of hemorrhage after tPA treatment (Lapchak et al., 2000;
Pfefferkorn and Rosenberg, 2003; Wang et al., 2004; Murata et al., 2008).

Cerebral ischemia activates latent MMPs and induces de novo synthesis and
release of MMPs (Rosenberg et al., 1996a; Romanic et al., 1998; Rosenberg et al.,
1998; Heo et al., 1999; Asahi et al., 2000). MMP inhibitors significantly reduce
vasogenic brain edema following ischemia (Rosenberg et al., 1998; Lapchak et al.,
2000; Gasche et al., 2001; Copin et al., 2008).

Pharmacological blockade of MMPs using broad-spectrum inhibitors signifi-
cantly reduces brain edema following intracerebral hemorrhage (Rosenberg and
Navratil, 1997), cortical impact injury (Shigemori et al., 2006), and bacterial menin-
gitis (Paul et al., 1998; Leib et al., 2000, 2001). This body of experimental evidence
emphasizes the key role of MMPs in BBB damage and edema formation in a wide
range of neuropathological conditions.

7.3 Oxidative Stress and Brain Edema

Free radical formation is an important contributor to cell death and brain injury
in many neurological diseases. Shortly after brain damage by hypoxia–ischemia,
hemorrhage, or trauma, excessive reactive oxygen species (ROS) production occurs,
and at the same time, there is an impairment of antioxidant protective mechanisms,
which leads to oxidative stress (Heo et al., 2005).

During cerebral ischemia, ROS contribute to cytotoxic edema by perturbing the
functioning of plasma membrane ion transport systems such as Na+–K+-ATPase,
Ca2+-ATPase and Na+–Ca2+ exchanger. The proposed mechanisms underlying ion
transport modulation by ROS include the peroxidation of membrane phospholipids,
the oxidation of sulfhydryl groups located on the ion transport proteins, and oxida-
tive protein modification (Kourie, 1998). Oxidative stress triggers the release of
mediators known to be responsible for cytotoxic cell swelling, such as K+ ions,
glutamate, and lactic and arachidonic acid (Ringel et al., 2006b).

Oxidative stress damages endothelial cells of the BBB and contributes to vaso-
genic edema (Chan et al., 1984; Chan, 2001). Incubation of endothelial cells
with ROS-generating systems increases the permeability of endothelial monolayers
(Imaizumi et al., 1996; Lagrange et al., 1999; Fischer et al., 2005). The superoxide
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radical (O2
–•) has been identified as the primary ROS involved in increased vascu-

lar permeability and edema formation in global and focal cerebral ischemia, cold
brain injury, and brain tumors (Heo et al., 2005). Scavenging O2

–• radicals using
recombinant superoxide dismutase (SOD) or polyethylene glycol-SOD reduces
ischemia-induced BBB injury and vasogenic edema (Armstead et al., 1992; Schleien
et al., 1994). Treatment of ischemic rats with encapsulated SOD in biodegrad-
able poly (D,L-lactide co-glycolide) nanoparticles (SOD-NPs) maintained BBB
integrity, thereby preventing edema, reduced oxidative injury following reperfu-
sion, and protected neurons from undergoing apoptosis (Reddy and Labhasetwar,
2009). Further evidence emphasizing the important role of ROS formation in
brain edema development comes from transgenic animals overexpressing antioxi-
dant enzymes. Brain water content and infarct size are significantly reduced after
transient focal cerebral ischemia in transgenic mice overexpressing the human
Cu,Zn-SOD (SOD1) compared with nontransgenic controls (Kinouchi et al., 1991;
Yang et al., 1994; Kokubo et al., 2002). These SOD1-overexpressing mice also have
reduced vasogenic edema and infarction after cold-trauma brain injury (Chan et al.,
1991). Conversely, mice bearing a disruption of the SOD1 gene had increased infarct
volume and brain swelling after temporary focal cerebral ischemia (Kondo et al.,
1997), but not following permanent focal ischemia where there is no reperfusion
injury (Fujimura et al., 2001).

Hyperglycemia increases oxidative stress and MMP-9 expression/activity, exac-
erbating BBB breakdown and dramatically increasing edema formation after
ischemia-reperfusion injury in the rat (Kamada et al., 2007). Heterozygous SOD1
transgenic rats, carrying human SOD1 genes with a four- to sixfold increase in
Cu/Zn SOD activity, showed a significant reduction in hyperglycemia-induced
Evans blue leakage, vasogenic edema, and MMP-9 activation after experimental
ischemia compared with control nontransgenic rats (Kamada et al., 2007).

Transgenic mice overexpressing the intracellular form of glutathione peroxidase
(GPx1) displayed reduced infarct size and edema formation compared with non-
transgenic mice at 24 h of reperfusion following 1 h of middle cerebral artery
occlusion (Weisbrot-Lefkowitz et al., 1998; Ishibashi et al., 2002). Absence of GPx1
exacerbates cerebral ischemia-reperfusion injury as shown by larger infarct vol-
umes, increased activation of MMP-9, and a dramatic disruption of the BBB in
GPx1-null mice compared with wild-type controls (Wong et al., 2008).

The gp91phox (Nox2) containing NADPH oxidase is an important source of ROS
during cerebral ischemia (Kunz et al., 2007). It has been demonstrated that genetic
deletion of gp91phox confers protection against ischemic stroke in mice (Walder
et al., 1997). In gp91phox deficient mice, ischemic stroke-induced BBB breakdown,
brain edema, and lesion volume were largely attenuated compared with those in
wild-type mice (Kahles et al., 2007). In another study, intracerebral injection of col-
lagenase produced less bleeding in gp91phox null mice than wild-type animals. Brain
edema formation, neurological deficit and a high mortality rate were observed in
wild-type, but not in gp91phox knock-out mice (Tang et al., 2005). These studies
suggest that formation of ROS by NADPH oxidase plays a central role in BBB
injury and edema in stroke and intracerebral hemorrhage.
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Nitric oxide (NO) is a free radical that has both beneficial and deleterious
actions during ischemia/reperfusion depending on the cell type in which it is gen-
erated (Gursoy-Ozdemir et al., 2004). Excessive NO generation by neuronal nitric
oxide synthase (nNOS) is cytotoxic (Huang et al., 1994). On the contrary, endothe-
lial nitric oxide synthase (eNOS) knock-outs develop larger infarcts because NO
of endothelial origin promotes survival by improving blood flow during ischemia
(Huang et al., 1996; Gursoy-Ozdemir et al., 2004). However, excessive production
of NO by eNOS during reperfusion may contribute to ischemic brain injury via
peroxynitrite formation, which is the product of the reaction between NO and super-
oxide radical (Gursoy-Ozdemir et al., 2000, 2004; Han et al., 2006). In a model of
transient focal ischemia in the mouse, superoxide and peroxynitrite formation was
particularly intense in microvessels and astrocytic end-foot processes surrounding
them. There was colocalization of sites with peroxynitrite formation and vascular
injury, as shown by increased Evans blue leakage and MMP-9 labeling, suggest-
ing an association between peroxynitrite and microvascular injury (Gursoy-Ozdemir
et al., 2004). Nonselective NOS inhibition has been shown to significantly reduce
brain edema, BBB disruption, and infarct size in experimental stroke (Nagafuji et al.,
1992; Kozniewska et al., 1995).

Many studies have shown that synthetic antioxidant compounds significantly
reduce brain edema formation in experimental models of hemorrhage (Nakamura
et al., 2004, 2008) and ischemia (Ding-Zhou et al., 2003b; Ginsberg et al., 2003;
Suda et al., 2007).

7.4 Involvement of Vasopressin in Cerebral Edema

Arginine vasopressin (AVP) is a neuropeptide that is synthesized in the hypotha-
lamus and transported to the neurohypophysis, from where it is released into the
blood. AVP is commonly known as the antidiuretic hormone because it increases
water reabsorption by the kidney.

Centrally released AVP contributes to brain capillary water permeability, brain
ionic homeostasis, and the regulation of CSF production (Rosenberg et al., 1990;
Niermann et al., 2001; Bhardwaj, 2006). AVP mediates its action through three
G-protein coupled receptors: V1a, V1b, and V2. Unlike V2 receptors, V1a and V1b
are widely expressed in the brain. There is a causative role for centrally formed AVP
in brain edema formation following cerebral damage including trauma and ischemia
(Doczi et al., 1984; Dickinson and Betz, 1992; Shuaib et al., 2002). AVP, through
a V1 receptor- and [Ca2+]-dependent mechanism, stimulates the BBB Na-K-Cl
cotransporter to participate in ischemia-induced edema formation (O’Donnell et al.,
2005). Antagonists of vasopressin V1 receptors confer significant protection against
brain edema and neuronal cell death induced by ischemia (Ikeda et al., 1997a; Laszlo
et al., 1999; Shuaib et al., 2002; Vakili et al., 2005; Molnar et al., 2008a, b), hem-
orrhage (Rosenberg et al., 1992), traumatic brain injury (Szmydynger-Chodobska
et al., 2004; Pascale et al., 2006; Trabold et al., 2008), subarachnoid hemorrhage



142 E. Candelario-Jalil et al.

(Doczi et al., 1984; Laszlo et al., 1999), and cold-induced vasogenic edema (Ikeda
et al., 1997b; Bemana and Nagao, 1999). There is a relationship between AVP and
AQP in the kidney, but the interaction between AVP and water channels in the brain
remains to be elucidated.

7.5 Vascular Endothelial Growth Factor and Angiopoietins

Vascular endothelial growth factor (VEGF) and angiopoietins are families of
vascular-specific growth factors that regulate blood vessel growth, maturation, and
function (Thurston, 2002). VEGF, the predominant angiogenic growth factor, trig-
gers endothelial cell proliferation, migration, and increased vascular permeability
due to the formation of nascent vessels, which essentially consist of immature
endothelium with few pericytes and little mature matrix (Carmeliet, 2003; Ferrara
et al., 2003; Ballabh et al., 2007). By acting as a capillary permeability-enhancing
agent, VEGF also affects the integrity of the BBB.

The angiopoietins, Ang-1 and Ang-2, differently modulate the actions of VEGF
in angiogenesis (Zhu et al., 2005). In particular, Ang-1 and its endothelial recep-
tor, Tie2, mediate the maturation and stabilization of VEGF-induced vasculature by
promoting the recruitment of smooth muscle cells (pericytes) to the abluminal sur-
face of the newly generated vascular bed, promoting the structural integrity of blood
vessels (Yancopoulos et al., 2000; Ballabh et al., 2007). In contrast, Ang-2, a nat-
ural antagonist of Ang-1, is associated with both initial angiogenesis and capillary
destabilization. An increase in the expression of Ang-2 in the presence of VEGF
promotes vessel sprouting and increased vascular permeability (Carmeliet, 2003;
Roviezzo et al., 2005).

VEGF is an angiogenic factor that induces increased permeability of the BBB
leading to the formation of edema following ischemia–hypoxia (Mayhan, 1999;
Schoch et al., 2002; Kaur and Ling, 2008). VEGF is associated with endothelial
proliferation and neovascularization, suggesting that VEGF promotes angiogene-
sis and repair following stroke (Zhang et al., 2002). However, new vessels lack a
fully mature BBB, and are consequently leaky (Zhang and Chopp, 2002). VEGF
also directly increases the permeability of the BBB via the synthesis/release of
nitric oxide and subsequent activation of soluble guanylate cyclase (Mayhan, 1999).
Furthermore, VEGF may increase BBB permeability by inducing alterations in
endothelial TJP. It has been shown in vitro that VEGF significantly reduces occludin
and ZO-1 expression and disrupts the molecular organization of both proteins,
which leads to tight junction disassembly (Wang et al., 2001; Fischer et al.,
2002).

Increased VEGF production following ischemia has been shown to contribute
to BBB disruption and vasogenic edema (Zhang et al., 2000). Astrocytes are the
main cell type expressing VEGF following brain ischemia (Kaur et al., 2006).
Antagonism of VEGF using a fusion protein, mFlt (1–3)-IgG, which sequesters
VEGF, reduces ischemia/reperfusion-related brain edema and injury (van Bruggen
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et al., 1999). Inhibition of endogenous VEGF by topical application of an anti-
VEGF antibody in the ischemic cortex decreased extravasation of 14C-AIB, which
suggests that endogenous VEGF is in part responsible for the BBB breakdown
during the early stage of focal cerebral ischemia (Chi et al., 2007).

In cerebral ischemia, Ang-1 is able to antagonize VEGF-mediated BBB disrup-
tion, in association with inhibition of MMP-9 activity (Valable et al., 2005). In
ischemic animals, administration of VEGF leads to increased BBB permeability
and to an induction of MMP-9 activity. Conversely, the coadministration of Ang-1
and VEGF blocks the BBB disruption and reduces MMP-9 activity, resulting in a
dramatic reduction in edema volume (Valable et al., 2005). On the contrary, the com-
bined administration of VEGF and Ang-2 leads to an increase in MMP-9 activity
and BBB disruption (Zhu et al., 2005).

7.6 Bradykinin

Bradykinin is an endogenous inflammatory substance that increases vascular per-
meability and produces tissue edema. The kallikrein–kinin system is very rapidly
activated following brain injury resulting in the activation of kallikrein that cleaves
kininogen to produce bradykinin. The effects of bradykinin are mediated by two
different receptors: B1 and B2. Very low levels of B1 are found under normal con-
ditions. In contrast, the B2 receptor is constitutively expressed in a wide variety of
tissues including the brain and mediates the majority of bradykinin effects (Couture
et al., 2001).

Bradykinin promotes edema as shown in numerous models of brain injury includ-
ing bacterial meningitis (Lorenzl et al., 1996), traumatic brain and spinal cord injury
(Plesnila et al., 2001; Hellal et al., 2003; Ivashkova et al., 2006), and cerebral
ischemia (Lehmberg et al., 2003; Groger et al., 2005; Klasner et al., 2006; Lumenta
et al., 2006).

There are conflicting data on the specific role of B1 versus B2 receptors in
bradykinin-induced edema following focal cerebral ischemia. A large number of
studies indicate that blockade of the B2 receptor using pharmacological agents
dramatically reduces edema and infarct size, and improves neurological func-
tion in animal models (Zausinger et al., 2002; Ding-Zhou et al., 2003a; Klasner
et al., 2006; Lumenta et al., 2006). Kinin B2-deficient mice had improved motor
function, smaller infarct volumes, and developed less brain edema than wild-type
controls after focal cerebral ischemia (Groger et al., 2005). Contrary to these
data, it has been found that postischemic brain injury is dramatically exacer-
bated in B2-null mice following temporary middle cerebral artery occlusion (Xia
et al., 2006). Compared with wild-type controls, mice lacking the bradykinin
B2 receptor displayed a higher mortality rate and neurological deficit scores,
larger infarct volumes, more apoptosis, and increased neutrophil infiltration after
ischemic stroke (Xia et al., 2006), suggesting that the B2 receptor promotes sur-
vival and suppresses apoptosis and inflammation after cerebral ischemia. Adding
even more to the controversy on the role of bradykinin receptors in ischemic brain
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injury, a recent study has found that B2 deficiency did not confer neuroprotec-
tion and had no effect on the development of brain edema in a mouse model
of focal ischemia (Austinat et al., 2009). Interestingly, B1 receptor knock-out
mice developed smaller brain infarction, and fewer neurological deficits com-
pared with wild-type controls. This was accompanied by a significant reduction
in edema and endothelin-1 expression, as well as less neuroinflammation (Austinat
et al., 2009).

7.7 Arachidonic Acid and Brain Edema

Arachidonic acid is a polyunsaturated fatty acid that is released from membrane
phospholipids by the action of phospholipase A2 (Bosetti, 2007). Large amounts
of arachidonic acid are released following brain ischemia and trauma (Phillis and
O’Regan, 2004; Phillis et al., 2006). Arachidonic acid has been implicated in
vasogenic cerebral edema (Chan and Fishman, 1984; Staub et al., 1994). The dele-
terious effects of arachidonic acid, which may contribute to cerebral edema, include
enhanced production of prostanoids and free radicals via its metabolism by cyclo-
oxygenase (COX) and lipoxygenase (LOX) enzymes. However, it was found in a
previous in vitro study using C6 cells that arachidonic acid-induced glial swelling
is not due to formation of prostaglandins and leukotrienes (Winkler et al., 2000).
The authors speculated on the possible mechanism, but it remains to be deter-
mined how arachidonic acid directly induces glia cell swelling in this in vitro
model.

It has been shown that arachidonic acid metabolism could contribute to the
pathogenesis of cerebral edema. Treatment with indomethacin, a COX inhibitor,
nordihydroguaiaretic acid, a LOX inhibitor, or their combination significantly
reduced vasogenic edema induced by freezing lesions (Yen and Lee, 1987).
5-LOX inhibitors significantly decreased vascular permeability both within the
tumors and in brain adjacent to tumor, suggesting that capillary permeability is influ-
enced by endogenous leukotrienes, which play an important role in brain tumor
edema (Baba et al., 1992). Similarly, in transient focal cerebral ischemia, leak-
age of immunoglobulin G into the brain parenchyma was significantly reduced in
12/15-LOX knock-out mice as well as wild-type mice treated with baicalein, a LOX
inhibitor. Likewise, brain edema was significantly ameliorated in 12/15-LOX null
mice and baicalein-treated wild-type animals (Jin et al., 2008).

Experimental evidence indicates that COX modulates BBB permeability in
neuroinflammatory conditions, ischemia, and hemorrhage. The COX inhibitor,
KBT-3022, prevented brain edema induced by bilateral carotid occlusion and
recirculation in gerbils (Yamamoto et al., 1996). In the collagenase model of
intracerebral hemorrhage, the brain water content of rats treated with the COX-2
inhibitor, celecoxib, decreased both in lesioned and nonlesioned hemispheres in
a dose-dependent manner, which was accompanied with reduced perihematomal
cell death (Chu et al., 2004). Delayed damage to the BBB and vasogenic edema,
which follow ischemic stroke, were significantly diminished by administration of
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the COX-2 inhibitor nimesulide (Candelario-Jalil et al., 2007a). Inhibition of COX
activity with indomethacin prevented BBB damage following intracerebral admin-
istration of TNF-α in the rat. Indomethacin significantly reduced TNF-α-induced
MMP-9 and MMP-3 expression and activity and attenuated free radical formation
(Candelario-Jalil et al., 2007b).

8 Imaging Brain Edema

Technological advances in brain imaging have revolutionized diagnosis of cere-
bral edema. This occurred through the development of tomographic imaging,
beginning with computed tomography (CT) and complemented with magnetic res-
onance imaging (MRI). These methods essentially image water in brain tissue
either through the loss of tissue density that blocked X-rays in CT or the gain
of water that is the main source of signal in MRI. The theories related to shifts
in water that result in the imbalance associated with edema have been described
above. The manner in which images are generated in either method depends
strongly on the movement of water between the intra- and extracellular compart-
ments and the movement of water into the brain across an injured blood vessel.
Current concepts relate the changes seen in images are due to changes in the
intracellular–extracellular water ratio secondary to disruption of intracellular energy
metabolism and loss of ionic gradients. Cellular swelling reduces extracellular space
and increases tortuosity of extracellular space pathways; there is a restriction of
water movement between cells in cytotoxic edema that rapidly affects the diffu-
sion of water and results in a decrease in the apparent diffusion coefficient (ADC)
of water. Conversely, when the extracellular space expands as water crosses into
the brain and enters the extracellular space, there is an increase in water diffu-
sion that appears as an increase in the ADC. When there is an ischemic insult,
cells swell and water enters the intracellular compartment without an increase in
total water content in the affected zone. Fig. 5 schematically shows the hypo-
thetical changes in water diffusion within different compartments as results of
edema.

8.1 Imaging by CT

Brain tissue water content is inversely correlated with X-ray attenuation and can
thus be measured with CT (Rieth et al., 1980; Unger et al., 1988; Dzialowski et al.,
2004). Hypoattenuated areas on CT represent an increase in the net water content
of the involved brain parenchyma. Lowering of CT attenuation allows for quantifi-
cation and localization of edema, which is the result of net change in water content
of the area of interest. This increase in water content could be readily related to the
vasogenic edema. Based on this physics, different CT techniques have been devel-
oped to monitor edema: (1) noncontrast-enhanced CT (NECT), (2) perfusion CT
(PCT), and (3) CT angiography (CTA).
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BBB Intracellular spaces BBB Intracellular spaces

Fig. 5 Diffusion of molecules can be restricted in closed spaces, such as cells. Diffusion might
also be hindered by obstacles that result in tortuous pathways. Exchange between compartments
also slows down molecular displacements. Left panel shows a model of the movement of fluids
(diffusion and bulk flow) with three compartments of healthy brain tissues. Bulk flow is seen in
vascular compartment while the diffusion happens in the interstitial spaces and cell compartments.
Right panel shows the changes in diffusion of water as a result of edema. Molecular displacement
between compartments increases as a result of BBB breakdown in vasogenic edema. Tortuosity
will decrease as intracellular space is reduced

8.1.1 Noncontrast-Enhanced CT (NECT)

It has been shown that an increase by 1% of tissue water results in a decrease of
X-ray attenuation of 2.6 Hausfield units (HU) (Rieth et al., 1980; von Kummer
et al., 2001). For example, during MCA occlusion, attenuation decreased to 69.3
HU after 1 h, 66.6 HU after 2 h, 65.4 HU after 3 h, and 64.1 HU after 4 h. After
reperfusion, attenuation remained stable in the 1-h occlusion group but further and
steadily declined in the 2-, 3-, and 4-h occlusion groups. Attenuation during reperfu-
sion in the 1-h occlusion group differed significantly from that in the 2-, 3-, and 4-h
occlusion groups (Dzialowski et al., 2004, 2006, 2007). In comparison with ADC
measured by MRI, it was shown that CT measurements continue to decrease linearly
at a rate of 0.4 HU/h, whereas the decrease in ADC was almost completed after
1.5 h (Kucinski et al., 2002; Doczi and Schwarcz, 2003). Therefore, there should be
different causality for these observations. With NECT ischemic changes cannot be
observed before any morphological changes can be observed (von Kummer et al.,
2001); X-ray hypoattenuation at CT is highly specific for irreversible ischemic brain
damage (von Kummer et al., 2001). Therefore, NECT is not able to identify edema
before the appearance of vasogenic edema.

8.1.2 Perfusion CT

Two different methods have been used to achieve CT perfusion: xenon CT and
intravenous contrast-enhanced CT perfusion. Xenon CT provides an accurate
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quantitative measure of cerebral blood flow, but its use in an emergency setting
is limited. Contrast-enhanced perfusion CT studies are done by monitoring the first
pass of an iodinated contrast agent bolus through the cerebral vasculature (Hoeffner
et al., 2004; Wintermark et al., 2008). Any increase in Hausfield units is directly
proportional to the iodine concentration. Dynamic sequential acquisition of data
follows, and then data are analyzed to generate parameters of interest (e.g., cere-
bral blood volume, CBV; cerebral blood flow, CBF; and time to peak, TTP). PCT
has shown promise as a method for rapid assessment of cerebral hemodynamics.
The lesion size calculated by PCT was not different from the one calculated by
perfusion-weighted imaging (PWI) (Schramm et al., 2004) and DWI (Roberts et al.,
2001; Eastwood et al., 2003). Fig. 6 shows the superiority of PCT over NECT in
detecting the edema following ischemic stroke (Dhamija and Donnan, 2008).

Fig. 6 CT Perfusion: noncontrast-enhanced CT (NECT) and CT perfusion maps of a patient
presenting within 1 h of stroke onset. NECT was normal and CT perfusion revealed large penum-
bra in form of increased mean transient time (MTT), normal cerebral blood volume (CBV),
and reduced cerebral blood flow (CBF). (a) Normal NECT. (b) CT perfusion showing normal
CBV. (c) CT perfusion showing reduced CBF. (d) CT perfusion showing increased MTT. Taken
from Dhamija and Donnan (2008). Available at the website of the journal Annals of Indian
Academy of Neurology. http://www.annalsofian.org/temp/AnnIndianAcadNeurol11512-4945421_
134414.pdf
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8.2 Imaging by MRI

Common MR imaging is based on proton imaging; clinical proton imaging is largely
water imaging. MR can be adapted to provide noninvasive measurements of water
mobility and content in biological tissues. Several different techniques in MR imag-
ing have been developed to measure abnormalities in water mobility and water
content of tissues. Diffusion-weighted imaging (DWI) and diffusion tensor imag-
ing (DTI) have been developed to measure the changes in water mobility in cerebral
tissues. DWI measures one-dimensional distribution of water diffusion. The result
of DWI imaging is represented as an ADC map. On the other hand, DTI measures
three-dimensional distribution of water diffusion. Two important parameters, frac-
tional anisotropy (FA) and mean diffusivity (MD) are calculated from DTI images
to represent the diffusion abnormalities.

T2-weighted imaging is used to measure the net change in water content of
underlying tissue. Similar to NECT, T2 weighted images detect vasogenic edema,
but are not sufficient to detect cytotoxic edema. The newest technique, susceptibility
weighted imaging (SWI), measures vasculature changes within the edema region.

8.2.1 T2-Weighted Imaging

T2 is the transverse relaxation time and shows how long transverse magnetization
would last in a uniform magnetic field. T2 relaxation depends on the presence
of static internal fields in the substances. These are generally due to protons on
large molecules. An important event in the pathophysiological cascade that leads to
infarction following ischemia is the net movement of water from the extracellular
space into the intracellular compartment without an increase in total water content
in the affected zone. Because of the lack of a change in water, the T2-weighted
image remains normal at this stage. When the BBB breaks down, leading to vaso-
genic edema, there is an increase in total water content, which produces the bright
signal on the T2-weighted image. The intense appearance of the vasogenic edema
on T2-weighted MR images is because the motion of protons in vasogenic edema is
not so slow. Therefore, T2 remains long. It was suggested that true infarct extent on
T2-weighted can probably only be assessed on scans obtained beyond seven weeks
after stroke (O’Brien et al., 2004).

8.2.2 Diffusion-Weighted Imaging (DWI)

Diffusion-weighted MRI measures water self-diffusion and depends on: (1) diffu-
sion distance within the cells, (2) tortuosity of the interstitial spaces (Helmer et al.,
1995), and (3) transport through the cell membrane. Diffusion-weighted imaging
assesses microscopic mobility of water. The rate of water diffusion within tissues
measured by conventional MR methods is found to be significantly lower than for
free solutions, and measurements are often summarized in terms of an ADC, which
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is a measure of the effective distance over which water can migrate within the tissue
within a specified time. The ADC differs from the intrinsic diffusion coefficient in
a manner that is dependent on the microstructure and composition of the tissue.

By obtaining images with gradients of differing strengths (i.e., differing b val-
ues), an ADC can be calculated, providing a quantitative measurement of water
translational motion independent of magnetic field strength and gradient strength.
To determine the ADC, at least two b values are needed. A number of pathologi-
cal conditions, such as ischemic stroke and prolonged seizures, produce significant
changes in the ADC compared with healthy tissues. Moreover, having ADC values
allows the in vivo monitoring of changes in the ratio of extracellular to intracellu-
lar volume and the development of cellular swelling or shrinkage by measuring the
ADC of the tissue water. In DWI images, regions with a high diffusion constant, for
example, ventricles, tend to be darker and those with low diffusion constant brighter.
The contrast of the ADC map is the inverse of DWI. DWI is more sensitive than CT
in the identification of acute ischemia and can visualize major ischemia more easily
than CT.

DWI has been adopted to evaluate the development of edema in clinical
and research applications in a variety of neurological disorders including stroke
(Provenzale and Sorensen, 1999; Neumann-Haefelin et al., 2000a, c; Neumann-
Haefelin et al., 2000b; Chan et al., 2002; Chen et al., 2006b; Taguchi et al., 2007),
head trauma (Marmarou et al., 2000b, a; Barzo et al., 2002), and metabolic distur-
bances such as systemic hyponatremia. Fig. 7 represents DWI images of a stroke
patient.

Fig. 7 (a) Diffusion-weighted MRI of a patient with large middle cerebral artery stroke. There is
involvement of the entire vessel territory with possibly some hemorrhage in the basal ganglia. The
image was made within hours of the infarct and there is minimal compression of the ventricles. (b)
CT days after the infarct shows the massive shift of the midline structures away from the evolving
mass lesion. Compression of the CSF outflow tracts causes the hydrocephalus with interstitial
edema in the white matter adjacent to the ventricles
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8.2.3 Diffusion Tensor Imaging (DTI)

When the diffusion is isotropic, the probability of finding a water molecule after a
certain time is spherical, which can be described by one parameter. Tissue water dif-
fusion is affected by the presence and orientation of barriers to translational motion
(Kremer et al., 2007; Rollins, 2007). The measured ADC values can vary depend-
ing on the direction in which the diffusion-sensitive gradients are applied. ADC is
direction-dependent especially in the WM area. In this case, we can assume that the
diffusion process leads to an elliptical shape of the probability with the longest axis
aligned along the fiber direction. In order to fully characterize the diffusion ellip-
soid six parameters are needed. These parameters are organized in a tensor, called
the diffusion tensor. Six diffusion constants along six independent axes are mea-
sured. Having a tensor data DTI measures the diffusion properties: (1) magnitude,
(2) direction, and (3) anisotropy of water molecule in tissues. DTI was used in a
mouse model of traumatic brain injury. At every time-point, DTI was more sensitive
to injury than conventional magnetic resonance imaging, and relative anisotropy dis-
tinguished injured from control mice with no overlap between groups. DTI changes
predicted the approximate time since trauma (Mac Donald et al., 2007). DTI has
been used in carbon monoxide poisoning to follow recovery (Terajima et al., 2008).

8.2.4 Susceptibility-Weighted Imaging (SWI)

Susceptibility differences between tissues have been used as a new type of MR con-
trast by SWI sequences (Haacke et al., 2004; Haacke, 2006; Hu et al., 2008; Haacke
et al., 2009). SWI is a fully velocity-compensated high-resolution 3-D gradient-echo
sequence that uses magnitude and filtered-phase information, both separately and in
combination with each other, to create new sources of contrast (Mittal et al., 2009).
In SWI, there is a kind of mixture of spin density, T1, T2∗, CSF suppression, and
susceptibility sensitivity. SWI images reveal regions of edema identical to FLAIR
images because of short TR and comparatively longer TE, however, SWI does not
reveal a low signal in CSF because of a low flip angle. DWI highlights the edema-
tous regions affected by stroke, whereas SWI shows changes in oxygen saturation
along with other sources of susceptibility. Therefore, SWI demonstrates the affected
vascular territory in stroke. The hypothesis is that the deoxyhemoglobin content of
small vessels is increased over their normal values due to slower or restricted flow,
making these vessels visible (Haacke et al., 2004; Haacke, 2006; Hu et al., 2008;
Haacke et al., 2009).

9 Clinical Conditions Associated with Brain Edema

The consequences of brain edema depend on the amount of tissue involved, the
effect by intracranial pressure, and the threat of herniation. Small lesions such as
limited edema around a metastatic lesion or an early abscess may have little clinical
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impact. On the other hand, a large middle cerebral artery stroke with massive edema
may block CSF flow, resulting in unilateral hydrocephalus and herniation. When the
edema is generalized and the intracranial pressure massively increased as can occur
with head trauma, there is a threat of secondary ischemia due to loss of cerebral
blood flow.

Brain tumors cause brain edema through several mechanisms. Highly vascular
tumors often have vessels with leaky BBB and both the mass lesion and the vaso-
genic edema produce the pathological changes. In the case of metastatic tumors,
which can act as a foreign object, there is swelling in the tissue around the mass
from disruption of the BBB and cellular function. The resulting edema around the
metastatic tissue fans out into the white matter in fingerlike projections. Generally,
there are multiple masses due to metastatic lesions and one lesion in primary tumors.
With some tumors such as low-grade astrocytomas, which have tissue characteristics
close to normal brain tissue, relatively little edema accompanies the mass.

A different pattern is seen in the cerebral edema occurring with ischemia/
hypoxia. Lesions evolve over time as described above. The early energy failure
causes cellular swelling with cytotoxic edema. This can occur within minutes as
shown in DWI studies in animals. The cell swelling compresses the extracellular
space, constricting water diffusion, which appears on a diffusion-weighted MRI as
a hyperintense region with a corresponding dark area on the ADC scan (Fig. 7a).
Soon after the ischemic event, there is a transient opening of the BBB in reper-
fused brain. A second more severe opening is seen at 24–48 h in experimental
animals. These openings are associated with the expression of MMPs. Large infarcts
cause life-threatening edema because of compromise of blood flow and herniation
(Fig. 7b).

Purely vasogenic edema is uncommon in vascular disease. When there is a
sudden rise in blood pressure and the autoregulatory range of normal blood pressure
control is exceeded, an acute hypertensive crisis causes a pure form of vasogenic
edema. This is best illustrated in the young pregnant woman who has a sudden rise
in blood pressure during eclampsia (Fig. 8). The level of the blood pressure is less
important than the change. In a young person with normal blood vessels and a low
blood pressure, a marked increase, which may remain under what would be con-
sidered a normal range, could result in damage to the blood vessels. On the other
hand, a person with long-standing hypertension may tolerate a further rise without
developing vasogenic edema. In the hypertensive crisis, there is a predilection for
the posterior circulation to be involved more dramatically than the anterior circula-
tion. The vasogenic edema expands the extracellular space and fluid accumulated in
the white matter of the posterior regions, producing a characteristic pattern (Fig. 8).
The key to diagnosis lies in the MRI, where the lack of changes on DWI, with exten-
sive white matter edema on T2 and FLAIR images, indicates that an ischemic injury
has not occurred and without an ischemic/hypoxic injury, recovery generally occurs
over a period of several weeks.

Another pattern of edema is seen with inflammatory and infectious disease pro-
cesses. With infections, there is an upregulation of adhesion molecules on the inner
surface of the blood vessel. White blood cells cross the BBB and release proteases
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Fig. 8 Patient with hypertensive encephalopathy secondary to eclampsia with the HELLP (hemol-
ysis, elevated liver enzymes, and low platelets) syndrome. (a) A T2-weighted MRI showing the
extensive cerebral edema in the posterior white matter regions with less involvement of the gray
matter. (b) Diffusion-weighted images with only one small area of involvement. The lack of DWI
changes is consistent with this being a vasogenic type of edema, and the patient had a good recovery
without residual

and free radicals intended to fight the infection, but the resulting inflammatory
response can damage normal tissues. Bacterial and viral meningitis is by definition
limited to the meninges and does not lead to brain edema. However, in some individ-
uals there is penetration of the organisms into the brain along the Virchow–Robin
spaces. When there is meningoencephalitis, there is brain edema in the adjacent
brain. Occasionally the inflammation around the blood vessels penetrating the brain
causes a stroke further aggravating the injury region. When the parenchyma is
involved, the infection leads to a cerebritis, which eventually walls off, becoming an
abscess. The tissue around the abscess becomes edematous with vasogenic edema,
forming a ring around the outside of the lesion.

Another form of inflammatory response occurs in autoimmune processes, such
as multiple sclerosis, which involves infiltration primarily by T cells. The site of
the inflammation is the venules particularly in the white matter. A series of veins
in the region of the corpus callosum are vulnerable, producing enhancing lesions
that fan out from the corpus callosum. The myelinated fibers are the site of most of
the injury, however, recent evidence suggests that eventually the axons are damaged
in multiple sclerosis (Trapp et al., 1998). Loss of myelin leads to expression of
excess numbers of sodium channels. Glutamate channels are activated with calcium
overload. The denuded axons with excess sodium and glutamate channels are more
vulnerable to minor forms of hypoxia, making it possible that edema as part of an
hypoxia-related injury occurs in the white matter (Trapp and Stys, 2009).

Interstitial edema is seen in the periventricular regions in patients with hydro-
cephalus (Fig. 9). The widened extracellular space is the site of transependymal
flow of CSF. The movement of ISF into the frontal white matter leads to difficulty
walking and incontinence in the syndrome of normal pressure hydrocephalus.
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Fig. 9 Cerebellar infarct with secondary hydrocephalus and transependymal fluid movement
(interstitial edema). (a) Initial diffusion-weighted image with cerebellar infarct in the territory of
the left posterior inferior cerebellar artery. (b) Echo-planar T2 axial image shows enlargement of
the ventricles prior to surgery for hydrocephalus. Arrow shows transependymal movement of fluid

Identification of patients with adult-onset hydrocephalus that will respond to a ven-
triculoperitoneal shunt is challenging. Criteria have been established, but the rate
of response remains low (Boon et al., 2000; Kahlon et al., 2005; Marmarou et al.,
2005).

10 Treatment of Brain Edema

A large number of studies in animals have tested potential treatments for cerebral
edema. Although many have been shown to work in animal studies, treatment of
cerebral edema in humans has been extremely difficult to study, and in spite of
multiple studies, convincing evidence of efficacy is lacking for many of the cur-
rently used treatments. In a recent review of several decades of studies, no agent
met vigorous criteria for efficacy. There was some enthusiasm for decompressive
surgery in massive ischemic edema, but this conclusion was reached on the basis
of several uncontrolled studies (Rabinstein, 2006). Why have the treatment efforts
lagged so far behind the rapid advances in understanding the underlying molecular
mechanisms and successes in the treatment of animal models of brain edema? One
obvious reason is the difficulty in identifying patients with similar lesions that can
be entered into controlled studies. Obtaining consents for experimental treatments in
poorly responsive patients raises ethical questions about patient protection. Another
is that numbers of patients with severe edema seen at any one center are generally
too few to conduct a randomized study, making costly multicenter studies neces-
sary. Finally, long-term follow-up is necessary to adequately test a new treatment,
and many of the studies are short-term.

Current practice has dictated the treatment of cerebral edema in patients. The
two treatments most commonly used are osmotic agents and steroids. The key to the
treatment of cerebral edema, which is still empirical, is the accurate identification of
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the type of injury. In cytotoxic edema, for example, mannitol and hypertonic saline
provide short-term relief to control life-threatening increased intracranial pressure.
Another example is the use of a short-term course of high-dose steroids to reduce
the inflammatory response and reduce the vasogenic edema. A common mistake is
to use steroids for treatment of cytotoxic edema; a large number of studies have
documented the futility of steroid treatment in stroke. They have been less effective
in cytotoxic edema, however, and are contraindicated in the treatment of edema sec-
ondary to stroke or hemorrhage. In fact, systemic complications of corticosteroids
can worsen the patient’s condition in the treatment of patients with intracerebral
hemorrhage (Qureshi et al., 2001).

Hypertonic solutions are used to reduce the water content of brain tissue; ini-
tially urea was used, but it entered the brain and caused a rebound in CSF pressure
(Pappius and Dayes, 1965). Presently, hypertonic solutions of mannitol and saline
are used to reduce brain volume, lower CSF production, and improve cerebral blood
flow. Earlier studies employed 3 g/kg of mannitol, which had a dramatic effect on the
serum electrolytes, and permitted only one or two doses to be given. More recently,
it was found that low doses of mannitol (0.25–1.0 g/kg) are as effective as the higher
doses without affecting the electrolytes. Noninfarcted regions are mainly affected
by the hypertonic solutions rather than in the infarcted hemisphere (Videen et al.,
2001). Mannitol also changes the rheological characteristics of the blood and may
have an antioxidant effect. Prolonged administration of mannitol results in an elec-
trolyte imbalance that may override its benefit and that must be carefully monitored.
More recently, hypertonic saline has been advocated for use in treatment of cere-
bral edema (Zeynalov et al., 2008). Studies in animals have shown that it lowers
intracranial pressure, and studies in humans are being done (Chen et al., 2006a).

Most treatments have been directed at controlling the secondary consequences
of brain edema rather than treating the underlying causes. Although not directly
aimed at the edema itself, reducing the blood and CSF volumes is used to lower the
intracranial pressure. Blood volume can be reduced with hyperventilation, which
lowers carbon dioxide. However, excessive hyperventilation can cause vasocon-
striction and ischemia. Reduction of CSF volume can be done mechanically by
placing a drainage catheter into one of the ventricles, which may be difficult if the
cerebral ventricles are compressed by the edema. Agents that reduce the produc-
tion of CSF, such as acetazolamide or diuretics, may be used, but are of marginal
benefit.

Edema surrounding brain tumors, particularly metastatic brain tumors, responds
dramatically to treatment with high doses of dexamethasone. The corticosteroid
closes the BBB rapidly. Hence, it is important to obtain contrast-enhanced MRI
or computed tomographic scans before treatment with corticosteroids; otherwise,
enhancement of the lesion may be missed. High doses of corticosteroids have been
shown to be effective in brain edema secondary to inflammation in multiple scle-
rosis; the steroids act by closing the BBB, which can be seen on contrast-enhanced
MRI (Noseworthy et al., 2000). The opening of the BBB is associated with ele-
vated levels of the proinflammatory cytokine, TNF-α. Inflammatory lesions, such
as those that occur in acute attacks of multiple sclerosis, respond well to high-dose
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methylprednisolone. Treatment with 1 g/day of methylprednisolone for 3–5 days
reduces the inflammatory changes in the blood vessels during an acute exacerbation.
Dramatic reduction in enhancement on MRI may be seen after treatment. However,
the effect is lost after several months. High-dose steroids reduce the MMP-9 in the
brain as reflected in the CSF, preserving the integrity of the BBB (Rosenberg et al.,
1996b).

Treatment of edema surrounding an intracerebral hemorrhage has recently been
intensively studied because of the side-effect of hemorrhagic transformation in
patients treated with tPA. As in studies of edema secondary to ischemia, a large
number of animal studies have documented the use of various agents to reduce the
edema secondary to the hemorrhage. One promising study using recombinant acti-
vated factor VII reduced growth of the hemorrhage in an initial study (Mayer et al.,
2005). A subsequent study failed to confirm the results of the first because of a
high rate of thrombotic complications (Mayer et al., 2008). Several other studies are
underway, including stereotactic removal of the clot that has been dissolved with
intraventricular tPA, but results are not available for this study.

11 Conclusions

Cerebral edema is common in many neurological disorders. When the metabolism
of the cell fails, the cells are unable to remove sodium and the cells swell. This is
seen on MRI as an area of restricted diffusion. Alternatively, the blood vessels may
be damaged as part of an injury, infection, or autoimmune process, resulting in vaso-
genic edema, which has a predilection for the white matter. Common mechanisms
involved in cellular swelling include failure of membrane ion pumps, retention of
sodium inside the cell, and increases in intracellular calcium, initiating an inflam-
matory response. Proteases and free radicals degrade extracellular matrix and tight
junction proteins leading to vascular edema and hemorrhage. An important advance
in our understanding of brain edema was made with the discovery of AQPs, which
were shown to be located in astrocyte endfeet and water-controlling surfaces of the
brain. Although knowledge of the mechanisms of brain edema continues to grow,
the challenge remains the translation of that information into treatments.
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Monoamine Transporter Pathologies

Natalie R. Sealover and Eric L. Barker

Abstract The monoamine neurotransmitters control a variety of functions includ-
ing movement, appetite, mood, reward, and memory. The monoamine transporters
are responsible for the termination of synaptic signaling by removing neurotrans-
mitters from the synaptic cleft. Altered monoaminergic transporter function has
been implicated in the pathology of disease states such as depression, anxiety,
addiction, autism, Parkinson’s disease, and attention deficit hyperactivity disorder
(ADHD). This review considers the mechanism of transporter action and reg-
ulation of transporter function. The implications of transporter polymorphisms
are also addressed. Finally, a brief overview is presented that highlights impor-
tant findings as well as existing problems that need to be considered in future
studies.
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1 Introduction to Monoamine Transporters

1.1 The Monoamine Transporter Family

Synaptic transmission requires the release of neurotransmitters into the extracellular
space to bind pre-or postsynaptic receptors, conveying a chemical message to nerve
cells (Torres et al., 2003a). Termination of this signaling occurs rapidly by uptake of
the released neurotransmitter into the presynaptic cell by high-affinity neurotrans-
mitter transporters. The clearance of the monoamines dopamine, norepinephrine,
and serotonin occurs via the dopamine transporter (DAT), norepinephrine trans-
porter (NET), and serotonin transporter (SERT), respectively (Torres et al., 2003a)

Fig. 1 General model of the release of vesicular neurotransmitter stores in response to cellular
depolarization and the reuptake of the neurotransmitters by the monoamine transporters. Cytosolic
neurotransmitters are taken into vesicles by VMAT and stored until the cell becomes depolarized,
causing these vesicular stores to fuse with the plasma membrane and release the neurotransmitters
into the synaptic cleft. Neurotransmitters in the synaptic cleft are available to bind pre- or postsy-
naptic receptors. Termination of signaling occurs when the neurotransmitters are taken back into
the presynaptic cell by the monoamine transporters
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(Fig. 1). These monoamine transporters belong to the SLC6 gene family of Na+-Cl–-
coupled neurotransmitter transporters that is also referred to as the neurotransmitter
sodium symporter (NSS) family (Chen et al., 2004). In addition to the monoamine
transporters, the NSS family includes subfamilies of transporters for GABA, amino
acids, creatine, and the osmolytes betaine and taurine (Chen et al., 2004).

1.2 Neuroanatomy

In the brain, monoamine transporters are found on neurons that contain their respec-
tive neurotransmitter (Torres et al., 2003a). For example, neuronal cells that produce
dopamine are localized in the substantia nigra, ventral tegmental area, and hypotha-
lamus (Lin and Madras, 2006). The processes of dopaminergic neurons extend into
the caudate nucleus, putamen, nucleus accumbens, and prefrontal cortex (Lin and
Madras, 2006). Serotonergic neurons are located in the raphe nuclei of the brainstem
and project into the cortex, thalamus, basal ganglia, hippocampus, and amygdala
(Jacobs and Azmitia, 1992). Norepinephrine-producing neurons are found primarily
in the locus coeruleus and raphe nuclei with moderate levels in the hypothalamus,
midline thalamic nuclei, and the bed nucleus of the stria terminalis (Torres et al.,
2003a; Donnan et al., 1991) (Fig. 2).

Monoamine transporters are also located in peripheral areas of the body.
Eisenhofer and colleagues demonstrated that DAT is present in the stomach, pan-
creas, and kidney (Eisenhofer, 2001). NET is expressed in sympathetic peripheral
neurons, the adrenal medulla, endothelial cells of the lung, and the placenta
(Eisenhofer, 2001). SERT has been found in platelets (Talvenheimo and Rudnick,
1980), the intestinal tract (Wade et al., 1996), placenta (Padbury et al., 1997;
Balkovetz et al., 1989), and in chromaffin cells of the adrenal gland (Schroeter
et al., 1997). Reuptake by the monoamine transporters is the primary mechanism

Fig. 2 (a) Location of serotonergic neurons and their projections in the human brain. (b) Location
of noradrenergic neurons and their projections in the human brain. (c) Location of dopaminergic
neurons and their projections in the human brain
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of terminating monoaminergic neurotransmitter signaling in the central nervous
system and periphery.

1.3 Physiological Functions

The monoamine transporters are involved in the regulation of many physiological
functions. DAT has been implicated in addiction and reward response, move-
ment, cognition, and memory (Greengard, 2001). Altered dopaminergic regulation
is involved in depression, suicide, anxiety, aggression, schizophrenia, attention
defict hyperactivity disorder (ADHD), and Parkinson’s disease (Jayanthi and
Ramamoorthy, 2005; Gainetdinov and Caron, 2003). SERT is involved in the reg-
ulation of appetite, libido, mood, anxiety, fear, reward, aggression, and memory
(Barnes and Sharp, 1999). Disrupted serotonergic function has been implicated
in depression, suicide, impulsive violence, autism, and alcoholism (Jayanthi and
Ramamoorthy, 2005). NET plays an important role in arousal, mood, aggression,
addiction, and attention, as well as in thermal and cardiac regulation (Jayanthi and
Ramamoorthy, 2005; Howell and Kimmel, 2008). Alteration of the noradrengeric
system can result in cardiac disease and psychiatric disorders including depression
and anxiety (Jayanthi and Ramamoorthy, 2005).

1.4 Structure and Transport Mechanism

The monoamine transporters contain 12 alpha helical transmembrane helices
(TMHs) with a putative large extracellular loop between TMHs III and IV with
potential glycosylation sites (Melikian et al., 1996, 1994) (Fig. 3). The amino and
carboxy termini are located intracellularly and contain putative phosphorylation
sites (Torres et al., 2003a). Uptake of the monoamines by their respective trans-
porters utilizes an ion gradient generated by the plasma membrane Na+/K+ ATPase
(Torres et al., 2003a). NET and SERT are thought to translocate one Na+ ion and one
Cl– ion with the substrate per transport cycle, whereas DAT is predicted to transport
two Na+ ions and one Cl– ion with its substrate (Torres et al., 2003a).

The alternating access transport model has been used to describe the mechanism
by which substrates are transported across the membrane via the monoamine trans-
porters (Forrest et al., 2008). This model postulates that the transporter can exist
in at least two conformations. These conformations include an extracellularly fac-
ing form that is open to the extracellular environment and can bind substrate and
Na+ and Cl– ions (Forrest et al., 2008). An intracellularly facing form allows the
release of substrate into the cell and the binding of the countertransported K+ ion
to reverse the conformation of the transporter (Forrest et al., 2008). The alternating
access model is supported by recent crystal structures of other transporters (Weyand
et al., 2008; Faham et al., 2008). Two additional conformations of these transporters
have also been described. A closed–closed conformation is predicted that prevents
accessibility of substrate and ions from either side of the transporter. This closed–
closed conformation was observed in the crystal structure of a leucine transporter
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Fig. 3 Schematic representation of the predicted topology of the monoamine transporters based
on the crystallization of LeuTAa (Yamashita et al., 2005). The representation demonstrates how
extracellular Na+, Cl–, and substrate are exchanged for intracellular K+. The putative phosphory-
lation sites on the N-terminus and C-terminus are shown along with predicted glycosylation sites
between TMH III and TMH IV. This figure was adapted from Yamashita et al. (2005)

from Aquifex aeolicus (LeuTAa), a bacterial homologue of the NSS transporter fam-
ily (Yamashita et al., 2005). The closed–closed conformation has closed intra- and
extracellular gates and may serve as an intermediate between the extracellularly and
intracellularly facing states. Another conformation is predicted to have open intra-
and extracellular gates. In this conformation the transporter is predicted to operate
in a channel mode, allowing substrate molecules and ions to pass through the trans-
porter quickly without an opening and closing of the gates for each transport cycle
(Torres et al., 2003a).

Comprehensive understanding of the mechanism of monoamine transport has
been hampered by the lack of a crystal structure of these membrane transporters.
As mentioned above, in 2005, LeuTAa was crystallized (Yamashita et al., 2005).
This structure and the cocrystallization of LeuTAa with the tricyclic antidepressants
(TCAs) have provided several clues about the putative structure of the monoamine
transporters (Singh et al., 2007; Yamashita et al., 2005; Zhou et al., 2007). The
LeuTAa structures reveal binding sites for substrate and Na+ ions located about
halfway through the pore of the protein, interacting with TMHs III and VIII and
the unwound regions of TMHs I and VI (Singh et al., 2007). The protein structure
shows TMHs I through V are related to VI through X by a pseudo twofold axis in the
membrane plane (Yamashita et al., 2005). Cocrystallization studies with the TCAs
have identified a putative binding pocket in LeuTAa that places the TCA binding
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site just above the extracellular gate (Singh et al., 2007; Zhou et al., 2007). This
structure may reveal a similar binding site for the mammalian monoamine trans-
porters, although some have questioned if the TCA binding site of LeuTAa is likely
to be reflective of such a site in the monoamine transporters (Henry et al., 2007;
Rudnick,2007).

1.5 Vesicular Monoamine Transporters

Although plasma membrane monoamine transporters are responsible for the reup-
take of neurotransmitters from the synapse, vesicular monoamine transporters
(VMAT) sequester monoamines into synaptic vesicles in preparation for fusion
with the plasma membrane and release into the synapse (Schuldiner et al., 1995).
Vesicular uptake is coupled to a proton gradient across the vesicle membrane
rather than the sodium gradient used with the plasma membrane transporters
(Schuldiner et al., 1995). These vesicular transporters are not neurotransmitter-
specific; rather, they transport the monoamines nonselectively (Johnson, Jr., 1988;
Henry et al., 1998).

VMAT is predicted to have similar membrane topology to the plasma mem-
brane monoamine transporters, although they do not share homologous sequences
(Erickson et al., 1992). Hydrophobicity studies predict 12 TMHs with amino and
carboxy termini located in the cytoplasm (Erickson et al., 1992). The large extra-
cellular loop between TMHs III and IV of the plasma membrane transporters is
located between TMH I and II in VMAT (Erickson et al., 1992). VMAT1 is located
in the neuroendocrine cells of the adrenal medulla and intestinal tract, whereas
VMAT2 is found in monoaminergic neurons of the central nervous system (Erickson
et al., 1996).

Because VMAT regulates the level of cytosolic monoamines, researchers have
examined a role for VMAT in disease states. Although no direct pathological links to
aberrant VMAT function have been described, altered dopamine regulation can lead
to drug addiction, Parkinson’s disease, and schizophrenia (Mazei-Robison et al.,
2008). Psychostimulants have been demonstrated to affect dopaminergic signaling
by altering DAT and VMAT function (Fleckenstein et al., 2009). Such alterations
can be neurotoxic and may provide a role for the monoamine transporters in
Parkinson’s disease (Fleckenstein et al., 2009).

2 Regulation of Plasma Membrane Monoamine Transporters

Plasma membrane monoamine transporters serve an important regulatory role in
maintaining appropriate levels of monoamines in the synapse (Torres et al., 2003a).
Aberrant regulation of transporter expression and function has been implicated in
several disease states (Howell and Kimmel, 2008). The monoamine transporters
are regulated by interaction with a number of substrates and antagonists with vary-
ing affinities for the transporters at the plasma membrane (Sulzer et al., 1995;
Gutman and Owens, 2006; Fleckenstein et al., 2007). In addition to transporting
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their respective neurotransmitters, the monoamine transporters can lose substrate
selectivity under certain conditions. DAT and NET can each transport dopamine
and norepinephrine (Giros et al., 1994), and SERT displays an increased preference
for dopamine at elevated temperatures (Saldana and Barker, 2004). Amphetamines
such as methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA,
“ecstasy”) are also substrates of the monoamine transporters, as are some neurotox-
ins such as 1-methyl-4-phenylpyridinium (MPP+) (Torres et al., 2003a). In addition,
the monoamine transporters are influenced by several classes of antagonists,
including cocaine and antidepressants (Torres et al., 2003a).

Monoamine transporter regulation can occur by altering transporter surface
expression. Monoamine transporters contain sites for potential phosphorylation in
the cytoplasmic loops and the carboxy terminal region (Jayanthi and Ramamoorthy,
2005). Samuvel and colleagues demonstrated that p38 mitogen-activated protein
kinase (MAPK) regulates SERT by inhibiting cell surface expression (Samuvel
et al., 2005). Treatment of cells and synaptosomes with the PKC activator, phor-
bol 12-myristate13-acetate (β-PMA) reduces monoamine transport capacity (Vmax)
without altering substrate affinity (Km) (Samuvel et al., 2005). Other agents that
maintain the phosphorylated state of the monoamine transporters such as phos-
phatase inhibitors also reduce Vmax (Vaughan et al., 1997; Ramamoorthy et al.,
1998; Jayanthi et al., 2004; Apparsundaram et al., 1998b, a). The phosphatase
inhibitor, okadaic acid, downregulates DAT, NET, and SERT activity (Ramamoorthy
et al., 1998). These studies suggest that phosphorylation of monoamine transporters
impairs plasma membrane expression. SERT and protein phosphatase 2A (PP2A)
form a complex that is regulated by p38 MAPK activation (Zhu et al., 2005). This
complex is inhibited by PP2A inhibitors and PKC activators (Bauman et al., 2000).
This complex is stabilized in the presence of the substrate 5-HT (Bauman et al.,
2000). These studies provide a mechanism for the regulation of transporter function
through the interaction of SERT with PP2A.

Monoamine transporter function is also regulated by glycosylation. The large
extracellular loop between TMH III and TMH IV of the monoamine transporters
contains consensus sites for glycosylation (Melikian et al., 1994, 1996). The glyco-
sylated form of the transporter is the mature form that undergoes insertion into the
plasma membrane (Sitte et al., 2004).

Functional monoamine transporters are predicted to form oligomers (Milner
et al., 1994; Jess et al., 1996; Kilic and Rudnick, 2000). One study reports the exis-
tence of a dimer of dimers (Kilic and Rudnick, 2000). This tetramer is proposed
to be the functional form that exists in the plasma membrane (Kilic and Rudnick,
2000). A leucine heptad repeat in TMH II and a glycophorin-like motif in TMH VI
are thought to play a role in stabilizing the oligomeric form of DAT (Torres et al.,
2003b). The formation of SERT dimers results from a putative interaction involving
TMH XI and TMH XII (Just et al., 2004).

The monoamine transporters are also regulated by a feedback mechanism
that involves monoamine autoreceptors located on the presynaptic cell membrane
(Hjorth et al., 2000; Schmitz et al., 2002; Garcia et al., 2004). These autoreceptors
detect the levels of various monoamines in the synapse and modulate the release of
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monoamines to keep appropriate levels of neurotransmitter in the synapse (Hjorth
et al., 2000; Schmitz et al., 2002; Garcia et al., 2004). The exact mechanism of this
feedback loop is unknown (Hjorth et al., 2000; Schmitz et al., 2002; Garcia et al.,
2004). The autoreceptors are the D2 short isoform (D2 s), α2A, and 5-HT1B recep-
tors for dopamine, norepinephrine, and serotonin, respectively (Xie et al., 2008).
The feedback loop may also be controlled by the trace amine-associated receptor
1 (TAAR1). TAAR1 is a G protein-coupled receptor that is activated by the bio-
genic monoamines, trace amines, and psychostimulants (Borowsky et al., 2001).
Xie and colleagues demonstrated the regulation of DAT by TAAR1 and the regula-
tion of TAAR1 signaling by D2 s (Xie and Miller, 2007; Xie et al., 2007). Similar
studies have been conducted with NET and SERT to show the regulation of these
transporters by TAAR1 and monoamine autoreceptors (Xie et al., 2008).

3 Transporter Gene Polymorphisms

Several genetic polymorphisms have been identified for the genes encoding the
monoamine transporters. A brief review of these genetic variations and possible
associations with disease states is presented below and in Table 1. A comprehensive
review by Hahn and Blakely examines the impact of genetic variations of the SLC6
gene family (Hahn and Blakely, 2007).

Table 1 Summary of identified polymorphisms for NET, DAT, and SERT

Polymorphism Effect of Polymorphism Possible Pathological Associations

NET
A457P Impaired transport, decreased cell

surface expression
Orthostatic intolerance, increased

heart rate
F528C Elevated transport, decreased TCA

potency
High blood pressure

–3801 (A/T) Transcription factor-based
repression of NET expression

ADHD

DAT
A559V Increased Na+ sensitivity,

spontaneous DA efflux
ADHD, bipolar disorder

3′ untranslated
VNTR (480 bp)

Unknown ADHD

SERT
I425V Increased transport, increased

Vmax, decreased Km

OCD, Asperger’s syndrome

5-HTTLPR (s) Reduced gene transcription OCD, ADHD, depression
VNTR Regulates transcription No known links

3.1 NET

A number of nonsynonymous single nucleotide polymorphisms (SNPs) that result in
single amino acid substitutions have been identified for the monoamine transporters.
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The hNET SNP A457P was discovered in a familial form of orthostatic intolerance
(Hahn et al., 2003; Shannon et al., 2000). The A457P allele was found to be associ-
ated with increased heart rate and plasma norepinephrine levels (Hahn et al., 2003).
Molecular studies demonstrate that hNET A457P has severely impaired transport
function and decreased cell surface expression, revealing a mechanism for impaired
hNET function and cardiovascular disease (Hahn et al., 2003). Approximately 20
more coding region SNPs have been identified for hNET, primarily associated with
altered psychiatric and cardiovascular phenotypes (Hahn et al., 2005). The precise
functional role of many of these variants remains largely undefined. However, the
hNET variant F528C was discovered in patients with high blood pressure (Hahn
et al., 2005). Hahn and colleagues found the hNET variant to have elevated trans-
port levels, decreased tricyclic antidepressant potency, and an insensitivity to PKC
downregulation by β-PMA (Hahn et al., 2005).

In addition to the potential significance of coding region SNPs, variations in the
hNET promoter region have also been identified (Kim et al., 2006). The substitution
of adenine to thymine at –3081 has been linked to ADHD (Kim et al., 2006). The
thymine substitution establishes a palindromic E2-box motif that binds the neural-
expressed repressors of transcription, Slug and Scratch (Kim et al., 2006). Slug and
Scratch bind the E2-box motif and repress SLC6A2 promoter activity only when the
thymine substitution is present. These data suggest that the –3081(A/T) polymor-
phism, resulting in transcription factor-based repression of SLC6A2, may increase
the risk of ADHD development (Kim et al., 2006).

3.2 DAT

The presence of SNPs is not unique to NET. Studies have revealed variants of
DAT and SERT as well. A rare DAT coding SNP, A559V, has been identified
in two male children diagnosed with ADHD (Mazei-Robison et al., 2008) and a
female with bipolar disorder (Grunhage et al., 2000). Cellular studies have demon-
strated an increased sensitivity to intracellular sodium and increased DA efflux
for hDAT A559V in the absence of efflux-inducing amphetamines (Mazei-Robison
et al., 2008). Homology modeling based on LeuTAa, places A559 at the extracel-
lular end of TMH 12 (Mazei-Robison et al., 2008). Studies have implicated TMHs
11 and 12 as forming the interface for monoamine transporter dimerization (Just
et al., 2004). Dimerization is known to be important for serotonin efflux (Seidel
et al., 2005). The increased dopamine efflux observed for A559V may be due to
impairment of transporter dimerization (Mazei-Robison et al., 2008). Interestingly,
Chen and colleagues demonstrated that mutating S528 to alanine in DAT TMH
11 results in increased dopamine efflux (Chen and Justice, 2000). These find-
ings suggest a mechanism by which altered DA efflux may be linked to disease
states.

The DAT gene is located on chromosome 5 and contains a variable number tan-
dem repeat (VNTR) polymorphism in the 3′-untranslated region. This VNTR is
composed of 40 bp repeats that commonly contain nine or ten copies. Multiple
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investigations have found a link between ADHD and the 480 bp VNTR (Barr et al.,
2001; Chen et al., 2003; Cook, Jr. et al., 1995; Curran et al., 2001; Daly et al.,
1999; Gill et al., 1997; Waldman et al., 1998). Researchers are unclear if the num-
ber of repeats in the 3′ untranslated VNTR directly controls the expression level
of the DAT gene or if the allele containing this VNTR is in linkage disequilib-
rium with functional DNA variants that contribute to the ADHD phenotype (Barr
et al., 2001).

3.3 SERT

SERT gene variants have been implicated in neuropsychiatric disorders. Ozaki and
colleagues identified the presence of an I425V coding region SNP in some individ-
uals affected with obsessive compulsive disorder (OCD) and Asperger’s syndrome
(Ozaki et al., 2003). Studies in cultured cells found the I425V mutation to cause an
increased rate of transporter activity with an increase in Vmax and decrease in Km
(Kilic et al., 2003). Cell surface expression was unchanged for the mutant. The ele-
vated transport is thought to be caused by altered cGMP-dependent protein kinase
activity (PKG). The I425V mutation results in constitutive activation of SERT sim-
ilarly to the way nitric oxide stimulates wild-type SERT via a PKG-dependent
pathway (Kilic et al., 2003). The stimulation of SERT by cGMP is disrupted in
the I425V mutant, although the exact mechanism by which this occurs remains
unknown. Thr 276 is predicted to be in the second intracellular loop, between TMH
IV and V, and is the site of PKG phosphorylation on SERT (Ramamoorthy et al.,
2007). Ile 425 is predicted to reside in the middle of TMH VIII near putative sub-
strate and inhibitor binding sites. It is unclear if the I425V mutation activates the
transporter in a manner that makes Thr 276 phosphorylation irrelevant, or if this
mutation indirectly increases the level of Thr 276 phosphorylation by interfering
with the activity of a phosphatase (Zhang et al., 2007).

Two common polymorphisms have also been reported in the promoter region
of the SERT gene. The first is the insertion or deletion of a 44 bp sequence that
results in a long (L) or short (S) allele termed the 5-HTTLPR (Lesch et al., 1996).
The S variant displays threefold reduced gene transcription, leading to decreased
transporter expression and 5-HT uptake (Lesch et al., 1996). Patients with major
depression who are homozygous for the long allele (L/L) or heterozygous (L/S)
respond better to treatment with the SSRIs fluvoxamine and paroxetine than those
homozygous for the short allele (S/S) (Lesch et al., 1996; Zanardi et al., 2000).
The S allele has been associated with an increased risk of depression, obsessive-
compulsive disorder, and ADHD (Torres et al., 2003a).

The second type of promoter polymorphism is a VNTR in the second intron
composed of 17-bp repeats (Ogilvie et al., 1996). Ten and twelve sets of repeats
are most common (Lesch et al., 1994). Studies with embryonic stem cells and
transgenic embryos implicate the VNTR as playing a role in the regulation of tran-
scription, although no definitive links are known between this VNTR and disease
states (Torres et al., 2003a).
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4 Addiction

4.1 Psychostimulant Addiction

The rewarding and reinforcing effects of psychostimulants appear to rely primarily
on the dopamine system, although studies have demonstrated the ability of sero-
tonin and norepinephrine systems to produce behavioral and neurochemical effects
in response to psychostimulants (Howell and Kimmel, 2008). DAT and VMAT2
are critical players in the regulation of dopamine levels in the synapse and cytosol,
respectively. The GABAergic system can regulate dopaminergic signaling by con-
trolling the firing rate of dopamine neurons (Churchill et al., 1992; Steffensen et al.,
1998). Psychostimulants exert their effects by increasing levels of extracellular
neurotransmitter. Psychostimulants are classified as uptake inhibitors or releasers.
Cocaine is an example of an uptake inhibitor (Table 2). Cocaine exerts its effects by
binding to DAT, NET, or SERT. This binding prevents the transport of neurotrans-
mitter, resulting in increased synaptic neurotransmitter levels. Amphetamines such
as MDMA are classified as releasers. They are substrates of the monoamine trans-
porters. Releasers reverse the direction of transport from inward to outward, leading
to an increase in the levels of neurotransmitter in the synaptic cleft (Fleckenstein
et al., 2007; Rothman and Baumann, 2003).

Repeated exposure to psychostimulants can modify neurotransmitter systems
and result in tolerance or increased sensitivity. This exposure alters the effects of

Table 2 Structures of psychostimulants and Ki values in μmol/L for inhibition of [3H] 5-HT, [3H]
NE, and [3H] DA uptake at hSERT, hNET, and hDAT, respectively

Structure  Name hSET hNET hDAT

Cocaine
0.03 

0.48 ± 
0.05

0.23 ± 
0.03

MDMA
0.73 

1.19 ± 
0.13

8.29 ± 
1.67

Amphetamine
3.84 

0.07 ± 
0.01

0.64 ± 
0.14

H
N

O

O

Methylphenidate
10.71 

0.10 ± 
0.01

0.06 ± 
0.01

0.74± 

132.43 ± 

38.46 ± 

2.41 ± 

Data were obtained in Intestine 407 cells transfected with hSERT, hNET, or hDAT (Han and Gu,
2006).
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drugs on brain neurochemistry and behavior, ultimately disrupting the neurobio-
logical regulation of functions related to addiction (Howell and Kimmel, 2008).
Interestingly, conflicting studies have reported that cocaine administration in rodents
may result in increased, decreased, or unaltered DAT, D1, and D2 receptor levels
(Pilotte et al., 1994; Wilson et al., 1994; Claye et al., 1995; Boulay et al., 1996; Tella
et al., 1996; Letchworth et al., 1997; Letchworth et al., 1999). Repeated cocaine use
has been shown to increase DAT activity in humans (Mash et al., 2002). The ini-
tial increase in extracellular dopamine after cocaine administration is thought to
result in increased DAT function as a compensatory mechanism. Increased DAT
function in turn leads to reduced levels of extracellular dopamine even in the
absence of cocaine. This cycle of altered synaptic dopamine levels and DAT func-
tion is thought to contribute to the addictive properties of psychostimulants such as
cocaine.

Despite significant public health concerns surrounding psychostimulant abuse,
currently no effective pharmacotherapies exist (Howell and Kimmel, 2008). To
date, treatment for cocaine addiction has been the most widely studied of all psy-
chostimulants. Researchers have examined potential benefits of antidepressants
and dopamine receptor agonists and antagonists for cocaine addiction with lit-
tle success. The TCA desipramine was reported to be an effective treatment in
outpatient clinical trials (Levin and Lehman, 1991). Further clinical trials were
not able to confirm this effectiveness (Arndt et al., 1992; Campbell et al., 1994).
Similarly, treatment with the selective serotonin reuptake inhibitor (SSRI) flu-
oxetine, appeared initially promising (Walsh et al., 1994), but further studies
were unable to demonstrate effectiveness over placebo controls (Batki et al.,
1996; Grabowski et al., 1995). Clinical studies with the D2-like receptor agonist
bromocriptine have yielded inconclusive results (Gorelick, 1992). Studies target-
ing GABAergic transmission have shown recent promise (Sofuoglu and Kosten,
2005). Treatment with baclofen, an antispasticity medication and GABAB receptor
agonist, has resulted in increased cocaine abstinence in cocaine-addicted patients
(Shoptaw et al., 2003). Similarly, the GABA transporter inhibitor tiagabine that is
used for treating epilepsy has been shown to reduce cocaine dependence (Gonzalez
et al., 2003). These studies implicate the GABAergic system as a promising tar-
get for the development of useful pharmacotherapies for the treatment of cocaine
addiction.

4.2 Alcoholism

Alcoholism is characterized by the development of tolerance, craving, and with-
drawal (Heinz et al., 2004). Repeated exposure to alcohol results in neuroadaptive
changes in the central dopaminergic and serotonergic systems (Heinz et al., 2004).
Several studies have directly implicated DAT and SERT in alcoholism. A reduction
in SERT expression was found in a sample of alcoholic patients (Heinz et al., 1998)
and a high frequency of the short 5-HTTLPR was observed in alcoholic patients
(Hammoumi et al., 1999). Studies in rodents demonstrated an ethanol-induced
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release of dopamine that reinforced the mesolimbic reward system (Mereu et al.,
1984; Di Chiara and Imperato, 1988). A recent study by Hillemacher and colleagues
found significant hypermethylation of the DAT promoter in alcohol-dependent
patients compared to healthy control subjects (Hillemacher et al., 2009). They pro-
posed that ethanol consumption in alcoholics may lead to reduced craving due to
hypermethylation-induced downregulation of genes including DAT (Hillemacher
et al., 2009). Hypermethylation of the DAT promoter is thought to inhibit gene
transcription, leading to reduced DAT expression and increased levels of synaptic
dopamine. The mechanism for DAT promoter methylation in response to ethanol
consumption is unknown, although the long-term regulation of gene expression by
epigenetic mechanisms such as DNA methylation has been suggested as playing
a role in the pathophysiology of several psychiatric disorders (Hillemacher et al.,
2009).

5 Anxiety and Depression

Alterations in the serotonergic and noradrenergic systems are well established in the
pathophysiology of mood disorders, including anxiety and depression. Studies have
demonstrated a linkage between the short 5-HTTLPR and psychiatric conditions
(Olivier et al., 2008). Anxiety disorders include panic, phobias, obsessive compul-
sive disorder, and generalized anxiety disorder (GAD) (Keller et al., 2006). These
disorders are often treated by blocking NET with compounds such as reboxetine
or atomoxetine (Morilak and Frazer, 2004). Chronic treatment with reboxetine or
desipramine in rats has been shown to decrease NET binding sites (Gould et al.,
2003; Frazer and Benmansour, 2002). Anxiety disorders carry periods of high emo-
tional distress accompanied by physiological hyperarousal (Keller et al., 2006).
Keller and colleagues demonstrated that NET-deficient mice respond to stress-
inducing environments with heightened autonomic cardiovascular response (Keller
et al., 2006). This cardiovascular response is consistent with a NET deficiency
linked to increased blood pressure and heart rate due to anxiety and fear-inducing
stimuli (Keller et al., 2006).

Several theories have attempted to explain the pathology of depression. One
of these theories is the monoamine theory of depression (Heninger et al., 1996).
This theory proposes that impaired monoaminergic function is the central basis
behind depression. Serotonin and norepinephrine are the two monoamines that have
been primarily implicated in the disease. Pharmacological treatment of depres-
sion has focused on increasing synaptic levels of these two neurotransmitters
(Table 3).

The first class of antidepressants was developed in the early 1950s with the dis-
covery of an antitubercular drug iproniazid that possesses mood-elevating properties
(Nutt, 2002). Iproniazid is a monoamine oxidase inhibitor (MAOI). Monoamine oxi-
dase is the enzyme that breaks down serotonin, dopamine, and norepinephrine. The
inhibition of monoamine oxidase increases levels of monoamines in the synapse.
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Table 3 Structures of antidepressants and Ki values in nmol/L for [3H] 5-HT or [3H] NE inhibition
at hSERT and hNET, respectively

Structure  Name hSERT  hNET 

 Desipramine  163 ± 5  3.5 ± 0.6 

N

(CH2)3N(CH3)2

 Imipramine  20 ± 2  142 ± 8 

 Amitriptyline  36 ± 1  102 ± 9 

        Nortriptyline  279 ± 20  21 ± 0.77 

 Paroxetine  0.83 ± 0.06  328 ± 25 

 Citalopram  8.9 ± 0.7  30,285 ± 1600  

 Fluoxetine  20 ± 2  2186 ± 142 

 Sertraline  3.3 ± 0.4  1716 ± 151 

 Venlafaxine  102 ± 9  1644 ± 84 

Data were obtained in HEK-293 cells transfected with hSERT or hNET (Owens et al., 1997).
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Potentially life-threatening interactions with foods containing tyramine and tryp-
tophan led to the disuse of these drugs and the development of different classes
of antidepressants. Since the discovery of the first MAOI, TCAs, SSRIs, serotonin–
norepinephrine reuptake inhibitors (SNRIs), and some atypical antidepressants such
as buproprion have been used in the treatment of depression. Except for the atypical
antidepressants, the aforementioned classes of antidepressants increase synaptic lev-
els of serotonin or norepinephrine by inhibiting SERT or NET, respectively (White
et al., 2005). White and colleagues provide a comprehensive review of the antide-
pressants in each of these classes (White et al., 2005). Despite the development
of new classes of antidepressants, the effectiveness of these therapeutics remains
no better than the MAOIs and patient compliance remains low (Song et al., 1993).
Inhibiting SERT and NET rapidly increases synaptic neurotransmitter levels, but
the maximal clinical effect is not observed until after several weeks of treatment
(Gelenberg and Chesen, 2000). As with chronic administration of NET inhibitors,
long-term exposure to SERT inhibitors results in decreased SERT surface expres-
sion (Benmansour et al., 1999, 2002). These decreased SERT and NET levels may
help to explain the lapse in time from the initial administration of antidepressants to
their maximum clinical efficacy.

6 Autism

Autism is a neurodevelopmental disorder that appears in early childhood and results
in severely impaired behavioral functions (Folstein and Rosen-Sheidley, 2001).
Children with autism display poor social interactions, impaired speech develop-
ment, and an interest in repetitive activities (Folstein and Rosen-Sheidley, 2001).
Autism is recognized as a heritable disorder (Macdonald et al., 1989), although
twin-based studies indicate that the disorder is not always inherited (Murphy
et al., 2000). Research indicates that autism is linked to neuronal disorganization
and the disarrangement of neurotransmitter pathways (Pardo and Eberhart, 2007).
The serotonin hypothesis of autism describes the importance of genes that regu-
late the serotonin system. In particular, genes that control serotonin metabolism
and neurotransmission have received much attention (Cook and Leventhal, 1996;
Buitelaar and Willemsen-Swinkels, 2000). The serotonin hypothesis of autism is
supported by an improvement in behavioral functions in autistic patients receiv-
ing treatment with SSRIs (Hollander et al., 2003) or 5-HT2 receptor antagonists
(Pardo and Eberhart, 2007). A recent study by Makkonen and colleagues demon-
strates reduced SERT binding capacity in the medial frontal cortex of children with
autism (Makkonen et al., 2008). This study used single-photon emission computed
tomography (SPECT) to analyze the binding of [123I] labeled N-(2-fluoroethyl)-2β-
carbomethoxy-3β-(4-iodophenyl)-nortropane, ([123I] nor-β-CIT) to SERT and DAT.
A significant decrease in SERT binding, but not DAT binding was demonstrated.
Whereas a number of factors likely contribute to the pathology of autism, a signif-
icant amount of data indicates a role for the serotonergic system in this complex
disorder.
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7 Parkinson’s Disease (PD)

Parkinson’s disease (PD) is characterized by rigidity in movement, resting tremor,
bradykinesia, and difficulty in maintaining postural stability (Gelb et al., 1999). PD
is a neurodegenerative disease marked by Lewy bodies or abnormal protein aggre-
gates and the loss of dopaminergic cells in the substantia nigra (Gelb et al., 1999).
These dopaminergic neurons project into the striatum. Disruption of these neural
circuits inhibits pathways responsible for controlling movement. The cause of PD is
generally unknown. However, the progressive loss of dopaminergic neurons has led
researchers to examine the role of the dopamine system in PD.

Postmortem studies show a correlation between PD and DAT concentrations in
the striatum (Niznik et al., 1991). Molecular imaging techniques have been used
to determine DAT levels using DAT radiotracers such as 2β-carbomethoxy-3β-
(4-iodophenyl) tropane ([123I] β-CIT) and [11C] cocaine (Shih et al., 2006). These
techniques are useful for the evaluation and diagnosis of patients with PD and to
monitor the progression of the disease (Shih et al., 2006). The delivery of DA
to surviving nerve terminals by treatment with L-DOPA helps alleviate some of
the early symptoms of PD (Nutt, 2002). Unfortunately, the ameliorating effects of
L-DOPA fade and within five years of treatment approximately half of patients
display involuntary, sometimes debilitating dyskinesias (Bezard et al., 2001). This
reduced ability of L-DOPA to treat patients is thought to result from a failing ability
to store synthesized DA (Lee et al., 2008). The reduction in the ability to store DA
is thought to result from the immediate release of all DA synthesized from L-DOPA
(Lee et al., 2008). Lee and colleagues demonstrated that the sprouting of DA termi-
nals and decreased DAT function help to prevent the appearance of PD symptoms
until approximately 60% of dopaminergic neurons in the substantia nigra are lost
(Lee et al., 2008). They proposed that the DA terminal sprouting and decreased DAT
function helped contribute to the DA release responsible for the reduced therapeutic
benefits of L-DOPA (Lee et al., 2008).

8 Important Findings and the Need for Future Studies

Significant advances have been made in understanding the role of the monoamine
transporters in the pathology of disease states. Despite these advances, studies are
needed to further elucidate monoamine transporter structure and function. In recent
years, genetic animal models exhibiting disruption of the monoamine transporters
have provided a unique method for investigating the role of these transporters in
physiology and pathology. Studies with DAT, SERT, and NET knock-out mice
are able to reveal subtle interplay among these transporters (Gainetdinov and
Caron, 2003). Knock-out of individual transporters exposes secondary functions and
compensatory mechanisms of the remaining monoamine transporters.

The development of improved pharmacological agents targeting the monoamine
transporters has been hindered by a lack of structural information. Although numer-
ous biochemical and molecular studies have provided insight into the structural and
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mechanistic aspects of monoamine transporter function, to date no crystal struc-
ture exists. Yamashita and colleagues provided a significant contribution to the field
with the crystallization of LeuTAa (Yamashita et al., 2005) and further information
was revealed with the subsequent cocrystallization of LeuTAa with the TCAs (Singh
et al., 2007; Zhou et al., 2007). These structures have allowed for homology mod-
eling of the monoamine transporters and have revitalized the structural studies of
these transporters (Indarte et al., 2008; Jorgensen et al., 2007a, b; Celik et al., 2008;
Forrest et al., 2007; White et al., 2006).

Important discoveries have been made in the findings of transporter gene poly-
morphisms. The identification of promoter polymorphisms and coding region
polymorphisms in individuals has helped to link these variations with disease states.
Further studies are needed to understand the genetic and environmental contribu-
tions of these variants to disease. Additionally, a number of regulatory mechanisms
and interacting proteins have been identified for the monoamine transporters. Future
studies will need to identify additional players in this complex network of interac-
tions. A greater understanding of this network will be vital in understanding and
treating diseases such as addiction, ADHD, autism, and PD.
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Abstract Diseases of the brain account for much human suffering and place a
huge burden on the health care systems. Thus, research into the pathology of brain
diseases and improved pharmacotherapy is of significant value. In this respect,
knowledge on malfunctions of metabolic homeostasis related to the neurotransmis-
sion process is still limited. As evident from this chapter, failure of the metabolic
homeostasis of the two amino acids of major importance, namely glutamate and glu-
tamine, is a hallmark of a wide range of both neurological and psychiatric diseases.
This chapter deals with representative brain diseases as well as the methodology of
research related to metabolism. In addition, future need for research and potential
new targets for pharmacotherapy are discussed.
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1 Introduction

Together, neurological and psychiatric disorders account for the vast majority of
suffering from chronic illnesses (Cowan and Kandel, 2001). Thus, such disorders
are important to understand at all levels, ranging from primary care of patients to
the cellular and molecular levels. The focus of this chapter is on metabolic aspects of
brain disorders related to malfunction of glutamate and glutamine homeostasis. The
following sections deal with representative pathologies discussing selected recent as
well as future need for research and potential targets for drug treatment.

Apart from being one of 20 amino acids used for protein synthesis, glutamate
is the most abundant excitatory neurotransmitter in the mammalian brain. In addi-
tion, glutamate is the immediate precursor for γ-aminobutyric acid (GABA), the
most abundant inhibitory neurotransmitter. Moreover, glutamate serves an important
function in intermediary metabolism as donor of the amino group in transaminations
of α-keto acids to form other α-amino acids. The cognate keto acid of glutamate, α-
ketoglutarate, is a tricarboxylic acid (TCA) cycle intermediate and glutamate can be
oxidized in the TCA cycle thereby acting as an energy substrate. Glutamine, pro-
duced from glutamate via the astrocytic glutamine synthetase (GS) reaction serves
as a precursor for neuronal transmitter glutamate (see below). In addition, the GS
reaction is considered the most important reaction for fixating ammonia in the brain
playing a fundamental role for detoxifying ammonia in hyperammonemic condi-
tions. Paradoxically, glutamate is a potent excitotoxin as well which means that
tight homeostatic control of glutamate is of vital importance. This involves a num-
ber of both cytosolic and mitochondrial enzymes as well as transporters located
in the plasma, vesicular, and mitochondrial membranes (see Waagepetersen et al.,
2007).
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Fig. 1 Schematic representation of the glutamate/GABA-glutamine cycle. See text for details. The
present dogma dictates that all (or most) of the released glutamate (Glu) is taken up into the glial
compartment, whereas released GABA is primarily accumulated into the presynaptic neuron by
neuronal reuptake (as indicated by the size of the arrows); this view may change in the future.
Abbreviations: GABA, γ-aminobutyric acid; GABA-T, GABA transaminase; GAD, glutamate
decarboxylase; Glu, glutamate; Gln, glutamine; GS, glutamine synthetase; α-KG, α-ketoglutarate;
PAG, phosphate-activated glutaminase; SSADH, succinate semialdehyde dehydrogenase; TCA,
tricarboxylic acid

For the following discussions, one vital component of glutamate homeostasis is
particularly important to bring to mind, namely the glutamate–glutamine cycle. A
more comprehensive discussion of brain glutamate and glutamine homeostasis is
available elsewhere, therefore only a brief introduction is provided here (Bak et al.,
2006; Waagepetersen et al., 2007). Based on discoveries of intercellular compart-
mentalization of glutamine and glutamate pools, related to astrocytes and neurons,
respectively, a glutamate–glutamine cycle working between neurons and astrocytes
was suggested more than three decades ago (van den Berg and Garfinkel, 1971;
Benjamin and Quastel, 1972; Berl and Clarke, 1983; Ottersen et al., 1992). The
cycle for a glutamatergic synapse is outlined in Fig. 1 (left part) in which released
neurotransmitter is taken up into surrounding astrocytes, transformed into glutamine
by the astrocyte-specific enzyme GS (Norenberg and Martinez-Hernandez, 1979)
and released into the extracellular space from which it is taken up into neurons and
transformed back to glutamate by phosphate-activated glutaminase (PAG; Kvamme
et al., 2001). In the GABAergic synapse (Fig. 1; right part), GABA is taken up
into astrocytes and catabolized to the TCA cycle intermediate succinate via the con-
certed action of GABA transaminase and succinate semialdehyde dehydrogenase.
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Glutamine may be synthesized from succinate via the TCA cycle including conden-
sation of oxaloacetate and acetyl-CoA forming citrate and subsequent synthesis of
α-ketoglutarate and conversion to glutamate. Glutamate formed by PAG activity in
the GABAergic neurons is the precursor for GABA catalyzed by glutamate decar-
boxylase. This fundamental neuronal–astrocytic interaction seems to be affected in
many pathological conditions, as is shown in the following sections.

2 Methodological Approaches in the Study of Glutamate
and Glutamine Homeostasis in the Brain

Animal models of brain disorders are typically generated by pharmacological treat-
ment, surgical procedures, or more recently by techniques of molecular biology.
Such treatments might give rise to symptoms or pathological changes consistent
with those observed in humans suffering from a given brain disease. It should be
noted that many human diseases are not naturally observed in rodents, the animals
of choice for many disease models. Still, these animal models constitute a vital
tool for studying malfunctions and potential treatments of a wide range of brain
disorders.

Although primary cell cultures of neurons and astrocytes constitute a valu-
able tool for studying cell-specific metabolism, their use is limited in the context
of studying brain pathology as they do not constitute a native biological sys-
tem. For this reason, most work done using cell cultures has been focused on
mimicking pathologies such as ischemia (hypoxia and glucose-deprivation), a con-
dition fairly easy to create experimentally. However, pathological conditions with a
more complex pathogenesis, such as epilepsy, have typically been studied in more
intact systems, for example, in vivo or ex vivo studies on animal models or acute
preparations of native brain tissue.

The techniques used to study metabolism in brain (pathology) include labeling
of precursors with either radioactive (14C, 3H) or stable isotopes (13C, 15 N) and
subsequently analyzing the incorporation of these isotopes into metabolites under
different experimental conditions. The use of radio-labeled precursors is a classical
technique still widely used; however, even though still a valid method, the amount of
information gained using radio-labeled precursors is limited compared to employ-
ing stable isotopes in combination with more advanced analytical techniques such as
nuclear magnetic resonance spectroscopy (NMRS) or mass spectrometry (MS). The
major difference between NMRS and MS is that the NMRS experiment reveals the
location of the labeled atoms within the molecule of interest whereas MS data pro-
vide information regarding only the number of labeled atoms in a given molecule.
However, MS analysis is much more sensitive, faster, and inexpensive compared to
NMRS.

No doubt the most valuable in vivo technique for studying metabolism is NMRS.
Although in vivo NMRS is a powerful technique providing real-time data, it is
hampered by high cost, problems with sensitivity, low resolution, the need for anes-
thetizing the animal (of course this is not necessary for human subjects), and lack
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of specific methods for differentiating between neuronal and glial compartments.
Thus, in vivo NMRS relies on a number of assumptions as well as results from
in vitro (cell culture) work combined with mathematical modeling to make sense
of the data obtained. However, despite these shortcomings, refinement of this tech-
nique promises to bring about an increasing amount of valuable data in the coming
decades.

To date, the best way to probe glial and neuronal metabolism is the use of labeled
glucose and acetate. The underlying principle is that acetate is specifically taken up
and metabolized by astrocytes because of specific uptake into this cellular compart-
ment (Waniewski and Martin, 1998). It is then presumed that oxidative metabolism
of glucose primarily takes place in neurons (Taylor et al., 1996; Qu et al., 2000).
A number of studies take advantage of this by employing differentially labeled glu-
cose and acetate. Thus, combined injection of [1-13C]glucose and [1,2-13C]acetate
into an experimental animal produces different labeling patterns in metabolites, that
is, mono-labeled from [1-13C]glucose (neuronal compartment) and double-labeled
from [1,2-13C]acetate (astrocytic compartment; see Fig. 2 for detailed explanation).

3 Glutamate and Glutamine Homeostasis
in Selected Brain Disorders

3.1 Epilepsy

More than 13 decades ago, an epileptic seizure was defined as an occasional, sud-
den, and excessive discharge of grey matter (Jackson, 1873). However, seizures
are merely symptoms of underlying brain pathologies although in most cases no
causative brain disorder can be identified and a purely descriptive diagnosis is made.
Current drugs for treating epilepsy target either sodium channels or neurotransmitter
metabolic enzymes, transporters, or receptors; although the mechanisms of action
are not always clear, most drugs seem to either inhibit the glutamatergic (excitatory)
system or potentiate the GABAergic (inhibitory) system. The concept of regarding
epilepsy as an imbalance between excitation and inhibition seems to implicate that
glutamatergic or GABAergic systems may be involved in the pathology. Indeed,
many studies have revealed that the levels of several amino acids including gluta-
mate, GABA, and glutamine are altered in epilepsy in animal models as well as in
humans.

Biopsies taken from human subjects suffering from temporal lobe epilepsy
revealed decreased glutamate–glutamine cycling in sclerotic hippocampal tissue,
as evidenced by labeling in glutamate and glutamine from [2-13C]glucose infused
prior to resection of the hippocampal tissue (Petroff et al., 2002). In fact, glutamate–
glutamine cycling seems to be a mechanism commonly affected in epilepsy.
Accordingly, inhibiting astrocytic GS (and thus glutamine transfer to neurons
for transmitter glutamate synthesis) in hippocampal neuronal/astrocytic cocultures
or hippocampal slices (in which epileptiform activity was induced by GABAA
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Fig. 2 Schematic representation of synapses showing how differentially labeled [1-13C]glucose
([1-13C]Glc) and [1,2-13C]acetate produces different labeling patterns in major metabolites.
[1,2-13C]Acetate is specifically taken up into astrocytes (see text for references) and metab-
olized in the TCA cycle to α-[4,5-13C]ketoglutarate (α-[4,5-13C]KG) which is converted to
[4,5-13C]glutamate ([4,5-13C]Glu) and [4,5-13C]glutamine ([4,5-13C]Gln) which is subsequently
transferred to neurons. In neurons, [4,5-13C]glutamine is converted to [4,5-13C]glutamate and
subsequently to [1,2-13C]GABA in GABAergic neurons. [1-13C]glucose is primarily metabolized
in the neuronal compartment (see text for references). Glycolytic processing of [1-13C]glucose
leads to [3-13C]pyruvate ([3-13C]Pyr) which is metabolized to α-[4-13C]ketoglutarate and sub-
sequently to [4-13C]glutamate and [2-13C]GABA in GABAergic neurons. The depicted scheme
is the simplest possible labeling patterns produced when α-[4,5-13C]ketoglutarate leaves the TCA
cycle in the first turn. In addition, [4,5-13C]glutamate formed from [4,5-13C]glutamine in the
neuronal compartment may to a large degree be converted to α-[4,5-13C]ketoglutarate and metab-
olized in the TCA cycle thus forming additional labeling patterns in glutamate and GABA. Such
cycling of astrocyte-derived glutamine has been suggested to be substantial in GABAergic neurons
(Waagepetersen et al., 1999)

receptor block) reduced spontaneous epileptiform spiking activity, indicating that
the reduced flow of glutamine to the neurons reduced neuronal activity (Bacci
et al., 2002). The same effect on spike activity was observed in cultured hip-
pocampal neurons in which glutamine transport had been blocked (Bacci et al.,
2002). Furthermore, intraperitoneal injection of leucine or its cognate keto acid,
α-ketoisocaproate, augmented the occurrence of absence seizures in genetic absence
epilepsy rats from Strasburg (GAERS; Dufour et al., 2001a, b). This was argued to
be mediated by a decrease in the amount of glutamate available for neurotransmis-
sion, which may correlate to seizure activity in this animal model of nonconvulsive
absence epilepsy (Danober et al., 1998). However, a more direct approach to
study the metabolic disturbances involved in cortical and thalamic brain regions
in the GAERS model was performed by combined injection of [1-13C]glucose and
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[1,2-13C]acetate, showing increased glutamate–glutamine cycling in the cortex but
not in the thalamus in conjunction with a decreased amount of cortical GABA (Melø
et al., 2006). Hence, increased glutamatergic input from the cortex to the thalamus
may affect thalamic filter function, thus playing a role in inducing absence seizures
in the GAERS model.

In general, epilepsy animal models show metabolic disturbances of both neu-
rons and astrocytes. However, it has been argued that the initial or primary
change might take place in only one of these cell types (e.g., Sonnewald and
Kondziella, 2003; Kondziella et al., 2003). A recent study in a rat model of
lithium–pilocarpine-induced temporal lobe epilepsy showed the same extent of
[1,2-13C]acetate metabolism in controls as in epileptic animals, implying that astro-
cytic metabolism is not compromised in these animals (Melø et al., 2005). However,
glutamate labeling from [1-13C]glucose was reduced, suggesting that the metabolic
malfunction in this epileptic model is in the neuronal compartment.

Although glutamate and glutamine metabolism is certainly affected in epileptic
conditions, it does not seem clear whether this is what is causing the seizure activ-
ity or vice versa; basically a chicken and egg dilemma that may be best resolved
by mapping the pathogenesis taking all initial and persistent changes into account.
However, knowledge of metabolic malfunctions is very useful in the context of
developing novel drugs for symptomatic treatment of epileptic disorders that target
metabolic changes (see Section 4 for a further discussion on this matter).

3.2 Ischemic Conditions

Cerebral ischemia, (i.e., absolute or relative shortage of blood supply to a part of the
brain such as following an ischemic stroke) is a serious condition that can lead to
physical impairment or death. Stroke is a leading cause of death and adult disability
in the industrialized part of the world (Thom et al., 2006). The outcome of a cerebral
ischemic episode is greatly influenced by the duration, that is, the time from onset of
ischemia until reperfusion; treatment is directed at the cause of the impaired blood
supply, that is, thrombolysis or surgical intervention (e.g., see the review by Juttler
et al., 2006).

The cellular and molecular events taking place during an ischemic episode have
been studied extensively in animal models as well as in tissue preparations and
cell cultures. The lack of oxygen and glucose causes a dramatic chain of events
ultimately leading to cell death and necrosis of the affected tissue. It is gener-
ally thought that excitotoxic insults are key elements in the pathology, as neurons
might succumb to excitotoxic mechanisms rather than energy deprivation per se,
especially in the penumbral zone (Huang et al., 1997). One of the initial events
in ischemia may be impairment or reversal of astrocytic glutamate uptake (Rossi
et al., 2000), resulting in increased extracellular levels of glutamate and concomitant
dysfunction of the glutamate–glutamine cycle. Interestingly, the eventual demise of
astrocytes in ischemia might be due to lack of intracellular glutamate (caused by
a reversal of the glutamate transporter) for synthesis of glutathione and associated
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oxidative damage, a mechanism possibly involving the lipoxygenase pathway (Re
et al., 2006). However, it is clear from cell culture studies that astrocytes are much
more resistant to deprivation of oxygen and glucose than neurons (e.g., Almeida
et al., 2002). A widely employed rodent model of cerebral ischemia is middle cere-
bral artery occlusion (MCAO), a surgical procedure in which the middle cerebral
artery is temporarily or permanently occluded resulting in infarction of only one
hemisphere (Longa et al., 1989). As discussed below, the MCAO model or variations
thereof have been employed in a number of studies. These studies indicate mal-
functions in cellular metabolism and impairment of neuronal–astrocytic interactions
both during the ischemic episode and following reperfusion.

After 1 h of reperfusion following 2 or 3 h of MCAO in conscious rats, regional
as well as cellular differences were found with regard to incorporation of 14C into
glutamate and glutamine from [14C]glucose or [14C]acetate (Thoren et al., 2005,
2006). It was found that labeling of glutamine from [14C]acetate was reduced com-
pared to the nonaffected hemisphere in striatum, but not in focal or perifocal cortical
tissue (Thoren et al., 2005). This signifies the regional diversity in susceptibility
to ischemic insults apparently based on differences in properties of glial cells. In
contrast, when [14C]glucose was employed, labeling in both glutamate and glu-
tamine decreased in both striatum and cortex (Thoren et al., 2006). This indicates
that neuronal glucose metabolism in both regions is significantly affected which
is consistent with a reported decrease in 2-deoxy-glucose utilization in a similar
model (Belayev et al., 1997). Surprisingly, for both brain regions the ATP: ADP
ratio and phosphocreatine level were found to be maintained following reperfusion;
however, increases in [14C]lactate was manifest throughout both regions (Thoren
et al., 2006). The cellular origin of this lactate may be both neuronal and astro-
cytic, probably reflecting increased anaerobic glycolysis secondary to lack of O2
for oxidative metabolism.

It should be noted that astrocytes contain the only supply of glycogen in the brain,
although it is of limited size (McKenna et al., 2006). Glycogen may support anaer-
obic glycolysis in astrocytes during ischemia producing lactate which is released
into the extracellular space; however, the functional role of brain glycogen during
normal or ischemic conditions is not known in detail (McKenna et al., 2006). In this
respect, lactate has been suggested to function as an (obligatory) energy substrate
for neurons recovering from hypoxia or aglycemia (Fowler, 1993; Schurr et al.,
1997a, b, c; Cater et al., 2001), although these observations have been argued to
be an artifact of the preparation procedures of the experimental models employed
(Okada and Lipton, 2007). In line with this, exogenous pyruvate may serve a neuro-
protective role in the postischemic brain (e.g., Desagher et al., 1997) being primarily
a neuronal substrate as evidenced in mice employing injections of [3-13C]pyruvate
(Gonzalez et al., 2005); however, as noted by these authors, the clinical use may be
hampered by the risk of seizures induced by high doses of exogenous pyruvate.

In a series of studies in rats by Håberg et al. (1998, 2001, 2006), different time
periods of MCAO (ranging from 30 to 240 min) were studied ex vivo employ-
ing injection of [1-13C]glucose and [1,2-13C]acetate and subsequent analysis by
NMRS. Already in the early stage of ischemia (30 min of MCAO) astrocytic
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metabolism was compromised in the ischemic core (lateral caudoputamen and lower
parietal cortex) as evidenced by decreased synthesis of [4,5-13C]glutamine from
[1,2-13C]acetate (Håberg et al., 2001). In addition, decreased neuronal formation of
[4,5-13C]glutamate from the [4,5-13C]glutamine formed in astrocytes was evident,
suggesting impaired transfer of glutamine from astrocytes to neurons (Håberg et al.,
2001). Even though neurons can maintain glutamate synthesis throughout 240 min
of MCAO, the total amount of glutamate in the affected tissue is decreased after an
ischemic episode (Håberg et al., 2001), underlining the serious metabolic deficien-
cies occurring under such conditions. Interestingly, [1,2-13C]GABA was already
absent from ischemic brain regions after 30 min of MCAO (Håberg et al., 2001).
This may indicate that (i) at the GABAergic synapse, astrocyte-to-neuron trafficking
of [4,5-13C]glutamine was completely abolished or (ii) that the [4,5-13C]glutamate
derived from [4,5-13C]glutamine is metabolized in the neuronal TCA cycle rather
than being used directly for synthesis of GABA.

As indicated above, primary astrocytic malfunction may cause subsequent harm
to the neurons but certainly astrocytes play an important role for neuronal sur-
vival following reperfusion as well. In rats, after 120 min of MCAO followed by
120 min of reperfusion interesting metabolic differences were found between the
ischemic core (lateral caudoputamen and lower parietal cortex) and the penumbral
zone (frontoparietal cortex; Håberg et al., 2006). Following reperfusion, astro-
cytic metabolism was significantly improved in the penumbral zone, as evidenced
by increased metabolism of [1,2-13C]acetate whereas in the ischemic core the
situation was the reverse, showing decreased [1,2-13C]acetate metabolism com-
pared to 120 min of MCAO alone (Håberg et al., 2006); this was most likely
caused by decreased activity of acetyl-CoA synthetase, catalyzing the conversion of
[1,2-13C]acetate to [1,2-13C]acetyl-CoA. In the penumbra, label from [1-
13C]glucose into [4-13C]glutamate was not affected by 120 min reperfusion
compared to after 120 min of MCAO alone, which was in contrast to the ischemic
core where almost no [4-13C]glutamate was present at this point (Håberg et al.,
2006). This suggests that after 120 min of MCAO, neuronal metabolism in the
ischemic core is not rescued by 120 min of reperfusion whereas neuronal integrity
is preserved in the penumbral zone.

The MCAO animal model seems to be a robust system in which to investigate
the metabolic changes occurring in ischemia. Not surprising, rather severe dysfunc-
tional homeostasis of glutamate and glutamine metabolism seem to be present in
ischemia, including interference with neuronal–astrocytic interactions. However, the
severity of these dysfunctions seemed to vary among brain regions, possibly due to
differential properties of the local glial cells.

3.3 Neurodegenerative Disorders

Neurodegeneration is a progressive, fatal deterioration of neuronal function,
playing a part in many brain pathologies including Alzheimer’s, Huntington’s,
and Parkinson’s diseases and olivopontocerebellar atrophy, which are commonly
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referred to as neurodegenerative diseases. Olivopontocerebellar atrophy and
Huntington’s disease are part of the group of trinucleotide repeat or polyglutamine
disorders, featuring excessive repeats of genomic CAG sequences on different
chromosomes affecting gene function. Generally, only few studies have been con-
ducted on glutamate and glutamine metabolism in neurodegenerative disorders.
Some studies have determined levels of amino acids in blood and brain or cere-
brospinal fluid (CSF) and found some differences; however, levels of metabolites
only offer limited information on dysfunctional metabolism. Interestingly, there
seems to be an increased interest in employing NMRS in studying these pathologies
and representative studies are discussed below.

Glutamate metabolism and glutamate–glutamine cycling might be compromised
in Alzheimer’s disease, inasmuch as aberrant expression of glutamate metaboliz-
ing enzymes including glutamate dehydrogenase (GDH), GS, and PAG has been
reported (Robinson, 2000, 2001; Burbaeva et al., 2005). In addition, a study
employing in vivo NMR spectroscopy suggested decreased glutamatergic neuro-
transmission activity and TCA cycling rate in patients suffering from Alzheimer’s
disease, as suggested by labeling patterns in glutamate and glutamine from infused
[1-13C]glucose (Lin et al., 2003).

Neurodegeneration related to GDH malfunction and subsequent glutamate toxic-
ity may constitute part of the pathology of some forms of multiple system atrophies
(MSAs) known as olivopontocerebellar atrophy or spinocerebellar ataxia affecting
the cerebellum, pons, and inferior olives (review, Plaitakis et al., 1993); symptoms
include Parkinsonism, ataxia, and autonomic dysfunction. GDH deficiencies were
found in patients suffering from cerebellar degeneration (Plaitakis et al., 1979, 1980)
and abnormal levels of brain glutamate have been observed in patients suffering
from MSA (Perry et al., 1981). In addition, brain TCA cycle metabolism may also
be compromised as the activity of α-ketoglutarate dehydrogenase, the rate-limiting
enzyme in the TCA cycle, seems to be decreased in postmortem biopsies from MSA
patients (Mastrogiacomo and Kish, 1994). Apparently, no studies employing stable
isotope-labeled substrates and NMRS or MS seem to have been performed in either
MSA patients or any animal models of cerebellar degeneration. One problem may
be that no valid animal model is available that displays the right combination of
pathological changes compared to patients suffering from GDH-deficient forms of
MSA (Miret-Duvaux et al., 1990), although systemic administration to rodents of
3-acetylpyridine has been argued to produce lesions corresponding to those
observed in patients (see the review by Plaitakis et al., 1993). The elucidation of
metabolic defects in MSAs would be of significant value for understanding these
debilitating neurodegenerative diseases.

The levels of glutamine and glutamate were found to increase and decrease,
respectively, in CSF of patients suffering from Parkinson’s disease (Mally et al.,
1997), however, other studies employing in vivo NMRS found that the [gluta-
mate+glutamine]/[creatine] ratio in the basal ganglia and striatum of Parkinson’s
disease patients was no different from healthy control subjects (Clarke et al., 1997;
Taylor-Robinson et al., 1999). On the other hand, a study employing 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP; a drug found to induce striatal lesions
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of dopaminergic pathways and cause Parkinsonism) treatment of cats and NMRS
analysis found lower [glutamate+glutamine]/[creatine] ratio than in control animals
(Podell et al., 2003).

Chronic treatment with the mitochondrial toxin 3-nitropropionic acid (3-NPA;
inhibits succinate dehydrogenase, a TCA cycle enzyme) induces lesions in the stria-
tum of animals leading to symptoms similar to Huntington’s disease in humans
(Brouillet et al., 1998). Initial, acute intoxication with 3-NPA in mice selectively
targeted GABAergic neurons inhibiting their TCA cycle, whereas glutamatergic
pathways, glial cells, and glutamate–glutamine cycle function were unaffected
(Hassel and Sonnewald, 1995). However, this selective inhibition of (GABAergic)
neuronal function in the striatum is still somewhat of a mystery, as 3-NPA affects
other brain regions as well (Brouillet et al., 1998) showing a general 18% decrease
in TCA cycle flux in one in vivo NMRS study of rat brain (Henry et al., 2002).

In conclusion, glutamate and glutamine homeostasis seem to play a role in
neurodegenerative pathologies, although the picture is not consistent. Much more
research is needed to elucidate the potential role of malfunction of glutamate and
glutamine homeostasis in neurodegenerative disorders. Especially, ex and in vivo
NMRS employing animal models as well as patients should be employed to this
end, as such approaches provide the most precise information.

3.4 Psychiatric Disorders

The psychiatric disorders represent a duality of suffering for the patients, as they
not only have to combat the disease but also have to endure the stigmatization of
being mentally ill. Thus, not only is there a need for effective pharmacotherapy and
research into the pathogenesis, there is also a need for changing the public view on
these disorders.

There is increasing evidence that glutamate/glutamine homeostasis is disturbed
in a number of psychiatric disorders. Thus, in the anterior cingulate cortex, GDH
and GS were found to be expressed to a lower extent in patients suffering from
bipolar disorder and major depressive disorder, respectively (Beasley et al., 2006).
Conversely, it was found that transcripts (i.e., mRNA) for PAG and GS are present
to a higher extent in the thalamus of patients suffering from schizophrenia and, in
addition, increased transcripts for the glial glutamate transporters (EAAT1, EAAT2)
as well as a vesicular glutamate transporter (VGLUT2) have been reported (Smith
et al., 2001a, b). Furthermore, one study suggests that EAAT2 protein may actu-
ally be increased in prefrontal cortex of schizophrenic patients and that atypical
antipsychotic pharmacotherapy (e.g., clozapine) may normalize the expression of
EAAT2 protein (Matute et al., 2005). In this respect, it should be noted that such
“hyperactive” astrocytic glutamate transport may constitute a target for novel phar-
macotherapeutic approaches, as discussed by Nanitsos et al. (2005). As always,
mRNA levels may not reflect actual formation of functional protein and, moreover,
when using patients there is always the risk that treated and nontreated patients as
well as the stage of the disease may affect the results. The last point is illustrated
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by the study of Ohrmann et al. (2005) in which only chronic but not first-episode
patients showed significantly lower glutamate/glutamine levels in the prefrontal cor-
tex. Interestingly, another study published the same year by another group did not
find such differences and, quite disturbingly, they found the opposite effect on the
glutamate and glutamine levels, that is, increased concentrations in both prefrontal
cortex and hippocampus (van Elst et al., 2005). This may illustrate the complexity
of such diseases, and one way to investigate this under more controlled conditions
is to turn to animal models.

In general, animal models of psychiatric disease are somewhat of a conun-
drum, as symptoms are usually subjective; for example, in schizophrenia, symptoms
consist of so-called positive (thought disorder; delusions) and negative symptoms
(emotional disorder). One potential high-quality animal model of schizophrenia
producing both negative and positive symptoms is based on the glutamate hypo-
function hypothesis and may be induced by treating rats with the noncompetitive,
activity-dependent N-methyl-D-aspartate (NMDA) receptor blocker MK-801 (or
dizocilpine; the systematic IUPAC name is [5R,10S]-[+]-5-methyl-10,11-dihydro-
5H-dibenzo[a,d]cyclohepten-5,10-imine; Carlsson et al., 2001). MK-801 was orig-
inally being developed by the drug company Merck & Co. as a neuroprotective
agent but was discontinued because of the above ability to induce cellular lesions,
eventually leading to schizophrenic symptoms (Olney et al., 1989). Eyjolfsson et al.
(2006) argues, that repeated “low” doses (0.1 mg/kg) of MK-801 mimics some of
the typical behavioral changes observed in schizophrenic patients (e.g., hyperloco-
motion) whereas neurochemical changes consistent with observations in so-called
first-episode patients (Kondziella et al., 2006) were only present after repeated
“high” doses (0.5 mg/kg).

A single dose (0.5 mg/kg) of MK-801 given to rats that were subsequently
injected with [1-13C]glucose and [1,2-13C]acetate in combination, caused an
increase in total glutamine content as well as in [4-13C]glutamine synthesized from
[1-13C]glucose (Brenner et al., 2005); the mechanism may involve decreased NO-
mediated inhibition of GS (Kosenko et al., 1995, 2003). In the study by Brenner
et al. (2005), no concomitant increase in [4-13C]glutamate was observed which indi-
cates that the glutamate–glutamine cycle may be affected in the neuron-to-astrocyte
direction; however, labeling from [1,2-13C]acetate in glutamate, glutamine, and
GABA were not altered, suggesting that the flow of glutamine from astrocytes to
neurons was not influenced by a single injection of MK-801. In contrast, another
study by the same group employing repetitive injections of MK-801 (0.5 mg/kg;
rats; every day for 6 days) showed decreased synthesis of [4,5-13C]glutamate and
[4,5-13C]glutamine from [1,2-13C]acetate in the prefrontal cortex (Kondziella
et al., 2006) implying that the glutamate–glutamine cycle is impaired in the
astrocyte-to-neuron direction in this model. As suggested by Kondziella et al. (2006)
as well as Eyjolfsson et al. (2006), repeated injections rather than a single injection
of MK-801 may be a better animal model, as the neurochemical and behavioral
changes are more in keeping with the changes observed in patients.

In conclusion, psychiatric disorders seem to involve a significant component
of disruption of glutamate/glutamine homeostasis. In addition, a high-quality
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animal model of schizophrenia based on repetitive injections of MK-801 has been
established and might prove to be of significant value in future research.

4 Potential Drug Targets Related to Glutamate
and Glutamine Homeostasis

Clearly, interfering with glutamate/glutamine homeostasis seems an attractive goal
to pursue for symptomatic treatment of a number of brain disorders. In the treatment
of epilepsy, drugs targeting GABA transporters (tiagabin) and GABA-transaminase
(vigabatrin) have been on the market for a number of years, providing proof of
principle for the neurotransmitter cycling systems as pharmacological targets (Sarup
et al., 2003). However, with regard to glutamate homeostasis no such drugs have
been marketed, although one effect of atypical antipsychotic pharmacotherapy may
be a reduction in astrocytic EAAT2 protein (Matute et al., 2005) and it has been
suggested that a novel approach in treating psychotic disease should be directed
specifically at regulating astrocytic glutamate transport “hyperfunction” (Nanitsos
et al., 2005).

One concern with targeting the glutamatergic neurotransmitter system might
be that glutamatergic synapses are so abundant and that glutamate is an impor-
tant metabolite in intermediary metabolism, making interference with glutamate
homeostasis a potential nightmare with regard to adverse effects. Thus, most drug
development directed at the glutamatergic system seems to have been focused
on ionotropic glutamate receptors as pharmacological targets, although G-protein
coupled receptors have been attracting increased attention. Recent work by Rae
et al. (2005) shows that metabotropic glutamate receptors might constitute attractive
drug targets for regulating the metabolism associated with the glutamate–glutamine
cycle. Agonists and antagonists of metabotropic glutamate receptors of groups I and
II (coupled to the phosphoinositide/Ca2+ and the cyclic AMP second messenger
systems, respectively) affected TCA cycle activity as well as the glutamate–
glutamine cycling rate in Guinea pig slices. It was observed that group I ago-
nists/antagonists affected TCA cycle activity, whereas group II agonists/antagonists
influenced the glutamate–glutamine cycling rate.

Thus, metabolic homeostasis of the glutamate/glutamine system may be a fertile
avenue to pursue in order to identify novel targets for pharmacotherapy directed at
a number of diseases of the brain.

5 Concluding Remarks

It seems clear from this discussion that metabolic changes related to glutamate
and glutamine homeostasis are an integral part of many pathologies of the brain
and that interfering with the glutamate/glutamine system may be an attractive tar-
get for drug treatment. However, much work still needs to be performed in order
to elucidate the many aspects of metabolic dysfunction in neurological and psy-
chiatric diseases. Especially, increased use of in vivo MR spectroscopy will be
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important in this respect to elucidate the complex metabolic changes in patients
and animal models of brain disease. However, although employing 13C-labeling
and spectroscopy techniques may aid in mapping metabolic dysfunctions, the exact
mechanisms underlying these disturbances need to be addressed as well. The best
way to bring this about is to employ a different set of techniques including pro-
teomics methodology to determine changes in the related proteome. Furthermore,
refinement of existing, and development of new, animal models of brain diseases
are an important issue. This may become easier as knowledge of potential genetic
and/or developmental causes of brain disease becomes available, making genetically
modified animals the model of choice for these investigations. No doubt, the future
will bring an increased appreciation of the metabolic disturbances involved leading
to an improved understanding of the pathology of brain disorders.
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Rho-Linked Mental Retardation Genes

Nael Nadif Kasri and Linda Van Aelst

Abstract Mental retardation (MR) is generally defined as a global reduction in
cognitive abilities, which manifests before the age of 18. The causes of MR
are extremely heterogeneous, including environmental factors as well as genetic
changes, such as chromosomal abnormalities and single-gene mutations. Great
progress has been made in recent years towards the identification of MR genes, par-
ticularly X-linked MR genes. A largely remaining challenge, however, is to connect
the genetic causes of MR to processes that establish and/or modify neuronal cir-
cuit function. Several of the currently identified genes are associated with MR code
for regulators and effectors of the Rho subfamily of GTP-binding proteins, which
are key regulators of the actin cytoskeleton. The identification and characterization
of Rho-linked genes associated with different forms of MR have shed light on our
current understanding as to how defective cellular signaling can result in abnor-
mal neuronal connectivity, which can give rise to impaired information processing
underlying cognitive function. Aberrations in defined Rho-mediated signaling path-
ways have been linked to defects in the formation and remodeling of dendritic
spines and/or the maturation and activity-dependent modification of the efficacy
of synapses. In this review, we focus on the role of Rho GTPases and their asso-
ciated signaling molecules in the control of spine structure and synaptic function,
and highlight their involvement in MR resulting from a variety of genetic mutations
within regulators and effectors of these molecules.

Keywords Mental retardation (MR) · Dentritic spines · Synaptic structure
and function · Actin cytoskeleton · Rho GTPases · Rho-linked MR genes ·
Nonsyndromic and syndromic X-linked MR · Autosomal syndromic MR
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1 Mental Retardation

1.1 Definition, Causes, and Classification

Mental retardation (MR) is generally defined as a global reduction in cognitive
and intellectual abilities, which manifests before the age of 18, and is estimated
to affect 1 to 3% of the population (Chelly et al., 2006). Intellectual functioning
and its severity is commonly based on the evaluation of the Full Scale Intelligence
Quotient (FSIQ), and MR is represented by an intelligence quotient (IQ) lower than
70. Based on the IQ, MR is commonly classified in two main groups: severe MR
with an IQ below 50, and mild MR with an IQ between 50 and 70. The causes of
MR are extremely heterogeneous and include nongenetic factors such as premature
birth, infectious disease, and fetal alcohol syndrome, as well as genetic changes
that include chromosomal abnormalities and single-gene mutations (Mandel and
Chelly, 2004; Ropers and Hamel, 2005; Vaillend et al., 2008). Conventionally,
genetic forms of MR have been subdivided into syndromic and nonsyndromic
forms; with syndromic MR being characterized by associated clinical, radiological,
metabolic, or biological features whereas in the case of nonsyndromic or nonspecific
MR, cognitive impairment represents the only manifestation of the disease (Chelly
and Mandel, 2001; Ropers and Hamel, 2005). It should be noted, however, that
more recent genotype/phenotype studies and clinical re-evaluations of patients indi-
cate that the boundaries between syndromic and nonsyndromic MR are vanishing.
Moreover, several of the MR-related genes emerged as being involved in both forms
of MR (Frints et al., 2002; Chelly et al., 2006).

Great progress has been made in recent years towards the identification of MR-
related genes, resulting in a list of approximately 300 genes. A complete list of MR-
and associated syndromes-related genes has been rigorously reviewed by Inlow and
Restifo (Inlow and Restifo, 2004). Among these genes, several are associated with
severe brain abnormalities, such as neuronal heterotopia, lissencephaly, and micro-
cephaly (Chelly et al., 2006). In these cases, MR is likely to be a secondary symptom
inasmuch as the involved gene products are likely to play a role in proper develop-
ment of the CNS. A vast number of other genes have been associated with MR dis-
orders with no apparent/gross abnormalities in brain structure and architecture, and,
as discussed below, current efforts are geared towards unraveling the cellular bases
for these MR conditions. Whereas the initial excess in identifying genes mutated
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in syndromic and nonsyndromic forms of X-linked MR led to the hypothesis that a
disproportionally high density of genes influencing cognitive abilities reside on the
X chromosome, recent estimates suggest a downturn in X-linked MR prevalence
(Mandel and Chelly, 2004; Poirier et al., 2006). This is further supported by the
emerging high frequency of pathogenic autosomal copy number variations.

1.2 Mental Retardation Is Associated with Abberations in Spine
Structure and Synaptic Function

A major challenge has been to connect the genetic causes of MR to the relevant cel-
lular processes and pathways underlying the pathophysiology of human cognitive
disorders. One consistent feature of neurons in patients with MR is alterations in the
size, shape, stability, and/or number of dendritic spines, which are highly special-
ized and dynamic structures on the dendrites on which most excitatory synapses in
the brain are located (Kaufmann and Moser, 2000; Fiala et al., 2002; Newey et al.,
2005; Tada and Sheng, 2006). More than three decades ago, studies using Golgi
impregnations of postmortem material from normal and mentally retarded children
demonstrated that changes in dendritic spine density and shape were associated
with MR (Huttenlocher, 1970; Marin-Padilla, 1972; Huttenlocher, 1974; Purpura,
1974; Kaufmann and Moser, 2000). For instance, Purpura reported a loss of spines
with an absence of short thick spines and a predominance of abnormally long thin
spines (resembling immature filopodia) in patients with MR of unknown etiology
(Purpura, 1974). Similar alterations with the presence of long tortuous spines have
been observed in other defined classes of MR, such as fragile-X syndrome (Rudelli
et al., 1985; Hinton et al., 1991; Wisniewski et al., 1991; Irwin et al., 2001). The
latter is caused by a trinucleotide CGG repeat expansion and hypermethylation in
the 5′ untranslated region of the FMR1 gene, which is the most frequent single-gene
cause of MR (see further Section 2.2.4).

In the case of Down’s syndrome, which results from trisomy of chromosome 21,
a reduction in spine density in the neocortex and hippocampus is a common feature;
however, short thin spines and spines with large heads and thin necks have also been
described (Marin-Padilla, 1972, 1976; Suetsugu and Mehraein, 1980; Takashima
et al., 1981; Ferrer and Gullotta, 1990; Takashima et al., 1994). Subsequent studies
using mouse models with genetically generated MR (e.g., FMR1 knock-out mouse
and partially trisomic mouse, Ts65Dn) consistently reported defects in dendritic
spine morphology (Comery et al., 1997; Nimchinsky et al., 2001; Belichenko et al.,
2002; Bakker and Oostra, 2003; Dierssen et al., 2003; Galdzicki and Siarey, 2003;
Grossman et al., 2006). Thus, alterations in the shape, stability, and/or number of
dendritic spines are likely to be a contributive factor to MR.

What are the functional implications of alterations in spine morphology and
how are they linked to MR? There are numerous observations indicating that
spine size, which can range over two orders of magnitude, is of physiological
importance. For instance, larger spines can greatly outlast small spines (months
compared with hours) (Holtmaat et al., 2005). It is important to note that large
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spines contain large synapses (Harris et al., 1992) with more glutamate-sensitive
AMPA receptors (AMPARs), the principal receptors for fast excitatory neurotrans-
mission in the mammalian central nervous system (Baude et al., 1995; Nusser
et al., 1998; Kharazia and Weinberg, 1999; Takumi et al., 1999), and thus are
functionally stronger than small spines. This strong positive correlation between
spine size and synaptic strength is maintained in the face of plasticity (Matsuzaki
et al., 2004; Kopec et al., 2006). Indeed, increasing evidence indicates that synap-
tic plasticity is associated with changes in spine morphology. These morphological
changes of spines depend on NMDAR activation and are thought to contribute to
activity-dependent formation and elimination of synaptic connections.

Two forms of synaptic plasticity, which are considered to be major cellular
mechanisms underlying learning and memory, are long-term potentiation (LTP) and
long-term depression (LTD) (reviewed in Citri and Malenka, 2008). LTP-inducing
stimuli, associated with the addition of AMPARs at the postsynaptic site, cause
the formation of new spines and/or the enlargement of existing spines, whereas
LTD-inducing stimuli, associated with internalization of AMPARs, lead to shrink-
age and/or retraction of spines (reviewed in Malinow and Malenka, 2002; Bredt
and Nicoll, 2003; Shepherd and Huganir, 2007; Citri and Malenka, 2008). Given
that learning deficit is a constant feature of patients with MR, alterations in synap-
tic structure and function are thought to be attributed to some of the MR conditions.
Consistent with this notion, increasing evidence suggests that impairments in synap-
togenesis and synaptic plasticity contribute to mental and neurological disorders,
including MR (Fiala et al., 2002; Bagni and Greenough, 2005; Halpain et al., 2005;
Chahrour and Zoghbi, 2007; Dolen and Bear, 2008) (see also Section 2.2). Hence, it
is not surprising that large efforts have been devoted towards unraveling the molec-
ular and cellular mechanisms underlying synaptic structure, function, and plasticity
(reviewed in Shepherd and Huganir, 2007; Citri and Malenka, 2008).

Ample evidence points to an active contribution of actin to the modulation of
spine morphology and the efficacy of pre- and postsynaptic terminals (reviewed in
Cingolani and Goda, 2008). Actin filaments form the main cytoskeleton of den-
dritic spines, which are remarkably dynamic. It is widely believed that the regulated
polymerization and/or depolymerization of actin underlie spine motility, growth,
and shape (Tada and Sheng, 2006; Cingolani and Goda, 2008). Moreover, several
observations support the view that dynamic actin filaments are a prerequisite for
synapse formation. For instance, activity-dependent synaptogenesis is blocked by
actin depolymerizing agents; disruption of signaling pathways implicated in synap-
tic actin reorganization results in synaptogenesis defects; and finally, actin plays
a part in the development of dendritic spines, thus linking the synapse with actin
(reviewed in Cingolani and Goda, 2008). The actin network is also directly involved
in synaptic regulation at mature synapses, such as LTP and LTD. Actin-GFP FRET
experiments demonstrated that changes in actin polymerization/depolymerization
occur in response to different patterns of synaptic stimulation. In particular, these
studies showed that tetanic stimulation causes a shift of actin equilibrium towards
filamentous actin (F-actin), whereas prolonged low-frequency stimulation causes a
shift in actin equilibrium towards G-actin, resulting in a loss of postsynaptic actin
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(Okamoto et al., 2004). Furthermore, F-actin has been shown to be required for
stable LTP, suggesting that nascent actin filaments stabilize synaptically delivered
AMPARs (Kim and Lisman, 1999; Krucker et al., 2000; Fukazawa et al., 2003;
Chen et al., 2004; Okamoto et al., 2004; Lin et al., 2005; Matus, 2005; Honkura
et al., 2008). Interestingly, a more recent study showed that synaptic insertion of the
AMPAR subunit GluR1, independent of its role of increasing synaptic strength, is
required for stable spine enlargement after plasticity-inducing stimuli (Kopec et al.,
2007). These findings suggest that AMPARs and nascent actin filaments are interde-
pendent and mutually stabilizing. Together, these studies point to an important role
for actin in functional and structural plasticity.

The central role of actin in the regulation of synaptic structure and func-
tion pointed to Rho GTPase family members as central contributors, inasmuch
as they are key regulators of actin dynamics and organization (Van Aelst and
D’Souza-Schorey, 1997). Indeed, Rho proteins emerged as key regulators of spine
morphogenesis, and more recently have been implicated in synapse formation and
synaptic plasticity. Furthermore, and significantly, mutations in regulators and effec-
tors of the Rho GTPases have been found to underlie various forms of MR. In the
remainder of this review, we first briefly discuss the role of Rho GTPases in spine
and synapse formation, and subsequently describe in more detail some of the Rho
GTPase signaling pathways involved in different forms of MR.

2 Rho GTPases

2.1 Rho GTPases Control Synaptic Structure and Function

The Rho family of small GTPases are low-molecular-weight guanine nucleotide-
binding proteins, which act as molecular switches cycling between an active
GTP-bound form and an inactive GDP-bound form (see Fig. 1). Their activity is
tightly controlled by dedicated guanine nucleotide exchange factors (GEFs), which
promote GTP-loading, GTPase activating proteins (GAPs), which enhance hydroly-
sis of the bound GTP, and guanine-nucleotide-dissociation-inhibitors (GDI), which
prevent the exchange of GDP for GTP (Van Aelst and D’Souza-Schorey, 1997).
Activated GTP-bound Rho GTPases interact with specific effector molecules to
mediate their cellular actions. Of the Rho GTPase family members, RhoA, Rac1,
and Cdc42 have been characterized most extensively. These GTPases are best
known for their effects on the actin cytoskeleton, and, hence, it is not surprising that
they emerged as critical regulators of spine formation and/or maintenance (Govek
et al., 2005) (Fig. 1).

Several lines of evidence pointed to a role for Rac in spine formation and/or main-
tenance and the control of spine morphology in different model organisms (Govek
et al., 2005). These studies largely relied on imaging of individual, fluorescently
labeled neurons expressing constitutively active (CA) and dominant-negative (DN)
mutant forms of Rac. Expression of CA Rac1 in hippocampal brain slices resulted
in the formation of multiple small spines (Nakayama et al., 2000; Tashiro et al.,
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Fig. 1 Regulatory cycle for the activation and inactivation of Rho GTPases and their involvement
in synapse development and maturation. Left panel: Rho GTPases cycle between an inactive GDP
and an active GTP bound form. Their activity is tightly controlled by dedicated guanine nucleotide
exchange factors (GEFs), which promote GTP-loading; GTPase activating proteins (GAPs), which
enhance their intrinsic rate of GTP hydrolysis; and guanine nucleotide dissociation inhibitors
(GDIs), which prevent exchange of GDP for GTP and inhibit the intrinsic GTPase activity of
GTP-bound GTPases. Only in their active state, Rho GTPases bind to their downstream effectors
and exert their effects on various important biological activities. Right panel: Rho GTPases have
been implicated in various aspects of neuronal development, including spine/synapse development
and maturation. A number of Rho-associated MR gene products are indicated at the appropri-
ate positions. Blue label indicates postsynaptic localization and red label presynaptic localization.
Abbreviations: ARHGEF6, Rho guanine nucleotide exchange factor 6; FMRP: fragile-X mental
retardation-1 protein; MEGAP, Mental disorder-associated GAP protein; OCRL1, the oculocere-
brorenal syndrome of Lowe protein 1; OPHN1, oligophrenin-1; PAK3, p21-activated kinase 3

2000; Pilpel and Segal, 2004). This spine phenotype was also observed in trans-
genic mice expressing CA Rac1 in Purkinje cells (Luo et al., 1996). Such spines
appear to be often engaged in multiple synaptic contacts, which is rarely seen in
normal animals (Luo et al., 1996). On the other hand, expression of a DN Rac1
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mutant in mouse and rat hippocampal slices caused a reduction in spine density and
a corresponding reduction in synapse formation (Tashiro et al., 2000; Tashiro and
Yuste, 2004). Notably, the spines of DN Rac transfected neurons were in general sig-
nificantly longer than control spines, and detailed analysis revealed that blockade of
Rac transforms a subset of existing spines into long, thin filopodia-like protrusions.
Furthermore, inhibition of Rac1 reduces spine head growth (particularly in mature
neurons), morphological changes, and spine stability (Tashiro and Yuste, 2004).

Interestingly, a recent study examining single and double Rac1 and Rac3 (which
encodes the closely related, neuron-specific, Rac3 family member) knock-out mice
demonstrated that spine formation is strongly hampered only in hippocampal neu-
rons lacking both Rac1 and Rac3, implying that Rac1 and Rac3 play complementary
roles during late stages of neuronal development. This study additionally showed
that the double knock-out mice displayed neurological abnormalities (Corbetta
et al., 2009). Recent studies have also coupled Rac1 function to synaptic activity.
Wiens et al. found that overexpression of wild-type or CA Rac1 enhances excitatory
synaptic transmission and induces clustering of AMPARs in both pre-existing and
newly formed dendritic spines, demonstrating that Rac1 can regulate the function
of excitatory synapses (Wiens et al., 2005). These findings indicate that Rac1 is not
only important for spine morphology and motility, but is also directly coupled to
synaptic function. Positive regulators of Rac examined in the context of dendritic
spine morphogenesis and/or synaptic function include Tiam1, Kalirin, and α- and
β-PIX (Penzes et al., 2008); see Section 2.2).

Evidence has been provided that the Rac-GEF Tiam1 acts as a critical mediator
of N-methyl-D-aspartate receptor (NMDAR)-dependent spine development (Tolias
et al., 2005). Tolias et al. showed that Tiam1 is necessary for spine and synapse
development and that it interacts with the NMDAR. Following glutamate applica-
tion, they observed that NMDAR-mediated increases in intracellular calcium causes
phosphorylation of Tiam1, with a concomitant increase in Rac1 activity required
for spine remodeling (Tolias et al., 2005). In a subsequent study, the same group
examined EphB receptors, as they are known to form a complex with NMDARs
and positively modulate their function. They found that Tiam1 also mediates EphB
receptor-dependent dendritic spine development, and proposed a model in which
Tiam1 by functioning downstream of both EphB and NMDAR may act as a con-
vergence point to help integrate activity-dependent and -independent signaling
pathways during the development and remodeling of synaptic connections (Tolias
et al., 2007). Recent work also indicates that the Rac-GEF kalirin-7 is a key com-
ponent in coupling NMDAR activation to Rac activation and structural plasticity in
mature cortical neurons.

Xie et al. found that activation of the calcium/calmodulin-dependent kinase
II family member (CaMKII) following NMDAR activation directly phosphory-
lates kalirin-7 on its N-terminus, thereby stimulating its GEF activity (Xie et al.,
2007). Knock-down of kalirin-7 levels reduces basal spine density and the fre-
quency of miniature excitatory postsynaptic currents (mEPSCs) (Xie et al., 2007).
Also, kalirin has been linked to the EphB receptor. Activation of the EphB recep-
tor by ephrin-B has been shown to translocate kalirin-7 to synapses where it locally
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activates Rac1 and its effector PAK, which presumably regulates the actin cytoskele-
ton to contribute thereby to proper dendritic spine development (Penzes et al.,
2003). Finally, the Rac-GEF βPIX has been shown to be regulated by NMDAR
activation and to be critical for activity-dependent synaptogenesis. In particular,
Saneyoshi et al. demonstrated that CaMK kinase (CaMKK)/CaMKI and βPIX
form a signaling complex in spines, in which CaMKK/CaMKI phosphorylates and
stimulates the GEF activity of βPIX to enhance Rac activity and promote forma-
tion/stabilization of mushroom-shaped spines (Saneyoshi et al., 2008). Key effectors
mediating the effects of Rac on spine morphogenesis and potentially synaptic func-
tion include group 1 PAK kinases and the WAVE proteins, and are further discussed
in Section 2.2.

As with other cellular functions, RhoA appears to work in an opposite fashion
to Rac in the regulation of spine structure. In general, increased RhoA activity has
been coupled to reduced spine length, size, and density (Tashiro et al., 2000; Ryan
et al., 2005; Elia et al., 2006; Sfakianos et al., 2007; Zhang and Macara, 2008),
whereas, conversely, low levels of RhoA have been associated with the maintenance
of dendritic and spine structures (Nakayama et al., 2000; Van Aelst and Cline, 2004;
Sfakianos et al., 2007). Interestingly, a few groups reported a decrease in endoge-
nous RhoA activity upon glutamate receptor activation (Van Aelst and Cline, 2004;
Schubert et al., 2006), suggesting a link between synaptic input and regulation of
endogenous RhoA activity. Recent studies corroborated this and provided further
insight into potential molecular links between synaptic activity and RhoA signaling.

Kang et al. found a complex formation between the RhoA-GEF, Lfc/GEF-
H1, and AMPARs and showed that these proteins colocalize in spines (Kang
et al., 2009). Furthermore, they demonstrated that Lfc/GEF-H1 activity negatively
regulates spine density and length through a RhoA signaling cascade, and that
AMPAR-dependent changes in spine development were eliminated by downregu-
lation of Lfc/GEF-H1. Thus, these data suggest that Lfc/GEF-H1 is a key mediator
of AMPAR activity-dependent structural plasticity in hippocampal neurons. Nadif
Kasri et al. found that the Rho-GAP, Oligophrenin-1, is regulated by synaptic activ-
ity and NMDAR activation, and, significantly, that oligophrenin-1 in turn controls
synapse maturation and plasticity at the hippocampal CA3-CA1 synapse by stabi-
lizing AMPARs (see Section 2.2.1). Finally, the p190RhoGAP has been implicated
in the regulation of hippocampal synapse stability by regulating Rho activity in the
dendritic spine (Sfakianos et al., 2007).

The effects of RhoA activity on spine number and morphology are mediated,
at least in part, by the RhoA effector, Rho kinase (Nakayama et al., 2000; Tashiro
and Yuste, 2004; Yuste and Bonhoeffer, 2004). Different targets of Rho-kinase have
been identified, such as LIMK, myosin light chain (MLC), and MLC phosphatase.
Rho-kinase phosphorylates and activates LIMK, which in turn phosphorylates and
inactivates the actin depolymerization factor (ADF) cofilin (Maekawa et al., 1999;
Sumi et al., 1999; Ohashi et al., 2000; Amano et al., 2001). Phosphorylation of MLC
by Rho-kinase results in the stimulation of myosin–actin interactions (Amano et al.,
1996). Rho-kinase can also regulate the amount of phosphorylated MLC by phos-
phorylating and inactivating MLC phosphatase (Kimura et al., 1996). Significantly,
a recent study has demonstrated that myosinIIB, which binds and contracts actin
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filaments, is essential for spine morphology and dynamics, as well as synaptic
function (Ryu et al., 2006).

The role for Cdc42 in spine morphogenesis is less well defined. In hippocampal
pyramidal neurons in organotypic slices, expression of a CA- or DN-Cdc42 mutant
did not have a significant effect on spine density or length (Tashiro et al., 2000).
However, Cdc42 has been demonstrated to affect spine formation in other systems.
Loss of function of Cdc42 in vertical system (VS) neurons in the Drosophila visual
system leads to a reduction in the density of spinelike structures (Scott et al., 2003),
and reduced Cdc42 protein expression is associated with reduced cortical pyra-
midal neuron spine density and synapses in insulinlike growth factor 1 (Igf1)–/–
brains (Cheng et al., 2003). Furthermore, Cdc42 has been shown to mediate the
effects of upstream activators such as the EphB receptor and the Cdc42-specific
GEF, intersectin-1, on spine morphogenesis in rat hippocampal neurons (Irie and
Yamaguchi, 2002). The presence of both the Cdc42 effector N-Wasp and the EphB
receptor had a synergizing effect on the GEF activity of intersectin-1, resulting in
high levels of Cdc42-GTP; whereas DN mutant forms of intersectin-1, N-Wasp and
Cdc42 interfered with spine formation (Irie and Yamaguchi, 2002).

These findings have led to a model in which the EphB receptor, in a complex with
intersectin-1 and N-Wasp, triggers the activation of Cdc42 to promote actin poly-
merization via N-Wasp and the Arp2/3 complex, leading to spherical expansion of
dendritic spine heads. A more recent study identified Numb as an intersectin-1 bind-
ing protein (Nishimura et al., 2006). They found that Numb enhanced intersectin-1’s
GEF activity for filopodia formation, and demonstrated a role for Numb in spine
development. Moreover, they found that Numb forms a complex with the EphB2
receptor and NMDA-type glutamate receptors at the postsynapse together with
intersectin, which potentially links Numb to EphB and glutamate receptor signal-
ing for synaptic development. In addition to N-Wasp, the insulin receptor substrate
53 (IRSp53) and PAK3 have also been shown to mediate the effects of Cdc42 on
spine morphogenesis. Of note, whereas IRSp53 seems to bind equally to Cdc42 and
Rac1, Pak3 preferentially binds to Cdc42 (Choi et al., 2005; Kreis et al., 2007; see
also Section 2.2).

Taken together, these studies clearly implicate Rho GTPase signaling in the struc-
tural remodeling of dendritic spines. Emerging evidence also points to a critical
role for Rho GTPase signaling in the regulation of synaptic function and plastic-
ity. Notably, additional regulators and effectors of Rho GTPases implicated in spine
morphogenesis (that are not discussed here) have been reported; for a more detailed
description of regulators and effectors of Rho GTPases, see reviews: Govek et al.
(2005) and van Galen and Ramakers (2005).

2.2 Mutations in Regulators and Effectors of Rho GTPases
Underlie Various Forms of Mental Retardation

As discussed above, MR has been associated with abnormalities in spine structure
and function, and Rho GTPases have been implicated in the regulation of these
processes. It is thus not surprising that mutations in several regulators (GEFs and



222 N.N. Kasri and L. Van Aelst

GAPs) and effectors of the Rho GTPases have been found to underlie or contribute
to various forms of MR. These include syndromic and nonsyndromic X-linked
forms of MR, as well as autosomal syndromic MR. Below, we discuss several
examples demonstrating the involvement of Rho GTPase signaling in the etiology
of different forms of MR. These examples also tackle the emerging view of how
mutations in Rho-linked genes could result in MR, that is, by disrupting the normal
development, structure, and/or plasticity of neuronal networks via perturbations in
the regulation of the actin cytoskeleton and gene expression (see also Fig. 2).

2.2.1 Oligophrenin-1 (OPHN1)

OPHN1 was the first identified Rho-linked MR gene (Billuart et al., 1998). It
encodes the protein OPHN1 that contains a BAR (Bin, amphiphysin, Rvs) and PH
domain at its N-terminus, and a GAP domain shown to negatively regulate Rho
family members at its C-terminus (Fauchereau et al., 2003; Govek et al., 2004).
OPHN1 was initially identified by the analysis of a balanced translocation t(X;12)
observed in a female patient with mild MR (Bienvenu et al., 1997). Subsequent
studies have revealed the presence of OPHN1 mutations in families with MR asso-
ciated with cerebellar hypoplasia and lateral ventricle enlargement (Tentler et al.,
1999; Bergmann et al., 2003; Philip et al., 2003; des Portes et al., 2004; Zanni
et al., 2005). Abnormal behavior, impaired language skills, and motor development
delays were described for several of the patients (Tentler et al., 1999; Bergmann
et al., 2003; Philip et al., 2003). All OPHN1 mutations identified to date have been
shown, or predicted, to result in OPHN1 loss of function (Zanni et al., 2005), and,
interestingly, inactivation of ophn1 in mice has recently been demonstrated to reca-
pitulate some of the human phenotypes, such as behavioral, social, and cognitive
impairments (Khelfaoui et al., 2007).

The OPHN1 protein is expressed in multiple tissues, although with highest levels
in the brain, where it is found in neurons of all major regions, including hippocam-
pus and cortex, and is present in axons, dendrites, and spines (Govek et al., 2004).
Thus, OPHN1 is present both pre- and postsynaptically in neurons. Recent studies
have begun to unveil how mutations in OPHN1 may affect neuronal function. In a
first study, it was found that knock-down of OPHN1, by using RNA interference
(RNAi), in CA1 pyramidal neurons in hippocampal slices results in a significant
decrease in dendritic spine length (Govek et al., 2004). This phenotype was mim-
icked using a constitutive active (CA) RhoA mutant and was rescued by inhibiting a
key effector of RhoA, termed Rho-kinase (Govek et al., 2004). As discussed above,
Rho-kinase can influence the actin cytoskeleton by acting on LIM kinase (LIMK),
myosin light chain, and/or MLC phosphatase (see also Fig. 2).

These findings support a model in which loss of OPHN1 causes aberrations in
spine morphology during development as a result of changes in the actin cytoskele-
ton triggered upon elevation of RhoA and Rho-kinase activities. More recently,
mice lacking the Ophn1 gene were generated, and analysis of these mice showed
a decrease in mature spines (Khelfaoui et al., 2007). Surprisingly, in this mouse
knock-out model, no obvious deficits in synaptic transmission or plasticity were
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Lowe; OPHN1, oligophrenin-1; PAK, p21-activated kinases; WASP, Wiskott-Aldrich-syndrome
protein; WAVE, WASP family Verprolin-homologous protein

observed. The interpretation of these data is, however, complicated by the fact that
OPHN1 is absent both pre- and postsynaptically in global ophn1 knock-out mice,
and there could also be compensatory adaptations during development in the ophn1
knock-out mice. Indeed, by temporally and spatially manipulating OPHN1 gene
expression, Nadif Kasri et al. recently demonstrated that postsynaptic OPHN1 plays
a key role in activity-dependent maturation and plasticity of excitatory synapses
by regulating their structural and functional stability (Nadif Kasri et al., 2009).
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Furthermore, they showed that OPHN1’s localization and function in excitatory
synapses is dependent on synaptic activity and NMDA receptor activation, and that
OPHN1 regulates synaptic structure and function by controlling the stabilization of
AMPA receptors. Therefore, defective OPHN1 signaling results in destabilization
of synaptic AMPA receptors and spine structure, leading to impairment in plasticity
and eventually loss of spines and NMDA receptors. Together, these results indicate
that critical levels of OPHN1 are necessary for proper activity-driven glutamater-
gic synapse development and suggest a cellular mechanism by which mutations in
OPHN1 can contribute to the cognitive deficits observed in OPHN1 patients.

Interestingly, Khelfaoui et al. did report a decrease in paired-pulse facilitation
(PPF) in the adult ophn1 global knock-out, a measurement of presynaptic release
(Khelfaoui et al., 2007). These findings point towards the potential importance
of presynaptic function of OPHN1 signaling. In support of this, recent studies
demonstrated that reduced/defective OPHN1 signaling impairs synaptic vesicle
(SV) retrieval at hippocampal synapses (Nakano-Kobayashi et al., 2009; Khelfaoni
et al., 2009). Nakano-Kobayashi et al. further showed that OPHN1 forms a com-
plex with endophilin A1, a protein implicated in membrane curvature generation
during SV endocytosis. It is important to note that OPHN1 mutants defective in
endophilin A1 binding, or with impaired Rho-GAP activity, fail to substitute for
wild-type OPHN1, indicating that OPHN1’s interactions with endophilin A1 and
Rho GTPases are important for its function in SV retrieval. These data suggest
that defects in efficient SV retrieval may also contribute to the pathogenesis of
OPHN1-linked cognitive impairment.

Taken together, these data suggest that impairments in both long- and short-term
plasticity may contribute to the cognitive deficits observed in OPHN1 patients.

2.2.2 p21-Activated Kinase 3 (PAK3)

The second Rho-linked MR gene identified is PAK3. Mutations in PAK3 were found
to be the cause of nonsyndromic X-linked MR (see below). PAK3 encodes a member
of the group I p21-activated serine/threonine kinases (PAK) (Dan et al., 2001a). The
group I PAK proteins (including PAK1, PAK2, and PAK3) function as effectors of
the Rac1 and Cdc42 GTPases, and have been demonstrated to mediate their effects
on the actin cytoskeleton and gene expression (Jaffer and Chernoff, 2002; Bokoch,
2003). One mechanism by which PAKs affect the actin cytoskeleton involves phos-
phorylation and activation of LIMK (Stanyon and Bernard, 1999), which in turn
phosphorylates and inhibits cofilin, an actin filament depolymerizing/severing fac-
tor, thereby stabilizing actin filaments and promoting actin polymerization (Yang
et al., 1998; Edwards et al., 1999; Dan et al., 2001). The regulation of myosins is
likely to be another component of PAK-mediated cytoskeletal signaling. There is
evidence that PAK1 can interfere with myosin light chain function via direct phos-
phorylation and inhibition of myosin light chain kinase (MLCK) (Sanders et al.,
1999; Bokoch, 2003). This action of PAK may assist in the disassembly of actin
stress fibers triggered by PAK (see also Fig. 2). The group I PAK kinases exist in
a dormant state in the cytoplasm as a result of an N-terminal autoinhibitory region,
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which assumes a configuration that prevents the activation of the C-terminal kinase
domain. Upon binding to Rac-GTP or Cdc42-GTP, the autoinhibition is alleviated,
resulting in activation of the PAK proteins and their autophosphorylation (Jaffer and
Chernoff, 2002; Bokoch, 2003). Noteworthy is a recent study that reported PAK3
binds significantly more Cdc42 than Rac1, and is selectively activated by endoge-
nous Cdc42, suggesting that PAK3 is a selective effector of Cdc42 (Kreis et al.,
2007). Among the PAK proteins, PAK1 and PAK3 are highly expressed in the brain.
Both proteins are present in the hippocampus and cortex, with PAK3 being particu-
larly highly expressed in postmitotic neurons of the dentate gyrus and cortical layers
II/III and V (Kreis and Barnier, 2009). In neurons, PAK3 shows a diffuse distribu-
tion throughout the soma and proximal dendrites and is present in dendritic spines
(Boda et al., 2004).

As discussed below, both PAK1 and PAK3 proteins have been implicated in
spine morphogenesis, however, as of this writing, only mutations in PAK3 have
been identified that are associated with nonsyndromic MR. In particular, five dif-
ferent mutations in the PAK3 gene have been identified in several X-linked MR
pedigrees. The first PAK3 mutation, R419X, found in family MRX30, introduced
a premature stop codon that abolishes the kinase activity of the truncated product
(Allen et al., 1998). Since then four additional mutations have been identified in
MR patients. These include the R67C and the A365E mutations located in the p21-
binding domain and in the kinase domain, respectively; the W446S mutation located
in the catalytic domain; and, finally, a splice mutation located at the 5′ end of intron
6 leading to a disruption of the reading frame with a premature stop codon at posi-
tion 128 (Bienvenu et al., 2000; Gedeon et al., 2003; Peippo et al., 2007; Rejeb
et al., 2008). Biochemical analysis demonstrated that PAK3 proteins harboring the
R419X and A365E mutations, and presumably also the W446S mutation, are devoid
of kinase activity, whereas the PAK3 protein with the R67C mutation has a func-
tional kinase domain but displays a decrease in binding to Cdc42 and a decrease in
its activation by this GTPase (Kreis et al., 2007).

Several lines of evidence have demonstrated a role for PAK3 (as well as PAK1) in
the regulation of dendritic spine morphogenesis, synapse formation, and/or synap-
tic plasticity. First, a study using transgenic mice in which the catalytic activity of
the PAK family members, PAK1 and PAK3, is inhibited by expression of the PAK-
autoinhibitory domain (AID-PAK) revealed that cortical neurons of these mice have
fewer spines than control animals and show a shift in the overall spine population
towards shorter spines with larger heads and postsynaptic densities. Interestingly,
these mice also show enhanced LTP and reduced LTD in the cortex, as well as
specific deficits in the consolidation phase of hippocampus-dependent memory,
suggesting a role for PAK in memory retention (Hayashi et al., 2004).

Secondly, Boda et al. observed that RNAi-mediated suppression of PAK3, or
expression of a dominant negative, kinase-dead, PAK3 mutant (R419X), in rat hip-
pocampal organotypic slice cultures results in the formation of abnormal elongated
dendritic spines and filopodia-like protrusions, as well as a decrease in mature spine
synapses. They observed that these defects were associated with reduced expression
of AMPARs at the synapse and defective LTP (Boda et al., 2004). Interestingly, a
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more recent study compared the effects of three different PAK3 mutants (R67C,
A365E and R419X) on spine morphogenesis and observed that these mutant pro-
teins affect spinogenesis differentially (Kreis et al., 2007). Specifically, they found
that expression of the PAK3 kinase-dead mutants, A365E and R419X, in CA1
neurons of hippocampal brain slices profoundly altered spine morphology without
affecting spine density, whereas expression of the PAK3 R67C mutant drastically
decreased spine density. Based on these data, a model was proposed in which PAK3
may act at two different steps during spine formation, namely at (1) the initiation of
spines and (2) at spine maturation (Kreis et al., 2007).

Finally, mice lacking the PAK3 gene have been generated, and analysis of
these mice showed selective impairment in late-phase hippocampal LTP, a distinct
form of long-term synaptic plasticity involving new gene expression (Meng et al.,
2005). Surprisingly, in this mouse knock-out model, no obvious deficits in spine
morphology or density were observed. The differences seen with regard to spine
morphology between the knock-out and RNAi studies could potentially reflect dif-
ferences between a homogeneous and a heterogeneous cell population, respectively,
or could be attributed to compensatory mechanisms (e.g., PAK1 or PAK2) in the
knock-out mice. Indeed, it has recently been shown that expression of active PAK1
can revert the long spine phenotype induced by RNAi-mediated suppression of
PAK3 (Boda et al., 2008), although it should be noted that PAK1 and PAK3 also
seem to have distinct roles in spine morphogenesis (Boda et al., 2008). The PAK3
knock-out mice did, however, show a dramatic decrease in the levels of the phos-
phorylated/active form of cAMP-responsive element-binding protein (CREB) in the
hippocampus, whereas no changes in the total CREB protein levels were observed
(Meng et al., 2005). Several studies have shown that CREB function is important
for synaptic plasticity and memory formation in mice (Kandel, 2001; Lonze and
Ginty, 2002). Therefore, the reduced CREB function may be responsible for the
impairment in late-phase hippocampal LTP in these mice.

