
Discovering the Human Connectome 





Discovering the Human Connectome 

Olaf Sporns 

The MIT Press 
Cambridge, Massachusetts 
London, England 



  ©   2012   Massachusetts Institute of Technology  

 All rights reserved. No part of this book may be reproduced in any form by any electronic 
or mechanical means (including photocopying, recording, or information storage and 
retrieval) without permission in writing from the publisher. 
     
 MIT Press books may be purchased at special quantity discounts for business or sales 
promotional use. For information, please email special_sales@mitpress.mit.edu or write to 
Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. 
     
 This book was set in Syntax and Times Roman by Toppan Best-set Premedia Limited. 
Printed and bound in the United States of America. 
     
 Library of Congress Cataloging-in-Publication Data 

 Sprons, Olaf. 
 Discovering the human connectome / Olaf Sporns. 
    p. ;   cm. 
 Includes bibliographical references and index. 
 ISBN 978-0-262-01790-9 (hardcover : alk. paper) 
 I. Title. 
 [DNLM:   1. Brain — anatomy  &  histology.   2. Brian — physiology.   3. Brain Mapping.   4. 
Models, Neurological. WL 300] 
 612.8 ' 2 — dc23 
 2012006719 
     
 10   9   8   7   6   5   4   3   2   1 



 For Anita 





Contents 

 Preface  ix

 1   Introduction  1

 2   What Is the Human Connectome?  25

 3   Challenges  39

 4   The Connectome at the Microscale  63

 5   The Connectome at the Macroscale  85

 6   The Connectome in Motion  109

 7   Emerging Principles of Network Architectures  135

 8   Computational Connectomics  155

 Epilogue  177

 Notes  181

 References  191

 Index  215





 In the early summer of 2005 my colleagues Rolf K ö tter, Giulio Tononi, 

and I put the finishing touches to a review article (really a position paper) 

somewhat ambitiously entitled  “ The Human Connectome: A Structural 

Description of the Human Brain ”  (Sporns et al., 2005). At the time, the 

connectome was just an idea, nothing more. The idea seemed simple 

enough. The human brain is a complex network whose operation depends 

on how its neurons are linked to each other. When attempting to under-

stand the workings of a complex network, one must know how its ele-

ments are connected, and how these elements and connections cooperate 

to generate network function. The human connectome describes the 

complete set of all neural connections of the human brain. It thus con-

stitutes a network map that is of fundamental importance for studies of 

brain dynamics and function. When I googled the term  “ connectome ”  

(just to be sure no one else had thought of it earlier) I remember getting 

around 10 hits, none of them relevant to the brain. In fact, some of them 

were oddly irrelevant — I recall finding  “ connect-to-me ”  (a dating site, 

I believe) and  “ connect-home ”  among the search results. As of April 

2012 the same Google search returns nearly a quarter million hits. What 

happened? 

 The simple idea of mapping the connections of the human brain in 

their entirety has captured the imagination of many, not only neurosci-

entists but also researchers in adjoining fields interested in human cogni-

tion, brain and mental disorders, and complex systems and networks, as 

well as members of the general public. I believe it is fair to say that the 

connectome and the nascent field of connectomics are beginning to influ-

ence the ways many neuroscientists collect, analyze, and think about 

their data. Connectomics is directed at integrative function — central to 

connectomics is the notion that the brain can be described and under-

stood as a  network , not just by way of a metaphor but in the precise 
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technical and mathematical sense of a connectivity graph. Adopting this 

view opens new horizons on brain function, and it allows the use of 

powerful analytic tools and concepts coming from the emerging science 

of complex networks. In my previous book  Networks of the Brain , I made 

the case that neuroscience has much to gain from adopting this theoreti-

cal framework, and I attempted to sketch a first draft of an integrative 

theory of brain function that is based on network architectures and 

mechanisms. The present book builds on this theoretical framework 

to ask some very specific questions. What is the nature of the human 

connectome? Why is it important to pursue the connectome as a high-

priority scientific goal, and what will the connectome tell us once we have 

discovered it? What are the most compelling empirical strategies for 

mapping the human connectome, and how can we make sense of the 

extraordinary amount of data they will deliver? What is the future 

promise and, equally importantly, what are the limitations of connec-

tomics in neuroscience? 

 Today, the human connectome is known to us only in broad outline, 

and intensive research under way in many laboratories and research 

centers around the world will add substantially to our understanding of 

human brain connectivity over coming years. While future iterations of 

this book will undoubtedly deliver a much more refined and detailed 

picture of the connectome, some of the basic concepts and theoretical 

ideas that lie at the origin of connectomics will likely remain valid. 

Central among these ideas is the notion that the connectome is a complex 

network and that a detailed account of network structure and function 

can deliver a much needed new perspective on brain function. One of 

the biggest challenges will be to discover how these networks shape the 

integrated and dynamic activity of neurons and brain regions and how 

the network architecture of our brain relates to our behavioral and cogni-

tive capacities. I suspect that meeting this challenge will take far longer 

than attaining the first goal of creating an accurate and detailed map of 

human brain connectivity. Connectomics as a comprehensive research 

effort directed at understanding the brain as a complex network will 

occupy us for some time to come. We are only at the very beginning of 

what promises to be an exciting new period of empirical investigation 

and theoretical inquiry. 

 The connectome might never have become a reality, at least not with 

a prominent focus on the human brain, without my longtime colleague 

and friend Rolf K ö tter. Rolf and I first talked about a future project to 

map all of the connections of the human brain in November 2004 at a 
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meeting near Toronto, organized by Randy McIntosh and sponsored by 

the J.S. McDonnell Foundation. We continued to pursue our discussion 

via frequent e-mail and phone conversations and started to generate a 

draft of a  “ white paper ”  outlining a detailed proposal for mapping the 

human connectome. I fondly remember a long discussion on a cold 

morning in early March 2005, over breakfast in a caf é  outside the 

National Science Foundation in Arlington (we were both members of a 

review panel). We had already sketched out the main rationale for the 

connectome, and we were pondering how we might gain broader support 

and acceptance for the concept in our field (perhaps even from funding 

agencies!). Both of us were unsure about the project ’ s feasibility in the 

near term, but we convinced each other that, despite these uncertainties, 

it was important to make a public argument that laid out the motivation 

for the connectome as a foundational network model of the brain. We 

formulated a multistep plan for the project, including diffusion and func-

tional magnetic resonance imaging as well as electromagnetic recordings 

across a large population to assess individual variability. Within a few 

weeks the article was written and submitted, and eventually published 

in the journal  PLoS Computational Biology . Over the years, the idea of 

the connectome gathered momentum, driven by new techniques and the 

discoveries of many colleagues in the field. Rolf and I were tremendously 

excited when, in 2009, the Human Connectome Project finally moved 

forward under National Institutes of Health (NIH) sponsorship, some-

thing neither of us had envisioned even a few years earlier. I am deeply 

saddened that Rolf will not be with us on the journey toward discovering 

the human connectome. His untimely death after a long battle with a 

devastating disease was a profound and tragic loss to our research com-

munity. Rolf ’ s vision and insight, his scholarly wisdom, and his warm 

collegiality (and dry sense of humor) will be missed dearly. 

 My own research described in this book has been generously spon-

sored by the J.S. McDonnell Foundation and, more recently, by the NIH 

under the auspices of the Human Connectome Project. I wrote the book 

with the support of a 2011 John Simon Guggenheim Memorial Fellow-

ship and while on sabbatical leave at Indiana University. I owe thanks 

to many colleagues for the inspiration their work has given me. It is an 

extraordinary privilege to be one among many investigators collaborat-

ing on the NIH ’ s Human Connectome Project, under the leadership of 

David Van Essen and Kamil Ugurbil. I have no doubt that the project 

will be a major milestone on the road toward understanding the workings 

of the human brain. While the ideas laid out in this book are entirely my 
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own, I do hope that some of them will be of use in ongoing and future 

connectome projects. 

 Many colleagues have encouraged me to write this book, and I thank 

them for their support and intellectual generosity in sharing ideas and 

opinions. Mika Rubinov graciously volunteered to read draft chapters, 

and his input has been extremely useful. I am grateful to Michael Break-

spear, Kevin Briggman, Yoonsuck Choe, Patric Hagmann, Martijn van 

den Heuvel, Marc Joliot, Christoph Palm, Marc Raichle, and David Van 

Essen for generously providing figures and other materials. I thank Bob 

Prior at MIT Press for allowing me to become (in his words) a  “ repeat 

offender ”  by supporting my second book project in three years. Finally, 

I thank my wife, Anne Prieto, for her love and support — and I promise 

I won ’ t do this again so soon! 
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 If I had to point to the single most important thing to know about how 

the brain works, my answer would be  “ connectivity. ”  Of course, much 

else comes to mind — the interplay of ionic currents that generate neu-

ronal membrane potentials, the variety of neurotransmitter systems 

involved in synaptic transmission and plasticity, the capacity of neurons 

to convert inputs into outputs, the endlessly rich patterns of cellular 

and synaptic morphology, and many other features of the brain at molec-

ular, cellular, and systems scales. And yet, I believe it is fair to say that 

the brain ’ s computational power depends critically (though certainly 

not entirely) on how individual processing elements are networked 

together. The human brain is a network of extraordinary complexity, an 

intricate web of billions of neurons connected by trillions of synapses 

and wiring that spans a distance halfway to the moon. How this network 

is connected is important for virtually all facets of the brain ’ s integrative 

function (Sporns, 2011a). Brain connectivity allows neurons to exhibit 

an extraordinary range of physiological responses and enables them 

to generate and distribute information, to coordinate their activity 

over short and long distances, and to retain a structural record of past 

events. 

 The centerpiece of brain connectivity is the connectome — a compre-

hensive description of how neurons and brain regions are interconnected. 

Much of this book is about current efforts to chart these connections in 

the human brain and what the first maps created with a variety of tech-

niques tell us about the brain ’ s network architecture. To be sure, the 

insights we have gained so far are preliminary and incomplete, and there 

is much still to be discovered. However, the journey toward mapping the 

human connectome has begun, and significant progress is being made at 

an ever-accelerating pace. A growing number of empirical and theoreti-

cal studies of the brain ’ s network architecture and dynamics are laying 

 Introduction 



2 Chapter 1

the groundwork for the nascent field of connectomics. The main goal of 

this book is to describe the origins and prospects of the endeavor and to 

chart its main scientific and intellectual underpinnings. 

 The book is arranged in eight chapters. This first chapter positions the 

connectome within the wider context of biological systems by examining 

the role of structure for understanding biological function, the nature of 

complexity, and the importance of networks in making sense of brain 

connectivity. It also provides an introduction to basic concepts and ter-

minology of graphs and network models. Chapter 2 offers a more detailed 

treatment of the conceptual foundations of the connectome, and chapter 

3 focuses on some of the challenges posed by the connectome ’ s multi-

scale architecture, the inherent variability of nervous systems, and the 

ongoing structural change that continually remodels neurons and con-

nections. Chapters 4 and 5 survey current empirical strategies for mapping 

the connectome, covering the entire range of approaches from electron 

microscopy to magnetic resonance imaging (MRI). I will explore the 

merits of each technology and ask how these approaches may be inte-

grated to yield a coherent map linking cellular connectivity to brain 

systems. Chapter 6 deals with how the connectome generates temporal 

structure in neuronal dynamics. I will also reflect on the important role 

of  “ functional connectomics ”  for linking brain networks to human behav-

ior. Chapters 7 and 8 cover the significant impact of connectomics on 

computational studies of the nervous system, including the emerging 

picture of network organization delivered by graph analysis, the need for 

advanced neuroinformatics tools, and the progress made toward building 

comprehensive computational models of the human brain. I end by 

attempting to forecast some of the innovations that connectomics will 

bring to both basic and translational neuroscience. 

 Before squarely focusing on the brain, let us briefly look at how the 

notion of the connectome as a structural foundation for understanding 

brain function fits with related and more general ideas about the role of 

structure in the biological sciences. Two ideas are central to the endeavor, 

the importance of structure for shaping biological function and the role 

of networks for coordinating the actions of components into coherent 

system dynamics. 

Structure and Complexity 

 The importance of structure for the functioning of biological systems can 

hardly be overstated. Examples are found everywhere, ranging from 
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macromolecules to whole organisms. Structure strongly determines the 

physicochemical attributes of biomolecules, including their locations 

within the cell and their interactions with other molecular species. The 

iconic double-helix structure of deoxyribonucleic acid (DNA), widely 

considered one of the most important scientific discoveries of the 20th 

century,  “ immediately suggests a possible copying mechanism for the 

genetic material ”  (Watson and Crick, 1953, p. 737). The chemical specific-

ity of enzymes is largely determined by their shape and geometry, which 

permit interactions with substrates, inhibitors, and activators. Virtually all 

electrical properties of neuronal membranes depend on the actions of 

transmembrane protein channels that regulate the passage of specific 

ions across the cell surface (  figure 1.1 ). Their stable placement within the 

membrane, the aggregation of protein subunits to form a nanometer 

scale pore, the selectivity of the channel for specific ions, and the gating 

of channels in response to chemical ligands or changes in the cell ’ s 

Figure 1.1 
 The importance of structure in biological function. (A) Schematic representation of the 
protein structure of the potassium channel. The diagram shows the folding pattern of 
the four channel subunits and its integration into the cell membrane, here shaded in 
gray. The channel forms a pore through which potassium ions can cross. Its structure 
enables the fundamental biological process of selective membrane conductance which 
underlies all electrical signaling among neurons. The image is reproduced with permission 
from Doyle et al. (1998). (B) Schematic representation of the network of fiber tracts cours-
ing through the human brain ’ s white matter. The nodes correspond to a set of cortical 
regions covering both cerebral hemispheres, and the edges between them correspond to 
neural connections. The structure of this network shapes neural activity across the brain 
and forms the anatomical basis of large-scale brain function. The image was kindly provided 
by Martijn van den Heuvel (University Medical Center Utrecht, The Netherlands). 
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membrane potential all depend on the spatial configuration of the chan-

nel ’ s molecular components. 

    Relations between structure and function are also evident at larger 

scales, in the shape and form of organelles, cells, tissues, organs, and even 

in the biomechanics of the whole organism. An organism ’ s behavioral 

repertoire is shaped by numerous structural and mechanical constraints, 

from the basic layout of the body ’ s sensors and effectors to the articula-

tion of limbs or wings and the couplings of muscles and connective 

tissues. As a whole, the anatomical organization of the musculoskeletal 

system supports the stability and adaptive control of bodily motion and 

behavior. The importance of structure and biological form extends to the 

nervous system, and how this structural organization shapes brain func-

tion is the central theme of this book. The brain ’ s numerous anatomical 

components and their physical couplings are critically important for its 

functional activity, the flow of neural signals that underlies all mental 

experience. Structural linkages between elements of neuronal systems 

channel their dynamic interactions and constrain the paths across which 

neurons can communicate and share information (see   figure 1.1 ). Just as 

the network of chemical bonds comprising a macromolecule determines 

which of its subdomains fold into spatial proximity,  1   the brain ’ s network 

of synaptic connections determines the similarity and specificity of func-

tional and physiological attributes among neuronal collectives. 

 The importance of structure does not imply that structure alone can 

fully predict all functional outcomes or that full knowledge of structure 

allows a keen observer to deduce all of the physiology and behavior of 

a biological system. For function to be properly expressed, structure has 

to be placed into a wider context. In the case of biomolecules, this context 

is supplied by the roughly 10 12  molecules making up a cell — a function 

of a protein channel such as voltage-gating, while certainly dependent 

on its molecular configuration, requires a surrounding neuron and its 

membrane potential. In the case of the brain, context comes from inter-

nal as well as sensory signals, for example those caused by the behaviors 

of a social group — neuronal activity related to emotional constructs such 

as empathy, while caused by connectivity in the brain, also reflects inter-

personal processes occurring in a social environment. 

 In addition to context, structure and function must also be viewed as 

engaging in a continuous dialogue. Just as structure shapes function, the 

emergence of new functions often depends on making structural changes. 

Heritable modification of the structural arrangement of molecules, cells, 

or tissues is one way by which selectional forces operating on an evolu-
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tionary time scale can mold biological function. Selection based on func-

tion is ultimately responsible for the kinds of structures we find as part 

of organisms today. In the case of the brain, alterations in neural circuitry 

contribute to the emergence of new behaviors or cognitive capacities. 

Function itself leaves a structural record as is amply demonstrated by the 

many structural traces left as a result of neuronal activity. 

 This consideration of the centrality of structure – function relationships 

leads us to two important aspects shared by most, if not all, biological 

systems. They are  multiscale systems  that are organized as  complex net-

works . Biological processes unfold on multiple scales that range from 

molecules to organisms and span 10 and 15 orders of magnitude in space 

and time, respectively (e.g., Hunter and Borg, 2003;   figure 1.2 ). Impor-

tantly, these scales interact and are mutually interdependent. No scale is 

privileged over others in the sense that system behavior cannot be fully 

reduced to processes occurring at one scale only. At each scale, and across 

scales, biological systems are organized as networks, consisting of a large 

number of components that are connected in complex patterns. It is the 

coordinated action of networks that is responsible for global functional 

properties of cells and organisms. 

    Understanding the global functional properties of a biological system 

requires knowledge about the system ’ s elements as well as a map of how 

these elements mutually interact. Significant research efforts in areas 

such as ecology and biodiversity, cancer biology, cellular signal transduc-

tion, metabolism and gene regulation, and, finally, neuroscience are 

directed toward mapping the structure of complex biological networks. 

As it turns out, the research program of connectomics closely parallels 

that of the relatively new field of  “ systems biology. ”  

Connectomics and Systems Biology 

 A major aim of systems biology is the application of mathematical and 

computational models in areas such as population biology, enzyme kinet-

ics, biochemical pathways, and genetic regulatory circuits. The inception 

of systems biology coincided with the arrival of large-scale genomics and 

proteomics data sets (Ideker et al., 2001; Kitano, 2001).  2   These data sets 

required concerted efforts to collect, store, visualize, and integrate large 

amounts of biological information. Building on data about genes and 

proteins, the overarching goal of systems biology is to account for the 

molecular origins of emergent biological phenomena:  “ Systems biology 

is a scientific discipline that endeavors to quantify all of the molecular 
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Figure 1.2 
 Levels of organization in biological systems and in the brain. (A) Spatial and temporal 
scales, spanning many orders of magnitudes. Similar diagrams can be found in Hunter and 
Borg (2003) and Dada and Mendes (2011). (B) Levels of organization in the nervous 
system. The diagram is adapted from a similar illustration in Churchland and Sejnowski 
(1992). CNS, central nervous system. (C) The nervous system as a hierarchy of networks. 
The multiscale networks of the connectome are interspersed between networks operating 
at cellular and social scales. 

elements of a biological system to assess their interactions and to inte-

grate that information into graphical network models that serve as pre-

dictive hypotheses to explain emergent behaviors ”  (Hood et al., 2004, 

p. 640). Hiroaki Kitano poignantly expressed the principal aim of systems 

biology as going beyond static descriptions of the inventory of genes and 

proteins. A biological system, in his words,  “ is not just an assembly of 

genes and proteins, [and] its properties cannot be fully understood merely 

by drawing diagrams of interconnections. Although such a diagram rep-

resents an important first step, it is analogous to a static roadmap, whereas 

what we really seek to know are the traffic patterns, why such traffic 

patterns emerge, and how we can control them ”  (Kitano, 2002, p. 1662). 

 Several aspects of systems biology set it apart from more traditional 

research approaches (Aitchison and Galitski, 2003). In addition to 

 “ hypothesis-driven ”  investigation, systems biology includes an important 

component of  “ discovery science. ”  Discovery science involves the analy-
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sis of large data sets with the explicit goals of identifying significant 

statistical patterns, which can then lead to the formulation of new hypoth-

eses. By charting the elementary components of functional systems and 

their dynamic interactions, systems biology aims at discovering the 

network architecture of biological systems. To accomplish this aim and 

to effectively bridge system structure and function, systems biology must 

integrate data from disparate sources and across levels of organization. 

Finally, the overall research effort is directed at creating plausible models 

of biological systems that can be tested, as hypotheses, against empirical 

data (  figure 1.3 ). These models are formulated within a quantitative 

mathematical modeling framework and allow researchers to examine the 

dependency of global state transitions on specific system variables or to 

predict global system responses to specific perturbations. 

    Systems biology draws on the creation of large-scale data sets that 

record comprehensive information about specific domains of biology 

and that lay the material foundations for entire subdisciplines. These data 

sets are often labeled with the suffix  “ ome, ”  signifying that they comprise 

a complete set of elementary components within their respective domain 

of knowledge. The first was the genome, a term coined in 1920 by the 

geneticist Hans Winkler.  3   Other  “ omes ”  that have proven useful in 

molecular and cellular biology include the proteome (the complete set 

of proteins expressed by a specific cell or organism), the transcriptome 

(the set of RNA molecules), the metabolome (the set of metabolites), 

and the interactome (the set of molecular interactions, for example, 

between proteins, in a specific cell or organism).  4   Some  “ omes ”  primarily 

record molecular components while others (like the interactome) explic-

itly refer to networks of interactions (Giot et al., 2003; Li et al., 2004). 

While not all  “ omes, ”  once coined, turn out to be viable additions to the 

biological repertoire, several  “ omes ”  such as the genome and interac-

tome have unquestionable utility that derives from their universality 

(they apply to all living forms), their totality (each comprises a complete 

set of data), and their permanence (the genome of an organism, once 

determined, does not change with time).  5   

 Beyond semantic similarities, there are several reasons why the con-

nectome belongs in the family of complex biological systems and why 

connectomics represents an extension of systems biology into the realm 

of neuroscience.  6   Mirroring the approach of systems biology, connec-

tomics draws on cumulative and foundational data about components 

and interactions. The connectome records structure in all organisms with 

a nervous system (universality), comprises a complete description of 
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Figure 1.3 
 Models in systems biology. This schematic diagram illustrates the major data and modeling 
components of systems biology and how they relate to each other. On the left are compre-
hensive system-wide measurements of transcripts, proteins, and metabolites. Data analysis 
efforts identify system components and interactions, which feed into explicit computational 
models that lead to predictions of new data. Models are continually refined by feedback 
from experiments. Modified (converted to grayscale) and reproduced with permission from 
Sauer et al. (2007). 

brain connectivity (totality), and, once determined, serves as a lasting 

resource and foundation for future research (permanence). Like systems 

biology, connectomics goes beyond static  “ wiring diagrams ”  to account 

for the rich dynamics that emerge from complex brain networks. The 

connectome ’ s primary goal is the collection of information on structural 

brain networks comprised of neurons and synapses; however, the wider 

aim of connectomics includes an account of how this static network is 

transcribed into dynamic brain activity and behavior. Connectomics is a 

cumulative scientific effort, involving the collection of very large data 

sets on brain connectivity that are shared and made available across a 

broad research community. Finally, connectomics has a strong discovery-

science component, and it relies on statistical and computational models 

for the interpretation and analysis of large data sets in order to generate 

new questions and hypotheses about brain function.  7   

 The  “ omics ”  revolution, as it is sometimes called, brings with it the 

formidable challenge of representing and integrating large-scale founda-

tional data sets to allow their interpretation in the context of the work-

ings of the cell or organism (Joyce and Palsson, 2007). Computation and 
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modeling play an important part in meeting this challenge, and as a result 

the fields of bioinformatics and computational biology have experienced 

significant growth over recent years. Both fields have profited from the 

development of new modeling techniques and approaches. Computa-

tional models of biological systems need to capture phenomena on dif-

ferent temporal and spatial scales and thus require integration of physical 

and biological processes across different levels of organization (Coveney 

and Fowler, 2005; Southern et al., 2008; Dada and Mendes, 2011). In some 

areas of computational biology, multiscale models are by now quite well 

developed. For example, multiscale models of organ systems such as the 

human heart have successfully integrated information across micro- and 

macroscales (Noble, 2002). Based on an anatomically detailed structural 

description of the heart, these models simulate its mechanical and electri-

cal dynamics. Components at the microscale include membrane currents 

and ion pumps to model voltage changes across cardiac muscle cell 

membranes, resulting in waves of excitation unfolding across the tissue. 

Models of current flow and muscle cell contraction are combined to 

create a description of the deformation dynamics of the myocardium 

through the cardiac cycle. The result is an integrative account of electrical 

activation, pulsation, and blood flow at the macroscale, based on 

microscale mechanisms simulated in conjunction with a structural model 

of heart tissue. 

 An important conceptual foundation for thinking about complex bio-

logical systems comes from the science of networks. Cataloguing system 

components and their relations is only a first step toward the ambitious 

goal of understanding how their dynamic interactions give rise to inte-

grated functional states. Network analysis and modeling offers an attrac-

tive and by now widely adopted theoretical framework for translating 

components and relations into global system behavior. A full exploration 

of the many applications of network approaches in neuroscience is 

beyond the scope of this book (instead, see Sporns, 2011a). However, a 

brief survey of network methodology and terminology is needed to set 

the stage for much of what is to come. Let us turn to an overview of how 

brain networks can be described and analyzed with modern quantitative 

approaches. 

Networks of the Brain 

 Network diagrams are ubiquitous in the neurobiological literature 

and have long served as useful devices to summarize anatomical and 
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physiological relationships among circuit elements (  figure 1.4 ). The dis-

covery of the cellular architecture of the brain in the 19th century first 

revealed the nervous system as a complex aggregate of seemingly innu-

merable nerve cells interconnected in ways that were anatomically orga-

nized and specific to each part of the brain. The  “ neuron theory ”  

motivated early theoretical accounts directed at linking psychological 

phenomena to their anatomical and physiological substrates. Examples 

are Theodor Meynert ’ s attempts at deciphering brain architectures (see 

chapter 5), Sigmund Freud ’ s anticipation of changes in neuronal connec-

tions as the material basis of memory in his (then unpublished) 1895 

manuscript entitled  A Project for a Scientific Psychology  (Freud, 1966), 

and Sigmund Exner ’ s early network diagrams. In the opening passage of 

his treatise  Entwurf zu einer Physiologischen Erkl ä rung der Psychischen 

Erscheinungen , Exner expressed his central goal  “ to trace the most prom-

inent psychological phenomena back to differential excitation of nerves 

and nerve centers, that is, to link the diversity of consciousness to quan-

titative relations and differences in the central connections of otherwise 

equivalent nerves and centers ”  (Exner, 1894, p. 3).  8   

    However, the quantitative framework for describing those differences 

in connections of  “ nerves and centers ”  was missing. While the origins of 

graph theory extend back over 250 years, its prominence as a model for 

complex social and biological systems composed of numerous elements 

and interactions is a fairly recent phenomenon. Beginning in the 1930s 

with  “ sociograms, ”  graphical descriptions of interpersonal relationships 

between members of a social group, the full power of network analysis 

as a quantitative model for sociological theory was realized only much 

later. In a seminal paper written almost 40 years ago, the sociologist Mark 

Granovetter proposed that network theory could address what he saw 

as the fundamental weakness in his field,  “ that it does not relate micro-

level interactions to macro-level patterns in any convincing way ”  

(Granovetter, 1973, p. 1360). He went on to suggest that  “ it is through 

[ … ] networks that small-scale interaction becomes translated into large-

scale patterns, and that these, in turn, feed back into small groups. ”   9

Network theory has since undergone enormous expansion in virtually all 

areas of the social and natural sciences. Most recently, it has become an 

integral part of sophisticated analysis and modeling of biological systems 

at cellular and organismic scales (Barab á si and Oltvai, 2004; Zhu et al., 

2007; Bascompte, 2007). 

 Networks or graphs are collections of nodes and edges, with edges 

representing relationships between pairs of nodes. In the case of the 
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 Figure 1.4 
 Examples of brain networks. (A) An illustration of the human central and peripheral 
nervous system, from Andreas Vesalius ’ s 1555 edition of  De humani corporis fabrica , 
reproduced from Swanson (2007) with permission. (B) A schematic diagram of the major 
connections of the cerebral cortex, including commissural fibers linking the cerebral hemi-
spheres, association fibers linking cortical regions, and fibers linking cortical and subcortical 
regions. A, corpus callosum; B, anterior commissure; C, pyramical tract; a, b, c, cortical 
neurons; d, e, axonal branches. Reproduced from Exner (1894). (C) Dendritic and axonal 
arbors of a synaptically connected pair of neurons in cat cortex. At the bottom (dark gray) 
is an interneuron (I) located in L (layer) 3 whose axon innervates a L2 pyramidal cell (P). 
Scale bar: 100  μ m. Reproduced with permission from Thomson et al. (2002). 
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nervous system, nodes most often refer to neurons or brain regions, while 

the edges between them can stand for a variety of measures of associa-

tion, including the strength of a structural linkage (synapse, pathway) or 

an estimate of the dynamic flow of information. The variety of ways in 

which brain networks can be defined and measured is a somewhat unique 

feature compared to other fields — most applications of graph theory in 

social or natural systems so far have focused on fairly static representa-

tions without attempting to track dynamic network interactions. Dynam-

ics, however, are an integral aspect of neural function, and thus dynamic 

networks represent a major branch of brain graph analyses. Broadly, 

brain networks can be classified as describing structural connectivity 

(anatomy), functional connectivity (statistical dependencies), and effec-

tive connectivity (causal relations) among collections of nodes (Jirsa and 

McIntosh, 2007;   figure 1.5 ;   table 1.1 ). Structural connectivity is the central 

objective of connectome-mapping studies while functional and effective 

connectivity describe the many facets of variable brain dynamics that 

accompany different aspects of sensorimotor function, behavior, and 

cognition. 