Together, these studies indicate that mutations in PAK3, which are associ-
ated with nonsyndromic MR, cause aberrant spine structure and/or function as a
result of altered actin dynamics and/or transcriptional regulation (see also Fig. 2).
Interestingly, defects in PAK signaling not only result in MR, but recently have also
been associated with Alzheimer disease (AD) (reviewed in Kreis and Barnier, 2009).
This may not be that surprising considering the analogy between AD and MR; that
is, both conditions share in common spine loss or spine alterations. AD is defined
clinically as a gradual loss of cognitive performance with the onset of a slowly pro-
gressive impairment of memory during mid-to-late adult life. The neuropathological
hallmarks include amyloid deposits (Aß), neurofibrillary tangles, and reductions in
the number of neurons and synapses in many areas of the brain, but especially in the
cerebral cortex and the hippocampus (LaFerla and Oddo, 2005).

Of particular interest is that the Aß oligomers implicated in AD were shown
to reduce PAK1 and PAK3 expression levels and activities in the hippocampus
and temporal cortex, resulting in a loss of drebrin from the spines and synaptic
dysfunctions (Zhao et al., 2006; Ma et al., 2008). Drebrin is localized at spines in
adult brains and is required for active clustering and synaptic targeting of PSD95
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(Takahashi et al., 2003). Expression of active PAK in hippocampal neurons could
prevent the effects induced by Aß oligomers, and significantly, pharmacological
PAK inhibition in adult mice was sufficient to cause drebrin loss and memory
impairment (Zhao et al., 2006). Thus, these findings indicate that loss of PAK3
and/or PAK1 is involved in both developmental-dependent and age-dependent
cognitive deficits, such as observed in AD.

2.2.3 Rho Guanine Nucleotide Exchange Factor 6 (ARHGEF6)

The ARHGEF6 gene, also known as αPIX or Cool-2, is another Rho GTPase-linked
gene shown to be involved in nonsyndromic X-linked MR (Kutsche et al., 2000). It
codes for a Cdc42/Rac1 GEF, which harbors a number of interesting motifs impli-
cated in protein–protein interactions (Bagrodia et al., 1998; Manser et al., 1998;
Kutsche et al., 2000; Koh et al., 2001; Feng et al., 2002). Besides the Dbl homol-
ogy (DH) and plextrin homology (PH) domains, it contains an N-terminally located
calponin homology (CH) domain, an SH3 domain, a GIT binding domain, and a
C-terminally located leucine zipper that mediates the formation of homo- and het-
erodimers. The dimeric form of ARHGEF6/Cool-2/αPIX was found to act as a
specific GEF for Rac1, whereas the monomeric form as a GEF for Cdc42 as well as
Rac (Feng et al., 2004). Significantly, ARHGEF6 has been shown to directly interact
with group I PAK kinases, as well as with the synaptic adaptor protein GIT1 (G-
protein coupled receptor kinase-interacting protein1) (Bagrodia et al., 1998; Manser
et al., 1998; Daniels et al., 1999; Feng et al., 2002; Zhang et al., 2003). The latter
protein has been shown to be crucial for spine formation; its loss of expression sig-
nificantly decreases the number of spines (Zhang et al., 2005). Furthermore, GIT1
has been found to be important for the localization of the closely related family
member ßPIX to dendritic spines and to activate Rac1 and its downstream effector
PAK locally (Zhang et al., 2005).

The first mutation in ARHGEF6 associated with nonsyndromic X-linked MR
was identified in a male carrying a reciprocal X;21 translocation breakpoint
located between exons 10 and 11 of the ARHGEF6 gene (Kutsche et al., 2000).
Subsequently, additional mutations have been identified in the first intron of the gene
that result in preferential skipping of exon 2 and a predicted protein product lacking
the first 28 amino acids in affected males in a large MRX family (MRX46) (Kutsche
et al., 2000). A recent study demonstrated that the ARHGEF6 protein is present in
CA3 and CA1 neurons of the hippocampus and that expression of epitope-tagged
ARHGEF6 in hippocampal slice cultures shows a punctate staining in dendritic
spines that colocalizes with PSD-95 and other synaptic proteins (Node-Langlois
et al., 2006). The same study also revealed a requirement for ARHGEF6 in spine
morphogenesis. Whereas overexpression of ARHGEF6 did not alter spine mor-
phology, RNAi-mediated knock-down of ARHGEF6 resulted in abnormalities in
spine morphology similar to those reported for knock-down of PAK3: a decrease of
large mushroom-type spines and an increase of elongated spines and filopodia-like
protrusions (Node-Langlois et al., 2006).
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Consistent with a role for ARHGEF6 in the regulation of spine morphogen-
esis, the Drosophila homologue, dPIX, was also shown to play a major role in
regulating postsynaptic structures and protein localization at the glutamatergic neu-
romuscular junction (Parnas et al., 2001). It is important to note that the defect
in spine structure in ARHGEF6 RNAi-treated neurons could be rescued by coex-
pression of a constitutively active PAK3 protein, but not with wild-type PAK3
(Node-Langlois et al., 2006). By contrast, the phenotype caused by knock-down
of PAK3 could not be rescued by overexpression of ARHGEF6. Together, these
results indicate that ARHGEF6 is involved in the same signaling pathway as
PAK3, thereby controlling spine morphogenesis and plasticity of synaptic networks.
Hence, similar mechanisms are likely to underlie cognitive deficits associated with
mutations in ARHGEF6 and PAK3. Interestingly, a recent study focusing on the
closely related family member βPIX suggested a potential mechanism by which the
PIX proteins are regulated in the synapse. As discussed above, Saneyoshi et al.
identified a signaling pathway upstream of βPIX by which NMDAR activation
during neuronal development or plasticity can modulate spinogenesis. They found
that CaMKK/CaMKI interacts with βPIX/GIT1 and mediates phosphorylation of
Ser516 in βPIX to enhance Rac activity and promote formation/stabilization of
mushroom-shaped spines (Saneyoshi et al., 2008).

2.2.4 CYFIP/Rac/PAK and Fragile X Syndrome

Fragile X syndrome (FXS) is the most common inherited cause of MR with approxi-
mately 1 in 4000 males affected. In the vast majority of cases, this X-linked disorder
is caused by an unstable expansion of the CGG trinucleotide repeat and hypermethy-
lation of CpG dinucleotides in the 5′ untranslated region of the FMR1 gene, which
results in transcriptional silencing of FMR1. The first clinical indication of FXS is
often delayed developmental milestones, such as mild motor delays and/or language
delays. Autistic-like behaviors such as hand flapping, poor eye contact, and hand bit-
ing may be observed. The average IQ in adult men with the completely methylated
full mutation is approximately 40. Less affected males, which typically have incom-
plete methylation and thus resulting in an incomplete activation of FMR1, may have
an IQ in the borderline to low normal range. Physical features may include macro-
orchidism that is apparent just before puberty and those related to a connective tissue
dysplasia, which include a long, narrow face, prominent ears, joint hypermobility,
and flat feet (reviewed in Garber et al., 2006; Bassell and Warren, 2008; Garber
et al., 2008)

FMR1 encodes a selective RNA-binding protein (FMRP) that regulates the
local translation of a subset of mRNAs at synapses in response to activation of
metabotropic glutamate receptors (mGluRs) and possibly other receptors. In the
absence of FMRP, increased and dysregulated mRNA translation is believed to
contribute to altered spine morphology, synaptic function, and loss of protein
synthesis-dependent plasticity (reviewed in Bear et al., 2004; Bagni and Greenough,
2005; Bassell and Warren, 2008). As mentioned before, the shape and density of
dendritic spines are altered in patients and in FMR1-deficient mice brains. A few
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reports suggested that FMRP could affect spine morphogenesis through regulation
of “cargo” mRNAs, such as Map1B and profilin mRNAs (Lu et al., 2004; Reeve
et al., 2005). More recent studies, mainly performed in Drosophila, have linked
FMRP’s effect on spine morphology to the Rac1 GTPase signaling pathway. One
group demonstrated that the mRNA encoding Rac1 is present in Fmr1-messenger
ribonucleoprotein complexes (Lee et al., 2003). Furthermore, evidence was provided
that Fmr1 and Rac1 genetically interact, and that Rac1 mediates at least in part the
effects of Fmr1 (Drosophila fragile X-related protein) on dendritic branching (Lee
et al., 2003). An independent study demonstrated a biochemical association between
the Fmr1-interacting protein dCYFIP and dRac1 (Schenck et al., 2003). Phenotypic
analyses and genetic interaction experiments placed dRac, CYFIP, and dFMRP in a
common pathway controlling axonogenesis and synaptogenesis. Furthermore, evi-
dence was presented that Rac1 negatively regulates CYFIP, which in turn negatively
regulates Fmr1, with the net result that dRac1 positively regulates dFMR1 action on
neuronal morphogenesis (Schenck et al., 2003). Together with the above findings,
these data suggest that there is a feedback loop between Rac1 and Fmr1 functions
in vivo.

The mammalian homologues of Drosophila CYPIP, CYFIP1, and CYPIP2, have
also been shown to interact with FMRP. In mammals, CYFIP1 (also known as
p140/Sra-1) was initially identified as a target of Rac1 (Kobayashi et al., 1998),
whereas CYFIP2 (also termed PIR121) was found to be part of the WAVE protein
complex, which mediates actin nucleation by Rac (Eden et al., 2002). In its inac-
tive state, this complex contains WAVE and four other proteins: HSPC300, Nap125,
Abi2, and PIR121. When active Rac1 is added, the complex dissociates, freeing
WAVE and HSPC300, thereby allowing WAVE to activate the actin-related protein
2/3 (Arp2/3) complex to induce actin polymerization (see Fig. 2). In analogy to
the mechanism of WAVE activation, a model was proposed in which CYFIP dis-
sociates from FMRP/Fmr1 upon interaction with activated Rac1, allowing released
FMRP/Fmr1 to regulate local protein translation. A recent study also reported an
interaction between PAK1 and FMRP and demonstrated that inhibition of group
I PAK kinases rescued symptoms of knock-out (KO) FMR1 mice (Hayashi et al.,
2007). Specifically, the spine abnormalities observed in FMR1 KO mice were
partially restored by postnatal expression of a dominant negative PAK transgene
(AID-PAK). Furthermore, the reduced cortical long-term potentiation was fully
restored and several of the behavioral abnormalities associated with FMR1 KO mice
were ameliorated by the PAK-AID transgene. Whereas the precise underpinnings
of the PAK1/FMRP interaction remain to be established, it is tempting to specu-
late (analogous to the CYFIP/WAVE complex) that FMRP and PAK1 could inhibit
each other to form an inactive complex. Activation of PAK by GTPases would
then trigger the dissociation of the two proteins allowing FMRP to regulate protein
translation.

Together, these data suggest a model in which FMRP, Rac1, CYFIP, and/or PAK
act together in a dynamic signaling complex(es) to regulate actin dynamics and
control local protein translation, processes that are key to neuronal morphogenesis
and connectivity.
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2.2.5 Oculocerebrorenal Syndrome of Lowe Protein 1 (OCRL1)

Oculocerebrorenal syndrome of Lowe (OCRL) or Lowe syndrome is a rare X-
linked developmental disorder characterized by MR, congenital cataracts, and renal
Fanconi syndrome (Attree et al., 1992). The gene responsible for OCRL was ini-
tially identified by positional cloning of X chromosome breakpoints and encodes
a protein termed OCRL1, an inositol polyphosphate-5-phosphatase (Attree et al.,
1992; Lowe, 2005). In addition to the central polyphosphate-5-phosphatase domain,
which uses PI(4,5)P2 and PI(3,4,5)P3 as the preferred substrates (Zhang et al., 1995;
Schmid et al., 2004), the protein also contains at its C-terminus an ASH (ASPM,
SPD2, Hydin) domain (Ponting, 2006) and Rho-GAP-like domain.

OCRL1 was initially localized to the Golgi complex (Olivos-Glander et al., 1995;
Dressman et al., 2000), and it is recruited to membrane ruffles in response to growth
factor stimulation and Rac activation (Faucherre et al., 2003). The GAP domain of
OCRL1 has been shown to interact with Rac1, however, it does not appear to possess
appreciable GAP activity towards Rac1 (Faucherre et al., 2003). More recent studies
showed that OCRL1 is also present on endosomes and is important at early steps
of the endocytic pathway (Erdmann et al., 2007), including clathrin-coated pits,
which is consistent with the ability of OCRL1 to bind to clathrin, the endocytic
clathrin adaptor AP-2, and the endosomal protein Rab5 (Ungewickell et al., 2004;
Choudhury et al., 2005; Hyvola et al., 2006). In addition, OCRL1 was also found to
bind the Rab5 effector APPL1 on peripheral endosomes; this interaction is mediated
by the ASH–RhoGAP-like domains of OCRL1 (Erdmann et al., 2007).

Mutations that cause Lowe syndrome have been mapped exclusively to the
OCRL1 gene. The overwhelming majority of missense mutations are localized to the
5-phosphatase domain, underscoring the importance of the 5-phosphatase activity of
this protein (McCrea et al., 2008). A small number of missense mutations are also
located in the ASH and RhoGAP-like domains (McCrea et al., 2008), raising the
question as to whether Rac and/or APPL1 interaction may play a role in the disease.
The observation that OCRL1-deficient fibroblasts derived from Lowe-syndrome
patients, in addition to increased PI(4,5)P2 levels, also had alterations in the actin
cytoskeleton, an increased sensitivity to actin depolymerizing agents, and mislocal-
ization of the actin-binding proteins α-actinin and gelsolin (Suchy and Nussbaum,
2002), led initially to the postulation that abnormal cytoskeleton may contribute
to the disease process, thus possibly involving Rho GTPase signaling. However,
a more recent study showed that although all six known disease-causing missense
mutations in the ASH and Rho-GAP domains abolished binding to APPL1, some of
these mutations preserved the ability to bind Rac (McCrea et al., 2008).

Thus far, APPL1 is the only protein whose binding is consistently disrupted by
patient missense mutations in the C-terminal region of OCRL. The same group also
demonstrated that APPL1 helps localize OCRL1 to specific cellular sites, and a
model was proposed in which disruption of OCRL1 binding to APPL1 would impair
the proper localization of OCRL1 as well as disconnect OCRL1 from a protein
network potentially linked to the disease phenotype (McCrea et al., 2008). Future
studies will, however, be required to further unravel the signaling networks involved.
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Surprisingly, OCRL1 knock-out mice do not develop Lowe syndrome. A potential
explanation for this observation is that the OCRL1 loss of function is compensated
by the phosphatase, Inpp5b, which shares high homology with OCRL1, and which
is more expressed in mice than in humans (Jefferson and Majerus, 1995; Janne et al.,
1998; Hellsten et al., 2001; Astle et al., 2006).

2.2.6 Mental-Disorder-Associated GAP (MEGAP)

Mutations in Rho-linked genes that give rise to mental retardation are not only found
on the X-chromosome, but have also been identified on autosomes. For example,
the MEGAP (mental-disorder-associated GAP) gene was identified by positional
cloning, as the only gene disrupted with a balanced de novo translocation of chro-
mosome t(X;3)(p11.2;p25) (Endris et al., 2002). This patient exhibited severe MR
and locomotor impairments that are associated with 3p-syndrome. Whereas other
genes have also been implicated (Angeloni et al., 1999; Sotgia et al., 1999), 11
patients with 3p-syndrome MR displayed loss of heterozygosity for MEGAP, sup-
porting the notion that reduced levels of this protein are causally linked to this
form of MR. Notably, the MEGAP gene product had previously been identified
as a WAVE-associated protein (WRP) (Soderling et al., 2002), and as a ROBO
interacting protein (srGAP3) (Wong et al., 2001). The mRNA transcript of the
MEGAP/WRP/srGAP3 gene is predominantly expressed in fetal and adult brain,
and is enriched in the neurons of the hippocampus, cortex, and amygdala (Endris
et al., 2002).

Biochemical studies showed that MEGAP/WRP/srGAP3 strongly enhances the
intrinsic hydrolytic activity of Rac1 and to a significant lesser extent of Cdc42
(Endris et al., 2002). Together with the observation that MEGAP/WRP/srGAP3
directly binds to WAVE-1, a model was proposed in which MEGAP/WRP/srGAP3
functions in a negative feedback loop that inactivates Rac1 associated with WAVE-
1, thereby controlling actin dynamics and spine morphogenesis. Significantly,
Soderling et al. generated and characterized WAVE-1 knock-out mice and reported
that WAVE-1 knock-out mice exhibited defects in balance and coordination, reduced
anxiety, and deficits in learning and memory (Soderling et al., 2003). Interestingly,
these phenotypes are strikingly similar to those observed in 3p– syndrome patients.
Morphological analysis of neurons in both the CA1 region of the hippocampus and
the outer layer of the cortex of WAVE-1 knock-out mice revealed a reduction in
spine density and abnormal spine morphology. Furthermore, electrophysiological
recordings from hippocampal slices showed that WAVE-1 knock-out mice exhibit
increased LTP and reduced LTD (Soderling et al., 2007). To determine whether the
MEGAP/WRP/srGAP3’s interaction with WAVE-1 contribute to WAVE’s effect on
spine density, synaptic plasticity, and memory, Soderling et al. generated mice that
express WAVE-1 without the MEGAP/WRP/srGAP3 binding site. They observed
that these WAVE-1 knock-in mice have reduced spine density and altered synaptic
plasticity, as well as specific deficits in memory retention (Soderling et al., 2007).
Thus, MEGAP/WRP/srGAP3’s interaction with WAVE is important for WAVE’s
function in neural plasticity and cognitive behavior.
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Together these findings imply that signaling through MEGAP/WRP/srGAP3
and WAVE-1 to the actin cytoskeleton is important for normal neuronal function
and connectivity and that alteration of this pathway (e.g., upon loss or reduced
expression of MEGAP/WRP/srGAP3) affects the expression of normal behaviors,
including learning and memory.

3 Conclusions

Rho GTPase mediated signaling pathways modulate actin cytoskeleton dynamics
and gene expression, which are critical for structural and functional plasticity in
the developing and mature nervous system. Such synaptic remodeling and plastic-
ity are thought to underlie the anatomic basis for learning and memory formation
and normal cognitive function. Consistent with this are the findings demonstrat-
ing an association between various MR conditions and mutations in Rho-linked
genes. The current view of how mutations in Rho-linked genes contribute to MR
is by disrupting the normal development, structure, and/or plasticity of neuronal
networks via perturbations in the actin cytoskeleton and gene regulation networks.
Evidence supporting such a view has come from MR patients, mouse models of
MR, and RNAi studies in hippocampal and cortical slices. Further elucidation of
the molecular and cellular mechanisms by which Rho signaling contributes to the
above disorders will not only shed light on the epidemiology of these diseases, but
also on basic mechanisms of neuronal development and function and may provide
candidates for therapeutic intervention.
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Cognitive Deficits in Neurodegenerative
Disorders: Parkinson’s Disease
and Alzheimer’s Disease

Ivan Bodis-Wollner and Herman Moreno

Abstract Among the most important neurodegenerative disorders affecting aging
adults around the world are Alzheimer’s disease (AD), which affects around 4.5
million people in the United States, and Parkinson’s disease (PD), which has a preva-
lence of about 160 cases per 100,000 people and an incidence of about 20 cases
per 100,000 people per year. In both disorders prevalence and incidence increase
with age. AD is the main dementing disorder, whereas cognitive dysfunction and
dementia eventually occur in 20–40% of patients with PD. In this chapter the neuro-
biology of these diseases is reviewed. Classical, anatomically defined local circuits
are summarized. Data obtained using advanced imaging techniques, such as SPECT,
and functional MRI, and electrophysiological recordings, are highlighted. The main
emphasis for both PD and AD is on cognitive deficits from the perspective of brain
circuits and synaptic physiological abnormalities as well as on their biochemical
correlates. In particular, among nonmotor defects in Parkinson’s disease sensory
deficits are also emphasized in relation to visuocogntive and attentive dysfunction.
The main neurotransmitter systems involved are dopamine (in PD) and acetyl-
choline (both in PD and AD). The logic role of dopamine in the retinal circuitry
is discussed in relation to sensory (visual) dysfunction in PD. The contribution of
neurotransmitter/modulators beyond the dopaminergic and cholinergic systems in
the basal ganglia and in several cortical areas is reviewed. This involves glutamate,
adenosine, and GABA. The cognitive effect of genetic variability of catechol-o-
methyltranferase, in the prefrontal cortex is summarized. Although advances in the
understanding of AD and PD pathophysiology have been significant, fundamental
issues remain unsolved. The powerful neuropathological arguments concerning the
progression of PD based on alpha synuclein predict late involvement of cortical
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circuits, presumably responsible for cognitive changes. The role of acetylcholine
and diverse cholinergic receptors in cognitive dysfunction in both AD and PD will
need further studies. Future studies may potentially lead to a bridging theory of
cognitive impairment in both AD and PD.
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1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
after Alzheimer’s disease. With increased longevity and improved health care, our
society is experiencing an unprecedented challenge posed by these neurodegenera-
tive disorders. Alzheimer’s disease alone is now the third most expensive disease to
treat in the United States, costing close to $100 billion annually.

The availability of genetically modified mice has advanced our understanding
of several neurodegenerative processes. Cellular neurobiology experiments have
informed us about mechanisms of neuronal dysfunction in AD and PD mouse mod-
els. For instance, recent studies have identified that synaptic transmission is one of
the earliest events in the cognitive abnormalities that characterize AD and PD. The
integration of this information with data-based circuits modeling, in which neuronal
electrical properties, synaptic transmission parameters, and brain oscillations can
now be evaluated and it has been recently addressed in PD and AD.

The recent availability of in vivo studies such as functional magnetic resonance
imaging (fMRI) that can noninvasively obtain information about the metabolic state
of the brain thus allows the use of longitudinal and cross-species studies designs
in both neurodegenerative mouse models and patients. These types of work carry
our knowledge from basic neuroscience to clinical neurology and back, to combine
basic science with clinically used methods to address clinical issues in the neurobiol-
ogy of aging and neurodegenerative diseases. Knowledge of basic aspects of cellular
physiological changes induced by specific pathologies, that is, synuclein-related in
PD or amyloid-related in AD is essential to identify potential therapeutic targets.
The present chapter discusses data that exemplify relevant findings on synaptic and
circuit abnormalities in relation to PD and AD and clinical information that may
correlate with such abnormalities or complement it.
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2 Parkinson’s Disease: An Overview

Parkinson’s disease is a progressive neurological disorder that affects critical
domains of daily living. Since its first description as a “shaking palsy” it has been
recognized that it affects many nonmotor functions. PD causes autonomic, sensory,
cognitive, and behavioral problems all of which can significantly impair quality
of life. The original observations by Carlsson and his collegues (1957) that 3-4-
Dihydroxyphenylalanine reverses reserpine-induced akinesia in rabbits led to the
first clinical use of levodopa by Birkmayer and Hornykiewicz (1961).

Cognitive impairment, labeled as moderate to marked “dementia” was first
reported in a large number of patients to occur tenfold more commonly than in
controls (Lieberman et al., 1979). Demented PD patients in this study responded
less well to levodopa therapy and it was suggested that PD with dementia may
represent a different disorder from PD without dementia. We distinguish select cog-
nitive impairments from dementia in PD and discuss neurochemical and molecular
mechanisms of cognition in PD.

Cognitive impairment in PD is traditionally specified with neuropsychological
testing, performed with clinically validated methods. In the recent decade, however,
considerable knowledge was gained from imaging (PET and fMRI) and EEG and
“event”-related potentials (ERP) studies. They use specific experimental cognitive
paradigms to tax select cognitive operations, such as executive functions, short-term
memory, and visuospatial orientation.

In the last decades, administration of new forms of therapy in addition to
levodopa, has led to a better understanding of the role of dopaminergic and non-
dopaminergic circuits in PD. Many scientists are engaged in trying to specify the
neurochemical building blocks of PD and develop a rational pharmacotherapy of
the whole disease and not just its motor manifestations. There are several promis-
ing avenues of applying so-called “dirty drugs,” that is, medications that have more
than one effect in the CNS. The circuitry responsible for cognitive and some other
manifestations of the disease is still based on the core abnormality of dopaminer-
gic deficiency in the basal ganglia, however, our understanding of the basic basal
ganglia circuitry has undergone revision and refinement. One contribution to a
better neuroanatomical understanding is based on the effects of nondopaminergic
manipulations, in particular transcranial magnetic stimulation (TMS) and deep brain
stimulation (DBS).

DBS as a treatment for PD was introduced nearly two decades ago. The elec-
trophysiological results obtained with DBS have contributed considerable new
knowledge regarding the basal ganglia/cortex circuits responsible for the manifesta-
tions of PD. Human intraoperative monitoring and electrophysiological recordings
combined with microdialysis have yielded biochemical evidence on the role of
GABA and the subthalamic and the pedunculopontine nucleus in the PD.

We discuss the evolution of the development of PD based on the neuropatho-
logical studies of Braak and collegues. Based on the distribution of Lewy bodies



Cognition in PD and AD 247

Fig. 1 In the CNS, the
pathological process of PD
commences in the dorsal
motor nucleus of the vagal
nerve (medulla oblongata)
from where it follows an
ascending course, affecting
additional nuclei in the lower
brainstem, in basal portions
of the mid- and forebrain, and
eventually reaching the
cerebral cortex (Braak et al.,
2004). However, as
summarized, several neuronal
circuits that are relevant to
cognitive/emotional changes
in PD are also involved. In
these circuits not all DA
neurons have long axons

at different stages of PD, Braak et al. (2002) suggested that PD progresses from
peripheral to central long axon projecting neurons in a caudal-cranial direction
(Fig. 1). Braak’s neuroanatomical model predicts relatively late occurrence of cog-
nitive changes in PD, but not all clinical data and observations fit neatly into the
model.

One defined dopaminergic circuitry affected in PD is the retina. The retinal
dopaminergic circuit is of interest from several points of view. For one, it provides
an opportunity to study the logic role of diverse dopamine receptors. The retina is
a multilayered structure with a single output line and three layers of neurons with
lateral and feedback connections. Second, many patients with PD suffer from visual
hallucinations and vision in PD can be to a great degree attributed to specifically
impaired retinal processing. Anatomical and electrophysiological data show both in
humans and in MPTP-treated monkeys that retinal dopaminergic deficiency may be
one reason for visual dysfunction in PD. Neuropharmacological manipulations in
the monkey model of PD have led to a better understanding of the “antagonistic”
role of D1 and D2 type recptors. The retina has not been subjected to studies for
evaluating the presence of alpha synuclein. On the other hand, animal and human
studies suggest a correlation of motor disease progression with visual dysfunction.
Affected retinal dopaminergic neurons do not have long projections. Recent imag-
ing data, however, show neuronal thinning involving both inner nuclear layers and
retinal ganglion cells. Retinal ganglion cells are among neurons having the longest
axons in the CNS. Whether PD retinopathy starts in a subset of ganglion cells, before
(consistent with the postulates of Braak) the process attacks dopaminergic neurons,
is unknown at present.
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3 Neurobiology of Parkinson’s Disease

3.1 Etiology and Molecular Progression of PD

The etiology of PD still eludes us; however, an understanding of cognitive impair-
ment, linked to the classical concepts of PD, is emerging.

Since the original description of Parkinson’s disease in 1817, as shaking palsy
that does not affect the senses, the last decades have witnessed a slowly emerging
consensus that PD affects movement, sensation, cognition, and mood. Furthermore
these noncardinal features do not respond well to dopaminergic therapy. Recent
pathological data (Braak et al., 2002) suggest a caudo-cranial evolution of the dis-
ease progressing from nondopaminergic and nonmotor extracerebral neurons to
basal ganglia to cortical neurons. Hence some nonmotor symptoms may be herald-
ing PD. The possibility of precardinal and premotor diagnosis is challenging from a
therapeutic point of view

Although the MPTP model is nearly perfect once developed, it is a toxic model
that occurs suddenly after the introduction of the toxin, whereas PD is a progressive
disease. Nevertheless the elucidation of the action of MPTP on the mitochondrial
respiratory chain, more precisely on the step between I and II has led to the search to
the search for agents with neuroprotective abilities in the mitochondrial respiratory
chain.

3.2 PD as a Synucleinopathy

The degenerative process of idiopathic PD (iPD) is associated with the anatomical
progression of CEB1-synuclein into select neurons. It is an aggregate of the mis-
folded protein and appears in dendrites and axons, Lewy neurites (LNs), as well
as punctuate structures and/or Lewy bodies (LBs) in the somata of involved nerve
cells. It is thought that only projection neurons with a long axon become involved,
whereas short-axoned cells resist the pathology. It has been proposed that vulnerable
brain regions in PD are anatomically interconnected.

Before the era of synuclein immunocytochemistry, Qualman et al. (1984)
observed in a postmortem study LBs in the esophageal Auerbach plexus of two
dysphagic PD patients but not in Meissner’s plexus. Subsequently, Wakabayashi
et al. (1988) reported LBs and LNs in both plexuses of clinically diagnosed PD
patients and asymptomatic incidental cases. In the gut, the bulk of the proteins were
observed in cellular processes and cell bodies of vasoactive intestinal polypeptide
(VIPergic) neurons (Wakabayashi et al., 1988, 1993).

Braak and collegues (2006) suggested that the process starts in the neuronal
plexus of the GI tract. They used immunocytochemisty to investigate gastric myen-
teric and submucosal plexuses in five autopsy individuals, whose brains were also
staged for Parkinson-associated synucleinopathy. CEB1-synuclein immunoreactive
inclusions were found in neurons of the submucosal Meissner plexus, whose axons
project into the gastric mucosa and terminate in direct proximity to fundic glands.
They suggested that a yet to be identified environmental pathogen capable of passing
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the gastric epithelial lining might induce CEB1-synuclein misfolding and aggre-
gation in specific cell types of the submucosal plexus and reach the brain via a
consecutive series of projection neurons. Some of the axonal aggregations occurred
directly beneath the epithelial lining of the stomach, therefore they suggested that
alpha synuclein pathology of the submucosal plexus of Meissner could represent
the beginning of an “uninterrupted series of projection cells that ultimately link the
Enteric Nervous System with the cerebral cortex.” In the CNS, the process appears
to commence in the dorsal motor nucleus of the vagal nerve (medulla oblongata) and
in the olfactory bulb from where it follows an ascending course, affecting additional
nuclei in the lower brainstem, in basal portions of the mid- and forebrain, and even-
tually reaching the cerebral cortex (Braak et al., 2004). However, as summarized
in the following, several neuronal circuits that are relevant to cognitive/emotional
changes in PD are also involved. In these circuits not all DA neurons have long
axons.

It should be noted that the Braak scheme is based on alpha synucleinopathy.
More understanding is needed before PD is accepted as generalized alpha synucle-
inopathy and in the Braak scheme a specific vulnerability of dopaminergic neurons,
unless they have long axons. There is little knowledge at this point about what
alpha-synuclein does in and to the cell and it is not yet clear why some long axon
dopaminergic neurons are particularly affected in PD.

4 Basal Ganglia Circuit

4.1 Central Role of Dopamine in PD

Parkinson disease is a clinical diagnosis based on four essential cardinal symptoms.
These are rigidity, tremor, bradykinesia, and loss of postural reflexes. The clini-
cal diagnosis is about 80% consistent with postmortem histopathological diagnosis.
Clinically a number of other features are considered for postmortem diagnosis,
but the essential pathology is the depigmentation and reduced number of tyrosine
hydroxylase (TH)-labeled dopaminergic neurons in the area known as the substan-
tia nigra. This deficit in turn causes impaired transmission between presynaptic
dopaminergic neurons and postsynaptic dopamine receptors. This essential feature,
a specific deficiency of dopaminergic neurons, is consistent with the spectacular
clinical success of rational pharmacotherapy. This consists of treating patients with
medications that promote presynaptic dopamine content in releasable synaptic vesi-
cles and with ligands that directly bind to postsynaptic dopamine receptors. In the
early 1980s the chance observation was made that methyl-phenyl tetrahydropyridine
(MPTP) causes in man and monkeys a syndrome phenotypically almost identical to
Parkinson disease. MPTP selectively affects dopaminergic neurons via the phys-
iological high-affinity uptake system of TH-labeled neurons. These observations
led to pathological studies showing degeneration of dopaminergic neurons in the
substantia nigra as in PD and that the monkeys and humans affected by MPTP do
respond to dopaminergic treatment. The selective effect of MPTP is well explained
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by the high-affinity uptake system of dopaminergic neurons; in this case MPTP finds
its targets via the same system.

In this chapter we review the classical model of PD and summarize the two
“direct” and “indirect” loops of the dopaminergic circuit of the striato-caudal system
and the “antagonistic” effects of D1 and D2 type receptors.

The retina contains both types of receptors in humans and in the monkey model
of PD. We summarize the retinopathy of PD, the retinal dopaminergic circuit, and
the functional significance of D1 and D2 antagonism in the retina. Then we review
some newly described roles of adenosine in the classic basal ganglia circuit and the
molecular mechanisms associated with adenosine in the circuit. The antagonistic
effects of D1 and D2 type receptors in neuronal responses have been considered an
enigma for a long time. Recent biochemical studies revealed a cascade of molecular
events that explain in part the role of D1 and D2 receptors in cognitive dysfunction
in PD.

4.2 The Classical Basal Ganglia Circuit

The classical model of the cortico–basal ganglia–cortical circuit, with its indirect
and direct pathways, was developed to explain the phenomenon of hypokine-
sia in Parkinson’s disease (Albin et al., 1989; Alexander and Crutcher, 1990;
DeLong, 1990). The most researched cortico–subcortical circuit is the “motor
circuit” because of its importance for movement disorders. The motor circuit is
composed of several subcircuits that originate from the motor cortex and several
premotor areas (Fig. 2). In a general sense, tonic output from this circuit, arising in
motor portions of the GPi and SNr, may regulate the overall amount of movement.
Increased basal ganglia output could translate into less movement through inhibi-
tion of thalamocortical projection neurons, whereas reduced basal ganglia output
could translate into increased movement because of disinhibition of these neurons.
Although no direct evidence is available, it has been proposed that the combined
action of information traveling via the direct and indirect pathways may scale or
focus movements. To achieve scaling of movement parameters or termination of
movements, striatal output would initially inhibit specific neuronal populations in
the GPi and SNr via the direct pathway, hence facilitating movement, followed by
disinhibition of the same GPi and SNr neuron via input over the indirect pathway,
thus inhibiting ongoing movement.

In the alternative focusing model, inhibition of relevant pallidal and nigral neu-
rons via the direct pathway would allow intended movements to proceed, whereas
unintended movements would be suppressed by concomitant increased excitatory
input to other GPi and SNr neurons via the indirect pathway. The balance between
direct and indirect pathways is regulated by the differential actions of dopamine on
striatal neurons from terminals of neurons in the substantia nigra pars compacta.
Release of dopamine in the striatum increases activity along the direct pathway
(acting on D1 receptors in striatal neurons) and reduces activity along the indirect
pathway (acting on D2 receptors). Together these actions result in a net reduction
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Fig. 2 A simplified diagram, based on Wichmann and DeLong (2003). The cortical motor
areas give rise to a specific motor subcircuit. Red arrows: inhibitory (γ-aminobutyric acid
[GABA]–ergic) connections; green arrows: excitatory (glutamatergic) connections. GP the globus,
substantia nigra pars compacta; SNr, substantia nigra pars reticulata; STN, The sketch is only a
skeleton of the much more intricate interconnected system of the basal ganglia with the cortex.
These principal basal ganglia–thalamocortical circuits establish a balance between excitatory and
inhibitory neurotransmission. The categorical division between the so-called direct (D1-receptor
linked) and the indirect (D2-receptor linked) striatal output pathways may be complicated though
(not shown here) by pre-synaptic receptor mechanisms. Presynsaptic dopamine receptors have
higher affinity to dopaminergic ligands than do postsynaptic receptors

in GPi and SNr activity. Conversely, a decrease in striatal dopamine release would
result in an increase in GPi and SNr activity. The two pathways regulating basal
ganglia output via a balance of D1 and D2 receptors bears a certain logic similar-
ity to their role in the retina regulating its output neurons, the retinal ganglion cells
(Fig. 3).

Increased understanding of the anatomy and function of the basal ganglia and
their role in motor and nonmotor disorders (Bodis-Wollner et al., 1983) now posits
the basal ganglia at the core of cortical connections. The basal ganglia are now
seen (DeLong and Wichmann, 2007) as components of parallel, re-entrant cortico–
subcortical circuits, which originate from individual cortical areas, traverse the basal
ganglia and thalamus, and connect to a number of separate neuronal groups termi-
nating in the frontal cortices. Dopamine (DA) is a powerful neuromodulator for a
wide variety of behaviors and some sensory processing.

The working hypothesis of cognitive deficits in PD is that they result from
impairment of specific cortico–subcortical circuits. These circuits in part depend
on dopamine-linked synapses. Although the original model (see Fig. 1) has been
modified, the essential role of dopamine deficiency of the basal ganglia remains at
the core of cognitive deficiencies in PD involving the frontal cortices.
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Fig. 3 The imbalance of striatal GABAergic output pathways in PD (after Alexander and Crutcher,
1990. Blue arrows: inhibitory (γ-aminobutyric acid [GABA]–ergic) connections; red arrows: exci-
tatory (glutamatergic) connections. GP, globus pallidus; SNc, substantia nigra pars compacta; SNr,
substantia nigra pars reticulate) and presumed sites of commonly applied therapies (courtesy of A.
Mori)

5 Frontal Cortices, Striatum, and Cognition in PD

5.1 Fontostriatal Circuits in PD

The frontostriatal circuits connect the basal ganglia with cortical areas that are
involved in cognitive, motor, and emotional processes. Furthermore, a correlation
between cortical DA innervation and expression of cognitive capacities, including
learning, has been shown by a number of studies (Nieoullon, 2002). Therefore a role
of dopamine in impaired cognitive processing in PD is not surprising, Considerable
evidence accumulated from rodent and monkey experiments over the last two
decades suggests that DA activity in the frontal cortex is reciprocally linked to
that in functionally related basal ganglia (BG) structures. However, the functional
importance of this in humans is still unknown. To address this issue, we measured
endogenous DA release using positron emission tomography in 15 healthy sub-
jects as they practiced the first training session of a finger sequence learning task.
Significant results were observed not only in striatal areas but also in extrastriatal
“motor” regions, bilaterally. Faster learning was specifically coupled to lower DA
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release in the sensorimotor part of the globus pallidus pars interna (GPi) contralat-
eral to the moving hand, which was paralleled by a higher increase in DA levels
in the presupplementary motor area (pre-SMA). This finding provides original evi-
dence supporting a motor-learning-related interaction between DA release in left
GPi and pre-SMA, a mechanism that may also apply to other anatomically and
functionally interconnected BG and frontal cortical areas as a function of behavior.

Cortical activity during executive processing in PD depends on striatal mecha-
nisms even in early stages of the disease, as shown with functional imaging (Monchi
et al., 2007). They have developed a new card-sorting task that is known to require
frontal involvement and represent executive functions including planning and set-
shifting. They have first shown that in young healthy adults, the caudate nucleus
is specifically required when a set-shift must be planned. They studied a group of
early-stage Parkinson’s disease patients (seven right-handed patients at Hoehn and
Yahr stages 1 and 2; mean age 62 years, range 56–70) and matched control subjects.
Decreased cortical activation was observed in the patient group in the condition
significantly involving the caudate nucleus. Their study showed a pattern of either
reduced or increased activation depending on whether the caudate nucleus was
involved in the task. This activation pattern included not only the prefrontal regions
but also posterior cortical areas in the parietal and prestriate cortex. These findings
are not in agreement with the traditional model, which proposes that the nigrostri-
atal dopamine depletion results in decreased cortical activity. These observations
provide further evidence in favor of the hypothesis that not only the nigrostriatal
and frontal mechanisms are affected in PD executive dysfunction.

5.2 Impaired Memory in PD: Thalamocortical Circuitry

Aggleton and Brown (1999) proposed two parallel brain systems with qualitatively
different contributions to memory. The proposed functional-anatomical division is
of relevance to cognition in PD. Hay et al. (2002) investigated memory performance
in patients with either mild Parkinson’s disease, moderate Parkinson’s disease, or
amnesia using measures of habit (automatic memory) and conscious recollection
(intentional memory). Patients with amnesia displayed the expected dissociation
between (intact) habit learning and (deficient) conscious recollection, patients with
moderate PD were impaired on both measures whereas the mild PD patients had
no abnormalities on either one. Hay et al. (2002) attributed the deficiencies in habit
learning to striatal dysfunction, whereas conscious recollection is thought to result
from disruption of prefrontal cortical processing.

Evidence of executive dysfunction Parkinson’s disease patients is also consis-
tent with proposals that frontostriatal circuit damage produces widespread prefrontal
dysfunction (e.g., Buytenhuijs et al., 1994; Leplow et al., 1997; Owen et al., 1998;
Dujardin et al., 2001).

It has been recognized recently that the thalamic dopaminergic system degen-
erates in PD. In addition to the GABAergic thalamic input to the cortex it has
now been recognized that the nigrothalamic connection is affected in humans
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(Garcia-Cabezas et al., 2007a) and in MPTP monkeys (Sanchez-Gonzalaez et al.,
2005; Garcia-Cabezas et al., 2007b). However, the contribution of the dopaminergic
thalamocortical system to cognition has not been elucidated.

Deep brain stimulation (DBS) has yielded quantitative information on the diver-
sity of different functional loops between cerebral cortex and the subthalamic area
in PD. These studies suggest that functional subloops between the subthalamic area
and cerebral cortical motor regions can be distinguished by their frequency, cortical
topography, and temporal relationships (Fogelson et al., 2006). Tuning to distinct
frequencies may provide a means of marking and segregating related processing,
over and above any anatomical segregation of processing streams.

They recorded EEG and local field potentials (LFPs) from macroelectrodes
inserted into the subthalamic nucleus area in nine awake patients following func-
tional neurosurgery for PD. Patients were studied after overnight withdrawal of
medication. Coherence between EEG and SA LFPs was apparent in the theta (3–
7 Hz), alpha (8–13 Hz), lower beta (14–20 Hz), and upper beta (21–32 Hz) bands,
although activity in the alpha and upper beta bands dominated. Theta coherence
predominantly involved mesial and lateral areas, alpha and lower beta coherence
the mesial and ipsilateral motor areas, and upper beta coherence the midline cor-
tex. SA LFPs led EEG in the theta band. In contrast, EEG led the depth LFP in the
lower and upper beta bands. SA LFP activity in the alpha band could either lead or
lag EEG.

In PD patients undergoing surgical procedures one may record enhanced beta
range oscillatory rhythms in the BG and effective levodopa medication attenuates
beta activity. The dominant cortical synaptic input to the BG and to the ST is gluta-
matergic. Given this fact, it is likely that local BG oscillatory rhythms derive from
cortical inputs, but not dopamine. Dopamine is not known to regulate quick synap-
tic currents via phasic ionotropic mechanisms (Traub et al., 2008) hypothesize that
abnormal oscillations which occur in PD arise at the cortex, even though recorded
deeper.

Trottenberg et al. (2006) recorded oscillatory activity in the gamma frequency
(60–100 Hz) band in local field potentials (LFPs) recorded from the region of the
subthalamic nucleus (STN) in PD patients. Spike-triggered averages of LFP activ-
ity suggested that the discharges of neurons in this region were locked to gamma
oscillations in the LFP. They suggested that gamma band oscillations in the LFP are
likely to represent local neuronal discharge.

Gamma activity (Gray and Singer, 1989; Singer, 1993; Singer, 1999) reflects syn-
chronization of thalamo-cortical neuronal groups in order for them to act together, a
necessary prerequisite for voluntary motor action and for forming a coherent percept
(Joliot et al., 1994; Tallon-Baudry et al., 1997). Fixation on visual stimuli that are
optimal for foveal processing results in a time-locked increase in the power of the
gamma component of the human EEG (Tzelepi et al., 2000; Bodis-Wollner et al.,
2001).

When saccades are performed either in the presence of visual stimuli or in the
dark, gamma range activity is enhanced in the intrasaccadic period over the pari-
etal and occipital cortices (Bodis-Wollner and Tzelepi, 2002; Forgacs et al., 2008).
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Gamma power increase starts at the beginning of the movement, prior to achiev-
ing the final eye position and then returns to baseline following the end of the
saccade. Power is higher in the absence of visual input. The perisaccadic modu-
lation of gamma power we call “phasic” gamma. Conceive of a person sleeping in
the dark, awakened and quickly looking for an invisible visual target. Our inten-
tion to see even in the absence of visual stimulus, is a prerequisite for the saccades
to start. Perisaccadic phasic gamma in the absence of visual stimulation may rep-
resent intrasaccadic cerebral processes we called “pre-emptive” (Bodis-Wollner,
2008). The term “pre-emptive” represents that the saccades are directed and not
random; they may emerge from a repertoire of an infinite number of trajectories by
suppressing unwanted actions.

5.3 Genetic Variability of Catechol-O-Methyltranferase,
Prefrontal Cortex, and Cognition

Dopamine receptors, in particular D1 receptors, are abundant in the prefrontal cor-
tex (Goldman-Rakic et al., 2000). Cathecol-O-amine transferase (COMT) is one
of the metabolic enzymes of catecholamines in the tissues, including the brain
(Axelrod, 1966). In the last two decades COMT inhibitors have been introduced
into clinical practice to enhance the effectiveness of levodopa therapy, without the
need to administer higher doses of levodopa. COMT alters dopamine levels in the
prefrontal cortex (PFC) dopamine system. The COMT gene contains a functional
polymorphism (Val158Met) that has been associated with variation in PFC func-
tion, including “prefrontal tests” of cognition in PD (Malholtra et al., 2002). The
COMT inhibitor medication tolcapone, which easily crosses the blood–brain bar-
rier, improved cognition in eight advanced PD patients: in particular improvement
was noted in the attentional task, auditory verbal short-term memory, visuospatial
recall, constructional praxia, and motoric (Gaspirini et al., 1997).

In the dopamine-depleted awake rat model (Tunbridge et al., 2004) tolcapone
significantly and specifically improved extradimensional (ED) set-shifting perfor-
mance, originally described by Teuber and Proctor (1964) in PD. Microdialysis
showed that tolcapone significantly potentiated the increase in extracellular
dopamine (DA) elicited by either local administration of the depolarizing agent
potassium chloride or systemic administration of the antipsychotic agent clozapine.
Although extracellular norepinephrine (NE) was also elevated by local depolar-
ization and clozapine, the increase was not enhanced by tolcapone. Apparently
COMT activity specifically affects ED set-shifting and is a significant modulator
of mPFC DA but not NE under conditions of increased catecholaminergic transmis-
sion. The interaction between clozapine and tolcapone may have implications for
the treatment of schizophrenia (Inada et al., 2003).

Schott et al. (2006) measured dopaminergic midbrain functions in a human
episodic memory task. They quantified responses in 51 young, healthy adults
using functional magnetic resonance imaging. Their specific question was how
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polymorphisms in dopamine clearance pathways affect encoding-related brain activ-
ity. Successful episodic encoding was associated with activation of the substantia
nigra. This midbrain activation was modulated by the number of tandem repeat
(VNTR) polymorphisms in the dopamine transporter (DAT1) gene. Despite no
differences in memory performance between genotype groups, carriers of the (low-
expressing) 9-repeat allele of the DAT1 VNTR showed relatively higher midbrain
activation when compared with subjects homozygous for the 10-repeat allele, who
express DAT1 at higher levels. The catechol-O-methyl transferase Val108/158Met
polymorphism, known to modulate enzyme activity, affected encoding-related activ-
ity in the right prefrontal cortex and in occipital brain regions but not in the midbrain.
Moreover, subjects homozygous for the (low-activity) metallele showed stronger
functional coupling between the PFC and the hippocampus during encoding. Their
study provides strong support for a role of dopaminergic neuromodulation in human
episodic memory formation. It also supports the hypothesis of anatomically and
functionally distinct roles for DAT1 and COMT in dopamine metabolism, with
DAT1 modulating rapid, phasic midbrain activity and COMT being particularly
involved in prefrontal dopamine clearance.

6 Vision and Visual Cognition

6.1 Short-Term Memory for Visual Stimuli and Spatial
Orientation in PD

In the definition of dementia memory is one of the three most important defin-
ing characteristics by DSM-IV criteria. In the commonly applied experimental
paradigms to elicit event-related potentials for a successful response the target
stimulus has to be stored in the active working memory. The paradigms require a
comparison between the stored stimulus and a subsequently presented one for same–
different decision making. There has been an attempt to relate neuropsychological
deficits to discrete neuranatomical brain areas.

Prior to the era of in vivo brain functional imaging, this was based on human
and animal lesion studies, with remarkable foresight. Spatial orientation deficits
(Teuber and Proctor, 1964) are thought to reflect deficits of the posterior cortices and
set-shifting impairment has been thought to reflect mostly frontal functions (Taylor
et al., 1986).

Aggleton and Brown (1999) proposed two parallel brain systems with quali-
tatively different contributions to memory. Pathological anatomical studies in the
monkey support the concept of this division of memory systems. Following bilat-
eral symmetrical frontal ablations Macaque monkeys are impaired in object–reward
association memory (Gaffan and Parker, 2000) and object RM (Kowalska et al.,
1991). Thus, the select deficiencies in recall-aware memory reported by Hay et al.
and others (Levin et al., 1989; Buytenhuijs et al., 1994; Hugdahl et al., 1991; Daum
et al., 1995; Leplow et al., 1997; Knoke et al., 1998; Owen et al., 1998; Dujardin
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et al., 2001) appear to arise as a consequence of a breakdown in frontally medi-
ated strategic memory processes implicated in intentional and effortful memory
processes.

Spatial orientation deficit and set-shifting impairment have been noted in neu-
ropsychological studies in PD (Raskin et al., 1990). One part of the working memory
system, the visuospatial sketchpad, is devoted to the maintenance of visual infor-
mation. The visuospatial sketchpad shows a specific selective impairment in PD:
even when the visual subsystem responsible for the object-related visual analysis
seems to be spared until the later stages of the disease, the visual processing of spa-
tial location, motion, and three-dimensional properties is impaired (Moreaud et al.,
1997; Owen et al., 1993, 1997; Postle et al., 1997; Lee et al., 1999). Cognitive
changes in PD may be independent or precede global dementia. Kuroiwa and his
collegues (Wang et al., 1999a, b, 2000; Li et al., 2003, 2005) introduced an S1–S2
paradigm (task S) as well as oddball paradigm (task O) visual event-related poten-
tials under different interstimulus intervals (ISIs). In several studies they have shown
that PD patients have particular difficulty with longer interstimulus intervals. ERP
measurements were correlated with motor disability, WAIS-R, and regional cere-
bral blood flow ((99)Tc-ECD SPECT) examination. In advanced PD patients, P300
latency to S2-same and reaction time was significantly prolonged, whereas rCBF at
bilateral frontal, temporal, and the right parietal lobes was decreased. P300 latency
to S2-same was significantly correlated with the rCBF at bilateral temporal lobes.
Reaction time was significantly correlated with the rCBF at the right frontal and
parietal lobes, as well as the temporal and occipital lobes. They suggested that P300
changes in nondemented PD in the late stage is related to temporal lobe dysfunction,
suggesting the importance of a memory task-dependent subdivision of cortico–basal
ganglia circuits in PD.

Based on the results in humans it is likely that the P300 abnormalities predomi-
nantly reflect working memory impairment in PD. Kemps et al. (2004) compared
the visuospatial sketch pad and central executive components of working mem-
ory as potential cognitive mechanisms of visuospatial dysfunction in PD. Patients
performed more poorly in both concurrent task conditions, implicating a reduc-
tion in both visuospatial sketch pad and central executive resources. The impact of
the concurrent tasks varied with disease severity, with the central executive deficit
prominent at disease onset, but the visuospatial sketch pad deficit became apparent
only in the moderate stages of the illness. Studies that examined P300 amplitude in
PD are few (Wang et al., 1999a). The first positive “hump,” the anterior P3a, is atten-
uated in amplitude in patients with PD without dementia (Lagopoulos et al., 1998).
This component possibly reflects passive or automatic math/mismatch processing
and elicited by the more infrequently appearing stimulus regardless of its target or
nontarget status. The reduction of the classical P3b was also found and correlated
with a poor performance in the Wisconsin Card Sorting Test (WCST; Tsuchiya et al.,
2000). These results suggest that the passive and active orienting responses of PD
patients to novel events is impaired and that recording P300 might provide a neuro-
physiological and quantitative measure of attentional and cognitive deficits linked to
the frontal lobe in nondemented PD. Furthermore, the amplitudes of the NoGo-P300
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and NoGo-N200 (a negative component appearing around 200 ms after the stimu-
lus onset) were also significantly smaller in the PD group than in the control group
(Bokura et al., 2005). The NoGo-P300 amplitude was significantly correlated with
the WCST and the verbal fluency test scores, as well as with the number of com-
mission errors. These data suggest that there is also an impairment of inhibitory
function in PD and that this deficit may be related to impaired inhibitory executive
function in the frontal lobe.

Visual perceptual categorization and ERPs were studied by Antal et al. (2000).
Classifying visual targets is often difficult for PD patients. Antal et al. (2002)
tested 16 de novo, early PD patients. They were shown, one after another,
color photographs of either natural scenes or animals, each different. Their task
was to categorize each picture as “scene” or “animal”. There was a signifi-
cant poststimulus amplitude difference around 200 ms in control, but not in PD
patients, suggesting a visual categorization deficit in PD out of 1000 randomly
presented

Delayed-response tests are well suited to test the spatial location of objects. PD
patients even with mild symptoms have difficulty in maintaining, even briefly, the
memory trace of spatial locations of irregular polygons, whereas they successfully
keep online the shapes of the same stimuli (Postle et al., 1997). However, errors in
this kind of task (usually errors in pointing movements to remembered visual tar-
gets) can be attributed to various factors, such as the misperception of the target
position, errors in spatial memory, errors in the transformation from visual informa-
tion to an appropriate motor command, or to a deficit in proprioceptive information
processing of the arm. A recent study reports that pointing movements in PD are
impaired due to a deficit in processing of proprioceptive information, which appears
early in the course of the disease, and by a visual feedback problem, which emerges
in later stages of the disease (Keijsers et al., 2005).

Although some studies have suggested that the visual subsystem responsible for
the object-related visual analysis seems to be spared until the later stages of PD
(Lee et al., 1999; Moreaud et al., 1997; Owen et al., 1997; Postle et al., 1997;
Amick et al., 2003), others have found that it is not always the case (Antal et al.,
2002). Rather, attention-biased object-related weighting and selecting processes can
be dysfunctional even in young PD patients. During a visual categorization pro-
cess a diminished differential N1 component was observed in de novo and also in
treated PD patients. This component represents the basic visual feature encoding
and initiating stages of perceptual categorization in the first 200 ms poststimulus
period (Thorpe et al., 1996). It is hypothesized that the neostriatum may mediate
feature weighting and extraction processes and the differential N1 may refer to this
function. In PD, this is possibly dysfunctional, as reflected by the diminished dif-
ferential N1 (Antal et al., 2002). In agreement with this hypothesis, in patients with
AD, in which the cortico–cortical pathways mediating feedforward mechanisms are
impaired, this component was not diminished compared to the controls but appeared
later.
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6.2 Aging and Cognitive Event-Related Potentials

It has been suggested that with age the dopaminergic system progressively weakens
in various animal species. However, the generalization of these observations from
observing motor dysfunction to the suggestion that PD represents an accelerated
form of aging is not generally accepted. Evidence from various sources, includ-
ing patients, animals, the effects of experimental pharmacological intervention, and
molecular genetics shows that DA is also critically implicated in select higher-order
cognitive functioning. It remains to be seen whether DA-dependent select cognitive
deficits in PD also characterize the aging process (Bäckman et al., 2006).

A delayed P300 in PD is not due to aging per se (Tachibana et al., 1997) and there
is a significant inverse relationship of delayed P300 and score of the Mini Mental
State (Maeshima et al., 2002). The P300–P100 latency difference calculated from
the concurrently obtained visual ERP is significantly longer in younger PD patients
and differentiates them from controls (Antal et al., 1996; Sagliocco et al., 1997).

6.3 Neurotransmitters and Cognitive ERP-S in PD

Does the P300 abnormality represent only dopaminergic dysfunction?
Electrophysiological evidence shows that DA receptors are involved in visual
working memory in the prefrontal area (for a review see Goldman-Rakic, 1998),
which was also identified as one of the generators of P300 (Halgren et al., 1998).
Indeed, levodopa treatment shortens the latency of P300 in some PD patients
(Stanzione et al., 1991; Sohn et al., 1998). Contrary to these findings, some inves-
tigators have described a prolonged P300 latency in medicated patients (Hansch
et al., 1982; Prasher and Findley, 1991). However, medicated patients are more
severely affected and the delayed P300 might also correlate with disease severity. In
the animal model of PD, in behaving MPTP monkeys the visual P300 is beneficially
affected by levodopa treatment (Glover et al., 1988) and in the healthy monkey D2
receptor blockade impairs the latency of the visual ERP but surprisingly it enhances
its amplitude (Antal et al., 1997). It is known that task difficulty prolongs ERP
latency while enhancing its amplitude. Based on this explanation the D2 receptor
blockade may perhaps induce increased noise in the thalamocortical cognitive loop.

The modulation of P300 by nondopaminergic agents such as cholinergic sub-
stances has been studied in monkeys (Antal et al., 1994) and in healthy subjects
(Dierks et al., 1994; Frodl-Bauch et al., 1999). Delayed P300 improved in PD
patients following treatment with amantidine, a low-affinity uncompetitive NMDA
receptor antagonist (Bandini et al., 2002). In this study amantidine’s effect was
noticeable not only as a monotherapy, but also in patients treated with levodopa. It
is suggested that amantadine has DA-mimetic properties and it cannot be therefore
excluded that amantidine improves cognitive ERP-s in PD as a DA-mimetic agent.
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6.4 Dopamine in Visual Processing in the Retina

The retina is multilayered, with distinct neural elements in each layer. Receptors in
the outer layers convert and use light energy to produce electrical currents, affecting
subsequent neurons. There are three major forward synapses before the ganglion
cells receive signals in the innermost layer of neurons. In between there are sev-
eral lateral and feedback connections. Amacrine cells, including dopamine amacrine
cells, are located in the inner layer close to ganglion cells (Fig. 4). The inner retina
(IRL) includes the nerve fiber layer, the ganglion cell layer, and the inner-plexiform
layer whereas the outer retina (ORL) consists of layers starting from inner nuclear
layer up to and including the retinal pigment epithelium.

Fig. 4 A TH labeled
(dopaminergic) amacrine cell
of the rat retina. Note that the
receptor layer is on the top
and the faintly visible
ganglion cell layer is on the
bottom (from Mytileneou and
Bodis-Wollner, Department
of Neurology, The Mt. Sinai
School of Medicine, around
1978; unpublished data)

Quantitative morphology of gross retinal histology in humans can be measured
in vivo using optical coherence tomography (OCT) (Shulman et al., 1996) (Fig. 5).
The electrophysiological measure obtained with corneal electrodes in the intact eye,
using patterned visual stimuli, such as sinusoidal gratings, the so-called PERG is
an average response of foveally located retinal ganglion cells. The amplitude of the
pattern electroretinogram as a function of spatial frequency of the sinusoidal grat-
ing stimulus also shows the inverted U-shaped function (in both man and monkey)
as the CS curve. This PERG output function is the result of the massed averaged
response of central retinal ganglion cells (Maffei et al., 1989). The bandpass func-
tion is changed to a lowpass function in PD and in the monkey using systemic MPTP
(Ghilardi et al., 1988a, b), intraocular 6-Hydroxydopamine (Ghilardi et al., 1989),
and D2 receptor blockade (Tagliati et al., l994; Fig. 6).

These results lend themselves to the functional interpretation of retinal ganglion
cell disorganization in the dopamine-deficient PD retina once the contrast transfer
function is understood as the sum (difference) of center and surround responses
(Enroth-Cugell and Robson 1966; Fig. 7). Based on electrophysiological and func-
tional studies in primates, one may accept the existence of two classes of ganglion
cells: one center dominated with strong surround, having narrow spatial tuning
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Fig. 5 Left: OCT image of 6 mm of the macular retinal layers of a 46-year-old healthy subject with
an IOP 15 mmHg and Snellen visual acuity 20/20. Right: OCT image of 6 mm of the macular reti-
nal layers of a 50-year-old, moderately advanced (Hoehn and Yahr staging 2.5) PD patient (Unified
Parkinsons Disease Rating System motor score 17) prior to any anti-Parkinsonian treatment. IOP
was 14 mmHg and Snellen visual acuity 20/25 (from Hajee et al., 2009)
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Fig. 7 Antagonistic center/surround interaction is the basic model of a foveal retinal ganglion
cell receptive field. Note that the center mechanism is characterized by a narrow and tall response
(sensitivity) profile, whereas the surround is broad and has a low, spatially extended profile. The
response profiles are established by preganglionic circuitry. The ganglion cell performs the linear
operation of subtracting the center and surround signals. If the surround mechanism is selec-
tively attenuated it may lead to a response that monotonically grows with center stimulation. As a
result the spatial transfer function loses tuning. The exact spatial frequency at which tuning occurs
reflects on the diameter and optimal interplay between center and surround (after Enroth-Cugell
and Robson, 1966)

and another one with larger centers and less sharp tuning. The PERG spatial con-
trast response function is understood as the envelope output of all retinal ganglion
cells covering the central foveal area with different weights for the two classes of
ganglion cells.

Based on the results of experimental pharmacological studies and the effect of
PD on retinal processing (Bodis-Wollner, 1990) inferred that D1 receptors primar-
ily affect the “surround” organization of ganglion cells with large centers, whereas
D2 postsynaptic receptors contribute to “center” response amplification of ganglion
cells with smaller centers.

6.5 Retinal Model of Dopaminergic Dysfunction in PD

Bodis-Wollner and Tzelepi (1998, 2002, 2005) modeled the preganglionic dopamin-
ergic circuit based on the results of pharmacological experimental data (see above)
in the monkey and in humans. These experiments showed that select dopamine
receptor ligands change the spatial transfer function of the retina in a manner which
suggests that D1 and D2 receptors modulate the balance of center and surround
organization of foveal ganglion cells of the primate.

Based on results in vertebrates Bodis-Wollner (1990) assumed that in primates
the surround organization of the retinal ganglion cell is under D1 receptor control.
D1 receptor activation causes disjunction of horizontal cells, otherwise coupled in
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an extended chain (Piccolino et al., 1987). In other words, when D1 activity is
present, the horizontal cell signal is more concentrated in a smaller area; it does
not get diffused. As a consequence under D1 activity the surround becomes smaller
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Fig. 8 The effect of the selective D2 ligand l-sulpiride on the PERG of a low-dose monkey. Upper
left: Note that for a low-dose sulpiride PERG amplitude is higher at low spatial frequencies than
in the untreated one and the response to the peak spatial frequency is attenuated. This effect at
the optimal spatial frequency is not unexpected, given the role of D2 receptors in center response
amplification: the heightened response at low spatial frequencies is surprising. Upper right: The
effect of high-dose sulpiride on the PERG: both low and peak spatial frequency responses are
attenuated. (Both figures after Tagliati et al., 1994 and Stanzione et al., 1995.) Bottom: a model
of the dose and spatial frequency-dependent effect of D2 blocking on the PERG according to the
subtractive Gaussian center-surround interactive mechanisms. (Based on the experimental results
of Tagliati et al., 1994 and Stanzione et al., 1995, after Bodis-Wollner and Tzelepi, 2002, 2005.)
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but stronger. D2 receptors promote coupling between rods and cones in the xeno-
pus (Krizaj et al., 1998). In our model we assumed that 2–3 neighboring receptors
are coupled, thereby amplifying the center strength. Consequently complete lack
of D2 activation should lead to a loss of center sensitivity by a factor of 2–3.
Tagliati et al. (1994) and Stanzione et al. (1995) found a seemingly paradoxical
effect when the effects of a low-dose and a high-dose sulpiride were compared in
the healthy subject. The effect of the selective D2 ligand l-sulpiride on the PERG
for a low dose shows that PERG amplitude is higher at low spatial frequencies
than in the untreated one and the response to the peak spatial frequency is atten-
uated. This effect at the optimal spatial frequency is not unexpected, given the role
of D2 receptors in center response amplification: the heightened response at low
spatial frequencies is surprising. High-dose sulpiride attenuates the PERG for both
low and peak spatial frequency responses (Fig. 8; both figures after Tagliati et al.,
1994 and Stanzione et al., 1995). These results suggested to Bodis-Wollner and
Tzelepi (1998, 2002, 2005) that high-affinity (Skirboll et al., 1977) D2 autorecep-
tors are located in the D1 surround pathway and this presynaptic effect dominates
the PERG when using low-dose sulpiride. An understanding of the logic performed
by retinal D1 and D2 receptors may be useful to discern the functional role of
diverse dopamine receptors in DA circuits elsewhere in the CNS. These retinal data
may be relevant to an understanding of the logic role of D1 and D2 type receptors
(Fig. 9).
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Fig. 9 Left: a simplified diagram of the retina with principal neurons and interconnections. On
top is the receptor layer and the bottom shows the ganglion cells with their axons (“nerve fiber”)
which can be seen on ophthalmoscopic examination and quantified using modern retinal imaging
in vivo. Right: a schematic representation of the preganglionic dopaminergic connections including
pre-synaptic D2 receptor connection
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7 Nondopaminergic Signals and Cognition in PD

7.1 GABA and the Subthalamic Nucleus

Deep brain stimulation was introduced nearly two decades ago into the treatment
of PD. Over the last years it has become a rather widespread treatment modality,
with some rather impressive results in carefully selected patients. The effects are
seen as motor improvement. However, adverse mood and cognitive effects have
been also described and preoperative selection criteria have to be adhered to min-
imize the chances for adverse effects (Lang et al., 2006). Some of the results also
raised questions concerning our neuroanatomical and neuropharmacological con-
cepts of the classical basal ganglia circuitry. One of the evaluating techniques is
intraoperative microdialysis which was developed by Stanzione and his collegues
(Fedele et al., 2001; Mazzone et al., 2005) as a technique into human intraoperative
electrophysiological monitoring and recordings. Their and some other studies have
yielded biochemical evidence of the functional role of the subthalamic nucleus in
the PD relevant basal ganglia circuitry. It was noted that lesions of the subthalamic
nucleus may reverse Parkinsonism (Bergman et al., 1990).

Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease
patients augments STN-driven excitation of the internal globus pallidus (Stefani
et al., 2005). Stefani et al. (2006) quantified the biochemical effects of STN-DBS
in two basal ganglia mechanisms (putamen, PUT, and GPi) and in a thalamic relay
nucleus, the anteroventral thalamus (VA). In six advanced PD patients undergo-
ing surgery, microdialysis samples were collected from GPi, PUT, and VA before,
during, and after 1 h of STN-DBS. cGMP was measured in the GPi and PUT as
an index of glutamatergic transmission, whereas GABA ([gamma]-aminobutyric
acid) was measured in the VA. During clinically effective STN–DBS, a significant
decrease in GABA extracellular concentrations in the VA (–25%) was achieved.
Simultaneously, cGMP extracellular concentrations were enhanced in the PUT
(+200%) and GPi (+481%). The results suggest that DBS differentially affects
fibers crossing the STN area: it activates the STN–GPi pathway while inhibiting
the GPi–VA one. These findings support a thalamic disinhibition, as the main fac-
tor responsible for the clinical effect of STN–DBS. Inhibitory interneuron play is
essential for regulating neuronal circuits and behavior by controlling spike timing
and neuronal rhythms (see later). However, there is great diversity of GABAergic
interneurons and GABAA receptor subtypes. There are indications that region- and
domain-specific location of these receptor subtypes are differentially involved in
several nonmotor manifestations of PD such as regulation of sleep, anxiety, mem-
ory, and sensorimotor processing, in addition to postnatal developmental plasticity
(Mohler, 2007).

The pedunculopomtine nucleus (PPN) is reciprocally connected to the BG. It
input is from the globus pallidus interna, substantia nigra pars reticulata, and STN.
Its output is glutamatergic to STN, GPOi, and SNC. It has been reported that in
PD about 50% of its intrinsic cholinergic neurons are lost. Combined deep brain
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stimulation of the subthalamic and pedunculopontine (PPN) nuclei has been recently
proposed as surgical treatment of advanced PD. STN stimulation alone has been
shown to provide selective improvement of the grammatical aspect of language. In
five advanced PD patients combined deep brain stimulation (STN + PPN) did not
change the overall cognitive profile, however, language was affected. There was a
trend towards reduction of ungrammatical errors (particularly substitution of free
and inflectional morphemes) when stimulating the PPN, even when the STN was
switched off (Zanini et al., 2009). The PPN reaches the motor cortex via thalamic
nuclei, however, its connections to other cortices are less well explored.

7.2 Cholinergic Mechanisms

“Dementia” has been recognized for many decades as one of the nonmotor fea-
tures of PD. Research proceeded along several approaches to understand whether
dementia in PD represents an overlap syndrome with primarily dementing disor-
ders, such as Alzeheimer disease, diffuse Lewy body disease, and frontotemporal
dementia, just to name a few. Both anatomical and neurochemical studies addressed
dementia in PD. Dementia, by the definition of Diagnostic Manual (DSM-IV) cri-
teria includes memory dysfunction and one of the following: aphasia, apraxia,
agnosia, or disturbance of executive functions. By this standard PD patients rarely
have dementia. They have select and specific cognitive impairments such as “log-
ical memory” (Pang et al., 1990; Bodis-Wollner et al., l995) which correlate with
modality dependent changes in event-related potentials.

The earliest cognitive impairment in PD is evident for executive abilities, visu-
ospatial orientation, and memory. However, many studies of cognition in PD use the
term “dementia” without defining the specific deficits. With this in mind, it is still
worth reviewing the contrast between Alzheimer disease and PD, in particular with
reference to cholinergic mechanisms.

It was suggested that cognitive dysfunction in PD, similarly to AD results from
loss of cholinergic neurons in the nucleus basalis Meynert (Whitehouse, 1981).
However, it was reported by Perry et al. (1985) that “dementia” in this disease usu-
ally occurs in the absence of substantial Alzheimer type changes in the cortex and
may be related to abnormalities in the cortical cholinergic system.

Thus, in Parkinsonian patients with dementia there are extensive reductions of
choline acetyltransferase and less extensive reductions of acetylcholinesterase in
all four cortical lobes. Choline acetyltransferase reductions in temporal neocortex
correlated with the degree of mental impairment assessed by a memory and infor-
mation test but not with the extent of plaque or tangle formation. In PD but not
in Alzheimer’s disease the decrease in neocortical (particularly temporal) choline
acetyltransferase correlates with the number of neurons in the nucleus of Meynert
suggesting that primary degeneration of these cholinergic neurons may be related,
directly or indirectly, to declining cognitive function in Parkinson’s disease. In fact
the correlation of cholinergic deficits in PD is more evident and is more severe
than in AD (Bohnen et al., 2003). In 18 of 22 patients who were diagnosed with
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dementia Aarsland et al. (2005) reported on the presence of limbic and neocortical
Lewy bodies-associated cholinergic deficits without the presence of changes typical
of AD.

Thus the evidence suggests that acetylcholine may have an important role in
nondopaminergic cognitive changes. If so, some cognitive defects could possibly be
treated with choline-esterase inhibitors. Although the ACh inibitor Rivastigmine has
been reported to have some benefits in PD (Emre, 2004), up to now there has been
a dissonance between the scientific evidence for cholinergic deficiency in PD brains
and the clinical use of cholinergic agents in treating cognitive impairment in PD.

One reason may be the concern for a potential negative motor effect of choliner-
gic medication in PD. Treatment of PD with anticholinergic medications precedes
the l-dopa era and is still used in some clinical centers Cholinergic interneurons play
an essential role in striatal mechanisms and increased acetylcholine release in the
striatum is pathognomic for PD (Cragg, 2006).

ACh interneurons interact with the dopaminergic system in several ways.
Dopamine-dependent long-term potentiation (LTD) is mediated by D2 receptors (in
the indirect pathway) but D2 receptors are also reported on cholinergic interneu-
rons. Acetylcholine release activates mainly through M1 muscarinic receptors at
glutamatergic axo-spinous synapses (Hersch et al., 1994).

It is possible therefore that selective receptor agonist therapy would benefit cog-
nition in PD without causing negative motor effects. Establishing the relationship
between select cognitive deficits and nicotinic versus muscarinic neurotransmis-
sion may lay the foundation for rational pharmacotherapy of cognitive dysfunction
in PD.

7.3 Glutamate, Thalamocortical Processing, and D1 and D2
Dopamine Receptors

The results of several imaging studies have shown correction of abnormal motor, but
not cognitive, network activity by treatment with dopaminergic therapy and deep
brain stimulation. Some nondopaminergic elements of the circuitry, however, are
known to contact diverse postsynaptic dopamine receptors.

Select psychomotor functions are under the influence of dopamine in modulating
cortical and thalamic glutamatergic signals impinging upon principal medium spiny
neurons (MSNs) of the striatum. Dopamine D1 receptor signaling enhances den-
dritic excitability and glutamatergic signaling in striatonigral MSNs, whereas D2
receptor signaling exerts the opposite effect in striatopallidal MSNs. The functional
antagonism between these two major striatal dopamine receptors also extends to
the regulation of synaptic plasticity. Furthermore these studies have also shown that
long-term alterations in dopamine signaling produce profound and cell-type-specific
reshaping of corticostriatal connectivity and function. However, at this point little is
known of the effects of selective dopamine receptor ligands on memory performance
in PD.
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7.4 Adenosine

The role of adenosine, originally described by Greengard (1972), is being
increasingly emphasized and studied from the molecular to the behavioral level.
Furthermore, anecdotical clinical evidence concerning cognitive effects of alpha
adenosine A2 type receptor blockers is consistent with the results of animal studies
(Takahashi et al., 2010).

The molecular role of adenosine is primarily in the postsynaptic phosphorylation
cascade in the action of dopamine (Nishi et al., 2008). Phosphodiesterase (PDE)
regulates cellular cAMP/protein kinase A (PKA) signaling. The effect of dopamine
is largely mediated through the cAMP/PKA signaling cascade, and therefore is con-
trolled by PDE activity. PDEs with different substrate specificities and subcellular
localizations are expressed in neurons. PDE4 and PDE10A have different roles in
the regulation of cAMP/PKA signaling in the striatum. In vitro and in vivo bio-
chemical techniques Nishi et al. (2008) used selective PDE inhibitors to regulate
phosphorylation of presynaptic (e.g., tyrosine hydroxylase (TH)) and postsynaptic
(e.g., dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-
32)) substrates for PKA. The PDE4 inhibitor, rolipram, induced a large increase
in TH Ser40 phosphorylation at dopaminergic terminals that was associated with
a commensurate increase in dopamine synthesis and turnover in striatum in vivo.
Rolipram induced a small increase in DARPP-32 Thr34 phosphorylation preferen-
tially in striatopallidal neurons by activating adenosine A(2A) receptor signaling in
striatum. In contrast, the PDE10A inhibitor, papaverine, had no effect on TH phos-
phorylation or dopamine turnover, but instead robustly increased DARPP-32 Thr34
and GluR1 Ser845 phosphorylation in striatal neurons. Inhibition of PDE10A by
papaverine-activated cAMP/PKA signaling in both striatonigral and striatopallidal
neurons, resulted in potentiation of dopamine D(1) receptor signaling and inhibition
of dopamine D(2) receptor signaling. These biochemical results are supported by
immunohistochemical data demonstrating differential localizations of PDE10A and
PDE4 in striatum.

Over the last decade, adenosine receptors in the central nervous system have
been implicated in the modulation of cognitive functions. Despite the general view
that endogenous adenosine modulates cognition through the activation of adeno-
sine A1 receptors, evidence is now emerging on a possible role of A2A receptors
in learning and memory. Takahashi et al. (2010) reviewed studies using diverse
animal models to provide a comprehensive picture of the recent evidence of a rela-
tionship between adenosinergic function and memory deficits. They conclude that
caffeine (a nonselective adenosine receptor antagonist) and selective adenosine A2A
receptor antagonists can improve memory performance in rodents evaluated through
different tasks. Their review also suggests that caffeine and selective antagonists
may also afford protection against memory dysfunction elicited in experimental
models of aging, Alzheimer’s disease, PD, and, in spontaneously hypertensive rats
(SHR), a putative genetic model of attention deficit hyperactivity disorder (ADHD)
(Fig. 10).
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Fig. 10 Regulation of the striatopallidal indirect GABAergic pathway: A2A receptor-mediated
dual excitatory modulation of the indirect pathway. Presumed action of the nondopaminergic
adenosine receptor ligand in the basal ganglia circuit. Adenosine A(2A) receptors are localized
to the indirect striatal output function (courtesy of Mori and Shindou, 2003)

From the clinical point of view the development of nondopaminergic therapy
is highly attractive as direct dopaminergic therapy is associated with a number of
complications. Whether medications that affect alpha adenosine a-2 type recep-
tors are effective and whether they bypass some of the complications associated
with direct dopaminergic therapy, remains to be seen. Current research also sug-
gests that cyclic-nucleotide PDE isoforms could be targets for developing novel
therapies for neuropsychiatric and neurodegenerative disorders affecting dopamine
neurotransmission.

8 The Alzheimer’s Disease Case: An Overview

Listen, stranger; this was myself: this was I. (W. Faulkner, very last sentence in “The Jail”)

Alzheimer’s disease has prevalence estimates of approximately 10% in individuals
over age 65 and 30% in individuals over age 85 in the United States. Clinically AD
presents as a progressive deterioration of selective cognitive domains, with initial
symptoms indicating a decline in memory function, particularly a loss of episodic
memory, which is considered a subcategory of declarative memory. But it is also
well documented that a large number of elderly people have poorer memory perfor-
mances, with prevalence of up to 40% in individuals over 60 years (Hanninen et al.,
1996) and in many cases other cognitive deficits (di Carlo et al., 2007). Prospective
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studies show that elderly subjects who exhibit mild cognitive impairment, a pro-
posed transitional stage between “normal aging” and “dementia” go on to develop
dementia at a rate of 10–15% per year, which is 5–7 times higher than for age-
matched individuals without such impairment (Petersen and Negash, 2008). The
challenges in the diagnosis, predictors to conversion to AD, and possible modifiers
such as diet and education level are briefly presented in this chapter.

From a neuropathology perspective AD is characterized by accumulation of
senile plaques (beta amyloid-related pathology) and neurofibrillary tangles (tau-
related pathology). Until recently it has been proposed that beta amyloid is an
extracellular pathology, and tau is intracellular, but recent studies challenge both of
these statements, as discussed in detail below. The cause of the disease still remains
unknown but involves abnormal cleavage of a neuronal membrane protein called
amyloid precursor protein (APP) and abnormal accumulation of a fragment called
B-amyloid (Aβ), which is the substrate for the senile plaques. This constitutes the
so-called amyloid hypothesis, which implies a causative model initiated by Aβ. A
more recent hypothesis linking Aβ and tau pathologies to a common upstream ini-
tiator(s) has also been proposed (Small and Duff, 2008). The mechanism of Aβ and
tau-induced changes in neuronal activity and their relationship with cognitive dys-
function are also topics of the present chapter. Thus, the cognitive deficits in AD are
covered from both the clinical and basic science perspectives.

9 Cognitive Decline in the Elderly; Is It “Aging”,
MCI, or Early AD

9.1 Normal Aging

Advanced aging is accompanied by cognitive decline even in the absence of dis-
ease. Several theories posit that cognitive deficits arise from alterations in functional
properties of co-ordinated brain systems or from subtle anatomical disconnection
between brain regions that ordinarily function together, most likely due to white
matter abnormalities (O’Sullivan et al., 2001; Pfefferbaum et al., 2005). Based on
the structural observation of age-associated white matter degeneration, O’Sullivan
proposed the “disconnection” hypothesis: decline in normal aging emerges from
changes in functional integration between systems of brain areas in addition to dys-
function of specific gray matter areas. An indirect method based on analysis of
spontaneous fluctuations within brain systems has been proposed to detect system
integrity (Greicius et al., 2003 in 4). The basis of this technique is that functional
MRI (fMRI) detects the spontaneous low-frequency fluctuations that are coherent
within large-scale systems, such as motor (Biswal et al., 1995) and sensory (De
Luca et al., 2005). Recently this technique was used to measure the integrity of a
large-scale system involving frontal and posterior brain regions; this system is often
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referred to as the “default network” (Raichle et al., 2001) and is associated with the
internally directed mental states including memory, planning, and related cognitive
processes. This study demonstrated an age-dependent reduction in the correlation
between the anterior and posterior systems, in elderly individuals free of AD. This
correlated with poor performance in the following psychometric tests, in order of
strength: memory, processing speed, and executive function (Andrews-Hanna et al.,
2007). One could propose that this disconnection ultimately leads to corticosubcor-
tical dysrrhythmias, such as thalamo-cortical abnormalities, that could potentially
explain cognitive deficits (Llinás et al., 2005).

In contrast, other researchers proposed that age-related processes, some of which
underlie cognitive decline, do not target cortical regions equally, suggesting that
the effect of aging is not cognitively diffuse (Small, 2001). Using a different MR
imaging technique, in which basal metabolism is measured by cerebral blood vol-
ume (CBV), this group (Small et al., 2000) has identified the hippocampal dentate
gyrus region as the most sensitive structure to the aging process, which correlated
with the memory decline observed in the elderly. These proposed mechanisms—
disconnection and site-specific vulnerability—are not mutually exclusive. We can
envision a situation in which deafferentation produces specific gray matter dysfunc-
tion or neuronal dysfunction may lead to axonal abnormalities in specific circuits.
Of note, almost all cases of non-AD causes of memory decline in humans and
nonhuman mammalian species are hippocampal-based. The exact cause of non-AD
age-dependent memory decline is a matter of debate; many mechanisms have been
proposed including: adrenal and gestational hormonal levels, changes in cerebrovas-
cular supply, oxidative stress, and disrupted neuronal calcium homeostasis. All these
different abnormalities are present at different levels in the elderly, but the extent to
which they contribute to memory failure is still unknown.

What else to take into account before considering MCI or AD diagnosis: The fact
that different life exposures including education, occupation, and leisure, impart a
reserve against Alzheimer’s disease in epidemiological studies, raised the possibility
of a different brain response to the aging process or to neurodegenerative entities in
general. This term is referred to as cognitive reserve (CR). It has been proposed that
the neuronal implementation of CR may involve two major components: neuronal
reserve and neuronal compensation (Stern, 2006). Neuronal reserve refers to CNS
networks or cognitive paradigms that due to their activity become less susceptible
to disruption. Using this type of CR would be a normal process that is constantly
used in healthy individuals. However, such networks may also help an individual
cope with brain pathology. Neuronal compensation refers to the process by which
subjects suffering from brain pathology use brain structures or networks not nor-
mally used by healthy individuals. These two hypothesized mechanisms have been
supported by several fMRI studies (reviewed in Stern, 2006). It is plausible to pro-
pose that an individual’s CR may be amenable to change upon specific exposures or
interventions. This could potentially be used as the basis for a behavioral therapy to
treat AD.
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9.2 Mild Cognitive Impairment (MCI)

MCI is not a disease per se, but rather it has been defined as a condition of inter-
mediate symptomatology between the cognitive changes of aging and very early
dementia (Petersen and Negash, 2008). In fact, it can be viewed as a cognitive
decline at the normal tail end of a continuum. The rationale for the study of MCI
is derived from the idea that the earlier one intervenes in a neurodegenerative pro-
cess, the more likely the damage done to the CNS can be prevented. The concept
of MCI has evolved considerably over the years. The term MCI was initially used
by Reisberg to describe individuals with a global deterioration scale (GDS) of 3.
Others have used the clinical dementia rating scale (CDR) of 0.5. But these cutoff
values do not necessarily correspond to specific diagnoses. A patient with CDR0.5
can meet the criteria for MCI, mild dementia, or AD. Recently MCI has emerged to
represent a stage of impairment beyond what is considered normal for age, but not
of sufficient magnitude to warrant the diagnosis of dementia or AD. Originally MCI
was defined by memory complaint, memory impairment for age (adjusted for edu-
cation and socioeconomic background), preserved general cognitive function, and
intact activities of daily living. Recently the criteria have been expanded to include
two subtypes: amnesic (original criteria) and nonamnesic (nonmemory cognitive
domain impaired; Winblad et al., 2004). It has been suggested that nonamnesic MCI
patients may have underlying brain pathology different from AD, and the amnesic
MCI patients are more likely to be diagnosed with AD over time (Devanand et al.,
2008a). Using these criteria it is rather subjective to diagnose MCI versus normal
aging; in most cases the appropriate diagnosis becomes clear only with time.

9.3 Predicting Conversion from “Normal Aging” to MCI
and from MCI to AD?

The clue to this transition seems to be found in the sense of olfaction. Early in the
course of AD, degeneration occurs in the entorhinal cortex–hippocampal–subicular
complex (Price and Morris, 1999). The olfactory bulb, particularly the anterior
olfactory nucleus, shows numerous neurofibrillary tangles (NFTs). Odor identifi-
cation deficits during life may be associated with NFTs in the hippocampus (Wilson
et al., 2007).

Clinically, AD patients consistently show deficits in odor identification com-
pared to controls (Doty et al., 1991). These deficits have been shown to be a true
decline in odor identification ability that cannot be explained by lexical difficulty
in interpreting written words in the multiple choice test formats. The University
of Pennsylvania has developed a smell identification test (UPSIT), with ranges 0–
40, which is widely used in clinical settings. Recent studies have shown that odor
identification deficits predict conversion from normal to MCI, particularly decline
of verbal memory (Wilson et al., 2007). Other series (Devanand et al., 2008a) of
studies have demonstrated that olfaction has a strong predictive power of MCI to
AD in both types of MCI. Many other biomarkers have been used to predict AD
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conversion, including neuropsychological tests, cerebrospinal fluid markers (Beta
amyloid, hyperphosphorylated tau and isoprostane), and MRI entorhinal cortex
volume. Combining several of these markers (i.e., olfactory measures, selective
remaining test immediate recall (verbal memory), MRI-hippocampus/entorhinal
cortex volumes and functional activities questionnaire values) strongly predicted
conversion to AD (Devanand et al., 2008b).

9.4 Diagnosis of AD

AD is a genetically heterogeneous disorder. Four genes have been identified
(Preselinin 1-PSEN1, Preselinin 2-PSEN2, Amyloid precursor protein-APP, and
Apolipoprotein E ε4-APOE4) and additional chromosomal regions and genes are
being investigated. The autosomal-dominant genes cause early-onset before 60
years of age. Mutations in these causative genes account for less than 5% of all
cases of AD. PSEN1 is the most common causative gene; its mutation is associ-
ated with the earliest age at onset, seizures, myoclonus, and language deficits. APP
mutations cause dementia typical of AD. Mutations in PSEN2 have been identified
only in one family.

In most cases the cause of the disease is believed to be complex, resulting from
a combination of susceptibility genes interacting with each other as well as with
environmental factors. APOE4, the most common of the known susceptibility genes,
is distinct from the causative genes, because it is neither sufficient nor necessary to
cause AD. Genetic testing for diagnosis and predictive purposes is available for
early-onset AD, and appropriate genetic counseling is strongly suggested, almost
mandatory.

Clinically AD is characterized by a gradual progressive decline in intellectual
function, problem solving, language, and perception. Patients manifest character-
istic cognitive and behavioral findings. The most common presenting cognitive
symptom is short-term memory impairment (mostly episodic memory) and forget-
fulness. As the disease progresses long-term memory is also affected. In addition to
memory impairment, diagnosis requires impairment of at least one other cognitive
domain, including judgment, abstract reasoning, language (primarily word find-
ing difficulties or anomia, common symptom) orientation, praxis, and attention. It
should be emphasized that some patients with AD may develop memory deficits
only very late in the course of the disease. Noncognitive behavioral manifestations
include changes in personality and mood or in behavior (paranoia, delusions, anger,
aggression, restlessness agitation, wandering, sleep–wake cycle disturbance, hal-
lucinations, and illusions). The rest of the neurological examination is relatively
normal. Extrapyramidal signs such as rigidity and bradykinesia may portend a more
rapid decline.

Standardized instruments are available for staging of AD, these include the
Clinical Dementia Rating scale (CDR) and the Global Deterioration Scale (GDS).
Staging is useful mainly for following disease progression and management. The
CDR evaluates memory, orientation, judgment, problem solving, community affairs,
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home and hobbies, and personal care. This is used to classify AD into categories:
mild, moderate, and severe. Many comorbidities, such as dyslipedemias and dia-
betes, seem to worsen AD progression, making the approach to this pathology
multimodal, and requiring metabolic, neurological, behavioral, and psychosocial
interventions

9.5 Diet in AD

Diet may play an important role in the causation and prevention of AD (Luchsinger
and Mayeux, 2004) but the results may be conflictive. Higher intake of vita-
mins C, E, and B12, flavonoids, unsaturated fatty acids, fish, and folate, moderate
ethanol, and lower total fats, have been related to lower risk of AD. Other stud-
ies failed to find association between intake of vitamins C, E, B12, carotenes,
fats, or levels of vitamin B12 and AD risk. There is a new and perhaps more
ecological approach to this situation, which is to study the effect of dietary pat-
terns (rather than individual foods or nutrients) on the risk for AD. One such
dietary pattern is the Mediterranean diet (MeDi), which is characterized by high
intake of vegetables, legumes, fruits, cereals, unsaturated fatty acids (mostly in
the form of olive oil) but low intake of saturated fatty acids and moderately high
intake of fish and low to moderate intake of dairy products (mostly cheese and
yogurt) and low intake of meat and poultry, and a regular but moderate amount
of ethanol, primarily in the form of wine and generally during meals (Trichopoulou
et al., 1995). There are several lines of evidence showing that MeDi is related to
lower risk of cardiovascular disease, several forms of cancer, and overall mortal-
ity. Recently it was reported that higher adherence to the MeDi is associated with
a reduced risk for AD, in a cohort of nondemented individuals at baseline where
AD was prospectively assessed. The association observed between MeDi and risk
for AD was not mediated by vascular comorbidity (Scarmeas et al., 2006a, b). This
constitutes another potential nonpharmacological intervention to treat and/or pre-
vent AD and suggests that there are multiple metabolic processes related to AD
pathophysiology.

10 Imaging AD

10.1 Can Neuronal Dysfunction Be Visualized
Before Cell Death?

As part of the initial assessment of a patient with dementia, brain imaging is
required. With imaging one can get information on structure or function, or a com-
bination of the two. In AD, clinical structural MRI findings are not specific, with
reports of neocortical, hippocampal, or global atrophy and white matter hyperinten-
sities and/or associated mircovascular disease. The main reason to perform a MRI is
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to rule out the existence of another entity, which may be treated differently. In a clin-
ical setting, functional imaging is basically limited to positron emission tomography
(PET), where two modalities are currently used: [18F]fluorodeoxy glucose (FDG) to
evaluate brain glucose metabolism (Gonzalez et al., 1995) and more recently imag-
ing of amyloid-beta, using Aβ selective carbon-11 labeled thioflavin-T ([C-11]PIB)
or stilbene ([C-11]SB-11) compounds. FDG-PET may show hypometabolism in
temporoparietal and posterior cingulate regions, or more extensive abnormalities
depending on AD stage. PIB/SB-PET studies have proven a valuable method to
confirm AD diagnosis or to evaluate response to treatment, nevertheless its use is
still limited, because PET compounds have a very short half-life, making the distri-
bution to PET facilities difficult. So far in the United States there are only about 40
PET radiochemistry facilities that can provide this service. Research MR-imaging
groups have developed several structural analysis programs that allow the quantita-
tive evaluation of specific brain regions. Using these methods, it has been found that
atrophy rates of entorhinal cortex best correlate with cognitive deficits in AD (Du
et al., 2003). Others have used a more visual score to evaluate white matter lesions,
the Scheltens score, which also correlates with cognitive decline in AD (Brickman
et al., 2008).

AD researchers have also extensively used functional imaging. Almost all in
vivo techniques that measure brain metabolism are based on Fick’s principle postu-
lated in 1870, which has been used to measure blood flow to different organs. This
principle describes a relationship between oxidative metabolism and hemodynamic
variables—cerebral blood flow, cerebral blood volume, and deoxyhemoglobin—
to assess metabolism in the living brain. These techniques include: near-infrared
spectroscopy (NIRS), contrast-enhanced computerized tomography (CT) to eval-
uate cerebral blood volume (CBV), PET and single-photon emission tomography
(SPECT) measurements of cerebral blood flow (CBF), and magnetic resonance
imaging (MRI) measurements of CBF, CBV, and deoxyhemoglobin (BOLD sig-
nals). To varying degrees, all these approaches have proven capable of detecting
AD-related metabolic changes (El Fakhri et al., 2003; Small et al., 2000; Dixon
et al., 2002). It is important to note that these techniques can detect metabolic
changes caused by diseases in which there is a relative absence of cell loss, includ-
ing a range of psychiatric illnesses (Costa et al., 1999) as well as in aging (Noda
et al., 2002), establishing that imaging correlates of metabolism can detect cell
dysfunction. In a recent study (Moreno et al., 2007) high spatial resolution CBV
maps performed in both humans with AD and AD mouse models showed early
entorhinal cortex hypometabolism which then extended to the other hippocampal
subregions. This correlated with cognitive symptoms. This method was able to
detect AD related MRI-changes before Aβ plaques developed in the mouse model
(Fig. 11).

New imaging approaches applied to AD are under development. One such
approach is based on the ability to detect Aβ plaques with MRI by using 19F and
1H containing amyloidophilic Congo red-type compounds (Higuchi et al., 2005).
This would allow a better spatial resolution in plaque location and earlier detection.
The development of longer half-life F-18 label-PET radioligands have advanced
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Fig. 11 Integrated approach
to study neurodegeneration.
In the upper panel are shown
hippocampal cerebral blood
volume (CBV) maps
generated in mice (right) and
humans (left). In the lower
panel an in vitro horizontal
brain slice (left) at the same
position where the MRI
generated images (right).
These types of preparations
exemplified the techniques
that can be used crosssspecies
(upper panel) and techniques
that complement each other
(lower panel)

significantly too. In contrast, efforts to develop a SPECT Aβ imaging agent have
been largely unsuccessful. To conclude, it seems possible, although still at early
stages, that neuronal metabolic changes preceding cell death can indeed be detected
by imaging methods. This is a significant advancement, which allows for very early
diagnosis and intervention.

11 APP Processing and Its Relation to Cognition

11.1 Amyloid Hypothesis

A strong genetic association exists between early onset familial forms of AD (FAD)
and the 42 amino acid species of the Aβ peptide (Hutton et al., 1998; Younkin,
1998). It has been determined that autosomal dominant mutations in the genes for
amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) increase
production of Aβ42 and correlate strongly with the FAD syndrome. In addition, the
ε4 isoform of the apolipoprotein E gene, which is the major risk for late-onset dis-
ease, affects the rate of Aβ aggregation (Bales et al., 1999). Aβ has been the central
point of AD research for over a decade and is generally considered as the upstream
causative factor. This has been the basis of the amyloid hypothesis. Recently this
hypothesis has been challenged or at least reconsidered by several investigators
(Ash, Duff, etc.); some propose a dual hypothesis (Small and Duff, 2008), which
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implies an upstream event that initiates both Aβ- and tau-related pathologies. Aβ

is a cleaved product of APP via the sequential action of two protease complexes,
the β and γ secretases. (Selkoe, 2001). β secretase cleaves APP at the N-terminus
producing the membrane-bound moiety C99 and the secreted APPs β segment.
Subsequently, C99 is cleaved by the γ secretase to generate the C-terminus of Aβ,
resulting in a series of 28 to 43 amino acid length Aβ peptides. Under normal condi-
tions such events result in a higher proportion of Aβ40 than Aβ42 moieties. Under
altered conditions, such as in transgenic mice harboring human APP mutations,
an increased production of Aβ42 develops, followed by many pathophysiological
features of AD including amyloid plaques, dystrophic neuritis, and synaptic dys-
function. Nevertheless none of the amyloidogenic mice or even mice that develop
Aβ- and tau-related pathology have significant neuronal loss.

11.2 Aβ Extra- or Intracellular and in Which Compartment?

Amyloidogenic mouse models have shown that overproduction of Aβ leads to dys-
trophic axons and dendrites around amyloid plaques (LaFerla et al., 2007). It is
also clear that anterograde axonal transport delivers Aβ peptide into plaques (Stokin
et al., 2005). Substantial controversy remains over the sites of APP processing and
Aβ release (Lee et al., 2005). Some studies implicate the axon as a site of Aβ pro-
duction. Consistent with the amyloid deposition hypothesis is the fact that plaque
formation increases if poor axonal transport delays the progress of APP and its
processing enzymes through the axon (Stokin et al., 2005). Other reports failed
to reproduce parts of this model, in which APP and its processing enzymes are
cotransported (Lazarov et al., 2005). Some Aβ release occurs at the synapse in
an activity-dependent manner, but Aβ can also be released from more proximal
sites (Adalbert et al., 2007). A study that evaluated Aβ dynamics in human brain
interstitial fluid (ISF) after trauma, reported that Aβ concentrations increased as neu-
rological status improved and decreased when neurological status declined. Brain
ISF Aβ concentrations were also lower when cerebral hypometabolism was present,
reflecting depressed neuronal function (Brody et al., 2008); interestingly most of
the normally secreted Aβ detected in this study did not appear to be either Aβ40 or
Aβ42.

Extracellular accumulation of Aβ represents the foundation of the amyloid
cascade hypothesis. The importance of intracellular Aβ accumulation in the patho-
genesis of AD has emerged as a possibility in recent studies (LaFerla et al., 2007).
These studies, implemented in human and mouse brains were made possible by
the development of antibodies that could differentiate Aβ40 and Aβ42 from the
transmembrane amyloid precursor protein from which they derived (Gouras et al.,
2005). Other studies using transgenic mice harboring constructs that target Aβ either
intracellularly or extracellularly showed that only transgenic mice producing the
intracellular Aβ developed neurodegeneration (LaFerla et al., 1995). Some experi-
mental evidence suggests that intracellular Aβ accumulates because a portion of the
Aβ by not being secreted remains in the cytosol. Given that the vast majority of Aβ is
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normally secreted, such results indicate that Aβ is predominantly cleaved at or near
the plasmalemmal inner surface or as part of the secretory pathway (Laferla et al.,
2007). Another possible mechanism that explains intracellular Aβ accumulation
involves Aβ endocytosis (D’andrea et al 2001).

There is strong evidence that Aβ42 is responsible for memory decline in AD,
however, in humans the extent of Aβ accumulation correlates poorly with mem-
ory abnormalities (Giannakopoulos et al., 2003). Indeed, a specific challenge in
addressing Aβ in AD concerned the role of specific pools of Aβ (e.g., extracellular,
intracellular, membrane associated, or insoluble) in the genesis of the pathology.
Newly reported pathological findings, using sequential brain extraction procedures
demonstrated that only the intracellular Aβ42 levels and membrane-bound com-
partments were significant higher in the neocortex of AD cases than controls and
correlated with neurological deficit, whereas Aβ40 levels were similar in patients
with AD and in controls (Steinerman et al., 2008).

The relevance of extracellular Aβ toxicity has also been fully documented, with
many reports emphasizing two issues: there is no clear relationship between amy-
loid plaque number and AD clinical status in humans or behavioral deficit in humans
or mouse models, and cognitive deficits occur much before plaque deposit in AD
mouse models, and are related to the appearance of oligomeric forms of Aβ, mainly
Aβ42. The main Aβ oligomeric subspecies identified have been (1) dimeric forms
in CSF from AD patients (Klyubin et al., 2008), and (2) 56-kDa specie, a poten-
tial dodecameric Aβ42 assembly in an AD mouse model, that when injected into
young rats produced similar deficits in memory as those seen in the AD mouse
(Lesné et al., 2006). Finally, it should be pointed out that Aβ40 and Aβ42 are not
the only toxic proteolytic products of APP. Indeed, several groups have proposed
that other C-terminal fractions (C99 and C88) or CTF50 are also related to AD
pathophysiology.

12 Revisiting the Unforgettable Tau

12.1 Aβ and Tau Interaction

For more than two decades neurobiologists have known that both Aβ and tau are
prominent in the CNS structures targeted by AD. As described above, Aβ hypoth-
esis has been favored due to its genetic links. Indeed, no mutations in the tau gene
have ever been linked to the disease and even today many tau experts concede that
Aβ-related toxicity initiates neuronal dysfunction. Based on these premises several
Aβ reducing agents have been or are in the process of being tested (tarenflurbil,
tramiposate, active, and passive Aβ immunizations). However, to date these human
trials have been largely disappointing. Furthermore, a recent study documenting
the long-term effect of Aβ immunization in patients that had been immunized in
September 2000 (of note, phase I of the trial was halted because of lethal compli-
cations in a small number of patients) who deceased, reports that the immunization
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with Aβ42 resulted in a near complete reduction of Aβ pathology, but this clearance
did not prevent progressive neurodegeneration. All these patients had severe neu-
rocognitive deficits and advanced NFT pathology, even involving primary cortex
(Holmes et al., 2008). These two sets of findings—the failure of drugs that reduce
Aβ load and the neuropathological study—not only suggest that the focus of AD
treatment must also consider tau physiopathology in the equation, but has been the
basis for proposing the dual pathway hypothesis, specifically referring to late onset
AD (Small and Duff, 2008). This group hypothesizes that Aβ and tau pathologies are
driven by single upstream molecular events: potential candidate molecules include
Apolipoprotein E ε4-(APO-E4), the glycogen synthase kinase 3 (GSK3), and the
retromer complex.

Focusing on the interaction tau-Aβ, mice expressing disease-causing double-
mutations in APP and varying the number of the mouse tau gene (either, none, one
or the normal two copies) have been generated. These mice developed brain amy-
loid pathology due to the APP mutation, but as usual in AD mouse models none had
NFTs or neuronal loss. As the mice aged, those with two tau gene copies became
impaired in spatial memory tests. Animals with one tau copy performed slightly bet-
ter and mice with no tau gene had normal memory scores (Roberson et al., 2007).
These results suggest that tau reduction somehow can block Aβ mediated neuronal
dysfunction. Consistent with these reports, mice bearing a mutant tau that is linked
to hereditary tauopathy that can be suppressed with doxycycline developed age-
dependent NFTs, where the tau gene is expressed (SantaCruz et al., 2005). These
mice developed brain atrophy and abnormal spatial memory. Suppression of the
mutant tau gene with doxycycline improved the mice’s spatial memory but did not
affect NFT accumulation. Some have even proposed that NFT serves as protective
role against cellular toxicity, because phosphorylated tau can sequester redox-active
heavy metals (Castellani et al., 2008). This leaves by default one viable hypothesis
of a “toxic tau intermediate” yet to be discovered.

13 Synaptic Dysfunction in AD

13.1 Is AD a Neuronal Disconnection Syndrome?

In neuropathological studies of synaptic damage, several groups have identified
synaptic loss in the hippocampus ∼50%, neocortex 25–30%, whereas in the cere-
bellum, an area not affected in AD, there are no changes in synapse number
(Bertoni-Freddari et al., 1990; Gylys et al., 2004; Almeida et al., 2005). These
changes are accompanied by decreased levels of pre- (synaptophysin) and post-
synaptic (synaptopodin and PSD95) proteins in the samples from the AD brains
compared to non-AD age-matched controls. The loss of synapses and the loss of
synaptic proteins are confined to the brain regions known to be affected in AD.

There are several lines of evidence from experiments in vitro and in vivo that sol-
uble oligomeric Aβ is responsible for a decrease in long-term potentiation in several
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synapses, mainly in the hippocampus, and disruption of neuronal synaptic plastic-
ity. Further experiments have identified that dimeric and trimeric subspecies of Aβ

inhibit LTP (Cleary et al., 2005; Townsend et al., 2006; Puzzo et al., 2005). Thus,
although there is evidence for oligomeric Aβ (oβ)-induced synaptic dysfunction,
the pre- or postsynaptic sites of action and the specific mechanism responsible for
such dysfunction have not been established. Experiments addressing these questions
were performed in the squid giant synapse, demonstrating that although intra-axonal
oAβ42 peptide produced failure of synaptic transmission, intra-axonal oAβ40 pep-
tide produced no significant changes in synaptic transmission. The effect of oAβ42
peptide is mediated by a cascade of events involving caseine kinase activity, abnor-
mal fast axonal transport, and the rapid clathrin-independent endocytosis pathway.
This set of events resulted in reduction of transmitter release (Moreno et al., 2009).
This suggests that a dying-back phenomenon may be occurring in AD, causing
synaptic loss, as has been recently proposed. (Pigino et al., 2009). In addition,
other factors, such as Aβ-mediated decreased expression of sodium channels in
hippocampal GABAergic interneurons, which leads to a hyperactive sate of the
hippocampall circuit, have also been proposed (Palop et al., 2008). In agreement
with this “exitotoxic event” acute extracellular exposure of hippocampus subicular
pyramidal neurons to nanomolar concentrations of oAβ42 produced an increase of
spontaneous synaptic events and larger basal dendritic calcium levels, and intra-
cellular oAβ42 produced a synaptic failure (Angulo et al., 2008). Interestingly

Fig. 12 Model of a “disconnected neuron.” Shown are the events known to occur in different com-
partments of the neuron due to amyloid pathology. Note that both the presynaptic and postsynaptic
elements are dysfunctional in AD
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an upregulation of several neurotransmitter receptors (cholinergic, GABAergic,
and glutamatergic) in young AD mouse models, with a subsequent age-dependent
decline in their expression levels has also been reported (Bell et al., 2006).

The role of tau in synaptic dysfunction has not been as well documented as Aβ.
Tau has been reported to change intracellular calcium levels, probably via the inter-
action of extracellular tau with muscarinic receptors M1 and M3 (Gómez-Ramos
et al., 2008). Also a spatially association of tau modifications with intraneuronal
Aβ, in which both pathologies co-occur at synaspses has been reported (Takahashi
et al., 2010). Finally, using two-photon calcium imaging in layer 2/3 of an AD
mouse model cortical neurons, an increase in the frequency of spontaneous calcium
transients in the vicinity of amyloid plaques was seen (Busche et al., 2008).

Taking this information together with the imaging data (MRI-CBV) maps
demonstrating a hypermetabolic phase in very young AD and Down-syndrome mice
and a later age-dependent hypometabolism (Moreno et al., 2006, 2007), it seems
plausible to propose that this series of events leads to a biphasic neuronal discon-
nection syndrome, with an initial hyperactive state followed by subsequent synaptic
failure phase (Fig. 12).

14 Future Perspectives

Although the advances in the understanding of AD and PD pathophysiology have
been significant, fundamental issues remain unsolved.

The powerful neuropathological arguments concerning the progression of PD
based on alpha synuclein predicts late involvement of cortical circuits, presumably
responsible for cognitive changes. This needs to be established with a multivariate
analysis of longitudinal studies in a large number of demographically well-defined
populations. The relationship of PD to frontotemporal dementia (Kertesz et al.,
2005) and other neurodegenerative disease remains to be defined. The search
for specific protein aggregates characterizing or perhaps defining each diagnostic
entity appears promising. More attention to the sensitivity of pre- and postsynap-
tic dopamine receptors may help further development of rational pharmacotherapy
in PD.

The retina is the most accessible part of the central nervous system and its
morphology and functional properties have been well characterized. Future neu-
ropharmacological/ therapeutical research may take advantage of the retina in PD.
Although the inner retina has been shown to be significantly thinned in over two
thirds of PD patients, the presence of alpha synuclein has not been established.

There is a demonstrable paucity of rational pharmacotherapeutical agents in
the treatment of cognitive dysfunction in PD. The evidence suggests that multiple
circuits and multiple neurotransmitter systems are involved: developing therapy
will be a challenging task. Potentially targeting specific cognitive dysfunctions and
specific pathochemical mechanisms may be rewarding.



282 I. Bodis-Wollner and H. Moreno

The possible future directions of AD research may include: (a) more detailed
information in the synaptic dysfunction (i.e., localizing the pre- and postsynap-
tic events, identification of the “toxic tau subspecies” and its molecular pathway);
(b) identification of the molecular/functional basis for the regional sensitiv-
ity/specificity: why is entorhinal cortex affected initially in AD and how does it
progress? What confers “resistance” to the cerebellum; (c) reconsider therapeutic
strategies; we may need a molecular step up; (d) the use of in vivo techniques that
allow a better understanding of brain circuitry disarray in AD such as magnetoen-
cephalography (MEG); (e) the use of data-based circuits modeling, in which brain
oscillations can be investigated and used in conjunction with MEG data, to be able
to propose the mechanisms of the cognitive deficits observed more realistically.

To finish, I refer to Faulkner. “The past is never dead,” Gavin Stevens says
in Requiem for a Nun, and he adds, “It is not even past.” Such fundamen-
tal considerations may not remain the same under AD pathological processes, a
rather devastating new reality, or perhaps quite the opposite; in any case we must
understand it, if an appropriate treatment is to be developed.
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Abstract Nuclear factor κB (NF-κB) is a family of major transcription factors
that play various important roles under physiological and pathological conditions.
NF-κB transcription factors are ubiquitously expressed, including neurons and glial
cells of the central nervous system (CNS). The roles of NF-κB family in the CNS,
both as mediators of transcriptional response to synaptic activity and in behavioral
paradigms of learning and memory, are the focus of recent studies. In this chap-
ter, the general structure, major functions, and the regulation of NF-κB signaling
are first described concisely. Advances made in understanding of the roles of NF-
κB in the CNS and in brain diseases are then reviewed in more detail. The NF-κB
signaling pathway as a potential therapeutic target of brain diseases is discussed at
the end.
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1 Introduction

Nuclear factor κB (NF-κB) is the prototype of a family of major transcription fac-
tors that play an essential role in several aspects of physiological and pathological
conditions. More than two decades ago, Sen and Baltimore (1986) discovered it as
a nuclear factor that, when activated by agents such as bacterial lipopolysaccharide,
binds to a 10-bp sequence in the enhancer region of the gene encoding the κ light
chain of antibody molecules in B cells (hence, κB). Because of the growing biomed-
ical importance of nuclear factors, studies on NF-κB and its implications have been
a major area of research in the recent years.
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NF-κB transcription factors are expressed ubiquitously in mammalian cells.
Expression of multiple NF-κB family members has been reported in different
cells, including neurons and glial cells, of the central nervous system (CNS).
However, the role of the NF-κB family in the nervous system, both as media-
tors of transcriptional response to synaptic activity and in behavioral paradigms
of learning and memory, was found only recently. Investigating the functions of
NF-κB transcription factors in the CNS is now a new frontier, both for the general
field of NF-κB research and for understanding of transcriptional regulation in the
brain.

2 Structure of NF-κB and IκB Family

NF-κB transcription factors are highly conserved across species. In mammals, the
NF-κB family consists of five members: p50 (product of the NF-κB1 gene), p52
(product of the NF-κB2 gene), p65 (also known as RelA), c-Rel, and RelB. They all
share a Rel homology domain (∼300 amino acids in length) and, thus, the NF-κB
family is also known as the Rel family, in reference to c-Rel that was first discovered
as a proto-oncogene. This Rel domain contains the crucial functional region for
DNA binding, dimerization, nuclear localization, and interaction with the inhibitors
of NF-κB (IκB) (Fig. 1, top). The NF-κB family members function as dimers, and
the five subunits can homodimerize or heterodimerize. Many, but not all, of the
possible homodimer and heterodimer combinations have been observed in cells.

The NF-κB family can be classified into two subgroups, based on the presence or
absence of a transcriptional activation domain. p50 and p52 do not contain distinct
transcription activation domain and are, therefore, categorized class I. The homod-
imers of p50 and p52, and the p50/p52 heterodimer may occupy the NF-κB–binding
sites of DNA and, thus, function as repressors of gene transcription (Franzoso et al.,
1992). The three other NF-κB family members, p65, c-Rel, and RelB, constitute the
class II subgroup. NF-κB dimers containing one or two of these polypeptides act as
activators of transcription by virtue of the presence of at least one transcription acti-
vation domain. The two most abundant and biologically well-characterized NF-κB
dimers are p50 homodimer and p50/p65 heterodimer.

NF-κB exists in the cytoplasm in an inactive form via association with the
inhibitor of NF-κB (IκB) proteins. Six IκB members have been characterized (Fig. 1,
middle): IκBα, IκBβ, IκBε, Bcl-3, IκBζ, and IκBγ. The most prominent ones are
IκBα, IκBβ, and IκBε. This group of proteins contains either six or seven ankyrin
repeats, a 33-aa motif that mediates protein–protein interactions. The ankyrin
repeats in IκBα, IκBβ, and IκBε are flanked by two segments, the amino-terminal
signal response domain (SRD) and the carboxyl-terminal acidic region, which is
rich in prolines, glutamates, serines, and threonines (PEST). The SRD and the PEST
sequence have been shown to be essential for interactions with NF-κB dimers (Ernst
et al., 1995; Malek et al., 1998). The N-terminus of IκB also contains the nuclear
export signal (NES) that functions to constantly expel the NF-κB/IκB complex from
the nucleus (Huang and Miyamoto, 2001).
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Fig. 1 Domains of the NF-κB and IκB families. Top, the NF-κB transcription factors are divided
into two subgroups, Class I and Class II, depending on the presence or absence of transcription
activation domains. The Rel homology region is indicated with the amino-terminal domain in red
and dimerization domain in green. Other structural elements of interest such as nuclear local-
ization sequence (NLS) are also labeled. Middle, the IκB family members are aligned according
to ankyrin repeats. The amino-terminal signal response domain (SRD) and the carboxyl-terminal
acidic region rich in prolines, glutamates, serines, and threonines (PEST) are indicated. P and Ub
indicate the sites for inducible phosphorylation and ubiquitination, respectively. Bottom, p105 and
p100 proteins contain p50 and p52, respectively, in the amino-terminal half and ankyrin repeats in
the carboxyl-terminal half. The carboxyl-terminal half of p105 is homologous to IκBγ. (Modified
from Huxford et al., 1999, with permission from Cold Spring Harbor Laboratory Press)
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Interestingly, two larger proteins, p105 (also called NF-κB1) and p100 (NF-κB2),
contain the Rel homology region of p50 and p52 in their amino-terminal half and the
ankyrin repeats in their carboxyl-terminal half (Fig. 1, bottom). Evidence suggests
that p50 and p52 are actually derived from p105 and p100, respectively, by prote-
olytic processing, so that p105 and p100 are sometimes called precursors of p50 and
p52. IκBγ can also be generated by proteolytic processing from p105. Full-length
p105 and p100 act as IκB as well (Naumann et al., 1993).

3 General Biological Role of NF-κB

NF-κB transcription factors promote the expression of over 200 genes involved in
a variety of cellular processes, indicating that they play important roles in multiple
aspects of biology. In addition, many more genes have the NF-κB–binding sequence
in their promoters, which have not yet clearly been shown to be controlled by
NF-κB. These NF-κB–regulating and potentially NF-κB–regulating genes and their
original references are listed comprehensively on the website of Dr. T. D. Gilmore
of Boston University (http://people.bu.edu/gilmore/nf-kb/target/index.html). These
genes can be divided into the following groups: (1) cytokines/chemokines and
their modulators; (2) immunoreceptors; (3) proteins involved in antigen presen-
tation; (4) cell adhesion molecules; (5) acute phase proteins; (6) stress response
genes; (7) cell surface receptors; (8) apoptosis regulators; (9) growth factors, lig-
ands, and their modulators; (10) early response genes; (11) transcription factors;
(12) viruses; (13) enzymes; and (14) miscellaneous genes not fitting into the groups
above. Although the functionally important NF-κB–binding sites are located in the
promoter/enhancer region of all these genes, the transcription of individual genes
and the amount of transcribed product after NF-κB activation under specific cir-
cumstances depend on many factors, including the composition of NF-κB dimers,
the nature of the NF-κB activating stimulus, and the number of consensus sites in
the target gene. In addition, NF-κB works in cooperation with other transcription
factors, especially activator protein-1 (Karin et al., 2001; Zhou et al., 2001).

Studies using gene knock-out animal models have revealed both specific and
redundant functions of each NF-κB family member in regulation of cell survival
and immune responses. For instance, the deletion of the p65 (RelA) gene in mice
causes embryonic lethality due to extensive apoptosis in the liver (Beg et al., 1995),
indicating that the function of p65 cannot be compensated for by other NF-κB fam-
ily proteins and is essential for the survival of the mouse embryo. On the other hand,
mice lacking p50 or RelB are immunodeficient but otherwise develop normally to
adulthood (Burkly et al., 1995; Sha et al., 1995; Weih et al., 1995). The knock-
out of multiple members of the NF-κB family results in more severe phenotypes,
which suggests that there is some functional redundancy between the NF-κB family
members.

NF-κB is essential for normal functioning of the immune system. It plays key
roles in regulating the expression of many cytokines, which are critical media-
tors of the immune system and are crucial for immune cell communication and
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effector functions during an active immune response. Studies on c-Rel–deficient
mice have demonstrated that c-Rel is essential for IL-2, IL-3, GM-CSF, and
γ-IFN expression in T lymphocytes; IL-6 expression in B cells; TNF-α expression
in macrophages; and IL-12 expression in dendritic cells (Gerondakis et al., 1996;
Liou et al., 1999; Sanjabi et al., 2000; Weinmann et al., 2001). When p105/p50
is knocked out, functional defects in the immune system appear despite otherwise
normal development and phenotype (Sha et al., 1995). P105/p50 is essential for the
survival of nonactivated B cells but not for all B cell-activated pathways (Snapper
et al., 1996; Grumont et al., 1999). C-Rel knock-out mice show normal development
but have B and T cell deficiencies (Kontgen et al., 1995). Mice deficient in the NF-
κB2 gene (p100/p52) mainly have defects in lymph nodes and splenic architecture,
although development is normal (Caamano et al., 1998). All these studies demon-
strate the vital role of NF-κB in normal development and functioning of the immune
system.

The activation of NF-κB is a double-edged sword. Although needed for proper
development and immune system function, NF-κB, if inappropriately overactivated,
can mediate inflammation and tumorigenesis. That duality is especially striking
in relation to cancer, a proinflammatory disease. Most inflammatory agents medi-
ate their effects through the activation of NF-κB, and the latter is suppressed by
anti-inflammatory agents. Similarly, most carcinogens and tumor promoters acti-
vate NF-κB, whereas chemopreventive agents suppress it, suggesting its strong
linkage with cancer. Paradoxically, most agents, including cytokines, chemother-
apeutic agents, and radiation that induce apoptosis, also activate NF-κB (Beg
and Baltimore, 1996). Thus, NF-κB is a part of the cells’ autodefense mecha-
nism and may mediate desensitization, chemoresistance, and radioresistance (Wang
et al., 1999).

The most studied role of NF-κB to date is its role in malignant transformation
and hyperplasia, in the control of apoptosis, and in immune functions. Some NF-κB
proteins act as oncogenes. C-Rel consistently transforms cells in culture, is itself
activated by a retroviral promoter insertion in an avian B cell lymphoma, and is
frequently amplified in Hodgkin’s lymphoma, diffuse large B cell lymphomas, and
some follicular and mediastinal B cell lymphomas (Gilmore et al., 2004). Several
oncogenes mediate their effects by activating NF-κB. Among them are oncogenic
Ras (Mayo et al., 2001; Kim et al., 2002) and c-myc (Kim et al., 2000). It has
been shown that NF-κB activation induces cellular transformation, proliferation,
invasion, and angiogenesis, and mediates metastasis (reviewed by Aggarwal, 2004).
On the other hand, functional blockage of NF-κB in transgenic murine and human
epidermis produced hyperplastic epithelium in vivo (Seitz et al., 1998). Selective
inhibition of NF-κB signaling in murine skin resulted in the spontaneous develop-
ment of squamous cell carcinomas (Seitz et al., 1998; van Hogerlinden et al., 1999).
NF-κB blockage also triggered invasive human epidermal neoplasia (Dajee et al.,
2003). It appears that either overactivation or inactivation of NF-κB may lead to
tumorigenesis, depending on circumstances. It is possible that NF-κB has different
roles in different cell types. The role of NF-κB in tumorigenesis has been reviewed
elsewhere recently (Aggarwal, 2004).
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NF-κB also has a dual effect on controlling apoptosis. Because NF-κB regulates
the expression of many genes involved in apoptosis, the regulation of apoptosis by
NF-κB is very complicated and is far from being elucidated. The NF-κB signal-
ing pathway has emerged as a critical regulator of the apoptotic response. In most
circumstances, NF-κB is antiapoptotic, by activating the expression of antiapoptotic
genes, but it can also promote apoptosis in response to certain death-inducing signals
in certain cell types reviewed by (Kucharczak et al., 2003).

4 Regulation of NF-κB Signaling

NF-κB transcription factors are expressed ubiquitously in all cell types, but nor-
mally they are present as an inactive complex in the cytoplasm via their noncovalent
interaction with IκB. In response to varieties of stimuli, including cytokines, viral
and bacterial pathogens, and stress-inducing agents, the latent cytoplasmic NF-
κB/IκB complex is activated by phosphorylation on the conserved serine residues
in the amino-terminal portion of IκB. Phosphorylation targets IκB for ubiquitina-
tion, which leads to degradation of the IκB by the 26S proteasome. Degradation
of IκB releases NF-κB by unmasking the nuclear localization signal present in
the Rel-family polypeptides that permits translocation to the nucleus and binds
to its cognate DNA-binding site (5′-GGGRNNYYCC-3′) in the promoter/enhancer
regions of specific genes (Fig. 2).

Phosphorylation of IκB is catalyzed by a multimeric complex referred to as IκB
kinase (IKK), which is activated by various stimuli. The IKK complex consists of
two catalytic subunits (IKK-α and IKK-β) and a regulatory subunit IKK-γ or NF-κB
essential modulator (NEMO) (DiDonato et al., 1997; Zandi et al., 1997; Rothwarf
et al., 1998; Yamaoka et al., 1998). The activated IKK complex recruits IκB pro-
teins and phosphorylates them at serine residues (in the case of IκB-α, Ser32 and
Ser36 are phosphorylated). IKK can be phosphorylated and activated by another
kinase called NF-κB–inducing kinase (NIK), which may be involved in an NF-κB–
inducing signaling cascade induced by tumor necrosis factor (TNF) (Malinin et al.,
1997).

The activation of IKK is considered a major mechanism of NF-κB activation in
the classical pathway. However, in certain cases, such as in response to shortwave
UV light (Li and Karin, 1998; Kato et al., 2003), pervanadate (Mukhopadhyay et al.,
2000), H2O2 (Takada et al., 2003), hypoxia/reoxygenation (Fan et al., 2003), nerve
growth factor (NGF) (Bui et al., 2001), erythropoietin (Digicaylioglu and Lipton,
2001), and Her-2 (Pianetti et al., 2001), the activation of NF-κB does not seem to
involve phosphorylation of IκB by IKK or even IκB degradation.

Studies have shown that NF-κB signaling is also regulated by phosphoryla-
tion of Rel proteins themselves. RelA (p65), the most dominant NF-κB protein, is
phosphorylated by cAMP-dependent protein kinase at Ser276, which enhances its
transcription function (Zhong et al., 1997). RelA phosphorylation can occur before
IκB degradation, which creates a moiety that is primed and “sitting on ready.” In
some cases, the phosphorylation of RelA can occur after the dissociation from IκB
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Fig. 2 Major pathway of NF-κB activation. NF-κB dimer (e.g., p50/p65 dimer) is normally in a
latent form as a result of the association with the inhibitory protein IκB, which masks the nuclear
localization signal and DNA-binding domains of NF-κB and retains NF-κB in the cytosol. Inducing
stimuli (e.g., cytokines, synaptic transmission, and growth factors) activate the IκB kinase complex,
which rapidly phosphorylates IκB, leading to its degradation through the ubiquitin-dependent pro-
teasome pathway. Degradation of IκB by the 26S proteasome then allows NF-κB to translocate to
the nucleus and activate transcription of target genes. (Reproduced from Meffert and Baltimore,
2005 with permission from Elsevier)

(Zhong et al., 1997; Wang et al., 2000). The requirement for both phosphorylation
of RelA and degradation of IκB may set up a two-step mechanism that could serve
to integrate disparate signals. It could also be a failsafe algorithm to place more
stringent control on a powerful cellular agent to prevent inadvertent activation. In
addition, ceramide has been reported to activate NF-κB via activating atypical pro-
tein kinase C that, in turn, phosphorylates Ser311 of RelA (Duran et al., 2003). The
p38 MAPK was also shown to be required for NF-κB–dependent gene expression
(Carter et al., 1999).

In the CNS, IκB-α is the most prominent member of its class, but IκB-β and
IκB-γ also play supporting roles. IκB-γ is actually either encoded by alternative
mRNA species derived from the gene for p105 or produced by proteolytic cleavage
of p105 protein (Inoue et al., 1992; Heron et al., 1995). Full-length p105 and p100
can act as IκB as well (Naumann et al., 1993). Some of the previously characterized
NF-κB activators have unique roles in the CNS that might be relevant in determin-
ing the function of neuronal NF-κB transcription factors. For instance, the cytokine
TNFα could be a mediator of neuronal plasticity in noninflammatory settings of the
hippocampus (Beattie et al., 2002). Although the free radical nitric oxide is involved
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in cell-mediated killing in the immune system, its alternative CNS role in regulating
synaptic efficacy is well documented; see the review by (Schuman and Madison,
1994). NF-κB can also be activated by stimuli specific to the nervous system, such
as β-amyloid, NGF, and neurotransmission. However, current knowledge of NF-κB
activation in the CNS is very limited.

5 Role of NF-κB Signaling in the CNS

5.1 NF-κB in the CNS

The key functions of the CNS are information transmission, processing, and storage.
Neurons communicate with each other via synapses, which are specialized cellu-
lar compartments consisting of presynaptic (sending) and postsynaptic (receiving)
parts. Neuronal function is supported and assisted by glial cells. NF-κB transcription
factors are present in both neurons and glial cells, including synapses of the neurons.
The p50/p65 dimer is the major NF-κB in the CNS, which is either constitutively
active or forms a complex with IκB. In addition, there are other NF-κB–binding
proteins in the brain, such as brain-specific transcription factor specifically detected
in the gray matter (Korner et al., 1989), developing brain factors enriched highly in
developing cortex (Cauley and Verma, 1994), and neuronal NF-κB–binding factor
with different target sequence requirements (Moerman et al., 1999). These NF-κB
binding factors were not assigned to specific genes, nor could they be tested directly
in reporter gene assays. It appears that an additional level of complexity is added by
overlapping mutually exclusive or synergistically acting binding sites of NF-κB for
other transcription factors in the CNS.

5.2 Activators and Inhibitors of NF-κB in the CNS

Many activators of NF-κB have been identified (see the review by Kaltschmidt et al.,
2005), some of which are only seen in the nervous system, such as glutamate act-
ing as an NF-κB activator via the main ionotropic glutamate receptors or NGF via
the p75 receptor (Carter et al., 1996). In microglia, all neurotrophins activate NF-κB
(Nakajima et al., 1998). Some molecules, such as TNF, can both activate and repress
NF-κB in neurons, depending on the cell types and circumstances (Kaltschmidt
et al., 1999).

Several anti-inflammatory cytokines that are known from the immune system
inhibit NF-κB in the nervous system, but how these molecules act in the neuron is
not well understood. One possibility might be the induction of IκB transcription.
Some molecules have dual activity in regulating NF-κB, depending on their con-
centrations. A recent review has summarized the inhibitors of NF-κB in the nervous
system (Kaltschmidt et al., 2005).
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5.3 NF-κB–Regulating Genes in the CNS

As discussed above, there are many genes whose expression is regulated by NF-
κB, and this list of genes is still growing. Most of the NF-κB–regulating genes
are identified from studies in nonneuronal cells. Only a limited number of genes
that are regulated by brain NF-κB and with direct relevance for the nervous sys-
tem have been described. They include neural cell adhesion molecule (Simpson and
Morris, 2000; Liu et al., 2003), inducible nitric oxide synthase (Madrigal et al.,
2001), amyloid precursor protein (Grilli et al., 1995), μ-opioid receptors (Kraus
et al., 2003), brain-derived neurotrophic factor (Lipsky et al., 2001), inducible
cyclooxygenase-2 (Kaltschmidt et al., 2002), Ca2+/calmodulin-dependent protein
kinase IIδ (Kassed et al., 2004), galanin receptor (Lorimer et al., 1997), neuropep-
tide Y-Y1 receptor (Musso et al., 1997), and myelin basic protein (Paez et al., 2006).
With the increasing interest in studies of the role of NF-κB in the CSN, there is no
doubt that more genes will be found to be regulated by NF-κB in the brain. Many
NF-κB–regulating genes that were observed in nonneuronal cells are probably also
regulated by NF-κB in the brain.

5.4 Role of NF-κB in Synaptic Transmission
and Neuronal Plasticity

Neuronal plasticity is essential for the transfer and storage of information by neu-
rons. Recent studies have suggested that NF-κB may be crucially involved in the
important process of neuronal plasticity. The capability of NF-κB in transmitting
information from active synapses to the nucleus is supported by several studies
demonstrating the presence of NF-κB in synapses (Kaltschmidt et al., 1993; Meberg
et al., 1996; Meffert et al., 2003). A robust increase of p65 mRNA was observed after
long-term potentiation in vivo (Meberg et al., 1996). This increase might be part of
a feedforward mechanism leading to increased DNA-binding to the κB elements
during long-term potentiation (LTP). NF-κB is activated in neurons by glutamate,
an important synaptic neurotransmitter, and depolarization (Guerrini et al., 1995;
Kaltschmidt et al., 1995). Memory consolidation in crabs also involves the activa-
tion of NF-κB–like activity (Freudenthal et al., 1998). In rat, traumatic brain injury
first activates axonal NF-κB, and later, the activated NF-κB in the nuclei is detected,
and this activation could be detected as long as one year after brain injury (Nonaka
et al., 1999). In glutamate-stimulated hippocampal neurons, the return of p65 from
neuritic to nuclear distribution was observed (Wellmann et al., 2001; Meffert et al.,
2003).

Unlike most other cells, NF-κB is constitutively activated, which appears to be
the result of synaptic activity (Kaltschmidt et al., 1994). The basal constitutive NF-
κB activity in neurons could be repressed by specific inhibitors of action potential
generation, glutamate receptors, and L-type Ca2+ channels (Meffert et al., 2003).
This suggests that extracellular influx of Ca2+, either through NMDA receptor or
L-type Ca2+ channels, could activate NF-κB (Kaltschmidt et al., 2005). A pivotal
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role for NF-κB in synaptic plasticity was further supported by studies in which
blockade of NF-κB activation impairs synaptic plasticity (Albensi and Mattson,
2000). A recent study reported that p50 knock-out mice exhibit impaired learning
ability (Kassed et al., 2002). Taken together, NF-κB may act as a signal trans-
ducer to transmit information from active synapses to the nucleus in addition to
its well-known role as a transcription factor, which transduces a synaptic signal into
a transcription event.

5.5 Role of NF-κB in Learning and Memory

NF-κB appears to be involved in translating short-term signals from distant sites in
neurites into long-term changes in gene expression, which may play a key role in
plasticity, development, and survival. Double knock-out of p65 and TNF-RI results
in a severe learning deficit (Meffert et al., 2003). A modulation of learning and
memory was also observed in two other transgenic mouse models where NF-κB was
repressed by tetracycline-regulated expression of dominant negative IκBα (Meffert
and Baltimore, 2005). This nondegradable IκB remains bound to NF-κB and sup-
presses all NF-κB activation. In a recent study, repression of NF-κB by IκB in
neurons resulted in behavioral deficits and a reduction in LTP and LTD induction
(Kaltschmidt et al., 2006), which occurs via protein kinase A/CREB signaling. On
the other hand, IκB expression driven by the prion promoter resulted in enhanced
learning in older animals (Meffert and Baltimore, 2005). It is possible that neuronal
NF-κB at physiological levels is needed for learning, but inhibition of pathological
NF-κB hyperactivation in elder age might enhance learning. Overall, a consensus of
behavioral studies in both crabs and mice suggests that, in most settings, NF-κB
plays a positive role in learning and memory and that general or p65-subunit–
specific inhibition of NF-κB function can lead to deficits in a variety of learning
paradigms.

5.6 Role of NF-κB in Neuroprotection

Because NF-κB generally has antiapoptosis action, its activation is critical to neu-
ronal survival. Several neurotrophic factors and cytokines may promote neuronal
survival by NF-κB activation. Trophic factor deprivation has been found to result in
a rapid and sustained increase in the level of IκB-α and IκB-β in cultured cerebellar
granule neurons and to lead to sustained inhibition of NF-κB (Kovacs et al., 2004).
A peptide inhibitor of NF-κB blocked the ability of NGF to prevent death of cul-
tured sympathetic neurons (Maggirwar et al., 1998), suggesting a role of NF-κB in
the control of neuronal death during development of the nervous system. When NF-
κB is inhibited, cultured PC12 cells go to apoptosis, and NGF is unable to prevent
it (Taglialatela et al., 1997). The cytokine-transforming growth factor-β1 (TGF-β1)
may prevent neuronal apoptosis via an NF-κB-mediated mechanism, because this
ability is blocked by NF-κB decoy DNA (Zhu et al., 2004).
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The molecular mechanism by which NF-κB enhances neuronal viability is far
from fully understood. The majority of the studies have focused on the direct bind-
ing and activating of prosurvival genes by NF-κB. These genes fall into three broad
classes: antiapoptotic proteins, antioxidants, and neurotrophic factors. In addition
to the conventional transcriptional inductions of prosurvival genes, NF-κB appears
to have other viability-enhancing means at its disposal. For example, glucocorticoid
receptor agonists have neurodegenerative effects through inhibition of glucose trans-
port (Sapolsky, 1996). RelA inhibits the transcriptional activity of glucocorticoid
receptors through direct binding (Ray and Prefontaine, 1994).

The roles of NF-κB in neuronal survival are complex. Mice lacking the p50 sub-
unit of NF-κB exhibit increased neurotoxin-induced damage to neuronal cells as
compared to wild-type mice (Yu et al., 1999), but decreased damage following a
focal ischemic stroke (Nurmi et al., 2004). It was observed that activation of NF-κB
is correlated with neurotoxicity in other paradigms. It is possible that the trophic
or toxic dichotomy of NF-κB could be attributed to the specific subunits of the
activated complex and the differential regulation in different types of cells.

5.7 Role of NF-κB in Glial Cells

Regardless of any direct role of NF-κB in neuronal cells, its activity in glia could
dramatically influence neuroplasticity. Astrocytes play important roles in the modu-
lation of synaptic activity. Hence, changes in gene expression in astrocytes could
alter these processes, and NF-κB is as likely as any other factor to effect such
changes. In fact, NF-κB is involved in an elevation of astrocytic major glutamate
transporters (EAAT2) by epidermal growth factor (EGF) (Zelenaia et al., 2000; Su
et al., 2003), brain-derived neurotrophic factor (BDNF), and subtoxic dose of Aβ

(Rodriguez-Kern et al., 2003).
As the CNS representatives of the monocytic cell lineage, microglia undergo an

inflammatory type of activation in response to brain injury and stress. Among the
products of microglia activated by inflammatory signals is nitric oxide, which is
produced by the exquisitely NF-κB–sensitive, inducible nitric oxide synthase. This
enzyme can be elevated in an NF-κB-dependent manner in astrocytes (Akama et al.,
1998). Microglial activation is associated with a marked increase in expression of
cyclooxygenase-2, an oxyradical-generating enzyme, and agents that inhibit NF-κB
can suppress lipopolysaccharide-induced cyclooxygenase-2 expression, suggesting
an important role of NF-κB in microglial activation and oxyradical production.

The role of microglial NF-κB in neuronal injury is complicated by elevated
production of neurotrophic factors by the activated microglia. Activated microglia
produce NGF, basic fibroblast growth factor (bFGF), and TNF, each of which has
been shown to prevent neuronal death in various experimental models of neu-
rodegenerative diseases. A potent inducer of NF-κB activation in astrocytes is
bradykinin, an inflammatory mediator produced in the brain in response to ischemia
and trauma (Schwaninger et al., 1999). Acting through an NF-κB–mediated path-
way, bradykinin induces IL-6 production in astroctyes, which stimulates production
of several inflammation-related cytokines.
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6 Role of NF-κB in Brain Diseases

Because NF-κB plays many important roles, it is not surprising that dysregulation
of NF-κB signaling is involved in the pathogenesis of a number of human diseases.
Except those resulting from mutations affecting components of the NF-κB signaling
pathway reviewed by (Courtois and Smahi, 2006), the mechanisms by which NF-
κB is involved in disease pathogenesis appear to be complicated, requiring future
investigation. The diseases in which abnormal NF-κB regulation has been reported
to play significant roles include atherosclerosis, AIDS, tumors, diabetes, heart dis-
eases, muscular dystrophy, rheumatoid arthritis, inflammatory bowel diseases, bone
resorption, and some neurodegenerative diseases reviewed by (Kumar et al., 2004).
Investigation of the roles of NF-κB in brain diseases is just beginning, focusing
mainly on acute and chronic neurodegeneration. Although the exact roles of NF-κB
in these brain diseases are not yet known, these roles certainly deserve thorough
investigation in the near future. Hence, these studies are reviewed in this section.

6.1 Role of NF-κB in Ischemic and Traumatic Brain Injury

NF-κB is dramatically activated in brain tissue in rodent models of stroke or car-
diac arrest. Transient global forebrain ischemia causes NF-κB activation in CA1
hippocampal neurons (Clemens et al., 1997). A delayed increase in NF-κB activa-
tion in association with reactive glial cells was also observed several days after focal
ischemia/reperfusion (Gabriel et al., 1999). Studies of mice lacking the p50 subunit
of NF-κB suggest that, overall, NF-κB activation enhances ischemic neuronal death,
but its effects differ among different cell types (Schneider et al., 1999). NF-κB acti-
vation in microglia promotes ischemic neuronal degeneration, whereas activation of
NF-κB in neurons may increase their survival after a stroke. In cultured neuronal
cells, activation of NF-κB protects them against excitotoxic and metabolic insults
relevant to the pathogenesis of stroke, including glucose deprivation and exposure
to glutamate (Cheng et al., 1994; Yu et al., 1999). The cortical and striatal neu-
rons of mice that fail to induce the κB-responsive Mn-superoxide dismutase (SOD)
gene due to lack of TNF-α receptors are more vulnerable to focal ischemic injury
(Schmidt-Ullrich et al., 1996). The neuroprotective effect of endogenous TNF-α
is likely mediated by NF-κB activation in neurons, because mice lacking p50 and
mice treated with κB decoy DNA exhibit increased vulnerability of hippocampal
neurons to excitotoxicity (Yu et al., 1999). The IκB kinase complex (IKK) is also
activated in a mouse model of stroke and appears to play a key function in ischemic
brain damage (Herrmann et al., 2005). Inhibition of neuronal IKK activity in trans-
genic mice that either lack IKK2 or express a dominant inhibitor of IKK reduces
infarct size markedly. In contrast, constitutive activation of IKK2 enlarges the infarct
size (Herrmann et al., 2005). The postischemic inflammatory response is critical to
the consequence of stroke, and this response is mainly mediated by NF-κB signal-
ing (reviewed by (Zheng and Yenari, 2004)). Therefore, NF-κB may be a potential
molecular target for ischemic stroke therapy.
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NF-κB activation also occurs in the cerebral cortex within hours of traumatic
brain injury in rats, and this activation becomes maximal within the first 24 h
(Nonaka et al., 1999; Sanz et al., 2002). Immunohistochemical staining indicates
an increase of p65 level in the axons first and, subsequently, in neuronal cell bodies.
The increased p65 level also occurs in the neighboring microglia and astrocytes.
This increase in p65 immunoreactivity persists for many months, especially in the
margins of the progressively enlarging ventricle, suggesting a role for NF-κB in a
prolonged inflammatory process. In addition, expression of IκBα is also observed
in astrocytes and microglial cells of the corpus callosum in traumatic brain injury at
the time of NF-κB activation (Sanz et al., 2002).

6.2 Role of NF-κB in Seizures

In laboratory animals, NF-κB activity is rapidly increased in hippocampal neurons
within 4–6 h after kainate-induced seizures, which is followed by a delayed and
sustained NF-κB activation in glial cells (Yu et al., 1999). Intraventricular infusion
of κB decoy DNA prior to administration of kainate causes a significant increase in
the extent of neuronal death, suggesting an excitoprotective role for seizure-induced
neuronal NF-κB activation. In mice lacking the p50 subunit of NF-κB, which is
required for the vast majority of κB DNA-binding activity in the hippocampus,
seizure-induced neuronal degeneration is greater than in control mice (Yu et al.,
1999). Cultured hippocampal neurons from p50-deficient mice exhibit enhanced
elevation of intracellular calcium levels upon exposure to glutamate and are more
vulnerable to excitotoxicity as compared with neurons from wild-type mice. These
studies suggest that the p50 subunit of NF-κB plays a major role in protecting
neurons against excitotoxicity.

Excitotoxic and ischemic injury to neurons is partially mediated by dysregulation
of cellular calcium homeostasis, resulting in a prolonged elevation of intracellular
calcium levels. Neuronal NF-κB activation can stabilize intracellular calcium con-
centrations under ischemia-like conditions (Barger et al., 1995; Barger and Mattson,
1996), possibly via induction of several different genes, including those encoding
calcium-binding proteins and glutamate receptor (Cheng et al., 1994; Furukawa and
Mattson, 1998; Gary et al., 2000).

6.3 Role of NF-κB in Alzheimer Disease (AD)

Recent studies suggest that dysregulation of NF-κB signaling might be involved in
the pathogenesis of AD. NF-κB immunoreactivity is found especially in and around
the early senile plaques in AD brain, whereas mature plaques show mainly reduced
NF-κB activity (Kaltschmidt et al., 1999). Several reports suggest that amyloid β

(Aβ) peptide can activate NF-κB in neurons, suggesting a plausible mechanism by
which Aβ may act in AD (Barger et al., 1995). Actually, elevation and activation of
p65 and p50 subunits of NF-κB have been observed in AD brain (Yan et al., 1995;
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Boissiere et al., 1997; Kaltschmidt et al., 1997). Activation of NF-κB protects hip-
pocampal neurons against oxidative stress-induced apoptosis (Mattson et al., 1997).
On the other hand, inhibition of NF-κB potentiates Aβ-mediated neuronal apoptosis
(Kaltschmidt et al., 1999). The proapoptotic protein prostate–apoptosis response-
4 (Par-4), which is implicated in AD, kills neurons partially by inhibiting NF-κB
activity (Guo et al., 1998a). Interestingly, expression of IκB-α, IκB-γ and its pre-
cursor, p105, are also increased in AD brain (Yoshiyama et al., 2001; Huang et al.,
2005), and the increased IκBα expression is in a distribution that corresponds to the
neurofibrillary pathology of AD (Yoshiyama et al., 2001).

It is interesting that a low dose (0.1 μM) of Aβ is able to activate NF-κB and
to protect against a high cytotoxic dose (10 μM) of Aβ (Kaltschmidt et al., 1999).
This finding actually led to the discovery of an essential role for NF-κB in precon-
ditioning (Blondeau et al., 2001; Ravati et al., 2001). The underlying mechanisms
might be similar to a process described by Baltimore (1988) as intracellular immu-
nization against virus infection. Overexpression of transdominant IκB-α completely
abolishes the preconditioning effect of NF-κB. General evidence suggests that con-
stitutive NF-κB activity is essential for neuronal survival (Bhakar et al., 2002). This
protective role might be perturbed in AD brain, for example, by oxidative stress.

Activation of neuronal NF-κB in AD may be a neuroprotective response, but
activation of NF-κB in glial cells may mediate the production of proinflammatory
cytokine and nitric oxide associated with the amyloid and neurofibrillary pathol-
ogy in AD (Chen et al., 2005; Ho et al., 2005). NF-κB might also play a role in
amyloidogenesis of AD, because the enhancer region 5′ to the APP gene contains
NF-κB–binding sites, and expression of APP can be induced by NF-κB (Grilli et al.,
1996). A recent report suggests that NF-κB activation may also mediate sAPPα

release (Choi et al., 2006).
Mutations of the presenilin-1 gene are the major cause of inherited early-onset

AD. Presenilin-1 mutations impair the ability of neurons to induce NF-κB activation
under conditions of oxidative stress in the pathogenesis of AD (Guo et al., 1998b).
An abnormal NF-κB response occurs in neurons expressing mutant presenilin-1,
such that it is activated rapidly but then drops to a very low level for a prolonged
period. Transgenic mice with presenilin mutation exhibit impaired NF-κB activation
in response to exposure to trimethyltin (Kassed et al., 2003).

6.4 Role of NF-κB in Parkinson’s Disease (PD)
and Huntington’s Disease (HD)

PD and HD are age-related movement disorders that involve degeneration of
dopaminergic neurons in the substantia nigra and medium spiny neurons in the stria-
tum, respectively. It is striking that there is a seventyfold increase in the percentage
of dopaminergic neurons with nuclear immunoreactive NF-κB p65, which indicates
NF-κB activation, in the substantia nigra of PD patients as compared to age-matched
controls (Hunot et al., 1997). This observation suggests a role of NF-κB activa-
tion in PD. Increased levels of oxidative stress and mitochondrial dysfunction are
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implicated in the pathogenesis of both PD and HD (Rao and Balachandran, 2002;
Jenner, 2003). NF-κB activity increased in affected neurons in the substantia nigra
and striatum may represent an early protective response to ongoing oxidative stress
and mitochondrial dysfunction (Browne et al., 1999; Jenner, 2003). Consistent with
this is that an NF-κB inhibitor increases the vulnerability of dopaminergic neurons
to Parkinsonian neurotoxin 6-hydroxydopamine (Park et al., 2004). Mice lacking
the p50 subunit of NF-κB exhibit increased damage to striatal neurons and worsened
motor dysfunction after administration of the mitochondrial toxin 3-nitropropionic
acid in an HD animal model (Yu et al., 2000). Levels of Mn-SOD are increased in
response to 3-nitropropionic acid in striatal cells of wild-type mice, but not in striatal
cells of mice lacking p50, suggesting a pivotal role of NF-κB in this neuroprotective
response. However, NF-κB activation may also promote the death of neurons under
conditions such as oxidative and metabolic stress that often occur in neurodegener-
ative diseases (Schneider et al., 1999; Gill and Windebank, 2000). In a neuronal cell
line, mutant huntingtin is found to activate NF-κB, and blockage of the NF-κB acti-
vation reduces the toxicity of the mutant huntingtin (Khoshnan et al., 2004). What
determines whether NF-κB activation is beneficial or detrimental for neurons in the
context of neurodegenerative disorders is barely understood, but it likely involves
regulatory elements that determine whether NF-κB increases the expression of pro-
or antiapoptotic genes. Microglial activation has been shown to contribute to neu-
ronal death in PD, and this activation may be mediated by the NF-κB/p38 MAPK
pathway (Wilms et al., 2003).

6.5 Role of NF-κB in Multiple Sclerosis

Multiple sclerosis is a chronic autoimmune disease of the CNS, in which myelin and
myelin-forming oligodendrocytes become the target of an inflammatory response,
leading to their depletion. Although the molecular mechanism of oligodendrocyte
depletion is not well understood, increased levels of TNF-α and IL-1β transcripts
and activation of NF-κB have been observed in active multiple sclerosis lesions
(Gveric et al., 1998; Bonetti et al., 1999). Both TNF-α and IL-1β are NF-κB–
regulated proinflammatory cytokines that also cause apoptosis of oligodendrocytes
(Selmaj and Raine, 1988). In CNS glial cells treated with proinflammatory cytokine,
inhibition of NF-κB transactivation by IL-4 protects differentiating oligodendrocyte
progenitors (Paintlia et al., 2006). This observation further supports a role of NF-
κB in the pathogenesis of multiple sclerosis. Theiler’s virus infection in the CNS
induces a demyelinating disease very similar to multiple sclerosis. This infection
directly induces proinflammatory cytokines in primary astrocytes via NF-κB activa-
tion (Palma et al., 2003), suggesting that NF-κB is critical for the development of
immune-mediated demyelination. Genetic studies demonstrate that inhibitors of the
NF-κB cascade comprise prime candidate genes predisposing to multiple sclerosis
(Miterski et al., 2002). NF-κB also regulates transcription of myelin basic protein
gene in oligodendroglioma cells (Huang et al., 2002).
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7 NF-κB Signaling Pathway as a Potential Therapeutic Target

The involvement of NF-κB in several vital biological functions and in the patho-
genesis of many human diseases suggests that it could be an important target for
therapeutic intervention. The first evidence that NF-κB pathways could be inhib-
ited came from studies of IκB-α mutant that could not be phosphorylated by IKK
and thus not degraded by proteasome (Ghosh et al., 1998). This IκB-α mutant
sequesters NF-κB in the cytoplasm and thus prevents the induction of specific
NF-κB target genes. Delivering this IκB-α suppressor mutant by adenoviral vec-
tors has been effective in rheumatoid arthritis models (Bondeson et al., 1999) and in
reducing the resistance of tumors to chemotherapy in a mouse model (Wang et al.,
1999). Targeting NF-κB for treating diseases has recently been reviewed elsewhere
(Monaco and Paleolog, 2004; Panwalker et al., 2004; Verma, 2004).

The emerging data described above suggest that NF-κB plays important roles
in cellular response to injury of the CNS in both acute and chronic neurodegener-
ative conditions. Therefore, the NF-κB pathway is no doubt a potential important
target for therapeutic intervention of neurological disorders. Drugs targeting NF-κB
in the CNS of animal models of neurodegenerative conditions are just beginning to
be tested. In a rat model of embolic focal cerebral ischemia, bortezomib (a potent
and selective inhibitor of proteasome) was found to reduce adverse cerebrovascu-
lar events, including secondary thrombosis, inflammatory response and blood–brain
barrier, and hence reduce infarct volume and neurological functional deficits when
administrated within 4 h after stroke onset. These protective actions are mediated
by blocking endothelial NF-κB (Zhang et al., 2006). In a mouse model of stroke,
a selective small molecule inhibitor of IKK reduces the infarct volume and cell
death in a therapeutic window of 4.5 h (Herrmann et al., 2005). A natural green tea
constituent, (–)-epigallocatechin-5-gallate, can limit brain inflammation and reduce
neuronal damage via inhibiting NF-κB overactivation in an animal model of autoim-
mune encephalomyelitis, which opens a new therapeutic avenue for inflammatory
brain diseases (Aktas et al., 2004).

Recent studies have demonstrated that a number of pharmacological agents act
via their activities to inhibit NF-κB. The immunosuppressive and anti-inflammatory
actions of glucocorticosteroids are mediated in part by the induction of IκB-α
synthesis (Yamamoto and Gaynor, 2001). Nonsteroidal anti-inflammatory drugs
also inhibit endotoxin- and cytokine-induced nuclear translocation of NF-κB by
preventing IκB-α phosphorylation and degradation. Some naturally occurring and
synthetic inhibitors of ubiquitin-proteasome also block NF-κB activation by pre-
venting IκB degradation (Adams et al., 2000). Several pharmaceutical companies
are now developing novel specific inhibitors of IKK (Haefner, 2002).

Because NF-κB is involved in a variety of neuronal functions and memory
processing, use of any agents targeting the NF-κB pathway in brain diseases is com-
plicated and warrants extensive studies. In general, activation of NF-κB in neurons
protects them against degeneration, but activation of NF-κB in microglia promotes
neuronal degeneration. Hence, ideal agents to target NF-κB should be cell type-
selective in their actions. For example, inhibitors of NF-κB that selectively target
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microglial cells may suppress damaging neural inflammation without affecting the
normal functions of NF-κB in neurons. Selecting such cell type-selective agents will
be a major focus of future research.
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Trinucleotide-Expansion Diseases

Arthur J. L. Cooper and John P. Blass

Abstract Many diseases, most with a strong neurodegenerative component, are
now known to result from an expansion of a trinucleotide repeat sequence within
the genome. In many cases, the longer the repeat the earlier the onset, and the
more rapid and severe is the disease progression. Almost all of these diseases
may be divided into three groups. In the first group, the expansion is either in an
untranslated region/intron of the gene (e.g., fragile X syndrome, myotonic dystro-
phy type 1 (MD1), Friedreich ataxia, or spinocerebellar ataxia type 12 (SCA12)),
or is in a DNA stretch that does not code for a protein (spinocerebellar ataxia type
8 (SCA8)). In group 1, with the exception of SCA12, the repeat triplet is not CAG.
Generally, the mutations in group 1 result in low or absent levels of the protein
corresponding to the affected gene and/or altered message RNA metabolism. In
the second group, caused by (CAG)n expansions, the mutation is in an exon of the
gene and each protein is expressed with an expanded polyglutamine (Qn) domain.
At least nine neurodegenerative diseases belong in this second group. The most
common of these diseases is Huntington disease (HD). Others are dentatorubralpal-
lidoluysian atrophy (DPLA; Haw River syndrome), spinobulbar muscular atrophy
(SBMA; Kennedy disease) and seven forms of spinocerebellar ataxia [SCA1, SCA2,
SCA3 (Machado–Joseph disease), SCA6, SCA7, and SCA17]. The mutated genes
appear to be unrelated except for the fact that each possesses a (CAG)n/Qn expan-
sion. These diseases are characterized by insoluble protein aggregates in the affected
areas. The aggregates contain the mutated protein. The CAG-expansions are widely
thought to confer a pathological gain of function to the mutated protein, although
in some cases a pathological decrease of function may also contribute. In eight of
the Qn-expansion disorders, the disease phenotype occurs when n is greater than
about 36. Disease expansions may result in n values up to about 80, but larger
values may sometimes occur. In the third group, the nucleotide expansion is in a
coding exon and gives rise to an elongation of a polyalanine (An) stretch in the
mutated expressed protein. At least nine diseases have been shown to be due to an
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An expansion. Eight of the mutations are in transcription factors, and in one case
the mutation is in the polyadenylate-binding protein. The disease phenotypes vari-
ably include mental retardation and malformations of the brain, genitourinary tract,
skull, and digits. Both the normal size of the amino acid repeat and the pathologi-
cal length of the repeat tend to be smaller in the An-expansion diseases than in the
Qn-expansion diseases. Although many of the trinucleotide-expansion diseases are
rare (some exceedingly rare), they offer insights into pathophysiological processes
that may pertain to the more common neurodegenerative diseases such as Alzheimer
disease (AD) and Parkinson disease (PD).

Keywords Cerebellar ataxias · Dentatorubral pallidoluysian atrophy · Fragile X
syndrome · Friedreich ataxia · Huntington disease · Myotonic dystrophy ·
Spinobulbar muscular atrophy · Trinucleotide expansion diseases
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1 Introduction

The presence of trinucleotide repeats in the genome has been known for many
years. It was originally thought that these repeats were inconsequential. However,
beginning in the early 1990s it became apparent that many diseases were caused by
pathological expansions of trinucleotide repeats within the genome.

Initially, almost all trinucleotide-repeat diseases were broadly assigned to two
groups based on the position of the trinucleotide repeat within the gene (Cummings
and Zoghbi, 2000). The first group is based on the positioning of the trinucleotide
expansion in a noncoding region of the gene/genome. By contrast, the second group
is characterized by an expansion in a coding region. All members of this group
contain expanded CAG repeats in the affected gene and an expanded polyglutamine
(Qn) domain in the mutated expressed protein (Cummings and Zoghbi, 2000). In
the last decade a third group of trinucleotide-expansion disease has been described.
It has become apparent that trinucleotide expansions in a coding region can give
rise to proteins containing polyalanine (An) expansions. Nine diseases are presently
known to be caused by an An expansion.

Diseases in groups 1 and 2 share several defining characteristics: (1) The mutant
repeats often show somatic and germline instability, expanding more often than con-
tracting during succeeding generational transmissions; (2) subsequent generations
often exhibit earlier age of onset and more rapid progression of the disease (anticipa-
tion), which correlates with the size of the expansion; and (3) paternal transmission
often carries a greater risk of trinucleotide expansion (imprinting) (Cummings and
Zoghbi, 2000).

2 Diseases Due to a Noncoding Trinucleotide Expansion

These diseases are typically characterized by variable and often very large trin-
ucleotide expansions in the genome, which result in multiple organ dysfunction.
The disease phenotype is frequently variable, perhaps due to somatic heterogene-
ity (Cummings and Zoghbi, 2000). The larger mutations are often transmitted from
clinically silent intermediate size expansions termed premutations. Generally, the
mutations produce instability of the message resulting in diminished or loss of
protein (loss of function), or to aberrant alternative splicing giving rise to “toxic”
mRNAs (loss and/or toxic gain of function) (Cummings and Zoghbi, 2000). In one
case (SCA 8), the expansion is not in a gene coding for a protein. Currently known
noncoding trinucleotide expansion diseases are listed in Table 1.
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Table 1 Diseases resulting from expansions of noncoding trinucleotide repeats

Disease Gene/Locus
Trinucleotide
Expansion Affected Protein

Fragile X syndrome FMR1 (FRAXA) Xq27.3 GCC FMR-1 protein(FMRP)
Myotonic dystrophy

(type 1)
DMPK 19q13 CTG Dystrophia myotonica

protein kinase (DMPK)
Friedreich ataxia X25 (frataxin) 9q13 GAA Frataxin
Spinocerebellar ataxia

type 8 (SCA 8)a
SCA8 13q21 CTG –

Spinocerebellar ataxia
type 12 (SCA 12)

SCA12 5q31-33 CAG PP2A-PR55β

aThe mutation is not associated with a gene coding for a protein.

2.1 Fragile X Syndrome (FRAXA)

At least nine “fragile” sites are present in human chromosomes. The “fragility”
refers to chromosomal sites that break easily in the presence of certain com-
pounds such as aphidocolin, methotrexate, and high doses of caffeine (Sutherland,
1979a, b). These sites are generally (GCC)n stretches and in most cases are pro-
tected if folate, thymidine, or folinic acid is in the medium (Sutherland, 1979a, b,
2003).

The first disease recognized to be due to a trinucleotide expansion was fragile
X syndrome, which was shown to result from an increase of GCC repeats in the
5′-untranslated region (UTR) of the affected gene (FMR1) (Kremer et al., 1991).
The disease is characterized by mental retardation, macro-orchidism, dysmorphic
features, and aberrant behavior (including attention deficit/hyperactivity disorder,
anxiety, epilepsy, and autism) (D’Huist and Kooy, 2009). The disease is X-linked
and both sexes can be affected. However, females account for only a third of cases,
and females on average have milder symptoms. The mutation maps to chromo-
some Xq27.3, resulting in loss of the fragile mental retardation protein 1 (FMRP).
Mutations in the FMR1 gene account for 15–25% of all X-linked forms of mental
retardation (Strelnikov et al., 1999).

FMRP is an RNA-binding protein that shuttles between the nucleus and cytosol
and binds to several mRNAs including its own (Zalfa and Bagni, 2004). FMRP is
located in synapses and loss of FMRP affects synaptic plasticity (Zalfa and Bagni,
2004). Fragile X syndrome is second only to Down syndrome as a cause of mental
retardation in males (Kremer et al., 1991; Rosenberg, 1996). The FMR1 gene in nor-
mal individuals contains a (GCC)n domain, where n = 5–54. In carriers, the repeat
number may be 60–230 (premutations), whereas in affected males the GCC repeat
number is from 230 to 4000. The full mutation is accompanied by DNA hyper-
methylation of the GCC expansion and also of a nearby CpG island, resulting in
loss of the expression of the FMR1 gene (Rosenberg, 1996; Zalfa and Bagni, 2004).
Hypermethylation of the CpG island is accompanied by histone deacetylation. Thus,
amplification of the CGG repeat results in a change of the chromatin structure to a
very condensed, transcriptionally inactive structure (D’Huist and Kooy, 2009). It
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was originally thought that an n of 60–230 is benign, but such expansions are now
known to sometimes cause a clinically distinct syndrome, fragile X tremor/ataxia
syndrome (FXTAS) in elderly males. The syndrome may result from aberrant RNA
interactions rather than decreased FMRP (Hagerman et al., 2001).

2.2 Other “Fragile” Syndromes

A second, less common, form of fragile X syndrome (FRAXE) is associated with
a mutation at the Xq28 locus of the FMR2 gene and is also caused by a GCC
expansion (Gécz et al., 1996; Frints et al., 2002; Lesca et al., 2003; Gu and
Nelson, 2003). FMR2 belongs to the ALF (AF4/LAF4/FMR2) family of transcrip-
tion factors (Bitoun and Davies, 2009). FRAXE patients generally have mild mental
retardation and variable behavioral problems. Hypermethylation leads to transcrip-
tional silencing of the FMR2 gene and to a subsequent loss of the gene product
FMR2. The FMR2 protein is normally expressed at high levels in the amygdala
and hippocampus (Chakrabarti et al., 1998), suggesting that its loss could lead to
neurological abnormalities.

In addition to FRXA and FRXE, five other folate-sensitive fragile sites
(FRA10A, FRA11B, FRA12A, FRA16A, and FRAXF) and two nonfolate-sensitive
fragile sites (FRA10B and FRA16B) have been identified in the human genome
and have been molecularly characterized (Gécz et al., 1996; Strelnikov et al., 1999;
Sarafidou et al., 2004; Lukusa and Fryns, 2008). These sites represent expanded
DNA repeat sequences resulting from a dynamic mutation involving the nor-
mally occurring polymorphic CCG/CGG trinucleotide repeats at the folate-sensitive
and AT-rich minisatellite repeats at the nonfolate-sensitive fragile sites (Lukusa
and Fryns, 2008). Mutations in FRA11B are associated with Jacobsen syndrome
(Lukusa and Fryns, 2009). The possible association of the common fragile sites
FRA10A, FRA12A, FRA16A, and FRAXF with neuropsychiatric and developmen-
tal disorders is still poorly understood (Sutherland, 2003; Sarafidou et al., 2004;
Lukusa and Fryns, 2009).

2.3 Myotonic Dystrophy Type 1 (DM1)

Myotonic dystrophy is a dominantly inherited disorder that is the most common
form of muscular dystrophy worldwide, affecting ∼1 in 8500 adults (Lee and
Cooper, 2009). Shortly after the discovery of the trinucleotide repeat expansion in
FRAXA, it was found that myotonic dystrophy type 1 (DM1) is due to a CTG expan-
sion at the UTR of a gene (DMPK) at chromosome 19q13.2 encoding a member of
the cAMP-dependent protein kinase family (DMPK; dystrophia myotonica protein
kinase) (Shelbourne and Johnson, 1992; Brook et al., 1992; Lee and Cooper, 2009).
In normal individuals, the CTG repeat ranges in size from 5 to 37. In mildly affected,
adult-onset patients CTG repeats expand to 50–1000, whereas in severely affected
early onset patients the expansion is greater than 1000 repeats (Korade-Mirnics
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et al., 1998). The clinical phenotype is extremely variable and strong anticipation in
subsequent generations is a feature of this disease. Myotonia and progressive muscle
weakness are characteristics of the adult-onset disease. Developmental and mental
abnormalities together with hypotonia and respiratory distress are characteristics
of the more severe congenital disease. It has been suggested that the CTG expan-
sion may alter DMPK protein levels by interfering with DMPK gene transcription,
with RNA processing, and/or with translation. The results would be abnormal phos-
phorylation of downstream substrates (discussed by Cummings and Zoghbi, 2000).
Other possibilities include alterations in expression of nearby genes or sequestra-
tion of RNA-binding proteins leading to abnormal RNA processing (Cummings and
Zoghbi, 2000). DM1 transcripts have been shown to accumulate in the nuclei of
muscle cells (Jiang et al., 2004). DMPK mRNA is widely expressed in cortical and
subcortical neurons and the mutant transcripts accumulate in discrete foci within the
neuronal nuclei. Human EXP (expansion RNA-binding) proteins are homologous to
muscleblind proteins that are critical for terminal differentiation of embryonic pha-
ryngeal, visceral, and somatic muscle bodies, and for eye formation in Drosophila.
In DM1, proteins in the muscleblind family are recruited to these foci in the nuclei
depleting their levels in the cytosol (Jiang et al., 2004). Additionally, pre-mRNAs
show abnormal regulation of alternative splicing. These findings suggest a toxic gain
of function of DMPK mRNA, which may contribute to the muscle and neurological
symptoms (Jiang et al., 2004; Lee and Cooper, 2009).

2.4 Friedreich Ataxia (FRDA)

FRDA is the most common inherited ataxia with a prevalence of about 1 in 50,000
in the general population. FRDA is characterized by ataxia, dysarthria, diminished
reflexes, cardiomyopathy, diabetes, and degeneration of spinal cord, dorsal root gan-
glia, and several peripheral systems (Cummings and Zoghbi, 2000). The disease is
inherited in an autosomal recessive fashion. The affected gene (X25; frataxin) is
located at chromosome 9q13-q21.1. The mutation is due to an expansion of a GAA
repeat in a noncoding region (intron 1) of a gene that codes for a highly conserved
nuclear-encoded protein named frataxin that binds to the inner mitochondrial mem-
brane (Dürr et al., 1996; Campuzano et al., 1996). The mutation appears to alter
mRNA processing, resulting in low levels of frataxin. In normal individuals the
GAA sequence is usually repeated 7–22 times, but in homozygous patients with
Friedreich ataxia, the nucleotide repeat number may be 66–1700 (Sharma et al.,
2004). Most Friedrich ataxia patients have expansions in both alleles. The longer
the repeats, the lower the level of expressed frataxin and the more severe is the dis-
ease phenotype (Gatchel and Zoghbi, 2005). Two mild cases of Friedreich ataxia
have been reported in heterozygotes for large expansions and an allele for a 44 and
66 triplet repeat, respectively. Due to somatic instability, 15% (GAA-44) and 75%
(GAA-66) of cells contained alleles with ≥66 triplet repeats, suggesting a plausible
mechanism for the mild phenotype. No such instability was noted in a sibling who
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Fig. 1 Molecular and biochemical basis of Friedreich’s ataxia (FRDA). (a) A GAA-repeat expan-
sion in the first intron of the FRDA gene results in decreased levels of frataxin as a result of
inhibition of transcriptional elongation. (b) Alterations in mitochondrial biochemistry that are
associated with reduced frataxin levels. Proposed functions for frataxin include iron binding, pro-
tection and synthesis of Fe–S clusters, providing a binding partner for ferrochetalase in heme
(haem) metabolism, and providing a metabolic switch between heme metabolism and Fe–S cluster
biosynthesis. In FRDA, reduction of frataxin results in lowered levels of aconitase and respira-
tory complexes I, II, and III. Cytosolic proteins that contain Fe–S clusters may also be affected.
Inability to form Fe–S clusters leads to an accumulation of iron, which leads to increased free rad-
ical formation (Fenton chemistry) in these organelles. Increased free radical formation may feed
back to further decrease levels of Fe–S clusters, which are known to be sensitive to oxidative stress.
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possessed an expanded GAA allele and a GAA-37 allele and was clinically normal
(Sharma et al., 2004).

Frataxin is normally targeted to mitochondria, and mitochondrial respiratory
chain dysfunction, mitochondrial iron accumulation, and oxidative stress are impor-
tant components of the FRDA disease mechanism. It is possible that frataxin
is normally involved in mitochondrial iron metabolism, including the formation
of iron–sulfur centers (Lane and Richardson, 2010). As discussed by Lane and
Richardson (2010) the metabolic defect in FRDA leads to mitochondrial iron load-
ing that results from dysregulation of mitochondrial iron metabolism/iron–sulfur
cluster biosynthesis, heme biogenesis, and mitochondrial iron storage. Additionally,
the abnormal mitochondrial iron deposits may promote Fenton chemistry (hydroxyl
radical formation) and thus contribute to toxic free-radical production that compro-
mises cellular dysfunction, eventually leading to cell death (Pandolfo and Pastore,
2009). In FRDA patients with vitamin E and CoQ10 deficiency, supplementation
with these antioxidants appears to be beneficial to heart muscle mitochondria, and,
to a lesser extent, skeletal muscle mitochondria. The antioxidant idebenone also
appears to be beneficial to heart muscle in FRDA patients (reviewed by Cooper and
Schapira, 2003).

A mechanism, as proposed by Gatchel and Zoghbi (2005), linking mitochondrial
biochemical defects to loss of frataxin is shown in Fig. 1.

2.5 Spinocerebellar Ataxia Type 8 (SCA8)

SCA8 is a rare neurodegenerative disease caused by an expansion of a CTG repeat
on chromosome 13q21 (Koob et al., 1999). The disease is characterized by pro-
gressive ataxia with cerebellar atrophy, decreased vibration sense, and brisk reflexes
(Cummings and Zoghbi, 2000). The normal allele contains 15–50 triplet repeats. By
contrast, 71–800 repeats have been observed in SCA8 patients. SCA8 is interesting
because it shows a complex inheritance pattern with extremes of incomplete pene-
tration, in which only one or two affected individuals are found in a given family
(Ikeda et al., 2004). As noted above, SCA8 is unique among the trinucleotide repeat
disorders in that the predicted gene product is not a protein, but rather is a noncod-
ing RNA. It was suggested that the expressed RNA may be an antisense RNA that
regulates the expression of other genes (Mutsuddi et al., 2004). Later it was found
that the mutation produces toxic RNAs that alter RNA splicing activities of MBNL
(Muscleblind-like) and CELF (CUGBP and ETR-3-like) proteins (Daughters et al.,
2009).

�
Fig. 1 (continued) NFS1 is a gene that encodes mitochondrial cysteine desulfurase. This enzyme
catalyzes the conversion of cysteine to alanine plus sulfane sulfur (S0). The S0 is incorporated into
the Fe–S clusters. Isu1 is a gene that encodes a scaffold protein on which the Fe–S clusters are
assembled. ABCB7, ATP-binding cassette, sub-family B, member 7 (ABC transporter 7 protein);
ISC, Fe–S cluster. From Gatchel and Zoghbi (2005) with permission
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Interestingly, a small subset of patients with major psychoses, but without ataxia,
appears to possess the SCA8 mutation (Vincent et al., 2000). Thus, additional
genetic and/or environmental factors may play an important role in the expression
of SCA 8 ataxia disease phenotype (Ikeda et al., 2004) or psychoses (Vincent et al.,
2000).

2.6 Spinocerebellar Ataxia Type 12 (SCA12)

This is an extremely rare disorder, characterized by a variety of abnormalities of
movement as well as dementia in older subjects (Holmes et al., 1999). The disease is
caused by a CAG expansion in the UTR of the PPP2R2B gene (Holmes et al., 1999;
Bahl et al., 2005). The expanded allele length ranges from 55 to 69 repeats. SCA12
is the only known disease caused by an expansion of a CAG repeat in a noncoding
region of a gene. PPP2R2B encodes a brain-specific regulatory subunit (PR55β)
of protein phosphatase 2A (PP2A). PP2A has been implicated in modulation of
the cell cycle progression, tau phosphorylation, and apoptosis. Holmes et al. (1999)
suggested that the CAG expansion may affect PR55β expression, perhaps by altering
PP2A function in the brain. Interestingly, Holmes et al. (2003) suggested that the
mutation might result in an overproduction of the PR55β mRNA.

3 Diseases Due to a Coding Trinucleotide
Expansion—Polyglutamine (Qn)-Expansion Diseases

Ten CAG-expansion diseases are currently known. In nine of these diseases (listed
in Table 2), the mutation occurs in an exon (coding region) and results in an expan-
sion of a Qn domain in the expressed protein. These nine diseases may therefore
conveniently be referred to as Qn-expansion diseases. Some noncoding, non-CAG
trinucleotide-expansion diseases may have expansions numbering in the thousands.
By contrast, maximal expansions in the coding CAG-expansion diseases only occa-
sionally exceed 100 trinucleotide repeats. In most cases, the protein is expressed
normally, which suggests that the expanded Qn domain exerts a toxic gain of func-
tion to the mutated protein. Nevertheless, limited loss of function probably occurs
in some cases, as discussed below. In general, all nine Qn-expansion diseases are
characterized by progressive neuronal dysfunction, most often beginning in adult
life. However, only selected neurons are affected. All the Qn-expansion diseases are
characterized by protein aggregates in the affected regions, which may by cytosolic,
nuclear, or both cytosolic and nuclear (Table 2).

None of the mutated proteins in the CAG-expansion diseases are related, except
for the possession of an expanded Qn domain. In every case, except SCA6, the
mutated protein is widely expressed, not only throughout the brain, but also through-
out the body. This wide expression raises important questions. What accounts for
the restriction of the major disease phenotype to nervous tissue? And what accounts
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for the often subtle differences in neuropathology among the different Qn-expansion
diseases? In other words, by what mechanism does the selective vulnerability among
the different Qn-expansion diseases occur? Finally, what mechanism can explain the
incredibly sharp demarcation between pathological and nonpathological n values of
n in the Qn domains?

To date the literature is replete with studies characterizing Qn disease, particu-
larly Huntington disease (HD). What follows is a brief description of the discovery
of each Qn-expansion disease, and some key references, followed by a discus-
sion of current theories on the mechanisms by which expanded Qn domains exert
their neurotoxicity. Because of the huge volume of literature on Qn-expansion
diseases, we have had to be selective in the references quoted. The diseases
are listed in approximately the chronological order in which the mutation was
discovered.

3.1 Spinobulbar Muscular Atrophy (SBMA; Kennedy Disease)

Shortly after the discovery of the repeat disorder in FRAXA, it was shown that
SBMA is caused by an expansion of a CAG repeat at chromosome Wq11-112 (La
Spada et al., 1991, 1992). The mutation is caused by an expansion of a CAG repeat
within the first exon of the AR gene coding for AR (the androgen receptor) (La
Spada et al., 1991, 1992; Amato et al., 1993). Unlike all other known Qn-expansion
diseases, which are inherited in an autosomal dominant fashion, SBMA inheri-
tance is X-linked. Carrier females are usually clinically normal, although some
may have mild symptoms. Affected males exhibit mild hypogonadism and gyneco-
mastasia, although they are fertile. These features suggest mild loss of function in
the affected gene. The main symptoms of SBMA are slowly progressive muscle
weakness and atrophy of bulbar, facial, and limb muscles (Suzuki et al., 2009). The
key histopathological findings of SBMA are an extensive loss of lower motor neu-
rons in the anterior horn of the spinal cord as well as in brainstem motor nuclei
and intranuclear accumulations of mutant AR protein in the residual motor neu-
rons (ARs are found on lower motor neurons as well as on other CNS neurons)
(Suzuki et al., 2009). These findings suggest a toxic gain of function in the mutated
SBMA.

Androgens are important in regulating sexually dimorphic neurons in the rat
brain. They are also important in signaling pathways in the motor neurons. As
pointed out by Cary and La Spada (2008) a thorough understanding of andro-
gen receptor signaling in motor neurons should provide important inroads toward
the development of effective treatments for SBMA and a variety of other devas-
tating motor neuron diseases. Suppression of disease progression by castration or
by administration of leuprorelin acetate (a luteinizing hormone-releasing hormone
antagonist) in a mouse model of SBMA has been reported (Suzuki et al., 2009).
Some efficacy of leuporelin has also been demonstrated in a phase 2 clinical trial
(Banno et al., 2009).
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3.2 Huntington Disease (HD)

In 1993, the Huntington Disease Collaborative Research Group reported that the
mutation in HD is due to a CAG expansion in the gene at chromosome 4p16.3 (The
Huntington Disease Collaborative Research Group, 1993). The affected protein,
which contains an expanded Qn domain near the N-terminus, was named hunt-
ingtin (Htt). Htt is a large protein (Mr ∼ 350,000). Homozygous Htt knock-out mice
embryos die in utero, and it has been difficult to assign a biological function to
Htt. Nevertheless, some evidence suggests that Htt may be an iron-regulated protein
essential for normal nuclear and perinuclear organelles (Hilditch-Maguire et al.,
2000). More recent evidence suggests a role in intracellular vesicular trafficking
(Caviston and Holzbaur, 2009). HD is the most common of the (CAG)n/Qn-
expansion diseases, despite the fact that new expansion mutational expansions in
the Htt gene are believed to be exceedingly rare. The incidence of HD worldwide is
about 5–10 per 100,000 individuals. Japan has a very low rate (0.1–0.5 per 100,000),
whereas in the Lake Maracaibo region of Venezuela the incidence exceeds 100 per
100,000. In the United States in the 1980s, it was estimated that 25,000 persons
had HD (Conneally, 1984). HD is typically fully penetrant and is characterized by
movement disorders (chorea), psychiatric and behavioral disorders, and cognitive
decline. Symptoms usually begin in adulthood (∼30–40 years of age) and inex-
orably worsen over a period of 10–25 years. In early onset cases (age <20; ∼5–10%
of cases) survival time after onset is shorter and symptoms include rigidity, bradyki-
nesia, and tremor. Seizures may also occur. The cause of death is related to debility
and immobility, weight loss, and trouble swallowing. Pneumonia is the most com-
mon cause of death (Greenamyre and Shoulson, 1994). Some mild cortical atrophy
may occur in end-stage disease, but the most striking change in brain morphology
occurs in the caudate nucleus. The caudate may be reduced to a thin rim of tissue
resulting in greatly enlarged ventricles. There is also atrophy of the putamen and
globus pallidus. Microscopically, medium-sized spiny GABAergic projection neu-
rons in the striatum are most vulnerable, whereas medium-sized and large aspiny
interneurons are less affected (Greenamyre and Shoulson, 1994). Although fully
penetrant, genetic and environmental factors may modulate the age of onset of HD
(The US–Venezuela Collaborative Research Project and Wexler, 2004).

3.3 Spinocerebellar Ataxia Type 1 (SCA1)

SCA1 is due to a (CAG)n expansion toward the N-terminus of the gene ATXN-1
that maps to chromosome 6p22-p23 and codes for the protein ataxin-1 (Orr et al.,
1993; Zoghbi and Orr, 2009). The disease is characterized by degeneration of the
cerebellum, spinal cord, and brainstem. The disease phenotype appears to be due to
a toxic gain of function in the mutated protein and perhaps to some loss of function
(Zoghbi and Orr, 2009). Protein aggregates are particularly prominent in the nuclei
of Purkinje neurons. Ataxin-1 can be phosphorylated at serine 776. Mutation of
this residue to an alanine greatly reduces the disease phenotype in CSA1 transgenic
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mice, despite the fact that the mutated protein (with a Q82 domain) accumulates in
the Purkinje cell nuclei (Emamian et al., 2003). This finding suggests an effect of the
expanded Qn domain on the properties of the protein at a residue (serine) distal to
the mutation. Studies with DNA microarrays have suggested that the presence of the
disease protein in SCA1-transgenic mice results in major changes in the expression
of nine genes during disease progression. Interestingly, five of these genes centered
on glutamate signaling in Purkinje cells (Serra et al., 2004).

3.4 Spinocerebellar Ataxia Type 2 (SCA 2)

SCA2 is caused by a (CAG)n expansion in exon 1 of the ATXN2 gene (coding for
the cytosolic protein ataxin 2 (Atx2)) located in chromosome 12q24.1. Cerebellar
Purkinje cells are targeted in this disease. Mutant Atx2-58Q, but not wild-type
Atx2-22Q, specifically associates with the cytosolic C-terminal region of type 1
inositol 1,4,5-trisphosphate receptor (InsP(3)R1), an intracellular Ca2+ release chan-
nel (Liu et al., 2009). The studies of Liu et al. (2009) suggest that disturbed Ca2+

signaling may play an important role in SCA2 neuropathology. The authors sug-
gested that the ryanodine receptor (RyanR) may be a potential therapeutic target to
treat SCA2 patients. It is of interest that in a cohort of Central European subjects the
n in the Qn domains of Atx2 was remarkably consistent. Q22 represented 92% of the
alleles and Q23 represented 5–7% (Figueroa et al., 2009). The finding of such a con-
stant number suggests evolutionary pressure to maintain this number in the Central
European cohort. The finding with normal Atx2 contrasts with that noted for Htt,
for example, where the wild-type (normal) Htt may have an n in the Qn domain
ranging from 11 to 34 (Koroshetz and Martin, 1997). Recent studies suggest that an
expansion of Qn domains in Atx2 beyond n = 22 may be associated with disruption
of energy metabolism and severe obesity in some children (Figueroa et al., 2009).

3.5 Spinocerebellar Ataxia Type 3 (SCA3;
Machado–Joseph Disease)

SCA3 is characterized by progressive ataxia and external ophthalmoplegia. Recent
studies have also suggested that auditory, vestibular, and ingestion-related dopamin-
ergic and cholinergic systems may also be compromised (Rüb et al., 2008). Mental
faculties in SCA3 patients usually remain intact. The disease phenotype is quite
variable, but the major symptom with all patients is difficulty in walking. When
the disease presents before age 20 it is usually characterized by marked spasticity,
akinesia, and dystonia-like posturing. When the disease presents after age fifty, it is
usually characterized by amyotrophic polyneuropathy, with fasciculations accompa-
nying the ataxia. Other cases fall between the two (Uitti, 1994). The disease occurs
in some families of Portuguese descent, and “hotspots” occur in Japan and parts
of India.
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The gene for SCA 3, which maps to chromosome 14q24.3-q32, was shown to
be due to a CAG expansion in exon 10 and to a corresponding increase in the Qn

domain in the affected protein (ataxin-3) (Kawaguchi et al., 1994). There are occa-
sional variant triplets at the third (CAA), fourth (AAG), and sixth (CAA) positions
of the CAG repeat in the human gene (Limprasert et al., 1996). The nucleotide fol-
lowing the last trinucleotide in the CAG repeat in the human gene is a G in all
cases studied where the number of CAG repeats is less than 20. In 55% of the genes
containing a CAG repeat of between 27 and 40 trinucleotides, a C nucleotide fol-
lowed the CAG repeat; and in all cases of expanded (pathological) CAG repeats,
a C nucleotide followed the CAG. The authors suggested that the C variant may
be associated with CAG repeat instability (Limprasert et al., 1996). Ataxin-3 is a
42-kDa protein in which the Qn domain is positioned toward the C-terminus. The
N-terminus, which is whimsically termed Josephin, is highly conserved from nema-
todes to humans (Chow et al., 2004). There are two ubiquitin-binding sites between
Josephin and the Qn domain. Josephin, which is globular and monomeric, possesses
ubiquitin protease activity (Chow et al., 2004). The expanded Qn domain may desta-
bilize the Josephin domain perhaps resulting in a loss of function (Chow et al.,
2004).

3.6 Dentatorubral Pallidoluysian Atrophy
(DRPLA; Haw River Syndrome)

This disease, which is characterized by progressive ataxia, choreoathetosis, dys-
tonia, seizures, myoclonus, and dementia, maps to chromosome 12p12-ter (Koide
et al., 1994; Nagafuchi et al., 1994). The disease is fairly common in Japan, but
very rare in Caucasians. The mutated protein, which has an Mr of about 140,000,
contains a Qn domain in the middle of the protein with a serine-rich region in front
of this region (Margolis et al., 1996). The mutated protein was originally named
atrophin, but is now named atrophin-1 because there is also another closely related
protein in humans (atrophin-2). Evidence suggests that the two proteins may act as
transcriptional corepressors during embryonic development (Zoltewicz et al., 2004).

3.7 Spinocerebellar Ataxia Type 6 (SCA 6)

This disease is a late onset disorder of the cerebellum characterized by selective and
progressive loss of Purkinje cells. Initially the disease was thought to be confined
to the cerebellar cortex, dentate nucleus, and inferior olives, but more recent studies
suggest more widespread cerebellar involvement (Seidel et al., 2009; Wang et al.,
2010). The disease is caused by a CAG expansion in the SCA6 gene at chromo-
some 19p13, which codes for the α1A-voltage-dependent calcium channel subunit
(Zhuchenko et al., 1997). Six isoforms of this protein have been described. The CAG
repeat is within the open reading frame and is predicted to encode Qn domains in
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three of the isoforms (Zhuchenko et al., 1997). The protein is abundantly expressed
in Purkinje cell bodies and dendrites (Restituito et al., 2000). The disease is unique
among the Qn-expansion diseases in that the pathological number of repeats is much
lower than in the other diseases in this group and the maximal expansion noted thus
far is small (Table 2). Unlike the other diseases in this group, the affected protein
in SCA6 is a membrane-spanning protein. The mutation apparently shifts the volt-
age dependence of channel activation and rate of inactivation, and impairs normal
G-protein regulation of P/Q channels (Restituito et al., 2000). This may be regarded
as a loss of function. In addition, the mutated SCA6 may impair normal proteasome
function (Seidel et al., 2009) and prevent cell death (Matsuyama et al., 2004).

A point mutation in the SCA6 gene gives rise to a different disease phenotype,
namely familial hemiplegic migraine (Ophoff et al., 1996). Inasmuch as patients
with familial hemiplegic migraine do not exhibit cerebellar ataxia, the ataxia in
SCA6 is presumably a pathological gain of function resulting from the Qn expan-
sion. Thus, SCA6 seems to exhibit features of both loss and gain of function for the
mutated protein.

Two episodic ataxias have been described in the literature. It is now clear that
episodic ataxia type 2 (EA2) is identical with SCA6. The other (EA1), which is char-
acterized by attacks of generalized ataxia and by continuous myokymia (irregular
twitching), is due to a point mutation in the voltage-gated potassium channel gene
KCNA1 (Cusimano et al., 2004). Clearly, EA1 and EA2/SCA-6 are both examples
of channelopathies.

3.8 Spinocerebellar Ataxia Type 7 (SCA7)

SCA7 is characterized by late-onset neuronal loss in the cerebellum, brainstem,
and retina (Miller et al., 2009). It is the only Qn-expansion disease in which the
retina is affected. The disease is caused by a CAG expansion in the gene at chromo-
some 13p12-13 (David et al., 1997). The affected gene has an Mr of about 100,000.
Because the biological function of the protein was unclear, it was initially named
ataxin-7. The SCA7 gene product, ataxin-7, is now known to be a subunit of a
transcriptional coactivator complex (STAGA or TFTC) that has histone acetyltrans-
ferase activity (Helmlinger et al., 2004, 2006a, b). Thus, transcriptional regulation
seems to be altered in SCA-7 (and possibly other Qn-expansion diseases).

3.9 Spinocerebellar Ataxia Type 17 (SCA17)

This was the last of the SCAs to be shown to arise from a Qn expansion in the
mutated protein. Koide et al. (1999) identified a CAG expansion in the transcription
factor TATA-binding factor protein TBP gene in a patient with short stature, pyra-
midal signs, and mental retardation. Since then this extremely rare disease has been
identified in a few European and Japanese families (Rolfs et al., 2003). Cerebral
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proteinaceous deposits are especially prominent in this disease (Rolfs et al., 2003).
The disease is interesting because some patients present first with exclusively
pure psychiatric symptoms while having no signs of ataxia or movement disorders
(Rolfs et al., 2003). The authors point out that SCA17 represents one of the very
few psychiatric diseases for which there is a known monogenic cause (Rolfs et al.,
2003). SCA17 also appears to be a risk factor for Parkinson-like symptoms (Lee
et al., 2009).

4 Possible Factors Contributing to Neurodegeneration
in the (CAG)n/Qn-Expansion Diseases

As noted above, the neurodegenerative disease phenotypes in the Qn-expansion dis-
eases are probably caused mostly by a toxic gain of function. This is suggested by
the autosomal dominant mode of inheritance (except BMA) and by most experi-
ments with cell and animal models (Ross, 2002). HD is common enough in the
Lake Maracaibo area where HD homozygotes are sometimes encountered (The US–
Venezuela Collaborative Research Project and Wexler, 2004). In agreement with
the gain of function hypothesis, these individuals have an almost identical disease
phenotype to heterozygotes. However, as also noted above, some loss of normal
function may also occur in some cases (Ross, 2002). It is also possible that the
aberrant protein expressed by the mutant allele interacts with the normal protein
expressed by the other allele. This dominant-negative interaction might lead to a
partial loss of function in some cases (Ross, 2002).

Although the expanded Qn domains impart a toxic gain of function, this does not
explain the selective vulnerability in the various Qn-expansion diseases. In all cases,
the mutated Qn domain is expressed throughout the brain. Therefore, the selective
vulnerability must reside in a toxic gain of function that somehow involves the non-
mutated part of the protein (Cummings and Zoghbi, 2001; Zoghbi and Orr, 2009).

Many excellent reviews and discussions on possible mechanisms contribut-
ing to Qn-expansion diseases have been published (e.g., Gatchel and Zoghbi,
2005; Di Prospero and Fischbeck, 2005; Pearson et al., 2005). Possible mecha-
nisms are discussed below. Because much of the work on Qn-expansion diseases
has been directed to HD, much of the following discussion is heavily weighted
toward HD.

4.1 Toxic Protein Aggregates

A characteristic feature of all the Qn-expansion diseases is the presence of insolu-
ble protein aggregates (inclusion bodies) in the affected brain regions. Some authors
have suggested that these insoluble aggregates are toxic and thereby contribute to the
disease process (e.g., Bates, 2003). However, other studies indicate that the insol-
uble aggregates per se may not be toxic (e.g., Saudou et al., 1998; Kuemmerle
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et al., 1999; Kaytor et al., 2004; Mitra et al., 2009), and that their concentrations
do not necessarily correlate with damaged regions of the brain. The insoluble pro-
tein aggregates may represent the end-stage of a cascade of previous events that
relate more directly to toxicity than the aggregates themselves (Ross and Poirier,
2004). Nevertheless, an understanding of the mechanism of aggregate formation
may provide clues as to pathological mechanisms.

Two theories have been proposed concerning the origin of aggregates in the
Qn-expansion diseases. The first was put forward by Max Perutz and is known as
the “polar zipper hypothesis” (e.g., Perutz and Windle, 2001). Proteins/polypeptides
containing Qn domains in vitro form hydrogen bonds that link the glutaminyl side
chains of the Qn domain to the peptide backbone in an adjacent protein/polypeptide
resulting in highly ordered β-pleated sheets that are often extremely insoluble.
β-Pleated sheets occur in bacteria overexpressing proteins containing Qn domains
(Scherzinger et al., 1999). However, the aggregates in HD brain appear to be less
ordered (Karpuj et al., 1999).

The second theory involves the action of the enzyme family transglutaminases
(TGs). Qn domains are excellent substrates of TGs (Kahlem et al., 1998; Cooper
et al., 2002), which catalyze calcium-dependent protein cross-linking between glu-
taminyl (Q) and lysyl (K) residues. Often, but not always, such cross-linked proteins
are insoluble. In HD mice lacking TG 2 (the major TG in brain; also known as tissue
TG) (R6/2 TGase 2–/–) exhibit as many, and possibly more, insoluble inclusions in
the brain than their R/6 TGase 2+/+ littermates (Mastroberardino et al., 2002). The
R6/2 TGase 2–/– mice live longer than the R6/2 TGase 2+/+ mice, suggesting that
insoluble aggregates are not the only toxic manifestation of Qn domains. The finding
also suggests that TG 2 may not be responsible for most of the aggregate formation
in HD mouse brain. It should be noted, however, that the brain also contains TGs
1 and 3 and possibly other TGs that may also contribute to protein cross-linking
(Zainelli et al., 2005). A possible explanation for the findings of increased insolu-
ble cerebral proteinaceous aggregates in the R6/2 TGase 2–/– mice compared to the
R6/2 TGase 2+/+ mice relates to the work of Lai et al. (2004). These authors found
that a thioredoxin fusion protein containing a Q62 polypeptide has a tendency in
vitro to aggregate into insoluble polymers. However, this aggregation was arrested
by TG2, which cross-linked the Q62 fusion protein into soluble high-Mr polymers.
TG2-catalyzed conversion of the Q62 fusion protein into soluble aggregates was
decreased in the presence of amine substrates (Lai et al., 2004). The authors sug-
gested that TGs may contribute to the pathogenicity of mutant Htt by catalyzing the
formation of toxic, soluble Qn-containing fragments.

Most probably, the aggregates in the Qn-expansion disease are formed by a
combination of (a) noncovalent ordered interactions (polar zippers), (b) noncova-
lent interactions of disordered misfolded proteins, and (c) covalent modifications
(TG-catalyzed cross-linking).

We suggest the following mechanism implicating TGs in the neuropathology of
HD and other Q-expansion diseases. The cross-linking activity of brain TGs is nor-
mally very low or quiescent in vivo. However, with aging calcium dysregulation
begins to occur (Foster and Kumar, 2002) and inherent TG activity is increased
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(Park et al., 1999). Both factors will lead to increased protein cross-linking in the
aging brain. Misfolded mutant Htt has a tendency with time to generate insolu-
ble protein aggregates. However, activation of TG competes with this process, such
that a threshold is reached later in life in which toxic soluble, cross-linked mutant
Htt fragments begin to accumulate. With time, excessive removal of “normal”
Qn-containing protein, including transcription factors through both noncovalent
interactions and covalent cross-linking may occur. Possibly, protein synthesis can
keep up with “lost” proteins early in life, but with aging the process of replen-
ishment may be less efficient. This would lead to loss of function through loss of
biologically active Qn-containing proteins.

4.2 Disrupted Proteasome Function

The aggregates in each of the Qn-expansion diseases (except in the case of SCA6)
are immunopositive for ubiquitin (reviewed by Cummings and Zoghbi, 2000). In
addition, the aggregates often contain parts of the proteasome machinery and chap-
erones (reviewed by Cooper et al., 2002). The possibility therefore exists that the
ubiquitin proteasome pathway is disrupted in HD and other Qn-expansion diseases
(Cooper et al., 2002; Mandrusiak et al., 2003; Wang et al., 2008). Clogging of the
proteasome might occur if the aggregates contain polar zippers or TG-catalyzed
cross-links that cannot be “unzipped.” Clogging of proteasomes could prevent the
removal of damaged and misfolded proteins. Such proteins, including those contain-
ing the expanded Qn domain, might therefore accumulate and exert toxicity, perhaps
by interacting aberrantly with other proteins/polypeptides. In support of this hypoth-
esis, interference with the ubiquitin-tagging pathway, or interference of clearance
by the proteasome machinery, either singly or in combination would be expected to
increase the toxicity of mutant Htt in cell culture (Saudou et al., 1998). Moreover,
SCA1 transgenic mice, with a block in the ubiquitin pathway, had markedly fewer
intranuclear aggregates, but markedly worse SCA1 pathology (Cummings et al.,
1998; Cummings and Zoghbi, 2001).

Inasmuch as chaperones help fold proteins into their “correct” configurations,
one might infer that chaperones would help in lessening the toxicity associated
with misfolded proteins containing Qn expansions (Cummings and Zoghbi, 2000).
Indeed, there is some evidence that this is the case both for cell culture mod-
els of Qn-expansion diseases and for a Drosophila retina model of HD (reviewed
by Cummings and Zoghbi, 2002). However, chaperones do not appear to miti-
gate disease phenotype in at least one animal model of a Qn-expansion disease
(Helmlinger et al., 2004). As in human SCA7, transgenic SCA7 mice develop
retinopathy. Helmlinger et al. (2004) developed transgenic mice, which specifically
overexpress Hsp70 and HDJ2 along with the Qn-containing protein. Although coex-
pression prevented aggregate formation in a cell model it did not prevent either
neuronal toxicity or aggregate formation in intact mice. Moreover, protein aggre-
gates in SCA7 mice contained cleaved mutant ataxin-7, whereas in the transfected
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cells the aggregates contained full-length ataxin-7. Thus, the possibility that dis-
rupted proteasome dysfunction contributes to the neuropathology of Qn-expansion
diseases remains controversial. Moreover, in vitro-generated Qn aggregates failed
to inhibit purified proteasomes, whereas filamentous Htt aggregates isolated from
mouse brain resulted in inhibition (Ortega et al., 2007). Perhaps formation of inclu-
sion bodies is a protective mechanism to remove potentially harmful aggregates
from solution (Mitra et al., 2009). However, this mechanism may eventually fail in
HD brain. Indeed the activity of the proteasome machinery is significantly lower in
postmortem HD brain tissue (Ortega et al., 2007).

Macroautophagy (sometimes more simply referred to as autophagy) is an addi-
tional mechanism for degrading damaged or misfolded cellular proteins (Renna
et al., 2010). It has been suggested that autophagy may be especially useful in
degrading mutant Htt-containing fragments (Renna et al., 2010). If this hypothesis
is correct then small molecule stimulators of autophagy (e.g., rapamycin, rilmeni-
dine) might be useful in treating HD and other Qn-expansion diseases (Renna et al.,
2010; Rose et al., 2010). In this regard, rilmenidine may be especially efficacious as
it has a long clinical safety use (Rose et al., 2010).

4.3 Interference with Gene Expression

Many transcription factors, such as CBP (CREB binding protein) and TBP (TATA
binding protein), contain Qn domains (Perutz et al., 1994; Schaffar et al., 2004),
which may assist in the assembly of the transcriptosome. Therefore, it is conceivable
that the pathological gain of function in Qn-expansion diseases is due at least in part
to aberrant interaction among the mutated protein and various transcription factors
(e.g., Sugars and Rubinsztein, 2003; Li and Li, 2004). Indeed, proteins containing
aberrant Qn domains have been shown to interact with various transcription factors
including CREB, CBP, TAFμ130, SP1, and TP53, some of which have been shown
to be present in the protein aggregates in affected brain regions (Gatchel and Zoghbi,
2005). Moreover, one of the Qn-expansion diseases is due to a mutation within a
transcription factor itself (TBP in SCA17; Table 2). In the case of HD, N-terminal
fragments of mutated Htt (containing the expanded Qn domain) accumulate in the
nucleus (Zainelli et al., 2003), apparently as a result of interference with the nuclear
export machinery (Cornett et al., 2005). Moreover, nuclear-targeting of mutant Htt
fragments produces a Huntington-disease-like phenotype in HD transgenic mice
(Schilling et al., 2004). Thus, it is possible that one of the toxic effects of expanded
Qn domains is the alteration of transcription factor interactions (e.g., Schaffar et al.,
2004). It has been shown that mutant Htt binds to CBP and p53. The latter protein
regulates transcription of various mitochondrial proteins (Sawa, 2001).

Wild-type, but not mutant Htt, stimulates transcription of brain-derived neu-
rotrophic factor (BDNF), and neuronal restrictive silencer element (NRSE) is the
target of wild-type Htt activity on the BDNF promoter II (Zuccato et al., 2003).
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Moreover, it was shown that mutant Htt in a mouse model of HD facilitates CRE-
dependent transcription (Obrietan and Hoyt, 2004). Thus, mutated Htt may cause
either increases (Obrietan and Hoyt, 2004) or decreases (Zuccato et al., 2003)
in transcriptional regulation. Such alterations may contribute to the pathologi-
cal response in HD and other CAG-expansion diseases. A particularly intriguing
Qn-containing protein is PQBP-1, which binds to both Qn expansions and to brain-
specific transcription factor Brn-2 (Waragai et al., 1999). Thus, aberrant interactions
between an expanded Qn domain and PQBP-1 may, in turn, result in aberrant
transcription of Brn-2 and neuropathology.

Glutamine-rich transcription factor Sp1 is readily cross-linked by TG 2 (Han and
Park, 2000). Inasmuch as some TG 2 is present in the nucleus, and Qn domains
are excellent substrates, it is possible that TGs may modulate the activity of at least
some transcription factors in vivo. Because TG activity is increased in HD brain, and
because the expanded Qn domain of Htt is an excellent TG substrate, the possibility
exists that TGs play a critical role in altered transcription level and properties in
Qn-expansion diseases.

Recent work has suggested that REST [RE1 (repressor element 1)-silencing tran-
scription factor] function is disrupted in HD brain (Bithell et al., 2009). As discussed
by Bithell et al. (2009), REST is a master regulator of many neuronal genes, includ-
ing BDNF. In addition, recent work suggests that REST regulates transcription of
regulatory miRNAs (microRNAs), many of which are involved in neuronal protein
expression. Thus, mutant Htt not only appears to directly dysregulate target genes of
REST, but also to indirectly dysregulate neuronal transcription (Bithell et al., 2009).

Polyalanine (An) expansions also give rise to disease phenotypes (Section 5).
In eight of these diseases, the expansion is in a transcription factor and the dis-
ease phenotype is evident at birth. If transcription factor dysfunction contributes
to Qn-expansion diseases, then a hypothesis explaining the disease phenotype must
account for the fact that the disease phenotype is present at birth in the An-expansion
diseases, but is typically adult onset in Qn-expansion diseases.

4.4 Interference with Mitochondrial Function

Marked interference with mitochondrial function is a feature of HD brain (Browne
and Beal, 2004; Browne et al., 1997; Browne, 2008; Nicholls, 2009; Reddy et al.,
2009; Quintanilla and Johnson, 2009; Su et al., 2010). For example, Browne et al.
(1997) showed that citrate synthase-corrected complex II–III activity is markedly
reduced in both HD caudate (–29%) and putamen (–67%), and complex IV specific
activity is reduced in HD putamen (–62%). Tabrizi et al. (1999) reported that aconi-
tase specific activity is reduced to 8, 27, and 52% of control activities in HD caudate,
putamen, and cerebral cortex, respectively. Tabrizi et al. (2000) also reported that
aconitase and complex IV activities are decreased in the striatum of 12-wk HD
transgenic (R6/2) mice, and complex IV activity is decreased in cerebral cortex. As
noted previously for human HD, oxidative stress indicators (increased inducible NO
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synthase and nitrotyrosine) were detected in brains of HD-transgenic mice (Tabrizi
et al., 2000). Deficits in energy metabolism in human HD brain also occur in human
HD muscle. Thus, Lodi et al. (2000) demonstrated by means of in vivo magnetic
resonance spectroscopy (MRS) a decreased ATP/(PCr + Pi) ratio in skeletal muscle
of HD patients. During recovery from exercise the maximal rate of ATP synthesis
was decreased by 44% in symptomatic patients and by 35% in presymptomatic HD
carriers compared to controls (Lodi et al., 2000). Gårseth et al. (2000) reported small
but significant decreases in lactate and citrate in the CSF of HD patients as assessed
by MRS. Dietary supplementation with 2% creatine significantly improved survival
and improved symptoms in HD-transgenic mouse models, possibly through redress
in part of the energy deficits (Andreassen et al., 2001).

Panov et al. (2002) reported that lymphoblast mitochondria from patients with
HD have a lower membrane potential and depolarize at lower calcium loads than
do mitochondria from controls. These authors also showed a defect in brain mito-
chondria similar to those isolated from HD-transgenic mice. This defect preceded
behavioral and pathological abnormalities. Panov et al. (2003) also showed that GST
(glutathione S-transferase) constructs with a pathological-length Qn insert induced
a small but significant reduction in membrane potential (State 4) of mitochondria
isolated from normal rat liver and normal human lymphoblasts. With succes-
sive increments of Ca2+ aliquots, mitochondria exposed to pathological-length Qn

domains depolarized much earlier and to a greater extent than did mitochondria
exposed to nonpathological constructs (Panov et al., 2003). The striatum is particu-
larly (“selectively”) vulnerable in HD, and mitochondria isolated from striatum of
rat brain may be more susceptible to the Ca2+-induced permeability transition (PT)
than are cortical mitochondria. The susceptibility of striatal mitochondria has been
demonstrated by measurements of depolarization, swelling, Ca2+ uptake, reactive
oxygen species, and respiration (Brustovetsky et al., 2003).

For a recent review of mitochondrial calcium function and dysfunction in
neurodegenerative diseases (including HD) see Nicholls (2009).

4.5 Aberrant Caspase Activity

Several studies have shown that cystamine is beneficial in mouse models of HD
(e.g., Karpuj et al., 2002; Dedeoglu et al., 2002; Bailey and Johnson, 2006; Van
Raamsdonk et al., 2005). In one study, brain aggregates were reduced by cystamine
treatment in the HD mice (Dedeoglu et al., 2002). Cystamine is an in vitro inhibitor
of Ca2+-dependent TGs and is an inhibitor of caspases in cells in culture (Lesort
et al., 2003). Some studies have suggested a role for caspases in HD and that inhi-
bition of these enzymes may be beneficial in HD mouse models (e.g., Ona et al.,
1999; Chen et al., 2000; Lesort et al., 2003). Caspase activity has also been impli-
cated in SCA-3 (Shoesmith Berke et al., 2004). Because caspases contain a crucial
cysteine residue at the active site they are expected to be sensitive to inhibition by
cystamine through disulfide interchange reactions (Lesort et al., 2003). However,
cystamine does not accumulate to any great extent in the brains of mice treated with
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pharmacological levels of cystamine (Pinto et al., 2005). Moreover, the magnitude
of the protective effect of cystamine is similar in R6/2 TGase 2+/+ mice to that in
R6/2 TGase 2–/– mice (Bailey and Johnson, 2006). Thus, the mechanism by which
cystamine exerts its beneficial effects in the intact HD transgenic mice, especially
in regard to caspase and TG activity, must await further study.

Nevertheless, recent evidence does suggest a possible pivotal role for caspases
in HD neuropathology. For example, there is some evidence that certain prote-
olytic fragments generated from Htt are neurotoxic (Ratovitski et al., 2009, and
references cited therein). Htt undergoes proteolysis by calpains and caspases at
the N-terminus between amino acid residues 460 and 470 (Ratovitski et al., 2009).
Evidently the proteolytic cleavage is heterogeneous. Htt can be phosphorylated at
serine-421 (S421) by the prosurvival signaling kinases Akt and SGY (Warby et al.,
2009). Interestingly, within the brain, phosphorylation of Htt is lowest in the stria-
tum. Caspase 6-cleavage of Htt at amino acid 586 appears to be a crucial factor in
Htt neurotoxicity (Warby et al., 2009). Phosphorylation of Htt reduces the nuclear
accumulation of caspase-6-generated Htt fragments by reducing caspase-6 cleav-
age. Inasmuch as different cells contain different complements of calpains, caspases,
and phosphorylation/dephosphorylation machinery, it is possible that production of
toxic fragments will be cell-specific (Ratovitski et al., 2009; Warby et al., 2009) and
may explain in part the remarkable selectivity of different neuronal populations in
the various Qn-expansion diseases.

4.6 Increased Excitotoxicity/Oxidative Stress

Quinolinate has been known for more than 25 years to produce HD-like pathol-
ogy in rodents (e.g., Beal et al., 1986). Thus, it has been suggested that the genetic
defect in HD may result in heightened neuronal susceptibility to excitotoxic injury.
Guidetti et al. (2004) have shown that the levels of quinolinate (an endogenous
neuroactive metabolite of the kynurenine pathway of tryptophan metabolism) and
3-hydroxykynurenate (a free radical generator and additional metabolite of the
kynurenine pathway) are elevated three- to fourfold in low-grade HD brain (grade
0/1) in the neocortex and neostriatum, but not in the cerebellum. In contrast, lev-
els of these compounds tended to decrease in HD brain in advanced grades (grades
2–4). NAD(P)H oxidase has been suggested to contribute to neurotoxicity in an
excitotoxic/pro-oxidant model of HD in rats (intrastriatal injection of quinolinate)
(Maldonado et al., 2010)

Calcineurin is a calcium-dependent serine/threonine phosphatase involved in the
regulation of glutamate receptor signaling (Xifró et al., 2009). It has been sug-
gested that reduction of calcineurin A (the catalytic subunit of the calcineurin
heterodimer) activity may contribute to the pathophysiology of HD (Xifró et al.,
2009). Some evidence suggests that the excitoxicity associated with overstimulation
of the N-methyl-D-aspartate receptor (NMDAR) is associated with the pathogenesis
of HD (Milnerwood et al., 2010, and references cited therein). Milnerwood et al.
(2010) cite evidence that synaptic NMDAR transmission drives neuroprotective



342 A.J.L. Cooper and J.P. Blass

gene expression, whereas extrasynaptic gene expression promotes cell death. The
authors suggest that elevated extrasynaptic NMDAR activity may contribute to the
neurodegeneration of HD.

4.7 Defects in Axonal Transport

Several authors have provided evidence that pathological-length Qn repeats promote
aberrant protein interactions that cause defects in axonal transport (Gunawardena
and Goldstein, 2005; Smith et al., 2009; Schweitzer et al., 2009; Wu et al.,
2010). Gunawardena and Goldstein (2005) have aptly described the phenomenon as
“deadly traffic jams along the neuronal highway.” These jams would be particularly
troublesome in long-narrow caliber axons.

4.8 Integration of Mechanisms

Any theory that attempts to unify all the competing mechanisms that have been
proposed to account for the toxicity of expanded Qn domains must account for
the following observations: (1) Qn-expansion diseases typically become manifest
in adulthood, and (2) different brain regions are selectively vulnerable in the various
Qn-expansion diseases despite widespread expression of mutated protein throughout
the brain and body. Evidently, proteins containing pathological-length Qn expan-
sions exhibit normal (or near normal) biological functions early in life. Typically,
only in adulthood does a pathological gain in function become prominent. This sit-
uation contrasts dramatically with the An-expansion diseases, where pathology is
evident at birth, and disruption of normal protein function is present even in utero
(Section 5).

It is now becoming clear that differences in disease phenotype among the dif-
ferent Qn-expansion diseases are not only dictated by the length of n, but also in
part by the intrinsic function of the disease-causing mutation (Gatchel and Zoghbi,
2005). For example, modifications outside the Qn domain, such as phosphorylation
of ataxin-1 at a crucial serine residue (Emamian et al., 2003) and SUMOylation of
Htt (Steffan et al., 2004) are important determinants of toxicity. Moreover, Boat
(brother of ataxin-1) was shown to interact with ataxin-1 at multiple sites, and
altered expression of Boat in Purkinje cells may contribute to the neurodegeneration
in SCA1 (Mizutani et al., 2005). Differences in susceptibility to TG-catalyzed cross-
linking among the various mutated Qn-containing proteins may also contribute to
the selectivity.

A summary of many of the pathological mechanisms postulated to occur in Qn-
expansion diseases and how they might be interrelated is shown in Fig. 2 (Steps
1–8). The Qn expansion causes aberrant protein conformation, which in turn leads
to altered Ca2+ homeostasis (1), mitochondrial dysfunction (2), altered energy
metabolism (3), and excitoxicity/oxidative stress (4). The protein containing the
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Fig. 2 Proposed pathological responses in polyglutamine (Qn)-expansion diseases. Pathological
responses include (1) altered calcium homeostasis, (2) mitochondrial dysfunction, (3) altered
energy metabolism, (4) excitoxicity, (5) altered transciptio/translation, (6) stalling of axonal trans-
port, (7) proteasome malfunction, and (8) removal of essential proteins/factors in insoluble protein
aggregates (formed via non-covalent and/or covalent cross linking). For a more detailed discus-
sion of the various pathological responses see the text. K, lysine residue; Q, glutamine residue;
Ub, ubiquitin. The figure is adapted from Gatchel and Zoghbi (2005) but with considerable
modification
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Qn expansion is subjected to proteolytic cleavage. The fragment containing the
Qn expansion may enter the nucleus where it interferes with transcriptional regu-
lation. This interference can lead to altered RNA metabolism and altered protein
synthesis (5). The intact protein containing the Qn expansion, or a protein frag-
ment containing the Qn expansion, may interact noncovalently with other proteins
to form aggregates. Aggregate formation may also occur via TG-catalyzed cross-
linking. Insoluble aggregates per se may be relatively harmless, but may indirectly
be harmful by sequestering essential proteins. Soluble aggregates may cause stalling
of axonal transport (6), clogging of the proteasome machinery (7), and excessive
removal of essential proteins (8). Note that the magnitude of the various patholog-
ical responses may vary among the different Qn-expansion diseases, as a result, in
part, of the properties of the part of the protein that does not contain the Qn expan-
sion. This variability might explain in part the selective vulnerability associated with
the various Qn-expansion diseases.

4.9 Therapeutic Strategies

Given the wide range of toxic mechanisms postulated to occur in Qn-expansion dis-
eases, it is perhaps not surprising that a wide range of strategies to treat such diseases
has been considered. For recent reviews see for example, Bauer and Nukina (2009),
Ross and Shoulson (2009), and Spindler et al. (2009). As discussed by Ross and
Shoulson (2009) possible strategies for treatment of HD include (a) use of anti-
sense oligonucleotides/SiRNA to target the mutant Htt, (b) alteration of the Htt
protein posttranslationally (by, e.g., phosphorylation, acetylation, SUMOylation,
proteolytic cleavage), (c) bolstering chaperones and the proteasome machinery as
a defenses against abnormal proteins, (d) countering abnormal transcription with
histone deacetylase inhibitors or by stimulation of relevant gene products such as
BDNF, and (e) enhancing energy metabolism/mitochondrial function with creatine
and Coenzyme Q10. Presumably such approaches may be generally useful in other
Qn-expansion diseases in adddition to HD. In respect to the last-mentioned strategy,
Coenzyme Q10 has proved effective in mouse models of HD. Some human studies
have been conducted with Coenzyme Q10 but more studies are needed (Spindler
et al., 2009).

5 Diseases Due to a Coding Trinucleotide
Expansion—Polyalanine (An)-Expansion Diseases

5.1 General Description

Much of the following discussion on An-expansion diseases is from excellent
reviews by Brown and Brown (2004) and Messaed and Rouleau (2009). Nine dis-
eases are currently known to be associated with an expansion of an An domain in
the affected protein (Table 3). Synpolydactyly type II (SPD), cleidocranial dysplasia
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Table 3 An-expansion diseases

Disease Gene Affected Protein An Expansion

Synpolydactyly type II (SPD) HOXD13 Transcription factor (15 → 22–29)
Cleidocranial dysplasia (CCD) RUNX2 (CBFA1) Transcription factor (17 → 27)
Oculopharyngeal muscular

dystrophy (OPMD)
PABPN1 Polyadenylate-binding

protein
(10 → 11–17)

Holoprosencephaly (HPE5) ZIC2 Transcription factor (15 → 25)
Hand–foot–genital syndrome

(HFGS)
HOXA13 Transcription factor (Tract 1; 14 → 22)

(Tract 2; 12 → 18)
(Tract 3; 18 →

24–30)
Blepharophimosis, ptosis, and

epicanthus inversus (BPES)
FOXL2 Transcription factor (14 → 22–24)

X-linked mental retardation with
hypopituitarism (XH)

(MRX)
SOX3

Transcription factor (15 → 26)

X-linked infantile spasm syndrome
(ISSX; West syndrome, WS)
Partington syndrome (PRTS)

X-linked lissencephaly with
ambiguous genitalia (XLAG)

X-linked mental retardation 36 and
54 (MRX)

ARX Transcription factor (Tract 1; 16 → 23)
(Tract 2; 12 →
20)

Congenital central hypoventilation
syndrome (CCHS) Ondine’s
curse

PMX2B
(PHOX2B)

Transcription factor (20 → 25–33)

Modified from Brown and Brown (2004) and Messaed and Rouleau (2009).

(CCD), oculopharyngeal muscular dystrophy (OPMD), hand–foot–genital syn-
drome (HFGS), and blepharophimosis, ptosis, and epicanthus inversus (BPES) are
inherited in an autosomal dominant fashion. Holoprosencephaly (HPE) is a severe
developmental disease resulting in death in infancy and the causative mutation
presumably arises de novo. Congenital central hypoventilation syndrome (CCHS;
Ondine curse) cases also appear to be due to spontaneous mutations. Two An-
expansion diseases are X-linked. A mutation in the SOX3 gene, giving rise to
sex-linked mental retardation (MRX) with growth hormone deficiency, has been
described in one large family (Brown and Brown, 2004). An-Expansion mutations
can occur in two different tracts in the expressed protein of the ARX gene, giv-
ing rise to nonsyndromic MRX and two syndromic conditions (X-linked infantile
spasm syndrome (ISSX) also known as West syndrome (WS) and Partington syn-
drome (PRTS)). An-Expansion mutations can occur in three different tracts in the
HOXA13 gene.

5.2 Comparison of An-Expansion Diseases
with Qn-Expansion Diseases

Although expansions in Qn and An domains give rise to disease phenotypes, the
characteristics of the diseases are remarkably dissimilar. (1) The number of alanine
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repeats is fixed at a single value in the normal (nonmutated) An-containing pro-
teins. This number varies between 10 and 18, depending on the protein (Table 3).
In contrast, although 10–20 glutamine repeats occur in normal (nonmutated) Qn-
containing proteins, the number is not fixed and may vary considerably in the
nonmutated protein among the general population. (2) The expansions giving rise to
disease phenotypes in the An-expansion diseases are small, with a maximum exten-
sion of 14 alanine residues. In contrast, pathological extensions of Qn domains can
be much larger (compare Tables 2 and 3). (3) The An expansion appears to be meiot-
ically and somatically stable, whereas this is not the case with the Qn expansions. (4)
The disease phenotypes of the Qn-expansion diseases are almost entirely restricted
to neural tissue. In contrast, although severe neurological defects can occur in the
An-expansion diseases, all give rise to extraneural disease phenotypes. (5) The An-
expansion disease phenotypes are present at birth whereas the onset of Qn-expansion
diseases is typically in adulthood. (6) The diseases caused by Qn expansions are
thought to arise predominantly (but not exclusively) via a toxic gain of function
(Section 5). By contrast, the diseases caused by An expansions are thought to arise
by loss of function, gain of function, or by a dominant-negative effect, depending on
the disease. (7) All but one of the An-expansion diseases is associated directly with
a transcription factor, whereas only one of the Qn-expansion diseases is associated
directly with a known transcription factor. (8) The Qn-expansion disease proteins are
usually coded in the genome by “perfect” runs of CAG repeats, and thus slippage
mechanisms may account for the meiotic and somatic instabilities of the Qn domain.
On the other hand, the An-expansion disease proteins are usually coded by “imper-
fect” runs containing any of the four triplets that code for alanine (CCG, GCA,
GCT, and GCC). These differences suggest that Qn tracts are easier to expand than
An tracts (Messaed and Rouleau, 2009). Increases in the length of the An domain
are thought to arise through unequal recombination. However, slippage may occur
in BPES and possibly ISSX (Brown and Brown, 2004).

6 Possible Mechanisms Contributing
to An-Expansion Diseases

Disruption of transcription factor function will result in altered expression of down-
stream target genes and in abnormal development (Brown and Brown, 2004). But
how are the functions of the transcription factors altered by an An expansion? It has
been suggested that the An domains may (1) have a role in repression, (2) act as
spacers or hinges, or (3) play important roles in correct protein–protein interactions
and protein–DNA interactions during transcription. Clearly much work needs to be
done to elucidate the pathological mechanisms associated with An-expansion dis-
eases (reviewed by Brown and Brown, 2004). An polypeptides form fibrils through
β-sheet formation (Nguyen and Hall, 2004), and it has been shown that transfection
of cells with an An expansion in the aristaless-related homeobox (ARX) protein
results in nuclear protein aggregation, filamentous nuclear inclusions, and increased
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cell death (Nasrallah et al., 2004). It was suggested that nuclear protein aggregation
likely underlies the pathogenesis of diseases caused by An expansions in the ARX
protein and possibly in other An-containing transcription factors (Nasrallah et al.,
2004). The aggregates themselves may be toxic or toxicity may result in loss of
transcription function.

A summary of possible mechanisms relating to the An-expansion diseases has
been provided by Messaed and Rouleau (2009). These authors point out that in
mammalian cells chaperones bind to misfolded proteins produced during transla-
tion or later during their aggregation (in the cytosol and/or nuclear compartment) in
an attempt to correctly refold/solubilize them. Unsuccessful folding and prolonged
association of the misfolded protein with chaperones can stimulate ubiquitination
and targeting to the proteasome machinery. However, in the An-expansion dis-
eases this quality-control mechanism may be insufficient. Depending on the disease,
aggregates may form in the cytosol, nucleus, or both compartments. These aggre-
gates may sequester essential cellular factors preventing them from reaching their
targets. In the case of SPD, HFGS, and XH the essential cellular factor recruited
into the deposits may be the wild-type An-containing protein which may lead
to a dominant-negative effect. In addition, expanded An tracts may result in (a)
decreased binding efficiency to DNA, (b) pathological competition with the wild-
type protein for binding to DNA, or (c) interfere with cofactors important for DNA
binding of the wild-type protein.

As summarized by Messaed and Rouleau (2009), in order to delineate the cellular
pathways involved in pathogenesis, future work requires an understanding of the
mechanism relating to (a) the selective tissue vulnerability of expanded An domains,
(b) the nature of the targeted genes, and (c) the nature of the targeted interaction
partners.

7 Other Nucleotide-Expansion Diseases

Examples of diseases caused by tetra- and pentanucleotide expansions are known.
For example, myotonic dystrophy type 2 (DM2) is caused by a tetranucleotide
expansion in the affected gene on chromosome 19q13.3 (Meola and Moxley, 2004;
Lee and Cooper, 2009). In this case, an expanded CCTG repeat occurs in intron 1 of
the zinc finger 9 (ZFN9) gene (Meola and Moxley, 2004). The expanded repeat
in transcribed RNA forms nuclear inclusions in both types of myotonic dystro-
phy (Mankodi, 2008). The aberrrant RNA sequesters muscleblind-like protein 1
(MBNL1), a splice regulator protein, and depletes MBNL1 in the nucleus. Loss
of MBNL1 results in altered splicing of ClC-1 (chloride channel 1) mRNA, inactive
ClC-1 and loss of chloride conductance in muscle membranes (Mankodi, 2008).

Spinocerebellar ataxia 10 (SCA 10) is caused by a pentanucleotide (ATTCT)
expansion in intron 9 of the SCA10 (ATXN10) gene at chromosome 22q13 encoding
an approximately 55-kd protein (ataxin 10) of unknown function (Matsuura et al.,
2000; Wakamiya et al., 2006). In experiments with HEK293 cells in culture, it was
shown that the SCA10 protein is essential for neuronal survival (März et al., 2004).
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Spinocerebellar ataxia type 31 is associated with pentanucleotide repeat
[(TGGAA)n] expansion at chromosme 16g22.1 in introns of the TK2 (thymidine
kinase) and BEAN (brain expressed, associated with Nedd4) genes (Sato et al.,
2009). The length of the pentanucleotide repeat correlates inversely with the age
of onset of symptoms. Purkinje cells in the cerebellum are affected. Aberrant RNA
foci may result in disrupted splicing factors in these cells (Sato et al., 2009).

A mutation in the junctophilin-3 (JPH3) gene at chromosome 16q24.3 in a vari-
ably spliced exon gives rise to an autosomal dominantly inherited disease that is
clinically indistinguishable from HD (Margolis et al., 2004). The disease appears to
be restricted largely, if not exclusively, to families of African descent, and is referred
to as Huntington disease-like 2 (HDL2) (Margolis et al., 2004; Rodrigues et al.,
2008). The mutation results from an expansion in a CTG/CAG repeat. Although
the expansion is in an exon (exon 2A), junctophilin-3 protein containing a domain
with increased Q residues does not appear to be produced, suggesting that the
pathological phenotype is due to loss of JPH3 protein and/or to aberrant RNA
processing/metabolism (Margolis et al., 2004).

8 Conclusions

Before the advent of modern genetic analyses, precise classification of many inher-
ited neurodegenerative diseases, especially among those that exhibited closely
related disease phenotypes, was difficult and often resulted in contentious debate.
Beginning in the early 1990s, the genetic basis of a large number of inherited
neurodegenerative diseases began to be elucidated. Many of the inherited neurode-
generative diseases were found to be caused by trinucleotide expansions either in a
noncoding region of the affected gene or in a coding region (Qn-expansion diseases;
An-expansion diseases). This genetic underpinning has essentially brought order out
of anarchy and chaos (Margolis, 2002). Many inherited neurodegenerative diseases
can now be classified on a rational nosology based on well-defined genetic muta-
tions. An-expansions in mutated proteins result in neurological damage, but these
diseases are invariably accompanied by cranial and somatic morphological defects.
There are still many inherited neurodegenerative diseases for which a mutation has
not yet been described. For example, there are many inherited SCAs whose genetic
basis has not yet been determined. Possibly, at least some of these neurodegenera-
tive diseases will be shown to be due to nucleotide-expansions. It will be interesting
to determine whether some forms of purely psychiatric disease also can be firmly
assigned to trinucleotide-expansion diseases.

Among the trinucleotide-expansion diseases, it is still not yet clear what accounts
for the sensitivity of nervous tissue to the altered genotype and what accounts for
the selective vulnerability of different brain regions among the various diseases.
However, some progress is being made. A feature of the Qn-expansion diseases and
An-expansion diseases, is the presence of (or propensity to form) aberrant protein
deposits in affected brain regions. In this respect, these diseases are similar to the
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more common neurodegenerative diseases such as PD and AD, which also exhibit
aberrant protein deposits. To what extent these deposits play a role in the pathogen-
esis of AD and PD is still under debate. An understanding of the origin of aberrant
protein deposits in the Qn- and An-expansion diseases may suggest possible ther-
apeutic strategies not only for these diseases, but also for the more common AD
and PD.
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CNS Cytokines

Jane Kasten-Jolly and David A. Lawrence

Abstract The first description of the inflammatory process appeared as early as the
first century AD. Among the first things learned about inflammation is that vascu-
lar permeability is increased and leukocyte extravasation occurs. It is now realized
that the central nervous system (CNS) is not as devoid of immune cell entrance
as once believed and that neuroinflammation can occur. Even in the CNS absence
of peripheral immune cells, cytokines from the periphery can influence glial acti-
vation in response to endogenous or exogenous stresses. Activated glial cells will
secrete proinflammatory cytokines among other factors. The presence of relatively
high concentrations of proinflammatory cytokines, such as IL-1, IL-6, and TNF-α, in
the brain produces sickness behavior. Neuroinflammation is not only caused by viral
or bacterial infection, but can also be the result of physical injury or neurodegener-
ative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis,
and cerebral palsy. This chronic neuroinflammation is associated with a number of
common factors; most notable among these is the increased concentration of proin-
flammatory cytokines. In addition to the ones listed above, others have been detected
including, IL-18, IL-33, and HMGB1. Although TGF-β1 functions most often as an
anti-inflammatory cytokine, under certain circumstances it, too, can have proinflam-
matory activity. Other common features of neuroinflammation include increased
production of reactive oxygen species (ROS) and nitric oxide (NO), which func-
tion to increase apoptosis and promote neuronal damage. Activation of astrocytes
is detected by elevated GFAP expression. Activated astrocytes promote chemokine
expression causing permeability of the blood–brain barrier (BBB), thus allowing
leukocytes to enter the brain tissue. The heavy metal Pb accumulates in glial cells
and in doing so can potentiate cytokine and glutamate-mediated increases in the
BBB permeability, as well as cause chronic glial cell activation. Pb’s ability to
promote gliosis and deficiencies in chaperone protein function has prompted a com-
parison of Pb toxicity to certain neurodegenerative disorders, such as Alzheimer’s
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and Parkinson’s diseases. Toxicity of other metals, such as, Al, Cu, Cd, Zn, and Hg
was also found to share common features with Alzheimer’s disease.

Keywords Alzheimer’s disease · Astrocytes · Blood–brain barrier (BBB) · Central
nervous system (CNS) · Chaperone proteins · Chemokines · Cytokines · Heavy met-
als · Inflammation · Lead (Pb) · Map kinases · Microglia · Neurons · Nitric oxide
(NO) · Reactive oxygen species (ROS)
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1 Introduction

The inflammatory process was first described by Cornelius Celsus in the first cen-
tury AD when he listed the four signs of inflammation: rubor et tumor cum calore
et dolore (redness and swelling with heat and pain). A fifth sign of inflammation
has been annexed to the cardinal four, functio laesa (disruption of normal func-
tion); although its origin has been questioned (Rather, 1971), it is the disturbance of
normal function that may lead to the potential pathological consequences of inflam-
mation. The original four signs of inflammation were based mainly on peripheral
skin observations. It wasn’t until the nineteenth and twentieth centuries that the cel-
lular aspects of inflammation began to be understood. Julius Cohnheim observed
that in the inflamed tissue there was increased vasodilation along with vascular per-
meability and leukocyte extravasation. Sir Thomas Lewis noted that the vascular
changes were mediated by chemical substances present in serum (Cotran et al.,
1994). It was not realized until much later that inflammation could occur in hid-
den places, such as the central nervous system (CNS) and that inflammation could
be initiated by endogenous or exogenous agents. With advancements in molecu-
lar and cellular methodology during the past few decades, much has been learned
about the mediators of the inflammation process. Much of this knowledge has been
obtained through the study of disease-related inflammation (Sheng et al., 1996;
Akiyama et al., 2000; Combs et al., 2000; Cagnin et al., 2002; Rosales-Corral
et al., 2004; Eikekenboom et al., 2006; Shepherd et al., 2006; Zipp and Aktas, 2006;
Lassmann, 2007), injury, and animal models (Jafarian-Tehrani and Sternberg, 1999;
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Kielian and Hickey, 2000). Although inflammation usually has positive influences
in defense against pathogens, the processes can cause cellular damage and initiate
or exacerbate various pathologies, especially autoimmune diseases and neurobehav-
ioral diseases in susceptible humans and animals. Inflammation is closely associated
with oxidative stress, and chronic inflammation along with its accompanying oxi-
dant damage can lead to an acceleration of aging-related changes, which includes
cytotoxicity (Norris et al., 2005). The present chapter is restricted to discussion of
neuroinflammation, including information about the roles of cytokine, chemokines,
MAP kinases, glia, and reactive oxygen species. Closing paragraphs present a dis-
cussion of metal neurotoxicity, with emphasis on the immune- and neurotoxicant
lead (Pb), and the neuroinflammatory aspects of this toxicity.

1.1 Cytokines and Neuroinflammation

1.1.1 Interleukin (IL)-1, IL-6, and TNF-α

The proinflammatory cytokines, IL-6, IL-1β, and TNF-α, are associated with sick-
ness behavior and their levels increase in the CNS during viral or bacterial infections
(Quan et al., 1999; Pollmacher et al., 2002; Anisman, 2004; Dantzer et al., 2007;
2008). The sickness behavior paradigm of lethargy (malaise and lack of mobility),
loss of appetite and drinking, and altered body temperature (fever) is due to the sig-
nals of proinflammation cytokines delivered to the hypothalamus (Woiciechowsky
et al., 1999). The brain monitors peripheral innate immune responses by several
methods (Quan and Banks, 2007). One pathway involves activation of afferent
nerves by locally produced cytokines and pathogen-associated molecular patterns
(PAMPs), such as vagal nerve, during an abdominal infection. A second mech-
anism involves the humoral (antibody-mediated) pathway and Toll-like receptors
(TLRs) located on macrophage-like cells residing in the circumventricular organs
and the choroid plexus (Rao et al., 2005). These cells respond to immune complexes
of antibody:antigen and PAMPs by producing proinflammatory cytokines. These
cytokines then enter the brain by volume diffusion. Third, the overflow of cytokines
in the systemic circulation can gain entry to the brain via cytokine transporters
at the blood–brain barrier (Matyszak, 1998; Karman et al., 2006; Niederkorn,
2006). A fourth pathway involves activation of IL-1 receptors located on perivas-
cular macrophages and endothelial cells of brain venules resulting in production
of prostaglandin E2 by upregulation of cyclooxygenase (COX) enzyme synthe-
sis (Pasinetti, 1998; Lacroix and Rivest, 1998; Li et al., 2001; Konsman et al.,
2004; Sapirstein et al., 2005; Inoue et al., 2006). These prostaglandins will dif-
fuse to the brain targets where they will alter the setpoint for various regulatory
processes (Dantzer et al., 2007). However, it was noted that not all of the effects
of prostaglandin E2 were proinflammatory (Zhang and Rivest, 2001). Increased
amounts of proinflammatory cytokines from the periphery lead to production of
proinflammatory cytokines by microglia cells within the brain (Eikelenboom and
Veerhuis., 1996; Hull et al., 1996; Becher et al., 2000; Calvo et al., 2005; Dantzer
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et al., 2007). The visible response to the increased proinflammatory cytokines in the
brain is sickness behavior (Horai et al., 1998; Cartmell et al., 1999).

Administration of LPS systemically to mice increases expression, both mRNA
and protein, of IL-1β and other proinflammatory cytokines in the brain (Iwai et al.,
2006). Also, administration of IL-1β or TNF-α to mice resulted in decreased motor
activity, social withdrawal, reduced food and water intake, increased slow-wave
sleep, and altered cognition (Campbell et al., 2007; Dantzer et al., 2008). IL-6
has been associated with fever and hippocampus associated cognitive impairment
(Smith et al., 2007). Moreover, overexpression of IL-6 in a transgenic mouse model
has demonstrated that increased IL-6 will cause astrocytosis and neurodegenera-
tion (Campbell et al., 1993; Steffensen et al., 1994; Jafarian-Tehrani and Sternberg,
1999). IL-6 signals through the JAK1/STAT3 pathway, and it has been shown
that LPS-induced plasma levels of IL-6 cause nuclear translocation of the tran-
scription factor STAT3 in certain brain structures including the area postrema, the
vascular organs of the lamina terminalis, and the subfornical organ, as well as the
hypothalamic supraoptic nucleus (Rummel et al., 2004).

The predominant CNS source of IL-6 is the activated astrocyte. IL-6 expression
in astrocytes is regulated by proinflammatory factors (such as IL-1β and TNF-α),
neurotransmitters, and second messengers (Van Wagoner and Benveniste, 1999).
Expression of the proinflammatory cytokines is promoted through activation of
NF-kB which is present in inactive form in the cytoplasm by its association with
IκBα (Yabe et al., 2005). Proinflammatory cytokines may downregulate their own
expression by increasing the expression of IκB or decreasing its proteolysis in cer-
tain cells of the brain (Laflamme and Rivest, 1999). Inhibition of NF-κB activation
and inhibition of IκBα degradation occurs via a mechanism involving α-melanocyte
stimulating hormone (αMSH), which is a pro-opiomelanocortin (POMC) derivative
(Ichiyama et al., 1999).

In the CNS, increases in proinflammatory cytokines lead to increased forma-
tion of reactive oxygen species (ROS) and upregulation of genes that produce toxic
products, such as reactive nitrogen species (RNS) (Floyd, 1999; Patel et al., 2003).
Synthesis of nitric oxide (NO), can be induced in the brain by mediators of inflam-
mation present in the cerebrospinal fluid (Kong et al., 2000). Several reports have
indicated that IL-1 can induce nitric oxide synthase (iNOS) gene expression and
thus promote the formation of NO through regulation by interleukin-1 converting
enzyme (ICE, caspase-1) (Jones et al., 2005; Juttler et al., 2007). In summary, acti-
vated glial cells release NO through increased expression of iNOS, upregulated by
the presence of high concentrations of proinflammatory cytokines (Kifle et al., 1996;
Stasiolek et al., 2000). Formation of ROS and NRS moieties can alter protein, DNA,
RNA, lipid, and carbohydrate structures. Thus, unregulated inflammation can cul-
minate in pathological impairment of normal functions; with disregulated oxidative
stress, inhibition of mitochrondrial respiration can occur resulting in cytotoxicity
(Brown and Bal-Price, 2003). It has been found that nitric oxide production can be
inhibited by β- and γ-melanocortin in the mouse brain (Muceniece et al., 2004).
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1.1.2 IL-18

Data from human and rodent studies have shown that IL-18 (previously referred
to as interferon-gamma inducing factor, IGIF) expression can be associated with
neuropathology in infection, autoimmune disease, ischemia, or closed head injury
(Felderhoff-Mueser et al., 2005). IL-18 is a member of the IL-1 family of cytokines.
Like IL-1β, it is synthesized as an inactive precursor protein (24 kDa) that is
subsequently cleaved to the active18 kDa protein by caspase-1(ICE) (Nhan et al.,
2006). The active form of IL-18 induces signal transduction by binding to its
receptor, IL-18α/β receptor (IL1Rrp/IL1RAPL) expressed by diverse cell types,
including neurons and glia cells. In adult brains of untreated BALB/c mice, IL-18 is
constitutively the most highly expressed cytokine (Fig. 1). In the developing brain,
IL-18 has been found in association with hypoxic-ischemic brain injury. Mice
lacking IL-18 expression had smaller infarct size and a lesser extent of subcortical
white matter injury (Felderhoff-Mueser et al., 2005). In a hypoxia model, IL-18
was associated with increased neuronal apoptosis. Therefore, IL-18 can exhibit
neuropathology with respect to neuroinflammation and neurodegeneration. In
experiments performed on the rat dentate gyrus, in vitro, IL-18 was found to

Fig. 1 Constitutive expression of CNS cytokines. RNA from brains of male and female BALB/c
mouse pups at 21 days of age was quantified by real-time RT-PCR. Whole-brain RNA was isolated
using the Qiagen Lipid Tissue Midi RNA isolation kit. Brains were pooled by gender within each
litter. Cytokine mRNA quantity was normalized to endogenous control GAPDH. Each bar repre-
sents mean ± S.D. for N of 3 L. All of the cytokine levels significantly (p < 0.05) differed from
each other except the following: IL-6:TNFα, IL-13:IFNγ, and TNFα:IFNγ; LT-β from IL-5, IL-6,
IL-11, IL-13, TNFα, and IFNγ
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impair the induction of long-term-potentiation (LTP) in NMDA receptor expressing
neurons (Curran and O’Connor, 2001). Increased levels of IL-18 have now been
reported to be present in the neurodegenerative disorder, Alzheimer’s disease (AD)
(Bossu et al., 2008) and have been found associated with stress activation of brain
microglia (Sugama et al., 2007).

Human and mouse studies have shown that IL-1β and IL-18 are key players in
fundamental inflammatory processes that increase during aging (Bodles and Barger,
2004; Joseph et al., 2005; Dinarello, 2006). Further evidence of the role of IL-18 in
neuroinflammation is the finding that caspase-1 deficiency reduces inflammation-
mediated transcription in the brain (Mastronardi et al., 2007). In normal brain
tissue caspase-1 is activated within molecular platforms called inflammasomes. Key
proteins of inflammasomes are proteins containing caspase recruitment domains
(CARDS), or pyrin domains (PYDS). CARD-only proteins are termed COPs and
PYD-only proteins are termed POPs. These proteins modulate the inflammasome
activity in response to pathogen infection and tissue destruction (Stehlik and
Dorfleutner, 2007). For example, caspase-1 activation can be blocked by COPs,
Iceberg, and COP1/Pseudo-ICE, with a CARD similar in sequence to caspase-1.
Expression of Iceberg in monocytes abrogates the secretion of IL-1β in response
to LPS stimulation. Because IL-18 is constitutively expressed at a high level in the
adult mouse brain, it is possible that the noncleaved IL-18 proprotein may have a
completely different function in the brain than the cleaved inflammation associated
form. Such a precedent exists with IL-16. The uncleaved whole IL-16 molecule has
neuronal activity (Kurschner and Yuzaki, 1999), whereas the truncated (cleaved by
caspase-3) secreted IL-16 is a chemoattractant factor for CD4+ cells (Cruikshank
et al., 2000).

1.1.3 Transforming Growth Factor-Beta (TGF-β)

Reports on the activities of transforming growth factor-β1 (TGFβ1) in the CNS have
been conflicting in nature with some investigators describing anti-inflammatory
effects and others indicating that TGFβ1 can have proinflammatory actions. Normal
CNS concentrations of TGFβ1 are relatively high (Fig. 1), and it has been shown
to be a potent neurotrophic cytokine with immunosuppressive properties. In the
healthy adult brain, TGFβ1 inhibits proliferation of microglial and astrocyte cells. It
has been suggested that the relatively high levels of TGFβ1 in the normal adult brain
have some important function(s) in maintenance of neuronal growth and neuroim-
mune function. Mice deficient in TGFβ1 displayed neuroinflammation throughout
the brain, excessive astrogliosis, and proliferating microglia displaying a phago-
cytic, deramified, and abnormally activated phenotype (Makwana et al., 2007).
Ultrastructural features of TGFβ1 deficiency showed focal blockade of axonal trans-
port, perinodal damming of axonal organelles, focal demyelination, and myelin
debris in granule-rich phagocytic microglia cells. In a ME7 model of a murine
prion disease, removal of TGFβ1 resulted in severe cerebral inflammation, increased
expression of iNOS, and acute neuronal death in diseased animals. The data indicate
a critical role for TFGβ1 in regulation of microglia cells and minimization of brain
inflammation in order to avoid further brain tissue damage (Boche et al., 2006).
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However, TGFβ1 can also behave in a proinflammatory manner (Grammas
and Ovase, 2002). With murine autoimmune encephalomyelitis, overproduction of
TGFβ1 locally in the brain led to a more severe and earlier onset of the disease with
increased infiltration of mononuclear cells in the brain (Luo et al., 2007). TGFβ1
along with IL-6 are known to promote IL-17 producing T cells, which enhance
inflammation. The encephalomyelitis model seems to indicate that the brain will
signal to the immune system in certain circumstances as was suggested by increased
plasma levels of IL-1, IL-6, and α-1-antichymotrypsin in patients with Alzheimer’s
disease (Licastro et al., 2000). In astrocyte cultures, TGFβ1, in the presence of
LPS and IFN-γ, increased the expression of iNOS (NOS-2). It was determined that
the increase in NOS-2 was due to enhanced proliferation of astrocytes producing
NOS-2 (Hamby et al., 2006). In a mouse model for cerebral palsy, it was observed
that neuronal-derived TGFβ1 mediated in some way the IL-9/mast cell interaction
and exacerbated excitotoxicity in newborn mice (Patkai et al., 2001; Mesples et al.,
2005). Further evidence of TGFβ1 involvement in mast cell activity comes from in
vitro experiments with the mast cell line, D-36. In D-36 cultures, addition of TGFβ1
increased media histamine concentrations. It is the increase in the extracellular his-
tamine concentrations that promotes the excitotoxic neuronal damage in cerebral
palsy. Therefore, in neonatal cerebral palsy, the action of TGFβ1 on mast cells is
proinflammatory in nature.

1.1.4 IL-33 and HMGB1

The cytokines IL-33 and HMGB1 are both present in the brain at relatively high
concentration within the nucleus of cells, astrocytes in the case of IL-33 and neu-
rons and oligo-dendrocyte–like cells for HMGB1(Hudson et al., 2008; Kim et al.,
2008). HMGB1 is a nonhistone DNA-binding protein of the nucleoprotein complex,
and it regulates TNF-α expression. HMGB1 also is able to increase proinflamma-
tory cytokine levels by enhancing the signaling of TLR9 (Ivanov et al., 2007). Both
proinflammatory proteins are released into the cytoplasm and subsequently secreted
upon stimulation through signals stemming from infection or injury. Like IL-1β

and IL-18, IL-33 is released by inflammasome activation of caspase-1 (Martinon
et al., 2007); the central components of inflammasomes detect cytosolic microbial
components and “danger” signals, such as ATP and toxins. Glial and astrocyte-
enhanced cultures stimulated with PAMPs and ATP produced elevated levels of
IL-1β and IL-33 in the culture media. Culture supernatants from these astrocyte
enhanced cultures were able to induce the secretion of IL-6, IL-13, and MCP-
1 from a mast cell line, MC/9 in culture, in a similar fashion to the addition
of IL-33 alone (Hudson et al., 2008). It was also noted that IL-33 levels were
increased in brains of mice infected with Theiler’s murine encephalomyelitis virus
with the promotion of various innate immune effectors on glial cells (Hudson et al.,
2008).

The proinflammatory effects of HMGB1 were studied in the postischemic brain
of rats. Ischemia injury in the brain proceeds with excitotoxicity-induced acute neu-
ronal cell death in the ischemic core, followed by delayed damage to the penumbra
(Lee et al., 2000b). It was observed that HMGB1 was immediately released into
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the extracellular space after ischemia and subsequently promoted neuroinflamma-
tion by microglial activation. Downregulation of HMGB1 expression via (sh) RNA
decreased infarct size, microglial activation, and proinflammatory marker induc-
tion (Kim et al., 2006). After 1 h of middle cerebral artery occlusion HMGB1 was
immediately translocated from the neuron nuclei into the extracellular space during
the excitotoxicity-induced acute damage process. About two days after reperfusion
HMGB1 was notably induced in activated microglia, astrocytes, and microvas-
cular structures. This induction of HMGB1 expression was sustained for several
days. The results emphasize the paracrine and autocrine function of HMGB1 in the
postischemic brain (Kim et al., 2008).

1.1.5 IL-10 and IL-13

Interleukins 10 and 13 are anti-inflammatory, because they inhibit IL-1β bioac-
tivity. IL-10 is capable of directly blocking IL-1 expression (Wong et al., 1997),
whereas IL-13 induces the synthesis of the IL-1 receptor antagonist (IL-1ra). These
interleukins are considered CD4+ T-helper subset type 2 (Th2) and function to coun-
teract the effects of CD4+ T-helper subset type 1 (Th1) proinflammatory activities
by inhibiting their action (Martino et al., 2000). In general, cytokines produced
by each Th cell subset are inhibitory for the opposite subset. Production of these
Th2 cytokines during neuroinflammation may be through the appearance of brain-
derived heat shock protein (HSP) peptide complexes in the periphery (Galazka et al.,
2006). HSP-induced downregulation of immune responses may involve the genera-
tion of immune cell subsets, such as Ag-specific Th2 cells, which secrete cytokines
such as IL-10 that inhibit the proinflammatory process. Inhibition of inflamma-
tory processes by IL-10 and IL-13 has been connected with ceramide production.
Proinflammatory cytokines promote ceramide production through hydrolysis of
plasma membrane sphingomyelin in brain cells. Ceramide plays an important role
in coordinating cellular responses to stress, growth suppression, and apoptosis. The
anti-inflammatory cytokines IL-10 and IL-13 are capable of blocking ceramide pro-
duction through a mechanism involving activation of phosphatidylinositol-3-kinase.
By blocking ceramide production IL-10 and IL-13 are able to inhibit apoptosis
caused by the actions of proinflammatory cytokines, IL-1 and TNF-α (Pahan et al.,
2000).

1.2 MAP Kinases and Stress Kinases

Stress stimuli come in a variety of forms, such as deprivation of trophic factors,
ionizing radiation, free radicals (e.g., peroxynitrite), hypoxia, ischemia, heat shock,
lipid second messengers (such as ceramide) (Singh et al., 1998), TNF-α, or Fas-
ligand. In the brain, neurons are especially susceptible to stress stimuli; these stimuli
lead to activation of intracellular pathways that either promote apoptosis or defense-
adaptation mechanisms. At least three such pathways have been well studied. These
pathways lead to the activation of c-Jun N-terminal kinases (JNKs), p38 kinases,
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Fig. 2 Outline of signal transduction pathways for stress kinases, JNKs, and for Map kinases,
p38 and ERK1/2. Shown is the cross-talk between the various pathways. Map kinases MEKK1/2/3
activate the MAP kinases MKK4 (JNKK1) and MKK7 (JNKK2). MKK4/7 can also be activated by
the Map kinases TAK1 and Ask1, which can also activate MKK3/6 of the p38 s pathway. Activation
of Rap-GTP is capable of activating the p38 and ERK1/2 pathways. As indicated, ceramide can
activate the p38 pathway, and, also, has been suggested to play a role in activation of the ERK1/2
pathway

and extracellular signal-regulated kinases (ERKs) (Mielke and Herdegen, 2000).
The cascades for these pathways are overlapping in places, as shown in Fig. 2. Note
that each pathway can be stimulated by TNF-α and both p38 and JNK cascades can
be stimulated by ceramide. Activation of JNK or p38 kinases leads to upregulation
or activation of a number of factors, including transcription factors (ATF2, CREB,
ELK1, MEF2C, CHOP), translation factors (eIF4E), MAP kinase-associated pro-
teins, heat shock protein (Hsp27), and phosphorylation of tau at position Ser422
(phosphorylated in neurofibrillary tangles, but not in normal brain). Stimulation of
the JNK pathway leads to inactivation of NFAT4, glucocorticoid receptor, and Bcl2,
an inhibitor of apoptosis.

Involvement of JNK, p38, and ERK1/2 MAP kinases in neurodegeneration is fur-
ther supported by studies demonstrating that inhibition of their activation reduces
brain inflammation and neuron damage (Barone et al., 2001; Angstwurm et al.,
2004). Moreover, modulation of the purinergic P2X7 receptor by oxidized ATP
(oxATP), during LPS activation of microglia, led to attenuation of inflammatory
mediators, resulting in inactivation of the p38 and NF-kB pathways and increased
neuronal survival (Ferrari et al., 2006; Choi et al., 2007). Neuronal damage via
the p38 pathway can be modulated by the tyrosine phosphatase SHP2 (Chong
et al., 2003). It was observed that neurons from mice deficient in SHP2 showed
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more increased susceptibility to damage by NO exposure than did their wild-type
counterparts. SHP2 function was necessary for neuronal survival only after the
induction of signal transduction pathways, such as p38, that would culminate in
the cell’s death. In the absence of p38 activation, SHP2 remained dormant. In astro-
cytes, the regulation of IL-6 expression is dependent upon activation of the p38 and
ERK1/2 pathways and is modulated by oncostatin M (Van Wagoner et al., 2000).
Aberrant expression of ICAM-1 on astrocytes during neuroinflammation will also
result in the expression of IL-6 and other proinflammatory cytokines, IL-1α and
IL-1β, through activation of the p38 and ERK1/2 pathways (Lee et al., 2000a).

1.3 Microglia Cells

Microglial activation can enhance neuronal damage (Cunningham et al., 2002;
Rivest, 2003). Injection of LPS into the hippocampus, cortex, and substantia nigra of
rat brain resulted in high neurodegeneration in the substantia nigra, suggesting that
this brain region possesses a high percentage of microglia cells (Kim et al., 2000);
experiments described later support this distribution. In response to environmental
toxins and certain endogenous proteins, microglia will become overactivated and
will release reactive oxygen species (ROS), which can then cause neuronal dam-
age (Block et al., 2007; Galea et al., 2003). Microglia cells are phagocytes and
express a diverse array of membrane receptors (PRRs) that recognize a wide variety
of molecular determinates, including phosphatidylserine (Li et al., 2003). Microglia
receptors are constitutively expressed and bind PAMPS during the innate immune
response. Prominent among these PRRs are the TLRs, of which microglia express
TLRs 1–9. Other PRRs on microglia, include scavenger receptors, MAC1 recep-
tors, and complexes of these receptors. The detection of extracellular superoxide is
a common result of ligand recognition by PRRs and oxidative stress is a primary
cause of neurodegeneration (Kifle et al., 1996).

Through the activity of NADPH oxidase microglia become a robust source of free
radicals, both extracellular and intracellular. Intracellular ROS provide a mechanism
for proinflammatory signaling. Microglial NADPH oxidase has been associated
with a number of neurodegenerative disorders, including Alzheimer’s disease and
Parkinson’s disease (Kalaria et al., 1996). In addition to the extracellular effects,
NADPH oxidase is crucial to microglia intracellular signaling. As an example,
gangliosides activate microglia through a protein kinase C and NADPH oxidase
mechanism (Farooqui et al., 2007). Gangliosides are able to bind to microglia cells
via TLR4 (Jou et al., 2006). This binding signals through a JAK/STAT pathway and
induces phosphorylation of STAT1 and STAT3 (Kim et al., 2002; Lee et al., 2005),
which factors upregulate transcription of inflammation-associated genes (Heese
et al., 1998; Pinteaux et al., 2007), such as iNOS, ICAM-1, and MCP-1.

In general, the higher the intracellular ROS concentration is, the higher the
inflammatory response will be in the microglia cells. However, prolonged ROS
exposure will induce cumulative events harmful to the cell’s survival, such as
lipid peroxidation and modification of proteins. Eventually the activated microglia
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will become apoptotic themselves, an outcome that was shown to be enhanced
by expression of B cell translocation gene-1 (BTG1) (Lee et al., 2003). Although
the deleterious effects of activated and proliferating microglia cells are clear, there
is some experimental evidence that suggests a protective role for these cells. In
a mouse model for cerebral ischemia, ablation of proliferating resident microglia
resulted in increased proinflammatory cytokine expression, increased infarct size,
and a 2.7-fold increase in apoptotic cells, mostly neurons (Lalancette-Hebert et al.,
2007).

1.4 Astrocytes

Astrocytes, the most abundant glial cell of the CNS, can display innate immune
responses triggered by a variety of insults (Xiao and Link, 1999; Becher et al.,
2006). These cells possess a wide array of receptors including TLRs, nucleotide-
binding oligomerization domains, double-stranded RNA-dependent protein kinase,
scavenger receptors, mannose receptor, and components of the complement system
(Bugno et al., 1999; Farina et al., 2007). Upon stimulation through one or more of
these receptors, the cell will produce cytokines, IL-6, TGFβ, IFNβ, GM-CSF, BAFF,
IL-1β, and TNF; chemokines, CCL2, CCL5, CCL20, CXCL-10, CXCL12, CXCL1,
CXCL2, and CX3CL1; and neurotrophic factors, NGF, CNTF, BDNF, VEGF, IGF1,
and LIF (Croll et al., 2004; Cotman et al., 2007; Krasowska-Zoladek et al., 2007).
Two types of events result from astrocyte stimulation: activation of neighboring
cells and further amplification of local innate immune responses and modification
of BBB permeability and attraction of immune cells from the blood into the neu-
ral tissue (Fitch and Silver, 1997; Andjelkovic and Pachter, 1998; Anthony et al.,
1998; Stolp et al., 2005; Milner and Campbell, 2006; Andras et al., 2008). The lat-
ter activity is mediated by chemokine expression (Mennicken et al., 1999; Biber
et al., 2002; Hsieh et al., 2006). Migration of the astrocytes themselves can be
induced by the presence of stromal cell-derived factor-1 (SDF-1) and upregulation
of astrocyte CXCR4 by IL-6 plus cAMP (Odemis et al., 2002). Further evidence
of the innate immune response activity of astrocytes stems from the cell’s abil-
ity to secrete active α1-antichymotrypsin (Kanemaru et al., 1996) and expression
of syncytin-1 in MS leading to the upregulation of iNOS through an old astrocyte
specifically induced substance (OASIS) mechanism (Antony et al., 2007). Protective
effects of astrocytes are mediated through the cell’s ability to release purines,
adenosine and adenosine triphosphate, and guanosine and guanosine triphosphate
(Ciccarelli et al., 2001).

1.5 Neuroinflammatory Aspects of Pb Toxicity

1.5.1 Pb Effects on Glial Cells

In the CNS, Pb accumulates preferentially in glial cells rather than in neurons
(Tiffany-Castiglioni et al., 1989; Lindahl et al., 1999), and Pb’s presence in these
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cells produces activities that are proinflammatory in nature. As indicated earlier,
astrocytes may have a role in increasing permeability of the BBB during inflam-
mation. It was observed that Pb was able to potentiate proinflammatory cytokine
and glutamate-mediated increases in permeability of the BBB in mice (Dyatlov
et al., 1998). In a study performed on Pb-exposed young (15–30-day-old) rats, it
was observed that increased Pb levels resulted in astrocyte cell activation and pro-
liferation, as indicated by elevated GFAP and S-100β in all brain regions examined
(Struzynska et al., 2007). Results also showed increased production of IL-6 in the
forebrain with a concomitant decrease in levels of the axonal markers synapsin-1
and synaptophysin. The study concluded that Pb caused chronic glial cell activation
with coexisting inflammatory and neurodegenerative features.

A more recent study using proton magnetic resonance to study the relative lev-
els of certain metabolites in human brain regions indicated that Pb increased the
myoinositol to creatine ratio (mI/Cr) in the hippocampus (Weisskopf et al., 2007).
An increased mI/Cr is a distinctive aspect of Alzheimer’s disease and is thought
to be indicative of gliosis. Therefore, the increased mI/Cr associated with increased
bone Pb levels in humans is also suggestive of a neuroinflammatory aspect to Pb tox-
icity. The study concluded that the glial effects observed might be the more sensitive
indicators of the adverse effects of cumulative Pb exposure and these changes are
similar to those seen in the early stages of Alzheimer’s disease. A further connection
between Pb activity and neurodegenerative diseases is the ability of Pb to produce
a deficiency in chaperone protein function which then compromises protein secre-
tion, exacerbates protein aggregation, and increases sensitivity to oxidative stress.
Alzheimer’s disease and Parkinson’s disease are characterized by a deficiency in the
function of the chaperone protein GRP78 (Bip, HSPA5). In the absence of a diseased
state GRP78 facilitates the maturation of the amyloid precursor protein and reduces
or prevents the formation of extracellular amyloid deposits. Pb binds to GRP78 and
can inhibit its function as a chaperone protein (White et al., 2007). Furthermore, Pb
exposure of rodents from pnd0-pnd20 gave a transient increase in amyloid precur-
sor protein mRNA synthesis (White et al., 2007). Therefore, Pb neurotoxicity shares
several features of neurodegenerative disorders.

1.5.2 Pb Effects on Cytokines in the CNS

It has been observed that exposure to the heavy metal, lead (Pb), can increase sus-
ceptibility to infectious agents (Lawrence, 1981). Moreover, neonatal Pb exposure
exacerbated sickness behavior in pups infected with Listeria monocytogenes; such
sickness behavior was documented as loss of appetite and drinking, decreased body-
weight gain, and lack of mobility (Dyatlov and Lawrence, 2002). These results
suggested that Pb might modulate expression of proinflammatory cytokines in the
brain.

Gene expression of 14 cytokines was measured by real-time RT-PCR in the
perfused brain tissue of male and female 21-day-old mouse pups. As shown ear-
lier, there are no significant differences in the expression levels between males and
females. Messenger RNA for IL-4, IL-10, and IL-12p40 was not detectable in the
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Fig. 3 Pb effect on expression of cytokines IL-6, TGF-β1, and IL-18 in the brain. Cytokine mRNA
from the brains of female and male mouse pups at pnd21 was quantified by real-time RT-PCR.
Whole-brain RNA was isolated using a Qiagen Lipid Tissue kit. Mouse pup brains from each
litter were pooled according to gender. All cytokine RNA quantitation results were normalized to
endogenous GAPDH. Each bar represents mean ± S.D. for an N of 3 L. Significance, indicated by
an asterisk, ∗, was determined by the Student’s t-test, p < 0.05. The p value for both female and
male IL-6 gene expression ±Pb is 0.056 and the p value for male TGF-β1 gene expression ±Pb
is 0.20 (Data for IL-6 and TGF-beta has been published in Kasten-Jolly et al., J. Biochem. Molec.
Toxicol. 2010)

brains of these pnd21 mouse pups. Among the most abundant cytokine transcripts
in the brain are those coding for IL-16, IL-15, IL-18, and TGF-β1. Exposure of the
mouse pups to 0.1 mM Pb acetate from gd8 to pnd21 via the dam’s drinking water
resulted in enhanced expression of IL-6 and TGF-β1 (Fig. 3). If Pb exposure was
increased to 0.5 mM an increase in expression of IL-18 in whole brain tissue was
observed for the female mouse pups at pnd21 (Fig. 3).

Associated with the upregulation of proinflammatory cytokine gene expres-
sion and generation of ROSs is the activation of stress kinases and MAP kinases.
Microarray data from whole-brain RNA of 0.1 mM Pb-exposed (gd8 to pnd21) and
unexposed control mice indicated upregulation of p38 and MAP kinases within the
p38 cascade, such as MAPKAPK-2 (Table 1). The microarray data are in agree-
ment with previous reports (Cordova et al., 2003; Leal et al., 2006) indicating that
Pb exposure induces activation of the p38 and ERK1/2 MAP kinase pathways. The
mechanism of Pb activation of these pathways is not yet completely understood, but
it may occur through the generation of ROSs.
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Table 1 Effect of Pb on gene expression of map kinasesa,d signalb ± S.D.

GeneBank ID Gene Control Pb p-valuec

NM_011951 Mapk1 12,119 ± 719 12,998 ± 1,083 0.15
NM_015806 Mapk6 1485 ± 107 1655 ± 73 0.04
BC024684 Mapk11(p38) 256 ± 32 358 ± 52 0.02
AF128892 Mapk14 3350 ± 173 3638 ± 171 0.06
BM240207 Map2k4 5412 ± 244 5894 ± 358 0.06
AW541674 Map2k7 1157 ± 77 1232 ± 69 0.14
AA929089 Map3k7 3832 ± 167 4152 ± 401 0.14
BF166991 Map4k2 500 ± 29 583 ± 80 0.08
BB734681 Map4k5 363 ± 50 490 ± 90 0.05
NM_016713 Map4k6 2589 ± 64 3086 ± 86 0.005
BG918951 Mapkapk2 783 ± 20 994 ± 91 0.009

aAffymetrix MG430A GeneChip data. The data represent mouse brain total RNA from female
mouse pups from 3 L of untreated control mice and 3 L of 0.1 mM Pb acetate (gd8 to pnd21)
treated experimental mice.
bSignal was normalized to the GAPDH signal on each respective GeneChip.
cStatistics were performed by Student’s t-test, significant at p < 0.05.
dTable has been published in Kasten-Jolly et al., J. Biochem. Molec. Toxicol, 2010.

One of the indicators of neuroinflammation or neurodegeneration is an increase
in GFAP expression due to astrocyte activation and proliferation (Hauss-Wegrzyniak
et al., 1998; Norris et al., 2005; O’Callaghan and Sriram, 2005; Pannu et al., 2005).
Because Pb exposure seemed to enhance gene expression of IL-6 and TGF-β1, it
was postulated that Pb might also increase the expression of GFAP. Both IL-6 and
TGF-β signaling are needed to promote transcription of the GFAP gene (Taga and
Fukuda, 2005). Microarray data for pnd21 female mouse pups exposed to 0.1 mM
Pb (gd8-pnd21) showed that Pb did significantly increase gene expression of GFAP
(Fig. 4), indicating that Pb may be promoting astrocyte activation.

As indicated above, αMSH has an anti-inflammatory effect in that it can inhibit
the degradation of IκBα; thereby blocking the activation of NFκB (a transcription
factor for several proinflammatory cytokines). αMSH is a product of the POMC1
gene, which also codes for several other peptide hormones. The microarray data
suggested that Pb could decrease POMC1 gene expression. Results obtained by real-
time RT-PCR supported this finding (Fig. 5). Shown here are POMC1 RNA levels
for untreated controls and Pb-treated females at pnd21 using two different concen-
trations of Pb, 0.1 and 0.5 mM. As indicated, Pb dampened POMC1 gene expression
at each concentration. Therefore, Pb may increase inflammation by decreasing the
expression of αMSH through downregulation of the POMC1 gene.

1.6 Neuroinflammatory Effects of Metals Other than Pb

Neurotoxicity of aluminum and copper are associated with the upregulation of
stress-related gene expression patterns. Whole human genome microarray data
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Fig. 4 Pb exposure enhances CNS expression of GFAP. Female BALB/c mice from 3 L treated or
untreated with 0.1 mM Pb acetate from gd8 to pd21 via the dam’s drinking water, were sacrificed
on day 21, and whole-brain RNA was isolated. GFAP expression was measured by Affymetrix
GeneChip (MG 430A). Signal for GFAP was normalized to the signal for GAPDH on the same
chip. Data were gathered from 3 control litters (distilled water) and 3 Pb-treated litters, that is, 6
GeneChips. The ∗ indicates a p < 0.05 for the difference in normalized signal between control and
Pb-treated female mice

Fig. 5 Pb effect on gene expression of POMC1. POMC1 mRNA from the brains of female mouse
pups at pnd21 was quantified by real-time RT-PCR. Whole-brain RNA was isolated using a Qiagen
Lipid Tissue kit. Female mouse pup brains from each litter were pooled during isolation of the
RNA. POMC1 transcript quantitation was normalized against endogenous GAPDH. Each bar rep-
resents the mean ± SEM for an N of 6 L for untreated controls and N = 3 L for each experimental
group
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indicated that aluminum exposure of human neural cells in culture resulted in
expression patterns similar to those seen in Alzheimer’s disease (Lukiw et al.,
2005). Seven of the genes found to be highly upregulated were proinflammatory
and were proapoptotic, such as NF-κB subunits, IL-1β precursor, cytosolic phos-
phlipase A2, cyclooxygenase-2, beta-amyloid precursor protein (APP), and DAXX.
Many of the genes upregulated by aluminum contained promoter binding sites for
NF-κB or stress-inducible transcription factors, such as HIF-1, thereby suggesting
a role for these two promoter binding factors in proinflammatory gene expression.
An association between Al-induced neurotoxicity and Alzheimer’s disease was fur-
ther supported by the finding that mice exposed to Al or Cu showed enhanced
oxidative stress and an accumulation of amyloid β peptides (Becaria et al., 2006).
Concomitant exposure of the mice to both metals, Al and Cu, produced a coopera-
tive effect on increasing APP levels. Another way of promoting neurodegeneration
and altered organ development is by modifying the transcription of genes. This can
be achieved by blocking transcription factor binding to the DNA. Sp1 is among the
transcription factors affected by metal toxicity. Pb, Zn, and Cd modulate the bind-
ing of Sp1 to its DNA target sequences. It was suggested that exposure to heavy
metals could alter developmental gene expression in the brain through their interfer-
ence with binding of Sp1 to its promoter sites (Zawia et al., 1998). A study of how
Pb and other heavy metals inhibit transcription factors, like Sp1, was performed
using synthetic peptides (Razmiafshari and Zawia, 2000). Here it was found that
Pb and other metals, Zn, Cd, and Hg, formed complexes with the peptides that
bound the double-stranded DNA with high affinity and did not allow Sp1 DNA-
binding. This inhibition of Sp1 DNA binding occurred in a manner dependent on the
metal/peptide complex concentration. Therefore, heavy metals can alter the activ-
ity of DNA binding proteins and ultimately alter their function in terms of gene
expression regulation.

2 Summary

Neuroinflammation can be initiated by CNS entrance of immune cells, peripherally
generated cytokines or cytokines produced by glial cells; neuroinflammation is char-
acterized by increased concentrations of proinflammatory cytokines, chemokines,
glial cell activation and proliferation, increased BBB permeability, and neuronal
damage. The heavy metal Pb produces neural toxicity that has a number of factors in
common with neuroinflammation, including increased GFAP levels, increased IL-6
expression, gliosis, increased BBB permeability, and decreased chaperone protein
function. Other metals produce neurotoxicity similar to Pb with parallels to features
of neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases.
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Neurochemistry of Autism

Timothy D. Folsom and S. Hossein Fatemi

Abstract Autism is a neurodevelopmental disorder characterized by presence of
social deficits, language abnormalities, stereotypies, and repetitive behavior. Brain
pathology is extensive, suggesting widespread dysfunction of neurotransmitter sys-
tems. Genetic, biochemical, and gene association studies have shown that a number
of neurotransmitters including serotonin, dopamine, oxytocin, GABA and gluta-
mate, and acetylcholine contribute to the pathology of autism. Pharmacological
treatment of autism has focused on reduction of symptoms and atypical antipsy-
chotics, antidepressants, mood stabilizers, and anticonvulsants have been shown to
successfully reduce many symptoms of autism. In this review we discuss the contri-
butions of neurotransmitter systems to the pathology of autism and pharmacological
treatment of autistic symptoms associated with neurochemical dysfunction.
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1 Introduction

Autism is a debilitating neurodevelopmental disorder with heritability of >90%
(Bailey et al., 1996) and characterized by presence of social deficits, language
abnormalities, stereotypies, and repetitive behavior (APA, 1994). There is perva-
sive brain pathology encompassing different neurotransmitters and brain proteins
(Bauman and Kemper, 1994, 2005; Acosta and Pearl, 2003; Palmen et al., 2004).
Biochemical reports show involvement of several genes and proteins involved with
neurotransmission implicating the GABAergic system (Blatt et al., 2001; Fatemi
et al., 2002a, 2009a, b; Fatemi, 2008), cholinergic system (Perry et al., 2001; Lee
et al., 2002), serotonergic system (Anderson, 2005), dopaminergic system (Gillberg
et al., 1983; Gillberg and Svennerholm, 1987; de Krom et al., 2008), and the
neuropeptide oxytocin (Waterhouse et al., 1996; Modahl et al., 1998) with the neu-
ropathology of autism. Pharmacotherapy has focused on reduction of symptoms of
autism including aggression, hyperactivity, self-injury, repetitive behavior, and anx-
iety. Antipsychotics, antidepressants, mood stabilizers, and anticonvulsants, among
other drugs have been shown to successfully reduce autistic symptoms. In the cur-
rent review, we examine the possible contributions of the serotonin, dopamine,
acetylcholine, GABA and glutamate, and oxytocin to the pathology of autism
and pharmacological treatment strategies that have shown efficacy in reducing
symptoms of autism.

2 Serotonin

Serotonin (5-hydroxytrypamine) is an indolamine that is derived from tryptophan.
A depletion in dietary tryptophan is known to lead to a worsening of autistic symp-
toms (McDougle et al., 1996a). Serotonin regulates a host of functions including
mood, body temperature, arousal, hormone release, and eating (reviewed by Berger
et al., 2009). In the mature brain, serotonin acts as a neurotransmitter, in the devel-
oping brain serotonin contributes to the development of serotonergic neurons and
brain regions targeted by serotonergic neurons such as the prefrontal cortex (PFC)
and hippocampus (Whitaker-Azmitia, 2001). Increased serotonin levels during early
development may lead to a number of consequences contributing to brain pathology
in autism (Whitaker-Azmita, 2005). Studies have shown that in utero exposure to
drugs such as cocaine, that increase serotonin levels, result in higher rates of autism
(Davis et al., 1992; Kramer et al., 1994). Conversely, low serotonin may also have
negative effects on development and pose a risk factor for autism. Studies using
an animal model have shown that when pregnant rats were treated with serotonin
depletors it led to altered hippocampal and cortical development (Butkevich et al.,
2003), abnormalities in levels of serotonin receptors in brain (Whitaker-Azmita
et al., 1987), and behavioral abnormalities including passive avoidance (Shemer
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et al., 1988). Moreover, a murine model of prenatal viral infection that results in
autistic-like behavior in offspring (Shi et al., 2003), has demonstrated that infec-
tion on embryonic day 16 (E16) and E18 which correspond to mid- and late second
trimester, respectively, results in reduced levels of serotonin in cerebella of exposed
offspring (Fatemi et al., 2008; Winter et al., 2008).

Hyperserotonemia has been a consistent finding in subjects with autism, which
may be due to activity of serotonin-associated platelet proteins (Hranilović et al.,
2008, 2009). Interestingly, 99% of blood serotonin is contained in platelets
(Anderson et al., 1987) and studies have shown that there is an approximate 50%
increase in blood-levels of serotonin in subjects with autism vs. controls (McBride
et al., 1998). Hypotheses for increased serotonin include increased synthesis of
serotonin by tryptophan hydroxylase (TPH1), increased uptake of serotonin into
platelets via serotonin transporters (5-HTT), diminished release of serotonin from
platelets via serotonin 2A receptor, and decreased breakdown of serotonin by
monoamine oxidase (MAOA) (Hranilovic et al., 2008). A study by Hranilovic
et al. (2008) identified polymorphisms of tryptophan hydroxylase and MAOA with
increased serum serotonin levels. Similarly, haplotype analysis has shown a signifi-
cant association between polymorphisms of TPH1 and increased serotonin in whole
blood (Cross et al., 2008).

The serotonin transporter gene 5-HTT (also known as SLC6A4) has been
the focus of much research as a potential candidate gene for autism (Cook and
Leventhal, 1996; Ozaki et al., 2003). 5-HTT modulates serotonergic neurotransmis-
sion by active reuptake of serotonin from the synaptic cleft (Amara and Pacholczyk,
1991). Of the over 20 polymorphisms of 5-HTT, there are two that are of interest
due to their functional effects: (1) 5-HTTLPR which has a deletion/insertion at the
5′-flanking regulatory region that results in a long variant (L) and a short variant (S)
(Heils et al., 1996). The short variant reduces the efficiency of the 5-HT gene pro-
moter and results in lower gene expression and serotonin uptake ability (Heils et al.,
1996); and (2) STin2 which has a variable number of tandem repeats in the second
intron and results in three common alleles: STin2.9, STin2.10, and STin2.12 indicat-
ing 9, 10, and 12 repeats, respectively (Lesch et al., 1996). A recent meta-analysis
of family-based and population-based association studies for 5-HTT found no sig-
nificant association between 5-HTTLPR and STin2 variants and autism (Huang and
Santangelo, 2008).

Selective serotonin reuptake inhibitors (SSRIs) inhibit the neuronal reuptake of
serotonin in the central nervous system and have shown mixed efficacy in the treat-
ment of autistic symptoms (Moore et al., 2004). A number of studies have shown
reductions in repetitive behaviors, lethargy, inappropriate speech, and improvements
in the ability to relate to others, cognition, language improvement with fluoxe-
tine (DeLong et al., 1998; Fatemi et al., 1998; Peral et al., 1999), fluvoxamine
(McDougle et al., 1996b), and sertraline (Steingard et al., 1997). However, other
studies have shown a lack of response with fluvoxamine (Martin et al., 2003) and
citalopram (Couturier and Nicolson, 2002).



386 T.D. Folsom and S.H. Fatemi

3 Dopamine

Dopamine (DA) is a catecholamine synthesized from the amino acid tyrosine
and is thought to affect a wide range of behaviors and functions including
cognition, motor function, selective attention, and brain-stimulation reward mecha-
nisms (Beninger and Banasikowski, 2008; Boulougouris and Tsaltas, 2008; Cools,
2008; Fox et al., 2008). Dopamine is produced when tyrosine is hydroxylated into
L-dihydroxyphenylalanine (L-DOPA), which is in turn converted to dopamine by
DOPA decarboxylase (DDC). In the brain several important dopamanergic systems
are of importance to autism: (1) the nigrostriatal system in which dopamanergic
axons project from the substantia nigra to the neostriatum (Carlson, 2001); (2) the
mesolimbic system in which dopamanergic axons project from the ventral tegmental
area to the nucleus accumbens, amygdala, and hippocampus (Carlson, 2001); and
(3) the mesocortical system in which dopamanergic axons project from the ventral
tegmental area to the prefrontal cortex (Carlson, 2001).

Despite the importance of these three systems on regulating a number of behav-
iors that are known to be impaired in autism, studies of DA levels in CSF, blood, and
urine in subjects with autism have been inconsistent. A study of plasma and urine
has revealed no differences in levels of DA or its metabolites homovanillic acid
(HVA) or 3,4-dihydroxyphenylacetic acid (DOPAC) in subjects with autism when
compared with controls (Minderaa et al., 1989). Two studies of HVA in CSF have
found elevated levels (Gillberg et al., 1983; Gillberg and Svennerholm, 1987), while
others have found no difference (Cohen et al., 1974, 1977; Winsberg et al., 1980;
Ross et al., 1985; Narayan et al., 1993). Despite these findings, antipsychotic drugs,
which generally function as dopamine blocking agents, have been found efficacious
in treatment of autistic symptoms such as repetitive stereotyped behaviors, hyperac-
tivity, and aggression (reviewed by Canitano and Scandurra, 2008; McDougle et al.,
2008; Posey et al., 2008).

Genetic studies have investigated linkages between enzymes responsible for the
production of dopamine (tyrosine hydroxylase and DDC) and with dopamine recep-
tors with autism. A study of 90 parent–offspring trios recruited in Europe found no
evidence of linkage disequilibrium between two polymorphisms of DDC and autism
(Lauritsen et al., 2002). Nor did they find linkage disequilibrium between haplotypes
of the variants and autism (Lauritsen et al., 2002). Three studies have similarly
found no link between tyrosine hydroxylase and autism (Martineau et al., 1994;
Comings et al., 1995; Philippe et al., 2002). Thus far, it does not appear as though
tyrosine hydroxylase or DDC are candidate genes for autism. Dopamine receptor D3
(DRD3) has also been investigated as a potential autism candidate gene. One study
of autistic children found no linkage between DRD3 and autism (Martineau et al.,
1994), however, in a more recent study a single nucleotide polymorphism (SNP)
for DRD3 was associated with autism (de Krom et al., 2008). As the DRD3 recep-
tor has been shown to be related to obsessive–compulsive behavior (Light et al.,
2006), and liability to side effects of antipsychotic medication (Campbell et al.,
1997), further study is needed to elucidate what role, if any, this receptor has in
autism.
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4 Acetylcholine

Acetylcholine (ACh) is a neurotransmitter found in both the central and periph-
eral nervous systems. In the peripheral nervous system, ACh activates muscles and
in the central nervous system ACh is a neuromodulator contributing to functions
including learning and memory (Kandel et al., 1995). Postmortem studies of sub-
jects with autism have revealed abnormalities in the basal forebrain of children and
adults with autism, with children having larger and more numerous cholinergic neu-
rons and adults having smaller and less numerous cholinergic neurons (Bauman and
Kemper, 1994). Cholinergic receptor (muscarinic and nicotinic) abnormalities have
also been identified in brains of subjects with autism (Perry et al., 2001; Lee et al.,
2002; Martin-Ruiz et al., 2004). Perry et al. (2001) found reduced [3H]Pirenzepine
binding to muscarinic M(1) receptors in the parietal cortex of subjects with autism
and reduced [3H]epibatidine binding to the α4 and β2 nicotinic receptor subunits
in both the frontal and parietal cortices (Perry et al., 2001). Moreover, immuno-
cytochemical analysis showed reduced levels of the α4 and β2 nicotinic receptor
subunits in the parietal cortex, verifying the binding studies (Perry et al., 2001).
Similarly, a separate study showed reduced [3H]epibatidine binding in the granule
cell, Purkinje, and molecular layers in cerebella of subjects with autism compared
with controls that was accompanied by significantly reduced α4 subunit protein
(Lee et al., 2002). In contrast, in the same regions, there was an increase in α-
bungarotoxin binding to the α7 subunit whereas there were no significant changes
in muscarinic receptor subunits (Lee et al., 2002). Finally, a study by Martin-
Ruiz et al. (2004) verified some of these earlier results by demonstrating reduced
[3H]epibatidine binding to α4 and β2 receptor subunits and reduced α4 subunit
mRNA in parietal cortex and increased α7 binding and reduced α4 subunit protein in
cerebellum.

Although studies have shown no differences in cholinergic enzyme mark-
ers acetylcholinesterase (Perry et al., 2001) or acetyltransferase (Perry et al.,
2001; Lee et al., 2002) activity in subjects with autism, acetylcholinesterase
inhibitors including donepezil, rivastigmine, and galantamine have shown some
promise in treating symptoms of autism. Interestingly, both donepezil and galan-
tamine are effective in improving prepulse inhibition of the acoustic startle
response in mice, suggesting that they may act as cognitive enhancers (Hohnadel
et al., 2007). A pilot study using donepezil to treat children and adolescents
with autism found that 50% of the subjects demonstrated significant improve-
ment in hyperactivity and irritability (Hardan and Handen, 2002). Treatment
with rivastigmine in a 12-week open-label study resulted in increases in expres-
sive speech and overall autistic behavior in subjects with autism (Chez et al.,
2004). Treatment with galantamine has been shown to increase verbal fluency
(Hertzman, 2003), improve emotional lability and inattention (Nicholson et al.,
2006), and reduce anger, social withdrawal, and parent-rated irritability (Nicholson
et al., 2006). These results suggest that inhibition of the breakdown of acetyl-
choline by acetylcholinesterase is efficacious in treating a number of symptoms of
autism.
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5 GABA and Glutamate

Glutamate is the primary excitatory transmitter substance in brain and spinal cord,
and gamma-aminobutyric acid (GABA) is responsible for the majority of inhibitory
neurotransmission in the brain (Lam et al., 2006; Carlson, 2001; Kandel et al.,
1995). There are few, if any, areas in the brain that are not affected by these two
substances (Lam et al., 2006; Carlson, 2001). Several reports have demonstrated
abnormalities involving the glutamatergic and GABAergic systems of subjects
with autism (Blatt et al., 2001; Dhossche et al., 2002; Fatemi, 2008; Fatemi
et al., 2009a, b).

Glutamic acid decarboxylase (GAD) is the rate-limiting enzyme that is respon-
sible for conversion of glutamate to GABA. In the adult brain, GAD exists in two
major isoforms: GAD 65 and GAD 67 kDa proteins (Erlander et al., 1991). GAD 65
is a membrane-bound protein largely localized to axon terminals and is involved in
vesicular synthesis of GABA (Laprade and Soghomonian, 1999). GAD 67 is a cyto-
plasmic protein primarily localized to interneurons and is involved in nonvesicular
GABA release (Reetz et al., 1991).

Our laboratory has demonstrated that brain levels of GAD 65 and 67 kDa proteins
were significantly decreased in cerebellum (GAD65) and parietal cortex (GAD67)
in subjects with autism (Fatemi et al., 2002a). Yip et al. (2007) reported a signif-
icant decrease in GAD67 mRNA in autistic cerebellum, confirming our previous
findings (Fatemi et al., 2002a). The major deficiencies in levels of GAD 65 and
67 kDa proteins in two important brain areas in autism may subserve deficiency
in availability of GABA affecting important biological functions such as learning,
locomotor activity, reproduction, and circadian rhythms (Soghomonian and Martin,
1998). Additionally, decreases in levels of GAD 65 and 67 kDa proteins in the
autistic brain will negatively affect normal processing of visual, somatic, locomo-
tor, and memory information processing, and could also explain the observations
of increased blood, platelet, and CSF glutamate levels in the autistic patients (Pan
et al., 1999; Moreno-Fuenmayor et al., 1996; Moreno et al., 1992). Moreover, defi-
ciency in GABA due to decreased conversion of glutamate could account for the
fact that up to one third of autistic subjects suffer from seizure disorders.

Binding of GABA to its receptors transduces various signals underlying vari-
ous inhibitory transmissions in the brain. There are three main classes of receptors,
GABAA, GABAB, and GABAC (Guidotti et al., 2005). GABAA receptors are
ligand-gated ion channels that mediate GABA’s fast inhibitory action (Brandon
et al., 2000). GABAA receptors are divided into multiple subunits, for example:
α1–α6, β1–β4, γ1–γ4, δ, ε, π, θ, and ρ1–ρ2, which combine to form multiple
GABAA receptors (Ma et al., 2005; Brandon et al., 2000). GABAB receptors are het-
erodimeric, composed of the GABAB receptor 1 (GABBR1) and GABAB receptor
2 (GABBR2) subunits (Jones et al., 1998). GABAB receptors facilitate the release
of neurtransmitters presynaptically generating inhibitory potentials postsynaptically
(Bowery, 2000; Kuriyama et al., 2000). GABAC receptors are ionotropic, similar to
GABAA receptors (Johnsoton et al., 2003) although they exhibit high GABA sensi-
tivity and slow activation and deactivation kinetics (Qian and Ripps, 2008). They are
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composed of GABA ρ subunits of which there are three (ρ1–ρ3) and are expressed
primarily in the retina although they are present in other regions of the CNS (Qian
and Ripps, 2008).

Our laboratory has demonstrated significanlty reduced levels of GABAA and
GABAB receptor protein in cerebella (GABRA1, GABBR3, GABBR1, GABBR2),
parietal cortex (GABRA1, GABRA2, GABRA3, GABRA5, GABRB3, GABBR1),
and prefrontal cortex (GABRA1, GABRA5, GABRA5, GABRB1, GABBR1) of
subjects with autism (Fatemi et al., 2009a,b, 2010). All three brain areas have pre-
viously been implicated in the pathogenesis of autism (Bauman and Kemper, 1994,
2005). Alterations in all GABA receptors may partially explain the seizure disor-
ders associated with autism. The occurrence of seizure disorders comorbid with
autism has been estimated from 4 to 44% (Tuchman and Rapin, 2002). The pres-
ence of epileptiform activity may explain cognitive deficits common to children
with autism and epilepsy (Binnie, 1993); phenomena that may also occur in children
with autism and epilepsy. Multiple laboratories have demonstrated altered expres-
sion of GABBR1 and GABBR2 in animal models for seizure disorders (Straessle
et al., 2003; Princivalle et al., 2003a; Han et al., 2006). Moreover, expression for
GABBR1A, GABBR1B, and GABBR2 are altered in the hippocampus of subjects
with temporal lobe epilepsy (Princivalle et al., 2003b).

6 Oxytocin

Oxytocin is a neuropeptide synthesized in the paraventricular and supraoptic
nucleus of the hypothalamus. Oxytocin is released from axon terminals of the poste-
rior pituitary into the bloodstream. It is also distributed to the central nervous system
and oxytocin binding sites are found throughout, especially in the limbic system
(Insel and Young, 2000). Oxytocin has been linked to affiliative behavior, social
memory, and behavior, all of which are impaired in autism (Insel et al., 1999). It has
been hypothesized that dysfunction of oxytocin and vasopresin contributes to social
impairment in autism (Waterhouse et al., 1996).

Animal models have shown that oxytocin plays a role in social recognition (Popik
et al., 1992) and that oxytocin antagonists disrupt social memory (Engelmann et al.,
1998). Oxytocin knock-out mice have been shown to be unable to recognize con-
specifics and this lack of recognition is not due to general disruptions of olfaction,
learning, or memory (Ferguson et al., 2000; Choleris et al., 2003). However, a sin-
gle injection of oxytocin prior to the first encounter with the conspecific allowed for
social memory acquisition (Ferguson et al., 2001).

Plasma oxytocin has been shown to be reduced in autistic children and more-
over, levels of oxytocin were correlated with social impairment (Modahl et al.,
1998). A follow-up study using the same subjects found that the autistic chil-
dren had higher levels of the precursor of oxytocin when compared with controls,
suggesting that reduced plasma oxytocin in autistic children may be related
to how oxytocin is processed (Green et al., 2001). Preliminary studies have
demonstrated that infusion with oxytocin can reduce repetitive behaviors such as
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need to know, repeating, self-injury, and touching (Hollander et al., 2003), and
increase affective speech comprehension (Hollander et al., 2007) in subjects with
autism.

A number of recent studies have linked the oxytocin receptor gene (OXTR) to
autism (Wu et al., 2005; Ylisaukko-oja et al., 2006; Jacob et al., 2007; Lerer et al.,
2008; Yrigollen et al., 2008). OXTR expression is enhanced in brain regions asso-
ciated with social behavior including the amygdala and lateral septum (Ferguson
et al., 2000). OXTR knock-out mice display defects in social discrimination and
demonstrate more aggression than normal mice (Takayanagi et al., 2005). Taken
together, these studies suggested a potential role of OXTR in social deficits related
to autism. In a study of 314 Finnish autism families a number of loci were identified
as potentially conferring susceptibility to autism including 3p24-26 which includes
OXTR (Ylisaukko-oja et al., 2006). A study of 57 Caucasian autism trios identified
a significant association between an SNP (rs2254298) of OXTR previously associ-
ated with autism in a Han Chinese population sample (Wu et al., 2005; Jacob et al.,
2007). A third study showed a significant association between SNPs (including
rs2254298) and autism in an Israeli sample (Lerer et al., 2008). Moreover, an associ-
ation between OXTR SNPs and IQ and Vineland Adaptive Behavior Scales (VABS)
suggested that OXTR affects cognition and daily living skills in subjects with autism
(Lerer et al., 2008). Finally, a link between the OXTR gene and affiliative behaviors,
which are impaired in autism, has been identified (Yrigollen et al., 2008).

7 Reelin in Autism

Reelin is a secreted extracellular matrix protein with serine protease activity
(DeBergeyck et al., 1998) that is critically involved in guiding brain development
in an orderly fashion. Changes in the level of this protein, its receptors, or down-
stream proteins may cause abnormal corticogenesis. Reelin binds several proteins
as likely receptors, including apolipoprotein E receptor 2 (ApoER2), very-low-
density lipoprotein receptor (VLDLR), and α3β1 integrin protein (D’Arcangelo
et al., 1999; Hiesberger et al., 1999; Dulabon et al., 2000). Reelin binding to
ApoER2 and VLDLR receptors induces clustering of the latter receptors, caus-
ing dimerization/oligomerization of the adaptor protein, disabled-1 (Dab-1), on the
cytosolic aspect of the plasma membrane (Strasser et al., 2004) leading to tyrosine
phosphorylation of Dab-1 (Cooper and Howell, 1999), resulting in the transduc-
tion of signaling pathway from the Reelin-producing cells. Embryologically, Reelin
guides neurons and radial glial cells to their correct positions in the developing brain
(Forster et al., 2002; Luque et al., 2003). In adults Reelin may play a role in neuro-
transmission as a report has indicated that Reelin has a direct effect on enhancement
of long-term potentiation (LTP) in the hippocampus (Weeber et al., 2002).

Two studies have demonstrated associations of polymorphisms of the RELN
gene with autism (Persico et al., 2001; Zhang et al., 2002). However, four other stud-
ies have not found an association (Krebs et al., 2002; Bonora et al., 2003; Devlin
et al., 2004; Li et al., 2004). Despite the lack of a clear genetic association between
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RELN and autism, protein levels of Reelin have been observed to be reduced in
cerebella (Fatemi et al., 2001, 2005), frontal cortex (Fatemi et al., 2005), and blood
(Fatemi et al., 2002; Lugli et al., 2003) of subjects with autism. Reduction of Reelin
in frontal cortex and cerebella of subjects with autism was verified by qRT-PCR
(Fatemi et al., 2005). Moreover, Reelin receptor ApoER2 mRNA was increased
in frontal cortex and cerebella of subjects with autism and downstream signaling
molecule Dab-1 mRNA was decreased in the same brain areas (Fatemi et al., 2005)
suggesting impairments in the Reelin signaling system. These impairments may be
partly responsible for the structural and cognitive deficits observed in autism.

8 Conclusion

Autism is a heterogeneous disorder with no definitive etiology. Brain pathology,
gene expression, and neurochemical dysfunction of various neurotransmitter sig-
naling systems including serotonin, dopamine, acetylcholine, GABA and glutamate,
and oxytocin suggest a role of neurotransmitter systems in the pathology of autism.
Pharmacological treatments focus on reduction of various symptoms of autism and
SSRIs, antiacetylcholinesterases, and infusions of oxytocin, have all shown some
efficacy.
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Abstract RNA is not a simple intermediate linking DNA and protein. RNA is
widely transcribed from a variety of genomic regions, and extensive studies on
the functional roles and regulations of noncoding RNAs including antisense RNAs
and small RNAs are in progress. In addition, the human genome project revealed
that we humans carry as few as ∼22,000 genes. Humans exploit tissue-specific
and developmental stage-specific alternative splicing to generate a large variety of
molecules in specific cells at specific developmental stages. Neurological disorders
are also subject to aberrations of the splicing mechanisms. This review focuses
mostly on splicing abnormalities due to pathological alterations of splicing cis-
elements and trans-factors. Pathomechanisms associated with disrupted splicing
cis-elements can be applied to any human diseases, and we did not restrict the
descriptions to neurological diseases. On the other hand, we limited the descrip-
tions of dysregulated splicing trans-factors to neurological disorders. Neurological
diseases covered in this review include congenital myasthenic syndromes, spinal
muscular atrophy, myotonic dystrophy, Alzheimer’s disease, frontotemporal demen-
tia with Parkinsonism linked to chromosome 17, facioscapulohumeral muscular
dystrophy, fragile X-associated tremor/ataxia syndrome, Prader–Willi syndrome,
Rett syndrome, spinocerebellar atrophy type 8, and paraneoplastic neurological
disorders.
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Facioscapulohumeral muscular dystrophy (FSHD) · Fragile X-associated tremor/
ataxia syndrome (FXTAS) · Prader–Willi syndrome, Rett syndrome ·
Spinocerebellar atrophy type 8 (SCA8) · Paraneoplastic neurological disorders
(PND)
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1 Introduction

The central dogma first enunciated by Francis Crick depicts RNA as an intermedi-
ate that links DNA and protein (Crick, 1970). The beginning of life, however, was
the RNA world where there were no DNA or proteins (Gilbert, 1986). In the RNA
world, RNA was the only carrier of genetic information that DNA currently serves
as, and the only functional molecule that proteins currently serve as. Although the
RNA transmits no genetic information to progeny and constitutes a limited num-
ber of functional molecules in our human body, the RNA world is still in effect
in our body. Humans transcribe more than half of our entire genome including
noncoding regions. The transcripts work as antisense RNAs, microRNAs, and
snoRNAs. Researchers are now working to disclose the functional significance of
these noncoding RNAs.
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The human genome project and the subsequent annotation efforts revealed that
we humans carry as few as 22,000 genes. Tissue-specific and developmental stage-
specific splicing enables to us to generate more than 100,000 molecules from a
limited number of genes (Black, 2003; Licatalosi and Darnell, 2006). Small RNA
molecules and RNA splicing mechanisms potentially become targets of neurolog-
ical diseases (Ranum and Cooper, 2006). This review focuses mostly on splicing
aberrations associated with neurological disorders.

2 Physiology of Splicing Mechanisms

In higher eukaryotes, pre-mRNA splicing is mediated by degenerative splicing cis-
elements comprised of the branch point sequence (BPS), the polypyrimidine tract
(PPT), the 5′ and 3′ splice sites, and exonic/intronic splicing enhancers/silencers
(Fig. 1). Stepwise assembly of the spliceosome starts from recruitment of U1 snRNP
to the 5′ splice site, SF1 to the BPS, U2AF65 to the PPT, and U2AF35 to the 3′ end
of an intron to form a spliceosome complex E (Sperling et al., 2008). SF1, a 75 kDa
protein, is a mammalian homologue of yeast BBP (branch point-binding protein).
U2AF65 and U2AF35 bring U2 snRNP to the BPS in place of SF1 (Wu et al., 1999;
Zorio and Blumenthal, 1999). The BPS establishes base pairing interactions with a
stretch of “GUAGUA” of U2 snRNA (Arning et al., 1996; Abovich and Rosbash,
1997), which then bulges out the branch site nucleotide, usually an adenosine to
form a spliceosome complex A (Query et al., 1994). Thereafter, pre-mRNAs are
spliced in two sequential transesterification reactions mediated by the spliceosome.
In the first step, the 2′-OH moiety of the branch site nucleotide carries out a nucle-
ophilic attack against a phosphate at the 5′ splice site, generating a free upstream
exon, as well as a lariat carrying the intron and the downstream exon. In the sec-
ond step, the 3′-OH moiety of the upstream exon attacks the 3′ splice site of the

Fig. 1 Representative splicing cis-elements and trans-factors. Tissue-specific and developmental
stage-specific expressions of splicing trans-factors including SR proteins and hnRNP A1 enable
precise regulations of alternative splicing. ISE and ISS have similar activities as ESE and ESS, but
are omitted from the figure
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lariat leading to intron excision and ligation of the upstream and downstream exons
(Query et al., 1996).

In addition to the “classical” spliceosomal mechanisms, splicing is modulated
by exonic/intronic splicing enhancers/silencers (ESE, ISE, ESS, ISS). The trans-
factors for the splicing enhancers/silencers carry repeats of arginine and serine are
accordingly called SR proteins. Tissue-specific and developmental stage-specific
expressions of the splicing trans-factors enable precise spatial and temporal reg-
ulations of the gene expressions. In addition, the splicing trans-factors also work
on constitutively spliced exons to compensate for highly degenerative “classical”
splicing cis-elements.

3 Disorders Associated with Disruption of Splicing
Cis-Elements

3.1 Aberrations of the 5′ Splice Sites

Mutations disrupting the 5′ splice sites have been most frequently reported. U1
snRNA recognizes three nucleotides at the end of an exon and six nucleotides at the
beginning of an intron (Fig. 2). The completely matched nucleotides to U1 snRNA
are CAG|GTAAGT, where the vertical line represents the exon/intron boundary. The
completely matched sequence is observed at 1597 sites out of the entire 189,249 5′
splice sites in the human genome (Sahashi et al., 2007), which is the tenth most com-
mon sequence. The completely matched 5′ splice site is rather avoided because, in
the second stage of splicing, U1 snRNA is substituted for U5 snRNA. If U1 snRNA
is tightly bound to the 5′ splice site, it hinders binding of U5 snRNA.

Fig. 2 U1 snRNA recognizes
three nucleotides at the 3′ end
of an exon and six nucleotides
at the 5′end of an intron

Degeneracy of the 5′ splice site and its vulnerability to disease-causing mutations
have been extensively studied. Three algorithms have been proposed. First, Shapiro
and Senapathy collated nucleotide frequencies at each position of the 5′ splice site.
They assumed that nucleotide frequencies at each position of the 5′ splice site repre-
sent the splicing signal intensity. They thus constructed a linear regression model so
that the most preferred 5′ splice site becomes 1.0 and the most unfavorable 5′ splice
site becomes 0.0 (Shapiro and Senapathy, 1987). Second, Rogan and Schneider
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invented the information contents, Ri. For example, at a specific position, if a single
nucleotide is exclusively used, the information content at this position becomes–
log2(1/4) = 2 bits. Similarly, if two nucleotides are equally used, the information
content becomes –log2(2/4) = 1 bit. In Ri, the similarity to the consensus sequence
is represented by the sum of information bits (Rogan and Schneider, 1995; O’Neill
et al., 1998). Third, we found that a new parameter, the SD-Score, which repre-
sents a common logarithm of the frequency of a specific 5′ splice site in the human
genome, efficiently predicts the splicing signal intensity (Sahashi et al., 2007).

Our algorithm predicts the splicing consequences of mutations with the sensitiv-
ity of 97.1% and the specificity of 94.7%. Simulation of all the possible mutations
in the human genome using the SD-score algorithm predicts high frequencies of
splicing mutations from exon –3 to intron +6 (Table 1). Especially at exon posi-
tion –3, about one third of mutations are predicted to cause aberrant splicing. Using
our algorithm, we predicted and proved that DYSF G1842D in Miyoshi myopathy,
ABCD1 R545W in adrenoleucodystrophy, GLA Q333X in Fabry disease, and DMD
Q119X and Q1144X in Duchenne muscular dystrophy are not missense or nonsense
mutations but are splicing mutations. Algorithms by us and by others all point to the
notion that aberrant splicing caused by mutations at the 5′ splice sites is likely to be
underestimated.

Table 1 Predicted ratios of exonic and intronic splicing mutations

Position –3 –2 –1 +1 +2 +3 +4 +5 +6

Complementary
nucleotide C (%) A (%) G (%) G T A (%) A (%) G (%) T (%)

A 1.8 – 93.7 – – – – 93.9 56.9
C – 89.6 99.7 – – 99.9 94.4 98.6 75.4
G 35.0 90.5 – – – 48.7 96.2 – 56.7
T 76.7 86.2 97.1 – – 99.9 94.3 97.0 –
All mutations 37.8 88.8 96.8 – – 82.8 95.0 96.5 63.0

3.2 Human Branch Point Consensus Sequence

In an effort to seek an algorithm to predict the position of the branch point sequence
(BPS) in humans, we sequenced 367 clones of lariat RT-PCR products arising from
52 introns of 20 human housekeeping genes and identified that the human consensus
BPS is simply yUnAy, where “y” represents U or C (Gao et al., 2008) (Fig. 3).
The consensus BPS was more degenerative than we had expected and we failed
to construct a dependable algorithm that predicts the position of the BPS. Sixteen
disease-causing mutations and a polymorphism, however, have been reported to date
that disrupt a BPS and cause aberrant splicing (Gao et al., 2008). Among these, eight
mutates U at position –2, whereas nine affects A at position 0, which also supports
the notion that U at –2 and A at 0 are essential nucleotides.
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Fig. 3 Human consensus BPS. (a) Pictogram and (b) WebLogo presentations of BPS. Position 0
represents the branch point. (c) Representative sequences and positions of splicing cis-elements

3.3 Ectopic AG Dinucleotide Abrogates the AG-Scanning
Mechanism

The 3′ end of an intron and the 5′ end of an exon carry a consensus sequence of
CAG|G, where the vertical line represents the intron/exon boundary. The AG din-
ucleotide is scanned from the branch point and the first AG is recognized as the
3′ end of the intron (Chen et al., 2000). In a patient with congenital myasthenic
syndrome, we identified duplication of a 16-nt segment comprised of 8 intronic
and 8 exonic nucleotides at the intron 10/exon 10 boundary of CHRNE encoding
the acetylcholine receptor epsilon subunit (Ohno et al., 2005). We found that the
upstream AG of the duplicated segment is exclusively used for splicing and that one
or two mutations in the upstream BPS had no effect whereas complete deletion of
the upstream BPS partially activated the downstream AG. Similar exclusive acti-
vation of the upstream AG is reported in HEXB (Dlott et al., 1990) and SLC4A1
(Bianchi et al., 1997). Creation of a cryptic AG dinucleotide close to the 3′ end of
an intron should be carefully scrutinized in mutation analysis.

3.4 Mutations That Disrupt ESE and ESS

Gorlov and colleagues predicted that more than 16–20% of missense mutations are
splicing mutations that disrupt an ESE (Gorlov et al., 2003). According to our own
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experience, their estimates are likely to be too high. Most ESE/ESS-disrupting muta-
tions, however, are likely to be underestimated, because the positions and sequences
of ESE/ESS are highly degenerative.

Four Web services provide valuable information to locate ESE and ESS. First,
the ESE Finder (http://rulai.cshl.org/ESE/) calculates the similarity of a given
nucleotide sequence to the consensus sequences of four splicing trans-factors,
SF2/ASF, SC35, SRp40, and SRp55 (Cartegni et al., 2003; Smith et al., 2006).
Second, the RESCUE-ESE Web server (http://genes.mit.edu/burgelab/rescue-ese/)
shows the similarity of a given sequence to ESE elements of unidentified splicing
trans-factors (Fairbrother et al., 2002). The same group also provides the FAS-ESS
Web service to screen for ESS elements (http://genes.mit.edu/fas-ess/) (Wang et al.,
2004). Third, the PESX Web server (http://cubweb.biology.columbia.edu/pesx/)
indicates an RNA octamer with putative exonic splicing enhancing or silencing
activities (Zhang and Chasin, 2004; Zhang et al., 2005). Fourth, the ESRsearch
Web server (http://ast.bioinfo.tau.ac.il/) shows 285 candidate ESE/ESS sequences
(Goren et al., 2006), as well as ESE/ESS elements indicated by the RESCUE-ESE,
FAS-ESS, and PESX services.

In patients with congenital myasthenic syndromes, we identified that CHRNE
E154X and EF157V (Ohno et al., 2003), as well as COLQ E415G (Kimbell et al.,
2004), disrupt an ESE and cause aberrant splicing. The ESE/ESS servers above
indicate disruption of candidate splicing cis-elements for all three mutations, but we
frequently obtain false positives and we cannot simply rely on the servers. Analysis
of patient mRNA or analysis using a minigene is generally expected.