      Before observations of brain structure or function can be analyzed 

with the tools and metrics of graph theory, the empirical data must be 

represented in the form of a network (Bullmore and Sporns, 2009). Key 

steps in this process involve the definitions of nodes and edges. If the 

data come from neurophysiological recordings, network nodes might 

correspond to individual neurons, while neuroimaging studies require 

that the brain be divided into regions or parcels. This parcellation step is 

critical because many graph measures are sensitive to the way nodes (and 

thus edges) are initially defined. Parcellation strategies for the human 

brain are thus a central concern of current efforts to map the human 

connectome (see chapter 5). Once nodes are defined, their mutual pair-

wise association can be determined from measurements of structural, 

functional, or effective connectivity. These pairwise associations can be 

assembled in the form of a connection matrix, which, in turn, represents 

a graph or network. The edges between the nodes define the graph ’ s 

adjacency structure, that is, they determine which nodes are immediate 

neighbors. Depending on the nature of the measure used to define the 

edges, graphs can be binary (edges are either present or absent), weighted 

(edges can take on graded values), undirected (edges express a symmetri-

cal relationship), or directed (edges express an asymmetrical relation-

ship). The graph adjacency makes no reference to the spatial position of 

the nodes and edges, instead capturing only the topology of the network. 
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Figure 1.5 
 Structural, functional, and effective connectivity. This schematic illustration shows a lateral 
view of the macaque cortex and illustrates the different modes of brain connectivity 
through the relations between four cortical regions, V1 (visual area V1), 7a (parietal visual 
area 7a), 46 (prefrontal area 46), and IT (inferior temporal cortex). The diagram at the top 
shows a regional parcellation of the cortical surface, defining cortical areas and thus the 
nodes of the brain network. Structural connectivity (left) is shown as a collection of white 
matter fiber bundles, functional connectivity (middle) is shown as symmetrical statistical 
relationships (arrows), which can be extracted from regional time courses of activation, 
and effective connectivity (right) is shown as inferences of directed (causal) interregional 
interactions. See figure 2.3 for a related illustration of the dynamic aspect of functional 
connectivity. 

As I will discuss later (in chapter 7), the spatial embedding of brain 

networks entails a close relationship between the location of network 

elements and their propensity for being topologically connected. 

 Graph theory offers a comprehensive set of quantitative measures that 

capture global (network-wide) or local (node or edge specific) aspects 

of connectivity (  figure 1.6 ).   Table 1.2  provides a glossary for a selection 

of some of the most important graph concepts and measures that will be 

referred to throughout the book. More in-depth and formal surveys of 

graph measures are available in the form of numerous review articles 

(e.g., Rubinov and Sporns, 2010; Kaiser, 2011). Applications of graph 
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Table 1.1 
 Major modalities of brain networks  

 Network 
Modality  Edge Representation  Empirical Techniques  Network Characteristics 

 Structural 
connectivity 

 Presence/absence of 
physical link 
(synapses, pathways), 
biophysical efficacy 
(synaptic weight), time 
delay (chapters 2, 3) 

 Microscopy: tissue volume 
reconstruction (chapter 4) 
Neuroanatomy: tract tracing 
(chapter 5) 
Neuroimaging: diffusion 
imaging/tractography 
(chapter 5) 

 Weighted or 
unweighted, sparse and 
directed (synapses, 
projections), sparse and 
undirected (diffusion 
MRI) 

 Functional 
connectivity 

 Statistical 
relationships between 
neural time courses 
(e.g., spikes, EEG, 
BOLD; chapter 6) 

 Neurophysiology: spike or 
i eld potential correlations 

 EEG/MEG: correlation, 
synchronization, coherence, 
phase locking 

 fMRI: BOLD signal 
cross-correlations, partial 
correlations (chapter 6) 

 Full and weighted, or 
sparse and weighted (or 
unweighted) after 
thresholding; undirected 

 Effective 
connectivity 

 Causality inference 
based on temporal 
precedence cues; 
causality inference 
based on generative 
model (chapter 6) 

 Spikes, EEG/MEG, fMRI: 
time series analysis (e.g., 
Granger causality, transfer 
entropy) or model inference 
(e.g., dynamic causal 
modeling) 

 Full or sparse; weighted 
(or unweighted) and 
directed 

    Structural connectivity is also referred to as anatomical or synaptic connectivity. The dis-
tinction between functional and effective connectivity is based on whether network edges 
are expressing directed influences. An alternative and more stringent definition of effective 
connectivity refers only to the explicit inference of a causal or generative model (e.g., 
Friston, 2011). MRI, magnetic resonance imaging; EEG, electroencephalography; BOLD, 
blood oxygen level dependent signal; MEG, magnetoencephalography; fMRI, functional 
magnetic resonance imaging.     

theory to the brain are covered in some detail in Sporns et al. (2004), 

Bassett and Bullmore (2006), Stam and Reijneveld (2007), Bullmore and 

Sporns (2009), Guye et al. (2010), Wang et al. (2010), Bullmore and 

Bassett (2011), Telesford et al. (2011), Sporns (2011a), and Stam and van 

Straaten (2012). An open-source Matlab toolbox for computing all of the 

measures discussed in this book, including a number of brain connectiv-

ity data sets, is available at  www.brain-connectivity-toolbox.net . 

      The most fundamental graph measure is the node degree. It refers to 

the number of connections that are attached to a specific node. Many 

other graph measures are derived from or correlated with node degree, 

and some of the local and global architectural features of a network can 

be gleaned from its degree distribution. A related measure is the 

 “ weighted degree, ”  or node strength, which in a weighted network 
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Figure 1.6 
 Network measures. This schematic diagram shows a selection of some measures that are 
among the most widely used in neuroscience. The measures are illustrated in a rendering 
of a simple undirected graph with 12 nodes and 23 edges. (A) The node degree corresponds 
to the number of edges attached to a given node, shown here for a highly connected node 
(left) and a peripheral node (right). (B) The clustering coefficient is shown here for a 
central node and its six connected neighbors. These neighbors maintain 8 out of 15 possible 
edges, yielding a clustering coefficient of 0.53. (C) The network can be decomposed into 
connected subgraphs, also called network motifs. The plot shows two examples of two dif-
ferent motifs composed of three nodes. (D) The distance between two nodes is the length 
of the shortest path. Nodes A and B connect in three steps, through two intermediate nodes 
(shown in gray). The average of the finite distances for all node pairs is also called the 
graph ’ s path length. (E) The network forms two modules interconnected by a single hub 
node. Reproduced with permission from Sporns (2011b). 
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Table 1.2 
 Important graph concepts and measures that are widely used in the analysis of brain net-
works and are frequently referred to in this book  

 Graph 
Concept  Definition 

 Graph  A graph is a set of nodes and edges describing or representing a network. 

 Network  A network is a system composed of interconnected elements that can be mathematically 
represented as a graph. The terms  “ network ”  and  “ graph ”  are often used 
interchangeably. 

 Node  An element of a graph or network. In the case of a brain network, nodes may represent 
a neuron, a neuronal population, a brain region, a brain voxel, or a recording electrode. 
Nodes are sometimes also referred to as  “ vertices. ”  

 Edge  Nodes are linked by edges (also called links or connections). Edges may be directed or 
undirected, and they may be binary or have fractional weights. 

 Topology  The geometric relation between nodes defined by their connecting edges, irrespective 
of any metric distances or spatial embedding. 

 Binary 
graph 

 A binary graph contains only binary edges, that is, it records only whether a pair of 
nodes is connected or not. If a connection is present, the edge is set to 1; otherwise it is 
0. Binary graphs can be directed or undirected. Binary graphs often result when a 
threshold is applied to continuous data matrices. 

 Weighted 
graph 

 A weighted graph contains edges that can take on any fractional value (including 
positive and negative values). 

 Undirected 
graph 

 All edges in an undirected graph represent a symmetrical relation between each pair of 
nodes — for example, a cross-correlation. 

 Directed 
graph 

 Edges represent asymmetrical (directed) relations between node pairs — for example, a 
synaptic link or a causal effect. 

 Path  A path is a set of unique edges that link one node to another. In directed graphs, paths 
consist of sets of directed edges that link a source node to a target node. In most 
graphs, a large number of paths exist between any pair of nodes. 

 Distance  The distance refers to the length of the shortest path between a given pair of nodes. If 
no path exists, the distance is infinite. Distance is recorded as the number of distinct 
edges (an integer) in binary graphs or as the combined lengths of the edges comprising 
the path in weighted networks. Distance refers only to the topology of the graph, not its 
metric or spatial embedding. 

 Connection 
matrix 

 The most basic representation of a graph or network in matrix format, with the entries 
a ij   of the matrix equal to the weight of the connection between node  i  and node  j . The 
entries  a ij   are zeros or ones for binary graphs. In binary graphs, the connection matrix is 
also referred to as the adjacency matrix. 

 Distance 
matrix 

 The entries of the distance matrix contain the distances between all pairs of nodes. 

 Module  A community of nodes, generally defined by the connection topology. Modules tend to 
comprise nodes that are more strongly interconnected within than between modules. In 
brain networks, modules may be defined on the basis of structural or functional 
connections. 

 Hub  A node that has high influence or importance to the integrity of the network and its 
global interconnectedness. Hubs can be detected on the basis of their high degree or 
high centrality. 

 Core  A network core is a coherent set of nodes that are highly and mutually interconnected. 
A core can be mapped by using a recursive procedure that prunes away weakly 
connected nodes (i.e., nodes with low degree). 
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Table 1.2
(continued)

 Graph 
Concept  Definition 

 Rich club  Related to the core, a rich club is a set of high-degree nodes that are more strongly 
interconnected than expected by chance. 

 Random 
network 

 A network whose nodes are randomly interconnected. In the simplest case, a random 
network is generated by assigning edges to each node pair with a fixed and uniform 
probability. More complex random models can be constructed. 

 Small-
world 
network 

 A network whose average clustering coefficient is similar to that of a regular lattice 
network and whose characteristic path length is similar to that of a random network. 

 Graph 
Measure  Definition 

 Degree  The most fundamental attribute of each node, referring to the number of edges 
(undirected or directed, i.e., incoming and outgoing) that are attached. Across the 
whole network, statistics on node degrees are often summarized in a degree 
distribution. 

 Strength  The sum of all edge weights (incoming and outgoing) for all edges attached to a given 
node. 

 Clustering 
coefficient 

 The fraction of edges (out of all possible) that connect the neighbors of a given node. 
The clustering coefficient of a node captures the degree to which its neighbors are also 
neighbors of each other (the  “ cliquishness ”  of a network neighborhood). The clustering 
coefficient can be averaged across an entire network. Different versions of the measure 
exist for undirected and directed, binary and weighted graphs. 

 Path length  Computed from the distance matrix, the path length (also called  “ characteristic path 
length ” ) is the average of all finite distances in a network. 

 Modularity  The modularity score is computed relative to a partition of the network into modules. 
For a given partition, the modularity score records how many of the graph ’ s edges are 
made within the modules, relative to what would be expected by chance. The 
modularity of a graph represents the optimal score that can be achieved under any 
partitioning scheme. 

 Global 
efficiency 

 The global efficiency is the average of the inverse distances across a graph. If two 
nodes are unconnected, their inverse distance is 0. In binary networks, the efficiency of 
an unconnected graph (no edges) is 0 and the efficiency of a fully connected graph is 1. 

 Centrality  In general, centrality expresses the importance or influence of a given node or edge. 
There are many measures of centrality. For example, the node betweenness centrality is 
computed as the function of short paths between all nodes of the network that pass 
through a given node. An equivalent measure can be computed for all edges. 

    These definitions are deliberately simplified and nonmathematical as they are meant to 
provide an intuitive idea and a first point of reference for the nonspecialist reader. For 
more in-depth treatment and mathematical background (including primary citations for 
all measures), see Rubinov and Sporns (2010).    
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records the sum of the weights of all connections maintained by a given 

node. The importance of node degree and strength derives from the 

fairly direct impact of degree on the dynamic  “ importance ”  of a given 

node.  “ Importance ”  captures the extent to which a network element 

has access to the rest of the network, influencing or affecting inter-

actions elsewhere. Other measures of influence, such as various cen-

trality measures (e.g., closeness centrality, betweenness centrality, 

eigenvector centrality) are often found to be correlated with node degree 

or strength. 

 Graph measures relevant to the brain can be divided into three catego-

ries by virtue of what they tell us about brain organization. Measures of 

segregation capture the degree to which the nodes of a network exhibit 

clustered connectivity, which arises, for example, when connected part-

ners (neighbors) are also neighbors of each other. The clustering coef-

ficient of the network, generally expressed as the mean of the clustering 

coefficient over all nodes, is high if many of its connected nodes have 

common partners. Of particular interest are networks that can be decom-

posed into distinct communities or modules, defined on the basis of the 

density of connections within and between modules. Measures of integra-

tion estimate how efficiently information can be exchanged among all 

nodes in the network. Commonly used metrics to express this capacity 

are the path length and the global efficiency. Measures of influence yield 

metrics for individual nodes and edges — for example, quantifying their 

contribution or participation in dynamic processes unfolding on the 

network. Examples are measures of centrality, which is an important 

indicator of hubs in the brain. Most network measures, once obtained 

from empirical data, must be compared to appropriate random models —

 for example, randomly rewired networks that have equal size, edge 

density, and node degrees — to assess their significance. In general, the 

full characterization of a given network in terms of its topology, the dif-

ferent network roles of nodes and edges, and its overall architecture 

requires the evaluation of a broad range of network measures. As it turns 

out, many empirical networks, including those found in the brain, express 

characteristic combinations of network attributes that are associated 

with specific topological families. 

 The modern era of network science began with the realization that 

virtually all real-world networks exhibit highly nonrandom properties of 

local and global patterns of network connectivity. A number of these 

properties were found to be universal in the sense that they could be 
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identified across a wide range of natural, social, and technological systems. 

Among these, the  “ small-world ”  property is of particular interest to 

neuroscience. The small-world phenomenon, long studied in the context 

of social networks (Travers and Milgram, 1969), refers to the surprising 

tendency of some very large networks to allow links between any two 

nodes via short paths, or sequences of a small number of unique edges. 

A large social network with thousands or millions of nodes (people) 

often contains a remarkable number of very short paths of acquaintance-

ship that link most people to each other.  10   Duncan Watts and Steven 

Strogatz, in a seminal paper published in 1998, noticed the joint occur-

rence of two topological attributes, short paths and high clustering, across 

a wide range of networks, from collaborations among movie actors, to 

the U.S. power grid, to the synaptic connectivity of the nematode  Cae-

norhabditis elegans  (Watts and Strogatz, 1998). Soon after, small-world 

architectures were also found in structural connectivity data recording 

large-scale projections among regions of mammalian cerebral cortex 

(Sporns et al., 2000; Hilgetag et al., 2000; Sporns and Zwi, 2004). 

 Closer examination reveals that small-world attributes like high clus-

tering and short path length, despite their near-universal presence, do 

not identify a single coherent topological class. Rather, it is possible for 

networks to attain small-world connectivity in different ways. Structural 

and functional brain networks express small-world attributes through the 

existence of modules or communities of tightly interconnected nodes 

that are more weakly coupled among each other. In many cases, these 

modules are arranged hierarchically (as  “ modules within modules ” ), an 

architecture that may have important consequences for neural dynamics 

(see chapter 7). The detection of network modules or communities is of 

special importance for studies of brain networks as it allows the identi-

fication of closely coupled subnetworks and functional systems. We will 

encounter modules repeatedly throughout the book in various contexts, 

including when discussing the parcellation of the brain into coherent 

regions (chapter 5), the identification of functional networks supporting 

different cognitive capacities (chapter 6), and the definition of global 

network architecture (chapter 7).  11   

 While most network approaches can, in principle, be applied to network 

data regardless of origin, careful distinctions have to be made in the 

interpretation of network metrics obtained from structural and func-

tional brain networks (see chapter 6). Structural networks are consider-

ably more straightforward to define and interpret because of the sparsity 
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Figure 1.7 
 The shift from brain activation to brain connectivity. The graph shows an estimate of 
the number of neuroimaging publications per year that focus on activation (functional 
segregation, light gray) and connectivity (functional integration, dark gray), respectively. 
These estimates were derived from a search of the ISI Web of Knowledge with the search 
terms  “ ((neuroimaging OR fMRI OR DTI) AND activation) ”  and  “ ((neuroimaging OR 
fMRI OR DTI) AND connectivity). ”  The proportion of papers referring to aspects of 
functional integration has risen from less than 5 percent in 2000 to around 30 percent in 
2011; their number has grown over 20-fold. Based on a similar figure first published in 
Friston (2009). 

and specificity of their links and their (relative) stability across time. 

Functional networks exhibit significantly greater temporal variability 

and comprise statistical relations between neurons or brain regions that 

may or may not be structurally linked. These specific characteristics of 

structural and functional networks entail differences in the way these 

networks are analyzed. 

 In summary, network theory offers an indispensable framework for 

the representation and analysis of connectome data sets. Extending a 

gradual shift in emphasis from functional localization to functional inte-

gration (Friston, 2009;   figure 1.7 ), the growth of connectomics in systems 

neuroscience will be accompanied by an expansion of graph-based mod-

eling and data analysis. Importantly, network theory offers an extremely 

broad theoretical framework that transcends the traditional boundaries 

of scientific disciplines and links neuroscience with the emerging science 

of complex systems. 
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An  “ ome ”  for Neuroscience 

 The discovery of the human connectome will bring significant new op-

portunities to brain sciences. The connectome is a foundational neuro-

biological data set, a structural model of the brain that is indispensable 

for understanding brain function. Like other structural models in 

biology, the connectome provides a basic plan, a necessary ingredient 

for building mechanistic models of brain activity. However, while neces-

sary, the connectome alone is not sufficient for understanding neural 

dynamics and behavior. The relation of structure to function, centrally 

important all across biology, is complex and nonlinear. The connectome 

is a key player in constraining and shaping neural activity, but, as we will 

see in later chapters, knowledge of the graphical layout of the con-

nectome is only a first step toward a comprehensive account of brain 

function. Deep understanding of the connectome can only come from 

considering brain networks in the context of the whole organism and its 

behavior. 

 The connectome offers a common operational goal for a broad spec-

trum of neuroscientists working across different scales and systems. In 

the future, connectomics will likely foster increased collaboration and 

cooperation between researchers who previously worked in relative iso-

lation from one another. Connectomics is an inherently transdisciplinary 

endeavor that brings together anatomists, neurophysiologists, radiolo-

gists, geneticists, and computer scientists. Like systems biology, connec-

tomics employs a blend of hypothesis-driven and discovery-based 

research that involves the integration of multiple data types. Connec-

tomics culminates in the construction of quantitative computational 

models that embody neurobiological mechanisms at multiple levels 

of organization. As connectomics gains ground in neuroscience, it 

supplements more conventional small-scale (single-laboratory) research 

with a model now commonly seen in the physical sciences: very large-

scale projects that are driven by consortia of experts aiming for broad 

research objectives and clearly defined deliverables while building tech-

nologies and infrastructure that benefit entire research communities. This 

model naturally involves interdisciplinary collaborations, with greater 

dependence on specialized technical expertise and a complex manage-

ment structure. In addition, it strongly relies on informatics resources 

with the explicit goal of cumulative data collection and data sharing (see 

chapter 8). Connectomics represents one of the first examples of this 

research model in neuroscience. 
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 In 2012, several concerted research efforts directed at discovering the 

human connectome are under way. In the United States, the National 

Institutes of Health supports two large multi-institution research consor-

tia through the Human Connectome Project ( http://humanconnectome.

org/consortia/ ). Awarded in September of 2010, one grant supports work 

led by Washington University and the University of Minnesota (in addi-

tion to seven other institutions) involving the study of structural and 

functional brain connectivity, as well as behavior and genetics, of 1,200 

participants. Separately, a second grant supports the development of new 

imaging technology and analysis tools for structural brain connectivity, 

centered at the University of California (Los Angeles) and Massachu-

setts General Hospital. Other efforts, some of them in Europe and 

Asia, are rapidly gathering momentum.  12   In addition to human connec-

tome projects, several large-scale efforts are under way to map the con-

nectome of the mouse brain (e.g.,  http://www.mouseconnectome.org/ ; 

 http://brainarchitecture.org/ ) and of the fruit fly  Drosophila  (e.g.,  http://

www.flycircuit.tw/ ;  http://research.janelia.org/Chklovskii/ ). Not surpris-

ingly, a key focus of many of these projects is technology development, 

leading to methodological enhancement and validation. The science itself 

will accelerate as new methodologies are shared across laboratories and 

become more affordable and reliable. The inexorable rise of computation 

in the biological sciences further fuels progress in the acquisition and 

analysis of connectome data sets. Despite the many challenges that 

accompany efforts to map the connectome of any species, comprehensive 

network maps of the brains of several  “ model organisms ”  will become 

available at an accelerating rate and with ever-increasing resolution and 

accuracy. 

 Connectomics is an exciting new field, but a sober assessment of its 

future promise is in order.  13   I share the enthusiasm of many early prac-

titioners in this emerging field, but I am also keenly aware of the signifi-

cant difficulty of relating a structural map of the brain to neural dynamics, 

computation, cognition, and behavior. The project of mapping the con-

nectome is sometimes referred to as tracing the brain ’ s blueprint or 

wiring diagram, and the resulting map is widely viewed as central for 

making us who we are as a species and as individuals. The simplicity 

of this idea is, at first, rather appealing.  14   However, serious problems 

arise when the notion of  “ wiring diagram ”  is taken too literally. The 

brain is not a giant electrical appliance, or a powerful computer chip, 

whose wiring is engineered to carry out specific operations. I believe a 

different perspective is needed to make sense of the intricate web of 
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trillions of synaptic links that form a human brain. That perspective 

comes from viewing the brain as a network whose physical architecture 

enables  complex dynamic behavior  (Sporns, 2011a; Bassett and Gazza-

niga, 2011). Brain networks operate as integrated systems where 

connectivity is laid out in the service of bringing about a wide range of 

global functional outcomes. The combined action of many individual 

elements and connections at small scales generates collective and coor-

dinated states at large scales that are essential for cognition and behavior. 

In this dynamic sense, the network architecture of the connectome is 

critically important for enabling integrative processes in the nervous 

system. 

 Understanding integrative processes from the interactions of neural 

elements is a central research focus of connectomics, an extension of 

systems biology to the brain. A corollary of adopting this perspective is 

that brain function cannot be fully  reduced  to the connectome or wiring 

diagram, just as knowing an organism ’ s genetic material does not furnish 

a complete account of its biological form and physiology. The connec-

tome is not a blueprint of  “ who we are, ”  no more so than the genome, 

which was supposed to deliver the  “ book of life ”  that explained  “ the 

chemical underpinnings of human existence ”  (Watson, 1990, p. 44).  15   Alas, 

despite the ever-increasing volume of genomic data, a principled under-

standing of how the genome underpins biological function is still in its 

infancy. Nevertheless, in ways that are subtle and complex, both genome 

and connectome carry important information about the natural history 

of the human species and the biological substrate of our individuality. 

Gaining access to the basic inventory of genetic components and a 

growing understanding of the complex networks they set in motion has 

transformed the biological sciences.  16   In a similar vein, discovering the 

human connectome will give us new insights and tools for asking better 

questions about how the structure of the brain gives rise to its functional 

operations, in both health and disease. 

 So far we have informally defined the connectome as a comprehensive 

description or map of the brain ’ s connections. Now, let us explore the 

nature of the connectome in more detail — what do we mean by  “ connec-

tions, ”  how are they mapped and described, and why does this descrip-

tion matter so much in neuroscience? What exactly is the human 

connectome? 



 2 

 The importance of synaptic patterns in neural circuits for brain function 

has been recognized for a very long time. The discovery of the specificity 

and diversity of the cellular architecture of the nervous system by Ram ó n 

y Cajal stands to this day as a towering achievement in the history of 

brain research.  1   Uncovering the anatomical connectivity of neuronal 

circuits and populations continues to be a central aim of cellular and 

systems neuroscience. Motivating modern research in this area is the 

hypothesis that mapping of anatomical circuits represents a fundamental 

step toward understanding brain function and physiology (  figure 2.1 ). 

Cellular structure, and particularly connectivity, is widely seen as an 

important ingredient for enabling cellular computation, the specificity of 

physiological responses and their integration into coherent neural states. 

Until now, functional studies of cells and circuits have largely been 

carried out in the absence of detailed and specific information about the 

underlying connectivity. While the characteristic response properties of 

neurons such as orientation preference, selectivity for faces or objects, 

tuning to specific auditory frequencies, or reward prediction have been 

extensively studied, in virtually all cases a precise structural account of 

how these examples of functional specialization come about has remained 

elusive. 

    One of the major obstacles for tracing functional and physiological 

observations to the structural basis of the nervous system is the lack of 

a quantitative or comprehensive map of neural elements and their 

mutual connections. The creation of such a map is a principal goal of 

connectomics. Connectome mapping can be carried out directly, by 

deploying a broad spectrum of anatomical techniques (see chapters 4 

and 5), or indirectly, by attempting to infer connections between circuit 

elements based on their temporal dynamics or functional responses. 

However, the inference of circuit connectivity from observations of 

What Is the Human Connectome? 
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Figure 2.1 
 An early map of connections in cortex and basal ganglia of the Rhesus monkey ( Macaca 
mulatta ). The structures are arranged in a flat map with distinct cortical and subcortical 
regions presented in a manner that preserves their topological relations. Cell-like symbols 
indicate putative anatomical projections, identified by a neural stimulation technique called 
 “ neuronography. ”  The creator of this map, the physiologist and theoretician Warren 
McCulloch, commented on its basic rationale:  “ Functional organization, which defines 
the temporal course of activity in any nervous mechanism, depends upon both physico-
chemical reactions of constituents and their anatomical relations. Since reactions of all 
neurons are similar, it is frequently possible to deduce anatomy from observed activity or 
to predict activity from known anatomy. ”  Numerals refer to Brodmann areas; NC, nucleus 
caudatus; PUT, putamen; GPE, globus pallidus, external segment; GPI, globus pallidus, 
internal segment. Reproduced from McCulloch (1944, p. 404). 
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neural time courses, from relations between physiological properties of 

neural elements, or from functional disruptions of circuitry following 

temporary or permanent lesions is indirect and subject to multiple types 

of error (see chapter 6). In contrast, directly mapped patterns of anatomi-

cal or structural connectivity between neurons are sometimes referred 

to as the  “ ground truth ”  necessary for mechanistic accounts of circuit 

dynamics and function.  2   

 One of the central motivations for the connectome is to deliver the 

ground truth of circuit and systems anatomy. As it turns out, the origins 

of this goal go back at least several decades and have stimulated multiple 

parallel research efforts in different areas of neuroscience. 

Multiple Origins, Common Motivations 

 In their seminal article describing the electron microscopy (EM) recon-

struction of the nervous system of the nematode  Caenorhabditis elegans , 

Sydney Brenner and colleagues formulated one of the key rationales for 

pursuing the complete connectivity pattern of an organism:  “ The func-

tional properties of a nervous system are largely determined by the 

characteristics of its component neurons and the patterns of synaptic 

connections between them ”  (White et al., 1986, p. 2).  3   Implicit in this 

statement is a research program directed at the compilation of compre-

hensive brain-wide maps of neural connections, not only for  C. elegans  

but for other species as well. The creation of the  C. elegans  map repre-

sented an early milestone of connectomics, an achievement that to this 

date has not been matched.  C. elegans  continues to be the only organism 

whose neural connectivity is completely known.  4   

 Parallel and independent studies by neuroanatomists investigating the 

anatomical connections of nonhuman primate brains suggested a struc-

tural basis for the rich variety of observed physiological responses, par-

ticularly in the visual system. Semir Zeki ’ s early studies of visual 

integration were based on the premise that  “ patterns of anatomical con-

nections in the visual cortex form the structural basis for segregating 

features of the visual image into separate cortical areas and for com-

munication between these areas at all levels to produce a coherent 

percept ”  (Zeki and Shipp, 1988, p. 311). Functional  segregation , expressed 

in specialized physiological responses of cells and cortical regions, and 

functional  integration , evident in coherent neural states underlying 

complex behavior, were both seen as dependent on the anatomical 

organization of cortical connections. Knowledge of the pattern of these 
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connections would allow inferences about the structural basis of cortical 

responses and their integration. 