3.5 Mutations That Disrupt ISE and ISS

Identification of mutations disrupting intronic splicing cis-elements is more chal-
lenging than that of exonic mutations, because introns are longer than exons and
splicing mutations can be anywhere in the introns, and because we do not have
a dependable algorithm to predict ISE/ISS. The ESRsearch Web server described
above is able to indicate consensus sequences recognized by a variety of splicing
trans-factors including intronic ones.

In a patient with congenital myasthenic syndrome, we identified that CHRNA1
IVS3-8G>A attenuates binding of hnRNP H ∼100-fold and causes exclusive inclu-
sion of the downstream exon P3A (Masuda et al., 2008) (Fig. 4). We also identified
that polypyrimidine tract binding protein (PTB) silences recognition of exon P3A
and tannic acid facilitates the expression of PTB by activating its promoter region
(Gao et al., 2009).

3.6 Spinal Muscular Atrophy (SMA)

SMA is an autosomal recessive disorder characterized by degeneration of the ante-
rior horn cells of the spinal cord, which causes muscular weakness and atrophy.
SMA is caused by loss-of-function mutations including deletion of the SMN1 gene
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Fig. 4 CHRNA1 carries a 75-nt exon P3A. Its inclusion generates a nonfunctional alpha subunit
of the acetylcholine receptor. hnRNP H and PTB silence recognition of exon P3A and induce its
skipping. The IVS3-8G>A mutation identified in a patient with congenital myasthenic syndrome
weakens the binding of hnRNP H and causes inclusion of exon P3A. Tannic acid facilitates the
expression of PTB and partially ameliorates aberrant splicing due to IVS3-8G>A

that encodes the survival of motor neuron 1. Humans carry almost identical SMN1
and SMN2 genes both on chromosome 5q13. SMN2 carries a C-to-T transition at
position 6 of exon 7 compared to SMN1, which results in loss of an SF2/ASF-
dependent ESE activity (Cartegni et al., 2006). In addition, SMN2 carries an A-to-G
transition at position +100 of intron 7, which creates a high-affinity hnRNP A1-
binding site and promotes skipping of exon 7 (Kashima et al., 2007). Skipping of
exon 7 in SMN2 can be ameliorated by therapeutic doses of valproic acid (Brichta
et al., 2003, 2006) and of salbutamol (Angelozzi et al., 2008).

4 Skipping of Multiple Exons Caused by a Single
Splicing Mutation

4.1 Skipping of Multiple Contiguous Exons

A mutation disrupting a splicing cis-element generally affects splicing of a single
exon or intron, but sometimes generates aberrant transcripts affecting multi-
ple neighboring exons. Skipping of multiple contiguous exons is accounted for
by ordered removal of introns and consequent clustering of neighboring exons
(Schwarze et al., 1999; Takahara et al., 2002).

4.2 Nonsense-Associated Skipping of a Remote Exon (NASRE)

A single mutation infrequently causes skipping of a remote exon. In a patient with
congenital myasthenic syndrome, we found that a 7-nt deletion in exon 7 of CHRNE
causes complete skipping of the preceding exon 6. CHRNE exon 6 is composed
of 101 nucleotides. It carries weak splicing signals and is partially skipped even
in normal subjects. The exon 6-skipped transcript, however, is removed by the
nonsense-mediated mRNA decay (NMD) mechanism. The 7-nt deletion in exon
7 restores the open reading frame of the exon 6-skipped transcript and renders
it immune to NMD. On the other hand, the normally spliced transcript carries a
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Fig. 5 NASRE. Wild-type CHRNE generates the normally spliced transcript (a) and the exon
6-skipped transcript (b), because exon 6 carries weak splicing signals. The exon-skipped transcript
carries a premature termination codon (PTC) and is degraded by NMD. A 7-nt deletion (arrow-
head) in exon 7 generates a PTC in the normally spliced transcript (c) and is degraded by NMD.
The deletion resumes the open reading frame from the exon 6-skipped transcript, and the transcript
escapes NMD (d)

premature stop codon (PTC) after the 7-nt deletion, and is degraded by NMD1

(Fig. 5). We dubbed this mechanism NASRE, and found that it is in effect in
SLC25A20 (Hsu et al., 2001), DBT (Fisher et al., 1993), BTK (Haire et al., 1997),
and MLH1 (Clarke et al., 2000).

5 Disorders Associated with Dysregulation of Splicing
Trans-Factors

5.1 Myotonic Dystrophy

Myotonic dystrophy is an autosomal dominant multisystem disorder affecting skele-
tal muscles, eye, heart, endocrine system, and central nervous system. The clinical
symptoms include variable degrees of muscle weakness and wasting, myotonia,
cataract, insulin resistance, hypogonadism, cardiac conduction defects, frontal bald-
ing, and intellectual disabilities (Harper and Monckton, 2004). Myotonic dystrophy
is caused by abnormally expanded CTG repeats in the 3′ untranslated region of
the DMPK gene encoding the dystrophia myotonica protein kinase on chromosome
19q13 (myotonic dystrophy type 1, DM1) (Brook et al., 1992) or by abnormally
expanded CCTG repeats in intron 1 of the ZNF9 gene encoding the zinc finger
protein 9 on chromosome 3q21 (myotonic dystrophy type 2, DM2) (Liquori et al.,
2001). In DM1, normal individuals have 5–30 repeats, mildly affected patients

1Nonsense-mediated mRNA decay (NMD). NMD is a quality-assurance mechanism that degrades
mRNAs harboring a premature termination codon (PTC) (Chang et al., 2007). Proteins translated
from mRNAs harboring PTCs potentially have dominant-negative or deleterious activities. In pre-
mRNA splicing, an exon–junction complex (EJC) is deposited 20–24 nucleotides upstream of each
exon–exon junction. Ribosomes remove EJCs, but, in the presence of a PTC, EJCs stay on the
transcript and trigger the NMD pathway in the cytoplasm.
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have 50–80 repeats, and severely affected individuals have 2000 or more copies
of CTG (Gharehbaghi-Schnell et al., 1998). In DM2, the size of expanded repeats is
extremely variable, ranging from 75 to 11,000 repeats, with a mean of 5000 CCTG
repeats (Liquori et al., 2001).

In both DM1 and DM2, expanded CTG or CCTG repeats in the noncod-
ing regions sequestrate a splicing trans-factor muscleblind encoded by MBNL1
to intranuclear RNA foci harboring the mutant RNA, and somehow upregulate
another splicing trans-factor CUG-binding protein encoded by CUGBP1 (Ranum
and Cooper, 2006) (Fig. 6). Dysregulation of the two splicing trans-factors then
causes aberrant splicing of their target genes. The aberrantly spliced genes identified
to date in skeletal and cardiac muscles include ATP2A1 (SERCA1) exon 22, ATP2A2
(SERCA2) intron 19, CAPN3 exon 16, CLCN1 intron 2 and exons 6b/7a, DMD exons
71 and 78, DTNA exons 11A and 12, FHOD1 (FHOS) exon 11a, GFPT1 (GFAT1)
exon 10, INSR exon 11, KCNAB1 exons 2b/2c, LDB3 (ZASP) exon 11 (189-nt exon
7 according to RefSeq Build 36.3), MBNL1 exon 7 (54-nt exon 6 according to
RefSeq), MBNL2 exon 7 (54 nt, no exonic annotation in RefSeq), MTMR1 exons
2.1 and 2.2, NRAP exon 12, PDLIM3 (ALP) exons 5a/5b, RYR1 exon 70, TNNT2
exon 5, TNNT3 fetal exon, TTN exons Zr4 and Zr5 (138-nt exon 11 and 138-nt
exon 12 according to RefSeq), and TTN exon Mex5 (303-nt exon 315 according to
RefSeq) (Philips et al., 1998; Savkur et al., 2001; Kimura et al., 2005; Lin et al.,
2006). Lin and colleagues report that alternative transcripts observed in myotonic
dystrophy are all fetal isoforms (Lin et al., 2006). Muscleblind normally translocates

Fig. 6 In DM1, expanded
CUG repeats in the 3′ UTR of
DMPK sequestrate
muscleblind and upregulates
CUG-binding protein.
Dysregulation of these
splicing trans-factors causes
aberrant splicing of their
inherent target genes. Four
representative target genes are
indicated



RNA Pathologies in Neurological Disorders 409

from cytoplasm to nucleus in the postnatal period to induce adult-type splicings, and
lack of muscleblind in nucleus due to sequestration to RNA foci recapitulates fetal
splicing patterns.

5.2 Alzheimer’s Disease (AD) and Frontotemporal Dementia
with Parkinsonism Linked to Chromosome 17 (FTDP-17)

AD is the most common neurodegenerative disease representing dementia. It is
characterized by intracellular neurofibrillary tangles (NFTs) and extracellular amy-
loid plaques. NFTs are composed of aggregates of the hyperphosphorylated tau
protein encoded by MAPT. The amyloid plaques are composed of amyloid β pep-
tide (Aβ) that originates from enzymatic cleavage of the amyloid precursor protein
(APP) by β-secretase followed by γ-secretase (LaFerla et al., 2007). The γ-secretase
is an enzyme complex composed of presenilin-1 (PS1) or presenilin-2 (PS2), as
well as nicastrin, anterior pharynx defective (APH-1), and presenilin enhancer
2 (PEN-2) (Takasugi et al., 2003). Autosomal dominant forms of AD constitute
∼5% of AD and are caused by mutations in APP, PS1, or PS2 (Bertram and
Tanzi, 2008).

Although the pathomechanisms underlying sporadic AD remain mostly
unknown, PS2 exon 5 is exclusively skipped in brains of sporadic AD, which is
mediated by overexpression of a splicing trans-factor, HMGA1a (Sato et al., 1999;
Manabe et al., 2003). As hypoxia induces the overexpression of HMGA1a, the
upregulation of HMGA1a in sporadic AD may or may not represent an agonal
state of AD, in which respiratory insufficiency possibly associated with pneumonia
frequently becomes the cause of death.

Mutations in MAPT are not observed in AD, but are present in FTDP-17. MAPT
exon 10 is alternatively spliced in normal brain. N279K, K280del, and L284L muta-
tions on exon 10 provoke aberrant splicing of exon 10 by disrupting or enhancing
exonic splicing cis-elements, and cause FTDP-17 (D’Souza et al., 1999) (Fig. 7).
The splicing trans-factors for these cis-elements are also identified (Jiang et al.,
2004; Kondo et al., 2004).

Fig. 7 Mutations on MAPT
exon 10 cause excessive
skipping (N279K and L284L)
or inclusion (K280del) of
exon 10

5.3 Facioscapulohumeral Muscular Dystrophy (FSHD)

FSHD is the third most common hereditary muscular dystrophy after Duchenne
muscular dystrophy and myotonic dystrophy. As its name represents, the disease
predominantly affects the face, the scapulae, and the proximal arm muscles. In
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FSHD, the number of a 3.3 kb repeat in the subtelomeric region of 4q (4q35),
designated D4Z4, are abnormally reduced (Wijmenga et al., 1992). Loss of D4Z4
causes upregulation of FRG1 located upstream of D4Z4 (Gabellini et al., 2002).
FRG1 is a splicing trans-factor, and its overexpression causes aberrant splicing of
TNNT3 encoding the troponin T type 3 of fast skeletal muscle and MTMR1 encod-
ing the myotubularin-related protein 1 (Gabellini et al., 2006). The reported splicing
aberrations in FSHD, however, have not been confirmed by us (unpublished data)
or by the other groups (personal communications).

5.4 Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS)

Fragile X mental retardation syndrome is caused by abnormal expansion of a CGG
repeat in the 5′ untranslated region of FMR1, which culminates in hypermethylation
of FMR1 and silences its expression (Kremer et al., 1991). On the other hand, mod-
erate expansion of the CGG repeat in FMR1 causes FXTAS, which is characterized
by intention tremor, Parkinsonism, cognitive decline, and neuropathy (Hagerman
and Hagerman, 2004). In FXTAS, CGG-binding proteins including hnRNP A2 and
muscleblind are excessively bound to the expanded CGG repeats of FMR1 and are
depleted from the cellular pool (Iwahashi et al., 2006), which results in the loss their
functions in other regulatory processes (Jacquemont et al., 2007).

5.5 Prader–Willi Syndrome (PWS)

PWS is an autosomal dominant disorder characterized by obesity, muscular hypo-
tonia and weakness, mental retardation, short stature, hypogonadotropic hypogo-
nadism, and small distal extremities. The proximal long arm of chromosome 15
(15q11-q13) is normally imprinted in order to achieve parent-specific monoallelic
gene expressions. Some genes in this region are expressed only from the mater-
nal allele, and some others are only from the paternal allele. Lack of a functional
paternal copy of 15q11-13 causes PWS, whereas lack of a functional maternal
copy of UBE3A in the same region results in Angelman syndrome (Horsthemke
and Wagstaff, 2008). PWS is caused by a deletion of the paternal 15q11-q13 or by
maternal uniparental disomy 15.

A snoRNA HBII-52 is located in the defective region of PWS. HBII-52 binds
to an ESS in exon Vb of HTR2C encoding the serotonin receptor 2C, and its dis-
ruption in PWS causes aberrant splicing of HTR2C and potentially accounts for
dysfunctional serotonergic system in PWS (Kishore and Stamm, 2006).

5.6 Rett Syndrome

Rett syndrome is a neurodevelopmental disorder in females, which is characterized
by loss of speech, stereotypical movements of hands, microcephaly, seizures, and
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mental retardation. Rett syndrome is caused by a mutation in MECP2 encoding
the metyl-CpG-binding protein 2 (Amir et al., 1999). MeCP2 binds to a splicing
trans-factor YB-1 and the abnormal regulation of YB-1 causes aberrant splicing of
its target genes (Young et al., 2005).

5.7 Spinocerebellar Ataxia Type 8 (SCA8)

SCA8 is caused by an abnormal expansion of CTA/CTG repeats in the protein-
noncoding ATXN8OS, which represents the ATXN8 opposite strand (Ikeda et al.,
2008). Expanded CUG repeats on the ATXN8OS transcript potentially bind to and
sequestrate CUG-binding proteins, as we observe in myotonic dystrophy (Mutsuddi
and Rebay, 2005). In addition, ATXN8 on the opposite strand of ATXN8OS encodes
the Kelch-like 1, and the expanded CAG repeats on ATXN8 give rise to a polyglu-
tamine tract that forms a cytotoxic aggregate in neuronal cells (Moseley et al., 2006).
Furthermore, expression of ATXN8OS is colocalized with that of ATXN8 (Chen
et al., 2008). ATXN8OS thus potentially serves as an antisense RNA for ATXN8, and
the abnormal CTA/CTG expansion in ATXN8OS may dysregulate the expression of
ATXN8 (Fig. 8).

Fig. 8 Expanded CTG on
ATXN8OS exerts three toxic
effects on the bidirectional
transcripts

5.8 Paraneoplastic Neurological Disorders (PND)

In PND, tumors outside of the nervous system excrete humoral factors such as hor-
mones and cytokines, or provoke an immune response against specific molecules
expressed in tumors, and cause a wide range of neurological symptoms. In paraneo-
plastic opsoclonus myoclonus ataxia (POMA), autoantibodies are raised against the
Nova family of neuron-specific splicing trans-factor (Jensen et al., 2000; Ule et al.,
2003, 2006; Licatalosi et al., 2008). In paraneoplastic encephalomyelitis and sensory
neuropathy (PEN/SN or Hu syndrome), autoantibodies recognize the Hu family of
RNA-binding protein (Szabo et al., 1991), a human homologue of the Drosophila
splicing trans-factor Elav (Koushika et al., 2000; Soller and White, 2003). In both
disorders, autoantibodies downregulate the splicing trans-factors and cause aberrant
splicing in neuronal cells.
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Neurochemistry of Endogenous
Antinociception

Gyongyi Horvath

Abstract It is well known that a multitude of ligands and receptors are involved
in the nociceptive system, and some of them increae, whereas others inhibit the
pain sensation both peripherally and centrally. These substances, including neuro-
transmitters, neuromodulators, hormones, cytokines, and the like, may modify the
activity of nerves involved in the pain pathways. The organism itself can express
very effective antinociception under different circumstances (e.g., stress), and dur-
ing such situations the levels of various endogenous ligands change. Accordingly,
a very exciting field of pain research relates to the roles of endogenous ligands.
This chapter provides a comprehensive overview of the endogenous ligands that
can produce antinociception, discusses their effects on different receptors and
focuses on their action in different parts of the pain pathways. The results show
that the net effect of a ligand is determined by the activation/inhibition of the
different types of receptors and the location of these receptors, however, only
a part of the endogenous substances has been characterized extensively in this
respect.
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1 Introduction

Suffering from pain is a major medical, social, and economic burden worldwide,
however, the ideal solution for effective pain-relief remains elusive. Understanding
the neurochemistry of antinociception has advanced considerably in recent years.
Pain is a dynamic phenomenon resulting from the activity of both excitatory and
inhibitory endogenous modulation systems. It is well known that a multitude of sub-
stances and receptors are involved in the nociceptive system; some of them increase,
and others inhibit the pain sensation both peripherally and centrally (Furst, 1999;
Sandkuhler, 1996). Virtually no ligands/receptors are to be found that have not
been investigated in this respect. These substances, which include neurotransmit-
ters, neuromodulators, hormones, cytokines, and the like, can modify the activity
of nerves involved in the pain pathways. One of the physiological functions of the
endogenous system is to tonically regulate nociceptive transmission; therefore the
ratio of the pronociceptive and antinociceptive ligands determines the pain sensitiv-
ity. The balance between these actions ensures effective modulation of acute pain,
whereas during chronic pain the pronociceptive effects appear to prevail. It is also
well known that the organism can express very effective antinociception in different
circumstances, and during such situations the levels of various endogenous ligands
change. Thus, endogenous antinociceptive mechanisms play an important role in the
regulation of behavior under stressful circumstances. One of the first explicit nota-
tions of stress-induced analgesia (SIA) came from observations of soldiers’ behavior
in World War II (Beecher, 1957). Endogenous opioid peptides have been associ-
ated with SIA as its chemical mediators but other, nonopioid, mediators of SIA
are known to exist as well (Ortiz et al., 2008). Not only stress may influence pain
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sensitivity, but several psychiatric diseases can also change it. Thus, the pain thresh-
old is increased in schizophrenic patients and animal models, and depression can
result in increased pain sensitivity or increased analgesic requirement (Becker et al.,
2006; Blumensohn et al., 2002; Dworkin, 1994; Jackson and St Onge, 2003; Tuboly
et al., 2009). Furthermore, migraine disease and other chronic pain syndromes are
also based on the imbalance between pro- and antinociceptive endogenous ligands
(Gagnier, 2001).

The endogenous ligands can produce their effects at both peripheral and central
(spinal and supraspinal) levels. The first relay in pain pathways activated by Aδ-
and C-nociceptors is the spinal dorsal horn (SDH) and, as such, this represents an
important site for the modulation of the pain signal. The activation of several path-
ways is involved in the production of analgesia including pathways that project from
the amygdala, hypothalamus (arcuate nucleus: ARC, and lateral area of anterior
hypothalamus: LAAH), the somatosensory cortex and the anterior cingulated cor-
tex (ACC) to the midbrain periaqueductal grey matter (PAG) (Millan, 2002; Pilcher
et al., 1988). ACC and amygdala are particularly related to the affective compo-
nent of pain and ACC is also implicated in the cognitive processing of pain (Fields,
2004; Ji and Neugebauer, 2008; Neugebauer et al., 2004; Rainville et al., 1997). The
hypothalamus is known to be one of the key structures involved in pain modulation
and transmission (Dafny et al., 1996), and the hypothalamic fibers containing opi-
oid neurons terminate in PAG (Pilcher et al., 1988). The LAAH has the capacity to
differentially modulate components of the pain signal (i.e., activation of this nucleus
inhibits the responses to unmyelinated C-fiber activation) and not change the activity
of Aδ fibers (Simpson et al., 2008). The overall effect of this would be to safeguard
sensory-discriminative information that could direct motivational behaviors and, at
the same time, filter out those components of the pain signal that are less relevant
to emergency situations. The thalamus contributes to the emotional component of
pain and in particular, the intralaminar parafascicular nucleus receives nociceptive
information from the spinal cord by both the spinothalamic and spinopontothalamic
tracts and its output is to the ACC. PAG represents the mechanisms whereby cortical
and other inputs act to control the nociceptive “gate” in the dorsal horn of the spinal
cord. PAG projects rostrally to the medial thalamus and orbital frontal cortex, and
also interacts with several brainstem structures to modulate nociception including
the rostroventral medulla (RVM) (Jensen and Yaksh, 1989; Sandkuhler, 1996; Smith
et al., 1988; Zhao et al., 2007). RVM is considered an important source of descend-
ing control of spinal nociceptive neurons (Fields and Basbaum, 1999). RVM is the
principal relay in the integration of ascending nociceptive inputs with descending
outputs from rostral sites (Fields and Basbaum, 1999), as well as the major source
of bulbospinal projections that terminate in laminas I, II, and V of the SDH, mostly
via OFF (antinociceptive) and ON (pronociceptive) cells. Descending control of
spinal nociception, which originates from the locus ceruleus (LC), is another major
determinant of pain sensitivity in different behavioral and emotional states (Willis
and Westlund, 1997). These descending modulations are exerted by three main neu-
rochemical systems – noradrenergic, serotonergic and opioidergic – which interact
in an intricate manner (Millan, 2002).
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A very exciting and rapidly developing field of pain research relates to the roles
of different endogenous ligands. The endogenous antinociceptive ligands may have
potentially advantageous features: their synthesizing and breakdown enzymes (or
the mechanism of their excretion) are available in the body; thus, in general they
have short half-lives and they may have lower toxicity. On the other hand, most
of the endogenous ligands exhibit lower specificity and affinity for their receptors
as compared with exogenous drugs, and/or they exert their effects at several types
of receptors at different parts of the body. Therefore, the net effect depends on the
localization of the ligands/receptors, and on which receptors and where they will
be influenced by a ligand. Accordingly, their effectiveness might be lower than that
of synthetic drugs, suggesting that these ligands alone would not be ideal drugs for
pain therapy.

This chapter provides a comprehensive overview of endogenous ligands with
antinociceptive potential, discussing their effects on different receptors and focusing
on their action at distinct levels of neural axis.

2 Small-Molecules

2.1 Class I. Acetylcholine (ACh)

Acetylcholine, the first neurotransmitter to be identified, is an ester of acetic acid
and choline with the name 2-acetoxy-N,N,N-trimethylethanaminium. It plays piv-
otal roles in a diverse array of physiological processes, and its activity is controlled
through enzymatic degradation by acetylcholinesterase. The effects of ACh recep-
tor (AChR) agonists and enzyme inhibitors, collectively termed cholinomimetics, in
antinociception/analgesia are widely investigated. These compounds successfully
inhibit pain signaling in both humans and animals, and are efficacious in a num-
ber of different preclinical and clinical pain models, suggesting a broad therapeutic
potential (Jones and Dunlop, 2007; Wess et al., 2007). Both peripheral and cen-
tral cholinergic components may be involved in the antinociception. For example,
cholinergic stimulation of lateral hypothalamus increases the pain threshold by acti-
vating the descending inhibitory pathways (Holden et al., 2002). However, a major
site of action of ACh is the spinal cord (Xu et al., 2000; Zhuo and Gebhart, 1991).
Intrathecal cholinergic agents cause antinociception by mimicking the release of
ACh from the spinal cholinergic nerves, whereas the inhibition it effects decreases
the pain threshold suggesting a tonic activity of these neurons (Hood et al., 1997;
Krukowski et al., 1997; Pan et al., 2008). Dorsal root ganglion (DRG) neurons
express several markers for cholinergic neurons, and it seems that ACh is syn-
thesized both in unmyelinated and myelinated DRG neurons (Khan et al., 2003;
Matsumoto et al., 2007; Sann et al., 1995; Takeda et al., 2003; Tata et al., 2004;
Vincler and Eisenach, 2004). Other data have shown that painful stimuli increase
ACh level in the spinal cord releasing from the cholinergic interneurons in the
SDH, and these neurons are activated by the inhibitory descending noradrenergic
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and serotoninergicic pain modulatory pathways (Detweiler et al., 1993; Eisenach
et al., 1996b; Jones and Dunlop, 2007; Zhuo and Gebhart, 1990).

ACh exerts its physiological actions by binding to and activating two structurally
and functionally distinct families of cell-surface receptors, the nicotinic ACh recep-
tors (nAChRs) and the muscarinic ACh receptors (mAChRs). The nAChRs function
as ACh-gated cation channels, whereas the mAChRs are members of the superfam-
ily of G-protein-coupled receptors (GPCRs). The fast actions of ACh are mediated
by its interaction with nAChRs, a family of pentameric ligand-gated ion channels
composed of 1 or more of 17 different subunits, and these receptors are distributed
widely throughout the central nervous system (CNS) and the periphery (Kalamida
et al., 2007). These subunits are divided into muscle-type and neuronal-type. In the
CNS the predominant nAChRs are the homomeric α7 and the heteromeric α4/β2
receptor. These receptors have been widely referred to as the neuronal nAChRs, and
they mediate synaptic transmission of ACh by gating inward flux of Na+ and Ca2+

at diverse synapses. Molecular-cloning studies have revealed the existence of five
molecularly distinct mammalian mAChR subtypes, M1–M5 (Wess et al., 2007). The
M1–M5 receptors can be subdivided into two major functional classes according
to their G-protein coupling preference. The M1, M3, and M5 receptors selectively
couple to G-proteins of the Gq/G11 family, whereas the M2 and M4 receptors prefer-
entially activate Gi/Go-type G-proteins (Wess et al., 2007). Thus, M1, M3, and M5
are linked to phospholipase-C (PLC), and their stimulation leads to formation of
inositol phosphates (inositol-triphosphate: IP3 and diacylglycerol: DAG) and a con-
sequent increase in intracellular calcium, whereas M2 and M4 receptor activation
inhibits formation of cyclic adenosine monophosphate (cAMP) through inhibition
of adenylate cyclase (AC) (Jones and Dunlop, 2007). Agonist-induced activation of
mAChRs leads to a wide range of biochemical and electrophysiological responses,
and the precise nature of these responses and the resulting physiological effects pri-
marily depend on the location and the molecular identity of the activated mAChR
subtypes (Wess, 1996). Each of the five mAChR subtypes exhibits a distinct pattern
of distribution; they are expressed in many regions of the CNS (in both neurons
and glial cells) and in various peripheral tissues (Wess et al., 2007). The M1, M4,
and M5 receptors are predominantly expressed in the CNS, whereas the M2 and
M3 receptor subtypes are widely distributed both in the CNS and in peripheral
tissues.

Initial observations that nicotine might have an analgesic activity dates back to
1932 {9808}. The concept of nicotinic analgesia being superior to opioids led the
songwriter, Paul Simon to memorialize the event in a song (Arneric et al., 2007). It
has been found that nAchRs play a role in modulating pain transmission both cen-
trally and peripherally, however, the results are controversial. Multiple populations
of nACh receptors at both spinal and supraspinal level can modulate the trans-
mission of nociceptive stimuli (Damaj et al., 2000; Guimaraes et al., 2000; Jones
and Dunlop, 2007; Matsumoto et al., 2007). As regards the activation of nAChRs
supraspinally, the ACh administered in the dorsal PAG increased the spinally orga-
nized pain threshold, and this effect was inhibited by nAChR antagonists, suggesting
an nAChR mediated descending pain control (Guimaraes et al., 2000). Furthermore,



422 G. Horvath

the activation of neuronal nAchR in the nucleus raphe magnus (NRM) produces
an antinociceptive effect as well (Bannon et al., 1998; Jones and Dunlop, 2007).
Stimulation of spinal nAChRs may produce both pronociceptive and antinocicep-
tive behaviors via stimulation of separable populations of nAChRs (Khan et al.,
1998; Li and Eisenach, 2002). However, most studies found that intrathecal (IT)
administration of nicotine produced antinociception, and the inhibition of nAChRs
produced hyperalgesia (Li and Eisenach, 2002; Matsumoto et al., 2007; Rashid
et al., 2006; Rashid and Ueda, 2002; Vincler and Eisenach, 2004; Young et al.,
2008). Activation of nAChRs may enhance the inhibitory GABAergic (γ-amino-
butyric acid) and glycinergic activities in the SDH (Genzen and McGehee, 2005;
Kiyosawa et al., 2001; Takeda et al., 2003). It has been proposed that the increased
expression of α3 and α4 subunits may contribute to the neuropathic pain, whereas
inhibition of α3/β2 subunits produces a pronociceptive effect (Vincler and Eisenach,
2004; Young et al., 2008). The peripheral stimulation of nAChR excites or sensitizes
peripheral sensory nerve fibres, but can also mediate cholinergic antinociception
(Bernardini et al., 2001; Gilbert et al., 2001). NAChR stimulates nitric oxide syn-
thase (NOS) in DRG neurons, and the synthesized nitric oxide (NO) is able to block
ion channels in DRG (Haberberger et al., 2004; Renganathan et al., 2002), how-
ever, other studies suggest the activation of calcium channels by NO (Bernardini
et al., 2001; Haberberger et al., 2004). There is controversy about the role of α7
nAChR at the periphery, inasmuch as Haberberger et al. (2004) found these recep-
tors on all nociceptive neurons and activation of α7-nAChR elicited antinociceptive
effects in an inflammatory pain model by peripheral mechanism (Wang et al.,
2005b). However, Lang et al. (2003) could not detect these receptors peripherally,
and the deficiency in this receptor did not influence pain sensitivity (Rashid et al.,
2006).

Centrally active muscarinic agonists are known to induce robust analgesic effects
via activation of spinal and supraspinal mAChRs (Gomeza et al., 1999b; Iwamoto
and Marion, 1993; Wess et al., 2007). Perhaps the clearest indication of the role of
the individual mAChR subtype in antinociception has been provided by receptor
knock-out (KO) mice, but plastic changes can mask the real role of the recep-
tors/ligands (Wess et al., 2003). These data suggest that almost all the mAChRs
play a significant role in the decrease of pain sensitivity (Jones and Dunlop, 2007;
Wess et al., 2007). Independent of the route of administration, the analgesic effi-
cacy of mAChR agonists was greatly reduced, but not abolished, in M2R–/– mice
(Duttaroy et al., 2002; Gomeza et al., 1999a). On the other hand, in M2R–/–/M4R–/–

double-knock-out mice, the agonist was virtually devoid of analgesic activity. These
findings suggest that the M2 receptor is the predominant mAChR mediating mus-
carinic antinociception at the spinal and the supraspinal level, but M4 receptors
also contribute to the analgesic activity (Chen et al., 2005b). Some data suggest
that muscarinic antinociception is mediated by M1/M2 receptors or M1/M3 recep-
tors in rats (Naguib and Yaksh, 1997), whereas others have failed to demonstrate
the role of these receptors in antinociception (Velligan et al., 2002). It seems
that M5 receptors do not play a significant role in acute pain sensitivity (Wang
et al., 2004).
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As regards the activation of mAChRs supraspinally, painful stimuli have been
reported to increase the neuronal activity in the thalamus and ACh through the acti-
vation of M1 AChRs can inhibit this effect (Harte et al., 2004; Jones and Dunlop,
2007). Furthermore, M1 receptors located in the nuclei of RVM are involved in the
opioid-induced antinociception (Abe et al., 2003). Data suggest that about 90% of
all mAChRs in the spinal cord represent M2Rs, which provides a molecular basis for
the predominant functional role of M2Rs at the spinal level (Duttaroy et al., 2002).
Presynaptic M2R activation inhibits the glutamate release in the spinal cord and
ACh induces a presynaptic stimulatory effect on the release of GABA by activating
M1R/M2R, whereas the release of glycine (Gly) from spinal cord interneurons was
increased through the activation of M3Rs (Jones and Dunlop, 2007; Li et al., 2002a;
Wang et al., 2006c). The spinal cholinergic system also plays a role in the actions
of opiates because spinally administered atropine can reduce the analgesic effects
of systemically administered morphine in rats, and inhibition of ACh-esterase by
neostigmine enhances the ability of morphine to reduce pain sensitivity (Chiang and
Zhuo, 1989; Eisenach and Gebhart, 1995; Pan et al., 2008). Thus, there is strong evi-
dence that activation of mAChR in the spinal cord results in an increased release of
inhibitory transmitters along with a decrease in the release of excitatory transmitters,
and this may mediate their antinociceptive effects.

Evidence is also accumulated for a peripheral site of action for mAChRs
in antinociception (Bernardini et al., 2001; Wess et al., 2007; Wess et al.,
2003). Electrophysiological and neurochemical studies using skin and skin-
saphenous nerve preparations demonstrated that muscarine-induced peripheral
antinociception was abolished in M2R–/– mice, indicating that this activity is medi-
ated by the M2R subtype (Bernardini et al., 2002; Pan et al., 2008). Stimulation of
peripheral mAChRs reduces the heat-stimulated release of calcitonin gene-related
peptide (CGRP) from mouse skin, this effect being absent in tissue taken from M2R
knock-out mice (Bernardini et al., 2002; Wess et al., 2003). In summary, both the
muscarinic and nicotinic receptor activations are very important in the antinocicep-
tive effects of ACh, and the cholinergic system may offer a number of tractable
targets for the development of pain therapeutics.

2.1.1 Choline

Choline, a quaternary saturated amine (and a precursor of ACh), is generally thought
of as a relatively inactive molecule, although several studies have shown that it can
have direct effects on various biological systems and signal transduction pathways.
Choline interacts with both nAChRs and mAChRs as a full and selective agonist at
α7-containing nAChRs, and at the M1Rs as well (Alkondon et al., 1997; Carriere
and El-Fakahani, 2000). The systemic administration of choline did not change the
acute heat pain latency (HP), but decreased the inflammatory pain (Wang et al.,
2005b). Both intracerebroventricular (ICV) and intrathecal (IT) administrations of
choline produces antinociception in acute heat pain tests, and its effects are blocked
by the α7-receptor antagonist, but not by atropine or naloxone (Damaj et al., 2000;
Wang et al., 2005b).
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2.2 Class II. Amines

2.2.1 Epinephrine (E)/Norepinephrine (NE)

Norepinephrine (4-(2-amino-1-hydroxyethyl) benzene-1,2-diol) and epinephrine
((R)-4-(1-hydroxy-2-(methylamino) ethyl) benzene-1,2-diol) are monoamines orig-
inating from the adrenal medulla, sympathetic nerve terminals and the CNS. In the
CNS, adrenergic cells can be found primarily in the brainstem (RVM, LC) (Milner
et al., 2002; Stone et al., 2003). NE is synthesized from tyrosine as a precursor, and
E is synthesized via methylation of NE. E/NE perform their actions on the target
cell by binding to and activating adrenergic receptors (α1, α2, β1, β2, and β3). They
are widely distributed both centrally and peripherally, including most motor, sen-
sory, autonomic, and neuroendocrine-related areas (Delfs et al., 2000; Egan et al.,
1983; Nicholson et al., 2005; Stone et al., 2003). All of these receptors are GPCRs;
α1-adrenoceptors couple to Gq, which results in increased intracellular Ca2+.
α2-Receptors, couple to Gi and decrease the level of cAMP, whereas β-receptors
couple to Gs, and increase intracellular cAMP activity. Several data suggest that the
α2-receptors play the most important role in pain mechanisms, primarily through
the inhibition of transmitter release presynaptically, but they also inhibit the project-
ing neurons (Willis, Jr., 1988). In vitro studies have suggested that α2-adrenoceptor
agonists decrease glutamate release, and inhibit glutamate-mediated neuronal acti-
vation, and this action can also contribute to their antinociceptive potency (Faber
et al., 1998; Li and Eisenach, 2001). There is conflicting evidence concerning the
role of α2-receptors located supraspinally (Mansikka et al., 1996; Mansikka and
Pertovaara, 1995; Ossipov and Gebhart, 1983).

The noradrenergic innervation of the spinal cord arises from noradrenergic
nuclei in the brainstem, including the A6 (locus ceruleus), the A5 (lateral reticu-
lar nucleus: LRN), and A7 (in the dorsolateral pontine tegmentum) nuclei (Guo
et al., 1996; Kwiat and Basbaum, 1992; Proudfit and Clark, 1991). The activity
of these neurons can be modulated by ligands acting at α2-adrenoceptors, chang-
ing the descending noradrenergic effects (Aghajanian and Vandermaelen, 1982;
Andrade and Aghajanian, 1982; Mansikka and Pertovaara, 1995). Stimulation of α2-
adrenoceptors in the LRN did not influence the mechanical hyperalgesia, whereas
α2-adrenoceptor antagonist reversed the central hyperalgesia induced by mustard
oil, without having any effects on nocifensive withdrawal thresholds of an intact
limb (Mansikka et al., 1996). The RVM does not contain noradrenergic cells, but
receives a dense noradrenergic projection from the A5 and A7 neurons, and these
inputs affect pain modulation by RVM neurons (Fields and Basbaum, 1999).

It has been shown that excitatory α1-adrenoceptor is present on both On and Off
cells, but the inhibitory α2-adrenoceptor is present only on the Off cells, and the
activation of On cells can be involved in the increased pain sensitivity during opioid
withdrawal (Bie et al., 2003). Thus, activation of α2-adrenoceptors in NRM may
induce antinociceptive effects (Haws et al., 1990; Proudfit, 1988). The activation
of LC neurons by α2-adrenoceptor agonists also produces antinociception, and α2-
adrenoceptor activation might contribute to the antinociceptive effects of amygdala
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activation (Guo et al., 1996; Ortiz et al., 2008). Some data suggest the role of α1-
receptors in antinociception at supraspinal level, because ICV administration of an
α1-receptor antagonist inhibits the antinociceptive potency of monoamine-reuptake
inhibitors (Yokogawa et al., 2002). Activation of supraspinal β2-adenergic recep-
tors also produces inhibition in nociceptive transmission (Fukui et al., 2004). The
role of the noradrenergic system in the control of the activity of spinal neurons
involved in the transmission of sensory messages to supraspinal relays is well doc-
umented (Eisenach et al., 1996a; Pertovaara, 2006; Skagerberg and Lindvall, 1985;
Weil-Fugazza and Godefroy, 1993). NE is released from the descending inhibitory
pathways in the spinal cord, and the activation of α2-adrenergic receptors plays the
most important role in this respect, inasmuch as a very effective antinociception
can be reached by their activation (Eisenach et al., 1996a; Ganong et al., 1983;
Horvath et al., 1994; Kalso et al., 1991; Kuraishi et al., 1985; Reimann et al.,
1999).

Peripheral mechanisms might also significantly contribute to their pain-
influencing effects, because topical administration of α2-receptor agonist com-
pounds produces effective antinociception, whereas E produces hyperalgesia via β2-
adrenergic receptors (Ansah and Pertovaara, 2007; Chen and Levine, 2005; Khasar
et al., 1999; Moon et al., 1999). The activation of peripheral α2-adrenoceptors might
decrease pain by the inhibition of the activity of C-fibers (Gaumann et al., 1992;
Pertovaara, 2006; Yagi and Sumino, 1998). In addition, α2-adrenoceptor activation
can produce peripheral antinociception via action on the immune system by altering
the balance of pro- and anti-inflammatory cytokines, and by inducing a release of
endogenous opioids from immune cells (Binder et al., 2004; Romero-Sandoval and
Eisenach, 2007).

2.2.2 Dopamine (DA)

Dopamine (4-(2-aminoethyl) benzene-1,2-diol) constitutes about 80% of the cat-
echolamine content in the brain (Pivonello et al., 2007; Vallone et al., 2000).
Projections originating from brain areas that synthesize this neurotransmitter give
rise to four axonal pathways: nigro-striatal, mesolimbic, mesocortical, and tuberoin-
fundibular. Dopamine receptors (DARs: GPCRs) are widely distributed in the CNS,
mainly localized in the striatum, the limbic system, the brain cortex, and the
infundibulum, where they mediate the effect of DA on cognition, emotion, regu-
lation of hunger and satiety, locomotor activity, pain, and on the endocrine system
(Missale et al., 1998). DARs are widely distributed in the periphery as well, primar-
ily at the level of the cardiovascular system, kidneys and adrenal glands, beyond
the peripheral nervous system (PNS). Five distinct DARs receptors have been iso-
lated, and subdivided into two subfamilies, D1- and D2-like, on the basis of their
biochemical and pharmacological properties. The D1-like subfamily comprises D1
and D5-R, whereas the D2-like includes D2-, D3-, and D4-R (Brucke et al., 1991).
D2-like receptors have a presynaptic location, and D1-like receptors are exclusively
postsynaptic (Vallone et al., 2000). The signal transduction pathways activated by
DARs are numerous, but the best-described effects are the activation or inhibition of
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the cAMP pathway and modulation of Ca2+ signaling. Receptors of the D1-like sub-
type are positive regulators of cAMP, whereas the inhibition of AC activity seems
to be a general property of D2-like receptors. DARs are also able to activate other
mechanisms of signal transduction, including the modulation of the activity of PLC
or phospholipase D (PLD) leading to the release of arachidonic acid, as well as the
activity of the calcium and potassium channels (Pivonello et al., 2007; Senogles,
2000). Moreover, DARs also seem to modulate the activity of Na+/H+ exchangers
and the Na+/K+-ATPase (Missale et al., 1998).

Several data have demonstrated a control for dopaminergic neurotransmission in
modulating pain perception and natural analgesia within supraspinal regions, includ-
ing basal ganglia, insula, ACC, thalamus, and PAG (Wood, 2008). The mesolimbic
dopaminergic system plays important roles in the suppression of persistent pain,
and studies have provided direct evidence that the nucleus accumbens plays a major
role in this mechanism (Altier and Stewart, 1999; Carta et al., 1999; Gear et al.,
1999; Taylor et al., 2003). The descending dopaminergic system is also involved in
pain control. Both DA and its metabolites are present in the spinal cord (Bjorklund
and Skagerberg, 1979; Commissiong et al., 1978; Fleetwood-Walker et al., 1988;
Jensen and Yaksh, 1984; Takada et al., 1988). The dopaminergic fibers are pre-
dominantly localized in the superficial layers of the SDH, and they arise primarily
from the hypothalamic areas and from the caudal thalamus, but they can also orig-
inate from the substantia nigra (Commissiong et al., 1978). Some dopaminergic
sensory neurons in the DRG may innervate the spinal cord, and dopaminergic cell
bodies may also be a source for dopamine in the spinal cord (Mouchet et al., 1986;
Price and Mudge, 1983). IT administration of the DA agonist apomorphine produces
analgesia, and morphine induces an increase in the metabolism of DA in the SDH
suggesting that the descending dopaminergic system is involved in the modulation
of the activity of the nociceptive neurons induced by morphine (Jensen and Yaksh,
1984; Weil-Fugazza and Godefroy, 1993). Both D1-like and D2-like receptors are
found in the SDH, and both D1, D2 and D5 receptors are involved in DA-mediated
antinociception (Altier and Stewart, 1998; Dubois et al., 1986; Karper et al., 2000;
Morgan and Franklin, 1991). As regards its effect peripherally, it has been shown
that the local administration of dopamine causes hyperalgesia by activating primary
sensory neurons directly (Steiner et al., 2001).

2.2.3 Serotonin (5-Hydroxi-Tryptamine, 5-HT)

Serotonin was discovered as a potent vasotonic ligand. It plays a role in the inflam-
matory chemical milieu and is released from platelets, mast cells, and basophils in
injured or inflamed tissues as a critical factor in the control of nociceptive trans-
mission (Doak and Sawynok, 1997; Dray, 1995; Tokunaga et al., 1998; Zeitz et al.,
2002). Serotoninergic neurons are found in the raphe nuclei in the midbrain, pons,
and medulla and serotoninergic fibres project to the several brain regions and the
spinal cord. Molecular cloning studies have confirmed the existence of at least 14
subtypes of 5-HT receptors, each encoded by distinct genes (Raymond et al., 2001).
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The 5-HT receptors have been divided into seven subfamilies. All of them except
5-HT3 receptors are GPCRs, whereas 5-HT3 receptors are ion channels. There is
multiplicity of coupling mechanisms for each 5-HT receptor subtype (Raymond
et al., 2001).

As regards the antinociceptive potency of 5-HT at supraspinal level, the results
are controversial. Serotoninergicic deficiency is a common factor both in mental
depression and chronic pain. It is well known that antidepressants, including the
selective serotonin reuptake inhibitors, have antinociceptive effects after systemic
or ICV administration (Nayebi et al., 2001; Singh et al., 2001). Increased levels of
5-HT in synaptic clefts are therefore presumed to lead to changes in pain thresh-
olds and induce antinociception. A recent study, by using the formalin test in rats,
attempted to determine the identity and possible localization of the receptor sub-
types predominantly involved in the antinociceptive effects of antidepressants. Thus,
it has been shown that ICV administration of 5-HT2 and 5-HT3-receptor antagonists
inhibited the antinociceptive potency of serotonin-reuptake inhibitors (Yokogawa
et al., 2002).

The major site of the antinociceptive action of serotonin seems to be the spinal
cord, and various studies have identified several types of serotonin receptors in the
SDH (Coggeshall and Carlton, 1997; Fields et al., 1991; Furst, 1999). Data suggest
that distinct 5-HT receptors subtypes are employed to generate the 5-HT-induced
antiallodynic and antinociceptive effects. Serotonin is released from the descending
inhibitory pathways in the spinal cord, and the activation of these pathways lead to
antinociception (Millan, 2002; Reimann et al., 1999; Van Steenwinckel et al., 2008;
Willis, Jr., 1988). IT administered 5-HT has an antinociceptive effect in acute pain
models, but it has lower potency and efficacy in models of persistent pain. (Bardin
et al., 2000a, b; Kuraishi et al., 1985). It has been suggested that predominantly 5-
HT3 receptors are involved in the antinociception by evoking GABA and enkephalin
(ENK) release (Huang et al., 2008; Kesim et al., 2005; Li et al., 2000; Wang et al.,
2003b). However, some data suggest that 5-HT3 receptors contribute to the mainte-
nance of chronic pain, because the 5-HT3 receptor antagonist ondenasetron reduces
mechanical allodynia, and activation of deep SDH neurons that develops following
nerve injury (Hamon and Bourgoin, 1999; Oatway et al., 2004; Suzuki et al., 2004).
Endogenous 5-HT shows the highest affinity for 5-HT2A receptors subtype, and this
subtype is also able to exert antinociceptive action (Hamon and Bourgoin, 1999).
Other data have shown that the antinociceptive effects of IT 5-HT or serotonin reup-
take inhibitors were blocked by 5-HT1A, B, 2A, 2C, 3, and 4 antagonists, whereas
antagonists at 5-HT1D did not influence them (Honda et al., 2006; Jeong et al.,
2004; Van Steenwinckel et al., 2008). 5-HT depletion in the SDH antagonizes the
analgesic action of morphine (Murphy and Zemlan, 1990), and selective blockade
of 5-HT7, but not of 5-HT1A and 5-HT2 receptors attenuated morphine analgesia
(Dogrul and Seyrek, 2006). 5-HT produces an algesic response as a component of
the inflammatory process at peripheral level (Giordano and Rogers, 1989; Taiwo
and Levine, 1992), but activation of 5-HT3 receptors can blunt the pronociceptive
effects on 5-HT2 and 5-HT1A receptors (Kesim et al., 2005).
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2.2.4 Histamine

The biogenic amine histamine (2-(3H-imidazol-4-yl) ethanamine) is involved in
local immune responses, and it is also regarded as a neurotransmitter or modulator
in the mammalian brain (Prell and Green, 1986; Schwartz et al., 1991). Histamine
is derived from the decarboxylation of the amino acid histidine, a reaction catalyzed
by the enzyme L-histidine decarboxylase. In the CNS histamine mostly originates
from two cell types, neurons and mast cell. The cell body of histaminergic neurons
is localized in the tuberomammillary nucleus of the posterior hypothalamus, and
histamine-immunoreactive nerve fibres project widely to the various brain regions
and the SDH (Haas and Panula, 2003). Histamine mediates its effects through four
histamine receptors (GPCRs) that have been discovered and are designated H1
through H4.

As regards the effect of histamine on the pain threshold, it depends on the site
of application and the type of the activated receptor. The H1 receptor knock-out
animals or systemic injection H1- receptor antagonist drugs show increased pain
threshold (Farzin et al., 2002; Mobarakeh et al., 2000; Sakurada et al., 2002; Yanai
et al., 2003; Zamfirova et al., 2007). Activation of H2 receptors induced an increase
in the mechanical pain threshold, whereas antagonism of H2 receptors can induce
either antinociception or hypernociception (Lamberti et al., 1996; Oluyomi and
Hart, 1991). ICV administration of low doses of histamine elicits hyperalgesia, and
high doses of histamine produce antinociception (Chung et al., 1984; Parolaro et al.,
1989). The injection of histamine into the dorsal raphe nucleus and PAG region pro-
duces an antinociception, whereas its injection into the median raphe nucleus causes
hyperalgesia (Glick and Crane, 1978; Thoburn et al., 1994). Some data suggest that
activation of opioid receptors can increase histamine release in PAG (Barke and
Hough, 1993).

The opposite effects of histamine on the pain threshold may be mediated through
different subtypes of receptors (Lamberti et al., 1996; Malmberg-Aiello et al.,
1994; Thoburn et al., 1994). Thus, ICV injection of histamine H1 receptor agonist
produced hypernociception in hot plate (HP) and writhing tests, and H1 recep-
tor antagonists produce antinociceptive effects (Malmberg-Aiello et al., 1998).
However, other reports found that H1 antagonist antagonized the histamine-induced
antinociception (Parolaro et al., 1989). The ICV injection of either H2 agonists or
antagonists raised the pain threshold (Farzin et al., 2002). Moreover, a series of
H2 receptor antagonists reduced the antinociceptive effects of H2 receptor agonist
(Netti et al., 1988). However, other data suggest that both H1 and H2 receptor acti-
vation inhibit the morphine-induced antinociception at both spinal and supraspinal
levels (Mobarakeh et al., 2000; Mobarakeh et al., 2002; Mobarakeh et al., 2006).
It seems that H3 receptor activation may also decrease the pain threshold, because
receptor antagonists have analgesic properties, as these compounds block presy-
naptic autoreceptors and increase the release of neuronal histamine (Farzin et al.,
2002). Spinal administration of histamine produces nociceptive behavior, and a
recent study has suggested that this effect is partially mediated by the activation
of N-methyl-D-aspartate (NMDA) receptors at polyamine binding sites (Sakurada
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et al., 2002; Yanai et al., 2003). However, the activation of H3 receptors located
on spinal terminals increases the pain threshold by inhibiting the release of excita-
tory neurotransmitters (Cannon et al., 2003; Cannon et al., 2007). It is well known
that the peripherally released histamine is a very effective pain-inducing ligand,
however, the activation of H3 receptors at peripheral level can also inhibit the pain
sensation (Cannon et al., 2007).

2.2.5 Melatonin (MT)

Melatonin (5-methoxy-N-acetyltryptamine), a pineal neurohormone and a deriva-
tive of serotonin, is critically involved in the regulation of important biological
functions including circadian rhythms, sleep, mood, and pain (El Shenawy et al.,
2002; Sugden, 1983; Zeng et al., 2008). MT and its receptors (MT1 and MT2) are
located in the spinal cord and various brain regions (Morgan et al., 1994; Vitte et al.,
1990; Zahn et al., 2003). These receptors are GPCRs, and they are linked to activa-
tion of multiple signaling pathways, with the inhibition of cAMP formation being
the most common (Dubocovich et al., 2003; Reppert et al., 1996). The action of MT
may be mediated through an interaction with NMDA receptors and the NOS path-
way too (Hernandez-Pacheco et al., 2008; Mantovani et al., 2003; Tu et al., 2004).
It can also inhibit calcium influx, and it may exert its central effects by modulating
GABAA receptors, therefore, the inhibitory mechanisms of MT might be complex
and are yet to be elucidated in detail (Vanecek, 1998; Wu et al., 1999a). Clinical
studies have shown that migraine patients have lower nocturnal plasma MT lev-
els than controls, and migraine patients with superimposed depression exhibit the
greatest decrease of MT (Gagnier, 2001; Reiter, 1991). Furthermore, MT adminis-
tration improved the symptoms, and it could be due to a number of the actions of
MT: resetting the biological rhythm, relieving anxiety and insomnia, inhibiting both
protaglandin and NO synthesis, depressing calcium uptake, or directly affecting
cerebral blood vessels. MT can reduce cluster headache, irritable bowel syndrome,
and fibromyalgia, although the relationship between depression and chronic pain
was not specifically examined in these clinical reports (Citera et al., 2000; Leone
et al., 1996; Song et al., 2005).

Systemic administration of MT produced dose-dependent antinociception in HP,
and visceral and inflammatory pain tests primarily by supraspinal MT2 receptor
activation (El Shenawy et al., 2002; Li et al., 2005b; Sugden, 1983; Tu et al., 2004;
Yu et al., 2000a; Zeng et al., 2008). On the other hand, others have shown that
systemic MT did not influence the normal pain threshold, but inhibited the develop-
ment of morphine tolerance (Raghavendra et al., 2000; Raghavendra and Kulkarni,
1999; Raghavendra and Kulkarni, 2000). In contrast, light-induced MT suppression
can decrease arthritic pain (Burk, 2008). As regards the activation of the central
melatoninergic system, ICV MT produced a significant increase in acute heat pain
latency, and reversed the nociception or neuropathy-induced hyperalgesic effects
(Li et al., 2005b; Sakurada et al., 2002; Ulugol et al., 2006; Wang et al., 2006b). Its
effect can be reversed by naloxone and MT can specifically enhance the antinoci-
ception induced by δ-(DOR) , but not by μ-(MOR) opioid agonists (Li et al., 2005b;
Yu et al., 2000b).
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Intra-ACC administration of MT attenuated mechanical allodynia and improved
depression-like behavior without changing the nociceptive response in normal rats,
and depressive animals exhibited a lower level of plasma MT concentration and
intra-ACC MT receptor expression (Zeng et al., 2008). These results indicate that
there is a reciprocal relationship between depression-like behavior, and nociceptive
behavior and the melatoninergic system within ACC could play a significant role
in this relationship. IT administration of MT did not influence the pain threshold
in a postoperative pain model, but potentiated the effect of morphine, and it effec-
tively decreased the capsaicin-induced pain behavior and neuropathic allodynia by
activation of MT2 receptors (Ambriz-Tututi and Granados-Soto, 2007; Tu et al.,
2004; Zahn et al., 2003). The results suggest that the endogenous MT system in
the spinal cord can reduce the generation, development, and maintenance of cen-
tral sensitization, with a resultant inhibition of hyperalgesia, allodynia. Peripheral
administration of MT can also decrease formalin- and glutamate-induced behavior
via the activation of the NO-cyclic guanosine monophosphate (GMP)-K+-channel
opening (Hernandez-Pacheco et al., 2008; Mantovani et al., 2006).

2.2.6 Agmatine (AGM)

AGM (decarboxylated arginine), an endogenous amine derived from arginine and
its biosynthetic enzyme (arginine decarboxylase), is broadly distributed in the CNS,
including the SDH (Li et al., 1994a; Raasch et al., 1995; Reis and Regunathan,
2000). The distribution of AGM-containing neurons is concentrated in regions of the
brain that subserve visceral and neuroendocrine control, the processing of emotions,
pain perception, and cognition (Reis and Regunathan, 2000). The concentration
of AGM in the brain is comparable to that of norepinephrine or dopamine (Li
et al., 1994a). AGM possesses modest (micromolar) affinity for α2-adrenoceptors,
and for imidazoline-binding sites (I1 and I2) (Li et al., 1994a; Raasch et al.,
1995). Features complicating the interpretation of its influence upon nociceptive
processing are that AGM behaves as an inhibitor of NOS, expresses antagonist
properties at NMDA receptors and blocks the nAChR cation channels (Fairbanks
et al., 2000; Gibson et al., 2002; Reis and Regunathan, 2000; Yang and Reis,
1999). Systemic administration of AGM significantly reversed inflammatory hyper-
algesia and neuropathic allodynia; furthermore, it potentiated morphine-induced
analgesia (Kolesnikov et al., 1996; Paszcuk et al., 2007). ICV administration of
AGM had no antinociceptive potency by itself, but potentiated the effects of mor-
phine through activation of both α2-adrenoceptors and I2-receptors (Roerig, 2003;
Sanchez-Blazquez et al., 2000). AGM suppresses the transmission of nociceptive
inputs at the spinal level, primarily through the activation of I-receptors (Auguet
et al., 1995; Bradley and Headley, 1997; Hou et al., 2003; Kolesnikov et al.,
1996; Pinthong et al., 1995). The single or continuous IT administration of AGM
could restore injured hypersensitive animals to normal levels of sensation, but
did not influence normal pain sensitivity (Fairbanks et al., 2000; Kekesi et al.,
2004). No data are available on the possible effects of AGM at the peripheral
level.
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2.3 Class III. Amino Acids and Derivatives

2.3.1 Glutamate

The excitatory amino acid glutamate plays a key role in the modulation of noci-
ceptive processing by acting through two distinct types of receptors: excitatory
ionotropic (tetrameric Ca2+/Na+-channels: NMDA, α-amino-3-hydroxyl-5-methyl-
4-isoxazole-propionate: AMPA and kainate) and metabotropic glutamate receptors
(mGluRs) (Bleakman et al., 2006). Eight mGluRs have been identified and divided
into three groups (I–III) based on their sequence similarity, pharmacology, and G-
protein coupling (Conn and Pin, 1997), Group I receptors including mGlu1 and
mGlu5 are coupled via Gq to PLC. Group II (mGlu2 and mGlu3) and Group III
(mGlu4,6,7,8) receptors activate Gi and inhibit cAMP formation. Group I mGluRs
are primarily located postsynaptically on neurons and contribute to biphasic regu-
lation of glutamate synaptic transmission. Group II and III mGluRs are found to
contribute to presynaptic regulation of glutamate and GABA transmission. All three
groups are distributed throughout the CNS, and several data proved the antinocicep-
tive effect of activation of group II and III receptors (Goudet et al., 2008; Kim et al.,
2002; Pan et al., 2008).

Glutamate can produce antinociception at the supraspinal level, because central
NMDA receptor activation can lead to the release of endogenous opioid pep-
tides (Bach and Yaksh, 1995; Goudet et al., 2008; Kim et al., 2002; Starowicz
et al., 2007). The ICV administration of glutamate enhanced the morphine-induced
antinociception, indicating the analgesic interaction between the NMDA and MOR
(Hunter et al., 1994; Jacquet, 1988). Neurons immunoreactive for the NMDA recep-
tors and glutamate were identified in the PAG, and a subset of these projects to the
RVM (Commons et al., 1999; Ito et al., 2008; Wiklund et al., 1988). In an ani-
mal model of inflammatory hyperalgesia, intra-RVM injection of NMDA produced
facilitation at lower doses, and inhibition at higher doses, whereas AMPA receptor
activation produced dose-dependent inhibition (Guan et al., 2002). Thus, activation
of both AMPA and NMDA receptors are involved in the descending modulation
after inflammatory hyperalgesia. It has been suggested that glutamate release in
the RVM activates Off antinociceptive neurons, and its leads to antinociception
(Bleakman et al., 2006; Guan et al., 2002; Starowicz et al., 2007). Activation of
mGlu receptors in the brainstem can also produce antinociceptive effects (Bleakman
et al., 2006; Kim et al., 2002; Oja and Saransaari, 2000). Glutamate (and aspartate)
is a well-known excitatory neurotransmitter and pain-inducing substance at spinal
and peripheral levels by the activation of the ionotropic receptors (Bleakman et al.,
2006). However, data suggest the involvement of spinal group III mGluR in the
modulation of acute, inflammatory, and neuropathic pain (Goudet et al., 2008). The
selective activation of group III mGluR at the spinal level inhibited the nocicep-
tive behavior of rats submitted to the formalin test and the mechanical hyperalgesia
associated with inflammatory or neuropathic pain. This study provides new evidence
for supporting the role of spinal group III mGluRs in the modulation of pain per-
ception in different pathological pain states of various etiologies but not in normal
conditions.
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2.3.2 γ-Amino-butyric Acid (GABA)

GABA is the major inhibitory neurotransmitter. Organisms synthesize GABA from
glutamate using the enzyme L-glutamic acid decarboxylase and pyridoxal phos-
phate (which is the active form of vitamin B6) as a cofactor. This process converts
the principal excitatory neurotransmitter (glutamate) into the principal inhibitory
one (GABA). GABA receptors can be classified as GABAA and GABAC recep-
tors, which are ionotropic receptors (pentameric chloride channels), and GABAB
receptors, which are metabotropic receptors (Alger and Le Beau, 2001). GABA
and its receptors are widely distributed throughout the neuraxis; their concentration
in the brain and spinal cord is relatively high (Enna and McCarson, 2006; Willis,
Jr., 1988). The activation of GABAA and GABAC receptors increases the neuronal
concentration of chloride ion leading to hyperpolarization of the cells. Stimulation
of GABAB receptors modifies the level of cAMP, decreases Ca2+, and increases
K+ membrane conductance, leading to cellular hyperpolarization. The function of
GABA in the modulation of nociception is crucial and complex. Enna McCarson
provided an excellent review of the role of GABA and its receptors in pain trans-
mission, and the results suggest that GABA provides the main neurochemical
substrate for local modulation of pain control in different central areas (Enna and
McCarson, 2006).

With regard to higher brain regions, there are GABAergic projections from the
ventral tegmental area and substantia nigra to the PAG and NRM (Kirouac et al.,
2004; Williams and Beitz, 1990). GABAA receptors are located on inhibitory neu-
rons projecting from the RVM to the dorsal horn (Gilbert and Franklin, 2001). Thus,
local injection of a GABA agonist into this region facilitates transmission of a pain
impulse through the spinal cord (Ito et al., 2008). In contrast, central stimulation of
GABAA and GABAB receptors induces antinociception in the formalin test, and
this effect may be mediated partly through supraspinal opioid receptor mechanisms
(Mahmoudi and Zarrindast, 2002). Furthermore, an increase in overall GABAergic
activity in the insular cortex induces analgesia by enhancing the descending inhi-
bition of the spinal cord (Jasmin et al., 2003). Activation of GABAA receptors in
the amygdala produced a robust reversal of escape/avoidance behavior, and reduced
mechanical hypersensitivity in a neuropathic pain model (Pedersen et al., 2007).
These data suggest that GABAA receptor activation increases output from amyg-
dala to brainstem and forebrain areas and this process might selectively attenuate
affective nociceptive processing. In the spinal cord GABA is a widespread transmit-
ter and GABA receptors are located in the SDH on pre- and postsynaptic sites in the
region of the Aδ- and C-fiber synapses (Huang et al., 2008; Yang et al., 2002). In the
SDH GABA and ENK are colocalized in a large population of neurons, and these
neurons may represent local inhibitory interneurons which modulate pain transmis-
sion (Todd et al., 1992). Neuropathies cause a loss of GABAergic neurons and
GABA transports in the rat spinal cord contributing to the pain syndrome (Drew
et al., 2004; Lever et al., 2003; McCarson et al., 2006; Moore et al., 2002).

Both GABAA and GABAB receptor activations display antinociceptive activ-
ity (Dirig and Yaksh, 1995; Franek et al., 2004; Hwang and Yaksh, 1997; Malan
et al., 2002; Patel et al., 2001; Vaught et al., 1985). It has been demonstrated
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that the GABAergic system contributed to spinal serotonin-mediated antinocicep-
tion, inasmuch as GABA release may underlie the antinociceptive effects of the
descending serotoninergic pathway (Huang et al., 2008; Kawamata et al., 2002). The
analgesic response to GABAB agonist is thought to be mediated, in part, by the acti-
vation of spinal cord presynaptic receptors that regulate the release of tachykinins,
and the inflammatory pain modifies GABAB receptor expression in the DRG and
SDH (Riley et al., 2001). Less is known about the involvement of the GABAC recep-
tors in pain. Zheng et al. (2003) localized the GABAC receptors on lamina I and II
of DH and DRG, crucial sites for pain transmission, but no data are available on the
effect of GABAC agonist at spinal level. Peripheral activations of both GABAA and
GABAC receptors produce antinociception (Carlton et al., 1999; Da Motta et al.,
2004; Reis and Duarte, 2007). It is supposed that activation of coupled chloride
channels causes a hyperpolarization of peripheral terminals of primary afferents,
leading to a decrease in action potential generation.

2.3.3 Glycine (Gly)

Glycine, the smallest amino acid, is known to be an inhibitory neurotransmitter,
but only a few studies investigated its role in pain modulation (Webb and Lynch,
2007). Initially, Gly was described to be restricted to the mammalian spinal cord,
but subsequently it has been detected supraspinally as well (Legendre, 2001). Gly
receptors (GlyRs) belong to the superfamily of receptor channels, which are gener-
ally composed of five subunits (α1–4, β) (Webb and Lynch, 2007). The different α-
and β-subunits are differently localized. The GlyR is a pentameric chloride channel,
and it is classically known for mediating inhibitory synaptic transmission between
interneurons and motor neurons in reflex circuits of the spinal cord, but they are also
found presynaptically, where they modulate neurotransmitter release (Lynch, 2009;
Webb and Lynch, 2007). The picture is complicated by the fact that Gly also binds
to and activates NMDA receptors, therefore, it can influence the pain threshold by
this action as well (see above, Section 2.3.1) (Zeilhofer, 2005).

Changes in glycinergic neurotransmission in the spinal cord dorsal horn are criti-
cally involved in the development of pathological pain, and GlyR blockade produces
allodynia in “normal” animals and enhances nociceptive responses (Cronin et al.,
2004; Sherman and Loomis, 1996; Yaksh, 1989). Immunocytochemical and electro-
physiological evidence implicates α3β GlyRs as important mediators of glycinergic
inhibitory neurotransmission in nociceptive sensory neuronal circuits in the periph-
eral laminae of the SDH (Lynch, 2009; Webb and Lynch, 2007). Because α3
subunits are targets for prostaglandin modulation in spinal nociceptive neurons,
antinociceptive drugs targeting the GlyR should ideally be specific for this subtype.
Thus, inflammation-induced decrease of lamina II glycinergic inhibitory postsynap-
tic current (IPSC) was found to be abolished in the α3β GlyR knock-out mice, and
chronic inflammation did not produce pain sensitisation, but these mice responded
normally to acute inflammatory pain stimuli (Harvey et al., 2004). Furthermore, the
inhibition of glycine uptake at the spinal level produced antinociception in acute
pain tests and in different models of neuropathy (Hermanns et al., 2008; Tanabe
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et al., 2008). No data are available on the glycine effect at both supraspinal and
peripheral levels, but see Section 2.3.5.

2.3.4 D-serine

D-serine is one of the recently identified neurotransmitter candidates, and has
attracted extensive attention because of its multiple roles in physiological and
pathophysiological conditions (Boehning and Snyder, 2003). D-amino acid oxi-
dase degrades D-serine physiologically, whereas serine racemase directly converts
L-serine to D-serine. Both enzymes and D-serine can be found in the brain in the
highest concentrations in the forebrain, where the NMDA receptors for glutamate
are also highly concentrated. Most strikingly, D-serine occurs selectively in proto-
plasmic astrocytes, which ensheath synapses in grey matter, whereas most astrocytes
are enriched in white matter. The occurrence of D-serine in astrocytes in close prox-
imity to NMDA receptors and its release by glutamate suggest that D-serine is an
endogenous ligand for the NMDA receptors. It is quite potent in stimulating the Gly
site of the NMDA receptor, and it acts as an endogenous and obligatory coagonist
for this receptor (Danysz and Parsons, 1998). Some observations have suggested
that the activation of the supraspinal NMDA receptors by D-serine may lead to an
increased pain threshold. Accordingly, ICV application of D-serine alone produces
a dose-dependent antinociception, and potentiates the antinociception of morphine
in the tail-flick (TF) and formalin tests (Hunter et al., 1994; Yoshikawa et al., 2007).
Other data have shown that D-serine-induced antinociception was attenuated by the
ICV application of a GABAA receptor agonist (Ito et al., 2008). These data sug-
gest functional interactions among the GABAA, NMDA receptors, and MOR in the
regulation of the antinociception at the supraspinal level.

2.3.5 Taurine

Taurine (2-aminoethanesulfonic acid) is a phylogenetically ancient nonessential
amino acid; one of the most widespread ligands throughout the CNS (Oja and
Saransaari, 2000; Zeilhofer, 2005). Taurine differs from most other amino acids
in being a sulfonic acid and a β-amino acid. Taurine has been proposed as a possi-
ble inhibitory neurotransmitter in several loci of the CNS through the activation of
GlyRs (Frizzo et al., 2003; Legendre, 2001; Mathers et al., 1989; Xu et al., 2004a).
Taurine induces hyperpolarization and inhibits firing of neurons; it acts as a mod-
ulator of synaptic activity in the brain (Oja and Saransaari, 2000). The increase in
extracellular taurine upon excessive stimulation of glutamate receptors and under
cell-damaging conditions may serve as an important protective mechanism against
excitotoxicity. An increase in oral taurine uptake diminishes chronic nociception,
but decreases the normal heat–pain threshold (Belfer et al., 1998). As regards its
effect in the brain, intra-ACC injection of taurine effectively reduced neuropathic
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nociception acting on GlyRs (Pellicer et al., 2007). Both IT and intraperitoneal
(IP) administration of taurine relieves nociceptive stimulation effects, and pain
stimulus releases taurine in the spinal cord (Hornfeldt et al., 1992; Ishikawa
et al., 2000; Legendre, 2001; Serrano et al., 1998; Skilling et al., 1990; Smullin
et al., 1990).

2.3.6 Kynurenic Acid (KYNA)

Degradation of the essential amino acid tryptophan along the kynurenine pathway
yields several neuroactive intermediates, including kynurenic acid (4-oxo-1H-
quinoline-2-carboxylic acid) (Moroni et al., 1988; Schwarcz and Pellicciari, 2002;
Vecsei and Beal, 1991). This is found both centrally and peripherally in low con-
centrations (10–150 nM) and is synthesized in the CNS, predominantly by glial
cells (Moroni et al., 1988; Pawlak et al., 2000; Schwarcz and Pellicciari, 2002;
Turski and Schwarcz, 1988; Urbanska et al., 2000). KYNA at high, nonphysiolog-
ical concentrations is a broad-spectrum antagonist of ionotropic excitatory amino
acid receptors, acting at the Gly (half-maximal inhibitory concentration: IC50 ∼
20 μM) and the NMDA recognition sites (IC50 ∼ 200 μM) of the NMDA recep-
tor complex (Carpenedo et al., 2001; Ganong et al., 1983; Stone, 1993). In higher
concentrations (0.1–1 mM), it also antagonizes the AMPA and kainate receptors,
and KYNA is a potent noncompetitive antagonist of α7 nAchRs (IC50∼7 μM) too
(Hilmas et al., 2001; Stone, 2000). Thus, direct support for its physiological role
in glutamatergic and cholinergic neurotransmission has been reported (Carpenedo
et al., 2001; Nemeth et al., 2005; Schwarcz and Pellicciari, 2002).

A recent study has shown that GPR35, a previously orphan GPCR, functions as
a receptor for kynurenic acid (Wang et al., 2006a). KYNA elicits calcium mobi-
lization and IP3 production in a GPR35-dependent manner, and it also induces
the internalization of this receptor. GPR35 is predominantly detected in immune
cells and the gastrointestinal tract, but it has also been found in the DRG on
small- to medium-diameter neurons (Ohshiro et al., 2008). The results suggest that
GPR35 may modulate nociception and a continued study of this receptor will pro-
vide additional insight into the role of KYNA in pain perception, inasmuch as no
in vivo data are available regarding the role of GPR35 in the effects of KYNA.
Systemic administration of KYNA produced antinociception in acute heat pain tests
and attenuated the development of tolerance (Heinricher and McGaraughty, 1998;
Marek et al., 1991). Intracisternally administered KYNA effectively inhibited the
capsaicin-induced pain behavior (Hajos and Engberg, 1990). Intra-RVM infusion
of KYNA inhibited the opioid-induced antinociception, although the baseline pain
threshold was unaffected (Heinricher and McGaraughty, 1998; Heinricher et al.,
1999). IT administration of KYNA produces antinociception in different models
(Raigorodsky and Urca, 1990; Yaksh, 1989; Yamamoto and Yaksh, 1992; Zhang
et al., 2003b), and enhanced the effects of EM-1 and AGM (Horvath et al., 2007;
Horvath and Kekesi, 2006; Kekesi et al., 2002). Its peripheral administration also
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produced antinociception in a joint inflammatory model with low potency (Mecs
et al., 2009).

3 Purines

3.1 Adenosine

The endogenous purine mediator adenosine, originating from adenosine 5-
triphosphate (ATP), is a widely distributed neuromodulator with complex effects
(Sawynok, 1998; Sawynok and Liu, 2003). Four adenosine receptors have been
identified and are termed A1, A2A, A2B, and A3 (Fredholm et al., 2001). They are
all GPCRs and couple to classical second messenger pathways; A1 and A3 recep-
tor activation decreases the level of cAMP, A2 increases it, whereas A2B receptor
stimulates PLC (Sawynok, 1998; Sawynok and Liu, 2003).

It has a complex influence on nociceptive pathways because its effects depend on
the receptor subtype activated (Sawynok, 1998; Sawynok and Liu, 2003). The acti-
vation of the A1 and A3 receptors produces analgesia by both peripheral and central
mechanisms, and a variety of molecules is being developed to provide analgesia
through this nonopioid mechanism (Poon and Sawynok, 1998; Sawynok, 1998;
Sawynok and Liu, 2003). It is very important that adenosine has a significant role
in opioid-induced antinociception (Sawynok, 1998). Only a few data support its
antinociceptive potency at the supraspinal level. Thus caffeine (adenosine antago-
nist) decreased the analgesic effects of ICV-administered opioids, and MOR and
DOR (but not κ-opioid receptor [KOR]) agonists (Pham et al., 2003). Furthermore,
both A1 and A2A agonists produced antinociception in acute pain models (Pham
et al., 2003; Regaya et al., 2004).

Several reports suggest the antinociceptive effect of synthetic adenosine deriva-
tives or adenosine kinase inhibitors in different pain tests at spinal level (Poon and
Sawynok, 1998; Sawynok, 1998), however, only few laboratories (those of Sollevi
and Eisenach) have investigated adenosine in this regard (Belfrage et al., 1999;
Chiari and Eisenach, 1999; Eisenach et al., 2002; Lavand’homme and Eisenach,
1999; Rane et al., 2000; Von Heijne et al., 1999). Most studies have observed effec-
tive antinociception in neuropathic pain states, but slight or no effects on normal or
inflammatory pain sensitivity have been found (Kekesi et al., 2004; Lavand’homme
and Eisenach, 1999; Rane et al., 2000; Sawynok and Liu, 2003). This ineffectivity
might be due to uptake and metabolic degradation of adenosine (Sawynok and Liu,
2003).

It seems that antinociceptive effects of adenosine are particularly related to the
activation of A1 receptors in the spinal cord where inhibition of intrinsic and pri-
mary sensory neurons may contribute to this actions (Sawynok and Liu, 2003;
Schulte et al., 2003; Sollevi et al., 1995). Moreover, adenosine agonists produce
analgesia largely by interacting with the descending inhibitory noradrenergic sys-
tem, and the effect of adenosine is blocked by α2-adrenergic antagonists (Gomes
et al., 1999; Sweeney et al., 1987). A component of the antinociceptive action
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of morphine is also due to the local release of adenosine within the spinal cord
(Sawynok et al., 1989; Sweeney et al., 1987). Adenosine acting at its A2A receptor
is thought to be pronociceptive, and this effect has been proposed to result from the
increase in cAMP levels and activation of NMDA receptors (Hussey et al., 2007;
Khasar et al., 1995). As regards the effects of adenosine at peripheral level, the A1
receptor is the predominant receptor subtype mediating antinociception at peripheral
level too, whereas the A2A, A2B, and A3 receptors mediate nociception peripher-
ally (Sawynok and Liu, 2003). Thus it has been shown that the activation of A1
receptors produced a significant antihyperalgesic effect in the inflammatory pain
model (Vuckovic et al., 2006). In contrast, A2A receptor knock-out mice have a
higher nociceptive threshold and this has been suggested to be attributable to the
lack of peripheral adenosine A2A receptors (Ledent et al., 1997).

3.2 Nucleotides

Nucleotides are molecules which comprise the structural units of RNA and DNA.
Additionally, nucleotides play central roles in the metabolism. These nucleotides
might be adenine-(adenosine di- and triphosphate: ADP and ATP), guanine-
(guanosine di- and triphosphate: GDP, GTP), or pyrimidine-nucleotides (uridine di-
and triphosphate: UDP, UTP). It has been established that these molecules medi-
ate diverse biological effects via P2 purinoceptors (P2Xn: ionotropic and P2Yn:
metabotropic receptors) in both the PNS and CNS (Tsuda et al., 2005; Wirkner
et al., 2007). The P2X receptors expressed in the brain are primarily distributed
throughout the rat hindbrain, including the RVM and LC (Kanjhan et al., 1999;
Wirkner et al., 2007). ATP acting on P2X receptors at the supraspinal level pro-
duces mechanical and thermal antinociception in rats through the activation of P2X3
receptors (Fukui et al., 2004; Fukui et al., 2006; Wirkner et al., 2007). It is conceiv-
able that the ascending noradrenergic neurons arising from the LC are involved in
the supraspinal antinociception by a P2X receptor agonist (Fukui et al., 2004). At
the spinal level the expression of the P2X3 receptors appears selective for a sub-
population of small diameter DRG neurons, which are probably associated with
nociception (Inoue et al., 2007; Wirkner et al., 2007). As regards the role of P2Y
receptors, the activation of some of these receptors by UTP (acting on P2Y2,4,6,14)
in the brain had no effect on the mechanical nociceptive threshold (Fukui et al.,
2001). Only a few data suggest that the expression of these receptors increased in
the microglia at the spinal level during neuropathy, and blocking or lack of this
receptor produced antinociception (Gerevich and Illes, 2004; Inoue et al., 2007;
Tozaki-Saitoh et al., 2008). Thus, the activation of these receptors contributes to an
acute nociceptive behavior, hyperalgesia, and allodynia.

In contrast, some data suggest that P2Y receptor agonists can inhibit cytokine
release from activated spinal cord microglia (Gerevich and Illes, 2004). This process
could interrupt chronic pain development and continuation. Thus, UTP and UDP
were shown to be analgesic in the neuropathic pain model (Okada et al., 2002). IT
pyrimidine nucleotides elevated the nociceptive threshold in the paw pressure and
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TF tests, whereas adenine nucleotides (activate: P2Y1,2,11,12,13) lowered it and pro-
duced allodynia (Gerevich and Illes, 2004). The ADP analogue ADP-β-S (acting
on P2Y1,12,13) has also been found to cause analgesia in TF test. As regards the
action mechanism, it seems that both pyrimidine nucleotides and ADP-β-S produce
antinociception by the activation of P2Y receptor causing the inhibition of the volt-
age gated N-type Ca2+ channels, and decrease the transmitter release in the spinal
cord (Gerevich et al., 2004). However, the specific antagonist of P2Y12 receptor
decreased neuropathic pain, suggesting that this type of purinergic receptors may be
critical in the pathogenesis of neuropathic pain (Tozaki-Saitoh et al., 2008). These
ligands, mainly the ATP play a facilitatory role in pain transmission at peripheral
level (Wirkner et al., 2007).

Extracellular guanine-based purines (GBP), namely the nucleotide guanosine
monophosphate (GMP) and the nucleoside guanosine also exert biological effects.
Such actions are unrelated to direct G-protein modulation, but GBPs induce mod-
ulation of the glutamatergic system by the inhibition of the binding of glutamate
and analogues, and prevent cell responses to excitatory amino acids (Burgos et al.,
1998; Morciano et al., 2004). Both neurons and astrocytes release guanosine under
basal and toxic conditions (Ciccarelli et al., 2001). ICV administration of guano-
sine or its prosubstance, GTP, produced dose-dependent antinociceptive effects in
several different acute nociceptive tests (HP, TF, intraplantar: IPL capsaicin or glu-
tamate) (Schmidt et al., 2008). The action mechanism of this effect is unknown, but
it was not inhibited by the adenosine- or opioid receptor antagonists, and guanosine
did not increase the adenosine level in the brain. (Traversa et al., 2003). However,
guanosine significantly stimulates glutamate uptake, thereby preventing glutamate
toxicity, therefore, it is tempting to suppose that the in vivo antinociceptive effect of
guanosine can result from its effect on glutamate removal from the synaptic cleft,
leading to less activation of glutamate receptors (Frizzo et al., 2003).

4 Other Nonpeptide Molecules

4.1 Ouabain

Endogenous cardiac glycoside inhibitors of Na+/K+-ATPase with structures simi-
lar to that of plant-derived ouabain (1β,3β,5β,11α,14,19-hexahydroxycard-20(22)-
enolide 3-(6-deoxy-α-L-mannopyranoside)) have been isolated from several tissues,
including the adrenal cortex and the brain (Van Huysse and Leenen, 1998). Ouabain,
through the inhibition of Na+,K+-ATPase, may produce several effects including
modulation of neural activity and neurotransmitter release. These effects might be
related to the pain mechanism; but only few studies investigated its role in this
context. ICV-injected ouabain in relatively high doses (μg) exerts an antinocicep-
tive effect and potentiates the analgesic activity of morphine (Calcutt et al., 1971).
However, lower doses (ng) of ouabain were able to antagonize the antinociception
induced by morphine (Masocha et al., 2003). IT administration of ouabain in high
doses also produced analgesia and enhanced the potency of morphine (Zeng et al.,
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1999). Another study found that low doses of ouabain did not modify the acute heat
pain latency, but higher doses caused excitation and motor impairment, suggesting
that ouabain does not produce a pronounced effect on the pain threshold (Horvath
et al., 2003). It is supposed that the controversial results might be due to the fact that
ouabain produces its effect on all of the cells, inasmuch as all have Na+,K+-ATPase,
and its net effects on transmitter releases might be dose-dependent.

5 Peptides

A growing number of peptides have been identified in the CNS and the periphery
that relate to pain modulation (Palkovits, 1984). They can originate from neurons,
endocrine cells, immunocytes, fat and muscle cells, and so on. There is no clear
classification for peptides, and there is some overlap between the different groups.
The first group of them contains the hormones, however, now it is well established
that most of the hormones can originate from neurons, and they can modify the
neuronal functions as well. The second group comprises neuropeptides consisting
of short chains of amino acids, with some functioning as neurotransmitters others as
hormones; they are often localized in axon terminals at synapses and are classified as
putative neurotransmitters. They include endorphins, ENKs, and others. Cytokines
(the third group) are a special category of signaling molecules that, like hormones
and neurotransmitters, are used extensively in cellular communication. Anatomical
and structural distinctions between cytokines and classic hormones are fading as
we learn more about each. Classic protein hormones circulate in nanomolar (10-9)
concentrations that usually vary by less than one order of magnitude. In contrast,
some cytokines (such as IL-6) circulate in picomolar (10-12) concentrations that can
increase up to 1000-fold during a trauma or infection.

5.1 Peptide Hormones

5.1.1 Oxytocin (OT)

Oxytocin (nonapeptide) is mainly synthesized together with arginin-vasopressin
(AVP) in magnocellular neurons of the paraventricular (PVN) and supraoptic (SO)
nuclei of the hypothalamus, and acts as a neurohormone during parturition and
the milk ejection reflex (Gimpl and Fahrenholz, 2001). However, it can subserve
a neurotransmitter/neuromodulator function as well. OT exerts its actions via the
OT receptor, a GPCR receptor (Gq/11 class, stimulates PLC activity), which is local-
ized in many parts of the CNS and PNS (Tribollet et al., 1992). Descending OTergic
pathways extend from the hypothalamus to the thalamus and brainstem (Sawchenko
and Swanson, 1982), thus OTergic terminals and high-affinity binding sites for OT
are present in regions involved in pain perception (Tribollet et al., 1992). High con-
centrations of OT are found in raphe nuclei, and OT modulates serotonin turnover
in the brain (Kovacs, 1986). It has been suggested that a loop exists between the
LC and the hypothalamus, a pathway that may be involved in the regulation of the
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release of OT (and AVP) following painful stimulation (Swanson and McKellar,
1979). At least 25% of OTergic neurons in the hypothalamus project to the SDH,
and these projection sites match well OT binding sites in the superficial layers of the
SDH and in the autonomic regions (Rousselot et al., 1990).

Although some conflicting results have been reported in the literature, analgesic
effects of OT have been proved in most studies after systemic and/or central admin-
istration. The ICV injection of OT produced a significant antinociceptive effect in
different acute pain models (Arletti et al., 1993; Gao and Yu, 2004; Zubrzycka and
Janecka, 2008). An OT-sensitive antinociception can be induced by massage-like
stimulation, swim stress, and electrical stimulation the PVN in both naive and neu-
ropathic rats, suggesting the involvement of an endogenous OT receptor-dependent
analgesic system. The OT-induced antinociception might be mediated by MOR and
KOR activation, which suggests the release of endogenous opioids after OT recep-
tor activation (Zubrzycka et al., 2005). The stimulation of PVN causes OT release in
the spinal cord and can influence spinal nociceptive processing (Condes-Lara et al.,
2005; Yang, 1994). This OT-specific stimulation of neurons allows the recruitment
of GABA-ergic interneurons in lamina II, which produces a generalized elevation
of local inhibition.

5.1.2 Vasopressin (Arginine Vasopressin: AVP)

AVP (nonapeptide), the other posterior pituitary hormone, is mainly synthesized
in the PVN of hypothalamus. Similarly to OT, descending AVPergic pathways
extend from the hypothalamus to the thalamus, medulla oblongata, and the sub-
stantia gelatinosa of the SDH (Sawchenko and Swanson, 1982). Especially PAG
contains many AVP-containing fibers (Pittman et al., 1981). Three subtypes of AVP
receptors (GPCRs), V1, V2, and V3, have been identified, mediating vasoconstric-
tion, water reabsorption, and central nervous system effects, respectively (Holmes
et al., 2003). Functionally, V1R activates G-proteins of the Gq/11, whereas V2R
stimulates the Gs proteins. A variety of signaling pathways is associated with V1R
including the activation of calcium influx, PLA2, PLC, and PLD; in contrast, V2R
activates cAMP. More than one G-protein appears to participate in signal trans-
duction pathways linked to V3Rs, depending on the level of receptor expression
and the concentration of AVP. Many experiments discovered that AVP is related
to pain modulation, and pain stimuli elevate AVP concentration in different brain
areas (NRM, caudate nucleus, and PVN), furthermore microinjection of AVP into
these centers raised pain thresholds (Yang et al., 2007a; Zubrzycka and Janecka,
2007). Stimulation of PVN caused antinociception, which was antagonized by anti-
AVP (Yang et al., 2007a). Central injection of AVP (ICV, intra-PAG) increased pain
threshold and the level of endogenous opioids, thus its effects were reversed by
naloxone suggesting that the release of endogenous opioids plays a significant role
in its antinociceptive effect (Yang et al., 2007a, b; Zubrzycka et al., 2005; Zubrzycka
and Janecka, 2008). The analgesic effect of AVP in PAG can be reversed by a V2
antagonist and V2 antagonist also reduced the basal pain threshold, suggesting an
inhibitory tone of these fibres (Yang et al., 2006). It seems that the antinociceptive
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effect of AVP is limited to the brain nuclei, not to the spinal cord and peripheral
organs, because IT or intravenous (IV) injection of AVP or anti-AVP serum did not
change the pain threshold (Yang et al., 2007a).

5.1.3 Calcitonin (CT)/Parathyroid Hormone Fragments
(PTH)/Tuberoinfundibular Peptide of 39 Residues (TIP39)

Parathormone (PTH) (84 amino acids) acts in concert with calcitonin (CT; 32-amino
acids) to maintain the serum calcium level acting on GPCR receptors. TIP39 was
purified based on parathyroid hormone-2 receptor (PTHR2) activation, and it is an
endogenous ligand for the PTHR2, a GPCR receptor increasing cAMP level (Usdin
et al., 2003). Both ligands and their binding sites can be found in regions that are
involved in processing pain-related information (Harvey and Hayer, 1993; Olgiati
et al., 1983; Usdin et al., 2003). The ability of CT to produce antinociception has
led to the suggestion that CT may serve as a neuromodulator in the CNS. Systemic
injection of CT produced antinociception in inflammatory pain models, and this
was inhibited by ICV but not by IT application of serotonin-antagonists, and neither
IT nor ICV administration of α-adrenoceptor antagonist and systemic injection of
opioid antagonist influenced the antinociceptive effects (Yamazaki et al., 1999).

ICV administration also was effective in acute heat- and visceral pain models
(Welch et al., 1986). One study has investigated the antinociceptive interaction of
fragments of the PTH with CT after their ICV administration (Welch and Dewey,
1990). It has been suggested that CT and some PTH fragments interact in the modu-
lation of nonopiate antinociception, possibly via actions on the calcium level in the
brain. CT is not an effective antinociceptive ligand at the spinal level (Wiesenfeld-
Hallin and Persson, 1984). Only few data support the role of TIP39 in the pain
processes. ICV administration of TIP39 partially reversed tactile withdrawal hyper-
sensitivity following carrageenan administration, but did not change the HP latency
or the formalin-induced behavioral responses (LaBuda and Usdin, 2004). TIP39
also decreased the aversiveness of paw stimulation, suggesting that it may modulate
an effective component of nociception within the brain, and its IT administration
produced pronociceptive action (Dobolyi et al., 2002; LaBuda and Usdin, 2004).

5.1.4 Insulin

Insulin (51 amino acids) is produced in the islets of Langerhans in the pancreas.
Insulin regulates not only the blood sugar level, but also various CNS functions
acting on its tyrosine-kinase receptor (TrK). A few early data suggest that insulin
can induce antinociception, and diabetic rats are less sensitive to the antinociceptive
effect of morphine (Bodnar et al., 1979; Simon and Dewey, 1981). Both systemic
and ICV insulin decreased the formalin-evoked behavior, and the insulin-induced
antinociception was independent of hypoglycemic effects, but it could be due to the
activation of endogenous dopaminergic, serotoninergic, and opioidergic systems
(Anuradha et al., 2004; Takeshita and Yamaguchi, 1997). Insulin inhibits neuronal
firing in the hippocampus and hypothalamus, and insulin-induced antinociception
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could possibly involve all these centers, whereas the IT administration of insulin
did not influence the pain threshold (Bitar et al., 1996).

5.1.5 Renin-Angiotensin System (RAS)

Angiotensin II (Ang II; octapeptide) is a key regulator of the cardiovascular system,
and it is the main effector of RAS. The final steps of its biosynthesis involve con-
secutive proteolytic cleavages of its inactive precursors, angiotensinogen (AO) and
angiotensin I (Ang I), by renin and angiotensin converting enzyme (ACE), respec-
tively (Suarez et al., 2002). Ang II-containing neurons and fibers were identified in
the brain, especially in the hypothalamic regions, the nucleus of the solitary tract,
and in the PAG (Sofroniew et al., 1981). Two receptor subtypes Ang II type 1
(AT1) and Ang II type 2 (AT2) (GPCRs: increase PLC and/or cAMP formation)
have been identified, and the main biological functions exerted by Ang II are medi-
ated by the AT1 receptor subtype. Ang III (metabolite of Ang II) binds primarily
to AT2 subtypes, and the biological function of AT2 receptors is still controversial
(McKinley et al., 2003; Suarez et al., 2002). The localization of Ang II and its recep-
tors in the PAG reinforces the suggestion that endogenous Ang II participates in an
AT-receptor-mediated modulation of nociception (Pelegrini-da-Silva et al., 2005).

AT2 receptor-deficient mice have increased sensitivity to pain and decreased the
levels of brain β-endorphin (Sakagawa et al., 2000). Antinociception following ICV
administration of Ang II and Ang III has been demonstrated in several rodent pain
models (Pelegrini-da-Silva et al., 2005; Raghavendra et al., 1999). Administration of
Ang III into the rat nucleus reticularis gigantocellularis also evokes antinociception
in TF test (Yien et al., 1993). Microinjection of angiotensinogen, Ang I, Ang II, or
Ang III into the PAG produces a dose-dependent antinociceptive effect in the rat
TF-test, which was inhibited by Ang- and opioid receptor antagonists (Pelegrini-
da-Silva et al., 2005; Prado et al., 2003; Adams et al., 1986). Additional evidence
of the involvement of RAS peptides in nociception includes the reduction of the
SIA by Ang receptor antagonists (Haulica et al., 1986; Raghavendra et al., 1999).
Nerve terminals containing Ang II-like immunoreactivity (LI) have been identified
in the primary sensory neurons and in the SDH as well (Buck et al., 1982), and IT
administration of Ang II increased the TF latency (Thurston et al., 1992), whereas
others did not find this effect (Cridland and Henry, 1988a).

5.1.6 Melanocortin System (MC)

Amongst the wide range of modulators, the melanocortin system represents a rela-
tively new, intriguing, potential target for pain control (Bertorelli et al., 2005). MCs
are a family of endogenous peptides generated by enzymatic cleavage of a com-
mon precursor molecule, proopiomelanocortin (POMC). Main members of the MC
family are α-, β-, γ-melanocyte-stimulating hormones (MSH: containing 16, 22, 12
amino acids, respectively) and the adrenocorticotropic hormone (ACTH; 39 amino
acids). MCs exert their actions through activation of at least five subtypes of recep-
tors (MC1–MC5), which are GPCRs, and each of them is positively coupled to AC.
A further peculiarity of the system is that, in addition to endogenous agonists, there



Endogenous Antinociceptive Ligands 443

are also endogenous antagonists such as agouti protein, which binds preferentially
to MC1 receptors and is expressed mainly in the skin, and the agouti-related protein
(AgRP), which is an inverse agonist of both MC3 and MC4 receptors and is mainly
expressed in the brain (Dinulescu and Cone, 2000; Nijenhuis et al., 2001). Thus,
both endogenous agonists and antagonists can be detected in the CNS including the
spinal cord (Bertorelli et al., 2005), and the MC system could be under the control
not only of an excitatory but also an inhibitory system.

MCs and their receptors are mainly present in the periphery where they can be
found primarily on melanoma cells and melanocytes (Wikberg and Mutulis, 2008).
In the CNS, the MC1 receptor is present on neurons in the PAG of the midbrain,
where it is thought to have a role in pain control (Mogil et al., 2003; Palkovits et al.,
1987). Furthermore, mainly MC3 and MC4 receptors are found in the spinal cord.
A possible link between MCs and nociception was first postulated by pioneering
studies in late the 1970s, early 1980s, showing that ICV administration of α-MSH
and ACTH causes hyperalgesia, and reverses the analgesic effects of morphine
and β-endorphin (Sandman and Kastin, 1981; Williams et al., 1986). Thus, these
ligands produce mainly hyperalgesia, whereas the antagonists produce antinoci-
ception in inflammatory and nerve injury models (Bellasio et al., 2003; Bertorelli
et al., 2005; Mogil et al., 2003; Sandman and Kastin, 1981; Starowicz et al., 2002;
Vrinten et al., 2000; Vrinten et al., 2001). However, MSH has an anti-inflammatory
potency as well, and it antagonizes the interleukin-1β-induced hyperalgesia in the
PVN (Ceriani et al., 1994; Macaluso et al., 1994). Furthermore, MC1 mediates
KOR-mediated analgesia in female mice (Mogil et al., 2003). Inasmuch as agouti
protein and AgRP are endogenous antagonists of MC receptors, the inhibition of
these receptors by these endogenous ligands can produce effective antinociception,
as was shown after their IT administration (Bellasio et al., 2003; Bertorelli et al.,
2005).

5.1.7 Corticotropin-Releasing Factor (CRF) and Related Peptides

CRF (41 amino acids) is best known as the major physiological regulator of pitu-
itary ACTH secretion. CRF not only mediates stress responses but also acts as a
neuromodulator of synaptic transmission outside of the hypothalamic–pituitary–
adrenocortical axis (Ji and Neugebauer, 2008). In addition to CRF, the CRF family
encompasses three novel CRF-related mammalian ligands, urocortin 1 (Ucn1),
Ucn2, and Ucn3 (Martinez et al., 2004; Perrin and Vale, 1999). Ucn1 contains 40
amino acids, whereas Ucn2 and Ucn3 are composed of 38 amino acids. Each type
of Ucns is found in different brain areas including the PAG, but they can be identi-
fied peripherally as well (Martinez et al., 2004). These ligands mediate their actions
through interaction with two distinct receptor subtypes, CRF1 and CRF2, and both
receptors can couple to similar signal transduction pathways (AC and PKA). CRF
has preferential affinity for CRF1, Ucn1 binds with equal high affinity to both CRF
receptors, and Ucn2 and Ucn3 exhibit high selectivity towards CRF2 receptors
(Dautzenberg and Hauger, 2002; De Souza et al., 1985; Korosi et al., 2007). The
presence of Ucn1 and Ucn3 immunoreactive nerve terminals in association with
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CRF2 receptors in the PAG and spinal cord suggests a modulatory influence of these
receptors in pain (Korosi et al., 2007).

Accumulating evidence suggests that peripheral and central CRF are important
pain modulators, but the literature on pain-related CRF functions in the CNS is
very controversial (Million et al., 2006). CRF, injected ICV, mimicked the effects
of stress-induced visceral hyperalgesia, and CRF1/CRF2 antagonists blocked this
effect (Gue et al., 1997). However, other data suggest that both CRF1 and CRF2 are
involved in SIA (Ji and Neugebauer, 2008; Korosi et al., 2007). A recent study has
shown antinociceptive effects of CRF (ICV) in acute and inflammatory pain mod-
els, but CRF has also increased pain-related vocalizations and the number of Fos
immunopositive spinal neurons (Vit et al., 2006). It seems that the amygdala might
be an important site in this respect, because CRF2 receptors could activate inhibitory
circuits in the amygdala, whereas CRF1 receptors regulate excitatory processes (Ji
and Neugebauer, 2008; Neugebauer et al., 2004). The opposing effects of CRF on
nociceptive processing may be mediated through different receptors. Low concen-
trations of CRF facilitate nociception through CRF1, whereas higher concentrations
have inhibitory effects through CRF2 receptors, and this would be consistent with
the higher affinity of CRF for CRF1 than CRF2 receptors (Dautzenberg and Hauger,
2002; Ji and Neugebauer, 2008). CRF, Ucn1, and CRF receptors occur in the spinal
cord as well, mainly in laminae VII and X, and occasionally in lamina IX, whereas
the receptors have not been identified in the superficial laminae of the dorsal horn
(Korosi et al., 2007). It has been suggested that these receptors are also involved in
stress adaptation processes, such as modulation of SIA and the mediation of visceral
nociceptive information at spinal level (Korosi et al., 2007; Million et al., 2006;
Robbins and Ness, 2008). Thus, IT-administered CRF produces antinociception,
which is reversible by the CRF2 receptor antagonist (Nijsen et al., 2005). CRF and
CRF2 receptor expressions were detected in the periphery as well, and the periph-
eral CRF2 may also be involved in visceral sensitivity (Ayesta and Nikolarakis,
1989; Kiang and Wei, 1985; Million et al., 2006; Schafer et al., 1996). Intra-arterial
injection of Uc2 reduced visceral hyperalgesia in vitro, and this effect was inhibited
by a selective CRF2 antagonist, suggesting that the peripheral activation of CRF2
receptors has a significant role in visceral antinociception (Million et al., 2006).

5.1.8 Thyrotropin-Releasing Hormone (TRH)

TRH (tripeptide: Glu-His-Pro-NH2), discovered originally as a hypothalamic hor-
mone, is widely distributed in the CNS, and it also coexists with substance P (SP)
and 5-HT in the neurons of the medulla oblongata which projects into the spinal
cord (Johansson et al., 1981). TRH exerts a variety of CNS effects, through stim-
ulation of TRHR1 and TRHR2 receptors belonging to GPCR. TRHR1 receptors
are expressed in the pituitary gland to release thyrod stimulating hormone, whereas
TRHR2 has been shown in the brainstem nuclei, which are involved in descend-
ing pain modulation (Cao et al., 1998). Both systemic and supraspinal activations
of TRH receptors produce antinociceptive effects in acute heat, mechanical, and
visceral pain tests, whereas IT administration has been ineffective (Tanabe et al.,
2007; Webster et al., 1983). Thus, injection of TRH into the lateral ventricle, PAG,
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NRM, or amygdala generates antinociception in the acute pain test (Reny-Palasse
et al., 1989; Webster et al., 1983). ICV administration of TRH has induced analgesic
effect with similar or higher potency than morphine in mechanical but not thermal
pain tests (Boschi et al., 1983). Its antinociceptive effects are mediated via activa-
tion of both descending monoaminergic and serotoninergic pathways (Tanabe et al.,
2007), and others have found that TRH activity was resistant to modifications of NE,
dopamine, and 5-HT systems (Boschi et al., 1983). The TRH effect was not antag-
onized by naloxone, but TRH at a nonanalgesic dose prevented the hyperalgesia
induced by naloxone (Boschi et al., 1983).

5.1.9 Somatostatin (SST)

Somatostatin (in 14 and 28 amino-acid-containing forms) was originally described
as a hypothalamic polypeptide that inhibits the secretion of pituitary growth hor-
mone. It exerts a wide range of effects such as modulation of hormone and
neurotransmitter release, cognitive and behavioral processes, the gastrointestinal
tract, the cardiovascular system and tumour cell proliferation, but it also has an
important neuromodulator function (Gamse et al., 1981; Pan et al., 2008; Pinter
et al., 2006). SST is synthesised and stored in capsaicin-sensitive transient recep-
tor potential vanilloid 1 (TRPV1) receptor expressing nociceptive afferents, but it
also has been identified in SDH neurons (Pan et al., 2008; Willis, 1988). The effects
of SST are mediated via five different GPCR subtypes which can be divided into
two main groups on the basis of their sequence similarities and their binding pro-
file towards synthetic somatostatin analogues. SST2, 3, and 5 mediate the endocrine
and antiproliferative effects of SST, whereas SST1 and 4 may be responsible for
the anti-inflammatory and antinociceptive actions (Helyes et al., 2000; Pinter et al.,
2006; Sandor et al., 2006). Exogenously administered SST has been shown to inhibit
neurogenic inflammation and nociception in several experimental assessments, and
it is effective in the treatment of patients with certain pain conditions, including dif-
ferent types of headaches (Pan et al., 2008; Yu et al., 2004). Central administration
of SST (ICV or into the caudate nucleus) increases the pain threshold, suggesting an
antinociceptive role of SST at the supraspinal level (Tashev et al., 2001; Zheng and
Li, 1995). IT injection of SST has failed to influence TF latency at low doses, how-
ever, higher doses have caused motor impairments (Cridland and Henry, 1988a).
Much progress has been made in the past ten years in the understanding of the
important roles of SST in the regulation of pain transmission at the peripheral level
(Helyes et al., 2000; Sandor et al., 2006). Somatostatin released from the activated
capsaicin-sensitive sensory nerve terminals reaches the circulation, and it is able
to elicit systemic anti-inflammatory and antinociceptive actions. This endogenous
counterregulatory mechanism of neurally derived somatostatin has been termed as
its “sensocrine function” (Szolcsanyi, 2004; Than et al., 2000).

5.1.10 Prolactin

Prolactin is a polypeptide hormone (199 amino acids) whose major biological
actions are related to normal lactation and reproduction. After hormone binding,
signal transduction occurs via the cytokine receptor superfamily. It is well known
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that prolactin level increases during painful stimuli, but only a few data suggest
its antinociceptive role. Thus it has been shown that systemic administration of
prolactin induced antinociception in visceral pain model, and it can contribute to
postictal antinociception as well (Portugal-Santana et al., 2004; Ramaswamy et al.,
1985). No other data are available in this context.

5.1.11 Ghrelin

Ghrelin (28 amino acids), a gastric-derived hormone, was discovered as a ligand
for the growth hormone secretagogue receptor (GHSR). It has gained increasing
attention as a brain–gut hormone with GH-releasing and appetite-inducing func-
tions (Arora and Anubhuti, 2006). GHSR is a GPCR and two isoforms (type 1a and
1b) have been detected (Kojima and Kangawa, 2005). Recent studies have reported
that, in addition to the stomach, ghrelin and its receptors are expressed in vari-
ous peripheral tissues and in the brain, including the pituitary, hypothalamus, pons
medulla, oblongata, and SDH, the regions implicated in the control of pain trans-
mission (Kojima and Kangawa, 2005; Vergnano et al., 2008). It is very important
in this context that ghrelin specifically inhibits the expression of the proinflam-
matory cytokines; therefore it may attenuate proinflammatory cytokine-mediated
neuropathic pain (Dixit et al., 2004; Guneli et al., 2007; Li et al., 2004). IP and
ICV administration of ghrelin reduced the inflammatory hyperalgesia and edema in
a naloxone-reversible manner (Sibilia et al., 2006). Ghrelin is able to stimulate the
neural activity in the hypothalamic ARC, where it increases the endogenous opi-
oid synthesis and/or activity (Sibilia et al., 2006). Ghrelin increased the inhibitory
postsynaptic currents and prevented the capsaicin-induced increase of Fos-LI in the
deep SDH (Vergnano et al., 2008). These data suggest that the effect of the ghrelin
is mainly due to an action potential-dependent presynaptic release of inhibitory neu-
rotransmitters, and it may be tonically active in the spinal cord. Ghrelin promotes
neuronal release of neuropeptide Y, which is another antinociceptive ligand (see
below Section 5.2.8; Cowley et al., 2003). IPL administration of ghrelin increased
the inflammatory pain threshold, suggesting a peripheral role of this ligand, too
(Sibilia et al., 2006).

5.1.12 Orexins

Orexins, also called hypocretins, are the common names given to a pair of highly
excitatory neuropeptide hormones that were discovered in rat brain, and they are
implicated in body mass regulation (Arora and Anubhuti, 2006; Trivedi et al., 1998).
The two related peptides (orexin-A: 33 and orexin-B: 28 amino acids), with approx-
imately 50% sequence identity, are produced by cleavage of a single precursor
protein. Orexin-A has two intrachain disulfide bonds and has greater biological
importance, and orexin-B is a linear peptide (Smart, 1999). Although these pep-
tides are produced by a very small population of cells in the lateral and posterior
hypothalamus, they send projections throughout the brain and to the spinal cord
(Marcus et al., 2001; Van Den Pol, 1999; Yamamoto et al., 2002a). The orexin
peptides bind to the GPCR orexin receptors (OX-1 and OX-2), which are widely
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distributed in the CNS (Kukkonen et al., 2002; Trivedi et al., 1998). The deficiency
in orexin induced an increased hyperalgesia and less SIA (Watanabe et al., 2004),
and ICV administration of orexin was effective on acute and neuropathic pain tests
(Mobarakeh et al., 2005; Yamamoto et al., 2003). At the spinal level orexin was
also effective in different pain models (visceral, formalin, postoperative, and neuro-
pathic), and the inhibition of the NMDA receptors might play a significant role in
this process (Cheng et al., 2003; Kajiyama et al., 2005; Peng et al., 2008; Yamamoto
et al., 2002a; Yamamoto et al., 2003). Its peripheral administration inhibits the neu-
ronal vasodilation and this effect can also contribute to a decreased pain sensitivity
(Holland et al., 2005).

5.1.13 Bombesin-Related Peptides

Bombesin (BN; amidated tetradecapeptide) was isolated from frog skin.
Subsequently, in mammals two BN-like peptides were identified: gastrin-releasing
peptide (GRP; 27 amino acids) and neuromedin B (NMB; 10 amino acids) (Jensen
et al., 2008). On the basis of the preceding molecular studies, three classes of
mammalian bombesin receptors (BB1-3, GPCRs acting primarily through PLC
system) were proposed. The BB1 is an NMB-preferring receptor, the BB2 is a
GRP-preferring receptor, and the BB3 has low affinity for these peptides. Studies
of GRP and NMB immunoreactivity as well as mRNA studies have demonstrated
that these peptides and their receptors are widely distributed in mammals in both
the nervous system and peripheral tissues, especially in the gastrointestinal tract
(Jensen et al., 2008). Only a few studies suggest the role of these peptides in the
nociception. GRP or BB1 receptor-deficient mice did not show any impairment in
pain threshold (Sun and Chen, 2007; Yamada et al., 2003), but intra-PAG injection
of bombesin produced antinociception in the HP and TF tests (Pert et al., 1980; Yu
et al., 2004). Furthermore, the IT administration of bombesin and neuromedin B
produced nocifensive behavior (Cridland and Henry, 1992).

5.2 Neuropeptides

5.2.1 Opioid-Related Peptides

Morphine, the main alkaloid of opium, is utilized for the treatment of severe pain,
and is the gold standard to which all analgesics are compared. Early efforts to under-
stand the endogenous targets of opiate drugs led to the identification of receptor
sites. Binding studies suggested four main classes of opioid receptors, named μ-
(MOR), δ- (DOR), κ- (KOR), and opioid receptor-like (ORL1) receptors. Opioid
receptors comprise a subfamily of structurally homologous GPCRs. Activation of
these receptors inhibits the formation of cAMP, close voltage-gated Ca2+-channels
and opens inwardly rectifying potassium channels (Dhawan et al., 1996; Jordan
et al., 2000; Lambert, 2008). The net effect of these cellular actions is to reduce
neuronal excitability and neurotransmitter release.

Opioid receptors and their endogenous ligands are widely distributed in the
organism, thus both central and peripheral activation of this system might lead to
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effective antinociception (Akil et al., 1984; Basbaum and Fields, 1984; Bodnar,
2008; Menetrey and Basbaum, 1987; Palkovits, 2000; Pan et al., 2008). A high
dose of naloxone (opioid antagonist) produces hyperalgesia, suggesting a significant
role of endogenously released opioids in the development of normal pain sensitivity
(Boschi et al., 1983). For example, the distribution of the endomorphins (EMs) along
the nociceptive pathway implicates them as particularly important for the modu-
lation of pain (Horvath, 2000). Thus, the EMs have been found unequally in the
brain; they are stored in neurons and axon terminals with heterogenous distribution
and they are released from synaptosomes by depolarization (Horvath, 2000; Zadina
et al., 1997). Nociceptin is also widely distributed in central structures involved in
sensory, emotional, and cognitive processing, and in the periphery including the
immune cells (Lambert, 2008; Reinscheid et al., 2000). Furthermore, nocistatin
(the other opioid-related peptide) is also present in the brain and the spinal cord
(Boom et al., 1999; Lee et al., 1999; Okuda-Ashitaka et al., 1998), and its distribu-
tion appears to be almost identical to that of nociceptin (Okuda-Ashitaka and Ito,
2000).

As regards the actions of opioids at the supraspinal level, several centers are
involved in this process. Some of the analgesic actions of opioids may be due
to modulation of the descending pathways to reduce nociceptive transmission in
the spinal dorsal horn (Anderson et al., 1977; Basbaum and Fields, 1984). Thus,
spinally projecting RVM neurons expressing opioid receptors can mediate the
opioid analgesia triggered from the PAG (Anderson et al., 1977; Basbaum and
Fields, 1984; Fields and Basbaum, 1999; Millan, 2002), and microinjection of
MOR agonists into the RVM elicits analgesia because opioids can reduce synap-
tic GABA release to spinally projecting neurons (Connor et al., 1999; Fields
et al., 1991; Fields and Basbaum, 1999; Hurley et al., 2003). In addition, through
presynaptic inhibition of GABA release, activation of opioid receptors may disin-
hibit spinally projecting noradrenergic neurons in the LC (Pan et al., 2002). It is
well known that opioids reduce the sensory discriminative and affective compo-
nent of pain as well. Thus, microinjection of morphine into the ACC decreases
the affective component of pain processing, and activation of presynaptic MOR
attenuates GABAergic synaptic input in the amygdala (Finnegan et al., 2005;
Finnegan et al., 2006; LaGraize et al., 2006). Furthermore, both the prefrontal
cortex and thalamic nuclei are involved in the actions of opioids (Zhao et al.,
2007).

It is well known that opioids produce very effective antinociception at spinal
levels as well. Opioid receptors in the DRG of sensory neurons undergo axonal
transport to reach peripheral nerve terminals, and inflammation induces increases in
MOR binding within DRG leading to an improved antinociceptive potency in these
circumstances (Endres-Becker et al., 2007; Mousa et al., 2007; Zollner et al., 2003).
The endogenous opioid ligands can induce antinociception at peripheral levels as
well. During inflammation of the peripheral tissues leukocytes are the important
source of the endogenous opioid peptides, and β-endorphin, Met-ENK, dynorphins,
and endomorphins are produced and released by these cells (Labuz et al., 2006;
Mousa et al., 2002; Rittner et al., 2008).
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β-Endorphin

Since the discovery and characterization of β-endorphin (31 amino acids) as an opi-
oid peptide in 1976, the opinion has been widely held that this peptide has a role
in the control of pain (Akil et al., 1984; Basbaum and Fields, 1984; Loh et al.,
1976; Rossier et al., 1977). POMC-derived β-endorphin is considered to be a key
component of the endogenous antinociceptive system attenuating the stress- and
inflammation-induced hyperalgesia (Rossier et al., 1977; Stein et al., 1990; Sun
et al., 2003). It binds with high affinity to both MOR and DOR (Akil et al., 1984).
Pain stimulation induces PAG release of β-endorphin and the ICV administration
of β-endorphin produces analgesia (Akil et al., 1984). Similarly, both spinal and
peripheral administration of β-endorphin evokes antinociceptive effects in different
pain models (Chung et al., 1994; Stein et al., 1990; Suh et al., 1994; Suh et al.,
1996).

Leu-enkephalin and Met-enkephalin (Leu-ENK, Met-ENK)

Methionine-enkephalin (Tyr-Gly-Gly-Phe-Met) and leucine-enkephalin (Tyr-Gly-
Gly-Phe-Leu) were isolated and characterized as the first endogenous peptidic
ligands for DOR receptors (Hughes et al., 1975). ENKs, synthesizing from pre-
proenkephalin, possess antinociceptive activity at both spinal and supraspinal levels
(Lee et al., 1980; Maldonado et al., 1994; Takemori and Portoghese, 1993; Yu et al.,
2004). For example, pain stimulation induces PAG release of Leu-ENK and Met-
ENK, and their antinociceptive effects are mediated in the brain through interactions
mainly at DOR1 (Yang et al., 2006). Leu-ENK inhibited the nociceptin-induced
allodynia in a dose-dependent manner at the spinal level (Honda et al., 2001). In
the spinal cord, the ENKs interact with DOR2 receptors, and the release of ENKs
in the SDH inhibit the projecting neurons (Mizoguchi et al., 1997; Willis, 1988).
Furthermore, ENKergic neurons in the rat SDH are innervated by serotonin termi-
nals, and 5-HT3A receptors colocalized with ENK, thus it seems that the activation
of these neurons might be involved in 5-HT-induced antinociception (Huang et al.,
2008). As regards their peripheral action, the results showed that clonidine (an α2-
adrenoceptor agonist) can induce peripheral antinociception by the local release of
ENKs (Nakamura and Ferreira, 1988).

Dynorphins

Dynorphin A1–17, a heptadecapeptide, and dynorphin A1–13, the N-terminal tride-
capeptide of dynorphin A, were isolated from porcine pituitary tissue, and they are
produced from preprodynorphin. Both dynorphins possess high affinity for the KOR
(Szeto, 2003). The high density of KORs in the spinal cord, medulla, amygdala,
hypothalamus, and periphery suggests a possible involvement of dynorphins in the
regulation of pain mechanisms (Lai et al., 2008; Menetrey and Basbaum, 1987;
Palkovits, 2000; Szeto, 2003). Several reports indicate hyperalgesic or allodynic
effects of dynorphins (Fujimoto et al., 1990; Lai et al., 2008; Qu and Isaac, 1993;
Rady and Fujimoto, 2002; Wang et al., 2001b; Wen et al., 1985), however, KOR
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deletion significantly exacerbated mechanical and thermal inflammatory hypersen-
sitivity but there was no change in the formalin-induced pain behavior (Schepers
et al., 2008; Xu et al., 2004b). ICV administration of dynorphins can produce
antinociception, which is reversed by the KOR antagonist (Fujimoto et al., 1990;
Shukla et al., 1992).

As regards their effects at the spinal level, the results are inconsistent. Dynorphins
can induce nocifensive behavior or hyperalgesia, and arthritic rats displayed a pro-
nounced rise in immunoreactive dynorphins in the lumbosacral spinal cord, which
correlated both with the intensity and time-course of hyperalgesia (Arcaya et al.,
1999; Gardell et al., 2004; Millan et al., 1985; Vanderah et al., 1996; Wang et al.,
2001b). However, other data suggest that spinal KOR activation is involved in
the antinociceptive effects of some opioids, and the selective blockade of KORs
increases the formalin-induced nocifensive behavior (Ossipov et al., 1996; Tseng
and Collins, 1993). As regards the explanation for these opposing data, increas-
ing evidence suggests that the dynorphin-induced antinociception is KOR-mediated,
whereas its pronociceptive effects are elicited by binding of its enzymatic degrada-
tion peptide fragments to nonopioid receptors. Therefore, the pronociceptive effecs
of dynorphins is mediated by activation of NMDA and/or bradykinin receptors lead-
ing to the release of SP and CGRP from primary sensory neurons (Arcaya et al.,
1999; Lai et al., 2008; Wang et al., 2001b). However, peripheral application of
dynorphins A1–17 produced antiallodynia, and this effect was reversed by KOR
antagonists (Ko et al., 2000).

Endomorphin-1 and Endomorphin-2 (EM1, EM2)

More than ten years ago, a new group of MOR agonists was discovered and
named endomorphins (EMs) by Zadina et al. (1997). Endomorphin-1 (EM-1: Tyr-
Pro-Trp-Phe-NH2) and endomorphin-2 (EM-2: Tyr-Pro-Phe-Phe-NH2) differ from
conventional endogenous opioid receptor ligands in their N-terminal sequence, pep-
tide length, and C-terminal amidation. The pathway for their synthesis is unknown,
but they are converted enzymatically by endopeptidases (Horvath, 2000; Zadina
et al., 1997). They interact specifically and with high affinity with MOR (Horvath,
2000; Zadina et al., 1997), and they possess partial rather than full agonist properties
at MOR (Sim et al., 1998). EM-1 and EM-2 produce their effects through different
subtypes of MOR, EM-1 affecting predominantly the MOR2 receptor and EM-2
the MOR1 (Sakurada et al., 2000). The administration of EMs elicits short-lasting
antinociception, and tolerance was also observed (Csullog et al., 2001; Horvath
et al., 1999; Tseng et al., 2000; Yu et al., 2004; Zadina et al., 1997).

The antinociceptive effects are produced by peripheral, spinal and supraspinal
levels as well (Przewlocki et al., 1999). ICV or intrathalamic administration of
EMs produced antinociception in both acute and chronic pain models (Zadina et al.,
1997; Zhao et al., 2007; Zubrzycka et al., 2005; Zubrzycka and Janecka, 2008). The
EMs displayed lower potencies in the mechanical (paw pressure) test than in the
heat-pain (TF) test in rats after IT administration (Horvath et al., 1999; Przewlocka
et al., 1999), but they exerted high analgesic potency in different inflammatory pain
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models as well (Csullog et al., 2001; Hao et al., 1999; Przewlocka et al., 1999;
Przewlocki et al., 1999; Wang et al., 1999). Neuropathic pain has been assumed to
be resistant to treatment with opioids, therefore it is of particular interest that the
EMs have high potency in decreasing neuropathic pain (Przewlocka et al., 1999).
EM-1, but not EM-2, dose-relatedly reduced the Aβ-fibre evoked responses, there-
fore, spinal EM-2 exerts selective effects on noxious responses, whereas EM-1 is
nonselective (Chapman et al., 1997). IPL administration of EM1 dose-dependently
decreased the mechanical allodynia and the thermal hypersensitivity in neuropathic
and inflammatory pain models (Labuz et al., 2006; Obara et al., 2004; Mecs et al.,
2009).

Tyr-MIF Peptides

The Tyr-MIF (melanocyte-inhibiting factor) family of neuropeptides includes MIF-
1 (Pro-Leu-Gly-NH2), Tyr-MIF-1 (Tyr-Pro-Leu-Gyl-NH2), Tyr-W-MIF-1 (Tyr-Pro-
Trp-Gly-NH2), and Tyr-K-MIF-1 (Tyr-Pro-Lys-Gly-NH2). All have been isolated
from bovine hypothalamus and the cortex of human brain (Zadina et al., 1992;
Zadina et al., 1994). They bind to MORs, but Tyr-K-MIF-1 primarily interacts with
specific Tyr-MIF-1 binding sites (Zadina et al., 1992; Zadina et al., 1994; Zamfirova
et al., 2007). Both ICV and IT administrations of Tyr-W-MIF-1 and/or Tyr-MIF-1
induce prolonged, naloxone-reversible analgesia (Bell et al., 1999; Gergen et al.,
1996; Zadina et al., 1993; Zamfirova et al., 2007; Yu et al., 2004). However, the
spinal effect is about 75 times stronger than the supraspinal one (Zadina et al., 1996).
IP administration of Tyr-K-MIF-1 also produced antinociception by the activation
of MORs and stimulated the histaminergic system, too (Zamfirova et al., 2007).
However, others have shown that the peripherally and systemically applied Tyr-
MIF-1 acts as an opioid antagonist in the TF test (Kastin et al., 1984; Kavaliers,
1987).

Hemorphins

Hemorphins are endogenous peptides belonging to the family of “nonclassical” or
“atypical” opioid peptides, derived from hemoglobin (Nyberg et al., 1997). The
hemorphin family member peptides vary in size from 4 to 10 amino acids, and
they have been identified in the brain, plasma, and cerebrospinal fluid (Nyberg
et al., 1997). These peptides include: hemorphin-4 (Tyr-Pro-Trp-Thr), hemorphin-
5 (Tyr-Pro-Trp-Thr-Gln), hemorphin-6 (Tyr-Pro-Trp-Thr-Gln-Arg), hemorphin-7
(Tyr-Pro-Trp-Thr-Gln-Arg-Phe), LVV-hemorphin-4 (Leu-Val-Val-Tyr-Pro-Trp-Thr;
spinorphin), LVV-hemorphin-6 (Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg), and LVV-
hemorphin-7 (Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe). These peptides display
affinities for MOR, DOR, and KOR (Davis et al., 1989; Liebmann et al., 1989;
Zadina et al., 1992), except for spinorphin, which has an ENK-degrading activ-
ity (Nishimura and Hazato, 1993). Only a few studies investigated their role in
pain mechanisms. Thus, the ICV administration of hemorphin-4 and hemorphin-5
showed potent antinociceptive effects in the acute pain model in a naloxone-
reversible manner, but they did not influence formalin-induced pain behavior (Davis
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et al., 1989). Peripheral administration of hemorphin-7 decreased the acute inflam-
mation. which may also contribute to its antinociceptive effect (Sanderson et al.,
1998).

Spinorphin has antinociceptive potency, and its effect may be due to the inhibi-
tion of the degradation of endogenous opioids (Honda et al., 2001; Maldonado et al.,
1994; Schmidt et al., 1991; Yamamoto et al., 2002b; Yu et al., 2004). Spinorphin
administered ICV did not influence acute pain sensitivity, but potentiated the effects
of Leu-ENK. It inhibited the nociceptin-induced allodynia in a dose-dependent man-
ner after IT administration, which was reversed by naloxone (Honda et al., 2001).
Thus, spinorphin is not a real endogenous opioid neurotransmitter, but it might
enhance the effect of Leu-ENK through inhibition of the degradation of ENK.

Nociceptin

Shortly after the cloning of the three known opioid receptors, a fourth member of
this family was identified, the opioid-like receptor (ORL-1), which was found not to
bind any of the known natural or synthetic opioid ligands (Reinscheid et al., 2000).
In 1995, the natural ligand for this receptor was isolated and named orphanin FQ
or nociceptin (Reinscheid et al., 1995). It is a 17-amino acid peptide, the amino
terminus of which displays a striking similarity to the known mammalian opioid
peptides. It is derived from pronociceptin together with another peptide, nocistatin.
Nociceptin has been reported to be an active ligand at multiple sites of nocicep-
tive transmission, ranging from peripheral nociceptors to nociceptive centers in the
brain. Pharmacologically, the actions of nociceptin are complex and contradictory.
ICV administration of this peptide exerts a pronociceptive action. The neuroanatom-
ical site underlying the pronociceptive actions of nociceptin might be the RVM,
where it inhibits the actions of OFF cells (Lambert, 2008). However, its effect at the
spinal level depends on the dose applied; that is, a low dose produces nociception,
whereas higher doses result in antinociception in acute and neuropathic pain mod-
els (Calo et al., 2000; Ma et al., 2003; Mogil and Pasternak, 2001; Yu et al., 2004).
It is suggested that low doses may increase the release of SP, whereas high doses
inhibit the glutamate release (Lambert, 2008). ORL-1 receptors and nociceptin can
be found peripherally as well, and their activation can lead to peripheral antinocicep-
tion (Lambert, 2008; Obara et al., 2005), whereas other data suggest that nociceptin
has pain-inducing effects (McDougall and Larson, 2006).

Nocistatin

A further endogenous peptide that has been implicated in the modulation of pain
transmission is the heptadecapeptide nocistatin, produced by the proteolytic cleav-
age of prepronociceptin (Lee et al., 1999; Okuda-Ashitaka et al., 1998). It has been
detected in different parts of the body and exerts its effect through the activation
of an unknown GPCR (Joseph et al., 2007; Zeilhofer et al., 2000). Some data have
shown that its ICV administration increased the acute and inflammatory pain thresh-
old (Nakagawa et al., 1999; Zhao et al., 1999), whereas other data suggest that it
does not influence the normal pain latency, but prevented the nociceptin-induced
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hyperalgesia (Liu et al., 2006; Nakagawa et al., 1999; Scoto et al., 2005). It presum-
ably acts as a neuromodulator in pain processing at the spinal level as well, because
it blocks the hyperalgesia and allodynia induced by nociceptin (its name originates
from this observation) or prostaglandin-E2 (Ito et al., 2001; Okuda-Ashitaka et al.,
1998; Okuda-Ashitaka and Ito, 2000). It does not influence the TF latency (Zeilhofer
et al., 2000) and can decrease the neuropathic pain (in low doses) (Muth-Selbach
et al., 2004), but higher doses could increase hyperalgesia or block nociceptin-
induced analgesia in neuropathic rats (Ma et al., 2003; Muth-Selbach et al., 2004).
However, it increases the flexor reflex response (Xu et al., 1999b), and inconsistent
data are available on its effect on the formalin test (Nakano et al., 2000; Yamamoto
and Sakashita, 1999; Zeilhofer et al., 2000). Cumulative administration of its C-
terminal octapeptide, BPNP-3-8P, also significantly decreased heat hyperalgesia but
it did not change the paw withdrawal (PWD) latency on the normal side (Csullog
et al., 2001). As regards its peripheral effects, its pronociceptive potency has been
reported (Inoue et al., 2003).

5.2.2 Kyotorphin

Kyotorphin (Tyr-Arg), was isolated from bovine brain by Takagi et al. (1979). It
is formed by kyotorphin synthase in the presence of ATP and Mg2+ in the brain
(Kawabata et al., 1995). High concentrations of the dipeptide were found in the
brainstem and SDH, and several studies have demonstrated its analgesic properties
(Ueda et al., 1980). Kyotorphin binds to its specific receptors (kyotorphin receptor;
GPCR) and activates PLC (Lopes et al., 2006; Ueda et al., 1989). ICV administra-
tion of kyotorphin produced antinociception in the acute pain test (Kawabata et al.,
1994b). Kyotorphin excites cortical neurons directly, and it also exerts indirect opi-
oid action to produce analgesia via the release of Met-ENK (Shiomi et al., 1981).
Systemic administration of a kyotorphin receptor agonist leads to antinociception in
the acute pain test, and this effect has been antagonized by IT injection of kyotorphin
receptor antagonist, but not by ICV application (Ochi et al., 2000). Furthermore, IT
kyotorphin also produced antinociception in an acute mechanical pain model (Ochi
et al., 2002). Kyotorphin has a nonopioid analgesic effect at peripheral level, which
makes it quite appealing for chronic pain treatment (Inoue et al., 1997).

5.2.3 Tachykinins

The mammalian tachykinins are a family of evolutionary conserved peptides that
share the common C-terminal motif. Until recently, the family consisted of three
peptides: substance P (SP; undecapeptide), neurokinin A (10 amino acids), and
neurokinin B (10 amino acids). Since the discovery of a third preprotachykinin
gene (TAC4), the number of tachykinins has more than doubled to reveal several
species-divergent peptides. This group includes hemokinin-1 (HK-1) in mouse and
rat, endokinin-1 (EK-1) in rabbit, and EKA, EKB in humans (Page, 2004). Their
peripheral expression has led to the proposal that they are the endogenous periph-
eral SP-like endocrine/paracrine agonists where SP is not expressed. Additionally,
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three orphan tachykinin gene-related peptides are identified, in rabbit, endokinin-
2 (EK-2), and in humans, EKC and EKD (Page, 2004). The biological actions of
tachykinins are mediated by at least three different transmembrane GPCRs, namely
NK1, NK2, and NK3. SP is preferential, but not exclusive, for NK1, NKA for NK2,
and NKB for NK3, therefore, each ligand can interact with all receptors (Maggi
et al., 1993; Morteau et al., 2001; Patacchini and Maggi, 2001). The NK1 recep-
tor is widely expressed in both CNS and PNS, and the effects of NK1 receptor
involvement in nociceptive transmission are very complex (Quartara and Maggi,
1998). NK1 knock-out mice have substantial impairments of endogenous pain con-
trol mechanisms (Bester et al., 2001). At the supraspinal level, the dorsal raphe
nucleus and PAG have numerous NK1 and GABA double-labelled neurons (Ma and
Bleasdale, 2002).

SP and HK1, acting upon NK1 receptors, might be relevant in descending pain
control, because their administration in different brain areas increased the pain
threshold, and this effect was reversed by opioid and GABAA receptor antag-
onists (Altier and Stewart, 1993; Altier and Stewart, 1998; Altier and Stewart,
1999; Fu et al., 2008; Holden and Pizzi, 2008; Rosen et al., 2004; Yu et al.,
2004). Furthermore, the injection of SP into the ventrolateral PAG has induced
analgesia, and morphine has increased the SP release in this area (Rosen et al.,
2004). The activation of SP-containing neurons in the lateral hypothalamus also
increases the pain threshold by activating NK-1 receptors in the RVM (Holden
and Pizzi, 2008). Therefore, SP may activate the descending antinociceptive path-
ways through activation of NK1 receptors. Several data suggest that SP, HK1, and
EKA/B decrease the pain threshold both spinally and peripherally (Abbadie et al.,
1996; Afrah et al., 2001; Beyer et al., 1991; Cridland and Henry, 1988b; Dirig and
Yaksh, 1999; Donnerer et al., 1992). However, NK1 receptor activation may also
increase the inhibitory neurotransmission by activating inhibitory interneurons in
the SDH (Vergnano et al., 2004). Furthermore, both induction of scratching behav-
ior and thermal hyperalgesia by IT administration of SP and EKA/B as well as
enhancement of c-Fos-LI following noxious thermal stimulation are suppressed by
pretreatment with EKC/D, suggesting that the EKC/D peptide is an antagonist of
the NK1 receptor (Naono et al., 2007).

5.2.4 Calcitonin Gene-Related Peptide (CGRP)

Calcitonin gene-related peptide (CGRP; 37 amino acids) expresses predominantly
in the nervous system and it influences multiple physiological activities. As regards
its action mechanism, molecular correlates for discrete CGRP receptor types are still
lacking. Functional CGRP receptors represent a multiprotein entity composed of at
least three discrete proteins, that is, the seven-transmembrane receptor calcitonin-
receptor-like receptor (CRLR), receptor-activity-modifying protein 1 (RAMP1),
and the cytoplasmic receptor component protein (RCP) (Wu et al., 2002). CGRP
is involved in many stages of the transmission of nociceptive information, because
CGRP-LI has been found to colocalize with that of SP-LI in capsaicin-sensitive
nerve terminals in the periphery and SDH, but it has been identified in the DRG and
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several brain areas as well (Ballet et al., 1998; Brain and Cox, 2006; Olgiati et al.,
1983; Skofitsch and Jacobowitz, 1985a). Thus, CGRP-Li fibers and CGRP recep-
tors distribute densely in the amygdala, and these fibers originate from parabrachial
nucleus and the thalamic nuclei (Oliver and Keyvan-Fouladi, 2000; Shimada et al.,
1989). ICV, intra-PAG and intra-amygdala injection of CGRP induce antinocicep-
tion (Candeletti and Ferri, 1990; Xu et al., 2003; Yu et al., 2003). It is probable that in
the amygdala CGRP-containing terminals activate ENKergic neurons, which project
to the PAG releasing ENK (Palkovits, 2000). However, other data have shown that
ICV administration of CGRP did not modify pain sensitivity in the TF test and did
not affect the antinociceptive action of morphine (Azarov et al., 1995). As regards
its effects at spinal and peripheral levels, it is well known that it has a facilitation
role in the nociceptive information, and this effect may be mediated via SP mech-
anism (Ballet et al., 1998; Li et al., 2008; Morton et al., 1991; Nahin and Byers,
1994; Santicioli et al., 1993).

5.2.5 Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)

Pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) is a member of
the vasoactive intestinal peptide family (VIP) that was originally isolated from
ovine hypothalamus (Miyata et al., 1989). Two forms of PACAP have been iden-
tified, containing 27 and C-terminally extended 38 amino acids. PACAP acts via
GPCRs (activation of AC and PLC): the PAC1 receptors, which specifically bind
PACAP and the VPAC1/VPAC2 receptors, which have a similar binding affinity
for PACAP and VIP (see Section 5.2.6). Both PACAP and its receptors have been
widely described on central and peripheral neurons, smooth muscle cells, and sev-
eral inflammatory cells (Bartho et al., 2000; Delgado et al., 2003; Dickinson and
Fleetwood-Walker, 1999; Narita et al., 1996). On the basis of the morphological
and molecular biological results, PACAP has been suggested to be involved in
pain transmission, but very few functional data are available to support this theory.
Decreased response to different pain stimuli has been observed in PACAP or PAC1
receptor deficiencies (Mabuchi et al., 2004), and PAC1 receptor activation can lead
to stimulation of NMDA receptors and synthesis of brain-derived neurotrophic fac-
tor (BDNF), and these processes can lead to enhanced nociception (Jongsma et al.,
2001a; Mabuchi et al., 2004; Martin et al., 2003).

ICV administration of PACAP did not influence the acute heat pain thresh-
old (TF) in mice, but significantly decreased morphine-induced analgesia (Macsai
et al., 2002). As regards its effects at the spinal level, it can also facilitate spinal
nociceptive flexor reflexes, and pronociceptive effects were observed, whereas
PAC1-antagonists potently reduced mechanical allodynia in a neuropathic nerve
model and were also effective in reducing thermal hyperalgesia in the carrageenan
model (Davis-Taber et al., 2008; Narita et al., 1996; Ohsawa et al., 2002; Shimizu
et al., 2004). However, other studies have shown that IT PACAP 27 or 38 were anal-
gesic in inflammatory and neuropathic pain models (Narita et al., 1996; Yamamoto
and Tatsuno, 1995; Zhang et al., 1996). PACAP inhibits the release of proinflamma-
tory/pronociceptive sensory neuropeptides: SP and CGRP from peripheral terminals
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of capsaicin-sensitive nerves, and it also inhibited acute neurogenic and nonneuro-
genic inflammatory processes in both mice and rats (Helyes et al., 2007; Nemeth
et al., 2006). IPL PACAP-38 did not alter basal mechanical or heat thresholds, but it
inhibited the carrageenan- or heat injury-induced hypersensitivities, as well as nocif-
ensive behaviors in the early and late phase of the formalin test (Sandor et al., 2009).
In mice, it significantly diminished acetic acid-induced abdominal contractions but
exerted no effect on neuropathic mechanical hyperalgesia. In contrast, it markedly
increased rotation-induced firing of afferent fibres in the inflamed rat knee joint,
clearly demonstrating a peripheral sensitization in this organ (Sandor et al., 2009).

5.2.6 Vasoactive Intestinal Peptide (VIP)

VIP contains 28 amino acids, and it was first isolated from the porcine small intes-
tine, but it has also been detected in the PNS and CNS (Fuji et al., 1983; Jancso
et al., 1981). Both VAPC1 and VPAC2 receptors bind VIP with high affinity, there-
fore, similarly to PACAP, VIP can also regulate different aspects of pain. Thus, its
ICV administration elicits analgesia in acute heat pain tests, but impairs the antinoci-
ceptive effect of morphine (Macsai et al., 1998). Bilateral application of VIP into
the amygdala persistently suppressed the heat-evoked reflexes by exiting amygdala-
originating neurons that innervate the PAG antinociceptive cells (Shin, 2005). VIP
can produce both analgesia and hyperalgesia at the spinal level, depending on its
molecular conformation (Yeomans et al., 2003). However, most of the data have
shown that IT VIP induces nocifensive behavior, potentiates the effects of SP and
decreased the pain threshold in acute pain models (Beyer et al., 1991; Cridland
and Henry, 1988a; Wiesenfeld-Hallin, 1987; Xu and Wiesenfeldhallin, 1991; Yu
et al., 2004). As regards its peripheral effect, intra-articular injection of VIP caused
increased allodynia in rats with osteoarthritis probably by the activation of PKA
(McDougall et al., 2006).

5.2.7 Galanin (GAL)

Galanin is a neuropeptide consisting of 29 or 30 (in humans) amino acids and
was originally isolated from porcine intestine (Bartfai et al., 1992). GAL exerts
its biological effects by interacting with three high-affinity cell surface receptors
GALR1-3, which all belong to the family of GPCRs (Branchek et al., 2000). All
three receptors couple to Gi/o and inhibit AC, although GalR2 also signals via
Gq/11 to activate PLC and PKC (Wittau et al., 2000). GAL and its receptors are
widely distributed in the nervous system and have been implicated in a number of
important body functions, including feeding, cognition, endocrine modulation, and
nociception (Holmberg et al., 2005; Wiesenfeld-Hallin et al., 1992). Most neurons
of the hypothalamic PVN and SO also contain GAL, colocalized with AVP, OT, and
opioids (Zubrzycka and Janecka, 2008). In the rat, cell bodies and fibres containing
GAL-LI and GAL receptors have been identified in DRG and in laminae I, II, VII,
and X of SDH (Rokaeus et al., 1984; Skofitsch and Jacobowitz, 1985b; Wiesenfeld-
Hallin et al., 2005). As GAL-LI and receptor numbers in the SDH are decreased
following dorsal rhizotomy or capsaicin treatment, it has been suggested that one
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source of GAL is derived primarily from unmyelinated primary afferent fibres (Xu
et al., 1996b). In most systems the effect of GAL on nociception appears to be pre-
dominantly inhibitory, mediated at least partially by GALR1 s (Bacon et al., 2002;
Blakeman et al., 2003; Grass et al., 2003b; Ji et al., 1994a; Xu et al., 1998). Mice
overexpressing GAL or deficient in GAL have become available, and have provided
a genetic approach to analyze the role of GAL in nociception. GAL knock-out mice
have a lower nociceptive threshold to heat stimulation, and have changed neuro-
pathic pain behaviors (Blakeman et al., 2003; Grass et al., 2003a; Kerr et al., 2000;
Malkmus et al., 2005). Furthermore, mice deficient in GALR1 or GALR2 have
impaired pain-like behavior (Blakeman et al., 2003; Grass et al., 2003b; Hobson
et al., 2006).

Mice overexpressing GAL exhibit significant elevation of the nociceptive thresh-
old to thermal stimulation, but no change in response to mechanical or cold
stimulation was seen (Blakeman et al., 2001). ICV perfusion of GAL concentration
dependently inhibited pain-induced responses, and its effect was blocked by GAL
receptor and by MOR antagonists, whereas it was potentiated by EM2, AVP, and
OT (Zubrzycka and Janecka, 2008). Similarly, the analgesic effect of GAL admin-
istered in the PAG or arcuate nucleus was also attenuated by naloxone (Sun and Yu,
2005; Wang et al., 2000). These data suggest that GAL can induce antinociception at
the supraspinal level by release of the endogenous opioid ligands. The antinocicep-
tive role of GAL at the spinal level has been extensively studied (Wiesenfeld-Hallin
et al., 2005). IT administration of GAL produced a dose-dependent increase in the
TF latency, but surprisingly, it lowered the threshold to von Frey stimulus (Cridland
and Henry, 1988a). The effect of exogenous GAL is predominantly inhibitory under
normal conditions, and due to blocking the excitatory effect of SP and CGRP (Hua
et al., 2004; Xu et al., 1998; Yu et al., 2001), but GAL can also modulate the release
of endogenous opioid ligands (Zhang et al., 2000a). However, other reports pro-
posed that GAL produces a biphasic, dose-dependent effect on nociception through
activation of antinociceptive (inhibitory) GALR1 or pronociceptive (excitatory)
GALR2 receptors, thus endogenous GAL can potentiate nociceptive processing dur-
ing inflammation (Kerr et al., 2001; Liu and Hokfelt, 2002). Some results suggest
that peripheral GAL has an excitatory role in inflammatory pain, likely mediated by
peripheral GALR2 and that GAL can modulate TRPV1 function, whereas activa-
tion of peripheral GalR1 results in antinociception (Jimenez-Andrade et al., 2004;
Jimenez-Andrade et al., 2006).

5.2.8 Neuropeptide Y (NPY)

NPY is an abundant neuroactive peptide (containing 36 amino acids) that exerts
numerous physiological actions, including pain modulation. NPY is expressed in
the CNS and PNS, and can be released from sensory, enteric, and sympathetic neu-
rons but also from glial cells (Arora and Anubhuti, 2006; Chronwall and Zukowska,
2004; Dumont et al., 1992). There are six receptors (Y1-6) of NPY which are
GPCRs. They exhibit dynamic alterations in signalling pathways, leading to neu-
ronal excitatory or inhibitory effects after receptor activation (Lin et al., 2004). NPY
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and Y1 and Y2 (most prevalent) receptors are located at key pain signalling centers
throughout the nervous systems, particularly the SDH, and their effects on noci-
ceptive modulation has been extensively studied (Allen et al., 1984; Bannon et al.,
2000; Gibbs and Hargreaves, 2008; Ji et al., 1994b; Shi et al., 1998; Smith et al.,
2007). In contrast to the cellular localization of Y1 receptors, spinal Y2 receptors are
located on primary afferent terminals (Brumovsky et al., 2005). Y1 receptor deletion
increased acute heat, inflammatory, and neuropathic pain sensitivities (Kuphal et al.,
2008). Furthermore, lack of Y1 receptor or antagonism at this receptor inhibited
the antinociceptive potency of NPY at the spinal level. These data suggest that the
Y1-receptor system exerts tonic inhibitory control and it mediates the antiallodynic
effects of NPY during inflammatory and neuropathic pain syndromes.

Several studies have proved the antinociceptive potential of supraspinal NPY
(Illes et al., 1993; Li et al., 2005a). After the microinjection of NPY into the RVM,
the PAG, the ARC, or in the nucleus accumbens, withdrawal reflexes to noxious heat
or tactile stimuli are decreased (Li et al., 2005a; Li et al., 2002b; Wang et al., 2001a;
Zhang et al., 2000b). However, intracranial administration of anti-NPY antiserum
or Y1 receptor antagonist into the nucleus gracilis reversed nerve injury-mediated
mechanical allodynia (Ossipov et al., 2002). IT administration of NPY inhibits tran-
sient, inflammatory, and neuropathic pain (Hua et al., 1991; Intondi et al., 2008;
Mahinda and Taylor, 2004; Smith et al., 2007; Taiwo and Taylor, 2002). Evidence
from pharmacological studies suggests that both Y1 and Y2 agonists can attenuate
the flexor reflex in axotomized animals (Xu et al., 1999a). The neurophysiological
mechanism of this antinociception involves inhibition of pronociceptive, excita-
tory neurotransmitter release from primary afferent neurons through activation of
Y2 receptors, whereas Y1 receptor activation inhibits GABAergic inhibition on the
substantia gelatinosa (Martire et al., 2000; Smith et al., 2007). NPY is colocalized
with TRPV1 receptors, and it can inhibit the excitatory transmitter release from the
capsaicin-sensitive primary sensory neurons leading to peripheral antinociception
(Gibbs et al., 2006a; Gibbs and Hargreaves, 2008).

5.2.9 RFamide Neuropeptides

There is a new family of mammalian neuropeptides, that is, RF (Arg-Phe) amide
neuropeptides including neuropeptide FF (NPFF, octapeptide), prolactin-releasing
peptide (PrRP, 31 amino acids), RF-amide related peptides (RFRP); RFRP1: Leu-
Pro-Leu-Arg-Phe-amide; RFRP2: gonadotropin-inhibitory hormone:dodecapeptide
and RFRP3: Leu-Pro-Gln-Arg-Phe-amide, kisspeptins (10, 13 and 14 amino acids),
and the 26Rfa (RF[Arg-Phe]amide family 26-amino acid peptide, also known as
P518) (Fukusumi et al., 2006). RF-amides represent a group of peptides sharing a
C-terminal RF-terminus, and they are involved in many regulatory functions in the
body by action on different GPCRs. Both NPFF and RF-amide related peptides pro-
duce their effects by activation of NPFF receptors (1 and 2). PrRP is a ligand for an
orphan receptor, the GPR10-like receptor, but it can also activate NPFF2 receptors
(Engstrom et al., 2003). Kisspeptins are the products of the gene Kiss1 and they are
ligands for GPR54, whereas 26Rfa produces its effects by activation of GPR103, a
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receptor that is widely distributed in the spinal cord (Bruzzone et al., 2007). These
peptides and their binding sites are expressed in the CNS (Engstrom et al., 2003;
Pertovaara et al., 2005; Sullivan et al., 1991; Yang and Iadarola, 2006). NPFF has
both potent pro-opioid antinociceptive and antiopioid-like effects, depending on the
sites of administration and the dose (Frances et al., 2001; Panula et al., 1996; Roumy
and Zajac, 1998; Wei et al., 1998; Yang et al., 1985). It produces antinociception
after ICV or intra-PAG administration in neuropathic and inflammatory models in a
naloxone reversible manner (Altier et al., 2000; Kalliomaki et al., 2004; Wei et al.,
1998; Wei et al., 2001). On the other hand, NPFF either decreases or does not influ-
ence the acute mechanical and thermal pain sensitivities and can antagonize the
effect of morphine (Altier et al., 2000; Wei et al., 2001; Yang et al., 1985).

As regards its role at the spinal level, several reports have proved its effec-
tivities in neuropathic and inflammatory pain models; it can potentiate the effect
of morphine, but the results about the effects on acute pain tests are inconsistent
(Altier et al., 2000; Gouarderes et al., 2000; Kontinen and Kalso, 1995; Wei et al.,
2001; Yamamoto et al., 2008; Yang and Iadarola, 2006). Peripheral administration
of an NPFF analogue did not produce antinociceptive effect (Wei et al., 2001).
The potential role of PrRP in pain was addressed by its ICV and IT injections in
both neuropathic and normal rats (Kalliomaki et al., 2004). It was ineffective at
the spinal level, but with administration in the dorsal medulla, PrRP produced sig-
nificant antinociception in normal rats and an antiallodynic effect in neuropathic
rats. The PrRP-induced antinociception is not mediated by MOR because it is not
reversible by naloxone. However, other data have shown that ICV administration of
PrRP promoted hyperalgesia, and it reversed the morphine-induced antinociception
(Laurent et al., 2005). Furthermore, PrRP knock-out animals showed increased pain
threshold. As regards the RF-amide-related peptides, their injection into the brain
(nucleus of solitary tract) inhibited mechanical hyperalgesia, whereas IT administra-
tion significantly decreased the acute heat pain sensitivity and the tactile allodynia in
a neuropathic pain model (Pertovaara et al., 2005). Spinally applied 26Rfa also sig-
nificantly decreased the nocifensive behavior in the formalin test, and attenuated the
level of mechanical allodynia in a carrageenan-induced inflammatory pain model,
but it did not influence the normal heat and mechanical pain sensitivity (Yamamoto
et al., 2008). The relation of kisspeptin to the pain has been suggested as well.
Thus, a marked elevation in the levels of kisspeptin and GPR54 mRNA as well
as protein was observed in the SDH and DRG during inflammation, indicating a
possible involvement of the kisspeptin/GPR54 system in chronic inflammatory pain
(Mi et al., 2009).

5.2.10 Neurotensin (NeT)

Another endogenous peptide which has been implicated in pain transmission and
the central integration of pain responses is neurotensin (NeT) (Dobner, 2006; Gui
et al., 2004; Pettibone et al., 2002). NeT is a brain–gut tridecapeptide that fulfils a
dual function: as a neurotransmitter/neuromodulator in the nervous system, and as
a paracrine and circulating hormone at the periphery. Three NeT receptors, NTR1,
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NTR2, and NTR3, have been cloned to date (Dubuc et al., 1999). NTR1 and NTR2
belong to the GPCR family, whereas NTR3 is a single transmembrane domain pro-
tein that belongs to a recently identified family of sorting receptors (Mazella, 2001;
Mazella and Vincent, 2006). Most of the known peripheral and central effects of
NeT are mediated through NTR1. NTR2 may possibly take part in the analgesic
response elicited by the central administration of NeT; the biological roles of NTR3
are yet to be discovered in detail (Dubuc et al., 1999; Kitabgi, 2002; Mazella and
Vincent, 2006). Various in vivo data support its modulatory role in pain transmis-
sion (Dobner, 2006; Yu et al., 2004). NeT normally facilitates visceral nociception,
whereas an increased NeT expression can be observed under high stress condi-
tions, and this ligand is required for SIA (Gui et al., 2004). The results indicate that
the supraspinal antinociceptive effect of NeT is largely MOR independent (Osbahr
et al., 1981). ICV, intra-PAG or intra-RVM administrations of NeT produce anal-
gesic effects in different pain models (HP, TF, writhing, colorectal distension tests)
by NTR1 and/or NTR2 activations (Behbehani and Pert, 1984; Dobner, 2006; Dubuc
et al., 1999; Nemeroff et al., 1979; Osbahr et al., 1981; Pettibone et al., 2002; Urban
et al., 1999). It seems that NeT can excite PAG neurons, which leads to activation of
the descending pain inhibitory system (Behbehani and Pert, 1984; Dobner, 2006).
NeT also induces analgesia through stimulation of NTR1 and NTR2 at spinal level,
as was shown in acute and inflammatory pain models (Roussy et al., 2008; Sarret
et al., 2005).

5.2.11 Neurotrophic Factors

Neurotrophic factors are a unique family of polypeptide growth factors that
influence the proliferation, differentiation, survival, and death of neuronal and
nonneuronal cells. Neurotrophic factors are synthesized as high-molecular-weight
precursors and their release from cells is constitutive as well as activity depen-
dent. The nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF),
neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), glial cell line-derived neurothrophic
factor (GDNF), and insulin-like growth factor-1 (IGF-1) are essential for the health
and well being of the nervous system, and also mediate additional higher-order
activities, such as learning, memory, and behaviour. Alterations in their levels
have been implicated in neurodegenerative disorders, such as Alzheimer’s disease
and Huntington’s disease, as well as psychiatric disorders, including depression
and substance abuse. Most of the neurotrophic factors interact with two types
of cell-surface receptors, the low-affinity p75 receptor and TrK family of high-
affinity tyrosine kinase receptors (TrKA, B, and C). Whereas all neurotrophins
(NGF, BDNF, NT-3, and NT-4) bind the p75 receptor with similar affinity, NGF
bind TrKA receptors, BDNF and NT-4 bind TrKB receptors, and NT-3 preferen-
tially binds TrKC receptors, and to a lesser extent, TrKA receptors (Huang and
Reichardt, 2003).

There is now strong evidence that two neurotrophins, NGF and BDNF act
as important mediators and modulators of pain in a variety of circumstances.
Particularly, NGF can promote the sensitization and activation of nociceptors (Pezet
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et al., 2002; Zhao et al., 2006). NGF is produced in the periphery and taken up by SP
and BDNF containing sensory nerve terminals, it binds to the TrKA receptors and it
is retrogradely transported to their cell bodies within DRG (Delcroix et al., 2003).
The altered retrograde supply of NGF contributes to the neuronal response to injury
and inflammation by the modulation of SP and CGRP release from the primary
sensory neurons (Donnerer et al., 1992; Woolf and Costigan, 1999). Furthermore,
NGF acts on mast cells to induce release of 5-HT, which sensitizes nociceptors as
well (Theodosiou et al., 1999). Thus, endoneural injection of NGF is sufficient to
produce transient histological and behavioral effects like those seen in neuropathic
pain models, whereas sequestration of NGF prevents hyperalgesia, which normally
accompanies inflammation (Dmitrieva et al., 1997; Lewin et al., 1994; Ruiz et al.,
2004). NGF can also increase opioid binding sites, and it enhances the opioid sus-
ceptibility of sensory neurons towards better pain control by an upregulation in
the number and efficacy of sensory neuron MOR (Chen et al., 1997; Inoue and
Hatanaka, 1982; Mousa et al., 2007). Furthermore, NGF may increase the amount
of PACAP in sensory neurons, and this effect can also decrease its pain-inducing
effects (Jongsma et al., 2001b). This suggests its therapeutic potential for patholog-
ical conditions with a reduced susceptibility to opioids such as certain neuropathic
pain states.

Among the neurotrophins, BDNF is the most abundant and widely distributed in
the CNS. In the sensory system BDNF is constitutively produced by nociceptive-
sensitive primary sensory neurons in the DRG, then it is transported anterogradely
to the central terminals of sensory neurons in the SDH, where it can be released
(together with SP) (Malcangio and Lessmann, 2003; Michael et al., 1997). In sen-
sory neurons the concentration of BDNF and SP depends on the availability of
NGF, therefore, the increase in NGF concentration in peripheral tissues that fol-
lows an inflammatory insult enhances the expression of these ligands (Malcangio
and Lessmann, 2003). BDNF may act as a regulator of neuronal excitability and
modulator of synaptic plasticity, playing an important role in pain pathways (Kerr
et al., 1999; Malcangio and Lessmann, 2003; Thompson et al., 1999). Conditional
BDNF knock-out (in the primary sensory neurons) mice showed several alterations,
including a reduced baseline thermal threshold and a decreased inflammatory hyper-
algesia, whereas neuropathic pain behavior developed normally (Zhao et al., 2006).
IT grafts of BDNF-secreting neurons or overexpression of BDNF in the spinal cord
have been shown to alleviate chronic neuropathic pain, and other data suggest an
ineffectivity after IT administration of BDNF (Boucher et al., 2000; Cejas et al.,
2000; Eaton et al., 1999; Eaton et al., 2002). BDNF can depress sensory neu-
rone transmission in the SDH by an indirect mechanism that requires the release
of GABA from interneurons and the activation of GABAB receptors located in
the terminals of sensory neurons. Therefore, BDNF decreased neuropathic pain by
increasing the GABA release in SDH (Lever et al., 2003). However, other reports
have shown that the expression of BDNF is dramatically upregulated in models of
inflammatory pain, it enhances the NMDA-receptor-mediated responses and TrKB
antagonism significantly reduced the inflammatory pain (Garraway et al., 2005;
Kerr et al., 1999; Pezet et al., 2002). Thus, BDNF released from nociceptors along
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with SP and glutamate appears necessary for the full activation of second-order DH
neurons (Pezet et al., 2002).

The role of NT-3 in pain transmission has not been fully worked out. NT-3
significantly attenuates neuronal expression of voltage-gated sodium channels and
elevated levels of galanin and PACAP in DRG neurons, and all these effects can
influence the pain sensitivity (Wilson-Gerwing and Verge, 2006). It is upregulated
in models of neuropathic pain, and can contribute to the mechanical hyperalgesia
(Zhou et al., 2000). However, IT administration NT-3 suppressed thermal hyperal-
gesia associated with neuropathic pain, although others did not find any effects in a
similar model (Boucher et al., 2000; Wilson-Gerwing et al., 2005).

Glial cell line-derived neurothrophic factor (GDNF) binds to its high-affinity
receptor, glial cell line-derived neurotropic factor receptor α-1 (GFRα1), and a sub-
population of DRG neurons expresses GFRα1 (Lindfors et al., 2006). The effect
of GDNF on nociception is still a matter of debate, but it seems that GDNF
expression decreases in neuropathic pain states (Nagano et al., 2003). IT GDNF
exerts potent analgesic effects on hyperalgesia as well as protective effects against
the development of neuropathic pain (Boucher et al., 2000; Sakai et al., 2008;
Wang et al., 2003a). In association with the analgesic effects of GDNF, several
molecules, including sodium channels, purinergic receptors, and neuropeptides,
have been reported to exhibit changes in expression (Boucher et al., 2000; Issa
et al., 2001; Wang et al., 2003a). Recently, GDNF was shown to bind to neu-
ral cell adhesion molecule (NCAM) via GFRα1, and NCAM signalling plays a
role in mediating the analgesic effect of GDNF in rats with nerve injury (Sakai
et al., 2008). IPL injection of GDNF induces thermal hyperalgesia, and inflamma-
tory hyperalgesia is attenuated by treatment with an antibody against GDNF (Malin
et al., 2006).

Insulin-like growth factor-1 (IGF-1) is a 70-amino acid polypeptide that exerts
effects on peripheral growth, differentiation, and survival in a variety of cells
and tissues (Daftary and Gore, 2005). IGF-1 is an important regulator of synap-
tic plasticity and neuronal survival in response to injury. The secretion of growth
hormone (GH) stimulates the production of peripheral IGF-1 from its primary
target, the liver, as well as from secondary targets such as lungs, thymus, heart,
neurons and glia. Immunoreactivity and mRNA transcripts for IGF-1 and its recep-
tor have been reported to exist in the brain and spinal cord, and IGF-1-LI is also
transported retrogradely and anterogradely in axons of the peripheral nerve (Bitar
et al., 1996; Daftary and Gore, 2005; Hansson et al., 1987). IGF-1 produces its
effects through activation of its tyrosine kinase receptor, TrK IGF-1R that signals
through the phosphoinositol-3 kinase and mitogen-activated protein kinase (MAPK)
signalling cascade (Daftary and Gore, 2005). Only few studies suggest its role
in antinociception. Thus, IT administration of IGF-1 produces a dose-dependent
antinociception, and the increased IGF-1 level may play a significant role in the
serotoninergicic antinociception at the spinal level (Bitar et al., 1996; Bonnefont
et al., 2007)
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5.3 Other Peptides

5.3.1 Endothelins (ET)

It is now firmly established that endothelins, a family of 21-amino-acid residue pep-
tides produced by many cell types, can exert multiple and important actions in many
tissues and systems, including those implicated in nociceptive signaling functions
(Kedzierski and Yanagisawa, 2001). The potent and widespread actions of ET-1 and
other isopeptides of the family (ET-2 and ET-3) are mediated by specific GPCR
receptors (ETA and ETB), and the signal transduction pathways involve increases
in intracellular calcium levels (Rubanyi and Polokoff, 1994). ET-1-LI and specific
binding sites have been found in the SDH and in different brain areas (Gulati and
Srimal, 1992; Rubanyi and Polokoff, 1994). Some data imply that endothelin might
have a role in neurotransmission that is important for an animal’s pro- and antinoci-
ception. Injection of ET-1 into the PAG reduces pain response in mice subjected to
the HP paradigm (D’Amico et al., 1996). Furthermore, astrocytes produce endoge-
nous cannabinoids (CBs) in response to treatment with ET1 through ETA receptor
activation, and these effects can contribute to its antinociceptive potency (Walter
et al., 2002; Walter and Stella, 2003). Intrathecal administration of ET1 also induced
antinociception in the acute heat pain model (Kamei et al., 1993b; Kamei et al.,
1993a). It is suggested that ET-1 induces SP release, which provokes endogenous
opioid release in the SDH (Kamei et al., 1993b). The peripheral administration of
ET produces pronociceptive effects primarily through ETA receptor activation, but
ETB receptor also can contribute to the effect (Da Cunha et al., 2004; Daher et al.,
2004; Piovezan et al., 1997; Raffa et al., 1996). One study has shown that ETB
receptors normally can display antihyperalgesic and antinociceptive functions in
the rat knee-joint incapacitation test (Daher et al., 2004)

5.3.2 Hemopressin

Hemopressin is a nonapeptide derived from the α1-chain of hemoglobin, which was
originally isolated from rat brain homogenates (Rioli et al., 2003). It is the first
endogenous peptide ligand for cannabinoid-1 (CB1) receptors, and it behaves as
an inverse agonist (Dale et al., 2005; Heimann et al., 2007; Lippton et al., 2006;
Rioli et al., 2003). Hemopressin causes hypotension in anaesthetised rats and is
metabolised in vivo and in vitro by endopeptidase 24.15 (EP24.15), neurolysin
(EP24.16), and ACE (Lippton et al., 2006; Rioli et al., 2003). There are no data
available on its distribution in the organism including the brain. This peptide selec-
tively binds to CB1 receptors, but did not affect on CB2, MOR, DOR, α2- and
β2-adrenergic, AT1 and AT2 and bradykinin B2 receptors (Heimann et al., 2007).
The only in vivo experiment showed that IPL, IT and oral hemopressin reduced
inflammatory pain sensitivity (Heimann et al., 2007). IP hemopressin also decreased
the visceral nociception. Because a large body of evidence has clearly demonstrated
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the antinociceptive action of cannabinoid CB1 receptor agonists, a possible expla-
nation for these paradoxical effects could be that after CB1 receptor blockade by the
antagonist, the released endocannabinoids could induce antinociception by affecting
another pain transmission mechanism (see below Section 6.1).

5.3.3 Annexin-A1

Annexin-A1 (37 kDa glucocorticoid-regulated protein), formerly known as
lipocortin-1, is a member of the annexin family of calcium and phospholipids-
binding proteins (Buckingham and Flower, 1997). It is widely distributed in
different tissues including the CNS, and annexin-A1 mediates the anti-inflammatory
actions of glucocorticoids (Yang et al., 2004). Few studies have addressed the
question of whether annexin-A1 is involved in the activation/modulation of pain
pathways. Systemic administration of annexin-A1 peptidomimetics produced anal-
gesia in inflamed rat paws and neutralizing antisera to annexin-A1 prevented the
antihyperalgesic activity of glucocorticoids (Ferreira et al., 1997). Annexin-A1
knock-out mice were more susceptible to visceral pain stimulus compared with
wild-type, and increased levels of prostaglandin E2 (PGE2) in the spinal cord of
knock-out compared with normal mice suggest that annexin-A1 modulates noci-
ceptive processing at the spinal level by downregulating PGE2 spinal nociceptive
facilitation (Ayoub et al., 2008). Inhibition of the formalin-induced nociceptive
behavior by annexin-A1, administered centrally (ICV) or locally (IPL), is dependent
on activation of the receptors of the formylated peptide family, which is a GPCR
family (Pieretti et al., 2004). IPL administration of annexin-A1 also significantly
decreases the intensity of hyperalgesia by inhibition of neutrophil accumulation
(Ferreira et al., 1997; Pieretti et al., 2004). Furthermore, using a rat model of C-fibre
modulated bradykinin-induced plasma extravasation, Green et al. (1998) suggest
that the inhibitory action of a glucocorticoid on C-fibre activation is mediated by
the release of annexin-A1. These results may provide a possible mechanism for the
analgesic action of the glucocorticoids, which are routinely given to patients with
postoperative pain.

5.4 Cytokines

The term cytokine encompasses a large and diverse family of polypeptide regula-
tors that are produced widely throughout the body by cells of diverse embryological
origin. Historically, the term “cytokine” has been used to refer to the immunomod-
ulating agents (interleukins, interferons, etc.). Virtually all nucleated cells, but
especially endo/epithelial cells and resident macrophages are potent producers of
different cytokines (e.g., IL-1, IL-6, and TNF-α) (Cannon, 2000). The action of
cytokines, similarly to hormones, may be autocrine, paracrine, and endocrine.
Cytokines have been classified as lymphokines, interleukins, and chemokines, based
on their presumed function, cell of secretion, or target of action. Because cytokines
are characterized by considerable redundancy and pleiotropism, such distinctions,
allowing for exceptions, are obsolete. A classification that proves useful in clinical
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and experimental practice divides immunological cytokines into those that enhance
cytokine responses, type 1 (IFN-γ, TGF-β etc.), and type 2 (IL-4, IL-10, IL-13,
etc.), which favour antibody responses. Cytokines are critical to the development
and functioning of both the innate and adaptive immune response, although not
limited to just the immune system. There is increasing evidence that a number of
cytokines and their receptors are involved in the processes that lead to the devel-
opment and maintenance of pain states. A diverse range of cytokines and other
inflammatory mediators are known to be secreted by activated glia, many of which
have been shown to modulate nociception/allodynia (Scholz and Woolf, 2007).
These include the pronociceptive cytokines: IL-1β, IL-12, IL-18, IFNγ, TNF-α and
the antinociceptive cytokines: IL-2, IL-4, and IL-10 (Vale et al., 2003; Yao et al.,
2002a).

IL-2 produces analgesic effect in both CNS and PNS (Jiang et al., 2000b; Yao
et al., 2002a). Thus, microinjection of IL-2 in ICV, hippocampus, or LC increases
the pain threshold, and the antinociceptive effect was related to the increase of Leu-
ENK or SP (Guo and Zhao, 2000; Jiang et al., 2000a; Wu et al., 1999b). IT delivery
of IL-2 or IL-2 gene also inhibits nociceptive responses by the activation of opioid
receptors or the decrease of SP release in the spinal cord and the reduction of Fos
protein in superficial SDH (Guo and Zhao, 2000; Song and Zhao, 2000; Wang et al.,
1996; Wu et al., 1999b; Yao et al., 2002b; Yao et al., 2002a).

The class of anti-inflammatory cytokines includes IL-4, IL-10, and IL-13 and
transforming growth factor-β (Callard et al., 1996; Fiorentino et al., 1991; Hart
et al., 1989). These cytokines are produced by several cell types, including T-helper2
lymphocytes, monocytes, macrophages, and mast cells. They are believed to play a
role in inhibiting hypersensitivity reactions of macrophage functions, the synthe-
sis of proinflammatory cytokines and the expression of cyclooxygenase-2 (COX2)
and inducible nitric oxide synthase (iNOS) (Fernandes et al., 2002). Neither of
these cytokines affected the acute pain sensitivity, but they inhibit the inflammatory
mechanical hyperalgesia (after systemic administration) (Poole et al., 1995; Vale
et al., 2003). This analgesic effect could be related to a peripheral mechanism, prob-
ably via the inhibition of the release of the proinflammatory cytokine by resident
peritoneal macrophages.

Many studies examined the hyperalgesic action of chemokines, but recent evi-
dence has also pointed towards their antinociceptive effects (Rittner et al., 2008).
In early inflammation, granulocytes are activated by chemokines, and their acti-
vation induces opioid release leading to antinociception. Thus, chemokines may
play an important role in the trafficking of opioid-containing cells to injured tissues
and in the release of opioid peptides in inflamed tissue. Levels of CX3CR1 (the
receptor for the chemokine fractalkine) mRNA, but not in the levels of fractalkine
mRNA, in lumbar DRG significantly increase in neuropathic pain models (Holmes
et al., 2008). IT or intra-PAG administration of fractalkine to rats produces pain
facilitation (Chen et al., 2007; Johnston et al., 2004). The number of CX3CR1-
positive macrophages and the expression of CX3CR1 in macrophages are markedly
increased in the nerve proximal to the site of the injury, and intraneural injection
of fractalkine significantly delays the development of allodynia, whereas CX3CR1
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knock-out mice display an increase in allodynia (Holmes et al., 2008). Thus,
fractalkine may play opposing and site-dependent nociceptive roles, although the
summation of the two seems to be inhibitory, at least in mice, on the basis of the
increased allodynia in the CX3CR1 knock-out animals.

6 Lipids

Lipids are a diverse group of compounds, and they may be divided into eight
categories: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccha-
rolipids, polyketides, sterol lipids, and prenol lipids. Once viewed primarily as
structural constituents of cell membranes and energy storage sources, lipids are now
recognized as also serving as valuable signalling functions. As do other chemical
transmitters, lipids bind and activate specific protein receptors to produce their bio-
logical effects. In the early 1990s, Mechoulam’s group opened the door to a new
class of fatty acid derivatives that serve naturally to modulate pain (Devane et al.,
1992; Martin et al., 1999).

6.1 Endocannabinoid System and Related Fatty Acid Derivatives

Cannabinoids (CBs, e.g., �9-tetrahydrocannabinol) are a distinct class of psychoac-
tive compounds, which produce a wide array of effects on specific receptors (CB1.
and CB2) (Calignano et al., 1998; Hohmann, 2002; Martin et al., 1999). The endoge-
nous cannabinoids are lipid derivaties (except hemopressin; see Section 5.3.2), and
much has ben written about their signalling mechanisms and their role in physio-
logical regulation. A feature that distinguishes endocannabinoids from many other
neuromodulators is that they are not synthesized in advance and stored in vesicles.
Rather, their precursors exist in cell membranes (lipids) and are cleaved by specific
enzymes on demand, and endocannabinoids release generally postsynaptically, and
they act presynaptically (Walker and Hohmann, 2005). The endocannabinoid sys-
tem consists of endogenous cannabinoids, cannabinoid receptors and the enzymes
responsible for synthesis and degradation of endocannabinoids. The first endo-
cannabinoid identified was arachidonoyl-ethanolamine (anandamide: AEA), and
the second one was 2-arachidonoyl-glycerol (2-AG). The concentration of 2-AG
in the brain is 50–500-fold higher than the concentration of AEA (Sugiura et al.,
2006). Other putative endogenous ligands of cannabinoid receptors are palmityl-
ethanolamide (PEA) and virodhamine (O-arachidonoyl-ethanolamine), a derivative
of anandamide (Di Marzo et al., 1998; Porter et al., 2002; Walker et al., 2005). The
derivative of 2-AG, 2-arachidonyl-glycerylether or noladin ether was also suggested
to be an endocannabinoid (Hanus et al., 2001). A new subgroup contains molecules
that consist of a lipid moiety conjugated to an amino acid and have been termed
lipoamino acids; they are likely to serve a variety of regulatory functions in the brain
and other tissues. (Huang et al., 2001). Several endogenous lipoamino acids were
detected in a variety of tissues in the rat, that is, N-arachidonoyl-glycine (NAGly),
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N-arachidonoyl-alanine (NAAla), N-arachidonoyl-serine (NASer), N-arachidonoyl-
taurine (NaTau), and N-arachidonoyl-GABA (NAGABA) (De Petrocellis et al.,
2004; Devane et al., 1992; Huang et al., 2001; Huang et al., 2002; Walker et al.,
2005). NAGly has been intensively studied (see Section 6.1.3), but only one
report has investigated the antinociceptive potency of NAGABA and NAAla. It has
been found that their IT administration does not produce an increase in mechan-
ical and thermal pain threshold in the inflammatory pain model (Succar et al.,
2007). N-arachidonoyl-dopamine (NADA), oleamide, N-oleyl-dopamine (OLDA),
and N-palmitoyl-glycine (PalGly) are also fatty acid derivates, and they have
also been identified as endogenous lipids (Huang et al., 2002). All of these lig-
ands constitute a family of ubiquitous endogenous lipids present in varying levels
throughout the body, and several of them produce their effects through modula-
tion of CB receptors, whereas other receptor activation/inhibition has also been
suggested.

Cannabinoid receptors (CB1 and CB2) are among the most abundant GPCRs
(Pan et al., 2008). The CB1 receptor is widely distributed in the CNS and PNS; its
density is especially high in the brain, and it preferentially presents on axons and
their terminals. CB2 receptors are expressed predominantly peripherally, where they
are localized extensively to cells of the immune system, but they can be found on
the peripheral nerve terminals as well (Guindon and Hohmann, 2007; Szabo, 2008).
As regards its expression in the CNS, neural CB2 receptor expression is very low
under normal conditions, but it can be induced in nonneuronal cells under patholog-
ical conditions (Guindon and Hohmann, 2007; Pan et al., 2008; Szabo, 2008; Van
Sickle et al., 2005; Zhang et al., 2003a). Both CB1 and CB2 receptors primarily sig-
nal through the inhibitory GPCR proteins (Gi/o), however, under certain conditions
and with certain agonists, coupling via Gs and Gq/11 has also been demonstrated
(Mackie, 2008; Pertwee, 2001). Stimulation of CB1 receptors leads to the inhibition
of AC, the inhibition of certain voltage-gated calcium channels, and the activa-
tion of G protein-linked inwardly rectifying potassium channels and these effects
are associated with depression of neuronal excitability and transmitter release. The
complexity of the actions of CB2 agonists on neuronal and nonneuronal cells and
their signalling properties are only beginning to be explored. Activation of CB2
receptors inhibits AC and in contrast to CB1 receptors, CB2 receptors do not cou-
ple to ion channels, but both receptors can activate the MAPK signaling cascade
(Howlett et al., 2004).

Considerable progress has been made in understanding the physiological func-
tions of the endocannabinoids, and their corresponding potential pathological
implications. Most of the above-mentioned ligands are now recognized as potent
modulators of pain and inflammation (Hohmann, 2002; Hohmann et al., 2005;
Pertwee, 2001; Quartilho et al., 2003). Cannabinoids induce antinociceptive effects
at several levels, and they can mediate the opioid-independent SIA as well
(Hohmann et al., 2005). Recent studies have demonstrated the antinociceptive effi-
cacy of cannabinoids in several pain models acting primarily at the central CB
receptors (Guindon and Hohmann, 2007; Walker et al., 2005; Walker and Hohmann,
2005). However, several data suggest the antinociceptive potential of peripherally
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acting cannabinoid agonists (Agarwal et al., 2007; Dogrul et al., 2003; Yesilyurt
et al., 2003). Cannabinoids can reduce the production and release of proinflamma-
tory signalling molecules and enhance the release of anti-inflammatory cytokines;
moreover, CB2 receptor activation may stimulate the local release of endorphins
from cells such as keratinocytes (Ibrahim et al., 2005; Walter and Stella, 2004).
Cannabinoids inhibit the release of calcitonin gene-related peptide (CGRP) in iso-
lated skin preparations, suggesting that one mechanism by which these drugs may
modulate pain is the inhibition of neuropeptide release from peripheral sensory ter-
minals (Ellington et al., 2002). Thus, nonneuronal substrates as well as neuronal
substrates may be responsible for the ability of CB2-selective agonists to influence
pain sensitivity. The peripheral action may possibly be extremely important, because
low doses of these endogenous ligands may reduce pain without disphoric side
effects, and without the abused potential typical of centrally acting cannabimimetic
drugs.

As mentioned above, several of the fatty acid derivates can also interact with
other GPCRs and ion channels. Thus, they modulate several types of potas-
sium channels, α7-nAChRs, 5-HT3 receptors, and some orphan receptors (GPR55,
GPR92, and GPR18) (Demuth and Molleman, 2006; Kohno et al., 2006; Oh et al.,
2008; Pertwee, 2007). The orphan GPR55 is an especially serious candidate to
become an additional cannabinoid receptor (Pertwee, 2007). As these ligands are
lipophilic, they may partition into the cell membrane, where they may reach high
local concentrations and thereby influence the actions of membrane proteins via
so-called “receptor-independent” mechanisms (Oz, 2006). The best known and
characterized ion channel interaction is the activation of TRPV1 channels. TRPV1
is a ligand-gated nonselective cation channel that is considered to be an impor-
tant integrator of various pain stimuli such as capsaicin, heat, and low pH. Several
endogenous lipids represent “chimeric” ligands (AEA, OLDA, and NADA) acting
on both cannabinoid and TRPV1 receptors (Starowicz et al., 2008). Because CBs
and TRPV1 receptors show coexpression in brain neurons, their coactivations can
lead to a cross-talk between them. The role of peripheral TRPV1 receptor in pain
has been the subject of several detailed studies (Jancso and Jancso-Gabor, 1980;
Nagy et al., 2004; Starowicz et al., 2008; Szolcsanyi, 2000; Szolcsanyi, 2004), and
its crucial role in nociception and hyperalgesia has been confirmed in the TRPV1
knock-out mice as well, in which impaired nociception and reduced sensitivity to
painful heat in behavioral tests have been reported (Barton et al., 2006; Bolcskei
et al., 2005; Caterina et al., 2000;Davis et al., 2000). The TRPV1 receptor activa-
tion at spinal level by capsaicin or AEA causes temporary painful behavior and a
prolonged antinociception (Di Marzo et al., 2000a; Horvath et al., 2008b; Yaksh
et al., 1979). However, TRPV1 antagonists effectively reduce thermal hyperalge-
sia and mechanical allodynia through both spinal and peripheral mechanisms (Cui
et al., 2006).

The expression of TRPV1 in supraspinal structures such as PAG, RVM, the LC,
and thalamus suggests its involvement in descending and ascending supraspinal pain
processing (Cristino et al., 2006; Maione et al., 2006; Mezey et al., 2000; Starowicz
et al., 2008). Microinjection of capsaicin into the PAG increases the latency to
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thermal nociceptive responses, an effect blocked by NMDA and metabotropic glu-
tamate receptor antagonists (Palazzo et al., 2002; Starowicz et al., 2008). These data
suggest that TRPV1 activation in the PAG increases glutamate release, and this leads
to activation of postsynaptic glutamate receptors. However, the response to intra-
PAG injected capsaicin depends on the location of the injection. Its injection into the
dorsolateral-PAG decreases the pain threshold, whereas the capsaicin administra-
tion into the ventrolateral-PAG produces antinociception by the increased glutamate
release in the RVM, which leads to enhanced activity of antinociceptive OFF cells,
and decreased firing of pronociceptive ON cells. Furthermore, capsaicin-induced
excitation of LC neurons might also be involved, in part, in its analgesic properties
(Hajos et al., 1987). TRPV1 is located presynaptically on afferents to the LC, and
its activation may serve to potentiate the release of glutamate and norepinephrine
in this brain region (Marinelli et al., 2002). Nociceptive neurons of the medial tha-
lamus also respond to capsaicin, in agreement with the high density of TRPV1 in
this area (Cristino et al., 2006). TRPV1 activation evokes glutamate release from
the hypothalamus and cerebral cortex as well (Sasamura and Kuraishi, 1999). Both
regions send their projections to PAG (Millan, 2002), and these data also suggest
a mechanism by which TRPV1 activation may modulate neuronal activity in these
central areas.

6.1.1 N-Arachidonoyl-Ethanolamine (Anandamide; AEA)

Anandamide, the first identified and best-studied endocannabinoid, can be found
both centrally and peripherally (Calignano et al., 1998; Devane et al., 1992; Walker
et al., 2005). It is principally formed from glycerophospholipid by two succes-
sive enzymatic reactions: N-acylation of phosphatidyl-ethanolamine to generate
N-acylphosphatidyl-ethanolamine (NAPE) by Ca2+-dependent N-acyltransferase,
and release of AEA from NAPE by a phosphodiesterase of the PLD type (NAPE-
PLD) (Okamoto et al., 2007). It has been hypothesized that AEA could be recycled
by the cell to form new endocannabinoid molecules and released into the extra-
cellular space (Placzek et al., 2008). AEA is extremely short-lived, being rapidly
inactivated by the enzymes fatty acid amide hydrolase (FAAH) (Cravatt et al., 1996).
Termination of AEA signalling appears to involve a two-step process that begins
with transport across the plasma membrane, followed by enzymatic hydrolysis into
arachidonic acid and ethanolamine. AEA binds to both CB1 and CB2 receptors,
behaving as a partial agonist, but it also activates TRPV1 receptors, and it has CB
receptor-independent G protein-coupled antinociceptive potency through the acti-
vation of the GPR55 (Di Marzo et al., 2000b; Pertwee, 2007; Ryberg et al., 2007).
Furthermore, AEA may directly affect the GlyRs and functionally antagonizes the
transient receptor potential melastatin 8 (TRPM8) receptor-mediated responses (De
Petrocellis et al., 2007; Hejazi et al., 2006; Lozovaya et al., 2005). Furthermore,
AEA targets potassium channels, T-type calcium channels, and gap junctions. It is a
substrate for COX2 giving rise to amino acid conjugates of the prostaglandins, and
induces the expression of COX2 enzyme as well (Chemin et al., 2001; Chen et al.,
2005a; Maingret et al., 2001).
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Only a few studies have investigated the antinociceptive potency of AEA in
vivo, and it seems that the CB1 receptor is the predominant target mediating anan-
damide’s antinociceptive effect (Wise et al., 2007). Systemic administration of AEA
is able to attenuate the visceral hyperreflexia induced by inflammation of the urinary
bladder and to reduce the second phase response to formalin (Jaggar et al., 1998).
FAAH inhibitor significantly increases the potency of anandamide in a mild ther-
mal injury model (Palmer et al., 2008). A recent study has shown that AEA (IV)
produces a cannabinoid receptor-independent antinociception, and its effects were
inhibited by 5-HT3 receptor antagonist suggesting that the activation of these recep-
tors contributes to the anandamide-induced analgesia (Racz et al., 2008). The ICV
administration of AEA also induces dose-related antinociception in the TF-test, and
this effect is reduced by pertussin toxin, but not cholera toxin (Calignano et al.,
1998; Raffa et al., 1999). Furthermore, the inhibition of FAAH at PAG level also
decreases pain sensitivity which was reversed by CB1 and TRPV1 antagonist (De
Novellis et al., 2008; Maione et al., 2006; Suplita et al., 2005). AEA is a potent short-
lasting antinociceptive ligand at the spinal level in acute and inflammatory pain
models (Horvath et al., 2008b; Smith et al., 1994; Welch et al., 1998). The effect
of AEA is inhbited by CB1 antagonist, but also by TRPV1 antagonist (Horvath
et al., 2008b; Welch et al., 1998). Local administration of anandamide significantly
decreases the formalin-induced pain behavior but not the paw edema (Calignano
et al., 1998; Guindon et al., 2006a,b). Furthermore, it also inhibits the TRPV1
receptor activation-induced drop in HP latency by activation CB1 receptors (Almasi
et al., 2008). Thus, anandamide may activate cannabinoid CB1 receptors located on
capsaicin-sensitive primary afferents, resulting in the decreased responsiveness of
these afferents to noxious stimuli. However, others have shown that locally admin-
istered anandamide activates nociceptors in normal and arthritic rat by stimulating
TRPV1 receptors on primary sensory neurons, suggesting a pain-inducing potential
of anandamide at this level (Gauldie et al., 2001).

6.1.2 2-Arachidonoyl-Glycerol (2-AG)

2-AG is a 2-acyl-glycerol ester, and its concentration in the brain is 50–500-fold
higher than the concentration of anandamide (Mackie, 2008; Sugiura et al., 2006).
2-AG is also short-lived, being rapidly inactivated mainly by the enzyme monoglyc-
eride lipase (MAGL), but it might also be metabolized by FAAH (Bisogno, 2008;
Cravatt et al., 1996; Dinh et al., 2002; Saario and Laitinen, 2007; Sugiura et al.,
2006). It is a full agonist for CB1 and CB2 receptors with no direct binding to the
TRPV1 receptor (Mechoulam et al., 1995; Pertwee, 2001; Sugiura et al., 2006). It is
also a substrate for COX2, and 2-AG is capable of suppressing elevation of COX2
expression by activating the CB1 receptors (Bleakman et al., 2006; Zhang and Chen,
2008).

As regards its antinociceptive potency, only a few data are available in this
respect; systemic administration of 2-AG has produced antinociception in TF test,
and its in vivo potency is similar to anandamide (Mechoulam et al., 1995). 2-AG
(IP) does not decrease hyperalgesia after mild thermal injury, but it is effective if it
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is administered together with a FAAH inhibitor (Palmer et al., 2008). Furthermore,
the coadministration of 2-AG (in an ineffective dose IP) with two other endoge-
nous lipids (2-linoleoyl-glycerol and 2-palmitoyl-glycerol) increases the potency of
2-AG, although these lipids are ineffective by themselves (Ben Shabat et al., 1998).
This entourage effect might be due to the decreased inactivation of 2-AG. MAGL
inhibitor has induced a CB1-mediated enhancement in endocannabinoid-mediated
SIA following local administration into either the PAG or SDH (Hohmann et al.,
2005; Hohmann, 2007; Suplita II et al., 2006; Suplita et al., 2005). This effect is
associated with a profound increase in levels of 2-AG, but not anandamide, suggest-
ing a physiological role for 2-AG in the suppression of pain sensitivity. Topical (IPL)
administration of 2-AG and MAGL inhibitor decreased the pain behavior in the late
phase of the formalin test and produced antihyperalgesic and antiallodynic effects in
a neuropathy pain model (Desroches et al., 2008; Guindon et al., 2007; Hohmann,
2007). Moreover, the antinociceptive effects of 2-AG are prevented by a selective
CB2 receptor antagonist, but not by a CB1 receptor antagonist in the formalin test,
whereas both antagonists inhibit the antiallodynic and antihyperalgesic effects of 2-
AG (Desroches et al., 2008; Guindon et al., 2007). However, local administration of
CB1 and CB2 antagonists by themselves failed to induce hyperalgesia, suggesting
that the endocannabinoids do not act tonically in the periphery to dampen senstivitiy
to pain (Guindon et al., 2007).

6.1.3 N-Arachidonoyl-Glycine (NAGly)

N-Arachidonoyl-glycine (NAGly) was first synthesized as a structural analogue of
the AEA. It is expressed within the CNS, with particularly high levels within the
spinal cord, but it can be detected in the skin as well (Burstein, 1999; Huang et al.,
2001; Rimmerman et al., 2008). NAGly is formed via oxidation of AEA and by
conjugation of glycine with arachidonic acid by arachidonyl-CoA, and being rapidly
inactivated by FAAH (Burstein, 1999; Huang et al., 2001). The pharmacology of
NAGly is still poorly understood, however, several targets for NAGly are emerging.
NAGly has no affinity for the CB1 and TRPV1 receptors, although it can activate
CB2 binding sites (Devane et al., 1992; Huang et al., 2001; Sipe et al., 2005). It is
also a substrate for COX2 giving rise to amino acid conjugates of the prostaglandins,
and it inhibits activation of COX2 and 5-lipoxygenase enzymes (Burstein, 1999;
Prusakiewicz et al., 2002). Thus, it has a complex effect on prostaglandin synthesis,
and a role for COX2 cannot be excluded in its antinociceptive effect (Burstein et al.,
2007). Furthermore, NAGly inhibits FAAH, and it is a substrate for this enzyme,
therefore, NAGly can regulate the levels of AEA in tissues (Grazia Cascio et al.,
2004; Huang et al., 2001). NAGly is a ligand for the orphan receptors GPR18, and
it activates this receptor in a pertussis toxin-sensitive manner (Kohno et al., 2006).

NAGly has also been shown to stimulate another orphan receptor GPR92, which
is highly expressed in DRG and colocalized with TRPV1 receptors and has been
postulated to play a role in sensory perception (Oh et al., 2008). Alternatively, the
coexpression of GPR92 and TRPV1 in the DRG raises the possibility that NAGly
can exert its pain suppressive effects through GPR92 in the sensory nervous system.
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In addition, NAGly inhibits the glycine transporter GLYT2, but it can also influence
the GlyRs, thus GlyRs could also mediate some of the analgesic effects of NAGly
(Wiles et al., 2006; Yang et al., 2009). As regards its effects after systemic (SC, IP,
or oral) administration, the results are inconsistent. Thus, NAGly produces analge-
sia administered in acute pain models including the HP and formalin tests and has
anti-inflammatory activity (Burstein et al., 2007; Huang et al., 2001). However, sys-
temic administration of NAGly, at a dose similar to that used IT, is without effect,
and NAGly does not produce antinociception in mild thermal injury model (Palmer
et al., 2008; Vuong et al., 2008). IT administration of NAGly reduces the mechani-
cal allodynia and thermal hyperalgesia, and its effect is not influenced by CB1 and
CB2 antagonists (Succar et al., 2007; Vuong et al., 2008). In addition, NAGly does
not produce the motor side effects associated with exogenous cannabinoid receptor
agonists. Consistent with its high levels in skin, NAGly produces analgesia adminis-
tered peripherally in HP and formalin tests, and it also has anti-inflammatory activity
(Burstein et al., 2007; Huang et al., 2001).

6.1.4 2-Arachidonyl-Glycerylether (Noladin Ether)

Mechoulam’s laboratory in 2001 has identified noladin ether, the derivative of 2-AG,
from porcine brain (Hanus et al., 2001). This compound is more stable compared
to 2-AG and anandamide. It has higher affinity to CB1 than CB2 receptors (Hanus
et al., 2001), but another study has shown that it has high affinity for CB2 receptors
as well, and it is a full agonist at this receptor (Shoemaker et al., 2005). Newer
studies have investigated the activity of noladin ether on TRPV1 receptors, and it
has been shown that its effects are not connected with this receptor (Duncan et al.,
2004). Noladin ether inhibits the CGRP-induced vasorelaxation, and this effect is
unaffected by both CB1 and CB2 antagonists, but is inhibited by pertussis toxin
(Duncan et al., 2004). These results suggest that noladin ether produces its effects
through non-CB1/CB2 GPCR activation, but noladin ether can decrease the MOR
expression by acting on CB2 receptors (Paldyova et al., 2008). Only one study has
investigated its antinociceptive potency after systemic (IP) administration and it has
been shown that noladin ether produced antinociception on HP test in mice (Hanus
et al., 2001).

6.1.5 N-Arachidonoyl-Dopamine (NADA)

NADA was first synthesized, and then identified in the brain at the beginning
of this century (Bisogno et al., 2000; Huang et al., 2002; Yang et al., 2007a).
It is synthesized through a condensation reaction between arachidonic acid and
dopamine or between arachidonic acid and tyrosine, and then converted to NADA
(Huang et al., 2002). NADA can be inactivated by conversion into the less active
3-O-methyl-NADA by catechol O-methyltransferase, and it is slowly hydrolysed
by FAAH as well (Huang et al., 2002). As regards its action mechanism, NADA
can activate either TRPV1 or CB1 receptors depending on the location and cir-
cumstance (Bisogno et al., 2000; Bisogno, 2008; De Petrocellis et al., 2000; Huang
et al., 2002; Mackie, 2008). Thus, NADA activates DRG neurons, and increases the
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intracellular calcium concentration and the CGRP release by activation of TRPV1
receptors, but it has lower potency than capsaicin (Huang et al., 2002; McDonald
et al., 2008; Medvedeva et al., 2008). NADA also functionally antagonizes the
TRPM8-mediated responses (De Petrocellis et al., 2007). It elicits analgesia follow-
ing systemic administration in acute heat pain test (Bisogno et al., 2000). NADA
produced slight allodynia after IT administration, and a dose-dependent antihyper-
algesic effect was also observed; this effect was inhibited both by CB1 and TRPV1
antagonists (Horvath et al., 2008a; Pitcher et al., 2007). In addition, it causes nocif-
ensive behavior and hyperalgesia when administered peripherally (Huang et al.,
2002; Price et al., 2004).

6.1.6 N-Palmitoyl-Ethanolamide (PEA) and N-Palmitoyl-Glycine (PalGly)

Although the subfamily of arachidonoyl amides has received considerable attention,
much less is known about the presence and activity of their saturated counterparts
(Rimmerman et al., 2008). The most studied member of the saturated acyl amides
is N-palmitoyl-ethanolamide (PEA) (Di Marzo et al., 1998; Walker et al., 2005).
PEA, found in neural and nonneural tissues, inhibits mast-cell activation and reduces
inflammatory responses by a mechanism that may involve binding to CB2 recep-
tors (Calignano et al., 1998; Martin et al., 1999). However, because PEA does not
produce an effective activation of cannabinoid receptors, it is generally classified
as a cannabimemic compound. Furthermore, PEA is an agonist at the peroxisome
proliferator-activated receptor α (PPARα), and at the orphan receptor GPR55 (Lo
Verme et al., 2005; Ryberg et al., 2007). An “entourage” effect on anandamide-
mediated action may be due to the PEA-induced inhibition of FAAH that leads to
an increase of tissue levels of AEA (Costa et al., 2008). Thus, a recent study demon-
strated that CB1, PPARα, and TRPV1 receptors mediate the antinociception induced
by systemic PEA in the neuropathic pain model, and repeated PEA treatment sig-
nificantly decreased the enhanced NGF, GDNF, and NT-3 levels in the spinal cord
(Costa et al., 2008). Orally administered PEA also reduced inflammatory hyper-
algesia and edema by inhibiting mast cell degranulation (Mazzari et al., 1996). It
can also attenuate the visceral pain sensitivity and the second phase response to
formalin (Jaggar et al., 1998; Lo Verme et al., 2006). Its ICV administration was
ineffective in acute heat pain test, whereas it showed marked antinociceptive prop-
erties at the peripheral level (Calignano et al., 1998; Calignano et al., 2001; Lo
Verme et al., 2006). Local administration of PEA produced antinociception in the
formalin test that was blocked by a CB2 receptor-selective antagonist (Calignano
et al., 1998). Another study has proved the role of PPARα receptor activation in this
respect (Lo Verme et al., 2006). It is noteworthy that local coadministration of PEA
with exogenous anandamide produced a synergistic analgesic effect in both phases
of the formalin test through a mechanism that involves both CB1 and CB2 receptor
subtypes (Calignano et al., 1998; Calignano et al., 2001).

PalGly also has been identified in rat brain, skin, and spinal cord (Rimmerman
et al., 2008). It induces transient calcium influx in native adult DRG cells, and
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stimulates the NO production. PalGly potently inhibits heat-evoked firing of noci-
ceptive neurons in rat SDH, and its effects are not inhibited by CB1 and CB2
antagonists, but are blocked by TRP channel antagonists. No in vivo studies have
been performed in this respect yet.

6.1.7 N-Oleoyl-Ethanolamide (OEA), N-Oleoyl-Dopamine (OLDA),
and Oleamide

All these substances are derivatives of oleic acid (monounsaturated omega-9 fatty
acid). N-oleoyl-ethanolamide (OEA) is an endogenous regulator of food intake, and
may have some potential as an antiobesity drug, however, some studies investigated
its effects on sensory neurons as well (Fu et al., 2003; Hansen and Artmann, 2008). It
does not bind to CB1 and CB2 receptors, but it is an endogenous agonist of TRPV1
and PPARα, however, there are some contradictions in this respect (Ahern, 2003;
Almasi et al., 2008; Fu et al., 2003; Lo Verme et al., 2006; Wang et al., 2005a).
Only a few inconsistent results suggest its role in the pain. Thus, IP administration
of OEA has decreased the pain behavior in formalin and visceral models, and this
effect was independent from PPARα activation, although high dose causes writhing
behavior (Suardiaz et al., 2007; Wang et al., 2005a). Its IPL administration does not
change the acute heat-pain latency, but reverses the thermal hyperalgesia (Almasi
et al., 2008). Another study has found nocifensive behavior after its local injection,
which could not be observed in TRPV1 knock-out animals (Lo Verme et al., 2006).

The endogenous presence of OLDA has recently been confirmed in the mam-
malian brain (Chu et al., 2003; Huang et al., 2002). The in vivo pathways of OLDA
synthesis are unsettled. The most probable pathway seems to be N-acylation of tyro-
sine by a fatty acid, with tyrosine entering then the normal pathway of dopamine
synthesis to form N-acyl-dopamine, and it is inactivated by FAAH (Chu et al., 2003).
However, it can weakly activate CB1 receptors (Bisogno et al., 2000; Chu et al.,
2003). OLDA possesses activity at TRPV1 receptors with potency similar to that
of capsaicin, and produces long-lasting nocifensive behavior and thermal hyperal-
gesia, which is blocked by TRPV1 antagonists (Chu et al., 2003; Szolcsanyi et al.,
2004; Walker et al., 2005). Therefore, OLDA may function as either a peripheral or
central mediator of TRPV1 activation.

Oleamide (cis-9,10-octadecenoamide or oleic acid amide) originally was found
in the cerebrospinal fluid (CSF) of sleep-deprived cats, and has received much atten-
tion due to its sleep-inducing properties in mammals (Cravatt et al., 1995; Farrell
and Merkler, 2008). The primary site of action of oleamide in the central ner-
vous system remains unclear. It does not interact directly with CB1 receptors, but
it interacts with other neurotransmitter–receptor systems (GABAergic, dopamin-
ergic, and serotonergic transmission) (Boring et al., 1996; Walker et al., 2005).
Many of oleamide’s behavioral effects are consistent with its being an indirect
cannabimimetic, increasing either the levels or activity of endogenous cannabinoids
(e.g., AEA) (Fedorova et al., 2001). The mechanism by which this occurs remains
unclear and may include the suppression of AEA uptake, although it also shares
with AEA the same degradatory enzyme, FAAH (Mechoulam et al., 1997). Hence
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the cannabimimetic effects have largely been attributed to the indirect entourage
effect on the endocannabinoid system (Mechoulam et al., 1998). Only one study
has reported its effects on pain sensation. Systemic administration of oleamide
induces cannabimimetic effects, and it produces relatively long-lasting antinoci-
ceptive effects (HP and TF tests), but repeated administration of oleamide causes
tolerance as well (Fedorova et al., 2001).

6.2 Eicosanoids

The derivatives of arachidonic acid are eicosanoids, which have four families:
the prostaglandins, the prostacyclins, the thromboxanes, and the leukotrienes.
Prostanoid is the term used to describe a subclass of eicosanoids consisting of
the prostaglandins, the thromboxanes, and the prostacyclins. They are important
lipid mediators involved in the transmission of nociceptive pain. Their synthesis
is initiated by the generation of arachidonic acid by phospholipase A2 (PLA2),
which is metabolized by COX1 enzymes (1–3) to generate short-lived media-
tors that act as precursors for the synthesis of the biologically active prostanoids:
prostaglandin-E2 (PGE2), PGD2, PGI2, PGF2α, or thromboxane A2. In the spinal
cord both COX1 and COX2 are expressed. The major prostaglandins produced in
the spinal cord are PGE2 and PGD2. The role of PGE2 is to enhance synaptic
transmission and increase spinal responses to peripheral stimulation, and it thus
plays a major role in the induction of hyperexcitability during peripheral inflam-
mation (Ahmadi et al., 2002; Vanegas and Schaible, 2001; Vasquez et al., 2001).
By contrast, much less is known about the role of PGD2. In general, PGD2 is
the most produced postanoid in the CNS of mammals. A profound basal release
of PGD2 in the spinal cord has been reported, and peripheral nociceptive stimu-
lation and systemic inflammation increases spinal PGD2 biosynthesis (Grill et al.,
2008; Willingale et al., 1997). As regards its action mechanism, PGD2 activates two
GPCRs, the DP1 and DP2 receptors. Activation of DP1 stimulates AC and increases
cAMP concentration, whereas DP2 receptors couple to inhibitor G-proteins and
decrease cAMP concentration (Hata et al., 2003; Kostenis and Ulven, 2006). Both
DP1 and DP2 receptors are localized in neurons of all laminae within the ventral
and dorsal horn (Grill et al., 2008). As regards its action on the pain threshold, IT
application of PGD2 evokes hyperalgesia and allodynia (Minami et al., 1994), and
allodynia cannot be elicited in mice lacking the PGD synthase (Eguchi et al., 1999),
suggesting a pronociceptive role of PGD2. A recent study has shown that spinally
administered PGD2 does not change the responses to mechanical stimulation in
normal animals, and neither DP1 nor DP2 receptor agonists influences this reflex
(Telleria-Diaz et al., 2008). However, IT PGD2 can also inhibit the PGE2-induced
allodynia supporting an antinociceptive effect of PGD2 as well (Minami et al.,
1996). Furthermore, either PGD2 or a DP1 receptor agonist decreases responses
to mechanical stimulation in rats with inflamed joints and the facilitatory effects
of PGE2, and the inhibitory effect of PGD2 could have been resulted from the
activation of GABAergic inhibitory interneurons (Eguchi et al., 1999; Minami
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et al., 1997; Telleria-Diaz et al., 2008). Another prostaglandin, which can pro-
duce antinociception is the prostaglandin J, which is dominant during the resolution
of an inflammatory condition (Burstein et al., 2007). Thus, compounds that pro-
mote the synthesis of this PG without significantly raising the level of the other
prostaglandins could be considered as good candidates for the treatment of inflam-
mation. Thus, NAGly produces a favorable prostaglandin ratio and is effective
in reducing in vivo responses to proinflammatory agensts (Burstein et al., 2007).
Cytochrome P450 genes catalyze formation of epoxyeicosatrienoic acids (EETs)
from arachidonic acid. The effects of 5,6EET, 8,9EET, 11,12EET, and 14,15EET
microinjected into the ventrolateral PAG on the thermally produced TF-response
have been studied in rats (Terashvili et al., 2008). 14,15EET dose-dependently
increased the TF-latency, whereas other EETs were inactive. The effect of 14,15EET
has been blocked by antiserum against β-endorphin or Met-ENK, suggesting that
this ligand evokes β-endorphin and Met-ENK releases.

6.3 Gangliosides

Gangliosides are glycosphingolipids that occur in nearly all cellular membranes
and are particularly concentrated in the nervous tissue (Zeller and Marchase, 1992).
Gangliosides include all sialic acid-containing glycosphingolipids possessing a spe-
cific sequence of neutral sugars (in different numbers). Members of the ganglioside
family are designated by the capital letter G and are defined by the characteristic
neutral sugar chain sequence. The sialic acid content of a ganglioside is designated
by a capital letter: A (asialo), M (monosialo), or D (disialo). These agents have been
shown to be effective in treating features of a variety of diabetic and toxic peripheral
neuropathies. The mechanisms of ganglioside action in peripheral nerves include the
enhancement of mean sprouting length, and increase of the number of regenerating
axons (Zeller and Marchase, 1992). The protection afforded by gangliosides may
be attributable to their ability to attenuate the neural injury induced by glutamate
and/or to block the translocation of PKC (Vaccarino et al., 1987; Vorwerk et al.,
1999; Zeller and Marchase, 1992). Furthermore, GM1 ganglioside displays a broad
spectrum of neurotrophic effects in vivo and in vitro. Some articles have reported
the antinociceptive potency of GM1 and the pronociceptive effect of anti-GD anti-
body (Fromm et al., 1993; Goettl et al., 2000; Mao et al., 1992; Sorkin et al., 2002),
but opposite data have also been published (Crain and Shen, 1992; Crain and Shen,
2000). The systemic or IT administrations of gangliosides to control animals have
no effect on sensory thresholds, but they suppress thermal and mechanical hyperal-
gesia and also spontaneous pain behavior in neuropathic pain models (Fromm et al.,
1993; Mao et al., 1992). The chronic administration of GM1 to aged rats partially
restored the pain responses, but it had no effect on any sensory modality tested in
young rats, suggesting a normalgesic effect (Goettl et al., 2000). The coadminis-
tration of a highly purified bovine brain ganglioside mixture (without GM1) with
pure GM1 produced a potentiated antinociceptive effect in a model of peripheral
mononeuropathy (Hayes et al., 1992).
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6.4 Steroids

Steroids are a large group of compounds, any of which have important biologi-
cal actions. These effects are typically brought about by steroid binding to nuclear
receptors and subsequent changes in gene expression (Beato and Sanchez-Pacheco,
1996). However, steroids can also exert faster effects by activating membrane sur-
face receptors (Losel and Wehling, 2003). Some of the best-characterised membrane
surface steroid receptors in mammals are ion channels. For example, GlyRs and
GABA receptors display different sensitivities to many neuroactive steroids (Webb
and Lynch, 2007). However, most neurosteroids are active at a wide range of
receptors so their potential as therapeutic agents seems limited.

6.4.1 Neurosteroids

Neurosteroids are steroid hormones synthesized in the brain that can modu-
late neuronal function through both gene expression and by direct modulation
of neuronal excitability (Rupprecht, 2003). Nongenomic rapid effects of neuros-
teroids are particularly efficient. Two metabolites of progesterone, allopregnanolone
(3α5αTHP: 3α5α-tetrahydro-progesterone) and pregnanolone (3α5βTHP: 3α5β-
tetrahydroprogesterone), and sulfated steroids as well, act on GABAA receptors
and potentiate their inhibitory function in the CNS (Covey et al., 2000; Keller et al.,
2004; Majewska, 1992; Schlichter et al., 2006). Apart from GABAA, pregnanolone
significantly reduced GlyR function as well (Jiang et al., 2006). Pregnenolone sul-
phate (PES) has been shown to modulate the activity of NMDA receptors and
a variety of other ionotropic receptors, therefore PES increases neurotransmitter
release from a variety of preparations and it affects the strength of synaptic trans-
mission; the chronic IP administration of PES prevents the development of morphine
tolerance (Gibbs et al., 2006b; Mameli et al., 2005; Reddy and Kulkarni, 1997). Both
PES and the androgen dehydroepiandrosterone sulfate (DHEAS; see below in the
section “Androgens”) bind to sigma receptors (sigma1 and 2), which are nonopioid,
nonphencyclidine receptors (Monnet et al., 1995). The sigma1 receptor has been
cloned and its sequence does not resemble that of any mammalian protein, whereas
sigma2 receptors have not been cloned. Sigma1 agonists, although having no effects
by themselves, caused the amplification of signal transductions incurred upon the
stimulation of the glutamatergic, dopaminergic, IP3-related metabotropic, or nerve
growth factor-related systems. Inasmuch as this receptor has a significant role in
the pain mechanisms, we may not exclude the role of its activation by these neu-
rosteroids in their antinociceptive effects (Guitart et al., 2004), but the activation of
this receptor at spinal level induces mechanical allodynia by the activation of spinal
NMDA receptors (Roh et al., 2008). ICV administration of allopregnanolone signifi-
cantly and dose-dependently increases the pain thresholds to heat stimulus, an effect
which was mediated by GABAARs (Kavaliers and Wiebe, 1987). Endogenous neu-
rosteroids are produced in the SDH and the elevated concentration of neurosteroids
seen in inflammatory pain states significantly reduces thermal heat hyperalgesia
(Poisbeau et al., 2005). It has been proposed that neurosteroids could be part of an
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endogenous modulatory/compensatory mechanism in response to a strong and/or
sustained activation of the spinal nociceptive system (Vergnano et al., 2007). The
IT administration of allopregnanolone effectively decreased both the mechanical
and thermal hyperalgesia, whereas pregnanolone was only efficient on mechanical
allodynia and had no effect on thermal heat hyperalgesia (Charlet et al., 2009).

6.4.2 Sexual Hormones

Estrogen and Progesterone

It is well known that women are more sensitive to several types of pain than men
and functional bowel disorders are 2–3 times more prevalent in women (Berkley,
1997). The severity of pain symptoms fluctuates with the menstrual cycle suggest-
ing female gonadal hormones modulate pain processing (Bartok and Craft, 1997;
Kayser et al., 1996; Houghton et al., 2002; Hucho et al., 2006). Furthermore, preg-
nancy and parturition are associated with an opioid-mediated maternal analgesia
(Dawson-Basoa and Gintzler, 1997). Estrogen has a permissive rather than a modu-
lating function in this respect, and progesterone seems to specifically inhibit GlyRs
(Mogil et al., 2003; Webb and Lynch, 2007). The change in estrogen status alone
is sufficient to modify the processing of noxious sensory input to the CNS. The
classical estrogen receptor exists as two subtypes, ERα and ERβ, and is expressed
in the primary sensory neurons, sensory ganglia, dorsal horn, and supraspinal brain
regions associated with pain modulation (Bereiter et al., 2005; Merchenthaler et al.,
2004; Okamoto et al., 2008). Estrogen receptor signalling dramatically affects uter-
ine cervical structure, and may also enhance pain responses at this level (Ji et al.,
2005; Yan et al., 2007). Compared to intact rats, ovariectomy reduces the magnitude
of the visceromotor responses and the response of SDH neurons, which is reversed
by estradiol replacement (Ren et al., 2000; Tang et al., 2008). The data suggest that
estrogens play an important role in modulating visceral nociceptive processing by
increasing the spinal NMDA receptor expression and activation (Tang et al., 2008).
Furthermore, chronic estrogen treatment increases spontaneous activity of afferents
that innervate the uterine cervix, and enhances afferent firing in response to cer-
vical distension, and TRPV1 receptor function is important for estrogen-induced
sensitization (Yan et al., 2007).

The effects of progesterone are mediated by two distinct nuclear receptor pro-
teins, PRA and PRB. Some studies reported antinociceptive effects of progesterone.
Lactating rats with a high level of progesterone demonstrated significantly less
hyperalgesia and progesterone replacement in ovariectomised rats significantly
attenuated inflammation-induced hyperalgesia (Ji et al., 2005; Ren et al., 2000). It is
thought that progesterone’s antihyperalgesic effects include suppression of NMDA
receptor activation at the level of the spinal cord (Ren et al., 2000). Because the
increase in estradiol and that in progesterone coincide during the estrous cycle, the
pronociceptive effect of estradiol and the antinociceptive effect of progesterone may
obscure each other, reducing fluctuations during the course of the estrous cycle.
Dawson-Basoa and Gintzler (1996, 1997, 1998) have performed studies of the inter-
action of β-estradiol and progesterone and their potential mechanism of action in
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respect of pain sensitivity. Simulation of the pregnancy blood profile of β-estradiol
and progesterone in nonpregnant, ovariectomised rats have resulted in a statistically
significant elevation of the pain threshold in the electric foot shock test, suggesting
that the entire pregnancy profile of steroid hormones is responsible for the mani-
festation of analgesia. As regards the mechanism, it is proposed that the analgesia
during pregnancy may result from direct effects of estrogen and progesterone on the
CNS. The activation of the receptors caused a 52% increase in the opioid receptor
binding density and in the concentration of β-endorphin in the preoptic area (Bridges
and Ronsheim, 1987). Additionally, estrogen has been shown to positively regulate
pro-ENK mRNA levels in the ventrolateral aspect of the ventromedial hypothala-
mic nucleus (Romano et al., 1989). These observations may suggest that the opioid
systems mediating the analgesic effects of estrogen and progesterone are modu-
lated in a synergistic fashion; accordingly, pregnancy provides a special case of
antinociceptive interaction between these endogenous ligands.

Androgens

Men are typically reported to have higher pain thresholds than women, and
gonadal hormones, particularly testosterone for males, contribute to this effect.
Gonadectomy in adult male rats enhanced inflammation-induced sensitivity to
mechanical stimulation and the effects was reversed by testosterone, and the anti-
hyperalgesic potential of morphine decreased in neonatally gonadectomised male
animals (Cicero et al., 2002). According to another study, castration reduces both
opioid and nonopioid SIA in rats, which was reversed by testosterone replacement
(Romero et al., 1988). However, other reports suggest pronociceptive potential of
testosterone, because castration induces analgesia in the late phase of the formalin
test, which correlates with increased 5-HT level in the SDH (Nayebi and Ahmadiani,
1999; Nayebi and Rezazadeh, 2004). IT administration of testosterone caused anal-
gesia in neuropathic rats (Kibaly et al., 2008). As regards the weak androgens
originated primarily from the adrenal cortex (i.e. dehydroepiandrosterone (DHEA)
and dehydroepiandrosterone sulfate (DHEAS)), they are abundant in the brain even
after adrenalectomy and gonadectomy (Corpechot et al., 1985). Both DHEA and
DHEAS can inhibit the GABA- and Gly-induced current, and the chronic systemic
(IP) administration of DHEA or DHEAS elevates the basal nociceptive threshold,
and prevents the development of morphine tolerance (Majewska, 1992; Ren et al.,
2004; Webb and Lynch, 2007). As regards the role of DHEA at the spinal level,
its level drops in neuropathy in the SDH (Kibaly et al., 2008). Behavioral anal-
ysis shows a rapid pronociceptive and a delayed antinociceptive action of acute
DHEA treatment, and the inhibition of its synthesis evokes analgesia. In contrast, the
peripheral administration of DHEAS has significant hyperalgesic and vasodilatory
actions through histamine release (Uchida et al., 2003).

6.4.3 Glucocorticoids

Glucocorticoids (mainly cortisol) are considered to be essential stress hormones
and their levels increase immediately after injury, pain, and the like. The basal



480 G. Horvath

level of glucocorticoids is critical for the expression of analgesia, playing a per-
missive role in this process and they have an important role in the SIA (Panocka
et al., 1987; Sutton et al., 1994). The glucocorticoid receptors are widely distributed
both centrally and peripherally, and similarly to other steroids, the glucocorti-
coids also possess genomic and nongenomic actions (DeLeon et al., 1994; Joels,
1997). At the genomic level, the glucocorticoids repress transcription of a num-
ber of proinflammatory gene products that include the proinflammatory cytokines
and enzymes such as PLA2, COX2, and inducible NOS (Niederberger et al., 2007;
Sorrells and Sapolsky, 2007). Glucocorticoids are also involved in the induction of
anti-inflammatory products such as interleukin-10 and annexin-A1 (Ayoub et al.,
2008; Sorrells and Sapolsky, 2007). The nongenomic actions of the glucocorticoids
are very rapid, occurring within minutes, and are dependent on the cytoplasmic
glucocorticoid receptor (Buckingham et al., 2006). Glucocorticoids reduce PGE2
biosynthesis by either inhibition of PLA2 activity or inhibition of COX2 protein
induction, the former effect considered to be a nongenomic, and the latter a genomic,
effect. All of these actions decrease the release of pronociceptive ligands. Therefore,
systemic, local, and IT administrations of glucocorticoids decrease the hyperal-
gesia, and cortisols are routinely given to patients with different pain syndroms
(Ferreira et al., 1997; Taguchi et al., 2007). However, other studies have shown that
chronic stress induces a long-lasting hyperalgesia, which is inhibited by glucocorti-
coid receptor antagonists (Khasar et al., 2008). Furthermore, the ICV administration
of glucocorticoids decreases both the opioid- and clonidine-induced antinociception
(Capasso et al., 1992; Capasso and Loizzo, 2001). Thus, the glucocorticoids influ-
ence both the antinociceptive and pronociceptive processes, and the net effects may
depend on the qualities of activating factors and their duration.

7 Gases

7.1 Nitric Oxide (NO)

It has been recognized that NO serves as an important intracellular and intercellular
messenger molecule in the PNS and CNS, and functions in a variety of phys-
iological and pathophysiological processes (Mizutani and Layon, 1996; Wu and
Morris, 1998). NO, a free radical gas, is not stored in synaptic vesicles and released
by exocytosis. Three different NOSs are responsible for NO synthesis: neuronal
(nNOS or NOS1), endothelial (eNOS or NOS2), and inducible NOS (iNOS or
NOS-3) (Boehning and Snyder, 2003). Modulation of nNOS activity by multiple
signalling cascades permits the regulated production of NO in response to neu-
ronal stimulation. Unreacted NO has been assumed to simply diffuse away from
target areas, but recent studies have suggested an enzymatic inactivation system,
thus, myeloperoxidase, an enzyme highly enriched in leukocytes, also regulates NO
bioavailability. Once NO is synthesized from L-arginine, it quickly diffuses from
one neuron to another neuron and acts on the soluble guanylyl cyclase (sGC) to
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stimulate the formation of cGMP. This appears to be the principal mode for medi-
ating the effects of NO in the neurons. However, NO also acts by modifying the
transition metal centers of a wide variety of proteins. It can function by selectively
and reversibly S-nitrosylating cysteine residues on a wide variety of proteins with
precise spatial and temporal resolution. These proteins may be ion channels, pumps,
or metabolic enzymes; for example, S-nitrosylation activates L-type Ca2+ channels,
Ca2+-activated K+-channels, and GABAA receptors, but it inhibits NMDA receptors
and several classes of Na+-channels.

The role of NO in the nociceptive processes is very controversial. Several lines of
evidence have shown that inhibition of NO production reduces pain hypersensitivity;
however, other studies suggest the opposite role of NO. Systemic administration of
NOS inhibitors have reversed pain hypersensitivity (Chu et al., 2005; Crosby et al.,
1995; Mabuchi et al., 2003). Disruption of nNOS partially reduced inflammation-
induced mechanical pain hypersensitivity (but not thermal hyperalgesia) (Chu et al.,
2005), whereas others have not found this effect in other pain models (Crosby et al.,
1995; Tao et al., 2004). Findings support the view that a condition of chronic stress
can enhance hyperalgesia induced by systemic nitroglycerin administration (Costa
et al., 2005). These observations may be relevant to pain disorder, and particularly
to migraine, because nitroglycerin is able to induce spontaneous-like pain attacks
in humans. NO appears to play a promoting role in supraspinal pain transmission,
inasmuch as a number of NOS inhibitors exhibit potent antinociceptive activities
on systemic or ICV administration (Pelligrino et al., 1996). In contrast, an antinoci-
ceptive property of brain NO has also been reported in acute mechanical and heat
pain tests (Kawabata et al., 1992). Considerable evidence has demonstrated that
NO and its enzymes are involved in the central mechanisms of pain at the spinal
cord level (Chu et al., 2005; Malmberg and Yaksh, 1993; Meller et al., 1992a; Tao
et al., 2003). IT NOS inhibitors have decreased the neuropathic and inflammatory
pain sensitivity, and significantly decreased the C-fiber-evoked activity (Chu et al.,
2005; Meller et al., 1992b; Meller et al., 1994b; Meller et al., 1994a; Zhang et al.,
2005). Moreover, many of the effects of NMDA receptors in inflammatory hyper-
algesia appear to be mediated through the production of NO (Chu et al., 2005; Li
et al., 1994b; Mabuchi et al., 2003; Meller et al., 1992a; Tao et al., 2004). Given
the link between NMDA receptor activation and production of nitric oxide, it is not
surprising that activation of NOS and subsequent production of NO is one of the
signal transduction systems shown to be involved in the behavioral response to pain
stimuli (Meller et al., 1994c).

All of these data indicate that the spinal NOS is essential for pain hypersensi-
tivity. However, the effects of NO on neuronal firing differ among cell types, and
NO production can lead to inhibition of neuronal firing and transmission at spinal
level (Ma and Eisenach, 2007; Song et al., 1998; Xu et al., 1996a). Thus, spinal NO
is directly involved in the analgesic effects of morphine and clonidine and acetyl-
choline (Lauretti et al., 2000; Ma and Eisenach, 2007; Pan et al., 1998; Song et al.,
1998; Xu et al., 1996a; Xu et al., 1997; Xu et al., 2000). As regards the role of
NO at the peripheral level, locally released NO also plays a dual role in nociceptive
modulation, inducing either nociceptive or antinociceptive responses depending on
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its amount and tissue level (Kawabata et al., 1994a). Noxious heat induces NO gen-
eration causing SP release from the peripheral endings of small-diameter primary
afferent neurons (Yonehara and Yoshimura, 1999). Inflammation also enhances
peripheral release of NO, which may contribute to edema and hyperalgesia (Lawand
et al., 1997; Omote et al., 2001). NO may play an important role in neurogenic
inflammation through enhancement of the release of neuropeptides by activating
small-diameter primary afferent neurons (Yonehara and Yoshimura, 1999). In con-
trast, the local increase in NO level can decrease the mechanical hyperalgesia
through an increase in cGMP (Steiner et al., 2001). Furthermore, the peripheral
MT-induced antinociception is inhibited by NOS inhibitor, because NO production
can lead to opening K+-channels (Hernandez-Pacheco et al., 2008). Several other
observations also indicate that NO donors inhibit the ongoing mechanical nocicep-
tor supersensitivity, and NOS inhibitors enhance the hypersensitivity (Ferreira et al.,
1991; Ferreira et al., 1992; Lorenzetti and Ferreira, 1996). The simplest explanation
for these conflicting observations may be that the role and importance of the path-
way varies among the groups of primary sensory neurons mobilized by different
types of nociceptive stimuli.

7.2 Carbon Monoxide (CO)

It has been long recognized that the gaseous compound CO is noxious and harmful.
CO is generated by haeme oxygenase (HO) that degrades haeme in aging red blood
cells giving rise to biliverdin, iron, and CO (Boehning and Snyder, 2003). HO activ-
ity can be induced in almost all cell types by cellular stressors. Molecular cloning
has revealed three types of HOs, the highly inducible isoform termed HO1, and two
constitutive expressed isoforms termed HO2 and HO3. HO2 is selectively concen-
trated in the brain and testes, and it is colocalized with sGC throughout multiple
brain regions. CO activates sGC to generate cGMP, but it can also directly acti-
vate different K+-channels (Boehning and Snyder, 2003). Since the beginning of the
1990s, a growing body of evidence has given support to the physiological actions
of CO as a vasoactive substance and a neurotransmitter/modulator. Thus, as with
NO, CO is also a labile gaseous messenger in the nervous system (Boehning and
Snyder, 2003; Verma et al., 1993). Because the nociceptor activity and excitability
may be modulated by intracellular cGMP, CO can influence the pain sensitivity in
a cGMP-dependent manner (Duarte et al., 1992; Sousa and Prado, 2001). Various
studies have suggested that CO regulates nociception and a part of them indicate
pronociceptive effects. Thus, the lack of HO2 enzyme has not changed the normal
heat and mechanical threshold, but it reduced the hyperalgesia in inflammatory or
nerve injury models; it has not modified the potency of morphine, but it has pre-
vented morphine tolerance (Li and Clark, 2002; Li and Clark, 2003; Liang et al.,
2003; Liang et al., 2004). Furthermore, the IT administration of HO inhibitors
has not influenced acute heat pain latency, but inhibited pain-related behaviors and
increased the potency of morphine (Li and Clark, 2001; Li and Clark, 2002). Thus,
the production of CO at the spinal level is important in the behavioral expression of
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acute mechanical hyperalgesia, but is not involved in thermal hyperalgesia (Meller
et al., 1994c). However, another study has found opposite results, that is, IT HO
inhibitor increased, whereas CO substrate decreased the formalin-induced behavior
(Nascimento and Branco, 2008). IPL administration of an HO inhibitor potenti-
ated mechanical hyperalgesia and the formalin-induced behavior, and the increased
CO level decreased the hypersensitivity by increasing the intracellular level of sGC
(Nascimento and Branco, 2007; Rosa et al., 2008; Steiner et al., 2001). The effect
of CO has been prevented by the NOS blocker, suggesting that the effect of CO
depends on the integrity of the NO pathway. In conclusion, our knowledge of the
role of CO in the nociceptive processes is incomplete, therefore further studies are
required to reveal its role at different levels.

7.3 Hydrogen Sulfide (H2S)

H2S is now considered a novel gasotransmitter in peripheral tissues and the CNS
(Boehning and Snyder, 2003; Qu et al., 2008). Similarly to CO and NO, H2S also
exists in the brain in relatively high concentrations (50–160 μM), and there is
a cross-talk between H2S and NO. H2S is formed from cysteine by cystathione
β-synthase (CBS) and cystathione γ-lyase (CSE) (Szabo, 2007). CBS transcript
levels are high in the brain, with little or no CSE. CBS is activated by stimula-
tion of ionotropic glutamate receptors in the presence of Ca2+. Much progress has
been made in the past decade in elucidating the roles of H2S in physiological and
pathological conditions at the cellular level (Bhatia et al., 2005; Qu et al., 2008;
Szabo, 2007). It increases cAMP level, which stimulates PKA to phosphorylate and
activate postsynaptic NMDA receptors. H2S also upregulates GABAB receptors,
therefore, H2S can act presynaptically to inhibit neurotransmission (Boehning and
Snyder, 2003). However, H2S directly activates T-type Ca2+ channels as well, and
H2S may play a part in maintaining the excitation/inhibition balance (Kawabata
et al., 2007). Systemic administration of H2S donors inhibits acute and inflamma-
tory visceral nociception by opening ATP-sensitive potassium channels (Distrutti
et al., 2006b; Distrutti et al., 2006a). However, the H2S may play a dual role in
inflammatory hypernociception (Cunha et al., 2008). Production of endogenous H2S
during inflammation mediates the induction of mechanical hypernociception. The
pronociceptive role of H2S seems to be closely associated with upregulation of neu-
trophil migration to the inflammatory site, and the activation of T-type Ca2+ channel
activity. On the other hand, the direct action of H2S on peripheral nociceptive neu-
rons can produce antinociception by the activation of peripheral K+ATP channels.
Only one study demonstrated the effect of H2S at the spinal level (Maeda et al.,
2009). In isolated DRG neurons, H2S donor (sodium hydrosulfide: NaHS) facili-
tated T-type calcium channel-dependent currents, and caused hyperalgesia, and this
effect was blocked by a T-type channel inhibitor. More results are available about
the peripheral effect of H2S. H2S biosynthesis is increased following IPL injection
of carrageenan, local administration of NaHS induces a mechanical hypernocicep-
tion, and the hyperalgesia was decreased by H2S synthesis inhibitor or by T-type
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calcium channel blockers (Bhatia et al., 2005; Cunha et al., 2008; Kawabata et al.,
2007; Maeda et al., 2009). NaHS also excites capsaicin-sensitive primary afferents
and evokes a peripheral release of neurokinins (Patacchini et al., 2004). Intracolonic
administration of NaHS caused visceral pain-like nociceptive behavior and referred
abdominal hyperalgesia (Matsunami et al., 2009). Retrograde injection of NaHS
into the pancreatic duct induced expression of Fos-protein in the superficial layers
of the SDH, and the pancreatitis-induced referred pain was decreased by inhibi-
tion of the H2S enzyme (Nishimura et al., 2009). All of these experiments suggest
a role of H2S as a nociceptive messenger in the periphery. The mechanisms of
H2S action in these processes are dependent on the direct modulation of T-type
Ca2+ channel activity in nociceptors and independent of K+ATP channels (Maeda
et al., 2009). However, another study provides evidence suggesting a nociceptive-
intensity-dependent role for peripheral H2S in nociception. Topical administration
of H2S donor increases the nociceptive behavior of formalin, whereas the H2S
level decreases in the spinal cord with hind paw injection of formalin (Lee et al.,
2008). Because H2S inhibits microglia production of proinflammatory cytokines
and nitric oxide (Hu et al., 2007), a decrease in spinal H2S is pronociceptive in the
formalin test by virtue of disinhibition of microglial function. All these preliminary
reports suggest a complex role of H2S in the pain mechanism, and further studies
are required to reveal the central role of H2S in these process.

8 Conclusions

Knowledge of the pathophysiology of pain has evolved substantially inasmuch as
the more current hypotheses incorporate gene–environment interactions, endocrine,
immunological, and metabolic mediators, and cellular, molecular, and epigenetic
factors of plasticity. However, enormous gaps in the knowledge of pain and its treat-
ment persist. The data reveal that the actions of the endogenous substances are very
different depending on the type of ligands, the pain tests, and the route of adminis-
trations. Activation of the different receptors may produce anti- or pronociception
depending on the types and localization of the binding sites. In an ideal case the
ligand induces analgesia by the presynaptic inhibition of excitatory neurotransmitter
release, and the postsynaptic inhibition of the effects of excitatory neurotransmitters
or increase of the release of endogenous inhibitory transmitters from the neurons.
Accordingly, the simultaneous engagement of pre- and postsynaptic mechanisms by
a combination of drugs may magnify the effects produced by either drug acting at
one site independently. Furthermore, both the coordination and plasticity of cellu-
lar responses to different receptor activation could be influenced by variables such
as the types and numbers of receptors present in each cell type, physical or func-
tional compartmentalisation of the signalling components, and differential and/or
overlapping sensitivities to various ligands and/or costimulation with other receptor
types. Another crucial factor that underlies the efficacy of a drug is the “robustness”
of the network that the compound targets, because the ligands could express their
effects at several levels of the pathways. Moreover, all of these variables need to



Endogenous Antinociceptive Ligands 485

be recognized as dynamic. Thus the specific response of a cell to a ligand will be
determined as the sum of many variables, and net effect of different ligands depends
upon all of these factors. That is why signal transduction studies performed in trans-
fected cells ultimately must be validated contextually in cells, organs, and intact
animals in which the different receptors are endogenously expressed. Not all of the
endogenous ligands have been discovered, and even fewer data are available about
their interactions, therefore researchers need to continue identifying key cellular and
molecular factors affected in sensory pathways during different pain syndromes to
characterize potential targets for new drugs and drug combinations.
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Biology of Demyelinating Diseases
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Abstract Demyelinating diseases are those in which myelin is the primary tar-
get of damage on the basis of neuroradiological, neuropatholgical, neurochemical,
and genetic studies. This review describes the morphological aspects of the myelin
sheath which is the most abundant membrane structure in the vertebrate nervous
system. It is made of oligodendrocytes in the CNS and Schwann cells in the PNS. It
comprises four distinct regions: the node of Ranvier which contains voltage-gated
Na+ channels, paranodal loops which are major sites of myelin-axon adhesion, the
juxtaparanode, and the internode which is the part of the axon which is ensheathed
by a segment of myelin. Demyelination is segmental in the peripheral nervous
system and focal in the central nervous system. Myelin is necessary for nerve
conduction velocity. Dys- and demyelination can involve specific constituents of
the CNS and the PNS both for genetic (leukodystrophies) or acquired diseases.
Numerous components are different and differently involved in CNS and PNS
myelin, both among proteins and lipids (sphingolipids). Outside of the abnormali-
ties of specific myelin components leading to genetic diseases, experimental models
of demyelination (experimental autoimmune encephalomyelitis, cuprizone intoxica-
tion, lysolecithin-induced demyelination, and ethidium bromide treatment are also
described). During myelin repair, a thinner myelin sheath is produced with shorter
internodes and efficient nerve conduction is produced. Dysfunction of astrocytes
may be involved in some genetic diseases of myelin. There are many growth factors
and transcription factors involved in the process of myelination and demyelination
among which eukaryotic initiation factor 2B (elf2B) leading to vanishing white
matter disease (CACH). The role of hormones and sexual dimorphism of oligoden-
drocytes and myelin anre also described. New areas of research are being developed
showing the involvement of myelin deficiency in psychiatric diseases and cognition.
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1 Introduction

Different myelin disorders affect several million people in the world, whereby
myelin is the primary target of damage on the basis of neuroradiological, neu-
ropathological, neurochemical, and genetic studies. There are primary genetic
diseases in which the targets are specific components of myelin or myelin control.
Interestingly, even in the latter which are leukodystrophies in CNS or periph-
eral neuropathies in PNS, there are wide variations according to each individual,
and in most cases there are no clear relations between genotype and phenotype.
This indicates that the factors involved may be multiple. Myelin disorders also
include acquired diseases such as multiple sclerosis (MS) in the central nervous
system (CNS), and Guillain–Barré syndrome (already recognized as having multi-
ple causes) in the peripheral nervous system (PNS), although genetic susceptibility
may be involved.

The myelin sheath is one of the most abundant membrane structures in the ver-
tebrate nervous system. It is produced by two types of glial cells, oligodendrocytes
in the CNS and Schwann cells in the PNS. The myelin sheath is formed by the
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spiral wrapping of glial plasma membrane extensions around the axon, followed
by the extrusion of cytoplasm and the compaction of the stacked myelin bilayers
(Simons and Trajkovic, 2006). The myelination process is dependent on neuronal
activity (Demerens et al., 1996; Lubetzki and Stankoff, 2000) and has recently
been found to be relayed in the CNS by the nonmyelinating cells, the astrocytes
(Ishibashi et al., 2006; Spiegel and Peles, 2006). Myelin structure and compo-
sition differ somehow in both CNS and PNS (Baumann and Pham-Dinh, 2001),
but the function of myelin is the same: to allow rapid nerve conduction through
nerve fibers, especially those integrating the motor and sensory functions in ver-
tebrates (Waxman and Bangalore, 2003). Moreover, in mammals, and especially
in higher primates in which myelination is a long-lasting process (Yakovlev and
Lecours, 1966), particularly in association areas, it is now clear that myelin is
involved in cognitive functions such as language (Aslin and Schlaggar, 2006; Pujol
et al., 2006) and behavior (Beckman, 2004; Seldon, 2007); recently it has been
shown that alteration of CNS myelin may be involved in some psychiatric diseases
(Stewart and Davis, 2004; Kubicki et al., 2005; Regenold et al., 2007) and dementia
(Filley, 1998).

The symptoms characteristic of myelin disorders may be caused by abnormal
formation of myelin (i.e., dysmyelination) or damage to myelin (i.e., demyelina-
tion; Baumann and Pham-Dinh, 2001). In fact, it may be sometimes difficult to
separate the two aspects, as some of those diseases, even the genetic ones linked
to alterations of myelin constituents, may appear only at an adult age. Thus it is
necessary to consider both aspects. Furthermore, conduction abnormalities are not
due only to changes in the electrical properties related to myelin loss, but also to
modifications in electrogenic properties related to alterations of the molecular orga-
nization within the axonal membrane. It is not always easy to understand what
phenomenon is at the origin of the disease. Nevertheless, we focus here on dys-
and demyelinating diseases in which myelin modifications appear to be the primary
events. This includes diseases involving the cells that build and preserve myelin
such as oligodendrocytes in the CNS and Schwann cells in the PNS, and alter-
ations of neuron–glia interactions (involving astrocytes in the CNS and possibly
microglia).

In this review, we do not speak about secondary demyelinations in which the
cause is related to abnormalities of cerebral vasculature such as vascular demen-
tia, stroke, CADASIL (cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy), or Fabry’s disease, or abnormalities of mito-
chondrial functions such as MELAS (mitochondrial encephalomyopathy, lactic
acidosis, and stroke-like episodes). Also, clinically significant white matter changes
can be seen on MRI (magnetic resonance imaging) in some genetic and inflam-
matory diseases in which the most prominent neuropathological abnormalities
are in the grey matter. For instance, tumors with the potential to infiltrate the
white matter may also cause dramatic changes in white matter that are evident
in MRI.

We do not cite here many references that have been mentioned extensively in a
review on the biology of myelination in the central nervous system by Baumann and
Pham-Dinh (2001) especially because this review is freely available on the Internet.
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Extensive reviews on different aspects of myelin biology and disorders are available
in the book by R.A. Lazzarini (Lazzarini, 2004).

Before determining the chemical factors involved in myelin disorders, it is useful
to first recall the morphological particularities of myelin and the Ranvier node, in
CNS and PNS, as these are the major targets of demyelination.

2 Morphological Aspects

2.1 Myelin Structure in the Central and Peripheral
Nervous System

Myelin is a spiral structure made up of extensions of the plasma membrane from the
myelinating glial cells, namely the oligodendrocytes in the CNS and the Schwann
cells in the PNS. These cells send out sail-like extensions of their cytoplasmic mem-
brane, each of which forms a segment of sheathing around an axon, which then
constitutes the myelin sheath.

The structure of myelinated axons is similar in both the CNS and PNS. There
are four distinct regions: the node of Ranvier, the paranode, the juxtaparanode, and
the internode. The internode is the part of the axon that is ensheathed by a seg-
ment of myelin; it ends at both sides in the juxtaparanode; then paranodal loops
border the node of Ranvier, a portion of the axon that is exposed to the extracellu-
lar milieu. Several structural features characterize myelin in electron microscopy: a
periodic structure, with alternating concentric electron-dense and light layers. The
major dense line (dark layer) forms as the cytoplasmic surfaces of the expanding
myelinating processes of the oligodendrocyte or the Schwann cell are brought into
close apposition; the fused two outer leaflets (extracellular apposition) form the
intraperiodic lines or minor dense lines. The periodicity of compact CNS and PNS
myelin differs only slightly, however, CNS and PNS myelin can be easily distin-
guished by the presence of a basal lamina around PNS but not CNS myelin. Also, the
endoneural or extracellular space of peripheral nerves is particularly abundant. PNS
and CNS myelin internodes are separated from the axon by a 12–14-nm periaxonal
space.

The regularly spaced unmyelinated gaps that constitute the node of Ranvier are
critical to the proper function of CNS and PNS myelin. Both the structure and the
molecular organization of the nodal region are dependent on the formation of the
appropriate axo–glial interactions. These interactions establish the spacing of adja-
cent myelin segments (internodes) and ultimately determine the position and length
of the nodal gaps. Compact myelin constitutes the internodes whereas juxtaparanode
and paranodal loops are mostly formed by noncompact myelin. The juxtaparanode
is just under the compact myelin sheath beyond the innermost paranodal junction
and may therefore be considered as a specialized portion of the internode (Peles and
Salzer, 2000).
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2.2 Node of Ranvier

The nodal axolemma is a functional part of myelin formation as it contains voltage-
gated Na+ channels and thereby is directly responsible for saltatory conduction.
This architecture is accompanied by a selective disposition of different types of ion
exchangers and channels that allow the saltatory conduction of nervous influx and
are responsible for its high velocity, without increasing axonal diameter. A high
density of voltage-gated Na+ channels is found at the node of Ranvier, whereas K+
channels are found at the juxtaparanodal loops.

The node of Ranvier, paranodal junctions and the adjacent juxtaparanodal regions
each contain distinct protein complexes. Each of these membrane domains contains
a specific set of cell adhesion molecules that are stabilized and retained through
interactions with cytoskeletal and scaffolding proteins. These in turn recruit and
stabilize the appropriate channels (Coman et al., 2005; Simons and Trajkovic, 2006).

Although PNS and CNS nodes can appear similar by transmission electronic
microscopy (TEM), each is surrounded by distinctly different immediate environ-
ments. The nodal axolemma is surrounded by Schwann cell microvilli in the PNS
and by glial cell processes in the CNS. The microvilli extending from the outer
border of the adjacent myelin internodes are best visualized in cross-sections. The
Schwann cell basal lamina is continuous across the node but does not surround indi-
vidual microvilli. The glial cell processes surrounding CNS nodes originate from
a recently described cell population: the NG2 cells (Butt et al., 2002). These CNS
glial processes do not, however, closely adhere to all regions of the nodal axolemma.

2.3 Paranode

The cytoplasmic channels or paranodal loops at the lateral end of the internode are a
major site of myelin–axon adhesion. The membrane of the inner or adaxonal surface
of the myelin sheath is in direct contact with the axons. Their cytoplasmic channels
may transmit axonal signals that regulate myelin formation and help determine the
length and thickness of the myelin internode. These channels contain microtubules
and other cytoskeletal components for transport and stability and mitochondria for
energy. Also, in some areas, they contain smooth endoplasmic reticulum and free
polysomes for the synthesis of local membrane components. In addition, membranes
of noncompact myelin serve special functions that are reflected by unique molecular
composition.

2.4 Myelination

As mentioned previously, myelination is carried out by highly specialized glial cells,
oligodendrocytes in the CNS and Schwann cells in the PNS. These cells differenti-
ate from precursor cells of different origin during development: the neural crest for
Schwann cells, and neural tube for oligodendrocytes. Myelin characteristics differ
morphologically in the CNS and in the PNS, and differ also inside the CNS. Thus
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regulation of myelination and most probably demyelination takes place according to
different criteria. Oligodendrocytes differ from Schwann cells in that they have the
ability to form multiple myelin internodes and do so by each extending multiple pro-
cesses to form an internode on several partner axons at a distance from the cell body
(Baumann and Pham-Dinh, 2001). In the PNS, a single Schwann cell synthesizes
only one internode. Myelin sheath thickness (Graham and Lantos, 1997), internodal
length, and width of nodes show a constant relationship to axonal diameter in nor-
mal tissue. In the CNS, nodal length is related to the diameter of the axon and can
vary from less than 1 μm in the small fibers of the optic nerve to more than 5 μm in
the large fibers of the spinal cord. In the CNS the majority of axons over 0.6 μm in
diameter are surrounded by a myelin sheath. In the PNS myelin internodes are 0.5
μm long. CNS internodes surrounding small diameter axons are shorter and thinner
than those surrounding large diameter axons. The number of internodes synthesized
by one oligodendrocyte depends on the location in the CNS, for example, up to 50
in the optic nerve where axons are of small diameter, but much less in the spinal
cord comprising large-diameter axons. In both CNS and PNS, an external layer of
noncompact myelin still containing cytoplasm lines the exterior of the internodes. In
addition to this structure, internodes of PNS myelin comprise specific channels, the
Schmidt–Lanterman incisures that connect outer and inner regions of the internode.
This structure is not found in CNS internode myelin.

In the CNS, there is also a radial component formed by points of focal adhesion
between sheaths which helps maintain CNS myelin integrity.

Interestingly, different areas of the CNS are myelinated at different times
(Yakovlev and Lecours, 1966). In the spinal cord, there is a caudo–rostral progres-
sion but even within a tract system, all the axons are not myelinated simultaneously.

The process of myelination represents one of the clearest examples of cell–cell
cooperation. Neither axons nor myelin-forming cells can functionally differentiate
to completion without each other (Trapp et al., 2004), although oligodendrocytes
produce significant amounts of myelin-like membrane in neuron-free culture.

The Schwann cells that myelinate PNS behave differently. Once they reach their
final destination, each Schwann cell surrounds several small-diameter axons in a
polyaxonal pocket. As axons mature, the Schwann cell segregates a single axon
from the polyaxonal pocket. Thus Schwann cells in peripheral nerves have two
major phenotypes: those that ensheath multiple axons (unmyelinated fibers) and
those that myelinate single axons. The production of a basal lamina is a prerequisite
for myelination.

Our knowledge of the molecular composition of myelin internodes is substan-
tial, however, we know little about the molecular mechanism responsible for spiral
wrapping of myelin membranes or for axon–myelin forming cell communication.

2.5 Demyelination

One of the particulars of demyelination in the CNS and the PNS is the fact that they
are focal for the CNS and segmental for the PNS.
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2.5.1 Primary Demyelination and Hypomyelination in the CNS.
Prospects for Remyelination in MS and leukodystrophies

One must distinguish active and chronic demyelination. In active primary demyeli-
nation (Graham and Lantos, 1997), the pathology is often focal and the removal of
myelin sheaths is accompanied by a florid infiltration of macrophages that quickly
accumulate myelin debris and become transformed in fat-filled macrophages; there
is also a marked astrocytic hypertrophy and hyperplasia. Areas of chronic demyeli-
nation appear as areas of astrocytosis devoid of myelin in which demyelinated
axons can be shown to be in continuity with normally myelinated axons in the
surrounding white matter. The identification of remyelination, partial demyelina-
tion, and hypomyelination can prove difficult. All these changes appear as axons
enveloped by myelin sheaths too thin for the axons they surround. Too thin myelin
sheaths and/or too short internodes indicate hypomyelination if present throughout
the white matter and remyelination if found in otherwise normal white matter in
the adult. In partial demyelination, the dimensions of myelin sheaths are irregu-
larly reduced; internodes of normal length may be too thin for the diameter of the
axon they enclose, or short, thinly myelinated axons are interposed between normal
size internodes. In fact this formulation is too schematic, as some genetic demyeli-
nating diseases which start at adolescence and/or adulthood show normal areas of
myelination, and focal and diffuse demyelination, in relation to areas that are myeli-
nated at later stages. In most instances, selective loss of whole internodes of myelin
results from the death of the oligodendrocytes. The paranodal junctions attaching
the myelin sheath to the axonal surface may represent privileged targets at the onset
of demyelination (Coman et al., 2005).

Leukodystrophies are specific diseases affecting the white matter of the CNS
(brain, optic nerve, and spinal cord); they are genetic diseases affecting differ-
ent components of the myelinating glial cells, the oligodendrocytes, or of myelin
itself. Structure proteins, growth factors, or transcription factors may be involved.
Recently, the nonmyelinating glial cells of the CNS, the astrocytes, have been shown
to be the direct target of a myelin disease. Numerous animal models have been engi-
neered to mimic and study human diseases; they include overexpressing transgenic
mice or rats, knock-out mice in which a gene has been invalidated, and knock-in ani-
mals bearing a mutation pathogenic in a human gene. All these models have been
invaluable tools to study genetic diseases of myelin.

Multiple sclerosis (MS) is probably not a monogenic disease, and may be caused
by a deregulation of the immune system, with more or less specificity for several
myelin constituents, proteins or lipids. In general, multiple sclerosis begins in early
adulthood and has two phases. There is a relapsing-remitting phase which often
lasts 5–10 years; 30% of individuals enter a secondary chronic progressive state.
Occasionally, clinical disability begins with this progressive phase in which case
the disease is called “primary progressive MS” (Steinman, 2001). Evidence indi-
cates that the earlier phase of the disease, characterized by distinct attacks followed
by remission may be mediated by an autoimmune inflammatory reaction. The sub-
sequent chronic phase of the disease is caused by degeneration of both the myelin
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sheath and the underlying axon. Axon loss in the spinal cord and spinal cord atro-
phy correlate most strongly with the inability to walk and with paralysis. With the
discovery of early and widespread loss of axons in the disease, new emphasis has
been put on the role of axon–oligodendrocyte interactions in MS (Williams et al.,
2007a). Myelin repair and neuroprotection represent major goals in strategies for
MS and represent very active fields of research therapy (Lubetzki et al., 2005). Glial
scars composed of astrocytes may prevent remyelinating cells from gaining access
to demyelinated axons. However astrocytes also produce a wide range of signal-
ing molecules that support recruitment, and so it is not clear whether astrocytes are
friends or foes (Williams et al., 2007a). The signaling environment of the plaque is
crucial for the success of remyelination, and it appears that inflammation may play
a beneficial role (Bradl and Hohfeld, 2003).

2.5.2 Primary Demyelination and Hypomyelination in the PNS:
Charcot-Marie Tooth Diseases (CMT)

Primary segmental demyelination is a disturbance of Schwann cell function or of
myelin itself. The initial changes are observed at the nodes of Ranvier. There is
myelin retraction and widening of the node. There is paranodal demyelination or
the process extends to the whole of the internode leaving a denuded axon. The
nerve is invaded by macrophages that engulf the myelin debris. There can be a pri-
mary demyelination related to abnormality of Schwann cell function. Demyelination
may also be related to an axonal disease. Repeated demyelination and remyelina-
tion is encountered in a wide range of disorders. An excess of Schwann cells after
demyelination creates an onion bulb formation in chronic neuropathies. Possibly
the presence of unmyelinated axons is required for supernumerary Schwann cells to
persist (Graham and Lantos, 1997).

CMT diseases are the most frequent hereditary sensory-motor neuropathies.
They are distinguished from other types of genetic neuropathies, either purely
motor, mainly distal and dysautonomous neuropathies which mainly alter sen-
sory and sympathetic fibers of the peripheral nerves. We only deal here with
CMT diseases and among the many genetic causes, those that give rise to primary
demyelinating diseases of the peripheral nervous system (PNS).

The accepted classification of CMT relies on the type of genetic transmission
as well as on the electroneuromyographic (ENMG) criteria. Measurement of nerve
conduction velocity allows a distinction between demyelinating and axonal forms,
because conduction velocity is decreased when there is demyelination. The clas-
sification may be discussed in relation to the degree of nerve conduction velocity
reduction. We adopt the classification of Dubourg (2004). There are truly demyeli-
nating forms with a nerve conduction velocity for the median nerve of 30 m/s,
axonal forms with a nerve conduction velocity for the median nerve above 40 m/s
and intermediary forms. The molecular analysis confirms the data of the EMG with
a very good genotype/phenotype correlation but the penetrance can be variable in
the same families. The autosomal dominant form is the most frequent, classically
called CMT1, with several subtypes related to the mutations of different proteins.
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We do not discuss the axonal forms of CMT, although they may involve secondary
demyelination. Axonal loss is also observed in the demyelinating type 1 CMT
(Bjartmar et al., 1999). There are some rare autosomal recessive forms called CMT4
which are also demyelinating.

Acute autoimmune demyelinating polyneuropathies such as Guillain–Barré syn-
drome and chronic polyneuropathies may involve some glycolipid antigens, as
described later.

2.5.3 Ion Channels and Demyelination

Voltage-gated ion channels of the Nav 1.6 type are normally localized at the Ranvier
node.

In experimental models of demyelination as well as in MS lesions, a diffuse
distribution of Nav channels along the naked demyelinated axon has been reported.
In addition, there is a reversion of the Nav channel from a mature Nav 1.6 expression
to an immature Nav 1.2 isoform and this may limit axonal injury (Craner et al.,
2004a, b). However, in addition to this diffuse distribution of Nav channels, loose
clusters of Nav channels persist on some denuded axons. In demyelinated plaques,
nodal, paranodal, and juxtanodal axonal molecules are diffusely distributed along
the naked axons. Potassium channels Kv1.1 and Kv1.2 are normally confined to the
juxtaparanodes. Demyelination can give rise to dispersion of these channels.

During myelin repair, a thinner myelin sheath is produced with shorter intern-
odes, but efficient nerve conduction is produced (Smith et al., 1979). The aggre-
gation of nodal, paranodal, and juxtaparanodal axonal molecules recapitulates
the pattern observed during development with the initial step being Nav channel
clustering (Coman et al., 2005; Ogawa et al., 2006).

2.5.4 Astrocytes and Demyelination

Astrocytes are situated in key positions among microvessels, neurons, and oligo-
dendrocytes where they participate in a wide range of functions during brain
construction and maintenance. A pattern of early and active astrocyte involve-
ment in several neurodegenerative disorders is emerging. The detrimental role of
activated astrocytes during neuroinflammation was recently demonstrated in vivo
(Vesce et al., 2007). Thus, astrocytes are now considered as important regulators
of many neurophysiological processes and neuropathological conditions (Baumann
and Pham-Dinh, 2002; Giaume et al., 2007; Oberheim et al., 2006; Tian et al.,
2005, 2007). Moreover, they have also been recognized as new players in CNS
myelination via the secretion of molecules signaling oligodendrocytes to myelinate
(Ishibashi et al., 2006). As a consequence, myelin could be the target of numerous
types of afflictions, from inflammatory/autoimmune (multiple sclerosis) to genetic
(leukodystrophies) diseases, which can involve astrocyte dysfunction.

In further support of the important role of astrocytes in neurodegenerative dis-
orders, the causative genes implicated in three leucodystrophies were recently
characterized at the genetic level. Indeed the genes responsible for Alexander dis-
ease, CACH/VWM syndrome, and “megalencephalic leukoencephalopathy with
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subcortical cysts” (MLC1), have been identified (GFAP gene, the 5 eIF2B (eukary-
otic initiation factor 2B) genes and MLC1, respectively). These three diseases share
some similarities: cavitated white matter lesions; sensitivity to different forms of
stress, such as febrile episodes or head trauma, triggering episodes of rapid neu-
rological deterioration; and astrocytes as primary target cells. GFAP expression is
specific to nonmyelinating glial lineages, as is the MLC gene (Teijido et al., 2007),
but EIF2B is ubiquitously expressed. However, the eIF2B mutations are specifically
deleterious in astrocytes (Dietrich et al., 2005).

2.5.5 Experimental Models of Demyelination in the CNS

Experimental autoimmune encephalomyelitis (EAE) is the most important animal
model of MS. EAE is induced by injection (active EAE) in presence of immune
stimulating adjuvants, of CNS tissue, whole spinal cord, purified myelin, or myelin
proteins or peptides in susceptible animals (reviewed in Bradl and Linington, 1996;
Lassmann, 2004). Specific myelin proteins have been used as immunogens (see
below). The onset, severity, and nature of the disease (demyelinating or predomi-
nantly inflammatory) are extremely variable and depend on the genetic background
of the animal (species and strain differences) and on environmental factors such
as the dose and nature of the sensitizing antigen and adjuvant. The initial model
was generated to understand acute disseminated encephalomyelitis. Later versions
of more chronic EAE have been developed with pathology including demyelina-
tion, axonal damage, and clinical events such as relapsing and remitting episodes of
paralysis, all of which are features common to MS (Steinman and Zamvil, 2006).
EAE has led to therapies approved for use in MS.

Cuprizone intoxication. The presence of the copper chelator cuprizone (bis-
cyclohexanone oxalydihydrazone) in the diet of young adult mice produces a mas-
sive demyelination of certain brain regions (Suzuki and Kikkawa, 1969; Blakemore,
1973a; Ludwin, 1978, 1994). Mice exhibit neurological symptoms in the late stages
of exposure to cuprizone. Remyelination occurs if the metabolic insult is removed
before the end of six weeks treatment (Blakemore, 1973b). After a period of recov-
ery of a few weeks on a normal diet, animals appear normal neurologically and
myelin is regained (Matsushima and Morell, 2001). The corpus callosum is one
area that is preferentially affected by exposure to cuprizone as well as the cerebellar
peduncles (Blakemore, 1973b). Although there is rapid regeneration of the oligo-
dendrocyte population following an acute lesion, most of these newly regenerated
cells undergo apoptosis if mice remain on a cuprizone diet. Interestingly, even if the
mice are returned to a normal diet following 12 weeks of exposure to cuprizone,
remyelination and oligodendrocyte regeneration do not occur (Mason et al., 2004).
The mechanisms of the selective effect of cuprizone on oligodendrocytes in certain
areas of the CNS need to be elucidated.

Lysolecithin-induced demyelination. Injection of lysolecithin into the spinal cord
causes a dramatic decrease in the levels of some myelin protein transcripts (MBP
and PLP/DM20). Myelin protein gene expression associated with myelinogenesis
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during remyelination follows a similar pattern to that of myelinogenesis during
development (Woodruff and Franklin, 1999). One week after injection, very little
extracellular myelin debris is detected and remyelination has begun. Remyelination
progresses rapidly so that almost all axons are engulfed by myelin sheaths by the
end of the third week. Remyelination is accompanied by a prominent astrocytosis.

Ethidium bromide treatment. Intracisternal injection of ethidium bromide induces
spongiosis with prominent degenerative changes in oligodendroglia in the sub-
pial regions of the rat CNS. Chronologic investigation of the lesions has revealed
that status spongiosus results in myelin degeneration, and by the sixth day postin-
jection many axons are demyelinated. Vesicular transformation of myelin is the
common degenerative change. In the demyelinated areas, oligodendroglial cells
disappear completely. By the twelfth day postinjection, remyelination is apparent
and numerous active oligodendroglia appear in association with thinly myelinated
axons. Locally produced IGF could partly be involved in some of the mechanisms
underlying remyelination in the mouse spinal cord (Fushimi and Shirabe, 2004).

3 Dys- and Demyelination in Relation to Specific Constituents

Myelin disorders can have a genetic, toxic, or infectious origin and some such as
MS even an immunological component. For most of these diseases, there are ani-
mal models. Whatever the causes, the targets are structural or metabolic elements
necessary for intact myelin. Diseases involving myelin are often related to specific
myelin constituents whether common to CNS and PNS, or different. One can believe
that these specialized compounds play significant roles in the pathology of myelin.
Thus there are diseases or experimental models that involve only CNS or PNS, and
others that involve both systems.

To understand the role of the different constituents of oligodendrocytes, Schwann
cells, and myelin, and the cellular interactions, it is necessary to consider each
constituent and the abnormalities that occur in experimental models and in human
pathology. Each specific compound of myelin, and many factors involved in myeli-
nation, can give rise to genetic diseases or autoimmune diseases. There are many
animal models and human diseases that help in understanding the demyelination
process.

It is clear that specific components are particular targets for diseases, whether
these are genetic or acquired. These components, although they may be present in
other cell types or tissues, must be viewed as modular elements that, with other
elements, generate complex and unique surface patterns in the nervous system.

3.1 CNS Myelin Proteins

Major myelin proteolipid proteins, PLP and DM-20. In 1951 Folch and Lees dis-
covered that a substantial amount of proteins from brain white matter could be
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extracted by organic solvent techniques. They were given the generic name of pro-
teolipids (PLP), as these proteins were lipid–protein complexes. The responsible
gene is PLP1. The PLP1 gene encodes two major products, PLP itself, and DM-20
encoded by an alternatively spliced transcript that lacks 35 residues from the cyto-
plasmic domain of PLP. PLP represents about half the protein mass of CNS myelin
(reviewed in Garbern, 2005). PLP is also present in the PNS; however, it constitutes
only a small fraction of myelin proteins in the periphery (Pham-Dinh et al., 1993).
PLP is a highly hydrophobic transmembrane protein. In addition to a high content
of hydrophobic amino acids, PLP is anchored to the lipid bilayer by fatty acylation
of several cysteine residues. PLP and DM-20 are both acylated by covalent link-
age of mainly palmitic, oleic, and stearic acids to cysteine residues in regions of
the PLP/DM-20 proteins localized on the cytoplasmic side of the myelin membrane
(Weimbs and Stoffel, 1992). DM-20 is present at about 10% of the level of PLP in
the CNS whereas in the PNS they are present in approximately equivalent amounts.

It is worth noting that there is a 100% sequence identity between rodent and
human PLP proteins (Macklin et al., 1987), which is a rather striking conservation.
The PLP1 gene is located on the X chromosome (Xq22 in humans) (Mattei et al.,
1986).

There are a great number of spontaneous myelin PLP1 gene mutants (Duncan,
2005). Myelin mutants are often named according to their phenotypes. Among the
mutations are the jimpy, jimpymsd and jimpy 4 J mice. There is also a myelin-
deficient rat (md rat). A long-lived md rat has been described (Duncan et al., 1995)
that has recently allowed new therapeutic approaches (Espinosa-Jeffrey et al., 2006).
A canine shaking pup has been also described. The rumpshaker mouse and the
paralytic tremor rabbit (pt) have a normal life span.

Null mutations are informative for inferring the normal biological functions of
a gene product. Despite its abundance in normal CNS myelin, complete lack of
PLP and DM20 results in a surprisingly mild phenotype in mice and humans;
PLP appears not to be essential for oligodendrocyte differentiation and myelina-
tion. The most striking pathology in both mice and humans with PLP null mutations
is a relatively late and progressive degeneration of axons (Garbern et al., 2002).
Interestingly, although PLP/DM20 represents less than 0.01% of peripheral nerve
myelin, complete lack of these proteins causes a demyelinating peripheral neu-
ropathy (Garbern et al., 1997). In the PLP-null CNS, axons large enough to be
myelinated often lack myelin entirely or are surrounded by abnormally thin sheaths.
Short stretches of cytoplasm persist in many myelin lamellae. In thinly myelinated
fibers, there are interlamellar spaces across the full width of the sheaths. In thick
myelin sheaths, the spaces appear irregular but diffuse. These spaces constitute a
spiral pathway through which ions and other extracellular agents may penetrate
gradually, possibly contributing to the axonal damage known to occur in this mutant,
especially in thinly myelinated fibers, where the spiral path length is shortest. The
“radial component” of myelin is distorted in the mutant (“diagonal component”),
extending across the sheaths at 45◦ instead of 90◦. These observations indicate a
direct or indirect role for PLP in maintaining myelin compaction along the external
surfaces of the lamellae and to a limited extent along the cytoplasmic surface as well,
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and also in maintaining the normal alignment of the radial component (Rosenbluth
et al., 2006). Absence of PLP may give rise to abnormal axonal transport (Edgar
et al., 2004).

In some mutants and transgenic mice overexpressing PLP1, there is an accu-
mulation of PLP in the endoplasmic reticulum of the oligodendrocyte, which may
eventually trigger apoptosis. The latter is related to an unfolded protein response,
UPR (Gow and Sharma, 2003). In these forms, increasing the level of PLP may
exacerbate pathology (Gow et al., 1998).

Increased PLP1 gene dosage affects expression of other myelin proteins, partic-
ularly MBP which is lower in homozygotes in both myelin and early myelinating
oligodendrocytes (Karim et al., 2007). As shown in the jimpy mouse, there is a
drastic decrease of the 14 kDa isoform of MBP (Campagnoni et al., 1984).

Pelizaeus–Merzbacher disease (PMD) in an X-linked leukodystrophy primarily
associated with the duplication, deletion, or mutation of the PLP1 gene. The princi-
pal effect of many mutations in the coding region of PLP1 is to disrupt the highly
ordered structure of the resulting protein isoforms DM20 and PLP. This leads to
their accumulation in the endoplasmic reticulum of oligodendrocytes and ultimately
to diminished biosynthetic capacity or survival of these cells. The UPR protein
response modulates disease severity in Pelizaeus–Merzbacher disease (Southwood
et al., 2002). PMD patients in which PLP1 is deleted or functionally null may well
benefit from gene replacement (Gow et al., 1998). A spastic paraplegia type 2 (SPG-
2) phenotype is also caused by a PLP1 mutation. This milder form resembles that in
the rumpshaker mutant mouse.

As noted above, experimental autoimmune encephalomyelitis (EAE) has been
studied for decades as an experimental model for MS (Steinman and Zamvil, 2006).
A PLP peptide (139–151) induces a chronic relapsing disease; combinations of
antigens are also used (Kuerten et al., 2007). The strain of mouse influences the
expression of EAE (Kuerten et al., 2007). As gene knock-out and knock-in mice are
also becoming increasingly indispensable for mechanism-oriented studies, animal
models in the mouse have been increasingly useful. EAE has also been provoked
using a proteolipid suppressor of cytokine signaling 1 (PLP/SOCS1) transgenic
mouse line that displays suppressed oligodendrocyte responsiveness to interferon-
gamma; mice under these conditions develop an accelerated onset and increased
oligodendrocyte apoptosis (Balabanov et al., 2007).

Myelin basic proteins (MBP). Basic proteins are abundant both in CNS and PNS
myelin, where they are associated with negatively charged lipids. They are assumed
to be involved in myelin compaction on the cytoplasmic side of the membrane
bilayer. A spontaneous MBP mutant, the shiverer mouse, is devoid of the major
dense line of myelin in the CNS (Dupouey et al., 1979). Another such mutant, the
Long Evans Shaker (LES) rat, shows major changes in spinal cord white matter, with
dispersed labeling of Kv1.1 and Kv1.2 K+ channel subunits as well as of Caspr, a
molecule normally confined to paranodes along LES rat spinal axons (Eftekharpour
et al., 2005).

MBP constitutes about 30% of the protein content of myelin. In fact, the MBPs
constitute a family of proteins comprising many isoforms (reviewed in Campagnoni
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and Skoff, 2001). The molecular weight of the major forms are 21.5, 20.2, 18.5,
and 17.2 kDa in man, and 21.5, 18.5, 17, and 14 kDa in mouse. In the adult,
two major isoforms constitute about 95% of the MBPs; they are the 18.5 and
17.2 kDa isoforms in humans, and the 18.5 and 14 kDa in mouse (Staugaitis
et al., 1990). The MBP isoforms are coded by alternative transcripts generated
from the MBP gene which consists of 7 exons (Roach et al., 1983). Subsequent
studies have found that the classical MBP gene is contained within another and
huge transcription unit called the Golli-MBP gene (golli for “gene expressed in
the oligodendrocyte lineage”). It is 195 kb in mice and 179 kb in humans, and
produces a number of alternative transcripts from three possible transcription start
sites, most of them containing the MBP sequences. The Golli-MBP gene contains
three additional specific exons located 5′ to the seven constituting the classical MBP
gene. The Golli-MBP gene is located on chromosome 18 in mouse and human
(18q23).

The MBP Golli transcripts and proteins are also found in immune system cells
(reviewed in Feng, 2007): they have recently been found to directly regulate T-
cell activation, thus modulating EAE induction. MBP mRNAs are transported to
glial processes to be translated on free ribosomes. Posttranslational modifications
can occur on the MBPs, including phosphorylation, methylation, citrullination,
and N-terminal acetylation. Moreover, the presence of exon 6-containing MBPs
in the nucleus suggests a regulatory role in myelination for these MBPs isoforms
(reviewed in Baumann and Pham-Dinh, 2001; Campagnoni and Macklin, 1988).
In the PNS, MBPs represent 5–20% of the total PNS myelin protein content and
are located on the intracellular side of the myelin. Contrary to what occurs in the
CNS, the absence of MBP isoforms does not alter the major dense line of myelin in
the PNS.

The exon-6 containing MBP isoforms of 17 and 21.5 kDa in the mouse, and
20.2 and 21.5 kDa in humans, are mainly expressed during myelinogenesis. They
are re-expressed in chronic lesions of MS, and their re-expression correlates with
remyelination (Capello et al., 1997). Some isoforms are modified as consequences
of mutations on other myelin proteins, especially PLP (see above).

MBP or MBP peptides are very commonly used to induce EAE. The MBP-
induced disease in some strains of mice is often monophasic with inflammation
and no demyelination. The mice recover completely after a single episode of a
short and acute disease and become resistant to reinduction of EAE. Therefore, a
combination of antigens involving proteins or peptides (Kuerten et al., 2006) or
sphingoglycolipids (Raine et al., 1981) are often used to induce demyelination.

A genetic disease, the 18q-syndrome is a rare leukodystrophy presenting a
genomic deletion that includes the MBP gene. Proton magnetic resonance data
indicate demyelination or increased myelin turnover rather than dysmyelination
(Hausler et al., 2005).

Recent evidence obtained via magnetic resonance imaging and spectroscopy
techniques supports the view that the normal-appearing white matter (NAWM)
in the MS brain is altered. Several biochemical changes in NAWM have been
determined. These include the cationicity of myelin basic protein (MBP) as a



Biology of Demyelinating Diseases 551

result of peptidyl arginine–deiminase (PAD) activity converting arginyl residues
to citrulline. The accompanying loss of positive charges renders myelin suscepti-
ble to vesiculation and MBP more susceptible to proteolytic activity. An increase
of MBP autocatalysis in the MS brain might also contribute to the generation of
immunodominant epitopes (Mastronardi and Moscarello, 2005).

OSP/claudin-11 (Oligodendrocyte-specific protein). OSP/claudin-11, a 22-kDa
protein, is the third most abundant protein in CNS myelin, after PLP/DM20 and
MBP. It accounts for about 7% of the protein content. OSP is related to PMP-22
found in PNS myelin, with which it has 48% amino acid similarity and 21% identity.
OSP was recognized as a previously known tight junction protein, claudin-11. The
gene for OSP is located on chromosome 3 in the mouse and the 3q26.2-26.3 region
of chromosome 3 in humans. Myelin compaction is not significantly disrupted in
the knock-out mouse. This is not the case for a double knock-out OSP/Claudin 11
and PLP1/DM20, indicating that these proteins have essential structural functions
in maintaining myelin compaction, but that there is redundancy in their functions
(Chow et al., 2005). K+ channel Kv3.1 associates with OSP/claudin 11 and regulates
oligodendrocyte development (Tiwari-Woodruff et al., 2006).

MAL (myelin and lymphocyte protein) (formerly rMAL for rat MAL) was
the first cloned member of a new myelin–oligodendrocyte proteolipid protein
family (MAL family) including MVP17 (myelin vesicular protein of 17 kDa)
and Plasmolipin. MAL is a tetraspan raft-associated proteolipid predominantly
expressed by oligodendrocytes and Schwann cells. Genetic ablation of MAL leads
to reverted paranodal loops away from the axon, with a marked reduction of
contactin-associated protein/paranodin, neurofascin 155, and the potassium chan-
nel Kv1.2, whereas nodal clusters of sodium channels remain unaltered. MAL has a
critical role in the maintenance of CNS paranodes, likely by controlling the traffick-
ing and/or sorting of NF155 and other membrane components in oligodendrocytes
(Schaeren-Wiemers et al., 2004). MAL is modified in neurological mutants affect-
ing myelination through a defect in the catabolism of sphingoglycolipids (Saravanan
et al., 2004).

Connexins (Cx) 32 and 47 are part of a family of gap junction proteins, which
form channels, generally between adjacent cells. These specialized channels span
two plasma membranes of adjacent cells and allow the passage of ions, amino
acids, second messenger molecules, and small metabolites. In general, six connex-
ins oligomerize to form a homomeric or heteromeric connexon (hemichannel), and
a functional gap junction pathway between two cells is formed by homotypic or
heterotypic interactions of two connexons. In myelin, Cx32 and 47 may form chan-
nels between adjacent layers of the myelin sheath in regions where myelin is not
compacted.

Cx32 is a ubiquitous protein, also found in CNS myelin. Cx32 has a molecu-
lar weight of 32 kDa and contains four transmembrane domains, two extracellular
loops, and three intracellular domains. It is expressed widely in a number of tissues,
particularly in the liver, and also in PNS and CNS myelin. Cx32 is found in non-
compact regions (paranodes and Schmidt–Lantermann incisures) of the PNS myelin
sheath (Scherer et al., 1995). The human Cx32 gene is located on chromosome
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Xq13.1. Its structure is similar to all connexin genes, that is, a large exon containing
the coding sequence within one uninterrupted block, which is separated by an intron
from a small noncoding exon located on the 5′-flanking region. Three alternative
promoters, that appear to be activated in a cell-type manner, regulate the tissue-
specific expression of Cx32. Its presence in Schwann cells was discovered when
Cx32 mutations were associated with Charcot–Marie–Tooth disease of the CMTX
type (see § PNS). This gap-junction molecule allows the direct passage of ions and
small molecules through the myelin sheath in the paranodal regions. There are subtle
abnormalities of the myelin sheath and of the Ranvier node (Hahn et al., 2001).

In humans, Cx47 is expressed specifically in oligodendrocytes, where it is par-
tially colocalized with Cx32. The gene encoding Cx47 is regulated in parallel
with myelin genes. Mice lacking either Cx47 or Cx32 are viable. However, ani-
mals lacking both connexins die by postnatal week 6 with profound anomalies
in central myelin, characterized by thin or absent myelin sheaths, vacuolation,
enlarged periaxonal collars, oligodendrocyte cell death, and axonal loss. Thus gap-
junction communication is crucial for normal central myelination (Menichella et al.,
2003). Connexin 47 (gap junction protein alpha 12) mutations cause a Pelizaeus–
Merzbacher-like disease (Orthmann-Murphy et al., 2007). Connexin 47 is also
involved in peripheral myelination in humans (Uhlenberg et al., 2004).

Tetraspanin 2 has recently been identified in cells of the oligodendrocyte lin-
eage. Expressed after birth in rodents, tetraspanin may play a role in signaling in
oligodendrocytes at the early stages of their terminal differentiation into myelin-
forming glia; it is also hypothesized that it may function in stabilizing the mature
sheath.

Myelin-associated/oligodendrocyte basic protein (MOBP) is a small highly basic
protein. Alternative splicing generates three isoforms of 8.2, 9.7, and 11.7 kDa.
Like MBP, MOBPs are located in the major dense line of myelin where they could
play a role similar to that played by MBP in myelin compaction. MOBP transcripts
are less abundant than PLP1 but more than those for the CNP (cyclic nucleotide
phosphodiesterase). The MOBP mRNA is initially located in the cell bodies of the
oligodendrocytes, and moves distally into the processes when myelination occurs,
as do MBP mRNAs. The gene for MOBP has been mapped to chromosome 9 in the
mouse, in a region syntenic with the human chromosome 3 (3p22).

Myelin-associated glycoprotein (MAG) has an apparent molecular weight of
100 kDa, of which 30% is carbohydrate; MAG bears the L2/HNK1 epitope, a gly-
cosylated epitope also present on glycolipids of the PNS. It is a minor constituent,
representing 1% of the total protein content in CNS myelin and 0.1% in PNS myelin.
It has been extensively reviewed recently (Quarles, 2007). Two MAG isoforms have
been identified, large MAG (L-MAG) and small MAG (S-MAG), corresponding
to polypeptides of 72 and 67 kDa, respectively, in the absence of glycosylation.
MAG proteins have both a membrane-spanning domain and an extracellular region
containing 5 immunoglobulin domains. The MAG gene includes 13 exons (from
which exons 1, 2, and 3 are noncoding); the isoforms differ only in their cytoplasmic
domains, resulting from alternative splicing. Exon 12, present in S-MAG, contains
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an alternative stop codon. MAG is located on chromosome 7 in mice and 19 in
humans (19q13.1). The 72 kDa L-MAG can be phosphorylated and acylated. MAG
is found in the periaxonal space in CNS and PNS; it derives from the Schwann cell
and oligodendroglial membrane. CNS findings suggest that the absence of MAG
causes oligodendrocytes to form myelin less efficiently during development and
to become dystrophic with aging. MAG, together with the proteins Nogo 66 and
Omgp, inhibits axonal regeneration. MAG binds to the Nogo 66 receptor called
NgR; this activates a P75 neurotrophin receptor (p75NTR) and the transduction of
the resulting signal activates the small GTPase Rho leading to inhibition of axonal
growth following injury (Spencer et al., 2003; Filbin, 2003). Although MAG binds
to gangliosides, sialic acid binding is unnecessary for MAG to exert inhibition (Cao
et al., 2007). MAG is also currently well known as an antigen for IgM mono-
clonal antibodies that cause demyelinating peripheral neuropathies (reviewed also
in Quarles, 2007). It comprises the HNK-1 epitope present on the sulfated glycolipid
with glucuronic acid SGPG, that is, sulfated glucuronylparagloboside (see below).
Interestingly the sensory-motor neuropathies with monoclonal IgM that react with
both lipid and proteic antigens are demyelinating, and the neuropathies with IgM
monoclonal antibodies that react with SGPG and not MAG are axonal (Chassande
et al., 1998).

Myelin-oligodendrocyte glycoprotein (MOG) was first identified as the anti-
gen responsible for the demyelination observed in animals injected with whole
CNS homogenate; it was later identified as a minor glycoprotein specific for CNS
myelin. MOG was further characterized by immunological methods using a mouse
monoclonal antibody obtained against glycoproteins of rat cerebellum. MOG is
a minor protein of 25 kDa with some glycosylation resulting in doublets of 26–
28 kDa on SDS page, which can form dimers of 52–54 kDa. MOG is only present
in mammalian species. In humans, MOG expresses the L2/HNK1 epitope. The
amino-terminal, extracellular domain of MOG has characteristics of an Ig-variable
domain and is 46% identical with the amino-terminus of bovine butyrophilin pro-
tein expressed in the mammary gland, and chick histocompatibility BG antigens.
Although MOG contains two highly hydrophobic regions, only one is a truly trans-
membrane domain, thus MOG presents the same topology as other members of
the Ig-superfamily. The human MOG gene is encoded by 11 exons that exhibit a
complex pattern of alternative splicing (Pham-Dinh et al., 2004; Delarasse et al.,
2006). Complex alternative splicing of MOG is unique to human and nonhuman
primates (Delarasse et al., 2006). The MOG gene is located in the distal part of
the major histocompatibility complex (MHC) in the class Ib region on chromosome
6p22-p21.3 in humans and 17 in rodents. MOG is specific to the CNS and localized
on the outer surfaces of myelin sheaths and oligodendrocytes where it is accessi-
ble to components in the external environment, such as complement and antibodies.
MOG is a highly encephalitogenic autoantigen and a target for aggressive autoim-
mune responses in CNS inflammatory demyelinating diseases (Delarasse et al.,
2003). Autoantibody responses against conformational epitopes of MOG have the
power to destroy myelin, as demonstrated in the marmoset model of human MS
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(von Budingen et al., 2004, 2006). Controversy exists regarding the pathogenic or
predictive role of anti-MOG antibodies in patients with MS (Lalive et al., 2006;
Pittock et al., 2007).

2′3′-Cyclic nucleotide-3′-phosphodiesterase (CNP) represents 4% of total CNS
myelin proteins. In vitro, this protein hydrolyzes artificial substrates, 2′3′-cyclic
nucleotides into their 2′ derivatives. However, the biological role of this enzymatic
activity is obscure because 2′3′ nucleotides have not been detected in the brain.
Overexpression of CNP in transgenic mice disturbs myelin formation and creates
aberrant oligodendrocyte membrane expansion. CNP appears on SDS-page as a
doublet of two peptides, with molecular weights of 48 and 46 kDa, referred as CNP2
and CNP1, respectively. The two CNP isoforms are produced by alternative use of
two transcription start sites. The CNP gene is located on chromosome 17 (17q21)
in human and chromosome 11 in mouse. CNP mRNAs are detected in mouse spinal
cord during embryonic stages. CNP is present in the cytoplasm of noncompacted
oligodendroglial ensheathment of axons and in the paranodal loops of myelin intern-
odes. The protein is posttranslationally modified, acylated, and phosphorylated.
CNP (mainly CNP1) is associated by isoprenylation to the cytoplasmic plasma
membrane of the oligodendrocyte. In double knock-out mice, inactivation of both
CNP1 and FGF-2 lead to hyperactivity, starting around two weeks of age. When
hyperactive mice receive dopamine receptor antagonists or catecholamine synthe-
sis inhibitors, their behavior reverts to normal, suggesting that their symptoms are
caused by a dysregulation in the dopaminergic system. The molecular mechanisms
leading to hyperactivity have not yet been elucidated. This mouse model supports
the evidence cited above that oligodendrocytes and myelin may be involved in the
genesis of neuropsychiatric disorders, and also that it is almost impossible to predict
the impact of genetic interactions on the behavior of transgenic animals (Kaga et al.,
2006).

Nogo proteins, formerly named NI-35/250 proteins, are membrane-bound pro-
teins highly enriched in mammalian CNS myelin and oligodendrocytes (reviewed
in Bandtlow and Schwab, 2000; Goldberg and Barres, 2000). Nogo comprises three
isoforms, Nogo-A, -B, and -C. It is predominantly associated with the endoplasmic
reticulum of the oligodendrocyte. Following injury, Nogo would become exposed
to the extracellular environment. MAG, Nogo, and OMgp share the same functional
receptor (Spencer et al., 2003; Filbin, 2003). As mentioned previously, they inhibit
axonal growth following injury. Antibodies against Nogo or Nogo-blocking pep-
tides enhance sprouting of damaged axons after a partial spinal cord section in a
primate, the marmoset, and this is associated with clinical improvement (Fouad
et al., 2004). Nogo receptor-interacting protein (LRR and Ig domain-containing
Nogo receptor-interacting protein, LINGO-1) is a negative regulator of oligoden-
drocyte differentiation and myelination. Antagonism of LINGO-1 or its pathway is
a promising approach for treatment of demyelinating diseases in the CNS (Mi et al.,
2005, 2007).

Enzymes. Many enzyme activities have been found in myelin: neuraminidase,
cholesterol ester hydrolase, lipid synthesizing and catabolizing enzymes, proteases,
protein kinases, and phosphatases. Two of them have been especially characterized.
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1. UDP-Galactose: ceramide galactosyltransferase (CGT) is found mainly in
myelinating glia where it parallels expression of MBP and PLP1. The CGT gene
spans about 70 kb, comprises 5 exons and has been mapped to mouse chromosome
3 bands E3-F1 and to the human chromosome 4 band q26. Rodent and human CGT
sequences are strongly conserved. More details on CGT are in the paragraph related
to myelin lipids, below.

2. Fyn kinase is a nonreceptor-type tyrosine kinase that has been proposed to act
as a signaling molecule downstream of MAG. MAG and Fyn are coexpressed in
oligodendrocytes, and can be coimmunoprecipited by biochemical methods. Fyn-
null mice show an important reduction (about 50%) of CNS myelin, whereas
myelination is quite normal in the MAG-null mice (see above). Double-deficient
mice present a massive hypomyelination, associated with behavioral deficits. These
data indicate the importance of both molecules in the initiation of myelination; how-
ever, they could also mean that MAG and Fyn act in concert or independently in
initiating myelination (Biffiger et al., 2000).

3.2 PNS Myelin Proteins

PNS myelin proteins include two abundant constituents: glycoprotein zero (P0) and
MBPs (already discussed in III.1), and a set of minor ones including PMP22, MAG,
and connexin 32 (already discussed in III.1).

Protein zero (P0) is the most abundant glycoprotein of peripheral myelin; it rep-
resents 50–70% of the total myelin protein content. P0 is specific for the PNS.
It is predominantly localized to compacted regions of myelin. P0 is expressed
constitutively in neural crest and embryonic nerves; its expression is strongly upreg-
ulated in myelinating Schwann cells. P0 has a molecular weight of 28 kDa, and is
composed of an Ig-like extracellular domain by which P0 can form tetramers, a
single highly hydrophobic transmembrane domain and an intracellular cytoplasmic
domain that contains abundant positive-charged amino acids that could stabilize
negative-charged lipid heads. The gene encoding the P0 protein, called MPZ for
myelin protein zero, contains 6 exons and is on chromosome 1 in humans (1q22).
Interestingly, P0 is essential for normal spacing of PNS compact myelin (reviewed
in Trapp et al., 2004). CMT1B is an autosomal dominant demyelinating hereditary
neuropathy involving the MPZ gene, that is, a CMT disease (Dubourg, 2004; Shy,
2004). Other mutations of this gene cause severe neuropathies of infancy (Dejerine–
Sottas disease), and still others lead to disability with a late onset (Shy et al., 2004).
MPZ mutations disrupt the tertiary structure of P0 protein, interfering with P0-
mediated adhesion during myelination and with myelin compaction. In contrast, late
onset neuropathies result from mutations that allow myelination but chronically dis-
rupt Schwann cell–axonal interactions. A genotype/phenotype correlation is clear
even though penetrance can vary within single families.

Peripheral myelin protein 22 (PMP22) has a molecular weight of 22 kDa and
represents 2–5% of the total myelin protein content. Despite its name, PMP22 is
not specific to the PNS inasmuch as it is expressed, albeit at low levels, in other
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tissues such as lung, gut, heart, and some neurons. It contains four transmembrane
domains with two extracellular loops and one short intracellular loop and is pref-
erentially localized in compacted regions of myelin. The human PMP22 gene is
about 40 kb long and is located on chromosome 17p12-p11.2. It contains 6 exons
(4 coding exons and 2 untranslated exons in the 5′ flanking region) and its expres-
sion is regulated by two alternative promoters. Charcot–Marie–Tooth 1A (CMT1A),
the most frequent genetic demyelinating neuropathy, is a clinical expression of an
autosomal dominant mutation in this gene (Dubourg, 2004; Shy, 2004). The most
frequent mutation is a duplication of the PMP-22 gene. There is a spontaneous
mouse model of PMP-22 mutation, the trembler-J mouse, which leads to failure of
myelination and continuous Schwann cell proliferation; this implies trophic support
by Schwann cells (Friedman et al., 1996). Therapies reducing PMP22 overexpres-
sion in rodent models of CMT1A offer potential treatments. Progesterone is known
to increase PMP22 messenger RNA expression in cultured Schwann cells. On this
basis, Sereda and colleagues (Sereda et al., 2003) in Nave’s laboratory, using a
progesterone receptor antagonist, onapristone, have been able to reduce the expres-
sion of PMP22 in a transgenic rat, thus opening ways for symptomatic treatment of
this form of the disease. In another mouse model overexpressing a human PMP 22
gene, ascorbic acid reduces PMP22 levels, improving the phenotype of this CMT1A
model (Passage et al., 2004).

Lipopolysaccharide-induced tumor necrosis factor (LITAF) is encoded on a gene
located on 16p13.1-p12.3 in humans. It is a putative degradation protein also called
SIMPLE (for small integral membrane protein of the lysosome/late endosome).
Although SIMPLE is expressed in many cell types, when mutated it seems to cause
only a demyelinating neuropathy, which suggests that the disease specificity may
come from the impaired degradation of specific Schwann cell proteins (Shy, 2004).
These mutations give rise to a rare form of CMT called CMT1C.

Periaxin represents about 5% of the total PNS myelin protein content; it was
given this name because of its specific localization in the periaxonal membranes of
myelinated Schwann cells (Gillespie et al., 1994). Two periaxin isoforms have been
identified: L-periaxin (147 kDa), localized to the plasma membrane of myelinat-
ing Schwann cells, and S-periaxin (16 kDa). The latter occurs diffusely throughout
Schwann cell cytoplasm as a cytoskeletal component, and also in the nucleus.
The human periaxin gene is located on chromosome 19q13.13-q13.2. Mutations
in the periaxin gene cause a form of demyelinating CMT, CMT4F (Dubourg,
2004; Meyer zu Horste et al., 2006; Shy, 2004). These mutations alter myelin and
also involve onion bulb formation with chronic processes of demyelination and
remyelination.

As noted in the preceding section, Cx32 is a ubiquitous protein that is also found
in CNS myelin. Its presence in Schwann cells was discovered when Cx32 mutations
were associated with Charcot–Marie–Tooth disease of the CMTX type. CMTX is
an X-linked demyelinating neuropathy. The molecule is located in the paranodes.
There are subtle anomalies of the myelin sheath and the Ranvier node (Hahn et al.,
2001). Mutations in Cx32 gap junction protein compromise Schwann cell functions
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and lead to impaired Schwann cell–axon interactions with subsequent pathology in
both myelin and axons.

Cx47 (description in § CNS) is another protein involved in peripheral myelina-
tion in humans (Uhlenberg et al., 2004). Diseases associated with mutations of the
gene encoding this protein have not been described, at least as yet.

Mutations in several other genes are known to give rise to demyelinating CMT
(reviewed in Dubourg, 2004; Meyer zu Horste et al., 2006).

A gene, located on 10q21.1-q22.1, can cause early demyelination and CMT1D
when mutated. The gene codes for EGR2 (early growth response 2 gene) which
is a transcription factor also termed Krox-20. It allows the regulation of key
genes coding for myelin proteins such as PMP22, P0, and Cx32, and gives rise
to CMT4E when mutated. There are also mutations involving the gene NEFL
(neurofilament light chain) which in some cases can give rise to demyelinating
neuropathies.

Mutations in the CMT4 genes lead to hypomyelination and onion bulb forma-
tion. The gene for CMT4A is located on 8q13.q21.1 and codes for a protein called
GDAP1, that is, ganglioside-induced differentiation-associated protein 1. Another
mutated protein may be involved in CMT4B1: MTMR2 (myotubularin-related
protein 2). MTMR2 is a dual specific phosphatase that participates in the dephos-
phorylation of membrane phospholipids involved in the regulation of intracellular
membrane trafficking. Mutations in CMT4B2 are related to mutations in MTMR13.
MTMR13 is also known as set-binding factor (SBF2). Mutations in CMT4B1 and
CMT4B2 lead to characteristic misfolding and redundant loops of myelin. CMT4C
is related to a defect in the gene coding for protein KIAA and CMT4D with mutations
coding for the gene NDRG1 (N-myc downstream regulated gene). All these muta-
tions alter myelin and also involve onion bulb formation with chronic processes of
demyelination and remyelination.

Epithelial cadherin (E-cadherin) has a molecular weight of 130 kDa and is found
in PNS myelin. E-cadherin is a protein of the superfamily of calcium-dependent cell
adhesion molecules that can usually form adherent junctions. This protein has an
N-terminal extracellular domain, a short transmembrane domain and a C-terminal
intracellular domain.

Basic protein P2 has a molecular weight of 15 kDa and is a member of a family
of cytoplasmic lipid-binding proteins. Unlike other myelin proteins, its quantitative
expression varies greatly according to species, ranging from less than 1% in rodent
sciatic nerves up to 5–14% in human, bovine, and rabbit nerve. P2 is located on the
cytoplasmic side of compacted regions of myelin.

3.3 Proteins and Specific Lipids of the Node of Ranvier
and the Paranodal and Juxtaparanodal Areas

The nodes of Ranvier are critical for the proper function of the CNS and PNS. The
composition of the myelin node and the modifications observed in natural mutant
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mice, transgenic mice, or knock-out mice have aided understanding of the function
of these specialized molecules. Voltage-gated sodium channels (see § Ion Channels
and demyelination), ankyrin G, NrCAM (NgCAM-related CAM; i.e., neuron–glia-
related CAM) are highly enriched at the node (Simons and Trajkovic, 2006). Other
constituents are also present and detailed below because they are more involved in
demyelination.

Oligodendrocyte-myelin glycoprotein (OMgp) is clustered at the nodes of
Ranvier in both CNS and PNS. It regulates nodal formation through an unidentified
mechanism. In the CNS, its abundance is closely linked with axonal size, and OMgp
is undetectable in a subset of smaller axons. In transgenic mice in which expression
of OMgp is downregulated, myelin thickness diminishes, lateral oligodendrocyte
loops at the node–paranode junction are less compacted, and there are shortened
nodal gaps (Nie et al., 2006). Transgenic mice, in which OMgp is reduced by
50–70%, show a significant abnormality in the node–paranode junction.
Disorganized lateral glial loops at the node–paranode junctions and shortening of
nodal space in the OMgp mutants strongly indicate that OMgp has a role in attaching
lateral loops and in demarcation of the node–paranode junctions. Thus, this oligo-
dendrocyte protein is involved in regulation of both myelin development and nodal
formation. Nodal location of OMgp does not occur along demyelinated axons of
either the shiverer natural mutant mice or PLP transgenic mice. Omgp is also a
myelin-associated inhibitor of axonal regeneration as a GPI-linked Omgp (Spencer
et al., 2003).

The 186 kDa neuron specific isoform of the adhesion molecule neurofascin
(NF186) is required for the clustering of voltage-gated channels at the node (Howell
et al., 2006). Its expression is disrupted following demyelination.

The myelin protein cyclic nucleotide phosphodiesterase (CNP) is required for
maintenance of axon–glia interactions at the node of Ranvier. It also maintains the
integrity of the paranodes (Rasband et al., 2005).

In the PNS, both laminin and Schwann cell dystroglycan are necessary for the
proper clustering of sodium channels at nodes of Ranvier (Occhi et al., 2005).
Gliomedin is also necessary (Eshed et al., 2005).

At the paranodes, myelin loops are anchored to axons through septate-like junc-
tions characterized by the enrichment of paranodin/Caspr (contactin-associated
protein) and the GPI-anchored cell adhesion molecule contactin. The paranodin/
Caspr–contactin complex interacts with the 155 kDa isoform of neurofascin NF155
that is expressed on the oligodendroglial membrane. NF155 is essential for the
tight interaction between myelin and axon. It is a member of the L1 family of
cell adhesion molecules (L1-CAM; reviewed in Maier et al., 2006). Changes to
NF155 expression accompany inflammation and demyelination and contribute to
the destruction of the neurofascin 186/sodium channel complex vital to successful
neurotransmission in the CNS (Howell et al., 2006).

The tetraspanin protein CD9 is a novel paranodal component regulating paran-
odal junctional formation (Ishibashi et al., 2004).

Myelin galactolipids are essential for the proper formation of axo–glial inter-
actions. Disruption of these interactions results in profound abnormalities in the
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molecular organization of the paranodal axolemma (Dupree et al., 1999). Mice
incapable of synthesizing the abundant galactolipids of myelin exhibit disrupted
paranodal axo–glial interactions in both the CNS and PNS. Whereas the clustering
of the nodal proteins, sodium channels, ankyrin, and neurofascin are only slightly
affected, the distribution of potassium channels and paranodin proteins is dramat-
ically altered. The potassium channels, which are normally concentrated in the
juxtaparanode, are no longer restricted to this region but are detected throughout the
internode in the mutant. The paranodin/contactin-associated protein Caspr, a para-
nodal protein, is not concentrated in the paranodal region, but diffusely distributed
along the internodal regions.

The paranodal junction also contains specialized cytoskeletal components that
may be important in stabilizing axon–glia interactions (Ogawa et al., 2006; Voas
et al., 2007). A significant alteration in NF155 paranodal structures occurs within
and adjacent to actively demyelinating white matter regions that are associated with
damaged axons (Howell et al., 2006).

The juxtaparanode is just under the compact myelin sheath beyond the inner-
most paranodal junction and may therefore be considered a specialized portion of
the internode (Peles and Salzer, 2000). Potassium channels aggregate in the juxta-
paranode. Potassium channels Kv1.1 and Kv1.2 are normally confined to this area.
Demyelination can lead to the dispersion of these channels.

The juxtaparanodal region, just beyond the innermost paranodal junction is
enriched in shaker-type potassium (Kv) channels, in association with Caspr2, a sec-
ond member of the Caspr family, as well as in the cell adhesion molecule TAG-1 (for
review see Coman et al., 2006). Kv channels are in the juxtaparanode area (Howell
et al., 2006). In demyelinating white matter, shaker-type Kv1.2 channels move and
precede alterations at the node itself, in relation with NF155 disruption. TAG1 and
Caspr 2 are essential for the molecular organization of the juxtaparanodal region of
myelinated fibers (Traka et al., 2003).

During myelin repair, NF 155 is an early marker of myelin damage (Howell et al.,
2006). During myelin repair a thinner myelin sheath is produced with shorter intern-
odes, but efficient nerve conduction is nevertheless produced (Smith et al., 1979).
The aggregation process of nodal, paranodal, and juxtaparanodal axonal molecules
recapitulate development, with the initial step being Nav channel clustering (Coman
et al., 2006; Ogawa et al., 2006).

3.4 Dys- or Demyelination in the CNS and/or the PNS Related
to Myelin Lipid Compounds

One of the major characteristics of myelin lipids is their richness in sphingogly-
colipids (SGLs) particularly the galactosphingolipids galactosylceramides (GalC)
and their sulfated derivatives sulfogalactosylceramides, that is, sulfatides (Baumann
and Pham-Dinh, 2001; Colsch et al., 2004). SGLs are present on virtually all mam-
malian cell plasma membranes. They are amphipathic molecules consisting of a
ceramide lipid moiety embedded in the outer leaflet of the membrane, linked to an
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oligosaccharide structure oriented externally. Both the lipid moiety and the oligosac-
charide structure show huge structural diversity. SGLs are very abundant in the
nervous system, with different constituents in the CNS and the PNS and within
different cell types in these tissues. It is not clear yet whether each SGL isoform has
a specific location or function, although the extreme diversity of their constitution
possibly contributes to the diversity of stereospecific recognition at the surface of the
cellular membranes. SGLs in myelin contain very long chain fatty acids. The fact
that they are on the external surface of the cell favors their involvement in the mod-
ulation of protein receptors and favors their acting as signaling molecules. These
galactolipids are important for the activity and maintenance of myelin and myelin-
producing cells (oligodendrocytes) and for the constitution of the Ranvier node area
(Dupree et al., 1999; Honke et al., 2002). They are essential to the proper formation
of axo–glial interactions and a disruption of these interactions results in profound
abnormalities in the molecular organization of the paranodal axolemma (Dupree
et al., 1999).

Galactosylceramide (Galactocerebroside) synthesis and degradation in CNS
and PNS. The inactivation of the CGT (ceramide galactosyl transferase) gene has
allowed the analysis of galactolipid function (Coetzee et al., 1998). The mutants
cannot synthesize major myelin lipids, galactosylceramide (GalC), and sulfogalac-
tosylceramide (sulfatide). As explained in Section 3.3 myelin galactolipids are
essential for the proper formation of axo–glial interactions and demonstrate that
a disruption of these interactions results in profound abnormalities in the molecular
organization of the paranodal axolemma.

Many brain abnormalities are related to a defect in the catabolism of galacto-
sylceramide, caused by galactocerebrosidase deficiency. There are similarities in
mouse and human diseases, for example, the twitcher mouse and Krabbe’s dis-
ease (Suzuki, 2003). Krabbe’s disease is a recessive autosomal disease caused by
a deficiency in galactosylceramidase (galactocerebrosidase). It leads to demyelina-
tion in CNS and often in PNS. Globoid cells, of macrophagic origin, are typical
of this disease, and contain the undegraded substrate, galactosylceramide. There is
a very early disappearance of oligodendrocytes, due to the accumulation of galac-
tosylsphingosine (psychosine), a cytotoxic metabolite. Krabbe’s disease generally
presents clinically in early childhood (∼6 months of age). The most common clini-
cal manifestation is the onset of a paralysis in the four limbs (tetraplegia), but other
neurological signs may occur. Peripheral nerve conduction velocity is also reduced.
Decerebration follows rapidly, with total degradation of mental capabilities. Death
occurs related to brain stem alterations. However, variant forms of this disorder are
known. Isolated demyelinating peripheral neuropathies with no CNS involvement
for a long period have been described, as well as Krabbe’s disease starting in ado-
lescence and adulthood (Baumann and Turpin, 2000); in the latter, MRI shows that
white matter involvement predominates symmetrically in the periventricular parieto-
occipital regions. Up to now, there is no explanation for this late onset form with
reduced brain regional alterations. The mouse model, the twitcher mouse, when on
a mixed genetic background, gives rise to myelin alterations and also to neuronal
death, especially in the hippocampus. Thus, some sphingolipids may have functions
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in the hippocampal neuronal organization and maintenance (Tominaga et al., 2004),
possibly in relation with modulator genes.

Sulfogalactosylceramide (Sulfatide) synthesis and degradation in CNS and PNS.
Regional and cellular abnormalities may also be related to defects in the synthe-
sis of sulfatides. Sulfatides, coded by the galactosylceramide sulfotransferase gene,
are essential for maintenance of Na+ ion channels on myelinated axons but are not
required for initial cluster formation (Ishibashi et al., 2002). Mice deficient for this
gene are unable to synthesize sulfatides. They display abnormal paranodal junc-
tions in the CNS and PNS, whereas their compact myelin is preserved (Honke et al.,
2002). Recent work has evidenced that although sulfatide appears to play a lim-
ited role in myelin development in comparison to galactocerebrosides, this lipid is
essential for myelin maintenance, as the prevalence of redundant, uncompacted, and
degenerating myelin sheaths as well as deteriorating nodal/paranodal structures is
increased significantly in aged sulfatide-null mice as compared with wild-type lit-
termates. The role played by sulfatide in CNS is not limited to the myelin sheath
as axonal caliber is significantly altered in aged sulfatide-null mice (Marcus et al.,
2006).

Metachromatic leukodystrophy (MLD) is a disease involving a defect in sulfatide
catabolism. The cause is deficiency of the catabolic lysosomal enzyme arylsulfatase
A There is essentially a myelin deficiency, with an excess of sulfatides in myeli-
nating cells, and also in neurons and macrophages (Gieselmann et al., 2003). In
an experimental model, an arylsulfatase A-deficient mouse, the lysosomal sulfatide
storage disease affects the lipid composition of myelin itself and the amount and
localization of specific myelin membrane-associated proteins, particularly the pro-
tein MAL (Saravanan et al., 2004). Sulfatiduria is an important element in the diag-
nosis of MLD. Sulfatides in urine can be identified by thin-layer chromatography
with immunodetection (Colsch et al., 2008), and quantitated by mass spectrometry
(Cui et al., 2008). Clinically MLD is usually a disease of childhood, with clinical
abnormalities developing at about the age of walking. It can, however, first manifest
itself clinically at a later age. In some cases it presents clinically in adult life. In
these patients, behavioral abnormalities may constitute the first symptoms and the
only symptoms to occur for many years. These patients can receive a diagnosis of
schizophrenia (Rauschka et al., 2006). The role of sulfatide in brain cognitive func-
tions is certainly important as the first Alzheimer case may have been a metachro-
matic leukodystrophy (Amaducci et al., 1991). Interestingly, advances in imaging
techniques associated with genetic findings suggest that white matter abnormalities
are present in schizophrenia (Kubicki et al., 2005; Stewart and Davis, 2004).

Previous work, which has not been revisited, showed that sulfatides are nec-
essary for the optimal function of enzymes such as sodium–potassium-dependent
ATPase, and the sulfatide content seems to be directly related to the activity of the
enzyme (Karlsson et al., 1974). Sulfatides may also be involved in the functioning
of certain opiate receptors (Craves et al., 1980) and in chloride transport systems
(Zalc et al., 1978). Implantation in the spinal cord of a hybridoma secreting spe-
cific antisulfatide antibodies has been shown to cause demyelination of the CNS in
the rat (Rosenbluth et al., 2003). Antisulfatide antibodies have been found in HIV
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patients with distal sensory neuropathies (Lopate et al., 2005), in MS (Ilyas et al.,
2003; Kanter et al., 2006) and in diabetic neuropathies (Buschard et al., 2005).
These observations suggest that autoimmune responses directed against sulfatides
can contribute to the pathogenesis of some of these diseases. The mechanism of
demyelination still remains obscure.

Very long chain fatty acids (VLCFA) of cerebrosides and sulfatides. VLCFA
are major constituents of the ceramide part of galactocerebrosides and sulfatides.
These are unbranched fatty acids with a chain length of 24 or more carbon atoms.
They accumulate in the peroxisomal X-linked genetic disease adrenoleukodystro-
phy (ALD) because of an impaired beta-oxidation in peroxisomes. A variety of
clinical presentations can occur in a single kindred with this disorder (Turpin et al.,
1985). The cerebral demyelinating form of ALD mainly affects boys between 5 and
12 years of age (40% of ALD cases) and leads to a vegetative stage or death within
2–5 years. The adult form, adrenomyeloneuropathy (AMN), which represents 40%
of ALD cases, mainly affects the spinal cord and leads to spastic paraplegia often
complicated by cerebral demyelination (35%) (Aubourg and Dubois-Dalcq, 2000).
The ALD gene encodes an ATP-binding cassette (ABC) half-transporter of 75 KDa
(ALDP) that must dimerize with itself or a related partner to exert its function within
the peroxisomal membrane (Mosser et al., 1993). The disease affects the CNS and
PNS. Understanding the mechanism of demyelination in ALD remains a major chal-
lenge. The disease shows wide phenotypical variation that is not predictable and is
probably under the influence of both genetic and environmental factors (Aubourg
and Dubois-Dalcq, 2000). Although the cloning of the ALD gene has allowed the
generation of an ALD model, these mice do not show any neurological symptoms
and therefore do not reveal how VLCFA accumulation can lead to demyelination.

Specific SGLs of PNS and demyelination. The major SGLs in the PNS are
different. The major SGLs of the PNS are the sialosylparagloboside LM1 (also
called SPG), the sulfoglucuronylparagloboside (SGPG) and the sulfoglucuronyl-
lactosaminylparagloboside (SGLPG). SGPG has a terminal trisaccharide sequence,
N-acetylglucosaminyl-galactosyl-glucuronylsulfate. This sequence is the HNK-1
epitope, common to the SGPG and its derivatives with two lactosaminyl residues,
and to several adhesion molecules and myelin proteins including P0, the major
protein of PNS, and MAG (Baumann, 2000; Willison and Yuki, 2002).