 A systematic effort to delineate the hierarchical arrangement of corti-

cal areas as well as their organization into coherent parallel processing 

streams was carried out by Dan Felleman and David Van Essen, culmi-

nating in a landmark analysis of the connections of macaque visual 

cortex (Felleman and Van Essen, 1991). Summarizing the results of 

numerous anatomical studies reporting on interregional cortical path-

ways, Felleman and Van Essen were among the first to represent ana-

tomical connectivity in the form of a connection matrix, a compact 

description of visual cortex that took the mathematical form of a directed 

graph.  5   Their analysis of macaque connectivity revealed several anatomi-

cal characteristics that had significant functional and physiological impli-

cations. Among them were the existence of segregated areas linked by 

distributed and mostly reciprocal connections, arranged into multiple 

overlapping processing streams, and a processing hierarchy extending 

over a number of more or less distinct hierarchical levels. Importantly, 

Felleman and Van Essen ’ s analysis underscored the fundamental role of 

anatomical organization, that is, the system-wide arrangement of areas 

and connections (nodes and edges, in the language of graph theory) for 

an understanding of visual processing and computation. Further attempts 

at compiling comprehensive anatomical maps in other species followed, 

several of them with the explicit goal of creating neuroinformatics 

resources in the form of databases or repositories for the storage, annota-

tion, and retrieval of connectivity data.  6   

 The terms  “ connectome ”  and  “ connectomics ”  have multiple origins.  7

The first proposal to map the human connectome defined it as  “ a com-

prehensive structural description of the network of elements and con-

nections forming the human brain ”  (Sporns et al., 2005). In parallel, 

Patric Hagmann, in his 2005 Ph.D. thesis, coined the term  “ connectomics ”  

as the study of the brain ’ s set of connections and noted that the brain ’ s 

 “ computational power critically relies on this subtle and incredibly 

complex connectivity architecture ”  (Hagmann, 2005, p. 109;   figure 2.2, 

plate 1 ). Other origins of the concept trace back to the work of research-

ers in cellular neuroscience and microscopy. Kevin Briggman and Win-

fried Denk argued for the necessity to extract neural connection matrices 

from detailed reconstructions of neural tissue recorded with EM because 

 “ knowledge of all the pre- and postsynaptic synaptic connections of a 

cell is necessary to understand its role in a network ”  (Briggman and 

Denk, 2006, p. 562). In the fall of 2007, Sebastian Seung, Jeff Lichtman, 
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and Clay Reid organized a graduate seminar at MIT and Harvard enti-

tled  “ Introduction to Connectomics, ”  referring to connectomics as  “ an 

emerging field defined by the high-throughput generation of data about 

neural connectivity, and the subsequent mining of that data for knowl-

edge about the brain. ”   8   In an article reporting on a novel neuronal label-

ing technique called  Brainbow , Jeff Lichtman and colleagues defined 

 “ connectomic maps ”  as  “ connectivity maps in which multiple, or even 

all, neuronal connections are rendered ”  (Livet et al., 2007, p. 56). 

    The parallel origin of the connectome as a key target for neuroscien-

tific investigation in cellular and systems neuroscience is remarkable. It 

not only underscores the timeliness of the idea but also affirms its poten-

tial transformative power in uniting scientific efforts that span vastly 

different levels of scale. All of the originators of the concept stressed the 
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Figure 2.2 (plate 1) 
 The first picture of a human connectome. The image shows a graphical representation of 
human brain connectivity in the form of a connection matrix. Each of the over 700 rows 
and columns of the matrix represents a small patch of the brain ’ s gray matter. The connec-
tion density between these patches is color coded. Note that much of the matrix is empty, 
reflecting the relative sparsity of large-scale interregional connections. Courtesy of Patric 
Hagmann (Hagmann, 2005, p. 110). 
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important role of structural connections, of connectional neuroanatomy, 

for shaping dynamic or functional responses of neural elements, ranging 

from those of individual nerve cells to entire brain regions. Also, there 

was general agreement that the essence of connectomics is the creation 

of connectivity maps of entire nervous systems that are as complete and 

detailed as technically possible. Thus, leaving aside for the moment some 

of the important differences that are intrinsic to various methodologies 

deployed at cellular or whole-brain scales (see chapters 4 and 5), a con-

sensus definition of the connectome emerges: The connectome is a com-

prehensive map of neural connections whose purpose is to illuminate 

brain function. 

 It is worth underscoring this last point about the purpose of the con-

nectome. The connectome is more than an accumulation of large amounts 

of empirical data. The real promise of the connectome derives from 

providing a mechanistic basis and a theoretical foundation for under-

standing the brain. An important additional step must be taken so that 

this promise can be fulfilled. Connectomics must include the develop-

ment of analysis and modeling tools that reveal hidden regularities in 

the connection pattern and allow the formulation of predictive models 

of brain responses. An integral part of the original proposal for a con-

nectome of the human brain was the idea that the connectome is a 

complex network that shapes brain function (Sporns et al., 2005; Sporns, 

2011c, 2012). It is important to map and analyze this network because 

its connection topology contains rich information about architectural 

principles that underlie the expression of neural dynamics. The structure 

of the connectome also preserves a record of the organism ’ s past. Con-

nectivity is molded by the powerful forces of natural selection in evolu-

tion, and it is continually reshaped by development and experience. The 

connectome thus reflects the history both of the species and of the 

individual. 

 Embracing the connectome as a fundamental research goal implies a 

shift toward a connectivity- or network-based model of the brain. 

Network models are at the core of connectomics, and their adoption has 

far-reaching consequences for empirical and theoretical approaches to 

brain function. Before we explore structural and functional brain net-

works in more detail, the definition of the connectome requires some 

scrutiny. In the remainder of this chapter, we will examine some impor-

tant conceptual aspects that articulate the idea that the connectome is 

primarily about  structure  (physical or anatomical connectivity) and that 

it is a  network description  of the brain. 
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Conceptual Foundations 

 The structural or anatomical connections of a nervous system form a 

finite set of physical links joining a finite set of neural elements. These 

physical links represent structural specializations of neurons that enable 

interneuronal communication, including most importantly all chemical 

synapses as well as electrical junctions. A number of structural parame-

ters characterize these links. In the simplest case, a link might be char-

acterized by a binary number indicating that the connection is present 

(1) or absent (0). More detailed representations of these links might 

record their number or density, their spatial attributes such as the physi-

cal location of the linked elements, the connection length and trajectory,  9

as well as cellular, biochemical, and biophysical properties that define 

the nature and magnitude of the link ’ s physiological effects. All of these 

parameters are fundamentally structural in nature since they involve 

various aspects of neuronal and synaptic morphology, the cellular distri-

bution of channels and receptors, and the biochemical modification of 

macromolecules involved in signal transduction and amplification. A 

complete and comprehensive structural description of a neural circuit or 

nervous system, a connectome, should include as many of these param-

eters as can be empirically determined. Recording which elements 

connect to each other, expressed as a set of binary relations forming an 

adjacency matrix, is only a first step. Additional structural information 

in the form of annotations that report on spatial layout and physiology 

should be linked to this binary map. 

 The emphasis on  structure  has several motivations. First, as discussed 

in the previous chapter, structure shapes biological function, and the 

fundamental importance of the connectome derives largely from an 

extension of this notion to neuroscience. Second, structure represents a 

definitive ground truth. The plausibility of connectomics rests on the fact 

that structural connections, a large but finite set of relations among 

neural elements, can be objectively verified and completely mapped. This 

aspect is unique to structural connectivity. In contrast, functional con-

nectivity exhibits temporal fluctuations that strongly depend on context 

provided by internal state, sensory inputs, and cognitive demands (see 

chapter 6). These fluctuations give rise to an extensive set of functional 

networks that ceaselessly unfold across time, a set much larger than that 

formed by the underlying structural connections (  figure 2.3 ). In addition, 

functional connectivity relies on a diverse range of methods for neuronal 

recording and time series analysis. Different methods for recording 
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Figure 2.3 
 The dynamics of functional connectivity. The images represent a schematic diagram of the 
macaque brain (lateral view) and four brain regions: V1, visual area V1; 7a, parietal area 
7a; IT, inferior temporal cortex; 46, prefrontal area 46. (A) Schematic illustration of struc-
tural connectivity and a longtime average of functional connectivity (cf. figure 1.5). (B) 
Functional connectivity changes across time. Each time point shows a changing network 
pattern of functional connectivity estimated from short episodes of neural recordings. The 
pattern in (A) represents an overlay or average of the many patterns seen in short 
episodes. 

functional connectivity capture different aspects of neural dynamics, and 

there is no indication at the time of writing that a single universally 

agreed-upon method for measuring functional connectivity will soon 

emerge. Thus, fast-changing functional (and, by extension, effective) con-

nectivity does not offer a clear point of convergence because it does not 

represent a finite and invariant set of elements and relations.  10   

    Since structural connectivity is more stable across time (at least at the 

level of neural systems; see chapter 3) and because it is physical and 

veridical (in the sense that a physical link either demonstrably exists or 

it doesn ’ t), different methods for measuring structural connections should 

converge on a common, or at least mutually compatible, connectivity 

layout. This point is important as it underpins one of the central claims 
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of connectomics, its ability to furnish an objectively verifiable and invari-

ant structural foundation for brain function. In principle, all methods 

employed for mapping structural connections should uncover an identi-

cal map. (In reality, this may be difficult to achieve due to methodological 

limitations such as resolution limits; see chapters 4 and 5.) Any disagree-

ments between different methods should be resolvable by further refine-

ment and continued observation. Once a comprehensive structural map 

has been drawn, the first principal aim of connectomics has been achieved. 

 And yet, however detailed this map may be, it would represent only a 

first step toward understanding how structural connections give rise to 

brain dynamics and behavior. An analogy with genomics may help to 

clarify this important point about the necessity, and at the same time 

insufficiency, of structure. Whole-genome mapping involves the sequenc-

ing of very large molecular structures, the polynucleotide strands of 

DNA. This structure provides full information about the catalog and 

arrangement of functional genomic units, an inventory of genes coding 

for proteins in addition to important noncoding regions and regulatory 

sequences. The mapping of these functional units was the principal aim 

of the Human Genome Project. However, the structural map that resulted 

from this large-scale research effort does not translate in simple ways to 

a complete understanding of  “ functional genomics. ”  For example, the 

level at which specific genes are translated and expressed strongly 

depends on genetic, cellular and environmental context. Gene regulation 

relies on complex spatiotemporal networks that are still only incom-

pletely understood. Hence, genetic sequences are only a first step toward 

delivering an account of the workings of functional systems. Quite analo-

gously, the first goal of connectomics is to uncover a finite set of struc-

tural elements and connections that inform us about how to decompose 

the brain into functional units. Taking the next step and attempting to 

 “ decode ”  this structural map, or determining its role in the operation of 

the brain at the level of cells and systems, requires the consideration of 

a multitude of complex dynamic and functional interactions. Hence, 

knowledge of the connectome is necessary but not sufficient for under-

standing the brain. 

 This comparison with genomics leads us to a second important aspect 

of the connectome — it is a  description  of connectivity designed to reveal 

brain architecture. The term  “ description ”  implies data compression and 

reduction such that information about the described structure is maxi-

mized. In other words, a description relies on a way to decompose the 

structure into meaningful elements and their relations. Again, genomics 
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offers an instructive comparison. Genomic sequencing was significantly 

aided by knowledge of the genetic code, which specifies how DNA struc-

ture is translated into functioning macromolecules. The genetic code 

helped to parse genomic sequences into meaningful architectural ele-

ments. Connectome mapping would greatly benefit from a set of prin-

ciples that define how neural elements and their connections translate 

into building blocks of brain architecture, a compact description of brain 

connectivity. The connectome, defined here as a description of brain 

architecture, goes far beyond the collection of  “ raw data ”  by offering 

important information about connectivity in the form of structural pat-

terns and regularities. A description is more than a list of parts. To turn 

to an analogy, a useful description of the great pyramid at Giza will likely 

make reference to the main geometrical and architectural features of its 

design rather than offer a list of the dimensions and positions of the 2 

million blocks of limestone from which it is built. Similarly, the human 

connectome is a description of brain architecture that goes beyond enu-

merating all cells, synapses, or brain regions, but also reveals their basic 

plan. The arrival of the human genome provided such a basic plan for 

the genetic material, thus grounding our efforts to understand the bio-

logical bases for human variation and our relation to other species. It 

also answered important questions about genomic organization, includ-

ing the precise number of genes  11   and their structural arrangement and 

regulatory couplings. The basic plan of the human connectome will 

answer similar important questions about brain architecture — for 

example, the number of distinct and segregated cortical regions,  12   and 

their topological, spatial, and functional relations. 

 Are compact descriptions of brain architecture possible to achieve? 

At least at the larger scales of brain regions and systems, tangible prog-

ress has already been made (see chapter 5). At finer scales, the existence 

of meaningful compressed and statistical descriptions of cells and circuits 

is very much a matter of debate (see chapter 4). On one side, proponents 

of complete cellular reconstruction approaches to the connectome reject 

statistical descriptions since they fail to capture specific nonrandom attri-

butes of cell morphology and synaptic connectivity (e.g., Briggman and 

Denk, 2006). Implicit in this position is a strong preference for  “ dense 

mapping ”  of the connectome, that is, the assembly of a connection 

diagram by imaging and reconstructing all neural elements and synapses 

within an individual organism ’ s nervous system  “ all at once. ”   13   On the 

other side, alternative proposals are based on statistical features of 

 “ canonical ”  neural circuits that define the connection probabilities of 
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relatively few types of excitatory and inhibitory neurons (Douglas et al., 

1989; Douglas and Martin, 2004).  14   The idea of statistical descriptions of 

elementary circuits implies that EM reconstructions may be useful for 

determining and verifying connection probabilities or other statistical 

rules but that dense reconstructions of all cells may not be necessary for 

an understanding of the functioning of nervous systems at larger scales. 

The controversy will eventually be resolved through connectome-map-

ping studies that probe neural connectivity for statistical regularities. 

 Finally, I should reiterate the fundamental premise that the connec-

tome is a description of a  network  (see chapter 1). As I discussed at great 

length, the essence of connectomics is the mapping of structurally defined 

neural elements and their mutual connections. Thus, connectome data 

sets naturally take on the mathematical form of networks and graphs. 