Chronic polyneuropathies associated with IgM gammapathies are mostly sen-
sory demyelinating neuropathies. A small proportion of cases are nondemyelinating
and have the characteristics of axonal neuropathies (Chassande et al., 1998).
Interestingly, the typical sensory demyelinating neuropathies have anti-MAG and
anti-SGPG antibodies whereas axonal neuropathies, often predominantly motor,
present only monoclonal IgM anti-SGPG activity with no anti-MAG reactivity.
Thus, the fine structure of the epitope recognized by the IgM may be involved.

Gangliosides. Gangliosides are mainly present in neurons, except for ganglioside
GM1 and GM4. The latter is a sialylated derivative of galactosylceramide that is
present in the myelin of mice and primates including humans. Ganglioside GM1 can
be a target for an autoimmune demyelination process or motor conduction blocks in
the PNS (Willison and Yuki, 2002).
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Molecular mimicry between microbial and self-components is postulated as the
mechanism accounting for the antigen and tissue specificity of immune responses
in postinfectious autoimmune diseases. Guillain–Barré syndrome, the most frequent
cause of acute neuromuscular paralysis, can occur 1–2 weeks after various infec-
tions, in particular Campylobacter jejuni enteritis (C. jejuni). Carbohydrate mimicry
between the bacterial lipo-oligosaccharide and human GM1 ganglioside is relevant
to the pathogenesis of Guillain–Barré syndrome, as documented by Yuki (Yuki et al.,
2004). Upon sensitization with C. jejuni lipo-oligosaccharide, rabbits develop anti-
GM1 IgG antibodies and flaccid limb weakness. Paralyzed rabbits have pathological
changes in their peripheral nerves identical with those present in Guillain–Barré
syndrome. Immunization of mice with the lipo-oligosaccharide generates a mAb
that reacts with GM1 and binds to human peripheral nerves. The mAb and anti-
GM1 IgG from patients with Guillain–Barré syndrome did not induce paralysis but
blocked muscle action potentials in a muscle–spinal cord coculture, indicating that
anti-GM1 antibody can cause muscle weakness. These findings show that carbo-
hydrate mimicry is an important cause of autoimmune neuropathy that can involve
demyelination.

Cholesterol and phospholipids. Most lipids found in myelin are common to
other cellular membranes. Cholesterol content is high and cholesterol esters are
not present in normal myelin. Phospholipids are also common to other cellular
membranes, except for the great quantity of ethanolamine phosphoglycerides in the
plasmalogen form. The synthesis of plasmalogens is modified in Zellweger syn-
drome which is a peroxisomal syndrome that also increases VLCFA. This syndrome
and other peroxisomal diseases may cause demyelination (Powers, 2005).

4 Other Glial Cell Types and Factors Involved in Myelination
and Demyelination in the CNS

4.1 Astrocytes and Mutations in GFAP

Alexander disease (AxD) is a leukodystrophy caused by dominant mutations in
GFAP, the main intermediate filament protein of astrocytes. This neurodegenerative
disease is characterized by dystrophic astrocytes containing intermediate filament
aggregates associated with myelin abnormalities. Overexpressing human GFAP in
mice leads to a toxic gain of function induced by aggregates of GFAP and small
heat shock proteins. However, GFAP-null mice also display some myelin abnor-
malities and blood–brain barrier dysfunction (reviewed in Mignot et al., 2004).
AxD was the first human disease to be described in which astrocyte dysfunction
induces myelin destruction (Brenner et al., 2001; Rodriguez et al., 2001). A trans-
genic mouse expressing the R239H mutation presented aggregates (Tanaka et al.,
2007), as did KI mice expressing R239C or R79H (Hagemann et al., 2006). This
abnormality was correlated in both cases to an overexpression of the mutated allele.
Diverse hypotheses have been put forward on the impact of GFAP mutations on
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myelination (Mignot et al., 2004). Recent works have focused on abnormal forma-
tion of the astrocytic intermediate network (Der Perng et al., 2006; Quinlan et al.,
2007; Tanaka et al., 2007; Tian et al., 2006), or on the fate of pathogenic astrocytes:
cell death versus survival (Mignot et al., 2007). Rare radiological and pathologi-
cal tumor-like lesions have already been reported in AXD patients. Enlargement
of the optic chiasm is a rare feature of AXD, possibly linked to abnormal astro-
cytic proliferation (Mignot et al., 2009). Taken together, these data highlight
pathological astrocytes as key players and valuable therapeutic targets in neuro-
logical disorders, in particular myelin diseases. The mechanisms leading to myelin
pathogenicity by astrocytes (2.5.4) are undefined, and so far, there is no cure for such
diseases.

4.2 Oligodendrocyte Precursors

Myelination requires sequential steps in the maturation of the oligodendrocyte lin-
eage with a co-ordinated change in the expression of cell surface antigens; these
antigens can be recognized by monoclonal antibodies. Dys- and demyelination may
also act at an early stage of development of the oligodendrocyte lineage, although
the roles of oligodendrocyte precursors in human pathology are often not clearly
defined. Transcription factors, growth factors, neurotransmitters, and modifications
of cell surface components can be involved. Myelination requires a tightly regu-
lated balance between the disappearance of inhibitory signals and the induction
of positive signals, some of which are mediated by neuronal electrical activity
(Demerens et al., 1996). Cocultures of oligodendrocyte progenitor cells (OPCs)
and neurons in the presence of highly specific neurotoxins, which can either block
(tetrodotoxin) or increase (alpha-scorpion toxin) the firing of neurons, demonstrate
that myelinogenesis is dependent on the electrical activity of neurons (Demerens
et al., 1996). We only develop here what occurs in relation to CNS myelination and
demyelination (Collarini et al., 1991).

Oligodendrocytes descend from a progenitor cell (OPC) which originates in
specialized regions of the subventricular zone. Early OPCs express the platelet-
derived growth factor receptor alpha (PDGFαR) and the sulphated proteoglycan
NG2 (Nishiyama et al., 1999). Early OPCs differentiate into a late OPC stage
(or oligodendroblasts) that appears to be committed to oligodendrogenesis. Late
OPCs express the tetraspan protein CD9 (Terada et al., 2002) and the POA antigen.
Although uncharacterized, the POA antigen may be recognized by the monoclonal
antibody O4 that targets sulfatides in mature cells (Bansal et al., 1992). Once oligo-
dendrogenesis is complete, NG2/PDGFαR positive cells remain as a major glial
component of the adult mammalian CNS, apparently providing a pool of quiescent
progenitors that can be tapped later for repair of demyelinated axons (Menn et al.,
2006; Wilson et al., 2006). Premyelinating oligodendrocytes extend multiple pro-
cesses. They express many but not all myelin proteins. Present are DM20, MAG,
CNP, MBP, and CD; PLP and MOG are not detected by current methods. As myeli-
nation begins, the oligodendrocyte targets myelin proteins to specific membrane
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domains: MAG is selectively targeted to periaxonal membranes, PLP to compact
myelin, CNP to noncompact regions of the myelin internode, and MBP mRNA
to oligodendrocyte processes (Trapp et al., 2004). As described by Yakovlev and
Lecours (1966), myelination takes place until adult age and occurs at different ages
according to the area, the latest being the prefrontal area and the associative areas.
Thus leukodystrophies may start clinically in adulthood (Baumann and Turpin,
2000).

Axonal damage secondary to myelin loss is a major cause of sensory, motor, and
cognitive disabilities in adult MS (Bjartmar and Trapp, 2001). The lack of myelin
recovery may be due primarily to deficiency in the genesis of OPCs and in their
maturation in the adult CNS (Franklin, 2002; Stangel and Hartung, 2002). Limited
myelin regeneration is observed in early demyelinating lesions in MS (Wolswijk,
1998).

Possible explanations for remyelination failure in MS (Franklin, 2002; Stangel
and Hartung, 2002) can be the inadequate recruitment of OPCs (Keirstead et al.,
1998) or the inability of OPCs to turn into myelinating oligodendrocytes. Thus,
studies aiming at identifying factors involved in OPC differentiation during remyeli-
nation are of great interest. Guidance molecules Semaphorin 3A and 3F, already
known to direct oligodendroglial migration during development, may also be active
in controlling OPC migration in MS and may determine the ability of plaques to
remyelinate (Williams et al., 2007b).

It is conceivable that the process of remyelination mimics that of myelination
during development, but the key factors affecting the differentiation and maturation
of OPCs into myelinating oligodendrocytes do not perfectly trigger remyelination
in the adult brain.

4.3 Biochemical Factors

As noted above, myelination requires a tightly regulated balance between the
disappearance of inhibitory signals, and the induction of positive signals.

Adhesion molecules. The downregulation of the polysialylated neuronal cell
adhesion molecule (PSA-NCAM) from the axonal surface (Charles et al., 2000)
is a necessary prerequisite to render the axon permissive to myelination (Charles
et al., 2002; Coman et al., 2005). L1, another adhesion molecule expressed at the
axonal surface, promotes myelination (Coman et al., 2005).

In demyelination such as MS, PSA-NCAM is expressed on denuded axons and
might act as an inhibitor of remyelination, whereas the myelinated part outside the
plaque is PSA-NCAM negative (Charles et al., 2000; Coman et al., 2005). On the
other hand, in MS a two- to threefold increase in OPC density and proliferation was
found in the subventricular zone (SVZ), which correlated with enhanced numbers
of PSA-NCAM(+) cells (Nait-Oumesmar et al., 2007). EAE in rodents is another
important example of the activation of the SVZ and the involvement of progenitor
cells expressing the polysialylated form of neural cell adhesion molecule (PSA-
NCAM) in the repair process (Picard-Riera et al., 2002).
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4.3.1 Growth Factors and Transcription Factors

PDGF alpha and laminin. Laminin-2 deficient mice demonstrate the crucial role
of laminin-2 in CNS myelination (Chun et al., 2003). Survival of oligodendrocytes
that contact axons requires laminin. In the absence of laminin, the concentration
of survival factors such as PDGF is too low to promote survival of newly formed
oligodendrocytes. Oligodendrocytes that contact laminin on axon tracts initiate inte-
grin signaling that amplifies the survival response by PDGF. Oligodendrocytes that
contact axons are then able to survive and myelinate (Colognato et al., 2005).
When α6β1 integrin on the oligodendrocyte binds axonal laminin, Fyn (a member
of the Src family kinase) is activated, promoting oligodendrocyte differentiation.
Fyn knock-out and α2 laminin knock-out exhibit similar region-specific pheno-
types, with a severe myelin deficit in the forebrain in contrast to normal appearing
myelin in the spinal cord (Camara and Ffrench-Constant, 2007; Chun et al., 2003).
Dystroglycan is a second laminin receptor in oligodendrocytes that expresses and
uses this receptor to regulate myelin formation. Blocking the function of dystrogly-
can receptors leads oligodendrocytes to fail to produce complex myelin membrane
sheets and to initiate myelinating segments when cocultured with dorsal ganglion
neurons (Colognato et al., 2007).

Jagged is developmentally regulated in neurons and activates the Notch pathway
in OPCs, which inhibits their differentiation into oligodendrocytes (Givogri et al.,
2002). Because Jagged decreases with a time course that parallels myelination, it is
likely that neurons help to regulate the timing of myelination. In the demyelinating
brain, the inappropriate upregulation of molecules, including those of the Jagged-
1-Notch-1 signal transduction pathway, affects OPC differentiation (Mastronardi
and Moscarello, 2005). The importance of communication between astrocytes and
oligodendrocytes was also demonstrated in MS in which the abnormal expression
of Jagged 1 by reactive astrocytes could be responsible for the failure of myelin
repair following myelin destruction caused by inhibition of progenitor differentia-
tion (John et al., 2002). However, in the mouse model, remyelination can proceed
to completion despite widespread Notch–Jagged expression; thus Notch–Jagged
signaling is not a rate-limiting determinant of remyelination in rodent models of
demyelination (Stidworthy et al., 2004).

The neuregulins (NRGs) constitute a family of proteins containing an epidermal
growth factor (EGF)-like domain that activates the membrane associated ErbB2,
ErbB3, ErbB4 receptor tyrosine kinases. NRGs activate ErbBs on oligodendro-
cytes in the developing CNS. In the absence of ERBb signaling, oligodendrocytes
fail to undergo terminal differentiation and to ensheath axons (Park et al., 2001a,
b). Loss of erbB signaling, by expression of a dominant negative erbB recep-
tor transgene, in oligodendrocytes alters myelin and dopaminergic function (Roy
et al., 2007). These transgenic mice have increased levels of dopamine receptors
and transporters, and exhibit behavioral alterations consistent with neuropsychiatric
disorders. These results indicate that defects in white matter can cause alter-
ations in dopaminergic function and behavior relevant to neuropsychiatric disorders
(Roy et al., 2007).
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There are several subgroups of NRG among which are NRG1 type III. Axonal
NRG1 regulates myelin sheath thickness in the PNS (Michailov et al., 2004).
NRG1 type III, independent of axon diameter, provides a key instructive sig-
nal that determines the ensheathment fate of axons (Taveggia et al., 2005).
Ensheathed axons express low levels whereas myelinated fibers express high levels
of NRG1 type III. Type III is the sole NRG1 isoform retained at the axon sur-
face and activates phosphatidylinositol 3-kinase, which is required for Schwann cell
myelination.

Oligodendrocytes also respond to insulin growth factor IGF-1 that stimulates
oligodendrocyte growth and prevents oligodendrocyte apoptosis. Overexpression of
IgF-1 increases the percentage of myelinated axons and the thickness of myelin
sheaths. IGF type 1 receptor is required for normal in vivo development and
myelination (Zeger et al., 2007). The association of transferring and IGF-1 favors
remyelination in the myelin-deficient rat (Espinosa-Jeffrey et al., 2006).

Olig1 and Olig2 encode basic helix–loop–helix (bHLH) transcription factors
that are expressed in both the developing and mature CNS. Expression of Olig
in human brain tumors and demyelinating lesions suggest the possibility of addi-
tional functions in a variety of neurological diseases (Ligon et al., 2006; Zhao
et al., 2005). Mice lacking a functional Olig1 gene develop severe neurological
deficits and die in the third postnatal week. In the brains of these mice, expres-
sion of myelin-specific genes is abolished, whereas the formation of OPCs is not
affected. Furthermore, multilamellar wrapping of myelin membranes around axons
does not occur, despite recognition and contact of axons by oligodendrocytes, and
Olig1-null mice develop widespread progressive axonal degeneration and gliosis. In
contrast, myelin sheaths are formed in the spinal cord, although the extent of myeli-
nation is severely reduced. At the molecular level, Olig1 regulates transcription of
the major myelin-specific genes, MBP, PLP1, and MAG, and suppresses expres-
sion of a major astrocyte-specific gene, Gfap. Thus Olig1 is a central regulator of
oligodendrocyte myelinogenesis in brain, and axonal recognition and myelination
by oligodendrocytes are distinct processes (Xin et al., 2005).

Eukaryotic initiation factor 2B (elF2B) is a five-subunit guanine nucleotide
exchange factor that exchanges GDP for GTP to form the elF2B-GTP complex.
e1F2B mutations lead to an abnormal control of protein translation that predom-
inantly affects glial cells. Mutations in elF2B (Leegwater et al., 2001) cause one
of the most common leukodystrophies: childhood ataxia with CNS hypomyelina-
tion/vanishing white matter disease or CACH/VWM (reviewed in Schiffmann and
Elroy-Stein, 2006). Astrocytes are affected (Dietrich et al., 2005), oligodendro-
cytes are overcrowded (Rodriguez et al., 1999) and become foamy, and neurons are
spared. The disease is autosomal dominant. There is a cystic breakdown of white
matter or “cavitation” and no gadolinium enhancement of the lesions on MRI. The
disease can be caused by mutations in any of the five subunits of elF2B.

Qk1 (quaking). The quaking viable (qkv) is a spontaneous recessive mutation in
the mouse that deletes an enhancer of the qkI gene and causes diminished qkI tran-
scription, specifically in myelin-producing cells. The qkv mice provide a unique
animal model linking RNA binding proteins to defects in oligodendrocyte cell fate
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and myelination (Larocque and Richard, 2005). The qkI gene encodes RNA bind-
ing proteins that are involved in the transport of myelin-specific RNAs, such as
those encoding myelin basic proteins (MBP), to specific cellular locations for trans-
lation. Schizophrenia, a severe mental disorder, comprising social and cognitive
defects may be linked to a qk susceptibility locus (Aberg et al., 2006; Lindholm
et al., 2001). QKI, which is essential for myelination, is decreased in schizophrenia
(McInnes and Lauriat, 2006). Downregulation of QK1 might be among the pri-
mary causes of downregulation of myelin-related genes in schizophrenia (Karoutzou
et al., 2007).

The major cognitive disturbances in schizophrenia may result from a deficit of
myelination in relevant neuronal structures, such as the corpus callosum, involved
in connectivity between both hemispheres; the resulting decrease of electrical con-
duction in fiber tracks linking different parts of the brain may affect behavior and
perception (Haroutunian and Davis, 2007; Haroutunian et al., 2007).

Transferrin (Tf), the iron transport glycoprotein found in the biological fluids of
vertebrates, is also synthesized by oligodendrocytes in the CNS. Overexpressing Tf
in the brain of transgenic mice accelerates oligodendrocyte maturation, early mat-
uration of the cerebellum and spinal cord, and myelination in the corpus callosum
(Sow et al., 2006). The association of IGF-1 and transferrin favors remyelination in
the myelin deficient rat (Espinosa-Jeffrey et al., 2006).

Neurotransmitters. Numerous neurotransmitters affect the development of oligo-
dendrocytes. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)
and kaïnate receptors are expressed on oligodendrocytes. Glutamate has an
inhibitory role in the proliferation of oligodendrocytes, especially in relation to
AMPA and NMDA receptors (Karadottir and Attwell, 2007). Indeed, glutamate
can be toxic to white matter oligodendrocytes through AMPA, kainate gluta-
mate receptor, and N-methyl-D-aspartate receptors (NMDA) (Matute, 2006). Drugs
that interact with glutamate receptors in experimental models of MS can con-
tribute to a more favorable outcome (Bolton and Paul, 2006). Dopamine D3
and D2 receptors are also present as well as GABAa receptors. Their roles are
not yet elucidated. In experimental models of demyelinating diseases (Theiler’s
virus) cannabinoids reduce microglial activation, abrogate major histocompatibility
complex Class II antigen expression, and decrease the number of CD4+ infiltrat-
ing T cells (Arevalo-Martin et al., 2003). N-acetyl aspartate is synthesized from
aspartate and acetyl coenzyme A in neurons. The NAA-degrading enzyme is N-
aspartoacylase (ASPA). ASPA cleaves the acetate moiety for use in fatty acid
and steroid derivatives. Mutations in the gene coding for ASPA result in Canavan
disease, a fatal leukodystrophy (Moffett et al., 2007).

Second messengers: Adenosine, ATP, and LIF. Adenosine regulates proliferation
and differentiation of OPCs (Stevens et al., 2002), whereas ATP affects mature
oligodendrocytes. ATP does not act directly on oligodendrocytes but rather on
astrocytes, causing the release of LIF (leukaemia inhibitory factor) by these cells,
which in turn triggers the myelination process by promyelinating oligodendrocytes
(Ishibashi et al., 2006; Simons and Trajkovic, 2006). However, in LIF-deficient



Biology of Demyelinating Diseases 569

animals, myelin may be formed in the absence of LIF (Bugga et al., 1998),
indicating that other factors/cytokines, may complement for that function.

By contrast to oligodendrocytes (Lubetzki et al., 1993), Schwann cells abso-
lutely need the presence of neurons to differentiate and myelinate in vitro (Jessen
and Mirsky, 1991; Owens and Bunge, 1989). As for oligodendrocytes in the
CNS, calcium imaging in glia in the PNS revealed that purinergic receptors allow
premyelinating Schwann cells to detect action potential firing, due to ATP released
from axons (Stevens and Fields, 2000; Stevens et al., 2004). Different purinergic
receptors (Fields, 2006) are expressed on both types of glia resulting, however,
in opposite effects of impulse activity on differentiation of Schwann cells and
OPC. In the PNS, ATP regulates early development and myelination by Schwann
cells, whereas it inhibits differentiation and myelination (Jessen and Mirsky, 1991),
in striking contrast to what happens in the CNS (Stevens, 2006). Both ATP and
adenosine inhibit proliferation of Schwann cells induced by PDGF. Unlike ATP,
adenosine failed to inhibit differentiation of Schwann cells, in contrast with its role
in oligodendrocyte differentiation in the CNS (Stevens et al., 2004).

Hormones. It is well established that thyroid hormone (TH) is required for the
normal timing of OPCs differentiation and maturation (Rogister et al., 1999). Also,
normal cell-cycle progression mechanisms and terminal differentiation and matu-
ration require TH (Durand and Raff, 2000). Studies of myelination in hypo- and
hyperthyroid animals (Jagannathan et al., 1998) have provided strong evidence that
TH plays an important role in regulating oligodendrocyte lineage and maturation in
vivo and that the TH receptor α1 seems to be responsible for this process (Billon
et al., 2002). The administration of TH during the acute phase of experimental aller-
gic encephalomyelitis (EAE) in rats, a commonly used experimental model for MS,
is able to generate oligodendroglial cells (Calza et al., 2002).

Steroid hormones: Androgens. Interestingly, a sexual dimorphism of oligoden-
drocytes and myelin has been demonstrated in rodents. The density of oligoden-
drocytes in corpus callosum, fornix, and spinal cord is 20–40% greater in males
compared with females, independent of age, strain, and species of rodent. This
is associated with an elevated level of PLP and CAII (carbonic anhydrase 2).
Moreover, oligodendrogenesis and apoptosis of glia are two times greater in female
corpus callosum, indicating that the lifespan of oligodendrocytes is shorter in
females than in males. Castration of males produces a female phenotype charac-
terized by fewer oligodendrocytes and increased generation of new glia (Cerghet
et al., 2006). In EAE castration of males increased the severity of the disease
(Bebo et al., 1998) whereas in MS, the lowest levels of serum testosterone in
affected women correlates with the severity of the disease, again indicating that
androgens are protective (Tomassini et al., 2005), possibly more than estrogens.
Altogether, these data indicate that exogenous androgens differentially affect the
lifespan of male and female oligodendrocytes, and can override the endogenous
production of neurosteroids. These data imply that the turnover of myelin is greater
in females than in males, a process that may account for more myelin break-
down products in females. These findings have a potential significance for MS, a
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sexually dimorphic disease, whose progression is altered by exogenous hormones
(Cerghet et al., 2006).

The steroid hormones progesterone and derivatives promote the viability of neu-
rons in the CNS and play an important role in developmental myelination and
in myelin repair. The hormone may promote neuroregeneration by several differ-
ent actions—reducing inflammation, swelling, and apoptosis—thereby increasing
the survival of neurons, and promoting the formation of new myelin sheaths.
Recognition of the important pleiotropic effects of progesterone opens novel
perspectives for the treatment of brain lesions and diseases of the nervous system.
Exogenous administration of progesterone or some of its metabolites can be suc-
cessfully used to treat traumatic brain and spinal cord injury, as well as ischemic
stroke (reviewed in Schumacher et al., 2007). Progesterone can be synthesized by
neurons and by glial cells within the nervous system, as neurosteroids (Jung-Testas
et al., 1999). This finding opens the way for the use of pharmacological agents, such
as ligands of TSPO (translocator protein), the peripheral benzodiazepine receptor, to
locally increase the synthesis of steroids with neuroprotective and neuroregenerative
properties (reviewed in Schumacher et al., 2007).

Prolactin. Motherhood has been shown to attenuate the age-related decline in
learning and memory in the rat (Gatewood et al., 2005). Remission of MS dur-
ing pregnancy led to the hypothesis that remyelination is enhanced in the maternal
brain. In MS, the elevated prolactin levels during pregnancy may allow myelin
repair, during a temporal window when there is a shift from proinflammatory Th1
to anti-inflammatory Th2-mediated immunity. Using animal models, it has been
shown that prolactin treatment promotes myelin repair in female mice (Gregg et al.,
2007), mimicking the regenerative effect of pregnancy on white matter damage.
Prolactin induces changes early in pregnancy: increased oligodendrogenesis, MBP
expression, and the number of myelinated axons. Remarkably, pregnant mice have
an enhanced ability to remyelinate white matter lesions. The hormone prolactin reg-
ulates oligodendrocyte precursor proliferation and mimics the regenerative effects
of pregnancy.

5 Conclusion

Our knowledge of myelin constituents has greatly increased, as well as the role of a
bidirectional dialogue between glial cells and neurons in myelination and demyeli-
nation; but, little is known of the mechanisms responsible for myelin repair. Why is
remyelination incomplete with less myelin and shorter internodes?

Many mysteries remain about the timing of myelination and demyelination, as
many genetic diseases become manifest only in adulthood. There is a time and
regional control of myelination and demyelination as, for instance, in the cuprizone
model. That only implicates certain brain areas, but we know very little about it.

A variety of pathogenic mechanisms has been shown to be at work in myelin
diseases: point mutations, recombination events leading to deletions, and duplica-
tion of genomic regions including myelin genes. The exquisite sensibility to gene
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dosage of myelinating glial cells has been pointed out in human myelin diseases
as in genetically modified animal models. Nevertheless, there is not always a phe-
notype/genotype relationship, indicating that many factors involved still remain
unknown in human demyelinating diseases. New areas of research are being devel-
oped showing the involvement of myelin deficiency in psychiatric diseases and
cognition.

Although the roles of major constituents of myelin in relation to pathological
experimental models are clear, the specific mechanisms in many human diseases
still need to be investigated.
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Brain Protein Oxidation and Modification
for Good or for Bad in Alzheimer’s Disease

Rukhsana Sultana and D. Allan Butterfield

Abstract Alzheimer’s disease (AD) is the most common cause of dementia in the
elderly and is characterized by senile plaques, neurofibrillary tangles, synapse loss,
and progressive neuronal deficits. There is an abundance of evidence suggesting
that oxidative stress is involved in the pathogenesis of Alzheimer’s disease. Several
investigations have revealed the presence of oxidation products of proteins, lipids,
and DNA in postmortem tissue from AD patients, indices that are indicative of
increased oxidative stress. In the present review we discuss the role of protein
oxidation in the brain of subjects with AD and MCI.

Keywords Alzheimer’s disease · Protein oxidation · Protein carbonyl ·
3-Nitrotyrosine · Mild cognitive impairment
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1 Introduction

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly
(Evans et al., 1989). AD is characterized by senile plaques, neurofibrillary tangles,
synapse loss, and progressive neuronal deficits (Hardy and Selkoe, 2002; McGeer
and McGeer, 2003). In addition to the formation of amyloid plaques and NFTs,
gliosis, chronic inflammatory reactions, excitotoxic damage, and oxidative stress
all appear to contribute to the progression of AD. The proximate cause(s) of the
progressive cell death and loss of memory and cognitive functions resulting in pro-
found dementia are still poorly understood. Increased risk factors for AD include
stroke, hypertension, diabetes, atherosclerosis, and hypercholesterolemia (Kalaria,
2000; Iadecola, 2003; Casserly and Topol, 2004; Messier and Teutenberg, 2005),
and the presence of multiple factors further increases the risk of AD (Luchsinger
et al., 2005). These pathologies are associated with chronic inflammation and altered
blood vessel responsiveness (Akiyama et al., 2000; Iadecola, 2003; McGeer and
McGeer, 2003).

Oxidative stress occurs due to an imbalance in the oxidant and antioxidant lev-
els (Butterfield and Stadtman, 1997). Oxidants can damage virtually all biological
molecules: DNA, RNA, cholesterol, lipids, carbohydrates, proteins, and antioxi-
dants. In AD brain, the levels of antioxidants were found to be decreased with
an associated increase in protein oxidation (indexed by protein carbonyls and 3-
nitrotyrosine), lipid peroxidation, DNA oxidation, advanced glycation end-products,
and reactive oxygen species (ROS) formation, among other indices, strongly sug-
gesting a role for oxidative stress in the pathogenesis of AD (Markesbery, 1997;
Smith et al., 1997; Butterfield et al., 2001; Lovell and Markesbery, 2001; Butterfield,
2002; Butterfield and Lauderback, 2002; Castegna et al., 2003; Smith et al., 2004;
Sultana et al., 2006d, 2006a). Moreover, the use of vitamin E in cell culture dimin-
ishes Aβ(1-42)-induced toxicity, further consistent with a role of oxidative damage
in AD pathology (Behl, 1999; Yatin et al., 2000; Butterfield and Lauderback, 2002;
Boyd-Kimball et al., 2004; Butterfield and Boyd-Kimball, 2005). In addition, Aβ(1-
42) can bind to receptors on neuronal and glial cells, for example, the α7-nicotinic
acetylcholine receptor, neurotrophin p75 receptor, the N-methyl-D-aspartate recep-
tor, the receptor for advanced glycation end-products (RAGE) (Wang et al., 2000;
Verdier and Penke, 2004), and others, forming calcium and potassium channels in
cell membranes (Arispe et al., 1993; Etcheberrigaray et al., 1994; Engstrom et al.,
1995), decreasing glucose transport across brain endothelial cells (Blanc et al.,
1997), and activating the release of chemokines (Fiala et al., 1998) and cytokines
(Akama and Van Eldik, 2000). In this review we discuss the role of brain protein
oxidation in AD pathology.

2 Role of Aβ(1-42) in Oxidative Stress

Amyloid β-peptide, particularly the 42-mer Aβ(1-42), is thought to be cen-
tral to the pathogenesis of AD (Selkoe, 2001). In vitro and in vivo studies
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suggest that Aβ promotes oxidative stress and lipid peroxidation in synapto-
somes and neuronal cultures (Butterfield et al., 1994; Keller et al., 1997; Mark
et al., 1997; Yatin et al., 1999; Butterfield et al., 2001; Drake et al., 2003;
Mohmmad Abdul et al., 2004; Boyd-Kimball et al., 2005a, b; Mattson et al.,
1998). Altogether, these studies favor the suggestion that Aβ plays a central
role in the pathogenesis of AD as a mediator of oxidative stress. Although
senile plaques contain deposited Aβ, the toxic species of Aβ is likely small
oligomeric species (Drake et al., 2003; Klein et al., 2004; Ashe, 2005; Walsh et al.,
2005).

Aβ peptides (39–43 amino acids) are derived from the amyloid precursor pro-
tein (APP) present in both neurons and glial cells in the brain. Although the cellular
function of APP has not been completely elucidated, this protein is comprised of a
hydrophobic membrane-spanning domain, N-glycosylation sites, and sites for bind-
ing Zn2+ and Cu2+ with high affinity (Hesse et al., 1994). Copper is present at
substantial levels in the brain and its release as a result of synaptic activation can
reach mM concentrations in the synaptic cleft (Kardos et al., 1989). The interaction
between APP and Cu2+ may result in the reduction of Cu2+ to Cu+ and the formation
of an intramolecular disulfide bond (Mucke et al., 1994). In the presence of oxidants
such as H2O2, the APP–Cu interaction may cause APP fragmentation and increase
in the production of Aβ. Under normal conditions, Aβs appear to be normal prod-
ucts of APP metabolism and are present in cerebrospinal fluid (CSF) and plasma.
Studies by Huang et al. (Huang et al., 1999) reported evidence for a direct interaction
between Aβ and Fe3+/Cu2+ to create a strong positive formal reduction potential,
which can rapidly reduce Fe3+ and Cu2+ ions and trap molecular oxygen to generate
H2O2. Transition metals are highly enriched in senile plaques, where they are likely
to be bound to amyloid-β (Bush, 2000). Chelation of transition metals efficiently
resolves aggregated amyloid-β and senile plaques in vitro (Cherny et al., 2000). The
more pathological Aβ(1-42), which has a greater ability to aggregate than Aβ(1-40),
has a greater affinity for metals when compared to the latter peptide (Atwood et al.,
2000).

The neurotoxic properties of Aβ have also been shown to be associated with
methionine at residue 35 of Aβ (Met35) (Butterfield and Boyd-Kimball, 2005). The
substitution of methionine by norleucine from Aβ abolishes free radical production,
protein oxidation, and toxicity to hippocampal neurons (Butterfield and Boyd-
Kimball, 2005). In addition, substitution of a carbon atom for the S atom of methio-
nine completely abrogates Aβ(1-42) neurotoxicity (Yatin et al., 1999; Butterfield
and Kanski, 2002), and in vivo studies indicate methionine residue 35 is central
for Aβ-induced oxidative damage (Yatin et al., 1999). Studies from our laboratory
(Varadarajan et al., 2000) and others (Curtain et al., 2001) showed that Cu+2 bound
to Aβ(1-42) interacts with Met35 residue to produce free radicals; in the absence of
methionine in Aβ(1-42) redox metal ions play no role in the oxidative stress and neu-
rotoxicity induced by the peptide (Varadarajan et al., 2000, 2001). Taken together
these results are consonant with the notion that Aβ-induced protein oxidation may
in part account for neurodegeneration in AD brain (Butterfield and Boyd-Kimball,
2005).
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3 Protein Oxidation in AD

Reactive nitrogen species (RNS) and reactive oxygen species (ROS) can react with
proteins leading to oxidatively modified proteins indexed by protein carbonyls and
3-nitrotyrosine (3-NT). Hence, measuring the levels of protein carbonyls and 3-NT
reflects the level of protein oxidation in neurons. Increased oxidative stress dur-
ing aging or in neurodegenerative diseases may lead to accumulation of oxidized
proteins. As a consequence, proteins become resistant to proteasomal degrada-
tion. On the other hand, oxidative stress is also known to enhance protein turnover
accompanied by a specific removal of oxidized proteins. The removal of oxidized
proteins has been considered to be impaired in AD due to decreased proteasomal
activity (Ding et al., 2006; Halliwell, 2006). Therefore, increased oxidative stress
may lead to alterations in both oxidative modification and turnover of proteins and
may further trigger immune response. Oxidative damage has been associated with
aggregation of proteins, energy dysfunction, calcium dysregulation, mitochondrial
malfunction, chronic inflammation, altered antioxidant function, and accumulation
of redox-active metals (Butterfield, 2002).

3.1 Protein Carbonyls in AD Brain

Protein carbonyls are formed by backbone fragmentation (Fig. 1), hydrogen atom
abstraction at alpha carbons, attack on several amino acid side-chains (Lys, Arg,
His, Pro, Thr, etc.), and by the formation of Michael adducts between His, Lys,
and Cys residues and reactive alkenals (e.g., hydroxynonenal (HNE)) (Fig. 2).
Furthermore, glycation/glycoxidation of Lys amino groups, forming advance gly-
cation end-products (AGEs) (Berlett and Stadtman, 1997; Butterfield and Stadtman,
1997; Dalle-Donne et al., 2003a,b; Stadtman and Levine, 2003), can also lead to
protein carbonyl formation. In addition, a number of reactions of protein radicals
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can give rise to other radicals, which can cause damage to other biomolecules.
Protein carbonylation leads to oxidation of side-chain hydroxyls, converting them
into ketone or aldehyde derivatives, backbone fragmentation, formation of new
reactive species (peroxides, DOPA), release of further radicals and occurrence
of chain reactions. Most protein damage is irreparable and could lead to a wide
range of downstream functional consequences, such as dimerization or aggregation,
unfolding or conformational changes to expose more hydrophobic residues to an
aqueous environment, loss of structural or functional activity, alterations in cellular
handling/turnover, effects on gene regulation and expression, modulation of cell sig-
naling, induction of apoptosis and necrosis, and so on. These phenomena indicate
that protein oxidation has physiological and pathological significance (Butterfield
and Stadtman, 1997).

Certain oxidation products of proteins, such as oxidation of Cys to cystine, and
Met residues to methionine sulfoxide can be repaired by enzymes such as glu-
tathione reductase and methionine sulfoxide (Gabbita et al., 1999; Moskovitz et al.,
2002). Other enzymatic means of removing protein carbonyls involve carbonyl
reductase and aldehyde dehydrogenase. The majority of the oxidized proteins are
catabolized by proteasomal and lysosomal pathways, but some materials appear to
be poorly degraded and accumulate within the cell (Dean et al., 1997; Grune et al.,
2003). The accumulation of such damaged material may contribute to a range of
human pathologies.
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Protein carbonyls are chemically stable compared to the other products of oxida-
tive stress, for example, F2 isoprostanes, which are readily generated during sample
storage, processing, and analysis. Hence, protein carbonyls are a general and widely
used marker to assess the extent of oxidation of proteins in both in vivo and
in vitro conditions (Berlett and Stadtman, 1997; Butterfield and Stadtman, 1997;
Dalle-Donne et al., 2003a, b; Drake et al., 2003; Stadtman and Levine, 2003; Boyd-
Kimball et al., 2005b). Several sensitive assays were developed for detection of
oxidatively modified proteins (Winterbourn and Buss, 1999; Levine et al., 2000;
Dalle-Donne et al., 2003b).

In AD brain and plasma, several proteins have been identified as targets of
oxidative stress (Castegna et al., 2002a,b; Castegna et al., 2003; Dalle-Donne
et al., 2003a; Butterfield, 2004; Castegna et al., 2004b; Dalle-Donne et al., 2005;
Sultana et al., 2006d, 2006a). Immunohistochemical studies have revealed an
increase in carbonyl formation in AD brain (Hensley et al., 1995). However,
in that study, no oxidatively modified proteins were actually identified. A band
of oxidized protein at 78 kDa on one-dimensional oxyblots in AD plasma was
observed (Yu et al., 2003). A recent study revealed that several isoforms of
fibrinogen α-chain precursor protein and of α-1-antitrypsin exhibited a greater
specific oxidation in AD plasma (Choi et al., 2002). Using redox proteomics
(Dalle-Donne et al., 2006) our laboratory first identified cytosolic creatine kinase
BB isoform, β-actin, glutamine synthase, ubiquitin carboxy-terminal hydrolase
L-1, dihydropyrimidinase-related protein 2, alpha-enolase, phosphoglycerate
mutase 1 (PGM1), gamma-soluble N-ethylmaleimide-sensitive factor attachment
protein (SNAP), peptidyl-prolyl cis/trans isomerase 1 (Pin1), triosephosphate iso-
merase, ATP synthase alpha chain, and carbonic anhydrase 2 as targets of protein
oxidation in AD brain, and further studies showed that the oxidatively modified
proteins are generally functionally inactive [see Table 1] (Castegna et al., 2002a,b;
Castegna et al., 2003; Butterfield, 2004; Sultana et al., 2006c, 2006a). Thus,
identification of carbonylated proteins should be followed by functional assessment
of the protein, whether it is enzyme or structural protein. These functional studies
may identify metabolic or structural defects caused by oxidative modification.

These data support the notion that protein carbonylation perturbs energy
metabolism, pH regulation, cell cycle, and mitochondrial functions, as well as Aβ

production (Pastorino et al., 2006).

3.2 Protein Nitration in AD

Another marker for protein oxidation is nitration of tyrosine residues, and numerous
previous studies support the notion that nitrosative stress also contributes to neu-
rodegeneration in AD (Smith et al., 1997; Tohgi et al., 1999; Castegna et al., 2003;
Sultana et al., 2006b). A number of mechanisms for tyrosine nitration of protein
have been proposed, and the two widely believed to exist in vivo involve formation
of peroxynitrite or mediation via hemeperoxidases (Brennan et al., 2002). These
mechanisms involve NO or its by-products that react with ROS (Beckman et al.,
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Table 1 Carbonylated and nitrated proteins in AD brain

Protein Functions
Carbonylated
Proteins Nitrated Proteins References

Energy-related enzymes CK, Enolase,
TPI, PGM1

Enolase, TPI, LDH,
GAPDH

Castegna et al. (2002a, b, 2003)
Aksenova et al. (2002)
Sultana et al. (2006c, d )

Neurotransmitter-related
proteins

GS – Butterfield et al. (1997)
Castegna et al. (2002b)

Proteasome-related
proteins

UCHL1
HSC 71

– Castegna et al. (2002b)
Sultana et al. (2005b)

Cholinergic system Neuropoly-peptide
h3-

Castegna et al. (2003)

PH regulation-protein CA2 CA2 Sultana et al. (2005b)
Structural proteins DRP2 β-actin Castegna et al. (2002a)

Sultana et al. (2005b)
Cell cycle Pin 1 Sultana et al. (2005a, b)
Synaptic abnormalities

and LTP
Gamma-SNAP Sultana et al. (2005b)

Mitochondrial
abnormalities

– ATP synthase alpha
chain

VDAC-1

Sultana et al. (2006b)

CK, creatine kinase BB; TPI, triose phosphate isomerise; PGM1, phosphoglycerate mutase
1; LDH, lactate dehydrogenase; CA2, carbonic anhydrase 2; GS, glutamine synthase;
UCHL1, ubiquitin carboxy-terminal hydrolase L-1; HSC 71, heat shock cognate 71; DRP2,
dihydropyrimidinase-related protein 2; Pin1, peptidyl-prolyl cis/trans isomerase; Gamma-
SNAP, gamma-Soluble NSF-attachment proteins; VDAC, voltage dependent anion channel
protein.

2001). NO reacts with superoxide, a toxic anion produced in the cells, to form per-
oxynitrite (a potent protein nitrating agent) especially after reacting with carbon
dioxide (Radi et al., 1999) (Fig. 3). The level of superoxide is kept low in the cell
by superoxide dismutase, an antioxidant enzyme. Increased levels of superoxide
may be caused either by the overproduction of NAD(P)H oxidases and NOSs or by
processes that produce ROSs, such as the electron transport chain (ETC) in mito-
chondria or by xanthine oxidase (Beckman, 1996; Xia et al., 1996; Ischiropoulos,
1998).

The AD brain has been reported to show mitochondrial abnormalities (Beal,
1998) which could lead to leakage of O2

–· leading to the production of peroxynitrite
at diffusion-controlled rates. Peroxynitrite is highly reactive with a very short half-
life, and therefore it would react with the proteins, lipids, and carbohydrates near
the site of generation and might be involved in the neuronal deterioration observed
in AD. The amino acids cysteine, methionine, phenylalanine, and tyrosine are par-
ticularly susceptible to nitration. A second mechanism of tyrosine nitration is via
hemeproteins. Nitrite, a breakdown product of NO, reacts with hydrogen peroxide
to generate nitrogen dioxide. Nitrogen dioxide is also highly unstable and reacts
close to the site of its generation as does peroxynitrite.
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Fig. 3 Formation of peroxynitrite from nitric oxide and superoxide anion and reaction products
with carbon dioxide

RNS generated within a physiologically relevant concentration by Ca+2-activated
constitutive nitric oxide synthase (NOS) are not toxic; rather RNS so generated are
relatively specific in their cellular targets (Lafon-Cazal et al., 1993). NO is gener-
ated from three isoforms of NOS: neuronal NOS (nNOS), inducible (iNOS), and
endothelial NOS (eNOS) (Stuehr, 1999; Alderton et al., 2001). The role of NO in
cell physiology is unclear and its role in disease is controversial with both ben-
eficial and detrimental effects. NO may have direct effects such as signaling by
interacting with soluble guanylate cyclase leading to vasodilation and causing alter-
ations in gene expression and also may interact with other molecules to generate
more reactive species (Ignarro et al., 1987; Beckman, 1996; Ischiropoulos, 1998;
Zamora et al., 2002). One such reactivity is to generate potent nitrating species that
result in the formation of 3-nitrotyrosine in proteins. The mechanism, regulation,
and role of protein tyrosine nitration are controversial (Beckman and Koppenol,
1996; Ischiropoulos, 1998).

Recently, several studies suggested that protein nitration could be a cellular sig-
naling mechanism and is often a reversible and selective process, similar to protein
phosphorylation (Aulak et al., 2004; Koeck et al., 2004). In addition, modified pro-
teins are believed to be either degraded or subject to processes that could lead to
enzymatic “denitration” (Gow et al., 1996; Kamisaki et al., 1998; Irie et al., 2003).
The latter possibility is intriguing because this would allow the process of tyrosine
nitration to be reversible and thus enable a more dynamic physiological role. Protein
nitration is observed under normal conditions in all tissues. In AD brain levels of
nitrated proteins were found to be increased compared to that of control (Smith et al.,
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1997; Castegna et al., 2003; Sultana et al., 2006b). Ubiquitin carboxyl-terminal
hydrolase L-1 (UCH L-1), one of the components of the proteosomal pathway, was
identified as an oxidized protein in the inferior parietal and hippocampal regions of
AD, further suggesting a role for nitration in protein accumulation (Castegna et al.,
2003; Sultana et al., 2006b).

Tyrosine residues are crucial in redox cell signaling and oxidative inflammatory
injury, due to the fact that nitration has been shown to alter protein function, includ-
ing modulation of catalytic activity, cell signaling, and cytoskeletal organization
(Schopfer et al., 2003). Addition of nitrite to the protein at the 3-position of tyrosine
residues (Fig. 4) sterically hinders the phosphorylation of the tyrosine OH moiety,
a prominent functional regulation site of proteins. Thus, 3-NT could, potentially,
render a protein dysfunctional. Decreased tyrosine phosphorylation could lead to
cell death (Lafon-Cazal et al., 1993; Butterfield and Stadtman, 1997). Nitration of
proteins may also lead to irreversible damage to the proteins and also affect the
energy status of neurons by inactivating key enzymes (Ischiropoulos, 1998; Aulak
et al., 2004; Koeck et al., 2004). This widespread occurrence of oxidative alterations
not only decreases or eliminates the normal functions of these macromolecules, but
also may activate an inflammatory response (the complement cascade, cytokines,
acute phase reactants, and proteases) in the AD brain (Meda et al., 1995; Fiala et al.,
1998).
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Fig. 4 Mechanism of 3-NT formation

A number of previous studies showed that dityrosine and 3-NT levels were
elevated in the hippocampus, IPL, and neocortical regions of the AD brain and
in ventricular cerebrospinal fluid (VF) (Smith et al., 1997; Hensley et al., 1998;
Tohgi et al., 1999; Castegna et al., 2003; Sultana et al., 2006b). The increased
3-NT protein adducts in CSF of AD subjects probably reflect increased leakage
of mitochondrial electron equivalents and protein nitrating agents, with resultant
and increased protein nitration in brain tissue. Furthermore, recent work demon-
strates that ONOO– can induce α-synuclein oligomerization through covalent
3,3′-dityrosine cross-linking and may facilitate the misfolding and deposition of
select proteins through nitrosative and/or oxidative modification. Horiguchi et al.
(Horiguchi et al., 2003) demonstrated the presence of nitrated tau in pretangles,
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tangles, and tau inclusions in AD brain. The expression of nitration was robust in
pretangles of early AD cases compared to those of more advanced cases, suggesting
that tau nitration may be an early event in AD.

Using a redox proteomics approach we reported specific nitration of alpha
enolase, gamma-enolase, L-lactate dehydrogenase, triosephosphate isomerase,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ATP synthase alpha chain,
voltage-dependent anion channel protein 1, and carbonic anhydrase 2 in AD brain
(Castegna et al., 2003; Sultana et al., 2006b) (Table 1). These data support the notion
that nitration of specific proteins perturbs energy metabolism, pH regulation, and
mitochondrial functions, which could contribute to the mechanisms for the onset
and progression of AD.

The brain depends on glucose as a source of energy, and AD brain has
been reported to have altered glucose utilization and consequently altered energy
metabolism assessed by PET scanning (Geddes et al., 1996; Messier and Gagnon,
1996; Vanhanen and Soininen, 1998; Rapoport, 1999). The identification of CK,
ENO1, TPI, GAPDH, PGM1, and α-ATPase as oxidized proteins using redox
proteomics suggest that these proteins are involved directly or indirectly in ATP
production (Aksenova et al., 2002; Castegna et al., 2002a,b; Castegna et al., 2003;
Sultana et al., 2006d, 2006a). Furthermore, the activity of these identified oxi-
dized proteins (e.g., CK, enolase, PGM1, GAPDH, and ATPase activities), were
reportedly diminished in AD brain (Hensley et al., 1995; Aksenova et al., 2002;
Sultana et al., 2006d). The oxidative modification and consequently the altered
enzyme activity would lead to decreased ATP levels that would lead to impaired
ion-motive ATPases. These pumps are necessary to maintain potential gradients,
operate ion pumps, maintain membrane lipid asymmetry, and so on. Such changes
could also lead to exposure of phosphatidylserine to the outer membrane leaflet,
a signal for apoptosis (Castegna et al., 2004a; Mohmmad Abdul and Butterfield,
2005). Moreover, a diminution of ATP can also induce hypothermia, causing abnor-
mal tau phosphorylation through differential inhibition of kinases and phosphatases
(Planel et al., 2004). Recent studies reported that GAPDH functions as a NO sensor
(Hara et al., 2006). Consequently, nitrosative dysfunction of GAPDH conceivably
could be involved in the excess nitration observed in AD. Further studies will be
necessary to clarify this point.

In AD brain the ubiquitin–proteasome pathway was found to be dysfunctional
(Castegna et al., 2002a; Choi et al., 2004; Sultana et al., 2006d), and the iden-
tification of UCHL-1 as an oxidized protein with reduced activity could inhibit
the process of the degradation of damaged, excess, or altered proteins and may
further promote the aggregation of proteins that could lead to synaptic degener-
ation in AD brain (Castegna et al., 2002a; Choi et al., 2004; Healy et al., 2004;
Sultana et al., 2006d). Recent in vitro studies showed that HNE, a lipid peroxida-
tion product, decreased the activity of recombinant UCH-L1 (Okada et al., 1999;
Shringarpure et al., 2001; Hyun et al., 2002), suggesting oxidative modification of
UCH-L1 inactivates its hydrolase activity. Proteomics identification of UCH-L1 as
an oxidatively modified protein in AD (Castegna et al., 2002a; Sultana et al., 2006d)
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was recently confirmed by others (Choi et al., 2004). Taken together, these differ-
ent lines of evidence support a role for dysfunction of the ubiquitin–proteasome
pathway in the pathogenesis of AD. Others showed that diminished proteasome
function could lead to neurodegeneration (Halliwell, 2002) and oxidative stress
(Ding et al., 2003). On the other hand, oxidative stress leads to proteasome dysfun-
tion (Halliwell, 2002, 2006), suggesting a vicious feedforward cycle of oxidative
stress, proteasome dysfunction, and neurodegeneration.

Neuropolypeptide h3 (NPH3), a phosphatidyloethanolamine-binding protein
[PEBP] or cholinergic neurostimulating peptide, may play an important role in reg-
ulating choline acetyl transferase (ChAT) and maintaining phospholipid asymmetry,
a process that is important to normal mitochondrial and plasma membrane function
(Castegna et al., 2004a; Mohmmad Abdul and Butterfield, 2005). Oxidation of this
protein could lead to impaired cholinergic properties, mitochondria function, and
apoptosis in AD.

β-actin (ACT) and dihydropyrimidinase-related protein 2 (DRP2) were found to
be downregulated and oxidatively modified in AD brain (Coleman and Flood, 1987;
Lubec et al., 1999; Castegna et al., 2002a,b, 2003). Alterations in the structure of
proteins induced due to oxidation could be one of the contributing factors involved
in the observed loss of interneuronal connections, neuronal repair, and shortened
dendritic lengths in AD brain (Coleman and Flood, 1987), conceivably leading to
memory impairment and synapse loss, clearly important for AD.

Another important protein that is found to have reduced expression and is also
oxidized and has reduced activity in AD brain is peptidyl-prolyl cis/trans isomerase
(Pin1). This protein is colocalized with phosphorylated tau (Holzer et al., 2002; Kurt
et al., 2003; Ramakrishnan et al., 2003; Sultana et al., 2006c, d). Pin1 is a chaperone
enzyme that recognizes phosphorylated Ser-Pro and phosphorylated Thr-Pro motifs
in proteins, and alters the conformation of proteins from cis to trans between a given
amino acid and a proline (Schutkowski et al., 1998). One of the target proteins of
Pin1 is a protein that removes phosphate moieties from tau (Shen et al., 1998).
Oxidative modification of Pin1 may lead to hyperphosphorylation of tau, and entry
into a cell cycle eventually leading to tangle formation and apoptosis (Nagy et al.,
1997; Zhou et al., 2000; Smith et al., 2004). In addition to a role of Pin1 in neu-
rofibrillary tangle formation, recent studies suggest that Pin1 plays a role in APP
processing, and therefore, in Aβ levels in brain (Pastorino et al., 2006). Thus, Pin1
is involved in two of the major pathological hallmarks of AD. Pin1 is oxidatively
modified and dysfunctional in mild cognitive impairment (MCI), a precursor condi-
tion to AD (Butterfield, 2006). Further studies are required to understand the role of
Pin1 in the disease progression.

Soluble N-ethylmaleimidesensitive factor (NSF) attachment protein (γ-SNAP)
is another protein found to be oxidatively modified in AD brain, and this protein is
important in vesicular transport for neurotransmitter release, hormone secretion, and
mitochondrial integrity. Hence, oxidation may lead to an altered neurotransmission
system and impaired learning and memory in AD (Masliah et al., 1994; Scheff and
Price, 2003; Sultana et al., 2006d).
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The pH of the cell is crucial for the normal functioning of the cells. Carbonic
anhydrase 2 (CA2) regulates cellular pH, CO2, and HCO3

– transport, and maintains
H2O and electrolyte balance (Sly and Hu, 1995) by reversible hydration of CO2 in
normal cells. This protein has been reported to be oxidized in AD brain and also
showed a decrease in activity (Meier-Ruge et al., 1984; Poon et al., 2004; Sultana
et al., 2006d). Functionally inactive CA2 could induce changes in buffering systems
in the brain, which could consequently lead to protein aggregation. Protein aggre-
gation is more pronounced in AD brain, and, because cellular pH could be altered,
altered mitochondrial production of ATP could be affected.

The voltage-dependent anion channel (VDAC) is identified as one of the oxi-
dized proteins in AD brain (Sultana et al., 2006a,b). The oxidation of this protein
in AD suggests an alteration in the function of the mitochondrial permeability
transition pore (MPTP) leading to mitochondrial depolarization and altered sig-
nal transduction pathways, which could be crucial in synaptic transmission and
plasticity. Moreover, alterations in the MPTP could lead to apoptotic processes.
In addition, dysfunction of mitochondria recently has been reported to alter APP
metabolism, enhancing the intraneuronal accumulation of amyloid β-peptide and
enhancing neuronal vulnerability (Busciglio et al., 2002).

Overall, from the data presented above it is clear that oxidation of specific brain
proteins alters the structure and thereby function of the proteins. Such changes could
be important in AD pathology.

4 Is Protein Oxidation an Early or Late Event
in AD Pathogenesis?

In recent years, the clinical stages preceding AD presenting memory impairment
but without overt dementia have attained increased attention in the AD clinical and
research fields. Patients with MCI are subjects with memory or other cognitive com-
plaints but who do not fulfill the dementia criteria (Visser et al., 2001). Persons with
MCI represent a heterogeneous group of patients with several possible explanations
for the cognitive deficits. A high proportion of MCI patients are probably early
AD subjects, although other diagnoses are also included in this diagnostic entity.
Biochemical markers for AD should reflect the pathogenesis of the disorder.

Both in MCI and AD patients, mean plasma levels of nonenzymatic antioxi-
dants and activity of antioxidant enzymes appeared to be lower than in controls,
with no parallel induction of antioxidant enzymes (Keller et al., 2005). In order to
explain these results it has been suggested that the increased free radical production
in MCI might lead to a rapid consumption of plasma antioxidants without a simul-
taneous activation of new molecules of antioxidant enzymes. Individuals with MCI,
and subsequently with AD, are likely to have an inadequate antioxidant enzymatic
activity, unable to counteract the increased production of free radicals during the
pathogenesis of the disease.
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Subjects with MCI have increased protein oxidation in hippocampus and IPL
(Butterfield et al., 2006a) and superior and medial temporal gyri (Keller et al.,
2005). Additionally, using redox proteomics we identified three specific proteins,
that is, enolase, glutamine synthase, and Pin1 as common targets of protein oxida-
tion between MCI and AD which suggests that protein oxidation of these selected
proteins could be important in initial events involved in AD pathogenesis (Fig. 5).
Furthermore, several gene mutations associated with AD have been observed in
subjects with MCI including mutations in apolipoprotein E, presenilin 1, and the
amyloid precursor protein (Traykov et al., 2002; Nacmias et al., 2004). Increased
levels of lipid peroxidation have been reported in the brain of persons with MCI
(Keller et al., 2005; Markesbery et al., 2005; Butterfield et al., 2006b). Thus,
increased levels of protein and lipid peroxidation could be implicated as early events
in AD pathophysiology and also suggest that pharmacological intervention to pre-
vent protein and lipid peroxidation at the MCI stage or earlier may be a promising
therapeutic strategy to delay or prevent progression to AD.

AD
gamma-Enolase

alpha-enolase

glutamine

Creatinine Kinase

Triose Phosphate Isomerase
Phosphoglycerate mutase 1

Ubiquitin carboxy-terminal
hydrolase L-1

Heat Shock Cognate 71

Dihydropyrimidinase-related
protein 2

Gamma-SNAP,

Carbonic anhydrase 2

MCI

synthetase

peptidyl-prolyl
cis/trans isomerase 1.

Pyruvate kinase M2

Fig. 5 Comparison between the MCI and AD brain to see the common targets of protein oxidation

Very recent studies reported increased oxidative damage in nuclear and mito-
condrial DNA in MCI, as indexed by increased levels of 8-hydroxyguanosine
(8-OHdG), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (fapyguanine), 8-hyd-
roadenine, 4,6-diamino-5-formamidopyrimidine (fapyadenine), and 5-hydroxy-
cytosine (Wang et al., 2006). Due to the crucial role that DNA plays in cells,
high levels of oxidation, particularly early in the progression of AD, may result
in a decline of normal cell function through altered transcription, changes in pro-
tein expression, or cross-linking with proteins. Taken together, these results suggest
that oxidative damage is one of the factors involved in the pathogenesis of neu-
rodegeneration in AD and is not simply a late effect of the neurodegenerative
process.
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5 Conclusions

Protein oxidation may be an early event in AD pathogenesis as supported by the
data from the MCI brain. With exceptions related to oxidative signaling or other
beneficial processes, excessive oxidation of proteins has been reported to decrease
the functionality of most proteins, which suggests that protein oxidation is harmful
for cell survival. Further studies are in progress to understand the role of protein
oxidation and its abrogation in AD by using in vivo and in vitro models of AD
centered around Aβ(1-42) (Sultana et al., 2006a).
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Abstract Oxidative stress is an early event in the development of Alzheimer dis-
ease (AD), preceding classic fibril formation which eventually deposits as amyloid-β
senile plaques and neurofibrillary tangles composed of tau protein. Mitochondrial
and metallic abnormalities are likely precursors of oxidative stress during the early
stages of AD and, under degenerative conditions, the capacity of neurons to main-
tain redox balance decreases and results in mitochondrial dysfunction, a critical
organelle involved in AD progression. Fibril formation, including amyloid-β pro-
duction and tau phosphorylation, can be explained as a compensatory mechanism
that may eventually enhance oxidative stress by increasing reactive oxygen species
levels among many other free radicals. In this scenario, deposition of Aβ in the
extracellular environment and tau protein in the intracellular environment can be
explained as a redox imbalance with tragic consequences. If this hypothesis is cor-
rect, pharmacological treatments directed against amyloid-β or tau may not provide
a benefit. In contrast, antioxidant strategies may be helpful in treating AD symp-
toms, although significant extended benefits have not been realized to date. In
sum, the damage observed in the brain tissue of AD patients may be minimized
with a healthy daily diet, exercise, and intellectual activities, factors that all reduce
oxidative stress.
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1 Introduction

Alzheimer disease (AD) is defined by insoluble filamentous aggregates known as
senile plaques and neurofibrillary tangles (NFT), of which the major components
are amyloid-β (Aβ) and tau protein, respectively (Wood et al., 1986; Arriagada
et al., 1992; Goedert et al., 1998). These lesions accumulate in regions that are
responsible for cognitive functions (Ball et al., 1988) and contribute towards the
declining activities of daily living as well as the neuropsychiatric symptoms and
behavioral changes seen in patients with AD. Definitive risk factors for AD include
genetic predisposition (i.e., apolipoprotein E (ApoE), amyloid-β protein precursor
(AβPP), presenilins (PS)), medical conditions, environment, and lifestyle (Smith,
1998; Wang et al., 2004a,b; Williamson and LaRusse, 2004; Lemos et al., 2009;
Zawia et al., 2009).

Oxidative stress has also been strongly associated with the development of AD
(Smith et al., 1997a, 1998, 1999; Paola et al., 2000; Smith et al., 2000a,b; Nunomura
et al., 2001; Zhu et al., 2007). Therefore, it is not surprising that oxidative stress is
related to the neurodegenerative process, inasmuch as it is known to affect, and
result in, metabolic dysfunction, mitochondrial dysfunction, dysregulation of metal
homeostasis, and alterations in the cell cycle, all of which contribute to the classi-
cal fibril aggregations, Aβ plaques and NFT. These structures, counter-intuitively,
may be compensatory responses mounted to combat such oxidative stress (Lee
et al., 2005; Nunomura et al., 2006; Zhu et al., 2006; Nunomura et al., 2007a; Lee
et al., 2009a; Lu et al., 2009). If this scenario is correct, pharmacological treat-
ments reducing fibril aggregation may be detrimental (Perry et al., 2000; Smith et al.,
2002a).

The aim of this chapter is to evaluate the relationship between AD and oxidative
stress and to consider how this knowledge may dictate treatment options for the
clinical symptoms of the disease.

2 Oxidative Stress, Genetics, and Alzheimer Disease Pathology

Behavioral and cognitive decline in AD is accompanied by pathological accumu-
lations of Aβ-containing senile plaques and tau-containing NFTs (Van Hoesen and
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Hyman, 1990; Van Hoesen et al., 1991). AβPP and PS1 mutations result in hetero-
geneity in the clinical expression of neurological features during disease progression
compared to sporadic AD, suggesting a genetic influence (Zekanowski et al., 2006;
Larner and Doran, 2009). Although an accurate cascade that charts the effect of
mutations through to the progression of dementia at the end-stage is an area of
extensive study, one common feature in all AD cases is Aβ deposition resulting
from the cleavage of AβPP (Younkin, 1994). Mutations are not just limited to AβPP
and the PS genes. Recently, mutations in the tau gene, found in familial cases of
frontotemporal dementia, which are characterized by an intracellular accumulation
of polymerized tau as the primary cause of neurodegeneration, also exhibit increased
Aβ40 and Aβ42 deposition. These data bring new support for a relationship between
tau gene mutations and Aβ deposition (Vitali et al., 2004).

Despite all of the evidence that links AD to a genetic component, a detailed
mechanism leading from one event to the other remains elusive. In this regard, some
authors have suggested that early life exposure to the xenobiotic metal lead (Pb)
enhanced the expression of genes associated with AD, repressed the expression of
others, and result in an increased burden of oxidative DNA damage in the aged
brain; the mechanism acts through either hypomethylation or hypermethylation of
DNA (Zawia et al., 2009).

The association between genetics and neurodegeneration is also supported by
predisposing risk factors such as the ε allele of the ApoE gene. In particular, the ε4
allele has been strongly correlated with increased risk of AD, whereas the ε3 allele
is not (Basurto-Islas et al., 2008). In addition, the ε4 allele of the ApoE gene has
been associated with increased vascular Aβ deposition, whereas, in contrast, the ε2
allele is associated with cerebral amyloid angiopathy (CAA) related to intracerebral
hemorrhage (Hamaguchi and Yamada, 2008). However, the genetic association is
not just the result of coding sequence changes; different levels of gene expression
may also be involved, that is, the hypo- or hypermethylation of DNA, as mentioned
earlier, that also contribute to the disease (de Carvalho et al., 2000; Speranca et al.,
2008).

Interestingly, deficient or altered energy metabolism that could change the overall
oxidative microenvironment in neurons during the pathogenesis and progression of
AD, leading to alterations in mitochondrial enzymes and in glucose metabolism in
AD brain tissue, has been found in AD patients that also carried the ApoE ε4 allele
(Mosconi et al., 2008).

On the other hand, oxidative stress has also been found to induce PS1 transcrip-
tion, thereby promoting production of pathological levels of Aβ in AD (Tamagno
et al., 2008). Indeed, it has been proposed that the pathophysiology of oxidative
stress is reflected in damage to tissue biomolecules, including lipids, proteins, and
DNA by free radicals (Migliore and Coppede, 2009).

Clearly, although not fully understood, the genetic component and oxidative
stress may act synergistically or cooperatively, creating a pathological condition that
contributes to the protein deposition seen in AD, although the precise mechanisms
involved are unknown.
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2.1 Fibrillary Aggregates and Oxidative Stress

Senile plaques and NFTs are also present in a considerable percentage of elderly
non-AD brains. Although these markers constitute the criteria for the diagnosis of
AD, they do not always correlate with cognitive decline (Davis et al., 1999; Lee
et al., 2007; Castellani et al., 2008). In fact, studies have appropriately raised the
question whether senile plaque deposition has any relationship to the cognitive
decline observed in AD (Dickson et al., 1992) inasmuch as Aβ deposition shows
no correlation with neuronal loss (Gomez-Isla et al., 1997). In contrast, cognitive
decline correlates well with NFT density (Garcia-Sierra et al., 2001), although the
degree of neuronal loss greatly exceeds the amount of NFTs (Gomez-Isla et al.,
1997). Nonetheless, neuronal loss has been halted and memory defects reversed in
transgenic models of tau mutations by turning off mutant tau expression (Santacruz
et al., 2005).

Despite the debate over the relationship of fibril deposition and clinical symp-
toms, their role in neurodegeneration remains as strong as ever. Regarding such a
relationship, it has been found that Aβ-induced nitro-oxidative damage promotes the
nitrotyrosination of the glycolytic enzyme triosephosphate isomerase in human neu-
roblastoma cells, suggesting an oxidative stress pathway as the molecular mediator
(Guix et al., 2009). Indeed, it has been reported that behavioral stress aggravates AD
pathology via generation of metabolic oxidative stress and MMP-2 downregulation
in AD mouse models (Lee et al., 2009b).

Clearly, oxidative stress plays a crucial role in neurodegeneration (Nunomura
et al., 2007b; Sajad et al., 2009), however, the mechanism by which amyloid depo-
sition causes oxidative stress is the subject of extensive study. In vitro studies have
shown that monomeric Aβ1-40 and Aβ1-42 exhibit antioxidant activity in cultured
neurons (Zou et al., 2002). Furthermore, Aβ was found to be one of the most impor-
tant antioxidants in cerebrospinal fluid (CSF). Indeed, recent reports suggest that
the fibrillary forms typically observed in senile plaques and NFTs may actually be
neuroprotective, because Aβ seems to inhibit oxidation by chelating metal ions, a
function that may also equally apply to tau protein (Kontush et al., 1996; Kontush,
2001; Smith et al., 2002b; Caughey and Lansbury, 2003; Walsh and Selkoe, 2004).
Nevertheless, this fibrillar formation seems to be accompanied by further compen-
satory changes that ultimately result in additional oxidative insult during the disease
(Lee et al., 2004, 2005).

Based on these observations, it is clear that a close and highly complicated
relationship exists between fibril deposition and oxidative stress during neurode-
generation.

2.2 Amyloid-β Peptide

The Aβ plaque was one of the first identified hallmarks of AD. It has been proposed
that these structures are the main cause of AD inasmuch as they appear in the limbic
area, which is affected in AD (Giannakopoulos et al., 2003), and it is thought that
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Aβ binds to neurons activating apoptotic pathways that eventually contribute to neu-
rodegeneration (Gamblin et al., 2003). Furthermore, Aβ1-42 has been determined to
be the most toxic form to cultured neurons, because the Aβ1-42 oligomer was able
to activate the apoptotic pathway leading to caspase activation (Yankner et al., 1990;
Dahlgren et al., 2002; Gamblin et al., 2003; Yao et al., 2005). However, numerous
studies support the idea that an oxidative event is critical for Aβ toxicity (Pratico
et al., 2002): (1) Aβ staging does not distinguish between cognitive changes and
dementia; and (2) Aβ shows overlap among the various clinical dementias (Gold
et al., 2001). Along these lines, plaques have been further classified into subtypes
such as senile, diffuse, and neuritic, and, in this regard, it is generally accepted that
diffuse plaques (Aβ deposits without cores or a neuritic component) are merely dec-
orative in nature, having little impact, if any, on cognitive function, whereas neuritic
plaques are more pathogenic. It is thought that diffuse plaques appear during the
early preclinical stages of the disease and eventually mature into a defined structure,
the neuritic plaque. However, this hypothesis and the role of plaque maturation dur-
ing AD pathogenesis remain controversial. Here again, no clinical correlation has
been found between plaques and the degree of cognitive decline (Arriagada et al.,
1992).

In addition to being a pathological hallmark of AD, Aβ plays an important role
in normal cell development and maintenance (Atwood et al., 2003). Some propose
that diffuse amyloid plaques may be a compensatory response aimed at reducing
oxidative stress, because there is a negative correlation between Aβ deposition and
oxidative damage in Down syndrome patients, as well as AD patients (Nunomura
et al., 2000; Smith et al., 2000b; Nunomura et al., 2001). Aβ is also highly involved
in the neurodegenerative process, although its contribution remains debatable. Some
authors have suggested that Aβ leads to depletion of cellular choline stores and con-
sequently contributes to the selective vulnerability of cholinergic neurons in AD
(Allen et al., 1997). Indeed, a pathological role has been attributed to Aβ accumula-
tion in the brain of AD patients (Wang et al., 2007b). In point of fact, the majority of
efforts for developing AD therapeutics have been directed towards eliminating the
fibrillar form of aggregated Aβ (Asuni et al., 2006; Matsuda et al., 2009), although
there is debate about the potential efficacy of this approach (Lee et al., 2006; Shah
et al., 2008). Why should we doubt the effectiveness? The answer is far from sim-
ple, however, growing evidence supports a nonpathological role for the Aβ peptide
(Lee et al., 2007). In fact, it has been proposed that Aβ deposition may be a primary
antioxidant defense indicating that Aβ expression is an adaptive response rather than
a cause of AD (Castellani et al., 2006; Lee et al., 2007; Castellani et al., 2008).

Chelation of metals by Aβ may play a role in oxidative stress (Dong et al., 2003;
House et al., 2004). Specifically, the methionine at residue 35 of the Aβ sequence
can scavenge free radicals and also reduce metals to their high-activity, low-valency
form, showing both pro- and antioxidant properties (Cuajungco et al., 2005). On the
other hand, Aβ is able to initiate oxidation of different biomolecules; for example,
Aβ induces the peroxidation of membrane lipids and lipoproteins, which generates
H2O2 and hydroxynonenal in neurons, and damages DNA (Huang et al., 1999a; Xu
et al., 2001; Butterfield et al., 2002).
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Despite the controversy over the toxicity of AβPP and Aβ, it can be inferred
from the current data that Aβ may be playing, as proposed, a compensatory role that
eventually becomes pathological by activating oxidative stress pathways, although
more data are needed to support this hypothesis.

2.3 Tau Protein

The main function of the tau protein is to stabilize microtubules; moreover, tau may
also be involved in signal transduction, organelle transport, and cell growth, as well
as anchoring of enzymes (Johnson and Hartigan, 1999; Johnson and Jenkins, 1999;
Sontag et al., 1999). Furthermore, tau has a role in modulating axonal morphol-
ogy and polarity (Buee et al., 2000). Therefore, it is not surprising that microtubule
abnormalities and tau phosphorylation are also associated with AD because cell
cycle re-entry, an early feature in AD (Webber et al., 2005; Evans et al., 2007; Lee
et al., 2009a), and candidate tau kinases that have been implicated in cell cycle
control such as Cdk2, Cdk5, Cdc2, and MAPK are all increased in AD in a topo-
graphical manner that overlaps with hyperphosphorylated tau (Vincent et al., 1997;
Swatton et al., 2004; Wang et al., 2004c, 2007a), which has also been proposed as
an early event in tau-mediated pathology (Mondragon-Rodriguez et al., 2008a,b).
A tau transgenic mouse line, THY-Tau22, expressing a mutated human tau pro-
tein that has been linked to frontotemporal dementia with Parkinsonism linked to
chromosome-17 displays increased neurogenesis associated with tau hyperphospho-
rylation. Later, cell cycle events, abnormal tau phosphorylation, and tau aggregation
occur preceding neuronal death and neurodegeneration (Schindowski et al., 2008).

Tau is highly phosphorylated; at least 30 phosphorylation sites have been
described, the majority are Ser-Pro and Thr-Pro motifs. Some of these motifs seem
to be crucial to the development of AD. For example, phosphorylation at Ser262
mediated by P70S6 kinase dramatically reduces the affinity of tau for microtubules
in vivo (Hamdane et al., 2003; Zhou et al., 2008b). Furthermore, phosphorylation
at Ser202 appears to enhance tau polymerization; and phosphorylation at two sites
(Ser202-Thr205) makes filament formation more sensitive to small changes in tau
concentration (Rankin et al., 2005). Thus, phosphorylation outside the microtubule-
binding domains, such as Ser202 and Thr205, may strongly influence tubulin
assembly by modifying the affinity between microtubules and tau as well as tau
itself (Alonso et al., 1996, 2001). Moreover, phosphorylation has been found to reg-
ulate axonal transport by controlling tau binding to kinesin (Cuchillo-Ibanez et al.,
2008).

Regarding phosphorylation, members of the stress-activated protein kinase
(SAPK) family have been shown to phosphorylate tau in vitro. SAPKIγ (or Jun
N-Terminal kinase, JNK1), SAPK2a (p38), SAPK2β (p38 β), SAPK3 (p38γ), and
SAPK4 can phosphorylate tau, although SAPK3 and SAPK4 are the most efficient
in vitro (Goedert et al., 1997; Reynolds et al., 1997). In AD, hyperphosphorylated
tau accumulates in neurons, and being a constitutive element of NFTs, eventually
leads to degeneration (Alonso et al., 2001; Garcia and Cleveland, 2001).
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The abnormal phosphorylation of tau associated with AD may be related to
either an increase in kinase activity (glycogen synthase kinase 3β, cyclin-dependent
kinase-5, p42/44 MAP kinase, p38 MAPK, stress-activated protein kinases, mitotic
protein kinases) or a decrease in phosphatase activity (protein phosphatases 1, 2a,
2b), suggesting soluble tau as a cause of neuronal degeneration (Buee et al., 2000;
Tian and Wang, 2002; Chen et al., 2008; Liu et al., 2008; Yang et al., 2008; Zhou
et al., 2008a).

Hyperphosphorylation of tau has also been proposed to be protective (Lee et al.,
2005); phosphorylation may prevent advanced tau processing, that is, cleavage of
tau at site Asp421, an event that enhances fibril formation (Guillozet-Bongaarts
et al., 2006). Phosphorylation plays a pivotal role in redox balance, so it is perhaps
not surprising that oxidative stress, through activation of MAP kinase pathways,
leads to phosphorylation of tau (Zhu et al., 2000, 2001a,b). MAP kinase activation
and heme oxygenase (HO-1) induction may be but a few of the many responses that
result from lipid peroxidation. Consequently, oxidative damage can no longer be
considered an end-stage event, but rather a signal of an underlying change of state
that is related to the phosphorylation of tau.

3 Oxidative Stress and Metabolism

Oxidative damage has been found in several entities that are critical for neuronal
structure and functional integrity. It is possible that under degenerative conditions
the capacity of cells to maintain redox balance decreases resulting in mitochondrial
dysfunction, a critical organelle involved in AD progression (Cash et al., 2002; Zhu
et al., 2006). A significant body of evidence supports the hypothesis that mitochon-
drial and metallic abnormalities are direct precursors of oxidative stress during the
early stages of AD (Halliwell, 1999; Nunomura et al., 2000, 2001; Atamna, 2004;
Zhu et al., 2004b, 2007). Also, increased intracellular iron may promote oxida-
tive stress/free radical damage in vulnerable neurons (Casadesus et al., 2004; Zhu
et al., 2004a, 2007; Dwyer et al., 2009). Interestingly, the loss of iron homeostasis
directly affects mitochondrial function (Lu et al., 2009) and the proximal causes of
mitochondrial abnormalities likely involve re-entry into the cell cycle (Cash et al.,
2002; Zhu et al., 2006). Recent studies have also shown that reactive oxygen species
generated by mitochondria regulate p53 activity, which in turn regulates cell-cycle
progression and DNA repair and, in cases of irreparable DNA damage, executes
programmed cell death (Holley and St Clair, 2009).

Oxidative stress increases during aging, in parallel with the increased susceptibil-
ity to several neurodegenerative diseases including AD. In AD, NFT accumulation
within the neuronal cytoplasm is associated with impaired axonal transport of
mitochondria between the cell nucleus and synapse, which leads to severe energy
dysfunction and an imbalance in the generation of reactive oxygen species (ROS)
and reactive nitrogen species (RNS) (Smith et al., 1997b; Rapoport, 2003). DNA
and RNA oxidation are marked by increased levels of 8-hydroxy-2-deoxyguanosine
(8OHdG) and 8-hydroxyguanosine (8OHG), respectively (Nunomura et al., 1999,



614 S. Mondragón-Rodríguez et al.

2000, 2001, 2004, 2007b). Meanwhile protein oxidation is marked by elevated
levels of protein carbonyls and nitration of tyrosine residues (Smith et al., 1995).
Modification of sugars by glycation and glycoxidation is another component of the
disease, although the levels of these modifications decrease as the disease progresses
to advanced AD (Smith et al., 1994; Castellani et al., 2001; Perry et al., 2002). These
data support the hypothesis that increased oxidative damage is an early event in the
progression AD.

3.1 Energy Utilization

The role of mitochondrial and redox metal ions as potential neuronal compen-
satory responses against oxidative stress remains unclear, nevertheless, both are
important elements of the energy metabolism deficiency in AD (Blass and Gibson,
1999; Blass et al., 2000). Glucose and oxygen are the primary sources of energy
in neurons (Erecinska and Silver, 1989) and there is reduced glucose metabolism
in the tempoparietal and posterior cingulate cortex in AD (Drzezga et al., 2003).
Furthermore, reduced glucose metabolism in limbic and associative areas of the
brain have been reported in AD cases with ApoE ε4, reflecting its genetic influence
(Kamino et al., 2000; Mosconi et al., 2004). Other features of AD are increased oxy-
gen consumption (Hoyer, 1998), atrophy in the vasculature (Praprotnik et al., 1996;
Perry et al., 1998, 2003), and reduced cerebral glucose transport activity (Kalaria
et al., 1988; Perry et al., 2003). The reduction of ATP production from glucose by
approximately 50% at the onset of sporadic AD is further evidence of the glucose
metabolism imbalance (Hoyer, 1992). All these data support the involvement of
altered glucose metabolism in the early pathophysiology of AD. Furthermore, the
activity of many enzymes involved in metabolism is decreased in AD, such as glu-
tamine synthetase, creatine kinase, and pyruvate dehydrogenase (Sorbi et al., 1983;
Gibson et al., 2000). On the other hand, the activities of succinate dehydrogenase
(complex II) and malate dehydrogenase have been reported to increase, suggest-
ing a coordinated alteration of metabolic activity in the mitochondria (Bubber
et al., 2005).

3.2 Mitochondria

Due to the high oxygen consumption rate and relative paucity of antioxidant
enzymes compared with other organs, the brain is especially vulnerable to free rad-
ical damage (Floyd and Hensley, 2002; Mattson et al., 2002). The major source of
free radicals [hydrogen peroxide (H2O2), hydroxyl (·OH) and superoxide (O2

–·)] is
oxidative phosphorylation (Wallace, 1999). The reactive oxygen species generated
by mitochondria have many targets such as lipids, proteins, RNA, DNA, and mito-
chondrial DNA (mtDNA), which due to the lack of histones, becomes a vulnerable
target of oxidative stress. Indeed, nucleic acid oxidation is also deemed a hallmark
of AD (Moreira et al., 2008).
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These findings establish a link between oxidative stress and mitochondria, cre-
ating a pathological feedback loop, although in other cell types such as astrocytes,
which are known to regulate glutathione availability, mitochondria are unaffected
(Pope et al., 2008).

Mitochondria are also susceptible to apoptotic pathways, mediated through mem-
bers of (a) Bcl-2 family (Bid, Bad, and Bax), (b) death receptor pathway, and
(c) endoplasmic-reticulum-specific pathway. The final result of these three pathways
is the activation of caspases (Ferri and Kroemer, 2001). It has been reported that the
neurons exhibiting increased oxidative damage in AD are coincident with striking
and significant increase in cytochrome oxidases and mtDNA (Hirai et al., 2001).
Cytochrome oxidase is found in the neuronal cytoplasm and mtDNA in vacuoles
associated with lipofuscin. Furthermore, lipoic acid antisera specifically mark lipo-
fuscin in AD, suggesting increased autophagocytosis (Moreira et al., 2007). Also, a
significant reduction of intact mitochondria, as well as a reduction in microtubules,
is found in AD (Cash et al., 2003). Oxidative stress markers, mtDNA deletion,
and abnormalities in mitochondrial structure in the vascular walls of AD cases
are also increased (Aliev et al., 2004). In addition to changes in mitochondrial
enzymes, mitochondrial structure, localization, and mobility are all changed in AD.
Specifically, markers for mitochondrial fission and fusion are altered in models of
AD and are affected by Aβ oligomers, which impair mitochondrial function, leading
to energy hypometabolism and elevated reactive oxygen species production (Wang
et al., 2007b, 2008a,b).

In sum, it is apparent that mitochondria and oxidative stress are closely related
and together, through different pathways, contribute to the neurodegenerative
process.

3.3 Metals

The other important source of free radicals comes from redox-active metals.
Strikingly, NFT and Aβ plaques were found coincident with overaccumulation of
iron in the hippocampus, cerebral cortex, and basal nucleus of Meynert (Lovell et al.,
1998). Iron is an important cause of oxidative stress in AD through the Fenton reac-
tion. Aβ is also a substrate for hydroxyl radicals and, in the presence of iron, it has
been reported that cleavage and synthesis of Aβ are promoted (Atwood et al., 1999;
Rogers et al., 2002).

Copper can also participate in the Fenton reaction to generate ROS (Huang et al.,
1999b; Finefrock et al., 2003) and is affected by Aβ (Hayashi et al., 2007; Nakamura
et al., 2007). Furthermore, iron and copper in their redox competent states are bound
to NFT and Aβ deposits (Smith et al., 1997a; Sayre et al., 2000). Nevertheless, the
exact role of copper and iron in their redox competent states remains to be eluci-
dated. In this regard, it is been suggested that mitochondrial dysfunction, acting in
concert with cytoskeletal pathology, serves to increase redox-active heavy metals
and initiates a cascade of abnormal events culminating in AD pathology (Castellani
et al., 2004).
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4 Current and Future Pharmacological Treatments
for Alzheimer Disease

An enormous effort has been devoted to developing treatments for the clinical
symptoms of AD. Cholinesterase inhibitors, antiglutamatergic treatment, β- and
γ-secretase inhibitors, cholesterol-lowering drugs, Aβ immunotherapy, nonsteroidal
anti-inflammatory drugs, Aβ channel blockers, hormonal replacement therapy, and
antioxidant therapies are the current pharmacological options for treatment of AD
(Bartus et al., 1982; Schenk et al., 1999; Pratico and Trojanowski, 2000; Dovey
et al., 2001; Golde and Eckman, 2001; Nunomura et al., 2001; Cholerton et al.,
2002; Farlow et al., 2003; Perry et al., 2003; Moreira et al., 2006; Diaz et al., 2009;
Lopez-Bastida et al., 2009; Moriguchi et al., 2009).

Cholinergic transmission plays a fundamental role in cognitive function. Due
to a reported decrease of cholinergic function in the neocortex and hippocam-
pus, several acetylcholinesterase inhibitors have been used to treat AD in the past
few years, such as tacrine, donepezil, rivastigmine, and galactine (Lleo et al.,
2005; Moriguchi et al., 2009). Acetylcholinesterase inhibitors can delay cogni-
tive impairment for at least six months (Takeda et al., 2006). Indeed, these drugs
have been found to possess some antioxidant properties as well as neuroprotec-
tive properties (Fernandez-Bachiller et al., 2009). However, they were recently
shown to have opposing effects on blood pressure and cerebral perfusion (Claassen
et al., 2009).

The most important excitatory neurotransmitter in the central nervous system
(CNS) is glutamate, reported to regulate Ca2+ accumulation through excessive acti-
vation of NMDA receptors. Memantine is an NMDA antagonist that has been used
to treat neurological syndromes and cognitive dysfunction (Farlow et al., 2003). A
small beneficial effect of memantine was observed at six months of treatment in
moderate to severe AD (Areosa et al., 2005).

Numerous studies have supported the idea that an oxidative event is critical in
AD. It is thought that Aβ is capable of generating reactive oxygen species. However,
the source of Aβ toxicity has yet to be established (Rottkamp et al., 2001). Although
deposition of Aβ into senile plaques is by no means specific to AD, several treat-
ments against Aβ deposition are currently in use. In this context β- and γ-secretase
inhibitors have been used therapeutically. Although the main goal is to block the
production of Aβ (Josien, 2002), γ-secretase inhibitors also block the proteolytic
processing and function of Notch, which is essential for brain morphogenesis (Louvi
et al., 2004). In contrast, no side effects have been found with β-secretase inhibitors
in knock-out mice (Dominguez et al., 2005). Indeed, novel therapeutic strategies
contemplate the use of dual effectors, such as the new dual inhibitor of acetyl-
cholinesterase and β-secretase (Zhu et al., 2009). The preliminary data in transgenic
mice looks promising.

Cholesterol has been reported to negatively regulate α-secretase, whereas β- and
γ-secretase activities are positively regulated by cholesterol (Golde and Eckman,
2001). Disappointingly, a three-year trial with pravastatin (a cholesterol-lowering



Oxidative Stress and AD: Mechanisms and Therapeutics 617

drug) showed no significant effect on cognitive function in elderly individuals
(Shepherd et al., 2002).

Aβ immunization is a novel approach to AD treatment. Simple immunization
with Aβ42 in transgenic mice blocked deposition of amyloid and cleared existing
amyloid (Schenk et al., 1999; Boche et al., 2008). Recently, increased dendritic
spine formation in PDAPP transgenic mice was found after amyloid clearance, sug-
gesting functional recovery of neural circuits (Spires-Jones et al., 2009). However,
active vaccination with Aβ in patients with mild to moderate AD in a Phase II trial
showed a CNS inflammatory response (Monsonego et al., 2003). The meningoen-
cephalitis that occurred in some of the patients was reported to be unrelated to the
anti-Aβ antibody titer (Hock et al., 2003; Wilcock and Colton, 2008), but rather
to the involvement of a specific T-cell inflammatory response (Ferrer et al., 2004).
Others have speculated that the adverse effects were due to external contamination
during lumbar punctures, which were required as part of the protocol (Dodel et al.,
2003). Furthermore, Fox and colleagues (Fox et al., 2005) showed, by standard vol-
umetry, that the brains of vaccinated individuals lost tissue and gained ventricular
volume faster than did brains of individuals vaccinated with placebo. If, as we sus-
pect, Aβ is functioning as an antioxidant, removal of Aβ by immunization and/or
other methods may actually exacerbate disease progression.

Extensive epidemiological data suggest a gender-based predisposition that is spe-
cific to AD such that there is a higher prevalence (Jorm et al., 1987; Breitner et al.,
1988; Rocca et al., 1991; McGonigal et al., 1993) and incidence (Jorm and Jolley,
1998) of AD in women. Hormone replacement therapy protection against AD is
restricted to administration during a “critical period” that constitutes the climacteric
years. Efficacy is variable when administered after such time (Rapp et al., 2003)
or during the latent preclinical stage of AD, which usually occurs much later in
life (Resnick and Henderson, 2002; Craig and Murphy, 2009; Henderson, 2009;
Hogervorst et al., 2009). The mechanism(s) relating hormones and pathology is
(are) being actively pursued; it has been proposed that luteinizing hormone may
contribute to AD pathology through an amyloid-dependent mechanism (Casadesus
et al., 2006; Webber et al., 2007; Berry et al., 2008), that again underlies the bias
towards females developing AD. In this regard, previous reports demonstrate a
twofold increase in the gonadotropin LH in AD patients compared to age-matched
control subjects (Bowen et al., 2000; Short et al., 2001; Webber et al., 2007). Thus,
the presence of functional LH receptors was, at least in part, responsible for the cog-
nitive decline seen in transgenic mice (Casadesus et al., 2007). Additionally, it has
been reported that increased serum LH, rather than lower serum-free testosterone, is
associated with the accumulation of Aβ in plasma (Verdile et al., 2008). Therefore,
therapeutic strategies that are targeted towards decreasing LH may prove successful
in treatment of AD (Webber et al., 2006, 2007; Casadesus et al., 2008).

Because chronic inflammation is associated with AD, several anti-inflamatory
drugs have been tested including celecoxib (sc-125; sc-560), r-flurbiprofen,
naproxen, and rocoxib (Szekely et al., 2004). Unfortunately, no consistent improve-
ment in AD symptoms after treatment has been reported.
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The involvement of oxidative stress in AD has opened a new door for potential
therapeutic targets. In this regard, several antioxidants are currently in clinical tri-
als such as Idebenone, α-Lipoic acid, acetyl-L-carnitine (ALC), vitamin E, vitamin
C, flavonoids, β-carotene, gingko biloba, and metal-chelating agents. Idebenone is
a metabolic antioxidant and is normally synthesized as part of the mitochondrial
oxidative phosphorylation system. Improvements in clinical status after treatment
with idebenone have been shown in a dose-dependent manner compared to placebo
and tacrine (Thal et al., 2003).

α-Lipoic acid is another metabolic antioxidant that can recycle other antioxi-
dants such as glutathione. Patients treated with α-Lipoic acid exhibited stabilization
of cognitive measures (Hager et al., 2001). Acetyl-L-carnitine (ALC) is another
metabolic antioxidant that acts as an intracellular carrier of acetyl groups across the
inner mitochondrial membrane. Treatment with ALC showed a 38% response rate,
and 50% when combined with acetyl cholinesterase inhibitors (Montgomery et al.,
2003).

Vitamins, flavonoids, and terpenoids are examples of direct antioxidants
(McShea et al., 2008; Ramiro-Puig et al., 2009). Vitamin E and selegiline appear to
delay the time of progression to severe dementia in AD patients (Sano et al., 1997;
Grundman, 2000). Vitamin E is the most important lipid-soluble chain-breaking
natural antioxidant in mammalian cells and is able to cross the blood–brain barrier
and accumulate at therapeutic levels in the brain, where it reduces lipid peroxidation
(Veinbergs et al., 2000). In a cross-sectional study of 4809 elderly, decreasing serum
levels of vitamin E per unit of cholesterol were consistently associated with decreas-
ing cognitive function, whereas serum levels of vitamins A and C, β-carotene, and
selenium were not associated with poor memory performance (Perkins et al., 1999).
The Chicago Health and Aging Project with samples of 2889 community residents
aged 65–102 years found that supplementary or dietary intake of vitamin E, but
not vitamin C or carotenes, was inversely related to cognitive decline (Morris et al.,
2002b). However, data from prospective studies relating intake of vitamin E and risk
of AD are conflicting. The Chicago Health and Aging Project found that dietary, but
not supplementary, intake of vitamin E was associated with a lowered risk of AD
only among noncarriers of the ApoE ε4 allele (Morris et al., 2002a). Furthermore,
in the Washington Heights–Inwood Columbia Aging Project, no association was
found between dietary or supplementary intake of vitamin E and a decreased risk
of AD (Luchsinger et al., 2003). The lack of efficacy of vitamin E in preventing the
progression from MCI to AD indicates that single supplementary vitamin treatment
has no significant affect in the secondary prevention of AD, which is consistent
with the previous cohort studies on the progression to AD from the cognitively nor-
mal elderly. Gingko biloba contains, among other things, flavonoids and terpenoids.
No differences in soluble Aβ and hippocampal Aβ were found in mice treated with
Gingko biloba, although they showed improved spatial memory retention (Stackman
et al., 2003).

Thus, re-examination of metal-chelating agents, classical indirect antioxidants,
is warranted. NFT and senile plaques have been shown to contain redox-active tran-
sition metals (Smith et al., 1997a; Sayre et al., 2000) and may exert pro-oxidant
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or maybe antioxidant activities, depending on the local microenviroment. Aβ trans-
genic mice exhibited a 40% decrease in Aβ deposition after a nine-week treatment
with clioquinol, a metal–protein chelating agent (Cherny et al., 2001). In two
familial AD patients, increases in cerebral glucose metabolism were present after
extended clioquinol treatment (Ibach et al., 2005).

5 Conclusion

As discussed in this chapter, oxidative stress plays an important role in AD, but
more importantly, oxidative stress seems to be an early event, preceding classic
fibril formation (Aβ plaques and NFT). Fibril formation can be explained as a com-
pensatory mechanism that eventually enhances oxidative stress by increasing ROS
levels among many other free radicals. In this scenario, deposition of Aβ in the
extracellular environment and tau protein in the intracellular environment can be
explained as an imbalance and tragic consequence. If this hypothesis is current, the
current pharmacological treatments will not provide a solution, because the majority
are directed against the fibril structures. In contrast, antioxidant strategies may be
helpful in treating AD symptoms, although significant extended benefits have not
been realized to date.

In sum, the damage observed in the brain tissue of AD patients that is enhanced
by the fibril structures may be minimized with a healthy daily diet, exercise, and
intellectual activities as the best option so far.
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Tau and Tauopathies

R. Mathew, G. Srinivas, and P.S. Mathuranath

Abstract Tau protein is a neuronal microtubule associated protein, which localizes
primarily in the axon. It plays a major role in promoting microtubule assembly,
stabilizing microtubules and maintaining the normal morphology of the neurons.
Structurally tau is a heterogenous molecule due to several posttranslational modifi-
cations. Tauopathies are a group of disorders that are the consequence of abnormal
tau phosphorylation, abnormal levels of tau, abnormal tau splicing, or mutations
in the tau gene. These disorders are characterized not only by neuronal, but
also oligodendroglial and astrocytic filamentous tau inclusions. Tauopathies are
the commonest among the neurodegerative diseases with filamentous inclusions.
Tauopathies include frontotemporal dementia, Parkinsonism plus syndromes, neuro-
muscular disorders, and certain genetic and metabolic syndromes. The occurrence of
neurofibrillary tangles in a wide range of conditions, including Alzheimer’s disease,
initially led to the suggestion that tau deposition may be an incidental nonspecific
finding associated with cell death or cellular dysfunction. Later the discovery of
close to 20 different mutations in tau in frontotemporal dementia with Parkinsonism
linked to chromosome-17 (FTDP-17) clearly showed that dysfunction of tau protein
causes neurodegeneration and dementia. Among the tauopathies, the most studied is
Alzheimer’s disease. Frontotemporal dementia, progressive supranuclear palsy, and
corticobasal ganglionic degeneration are some of the other common tauopathies
that have been extensively studied. Overlap of clinical and histopathological fea-
tures occurs between various tauopathies. The role of CSF tau in the diagnosis of
dementias is under investigation. The measures of total tau as well as species of
phospho-tau detected by antibodies in CSF correlates best with a diagnosis of AD.
The discovery of a tau transgenic mouse model has paved the way for testing various
therapeutic models for targeting tau.
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1 Introduction

Tau protein is a neuronal microtubule associated protein (MAP) that localizes pri-
marily in the axon (Leger et al., 1994). It is one of the major and most-studied MAPs
in the central nervous system (Alonso et al., 2001). Tau has been recognized to play
major roles in promoting microtubule assembly, stabilizing microtubules and main-
taining the normal morphology of the neurons. Tau has been the focus of intense
research for more than a decade after it was discovered to be a key component of
neurofibrillary tangles in Alzheimer’s disease (AD).

Tauopathies are a group of disorders that are the consequence of abnormal tau
phosphorylation, abnormal levels of tau, abnormal tau splicing, or mutations in the
tau gene. These disorders are characterized not only by neuronal, but also oligo-
dendroglial and astrocytic filamentous tau inclusions (Avila, 2000; Ulloa et al.,
1994).

In some tauopathies such as AD the tau pathology is associated with other cere-
bral changes (Avila et al., 2004). That a presumably neuronal protein was also a
component of glial lesions in a host of non-Alzheimer degenerative diseases was
unexpected and offered an entirely new perspective on neurodegenerative disorders.
The discovery of mutations in the tau gene on chromosome 17 in frontotempo-
ral dementias with Parkinsonism (FTDP-17) added to the importance of tauprotein
in cognitive neuroscience (Dickson, 1999). Tau pathology is not restricted to the
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central nervous system. Clusters (“tangles”) of paired-helical filaments containing
phosphorylated tau are one of the characteristic features of certain myopathies such
as the inclusion body myositis (Askanas and Engel, 1998) and myotonic dystrophy
(Tolnay and Probst, 1999). Some adults with myotonic dystrophy type 1 (DM1)
have been seen to develop dementia with aging, agreeing with recent studies doc-
umenting an abnormal tau-protein expression in the brain tissues of patients with
DM1 (Modoni et al., 2004). A possible distinct subclass of peripheral tauopathy has
been postulated based on immunoblot studies (Maurage et al., 2004). This chapter,
however, focuses on the vast majority of tauopathies that are well recognized. In
most of them it so happens that cognitive and or motor impairments are the core
clinical manifestation.

2 Biochemistry and Molecular Biology of Tau

Microtubules (MT) are a major component of neuronal cell processes involved in
maintaining the cell shape and axonal transport (Buee et al., 2000). It is probable
that microtubule-associated proteins play a major role in this function (Wang and
Liu, 2008).

2.1 Tau Gene

Tau proteins are translated from a single gene located over 100 kilobases on the long
arm of chromosome 17 (17q21.1) and consisting of 16 exons (Fig. 1a) (Kosik, 1993;
Neve et al., 1986; Andreadis, 2006). Expression of human tau complex regulation
and regarding its control of gene expression, the presence of specific transcription
factors (such as AP2/SP1) are involved, even though RNA-based control has been
recently proposed that awaits more evidence (D’Souza and Schellenberg, 2006).
The tau gene is transcribed into nuclear RNA, which by alternative splicing yields
different RNA species (Fig. 1b) (Goedert et al., 1989b). Tau’s interactions with
microtubules are mediated by the tubulin-binding domains/repeat at the C-terminal
region (Fig. 1c) as detailed below.

In vitro and transgenic animal models have demonstrated that different muta-
tions impair protein function, promote tau fibrilization, or perturb tau gene splicing,
leading to aberrant and distinct tau aggregates (Cairns et al., 2004). The mutations
in the autosomal dominant tauopathies are of two types: intronic mutations that
disrupt the splicing of tau and missense mutations that alter the function of tau.
The splicing of tau is tightly regulated so as to maintain the relative proportion of
the 3R-tau and 4R-tau isoforms. The function of tau is normally tightly regulated
through phosphorylation. It is likely that loss of this normal regulation somehow
results in tau aggregation, although it should be noted that, in vitro, the mutations
also increase tau aggregation itself. Transgenic mice carrying tau mutations have
been shown to exhibit behavioural and neuropathological correlates of the disease
process. This indicates that tau aggregates are a sign of primary pathology. Tau
aggregation without amyloid pathology is sufficient to cause dementia in mice and in
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Fig. 1 Schematic representation of the human tau gene (a), RNA (b), and brain tau isoforms (c).
Alternatively spliced exons (2, 3, and 10) are shown in orange, cream, and green, respectively. The
tandem repeats (3 or 4) are shown in white bars. The number of aminoacids is indicated on the
right-hand side (modified from Spillantini and Goedert, 2000)

humans and hence is likely to be a pathogenic protein (Lovestone and McLoughlin,
2002).

2.2 Structure, Cellular Localization, and Putative
Functions of Tau Protein

Tau protein was first discovered as an acid- and heat-stable protein essential for
microtubule assembly. It was identified as a factor that lowered the concentration
at which tubulin polymerizes into microtubules in the brain. Tau is one such neu-
ronal MAP, which localizes primarily in the axon with a molecular tau weight of
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approximately 50,000–64,000 Da. When purified from the brain it has very little
secondary structure (Kosik, 1993). Because of its enormous molecular weights and
meager tendency to form highly ordered 3D crystal lattices, tau had long evaded
high-resolution structure determination (Margittai and Langen, 2004). Nevertheless,
it is now known that several specific proteins serve to stabilize microtubules and
tau is one such MAP. Tau organizes MTs into evenly spaced parallel assemblies
known as MT-bundles. It is also well recognized that tau plays an important role in
the assembly of tubulin monomers into MT to constitute the neuronal microtubule
network, maintains the MT structure,(Alonso et al., 2001), and establishes links
between microtubules and other cytoskeletal elements and proteins (Buee et al.,
2000). It has been proposed that, in vivo, tau induces the bundling and stabilization
of cellular microtubules, promotes neurite outgrowth, and establishes and maintains
neuronal cell polarity.

Tau fulfills several functions critical for neuronal formation and health. It dis-
charges its functions by producing multiple isoforms via intricately regulated
alternative splicing. These isoforms modulate tau function in the normal brain by
altering the domains of the protein, thereby influencing its conformation and post-
translational modifications and hence its affinity for microtubules and other ligands.
Disturbances in tau expression result in disruption of the neuronal cytoskeleton and
formation of pathological tau structures (e.g., neurofibrillary tangles in brains of
patients with Alzheimer’s disease; Andreadis, 2006). It is not clear, however, how
tau’s ability to decrease the dynamic instability of microtubules directly relates to
these changes in microtubule organization and cell morphology (Leger et al., 1994).
They are expressed predominantly in axons of central nervous system (CNS) neu-
rons, and also are found in axons of peripheral nervous system (PNS) neurons, but
are barely detectable in CNS astrocytes and oligodendrocytes (Trojanowski and Lee,
2002). It is one of the major and most studied MAPs in the central nervous system.

Tau has been shown to be a highly asymmetric protein, compatible with the
long rod structure, when observed by electron microscopy (Hirokawa et al., 1996).
Earlier studies had suggested that it is a hydrophilic protein having a random coil
structure. Attempts to crystallize tau alone or tau associated with microtubules have
been unsuccessful and under normal conditions, tau demonstrates the properties of
a highly soluble natively unfolded molecule, essentially devoid of secondary or
tertiary structural elements (Mandelkow et al., 1996; Friedhoff et al., 2000). The
above findings are in agreement with the detailed information of the structure of tau
protein in its soluble state obtained through conventional methods such as electron
microscopy, spectroscopy, and X-ray diffraction (Crowther et al., 1989, 1992, 1994;
Schweers et al., 1994; Wille et al., 1992). However, tau molecule adopts specific
secondary and tertiary structures that interact in an orderly fashion to produce the
highly regular filaments in Alzheimer’s disease and many other neurodegenerative
disorders (Gamblin et al., 2000). It is unlikely that random aggregation of tau in
the disease state could lead to creation of these highly ordered structures. It can be
understood that tau is partially folded when interacting with microtubules by a com-
bined cryoelectron microscopy and tomographic 3-D analysis with freeze-drying
and high-resolution unidirectional surface shadowing.
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In the adult human brain, six brain-specific isoforms are generated by alterna-
tive mRNA splicing of 11 exons (Fig. 1b; Buee et al., 2000). Alternative splicing
of exons 2 (E2), 3 (E3), and 10 (E10) give rise to six tau isoforms that range from
352 to 441 amino acids (Fig. 1c; Goedert et al., 1989a). The isoforms differ in
whether they contain three (tau-3L, tau-3S, or tau-3: collectively 3R) or four (tau-
4L, tau-4S, or tau-4: collectively 4R) tubulin-binding domains/repeats (R) of 31 or
32 amino acids each at the C-terminal (i.e., the presence or absence of a fourth
31-amino acid repeat, coded by exon 10). They also differ on whether they have
two (tau-3L, tau-4L), one (tau-3S, tau-4S), or no (tau-3, tau-4) repeats of 29 amino
acids each in the N-terminal portion of the molecule (Fig. 1c; Trojanowski and Lee,
2002). Thus, exons 2 and 3 are alternatively spliced cassettes; exon 2 exists alone,
but exon 3 never appears independent of exon 2 (Andreadis, 2006). As seen above,
the isoforms are designated according to the number of MBDs they possess at the
C-terminal. Each of these repeats can be divided into two parts, one composed of an
18-residue sequence that contains the minimal region with tubulin-binding capac-
ity and the less conserved domain called the interrepeat. The proportion of these
tau isoforms, as well as their phosphorylation status, changes during development
(Kosik, 1990a, b; Kosik et al., 1986; Goedert et al., 1989a, b; Buee et al., 2000). In
fact, in the adult human brain, the proportion of 3R-tau to 4R-tau isoforms is about
50% each, but that of tau-3L (or 4L), tau-3S (or 4S), and tau-3 (or 4) is about 54,
37, and 9%, respectively. Tau 4R binds microtubules with a greater affinity and can
displace the previously bound tau 3R from microtubules that may produce physio-
logical consequences in cells. As tau is developmentally regulated, only the shortest
tau isoform (tau-3) is expressed in fetal brain, but all six isoforms are seen in the
adult human brain (Trojanowski and Lee, 2002). Moreover, different neurons seem
to have different tau isoforms. In the peripheral nervous system too, there is a high
molecular weight tau isoform expressing the exon 4A, whose product forms a pro-
tein known as big tau with an approximate size of 100 kDa (Couchie et al., 1990;
Goedert et al., 1992).

In summary, brain tau isoforms have been divided into two large domains such as
projection domains (containing the amino terminal two-thirds of the molecule) and
the microtubule binding domain (containing the carboxy terminal one-third of the
molecule) (Avila et al., 2004). The projection domain has been further divided into
two regions: the amino terminal region with a high proportion of acidic residues and
the proline-rich region. The microtubule binding domain has also been subdivided
into the basic, true tubulin-binding region and the acidic carboxy terminal region.
Several distinct roles have been proposed for the projection domain including that
of determining the spacing between axonal microtubules, interactions with other
cytoskeletal proteins, or cation binding due to the presence of the acidic residues.
The proline-rich domain plays an important role in interaction with proteins with
SH3 domains, facilitating the binding of tau to the plasma membrane proteins
(Brandt and Lee, 1993, 1994).

A structure function relationship study by (Gamblin et al., 2000) points out that
tau contains very few predicted structural elements, but these small structural units,
whether predicted or measured through biochemical/biophysical methods, are likely



Tauopathies 639

Table 1 Predictable Secondary Structure Forming Motifs in Tau Protein

Sequence Possible Secondary Structure and Possible Implications

1 7EFEVME12 α-helix; tau aggregation is accompanied by a dramatic
conformational change that brings the amino-terminus in
close proximity to the microtubule-binding repeats.

2 31MH32 β-strand; imparts structural rigidity?
3 117EAAGHVTQ124 α-helix; region is adjacent to the second most hydrophobic

region of the molecule; helical wheel analysis shows
amphipathic making it a candidate to interact with the
microtubule-binding repeats or the carboxy-terminus of tau.

4 226VAVVR230 β-strand; direct interaction of this region with the
microtubule-binding repeats to strengthen the interaction of
tau with microtubules.

5 275VQII278 and
306VQIVY310

β-strands; core structural elements for filament elongation.

6 315LSKVTSKCGSL325 α-helix; amphipathic in nature structural element that
participates in tau–tau interactions in the aggregated state.

7 338EVK340 and 361TH362 β-strands; positioning in MTBR4 suggests that they could
contribute to microtubule binding.

8 426ATLADEVSASLA437 α-helix; structural element can directly bind to some other
element of tau and prevent the aggregation of the
molecules.

responsible for the normal and abnormal functions of tau by providing sites for
specific interactions either with microtubules or other tau molecules. The study
identifies certain structural elements that have a potential for adopting secondary
structures which have a role in normal and pathological conditions (Table 1).

The microtubule-associated tau protein participates in the organization and
integrity of the neuronal cytoskeleton. Even though tau protein is mainly a neu-
ronal MAP, localizing primarily in the axon, it has been demonstrated that tau is
present within the somatodentritic compartment of neurons (Migheli et al., 1988).
Tau that is present in the somatodendritic compartment is phosphorylated mainly in
its proline-rich region, whereas when this region becomes dephosphorylated, it can
be found principally in the distal region of the axon (Mandell and Banker, 1996).
Additionally, presence of nuclear tau isoforms has been identified in human neurob-
lastoma cells. Nuclear tau was found to be associated with both the fibrillar regions
of interphase nucleoli and the nucleolar organizer regions of mitotic chromosomes;
recent studies have also shown that nuclear tau is mainly present at the internal
periphery of nucleoli, partially colocalizing with the nucleolar protein nucleolin and
human AT-richα-satellite DNA sequences organized as constitutive heterochromatin
(Sjoberg et al., 2006). The import of tau into the nucleus is possibly either by inter-
acting with other nuclear proteins containing a nuclear import sequence or catalyzed
by the basic 3/4 repeat MBDs. Because nuclear tau has also been found in neurons
from patients with AD, aberrant nuclear tau could affect the nucleolar organization
during the course of AD. Recent studies suggest that binding of tau to DNA was
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in an aggregation-dependent, and a phosphorylation-independent, manner. Tau has
also been seen to localize on ribosomes. One possible function for this nonmicro-
tubule, ribosome-associated tau is to target ribosomes to microtubules for transport
into the somatodendritic compartment of neurons to facilitate local protein synthe-
sis. The localization and the function of the different tau isoforms are regulated by
its posttranslational modifications.

2.3 Posttranslational Modifications of Tau

Heterogeneity of tau is due to several posttranslational modifications including
phosphorylation, glycosylation, ubiquitinylation, oxidation, nitration, cross-linking,
deamidation, glycation, truncation by protein cleavage (Avila et al., 2004), pro-
lyl isomerization, association with heparan sulfate proteoglycan, and modification
by advanced glycation end-products (Chen et al., 2004). Phosphorylation is of
functional and clinical importance and therefore has been the most studied of all
posttranslational modifications.

2.3.1 Phosphorylation

Tau is a phosphoprotein and its biological activity is regulated by phosphorylation
(Feijoo et al., 2005; Ihara et al., 1986; Grundke-Iqbal et al., 1986). Tau phosphory-
lation is developmentally regulated and fetal tau is more highly phosphorylated in
the embryonic compared to the adult CNS. The degree of phosphorylation of the six
adult tau isoforms decreases with age. The tau phosphorylation sites are clustered
in regions flanking the microtubule binding repeats. Phosphorylation at these sites
has been reported in normal tau, however, the phosphorylation negatively regulates
microtubule binding. Although the relative importance of individual sites for regu-
lating the binding of tau to microtubules is unclear, phosphorylation of some sites
such as Serine-262 and 396 has been reported to play a dominant role in reducing the
binding of tau to microtubules. Both sites are phosphorylated in fetal tau and they
are hyperphosphorylated in all six adult human brain tau isoforms that form paired
helical filaments (PHFs) in Alzheimer’s disease. Other potentially important phos-
phate acceptor sites also have been described and it is possible that phosphorylation
at multiple phosphate acceptor sites regulates the binding of tau to microtubules
(Trojanowski and Lee, 2002).

Hyperphosporylation dislodges tau from the microtubule surface, resulting in
compromised axonal integrity and accumulation of toxic tau peptides (Drewes,
2004). The definite role of tau in the neurodegenerative process is still not
very clear. Recent studies suggest that, before forming fibrils but after becom-
ing hyperphosphorylated, tau actively contributes to neurodgeneration (Takashima,
2008).

There are 85 putative serine or threonine phosphorylation sites on the longest
CNS tau isoform. Phosphorylation sites were characterized by phospho-dependent
tau antibodies, phopho-peptide mapping, mass spectrometry, and NMR. Most of the
phosphorylation sites surround the microtubule-binding domains in the proline-rich
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region of the C terminal region of tau. A large number of serine/threonine pro-
tein kinases have been suggested to play a role in regulating tau functions in
vivo, however, this aspect of tau biology remains controversial. The major candi-
date tau kinases include mitogen-activated protein kinase, glycogen synthase kinase
3β, cyclin-dependent kinase 2 (cdk2), cyclin-dependent kinase 5, cAMP-dependent
protein kinase, Ca2+/calmodulin-dependent protein kinase II, microtubule-affinity
regulating kinase, and stress-activated protein kinases (Trojanowski and Lee, 2002).
The available evidence points to glycogen synthase kinase-3 being the predominant
tau kinase in the brain, although other kinases also phosphorylate tau (Lovestone and
McLoughlin, 2002). Protein phosphatases counterbalance the effects of tau kinases,
although their role in vivo is unclear. In vitro experiments showed that inhibition
of protein phosphatases by okadaic acid in cultured human neurons was followed
by increased tau phosphorylation, decreased tau binding to microtubules, selective
destruction of stable microtubules and rapid axonal degeneration (Trojanowski and
Lee, 2002). Today we know more than 20 protein kinases that can phosphorylate
the tau protein and they are grouped into several different types as follows.

1. The proline-directed protein kinases (PDPK), which phosphorylate tau on serine
or threonine residues that are followed by a proline residue. This group includes
tau protein kinase II (cdk5), cdk2, MAP kinase (p38), JNK, and other SAPKs
(Baumann et al., 1993; Holzer et al., 1994; Goedert et al., 1997).

2. The nonproline-directed protein kinases (NPDPKs) such as tau-tubulin kinase 1
and 2, protein kinase A (PKA), protein kinase C (PKC), PKB/AKT, calmodulin
(CaM) kinase II, MARK kinases, or CK I and II that modify residues close to
acidic residues mainly in exons 2 and 3. NPDPKs modify Ser or Thr residues
that are not followed by prolines (Kitano-Takahashi et al., 2007; Sergeant et al.,
2005).

3. The protein kinases that phosphorylates tau on serine or threonine residues,
sometimes but not always, followed by a proline residue which includes tau
protein kinase I (glycogen synthase kinase 3, GSK3; Hanger et al., 1992).

4. The tyrosine protein kinases such as Src kinases and c-abl.

Along with tau kinases, several phosphatases, such as protein phosphatase [PP1,
PP2A, PP2B (calcineurin), and PP2C] regulate the extent of tau phosphorylation
(Goedert et al., 1992; Yamamoto et al., 1995) However, only PP1, PP2, and PP2B
have been shown to dephosphorylate abnormally hyperphosphorylated tau (Gong
et al., 1994a,b,c). PP2A binds to tau through its tubulin binding region (Sontag
et al., 1999). Mutations in this region could decrease the capacity of PP2A to bind
to tau and, as a consequence, produce an increase in tau phosphorylation, a feature
that has been observed in some FTDP-17 patients bearing such mutations.

The Physiological Role of Tau Phosphorylation

The phosphorylation of tau at specific sites is the predominant mechanism by which
tau function is regulated. Dynamic, site-specific phosphorylation of tau is essential
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for its proper functioning. Interestingly, phosphorylation at different sites could take
place in different tau isoforms. This could be due to the different cellular localiza-
tion or subcellular compartmentalization of the different tau isoforms, or the fact
that different kinases or phosphatases can modulate tau phosphorylation in many
different ways (Avila et al., 2004) as described below. A tentative figure explaining
the role of tau phosphorylation is depicted in Fig. 2.

Microtubule Binding

The ability to bind and stabilize microtubules is a hallmark of tau, and it is becoming
obvious that phosphorylation of a few specific sites plays a significant role in reg-
ulating tau–microtubule interactions. Phosphorylation of the KXGS motifs within
the microtubule-binding repeats of tau strongly reduces the binding of tau to micro-
tubules in vitro and probably in vivo (Biernat and Mandelkow, 1999; Drewes et al.,
1995). The NPDPK phosphorylation mainly occurs at the tubulin-binding region
of the tau molecule. Therefore, it has been suggested that this type of modification
could result in a decrease in the binding of tau to microtubules whereas modification
of tau by PDPK mainly affects tau self-aggregation.

In vitro studies have shown that phosphorylation of Ser262 alone is sufficient to
attenuate significantly the ability of tau to bind microtubules in vitro. GSK3 plays
an important role in regulating tau phosphorylation under normal and pathologi-
cal conditions. Two types of GSK3 phosphorylation have been proposed: primed
(following prior phosphorylation of the substrate by another kinase) or unprimed
phosphorylation. Primed phosphorylation appears to occur at Thr231 and affects
microtubule binding (which means that Ser235 must be phosphorylated first to
get efficient phosphorylation of Thr231), whereas unprimed phosphorylation can
take place at serine-396 or -404 and does not appear to affect microtubule binding
(Goedert et al., 1994). Although the relative importance of individual sites for reg-
ulating the binding of tau to microtubules is unclear, phosphorylation of some sites
such as Serine-262 and 396 has been reported to play a dominant role in reducing
the binding of tau to microtubules. In addition to serine/threonine modifications,
phosphorylation at tau tyrosines has been also reported. It is known that fetal tau is
more extensively phosphorylated than adult tau and promotes microtubule assembly
less efficiently than the latter.

Altered Intracellular Trafficking/Polarity

This occurs by two major mechanisms explained below.

(a) Neurite outgrowth: Neuritic extension is essential for maintaining synaptic plas-
ticity and in CNS repair. Evidence regarding the role of tau was obtained from
earlier studies on cultured cerebellar neurons using antisense oligonucleotides
(Kosik, 1990a,b). Primary cultures of hippocampal neurons lacking tau exhibit
decreased rates of neurite extension and inhibited neuronal polarization (i.e.,
the development of axons and dendrites; Dawson et al., 2007), during axono-
genesis, tau function appears to be locally regulated by phosphorylation. Tau
mRNA may also play a role in the determination of polarity, inasmuch as it is
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Fig. 2 Schematic representation of the physiological and pathological functions of tau phospho-
rylation. When the phosphorylation state of tau is appropriately coordinated, it plays a role in
regulating neurite outgrowth, axonal transport, and microtubule stability and dynamics. However,
in pathological conditions in which there is an imbalance in the phosphorylation/dephosphorylation
of tau, aberrant tau phosphorylation can cause tau/actin filament formation, disrupt microtubule-
based processes owing to decreased microtubule binding, and perhaps even increase cell death
(modified from Johnson et al., 2004 (129))
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localized on microtubules in the proximal section of the axon. This implies that
local translation of tau at a site determined by microtubular organization sites
can lead to locally high levels of tau, which can theoretically cause bundling
and forward movement of neurites (Billingsley and Kincaid, 1997). However,
contrary to expectation, it was surprising to find that targeted deletions of tau
protein led to only minor changes in the axonal calibre of small-fibre axons in
restricted brain regions (Harada et al., 1994).

(b) Axonal transport: Tau also regulates axonal transport. In mouse models in
which tau are overexpressed in the central nervous system, there is almost
always axonopathy, predominantly in spinal cord neurons. Tau can inhibit
kinesin-dependent fast axonal transport in cell culture models (Ebneth et al.,
1998), and this is probably the case in vivo when tau is overexpressed. The
primary mechanism by which tau inhibits kinesin-dependent transport is by
reducing the attachment frequency of the motors. Tatebayashi et al. (2004)
recently demonstrated that, in cell culture models, GSK3β-mediated tau phos-
phorylation is associated with proper anterograde organelle transport providing
further evidence that the control of axonal transport by tau is regulated by
GSK3β-mediated phosphorylation.

Altered Proteolysis

One key structural change that has been linked with the regulated phosphorylation
of tau is altered turnover and proteolysis. The best characterized effect has been the
reduction in tau cleavage by the calcium-activated protease calpain following pro-
tein kinase A (PKA)-induced phosphorylation. Alterations in lysosomal trafficking
of tau and/or loss of lysosomal function are thought to set off aberrant processing of
tau. There is increasing evidence that inappropriate phosphorylation of tau, which
leads to tau dysfunction, results in decreased cell viability. Indeed, in all neurode-
generative diseases in which tau pathology has been observed, the tau is abnormally
phosphorylated.

2.3.2 Other Modifications of Tau Proteins

Glycosylation

The presence of N-linked and (mucin-type) O-linked oligosaccharides on PHF-
tau has been reported with N-glycosylation occurring in hyperphosphorylated tau
(Wang et al., 1996a,b) whereas unmodified tau can be O-glycosylated (Arnold
et al., 1996). O-glycosylation of cytosolic proteins is a dynamic and abundant
posttranslational modification that is characterized by the addition of an O-linked N-
acetylglucosamine (O-GlcNAc) in the serine or threonine in the vicinity of proline
residues by an O-GlcNAc transferase. This relationship between phosphorylation
and OGlcNAc glycosylation of tau proteins may play a role in transcriptional
regulation, cell cycle regulation, protein degradation, cell activation, and the cor-
rect assembly of multimeric protein complexes and in the nuclear localization
of tau.
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Ubiquitnylation

In addition to phosphorylation, tau is also subjected to ubiquitinylation. Ubiquitin is
a 76 amino acid protein that flags the proteins to be degraded in an ATP-dependent
manner. Ubiquinated tau has been found in inclusion bodies found in Pick’s disease
or Parkinson’s disease or in PHFs in AD.

Glycation: Proteins with slow turnover rates can be modified at lysine residues
by nonenzymatic reactions involving the condensation of a sugar aldehyde or ketone
group with the NH2-groups of the lysines. The products of this reaction can undergo
irreversible changes to form the advanced glycation end-products that can result in
the cross-linking of the modified proteins. Tau isolated from PHF is glycated, and
this glycation might be involved in the loss of microtubule binding and aggregation
of PHF into more complex aggregates possibly through receptors for AGE products
(RAGE) present on microglial cells and subsets of neurons (Ledesma et al., 1994;
Yan et al., 1994). AGE-tau conjugates may also more likely to form covalent cross-
links with each other.

Oxidation

The presence of one or two cysteines in the tau isoforms lacking or containing exon
10 has raised the possibility of tau forming dimers through the formation of inter-
molecular S–S bonds (Schweers et al., 1995). In this case, the oxidation of tau could
result in its aberrant aggregation.

Truncation

Tau truncation has been defined as the cleavage of tau that occurs at the glutamic
acid residue 391 (Wischik et al., 1995). This modification could facilitate aberrant
tau aggregation.

Deamidation

The deamidation of tau at asparagine (or glutamine) residues has also been described
and could also play a role in tau aggregation.

Prolyl Isomerization

The peptidyl-prolyl cis/trans isomerase Pin1 isomerizes the peptide bond of a phos-
phorylated serine or phosphorylated threonine followed by a proline. Through iso-
merization of pSer-Pro or PThr-Pro, Pin1 regulates a number of proteins. Together
with its ability to regulate phosphorylation and conformation of tau proteins, Pin1
is considered a potential neuroprotective function against AD.

2.4 Turnover of Tau Protein

Intracellularly, proteins are constantly being synthesized, modified, and after the
specific function is over, they are routed for degradation. Major factors that deter-
mine the half-life of proteins are the presence of signals that control its degradation
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and stabilization. Among the signals for degradation, the presence of a specific
amino-terminal residue, the PEST sequence (a PEST sequence is a peptide sequence
which is rich in proline (P), glutamic acid (E), serine (S), and threonine (T)), and
the destruction box must be considered. PEST sequences are present in the tau
molecule, whereas the tubulin-binding region is a glycine-rich sequence. However,
little is known about the implication of these two regions in the stability of the tau
protein. Of the stabilization signals, amino acid repeats containing polyglutamine,
glycine, or alanine residues are among the most common.

The existence of ubiquitin-independent proteosomal degradation of tau protein
has been reported based on the fact that tau protein is degraded by the 20S pro-
teasome in vitro (David et al., 2002). However, there is strong evidence of tau
degradation by the ubiquitin–proteasome system (UPS) after ubiquitylation of the
protein. The degradation of tau by different proteases has been studied including
cleavage by caspases. Tau is also a substrate of the calcium-activated protease
calpain, although phosphorylated tau is more resistant to proteolysis by calpain
degradation than unphosphorylated tau. Cathepsin D has been shown to cleave tau
proteins, generating fragments similar to those found in NFT. HSP-27 is a protein
that facilitates degradation of pathogenic hyperphosphorylated tau by an unknown
mechanism.

3 Tauopathies

Neurodegenerative diseases with filamentous inclusions can be classified into these
groups: (i) tauopathies, (ii) alfa-synucleinopathies, (iii) polyglutamine disorders,
and (iv) ubiquitin disorders. Tauopathy is the most common group (Tolnay and
Probst, 1999). All these diseases have in common the presence of aberrant tau
aggregates. Tau was first implicated in the pathogenesis of Alzheimer’s disease
when it was discovered to be a major component of the neurofibrillary tangle
(Lovestone and McLoughlin, 2002). Subsequently the occurrence of neurofibril-
lary tangles in a wide range of conditions led to the suggestion that tau deposition
may be an incidental nonspecific finding associated with cell death or cellular dys-
function. Later the discovery of close to 20 different mutations in tau in FTDP-17
clearly showed that dysfunction of tau protein causes neurodegeneration and demen-
tia (Spillantini and Goedert, 2000). Table 2 gives a list of diseases grouped under
tauopathies. Overlap of some clinical and histopathological features occurs between
tauopathies. For example, neurofibrillary tangles (NFT) can be seen in AD, FTDP-
17, progressive supranuclear palsy (PSP) and neuropil threads can be seen in AD,
cortico-basalganglionic degeneration (CBD), FTDP-17, and PSP. Silver impregna-
tion technique usually detects most of the tau inclusions. Immunohistochemistry
with monoclonal antibodies against phosphorylated or nonphosphorylated epi-
topes of tau, however, are invaluable for detecting the full extent of tau
deposition.

Immunohistochemical studies have also revealed tau-positive glial inclusions
in both oligodendrocytes and astrocytes in most, although not in all tauopathies
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Table 2 Neurodegenerative disorders with abundant filamentous tau inclusions

Dementia Syndromes
Parkinsonism Plus
Syndromes

Neuromuscular
Disorders

Genetic/Metabolic
Disorders

Alzheimer’s disease
Tangle-only dementia
Argyrophilic grain

disease
Pick’s disease
Presenile dementia

with tangles and
calcification

Progressive subcortical
gliosis

Familial
frontotemporal
dementia and
Parkinsonism linked
to chromosome 17

Subacute sclerosing
panencephalitis

Gerstmann–Straussler–
Scheinker disease
with tangles

Prion protein amyloid
angiopathy

Corticobasal
degeneration

Progressive
supranuclear palsy

Multiple system
atrophy

Postencephalitic
Parkinsonism

Dementia pugilistica

Amyotrophic lateral
sclerosis with
Parkinsonism

Dementia complex of
Guam

Non-Guamanian motor
neuron disease with
neurofibrillary
tangles

Myotonic dystrophy
Inclusion body

myositis

Down’s syndrome
Hallervorden–Spatz

disease
Niemann–Pick disease

type C

Modified from Tolnay and Probst (1999), Trojanowski and Lee (2002), and Robert and
Mathuranath (2007).

(Tolnay and Probst, 1999). Among the tauopathies, the most studied is AD. The
analyses of other types of dementia with tau pathology have usually been performed
in comparison with AD (Spillantini and Goedert, 2000). Based on electrophoretic
pattern, several classes of tau aggregation are presently described. (1) AD and
Parkinsonism dementia complex (six tau isoforms); (2) PSP and CBD (three iso-
forms with exon 10 corresponding sequence); (3) Pick’s disease (PiD) (three
isoforms without exon 10), and (4) myotonic dystrophy-the shortest tau isoform
(Caparros-Lefebvre et al., 2002).

3.1 Frontotemporal Dementia

3.1.1 Spectrum

Frontotemporal dementia (FTD) is one of the common forms of primary degen-
erative dementias after Alzheimer’s disease and can affect presenile individuals.
It is a clinically heterogeneous disorder characterized by alterations in language
and/or behavior. Rarely it may be associated with Parkinsonism or amyotrophy.
Depending on the initial and core clinical feature FTD is further classified into pri-
mary progressive aphasia (PPA) when language impairment is the initial and core
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feature, frontal variant FTD (fvFTD) when behaviour and personality are the ini-
tial and core features, and FTD with Parkinsonism (FTDP) when Parkinsonism
is an associated initial and core feature in fvFTD and FTD with amyotrophy
when muscle amyotrophy attributable to spinal motor neuron involvement is an
associated initial and core feature in fvFTD. PPA is further subclassified as pro-
gressive nonfluent aphasia (PNFA) if initial language impairment is expressive
aphasia and as semantic dementia (SD) if the initial language impairment is sensory
aphasia.

3.1.2 Clinical Features

FTD occurs most commonly between the ages 45 and 65 years. There is an equal
incidence in men and women. The mean duration of illness is 8 years ranging from
2 to 20 years. A family history of dementia is present in about half of cases. In
fvFTD the salient clinical characteristic is a profound alteration in character and
social conduct. The behavioural disorders consist of decline in personal hygiene and
grooming, mental rigidity and inflexibility, distractability and impersistence, hyper-
orality and dietary changes, perseveration and stereotypy, and utilization behaviour.
There will be early emotional blunting and loss of insight. Language abnormality
consists of altered speech output, stereotypy of speech, echolalia, perseveration, and
mutism (Snowden et al., 2002). On cognitive testing the patients show attentional
deficits, poor abstraction abilities, difficulty shifting mental set, and a tendency to
perseveration. Other cognitive domains including memory, praxis, and visuospatial
skills remain relatively preserved early in the disease. In PNFA, speech production
is effortful with phonological and grammatical errors and word retrieval difficul-
ties. In SD there is a naming and word comprehension problem although speech
expression remains fluent, effortless, and grammatical. Behavioral changes occur in
all subtypes of FTD as the disease progresses. Clinical diagnosis of various types of
FTD is based on consensus criteria (Neary et al., 1998).

3.1.3 Neuropathology

The typical changes seen in all subtypes of FTD are atrophy of the prefrontal and
anterior temporal neocortex. The subtype determines the distribution of the pathol-
ogy. In FTD there is prominent bilateral and usually symmetrical involvement of the
frontal lobes. In PNFA, atrophy is asymmetric, involving chiefly the left frontotem-
poral lobes, concentrated in Broca’s area. In SD, atrophy is typically bilateral and is
most marked in the anterior temporal neocortex, with inferior and middle temporal
gyri being predominantly affected (Snowden et al., 2002).

Histology shows neuronal loss from superficial cortical layers with spongio-
sis and variable degrees of gliosis with or without Pick cells or Pick bodies
(Mathuranath et al., 2000).

Pathologically, FTD is heterogeneous; some cases may show tau- or ubiquitin-
positive inclusions, or rarely they may lack distinctive histological features.
Sensitive methods for detecting tau abnormalities and ubiquitin are essential in the
neuropathological evaluation of FTD (Josephs, 2007).
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3.1.4 Neurochemistry and Neurobiology

Tau mutations have been well characterized in FTDP-17. The mutations described
are missense, deletion, or silent mutation in the coding region or intronic mutation
located close to exon 10. Coding region mutations are located in the microtubule-
binding repeat region or close to it. Mutation in exon 10 affects only 4R isoforms
whereas mutation in exons 9, 12, and 13 affects all isoforms. Coding region muta-
tions reduce the ability of tau to interact with microtubules. Intronic mutation leads
to a net increase in 4R isoforms. This leads to filamentous tau pathology (Spillantini
and Goedert, 2000). Bird et al. described three separate families with frontotemporal
dementia, having the same molecular mutation in exon 10 of the tau gene (P301L).
However, differences were seen in clinical features as well as pathological findings
among diseased members of the family, in spite of the same mutation in all. This
led to the suggestion that in addition to the mutation, there are other environmental
and/or genetic factors also influencing the phenotype (Bird et al., 1999).

FTD occurs in familial and sporadic forms; frontotemporal dementia and
Parkinsonism linked to chromosome 17 (FTDP-17) is one type characterized by
mutations in MAPT (gene encoding tau), which are inherited in an autosomal
dominant pattern. Its neuropathological hallmark is an abundance of hyperphospho-
rylated tau protein and degeneration of neurons and glia. In many cases of sporadic
frontotemporal dementia (FTD) and in FTD caused by tau mutations (FTDP-17)
there is disruption of the normal splicing of tau leading to the aberrant expres-
sion of tau isoforms and neurodegeneration. This suggests a central role for tau
in the pathogenesis of FTD. However, more than half the cases of sporadic FTD
show no tau deposition (Sutherland et al., 2007; Van Deerlin et al., 2007) or dis-
tinctive molecular pathological features involving the deposition of 3R tau protein.
However, there may be further tau polymorphisms that remain to be identified, out-
side the standard sequenced regions, which may have a role in the pathogenesis
of PiD. Furthermore, PiD can be distinguished immunohistochemically from other
tauopathies by the deposition of abnormally hyperphosphorylated tau, and by the
absence of phosphorylation of tau Ser262, which is specifically recognized by the
antitau antibody 12-E8 (Morris et al., 2002).

3.2 Alzheimer’s Disease

3.2.1 Clinical Features

Alzheimer’s disease (AD) is characterized initially by progressive loss of recent
memory and orientation. As the disease progresses, language, visuospatial, and
executive function can also be impaired with neurobehavioural abnormalities devel-
oping in the late stages. Typical cases have prominent early memory disturbances
and subsequent other cognitive abnormalities occur. Behavioural and psychological
symptoms develop during midstage of the disease and include delusions and hal-
lucinations, anxiety, sleep disturbances, and depression. Presentation and clinical
course are variable. In the majority of patients neurological examination other than
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mental status examination will be normal. As disease progresses mild abnormali-
ties in tone and reflexes such as grasp, root, and suck reflexes are seen and at the
end-stage patient is mute, incontinent, and bedridden with swallowing difficulty and
flexion deformity. There are no diagnostic markers on blood examination. Diagnosis
can be established antimortem using established criteria with an accuracy of 90%
(Bradley et al., 2004).

3.2.2 Neuropathology

The outstanding gross pathology feature is hippocampal atrophy which is even
picked up on neuroimaging. Histopathology is characterized by reduced synaptic
density and neuronal loss in selected brain areas. The two molecular pathologies
that coexist in AD are amyloidosis and tau pathology. Amyloidosis consists of
extracellular aggregation of Aβ peptides into amyloid plaques. Tau pathology is
characterized by the intraneuronal aggregation of tau proteins into abnormal fila-
ments forming neurofibrillay tangles deposition that begins in the trans entorhinal
and entorhinal cortex and spreads from there to hippocampus, temporal neocortex,
and beyond that (Bradley et al., 2004). Amyloidosis is closely related to etiology
and tau pathology is strongly correlated to the clinical expression of the disease.
Little is known about the relationship between amyloid-β precursor protein (APP)
and tau pathologies (Delacourte et al., 2002). The quantification of Aβ in the
different brain areas demonstrates that the spreading pathway of tau pathology
remains constant, whatever the cortical distribution of Aβ aggregates (Delacourte
et al., 2002).

3.2.3 Neurochemistry and Neurobiology

Although there is a consensus that Aβ is upstream of tau in the pathological cas-
cade in AD there is little knowledge on either the nature of the interaction or how
direct it is. The relationship between Aβ toxicity and tau protein was identified in a
study where neurons knocked out of the MAPT gene were less toxic to Aβ neuro-
toxicity. As more and more of the relationship between amyloid-β precursor protein
(APP) and tau pathologies is emerging, one of the missing links in our fully under-
standing AD is being unravelled. The present section deals exclusively with the
neurofibrillary pathology in AD and related disorders.

Tau Hyperphosphorylation, Assembly of P-Tau, and Tau Pathology

Tau pathology corresponds to the intraneuronal aggregation of microtubule-
associated tau proteins into abnormal filaments. Paired helical filaments (PHF) are
the most characteristic cytoskeletal alterations affecting numerous neurons in AD.
Using a combined immunocytochemical and biochemical approach (Iqbal et al.,
1989) demonstrated for the first time that the microtubule-associated protein tau,
a normal brain cytoskeletal protein, is a component of the PHF. The authors also
indicated for the first time that posttranslational modification of tau such as phos-
phorylation might occur which would allow it to assemble either alone or together
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with other components of PHF (Iqbal et al., 1989). However, once the pathological
process is initiated, several factors join in making this disease course torturous to
follow.

The hyperphosphorylation hypothesis of AD was derived from the sequential
discoveries that the PHF-related proteins from AD brain are, in fact, persistently
phosphorylated forms of tau protein (Iqbal et al., 1989; Kosik et al., 1986). In
AD Thr-231, Ser-396 (adjacent to microtubule binding region), and Ser-262 (in
the microtubule-binding region) of tau protein are phosphorylated in PHF (Biernat
and Mandelkow, 1999; Biernat et al., 1992). Tau loses its biological activity
such as tubulin binding on hyperphosphorylation and becomes resistant to prote-
olytic degradation. This stability of PHF tau is conferred by increased levels of
transglutaminase-induced εγ glutamyl lysine bonds which lead hyperphosphory-
lated tau aggregated into a high molecular weight polymeric complex. In AD, two
major classes of tau kinases are involved: tau kinase I (GSK3) and tau kinase II
(Cdk5). Prior phosphorylation by tau kinase I is followed by tau kinase II emphasis-
ing the role of tau kinase II (Cdk5) on tau phosphorylation in AD. There is evidence
that a dysregulation of Cdk5 as a result of proteolytic cleavage of its regulatory sub-
unit p35 by calpain yields a fragment p25 that allows constitutive activation of this
kinase, which appears to underlie NFT formation in AD.

The phosphorylation of tau may promote a conformational change, possibly
resulting in an increase in the number of α helices in the secondary structure of
tau which is confirmed by the observation that the content of α helices is greater in
tau isolated from PHF. This conformational change could involve the binding of the
amino terminal region of the tau molecule to its microtubule-binding region (Avila
et al., 2004). This facilitates its aggregation into PHF.

In a healthy neuron, phosphorylated tau is transported back (retrograde) to the
cell body from the axonal compartment where it is ubiquitinated and undergoes
proteolysis by the cell’s quality control machinery. Hyperphosphorylated tau cannot
be dephosphorylated by phosphatases such as PP2A and PP2B due to steric hin-
drance caused by the cross-linking. Hyperphosphorylated tau predominant in the
axonal compartment thus gets trapped.

In AD, heparan sulphate or other sulphated glycosaminoglycans induce p-tau to
dimerise followed by polymerisation, glycation, ubiquitination, and cross-linking
which leads to the formation of insoluble PHF. A high concentration of free p-tau
is required for assembly; often a deamidation facilitates polymerisation. The sulfo-
glycosaminoglycans (sGAG, polyanions), present along with tau in NFT accelerate
polymerisation of more p-tau. Sulphated glycosaminoglycans stimulate phospho-
rylation of tau by a number of protein kinases, and prevent tau from binding to
microtubules and from promoting microtubule assembly (Hasegawa et al., 1997).
Earlier studies have shown that heparan sulphate and hyperphosphorylated tau
colocalize in so-called “pretangle” neurones in AD brains, which suggests that
the accumulation of heparan sulphate precedes the hyperphosphorylation of tau
(Bancher et al., 1987; Braak et al., 1994). Other polyanions such as glutamate-rich
regions present in the C-terminal region of tubulin also facilitate aggregation, this
requiring the third tubulin binding motif of the tau molecule; hence 3R isoforms
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only give rise to PHF (Perez et al., 1996). Moreover, the tau found in PHFs are
often ubiquitinated and glycated in AD (Ledesma et al., 1994)

Tau isoforms with three repeats assemble into PHFs, whereas tau isoforms
with four repeats assemble into SFs. It is proposed that oxidation of Cys to pro-
duce disulfide cross-linking favors tau assembly into PHF in tau3R molecules
whereas tau4R having 2 Cys may permit the formation of intramolecular S–S bonds,
and thus assemble into straight filaments (SFs; Barghorn and Mandelkow, 2002).
However, the interplay among phosphorylation as a targeting event, tau glycation,
oxidation, and heparan-mediated PHF formation remains to be elucidated. Excess
calcium influx seems one reasonable downstream mediator for Aβ-induced toxicity
that could explain the activation of certain kinases such as calcium–calmodulin-
dependent protein kinase II and transglutaminase that induce phosphorylation of
tau, inducing their aggregation into PHF (Johnson et al., 1997)

Neurobiology of NFT

It has been proposed that NFTs are an independent feature accumulating slowly
with age within the median temporal lobes. However, under the influence of altered
amyloid metabolism, which leads to the formation of βAmyloid plaques during
the initial stages of the disease, there is an acceleration of NFT formation that
spreads further to neocortex (Price and Morris, 2004). However, quantification of
Aβ in the different brain areas demonstrates that the spreading pathway of tau
pathology remains constant, whatever the cortical distribution of Aβ aggregates
(Delacourte et al., 2002). In AD brain, tau is abnormally hyperphosphorylated,
cleaved, and conformationally changed and is present mostly as PHF (Komori,
1999). Conformational changes in tau have been proposed to be among the earli-
est neurobiological changes in AD. Unlike normal tau, which contains two or three
phosphate groups, the cytosolic hyperphosphorylated tau from AD brain (AD P-
tau) contains 5–9 mol of phosphate/mol of the protein (Alonso et al., 2001). The
finding that phosphorylated tau fails to bind microtubules led to the hypothesis
that phosphorylated PHF tau was microtubule-assembly incompetent, leading to
the destabilisation of neuronal cytoskeleton and cellular demise (Mandelkow et al.,
1996)

In AD neurons, there are three main types of neurofibrillary lesions (NFLs)
according to their intracellular localization; neurofibrillary tangles (NFTs) inside the
cell body and apical dendrites, and neuropil threads (NThs) in distal dendrites and
dysrophic neurites, associated with senile plaques. Morphologically, three major
subtypes of NFTs can be distinguished, corresponding to different evolutionary
stages of these lesions.

1. Pretangle stage: The earliest stage is characterized by the accumulation of
hyperphosphorylated tau in the somatodendritic domain of affected neurons
without forming any PHF or SF. Pretangle neurons are nonargyrophilic and
therefore, only detectable with antitau antibodies (Bancher et al., 1987; Braak
et al., 1994)
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2. Classical NFT: In AD tau is hyperphosphorylated, cleaved, and conformation-
ally changed (Mondragon-Rodriguez et al., 2008). It is present mostly as paired
helical filaments (PHF). Conformational changes in tau have been proposed to
be among the earliest neurobiological changes in AD (Haroutunian et al., 2007).
Unlike normal tau, which contains two or three phosphate groups, the cytoso-
lic hyperphosphorylated tau from AD brain (AD P-tau) contains 5–9 mol of
phosphate/mol of the protein (Alonso et al., 2001). The criteria for AD diag-
nosis have been revised to include the presence of tau pathology for diagnosing
definite AD. Neuropathologically, AD is defined by the accumulation of two
types of insoluble fibrous material–extracellular amyloid protein in the shape
of senile plaques and intracellular neurofibrillary lesions made of abnormally
and hyperphophorylated tau protein. The NFL consists of neurofibrillary tan-
gles, neuropil threads and dystrophic neurites associated with senile plaques.
Ultrastructurally NFL contains PHL as a major fibrous component and SFs as
a minor component. Both types are formed of the six brain tau isoforms that
are hyperphosphorylated. The mechanism of NFL formation in AD is only now
beginning to be understood. Tau is first phosphorylated, accumulates in cyto-
plasm, and then dimers form followed by polymers. Polymers form the globular
particles. As the concentration of globular particles increases, tau fibrils, PHFs,
and SFs appear (Fig. 2). Tau 3R isoforms assemble and give rise to twisted
PHFs with a diameter of 20 nm and Tau 4R isoforms give rise to SFs with
a diameter of 15 nm. In the ultrastructure of PHFs, the three microtubule-
binding regions are found in the core of the structure, making it inacces-
sible to antibodies raised against tubulin-binding region (Goedert and Klug,
1999).

Although globular tau particles were found in non-AD brain, their concen-
tration was lower and there were no filaments. This suggests that the trigger
converting a non-AD brain to an AD brain is the concentration of globular tau
particles. Unlike other tauopathies, glial tau pathology is only a minor feature
of AD (Tolnay and Probst, 1999). Typical NFTs comprising the PHFs and SFs
are identified by means of the silver staining technique (using Bielschowsky and
Gallyas stains).

3. Ghost tangles (tombstones): These comprise the extracellular residua of NFTs
after the degeneration of neurons.

Generally, the degree of dementia correlates with the sites and severity of
tau-based NFT accumulation (Holzer et al., 1994). Based on the manner of NFT
formation on various brain areas of the AD patient, during the course of disease
development, six neuropathological stages are defined.

Stages I and II (Transentorhinal stages) – Earliest NFTs are observed
in the entorhinal cortex and in this stage, patients are cognitively
unimpaired.

Stages III and IV (Limbic stages): Characterized by more extensive forma-
tion of NFTs in the entorhinal cortex and CA1 region of the hippocampus
and in this stage patients experience mild cognitive impairment (MCI, the
preclinical stage of AD)
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Stages V and VI (Isocortical stage): Development of abundant NFTs in the
neocortex and the patients are diagnosed as AD in this stage

Interaction of ApoE and Tau

It is hypothesized that apoE isoforms may differentially influence tau pathol-
ogy. ApoE is the apolipoprotein constituent of chylomicron, which functions in
the transport and internalization of cholesterol and triglyceride-rich lipoproteins.
ApoEε4 isoform is the most important known risk factor of AD. Apo Eε3, which
is considered to be neuroprotective can bind to the microtubule binding region
of nonphosphorylated tau. In vitro studies have shown that phosphorylation of
tau prevents this interaction supporting that apoEε3 prevents hyperphosphorylation
of tau and thus reduces AD risk. The C-terminal bioactive fragments of apoEε4
stimulate hyperphosphorylation of tau. This microtubule destabilization impedes
cellular transport leading to functional deficits and ultimately results in neuronal
loss (Goedert, 1993; Strittmatter et al., 1994).

ApoEε4 can assume the “molten globule” conformation inside the late endo-
some due to the low pH as it possesses Arg residue in its 112 and 158 position.
In this state, the molecule attains increased permeability through the membrane
of late endosome and escapes into the cytosol, where it undergoes proteolysis by
AECE (Apo E cleaving Enzyme) generating truncated bioactive neurotoxic apoEε4
fragments. These fragments interact with p-tau and neurofilament protein of high
molecular weight thus leading to the formation of pre-NFT-like filaments which are
deposited near the mitochondria. The toxic apoEε4 fragments from the pre-NFT
complex bind on the F0–F1 ATPase of mitochondria resulting in mitochondrial
dysfunction and thus disrupting the energy metabolism of neuron (Huang and
Stultz, 2007).

Cell Cycle Re-Entry Hypothesis – Role of Tau

The latest and inevitably the most controversial theory for the pathogenesis of AD
is the “cell cycle re-entry hypothesis” which postulates that the formation of amy-
loid plaques and NFT is due to the reactivation of cell division like phenomena in
the aging neurons. When the cellular signals controlling the connectivity/synaptic
plasticity of a healthy neuron which is integrated in a synaptic network is lost, it re-
enters the cell cycle and attempts to proliferate, but G1 arrest halts its progression
through the cell cycle, thus resulting in cell death, which could be the mechanism
by which age-related neuronal death occurs in the CNS.

In AD neurons, the G1/S regulatory mechanisms seem to be absent/fail and these
neurons are allowed to progress through DNA replication into the G2 phase of the
cell cycle. One of the prominent features of the G2 phase is the activation of kinases
such as MAP Kinase and Cdk2&5, required for pushing the cell through division.
The MAP Kinase initiates mitotic re-entry and Cdk2&5 ensure the cell cycle pro-
gression. The activation of these kinases is associated with a downregulation of
phosphatases and a gradual destabilisation of the microtubule system in an attempt
to prepare the cell for cytokinesis. This destabilisation of microtubules results in an
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increased amount of free tau in the neuron. The concomitant activation of kinases
will inevitably lead to the phosphorylation of this pool of tau which is not bound to
tubulin. This in turn prevents the further reattachment of tau to the microtubules and
favors the formation of PHF typical of the NFTs.

Neither cytokinesis is possible for the terminally differentiated neurons, nor are
the cells apoptosed due to the lack of downstream caspases which leads to a state
of drawn-out agony termed Aposklesis instead of apoptosis. As a consequence, neu-
rons survive for longer periods in the G2 phase of the cell cycle and the aberrant
cellular mechanisms will alter neuronal metabolism generating reactive ions and
free radicals which bring about oxidative injury to the neuron. It is now known that
oxidative stress alone causes no increase in tau phosphorylation, but subtly changes
the pattern of tau phosphorylation. The G2 arrest also upregulates the cell cycle
inhibitor proteins such as GSK3 and CDK inhibitors. The combination of oxidative
stress plus tau phosphorylation (by GSK3) may lead to significant inhibition of tau
degradation. This brings about more tau phosphorylation and aggregation (Reynolds
et al., 1997).

The Genomic Instability Model of AD – The Tau Connection

The microtubule disassembly in AD neurons gives rise to aneuploidy by causing
defects in the organization of the mitotic spindle. Because the chromosomes carry-
ing tau and APP (Chr 17 and Chr 21) are relatively smaller, hence they are subjected
to telomere shortening and undergo breakage fusion bridge cycles (BFB) resulting
in genomic instability due to overexpression of these genes.

With all the compelling evidence accumulated thus far, the criteria for AD diag-
nosis have been revised to include the presence of tau pathology for diagnosing
definite AD.

3.2.4 The Tau Isoforms in AD

Tau gene expression is developmentally regulated by an alternative splicing mech-
anism and six different isoforms exists in the adult human brain such as Tau3L,
Tau3S, Tau3, Tau4L, Tau4S, and Tau4 (Buee et al., 2000). Distinct sets of
tau isoforms expressed in different neuronal populations could lead to different
pathologies. In AD brain, all six isoforms are present as a part of NFTs in their
hyperphosphorylated state. PHF tau consists of a characteristic triplet of peptides
that run as three major bands at 60, 64, and 68 kDa (hence leading to the name A68
protein) and a minor band of 72 kDa apparent molecular mass (Flament et al., 1989).
The slowed electrophoretic mobility of A68 proteins was restored by treatment with
alkaline phosphatase at elevated temperature (Lee, 1990).

Fetal tissue has only one tau isoform, namely tau3. Interestingly, fetal tau
is highly phosphorylated. This similar pattern of phosphorylation at AD-related
sites on tau led to the idea that fetal tau phosphorylation was recapitulated at
AD (Goedert, 1993). Even though fetal tau is highly phosphorylated, there is no
evidence that it begins to self-aggregate. There are developmental factors which
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account for this finding. It can be suggested that something more than stoichiom-
etry and the site of phosphorylation play a role in PHF formation. Trafficking and
compartmentalisation may be of prime importance.

3.3 Progressive Supranuclear Palsy

3.3.1 Clinical Features

The onset of symptoms in PSP is insidious, and the evolution of symptoms may vary.
The mean age at PSP onset ranges from 55 to 70 years, with a few cases beginning as
early as 45 years of age. The first symptoms of PSP are usually postural instability
and falls, which occur either at the onset of the disease or during the first year.
Cognitive or behavioural changes usually begin in the first year, but rarely occur at
the disease onset. After postural instability, dysarthria is the second most common
symptom of PSP and bradykinesia is the third most common problem. A variety
of oculomotor abnormalities are seen of which vertical gaze palsy is considered
the hallmark of the disease. In general the early symptoms and signs of PSP steadily
worsen. The mean duration of illness is 5–7 years. The most common cause of death
is pneumonia (Litvan et al., 1996).