This places connectomics into the context of modern research on complex 

networks, including those intensively studied in other areas of biology. 

The relation to network science allows connectomics to capitalize on 

sophisticated theoretical and analytical techniques for characterizing the 

structure and operation of complex systems. In doing so, studies of the 

connectome will make a major contribution to laying a new theoretical 

foundation for integrative neuroscience. I will expand on the computa-

tional aspects of connectomics more fully in later chapters (chapters 7 

and 8; see also Sporns, 2011a). 

 Once again, it might be helpful to draw a comparison between con-

nectomics and genomics. At first glance, the network aspect of the con-

nectome seems to set it apart from the linear text-like format of 

information encoded in the genome. In fact, superficially, a genome 

sequence is linear and one-dimensional, in humans forming a molecular 

string of roughly 3 billion base pairs. However, genomic information can 

also be viewed as creating networks of dynamic relations between ele-

ments where relations may be defined as coexpression or participation 

in similar functional contexts. Other types of relations result from the 

fact that genetic elements are placed and associate in physical space. 

Recent work on the spatial configuration of chromatin in the cell ’ s 

nucleus suggests that physical interactions among DNA sequences reflect 

organized patterns of gene expression (Rajapakse and Groudine, 2011).  15

As we will see later in the book, this relationship between spatial orga-

nization and functional expression is common to both genome and con-

nectome. Spatial proximity among elements defines functional domains 

for gene expression, and it is a strong predictor of connectivity and func-

tional relations in neural systems as well (see chapter 7). Not only do 
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genome and connectome represent or  “ store ”  abstract information but 

they are also physically embedded objects that operate in space and time, 

weaving complex patterns of self-organization. 

Form Follows Function 

 Louis Sullivan ’ s modernist dictum  “ form follows function ”  encapsulated 

functionalism in architecture by suggesting that intended functions 

precede their realizations in architectural forms.  16   The movement was 

built on a teleological view of function as embodying a  “ purpose ”  to 

which the physical form of objects (or organisms) is mere accessory. On 

the surface, this notion cannot be reconciled with the mechanistic view 

that pervades modern biology according to which biological structure 

comes first, as the substrate and origin of functional processes, be they 

actions of macromolecules or organismic behavior. And yet, given that 

functional outcomes are subject to selection pressure, which, in turn, has 

consequences for structural alterations, function can be said to constrain 

the envelope of possible structural designs. Recognizing the mutual 

dependence of form and function, Sullivan ’ s prot é g é  Frank Lloyd Wright 

developed an organic view of architecture whose guiding principle 

became  “ form and function should be one. ”  

 In the same vein, can the connectome serve as a building block for a 

more organic and integrative understanding of brain function? Its claim 

to promote such understanding rests on the dual premise that the con-

nectome captures structural patterns that are objectively verifiable 

(approximating ground truth) and that it underpins the functioning of 

neural circuits and systems. The latter idea strongly motivates connec-

tomics as an indispensable foundation for mechanistic hypotheses and 

computational models of the brain. The connectome serves as a major 

constraint on such models because  “ every theory of how any neural 

computation works will have to be consistent with the measured con-

nectivity ”  (Briggman and Denk, 2006, p. 568). Indeed, the construction 

of mechanistically detailed and predictive models of complex brain func-

tions requires the firm grounding provided by a description of the brain ’ s 

neural connectivity. 

 Structural connectivity is also necessary for a mechanistic understand-

ing of behavior, including that of humans. Studying behavior alone 

cannot reveal the mechanisms by which the behavior was generated. 

Assuming that a mechanistic and causal understanding of how neural 

processes give rise to behavior is indeed desired, the study of human 
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behavior alone cannot lead to such understanding. Many have advocated 

that to achieve this goal it is necessary to gather data on  “ neural corre-

lates ”  that accompany specific mental and behavioral states.  17   However, 

every behavior is accompanied by a huge variety of neural processes at 

all scales, not all of which contribute equally. Thus, the identification of 

neural correlates that cause a specific functional outcome depends on 

the explicit formulation of a generative model (instantiating a mechanis-

tic hypothesis) that can account for both neural and behavioral observa-

tions and predict new ones. The pattern of connections between neural 

elements is an important and necessary ingredient for any generative 

model designed to uncover the network basis of the behavior under 

study. 

 However, any simple-minded concept of the connectome as a static 

wiring diagram that determines function immediately runs aground as 

several critical challenges come into play. Connectomics must come to 

grips with the inherent multiscale architecture of nervous systems, and 

with their considerable variability across individuals and across time. It 

is to these important challenges that we turn in the next chapter. 
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 Mapping the connectivity of any complex nervous system encounters 

many challenges, starting with the enormous number of neurons and 

their synaptic connections, as well as their diverse morphology and func-

tional heterogeneity. As connectomics begins to address some of these 

challenges, new opportunities arise for gaining insights into fundamental 

aspects of brain organization. Here we discuss three significant chal-

lenges for any current and future attempts to map the human connec-

tome, posed by the multiscale nature of brain connectivity, by the inherent 

individual variability of structural connectivity patterns, and by their 

ongoing structural remodeling and plasticity. These challenges are related 

as the following thought experiment illustrates. 

 Assume we are in possession of a complete connectivity map of the 

brains of two individuals, a description of their connectome at synaptic 

resolution. How would we compare the two maps against each other? 

How much alike would the two brains be, and how would we quantify 

this similarity? Assuming we know each neuron ’ s spatial position, mor-

phological class, and connectivity, could we superimpose the two net-

works and determine areas of overlap and disagreement? Or is there a 

common reference point, a canonical human connectome to which all 

observations of individuals can be referenced? These are important ques-

tions since one of the major goals of connectomics is not only to deliver 

species-specific patterns of connectivity but also to assess individual 

structural variability. The problem is compounded if we consider the 

effects of structural change over time. If we could acquire the connec-

tome of a single individual at different time points separated by an hour, 

a week, a year — how much of the network structure would remain con-

stant? What changes might occur over time in the arrangement of neural 

connections, and what impact might these changes have on the brain ’ s 

elementary and integrative functions? 

Challenges 
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 The task of comparing connectomes between individuals and across 

time can only be addressed if the multiscale nature of human brain con-

nectivity is taken into account. At larger scales, prominent anatomical 

characteristics are held in common across individuals, allowing alignment 

and comparison of multiple brains. These characteristics include mac-

roscale features such as the anatomy of brain regions and gray-matter 

nuclei. At smaller scales, any attempt to establish one-to-one correspon-

dence of single neurons across individual humans would be utterly futile.  1

While major features of neuronal cytoarchitecture are shared across 

individuals, no two nervous systems are exactly alike at the level of den-

dritic and axonal branches, or spines and synapses. Thus, statistical 

approaches are needed to allow between-individual comparisons at the 

microscale, perhaps utilizing descriptive graph measures of circuit topol-

ogies. Any attempt at comparing connectomes will greatly benefit from 

defining connectivity across scales, from neurons to populations, up to 

regions and systems, thus identifying the building blocks of the brain ’ s 

multiscale architecture. 

The Challenge of Multiscale Architecture 

 Distinct functional units capable of performing some elementary dynamic 

or computational process can be identified at all hierarchical levels on 

the basis of both anatomical and physiological criteria. Such functional 

units range from dendritic compartments to single neurons, microcircuits, 

specialized brain regions and extended system-wide networks. Impor-

tantly, no single scale occupies a privileged position in this hierarchy  2   —

 from a systems perspective, processes at all scales contribute to global 

functional outcomes that become manifest in cognition and behavior. 

The cellular scale of individual neurons and their connections is often 

viewed as fundamental for brain function. However, meaningful func-

tional units exist not only at the level of individual neurons but also at 

larger and smaller scales. At smaller scales, the integrative function of 

single neurons is the result of elementary computations carried out in 

subcellular compartments and networked together through cellular mor-

phology. At larger scales, single neurons cooperate in neural collectives 

that share common structural and functional attributes, engage in coher-

ent patterns of neural dynamics, and generate specialized mutual infor-

mation with each other and with the environment. Small and large scales 

interact, as large-scale patterns emerge from and coordinate small-scale 

interactions. 
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 Given the estimated number of neurons (~10 11 ) and number of syn-

aptic connections (~10 15 ) in the human brain, a complete map of the 

connectome at the microscale would be extremely sparse — fewer than 

one in a million (less than one ten thousandth of a percent) of all possible 

synaptic connections actually exist. Visualized as a binary adjacency 

matrix, this map would contain a million zeros for every nonzero entry. 

Once such a map is created, navigating it would be greatly facilitated by 

identifying groupings or clusters of neurons that form anatomical or 

functional collectives such as local circuits, columns, nuclei, or brain 

regions. The application of clustering or dimension reduction methods to 

such a cellular connection matrix might reveal different scales of orga-

nization that appear as nested modules or communities of neurons. Clus-

tering will gradually compress the description of the map by representing 

neural elements and their interconnections in a more economical man-

ner — for example, as regions and interregional pathways at the large 

scale of brain systems. At these larger scales, the density of the connec-

tome ’ s network description increases. Neuroanatomical studies of the 

regions of the mammalian brain indicate that large-scale connection 

matrices contain around 20 to 40 percent (and perhaps as much as 60 

percent) of all possible pathways.  3   Thus, connectome maps at different 

scales have radically different densities. These different scales form a 

nested hierarchy — smaller elements join together to form larger ele-

ments, which, in turn, form even larger elements, and so forth. As I will 

discuss in more detail later (in chapter 7; see also Sporns, 2011a), many 

of the integrative aspects of brain function depend on this multiscale 

structural arrangement of elements and connections. Thus, an important 

goal for connectome research is to accurately describe multiscale 

connectivity. 

 The lower end of this multiscale architecture extends all the way to 

subcellular structures. Individual neurons are not the smallest units 

capable of integrating complex signals or transforming inputs into 

outputs. Instead, evidence suggests that at least some elementary com-

putations are carried out entirely within dendritic compartments. Subcel-

lular structures such as dendritic branches can perform compartmentalized 

local computations (Polsky et al., 2004; London and H ä usser, 2005; 

Branco and H ä usser, 2010;   figure 3.1 ). In a recent study, Branco et al. 

(2011) demonstrated that single dendritic branches of cortical pyramidal 

neurons can exhibit sequence-specific responses to patterned synaptic 

inputs. Thus, cellular morphology, including the branching pattern of 

dendrites and the spatial arrangement of synapses, may be crucial for 
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Figure 3.1 
 Dendrites as networks. The figure shows a schematic comparison of different ways to 
conceptualize neural processing in dendritic trees. (A) Traditional  “ point neuron ”  model, 
where synaptic inputs are integrated at the cell soma after applying a thresholded nonlinear 
function. (B) Two-layer network model (Poirazi et al., 2003), where synaptic inputs are 
locally integrated in dendritic subunits which are then integrated before a final output is 
computed. (C) Recurrent network model, where local release of neurotransmitters and 
neuromodulators allows dendritic subunits to generate their own output, and where den-
dritic subunits can mutually interact. Modified and reproduced with permission from 
Branco and H ä usser (2010). 

implementing elementary neural computations at a subcellular scale. By 

extension, higher-order computations such as those carried out by 

neurons can be thought of as resulting from the tree-like connectivity of 

dendritic compartments (Torben-Nielsen and Stiefel, 2009). Continuing 

work in cellular reconstructions may lead to the discovery of general 

graph-based combinatorial rules that govern dendritic computation in 

specific cell types. 

    Subcellular effects can play a decisive role in shaping the flow of 

information at the level of neuronal circuits. The placement of inputs on 

dendritic trees impacts the physiological efficacy of individual synapses, 

and spatial clustering of inputs on individual branches can result in syn-

ergistic effects on target neurons. The importance of dendritic micro-

structure and biophysics for controlling the effects of synaptic inputs on 

the integrative actions of a postsynaptic neuron has been extensively 

investigated in various cell types and in computational models. A con-
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vergent set of results suggests that synaptic inputs arriving from differ-

ent neuronal circuits and systems occupy specific positions on the 

dendritic tree, which, in turn, determines the magnitude and the coopera-

tivity of their effects on the postsynaptic neuron (e.g., Petreanu et al., 

2009) and hence on the function of neuronal circuits. Mechanisms of 

neural plasticity, in part driven by network dynamics, can contribute to 

the emergence of subcellular compartments capable of carrying out spe-

cific nonlinear computation in individual neurons (Legenstein and Maass, 

2011). These interactions of micro- and mesoscales are only incompletely 

captured in descriptions of connectivity that represent neurons as point-

like entities. 

 Network elements are fairly straightforward to identify at the 

microscale of neurons and their cellular compartments. However, defin-

ing nodes and edges at larger scales requires the definition of anatomical 

or functional boundaries between large collectives of cells. The definition 

of coherent functional elements at the mesoscale of neuronal circuits and 

populations can be problematic, and there are numerous anatomical or 

physiological criteria whose application can result in different outcomes. 

Cell groupings in subcortical structures can often be identified by spatial 

proximity, coherent projections to other cell groups, or common neuro-

chemical markers. In the cortex, a potential mesoscopic unit is the corti-

cal column (Mountcastle, 1997). However, despite the widespread use of 

the concept in the cortical literature, there is little agreement as to the 

nature of the cortical column, except in highly specialized sensory regions 

such as the rodent barrel cortex. Columns are most frequently defined 

on the basis of physiological observations, but their structural boundaries 

are not clearly delineated (Rockland, 2010) and there are puzzling dis-

crepancies between the spatial layout of functional properties and the 

known profiles of axonal and dendritic processes (da Costa and Martin, 

2010). 

 A different concept points to elementary or  “ canonical ”  circuits as 

candidates for the basic building blocks of mesoscopic brain (cortical) 

architecture (Douglas et al., 1989). These circuits represent specific 

arrangements of excitatory and inhibitory neurons and their connectivity 

that can be characterized by connection probabilities between distinct 

types of cells arranged in separate cortical layers. This mesoscopic circuit 

element is thought to be reiterated throughout different cortical regions, 

with little structural modification, and thus represents a structural  “ build-

ing block ”  of the cortical architecture (Douglas and Martin, 2011). 

However, canonical circuits do not specify spatial modules, and they are 
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not defined by discrete anatomical boundaries. Instead, their connectiv-

ity matrix describes a set of potential cellular interactions that can be 

dynamically reconfigured depending on inputs or past neural activity. 

Computation relies on circuit dynamics that is enabled by the anatomical 

pattern but does not reflect it in any simple way. The computational 

capacities of these transient functional circuits are still only incompletely 

understood, and the construction of detailed computational models and 

graph analyses are beginning to unlock the complexities of their dynamic 

operation (Binzegger et al., 2010). Canonical circuits, of different con-

struction and composition, may also exist in other anatomical regions of 

the brain. It is important to note that the anatomical substrate for these 

circuits is fundamentally statistical rather than highly specifically wired. 

The empirical validation of statistical rules for the construction of ele-

mentary neural circuits will likely depend on results from dense con-

nectome reconstruction efforts. 

 Structural segregation and functional specialization at the macroscale 

of regions and systems have been abundantly documented over decades 

of anatomical and physiological studies. Despite this abundance of evi-

dence, the precise mapping of elementary units in terms of objectively 

defined structural boundaries still presents many challenges. To date, 

there is no universally agreed-upon chart or nomenclature of major 

anatomical subdivisions and interconnections for most of the human 

brain, including the cerebral cortex. Numerous criteria can be used for 

parcellating brain regions, including cytoarchitectonics, gene expression 

patterns, regional myelination, or patterns of anatomical and functional 

connections. Because of its importance for compiling large-scale maps of 

the human connectome, we will turn to the parcellation problem in much 

more detail later in the book (see chapter 5). 

 An important part of the parcellation problem is the need to charac-

terize anatomical and functional brain regions in single individuals, due 

to the considerable individual variability of brain organization. This, then, 

is another significant challenge for connectomics, the variability of brain 

structure across individuals. 

The Challenge of Individual Variability 

 No two human brains are exactly alike. This is certainly true if one 

attempted to align their individual neurons and synaptic connections. 

Statistical patterns may be preserved, but connectivity measured at the 

level of single neurons is highly variable across individuals both in terms 
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of the number of elements and their connection topology. Even at the 

large scale, human brains exhibit significant individual variability for 

virtually all measurable features of brain structure. This extensive vari-

ability of brain structure across individuals is thought to be an important 

factor underlying measurable differences in brain physiology and dynam-

ics, as well as in behavioral and cognitive performance.  4   

 Structural variability is found at all spatial scales. At the cellular and 

synaptic level, there is significant structural heterogeneity among neurons 

and their interconnections both within and between individuals. Such 

variability is not limited to vertebrates; it is found even in  “ simple ”  and 

supposedly stereotypic brains of model organisms. In species like  C. 

elegans  whose cellular structure is derived from invariant lineage pat-

terns in a sequence of stereotyped cell divisions, stochastic influences 

on embryonic and postembryonic development result in some degree 

of individual variation, including the spatial placement of cells and 

nuclei (Long et al., 2008) and their axonal wiring and synaptic contacts 

(White et al., 1983; Hall and Russell, 1991). Recent efforts to map cellular 

components and their interconnections in  Drosophila  have shed new 

light on patterns of individual variability in the fly brain. A detailed 

study of the fine-scale cellular morphology of local interneurons in 

the  Drosophila  antennal lobe revealed a surprising degree of individual 

variability (Chou et al., 2010). A systematic analysis of more than 1,500 

cells allowed the identification of several morphological classes each 

characterized by coarsely stereotypic morphology. However, within 

each class, neurons differed significantly across individuals, both in their 

fine-scale structure as well as in their physiological properties. Comment-

ing on this unexpected diversity, the authors concluded that  “ the wiring 

diagram differs considerably between individual fly brains ”  (Chou et al., 

2010, p. 439), and they proposed that these variations may partly explain 

differences in behavior. With respect to the  Drosophila  connectome, 

these findings of structural variability  “ imply that the complete recon-

struction of the wiring diagram of a single  Drosophila  brain will not 

yield a general wiring diagram for all  Drosophila  brains ”  (Chou et al., 

2010, p. 448). 

    However, the observed heterogeneity of structural components across 

individuals does not necessarily result in widely divergent functional 

roles (  figure 3.2 ). Overall, variable circuit elements contribute to neural 

circuits and systems in ways that are robust and result in functional 

stability. This functional homeostasis appears to dampen the impact 

of cellular heterogeneity and variability by allowing many different 
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combinations of structural parameters to support nearly identical 

dynamic behavior (Tripodi et al., 2008; Goaillard et al., 2009; Marder, 

2011). For example, detailed analysis of the leech heartbeat central 

pattern generator, a circuit comprising 16 neurons whose rhythmic output 

drives heart motor neurons, has demonstrated considerable functional 

consistency despite significant animal-to-animal variation in synaptic 

parameters (Norris et al., 2011). It appears that identical functional 

responses of neural circuits can result from disparate combinations of 

cellular parameters. Importantly, average parameter distributions may 

fail to fully characterize the richness of the underlying structural reper-

toire, thus motivating greater emphasis on capturing the true variability 

present within the population. The picture emerging from these studies 

is one where functional stability is not due to tightly controlled structural 

uniformity. Instead, structural variability in combination with as yet 

unknown compensatory mechanisms can yield globally consistent circuit 

dynamics. As Eve Marder has argued, these dynamics are more ade-

quately described by families of models that differ in their structural 

parameters rather than a single model based on a composite of mean 

Figure 3.2 
 Neuronal homeostasis. Despite within- and between-individual variations in the number 
and arrangement of synaptic inputs and dendritic branching patterns, cells of the same 
morphological and functional type should produce a very similar dynamic output. Modified 
and reproduced with permission from Bucher (2009). 
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parameter values. Marder suggests that  “ we are entering an era in which 

we should attempt to collect as much data as possible on each individual, 

to attempt to see the correlations between underlying mechanisms and 

system behavior ”  (Marder and Taylor, 2011, p. 137;   figure 3.3 ). 

    Variability is also found at the large scale of brain regions and systems. 

Significant differences in gross morphology of the human brain are 

immediately apparent, and they are readily found even when comparing 

brains of genetically identical individuals (  figure 3.4 ). While many mac-

roscopic features of brain anatomy (the relative positions and bilateral 

symmetry of key sensory and motor regions, the spatial layout of sub-

cortical nuclei and the trajectories of major fiber tracts) are largely 

shared across individuals, other parameters such as the absolute and 

relative sizes of brain regions, the number and density of their constituent 

cells, and their axonal densities and biophysical properties all exhibit 

Figure 3.3 
 Similar dynamic behavior from different sets of neuronal parameters. The figure shows 
voltage-time traces (A, B) from two different instantiations of modeled lateral pyloric 
neurons of the lobster stomatogastric ganglion. Model parameters are shown in panel (C). 
Clearly, the two model neurons differ in multiple parameter settings but produce very 
similar voltage time courses. Other combinations of parameters are possible, and it is not 
obvious which combination of parameters (if any) is privileged. The model is described in 
Taylor et al. (2009); the figure is modified and reproduced with permission from Marder 
and Taylor (2011).  
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Figure 3.4 
 Individual variability in cortical folding. The images show right lateral views of four seg-
mented cortical surfaces (A) and their corresponding sulcal depth maps (B), essentially 
representing the depth profile of cortical sulci on a standard and inflated surface map. 
Cases W and Y, as well as X and Z, are from genetically identical twins. Note the consider-
able variation of folding patterns across all four cases, including the twin pairs. Images are 
from a study by Botteron et al. (2008) and reproduced courtesy of David Van Essen (Wash-
ington University School of Medicine, St. Louis). 

significant variability. Individual human brains differ along many dimen-

sions, including mass and volume, the folding pattern of the cortical 

surface, the extent and spatial arrangement of cytoarchitectonic areas, 

and the number and density of neuronal connections. For example, 

numerous structural parameters across all stages of the human visual 

pathway, from the retina to visual cortex, exhibit significant between-

subject variations. These include retinal cone densities (Curcio et al., 

1987), the size of pathways like the optic tract, and lateral geniculate 

nucleus and V1 area and/or volume (Andrews et al., 1997).  5   

    Many of these morphological features contribute to structural 

variations in network connectivity. Combined analysis of anatomy and 

behavioral performance suggests that these structural variations can par-

tially account for individual differences in performance (  figure 3.5 ). 

Strong associations between structural brain measures related to gray 

and white matter architecture and individual variations in behavior 

extend from sensory perception and motor performance all the way to 

complex cognition and aspects of consciousness (Kanai and Rees, 2011). 

For example, in the human visual system, differences in cortical thickness 

and gray matter density in specific regions of parietal cortex partially 

predict differences in the temporal dynamics of bistable perception 
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(Kanai et al., 2010; see figure 3.5). These associations between structure 

and function can be explained by a combination of genetic and experi-

ential factors. Heritability studies suggest that numerous structural brain 

measures, including aspects of white matter microstructure, are under 

genetic control (Glahn et al., 2007). Additional structural variability is 

the result of experience-dependent plasticity, which shapes the connec-

tome at all scales from cells to systems (see below). 

    The high degree of structural variability at cellular scales poses a dif-

ficult problem for approaches to connectomics that target microscopic 

reconstructions of neural architecture. The reconstruction of a single 

connectome fails to capture patterns of individual variation and will not 

Figure 3.5 
 Correlations between brain structure and individual performance. (A) Relationship 
between white matter structure, measured here as the fractional anisotropy (FA), and the 
frequency ratio, a measure of performance in a bimanual finger-tapping task. Open and 
closed circles refer to females and males, respectively. Image modified (converted to 
grayscale) and reproduced with permission from Johansen-Berg et al. (2007). (B) Relation-
ship between individual differences in perception and gray matter (GM) volume of two 
parietal cortical regions, the posterior superior parietal lobe (pSPL) and the anterior 
superior parietal lobe (aSPL). Longer duration of a percept in a visual rivalry task is 
positively correlated with a larger aSPL, but negatively correlated with a larger pSPL. 
Modified (converted to grayscale) and reproduced with permission from Kanai and Rees 
(2011). 
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allow relating connectome data to differences in genetics and behavior. 

The problem is compounded by structural changes that accrue as a result 

of spontaneous and experience-dependent plasticity. Individual variation 

also calls into question strategies that rely on assembling connectomes 

through dense reconstruction of small tissue volumes sampled from mul-

tiple individuals since it will be impossible to combine them into a coher-

ent high-resolution map. The challenge of individual variability can only 

be adequately met by the study of populations. Population studies of 

connectomes can capture variations in circuit topology and geometry 

present across multiple instantiations of nervous systems sampled from 

individuals of the same species. Population studies are also necessary for 

relating connectome architecture to genetics and behavior. 

 To be sure, structural variability also poses a significant challenge for 

large-scale neuroimaging approaches to the human connectome. 

However the impact of the problem is mitigated by the lower cost of 

acquiring these data from large populations and the greater phenotypic 

stability of connection topology at the large scale. Nevertheless, even at 

larger scales connectional variability is likely to be significant and the 

study of numerous individuals will be essential to relate variations of 

brain structure to function. This need to focus on individuals rather than 

on averaged or  “ standard ”  brains has many implications. Individual vari-

ability has, until now, not been a central concern of neuroscientific 

research. Instead, the focus has been on delivering descriptions of popu-

lation averages, be they patterns of neural activations or behavior. Con-

nectomics will usher in a major shift toward considering the structure of 

individual nervous systems, with a focus on how individual differences 

of network topology are predicted by genetic or environmental factors 

and, in turn, can predict functional variation. Connectomics carried out 

on populations of individuals thus provides a new source of rich informa-

tion concerning the neural substrates of specific behaviors. 

The Challenge of Remodeling and Plasticity 

 The cells and tissues making up an organism appear to have material 

permanence over long stretches of the organism ’ s lifetime. And yet, vir-

tually all of their constituent biomolecules are continuously replaced in 

a matter of hours, days, or weeks at the most. This rapid molecular turn-

over involves continual resynthesis of all structural elements of the con-

nectome, including cellular and molecular components of neurons and 

synapses (Price et al., 2010).  6   Some of these components turn over with 
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startling speed. For example, elements of the neuronal cytoskeleton such 

as actin filaments in dendritic spines have a half-life of around 40 seconds 

(Star et al., 2002). Important presynaptic proteins are removed from and 

reincorporated into synapses on a time scale of minutes (Tsuriel et al., 

2006), and proteins comprising the postsynaptic density, a cellular struc-

ture important for plasticity, are replaced on a time scale of hours (Ehlers, 

2003). As was recognized long ago, this rapid molecular turnover poses 

problems for the maintenance of molecular substrates of long-term 

memory (Crick, 1984; Lisman, 1985). The fluidity of the connectome at 

cellular and molecular scales requires control mechanisms to ensure 

stable dynamic outputs and functional homeostasis (see above). 

 At the somewhat larger scale of cells and synapses, significant changes 

continually shape and mold the connectivity of the nervous system by 

drawing on a host of mechanisms, from synaptic modifications to neuro-

nal growth and structural plasticity. While most pronounced during early 

development, structural changes occur throughout the life span. An 

emerging view backed by increasing amounts of evidence suggests that 

the structural arrangement of neuronal circuits, including their connec-

tion topology, can undergo significant and rapid alterations even in the 

adult brain (Holtmaat and Svoboda, 2009). These alterations involve 

both dendritic and axonal compartments, and they have been observed 

in conjunction with learning and experience. 

 Earlier studies involving long-term observations of individual neurons 

and their dendritic morphology have suggested that larger dendritic 

branches of neurons in mouse barrel cortex remain stable over periods 

of weeks (Trachtenberg et al., 2002). However, while a significant propor-

tion (about 50 percent) of dendritic spines were found to be stable over 

periods of a month, others were markedly transient and dynamic and 

exhibited both sprouting and retraction. Related observations revealed 

a gradual increase in the proportion of stable dendritic spines during 

development and into adulthood, as well as some regional differences in 

the extent of this form of experience-dependent plasticity (Holtmaat 

et al., 2005;   figure 3.6 ). Specific changes in sensory inputs or behavioral 

training can alter the structural dynamics of spine formation and elimina-

tion. Hofer et al. (2009) examined the density and persistence of den-

dritic spines in mouse visual cortex in the course of monocular deprivation. 