3.3.2 Neuropathology

PSP is characterised by subcortical pathology of destruction in the globus pal-
lidus, subthalamic nucleus, midbrain/pontine reticular formation, and homogeneous
depletion of substantia nigra pars reticulate. The brain stem involvement typically
consists of damage to the supranuclear eye-movement control areas: the interstitial
nucleus of cajal, the rostral interstitial nucleus of the medial longitudinal fasciculus,
and the nucleus of Darkschewitsch. There is no biological marker for the diagnosis
of PSP. Neuropathological examination is the gold standard. The neuropathological
characteristics of PSP include a high density of neurofibrillary tangles and neu-
ropil threads in the basal ganglia and brainstem with a characteristic distribution.
Neuropil threads are filamentous structures scattered throughout the neuropil, occur-
ring independently of neurofibrillary tangles. Tau-positive astrocytes or processes in
areas of involvement help to confirm the diagnosis. Nonspecific neuronal loss and
gliosis are also seen (Litvan et al., 1996).

PSP is the most extensively studied disease in this group. A similar propensity for
damage of the globus pallidus as well as substantia nigra has been demonstrated in
CBD, Parkinsonism dementia complex of Guam and postencephalitic Parkinsonism.
The clinical observation that many of these diseases affect supranuclear control of
gaze further suggests that these diseases, all of which involve tau protein deposition,
share similarities in their topographic pathology.

3.3.3 Neurochemistry and Neurobiology

The NFT in PSP is made of straight filaments and predominantly 4R tau. In vitro
experiments have confirmed that 4R tau forms into straight filament NFTs. It
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Table 3 Tau Neurodegenerative Diseases Classified by the Isoform of Tau Expressed

All Isoforms 4R Tau 3R Tau

Familial Alzheimer’s disease
Frontotemporal dementia

Frontotemporal
dementia

Myotonic dystrophy

Sporadic Alzheimer’s disease
Parkinsonism dementia complex

of Guam
Postencephalitic Parkinsonism

Progressive
supranuclear palsy

Corticobasal
degeneration

Frontotemporal
dementia (Pick’s
disease)

Modified from Morris et al. (1999) and Robert and Mathuranath (2007).

remains unclear if these differences in tau protein deposition reflect a topograph-
ically restricted pattern determined by tau gene expression. If true, then one could
postulate that cortical neurons when damaged in AD express all six isoforms of
the tau gene whereas substantia nigra neurons preferentially express 4R isoforms.
Alternatively the tau protein expression may represent a more fundamental aspect
of the disease as well. The isoform(s) of tau expressed in various diseases is (are)
shown in Table 3. Interestingly, the morphology of tangles varies with the isoform.
Thus when all six isoforms are expressed, as in AD, they are paired helical fila-
ments, whereas in 4R diseases they are either twisted ribbon filaments (as in PiD)
or straight filaments (as in PSP) (Morris et al., 1999). In addition, in many of these
diseases, tau pathology has been described in glial cells as well. This contrasts with
the findings in AD, where tau pathology is largely restricted to the neurons (Komori,
1999).

3.4 Corticobasalganglionic Degeneration

3.4.1 Clinical Features

This is a rare entity. The disease has an insidious onset above 40 years of age.
The initial symptoms are often subtle. Patient may complain of inexplicable loss of
motor skill in one limb. This is typically and predominantly a motor disorder. The
affected limb shows rigidity, slowness of movement, apraxia, and often stimulus-
sensitive myoclonus. A striking finding is the presence of a fixed dystonic posture
of the hand and fingers with flexion of some fingers into the palm, combined with
extension of others. Some of the subjects exhibit alien limb behaviour, although less
frequently than the above motor signs. Here the subject fails to recognize his limb
as part of his body. This results in wide ranges of abnormalities starting from a ten-
dency of the limb to drift away and assume abnormal postures especially when the
eyes are closed or attention is diverted to involuntary unwanted movements of the
limb which the patient just can’t control. With the passage of time, motor symp-
toms spread to affect other limbs, most often the ipsilateral arm or leg, with later
spread to the contralateral limbs. Gait difficulties eventually emerge. The disease
is progressive, with increasing manual and locomotor disability, and usually with
a progressive dysarthria. Eventually the patients lose their ability to walk or to use
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their arms and the disease finally leads to a bedridden state (Riley et al., 1990; Rinne
et al., 1994).

3.4.2 Neuropathology

Pathologically CBD is characterised by asymmetric cortical atrophy predominantly
in the perirolandic area. Histology is the gold standard for the diagnosis of CBD.
It is distinguished by achromatic ballooned neurons that stain positive with tau-
immunohistochemical stains. Tau-positive inclusions are also found in glial cells in
the atrophic areas of the cortex (Fig. 3). Neuronal loss and gliosis with basophilic
inclusions are prominent in the substantia nigra and pallidum. The other subcorti-
cal structures involved include the caudate, putamen, subthalamus, and the dentate
nucleus (Mathuranath et al., 2000).

Fig. 3 Photomicrograph of
temporal neocortex showing
cytoplasmic inclusions in
glial cells within subcortical
white matter (Mathuranath
et al., 2000)

3.5 Multiple System Atrophy (MSA)

3.5.1 Clinical Features

Multiple system atrophy (MSA) is a progressive sporadic neurodegenerative disease
of undetermined etiology that causes Parkinsonism and cerebellar, autonomic, and
pyramidal dysfunction in varying combinations (Osaki et al., 2002). Historically, it
has been described in three different ways: olivopontocerebellar atrophy (OPCA),
striatonigral degeneration (SND),and the Shy–Drager syndrome (SDS). The con-
siderable clinicopathological overlap among these three subgroups led Graham and
Oppenheimer to introduce MSA as an umbrella term (Wenning, 2000).
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3.5.2 Neuropathology

Macroscopically, the brain in MSA shows varying degrees of atrophy of the cere-
bellum, cerebellar peduncles (especially the middle and inferior peduncles), pons,
medulla, and also the posterolateral putamen. There may be loss of pigment in
the substantia nigra and also discolouration of the striatum (notably the putamen).
Excessive iron accumulation has been demonstrated within the striatum to account
for this pigmentary change. The histopathological hallmark is the formation of
alpha-synuclein-positive glial cytoplasmic inclusions (GCIs) in oligodendroglia.
Alpha-synuclein aggregation is also found in glial nuclear inclusions, neuronal
cytoplasmic inclusions (NCIs), neuronal nuclear inclusions (NNIs), and dystrophic
neuritis (Burn and Jaros, 2001).

4 Future Direction

4.1 Tau as a Diagnostic Marker

The role of CSF tau in the diagnosis of dementias is being studied quite extensively.
The most commonly used assay for tau is the ELISA (Schooneboom et al., 2006).
Tau is readily measured in cerebrospinal fluid (CSF) by ELISA, and is one of the
most extensively studied AD biomarkers, as thousands of patients with AD, as well
as various normal and diseased control subjects, have been studied. Measures of
total tau as well as species of phospho-tau detected by antibodies in CSF correlate
best with a diagnosis of AD. Total tau is two- to threefold higher in CSF of patients
with AD compared with normal controls. The release of tau and species of phospho-
tau from degenerating neurons harbouring NFTs and dystrophic neurites in AD is
thought to account for the increase in CSF levels of these proteins. So, the effects of
therapies that ameliorate tau-mediated neurodegeneration and the further accumu-
lation of species of pathological tau could be reflected in CSF tau biomarker assays
(Shaw et al., 2007).

Tau is one of the components of the core neuropathologic changes in AD that
can be measured in CSF and has been frequently studied as a candidate diag-
nostic biomarker. It has been shown in one of the studies that with the use of a
cutoff value of 234 pg/ml, CSF tau demonstrated a sensitivity of 85%, specificity
of 84%, positive predictive value of 87%, and positive likelihood ratio of 5.3 in
distinguishing patients with AD from cognitively normal controls. CSF tau was
also useful in distinguishing AD from frontotemporal dementia and diffues Lewy
body dementia, although the positive likelihood ratio of correct identification was
only 3:1. It has been proposed that CSF tau may also be helpful in differentiat-
ing AD from vascular dementia (Leszek et al., 2003). Recently phosphorylated tau
level in CSF has been found to be useful as a biological marker of AD (Hampel
et al., 2004). Correlation also has been found between impairment of cerebral
metabolism, estimated throughout FDG-PET, and CSF Tau protein levels (Ceravolo
et al., 2008).
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The source of CSF tau remains unclear but most likely is related to the degen-
eration of neurofibrillary tangle-laden neurons. The protein has not been well
characterised in the CSF and may exist in fragmented forms. Although a report
has indicated that it may require 3–5 months for elevated CSF tau levels to return
to normal after an acute stroke, the clearance rate of tau from the CSF in patients
with neurodegenerative dementia remains unknown. Elevated CSF tau has also been
reported in mild cognitive impairment (Schonknecht et al., 2007), CBD, FTD, and in
many patients with Creutzfeldt–Jakob disease (CJD) (Clark et al., 2003). It has been
shown that a higher amount of phosphorylated tau in CSF in sporadic CJD is asso-
ciated with a rapid progression of the disease to akinetic mutism (Van Everbroeck
et al., 2002). Increased CSF Tau has been reported in nondegenerative condi-
tions such as Wernicke’s encephalopathy (Matsushita et al., 2008), neurosyphilis
(Paraskevas et al., 2007), and multiple sclerosis (Terzi et al., 2007).

4.2 Tau as a Therapeutic Target

In tau transgenic mice, mutations have been discovered which precipitate authentic
forms of neurofibrillary degeneration. So these animal models very much resemble
AD even though Tau mutation is not described in AD. The discovery of this model
has paved the way for testing various therapeutic models targeting tau (Roder and
Hutton, 2007). There is good evidence indicating that targeting the kinases respon-
sible for tau protein hyperphosphorylation should be able to arrest and maybe even
reverse the degeneration. Because the main tau phosphorylation kinases regulate
many other physiological functions apart from tau phosphorylation, it will be impor-
tant to design kinase inhibitors that minimize the potential toxicity arising from
inhibition of such off-target functions, while maximizing effective suppression of
tau hyperphosphorylation. On the basis of the current body of knowledge about rel-
evant protein kinase inhibitors, molecules with varying kinase inhibition selectivity
profiles and appropriate bioavailability properties might be designed as pharmaco-
logical tools and, it is hoped, drug candidates for the treatment of neurodegenerative
tauopathies (Mazanetz and Fischer, 2007). Recently using a triple transgenic model
it has been shown that Aβ immunotherapy leads to the clearance of early tau pathol-
ogy. The clearance of the tau pathology is mediated by the proteasome and is
dependent on the phosphorylation state of tau, as hyperphosphorylated tau aggre-
gates are unaffected by the Aβ antibody treatment (Oddo et al., 2004). It has been
shown that the inhibition of the proteasome leads to a bidirectional degradation of
Tau (Delobel et al., 2005).

4.3 Research Avenues

The relation between tau protein and α-synneuclein and amyloid has to be delin-
eated. This will further clarify the role of tau protein in Parkinsonism as well as
amyloidosis As well as understanding the tau neurobiology in CBD and PSP.
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Zinc and Zinc Transport and Sequestration
Proteins in the Brain in the Progression
of Alzheimer’s Disease

Mark A. Lovell

Abstract Multiple studies over the past 25 years have demonstrated alterations of
zinc (Zn) in the brain in Alzheimer’s disease (AD), although the potential fole of
these alterations in the pathogenesis of AD remains unclear. The following examines
normal and abnormal roles of Zn and Zn transport (ZIP and ZnT) proteins in brain
and the potential effects of their alterations in the pathogenesis of AD.

Keywords Zinc · Early Alzheimer’s disease · Mild cognitive impairment · Zinc
transporter proteins · Amyloid beta peptide · Neurodegeneration
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1 Introduction

1.1 Clinical Parameters of Mild Cognitive Impairment (MCI),
Early AD (EAD), and Late Stage AD (LAD)

Alzheimer’s disease (AD), the fourth leading cause of death in the United States,
affected 4.5 million Americans in 2000 and may affect as many as 14 million
by 2040 (Hebert et al., 2003). Current estimates suggest ∼3% of Americans
between ages 65 and 74, 19% ages 75–84, and 47% over age 85 are victims
of the disease (Evans et al., 1989) with ∼60% of nursing home patients over
age 65 suffering from AD. Alzheimer’s disease is characterized clinically by a
progressive decline in multiple cognitive functions and is thought to begin with
amnestic mild cognitive impairment (MCI), widely considered to be a transition
between normal aging and dementia. Recent studies suggest conversion from MCI
to dementia occurs at a rate of 10–15% per year (Petersen and Morris, 2003)
with a conversion rate of ∼80% by the sixth year of followup. Of the remain-
ing MCI subjects ∼5% remain stable or convert back to normal (Bennett et al.,
2002; DeCarli, 2003). Clinically, MCI is diagnosed based on the Petersen et al.
criteria and is characterized by: (a) memory complaints, (b) objective memory
impairment for age and education, (c) intact general cognitive function, (4) intact
activities of daily living (ADLs), and (5) the subject is not demented (Petersen
et al., 1999). Objective memory test impairment is based on a score of ≤1.5 stan-
dard deviations from the mean of controls on the CERAD Word List Learning
Task (Morris et al., 1989) and corroborated in some cases with the Free and
Cued Selective Reminding Test. As the disease progresses patients are classified
as early AD (EAD), patients and are clinically characterized by (a) a decline in
cognitive function from a previous higher level, (b) decline in one or more areas
of cognition in addition to memory, (c) a clinical dementia rating scale score
of 0.5–1, (d) impaired ADLs, and (e) a clinical evaluation that excludes other
causes of dementia. Disease progression ultimately leads to late stage AD (LAD)
which is characterized clinically by impairment of recent memory, language distur-
bances, and alterations of abstract reasoning, concentration, and thought sequencing
(executive function) ( American Psychiatric Association, 2000). Diagnosis of prob-
able AD is based on criteria from the National Institute of Neurological and
Communicative Diseases and Stroke/Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) and is made when patients demonstrate (a) demen-
tia established by clinical examination and documented by mental status tests, (b)
deficits in two or more areas of cognition, (c) progressive worsening, (d) no dis-
turbance in consciousness, (e) onset between age 40 and 90, and (f) no systemic
or other brain diseases that could account for the progressive deficits (National
Institute on Aging and Reagan Institute Working Group, 1997). The mean length
of life following diagnosis is 8.5 years with a range of 1–25 years (Jost and
Grossberg, 1995).
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1.2 Pathological Characterization of MCI, EAD, and LAD

Pathological examination of the AD brain shows an abundance of neurofibrillary
tangles (NFT), senile plaques (SP), increased neuropil thread formation, increased
neuron and synapse loss and proliferation of reactive astrocytes, primarily in the
hippocampus, amygdala, entorhinal cortex, and neocortex. Neurofibrillary tangles
are intracellular lesions consisting of paired helical filaments composed primarily of
hyperphosphorylated tau. Senile plaques are extracellular lesions and are present in
two forms: (a) diffuse plaques (DP) composed of amorphous extracellular deposits
of Aβ lacking neurites, and (b) neuritic plaques (NP) composed of extracellular
deposits of insoluble Aβ surrounded by dystrophic neurites, reactive astrocytes, and
activated microglia. In addition to insoluble Aβ present in SP, recent studies suggest
soluble Aβ oligomers are present in the AD brain and may represent the main toxic
form of Aβ, thus implicating them in the disease process (Glabe, 2006; Klein, 2002;
Walsh et al., 2002).

Senile plaques and NFT are the hallmark pathological lesions employed for the
histopathologic diagnosis of AD based on the National Institute on Aging-Reagan
Institute (NIA-RI) criteria (The National Institute on Aging, 1997). The NIA-RI
criteria combine NP scores used by the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) with Braak staging scores to provide classifications
of low, intermediate, and high likelihood for the diagnosis of AD. The CERAD cri-
teria use NP densities in three neocortical regions (frontal, temporal, and parietal)
to provide an age-related NP score that is used in conjunction with the clinical his-
tory to reach a diagnosis of possible, probable, or definite AD. Braak staging scores
(Braak and Braak, 1994) are based on the observation that NFT pathology pro-
gresses in a topographically predictable manner from the transentorhinal (stages I
and II) to entorhinal, hippocampus, amygdala, and adjacent temporal cortex (limbic
stages III and IV) and then to the isocortex (stages V and VI).

Pathologically, MCI subjects show significant increases in neocortical NP and
NFT densities in entorhinal cortex, hippocampus, and amygdala compared to nor-
mal control subjects (Markesbery et al., 2006) with Braak staging scores ranging
from III to IV. Subjects with EAD generally meet NIA-RI high likelihood criteria
for the histopathological diagnosis of AD with Braak staging scores of V but have
less severe overall NFT and NP formation than observed in LAD.

Multiple risk factors have been identified for AD and include age (Evans et al.,
1989), a variety of genetic factors including mutations of presenilin 1 (PS1) and
2 (PS2), and the amyloid precursor protein (APP) (Levy-Lahad et al., 1995;
St. George-Hyslop, 1994). In addition, single nucleotide polymorphisms in
ubiquilin-1 (Bertram et al., 2005), a genetic locus on chromosome 10 that includes
the insulin-degrading enzyme (Bertram et al., 2000; Ertekin-Taner et al., 2000;
Myers et al., 2000) that may interact with and degrade Aβ, inherited variants in
SORL1 (Rogaeva et al., 2007), and the presence of apolipoprotein E4 alleles (Corder
et al., 1993) are associated with the risk of AD. Additional risk factors for AD
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include head injury (Mortimer et al., 1991), diabetes (Chan et al., 1999; Leibson
et al., 1997; Peila et al., 2002), hyperlipidemia (Jick et al., 2000), hypertension
(Skoog et al., 1996), heart disease (Kleineke and Brand, 1997), smoking (McMahon
and Cousins, 1998; Merchant et al., 1999), elevated plasma homocysteine (Seshadri
et al., 2002), obesity (Gustafson et al., 2003), and low educational attainment and
low linguistic ability early in life (Snowdon et al., 2000, 1996).

Despite considerable research, the major barrier to treating and eventually pre-
venting AD is a lack of understanding of the cause and mechanisms of neuron
degeneration and loss. Because of the complexity of the disease, AD is likely a
heterogeneous disease of multiple, probably interrelated, etiologic/pathogenic fac-
tors. Numerous etiologic/pathogenic mechanisms have been suggested for the cause
of AD including genetic defects (St. George-Hyslop et al., 1987; St. George-Hyslop,
1994), the amyloid cascade hypothesis (reviewed in Sommer, 2002), the oxidative
stress hypothesis (Coyle and Puttfarcken, 1993), mitochondrial defects (Wallace,
1992), trace element (including Zn) toxicity (reviewed in Markesbery and Ehmann,
1994), or a combination of the above. One hypothesis receiving renewed interest is
the potential role of alterations of Zn homeostasis in the pathogenesis of AD.

2 Zinc and Zinc Homeostasis

Zinc is an essential trace (μg/g) element (Prasad et al., 1963) in human health
and biology. Although Zn is present in all organs ∼90% of total body zinc
(1–2 g) is associated with bones and skeletal muscle (Sturniolo et al., 2000). Most
dietary Zn is absorbed from the jejunum through passive diffusion and specific
transporter proteins (Sturniolo et al., 2000). Once absorbed, Zn is transported in
the plasma bound largely to albumin (Smith et al., 1979). Circulating Zn is trans-
ported into the brain via the blood/brain and blood/cerebrospinal fluid (CSF) barriers
(Nunomura et al., 2001) where brain capillary endothelial cells respond to changes
in Zn status by increasing or decreasing Zn uptake (Lehmann et al., 2002). Once
transferred to the CSF, Zn is quite mobile and is taken up by the brain in pro-
cesses that are not completely understood but likely involve transporters of the
Zrt-Irt (ZIP) family, zinc transporter (ZnT) family, or through a variety of other
specific gated Zn permeable channels. At the cellular level Zn is redox inert and has
structural, catalytic, and regulatory roles (Bettger and O’Dell, 1981; Golden, 1989;
Vallee and Falchuk, 1993). Zinc is a crucial component in over 300 enzymes and
transcription factors where it serves as an essential cofactor for catalytic activity
(Frederickson, 1989) or by conferring structural stability to Zn finger domains of
DNA binding proteins (Colvin et al., 2003) including stimulating protein-1 (sp-1), a
transcription factor responsible for ∼30% of APP transcription (Bittel et al., 1998;
Dalton et al., 1997, 1996). Additionally, recent studies suggest free Zn may possess
important signaling functions including modulation of protein kinase C (PKC) sig-
naling pathways (Korichneva et al., 2002), modulation of p53 mediated DNA repair
through stabilization of p53/genomic DNA interactions (Mocchegiani et al., 2005),
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inhibition of gamma aminobutyric acid (GABA-ergic) neurotransmission (Haase
and Beyersmann, 2002), and modulation of glycogen synthase kinase 3β (An et al.,
2005; Ilouz et al., 2002).

2.1 Zinc Transport and Sequestration

In the brain, Zn is distributed in discrete pools: (a) a membrane-bound met-
alloprotein, or protein–metal complex pool involved in metabolic reactions and
nonmetabolic functions such as biomembrane structure and support; (b) a vesicular
pool present in nerve terminal synaptic vesicles; and (c) a cytoplasmic pool of free
or loosely bound ions (Frederickson, 1989). The easily chelated vesicular pool may
be the most important (Danscher et al., 1985; Frederickson et al., 1983; Haug, 1967;
Perez-Clausell and Danscher, 1986) because it is released during neurotransmission
and may reach neurotoxic levels of 300 μM in the synapse. Without immediate
uptake and sequestration these Zn gradients could potentially induce neurodegener-
ation. Mean brain Zn concentrations are highest in the hippocampus, amygdala, and
neocortex and are relatively low in cerebellum (Danscher et al., 1997; Frederickson
et al., 2005), a pattern that mirrors the distribution of pathological features in AD.
These Zn concentrations range between 150 and 200 μM (Ebadi et al., 1995; Price
and Joshi, 1982) and are ∼10 times serum Zn levels (Takeda, 2000). At the cellular
level Zn concentrations range from nanomolar levels in the cytoplasm of most neu-
rons to millimolar concentrations in vesicles of mossy fiber terminals (Frederickson
et al., 1983; Williams, 1989).

Although Zn is critical for normal brain function, in vitro and in vivo studies
show high concentrations of Zn are toxic to neurons (Choi et al., 1988; Duncan
et al., 1992; Yokoyama et al., 1986; Chuah et al., 1995; Cuajungco and Lees, 1996;
Koh et al., 1996) resulting in increased oxidative stress, and necrotic and apoptotic
cell death occurring in as little as 30 min (Choi et al., 1988; Gaskin and Kress, 1977;
Manev et al., 1997; Kim et al., 1999). Although elevated Zn can be neurotoxic, the
exact mechanism of Zn-induced cell death remains unclear. One possible mecha-
nism by which Zn mediates neurotoxicity is through the potentiation of glutamate
(Beaulieu et al., 1992; Bramham et al., 1990; Danscher et al., 1985; Frederickson
et al., 1983; Kesslak et al., 1987; Stengaard-Pedersen et al., 1983), AMPA (Buschke
et al., 1999; Choi et al., 1988; Freund and Reddig, 1994; Koh and Choi, 1987),
or kainic acid (Choi et al., 1988; Shore et al., 1984; Yin and Weiss, 1995) toxic-
ity. In addition, Zn has been shown to play a role in mitochondrial dysfunction by
inhibiting the transfer of an electron between coenzyme Q and cytochrome b of the
bc1 complex (Blennow et al., 1995; Hunter and Ford, 1955; Kleiner and von Jagow,
1972), thus inhibiting the initial step of respiration. At high Zn concentrations levels
of complex I and II and cytochrome oxidase are inhibited (Skhulachev et al., 1967),
although Yamaguchi et al. (1982) demonstrated increased mitochondrial function
in rat liver after a single low dose of Zn. Later studies (Canzoniero et al., 1999;
Ho et al., 2000; Krotkiewska and Banas, 1992) showed nM–μM concentrations
of Zn can inhibit a number of enzymes required for mitochondrial respiration and
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glycolysis. Zinc-mediated dysfunction in oxidative phosphorylation and the resul-
tant increase of free radical generation could in turn lead to release of Zn from MT
and further increased intracellular concentrations of Zn (Fliss and Menard, 1992).
Zinc at relatively low concentrations can inhibit sodium/potassium ATPase (Na+K+

ATPase) activity in isolated protein, inhibit glutamate and GABA uptake in mice
synaptosomes (Gabrielsson et al., 1986), and glutamate transport by human excita-
tory amino acid transporter (EAAT) 1 in Xenopus laevis oocytes (Vandenberg et al.,
1998).

Zinc is hypothesized to influence assembly and disassembly of tubulin (Eagle
et al., 1983; Gaskin and Kress, 1977; Gaskin et al., 1978) and several microtubule
associated proteins in vitro (Backstrom et al., 1992; Gaskin and Kress, 1977;
Gaskin et al., 1978; Kress et al., 1981) contributing to structural abnormalities. In
addition, Zn may mediate tau phosphorylation through modulation of P13/AKT,
ERK1/2, and p38/MAPK signaling cascades (An et al., 2005). Influx of Zn through
NMDA receptor channels may lead to neuronal depolarization and an increase of
intracellular calcium (Ca) that could further activate second messenger systems
via PKC-mediated phosphorylation of receptor ion channels or voltage-dependent
gene expression (Atar et al., 1995; Murakami et al., 1987; Rubin and Koide,
1973). Calcium homeostasis may be further disrupted by Zn binding to calmod-
ulin (Baudier et al., 1983) and the inhibition of calmodulin-complexed Ca ATPase
(Brewer et al., 1979). Chelatable Zn has been shown to accumulate in the cell
perikarya of apoptotic neurons before and during degeneration following ischemia
insult (Kress et al., 1981; Tonder et al., 1990) or seizure activity (Frederickson,
1989), and is suggested to play a pathological role in neuron death. More recent
studies demonstrated increased intracellular Zn as an early event in the apoptotic
pathway that occurs in the absence of exogenous Zn and is consistent with a release
of Zn from intracellular stores (Zalewski et al., 1994). Because of the essential but
potentially toxic qualities of Zn it is imperative that cells regulate Zn levels through
control of influx and efflux and through chelation to Zn sequestering proteins.

3 Maintenance of Zinc Homeostasis

In general, Zn homeostasis is maintained by three families of proteins: (a) met-
allothioneins (MT) that quickly bind, sequester, and hold Zn after influx into the
cytoplasm, (b) Zrt–Irt-like (ZIP) proteins that likely mediate Zn influx into the cell,
and (c) zinc transporter (ZnT) proteins that mediate efflux of cytoplasmic Zn to the
extracellular space or sequestration in intracellular organelles.

3.1 Metallothioneins

Metallothioneins are a superfamily of nonenzymatic low molecular weight
(6–7 kDa) single polypeptide chains of 61–68 amino acids, 25–30% of which are
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cysteines. Metallothioneins display high Zn binding affinity (KZn = 3.2 × 10–13

M–1 at pH 7.4), can bind 7 atoms of Zn per molecule, and function to sequester Zn
immediately after uptake by cells to prevent toxicity (Palmiter, 1998). These pro-
teins are ubiquitous and expression can be induced by metals including mercury
and cadmium, glucocorticoids, proinflammatory cytokines, oxidative stress, elec-
trophilic compounds, and xenobiotics (Kagi and Schaffer, 1988; Palmiter, 1998;
Vallee, 1995). In mammals, four subfamilies of MT exist (MT-I, MT-II, MT-III, and
MT-IV) with three functional isoforms expressed in brain including MT-I and II,
which are expressed in astrocytes, the perivascular space, and pia mater (Penkowa
et al., 1999) in a Zn-dependent manner (Atar et al., 1995; Durnam and Palmiter,
1981) and MT-III, which is most abundant in neurons that sequester Zn in synaptic
vesicles (Bush et al., 1994). In general MT are thought to be largely intracellular
with localization in the cytoplasm, lysosomes, and mitochondria (Penkowa, 2006)
and are regularly translocated to the nucleus during cell division and under oxidative
stress (Cherian and Apostolova, 2000; Klaassen et al., 1999; Maret, 2002; Trayhurn
et al., 2000). Because of their small size MT-I and MT-II are able to diffuse into
the nucleus through nuclear pore complexes where they are retained by nuclear
factors (Penkowa, 2006). Metallothioneins have a low redox potential (–366 mV)
that allows mild oxidation to decrease Zn binding and facilitates release of Zn for
binding to Zn finger and other transcription factors that modulate DNA binding
efficiency and expression of antioxidant genes during periods of oxidative stress
(Mocchegiani et al., 2005).

3.2 ZIP Proteins

Although the mechanism of transport of Zn from brain extracellular environments
to intracellular compartments in neurons and glia is not completely understood, it
is thought to involve members of the ZIP family of proteins (Chromy et al., 2003).
The ZIP family of proteins was initially identified based on their functional and
structural similarity to the ZRT yeast family (Eide, 1998) and the IRT transporters
of Arabidopsis thaliana (Grotz et al., 1998). ZIP proteins are predicted to have 8
transmembrane domains with a histidine-rich intracellular loop between domains 3
and 4 (Huang et al., 2005) and are part of the plasma membrane or membranes of
intracellular organelles. Using mouse and human sequence analysis 14 mammalian
ZIP proteins that elevate intracellular Zn by increasing Zn uptake (ZIP 1–5; 7–15)
or by releasing Zn from intracellular stores when Zn is deficient (ZIP 6 and 7) have
been identified. ZIPs have no ATP binding sites or ATPase domains and function
in an energy-independent manner (Gaither and Eide, 2000, 2001). ZIP-1 mRNA is
expressed ubiquitously (Gaither and Eide, 2001) whereas ZIP-2 is specific to spleen,
small intestine, and bone marrow (Gaither and Eide, 2000). Similarly, ZIP-3 expres-
sion is high in bone marrow and spleen (Gaither and Eide, 2000). ZIP-4 expression
is associated primarily with small intestine, and kidney (Wang et al., 2002b) and
is increased during periods of Zn deficiency (Cousins et al., 2003; Dufner-Beattie
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et al., 2003). Human ZIP-5 is highest in intestine, liver, kidney, and pancreas (Wang
et al., 2004) whereas ZIP-6 is associated with prostate and placenta (Taylor et al.,
2003). In humans ZIP-7 is ubiquitously expressed and is subcellularly localized to
the Golgi apparatus where it functions to release Zn to the cytoplasm during periods
of low intracellular Zn (Huang et al., 2005). The remaining ZIP proteins (8–15) have
been identified by database searches but are yet to be localized. In addition to ZIP
proteins, neuronal Zn uptake may also be mediated by a variety of Zn-permeable
membrane spanning channels including Ca2+ permeable AMPA/kainate channels
(Jia et al., 2002), voltage-gated L-type Ca2+ (Colvin et al., 2003), N-methyl-D
aspartate (NMDA) receptor gated (Koh and Choi, 1994), and Na+/Zn2+ exchangers
(Cheng and Reynolds, 1998).

3.3 ZnT Proteins

Zinc transport (ZnT) proteins serve as a counterpoint to ZIP proteins and function
in the export of cytoplasmic Zn to the extracellular space or the sequestration of
Zn in intracellular organelles. ZnT proteins are members of the cation diffusion
facilitator family of proteins and are predicted to have 6 transmembrane domains
with a histidine-rich loop between transmembrane domains 4 and 5. Presently, eight
ZnT proteins have been described (reviewed in Eide, 2006) with two additional ZnT
genes (ZNT-9 and ZNT-10) predicted based on analysis of the mouse and human
genome (Seve et al., 2004; Sim and Chow, 1999). ZnT-1 is located at the plasma
membrane, whereas the other ZnT proteins are expressed at the membrane of intra-
cellular organelles. ZnT-1 is present in multiple organs including brain (Palmiter,
1995) and is induced in the presence of elevated cytoplasmic Zn through direct bind-
ing of Zn to the Zn-finger domain of metal response element-binding transcription
factor-1 (MTF-1; reviewed in Andrews, 2001). After binding Zn, MTF-1 translo-
cates to the nucleus where it binds the metal response element (MRE) in genes
for ZnT-1, MT, and gamma glutamylcysteine synthetase heavy chain which con-
trols the rate-limiting step in glutathione synthesis (reviewed in Andrews, 2001).
Initial in vitro studies of ZnT-1 showed overexpression in baby hamster kidney
cells conferred resistance to increased Zn with the rate of Zn efflux increasing as
extracellular Zn concentrations increased suggesting Zn efflux mediated by ZnT-1
is an energy-dependent process and argues against ZnT-1 being a channel or facil-
itated transporter (Palmiter, 1995). Later studies demonstrated that ZnT-1 reduces
Zn influx through the L-type calcium channels (LTCC) without increasing Zn efflux
(Nolte et al., 2004; Ohana et al., 2006; Segal et al., 2004). In addition, in vivo studies
(Chowanadisai et al., 2005) showed rats provided a Zn-deficient diet demonstrated
decreased brain ZnT-1, suggesting low systemic Zn could decrease ZnT-1 to main-
tain or increase brain Zn stores which is consistent with studies of Takeda et al.
(2001) who found rats on a Zn-deficient diet showed increased brain Zn. Studies
from our laboratory show ZnT-1 protein expression and function can be inactivated
by HNE (2006aSmith et al., ), a neurotoxic aldehydic marker of lipid peroxidation
present in MCI and LAD brain (Lovell et al., 1997; Williams et al., 2005).
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ZnT-2, a component of vesicular acid intracellular compartments, is predomi-
nantly expressed in intestine, kidney, and testis and is scarcely detected in brain
in mice (Palmiter et al., 1996). Overexpression of ZnT-2 in baby hamster kidney
cells conferred resistance to elevated Zn with sequestration into acidic compart-
ments at higher concentrations (Palmiter et al., 1996). In contrast, coexpression of
ZnT-1 suppressed ZnT-2 mediated transport into acidic vesicles suggesting ZnT-2
has a relatively low affinity for Zn and functions only under excessive elevations of
Zn as a second line of defense when other ZnTs fail to function properly (Palmiter
et al., 1996). ZnT-3 sequesters Zn in vesicles and has expression limited to brain and
testis (Palmiter et al., 1996). In mouse brain, ZnT-3 is associated with hippocampal
dentate granule cells, pyramidal, and intraneurons as evidenced by levels of mRNA
(Palmiter et al., 1996).

ZnT-4 exhibits considerable homology with ZnT-2 and 3 and has expression
in mammary gland and brain (Huang and Gitschier, 1997). Functionally, ZnT-4
sequesters Zn in acidic vesicles and is involved in the transport of Zn2+ into milk
during lactation (Kelleher and Lonnerdal, 2002). In contrast to other ZnT proteins,
ZnT-5 is predicted to have 15 membrane spanning domains and is less than twice
the size of other ZnT proteins (Colvin et al., 2003).

In mice ZnT-5 mRNA is found in most organs although the highest protein
expression is in the pancreas where is it associated with Zn-enriched secretory gran-
ules in insulin containing β cells. ZnT-5 is scarcely detected in brain (Kambe et al.,
2004) in mice although more recent studies observed ZnT-5 immunostaining in SP
of AD brain (Zhang et al., 2008a).

In mice ZnT-6 mRNA is present in multiple organs including brain and sequesters
cytoplasmic Zn in the trans-Golgi network (TGN) and vesicular compartments
(Huang et al., 2002). ZnT-6 mRNA is present in multiple organs including brain.
Similarly, ZnT-7 sequesters Zn in the TGN but has expression limited to lung and
small intestine (Kirschke and Huang, 2003). ZnT-8 has been characterized and is
primarily associated with secretory granules of pancreatic β cells (Kleineke and
Brand, 1997; Rivlin et al., 1999) where it likely plays a role in insulin transport. In
mice ZnT-8 has limited expression in brain.

4 Zinc, Zinc Transport, Alzheimer’s Disease, and Mouse
Models of AD

The potential role of Zn in the pathogenesis of AD has been of interest since 1981
when Burnet (Burnet, 1981) proposed that Zn deficiencies led to dementia. Initial
studies of AD and control brain showed significantly decreased Zn in the hippocam-
pus, inferior parietal lobule, and occipital cortex of LAD subjects (Andrasi et al.,
1990, 1993; Corrigan et al., 1993; Deng et al., 1994). In contrast, later studies using
short postmortem interval tissue specimens from well-characterized LAD and con-
trol subjects showed significant elevations of Zn in LAD hippocampus, amygdala,
and multiple neocortical areas (Cornett et al., 1998; Danscher et al., 1997; Deibel
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et al., 1996; Ehmann et al., 1986; Samudralwar et al., 1995; Wenstrup et al., 1990).
The use of formalin-fixed tissues in some of the earlier studies, which could have
led to mobilization and loss of Zn, has been suggested to account for the observed
differences in these studies. In addition, earlier studies may have also included con-
trol subjects that were not prospectively evaluated. Although multiple studies show
alterations of Zn in LAD, there are few reports of Zn concentrations in brain in
earlier stages of the disease.

Although several studies have quantified changes in Zn at the bulk level, changes
in the cellular localization of Zn in the progression of AD remains unclear. Studies
of Zn at the microprobe level have primarily focused on the association of Zn
with SP. Initial studies using microparticle induced X-ray emission (micro-PIXE),
showed increased Zn in SP compared to adjacent neuropil and an elevation of Zn
in LAD neuropil compared to age-matched normal control (NC) subjects (Lovell
et al., 1998). Subsequent studies confirmed those findings in AD (Cherny et al.,
1999; Frederickson et al., 2000; Miller et al., 2006; Stoltenberg et al., 2005) and in
amyloid plaques of Tg2576 transgenic mice expressing mutant APP (Friedlich et al.,
2004; Lee et al., 1999). Using Raman microscopy to evaluate the structure and com-
position of isolated senile plaques Dong et al. (2003) showed Zn2+ and Cu2+ were
specifically coordinated with histidine residues in Aβ. Despite considerable study
of Zn in SP, there have been relatively few studies that measure Zn in individual
neurons in AD.

Although the subject of extensive study over the past 25 years, the reasons for
elevated brain Zn in AD are unclear. Several studies have attempted to relate changes
in peripheral Zn to elevated brain levels, although results have been contradictory.
Haines et al. (1991), Molina et al. (1998), and Shore et al. (1984) showed no signif-
icant differences between AD and control serum Zn, whereas Jeandel et al. (1989)
showed a significant decrease in Zn and other nutrients and antioxidant properties
in AD serum, although the AD group may have contained malnourished subjects.
The study of Haines et al. (1991) may also be questioned because it included control
subjects whose Mini Mental Status Examination scores were considered cognitively
impaired. In contrast, Rulon et al. (2000) and Gonzales et al. (1999) showed signifi-
cant elevations of Zn in AD serum. Additionally, Gonzales et al. (1999) showed that
serum Zn correlated with the presence of APOE4 alleles and concluded that of the
indices analyzed in their study, only serum Zn appeared to be an independent risk
factor associated with the development of AD. In a subsequent study of serum Zn
in the progression of AD, we showed a statistically significant decrease of serum
Zn in men with MCI compared to women with MCI or age-matched normal con-
trol men (Dong et al., 2008). In contrast, there were no significant differences in
serum Zn between well-characterized LAD subjects and cognitively normal control
subjects. The observation of decreased serum Zn in MCI is of interest in light of
previous in vivo rat studies that showed systemic Zn deficiencies led to diminished
ZnT-1 levels and increased brain Zn (Chowanadisai et al., 2005; Nunomura et al.,
2001; Takeda et al., 2001). These data support the hypothesis that elevated brain Zn
in AD may be due to increased Zn uptake by brain under conditions of diminished
extraparenchymal Zn in MCI.
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Similar to serum studies, measures of CSF Zn levels have also been inconsistent.
Molina et al. (1998) showed decreased Zn in AD CSF compared to age-matched
control subjects whereas Basun et al. (1991) showed no significant changes. In addi-
tion, recent studies (Gerhardsson et al., 2008; Strozyk et al., 2007) showed there is
an inverse relationship between Zn and copper concentrations and levels of Aβ1-42
in CSF of LAD subjects and that degradation of soluble Aβ is normally promoted
by physiological concentrations of both Cu and Zn (Strozyk et al., 2007). Although
the potential variation of Zn through the progression of AD is of interest there have
been no published studies of CSF levels of Zn in MCI subjects.

Despite considerable interest in the mechanism by which Zn accumulates in the
brain in AD, there has been relatively little study of proteins responsible for Zn
influx and efflux. In the first study of ZnT-1 in AD, we used Western blot analyses
to show significantly decreased ZnT-1 levels in the hippocampus/parahippocampal
gyri (HPG) of MCI, but significant elevations in EAD and LAD (Lovell and
Markesbery, 2005). In studies of multiple ZnT proteins in SP in AD brain, Zhang
et al. (2008a) used confocal microscopy and double immunolabeling to show colo-
calization of ZnT-1, ZnT-3, ZnT-4, ZnT-5, ZnT-6, and ZnT-7 with amyloid in SP
in AD. Although all six ZnT proteins were present to varying degrees in SP, ZnT-5
demonstrated the most pronounced immunostaining in SP whereas ZnT-3 immunos-
taining was more pronounced in amyloid angiopathic vessels. These data are similar
to those observed in our studies of ZnT-4 and ZnT-6 in the progression of AD which
showed significantly elevated ZnT-4 in the HPG and superior and middle temporal
gyri (SMTG) of EAD and LAD subjects compared to age-matched controls (Smith
et al., 2006b) and significantly increased ZnT-6 in the HPG of EAD and LAD sub-
jects compared to normal control subjects and a trend toward a significant elevation
in MCI (Smith et al., 2006b). We also observed a striking association of ZnT-6 with
NFT-bearing neurons identified using the modified Bielschowsky stain in LAD and
in neurons positive for MC-1, a marker of early NFT formation in MCI (Lovell
et al., 2006).

In studies of transgenic mouse models of amyloid deposition, Zhang et al.
(2008b) used Western blot analysis to show significant elevations of ZnT-1, ZnT-3,
ZnT-4, ZnT-6, and ZnT-7 in the hippocampus and neocortex of mice expressing
mutant APP and PS1 (APPSwePS1dE9). Immunolocalization showed that most
amyloid plaques of APP/PS1 mice were immunopositive for ZnT-1 and ZnT-4
whereas ZnT-3, ZnT-5, and ZnT-6 were mainly associated with degenerating neu-
rites at the plaque periphery. Levels of ZnT-1 were increased 300% in hippocampus
and 200% in neocortex of APP/PS1 mice compared to wild-type (WT) mice of the
same age. Levels of ZnT-6 and ZnT-7 showed the smallest increase in APP/PS1
hippocampus and neocortex with levels ∼150% those of WT mice. Levels of
ZnT-5 were also elevated in APP/PS1 mice but did not reach statistical signif-
icance. Of the proteins studied, ZnT-3 showed the most pronounced changes in
hippocampus and neocortex of APP/PS1 mice (400 and 200%) compared to WT
mice providing further support for the studies of Gosavi et al. (2002) who showed
that crossing mice expressing mutant APP with ZnT-3-null mice led to diminished
Aβ deposition. More recently, Friedlich et al. (2004) showed that these mice also
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demonstrate reduced cerebral amyloid angiopathy that is hypothesized to be due
to diminished Zn concentrations in the perivascular space of ZnT-3-null mice. In
additional studies, Stoltenberg et al. (2007) showed that providing APP/PS1 mice
a Zn-deficient diet from 9 to 12 months of age led to increased Aβ deposition but
no significant changes in autometallographic staining of Zn or ZnT immunostain-
ing. Although the mechanism by which Zn deficiencies would lead to increased
Aβ deposition, but not alterations in ZnT proteins, is unclear, the data do sup-
port the hypothesis that alterations of Zn may contribute to the pathogenic changes
in AD.

5 Zinc and Amyloid Beta (Aβ) Peptide Processing
and Aggregation

Although considerable evidence suggests there are alterations of Zn homeostasis in
the AD brain, direct evidence for its role in the pathogenesis of AD has been lacking.
Although Zn may play a role in multiple pathways relevant to AD, to date the most
widely studied has been the possible role of Zn in processing of APP and aggrega-
tion of Aβ. APP synthesis is regulated by Zn-containing transcription factors, NF-κβ

and sp1, and although Zn is essential for their activity (Yang et al., 1995; Zabel et al.,
1991; Zeng et al., 1991), it is unclear whether the activity in vivo is regulated by Zn
availability. In addition to the potential influence of Zn on APP expression, it may
also affect proteolytic processing of the protein. Normal (nonamyloidogenic) pro-
cessing of APP by α-secretase cleavage in the Golgi complex leads to formation of
sAPP, a neurotrophic factor (Wilquet and De Strooper, 2004). In contrast, proteolytic
processing of APP by β-secretase (BACE) at the β-cleavage site (Andrasi et al.,
2000; Calingasan et al., 1999; Hussain et al., 1999; Sinha et al., 1999; Vassar et al.,
1999) occurs in endosomes (Kinoshita et al., 2003; Koo and Squazzo, 1994), where
acidic pH necessary for β-secretase activity is possible (Wilquet and De Strooper,
2004) and coupled with further processing by the γ-secretase complex at the plasma
membrane (reviewed in Sisodia and St. George-Hyslop, 2002) leads to formation of
Aβ, a 40 or 42 amino acid peptide that is the major component of SP in AD (Selkoe,
1999) (amyloidogenic pathway). Additionally, APP contains a ligand-binding site
for Zn spanning the α-secretase position (Bush et al., 1993, 1994). Zn concentra-
tions less than 50 μM inhibit α-secretase-mediated sAPP formation and increase
generation of Aβ (Bush et al., 1994) perhaps through altered protein conformation.
In addition, high Zn concentrations can inhibit matrix metalloproteinase-2 (MMP-2)
(Backstrom et al., 1992) an enzyme that partially degrades soluble Aβ1-42 in vitro
(Bergeron et al., 1996) which could lead to increased amyloidogenic Aβ levels.
Most APP molecules are transported through the TGN where α-secretase cleavage
likely occurs leading to formation of secreted APP (Wilquet and De Strooper, 2004).
Because ZnT-6-mediated accumulation of Zn in the TGN could initially diminish α-
secretase cleavage of APP, Zn could significantly modulate APP processing leading
to increased Aβ production. In addition, the presence of elevated Zn in endosomes
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mediated by ZnT-2 or ZnT-4 or both could further enhance β-secretase activity
through modulation of pH.

Once generated, several reports indicate that Zn at low physiological concen-
trations induces Aβ aggregation (Bush et al., 1996, 1994; Bush et al., 1995;
Mantyh et al., 1993), although later studies indicate that higher Zn concentrations
are required (Clements et al., 1996; Esler et al., 1996) for significant aggrega-
tion (fibril formation). A subsequent study using atomic force and transmission
electron microscopy and Aβ13-21 shows Zn2+ specifically controls the rate of fib-
ril assembly and regulates fibril morphology via specific coordination sites (Dong
et al., 2006).

Multiple studies show that treatment of cortical neuron cultures with Aβ leads
to increased levels of reactive oxygen species, increased lipid peroxidation, pro-
tein oxidation, mitochondrial dysfunction, caspase activation, and neuron death
(Butterfield, 2003; Canzoniero et al., 1999; Keller et al., 2005; Yatin et al., 1999). In
addition, several transgenic models of AD including those with mutant APP, mutant
APP/PS1, or mutant APP/PS1 and tau show increased Aβ deposition (Gotz et al.,
2001; Lewis et al., 2001; Oddo et al., 2004). Although Aβ deposits are associated
with AD, the specific Aβ species responsible for neurodegeneration are unclear.
Fibrillar Aβ, the predominant component of insoluble amyloid plaques, is neuro-
toxic (Lorenzo and Yankner, 1994; Pike et al., 1993). However, in vivo, insoluble
Aβ deposits do not accurately predict the severity of dementia in AD subjects
(Cherny et al., 1999). In addition, studies of transgenic mice including those with
APP mutations show cognitive dysfunction and synaptic damage that precede amy-
loid plaque deposition and neuron loss (Irizarry et al., 1997; Kumar-Singh et al.,
2000; Moechars et al., 1996; Mucke et al., 2000; Westerman et al., 2002), leading
to the suggestion that soluble oligomeric or protofibril Aβ species may the most
toxic.

In vitro studies of synthetic Aβ show monomeric Aβ aggregates in a time-
dependent manner that may be accelerated by Zn leading to oligomeric species,
which may eventually form fibrils (Chromy et al., 2003; Pike et al., 1991; Walsh
et al., 1997). Increasing evidence suggests that these soluble oligomeric species
are the predominant neurotoxic species for neurons (Demuro et al., 2005; Klein,
2002), leading to inhibition of long-term potentiation in synaptic hippocampal slices
(Lambert et al., 1998; Wang et al., 2002a), calcium dysregulation, and membrane
dysfunction (Demuro et al., 2005; Kayed et al., 2004). Although the exact Aβ

species responsible for mediating neurodegeneration in AD is unclear, several lines
of evidence support a role for Zn in their formation.

6 Zinc as a Therapeutic Target in AD

Because of the potential role of Zn and Cu in the deposition of Aβ in AD brain, there
has been considerable interest in the use of metal chelation to decrease amyloid
pathology (Bush, 2003). In vitro studies show clioquinol (CQ), an 8-OH quinoline
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inhibits Aβ aggregation mediated by Cu and Zn (Cherny et al., 2001). In vivo studies
show transgenic mouse models of amyloid deposition (Tg 2576) treated with CQ for
9 weeks showed significantly reduced amyloid plaque burdens (Cherny et al., 2001).
In initial, phase-2 double-blind placebo-controlled clinical trials, CQ significantly
slowed cognitive decline in AD patients compared to placebo controls (Ritchie et al.,
2003). More recently, PBT2, an 8-hydroxy quinoline with increased blood–brain
barrier permeability has been developed (Adlard et al., 2008) and in a 12-week
phase-IIa clinical trial of AD subjects reversed frontal lobe functional deficits and
significantly decreased Aβ1-42 levels in CSF (Lannfelt et al., 2008). Together, these
data suggest modulation of Zn may be an effective potential therapeutic target
in AD.

7 Conclusions and Future Directions

Although considerable evidence suggests a link between alterations in Zn and Zn
transport and sequestration proteins in the progression of AD, further in-depth study
is needed particularly early in the progression of AD (MCI) when therapeutic inter-
ventions would have greater efficacy. In particular Zn levels in CSF of subjects with
MCI and EAD need to be quantified and correlated with brain ZnT, ZIP, and Zn lev-
els. Based on in vivo studies, it is tempting to hypothesize that low extraparenchymal
Zn early in disease progression may lead to decreased ZnT-1 levels and a concomi-
tant elevation of intracellular Zn that leads to increased levels of ZnT-2, ZnT-4,
and ZnT-6 and increased localization of Zn in subcellular organelles in which Aβ

processing occurs. As the disease progresses and extraparenchymal Zn levels nor-
malize, the resulting alterations in multiple ZnT proteins could further promote Aβ

aggregation and SP formation.
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The Genetics of Alzheimer’s Disease
and Parkinson’s Disease

Lynn M. Bekris, Chang-En Yu, Thomas D. Bird, and Debby Tsuang

Abstract Alzheimer’s disease (AD) is the most common neurodegenerative disor-
der. It is characterized by progressive loss of memory and other cognitive domains
along with functional decline that can occur in the third to eighth decades. The early
onset (<60 years old) familial forms of AD have an autosomal dominant inheri-
tance linked to three causative genes: APP, PSEN1, and PSEN2. The most common
sporadic form of AD occurs after the age of 60 and is associated with the APOE
gene. The mechanistic contribution of these genes in AD pathogenesis has been
studied extensively but is still unclear, suggesting that other AD associated genes
remain to be elucidated. Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder. Idiopathic PD is the most frequent form of Parkinsonism,
although rare forms of PD in which genetic factors dominate exist. Family stud-
ies have identified 13 causative genetic loci linked to PD of which 8 genes have
been described: four autosomal dominant (SNCA, LRRK2, UCHL1, and HTRA2)
and four autosomal recessive (PRKN, DJ1, PINK1, and ATP13A2). In addition,
another gene has recently been described as a possible risk factor for PD (GBA).
The function of these genes and their contribution to PD pathogenesis remains to be
fully elucidated. Like AD, other genes that contribute to PD risk likely exist. The
prevalence, incidence, clinical manifestations, and genetic components of these two
neurodegenerative disorders, AD and PD, are discussed in this chapter.

Keywords Alzheimer’s disease · Parkinson’s disease · Presenilin · Amyloid
precursor protein · Apolipoprotein E · Synuclein · Parkin · LRRK2 · PINK1 ·
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1 Alzheimer’s Disease

1.1 Introduction

1.1.1 Prevalence and Incidence

Alzheimer’s disease (AD) (OMIM #104300) is the most common irreversible, pro-
gressive brain disease. It is characterized by a gradual loss of memory and cognitive
skills. AD accounts for over 50% of all dementia cases, and presently affects more
than 24 million people worldwide, with over 5 million new cases each year, a figure
that is likely to increase as a greater proportion of the population ages (Ferri et al.,
2005).

Age is the largest known risk factor, with AD prevalence increasing significantly
with age. AD incidence increases from 2.8 per 1000 person-years when 65–69 years
and to 56.1 per 1000 person-years when older than 90 years (Kukull et al., 2002).
Approximately 10% of persons older than 70 years have significant memory loss
and more than half of these individuals have probable AD. An estimated 25–45%
of persons older than 85 years have dementia (Bird, 2008). The duration of disease
is typically 8–10 years, with a range from 2 to 25 years after diagnosis. The disease
is divided into two subtypes based on the age of onset: early-onset AD (EOAD) and
late-onset AD (LOAD). EOAD accounts for approximately 1–6% of all cases and
ranges roughly from 30 years to 60 or 65 years. On the other hand, the most com-
mon form of AD, LOAD, is defined as an age-at-onset later than 60 or 65 years. Both
EOAD and LOAD may have a positive family history of AD. With the exception of
a few autosomal dominant families that are single-gene disorders (see below), most
AD appears to be a complex disorder that is likely to involve multiple susceptibility
genes and environmental factors (Bertram and Tanzi, 2004b; Bird, 2008; Kamboh,
2004; Roses, 2006; Serretti et al., 2005). Approximately 60% of EOAD is famil-
ial, with multiple cases of AD within a family. Thirteen percent of these familial
cases are inherited in an autosomal dominant manner with at least three generations
affected (Brickell et al., 2006; Campion et al., 1999). Early-onset cases can also
occur in families with late-onset disease (Bird, 2008).

1.1.2 Clinical Symptoms

Both EOAD and LOAD present clinically as dementia that begins with a gradual
decline of memory which slowly increases in severity until symptoms eventually
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become incapacitating. Other common symptoms are confusion, poor judgment,
language disturbance, agitation, withdrawal, and hallucinations. Rare symptoms
include seizures, Parkinsonism, increased muscle tone, myoclonus, incontinence,
and mutism. Death commonly occurs from general inanition, malnutrition, and
pneumonia (Bird, 2008). Treatment of AD with cholinesterase inhibitors and
memantine may have some improvement in cognitive decline in mild to moder-
ate dementia cases but overall there is clinically marginal improvement in measures
of cognition and global assessment of dementia (Raina et al., 2008; Raschetti et al.,
2007).

1.1.3 Clinical Diagnosis

Currently, the diagnosis of AD is based on clinical history and neuropsycho-
logical tests. The Diagnostic and Statistical Manual of Mental Disorders, 4th
Edition (DSM-IV) criteria for diagnosing dementia requires loss of two or more
of the following: memory, language, calculation, orientation, or judgment (Kawas,
2003). The Mini-Mental State Examination (MMSE) helps to evaluate changes in
a patient’s cognitive abilities. In addition, a diagnosis of probable AD necessitates
the exclusion of other degenerative disorders associated with dementia, such as fron-
totemporal dementia (including frontotemporal dementia with Parkinsonism-17 and
Pick’s disease), Parkinson’s disease, diffuse Lewy body disease, Creutzfeldt–Jakob
disease, and cerebral autosomal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL) (Rogan and Lippa, 2002). Discrimination from
other forms of dementia is usually based on clinical history and neuroimaging (Bird,
2008). In addition, other possible causes of dementia also need to be excluded,
especially the treatable forms of cognitive impairment, such as that due to depres-
sion, chronic drug intoxication, chronic central nervous system infection, thyroid
disease, vitamin deficiencies (i.e., B12 and thiamine), central nervous system angi-
tis, and normal-pressure hydrocephalus (Bird, 2008). Individuals who do not meet
these criteria but have short-term memory loss and have only minimal impairment
in other cognitive abilities and are not functionally impaired at work or at home are
considered to have “mild cognitive impairment” (Petersen et al., 2001).

1.1.4 Neuropathological Diagnosis

A definitive diagnosis of AD requires not only the presence of severe dementia
in life but also postmortem confirmation, with the presence of two histopathologi-
cal features: neurofibrillary tangles and amyloid plaques (Braak and Braak, 1997;
Goedert and Spillantini, 2006; Nussbaum and Ellis, 2003). The clinical diagno-
sis of AD, before autopsy confirmation, is correct about 80–90% of the time by
expert clinicians (Kaye, 1998). Even though plaques and tangles are often also
found in cognitively normal age-matched controls, the density and distribution are
more severe in patients with AD, according to standardized histological assessments
(Braak and Braak, 1997). Amyloid plaques are extracellular with a cross-beta struc-
ture and characteristic dye-binding (neuritic amyloid plaques contain thioflavin S
and Congo red-positive fibrillar deposits with both Aβ40 and Aβ42 present; Kidd,
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Fig. 1 APP cleavage. The APP protein can be cleaved by three different secretases: α, β, or γ

(panel a). Subsequent to “normal” α-secretase cleavage, sAPPα is produced and released into the
extracellular space and the C83 peptide remains in the cell membrane (panel b). Subsequent to β-
secretase cleavage, sAPPβ is produced and released into the extracellular space and the C99 peptide
remains in the cell membrane (panel c). Subsequent to β-secretase cleavage, the C99 peptide is
“abnormally” cleaved by γ-secretase to yield an Aβ peptide and the AICD peptide (panel d). Scale
is approximate

1963; Terry et al., 1964). The major component of amyloid plaques is amyloid-beta
(Aβ), which can be stained and detected using Aβ antibodies (Glenner et al., 1984;
Iwatsubo et al., 1994). The most common form of Aβ is 40 amino acids long and
is called Aβ40. A 42 amino acid long fragment, Aβ42, is less abundant and differs
only by having two additional amino acid residues at the C-terminus. Aβ42 is asso-
ciated with AD (Bentahir et al., 2006). Aβ is derived from the amyloid precursor
protein (APP) by the action of two aspartyl proteases. First α-secretase (nonneuro-
toxic “normal” cleavage) or β-secretase (potential neurotoxic “abnormal” cleavage)
cleaves APP (Fig. 1). Second γ-secretases cleave APP (Haass et al., 1992; Seubert
et al., 1992; Shoji et al., 1992). Upon cleavage by α-secretase, a large ectodomain
referred to as soluble APP alpha (sAPPα) is released and a C-terminal 83 amino
acid fragment (C83) remains membrane bound. Upon cleavage by β-secretase, APP
sheds a large ectodomain referred to as soluble APP beta (sAPPβ) and leaves a
membrane-bound C-terminal fragment (Cai et al., 2001; Vassar et al., 1999). This
99 amino acid fragment (C99) is membrane bound and is subsequently cleaved by
γ-secretase to release Aβ and the APP intracellular domain (AICD) (De Strooper,
2000; Schroeter et al., 2003) (Fig. 1). Thus two main forms of Aβ are produced
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depending on the point of cleavage by γ-secretase; producing either 40 or 42 amino
acid residues. The proportion of Aβ42 to Aβ40 formed is particularly important in
AD because Aβ42 is far more prone to oligomerize and form fibrils than the more
abundantly produced Aβ40 peptide. In a small number of individuals an increased
proportion of Aβ42 appears sufficient to cause EOAD even though it appears that
the production of Aβ isoforms is a normal process of unknown function (Goedert
and Spillantini, 2006; Irvine et al., 2008).

Neurons bearing neurofibrillary tangles containing hyperphosphorylated tau are
frequently found in AD brain (Kosik et al., 1986; Wood et al., 1986), and their tem-
poral and spatial appearance more closely reflects disease severity than does the
presence of amyloid plaques (Braak and Braak, 1991; Thal et al., 2006). However,
neurofibrillary tangles are not specific to AD, are found in other disorders (such as
frontotemporal dementia and progressive supranuclear palsy), and are not neces-
sarily associated with the cognitive dysfunction and memory impairment typical of
AD, and mutations in the gene that encodes the tau protein (MAPT) have not been
genetically linked to AD (Iwatsubo et al., 1994).

1.2 Genetics of Alzheimer’s Disease

1.2.1 Introduction

To date autosomal dominant early-onset familial AD (EOFAD) is associated with
three genes: the APP gene, the presenilin 1 gene (PSEN1), and the presenilin 2 gene
(PSEN2) (Goedert and Spillantini, 2006). However, it is likely that other genes will
be identified as a cause of EOFAD because there are still kindreds with autosomal-
dominant EOFAD with no known mutations in these three genes (Bird, 2008; Cruts
and Van Broeckhoven, 1998; Raux et al., 2005). Despite evidence from family stud-
ies that genetic mutations cause EOFAD, more than 90% of AD cases appear to
be sporadic, without a family history, and have a later age-at-onset of 60–65 years
(Bertram and Tanzi, 2004a). The only gene consistently found to be associated with
sporadic LOAD, across multiple studies, is the apolipoprotein E gene (APOE) (Coon
et al., 2007; Couzin, 2008; Roses et al., 1995; Schellenberg, 1995; Selkoe, 2001)
(Table 1). Although twin studies support the existence of a genetic component in
LOAD, no causative gene has been yet identified. The age-at-onset of LOAD is
significantly more variable for dizygotic twins than for monozygotic twins, sug-
gesting that both genetic and environmental factors play a role in the disease (Gatz
et al., 2006). The APOE gene is the only well-validated gene strongly associated
with LOAD risk (Coon et al., 2007; Couzin, 2008; Roses et al., 1995; Schellenberg,
1995; Selkoe, 2001). However, many carriers of the APOE risk allele (ε4) live into
their 90s, suggesting the existence of other LOAD genetic and/or environmental risk
factors yet to be identified. Several other genetic variants have been reported and
suggest that there may be five to seven major LOAD susceptibility genes, but most
are without replication among studies (Bird, 2008; Chai, 2007; Daw et al., 2000).
For a catalogue of candidate gene association studies, please refer to the AlzGene
online database (http://www.alzforum.org/res/com/gen/alzgene/default.asp).
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Table 1 Alzheimer’s disease and Parkinson’s disease genes. Alzheimer’s disease genes; AD1–4
(panel A) and Parkinson’s disease genes; PARK1–13 (panel B)

1.2.2 Genes Associated with Autosomal Dominant Alzheimer’s Disease

AD1: App

Inheritance and Clinical Features

The purification of both plaque and vascular amyloid deposits and the isolation of
their 40-residue constituent peptide (Aβ) led to the cloning of the APP type I inte-
gral membrane glycoprotein from which Aβ is proteolytically derived (Kang et al.,
1987). The APP gene was mapped to chromosome 21q which accounts for the
observation that Down syndrome patients (trisomy 21) develop amyloid deposits
and the neuropathological features of AD in their 40 s (Giaccone et al., 1989;
Iwatsubo et al., 1994; Lemere et al., 1996; Mann et al., 1989). Subsequent searches
for autosomal dominant EOAD families with genetic linkage to chromosome 21
resulted in the identification of six different missense mutations in APP, five associ-
ated with familial AD (Chartier-Harlin et al., 1991a, b; Goate et al., 1991; Mullan,
1992; Murrell et al., 1991), and one with the neuropathologically related syndrome
of hereditary cerebral hemorrhage with amyloidosis of the Dutch type (Levy et al.,
1990).

Subsequently, over 20 different APP missense mutations have been identified
in 60 families. Interestingly, most of these mutations are located at exons 16
and 17 where the secretase cleavage sites or the APP transmembrane domain are
located (Fig. 2). Information regarding APP mutations is available in the NCBI
database and the Alzheimer Disease Mutation Database (www.molgen.ua.ac.be/
ADMutations) (Cruts and Van Broeckhoven, 1998). Mutations within APP account
for 10–15% of EOFAD (Bird, 2008; Janssen et al., 2003; Raux et al., 2005;
Sherrington et al., 1996), appear to be family specific, and do not occur within the
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Fig. 2 AD1: APP structure and mutations. SP, signal peptide; KPI, Kunitz protease inhibitor
domain; Aβ, amyloid beta; TM, transmembrane domain. Scale is approximate

majority of sporadic AD cases. The majority of these EOFAD mutations are located
in or adjacent to the Aβ peptide sequence (Fig. 2), the major component of the amy-
loid plaques (Esler and Wolfe, 2001; Suzuki et al., 1994). Most cases containing
APP mutations have an age of onset in the mid-40 s and 50 s (Hardy, 2001).

Gene Location and Structure

Sequences encoding APP were first cloned by screening cDNA libraries (Kang
et al., 1987). The initial full-length cDNA clone encoded a 695 amino acid protein
(APP695) (Schellenberg, 1995) and consisted of 18 exons. The APP gene, located
at chromosome 21q21, is alternatively spliced into several products, named accord-
ing to their length in amino acids (i.e., APP695, APP714, APP751, APP770, and
APP563) and expressed differentially by tissue type whereby three isoforms, most
relevant to AD, are restricted to the central nervous system (APP695) or expressed
in both the peripheral and CNS tissues (APP751 and APP770) (de Sauvage and
Octave, 1989; Golde et al., 1990; Goldgaber et al., 1987; Kang et al., 1987;
Kitaguchi et al., 1988; Ponte et al., 1988; Tanzi et al., 1988; Yoshikai et al., 1990).

Gene Function and Expression

APP is a type I integral membrane protein (Kang et al., 1987) that resembles a
signal-transduction receptor. It is expressed in many tissues and concentrated in the
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synapses of neurons. Its primary function is not known, although it has been impli-
cated in neural plasticity (Turner et al., 2003) and as a regulator of synapse formation
(Priller et al., 2006). APP is synthesized in the ER, posttranscriptionally modified
in the Golgi (N- and O-linked glycosylation, sulfation, and phosphorylation), and
transported to the cell surface via the secretory pathway. APP is also endocytosed
from the cell surface and processed in the endosomal–lysosomal pathway (Bossy-
Wetzel et al., 2004; Koo and Squazzo, 1994). APP and Aβ have been found to
be translocated inside mitochondria and implicated in mitochondrial dysfunction
(Anandatheerthavarada et al., 2003; Devi et al., 2006; Lin and Beal, 2006).

Proteolysis of APP by α-secretase or β-secretase leads to the secretion of sAPPα

or sAPPβ. This proteolysis generates C-terminal fragments of 10 kDa and 12 kDa,
respectively, which are inserted into the membrane. These fragments can be cut
by γ-secretase to release the Aβ peptide extracellularly (Walter et al., 2001) and a
cytoplasmic fragment identified as AICD intracellularly (Sastre et al., 2001) (Fig. 1).
Intriguingly, AICD starts at position 49/50 and does not correspond to the end of
Aβ variants Aβ40 and Aβ42. Therefore this cleavage site has been termed the ε-
cleavage site, and interestingly, it is topologically highly similar to the S3 cleavage
of Notch (Sastre et al., 2001; Weidemann et al., 2002). Recently, a new cleavage site
was described for γ-secretase. The ξ-cleavage occurs between the ε- and γ-cleavage
sites and generates longer Aβ isoforms within cells and in the brain, including Aβ43,
Aβ45, Aβ46, and Aβ48 (Qi-Takahara et al., 2005; Zhao et al., 2004). The majority
of EOAD mutations alter this processing of APP in such a way that Aβ42 levels
relative to other Aβ isoforms are changed (Scheuner et al., 1996; Walker et al.,
2005). The function of these APP proteolytic fragments is still unclear.

The missense APP “Swedish” mutations (APPSW, APPK670N, and M671L) and
the “London” mutations (APPLON and APPV717I) are examples of APP muta-
tions that lead to increased Aβ production and development of AD (Goate et al.,
1991; Mullan, 1992). Transgenic mouse models of APP mutations have been devel-
oped such as: PDAPP, Tg2576, APP23, TgCRND8, and J20 (Higgins and Jacobsen,
2003). Each of these transgenic mouse models has different mutations and dif-
ferent promoters that lead to different expression levels and different levels of
neuroanatomical abnormalities (Higgins and Jacobsen, 2003; Mineur et al., 2005).
For example, the Tg2576 mouse model that carries the “Swedish” mutation has high
APP levels, high Aβ levels, and cognitive disturbances (Irizarry et al., 1997) that are
progressive and start as early as six months of age (Westerman et al., 2002).

Genetic Variation

APP transcripts have been identified in which exons 7, 8, and 15 are alternatively
spliced. Exon 7 encodes 57 amino acids with homology to the Kunitz-type protease
inhibitor (KPI) domain (Kitaguchi et al., 1988; Ponte et al., 1988; Tanzi et al., 1988)
and exon 8 (Kitaguchi et al., 1988; Lemaire et al., 1989). The Aβ peptide is encoded
by parts of both exons 16 and 17 (exon and codon numbering based on the APP770
splice variant) (Lemaire et al., 1989) (Fig. 2). In neurons, the predominant isoform
is APP695 (Weidemann et al., 1989), which contains exon 15 but excludes exons
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7 and 8. The major isoforms in peripheral tissue (APP751 and APP770), and also
in neurons, encode KPI-containing forms of APP (Kitaguchi et al., 1988; Ponte
et al., 1988; Sandbrink et al., 1994; Tanzi et al., 1988). Other splice variants have
been observed that are missing exon 15 in various combinations with exons 7 and
8 and are referred to as L-APPs (Konig et al., 1991; Sandbrink et al., 1994). A
number of studies have indicated that alternative splicing of exons 7 and 8 in APP
mRNAs is changed in the brain during aging and possibly during AD (Johnson
et al., 1989; Konig et al., 1991; Neve et al., 1988; Palmert et al., 1988; Sisodia
et al., 1990; Tanaka et al., 1988). Even though the function of APP and its various
splice variants is unknown, differential expression of these splice variants between
tissues may imply functional differences. It is important to note that although most
of the described splice variants contain Aβ-encoding sequences, two additional rare
transcripts, APP365 and APP563, do not, implicating additional variability in APP
function (de Sauvage and Octave, 1989; Jacobsen et al., 1991).

The first described and best characterized APP mutation (V717I) was identi-
fied in a London family and is located within the transmembrane domain near the
γ-secretase cleavage site (Goate et al., 1991) (Fig. 2). Subsequently, other substi-
tutions at this site have been identified and many other groups have reported the
V717I mutation in other families. Many other mutations have been identified, most
of which are located near the gamma-secretase cleavage site and have been associ-
ated with modulation of Aβ levels. For example, a C-terminal L723P mutation was
identified in an Australian family and is reported to generate an increase of Aβ42
peptide levels in CHO cells (Kwok et al., 2000). The majority of EOAD mutations
alter processing of APP in such a way that the relative level of Aβ42 is increased,
either by increasing Aβ42 or decreasing Aβ40 peptide levels or both (Scheuner et al.,
1996; Walker et al., 2005).

AD3: Presenilin 1

Inheritance and Clinical Features

Linkage studies established the presence of an AD3 locus on chromosome 14
(Schellenberg et al., 1992) and positional cloning led to the identification of muta-
tions in the PSEN1 gene, which encodes a polytopic membrane protein (Sherrington
et al., 1995). Presenilins are major components of the atypical aspartyl protease
complexes responsible for the γ-secretase cleavage of APP (De Strooper et al.,
1998; Wolfe et al., 1999b). Mutations in PSEN1 are the most common cause of
EOFAD. PSEN1 missense mutations account for 18–50% of the autosomal domi-
nant EOFAD (Theuns et al., 2000). PSEN1 mutations appear to increase the ratio
of Aβ42 to Aβ40, and this appears to result in a change in function that leads to
reduced γ-secretase activity (Citron et al., 1997). In preclinical cases with PSEN1
mutations, deposition of Aβ42 may be an early event (Lippa et al., 1998).

Defects in PSEN1 cause the most severe forms of AD, with complete pen-
etrance and an onset occurring as early as 30 years of age. A second form
of PSEN1-associated AD has a mean age of onset greater than 58 years. Both
are autosomal dominant neurodegenerative disorders characterized by progressive



704 L.M. Bekris et al.

dementia, Parkinsonism, and notch signaling, as well as Aβ intracellular domain
generation (Goedert and Spillantini, 2006; Wolfe, 2007). There is considerable phe-
notypic variability in EOFAD, including some patients with spastic paraparesis and
other atypical AD symptoms. Some of these variable clinical phenotypes have been
described by specific mutations. Neuropathological studies often confirm the clin-
ical diagnosis of AD with measurement of amyloid plaque and Braak stage (as
described above) but vary in other brain areas according to the presence of specific
PSEN1 mutations (Moehlmann et al., 2002; Rudzinski et al., 2008). For example,
clinical and neuropathologic features of a Greek family with a PSEN1 mutation
(N135S) include memory loss in their 30 s, as well as variable limb spasticity and
seizures. Upon neuropathological examination, the diagnosis of AD was confirmed
but in addition, there was histological evidence of corticospinal tract degeneration
(Rudzinski et al., 2008). A PSEN1 mutation (I143M) that lies in a cluster in the sec-
ond transmembrane domain of the protein has been described in an African family
with an age-at-onset in the early 50 s that lasts for 6–7 years. Neuropathologically,
these cases were characterized by neuronal loss, abundant Aβ neuritic plaques,
and neurofibrillary tangles as well as degeneration extending into the brainstem
(Heckmann et al., 2004).

Gene Location and Structure

PSEN1 is located on chromosome 14q24.2 and consists of 12 exons that encode a
467 amino acid protein that is predicted to traverse the membrane 6–10 times; the
amino and carboxyl termini are both oriented toward the cytoplasm (Hutton and
Hardy, 1997).

Gene Function and Expression

PSEN1 is a polytopic membrane protein that forms the catalytic core of the gamma-
secretase complex (De Strooper et al., 1998; Wolfe et al., 1999a). Gamma-secretase
is an integral membrane protein found at the cell surface, but it may also be found
in the Golgi, endoplasmic reticulum, and mitochondria (Baulac et al., 2003; De
Strooper et al., 1998). PSEN1, nicastrin (Nct), anterior pharynx defective 1 (Aph-
1), and presenilin enhancer 2 (PSENEN) are required for the stability and activity
of the γ-secretase complex (Edbauer et al., 2003; Francis et al., 2002; Goutte et al.,
2002; Kimberly et al., 2003; Takasugi et al., 2003). This complex cleaves many
type I transmembrane proteins including APP and Notch (De Strooper et al., 1999,
1998) in the hydrophobic environment of the phospholipid bilayer of the membrane
(Kimberly et al., 2003). Gamma-secretase is biologically and biochemically hetero-
geneous, consisting of four and potentially more different complexes that result from
the mutually exclusive incorporation of PSEN1, PSEN2, and PSENEN or Aph-1-A
and Aph-1-B protein subunits (Kimberly et al., 2003; Serneels et al., 2005). PSEN1
knock-out mice are not viable (Shen et al., 1997) but a conditional PSEN1 knock-out
mouse model, where the loss of the gene is limited to the postnatal forebrain, shows
mild cognitive impairments in long-term spatial reference memory and retention (Yu
et al., 2001), suggesting that presenilins play a role in cognitive memory. Knock-in
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mouse models with missense mutations of the endogenous murine PSEN1 and high
Aβ42 levels perform poorly on the object recognition test (Huang et al., 2003; Janus
et al., 2000). Double PSEN1/APP transgenics have been developed and suggest that
PSEN1, APP, and mutations within these genes, play a role in the production of Aβ

(Holcomb et al., 1998; Mineur et al., 2005).

Genetic Variation

To date, there have been 123 PSEN1 mutations reported (Fig. 3). A com-
prehensive list of PSEN1 mutations is available through the NCBI database
(http://www.molgen.ua.ac.be/ADmutations). The majority of these mutations are
missense mutations. These missense mutations cause amino acid substitutions
throughout the PSEN1 protein and appear to result in a relative increase in the
ratio of the Aβ42 to Aβ40 peptides via either increased Aβ42 or decreased Aβ40
generation, or a combination of both (Scheuner et al., 1996). For example, individ-
uals that carry the PSEN1 L166P mutation can have an age-at-onset in adolescence,

Fig. 3 AD3: PSEN1 structure and mutations. Thus far, at least 123 mutations in the PSEN1 gene
have been described, of which a few are shown. For a more complete list of PSEN1 mutations, see
http://www.molgen.ua.ac.be/ADMutations. TM, transmembrane domains. Scale is approximate
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and in vitro studies indicate that this mutation induces exceptionally high levels of
Aβ42 production as well as impairs notch intracellular domain production and notch
signaling (Moehlmann et al., 2002).

AD4: Presenilin 2

Inheritance and Clinical Features

A candidate gene for the chromosome 1 AD4 locus was identified in 1995 in a Volga
German AD kindred with a high homology to the AD3 locus (PSEN1) and was
later named presenilin 2 (PSEN2) (Levy-Lahad et al., 1995; Rogaev et al., 1995;
Sherrington et al., 1996). In contrast to mutations in the PSEN1 gene, missense
mutations in the PSEN2 gene are a rare cause of EOFAD, at least in Caucasian pop-
ulations. The age of onset in PSEN2-affected families appears to be older (45–88
years) than that observed in PSEN1-affected families (25–65 years). Age of onset
is highly variable among PSEN2-affected family members within the same family,
whereas for PSEN1-affected families, the age of onset is generally quite similar
among affected family members and is even similar among members of differ-
ent families with the same mutation (Campion et al., 1999; Rogaev et al., 1995;
Sherrington et al., 1996, 1995). Missense mutations in the PSEN2 gene may be of
lower penetrance than PSEN1 mutations and thus be subject to the modifying action
of other genes or environmental influences (Sherrington et al., 1996; Tandon and
Fraser, 2002).

Gene Location and Structure

The PSEN2 gene is located on chromosome 1 (1q42.13) and was identified by
sequence homology and cloned (Levy-Lahad et al., 1995; Rogaev et al., 1995).
PSEN2 has 12 exons and is organized into 10 translated exons that encode a 448
amino acid peptide. The PSEN2 protein is predicted to consist of 9 transmembrane
domains and a large loop structure between the sixth and seventh domains (Fig. 4).
PSEN2 also displays tissue-specific alternative splicing (ADCG, 1995; Anwar et al.,
1996; Hutton et al., 1996; Levy-Lahad et al., 1995; Prihar et al., 1996; Rogaev et al.,
1995).

Gene Function and Expression

Like PSEN1, PSEN2 has been described as a component of the atypical aspartyl
protease called γ-secretase that is responsible for the cleavage of Aβ (De Strooper
et al., 1998; Wolfe et al., 1999b). PSEN2-associated mutations have been reported
to increase the ratio of Aβ42 to Aβ40 (Aβ42/Aβ40) in mice and humans (Citron
et al., 1997; Scheuner et al., 1996), indicating that presenilins might modify the
way in which γ-secretase cuts APP. APP processing at the gamma-secretase site
has been reported to be affected in variable ways by the presenilin mutations. For
example, PSEN1-L166P mutations cause a reduction in Aβ production whereas the
PSEN1-G384A mutant significantly increases Aβ42. In contrast, PSEN2 appears to
be a less efficient producer of Aβ than PSEN1 (Bentahir et al., 2006). The functions
and biological importance of presenilin splice variants are poorly understood. But
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Fig. 4 AD4: PSEN2 structure and mutations. Thus far, at least 16 mutations in the PSEN2 gene
have been described, of which a few are shown. For a more complete list of PSEN2 mutations, see
http://www.molgen.ua.ac.be/ADMutations. The V393M novel mutation was most recently found
in one case (Lindquist et al., 2008). TM, transmembrane domains. Scale is approximate

it appears that differential expression of presenilin isoforms may lead to differential
regulation of the proteolytic processing of the APP protein. For example, aberrant
PSEN2 transcripts lacking exon 5 increase the rate of production of Aβ peptide (Sato
et al., 2001), whereas naturally occurring isoforms without exons 3 and 4 and/or
without exon 8 do not affect production of Aβ (ADCG, 1995; Grunberg et al., 1998).
PSEN2 is expressed in a variety of tissues, including the brain where it is expressed
primarily in neurons (Kovacs et al., 1996).

Genetic Variation

Mutations in PSEN2 are a much rarer cause of FAD than are PSEN1 mutations,
having been described in only six families, including the Volga German kindred
where a founder effect has been demonstrated (Cruts and Van Broeckhoven, 1998;
Levy-Lahad et al., 1995; Rogaev et al., 1995; Sherrington et al., 1996). To date,
as many as 16 PSEN2 mutations have been identified. One of the first mutations
to be identified was a point mutation resulting in the substitution of an isoleucine
for an asparagine at residues 141 (N141l) located within the second transmembrane
domain (Levy-Lahad et al., 1995). Most recently, a V393M mutation located within
the seventh transmembrane domain has been described (Lindquist et al., 2008)
(Fig. 4). A comprehensive list of PSEN2 mutations is available through the NCBI
database (http://www.molgen.ua.ac.be/ADmutations).
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1.2.3 Genes Associated with Risk in Sporadic Alzheimer’s Disease

AD2: APOE

Inheritance and Clinical Features

The APOE gene has been associated with both familial late-onset and sporadic late-
onset AD in numerous studies of multiple ethnic groups. There are three major
protein isoforms of human apoE (apoE2, apoE3, and apoE4), which are the prod-
ucts of three alleles (ε2, ε3, and ε4). The frequency of the APOE ε4 allele varies
between ethnic groups, but the APOE ε4– carriers are the most frequent in controls
across all ethnic groups and APOE ε4+ carriers are the most frequent in AD patients
(Brousseau et al., 1994; Chauhan, 2003; Farrer et al., 1997, 1995; Hendrie et al.,
1995; Liddell et al., 1994; Lucotte et al., 1994; Mayeux et al., 1993; Poirier et al.,
1993; Roses et al., 1995; Schellenberg, 1995; Selkoe, 2001; Tsai et al., 1994).

The APOE ε4 genotype is associated with higher risk of AD (Corder et al., 1993),
with earlier age of onset of both AD (Tang et al., 1996) and Down syndrome (where
there is an additional copy of chromosome 21 carrying the APP gene) (Schupf
and Sergievsky, 2002), and also with a worse outcome after head trauma (Nicoll
et al., 1995) and stroke, both in humans (Liu et al., 2002b) and in transgenic mice
expressing human apoE4 (Horsburgh et al., 2000).

Gene Location and Structure

The APOE gene is located on chromosome 19q13.2 and consists of 4 exons that
encode a 299 amino acid protein. The APOE gene is in a cluster with other
apolipoprotein genes: APOC1, APOC2, and APOC4. The APOE ε4 loci are located
within exon 4 of the gene. The three APOE ε4 alleles (ε2, ε3, and ε4) defined by
two single nucleotide polymorphisms, rs429358 and rs7412, encode three protein
isoforms (E2, E3, and E4). The most frequent isoform is apoE3, which contains
cysteine and arginine at amino acid positions 112 and 158. Both positions contain
cysteine residues in apoE2 and arginine residues in apoE4 (Fig. 5). This substitu-
tion affects the three-dimensional structure and the lipid-binding properties between
isoforms. In apoE4, the amino acid substitution results in a changed structure with
the formation of a salt-bridge between an arginine in position 61 and a glutamic
acid in 255 that causes this isoform to bind preferentially to VLDL whereas apoE3
and apoE2 bind preferentially to high-density lipoproteins (HDLs) (Mahley et al.,
2006).

Gene Function and Expression

The mechanisms that govern apoE toxicity in the brain are not fully understood.
Some proposed mechanisms include isoform specific toxicity, apoE E4–mediated
amyloid aggregation, and apoE E4–mediated tau hyperphosphorylation (Huang,
2006).

It is known that apoE plays an important role in the distribution and metabolism
of cholesterol and triglycerides within many organs and cell types in the human body
(Mahley et al., 2006). The apoE polymorphism is unique to humans and has been
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Fig. 5 AD2: APOE structure and single nucleotide polymorphisms (SNPs). The general protein
structure of apoE is shown (panel a). The two SNPs and corresponding protein locations are shown
(rs429358 and rs7412; C112R and R158C). The APOE ε2, ε3, ε4 haplotype is shown in panel b.
Receptor binding domain; R. Scale is approximate

proposed to have evolved as a result of adaptive changes to diet (Finch and Stanford,
2004; Mahley and Rall, 1999). Individuals carrying APOE ε4 have higher total and
LDL cholesterol (Sing and Davignon, 1985). Neurons, in vitro, have a cholesterol
uptake that is lower when the lipid is bound to apoE4 compared to apoE2 and apoE3
(Rapp et al., 2006), and apoE4 appears to be less efficient than the other isoforms
in promoting cholesterol efflux from both neurons and astrocytes (Michikawa et al.,
2000).

Chylomicron remnants and very low density lipoprotein (VLDL) remnants are
rapidly removed from the circulation by receptor-mediated endocytosis. ApoE, the
major apolipoprotein of the chylomicron in the brain, binds to a specific receptor
and is essential for the normal catabolism of triglyceride-rich lipoprotein con-
stituents. Defects in apolipoprotein E result in familial dysbetalipoproteinemia, or
type III hyperlipoproteinemia (HLP III), in which increased plasma cholesterol and
triglycerides are the consequence of impaired clearance of chylomicron and VLDL
remnants (Mahley et al., 1999). In the brain, lipidated apoE binds aggregated Aβ in
a isoform-specific manner, apoE4 being much more effective than the other forms,
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and has been proposed to enhance deposition of the Aβ peptide (Stratman et al.,
2005).

Brain cells from APOE knock-out mice (APOE−/−) are more sensitive to exci-
totoxic and age-related synaptic loss (Buttini et al., 1999), whereas Aβ-induced
synaptosomal dysfunction is also enhanced compared to control animals (Keller
et al., 2000). When human apoE isoforms are expressed in APOE−/− mice, the
expression of apoE3, but not apoE4, is protective against age-related neurodegen-
eration (Buttini et al., 1999) and Aβ toxicity (Keller et al., 2000). In addition,
astrocytes, from APOE−/− mice that express human apoE3, release more choles-
terol than those expressing apoE4, suggesting that apoE isoforms may modulate the
amount of lipid available for neurons. Other studies report apoE-specific effects on
Aβ removal from the extracellular space whereby the apoE3 isoform has a higher
Aβ binding capacity than ApoE4 when associated with lipids (Canevari and Clark,
2007; LaDu et al., 1995).

In humans the greatest expression of apoE is found in the liver, followed by the
brain. Animal and in vitro models show that in the brain, astrocytes and microglia
are the main producers of secreted apoE (Pitas et al., 1987; Uchihara et al., 1995)
whereas neurons appear to produce apoE under stress conditions (Aoki et al., 2003;
Xu et al., 1999). In a rodent model, moderate injury induces enhancement of apoE
levels in clusters of CA1 and CA3 pyramidal neurons (Boschert et al., 1999); in
another model, apoE levels increase in response to peripheral nerve injury (Ignatius
et al., 1986) whereas apoE secretion in human primary astrocytes can be reduced by
a combination cytokines (Baskin et al., 1997).

In addition, individuals carrying apoE4 have higher amyloid and tangle pathol-
ogy (Nagy et al., 1995), and they have an increase in mitochondrial damage (Gibson
et al., 2000) compared to those carrying other forms.

Genetic Variation

The gene dose of APOE ε4 is a major risk factor for the disease, with many stud-
ies reporting an association between gene dose, age-at-onset (Blacker et al., 1997),
and cognitive decline (Martins et al., 2005). After age 65, the risk among family
members increases depending on the number of ε4 alleles present in the affected
individual. Risks to family members with the APOE 2/2 and 2/3 genotypes are
nearly identical at all ages to risks for family members with the APOE 3/3 genotype.
Among family members with APOE 3/3, the lifetime risk for AD by age 90 can be
as much as three times greater than the expected proportion of APOE ε4 carriers,
suggesting that factors other than APOE contribute to AD risk. In addition, a 44%
risk of AD by age 93 among family members of APOE 4/4 carriers indicates that as
many as 50% of people having at least one e4 allele do not develop AD. There also
appears to be a gender modification effect because the risk to male family members
with APOE 3/4 is similar to that for the APOE 3/3 group but significantly less than
the risk for the APOE 4/4 carriers; whereas among female family members the risk
for the APOE 3/4 carriers is nearly twice that for the APOE 3/3 carriers (Brousseau
et al., 1994; Farrer et al., 1997, 1995; Hendrie et al., 1995; Liddell et al., 1994;
Lucotte et al., 1994; Mayeux et al., 1993; Poirier et al., 1993; Tsai et al., 1994).
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1.3 Summary

AD is characterized by an irreversible progressive loss of memory and cognitive
skills that can occur in rare familial cases as early as the third decade. Currently there
is no cure for AD, and treatments only slow AD progression slightly in some patients
(Raina et al., 2008; Raschetti et al., 2007). The early-onset familial forms of AD
have an autosomal dominant inheritance linked to three genes: APP, PSEN1, and
PSEN2. The most common sporadic form of AD occurs after the age of 60 and has
thus far been consistently, across numerous studies, associated with only one gene,
the APOE gene. The mechanistic contribution of these genes in AD pathogenesis
has been studied extensively but the specific biology involved in the progression of
AD remains unclear, suggesting that AD is a genetic and environmentally complex
disease.

2 Parkinson’s Disease

2.1 Introduction

2.1.1 Prevalence and Incidence

Parkinson’s disease (PD) (OMIM #168600) is the second most common neu-
rodegenerative disorder. The incidence is similar worldwide, with the prevalence
increasing in proportion to regional increases in population longevity with more
than 1% affected over the age of 65 years and more than 4% of the popula-
tion affected by the age of 85 years (de Rijk et al., 2000). Idiopathic PD is
the most frequent form of Parkinsonism and accounts for over 75% of all PD
cases, and it usually refers to a syndrome characterized by late-onset, largely non-
genetic movement disorder (Gibb and Lees, 1988). Rare forms of PD in which
genetic factors dominate, represent 5–10% of all PD patients (Belin and Westerlund,
2008).

2.1.2 Clinical Symptoms

Clinical manifestations that can be detected by neurological examinations include
tremor, rigidity, bradykinesia, and postural instability. Disruption of motor abilities
is associated with striatal dopamine levels thought to arise from selective and pro-
gressive loss of dopaminergic cells within the substantia nigra pars compacta and
the locus ceruleus of the midbrain (Tan and Skipper, 2007). Secondary symptoms
may involve cognitive dysfunction and subtle language problems. Symptoms can
be both chronic and progressive. Levodopa remains the most effective treatment of
PD symptoms but its use is complicated by the emergence of motor fluctuations and
dyskinesias. Dopamine agonists, catechol-O-methyltransferase inhibitors, and other
anti-Parkinsonian drugs may diminish or prevent these complications and possibly
exert disease-modifying effects (Jankovic, 2006).
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2.1.3 Clinical Diagnosis

Diagnostic clinical criteria of PD include four cardinal symptoms: bradykinesia,
rest tremor, rigidity, and postural instability. An additional criterion includes a
therapeutic response of tremor to levodopa (Galpern and Singhal, 2006). In addi-
tion, other common motor signs and symptoms include loss of automatic motor
movements such as loss of arm swing, loss of blinking, and difficulty in perform-
ing simultaneous motor acts. Many nonmotor symptoms can also be present in
PD, such as cognitive impairment, hallucination, delusion, behavioral abnormali-
ties, clinical depression, disturbances of sleep and wakefulness, loss of smell, pain,
and autonomic dysfunctions such as constipation, hypotension, urinary frequency,
impotence, and sweating (Mizuno et al., 2008).

2.1.4 Neuropathological Diagnosis

The diagnosis of idiopathic PD may also involve confirmation upon autopsy where
neuropatholgical assessment of the amount of neuronal loss and Lewy-related
pathology (Lewy bodies and Lewy neurites), in the brainstem and elsewhere in the
brain, is performed. Eosinophilic neuronal cytoplasmic inclusions known as Lewy
bodies (LBs) are found in PD postmortem brain (Gibb and Lees, 1988). The disease
is also characterized by dopamine neuron degeneration and depigmentation of the
substantia nigra accompanied by neuronal loss in other brainstem regions including
the ventral tegmental area and locus ceruleus (Belin and Westerlund, 2008; Love,
2005).

The principal component of LBs is α-synuclein, and LBs are best visualized
immunohistochemically, using an antibody to α-synuclein (Love, 2005). The func-
tion of α-synuclein is unknown. It is primarily found in neural tissue in presynaptic
terminals. It can also be found in glial cells. It is predominantly expressed in the neo-
cortex, hippocampus, substantia nigra, thalamus, and cerebellum (George, 2002).

LBs are typically found in the substantia nigra and locus ceruleus, where there
is substantial neuronal loss and gliosis. LBs may also be found in the dorsal motor
nucleus of the vagus where LBs are usually roughly spherical, with an eosinophilic
core surrounded by a paler ‘‘halo.’’ Within the cerebrum, LBs are usually present
in the amygdaloid nuclei, parahippocampal and cingulate gyri, and insula, but
they may also be found in other parts of the neocortex. The cholinergic nucleus
basalis of Meynert may also be affected. Cortical LBs appear as regions of homoge-
neous eosinophilic staining of neuronal cytoplasm and eccentric displacement of the
nucleus (Love, 2005). Lewy neurites are nerve cell processes that contain aggregates
of α-synuclein and are most numerous in the CA2/3 region of the hippocampus and
in the substantia nigra (Love, 2005).

2.2 Genetics of Parkinson’s Disease

2.2.1 Introduction

Historically, PD was considered to be largely sporadic in nature without genetic
origin. However, in the past decade, genetic studies of PD families from different
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geographical regions worldwide have strengthened the hypothesis that PD has a
substantial genetic component. One of the first autosomal dominant inherited forms
of PD was identified in an Italian family, and it is named PARK1 (Polymeropoulos
et al., 1996). Since then, 13 loci, PARK1–13, have been linked to rare forms of
PD: autosomal dominant and autosomal recessive PD (Belin and Westerlund, 2008;
Farrer, 2006). Of these 13 loci, eight genes have been described as causing PD:
four autosomal dominant (SNCA, LRRK2, UCHL1, and HTRA2) and four autosomal
recessive (PRKN, DJ1, PINK1, and ATP13A2; Table 1). Mutations in the SNCA,
LRRK2, PRKN, and PINK1 genes are the most well-chararacterized as causing PD
whereas mutations in the other genes listed do not have as much supporting evidence
as causes of PD. Recently, a clinical association has been reported between PD and
type-1 Gaucher’s disease, which is caused by a glucocerebrosidase deficiency owing
to mutations in the glucocerebrosidase gene (GBA), and several studies have found
an association between GBA mutations and PD (Aharon-Peretz et al., 2004; Bras
et al., 2007; Clark et al., 2005, 2007; De Marco et al., 2008; Eblan et al., 2006;
Gan-Or et al., 2008; Lwin et al., 2004; Sato et al., 2005; Spitz et al., 2008; Tan
et al., 2007; Toft et al., 2006; Wu et al., 2007; Ziegler et al., 2007). The GBA gene
has not yet been named as a PD gene but is described briefly here. Some PD genes
where mutations have been linked to familial forms of PD are also candidate genes
for sporadic forms of PD, as those genes (SNCA and LRRK2) may also carry other
mutations that merely increase risk (Table 1).

2.2.2 Genes Associated with Autosomal Dominant Parkinson’s Disease

PARK1 and PARK4: SNCA

Inheritance and Clinical Features

PARK1- and PARK4-linked PD are both of autosomal dominant inheritance, but
PARK1 is caused by missense mutations in the α-synuclein gene (SNCA) and
PARK4, by multiplications of SNCA. Affected family members are mostly of
juvenile-onset with atypical clinical features including myoclonus and hypoven-
tilation, with rapid progression of symptoms. Three missense mutations, A53T
(Polymeropoulos et al., 1996), A30P (Kruger et al., 1998), and E46K (Zarranz
et al., 2004); duplications (Chartier-Harlin et al., 2004; Fuchs et al., 2007;
Ibanez et al., 2004; Nishioka et al., 2006); and triplications (Farrer et al., 2004;
Singleton et al., 2003) of SNCA are known (Fig. 6). The A53T substitution was

Fig. 6 PARK1 and PARK4: SNCA structure and mutations. The general protein structure of α-
synuclein is shown (Bisaglia et al., 2008). Scale is approximate
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the first mutation identified in a large family with autosomal dominant disease
(Polymeropoulos et al., 1996). Later, A30P and E46K substitutions were identi-
fied in a German and a Spanish family, respectively, with clinical features described
as dementia with LB (Kruger et al., 1998; Zarranz et al., 2004). PARK1 missense
mutations and PARK4 multiplications are both extremely rare causes of familial
Parkinsonism (Chartier-Harlin et al., 2004; Farrer et al., 2004; Fuchs et al., 2007;
Ibanez et al., 2004; Nishioka et al., 2006; Singleton et al., 2003).

Gene Location and Structure

SNCA is located on chromosome 4q22.1, has six exons, and encodes a 140 amino
acid protein. The N-terminus consists of an amphipathic α-helical domain that asso-
ciates with membrane microdomains, known as lipid rafts (Fortin et al., 2004).
The central region contains a fibrillization region, and the C-terminus contains an
aggregation inhibition region (Fig. 6) (Bisaglia et al., 2008).

Gene Function and Expression

SNCA is expressed throughout the mammalian brain and is enriched in presynaptic
nerve terminals (George, 2002). The protein can adopt partially folded structures
but in its native form is unfolded and can assume both monomeric and oligomeric
alpha helix and beta-sheet conformations, as well as morphologically diverse aggre-
gates, ranging from those that are amorphous to amyloid-like fibrils (Uversky,
2003). These fibrillar moieties are a component of LBs in both familial and idio-
pathic PD (Spillantini et al., 1997), but it is unclear whether the fibrils themselves,
or the oligomeric fibrilization intermediates (protofibrils), are toxic to the cell.
Interestingly, SNCA genomic multiplications in familial PD are associated with an
increase in protein expression (Farrer et al., 2004) and brain samples of triplication
mutant carriers show protofibril formation is enhanced with an increase in SNCA
expression (Miller et al., 2004). In vitro, A30P, A53T, and E46K mutant proteins
show an increased propensity for self-aggregation and oligomerization into protofib-
rils, compared with wild-type protein (Conway et al., 1998; Pandey et al., 2006)
that may be related to the membrane permeabilization activity of these protofib-
rils, which form pore-like and tubular structures (Lashuel et al., 2002). It appears
that only A53T and E46K promote formation of the fibrils (Conway et al., 2000;
Greenbaum et al., 2005) whereas A30P has been reported to disrupt the interaction
between α-synuclein and the lipid raft and to possibly redistribute the protein away
from the synapse (Fortin et al., 2004).

A mouse spontaneous deletion strain is viable, fertile, and phenotypically nor-
mal (Specht and Schoepfer, 2001) whereas overexpression of wild-type SNCA in a
mouse model has many features of PD, such as loss of dopaminergic terminals in
the striatum, mislocalization and accumulation of insoluble α-synuclein, and motor
abnormalities (Rockenstein et al., 2002; Fleming et al., 2004; Masliah et al., 2000).
Both A30P and A53T mutant mouse models display neuronal cell loss and motor
changes (Melrose et al., 2006).
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Increased tendency for oligomer and aggregate formation in SNCA mutants has
been suggested to be a cause of PARK1-linked PD, and PARK4-linked PD multipli-
cations with an increased amount of normal α-synuclein may predispose neurons to
oligomer and aggregate formations (El-Agnaf et al., 1998; Fredenburg et al., 2007).
In LBs the α-synuclein protein is phosphorylated at serine 129 (Ser129) which is
located within the C-terminal that has been implicated as playing an important role
in aggregation (Bisaglia et al., 2008). Interestingly, in a Drosophila model, mutation
of Ser129 to alanine (which prevents phosphorylation) can suppress dopaminergic
neuronal loss (Chen and Feany, 2005).

Genetic Variation

Multiple SNCA mutations and multiplications have been described. Genetic vari-
ation in SNCA appears to contribute to PD phenotype. For example, PARK4
American and European families with SNCA triplication show different clinical
features from families with the SNCA duplication where the phenotype closely
resembles idiopathic PD, with late age of onset, slow progression, and no atypical
features, suggesting that SNCA gene dosage may play a role in disease progression
(Chartier-Harlin et al., 2004; Ibanez et al., 2004). SNCA duplications are rarely asso-
ciated with dementia (Fuchs et al., 2007; Nishioka et al., 2006). Multiplications of
SNCA appear to be slightly more common than missense mutations with the SNCA
triplication found in a large Iowan family (Singleton et al., 2003). Duplications of
SNCA (Chartier-Harlin et al., 2004; Ibanez et al., 2004; Nishioka et al., 2006) were
reported in a Swedish–American family (Fuchs et al., 2007) with patients in the
Swedish branch carriers of the duplication and those in the American branch carriers
of the triplication (Farrer et al., 2004), suggesting unequal recombination or cross-
ing over as the potential mechanisms for duplication and triplication, respectively
(Fuchs et al., 2007). Both the E46K mutation and the triplication are associated with
Parkinsonism and dementia, and the age of onset is younger than the other muta-
tions with diffuse Lewy body disease. A30P mutation is usually not associated with
dementia. The A53T mutation has been associated with dementia and the presence
of cortical Lewy bodies (Golbe, 1990; Golbe et al., 1990).

In addition, SNCA promoter polymorphisms have been associated with idiopathic
PD disease risk (Maraganore et al., 2006; Pals et al., 2004; Tan et al., 2004a),
and recently SNCA polymorphic mutations associated with increased α-synuclein
expression have been reported to be significant risk factors for sporadic PD (Mizuta
et al., 2006; Mueller et al., 2005).

PARK8: LRRK2

Inheritance and Clinical Features

Autosomal dominant PARK8-linked PD was first identified in a Japanese family
known as the Samagihara kindred (Funayama et al., 2002). Clinical features were
first described in 1978 in a large Japanese family (Nukada et al., 1978) with simi-
lar symptoms as sporadic PD with a slightly earlier onset of age, and this linkage
has been replicated in Caucasian families (Zimprich et al., 2004). Although affected
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individuals have clinically typical PD, pathologically the disease appears to be het-
erogeneous with reports of Lewy body pathology and tau pathology as well as
neuronal loss without intracellular inclusions (Nicholl et al., 2002; Wszolek et al.,
2004) in addition to motor neuron disease (Zimprich et al., 2004). Dementia is not
a common feature but has been described in some families (Zimprich et al., 2004).

Gene Location and Structure

The gene for PARK8 was recently identified as Leucine Repeat Rich Kinase 2
(LRRK2; also called dardarin, from the Basque word for tremor) in families from
the Basque region of Spain, Britain, Western Nebraska, and in an American kin-
dred of German descent (Paisan-Ruiz et al., 2004; Zimprich et al., 2004). It is
located on chromosome 12p12 and is a huge gene encompassing 144 kb in the
genome, consisting of 51 exons (7449 bp cDNA) and encoding a protein consisting
of 2517 amino acids. The LRRK2 gene contains several functional domains includ-
ing ANK (ankyrin repeat domain), LRR (leucine-repeat-rich), ROC (Ras of complex
proteins), COR (carboxy terminal of ROC), MAPKKK (mitogen-activated protein
kinase kinase kinase), and a WD40 domain that is rich in tryptophan and aspartate
repeats.

Gene Function and Expression

Function of LRRK2 is not well known, although it has been identified as a tyro-
sine kinase-like protein (Mata et al., 2006). The ROC domain is able to bind GTP
and is essential for the MAPKKK domain to exert kinase activity but does not have
GTPase activity (Ito et al., 2007). Some of the LRRK2 mutations appear to exert
increased kinase activity (Gloeckner et al., 2006; West et al., 2005). Other functional
domains are believed to be important in protein–protein interactions (Zimprich et al.,
2004). LRRK2 also interacts with other familial PD proteins. For example, LRRK2
appears to interact with parkin through the ROC domain; however, the interaction
with parkin does not seem to enhance polyubiquitylation of LRRK2 (Smith et al.,
2005). LRRK2 expression has been described in the central nervous system (cerebral
cortex, medulla, cerebellum, spinal cord, putamen, and substantia nigra), heart, kid-
ney, lung, liver, and peripheral leukocytes (Paisan-Ruiz et al., 2004; Zimprich et al.,
2004). LRRK2 protein is found in the cytosol and mitochondrial outer membrane
(West et al., 2005), plasma membrane, lysosomes, endosomes, transport vesicles,
Golgi apparatus, a cytoskeleton protein microtubule, synaptic vesicles, and lipid
rafts (Biskup et al., 2006; Hatano et al., 2007). Interestingly, α-synuclein is also
expressed in the presynaptic membranes and lipid rafts (Fortin et al., 2004).

There is currently very limited postmortem data on pathogenic LRRK2 mutations
but it appears that typical LB pathology is seen in most LRRK2-related patients. One
report of LRRK2 brain expression shows substantia nigra cell loss, Lewy body for-
mation, and small numbers of cortical Lewy bodies (Khan et al., 2005). In the same
study18F-dopa positron emission tomography (PET) in another patient, but not in
unaffected family members, showed a pattern of nigrostriatal dysfunction typical
of idiopathic PD (Khan et al., 2005). The mechanism that links LRRK2 protein to



Genetics of AD and PD 717

SNCA protein accumulation remains unknown, but evidence suggests that there may
be a direct interaction between LRRK2 and the SNCA protein (Silveira-Moriyama
et al., 2008; Smith et al., 2005).

Genetic Variation

Over 20 missense or nonsense mutations are concentrated in these functional
domains (Fig. 7) (Funayama et al., 2002; Mata et al., 2006; Paisan-Ruiz et al., 2004;
Zimprich et al., 2004). Several coding mutations have been identified in the LRRK2
gene including: Y1699C, R1441C, I1122V, I2020T, and R1369G and a splice site
mutation, 3342A. The most frequent mutation is G2019S that accounts for as many
as 40% of cases of Arab descent, about 20% of Ashkenazi Jewish patients, and is the
most frequent LRRK2 mutation in a large British kindred (Khan et al., 2005; Lesage
et al., 2006, 2005; Zabetian et al., 2006). LRRK2 mutations have also been reported
in some apparently sporadic PD patients (Gilks et al., 2005). One of these polymor-
phisms, G2385R, is a genetic risk factor for sporadic PD in Asian populations (Di
Fonzo et al., 2006; Funayama et al., 2002; Tan and Skipper, 2007). A mutation was
also identified in 5 out of 107 sporadic Spanish/Basque PD cases suggesting that
this gene may have a reduced penetrance. In addition, the mean age at onset (64
years) in a British kindred and the occurrence of mutations in apparently sporadic
PD patients suggests that mutations in this gene may be more widely distributed in
the late-onset PD population than the SCNA gene (Nicholl et al., 2002).

Fig. 7 PARK8: LRRK2 structure and mutations. ANK, ankyrin repeat region; LRR, leucine-rich
repeat domain; ROC, Ras of complex; COR, C-terminal of Ras (GTPase) (Tan et al., 2007). Scale
is approximate

PARK5: UCHL1

Inheritance and Clinical Features

PARK5-linked PD is an autosomal dominant PD. Clinical features are similar to
those of sporadic PD with the age of onset from 49 to 50. A mutation (I93M) has
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been described in a single German PD family and named as the PARK5 locus (Leroy
et al., 1998). However, another study did not find an association with the I93M muta-
tion in familial PD (Harhangi et al., 1999). A S18Y polymorphism in the PARK5
gene has been associated with familial and sporadic PD in some studies but not oth-
ers, leading some to speculate that the PARK5 locus mutations may confer only a
weak effect on risk for the sporadic form of PD (Hutter et al., 2008; Levecque et al.,
2001; Maraganore et al., 1999; Mellick and Silburn, 2000; Wintermeyer et al., 2000;
Zhang et al., 2008).

Gene Location and Structure

The PARK5-linked PD gene has been reported as the ubiquitin carboxyl-terminal
hydrolase-L1 (UCHL1) located on chromosome 4p13 (Leroy et al., 1998). UCHL1
is a protein of 223 amino acids, 9 exons, and a transcript length of 1172 bps
(Wilkinson et al., 1989) (Fig. 8).

Fig. 8 PARK5: UCHL1 structure and mutations. In vitro assays demonstrate dimerization or
ubiquination inhibition by this molecule with α-synuclein at S18Y (inhibits dimerization with α-
synuclein leading to degradation of α-synuclein) and I93M (inhibits hydrolyzation and thus allows
dimerization with α-synuclein inhibiting degradation of α-synuclein) (Liu et al., 2002a). An active
site is present within a loop structure (ASL) as well as many other catalytic sites in other regions
not denoted here (Das et al., 2006). Scale is approximate

Gene Function and Expression

UCHL1 is an ubiquitin-recycling enzyme that hydrolyzes small C-terminal adducts
of polyubiquitine chains to generate ubiquitin monomers and is involved in the ubiq-
uitin proteosome system (Wilkinson et al., 1989). UCHL1 is highly expressed in
the brain, constituting up to 2% of total protein (Das et al., 2006; Wing, 2003).
Normally it is expressed exclusively in neurons and testis but abnormal expression
has been described in many primary lung tumors, lung tumor cell lines, and colorec-
tal cancer (Hibi et al., 1998; Sasaki et al., 2001; Yamazaki et al., 2002). Neuronal
functions include dimerization-dependent ubiquitin ligase activity (Liu et al., 2002a;
Wilkinson et al., 1989) and the maintenance of ubiquitin homeostasis by promoting
ubiquitin monomer stability (Osaka et al., 2003). There is also evidence that UCHL1
may modulate tubulin polymerization (Kabuta et al., 2008).

Postmortmem studies indicate that the UCHL1 protein is found in LBs of spo-
radic PD cases and that it can promote the accumulation of SNCA protein (Leroy
et al., 1998; Liu et al., 2002a). Therefore, further study of the pathogenesis and
potential role of UCHL1 in PD pathology may be warranted.
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Genetic Variation

The heterozygous I93M amino acid substitution in UCHL1 was identified in a
sibling pair, both affected by PD, and the transmitting parent was asymptomatic.
Functional studies show that UCHL1 I93M mutant protein has a 50% decrease in
hydrolytic activity in vitro (Leroy et al., 1998; Nishikawa et al., 2003) with cat-
alytic activity of half of the wild-type enzyme (Leroy et al., 1998), suggesting that
the supply of ubiquitin for 26S proteasome may be reduced with this mutation. The
I93M site is located within the hydrophobic core holding the structure of the right
lobe together, and even though subtle perturbation caused by substituting methio-
nine for isoleucine is unlikely to have significant structural consequences, it has
been suggested that any movement of this residue could possibly distort the geom-
etry of the catalytic triad located there (Das et al., 2006) (Fig. 8). It has also been
suggested that the I93M mutation inhibits hydrolyzation and thus allows dimeriza-
tion with α-synuclein inhibiting degradation of α-synuclein (Leroy et al., 1998; Liu
et al., 2002a). At 20 weeks of age, high-expressing I93M Tg mice show a significant
reduction in dopamine neurons in the substantia nigra and in dopamine content in
the striatum compared to the non-Tg mice. In addition, high-expressing I93M Tg
mice have an increased amount of insoluble UCHL1 in the midbrain, suggesting a
toxic gain of function (Setsuie et al., 2007). Deletion of UCHL1 exons 7 and 8 in
a mouse model causes gracile axonal dystrophy (gad mouse); this is an autosomal
recessive condition characterized by axonal degeneration and formation of spheroid
bodies in motor and sensory nerve terminals (Saigoh et al., 1999). UCHL1 binds to
and stabilizes monoubiquitin in neurons (Osaka et al., 2003). The I93M mutation
in UCHL1 alters the conformation of UCHL1 (Naito et al., 2006; Nishikawa et al.,
2003). An incidental mutant, the gracile axonal dystrophy mouse lacks functional
UCHL1 due to an intragenic exonic deletion. In these mice, UCHL1 dysfunction
appears to disturb the reuse of free ubiquitin, which results in the accumulation of
abnormal proteins in the brain. Mice deficient in UCHL1 do not exhibit obvious
dopaminergic cell loss, in contrast to UCHL1I93M-transgenic mice (Osaka et al.,
2003; Saigoh et al., 1999; Setsuie et al., 2007), suggesting that a loss or decrease
in the level of UCHL1 is not the main cause of PD and that I93M-associated PD
is caused by an acquired toxicity. Thus, although the hydrolase activity of I93M is
decreased (Leroy et al., 1998; Nishikawa et al., 2003), this decreased activity may
not be a major cause of PD.

An UCHL1 S18Y variant has been described that may be associated with a
decreased risk of idiopathic PD (Healy et al., 2004b; Maraganore et al., 2004;
Tan et al., 2006a). Although close analysis of consequences of the S18Y on pro-
tein structure did not yield any insight on the functional impact of this mutation
(Das et al., 2006), in vitro studies indicate that the S18Y variant has reduced ligase
activity and possibly increased hydrolase activity compared with wild-type enzyme
(Liu et al., 2002a; Nishikawa et al., 2003). It has been suggested that the S18Y
site may inhibit dimerization with α-synuclein leading to the degradation of α-
synuclein and thus less accumulation in brain (Liu et al., 2002a; Setsuie and Wada,
2007).
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PARK13: HTRA2

Inheritance and Clinical Features

The PARK13 locus was identified in a German idiopathic PD case-control study
(Strauss et al., 2005). The PARK13 gene encodes HtrA serine peptidase 2 (HTRA2)
and is located on chromosome 2p13.1 (Strauss et al., 2005). Two gene variants,
A141S and G399S, were identified in the German PD case-control study, and these
variants resulted in a defective activation of protease activity and mitochondrial dys-
function in vitro (Strauss et al., 2005). However, further studies are necessary to
determine if this is a new familial PD-inducing protein.

Gene Location and Structure

A cDNA of HTRA2 was first isolated by Faccio et al. (2000a,b). It has 8 exons with
a transcript length of 2367 bps that encodes a protein called HTRA2 consisting of
458 amino acids and homology to bacterial HtrA endoprotease with a PDZ domain
(Faccio et al., 2000a, b; Vande Walle et al., 2008) (Fig. 9).

Fig. 9 PARK13: HTRA2 structure and mutations. The PDZ domain helps anchor transmembrane
proteins to the cytoskeleton. Mutations A141S, S276C, and G399S are shown (Strauss et al., 2005;
Vande Walle et al., 2008). TM, transmembrane domain. Scale is approximate

Gene Function and Expression

HTRA2 is a nuclear-encoded protein located in the intermembrane space of the
mitochondria and released into the cytosol during apoptosis. It has a serine pro-
tease domain that interacts with inhibitor apoptosis proteins (IAPs) to enhance the
progression of apoptosis (Althaus et al., 2007; Hegde et al., 2002; Li et al., 2002;
Martins et al., 2002; Srinivasula et al., 2003; Suzuki et al., 2001; Takahashi et al.,
1998; Verhagen et al., 2002; Yang et al., 2003). Upon receiving various apoptotic
stimuli it is released from the mitochondrial intermembrane space into the cytosol,
where it is thought to induce apoptotic cell death by binding to IAPs. The binding
of HTRA2 to IAP appears to block the caspase-inhibitory activities of IAPs (Althaus
et al., 2007; Hegde et al., 2002; Li et al., 2002; Martins et al., 2002; Srinivasula et al.,
2003; Suzuki et al., 2001; Takahashi et al., 1998; Verhagen et al., 2002; Yang et al.,
2003). HTRA2 also enhances caspase activity by contributing to permeabilization
of the mitochondrial outer membrane, which leads to the release of cytochrome c
(Suzuki et al., 2001).

Mouse models with loss of HTRA2 activity show a Parkinsonian phenotype with
striatum-specific neuronal loss (Jones et al., 2003; Martins et al., 2004) and may
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suggest that other stress response proteins, in addition to IAPs, are involved in
HTRA2 associated neuronal loss, including the transcription factor CHOP (Moisoi
et al., 2008).

Genetic Variation

Three HTRA2 mutations have been reported: A141S, G399S, and S276C (Fig. 9).
The HTRA2 G399S mutation induces mitochondrial dysfunction in vitro and is asso-
ciated with altered mitochondrial morphology whereby cells overexpressing G399S
mutant HTRA2 are more susceptible to stress-induced cell death than wild-type
(Strauss et al., 2005; Vande Walle et al., 2008). The S276C mutation is the cause of
the mouse mutant mnd2 (motor neuron degeneration 2) phenotype, which exhibits
muscle wasting, neurodegeneration, involution of the spleen and thymus, and death
by 40 days of age. Striatal neuron degeneration, with astrogliosis and microglia acti-
vation, begins at around three weeks of age, and other neurons are affected at later
stages (Jones et al., 2003).

2.2.3 Genes Associated with Autosomal Recessive Parkinson’s Disease

PARK2: PRKN

Inheritance and Clinical Features

Clinical features of the autosomal recessive young onset PARK2-linked PD include
an age of onset between 20 and 40, but the age of onset can be earlier than
10 years and above 60 years (Yamamura et al., 1973).When the age of onset is
young, dystonia is a characteristic symptom and patients are levodopa responsive.
Motor fluctuations soon develop. Pathologically, the substantia nigra undergoes
severe neuronal loss and gliosis whereas the locus ceruleus is much less severely
involved and usually no Lewy bodies are seen (Mori et al., 1998; Takahashi et al.,
1994), although rare Lewy body positive cases have been reported (Farrer et al.,
2001).

Gene Location and Structure

Linkage analysis of several PD families mapped the PARK2 disease locus to chro-
mosome 6q26, near the sod2 locus (Jones et al., 1998; Matsumine et al., 1997; Tassin
et al., 1998). By screening a BAC library using the D6S305 marker at this region
a cDNA was cloned consisting of the open reading frame of the novel gene PRKN
(Kitada et al., 1998). PRKN protein belongs to the RING-IBR-RING family, which
is a subgroup of RING finger type E3 ubiquitin ligase. The PRKN protein is 465
amino acids, with 12 exons and a 1395 bp open reading frame. It contains two RING
finger domains at the carboxyl (C) terminus. RING stands for rare interesting gene
and RING-like structures have been found in proteins with ubiquitin ligase activity
(Lorick et al., 1999). Similar to other RING finger proteins, the PRKN protein has
been found to function as an E3 ubiquitin ligase (Shimura et al., 2000).
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Gene Function and Expression

PRKN appears to be a cytosolic protein normally, but it may also colocalize to
synaptic vesicles, the Golgi complex, endoplasmic reticulum, and the mitochon-
drial outer membrane (Darios et al., 2003; Kubo et al., 2001; Mouatt-Prigent et al.,
2004; Shimura et al., 2000). Many of the single amino acid substitutions appear to
alter wild-type PRKN cellular localization, solubility, and propensity to aggregate
(Cookson et al., 2003; Gu et al., 2003; Wang et al., 2005). It has been reported that
parkin binds tubulin and associates with microtubules (Ren et al., 2003). However,
PD-linked mutations, including those that impair E3 activity (Matsuda et al., 2006),
appear not to affect this binding activity (Yang et al., 2005). Many ubiquitination
substrates have been proposed including the aminoacyl-tRNA synthetase cofac-
tor, p38, and a rare, 22-kDa glycosylated form of α-synuclein (Corti et al., 2003;
Shimura et al., 2001; von Coelln et al., 2004a). Some mutations appear to result in
PRKN loss of function, although PRKN knock-out mice have only subtle behavior
and glutaminergic transmission alterations and do not suffer nigral neuronal degen-
eration or clinical manifestations of Parkinsonism (Goldberg et al., 2003; Itier et al.,
2003) and reduced numbers of noradrenergic neurons in the locus ceruleus were
reported in one strain (Von Coelln et al., 2004b). Accumulation of p38 leading to cat-
echolaminergic cell death has been shown in one strain as well as in PARK2-linked
PD and idiopathic PD brain (Ko et al., 2005).

PRKN knock-out mice also have reduced numbers of mitochondrial oxidative
phosphorylation proteins, a decrease in mitochondrial respiratory capacity, and age-
dependent increases in oxidative damage (Palacino et al., 2004). Mitochondrial
defects have also been reported in parkin knock-out Drosophila, suggesting that
PRKN ubiquination dysfunction may be secondary in the course of pathogenic
events (Greene et al., 2003; Pesah et al., 2004). In vitro studies of a PRKN knock-
down SH-SY5Y cell line showed apoptotic cell death and an increase in the
auto-oxidized forms of levodopa and dopamine, implicating parkin antioxidative
properties (Machida et al., 2005).

PARK2-linked recessive, loss-of-function mutations do not usually exhibit the
classical Lewy body pathology seen in idiopathic disease, although this is not the
case for some mutations that reduce but not completely ablate PRKN activity. In
addition, it appears that PRKN need not be mutated to participate in the pathogenic
process because it is also found in the Lewy bodies of idiopathic disease brain
(Schlossmacher et al., 2002). Interestingly, Lewy bodies have been reported in
a patient carrying an R275W substitution and an exon 3 deletion (Farrer et al.,
2001), and an autopsy in a 73-year-old patient carrying a deletion of exon 7 as
well as the del1072T point deletion showed PD-type cell loss, reactive gliosis, and
SNCA-positive Lewy bodies (Pramstaller et al., 2005).

Genetic Variation

Reported mutations in parkin now exceed 100 including missense and nonsense
mutations as well as exonic deletions, rearrangements, and duplications (Abbas
et al., 1999; Hattori et al., 1998; Hedrich et al., 2002; Kann et al., 2002; Klein
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Fig. 10 PARK2: PRKN structure. The general protein structure of parkin is shown (Schlehe
et al., 2008). More than 100 mutations have been identified and are not shown here. Five com-
mon alterations account for 35% of all PRKN mutations: (1) deletions of exon 4 (n = 28), (2)
deletions of exon 3 (n = 27), (3) deletions of exons 3–4 (n = 23), (4) a point mutation in exon 7
(924C>T; n = 38), and (5) a single base pair deletion in exon 2 (255/256delA; n = 17). Hotspots
for common parkin mutations appear to be concentrated in exons 2–7, whereas hotspots for exon
rearrangements are more likely to occur in introns 2–4 (Hedrich et al., 2004). Scale is approximate

et al., 2003, 2000). Exonic deletions in the parkin gene were first identified in
Japanese families with autosomal recessive juvenile Parkinsonism (Kitada et al.,
1998). Parkin mutations have been found to account for about 50% of familial cases
and about 70% of sporadic cases with age of onset of 20 years depending on the
ethnicity of the population sample (Lucking et al., 2000; Mata et al., 2004; Periquet
et al., 2003). Parkin mutational frequency in late-onset PD is lower than early-onset
cases, accounting for between 0 and 11% depending largely on whether the sample
is familial or sporadic (Foroud et al., 2003; Mata et al., 2004; Oliveri et al., 2001).

Many PRKN mutations including deletion mutations and point mutations have
been detected in the PRKN gene of PARK2-linked patients. The site of these
mutations spans almost all regions including the N-terminal UBL domain and the
RING-IBR-RING domain (Fig. 10) but there seems to be very little difference in
symptom phenotypes among these mutation sites, suggesting that the entire region
of the PRKN protein may be essential for exerting its physiology. PRKN-linked PD
has been initially characterized as a recessively inherited disease with a deleterious
alteration on both alleles with the presumption that heterozygous carriers are unaf-
fected. However, evidence now suggests that a large proportion of the total number
of cases identified with a parkin mutation have only a single heterozygous mutation
(Lucking et al., 2000; Mata et al., 2004; Periquet et al., 2003). Thus patients having
a loss of one PRKN allele may suffer from haploinsufficiency as a consequence of
a reduced PRKN expression or enzymatic activity. Indeed, one brain imaging study
showed that some asymptomatic heterozygous PRKN carriers show significant stri-
atal dopaminergic dysfunction, suggesting there may be a gene dosage effect (Kann
et al., 2002). In addition, other reports suggest that PRKN heterozygous mutation
carrier status significantly influences age at onset of PD (Foroud et al., 2003) with
many of the heterozygous mutations in the first RING finger domain associated with
later age of onset (Oliveira et al., 2003). A common polymorphism in the PRKN pro-
moter has been associated with late-onset idiopathic disease (Tan et al., 2005a; West
et al., 2002).

Differential expression of a PRKN splice variant where the RING domains
have been deleted has also been shown to modulate the risk of sporadic PD (Tan
et al., 2005b). In one family, patients with a recessive pattern of inheritance for the
PRKN Ex3-�40 mutation manifest symptoms of early-onset levodopa-responsive
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Parkinsonism whereas in other families with the same mutation, an autosomal dom-
inant pattern of inheritance is present (Munoz et al., 2002; Tan et al., 2003). Some
reports suggest that carriers of PRKN mutations are more likely to have dystonia
and symmetric symptoms than noncarriers, and some may even have atypical fea-
tures such as psychiatric manifestations (Khan et al., 2003; Lucking et al., 2000).
However, a wide overlap of Parkinsonian symptoms between some groups suggests
that no specific diagnostic clinical feature can be demonstrated (Munhoz et al.,
2004). Thus the influence of the PRKN gene on PD risk may involve a complex
interplay between environment and gene dose that manifests varying phenotypes.

In summary, over 100 different mutations have been identified in the parkin gene
including, but not limited to, 40 exon rearrangements (26 deletions and 14 multi-
plications), 43 single base pair substitutions, and 12 small deletions or insertions of
one or several base pairs. The most common mutations appear to be (1) deletions
of exon 4 (n = 28), (2) deletions of exon 3 (n = 27), (3) deletions of exons 3–4 (n
= 23), (4) a point mutation in exon 7 (924C>T; n = 38), and (5) a single base pair
deletion in exon 2 (255/256delA; n = 17). These five common alterations account
for 35% of all parkin mutations. Hotspots for common parkin mutations appear to
be concentrated in exons 2 and 7, whereas hotspots for exon rearrangements are
more likely to occur in introns 2 through 4 (Hedrich et al., 2004) (Fig. 10).

PARK7: DJ1

Inheritance and Clinical Features

DJ1 recessively inherited missense and exonic deletion mutations were first identi-
fied in two European families with an age of onset of 20–40 years (Bonifati et al.,
2003). PARK7-linked PD appears to be very rare (Bonifati et al., 2003; Hague et al.,
2003; Hering et al., 2004). Very few DJ1 patients have been reported in the litera-
ture, thus clinical features and correlations with DJ1 mutations are still difficult
to determine. Some clinical features such as psychiatric symptoms (Dekker et al.,
2003), short stature, and brachydactyly (Dekker et al., 2004) have been reported.
DJ1 mutations rarely associate with PD but some missense, splice-site, and exonic
deletion mutations have been identified, accounting for less than 1% of early-onset
PD (Clark et al., 2004; Hering et al., 2004; Lockhart et al., 2004; Tan et al., 2004b).

Gene Location and Structure

DJ1 has been cloned and is located on chromosome 1p36.23. It has a transcript
length of 949 bps with seven exons (Nagakubo et al., 1997). It encodes a protein
consisting of 189 amino acids.

Gene Function and Expression

DJ1 is a homodimer that belongs to the peptidase C56 family of proteins (Moore
et al., 2003). It is a cytoplasmic protein, but it can also translocate into the mito-
chondria (Zhang et al., 2005) and it appears to act as an antioxidant (Abou-Sleiman
et al., 2003; Canet-Aviles et al., 2004; Moore et al., 2005; Nagakubo et al., 1997).
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Its antioxidant properties may depend on a cysteine residue at 106, which upon oxi-
dation forms a disulphide bond (Canet-Aviles et al., 2004). DJ1 may act as either a
redox sensor protein that can prevent the aggregation of α-synuclein or an antioxi-
dant (Batelli et al., 2008; Canet-Aviles et al., 2004; Mitsumoto and Nakagawa, 2001;
Mitsumoto et al., 2001; Zhou and Freed, 2005; Zhou et al., 2006). DJ1 may also act
as a reactive oxygen species scavenger through auto-oxidation (Taira et al., 2004).
Thus, it has been proposed that inasmuch as substantia nigral neurons are exposed
to high oxidative stress owing to the presence of dopamine, DJ1may be acting as a
strong antioxidative protein.

Expression of DJ1 is ubiquitous and abundant in most mammalian tissues includ-
ing the brain, where it is found in both neuronal and glial cells (Bandopadhyay
et al., 2004). Downregulation of endogenous DJ1 protein of the neuronal cell line by
siRNA enhances oxidative stress-induced cell death, ER stress, and proteasome inhi-
bition, but not by proapoptotic stimulus (Taira et al., 2004; Yokota et al., 2003). The
L166P mutant protein has a reduced antioxidative activity (Takahashi-Niki et al.,
2004). Mutant DJ1 appears to interact with parkin (Moore et al., 2005) whereby
parkin acts as an E3 ligase to remove mutated DJ1. DJ1-null mice are sensitive to
oxidative stress and MPTP (Kim et al., 2005). DJ1 protein expression is increased
upon oxidative stress induced by paraquat (Mitsumoto et al., 2001). Other DJ1
knock-out strains show normal numbers of dopaminergic neurons but also sensi-
tivity to the PD associated environmental toxins paraquat and rotenone (Goldberg
et al., 2005; Meulener et al., 2005).

DJ1 does not appear to be an essential component of LBs in sporadic cases
(Bandopadhyay et al., 2004). DJ1 mutations are rare in sporadic PD but recent stud-
ies suggest that DJ1 may play an important role in common forms of the disease.
Sporadic PD brain exhibits DJ1 with oxidative damage (Choi et al., 2006). Sporadic
PD patients also demonstrate a significant increase in total cerebrospinal fluid DJ1
protein levels compared to normal controls (Waragai et al., 2006).

Genetic Variation

In general, DJ1 mutations are found in the homozygous or compound heterozygous
state, putatively resulting in a loss of protein function. The L166P mutation causes
destabilization through unfolding of the C-terminus, inhibiting dimerization, and
enhancing degradation by the proteasome (Miller et al., 2003; Moore et al., 2003;
Olzmann et al., 2004). In addition, probably consequential to instability, L166P
reduces the neuroprotective function of DJ1 (Taira et al., 2004). Reduced nuclear
localization, in favor of the mitochondria, is also seen for L166P, as well as for the
M26I and D149A mutations (Bonifati et al., 2003; Xu et al., 2005). In addition,
there appear to be structural perturbations associated with DJ1mutations L166P,
E64D, M26I, A104T, and D149A, which can lead to global destabilization, unfold-
ing of the protein structure, heterodimer formation, or reduced antioxidant activity,
implicating these mutations in pathogenicity associated with DJ1 (Anderson and
Daggett, 2008; Malgieri and Eliezer, 2008; Takahashi-Niki et al., 2004) (Fig. 11).
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Fig. 11 PARK7: DJ1 structure and mutations. DJ1 mutations are found in both the homozygous
or heterozygous state, putatively resulting in a loss of protein function. Scale is approximate

PARK6: PINK1

Inheritance and Clinical Features

Mutations in the phosphatase and Tensin (PTEN) Induced Kinase 1 gene (PINK1)
were first identified in patients with recessive young-onset autosomal recessive PD
designated as PARK6. The age of onset is from 32 to 48 years (Valente et al., 2001).
PINK1 mutations account for approximately 1–7% of autosomal recessive PD in
Caucasians (Healy et al., 2004a; Rohe et al., 2004; Valente et al., 2001), about 8.9%
of autosomal recessive PD in Japanese autosomal recessive PD families (Li et al.,
2005), and 2–3% of sporadic and familial PD in individuals of Chinese origin (Tan
et al., 2006b, 2005c). Clinical features of PARK6 are similar to late-onset PD, with
rare features such as dystonia at onset, sleep benefit, and psychiatric disturbances
(Hatano et al., 2004b; Tan et al., 2006b; Valente et al., 2001). Clinical characteris-
tics of PINK1 are similar to PRKN with dystonia at onset and increased reflexes that
were originally thought to be related only to parkin (Ibanez et al., 2006). However,
age at onset is earlier in PINK1 mutational carriers than in those with PRKN muta-
tions (Leutenegger et al., 2006; Valente et al., 2001). Brain imaging of PARK6
carriers indicates a 20–30% reduction of the caudate and putamen (Khan et al.,
2002).

Gene Location and Structure

PINK1 is located on chromosome 1p36.12 and has eight exons and cDNA that
spans 1.8 kb. It encodes a protein with 581 amino acids. It has a serine/threonine
protein kinase domain. However, its function is not known (Valente et al., 2001).
It is a mitochondrial protein located in the matrix and the intermembrane space
that is ubiquitously expressed in the brain and systemic organs and contains
a mitochondrial-targeting motif and a conserved serine/threonine kinase domain
(Silvestri et al., 2005).

Gene Function and Expression

Functional studies have shown that PINK1 can be localized to mitochondria both
in vitro and in vivo (Gandhi et al., 2006). Wild-type PINK1 appears to be impor-
tant in neuroprotection against mitochondrial dysfunction and proteasome-induced
apoptosis whereas the G309D mutation impairs this protective effect, possibly by
interfering with adenosine diphosphate (ADP) binding and thus inhibiting kinase
activity (Valente et al., 2004, 2001). E240K and L489P mutants disrupt PINK1’s
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protectivity by either enhancing the instability of the protein or disrupting the
kinase activity of the protein (Petit et al., 2005). In vitro studies indicate that cells
transfected with PINK1 mutants have disrupted mitochondrial membrane poten-
tial under stressful conditions (Abou-Sleiman et al., 2006). Knock-out models of
the Drosophila PINK1 orthologue have defects in mitochondrial morphology and
increased sensitivity to oxidative stress and appear to be rescued by human parkin
(Clark et al., 2006).

PINK1 haploinsufficiency may be sufficient to cause disease because PINK1
is detected in some LBs in sporadic PD, as well as in samples carrying only one
mutant PINK1 allele, which are clinically and pathologically indistinguishable from
sporadic cases (Gandhi et al., 2006).

Genetic Variation

The first mutations discovered were the G309D missense and a W437X truncat-
ing mutation found in families of Italian and Spanish descent (Valente et al., 2004,
2001). Several point mutations, frameshifts, and truncating mutants have been iden-
tified (Bonifati et al., 2005; Ibanez et al., 2006; Tan et al., 2006b). Interestingly,
in contrast to PRKN, most of the PINK1 mutations reported are either missense
or nonsense mutations (Hatano et al., 2004a, b; Li et al., 2005; Rohe et al., 2004;
Valente et al., 2004). One family with a large deletion mutation involving exons 6–8
homozygotes has been reported (Li et al., 2005).

Japanese and Israeli PINK1-linked families and a sporadic PD patient of Chinese
ethnicity have a R246X mutation (Tan et al., 2006b). Most of the reported muta-
tions are located in a highly conserved amino acid position in the protein kinase
domain and are absent in healthy controls, thus suggesting that these mutations
are pathogenic (Abou-Sleiman et al., 2006) and that homozygous mutation carriers
appear to be clinically affected whereas heterozygous carriers are not (Hiller et al.,
2007). A large kindred from Sudan with early-onset Parkinsonism (ages 9–17 years)
is associated with a novel mutation, A217D, in the PINK1 gene. Phenotypes in this
family vary from dopa-responsive dystonia-like to typical early-onset Parkinsonism.
A217D is located in the highly conserved adenosine triphosphate orientation site
of the PINK1 kinase domain (Leutenegger et al., 2006; Tan and Skipper, 2007)
(Fig. 12).

PARK9: ATP13A2

Inheritance and Clinical Features

Homozygous and compound heterozygous mutations in the P-type ATPase gene
(ATP13A2) have been demonstrated in a Jordanian family (Myhre et al., 2008;
Najim al-Din et al., 1994) and a Chilean family (Ramirez et al., 2006) with
Kufor–Rakeb syndrome, a form of recessively inherited atypical Parkinsonism that
is clinically characterized by very early age of onset (11–16 years), levodopa-
responsive Parkinsonism, pyramidal signs, dementia, and a supranuclear gaze palsy
(Najim al-Din et al., 1994, Williams et al., 2005). MRIs show significant atrophy of
the globus pallidus and the pyramids, as well as generalized brain atrophy in later
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Fig. 12 PARK6: PINK1 structure and mutations. Many PINK1 mutations have been described of
which a few are shown. For a more complete list of PINK1 mutations, see Tan et al., (2007). MTS,
mitochondrial targeting sequence; TM, transmembrane domain; STKD, serine threonine kinase
domain (Tan et al., 2007). Scale is approximate

stages. Some develop facial–faucial–finger minimyoclonus, visual hallucinations,
and oculogyric dystonic spasm (Williams et al., 2005).

Gene Location and Structure

The disease locus designated as PARK9 was mapped to 1p36.13 with a maxi-
mum LOD score of 3.6.1p36.13 is, a hotspot for autosomal recessive familial PD
(Hampshire et al., 2001). The disease gene was subsequently identified as ATP13A2.
The transcript has 29 exons and is 3854 bps in length. The ATP13A2 protein
contains 1180 amino acids and has 10 transmembrane domains.

Gene Function and Expression

ATP13A2 is a lysosomal membrane protein with an ATPase domain (Ramirez et al.,
2006). It is a member of the P5 subfamily of ATPases that transports inorganic
cations and other substrates. The exact function of the ATP13A2 protein is still
unknown. ATP13A2 is predominantly expressed in brain tissues, and ATP13A2
mRNA levels are about tenfold higher in the substantia nigra dopaminergic neurons
of sporadic patients than control subject brains (Ramirez et al., 2006).

Genetic Variation

All known ATP13A2 mutations appear to directly or indirectly affect transmembrane
domains (Ramirez et al., 2006) (Fig. 13). In vitro evidence indicates that wild-type
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Fig. 13 PARK9: ATP13A2 structure and mutations. Mutations found in young-onset PD (T12M,
G504R, and G533R; Di Fonzo et al., 2007) and Kufor-Rakeb syndrome PD (1306+5G/A,
1632_1653dup22, 3057delC; Ramirez et al., 2006) are shown. TM, transmembrane domain. Scale
is approximate

ATP13A2 is localized to the lysosome membrane of transiently transfected cells
whereas unstable truncated mutants are retained in the endoplasmic reticulum and
degraded by the proteasome (Ramirez et al., 2006). A homozygous missense muta-
tion (G504R) has been identified in one sporadic case from Brazil with juvenile
Parkinsonism (Di Fonzo et al., 2007). This patient had symptoms onset at age 12,
levodopa-responsive severe akinetic-rigid Parkinsonism, levodopa-induced motor
fluctuations and dyskinesias, severe visual hallucinations, supranuclear vertical gaze
paresis, and moderate diffuse atrophy but no pyramidal deficit nor dementia. In this
same study, two Italian cases with youth-onset PD without atypical features carried
a novel missense mutation (T12M, G533R) in a single heterozygous state (Di Fonzo
et al., 2007). A rare variant associated with an increased risk of PD among ethnic
Chinese in Asia has recently been described that has a clinical phenotype and brain
image similar to that seen in idiopathic PD (Lin et al., 2008).

GBA

Inheritance and Clinical Features

An association between mutations within the glucocerebrosidase gene (GBA) and
PD has been reported in multiple studies including an initial study where a small
group of PD postmortem brain samples were found to have a GBA mutation fre-
quency of 14% and where an Israeli PD patient sample was found to have a
GBA mutation frequency of 31.3% (Aharon-Peretz et al., 2004). The frequency for
GBA mutations appears to be less than 1% in the general population and 6–7% in
Ashkenazi Jews (Aharon-Peretz et al., 2004; Bras et al., 2007; Clark et al., 2005,
2007; De Marco et al., 2008; Eblan et al., 2006; Gan-Or et al., 2008; Lwin et al.,
2004; Nichols et al., 2009; Sato et al., 2005; Spitz et al., 2008; Tan et al., 2007; Toft
et al., 2006; Wu et al., 2007; Ziegler et al., 2007).
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A family history of Parkinsonism is often reported in patients with Gaucher’s
disease (GD) (OMIM #606463), which is an autosomal recessive disorder caused
by mutations in GBA (Neudorfer et al., 1996). GD is a lysosomal storage dis-
ease characterized by an accumulation of glucocerebrosides (Goker-Alpan et al.,
2008). Clinical features of PD have been reported in a subset of patients with GD
(Neudorfer et al., 1996). Patients with GD (which affects the skeletal, hematologi-
cal, and nervous systems with varying severity) and Parkinsonism have early-onset,
levodopa-unresponsive disease with occasional cognitive decline (Wong et al.,
2004). Recent studies show that the neuropathological features associated with GBA
mutations include a variety of LB synucleinopathies, including LBs in the hip-
pocampus, suggesting that the clinical phenotype of PD with GBA mutations may
be diverse (Goker-Alpan et al., 2008; Mata et al., 2008).

Gene Location and Structure

GBA is located on chromosome 1 (1q21). The GBA cDNA is approximately 2 kb in
length (Horowitz et al., 1989; Reiner et al., 1988). A GBA pseudogene has a 96%
homology to GBA and is located approximately 12 kb downstream. There are two
in-frame translational start sites in exon 1 and exon 2. Initiation at each exon leads to
a different leader sequence but both are processed into a mature functional enzyme
of the same length. The protein is cleaved to produce a mature polypeptide of 497
amino acids with a molecular weight of 55.5 kDa. The polypeptide contains five
potential glycosylation sites, four of which appear to be glycosylated. The active
site of this enzyme resides in the C-terminal half of the molecule at exon 9 and exon
10 (Dinur et al., 1986).

Gene Function and Expression

The GBA gene encodes the lysosomal membrane protein, glucocerebrosidase, which
cleaves the beta-glucosidic linkage of glycosylceramide, an intermediate in glycol-
ipid metabolism (Dinur et al., 1986). GBA mRNA levels vary among cell lines,
with high, moderate, low, and negligible levels reported in epithelial, fibroblast,
macrophage, and B-cell lines, respectively (Reiner and Horowitz, 1988; Reiner
et al., 1987; Wigderson et al., 1989). There appears to be a poor correlation between
the levels of mRNA and the amount of identified enzymatic activity (Doll and Smith,
1993; Reiner and Horowitz, 1988) implicating a complex regulatory system for
the expression of glucocerebrosidase at the level of transcription, translation, and
posttranslational modification (Xu et al., 1995).

Genetic Variation

Over 250 mutations have been reported in GBA: 203 missense mutations, 18 non-
sense mutations, 36 small insertions or deletions that lead to either frameshifts or
in-frame alterations, 14 splice junction mutations, and 13 complex alleles carrying
two or more mutations in cis (Hruska et al., 2008). Recombination events with a
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highly homologous pseudogene downstream of the GBA locus also have been iden-
tified, resulting from gene conversion, fusion, or duplication. Some of the alleles for
disease mutations are also found in the pseudogene, making analysis complicated.
The GBA mutations that influence GD or PD are not necessarily disease-specific.
For example, N370S and L444P are the most common mutations associated with
both GD and PD whereas, in contrast, R120W is found mainly in PD but not GD,
and R463C is found mainly in GD but not PD (Aharon-Peretz et al., 2004; Bras
et al., 2007; Clark et al., 2005, 2007; De Marco et al., 2008; Eblan et al., 2006;
Gan-Or et al., 2008; Hruska et al., 2008; Lwin et al., 2004; Sato et al., 2005; Spitz
et al., 2008; Tan et al., 2007; Toft et al., 2006; Wu et al., 2007; Ziegler et al., 2007)
(Fig. 14).

Fig. 14 GBA structure and mutations. Over 250 GBA mutations have been described (Hruska
et al., 2008). Mutations found in PD include R120W, N370S, and L444P. The enzyme’s active site
is located in the region of mutations; N370S (exon 9) and L444P (exon 10). Scale is approximate

2.3 Summary

Thirteen loci have been linked to PD of which eight genes have been described:
four autosomal dominant (SNCA, LRRK2, UCHL1, and HTRA2) and four autoso-
mal recessive (PRKN, DJ1, PINK1, and ATP13A2). In addition, another gene has
recently been described as a robust risk factor for PD (GBA). These findings sug-
gest that PD pathology involves a strong genetic component and provides numerous
clues to the etiology of the disease. The function of these genes and their contri-
bution to PD pathogenesis remains unclear. However, many of these genes play a
role in ubiquitination, oxidative stress, and apoptosis, suggesting that PD, may be
a genetically complex and heterogeneous disease. In addition to the link between
these genes and familial forms of PD, many are also candidate genes for idiopathic
forms of the disease suggesting that some of these genes carry other mutations that
simply increase risk.
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Nicotinic Receptors in Brain Diseases
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Abstract The existence of neuronal nicotinic acetylcholine receptor (nAChRs)
expression in the brain was discovered 30 years ago. Although the relevance of
neuronal nAChRs at the time of their discovery was debated, it is now clear that
nAChRs are expressed throughout the brain where they mainly serve a modulatory
role. Neuronal nAChRs increasingly have become of interest due to the many obser-
vations that various nAChR subtypes exhibit abnormal expression or function in a
wide assortment of neurological diseases. In this review, the putative role of nAChRs
in brain disease is discussed in several broad categories: (1) diseases associated with
a loss of nAChRs, (2) diseases associated with innate differences in the expression
of nAChRs, (3) diseases associated with genetic variability in genes that code for
nAChR subunit proteins, and (4) diseases in which nAChRs are implicated based on
the observation that nicotine has a therapeutic effect.
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1 Introduction

1.1 Brief History

Neuronal nicotinic acetylcholine receptors (nAChRs) are members of the cys-
teine loop superfamily of ligand gated ion channels that includes ionotropic 5-HT,
GABA, and glycine receptors. As their name implies, nAChRs are receptors for the
endogenous neurotransmitter acetylcholine in the nicotinic branch of the choliner-
gic system. The existence of nAChR in the brain was first demonstrated by ligand
binding studies in the 1980s. Using radio-ligand binding techniques, several groups
established that there were at least two distinct nAChR populations in the rodent
brain: one that binds the ligand [125I]-α-bungarotoxin with high affinity (Marks
and Collins, 1982; Morley et al., 1979; Oswald and Freeman, 1981) and one that
binds the ligands [3H]-L-nicotine or [3H] acetylcholine with high affinity (Abood
et al., 1980; Marks and Collins, 1982; Romano and Goldstein, 1980; Schwartz et al.,
1982; Sershen et al., 1981). The two binding sites also were found to be expressed in
overlapping yet distinct patterns in the brain (Clarke et al., 1985; Marks et al., 1986;
Marks and Collins, 1982). At the time of their identification, the functional relevance
of these binding sites in the brain was not clear (Abood et al., 1980, 1981; Sershen
et al., 1981). However, from the mid-1980s through the early 1990s cDNAs for mul-
tiple nAChR subunits were cloned from rat and chicken brain (Boyd, 1997). These
studies not only led to the identification of 11 different genes (12 in chickens) that
code for neuronal nAChR subunits but also demonstrated that various subunit com-
binations could form functional nAChRs that could be activated by acetylcholine
and nicotine. The subunit genes identified were named α2–α10 (α8 only found in
chickens) and β2–β4 based on the presence (α subunit) or absence (β subunit) of
vicinal cysteines in the N-terminal extracellular domain and the order in which they
were cloned. Neuronal nAChRs, like nAChRs at the neuromuscular junction, also
were found to be composed of five subunits that form a pentameric ring around a
central cation pore. These early studies also demonstrated that some nAChRs are
heteromeric, requiring both an α subunit (α2–α4, α6) and a β subunit (β2 or β4) in
order to form a functional receptor in vitro. The most abundant heteromeric nAChR
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in brain is comprised of the subunits α4 and β2 (Flores et al., 1992; Whiting et al.,
1991). The α4β2∗ (the asterisk indicates that other subunits such as α5 can contribute
to α4β2 nAChRs) receptor exhibits high affinity for nicotinic agonists and has been
demonstrated to be the [3H]-L nicotine binding site described in the early ligand-
binding studies (Flores et al., 1992; Marubio et al., 1999; Picciotto et al., 1995;
Whiting et al., 1991). Other nAChR α subunits were identified that could form func-
tional pentameric receptors in vitro without a β subunit. The most prevalent of these
so-called homomeric nAChRs in the brain is composed of α7 subunits. Homomeric
α7 nAChRs exhibit low affinity for nicotinic agonists and immunological (Chen
and Patrick, 1997) and genetic studies (Orr-Urtreger et al., 1997) demonstrated
that α7 nAChRs are the previously described [125I]-α-bungarotoxin binding sites in
brain.

Although α4β2∗ nAChRs are the most abundant nAChR expressed in the brain,
several other heteromeric nAChR subtypes exist in the brain. For example, within
dopamine terminals there are at least five different heteromeric nAChRs composed
of anywhere between two and four different subunits (Champtiaux et al., 2002;
Cui et al., 2003; Klink et al., 2001; Marubio et al., 2003; Salminen et al., 2004).
The nAChRs on dopamine terminals in the striatum include α4β2, α4β2α5, α6β2,
α6β2β3, and α4α6β2β3. Data also indicate that the nAChRs in GABAergic ter-
minals are α4β2 and α4β2α5 (Lu et al., 1998; McClure-Begley et al., 2009; Zhu
and Chiappinelli, 1999), whereas nAChRs that modulate acetylcholine release in
the interpeduncular nucleus are α3β4 and α3β3β4 heteromers (Grady et al., 2001,
2009). A combination of immunoprecipitation experiments and in situ hybridization
studies also suggest the existence of additional heteromeric nAChR subtypes (Gotti
et al., 2006b), including an α7β2∗ subtype (Liu et al., 2009) although the functional
relevance of these potential nAChR subtypes remains to be determined.

1.2 Activation, Desensitization, and Upregulation

Activation of nAChRs by agonists leads to the opening of a central channel that
is permeable to cations including calcium (Mulle et al., 1992). Permeability to cal-
cium is receptor subtype-dependent with α7 nAChRs exhibiting the greatest calcium
permeability (Fucile et al., 2003; Fucile, 2004; Ragozzino et al., 1998). Although
acute exposure to a nicotinic agonist activates nAChRs, continuous exposure to
activating and even subactivating concentrations of agonist leads to receptor desen-
sitization, a state in which the receptors become refractory to activation to agonists
(Giniatullin et al., 2005; Quick and Lester, 2002). This property of nAChRs also
is subtype-dependent with α7 nAChRs exhibiting the fastest rate of desensitization
(Couturier et al., 1990; Seguela et al., 1993). However, due to the low sensitivity
of α7 nAChRs to activation by nicotinic agonists, α7 nAChRs appear to remain
active at nicotine concentrations in the range found in smokers (Mansvelder et al.,
2002; Wooltorton et al., 2003). In contrast, α4β2∗ nAChRs appear to be desensi-
tized at the same concentrations of nicotine (Mansvelder et al., 2002; Mansvelder
and McGehee, 2000). The ability of nicotine to produce long-term desensitization
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of at least some nAChR subtypes at physiologically relevant concentrations have
led some to refer to nicotine as a time-averaged antagonist (Hulihan-Giblin et al.,
1990).

Another property of at least some nAChR subtypes is upregulation of receptor
numbers in response to long-term nicotine exposure. This phenomenon first was
discovered in rodents by Marks et al. (1983) and Schwartz and Kellar (1983). Both
of these groups demonstrated that chronic treatment of mice and rats led to upreg-
ulation of what we now know are α4β2∗ nAChRs. High doses of nicotine also led
to modest increases in α7 nAChRs (Marks et al., 1983). Upregulation of α4β2∗
nAChRs also is seen in brain tissue from smokers (Benwell et al., 1988; Breese et al.,
1997; Perry et al., 1999). This upregulation of nAChRs has been termed paradoxical
because the expected effect of chronic agonist exposure is receptor downregulation
(Wonnacott, 1990). However, it has been postulated that the upregulation is due to
the time-averaged antagonist property of nicotine. Support for this possibility comes
from a study by Marks et al. (2004) that demonstrated that, despite the increase
in numbers of α4β2∗ nAChRs following chronic nicotine treatment, the level of
function of α4β2∗ nAChRs remained unchanged relative to controls. These findings
suggest that upregulation serves as a homeostatic mechanism to maintain normal
levels of receptor function in the presence of a “time-averaged” antagonist.

Due to the widespread expression of nAChRs throughout the brain and their
involvement in modulating the release of many neurotransmitters, it is not surprising
that aberrant expression or function of nAChRs might contribute to a wide range of
diseases. In the following sections, diseases of the brain in which nAChRs have been
implicated are discussed in four broad categories, diseases associated with the loss
of nicotinic receptors, diseases associated with innate differences in the expression
of nicotinic receptors, diseases related to genetic variants in the genes that code for
the nicotinic receptor subunits, and diseases in which nAChRs have been implicated
due to a therapeutic effect of nicotine.

2 Diseases Associated with Loss of Brain Nicotinic Receptors

The diseases associated with loss of nAChRs are typically neurodegenerative dis-
eases. The two most studied diseases that are associated with the loss of nicotinic
receptors in the brain are Parkinson’s and Alzheimer’s.

2.1 Parkinson’s Disease

In Parkinson’s disease (PD), loss of nAChRs occurs in the nigrostriatal pathway
(Aubert et al., 1992; Pimlott et al., 2004; Quik et al., 2004) as well as in the basal
forebrain and cortex (Aubert et al., 1992; Lange et al., 1993; Perry et al., 1995; Rinne
et al., 1991). Early studies indicated that high-affinity nAChRs are preferentially lost
in PD. A combination of studies in both rodent and nonhuman primate models of
PD suggests that the α6α4β2β3 nAChR is the most labile high affinity nAChR in
response to nigrostriatal damage (Kulak et al., 2002; Quik et al., 2005). The loss of
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this nAChR subtype also closely coincides with the loss of the dopamine transporter
(Bordia et al., 2007; Gotti et al., 2006a; Quik et al., 2004). α4β2∗ nAChRs also
appear to be lost in animal models of PD but only when lesions are severe (Bordia
et al., 2007; Kulak et al., 2002; Quik et al., 2003). Similarly, α6β2∗ appear to be lost
to a greater extent than α4β2∗ nAChRs in several brain areas of PD patients (Bohr
et al., 2005; Bordia et al., 2007; Quik et al., 2004). In contrast, there appears to be
no loss of α7 nAChRs in striatal tissue in both animal models and humans (Guan
et al., 2002; Quik et al., 2005; Zoli et al., 2002). However, there may be a loss of α7
nAChRs in cortical regions of Parkinson’s disease patients (Banerjee et al., 2000;
Burghaus et al., 2003) although this finding is not universal (Guan et al., 2002).

It remains to be determined whether the loss of nAChRs in PD contributes to the
development of the disease or simply is a marker of the disease and α6β2∗ nAChRs
are simply present on the neurons most sensitive to damage. Data from knock-out
mice demonstrate that the lack of any of the striatal expressed nAChR subunits does
not lead to striatal neurodegeneration. Thus, the simple loss of these nAChRs alone
is not sufficient to elicit a neurodegenerative state. Nonetheless, a role of nAChRs in
PD is supported by epidemiological evidence that clearly demonstrates that there is
an inverse relationship between smoking and the development of PD. Although the
mechanism through which smoking delays the onset of PD remains to be elucidated,
it is generally thought that nicotine acts as a neuroprotective agent via interaction
with nAChRs. The ability of nicotine to be neuroprotective in general and in animal
models of PD more specifically has been demonstrated in several in vitro and in vivo
studies (Quik et al., 2008). Whether nicotine acts as a neuroprotective agent through
activating or desensitizing nicotinic receptors is not clear. However, recent studies
with mice possessing a hyperactive form of the α4 subunit suggest that heightened
activity rather than loss of activity is neurodegenerative in the striatum (Labarca
et al., 2001; Schwarz et al., 2006). Based on this and the fact that nAChR knock-out
mice show no striatal neurodegeneration suggests that the neuroprotective proper-
ties of nicotine may be through desensitization/inactivation of nAChRs rather than
through activation.

2.2 Alzheimer’s Disease

2.2.1 Altered Expression of nAChRs

Loss of nAChRs also is associated with Alzheimer’s disease (AD). The most pro-
foundly affected nAChR subtype in AD is the α4β2∗ subtype. Results from both
receptor-ligand binding assays (Nordberg et al., 1988; Nordberg and Winblad, 1986;
Perry et al., 2000; Whitehouse et al., 1986, 1988) and immunological experiments
(Burghaus et al., 2000; Gotti et al., 2006a; Guan et al., 2000; Martin-Ruiz et al.,
1999; Wevers et al., 1999) indicate that α4β2∗ nAChRs are reduced by as much as
50% in cortical and hippocampal regions of postmortem brain tissue of AD patients.
α4β2∗ nAChRs begin to decline in the earliest stages of AD (Marutle et al., 1999)
and several recent studies have shown a significant correlation between the degree
of loss of this nAChR subtype and cognitive deficits in early AD patients (Kadir
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et al., 2006; Sabri et al., 2008). Other studies have reported a correlation between
the level of expression of cortical α4β2∗ nAChRs and degree of cognitive deficits in
AD patients (Nordberg et al., 1995; Perry et al., 2000). However, not all studies have
observed a significant correlation between the expression levels of α4β2∗ nAChRs
and cognitive deficits in early AD patients (Ellis et al., 2008, 2009). Nonetheless,
a putative role of α4β2∗ nAChRs in AD-related neurodegeneration is supported by
the observation that β2 nAChR-null mutant mice exhibit elevated age-related neu-
rodegeneration in cortical brain areas and hippocampus and increased age-related
cognitive deficits (Zoli et al., 1999).

Some studies also have found alterations in the expression of other nAChR
subunits, including α3 and α7, in postmortem brain tissue of AD patients (Guan
et al., 2000; Mousavi et al., 2003; Wevers et al., 1999) and animal models (Bednar
et al., 2002; Jones et al., 2006; Mousavi et al., 2004). However, these findings gen-
erally are not consistent. In the case of α7, some studies have found no change
in expression of this subunit (Gotti et al., 2006a; Martin-Ruiz et al., 1999), oth-
ers have found a decrease in expression of this subunit (Burghaus et al., 2000;
Engidawork et al., 2001; Guan et al., 2000; Wevers et al., 1999), and a few stud-
ies have reported an increase in the expression of this nAChR subunit (Counts et al.,
2007; Hellstrom-Lindahl et al., 1999; Teaktong et al., 2003). This apparent dispar-
ity in the relationship between α7 expression and AD may be explained by a recent
study by Jones et al. (2006) in which α7 expression was assessed in a transgenic
mouse possessing a mutant form of the human amyloid precursor protein (APP)
that results in familial AD. Results of this study demonstrated that α7 expression
increases progressively to levels three- or fourfold higher than normal control brain
by 9 months of age. However, by 12 months of age the transgenic mice expressed
lower levels of α7 than controls. Therefore, the relationship between α7 expression
and AD may be age and/or disease state-dependent. It is of interest to note that
despite the fact that several studies have demonstrated a reduction in α4β2∗ and
potentially other nAChRs in AD patients, changes in RNA levels for these receptor
subunits generally have not been observed in AD patients (Mousavi et al., 2003;
Terzano et al., 1998). This observation suggests that the loss of nAChRs in AD is
mediated posttranscriptionally.

2.2.2 Interaction of nAChRs with β Amyloid

nAChRs also have been implicated in the etiology of AD via interactions with amy-
loid β (Aβ), a 39–43 amino acid polypeptide that is thought to play a critical role
in the pathogenesis of AD. Several studies have shown that Aβ1-42 binds with high
affinity to both α4β2∗ and α7 nAChRs. In addition, nicotinic receptors are impli-
cated in neuroprotection from Aβ toxicity by the observations that nicotine reduces
Aβ accumulation and neurotoxicity both in vitro (Kihara et al., 1998, 1999, 2001;
Liu and Zhao, 2004; Zamani et al., 1997) and in animal models (Gahring et al., 2003;
Hellstrom-Lindahl et al., 2004; Nordberg et al., 2002; Zhang et al., 2006). Moreover,
the deposition of Aβ is significantly reduced in postmortem brain from AD patients
who were smokers (Hellstrom-Lindahl et al., 2004). However, there are conflicting
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data regarding whether the interaction of Aβ with various nAChR subtypes acti-
vates (Chin et al., 2006; Dineley et al., 2001, 2002; Fu and Jhamandas, 2003) or
inhibits (Grassi et al., 2003; Lamb et al., 2005; Liu et al., 2001, 2009; Magdesian
et al., 2005; Soderman et al., 2008; Tozaki et al., 2002; Wu et al., 2004) the function
of the receptors. In addition, a recent paper reported that oligomeric Aβ1-42 at low
concentrations (1 nM) selectively inhibits a novel and putatively α7β2 nAChR (Liu
et al., 2009). It also has been reported that there is a physical interaction between
Aβ and α7 nAChRs (Wang et al., 2000a,b) and that the interaction between Aβ and
the α7 nAChR facilitates the internalization of Aβ in neurons (Nagele et al., 2002).
This reported internalization of Aβ by α7 nAChRs may explain the observation that
Aβ and α7 nAChRs have been found to be colocalized in neurons of AD patients
(Nagele et al., 2002; Wang et al., 2000a,b; Wevers et al., 1999). It has been postu-
lated that the excessive intraneuronal accumulation of Aβ via internalization by the
α7 nAChR leads to neuronal death (Nagele et al., 2002). However, this hypothesis is
not consistent with the observation that α7 nAChRs are not preferentially lost in AD.

3 Diseases Associated with Innate
Differences in the Expression of nAChRs

Although there obviously is individual variability in the expression of brain nAChRs
in the population, altered expression of some nAChRs relative to healthy controls
is associated with several neuropsychiatric disorders. The best-studied example of
low nAChR expression in brain and disease is schizophrenia. A second example
discussed is autism.

3.1 Schizophrenia

Schizophrenia is characterized by multiple symptoms including, but certainly not
limited to, psychosis, apathy, and cognitive impairment (Austin, 2005; Mueser and
McGurk, 2004). Another common feature of schizophrenia is poor sensory inhibi-
tion including the inability to “filter” repetitive stimuli (Baker et al., 1987; Boutros
et al., 1999; Braff et al., 2001; Clementz et al., 1998; Holzman, 2000; Kelley
and Bakan, 1999; Lee and Williams, 2000). The inability to filter repetitive stim-
uli is believed to lead to personality decompensation (Venables, 1964, 1992) and
almost certainly contributes to the cognitive deficits associated with schizophrenia
(Erwin et al., 1998; Simosky et al., 2002). The first evidence that nicotinic recep-
tors may be involved in schizophrenia was the observation that either smoking or
nicotine-normalized deficits in sensory inhibition, as measured by P50 auditory gat-
ing, in schizophrenic patients (Adler et al., 1992). In addition, smoking, nicotine,
or nicotinic agonists more recently have been shown to improve cognitive perfor-
mance in schizophrenic patients (Freedman et al., 2008; Harris et al., 2004; Olincy
et al., 2006; Sacco et al., 2005). These apparent “beneficial” effects of nicotinic
agents in schizophrenics may explain the extremely high rate of smoking in this
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population. It is estimated that anywhere between 50 and 90% of schizophrenic
patients smoke (Dalack et al., 1998; Hughes et al., 1986; Lohr and Flynn, 1992).
In contrast, smoking rates in individuals with other mental illnesses are around
25% and the prevalence of smoking in the general population is about 20% (Dalack
et al., 1998; Williams and Ziedonis, 2004). Moreover, schizophrenic patients exhibit
altered smoking behaviors that allow them to extract significantly more nicotine per
cigarette than nonschizophrenic smokers (Tidey et al., 2005).

The first direct evidence that alterations in nicotinic receptor expression might
contribute to schizophrenia was from a study by Freedman and colleagues (1995)
who demonstrated that schizophrenic patients had lower levels of α7 nAChRs as
measured by 125I-αBTX binding and lower levels of α4β2∗ nAChRs as measured
by [3H] cytisine binding in hippocampus relative to controls. The reduced binding
was the result of both fewer labeled cells and diminished labeling per cell. In addi-
tion to reduced expression in the hippocampus, α7 nAChRs also have been shown
to be decreased in other brain areas of schizophrenic subjects including the reticu-
lar thalamic nucleus (Court et al., 1999) and multiple cortical regions (Guan et al.,
1999; Marutle et al., 1999, 2001). However, the data regarding the expression of
high affinity (predominantly α4β2∗ nAChRs) is less clear. Results suggest that in
schizophrenic patients, there is a reduction in high-affinity nAChRs in hippocampus
(Breese et al., 2000; Freedman et al., 1995) and no change from controls in thalamus
(Breese et al., 2000; Court et al., 1999). However, there are conflicting results on the
expression of high-affinity nAChRs in the striatum and cortex of schizophrenic sub-
jects. Some studies indicate that there is an increase in high-affinity receptors in
these brain regions of schizophrenic subjects (Court et al., 2000; Martin-Ruiz et al.,
2003; Marutle et al., 2001) whereas other reports show that high-affinity receptor
binding is lower in these brain regions of schizophrenic patients (Breese et al.,
2000; Durany et al., 2000). Despite the equivocal results for high-affinity receptor
expression in schizophrenia, there is evidence that regulation of this nAChR popula-
tion is abnormal. As mentioned previously, smoking generally leads to a significant
upregulation of α4β2∗ nAChRs in brain. However, depending upon brain region,
upregulation of high-affinity nAChRs is either absent or substantially reduced in
schizophrenic brain relative to controls (Breese et al., 2000).

Support for a role of both α4β2∗ and α7 nAChRs in schizophrenia also comes
from pharmacological and animal model data. For example, the α4β2∗ selective
agonists ABT-418 (Stevens and Wear, 1997) and A-85380 (Wildeboer and Stevens,
2008) and the α7 selective agonist DMXB-A (O’Neill et al., 2003; Simosky et al.,
2001; Stevens et al., 1998) improve innate and drug-induced deficits in auditory
gating in rodents. DMXB-A also has been shown to improve sensory gating and
cognitive function and to reduce negative symptoms in two recent clinical trials
(Freedman et al., 2008; Olincy et al., 2006).

Additional support for nAChRs in schizophrenia largely is based on mouse
genetic models. Mice heterozygous for a null mutation in Chrna7, the gene that
codes for the α7 subunit, exhibit reduced expression of the α7 subunit, poor auditory
gating, and other functional deficits in the hippocampus similar to those observed
in schizophrenic patients (Adams et al., 2008). In addition, a naturally occurring



Nicotinic Receptors in Brain Diseases 765

variant allele of Chrna7 has been identified in mice. This allele is linked to vari-
ability in α7 expression in the hippocampus (Stitzel et al., 1996), neuroanatomical
distribution of α7 nAChRs in the hippocampus (Adams et al., 2001), developmental
expression of α7 nAChRs in the hippocampus (Adams et al., 2006), and audi-
tory gating deficits (Stevens et al., 2001). The fact that the allele of Chrna7 that
leads to reduced α7 expression in the hippocampus also leads to impaired auditory
gating is consistent with the role of Chrna7 in regulating the auditory gating phe-
notype in schizophrenics. Recently, Liu et al. (2006) reported that α7 nAChRs are
involved in the normal development of the GABAergic system in the hippocam-
pus. Thus, abnormal expression of α7 nAChRs during pre- and perinatal periods
of development may have long-term consequences on brain function. Suggestive
support for a developmental role of α7 nAChRs in impaired auditory gating comes
from two recent studies that have shown that perinatal dietary supplementation with
choline, an α7-selective agonist, permanently improves gating in two animal models
of impaired auditory gating (Stevens et al., 2008a,b).

3.2 Autism

A second disease where there appears to be altered expression of nAChRs is autism.
Studies have shown that high-affinity nicotinic receptors as measured by [3H] epi-
batidine, α4 RNA and anti-α4 antibodies, are reduced in various cortical regions in
autistic subjects (Martin-Ruiz et al., 2004; Perry et al., 2001). Using both [3H] epi-
batidine and anti-α4 antibodies, Lee et al. (2002) and Martin-Ruiz et al. (2004) also
reported that α4 nAChRs are reduced in cerebellar regions in subjects with autism
relative to normal controls. The α7 subunit was not found to be altered in expression
in cortical regions of autistic patients but was found to be upregulated in cerebellum
(Lee et al., 2002; Martin-Ruiz et al., 2004); the binding of [125I] α-bungarotoxin
was increased in cerebellum although no change in α7 RNA or α7 immunoreactiv-
ity was detected. Finally, in a small sample, α7 and β2 but not α4 immunoreactivity
was found to be decreased in the thalamus of individuals with autism (Ray et al.,
2005).

In addition to altered levels of nAChRs, there also appear to be increased num-
bers and enlarged morphology of cholinergic neurons in the cortex of children
with autism (Bauman and Kemper, 2005). Based on this observation, it has been
hypothesized that the downregulation of nAChRs in the cortex and thalamus in
autism is the result of a homeostatic response to hypercholinergic activity in the
cortex (Lippiello, 2006). The potential hyperactivity in the cortex of individuals
with autism may explain the low level of smoking associated with autism relative to
both the general population and other mental diseases (Bejerot and Nylander, 2003;
Poirier et al., 2002). Nonetheless, there currently are no pharmacological or animal
model data to convincingly implicate nAChRs in the etiology of autism. Therefore,
the relevance of the altered expression of nAChRs in this disease remains to be
determined.
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4 Genetic Variants of nAChR Subunit Genes
and Brain Disease

Each nAChR subunit is encoded by a different gene and any mutation in any of these
genes that affects the expression or function of an nAChR could lead to disease
or contribute to individual differences in risk for disease. In this section, one dis-
ease directly caused by mutations in nAChR subunit genes is discussed. In addition,
the potential role of genetic variability in nAChR subunit genes in altering risk for
disease is summarized.

4.1 Autosomal Dominant Nocturnal Frontal Lobe
Epilepsy (ADNFLE)

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is the only brain
disease known to be caused by mutations in genes that code for nicotinic receptor
subunits. ADNFLE is a rare, inherited form of epilepsy characterized by hyperki-
netic or tonic seizures that tend to occur in clusters. Seizures also are of frontal
lobe origin and tend to occur during periods of light sleep (Scheffer et al., 1995).
To date, there have been ten mutations in genes that code for nAChR subunits that
cause ADNFLE, four in CHRNA4 the gene that encodes the nAChR α4 subunit
(Hirose et al., 1999; Leniger et al., 2003; McLellan et al., 2003; Phillips et al., 2000;
Saenz et al., 1999; Steinlein et al., 1995, 1997, 2000), five in CHRNB2, the gene
that codes the β2 nAChR subunit (Bertrand et al., 2005; De Fusco et al., 2000; Hoda
et al., 2008; Phillips et al., 2001), and one in CHRNA2, the gene that encodes the α2
nAChR subunit (Aridon et al., 2006). For more details on these ADNFLE-causing
mutations, please see the recent review by Steinlein and Bertrand (2008). A fifth
mutation in CHRNA4 recently has been identified that may add to this long list of
nAChR subunit gene mutations that cause ADNFLE (Chen et al., 2009b). There also
is some debate as to whether the seizure disorder caused by the CHRNA2 mutation
is ADNFLE or a related seizure disorder (Hoda et al., 2009). Regardless of whether
the seizure disorder caused by the CHRNA2 mutation is ADNFLE or a related dis-
ease, it still is an example of a mutation in an nAChR subunit gene that directly
causes an inherited disease.

Although mutations in CHRNA2, CHRNA4, and CHRNB2 have been shown to
cause ADNFLE or related seizure disorders, how these mutations cause epilepsy
remains unknown. However, in vitro functional analysis indicates that a common
feature of nAChRs possessing ADNFLE mutations is a gain of function, either by
increased sensitivity to acetylcholine or reduced desensitization (Aridon et al., 2006;
Bertrand et al., 2002; Hoda et al., 2008, 2009; Leniger et al., 2003; Moulard et al.,
2001; Phillips et al., 2001). In addition, two recent studies found that smoking or
nicotine treatment decreased seizure frequency in ADNFLE patients with nAChR
mutations (Brodtkorb and Picard, 2006; Willoughby et al., 2003). The therapeutic
effect of smoking/nicotine presumably was the result of decreasing or inhibiting the
function of the hyperactive nAChRs via the well-characterized desensitizing effect
of nicotine on α4β2∗. A mechanism by which nAChR gain of function mutations
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might lead to ADNFLE has been suggested by studies using two lines of mice
a engineered to possess different ADNFLE mutations in Chrna4 (Klaassen et al.,
2006). In these studies, it was found that nicotine was greater than 20 times more
potent at activating inhibitory postsynaptic currents in cortical regions of mice with
ADNFLE mutations than in their control littermates. In contrast, nicotine had no
effect on excitatory postsynaptic currents. Based on these data and the observation
that picrotoxin, a use-dependent GABA antagonist, transiently eliminated epilep-
tiform activity in ADNFLE mice, the authors concluded that nAChR-mediated
ADNFLE may be caused by hyperactive nAChRs in GABAergic neurons that leads
to synchronization of cortical networks.

An interesting feature of ADNFLE-causing nAChR mutants is their differen-
tial sensitivity to the antiepileptic drug carbamazepine. Carbamazepine can inhibit
nAChR function via open channel blockade and three of the known ADNFLE
mutations, two in α4 and one in β2, have substantially increased sensitivity to inhi-
bition by carbamazepine (Bertrand et al., 2005; Hogg and Bertrand, 2004; Picard
et al., 1999). For individuals with any of these carbamazepine-sensitive mutations,
carbamazepine has proven to be an effective treatment. In contrast, other ADNFLE-
causing mutations in CHRNA4 and CHRNA2 either do not show altered sensitivity
to carbamazepine or actually show a reduced sensitivity to inhibition by this drug
(Bertrand et al., 2005; Hoda et al., 2009; Leniger et al., 2003). Individuals with these
mutations apparently do not benefit from carbamazepine treatment. Thus knowing
which nAChR mutation a patient carries can be a valuable aid in treatment selec-
tion. However, it should be pointed out that mutations in nAChR subunit genes only
account for a fraction of total ADNFLE cases and therefore, the predictive power
of nAChR subunit gene mutation identification is restricted to a small percentage of
ADNFLE patients.

4.2 Other Genetic Variants in nAChR Subunit Genes
and Their Relation to Diseases of the Brain

A significant number of polymorphisms and rare mutations in nAChR subunit
genes have been implicated in various diseases of the brain through linkage and
association studies. Diseases thought to be influenced by nAChR subunit gene vari-
ants include schizophrenia, Alzheimer’s disease, non-ADNFLE epilepsies, various
cognitive disorders including attention deficits, and drug addiction-related pheno-
types. Because there have been several recent reviews on this topic (Portugal and
Gould, 2008; Steinlein and Bertrand, 2008; Stitzel, 2008) it is not extensively
reviewed here. However, at the time of these reviews, studies began appearing
that implicated the gene cluster on chromosome 15q24 that contains CHRNA5,
CHRNA3, and CHRNB4 in various aspects of addiction to nicotine, alcohol,
and cocaine. This cluster of genes encodes the α5, α3, and β4 nAChR sub-
units, respectively. Because this gene cluster repeatedly has been implicated in
influencing individual variability in addiction-related measures over the past two
years, it warrants some further discussion. The first two reports that implicated
this nAChR gene cluster in addiction were published by Bierut et al. (2007) and
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Saccone et al. (2007). These two studies identified single nucleotide polymor-
phisms (SNPs) in both CHRNA5 and CHRNA3 that were associated with nicotine
dependence.

Subsequent studies have confirmed the association between the CHRNA5 and
CHRNA3 SNPs and nicotine dependence (Baker et al., 2009; Bierut et al., 2008;
Caporaso et al., 2009; Chen et al., 2009a; Saccone et al., 2009; Spitz et al., 2008;
Stevens et al., 2008; Thorgeirsson et al., 2008; Wang et al., 2009; Weiss et al., 2008)
as well as implicated the gene cluster in individual differences in level of smok-
ing (Berrettini et al., 2008; Le et al., 2008), subjective effects of smoking (Sherva
et al., 2008), age of initiation of smoking (Schlaepfer et al., 2008), cocaine addic-
tion (Grucza et al., 2008), and alcohol dependence (Joslyn et al., 2008; Schlaepfer
et al., 2008; Wang et al., 2008). The same SNPS also have been associated with risk
for lung cancer (Amos et al., 2008; Hung et al., 2008; Liu et al., 2008; Shiraishi
et al., 2009; Spitz et al., 2008; Thorgeirsson et al., 2008) and chronic obstructive
pulmonary disease (COPD) (Pillai et al., 2009; Young et al., 2008). Whether the
association between the CHRNA5-CHRNA3 SNPs and lung cancer or COPD are
due to an altered risk for smoking or represent an independent signal remains a
matter of debate (Volkow et al., 2008). Although beyond the scope of this review
(see Egleton et al. (2008), and Song and Spindel (2008) for recent reviews of
this topic), nAChRs, including those that contain the α3 and/or α5 subunit are
expressed in pulmonary epithelial cells and lung cancer cells so an independent
role of SNPs in CHRNA3 and/or CHRNA5 on risk for these diseases certainly is
feasible.

Although the repeated associations between the CHRNA5–CHRNA3–CHRNB4
gene cluster and the mentioned addiction-related measures strongly suggest that
there is one or more polymorphism in the cluster that alters risk for drug use
and abuse, the identity of the causative SNP or SNPs is not known. However,
a strong candidate is an amino-acid-altering SNP in CHRNA5 that changes a
highly conserved aspartic acid codon at amino acid position 398 in the α5 sub-
unit to an asparagine codon. Preliminary in vitro data indicate that the amino
acid change associated with increased risk for nicotine dependence (asparagine
at position 398) reduces the function of α4β2α5 nAChRs (Bierut et al., 2008).
Whether this functional effect of the polymorphism is responsible for altered lia-
bility to nicotine dependence and if so, by what mechanism does the change in
function of α4β2α5 nAChRs alter addiction risk, are questions that remain to be
answered.

5 Diseases Where nAChRs Are Implicated
by Therapeutic Effects of Nicotine

A putative role for nAChRs in schizophrenia was suggested by the high rate of
smoking in schizophrenic patients and the observation that nicotine normalizes neu-
rophysiological deficits associated with the disease. As described elsewhere in this
review, subsequent studies provided strong evidence for a role of nAChRs in the
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etiology of this disease. However, there are some diseases where nicotine has been
shown to have therapeutic value although a specific role of nAChRs has yet to be
established. Two examples of such diseases are discussed here.

5.1 Tourette Syndrome

Tourette syndrome is a neurological disorder characterized by repetitive, stereo-
typed, involuntary movements and vocalizations called tics (NINDS, 2008). In cases
where the tics interfere with normal functioning, therapeutics such as haloperidol
often are used. The first evidence for the role of nicotinic receptors in Tourette
syndrome came from a study by Sanberg et al. (1988) that reported that nicotine
gum in combination with haloperidol improved symptoms in two patients where
haloperidol alone was without effect. Follow-up studies have confirmed that nico-
tine gum potentiates the therapeutic effects of haloperidol in Tourette syndrome
(McConville et al., 1991, 1992; Sanberg et al., 1989). In addition, the use of a trans-
dermal nicotine patch rather than nicotine gum has been shown to have long-lasting
potentiation of the effects of neuroleptics on tic frequency and severity (Dursun
et al., 1994; Silver et al., 1996, 2001). Dursun et al. (1994) also reported that nico-
tine alone improved Tourette syndrome symptoms. In studies where it has been
assessed, combined nicotine/neuroleptic treatment also improved measures of atten-
tion in Tourette syndrome patients relative to neuroleptic treatment alone (Dursun
et al., 1994; Howson et al., 2004). Although the mechanism through which nico-
tine improves symptoms of Tourette syndrome is not known, a relatively recent
study demonstrated that nicotine normalized deficits in inhibitory function of motor
cortex in Tourette syndrome patients (Orth et al., 2005). Nonetheless, there are no
pharmacological data to suggest which nAChR subtypes might be responsible for
the therapeutic effects of nicotine in this disease and no postmortem data to eval-
uate whether there might be abnormalities in nAChR expression that may directly
contribute to the disease.

5.2 Down Syndrome

Down syndrome is a genetic disease caused by the inheritance of an extra copy (tri-
somy) of chromosome 21. In addition to some common physical features and health
problems, most subjects with Down syndrome also have mild to moderate mental
retardation. Postmortem brain tissue of Down syndrome patients exhibits amyloid
plaques (Burger and Vogel, 1973; Ellis et al., 1974) and cholinergic deficits (Yates
et al., 1980) similar to those observed in postmortem brain tissue from Alzheimer
patients. In addition, studies with primary cultures from Down syndrome patient
brain or cell lines derived from a mouse model of Down syndrome (trisomy 16)
suggest that there are cholinergic deficiencies in trisomy 21/16 neurons (Allen et al.,
2000; Cardenas et al., 2002; Fiedler et al., 1994). Based on the apparent cholinergic
deficits in Down syndrome, Lubec and colleagues (Bernert et al., 2001; Seidl et al.,
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2000) examined whether transdermal nicotine could improve some of the cognitive
deficits associated with Down Syndrome. In both published studies, nicotine was
found to improve cognitive performance in the Down syndrome subjects. However,
despite the cholinergic deficits and presumably related therapeutic effect of nicotine
in Down syndrome, a specific contribution of nAChRs remains to be established for
this disease. For example, neither Lee et al. (2002) nor Ray et al. (2005) found any
deficits in [3H] epibatidine or [125I] α bungarotoxin binding in postmortem brain of
Down syndrome patients. These findings contradict the observation by Engidawork
et al. (2001) that the expression of α3 and α7 subunits is altered in Down syndrome.
This apparent discrepancy likely is due to the fact that Engidawork et al. (2001) used
immunohistochemical methods to detect nAChR subunits. The use of antibodies for
standard immunohistochemical detection of nAChR subunits has come under recent
scrutiny (Jones and Wonnacott, 2005; Moser et al., 2007).

Another mechanism proposed for the therapeutic effect of nicotine in Down
syndrome is that the high levels of β amyloid present in the Down syndrome
brain are inhibiting the function of α7 nAChRs essentially as described above in
Alzheimer’s disease (Deutsch et al., 2003). However, a recent report found no cor-
relation between β amyloid levels and dementia in older Down syndrome subjects
(Jones et al., 2009). Therefore, despite the therapeutic effect of nicotine in Down
syndrome, the specific role of nAChRs remains elusive.

6 Conclusions

The research summarized in this review suggests that nAChRs contribute to a wide
range of neuropathologies. In many cases the combined therapeutic effect of nico-
tine and/or nicotinic drug in addition to detectable differences in nAChR expression
provides compelling evidence for a contribution of nAChRs to neuropathology.
However, in the diseases that fall into this category, including Alzheimer’s and
Parkinson’s disease, schizophrenia, and autism (among others), the mechanism
responsible for the altered expression of the nAChRs is not known. Moreover,
whether the altered expression of nAChRs and these diseases is causal or casual
remains to be established. In the case of ADNFLE, identified mutations in nAChR
subunit genes clearly define a role of nAChRs in diseases of the brain and ani-
mal models provide a plausible mechanism. In contrast, the contribution of genetic
variants in genes that code for nAChR subunits in diseases other than ADNFLE
is only beginning to emerge. Not surprisingly, very little is known regarding the
biological mechanisms responsible for the associations between nAChR subunit
gene variation and diseases such as nicotine dependence. Finally, there are several
diseases such as Tourette syndrome and Down syndrome where nicotine has ther-
apeutic effects despite the lack of any detectable alterations in nAChR expression
or function. In summary, there is substantial evidence that nAChRs contribute to
a wide assortment of brain disease. Nonetheless, much work remains to be done
to establish the mechanisms through which nAChRs contribute to the etiology of
disease.
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Lysosomal Storage Diseases

Gregory M. Pastores

Abstract The lysosomal storage diseases (LSD) are a heterogeneous group of
disorders, characterized by the progressive accumulation of various substrates in
multiple cell types, as a consequence of defects in the degradation of by-products of
cellular turnover. Several subtypes are associated with neurodegenerative features,
which present as a major therapeutic challenge. Although the causal gene defects
and corresponding enzyme, cofactor, or transport deficiency have been delineated,
there remains incomplete understanding of the downstream pathways leading to
organ dysfunction and clinical symptomatology. Recent studies suggest that sev-
eral processes, including inflammation, apoptosis, and defects of autophagy, may be
involved. Therapy remains palliative for most LSDs, although enzyme replacement
therapy is available for several disorders that are caused by a deficiency in a solu-
ble hydrolase. Novel strategies, which involve the use of small molecular agents that
inhibit substrate synthesis or act as pharmacological chaperones to rescue the mutant
protein, are current subjects of investigation. In addition, gene therapy and stem cell
therapy are being evaluated. The multifactorial basis of LSDs will likely necessitate
a combination of approaches to optimize therapeutic outcome. Meanwhile, preim-
plantation genetic diagnosis and prenatal detection are being offered as an option
to families at risk. Newborn screening and carrier detection in populations at risk is
also being undertaken, to enable early diagnosis, appropriate counseling, and timely
intervention.

Keywords Enzyme replacement therapy · Enzyme deficiency · Lysosomal storage
disease · Substrate reduction therapy
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1 Introduction

The lysosomal storage diseases (LSD) are a heterogeneous group of disorders result-
ing from an inherited defect in the metabolism of by-products of cellular turnover
(Reuser and Drost, 2006). As a consequence, there is progressive accumulation
of one or more substrates within the lysosome, eventually leading to multiple
organ/system dysfunction. Although individual disorders may be rarely encoun-
tered, collectively 1 in 5000 children will be found to have an LSD, caused primarily
by a deficiency of a lysosomal hydrolase or its cofactor. Given the frequent delays
in diagnosis, and the introduction of therapies for certain subtypes, several groups
have advocated for screening programs of newborns or high-risk populations (i.e.,
based on ethnic group or defined clinical groups).

There are at least 50 distinct LSDs, grouped according to the biochemical com-
position of the storage material into the sphingolipidoses, mucopolysaccharidoses
(MPS), oligosaccharidoses, and so on. Several LSDs have also been given an epony-
mous designation (e.g., Gaucher disease, Fabry disease, Tay–Sachs) in recognition
of the physician/scientist who played a role in their seminal description (Table 1).
The majority of LSDs are inherited in an autosomal recessive fashion, except for
three disorders: Fabry disease, Dannon disease, and Hunter syndrome (MPS type II).

The diagnosis in suspected LSD cases can be confirmed by biochemical and/or
molecular assays, which can be applied for prenatal and presymptomatic diagnosis
(Meikle et al., 2004). Although most LSDs have onset in childhood, several subtypes
have later-onset of disease, with symptoms that may not be evident until adulthood.
The latter individuals often suffer from delayed diagnosis, unless there is a prior
family history. However, there can be heterogeneity in clinical expression, and even
siblings can have a distinct clinical course of disease, particularly among those with
a chronic variant. Except for null alleles, which are often associated with the “classic
phenotype,” studies of the correlation between genotype and phenotype suggest a
role for factors that modifies disease expression.

2 Modes of Clinical Presentation

A significant proportion of patients with an LSD have neurological involvement,
which can be manifested as developmental delay and behavioral changes (Table 2).
The presence of specific findings may suggest the diagnosis (e.g., leucodystrophy in
patients with metachromatic leucodystrophy or globoid cell leucodystrophy; cherry
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red spot in Tay–Sachs disease, GM1-gangliosidosis, Niemann–Pick type A and
Sialidosis; ophthalmoplegia in Gaucher disease type 3 and Niemann–Pick disease
type C).

Extraneurological features that should lead to consideration of an LSD diagnosis
include hepatosplenomegaly, short stature, joint contractures, and cardiomyopathy.

An early age of symptom onset often portends a rapidly progressive course,
although each LSD subtype is associated with chronic subtypes, with a clinical
course that can run into decades.

In general, null alleles are associated with the classic early-onset phenotype,
whereas missense mutations which lead to defective proteins that exhibit residual
enzyme activity lead to attenuated phenotypes (Froissart et al., 2002). However,
studies of genotype–phenotype correlation have revealed a lack of perfect concor-
dance, which suggests other factors may be involved that influence disease outcome
(Froissart et al., 2002). At present, the putative factors that modify LSD-phenotypes
among patients with identical genotypes remain obscure.

3 Diagnostic Confirmation

Diagnosis of an LSD is critical for several reasons: (1) it focuses attention on the
needs of the patient, and the potential to intervene in subtypes for which treat-
ment is available; (2) the inherited basis implies a risk of recurrence during future
pregnancies, and as prenatal diagnosis is available for most, families are given the
opportunity to plan accordingly; (3) although treatment is available for certain sub-
types, early diagnosis is essential as current approaches are unlikely to restore
organ function when there is considerable pre-existing pathology at the time of
initiation.

For disorders characterized by an underlying enzyme deficiency (e.g., Gaucher
disease, Fabry disease, Tay–Sachs, Hurler syndrome), assays of enzyme activity in
blood and/or tissues is generally available (Meikle et al., 2004). Mutation analysis is
also available, particularly for populations in whom the common disease alleles are
known (e.g., mutations among Ashkenazi Jews for Gaucher, Tay–Sachs, Niemann–
Pick type A, and mucolipidosis type IV; Ostrer, 2001). In other cases, analysis
of the gene defect responsible for rare subtypes is available through specialized
laboratories.

Examination of skin or other tissues (e.g., liver, bone marrow) may sug-
gest the presence of lysosomal storage, however, this involves invasive proce-
dures and requires expertise in interpretation of the findings (Alroy and Ucci,
2006). Analysis of urine for excess substrates (e.g., glycosaminoglycans in the
Mucopolysaccharidoses, globotriaolsylceramide in Fabry disease) may also suggest
the presence of an LSD. In any case, all patients suspected to have an LSD should
have diagnostic confirmation by means of biochemical and/or molecular genetic
analysis.
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4 Pathophysiological Mechanisms

Intralysosomal substrate storage represents the initial insult to cells; by-products
of intermediary metabolism (e.g., psychosine in globoid cell leukodytrorphy), a
disruption of normal lysosome function, and/or the consequent deficiency in recy-
cling of certain substrates are putative disease events (Ballabio and Gieselmann,
2009).

In disorders characterized by primary (e.g., Tay–Sachs disease) or secondary
(e.g., Niemann–Pick type C) ganglioside storage, neuronal cells develop ectopic
dendritogenesis and meganeurite formation (Walkley, 2009). These changes may
be associated with a disturbance in neuronal signal transmission and/or the trans-
port of trophic factors along the length of the axon; partly accounting for the
neurodegenerative features seen in these conditions.

There is incomplete understanding of the disease mechanism beyond substrate
storage, although several processes (such as inflammation, apoptosis, defects of
autophagy and activation of the ER-stress response) may have a contributory role
(Ballabio and Gieselmann, 2009).

In globoid cell leucodystrophy the accumulation of galactosylsphingosine (psy-
chosine) is believed to promote energy depletion, loss of oligodendrocytes, and the
induction of gliosis and aberrant inflammation by astrocytes in the central nervous
system (CNS) (Suzuki, 1998). Recently, psychosine has also been shown to down-
regulate AMP-activated protein kinase (AMPK), the “cellular energy switch” in
oligodendrocytes and astrocytes (Giri et al., 2008). In an oligodendrocyte cell line
(MO3.13) and primary astrocytes, psychosine accumulation increased the biosyn-
thesis of lipids, including cholesterol and free fatty acid. These findings delineate an
explicit role for AMPK in psychosine-induced inflammation in astrocytes, without
directly affecting the cell death of oligodendrocytes.

In the brain obtained from the mucopolysaccharidosis type IIIB mouse model,
the accumulating substrate—heparan sulfate oligosaccharides—activated microglial
cells by signaling through the Toll-like receptor 4 and the adaptor protein MyD88
(Ausseil et al., 2008). Although intrinsic to the disease, the observed phenomenon
was deemed not to be a major determinant of the neurodegenerative process, with
a possibly greater role for inflammatory changes in the later stages of the disease
(Ausseil et al., 2008).

In multiple sulphatase deficiency and mucopolysaccharidosis type IIIA, stud-
ies in the respective mouse models suggest defects in autophagy; a lysosomal-
dependent catabolic pathway through which long-lived cytosolic proteins and
organelles (such as mitochondria) are sequestered by double-membrane vesicles
and ultimately degraded after fusion with lysosomes. In affected cells, reduced
colocalization of the lysosomal membrane protein LAMP-1 with the autophago-
some marker LC3 have been observed; indicative of an impairment of lyso-
some/autophagosome fusion (Settembre et al., 2008). Accumulation of autophagic
vacuoles in the heart and skeletal muscle are hallmarks of Danon disease (Yang
and Vatta, 2007). LAMP2, which is defective in Danon disease, is believed to
be normally involved in lysosome/autophagosome fusion, and may have a role
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in dynein-based centripetal motility. In Niemann–Pick type C, there is increased
expression of Beclin-1 and LC3-II; the Purkinje neuron cell death encountered in
this disorder is believed to be dependent on autophagy (Pacheco and Lieberman,
2008.). A disturbance of autophagy has also been found in the mouse model of
Pompe disease; which interestingly has been linked to a deficiency in the traffick-
ing/processing of recombinant enzyme along the endocytic pathway (Raben et al.,
2008).

Several endeavors are being directed towards identifying biomarkers that can
serve as a surrogate indicator of disease severity, in terms of either overall disease
burden or involvement of a particular organ/system in patients with an LSD. In
mucopolysaccharidosis type I, the analysis of the levels of oligosaccharides derived
from GAGs in cultured fibroblasts (as measured by electrospray ionization tandem
mass spectrometry) combined with the residual α-L-iduronidase activity have been
shown to distinguish patients with and without CNS involvement (Fuller et al.,
2005). The practical application of these techniques in the final assignment of
disease subtype remains to be determined, but may be relevant when combined
with genotype information in the selection of appropriate therapy for diagnosed
patients with mucopolysaccharidosis type I. Meanwhile, ongoing efforts, employ-
ing proteomic-based screening tools (such as SELDI-TOF-MS), are anticipated to
reveal markers that will help with prediction of disease severity and that may also be
useful in monitoring of therapy (Hendriks et al., 2007). Protein profiling provides an
opportunity to identify and analyze multiple markers, and enables a systems biology
approach to ascertain the impact of the primary deficiency in lysosomal function.

It is likely that one or more of these pathological events may promote cellular
dysfunction or tissue damage in the LSDs (Table 3). At present, it is uncertain which
of the processes that have been identified plays a dominant role. Certain mechanisms
may also be cell-type-specific, but this remains to be clarified.

Table 3 Putative mechanisms of disease

• Altered trafficking of molecules through the endolysosomal network, including sequestration
of membrane rafts, leading to a disruption in signaling

• Aberrant inflammatory response, either through activation of resident microglia and/or
recruitment and activation of peripheral monocytes

• Oxidative stress and activation of ER-stress response
• Disruption of autophagy
• Initiation of apoptosis

5 Therapeutic Approaches

The management of patients with an LSD is mainly palliative, particularly for sub-
types associated with neurological involvement. Commonly encountered problems
include seizures, altered sleep–wake cycles, and behavioral problems such as hyper-
activity and aggression. Attempts at controlling or modifying these problems may
help improve the quality of life of an affected individual and their relatives.
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Observations of metabolic cross-correction provided the rationale for cellular
replacement, achieved primarily through allogeneic hematopoietic stem cell or bone
transplantation (HSCT) (Prasad and Kurtzberg, 2008). More recently, the use of neu-
ral stem cells (NSC) implanted in the brain of patients with late-infantile neuronal
ceroid lipofuscinosis has been contemplated (Pierret et al., 2008) but there are no
reports as yet of its potential efficacy. Within the central nervous system there must
be proper integration of donor cells, and differentiation into appropriate cell types.
As specialized cell types within the nervous system elaborate neurotransmitters and
are involved with conducting electrical impulses, functional differentiation may be
a major hurdle for the neurodegenerative LSDs.

Increasingly, donor material is isolated from umbilical cord blood (UCB); these
cells are deemed to have greater potential for transdifferentiation into appropriate
cell types, and thus may have greater facility for tissue-specific regeneration or
repair (Gluckman and Rocha, 2009). In addition, the incidence of graft versus host
disease appears to decrease following the use of UCB cells, potentially resulting in
decreased morbidity.

HSCT has been performed in several disorders associated with primary CNS
involvement (e.g., globoid cell leukodystrophy, Hurler syndrome, α-mannosidosis)
(Prasad and Kurtzberg, 2008). The justification has been based on the presence of
monocytes in the donor pool, which can traverse the blood–brain barrier (BBB)
and differentiate into microglia; serving as the source of functional enzyme. The
replacement of endogenous microglia by donor cells is estimated to take at least
six to nine months, during which time pathogenic influences may remain; this may
explain the potential limitations of HSCT, particularly in cases where the diagnosis
is delayed. In globoid cell leukodystrophy, over 80% of infantile cases subjected to
HSCT in the first few weeks of life develop gross motor problems after the age two
years; often requiring assistance with ambulation (Prasad and Kurtzberg, 2008).

Enzyme replacement therapy is available for several subtypes associated with a
soluble hydrolase deficiency; this therapeutic approach has been shown to modify
disease course, primarily features of the disorder resulting from extraneurological
involvement (Grabowski, 2008). Unfortunately, the ultimate prognosis is not sig-
nificantly altered in patients with neurodenegerative features, likely because the
intravenously administered enzyme does not gain sufficient access across the blood–
brain barrier (Pastores, 2003). In addition, therapeutic response is limited in patients
with an advanced disease stage, wherein organ function may not be fully restored
in cases with significant tissue damage from fibrosis or necrosis. Varying propor-
tions of patients given recombinant enzymes have developed antibodies, which can
lead to neutralization of enzyme activity and/or altered tissue distribution (Pastores,
2003). The significance of these observations on long-term outcome remains to be
established.

Substrate reduction therapy (SRT) involves the inhibition of substrate synthesis
to a level where the load falls within the capacity of the mutant enzyme that exhibits
residual function (Platt and Jeyakumar, 2008). Thus this approach, as in the case of
pharmacological chaperones, may be dependent on the type of mutation responsible
for disease in an individual.
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The imino sugar miglustat has been shown to lead to partial glycosphingolipid
synthesis inhibition and modification of disease course in treated patients with
Gaucher disease (Pastores and Barnett, 2003). As miglustat can gain access to the
CNS and inhibit the formation of GM2-gangliosides, its potential use was explored in
patients with late-onset Tay–Sachs disease, Gaucher disease type III, and Niemann–
Pick type C. In patients with Niemann–Pick type C, miglustat has been shown
to improve saccadic eye movements and swallowing difficulties (Patterson et al.,
2007). Unfortunately, the miglustat trials in patients with late-onset Tay–Sachs dis-
ease and Gaucher disease type III failed to show any measurable benefit, perhaps
because of the advanced stage of disease suffered by the study subjects (Shapiro
Schiffmann et al., 2008; Shapiro et al., 2009). Surprisingly, there have been min-
imal side effects (e.g., diarrhea, weight loss) with the use of miglustat; although
long-term studies are required to ascertain safety and benefit of its use (Pastores and
Barnett, 2003).

Enzyme enhancement therapy involves the use of pharmacological chaperones,
which in cell culture and animal studies have been demonstrated to increase resid-
ual enzyme activity of the mutant enzyme by preventing its premature degradation
within the endoplasmic reticulum (Fan, 2008). Several studies have shown that defi-
cient lysosomal hydrolysis may in the majority of cases be due to mutations that
promote protein misfolding and failure of its delivery to the lysosome; as opposed
to mutations involving the catalytic site that inactivates enzyme activity altogether
(Steet et al., 2007; Sugawara et al., 2009). This approach is currently in clinical
trials; its effectiveness in substantially clearing tissue deposits and clinical effi-
cacy in modifying disease phenotype when used as a singular approach remains
to be established. As the drugs (isofogamine for Gaucher disease and the imino
sugar N-deoxygalactonojirimycin in Fabry disease) currently under study are also
inhibitors of enzyme activity, a particular challenge with the use of pharmacological
chaperones relates to determination of the appropriate dose and frequency of drug
administration, to ensure enzyme enhancement has the upper hand (Fan, 2008).

Gene therapy and stem cell therapies are other approaches that have been
explored, primarily in mouse models of various LSDs (Sands and Haskins, 2008).
Although results of various experiments have been promising, the application of
these techniques in human patients awaits further preclinical studies, ideally involv-
ing large animal models of disease (i.e., in dog, cats, and sheep), in which a larger
brain size and higher level of complexity may provide greater insights into the
challenge of these therapeutic strategies in humans (Haskins, 2009).

6 Summary

The clinical features of most LSDs likely have a multifactorial basis, and several
processes, such as inflammation and apoptosis, contribute to disease development.
However, the downstream events triggered by substrate storage in the lysosome are
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incompletely understood. Research in this area is motivated by the hope of discover-
ing markers that can serve as a surrogate for tissue substrate storage, and avoid the
need for invasive procedures. Furthermore, the discovery of disease mechanisms
may lead to the identification of putative therapeutic targets.

The LSD are defined by regulatory agencies as “orphan” disorders, that is, affect-
ing individuals numbering <200,000 in the United States, or no more than 5/10,000
in Europe (Graul, 2009). In the United States, therapeutic options for the LSDs
have and are being developed, pursuant to two pieces of landmark legislation: the
Bayh–Dole Act (BDA, 1980) and the Orphan Drug Act (ODA, 1983). Essentially,
these Acts of Congress enabled universities to patent their discoveries and license
them to private corporations (BDA); in turn, the biotech companies have received
several incentives (including the potential for fast-track approval and subsequent
marketing exclusivity) to stimulate development of medical drugs and devices for
rare disorders (ODA). Patient support and advocacy groups have played a major part
in upholding the enactment of these and related pieces of legislation, including the
more recent Genetic Information Nondiscrimination Act (GINA) of 2007–2008.

Several disease-based registries, sponsored by the drug manufacturers, have been
established; primarily for disorders in which there is commercially available treat-
ment. Guidelines for the monitoring and treatment of the affected individual are
being formulated under the auspices of various experts involved in these surveillance
efforts (Martin et al., 2008; Muenzer et al., 2009).
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Genetic Signaling in Glioblastoma
Multiforme (GBM): A Current Overview

Walter J. Lukiw and Frank Culicchia

Abstract Cancers of the brain comprise a genetically and morphologically hetero-
geneous class of proliferating neural cells derived from incompletely differentiated
brain tumor stem cells (BTSCs). The molecular and genetic mechanisms that con-
tribute to their development and propagation are incompletely understood, however,
current research is expanding our knowledge as to what specific gene activation
and deactivation mechanisms are triggered during the onset of brain cell neoplasia.
Apparently, only relatively small populations of BTSCs are capable of driving the
proliferative and invasive nature of these cancers, and the intrinsic ability to reiniti-
ate and propagate aberrant cell growth at any metabolic cost. This chapter provides
a current overview of gene expression patterns in glioma and glioblastoma multi-
forme (GBM), with special emphasis on messenger RNA (mRNA) and micro RNA
(miRNA) speciation and abundance, and how our recent understanding of specific
mRNA–miRNA interactions have increased our comprehension of this insidious
neoplastic process.
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1 Introduction

Brain cancers constitute a genetically and phenotypically diverse class of prolif-
erative neoplasms derived from incompletely differentiated neuroglial stem cells,
sometimes referred to as brain tumor stem cells (BTSCs). Early pathogenetic events
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appear to differ between glioma and glioblastoma multiforme (GBM), and whether
the glioma-to-GBM transition is a developmental attribute or is related to brain
tumor progression, is not well understood. The molecular–genetic mechanisms and
pathological neurobiology of glioma and GBM remain unclear, however, current
oncological research into molecular alterations observed in tumors over time are
expanding our understanding as to what brain-enriched genes and induction mech-
anisms are specifically activated during the onset and propagation of the neoplastic
process. Although brain cancer cells are pathologically heterogeneous, only a small
population of BTSCs appears to drive the invasive neoplastic phenotype, and the
intrinsic ability repeatedly to reinitiate and propagate cancer cell growth at any
metabolic cost (Fig. 1 and 2). Several interrelated alterations in gene expression
are common among different tumor cell types, especially those that target cell-cycle
regulation and growth-promoting pathways, resulting, ultimately, in angiogenesis,
apoptosis, necrosis, and deregulated mitotic proliferation. The molecular, genetic,
and cellular heterogeneity of glioma and GBM may well underlie the basis for
each type of brain cancer’s highly variable resistance to current pharmacotherapeu-
tic treatment strategies. The scope of this chapter is to provide a current overview
concerning gene expression patterns in glioma and GBM with special emphasis on
specific messenger RNA (mRNA), micro RNA (miRNA) interactions, and the con-
tribution of altered miRNA-mRNA-directed signaling pathways to this currently
incurable neoplastic process.

Fig. 1 Cultured human neurons and glia can be differentially viewed or stained to study the con-
tribution of each cell type to brain cell morphology, growth, cell type, drug interaction, and gene
expression (see e.g., Lukiw et al., 2005) Control (normal) human neuronal-glial (HNG) cells in
primary co-culture exhibit complex, small diameter neuritic extensions and extensive (a); cultured
HTB-138 glioma cells (American Type Tissue Collection, Bethesda, MD) (b); cultured CRL-1690
glioblastoma cells (c); all cultured brain cells are about 15–20% confluent, photographed using
phase contrast light microscopy (Lukiw et al., 2009); note cell-contact avoidance in the HTB-138
glioma culture, lack of small diameter extensions and altered, flattened, and diverse morphologies
of glioma, and especially of GBM cells (b), (c) when compared to control (a); 1 week of culture;
bar = 25 μm
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Fig. 2 Highly schematicized representation of normal neural stem cell (NSC), brain differenti-
ated cell (BDC), and brain tumor stem cell (BTSC) development into glioma and gliobalstoma
muliforme (GBM) tumor cells. NSCs have an intrinsic property for long-term self-renewal and
are pluripotent, that is, have an intrinsic capability to give rise to multiple types of differentiated
progeny. In the normal condition (left), NSCs differentiate into BDCs such as neurons, glia, and
neuroglial subspecies. In contrast, in glioma and GBM, genetic mutations, environmental factors,
and alterations in miRNA signaling and pathogenic gene expression trigger the development of
BTSCs from both NSCs and BDCs. BTSCs, that make up only a relatively small fraction of the
entire heterogeneous tumor cell mass, give rise to a series of genotypically and phenotypically het-
erogeneous tumor cells and a proliferating and invasive tumor cell mass (see Singh et al., 2004; Xie
and Chin, 2008; Godlewski et al., 2008; Hide et al., 2008; Yadirgi and Marino, 2009). Recent evi-
dence suggests the participation of the polytopic membrane protein beta-amyloid precursor protein
(βAPP), the apoptosis effector protein caspase-3, the cell contact and synaptic remodeling protein
pentraxin-2, and vascular endothelial growth factor (VEGF), the most potent vascular substance
known in driving brain oncogenesis. More recently, specific micro RNA (miRNA; miRNA-124
and miRNA-137) downregulation has been shown to affect cellular proliferation and/or induce
unscheduled differentiation of BTSCs (Gurdon and Melton, 2008; Silber et al., 2008). GBM is
further associated with an upregulation in miRNA-125b and miRNA-221. miRNA-125b is upreg-
ulated in IL-6-stressed normal human astrocytes (NHA), a treatment known to induce astrogliosis,
and in vitro, anti-miRNA-125b added exogenously to IL-6-stressed NHA cultures attenuated both
glial cell proliferation and increased the expression of CDKN2A, a predicted miRNA-125b target
and negative regulator of cell growth (Pogue et al., 2010). GBM-up-regulated miRNA-221 appears
to target the cell growth suppressive cyclin-dependent kinase inhibitors p27 and p57, linking the
cell cycle checkpoint at S phase initiation with growth factors, which may be another trigger for
tumor cell proliferation (Li et al., 1999; le Sage et al., 2007; Mellai et al., 2008; Medina et al.,
2008; Lukiw et al., 2009)

2 Brain Cancer Etiology—Glioma and GBM

Tumors are classified by their tissue of origin. Astrocytomas fall into the largest
category of tumors of neuroepithelial tissue. Neoplastic neuroepithelial tumors of
the central nervous system (CNS) are categorized by the World Health Organization
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(WHO) rating as being pilocytic, and having circumscribed growth that tends to
respect anatomic boundaries because they do not invade (WHO grade I). The more
diffuse (WHO grade II) tumors demonstrate slow growth, moderate hypercellularity,
occasional nuclear atypia, and diffuse infiltration of neighboring brain cell struc-
tures. These lesions have a tendency for malignant transformation, possibly dediffer-
entiating all the way to glioblastoma multiforme (GBM) and included in this group
are protoplasmic, gemistocytic, fibrillary, and mixed variants. Anaplastic (WHO
grade III) tumors demonstrate hypercellularity, moderate nuclear atypia, prominent
mitotic activity, and diffuse infiltration. These tumors are most often the result of
dedifferentiation of a grade II astrocytoma. Glioblastoma multiforme (WHO grade
IV) demonstrate marked nuclear atypia, high mitotic activity, microvascular pro-
liferation, and areas of coagulative necrosis. This group includes GBM and two
variants: giant-cell glioblastoma and gliosarcoma. Although a glioblastoma may
represent a dedifferentiated grade II or III astrocytoma, most are primary glioblas-
tomas and do not derive from a less malignant precursor. Primary GBMs often
manifest de novo; without clinical or histopathological evidence of a pre-existing,
less-malignant precursor lesion. These tumors are identified in patients after a short
clinical history of usually less than three months. Primary GBM accounts for the
vast majority of cases (60%) in adults older than 50 years of age and secondary
GBMs (40%) typically develop in younger patients (<45 years) through malignant
progression from a low-grade astrocytoma (WHO grade II) or anaplastic astrocy-
toma (WHO grade III). The time required for this progression varies considerably,
ranging from less than 1 year to more than 10 years, the mean interval being 4–5
years. These classifications provide the standard for communication between differ-
ent medical institutions in the United States and around the world, and are based
on the premise that each type of tumor results from the abnormal growth from a
specific CNS cell class (Lopes et al., 1993; Louis, 2006; Rosell et al., 2008; Rueger
et al., 2008; Tatter, 2005; Fuller et al., 2002).

Of the estimated 17,000 primary brain tumors diagnosed in the United States
each year, gliomas account for more than 75% of all brain tumors and are the
most common supratentorial tumor in all age groups. These tumors comprise
a heterogeneous group of neoplasms that differ in location within the CNS, in
age and sex distribution, in growth potential, in extent of invasiveness, in mor-
phological features, in tendency for progression, and in response to treatments.
WHO grade IV GBMs are the most frequent and malignant histological brain
tumor cell type (Ohgaki and Kleihues, 2005; Ohgaki, 2009). There is a tendency
toward a higher incidence of gliomas in Caucasians of the more highly developed,
industrialized societies (Ohgaki and Kleihues, 2005; Fisher et al., 2007; Ohgaki,
2009). The epidemiology of GBM as a spontaneously occurring malignant neo-
plasm remains largely unknown. Familial gliomas account for about 5% or less
of all malignant gliomas, and less than 1% of gliomas are associated with known
genetic syndromes such as tuberous sclerosis, neurofibromatosis, Turcot syndrome,
Li–Fraumeni, von Hippel–Lindau, or related neurological syndromes (Fisher et al.,
2007; Farrell and Plotkin, 2007). About 95% of all brain cancers are of idiopathic,
sporadic, or unknown origin (Louis, 2006; Fisher et al., 2007; Ohgaki, 2009).
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Recent concerns regarding the association between GBM and head injury, labile
nitrogenated and nitroso-compounds, exogenous or endogenous genomic alkylat-
ing factors, occupational hazards, and electromagnetic field exposure including cell
phone use have been inconclusive and to date no hard and fast rules apply (Fisher
et al., 2007; Ohgaki, 2009). GBM most often occurs in the subcortical white mat-
ter of the cerebral hemispheres, and in one recent epidemiological study of 987
cases of GBM, the most frequently affected sites were the temporal (31%), pari-
etal (24%), frontal (23%), and occipital (16%) lobes (Ohgaki and Kleihues, 2005;
Ohgaki, 2009). The prognosis of patients diagnosed with GBM remains dismal,
and the median survival time of patients with this most common form of malignant
glioma currently averages less than one year. Some of the newer treatment strategies
and novel pharmacological approaches are further described in the sections below.

3 Brain Tumors—Subpopulations of Brain Tumor Stem Cells

An evolving concept in the neuro-oncological mechanism driving glioma and GBM
is that brain tumor stem cells, which represent a relatively minor population of the
entire tumor mass, constitute the essential “functional core” of the tumor that drives
neoplastic proliferation. As do normal brain stem cells (NBSCs), BTSCs exhibit two
defining properties including the capability for long-term self-renewal, and pluripo-
tency, that is, the capability to give rise to multiple types of differentiated progeny.
In normal brain stem cells the balanced coordination of these two defining proper-
ties is essential for brain development and functional homeostasis, yet these same
two parameters are fundamentally altered in brain tumor development (Gurdon and
Melton, 2008; Yadirgi and Marino, 2009). In brain cancers, variable populations
of BTSCs have been detected in glioblastoma, medulloblastoma, and ependymoma
(Singh et al., 2003, 2004; Xie et al., 2008). In the framework of this brain can-
cer stem cell hypothesis, genes important for normal neural stem cell homeostatic
function appear also to be essential to support their pathological development into
BTSCs. This concept of nuclear reprogramming, describing a switch in gene expres-
sion from one kind of cell to that of another unrelated cell type, may be central to
oncogenesis (Fig. 2; Gurdon and Melton, 2008). BTSCs appear to incompletely dif-
ferentiate in vivo, and their neoplastic potential depends on the balance between
their replicative index and the degree of terminal differentiation that these minority
brain cell populations achieve.

A specific oncogenic family of genes may be involved in triggering BTSC
development, proliferation, and pathogenic functions, including polytopic sur-
face sensor proteins such as the neural precursor cell surface marker prominin-1
(CD133), beta-amyloid precursor protein (βAPP), several neural-enriched pentraxin
species, vascular endothelial growth factor (VEGF), caspase-3 and other potentially
oncogenic genes associated with growth rate, cell cycle regulation, angiogenesis,
apoptosis and/or necrosis, and deregulated mitotic proliferation (Singh et al., 2004;
Xie et al., 2008; Bauer et al., 2008; Culicchia et al., 2008). Uncovering the molec-
ular mechanism of how these individual genes are activated, if their expression is
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in any way coordinated, the individual or coordinated contribution of BTSCs to
tumor cell proliferation, and how BTSC-specific proteins interact with each other
and with chemoactive, antineoplastic agents should be of use not only in expanding
our understanding of how brain cancers develop, but also in the design of future
neurotherapeutic approaches and multimodal treatment strategies.

4 Gene Expression in the Human Brain

Mammalian brain cells have an intrinsically higher index of genetic output and
complexity compared to gene transcription profiles in other cells and tissue cell
systems (Lukiw et al., 2000; Sutcliffe, 2001; Colangelo et al., 2002; Mattick
and Makunin, 2005). Furthermore, complex biological behaviors and functional
neurochemical mechanisms that accompany aging and neuropathology, including
neuro-oncological change, are probably not controlled by single genes but rather
by groups of functionally related genes sometimes referred to as gene families. The
use of DNA array technologies is currently capable of interrogating 33,000 genes
on a single DNA array, or the levels of all expressed genes in a single brain biopsy
sample (Affymetrix Corporation, Santa Clara, CA; Lukiw, 2004; Lukiw et al., 2005;
Macdonald et al., 2007). Although some pathogenically related upregulated onco-
genic genes thus far identified may share common overlapping functions such as
stress response and adaptive processes that support several related aspects of brain
inflammation, apoptosis and/or angiogenesis, glioma and GBM may represent some
of the most heterogeneous gene expression patterns of any neurological disease
known (Kavsan et al., 2006; Idbaih et al., 2007; Juric et al., 2007; Culicchia et al.,
2008).

5 Gene Expression in Brain Cancers

Molecular–genetic and population-based studies have identified several gene muta-
tions that associate with brain tumor development (Tatter, 2005; Nicholas et al.,
2006; Van den Bent and Kros, 2007; Juric et al., 2007; Kavsan et al., 2007;
Johansson Swartling, 2008). These may be linked to an ordered accumulation of
multiple genetic mutations on multiple chromosomes and sequential, temporally
mediated pathogenic interactions. For example, in about one third of all cases, the
transition from healthy astroglial cells to astrocytoma has been associated with p53
gene mutations at chromosome 17p, and mutations in p53, a tumor suppressor gene,
were among the first genetic alterations ever to be identified in astrocytic brain
tumors (Tatter, 2005; Nicholas et al., 2006; Van den Bent and Kros, 2007). Deletion
or alteration of the p53 gene appears to be present in approximately 25–40% of all
GBMs, and p53 immunoreactivity also appears to be associated with tumors that
arise in younger patients. Brain cancers also often exhibit loss of heterozygosity
(LOH), and LOH at chromosome 10q is the most frequent gene alteration for both
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primary and secondary glioblastomas, ranging from 60 to 90% of all cases. This
mutation appears to be specific for GBM, is found rarely in other tumor grades,
and is associated with poor survival. LOH at 10q plus 1 or 2 of the additional gene
mutations appear to be frequent alterations and are most likely major players in
the development of GBM. LOH leads in almost one half of all subsequent cases to
anaplastic astrocytoma associated with the retinoblastoma (Rb) gene at chromosome
13q. Involvement of additional mutations at chromosomes 9p and 19q, followed by
GBM development associated with chromosome 10 mutations and amplification of
the epidermal growth factor receptor gene is further postulated in this highly com-
plex pathway of oncogenic development (see, e.g., Tatter, 2005; Nicholas et al.,
2006; Van den Bent and Kros, 2007; Johansson Swartling, 2008). The involvement
of multiple gene loci and reduced or incomplete penetrance of these gene muta-
tions indicate that the resulting altered developmental or oncogenic pathways induce
tumors possessing a highly variable phenotype and heterogeneous morphology.

Brain cancers are also genetically associated with homeostatic disturbances in the
epidermal growth factor receptor (EGFR), MDM2, platelet-derived growth factor-
alpha (PDGFα) and PTEN genes. The EGFR gene is involved in the control of
cell proliferation and EGFR overexpression and mutant EGFR expression occurs
in approximately 50% of patients with GBM (Nicholas et al., 2006; Voelzke et al.,
2008). In fact multiple genetic mutations in EGFR are apparent, including overex-
pression of the receptor as well as rearrangements that result in truncated isoforms
(Voelzke et al., 2008). However, all the clinically relevant EGFR mutations appear
to generate a similar phenotype resulting in increased EGFR activity. Amplification
or overexpression of MDM2 constitutes an alternative mechanism to escape from
p53-regulated control of cell growth by binding to p53 and blunting its activity.
Overexpression of MDM2 is the second most common gene mutation in GBMs
and is observed in 10–15% of patients. Some studies show that this mutation asso-
ciates with a poor prognosis. The PDGF gene acts as a major mitogen for glial
cells by binding to the PDGF receptor (PDGFR) and amplification or overexpres-
sion of PDGFR is typical (60%) in the pathway leading to secondary glioblastomas.
PTEN (also known as MMAC and TEP1) encodes a tyrosine phosphatase located at
chromosome 10q23.3 that functions as a cellular phosphatase, turning off signaling
pathways, and is consistent with possible tumor-suppression activities. When phos-
phatase activity is lost because of genetic mutation, signaling pathways can become
activated constitutively, resulting in aberrant proliferation. PTEN mutations have
been found in as many as 30% of all glioblastoma cases studied (Koul, 2008; Cheng
et al., 2009).

Current DNA array technologies and statistical and comparative bioinformat-
ics analysis enable a comprehensive examination of the expression of all genes
associated with brain health and disease. Genomewide gene expression patterns
of neoplastic brain cells in their various developmental stages provide a fascinat-
ing reflection of the physiological and pathological status of those pathogenic brain
cells. Robust gene expression analyses have been applied to whole tumor cells and
some recurrent themes, besides such variables as patient age, sex, affected lobe and
disease onset, duration, and other clinical parameters, are emerging for specific
pathology-related genes. Interestingly, the progression from low-grade glioma to
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high-grade GBM may be associated with distinct molecular–genetic changes that
vary according to WHO grade (MacDonald et al., 2007; Juric et al., 2007). Several
excellent reviews of DNA array analysis of glioma and GBM have recently appeared
and the material in them is not reiterated here (Boudreau et al., 2005; Belda-Iniesta
et al., 2006; Kavsan et al., 2005; Tso et al., 2006; Faury et al., 2007; Idbaih et al.,
2007; Juric et al., 2007; MacDonald et al., 2007; Johansson Swartling, 2008). Rather
we focus on some current observations on increases in the expression of glioma
and GBM of several altered markers involved in brain cell contact, cell cycle, cell
death, and vascular proliferation markers at the level of gene expression in virtually
all brain tumors examined: beta-amyloid precursor protein (βAPP), the apoptosis
effector caspase-3, a cell–cell contact neuronal-enriched protein pentraxin-2, and
the angiogenesis promoting vascular endothelial growth factor (VEGF).

5.1 Beta-Amyloid Precursor Protein (βAPP)

Beta amyloid precursor protein (βAPP), a brain-abundant trans-membrane glyco-
protein “sensor” implicated in neuronal–glial intercellular contact and progressive
apoptotic and necrotic brain cell death appears to be part of a pathogenic gene family
that associates with glial cell proliferation in glioma, GBM, and neurodegeneration
(Colangelo et al., 2002; Lukiw, 2004; Fuso et al., 2007; Culicchia et al., 2008).
In fact most of the original studies on the role of βAPP in neurobiology and neu-
rodegeneration were first performed in transformed human glioblastoma cell lines
(Lahiri et al., 1997; Paris et al., 2005; Fuso et al., 2007; Culicchia et al., 2008).
Cancer-affected glial cells are characterized by highly unusual and diverse mor-
phology that often correlates to the grade of the neoplasm and display noncontact
inhibited cells, lack of cell–cell adhesion and connectivity, and a highly varied range
of cellular morphology (Fig. 1) (Hyun Huang et al., 2007; Caltagarone et al., 2007;
Culicchia et al., 2008). Bizarre glial cell morphology in malignant gliomas and
GBM have been correlated with the depletion of cytoskeletal-matrix actin-bundling
proteins and alterations in integrin-mediated communication between the extracellu-
lar matrix and the actin cytoskeleton (Venezia et al., 2007; Caltagarone et al., 2007;
Young-Pearse et al., 2007). Although the abundant cytoskeletal protein β-actin itself
is not upregulated, β-actin-associated cytoskeletal proteins and integrins that further
drive glial cell division and proliferation processes during the cell cycle have been
implicated in brain cancer development. Interestingly βAPP structural orientation
within the membrane, βAPP trafficking, and intracellular signaling functions are
associated with β-actin-associated proteins and β-actin-mediated cellular shape. It
is difficult to rationalize whether βAPP upregulation in glioma and GBM is either
a consequence of, or contributory factor to altered microfilament of microtubule
cytoarchitecture, or increased cellular proliferation, or both (Venezia et al., 2007;
Caltagarone et al., 2007; Young-Pearse et al., 2007; Culicchia et al., 2008).

Although βAPP is known to be variably upregulated in chronic neurodegenera-
tive disease, depending on the stage of the disease, the observation of upregulated
proinflammatory and amyloidogenic neural degenerative markers in glioma and
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GBM is a relatively recent one (Lukiw, 2004; Lukiw et al., 2005; Fuso et al.,
2007; Sin et al., 2008; Culicchia et al., 2008). Excessive βAPP-mediated signaling is
thought to be responsible, in part, for driving neural inflammation, glial cell growth
and expansion, and brain cell degeneration events such as apoptosis (Melhorn et al.,
2000; Radde et al., 2007; Venezia et al., 2007; Herber et al., 2007). Ischemic brain
damage is also known to induce inflammatory cytokine and βAPP over-expression
that further induce widespread brain cell death via apoptosis or necrosis (Pluta,
2002; Bates et al., 2002). Chronic gliosis is, in addition, associated with altered
processing of βAPP in vivo, and thus may trigger pathological changes associated
with aberrant interneural communication between brain cells, thus contributing to
progressive alterations in glial cell morphology (Pluta, 2002; Bates et al., 2002;
Young-Pearse et al., 2007).

Increased upregulation of βAPP expression in glioma and GBM further suggests
that unscheduled proliferative events of brain cells are accompanied by the signifi-
cant elevation of integral transmembrane receptors that are pathogenic markers for
neurodegeneration. βAPP appears to be part of a poorly understood cell-contact
signaling pathway whose disruption induces cell-cycle signaling, mitotic abnormal-
ities, and glial cell expansion (Paris et al., 2005; Venezia et al., 2007; Young-Pearse
et al., 2007; Fuso et al., 2007; Lukiw et al., 2008). Increased βAPP expression has
long been associated with gliosis, the localized expansion of astrocyte populations,
and the production of dense fibrous networks of neuroglia in the area of a pathogenic
lesion. Similar gliosis-related increases in the expression of βAPP in glioma and
GBM and in the neurodegenerating brain tissues support some underlying com-
monality in disorganized interneural signaling, aberrant cytoarchitecture and neural
cell shape characteristic of both neurological conditions. Interestingly, Alzheimer’s
disease and GBM have similar age-specific incidence rates and accumulation of
senile plaque deposits consisting of amyloid beta (Aβ) peptides derived from the
secretase cleavage of βAPP holoprotein. About one third of all GBM cases exhibit
age-related plaque scores indicative or suggestive of AD; and progressive neurode-
generative pathology is present in about half of all cases of GBM (Nelson, 2002;
Lukiw et al., 2008).

5.2 Caspase-3

Whether brain cell death in the malignant neoplasms, triggered by hypoxia, lack
of nutritive support or other pathogenic factors, is driven by apoptosis or necrosis
is not well understood. In fact both neural-destructive processes may be operating
simultaneously. Apoptosis and necrosis appear to lie at either end of a spectrum
of functional brain cell dysfunction and progressive cell loss spanning from pro-
grammed cell death (apoptosis; internucleosomal DNA fragmentation) at one end
to induced and premature cell death (necrosis; randomized DNA fragmentation) of
brain cells at the other. Cysteine–aspartic acid protease-3 (caspase-3), a key mem-
ber of a family of 11 human cysteine proteases, plays key essential effector roles in
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both apoptosis and necrosis and in neuroinflammatory aspects of neurodegeneration
and brain tumor growth. There is evidence for both caspase-3 upregulation (Ray
et al., 2002; Lukiw et al., 2009) and caspase-3 downregulation in human brain
tumors (Stegh et al., 2008). Nonhomeostatic levels of caspase-3 indicate alterations
in the cellular balance of both pro-apoptotic and anti-apoptotic signals (Takuma
et al., 2004; Lefranc et al., 2007). The increased expression of the pro-apoptotic
Bax protein, upregulation of calpain and caspase-3, and occurrence of internucleo-
somal DNA fragmentation indicate that one mechanism of cell death in malignant
brain tumors is apoptosis (Ray et al., 2002; Lukiw et al., 2009). These results may
be explained by the fact that the apoptotic process only approaches the stage of
caspase-3 activation, followed by a subsequent variable activation of the apoptotic
cascade and “programmed” cell death mechanism, resulting in apoptotic blockage
and an accumulation of brain cell mass.

5.3 Pentraxin-2 (NP2; NPTX2)

Pentraxins are a family of pentameric calcium-dependent ligand-binding proteins
bearing a highly distinctive structure similar to that of the ring-shaped lectins
(Emsley et al., 1994). Pentraxins represent a novel neuronal uptake pathway that
functions during intercellular and extracellular signaling, synapse formation and
clustering, remodeling, and cell–cell contact (Gerrow and El-Husseini, 2007).
“Short” pentraxins include the inflammation-related serum amyloid P component
(SAP) and C reactive protein (CRP) and the “long” pentraxins include PTX3
(a cytokine-modulated molecule) and several prominent brain-enriched pentrax-
ins such as neuronal pentraxin-2 (NP2; NPTX2). Interestingly, NPTX2, normally
expressed in the CNS, is a member of a family of proteins related to CRP and
other acute-phase inflammatory mediators, and has been found to be correlated
with glioma and GBM edema, the swelling of soft tissues as the result of loss
of brain water balance and excessive water accumulation. Increased NPTX2 are
in turn strongly associated with poorer survival rates in tumors with the high-
est levels of edema (Hsu and Perin, 1995; Goodman et al., 1996). Several gene
expression studies have shown NPTX2 to be consistently and significantly upreg-
ulated in glioma and GBM (Carlson et al., 2007; Pope et al., 2008; unpublished
observations). It is important to note that the NPTX2 upregulation associated with
angiogenic- and edema-related signaling is often coregulated with the simultaneous
upregulation of vascular endothelial growth factor (VEGF) and the proliferation of
neovascularization.

5.4 Vascular Endothelial Growth Factor (VEGF)

Angiogenesis, the proliferation of vascular growth that provides nutritive sup-
port to the expanding tumor cell mass, is one of the hallmarks of all cancers.



810 W.J. Lukiw and F. Culicchia

Vascular endothelial growth factor stands out as a key mediator of tumor-associated
angiogenesis among a complex signaling system involving pro- and antiangiogenic
factors (Chamberlain, 2008; Grothey et al., 2008; Pope et al., 2008). The upregula-
tion of VEGF, originally described as a vascular permeability factor in brain tumors,
has often been proposed to be the major cause of both vasogenic edema in gliomas
and neovascularization (NV) (Bruce et al., 1987; Buie and Valgus, 2008; Norden
et al., 2008). A consistent observation in brain cancer biology is that malignant
gliomas invariably express vast amounts of VEGF, now regarded as an important
pathogenic marker of angiogenesis and NV, essential for the proliferation and the
survival at any cost for malignant glioma cells. NV is orchestrated by the coordinate
induction of a family of growth-factor genes and most prominently by VEGF which
also possesses endothelial cell-specific mitogenic effects that closely correlate with
NV during embryonic development and normal systemic physiology, fetal anemia,
in retinal NV, in models of hypoxic ischemia, and in malignant tumors. These com-
bined observations are suggestive of VEGF’s key role in vascular proliferation in
growth, health, and disease. Hypoxia is thought to be one crucial physiological
stimulus for VEGF upregulation that precedes NV, and low cellular oxygen tension
rapidly induces a number of transient genetic signals through which this is accom-
plished (Larrivee and Karsan, 2000; Hasan and Jayson, 2001; Giles, 2001; L. Lukiw
et al., 2003; Norden et al., 2008). The multiple roles of VEGF in brain tumor
development and proliferation and anti-VEGF-based therapies have been recently
examined in the last year in several excellent reviews and interested readers are
encouraged to refer to these thoughtful works and the published papers referenced
within (Brandsma et al., 2008; Chamberlain, 2008; Grothey and Ellis, 2008; Pope
et al., 2008; Reardon et al., 2008; Wong and Brem, 2008).

6 Specific Alterations in the Expression
of Brain-Enriched Genes

Neurological disorders including glioblastoma involve a highly complex patho-
genesis with multiple etiological factors, and this is reflected in the expression of
brain genes in this disease. Several glioma and GBM tumor cell lines have been
immortalized and “standardized brain tumor cell cultures” are available to oncol-
ogy researchers through government-funded sources such as the American Type
Tissue Collection (ATCC, Bethesda MD). Commonly used human brain cell cul-
tures include glioma cell line HTB-138 (Hs683) and glioblastoma tumor cell lines
CRL-2020 (DBTRG-05MG), CRL-1690 (T98G), CRL-2365 (M059K), and CRL-
2366 (M059J). The majority of these standardized neoplastic, immortalized cell
lines develop as a mixture of floating and adherent cells growing as heterogeneous
clusters of neuroblastic cells with multiple, short, fine cell processes (neurites) that
often aggregate, forming clumps, detach from solid surface, and float within the cell
culture medium (Fig. 1). Total DNA, RNA, and protein can be effectively and effi-
ciently isolated from these archived cell lines and are subsequently used for gene
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expression analysis and downstream molecular–genetic investigations. Recent stud-
ies in these cell lines have indicated increases in the integral membrane β-amyloid
precursor protein (βAPP) as a proinflammatory, neurodegenerative, and proliferative
pathogenic marker (Culicchia et al., 2008). Indeed, from the perspective of dys-
regulated pathogenic gene expression, glioma and glioblastoma multiforme display
significant upregulation of disease markers such as βAPP and caspase-3 with fea-
tures of rapid-onset, progressive, glial cell proliferating, degenerative brain disease.
The known disease-related functions of these inflammatory and neurodegenera-
tive markers may further contribute to the pathogenic phenotype and unscheduled
misregulated propagation of glial cells in the brain. The important point is that
brain tumors consist of a spectrum of tumors of varying differentiation, malignancy
grades, and gene expression profiles. Despite the fact that all tumors have an initially
invasive phenotype, early genetic events appear to differ between astrocytic and
oligodendroglial tumors, and this may form, in part, the molecular genetic basis for
variation in brain cancer cell composition that complicates more effective therapies.
Knowledge of malignant glioma genetics has already affected clinical management
of these tumors, and researchers and clinicians can only hope that further knowl-
edge of the evolution of the molecular pathology of malignant gliomas will result in
novel therapies that employ multiple, multimodal treatment strategies.

7 Micro RNAs (miRNAs): Specific miRNA and mRNA
Alterations in Human Brain Cancer

Micro RNAs (miRNAs) are small RNA polymerase II and III transcribed, noncoding
RNA molecules that play important posttranscriptional regulatory roles by recogniz-
ing and binding to the 3′ untranslated region (3′UTR) of mature messenger RNAs
(mRNAs). By doing so, miRNAs repress translation and expression of their partic-
ular mRNA targets (Mattick and Makunin, 2005; Cao et al., 2006; Lukiw, 2007;
Lukiw and Pogue, 2007; Cho, 2007; Amaral et al., 2008; Dogini et al., 2008; Zeng
2009). Transcription of protein-encoding genes and miRNAs by RNA polymerase
II and III and their interrelated functions in the modulation of gene expression sug-
gests the possibility of some coordinated mode of interaction, possibly through
miRNA interaction with specific transcription factors (Mattick and Makunin, 2005;
Hobert, 2008; Lukiw et al., 2008; Makeyev and Maniatis, 2008; Williams et al.,
2008; Amaral et al., 2008). Interestingly, small signaling molecules such as miRNA
may transfer epigenetic information not only within cells but also between cells and
organ systems as part of a dynamic RNA-mediated interplay between the environ-
ment and the genome (Zhao et al., 2006; Hill et al., 2009; Mattick et al., 2009). Such
novel genetic mechanisms may explain, in part, cancer invasiveness and metasta-
sis throughout cells, organs, and tissue systems (Louis, 2006; Hyun Hwang et al.,
2008).

To date about 911 miRNAs in the human brain have been identified (Lukiw,
2007; Lukiw and Pogue, 2007). The miRNA-mediated regulation of messenger
RNA (mRNA) complexity in the human central nervous system is evolving as a
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critical and determining factor in regulating CNS-specific gene expression during
development, plasticity, aging, and disease (Hobert, 2008; Makeyev and Maniatis,
2008; Williams et al., 2008). Several excellent recent reviews on miRNA specia-
tion in the CNS and specific examples in brain tumors have recently appeared in
the literature and the authors would encourage interested researchers, clinicians,
and medical and graduate students to read them over (Mattick and Makunin, 2005;
Ciafrè et al., 2005; Zhang et al., 2007; Mourelatos, 2008; Nicoloso and Calin, 2008;
Papagiannakopoulos and Kosik, 2008; Silber et al., 2008; Hobert, 2008; Makeyev
and Maniatis, 2008; Williams et al., 2008; Zeng, 2009, Lukiw et al., 2009).

Current studies indicate that specific miRNAs may function at multiple hierar-
chical levels in gene regulatory networks, from targeting hundreds of effector genes
to controlling the levels of global regulators of transcription and alternative pre-
mRNA splicing (Cao et al., 2006; Makeyev and Maniatis, 2008; Silber et al., 2008).
An expanding number of miRNAs have been reported to be altered in abundance
in glioma and GBM, and largely because of their disease-related expression and
selection of specific mRNA targets in the brain, these miRNAs are strongly impli-
cated as important regulatory controls in neoplastic onset and evolution. In general,
abrogation of global miRNA-mediated mRNA processing and homeostatic control
is associated with accelerated cellular transformation and tumorigenesis, and some
specific examples are given below (Lukiw, 2004; Pogue and Lukiw, 2004; Lukiw
and Bazan, 2006; Kumar et al., 2007; Lukiw and Bazan, 2008; Lukiw, 2009; Zeng,
2009).

Several decreased or increased miRNA species implicated in miRNA-mediated
brain cell tumor growth, oncogenesis, apoptosis, and survival (sometimes referred
to as oncomirs) are miRNA-124 and miRNA-137 (Ciafrè et al., 2005; Cho, 2007;
Silber et al., 2008; Papagiannakopoulos and Kosik, 2008; unpublished observa-
tions). In one recent study the expression levels of miRNA-124 and miRNA-137
were found to be significantly decreased in anaplastic astrocytoma (WHO grade
III) and GBM (WHO grade IV) relative to nonneoplastic control tissue (Silber
et al., 2008; Papagiannakopoulos and Kosik, 2008). Interestingly, when miRNA-
124 was introduced into nonneuronal mammalian cells a preferential reduction in
the amounts of nonneuronal mRNAs, including those encoding protein required
for cell proliferation or neural stem cell function was observed, and promotion
of a neuronal-like mRNA profile (Conaco et al., 2006; Makeyev et al., 2007).
Conversely, a depletion of miRNA-124 from primary neurons accumulated a
number of nonneuronal mRNA targets, suggesting that miRNA-124 ensures that
progenitor genes are posttranscriptionally inhibited in neurons (Makeyev et al.,
2007; Cao et al., 2007). Such evidence suggests the roles of miRNAs are in con-
trolling cell fate and the proliferating capacity of brain cells. That miRNA-124 and
miRNA-137 induce differentiation of adult neural stem cells, oligodendroglioma-
derived stem cells, and human GBM-derived stem cells and induce cell cycle arrest
in GBM suggests that targeted delivery of these highly soluble and mobile small
RNAs to glioma and GBM cells may provide an efficacious and novel therapeutic
treatment strategy for containing the growth of cancerous brain cells (Silber et al.,
2008; unpublished observations).
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Another miRNA species implicated in cell tumor growth, oncogenesis, apoptosis,
and survival is miRNA-221 (Ciafrè et al., 2005; Gillies and Lorimer, 2007; Medina
et al., 2008; Lukiw et al., 2009). Support for the pathogenic role of miRNA-221
in tumor growth comes from the recent observations that upregulated miRNA-221
targets the cell growth suppressive cyclin-dependent kinase inhibitors p27 and p57,
thus linking a cell-cycle checkpoint at S phase initiation with growth factors that
trigger cell proliferation (Li et al., 1999; le Sage et al., 2007; Mellai et al., 2008;
Medina et al., 2008; Lukiw et al., 2009). Other recent work reported a selective
upregulation of miRNA-221 and downregulation of a miRNA-221 messenger RNA
target encoding the survivin-1 homologue BIRC1, a neuronal inhibitor of apopto-
sis protein and brain cell marker for neural degeneration (Lukiw et al., 2009). In
these later studies the expression of BIRC5 (survivin-1) and caspase-3 was found
to be significantly upregulated, particularly in the more advanced stages of GBM.
It is important to note that paracrine signaling between adjacent brain cells may
contribute to significant positive feedback regulation and the progressive intercellu-
lar proliferation of pathogenic signaling in both degenerating brain cells and brain
tumors (Zhao et al., 2006; Culicchia et al., 2008). Indeed, tumor invasion occurs not
only through dysfunction of the adhesive properties of tumor cells but also in their
pathogenic secretion of small lysosomal proteolytic enzymes such as cathepsin-L
(Levicar et al., 2002, 2003). Use of online accessible miRNA–mRNA database
searches, other miRNA-221-targeted components of apoptotic signaling in glioma
and GBM, and interactions with the Bcl-2 protein family of apoptosis include anti-
apoptotic protein Bcl-2-binding component 3 and other Bcl-2-modifying factors
(Sanger mirBase version 10.1; http://microrna.sanger.ac.uk/cgi-bin), hence miRNA-
221 may further modulate apoptotic signaling via quenching or augmentation of the
expression of a number of alternate antiapoptotic mRNA targets, such as additional
Bcl-2-modifing factors. Again the small size and high solubility of specific brain-
enriched miRNA species suggests that they may perform ancillary intracellular and
extracellular signaling roles involved in the spreading and propagation of tumor cell
growth and associated metastatic events (Lukiw, 2007; Lukiw and Pogue, 2007;
Felicetti et al., 2008; Mattick et al., 2009). More recently, miRNA-125b has been
shown to be upregulated in interleukin-6 (IL-6)-stressed normal human astrocytes
(NHA), a treatment known to induce astrogliosis, and in vitro, anti-miRNA-125b
added exogenously to IL-6-stressed NHA cultures attenuated both glial cell prolif-
eration and increased the expression of the cyclin-dependent kinase inhibitor 2A
(CDKN2A), a miRNA-125b target, and negative regulator of cell growth (Pogue
et al., 2010).

8 Therapeutic Strategies for the Clinical Management
of Glioma and GBM

Current treatment strategies for GBM are multimodal and typically involve sur-
gical resection followed by radiation therapy and chemotherapy. Upon tumor
recurrence repeat resection or stereotactic radiosurgery followed by additional
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radiotherapy and chemotherapy may improve outcome in certain cases; several
new strategies have been developed to optimize designer therapies for GBM
(Sathornsumetee and Rich, 2008; Sathornsumetee and Reardon, 2009; Tentori and
Graziani, 2009). The most commonly used chemotherapeutic drug for GBM, temo-
zolomide (TMZ), typically administered both during and after radiotherapy, is a
potent DNA methylating agent that generates a wide spectrum of random methyl
adducts in the genome. The antitumor activity of TMZ and related alkylating
agents has been mainly attributed to the production of O(6)-methylguanine as
a potent cytotoxic and antimitotic (Tentori and Graziani, 2009). TMZ also pro-
motes autophagic cell death, a caspase-independent process characterized by the
accumulation of cytoplasmic autophagic vacuoles and accompanied by extensive
degradation of polyribosomes, the endoplasmic reticulum, and the Golgi apparatus
that precedes the destruction of the nucleus (Lefranc et al., 2007). As brain neo-
plasms are generally associated with altered βAPP, pentraxin, caspase-3, VEGF
expression, and the kinases that modify these effector molecules, co-ordinated
inhibition of these oncogenic markers might be an effective therapeutic strat-
egy. These kinds of treatment approaches have recently been reviewed (Anderson
et al., 2008; Lakka and Rao, 2008; Hide et al., 2008; Norden et al., 2008). Anti-
inflammatory, anti-βAPP, and antiamyloid pharmacologic strategies directed at
neurodegenerative processes may also have some therapeutic value in the treat-
ment of glioma- or glioblastoma-affected brain cells (Nelson, 2002; Lukiw and
Bazan, 2006; Lukiw and Bazan, 2008; Tschape and Hartmann, 2008; Culicchia
et al., 2008).

Unfortunately, chemotherapeutic drug resistance occurs relatively often and
effective drug delivery to cancer targets remains an accessory concern affecting the
clinical response in brain cancer patients. Because malignant gliomas are highly
vascularized tumors that produce VEGF, a key mediator of angiogenesis, and given
the fact that angiogenesis is essential for the proliferation and survival of malignant
glioma cells, angiogenesis antagonists such as angiostatin, endostatin, and vaso-
statin may provide yet another specifically targeted, therapeutic strategy. Recent
studies have investigated the use of bevacizumab—a humanized monoclonal anti-
body against VEGF—for patients with recurrent malignant glioma, however, the
results have been inconsistent, and larger, randomized clinical trials are needed
to determine the magnitude of the benefit (Buie and Valgus, 2008; Norden et al.,
2008). Moreover, angiogenesis antagonists have numerous unwanted side effects
in interfering with normal wound healing, bleeding, and blood clotting, and are
associated with heart, immune, and reproductive dysfunction (Norden et al., 2008).
Interestingly, gamma- and beta-secretases that act on βAPP processing appear to
play an essential role during angiogenesis, and inhibitors of these secretases may
constitute a novel evolving class of antiangiogenic and antitumoral compounds
(Paris et al., 2005).

Just as for angiogenesis antagonists, toxic metal-based anticancer drugs
(MBADs), including cisplatin, carboplatin, and oxaliplatin, and other arsenic-,
cadmium-, copper-, gallium-, lanthanum-, platinum-, ruthenium-, or titanium-
containing antitumor drug complexes have adverse effects on physiological systems
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outside of the CNS (Zhang and Lippard, 2003). In fact, despite the synthesis of
thousands of compounds over the last decade only very few novel neurotoxic
MBADs have successfully reached the clinical development stage in brain cancer
chemotherapy (Zhang and Lippard, 2003; Heffeter et al., 2008).

Anti-miRNA therapeutic strategies remain attractive in that single miRNAs
may interact with the expression of a relatively large number of dysregulated
pathogenic genes in neurological disease processes (Corsten et al., 2007; Lukiw
et al., 2009). For example miRNA-21 levels have been reported to be elevated in
glioma and their knock-down is associated with increased apoptotic activity. The use
of anti-miRNA-21 oligonucleotides in vitro shows that suppression of miRNA-21
leads to a synergistic increase in caspase-3 activity and decreased cell viability
(Corsten et al., 2007). Similar effects on the use of miRNA-based therapies on the
stem-cell-like characteristics of glioma have been suggested to have considerable
therapeutic potential (Godlewski et al., 2008; Hide et al., 2008). The development of
advanced combinatorial therapies involving surgery, radiotherapy, antiangiogenics,
MBADs, miRNA antisense strategies, and chemotherapeutics remain as attractive
and evolving strategies in the future clinical management of glioma and GBM.

9 Summary

Glioma and glioblastoma multiforme constitute highly complex, progressive, and
insidious neoplastic disorders of the human CNS. Those treated with optimal
therapy, including surgical resection, radiation therapy, and chemotherapy, have a
median survival of approximately 12 months, with fewer than 25% of patients sur-
viving up to two years and fewer than 10% of patients surviving up to five years.
Whether the prognosis of patients with secondary glioblastoma is better than, or
similar to, those patients with primary glioblastoma remains controversial. Glioma
and GBM each exhibit significantly heterogeneous gene expression profiles, and
spontaneous, dysregulated, and highly proliferative invasive cell growth. Although
individual genetic signaling patterns are variable, increases in the expression of
glioma and GBM markers, such as beta-amyloid precursor protein, caspase-3,
pentraxin-2, and vascular endothelial growth factor, indicate upregulated expres-
sion of cell–cell contact, cell cycle, vascular proliferation, and apoptotic–necrotic
markers at the level of gene expression in virtually all brain tumors examined. The
heterogeneous genotypic and phenotypic nature of human brain neoplasms further
confounds their molecular and genetic signature as well as pharmacological and
therapeutic treatment strategies.

Surgical resection followed by aggressive radiotherapy and chemotherapy using
genomic methylating agents, such as temozolomide (TMZ), and tailored to each
individual case, currently represents the best treatment options available. Surgical
and multimodal radiotherapeutic approaches combined with chemotherapeutic
agents, each with independent and sometimes synergistic mechanisms of action, are
currently providing the greatest clinical benefit with improved quality of life in many
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cases. Recent discoveries on the regulation of miRNA-124, miRNA-125b, miRNA-
137 and miRNA-221 expression are uncovering another layer of genetic control
in neoplastic brain cells, and should provide yet another therapeutic approach, and
treatment opportunity, for advanced clinical intervention. The design and applica-
tion of novel micro-RNA-based therapeutic strategies are highly attractive because
a single miRNA may be able to quench the expression of entire families of interre-
lated neoplastic or oncogenic genes. Several of these novel approaches have been
proven to be effective in vitro, however, miRNA and drug delivery systems in
vivo remain an imposing biophysical, medical, and clinical research challenge. In
the future, combinatorial surgical, radiotherapeutic, and pharmacological strategies,
employing several genomic structure and function modifiers simultaneously, appear
to hold the most promise for advancing the clinical management of brain cancer and
improvement in the prognosis for both the glioma and GBM patient.
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Brain imaging
computed tomography (CT), 145–147
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CD31, see Platelet endothelial cell adhesion

molecule-1 (PECAM-1)
Central nervous system (CNS), 247, 249, 303,

306, 366, 423, 436, 456, 542, 544,
549, 552, 556, 571

action of oleamide, 476
adenosine receptors in, 268
dys- or demyelination in, 561–565
ligand-gated ion channels, 423
multiple sclerosis (MS) in, 540
myelination in, 541, 566
neuronal reuptake of serotonin in, 387
and oxytocin binding sites, 391
viability of neurons in, 572

CERAD Word List Learning Task, 672
Ceramide galactosyltransferase (CGT), 557
Cerebellum, 282
Cerebral amyloid angiopathy (CAA), 54
Cerebral autosomal dominant arteriopathy

with subcortical infarcts and
leukoencephalopathy (CADASIL),
699

Cerebral blood volume (CBV), 271–276
Cerebrospinal fluid (CSF), 126
CGRP, see Calcitonin gene-related peptide

(CGRP)
Charcot-Marie Tooth Diseases (CMT),

546–547, 558
Chicago Health and Aging Project, 620
Chloride channel 1 (ClC-1), 349
Cholesterol, 565
Choline, 425

cholinergic transmission, 618
Chronic inflammation and AD, 619

Chronic obstructive pulmonary disease
(COPD), 770

Chronic pain syndromes, 421
Classical basal ganglia circuit, 250–251
Claudin-11, 553
Cleidocranial dysplasia (CCD), 346–347
Clinical dementia rating scale (CDR), 272
Clinical phenotypes

genetic variation, 8–9
multiple sclerosis, 12
psychoses, 9
Tay–Sachs disease, 6–7

C-Nociceptors, 421
Cobalamin (vitamin B12), 112–114
Cognitive abnormalities, 245
Cognitive decline in elderly, 270

mild cognitive impairment (MCI), 272
normal aging, 270–271

Cognitive ERP-S in PD, 259
Cognitive event-related potentials, 259
Cognitive impairment, 245

and APP processing, 276
amyloid hypothesis, 276–277
amyloidogenic mouse models, 277
Aβ accumulation, 277–278
interaction in tau-Aβ, 278–279

Computed tomography (CT) of brain edema
hypoattenuated areas, 145
noncontrast-enhanced CT (NECT), 146
perfusion (PCT)

contrast-enhanced, 146–147
lesion size calculation, 147
superiority over NECT, 147
xenon, 146

Congenital central hypoventilation syndrome
(CCHS), 347

Congenital myasthenic syndromes, 407
Connexins (Cx) 32 and 47, 553–554
Consortium to Establish Registry for

Alzheimer’s Disease (CERAD)
Braak staging scores, 673

COPD, see Chronic obstructive pulmonary
disease (COPD)

Corticobasalganglionic degeneration
clinical features, 659–660
neuropathology, 660

Corticotropin-releasing factor (CRF), 445–446
C Reactive protein (CRP), 811
Cuprizone intoxication, 548
Cyclic adenosine monophosphate (cAMP), 423
2′3′-Cyclic nucleotide-3′-phosphodiesterase

(CNP), 556
Cyclooxygenase (COX), 363
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Cysteine–aspartic acid protease-3 (caspase-3)
apoptosis and necrosis, 810–811
nonhomeostatic levels, 811

Cytochrome c release, 28
Cytokine response modifier A (crmA), 31
Cytokines

classification, 466
anti-inflammatory, 467
pronociceptive, 467
type 1 and type 2, 467

IL-2
effect in CNS and PNS, 467

Cytotoxic brain edema
cation channels involved

astrocyte swelling, 137
cerebral tissue acidosis, 137
Na+/K+ ATPase, 137
pharmacological blockade, ion, 137
SUR1-regulated NCCa-ATP, 137–138

definition, 133
forces driving water flow, 133
swelling, glial processes, 133

D
DBS, see Deep brain stimulation (DBS)
Death-inducing signalling complex (DISC)

caspase-8, 21
FADD, 21
Fas, 21

Death receptor pathway, 617
Deep brain stimulation (DBS), 246, 265

as treatment for PD, 246
Delirium, 10, 115
Dementia

DSM-IV criteria, 266
memory, 256
in PD, 245

Demyelination, 13, 542, 544, 547
biochemical factors, 567
in CNS, 545–546, 562

experimental models, 548–549
on denuded axons, 567
factors involved in, 565
growth factors and transcription factors for,

568–572
ion channels and, 547
oligodendrocyte precursors in, 566–567
peroxisomal diseases and, 565
related to abnormality of, 546
specific SGLs of PNS and, 564
sphingoglycolipids in, 552
VLCFA accumulation lead to, 564

Dentatorubral pallidoluysian atrophy
(DRPLA), 335

DIABLO, see Second mitochondria-derived
activator of caspases (Smac)

Diacylglycerol (DAG), 423
Diagnostic and Statistical Manual of the

American Psychiatric Association
(DSM IV-TR), 9, 699

Diffusion tensor imaging (DTI), 150
Diffusion-weighted imaging (DWI), 148–149
3,4-Dihydroxyphenylacetic acid

(DOPAC), 388
Dihydroxyphenylalanine, 245
Dirty drugs, 246
DISC, see Death-inducing signalling complex

(DISC)
Disease concept, 3
Diseases associated with expression of

nAChRs
autism

cortex and thalamus in, 767
nAChRs, downregulation, 767

schizophrenia
Chrna7, 766–767
evidence, 765–766
GABAergic system in, 767

Disrupted proteasome function, 339–340
Dissecting death pathways in vivo, 38
Donepezil treatment for AD, 618
DOPA decarboxylase (DDC), 388
Dopamine (DA), 251, 388, 427–428

circuitry affected in PD, 247
D1 and D2 receptors, in cognitive

dysfunction, 250
depleted awake rat model, 255
D1 receptor signaling, 267
in PD, central role of, 249
in visual processing, retina, 260–262

Dopamine transporter (DAT), 171
DAT1 and COMT, dopamine metabolism,

256
gene, 256

Down syndrome, 215, 771–772
oxidative damage in, 613

Drosophila splicing trans-factor Elav, 413
Dynorphin A1–17, 451
Dystrophic neuritis, 661

E
Early AD (EAD), 672
Early-onset familial AD (EOFAD), 701
Effector caspases

activation mechanisms, 20
EGFR, see Epidermal growth factor receptor

(EGFR)
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Eicosanoids, 477–478
Encephalomyelitis (EAE), 548
Endocannabinoid system, 468
Endogenous antinociceptive mechanisms, 420
Endogenous cannabinoids, 468
Endogenous opioid peptides, 420
Endomorphins (EMs), 452–453
Endoplasmic reticulum (ER) stress

diseases with misfolded proteins
Alzheimer’s disease neurofibrillary

tangles, 32
amyloid plaques, 32
Creutzfeldt–Jacob disease, 32
Fronto-temporal dementia Pick’s

bodies, 32
Hirano bodies, 32
Parkinson’s disease Lewy bodies, 32

unfolded protein response, 32
Endoplasmic-reticulum-specific pathway, 617
β-Endorphin, 444, 450–451
Endothelins (ET), 465
Epidermal growth factor (EGF), 306
Epidermal growth factor receptor (EGFR), 808
Epilepsy

animal models for, 201
drugs for, 199
glutamate and glutamine metabolism, 201
synapses representation, 200

Epinephrine (E), 426–427
Epithelial cadherin (E-cadherin), 559
ESE, see Exonic splicing enhancer (ESE)
ESS, see Exonic splicing silencer (ESS)
Estrogen, 480–481
Ethidium bromide, 549
Eukaryotic initiation factor 2B (elF2B), 569
Excitatory amino acid transporter (EAAT), 676
Excitotoxicity, 343–344
Exonic splicing enhancer (ESE), 404, 406
Exonic splicing silencer (ESS), 403, 406–407
Experimental autoimmune encephalomyelitis

(EAE), 551
Extracellular norepinephrine (NE), 255
Extracellular signal-regulated kinases

(ERKs), 369
Extrinsic/receptor-mediated pathway

FAS pathway, 25–26
TNF pathway, 23–25
TRAIL pathway, 26–28

F
FAAH inhibitor, 472
Fas-Associated Death Domain (FADD), 21
Fas–Fas ligand (FasL) interaction, 25

Fatty acid amide hydrolase (FAAH), 471
Flavonoids and terpenoids treatment

for AD, 620
Fluvoxamine, 387
FMR-1 protein, 325
Folic acid

deficiency
myelin lipids, 116
spina bifida, 115–116

Fontostriatal circuits in PD, 252–253
Fragile-X syndrome, 215, 325–326

autistic-like behaviors, 228
mental retardation syndrome, 412

Frataxin, 327–328
Free and Cued Selective Reminding Test, 672
Friedreich ataxia (FRDA), 327–329

molecular, and biochemical basis, 328
Frontal cortex, 393, 421
Frontal variant FTD (fvFTD), 650
Frontotemporal dementia (FTD)

clinical features
behavioural disorders, 650

frontal variant FTD (fvFTD), 650
initial and core clinical feature, 649
neurochemistry and neurobiology, 651
neuropathology, 650
primary progressive aphasia (PPA),

649–650
progressive nonfluent aphasia (PNFA), 650

Frontotemporal dementia with parkinsonism
linked to chromosome 17
(FTDP-17), 411

Full Scale Intelligence Quotient (FSIQ), 214
Fyn kinase, 557

G
GABAergic systems, 390
GAD 65 enzymatic activity, 390
Galactine treatment for AD, 618
Galactosylceramides, 561–562
Galanin (GAL), 458–459
Gamma-aminobutyric acid (GABA), 251, 390,

434–435
GABAA receptor 1 (GABBR1), 390
GABAB receptor 2 (GABBR2), 390

Gangliosides, 478, 564–565
GBM, see Glioblastoma multiforme (GBM)
GCIs, see Glial cytoplasmic inclusions (GCIs)
GDNF, see Glial-derived neurotrophic factor

(GDNF)
Gene polymorphisms, monoamine transporters

DAT
A561V, 178
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variable number tandem repeat
(VNTR), 178–179

NET
hNET promoter region, 178
hNET SNP A459P, 178
single nucleotide polymorphisms

(SNPs), 177
SERT

5-HTTLPR, 179
I427V coding region SNP, 179
VNTR, 179

Genetic rodent models of PD
DJ-1 (PARK7) mutations, 71–72
LRRK2/Dardarin mutations, 72
PD caused by mutations in α-synuclein

gene (PARK1)
amino acids 1–130 expression, 70
α-synuclein, 69–70

PD caused by mutations in Parkin gene
(PARK2)

behavioural deficits, 71
E3 ubiquitin protein, 70–71

PTEN-induced kinase-1 (PINK1)
mutations, 71

Genetic variants of nAChR subunit genes and
brain disease

ADNFLE
carbamazepine, 769
four in CHRNA4 gene, 768
mutations in, 768
smoking/nicotine, therapeutic effect,

768–769
and genetic variants with brain diseases

COPD, 770
reports, 769–770
studies, 770

Ghrelin, 448
Glial cells, 297, 306, 371, 540, 569, 588–589
Glial cytoplasmic inclusions (GCIs), 661
Glial-derived neurotrophic factor (GDNF), 30
Glioblastoma multiforme (GBM), 806

control human neural cells, 803
epidemiology of, 805
tumors, 805

Glioma, 803
Glioma and GBM, clinical management

therapeutic strategies for, 815
anti-miRNA therapeutic strategies, 817
MBADs, 816–817
temozolomide (TMZ), 816
VEGF, 816

Gliomedin, 560
Global deterioration scale (GDS), 272

Glucocorticoids, 481–482
Glutamate, 267, 390, 433
Glutamate and glutamine in brain disorders

glutamate/GABA-glutamine cycle
representation of, 197

glutamate-sensitive AMPA receptors
(AMPARs), 216

homeostasis, 197
Glutamic acid decarboxylase (GAD), 390
Glycine, 435–436
Glycogen synthase kinase 3 (GSK3), 279
G-Proteins, 423

G-protein-coupled receptors (GPCRs), 423
Growth Factors, 568
Guillain–Barré syndrome, 565

H
Hand–foot–genital syndrome (HFGS), 347
Haw River Syndrome, 335
Heat shock protein (HSP) peptide, 368
Hematopoietic stem cell/bone transplantation

(HSCT), 796
Hemiparkinson model, see 6-OHDA model,

PD
Hemopressins, 465–466
Hemorphins, 453–454
HEXA-deficient Tay–Sachs disease

“Ashkenazi Jewish” mutation, 8
“French Canadian” mutation, 8

Hippocratic tradition, 4
Histamine, 430–431
HMGA1a, splicing trans-factor, 411
HMGB1 expression, 367–368
Hodgkin’s lymphoma, 300
Holoprosencephaly (HPE), 347
Homeostasis in brain

glutamate and glutamine
drug targets, 207
epilepsy, 199–201
ischemic conditions, 201–203
neurodegenerative disorders, 203–205
psychiatric disorders, 205–207

HOXA13 gene, 347
HSCT, see Hematopoietic stem cell/bone

transplantation (HSCT)
5-HT3 receptor antagonist, 472
5-HT receptors, 429
5-HT3 receptors, 470
Human brain cancer

miRNA and mRNA alterations in
CNS-specific gene expression, 814
cyclin-dependent kinase inhibitors, 815
GBM, 814
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Human brain cancer (cont.)
protein-encoding genes, transcription,

813
studies, 814
3′ untranslated region (3′UTR), 813

Human brain, gene expression in, 807
Huntington disease-like 2 (HDL2), 350
Huntington’s disease (HD), 332–333

human
diagnosis and symptoms, 79
gene encoding Huntingtintin (HTT)

protein, 79
gene mutation causative pathway, 80
immunocytochemical and

neurochemical analysis, 79–80
motor features, 80

invertebrate animal models
Drosophila and Caenorhabditis

elegans, 82
PolyQ insertions, 82

primate animal models
genetic approaches, 83
lesioning approaches, 83

rodent animal model
categories, 80
cloning vectors, 82
HD48Q and HD89Q, 82
HTT, 81
R6 mouse, 80–81

Hydrogen sulfide, 485–486
5-Hydroxi-Tryptamine, 428–429
Hypomyelination, 545
Hypoxic-ischemic brain injury, 365

I
IAP Antagonists

HtrA2/Omi, 31
Smac/DIABLO, 31

IAP-Binding Motif (IBM)–interacting
groove, 30

ICE-protease-activating factor (Ipaf), 23
Idebenone treatment for AD, 620
IkBa degradation, 364
IkB kinase (IKK), 301, 302, 307

domains, 298
Induce nitric oxide synthase (iNOS) gene

expression, 364
Inflammasome, 23

ASC, 23
caspase-1, 23
Ipaf, 23
Nalp3, 23

Inflammatory caspases, 19

Inhibitor of apoptosis protein (IAP) family, 28
human genes, 29

Inhibitor of apoptosis proteins
cIAP1 (BIRC2), 29
cIAP2 (BIRC3), 29
XIAP (BIRC4), 29

Initiator caspases, 19
activation mechanisms, 20–21

Insulin, 443–444
Integration of mechanisms, 344–346
Interference

with gene expression, 340–341
with mitochondrial function, 341–342

Interferon-gamma inducing factor, (IGIF)
expression, 365

Interleukin (IL)
IL-1, 363
IL-4, 372
IL-6, 364, 370, 373–374
IL-10, 368, 372
IL-13, 368
IL-15, 373
IL-18, 365–366, 373
IL-33, 367–368

Interstimulus intervals (ISIs), 257
Intrinsic death pathway, 26

cytochrome c, 27
procaspase-9, 27

Intronic splicing enhancer (ISE), 403–404, 407
Intronic splicing silencer (ISS), 404, 407
Ion channels, 547
Ischemic conditions

cellular and molecular events, 201
MCAO animal model, 202–203

ISE, see Intronic splicing enhancer (ISE)
ISS, see Intronic splicing silencer (ISS)

J
JAK1/STAT3 pathway, 364
JNK cascades, 369
Junctional adhesion molecule (JAM), 130
junctophilin-3 (JPH3) gene, 350
c-Jun N-terminal kinases (JNKs), 368

K
Kennedy disease, 332
α-Ketoglutarate dehydrogenase, 106
Kynurenic Acid (KYNA), 437–438
Kyotorphin, 455

L
Late stage AD (LAD), 672
Lead Pb toxicity, neuroinflammatory

aspects, 371
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effect on gene expression of POMC1, 375
effects on

cytokines in CNS, 372–374
gene expression of map kinasesa, 374
glial cells, 371–372

exposure enhances CNS expression of, 375
Leu-enkephalin, 451
Leukodystrophies, 540, 545, 547, 567, 569
Levodopa, 245
Lewy bodies (LBs), 65, 246, 248
Lewy neurites (LN), 65
Lipids, 468
α-Lipoic acid treatment for AD, 620
Lipopolysaccharide-induced tumor necrosis

factor (LITAF), 558
Lowe syndrome, see Oculocerebrorenal

syndrome of Lowe (OCRL)
Lymphocytes, 300
Lysosomal storage diseases (LSD)

classified according substrate involved,
789–791

clinical presentation, modes, 788
Tay–Sachs disease, 793

diagnosis
skin/tissues, examination of, 793

mucopolysaccharidoses (MPS), 788
neurological features in patients with, 792
pathophysiological mechanisms

CNS and AMPK, 794
Danon disease, 794–795
globoid cell leucodystrophy, 794
Niemann–Pick type C, 795
Purkinje neuron cell death, 795
putative mechanisms of disease, 795
toll-like receptor, 794

therapeutic approaches, 795
blood–brain barrier (BBB), 796
enzyme enhancement therapy, 797
enzyme replacement therapy, 796
gene therapy, 797
HSCT, 796
imino sugar miglustat, 797
NSC, 796
SRT, 796
and stem cell therapies, 797
UCB cell, 796

M
Machado–Joseph Disease, 334–335
MAG, see Myelin-associated glycoprotein

(MAG)
Magnetic resonance imaging (MRI), brain

edema

description, 148
DTI

ADC values, 150
diffusion properties, 150

DWI
ADC calculation, 149
stroke and systemic hyponatremia, 149
water self-diffusion measurement,

148–149
SWI

description, 148
and DWI, 148
spin density mixture, 148

T2-weighted, 148
Mammalian caspases, 19
MAP, see Microtubule associated protein

(MAP)
MAP Kinases, 368–370

signal transduction pathways, 369
Matrix metalloproteinases (MMPs), 136

blood-brain barrier disruption and, 138
degradation of basal lamina and tight

junction proteins by, 138
tissue plasminogen activator and, 138

MBADs, see Metal-based anticancer drugs
(MBADs)

MBP, see Myelin basic proteins (MBP)
Medium spiny neurons (MSNs), 267
Melanocortin system (MC), 444–445
α-Melanocyte stimulating hormone (aMSH),

364, 444
Melanoma-associated IAP, 29
Melatonin (MT), 431–432
Memantine NMDA antagonist, 618
Mental-disorder-associated GAP (MEGAP)

MEGAP genes, 231
MEGAP/WRP/srGAP3’s interaction,

231–232
3p-syndrome MR, 231
as ROBO interacting protein (srGAP3),

231
as WAVE-associated protein (WRP), 231

Mental illness, research on, 11–12
Mental retardation (MR)

abberations in spine structure and synaptic
function

fragile-X syndrome, 215
long-term depression (LTD), 216
long-term potentiation (LTP), 216

defined, 214
FSIQ, 214

mEPSCs, see Miniature excitatory postsynaptic
currents (mEPSCs)
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Metachromatic leukodystrophy (MLD), 9, 563
Metal-based anticancer drugs (MBADs),

816–817
Metallothioneins, 676

redox potential, 677
Zn binding affinity, 677
Zn-dependent manner, 677

Metal’s toxicity, neuroinflammatory aspects,
374, 376

Methionine-enkephalin, 451
Methyl-phenyl tetrahydropyridine (MPTP),

249
Metyl-CpG-binding protein 2, 413
Microglia cells, 370–371
Microtubule associated protein (MAP), 636

See also Tau protein
Mild cognitive impairment (MCI)

memory test impairment, 672
normal aging and dementia, 672
pathological examination, 673

Miniature excitatory postsynaptic currents
(mEPSCs), 219

Mini-Mental State Examination (MMSE), 699
MLCK, see Myosin light chain kinase (MLCK)
“Molecular mimicry,” 12
Monoamine oxidase (MAOA), 387
Monoamine transporters

alcoholism
characterization, 181
DAT and SERT, 181–182

anxiety and depression
antidepressants structure and Ki values,

183–184
iproniazid, 182
NET, 182
pharmacological treatment, 182
theories, 182

autism
description, 184
serotonin hypothesis, 184
SERT binding capacity, 184

family, 171–172
gene polymorphisms

DAT, 178–179
NET, 177–178
SERT, 179

neuroanatomy
DAT, NET and SERT, 172
monoaminergic neurotransmitter

signaling termination, 172–173
serotonergic neurons, 171–172

PD
characterization, 185

and DAT, striatum, 185
L-DOPA, 185

physiological functions, 173
plasma membrane regulation

DAT, NET and SERT, 176
expression and function, 175
feedback mechanism, 176–177
functional, 176
glycosylation, 176
substrate selectivity lose, 175–176

psychostimulant addiction
baclofen, 181
cocaine, 180
DAT, 181
GABAergic system, 180
neurotransmitter systems modification,

180–181
serotonin reuptake inhibitor (SSRI)

fluoxetine, 181
TCA desipramine, 181
VMAT2, dopamine levels, 180

structure and transport mechanism
alternating access model, 173
closed–closed conformation, 173–174
helical transmembrane helices

(TMHs), 173
leucine transporter from Aquifex

aeolicus (LeuTAa), 174–175
NET, SERT and DAT, 173
open intraand extracellular gates, 174

topology of, 174
vesicular (VMAT)

membrane topology, plasma membrane,
175

neurotransmitters reuptake, 175
psychostimulants, 175

Monroe–Kellie doctrine, 126
MPTP model, 68–69
Multiple sclerosis and demyelination

chemistry of, 13
clinical patterns, 12

Multiple system atrophy (MSA)
clinical features, 660
human disease

description, 73
neuron loss, 73–74

neuropathology, 661
primate animal models, 76
rodent animal models

a1B-adrenergic receptor, 75–76
double-lesion approaches, 75
3-NP, 75
6-OHDA, 74
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stereotaxic lesions, 74
systemic lesions, 74–75

Muscarinic antinociception, 424
Mutations

affecting components of NF-êB
signaling, 307

in apolipoprotein E, presenilin 1, and, 599
APP

cause dementia, 273
PS1, PS2, 411

causing neuropathies of infancy, 557
causing Pelizaeus– Merzbacher-like

disease, 554
in CMT4B2 gene, 559
in CMT4 genes, 559
in Cx32 gap junction protein, 558
disrupting, 407

ESE and ESS, 406–407
ISE and ISS, 407

in FMR1 gene, 325
in FRA11B, 326
in GFAP, 565–566
in human genome, 405
on MAPT exon 10, 411
An-expansion, 347
null, 550
in periaxin gene, 558
presenilin-1 gene, 309
in PSEN2, 273
SMN1 gene, 407
splicing, see Splicing mutation
spontaneous, 347
tau gene, 278

Myelin-associated glycoprotein (MAG)
MAG gene, 554

Myelin-associated/oligodendrocyte basic
protein (MOBP), 554

Myelination, 543–544
in MAG-null mice, 557
model of PMP-22 mutation, 558
oligodendrocyte precursors, 566–567
phosphatidylinositol 3-kinase, role in, 569

Myelin basic proteins (MBP), 551–553, 570
Myelin disorders, 540, 549
Myelin lipids, 557, 561–562
Myelin-oligodendrocyte glycoprotein

(MOG), 555
Myelin proteins, 548, 551, 559, 566

proteolipid proteins, 549
structure, 542
vesicular protein, 553

Myoinositol to creatine ratio (mI/Cr), 372
Myosin light chain kinase (MLCK), 224–225

Myotonic dystrophy, 409–411
CUG repeats, 410
noncoding trinucleotide repeats, 325
type 1 (DM1), 326–327, 637
type 2 (DM2), 349

Myotubularin-related protein 2, 559

N
NADPH oxidase, 370
NAIP, see Neuronal-apoptosis-inhibitory

protein (NAIP)
N-Arachidonoyl-Dopamine (NADA), 474–475
National Institute of Neurological and

Communicative Diseases, 672
National Institute on Aging-Reagan Institute

(NIA-RI) criteria, 673
NBSCs, see Normal brain stem cells (NBSCs)
NCIs, see Neuronal cytoplasmic inclusions

(NCIs)
NE, see Norepinephrine (NE)
Necrosis, 18
Neural stem cells (NSC), 796, 804
Neuregulins (NRGs), 568
Neurodegenerative disease animal models

AD
human, 52–53
invertebrate, 62–63
perspectives, 64–65
primate, 63–64
rodent, 53–62

ALS
animal models, 77–79
human, 76–77

etiological, 51
HD

human, 79–80
invertebrate animal models, 83
primate animal models, 102
rodent animal models, 80–82

meticulous gene manipulations, 51–52
MSA

human, 73–74
primate animal models, 76
rodent animal models, 74–76

PD
human, 65–66
nonhuman primate model, 72–73
rodent animal models, 66–72

primates use, 50–51
use and housing, 50

Neurodegenerative diseases, 203–205, 245
and apoptosis, 34

ALS, 36–38
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Neurodegenerative diseases (cont.)
Alzheimer’s disease, 35–36

Neurofibrillary lesions (NFLs), 654
Neurofibrillary tangles (NFTs), 272, 279

classical NFT, 655
ghost tangles, 655–656
pretangle stage, 654
protective role against, 279

Neuronal-apoptosis-inhibitory protein
(NAIP), 29

Neuronal cytoplasmic inclusions (NCIs), 661
Neuronal death

apoptosis, 18
necrosis, 18
programmed cell death, 18

Neuronal disconnection syndrome, 279–281
Neuronal nicotinic acetylcholine receptors

(nAChRs), 760
activation, 761–762
desensitization, 761–762
expression, diseases associated with

autism, 767
schizophrenia, 765–767

and upregulation, 761–762
Neuronal nuclear inclusions (NNIs), 661
Neuronal plasticity, 302, 304
Neuropeptides, 449

neuropeptide Y (NPY), 459–460
Neuropil threads (NThs), 654
Neuroprotection, 305, 546
Neurosteroids, 479–480
Neurotensin (NeT), 461–462
Neurotransmitters, 259, 570
Neurotransmitter sodium symporter (NSS)

family, 172
Neurotrophic factors, 462–464
Niacin

deficiency
in corn., 114–115
pellagra, 115

Parkinson’s disease, 115
NIA-RI criteria, see National Institute on

Aging-Reagan Institute (NIA-RI)
criteria

Nicastrin, 411
Nicotine, diseases nAChRs implicated by

therapeutic effects, 770
Down syndrome, 771–772
Tourette syndrome, 771

NINCDS-ADRDA, see Stroke/Alzheimer’s
Disease and Related Disorders
Association (NINCDS-ADRDA)

Nitric oxide (NO), 424, 482–484

NNIs, see Neuronal nuclear inclusions (NNIs)
Nociceptin, 454
Nocistatin, 454–455
Node of Ranvier, 543
Nogo proteins, 556
Nogo receptor-interacting protein (LRR), 556
Noladin ether, 474
Noncoding trinucleotide expansion diseases,

324
Noncoding trinucleotide repeats, 325
Noncontrast-enhanced computed tomography

(NECT), 146
Nondopaminergic signals and cognition

in PD, 265
cholinergic mechanisms, 266–267
GABA and subthalamic nucleus, 265–266

Nonpeptide molecules, 440
Nonproline-directed protein kinases

(NPDPKs), 643
Nonsense-associated skipping of remote exon

(NASRE), 408–409, 409
Nonsense-mediated mRNA decay (NMD),

408–409
Norepinephrine (NE), 426–427
Norepinephrine transporter (NET), 171
Normal brain stem cells (NBSCs), 806
NPDPKs, see Nonproline-directed protein

kinases (NPDPKs)
NSC, see Neural stem cells (NSC)
Nuclear factor κB (NF-κB), 298

activators and inhibitors in CNS, 303
in Alzheimer disease (AD), 308–309
biological role of, 299–301
in brain diseases, 307
domains, 298
in glial cells, 306
in Huntington’s disease (HD), 309–310
inhibitors, 297
in ischemic and traumatic brain injury,

307–308
in learning and memory, 305
in multiple sclerosis, 310
in neuroprotection, 305–306
NF-κB/IκB complex, 297
in Parkinson’s disease (PD), 309
pathway

of NF-κB activation, 302–303
as potential therapeutic target, 311

regulating genes in CNS, 304
in seizures, 308
signaling in CNS, role of, 303

activators, 303
inhibitors, 303
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signaling regulation, 301–303
structure, 297
in synaptic transmission, 304–305

Nuclear tau protein, 641
Nucleotide-expansion diseases, 349
Nucleotides, 439–440

O
Occludin, 130
Oculocerebrorenal syndrome of Lowe (OCRL)

gene responsible for, 230
growth factor stimulation, 230
Rac activation, 230

Oculopharyngeal muscular dystrophy
(OPMD), 347

6-OHDA model, PD
behavioural impairment following

6-OHDA lesions
advantage, 68
motor tests, 67–68

DAT and NET, 66
medial forebrain bundle injection

(MFB), 67
striatal injection, 67
substantia nigra injection, 67

Oleamide, 469, 476–477
N-Oleoyl-dopamine (OLDA), 476–477
N-Oleoyl-ethanolamide (OEA), 476–477
N-Oleyl-dopamine (OLDA), 469
Oligodendrocyte-myelin glycoprotein

(OMgp), 560
Oligodendrocyte precursors, 566–567
Oligodendrocytes, 566, 569
Oligodendrocyte-specific protein, 553
Oligophrenin-1 (OPHN1) protein

endophilin A1 and Rho GTPases,
interactions with, 224

knock-down of, 222–223
localization and function in excitatory

synapses, 224
OPHN1 mutations, 222
signaling, 224
in tissues, 222

Olivopontocerebellar atrophy (OPCA), 660
OMgp mutants, 560
OPCA, see Olivopontocerebellar atrophy

(OPCA)
Opioid receptor-like (ORL1) receptors, 449
Opioid-related peptides, 449–450
Orexins, 448–449
Ouabain, 440–441
Oxidative stress, 343–344, 609–610

during aging, 615

and brain edema
endothelial cell incubation, ROS,

139–140
gp91phox (Nox2), NADPH oxidase, 140
hyperglycemia, 140
nitric oxide (NO), 141
reactive oxygen species (ROS), 139
scavenging O2 radicals, 140

energy utilization, 616
fibrillary aggregates and

neurodegeneration, role in, 612
and metabolism

AD progression, 615
iron homeostasis, 615

metals
iron and copper, 617
from redox-active metals, 617

and mitochondria, 616
apoptotic pathways, 617
cytochrome oxidases and mtDNA, 617

nitrogen species (RNS), 615
reactive oxygen species (ROS), 615

Oxytocin (OT), 391–392, 441–442

P
p21-Activated kinase 3 (PAK3)

actin filament depolymerizing/severing
factor, 224

and/or synaptic plasticity, 225
CREB protein levels, 226
dendritic spine morphogenesis regulation,

225
expression, 227
mediated cytoskeletal signaling, 224
nonsyndromic X-linked MR, 224
PAK3 mutations, 224
phosphorylation and activation of LIMK,

224
R421X and A367E mutations, 225
stress fibers triggered by, 224–225
synapse formation, 225

Pain
ATP, facilitatory role, 440
control, 444
GABA and receptors in, 434
hemorphins, role in, 453
models, 422, 439, 442, 446

inflammatory, 463
neuropathic, 463

modulation, 435, 480
nitroglycerin inducing, 483
pathophysiology of, 486
regulation, 451
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Pain (cont.)
serotoninergicic modulatory pathways, 423
syndrome, 434, 460, 482
threshold, 429, 430, 432, 435–436, 442,

449, 456, 467, 477
transmission, 447, 461

N-Palmitoyl-glycine (PalGly), 469, 475–476
Palmityl ethanolamide (PEA), 468, 475–476
Paraneoplastic neurological disorders

(PND), 413
Paranode, 543
Parkinson disease (PD), 185, 245

ATP13A2
gene function and expression, 730
gene location and structure, 730
genetic variation, 730–731
inheritance and clinical features,

729–730
structure and mutations, 731

clinical diagnostic, 714
clinical manifestations, 713
cognitive ERP-S in, 259
delayed-response tests, 258
DJ1

gene function and expression, 726–727
gene location and structure, 726
genetic variation, 727
inheritance and clinical features, 726
structure and mutations, 728

etiology of, 248
fontostriatal circuits, 252–253
GBA

gene function and expression, 732
gene location and structure, 732
genetic variation, 732–733
inheritance and clinical features,

731–732
structure and mutations, 733

HTRA2
gene function and expression, 722–723
gene location and structure, 722
genetic variation, 723
inheritance and clinical features, 722
structure and mutations, 722

human disease
description, 65
monogenic mutations, 65
α-synuclein, 65–66

idiopathic, 248
impaired memory, 253–255
LRRK2

gene function and expression, 718–719
gene location and structure, 718

genetic variation, 719
inheritance and clinical features,

717–718
structure and mutations, 719

molecular progression, 248
neurobiology of, 248
neuropathological diagnosis

Lewy bodies (LBs), 714
nonhuman primate models

MPTP, 72–73
α-synuclein gene, 73

pathological process of, 247
PINK1

gene function and expression, 728–729
gene location and structure, 728
genetic variation, 729
inheritance and clinical features, 728
phosphatase and tensin (PTEN), 728
structure and mutations, 730

prevalence and incidence, 713
PRKN

exonic deletions in, 725
gene function and expression, 724
gene location and structure, 723
genetic variation, 724–726
inheritance and clinical features, 723
structure, 725

retinopathy, 247
rodent animal models

genetic rodent, 69–72
MPTP, 68–69
6-OHDA, 66–68

SNCA
gene function and expression, 716–717
gene location and structure, 716
genetic variation, 717
inheritance and clinical features,

715–716
structure and mutations, 715

spatial orientation in, 256–257
striatal GABAergic output pathways, 252
as synucleinopathy, 248–249
UCHL1

gene function and expression, 720
gene location and structure, 720
genetic variation, 721
inheritance and clinical features,

719–720
postmortmem studies, 720
structure and mutations, 720

Partington syndrome (PRTS), 347
Pathogen-associated molecular patterns

(PAMPs), 363
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PCD, see Programmed cell death (PCD)
PDPK, see Proline-directed protein kinases

(PDPK)
Pedunculopomtine nucleus (PPN), 265–266
Pelizaeus–Merzbacher disease (PMD), 551
Peptides, 441

hormones, 441
Peptidyl arginine–deiminase (PAD), 553
Perfusion computed tomography (PCT),

146–147
Peripheral myelin protein 22 (PMP22),

557–558
Phospholipids, 565
PIDDosome

caspase-2, 22
PIDD, 22
RAIDD, 22

Pituitary adenylate cyclase-activating
polypeptide-38 (PACAP-38),
457–458

p38 kinases, 368
“Plague of Athens,” 4
Platelet endothelial cell adhesion molecule-1

(PECAM-1), 131
p38 mitogen-activated protein kinase

(MAPK), 176
PNFA, see Progressive nonfluent aphasia

(PNFA)
PNS myelin proteins, 557–559
Polyalanine (An)-expansion diseases, 324,

346–347
mechanisms contributing to, 348–349
and Qn-expansion diseases, 347–348

Polymorphisms, 256, 387
Polypyrimidine tract binding protein (PTB),

407
Polypyrimidine tract (PPT), 403
Potassium channels, 470
PPA, see Primary progressive aphasia (PPA)
PPP2R2B gene, 330
Prader–Willi Syndrome (PWS), 412
Pravastatin trial, 618–619
Presenilin

presenilin enhancer 2 (PEN-2), 411
presenilin 1 (PS1) and 2 (PS2)

mutations, 673
presenilin 1 (PS1) genes, 276, 411
presenilin 2 (PS2) genes, 276, 411

Primary demyelination, 545
Primary progressive aphasia (PPA), 649–650
Primate models, AD

lesioning approaches
behavioural and cognitive effects, 64

forebrain cholinergic neurons,
neurotoxin, 63–64

pharmacological approaches
cholincholinergic neurotransmission,

64
drugs, preclinical, 64

spontaneous approaches
cognitive function, 63
nonhuman primates, 63

Progesterone, 480–481
Programmed cell death (PCD), 18
Progressive nonfluent aphasia (PNFA), 650
Progressive supranuclear palsy

clinical features
duration of illness, 658
onset of symptoms, 658

neurochemistry and neurobiology, 658–659
neuropathology, 658

Proinflammatory cytokines, 363
Prolactin, 447–448, 572
Proline-directed protein kinases (PDPK), 643
Pro-opiomelanocortin (POMC), 364

POMC1 gene expression, 374
Protein oxidation, in AD

in AD pathogenesis, early or late event,
598–599

protein carbonyls, 590–592
protein nitration, 592–598

Protein zero (P0), 557
Psychoses

classification, 10
DISC1 locus, 10
neuroregulin 1 gene (NRG-1) mutations in,

10–11
recognizing

DSM IV-TR, 9
Psychostimulant addiction

baclofen, 181
cocaine, 180
DAT, 181
GABAergic system, 180
neurotransmitter systems modification,

180–181
serotonin reuptake inhibitor (SSRI)

fluoxetine, 181
TCA desipramine, 181
VMAT2, dopamine levels, 180

Purkinje cell bodies, 336
Pyridoxine

central nervous system, 110
deficiency

dendritic arborisation, 111
melatonin, 111
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Pyridoxine (cont.)
in pregnant rats, 111–112
putrescine, 111
in rats, 111
tryptophan conversion, 112

use, 110
Pyrin domains (PYDS), 366
Pyruvate dehydrogenase complex, 106–107

Q
Qn-expansion diseases, 330–332, 336–341,

348
factors contributing to neurodegeneration,

337
axonal transport, defects in, 344
caspase activity, 342–343
excitotoxicity/oxidative stress, 343–344
gene expression, interference with,

340–341
integration of mechanisms, 344–346
mitochondrial function, interference

with, 341–342
proteasome function, disrupted,

339–340
toxic protein aggregates, 337–338

therapeutic strategies, 346
Quaking viable (qkv) mutation, 569

R
RAIDD, see RIP-associated ICH-1/CED-3

homologous protein with death
domain (RAIDD)

Reactive nitrogen species (RNS), 364, 590
Reactive oxygen species (ROS), 364
Receptor-interacting kinase-1 (RIP1), 24
Reelin, 392
Rel family, 297

polypeptides, 301
Remyelination, in MS, 545
Renin-angiotensin system (RAS), 444
Retina, 250, 260

dopamine in visual processing, 260–262
foveal retinal ganglion, antagonistic

center and, 262
OCT image, 261
pattern ERG PERG in, 261

dopaminergic dysfunction, model of,
262–264

ganglion cells, 250, 252
Rett syndrome, 412
RFamide neuropeptides, 460–461
Rho GTPases

CYFIP/Rac/PAK and fragile X syndrome,
228–229

effector pathways, 223
mental-disorder-associated GAP

(MEGAP), 231–232
mental retardation proteins, 223
oculocerebrorenal syndrome of Lowe

protein 1 (OCRL1), 230–231
oligophrenin-1 (OPHN1), 222–224
p21-activated kinase 3 (PAK3), 224–227
regulators and effectors, mutations in, 221
Rho guanine nucleotide exchange factor 6

(ARHGEF6), 227–228
synaptic structure and function

AMPAR activity-dependent structural
plasticity, 220

CaMKII activation, 219
Cdc42, role in, 221
EphB receptor, 221
mEPSCs, 219
myosin–actin interactions, 220
myosin light chain (MLC), 220
NMDAR-dependent spine development,

219
Rac-GEF Tiam1, 219
Rac transforms, 219
regulatory cycle, 218
Rho kinase, 220
WAVE proteins, 220

Rho guanine nucleotide exchange factor 6
(ARHGEF6)

ARHGEF6 gene mutation, 227
nonsyndromic X-linked MR, 227
RNAi-mediated knock-down of, 227–228
spine morphogenesis regulation, 228

RIP-associated ICH-1/CED-3 homologous
protein with death domain
(RAIDD), 22

Rivastigmine treatment for AD, 618
Rostroventral medulla (RVM), 421
Ryanodine receptor (RyanR), 334

S
SAPK family, see Stress-activated protein

kinase (SAPK) family
Schizophrenia, 255

Chrna7, 766–767
evidence, 765–766
GABAergic system in, 767

Schwann cell, 540, 543–544, 546, 555, 558,
571

Science and clinical medicine, contrasts
between, 2–3

Second mitochondria-derived activator of
caspases (Smac), 31
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β- and γ-Secretase inhibitors, 618–619
Seizure, 273, 308, 335, 391, 412
Selective serotonin reuptake inhibitors

(SSRIs), 387
Semantic dementia (SD), 650
Senile plaques, 673
Serotonin, 386–387, 428–429
Serotonin transporter (SERT), 171
Serotonin transporters (5-HTT), 387
Serum amyloid P component (SAP), 811
Sexual hormones, 480–482
Short-term memory, 256
Shy–Drager syndrome (SDS), 660
Smac, see Second mitochondria-derived

activator of caspases (Smac)
Smooth muscle actin (SMA), 132
SND, see Striatonigral degeneration (SND)
Somatostatin (SST), 447
Sphingoglycolipids, 561
Spinal dorsal horn (SDH), 421
Spinal muscular atrophy (SMA), 407–408
Spinobulbar muscular atrophy (SBMA), 332
Spinocerebellar ataxia

type 1 (SCA1), 333–334, 350
type 2 (SCA 2), 334
type 3 (SCA 3), 334–335
type 6 (SCA 6), 335–336
type 7 (SCA7), 336
type 8 (SCA8), 328, 330, 413
type 10 (SCA 10), 349
type 12 (SCA12), 330
type 17 (SCA17), 336–337

Spinorphin, 454
Splicing cis-elements disruption

disorders associated with, 404
branch point sequence (BPS) in

humans, 405–406
ectopic AG dinucleotide, 406
mutations, 406–407
spinal muscular atrophy (SMA),

407–408
5′splice sites, aberrations of, 404–405

Splicing mechanisms, physiology, 403–404
Splicing mutation, 408

skipping of multiple exons, 408
CHRNE exon, 408–409
contiguous exons, 408
remote exon, 408–409

SRT, see Substrate reduction therapy (SRT)
Steroids, 479
STN–GPi pathway, 265
Stress-activated protein kinase (SAPK)

family, 614

Stress-induced analgesia (SIA), 420
Stress kinases, 368–370

signal transduction pathways, 369
Striatonigral degeneration (SND), 660
Striatum, 267–268, 341, 343
Stroke/Alzheimer’s Disease and Related

Disorders Association (NINCDS-
ADRDA), 672

Substrate reduction therapy (SRT), 796
Subthalamic nucleus (STN), 254
Sulfogalactosylceramide, 563
Survivin, 29
Susceptibility-weighted imaging (SWI), 150
Sydenham’s conceptualization

of specific diseases, 4
bacteriology and virology, 5–6
chemical and biological refinements, 5

Synaptic dysfunction in AD, 279
Synaptopodin, 279
Synuclein, 245

T
Tachykinins, 455–456
Tacrine treatment for AD, 618
Tandem repeat (VNTR) polymorphisms, 256
Tau protein

acid- and heat-stable protein, 638
aggregation of, 614, 639
axonal morphology and polarity, 614
cell morphology, 639
CNS astrocytes and oligodendrocytes, 639
3D crystal lattices, 639
as diagnostic marker, 661–662
expression, disturbances in, 639
function of, 614
microtubule organization, 639
modifications

deamidation, 647
glycosylation, 646
oxidation, 647
prolyl isomerization, 647
truncation, 647
ubiquitnylation, 647

for neuronal formation and health, 639
phosphorylation

and AD, 614–615
altered intracellular trafficking/polarity,

644, 646
altered proteolysis, 646
axonal transport, 646
microtubule binding, 644
physiological and pathological

functions, 645
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Tau protein (cont.)
physiological role of, 643–644
protein kinases, role in, 643
protein phosphatase, 643
sites, 642

posttranslational modifications of, 641–646
predictable secondary structure, 641
3R-tau and 4R-tau isoforms, 637

domains, 640
and SAPK family, 614
Ser-Pro and Thr-Pro motifs, 614
within somatodentritic compartment of

neurons, 641
structure study, 639
in synaptic dysfunction, 281
tau gene, 279

interactions with microtubules, 637
intronic mutations, 637
missense mutations, 637
mutations, 636
representation, 638

tauopathies
Alzheimer disease (AD), 651–658
corticobasalganglionic degeneration,

659–660
frontotemporal dementia (FTD),

649–651
immunohistochemical studies, 648–649
multiple system atrophy (MSA),

660–661
neurodegenerative disorders with, 649
phosphorylation and, 636
progressive supranuclear palsy,

658–659
tau transgenic mouse models, 61
as therapeutic target, 662
turnover of, 647

PEST sequence, 648
ubiquitin-independent proteosomal

degradation, 648
Taurine, 436–437
Tay–Sachs disease, 6

clinical patterns, 7
clinical phenotype, variations in, 8
enzymatic studies, 7
genetic variability

HEXA gene, 7–8
molecular genetic studies, 7
neurochemical studies, 7
neuropathological observations, 7
“pseudosulfatase deficiency,” 9

Tetraspanin 2, 554
Thalamocortical circuitry, 253–255

Thalamocortical processing, 267
Theory of humors, 4
Thiamine

and cell metabolism/function
enzyme cofactor, 106–108
neural membrane compound, 108

deficiency, 104
deficiency-related neurological disorders

Alzheimer disease (AD), 105
Korsakoff’s psychosis, 105
oxythiamine, pyrithiamine and

amprolium, 105–106
WE, 105

description, 104
neuronal cell death, deficiency

blood-brain barrier disruption, 109–110
cellular energy failure, 108
NMDA receptor-mediated excitotoxic-

ity, 109
oxidative/nitrosative stress, 109

status, diet and factors, 104
structure, 104

Thyrotropin-releasing hormone (TRH),
446–447

Tight junction proteins
claudins, 130
occludin, 130
paracellular permeability, 131
zona occludens, 131

TNF receptor-associated factor 2 (TRAF2), 24
TNFRSF1A-associated via death domain

(TRADD), 23–24
α-Tocopherol (vitamin E)

brain function and neurodegeneration, 117
chronic deficiency, 116–117
description, 116
retention and secretion, 117
supplementation, 117

Tolcapone, 255
Toll-like receptors (TLRs), 363
Tourette syndrome, 771
Toxic protein aggregates, 337–339
TRADD, see TNFRSF1A-associated via death

domain (TRADD)
Transcription factors, 341, 348, 376, 568–569
Transferrin (Tf), 570
Transforming Growth Factor-Beta (TGF-β),

366–367
Transgenic mouse models, AD

APP
amyloid plaques, 54–55
CAA, 54
cDNA, 54
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mutation, β and γ-secretase site, 53–54
TgCRND8, 54
Thy-1.2, 54

APP/ADAM, 58
APP/ApoE

amyloid and tau pathology, 57
Aβ42 and Aβ40, 57–58
synap synaptophysin and MAP 2

staining, 57
APP/BACE, 57
APP/PS-1

APPSL/PS-1 knock-in, 56
double, 54, 56
FAD, 54
microglial activation and astrocyte

reactivity, 56–57
tau and tau/APP

cdk-5, p35 and tau-4R, 60
FTD and FTDP-17, 58–59
isoforms, 59
Parkinsonism, 58
phosphorylate, kinase, 59–60
synthetic Aβ42, NFT numbers, 59

Transient receptor potential melastatin 8
(TRPM8) receptor, 471

Translation factors (eIF4E), 369
Tricarboxylic acid (TCA) cycle, 196
Trinucleotide expansions

disease, 324
in genome, 324

Trinucleotide repeats, 324
TRPV1 receptors, 470, 472
Tryptophan hydroxylase (TPH1), 387
T-type calcium channels, 471
Tumor necrosis factor (TNF) pathway, 23–25

See also Extrinsic/receptor-mediated
pathway

Tyr-MIF Peptides, 453

U
Ubiquitin–proteasome system (UPS), 648
UDP-Galactose, 557
Umbilical cord blood (UCB), 796
Unmyelinated C-fiber activation, 421

V
Variable number tandem repeat (VNTR)

DAT, 178–179
SERT, 179

Vascular endothelial growth factor
(VEGF), 811

and angiopoietins, 142–143
and neovascularization (NV), 812
vasogenic edema in gliomas, 812

Vasoactive intestinal peptide (VIP), 458
Vasoactive intestinal polypeptide (VIPergic)

neurons, 248
Vasogenic brain edema

cell damage lack, 133
extracellular space expansion, 133
formation, MMPs role

basal lamina components
degradation, 138

BBB permeability, 138
cerebral ischemia, 139
matrix metalloproteinases, 138
multiple sclerosis, and CNS infections,

138
occludin, claudin-5, and ZO-1, 138–139
pharmacological blockade, 139
plasminogen/plasmin system, 139
proteases, lactate and acidosis, 138

white matter fiber tracts, 133–134
Vasopressin, 442
Ventro-posterior-lateral (VPL) thalamic

nucleus, 112
Verbal fluency test scores, 258
Very long chain fatty acids (VLCFA), 564
Vesicular glutamate transporter

(VGLUT2), 205
Vesicular monoamine transporters

(VMAT), 175
VGLUT2, see Vesicular glutamate transporter

(VGLUT2)
Virodhamine, 468
Virology, 5–6
Vision and visual cognition

aging and cognitive event related
potentials, 259

neurotransmitters and cognitive ERP-S in
PD, 259–260

short-term memory for visual stimuli and
spatial orientation in PD, 256–258

Visual cognition, 256
Visual perceptual categorization, 258
Visual stimuli, 256
Vitamin B1, see Thiamine
Vitamin B3, see Niacin
Vitamin B6, see Pyridoxine
Vitamin B9, see Folic acid
Vitamin B12

cofactor and inhibition, enzyme
reaction, 113

cytokine production, myelinolytic
TNF-α, 114

deficiency, 113
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Vitamin B12 (cont.)
methylcobalamin/adenosyl-cobalamin,

112–113
methyl trap hypothesis, 114

Vitamin B complex, 104
Vitamins and vitamin deficiencies

antioxidant
ascorbic acid (vitamin C), 118–120
α-tocopherol (vitamin E), 116–118

carotenoids, 120
cobalamin (vitamin B12)

cofactor and inhibition, enzyme
reaction, 113

cytokine production, myelinolytic
TNF-α, 114

deficiency, 113
methylcobalamin/adenosyl-cobalamin,

112–113
methyl trap hypothesis, 114

folic acid (vitamin B9)
deficiency, 115–116

niacin (vitamin B3)
black tongue, corn-fed dogs, 114
neurological symptoms, 114–115
pellagra, 115
zein, 114

pyridoxine (vitamin B6)
deficiency, 111–112
dendritic arborisation, deficiency, 111
hypothalamus, 111
melatonin, 111
pathology, central nervous system, 110
roles, 110–111
tryptophan conversion, 112
use, 110

thiamine (vitaminB1)
and cell metabolism/function, 106–108
deficiency, 104
deficiency-related neurological

disorders, 105–106
description, 104
neuronal cell death, deficiency,

108–110
status, diet and factors, 104
structure, 104

treatment for AD, 620

W
Washington Heights–Inwood Columbia Aging

Project, 620
Wernicke’s encephalopathy (WE), 105, 110
West syndrome (WS), 347
Wisconsin card sorting test (WCST), 257

X
X-linked demyelinating neuropathy, 558

Y
YB-1, splicing trans-factor, 413
Yeast artificial chromosomes (YAC), 82

Z
Zellweger syndrome, 565
Zinc and zinc homeostasis

assembly and disassembly of tubulin, 676
blood/brain and blood/cerebrospinal fluid

(CSF) barriers, 674
maintenance

by metallothioneins (MT), 676–677
by zinc transporter (ZnT) proteins, 676,

678–679
by Zrt–Irt-like (ZIP) proteins, 676–678

mediated dysfunction in oxidative
phosphorylation, 676

NMDA receptor channels, 676
plasma transport, 674
protein kinase C (PKC) signaling

pathways, 674
role in pathogenesis of AD, 679

association with SP, 680
Aβ deposition, 682–683
in brain, 681
cellular localization, 680
CSF Zn levels, 681
Mini Mental Status Examination

scores, 680
senile plaques study, 680
Western blot analysis, 681

as therapeutic target in AD, 683–684
transport and sequestration

brain Zn concentrations, 675
cytoplasmic pool, 675
membrane-bound metalloprotein, 675
protein–metal complex pool, 675
vesicular pool, 675

zinc transporter (ZnT) family, 674
Zrt-Irt (ZIP) family, 674

Zinc transport (ZnT) proteins
cation diffusion facilitator family, 678
L-type calcium channels (LTCC), 678
metal response element (MRE)

in genes, 678
ZnT-1 expression, 678
ZnT-2, ZnT-3 and ZnT-4 expression, 679

Zrt–Irt-like (ZIP) proteins
histidine-rich intracellular loop, 677
ZIP-1 mRNA, 677
ZIP-5, ZIP-6 and ZIP-7, 678
ZIP-2, ZIP-3 and ZIP-4 expression, 677
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