Spine density in specific cortical layers receiving binocular sensory inputs 

increased following deprivation, and many dendritic spines formed 

during the deprivation episode remained stable even after the occluded 

eye was reopened. This suggests that structural modifications of dendritic 
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Figure 3.6 
 Structural remodeling of dendritic spines and axonal branches. (A) Time-lapse images of 
a dendritic branch of a fluorescently labeled neuron located in adult mouse visual cortex. 
Images are taken between postnatal day (PND) 108 and 130. The spine marked with a 
white arrowhead remains stable over the entire observation period while the spine marked 
by a circle appears and disappears. Modified and reproduced with permission from Holt-
maat et al. (2005). (B) Tracings of axonal branches in adult macaque primary visual cortex, 
7 days before ( – 7d) and 7 days following (7d) a focal binocular retinal lesion. The field of 
view shown here is from the cortex surrounding the zone that receives inputs from the 
lesioned part of the retina. Note that axonal segments change over time, with some seg-
ments appearing and others remaining stable or disappearing from view. Modified and 
reproduced with permission from Yamahachi et al. (2009). 
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spines can outlast sensory experiences that triggered the change and may 

thus form a structural substrate for long-term retention of sensory 

memory. The formation of new spines following changes in somatosen-

sory inputs or motor learning was also observed in mouse somatosensory 

or motor cortex (Yang et al., 2009). A percentage of newly formed spines 

remained stable over significant periods of time. A parallel and indepen-

dent study by Xu et al. (2009) demonstrated the rapid generation of new 

spines in motor cortex following complex motor learning, with some 

spines forming within one hour of the initiation of motor training. For-

mation of new dendritic spines was associated with the practice of new, 

but not with previously acquired, motor tasks, supporting the idea that 

once-stabilized patterns of connections serve as a long-term basis for the 

retention of motor memories. In addition to spines, the branching pat-

terns of dendritic arbors also exhibit some dynamic changes over periods 

of days and weeks, predominantly in GABA-ergic interneurons (Lee 

et al., 2005). 

    Structural dynamics of dendritic spines are mirrored by those involv-

ing the axonal compartment. A series of studies carried out in adult 

macaque primary visual cortex examined the structural stability and 

turnover of axonal branches and synaptic boutons in the absence of any 

overt changes in sensory experience or learning (Stettler et al., 2006), as 

well as under conditions where sensory inputs were perturbed (Yama-

hachi et al., 2009; figure 3.6). Using in vivo two-photon microscopy, both 

studies repeatedly imaged axonal branches and synapses of individual 

neurons over periods of several days and weeks. In the absence of exter-

nal challenges, following axons and synapses over time revealed a sur-

prisingly high rate of 7 percent per week for the turnover of synapses 

and concomitant changes in smaller-scale axonal branching patterns, 

while confirming the structural stability of larger-scale axonal branches 

(Stettler et al., 2006). The authors remark that  “ the turnover rate is sur-

prisingly large, particularly if one considers the implications such a rate 

would have, if sustained and homogeneous over all boutons, for main-

taining basic functional properties ”  (Stettler et al., 2006, p. 884). Whether 

this high rate of structural turnover is limited to a restricted subset of 

synapses or involves all of them uniformly is unknown. 

 Perturbations related to sensory experience can induce rapid bursts in 

the remodeling of cortical circuits. Numerous studies have documented 

specific physiological and structural changes in the course of perceptual 

learning (Gilbert et al., 2001) or in response to lesion damage in sensory 

pathways (Keck et al., 2008). Physiological observations show that 
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neurons within a patch of cortex that has lost retinal inputs due to a 

binocular lesion regain responsiveness within hours and that their recep-

tive fields shift to parts of the visual field represented in the surrounding 

unlesioned cortex (Das and Gilbert, 1995). Using in vivo fluorescence 

microscopy to track the morphology of individual neurons has now 

revealed substantial sprouting and pruning of axonal branches and syn-

apses in adult macaque visual cortex following such lesions (Yamahachi 

et al., 2009). In concordance with physiological observations, cortical 

axons located in the area of the lesion exhibit significant sprouting and 

synaptic proliferation within just a few hours. Exuberant axonal out-

growth extends over several days and then gives way to axonal pruning, 

eventually returning to stable levels in the density of axonal branches 

and synaptic boutons. These rapid changes in cortical circuitry may be 

due to a temporary shift in the balance between addition and elimination 

of circuit elements observed during normal conditions. Additional evi-

dence for rapid structural changes in connectivity following manipula-

tions of sensory input comes from studies of thalamocortical synapses in 

the visual system of the mouse (Coleman et al., 2010). Here, analysis of 

EM micrographs demonstrate that significant synaptic remodeling of 

thalamocortical inputs immediately follows monocular closure, with syn-

aptic densities decreasing by as much as 30 percent. Taken together, these 

studies indicate that alterations in structural connectivity — for example, 

synaptic rearrangements of sensory inputs following perturbations — can 

occur rapidly and are accompanied by changes in physiological responses. 

Structural alterations are not confined to periods of repair or recovery; 

they also occur at significant rates during normal functioning of cortical 

circuits. 

 In summary, while larger dendritic and axonal branches remain more 

stable, significant remodeling of smaller dendritic and axonal branches, 

including synaptic addition and elimination, occurs both spontaneously 

and in response to changes in input patterns. These structural changes 

take place on top of numerous biochemical and biophysical mechanisms 

for altering synaptic strength and efficacy. How can memory traces be 

conserved in light of the fact that the synaptic architecture appears to be 

very much in flux? One hypothesis states that long-lasting memory traces 

are preserved in stable structural arrangements of a subset of cells and 

synapses and that encoding of such traces involves mechanisms for 

memory allocation to specific neural elements (Silva et al., 2009). Another 

idea suggests that structural remodeling serves to alter connectivity 

between specific (and stable) circuits, thus modulating function (Chen 
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and Nedivi, 2010). While there is evidence supporting the long-term 

stability of circuit elements such as dendritic spines following behavioral 

training (Yang et al., 2009), it is unclear whether ongoing circuit remodel-

ing is truly limited to a subset of neurons or whether apparent structural 

stability and instability simply reflect changes occurring on different 

temporal scales. Even if individual spines or synapses can be shown to 

last throughout a large portion of an organism ’ s lifetime, it is not clear 

how they can encode information about specific events or capacities if 

even a fraction of the surrounding connectivity exhibits significant struc-

tural alterations. In a system such as the brain, what individual circuit 

elements  “ stand for ”  is determined by the surrounding network. Despite 

the appeal of the idea that specific memories can be traced to individual 

spines or synapses, the integrative nature of brain networks and their 

remarkable propensity for structural change call this popular notion into 

question. 

 Further complicating the picture are possible fluctuations in connec-

tivity due to global state changes of the organism. Recent studies on 

synaptic plasticity in relation to the sleep/wake cycle suggest the intrigu-

ing possibility that connectivity might exhibit rhythmic fluctuations. Pat-

terns of gene expression, including genes involved in synaptic transmission, 

undergo significant changes in relation to the organism ’ s behavioral state 

(Cirelli, 2009). Electrophysiological recordings from rat cortex indicate 

parallel changes in synaptic currents (Liu et al., 2010) and thus in syn-

aptic plasticity. Size and volume of synapses can vary in relation to 

learning-induced changes in synaptic strength (Ostroff et al., 2010), 

raising the possibility of circadian variations in morphology of synaptic 

connections. A detailed study of cellular and circuit structure in 

Drosophila  has shown that significant changes in spine number and the 

size of synapses occurs during waking and that these morphological 

parameters are renormalized during sleep (Bushey et al., 2011). The 

magnitude of morphological changes was found to be correlated with 

the richness of the wake experience. Whether these sleep/wake and 

plasticity-related effects have in impact on connection topology is cur-

rently unknown. 

 This dynamic picture of ongoing and experience- as well as state-

dependent structural remodeling of neuronal circuits poses a major chal-

lenge for connectomics carried out at the microscale. Each dense 

connectome delivered by EM or light microscopy (LM) reconstructions 

(see chapter 4) represents only a snapshot of the microscale architecture 

of the nervous system, a still image of a dynamic pattern. Significant 
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portions of the connection matrix delivered by microscale connectomics 

must be assumed to be highly variable, even within a single organism. 

This underscores the importance of identifying patterns that remain 

invariant over time and that can serve as the structural basis for stable 

functionalities of circuits and systems. These invariants are not likely to 

be found in individual structural elements, but in their spatial and topo-

logical arrangement and in global metrics of the network. 

 The developmental dynamics of the human connectome at the large 

scale are targets of intensive investigation, not least because a number 

of cognitive disorders are thought to have developmental origins. Several 

surveys of various stages of development in humans have begun to chart 

changes in network topology and organization, mostly on functional 

networks derived from fMRI (Fair et al., 2009; Supekar et al., 2009). 

These studies indicate that the functional architecture of the cerebral 

cortex is dominated by high clustering and modularity (i.e., higher func-

tional segregation) at earlier developmental stages, while functional net-

works at later stages exhibit greater long-distance dynamic coupling and 

integration. Much less is known about the growth of structural connec-

tions in the human brain.  7   The application of diffusion MRI has begun 

to chart the genesis and maturation of brain connectivity from birth to 

early adulthood, in addition to a few reports on connectivity in utero 

(Kasparian et al., 2008). In a longitudinal study spanning the first two 

years of postnatal life, Fan et al. (2011) demonstrated that structural 

brain networks begin to exhibit small-world topology and nonrandom 

modularity even at very early developmental stages. 

 Studies that map structural connectivity with noninvasive diffusion 

imaging must take into account the changing composition of myelin and 

the resulting modulation of the diffusion signal. Myelin maturation plays 

an important role in rendering axonal pathways functionally effective by 

increasing their physiological efficacy and shortening conduction delays. 

The effect of increasing myelination on brain network topology was 

examined in a study of 30 individuals between 2 and 18 years of age 

(Hagmann et al., 2010b). The continuing maturation of white matter 

pathways was found to promote progressive increases in global efficiency 

and decreases in local clustering of brain networks while prominent 

structural hubs remained in place throughout this developmental period 

(  figure 3.7 ). These structural changes are broadly consistent with a shift 

in balance from functional segregation to functional integration. 

    Structural change also accompanies the brain ’ s response to physical 

trauma. Traumatic brain injury is often associated with damage to long-
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Figure 3.7 
 Development of cortical network topology. (A) Time course of average node strength, 
global efficiency, clustering coefficient, and modularity of human cerebral cortex, measured 
with diffusion imaging and tractography in 30 participants between the ages of 2 and 18 
years. Significant increases in node strength and efficiency and decreases in clustering and 
modularity are due to the ongoing maturation of white matter projections in late develop-
ment. (B) Hub regions, indicated here as highly central and strongly connected nodes, are 
in place during early development and continue to mature into adolescence. LH, left 
hemisphere; RH, right hemisphere; for abbreviations of brain regions please consult origi-
nal publication. Data replotted from Hagmann et al. (2010b). 
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range interregional connections, and the extent of this damage is related 

to disruptions in behavior. A recent study by Kinnunen et al. (2011) 

provides evidence for a close association between cognitive impairment 

and the extent of axonal injury. The study also documents postinjury 

white matter changes throughout the brain, even in regions that are 

remote to the primary site of the injury. The distributed pattern of white 

matter abnormality was found to correlate with individual differences 

across patients in specific areas of memory and executive function. Struc-

tural changes in the brain ’ s white matter not only result from brain injury 

but can also occur in the course of neurological recovery. Voss et al. 

(2006) reported ongoing structural modifications measured by diffusion 

MRI in a patient who underwent spontaneous recovery of some cogni-

tive skills after many years spent in a minimally conscious state following 

severe head trauma. Changes in the diffusion signal were interpreted as 

due to axonal sprouting and regrowth, resulting in widespread changes 

in brain connectivity. These changes extended across several regions of 

cortex and correlated with behavioral improvements in several motor 

and cognitive domains. A more comprehensive longitudinal study of 30 

adult patients who had suffered severe traumatic brain injury also docu-

mented progressive changes in the structure of cerebral white matter, the 

extent of which was correlated with outcome measures during recovery 

(Sidaros et al., 2008). The widespread effects of focal brain damage on 

the integrity of cortical networks was documented by Crofts et al. (2011) 

in a report on distributed changes in brain connectivity following stroke. 

Network analysis methods were successfully applied to identify brain 

regions and pathways with reduced centrality. Several of these regions 

were in parts of the brain far removed from the primary area of the 

stroke. Jointly, these clinical studies of brain injury and recovery reveal 

the complex relationship between the integrity of axonal pathways and 

cognition, and the potential role of specific changes in connectivity in 

behavioral impairment as well as functional recovery. Connectivity-based 

approaches (Grefkes and Fink, 2011) and connectome data will be essen-

tial for making progress toward mapping patterns of structural changes 

in patients as a tool for the development of novel diagnostic and thera-

peutic strategies. 

 Changes in white matter structure occur not only in response to brain 

injury but accompany changes in experience as well (  figure 3.8 ). Scholz 

et al. (2009) first reported large-scale structural plasticity induced by 

behavioral training of a complex visuomotor task (juggling). Longitudi-

nal measurements of fractional isotropy in white matter as well as gray 
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matter density exhibited localized changes in regions of medial occipital 

and parietal cortex. Such learning-related remodeling of the brain ’ s white 

matter architecture may impact local and global network connectivity 

and thus offer a way by which individual experience can modify con-

nectome topology. The possible relationship between individual experi-

ence and anatomical changes in brain connectivity suggests a structural 

basis for individual differences in behavioral performance (Johansen-

Berg et al., 2010). Experience-dependent plasticity, in addition to genetic 

factors, may thus make a major contribution to the abundant structural 

variations present across individual connectomes, even at the large scale 

of brain regions and interregional pathways, and extending through 

development into adulthood. 

Figure 3.8 
 Large-scale structural changes following behavioral training. (A) Circled voxel clusters 
exhibit significant increases in fractional anisotropy between scan 1 and scan 2, acquired 
before and after a 6-week training period involving learning how to juggle. POS, parietal-
occipital sulcus; IPS, intraparietal sulcus. (B) Summary data. Scan 3 was acquired after a 
subsequent 4-week period without juggling. FA, fractional anisotropy. Modified (converted 
to grayscale) and reproduced with permission from Scholz et al. (2009). 
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Into the Jungle 

 The discovery of the human connectome faces numerous challenges. It 

is sometimes argued that these challenges, such as multiscale organiza-

tion and individual variability (and others, not considered here in detail, 

such as the extraordinary degree of structural heterogeneity of neuronal 

types and synapses; Parker, 2010), render the connectome an impractical 

idea. The argument of impracticality is often raised when the connectome 

is considered in comparison to the genome, generally viewed as a much 

more tractable structure due to its linear arrangement in the form of a 

DNA sequence. However, a closer look at this comparison leads to the 

realization that some of the challenges facing connectomics have close 

parallels in genomics. First, despite the availability of genomes in the 

form of linear sequences,  8   the seemingly simple objective of identifying 

coding and regulatory sequences still presents a significant problem. 

Second, going beyond linear sequence information, genomes have a host 

of complex architectural features such as hierarchical (van Driel et al., 

2003) and spatial organization (Parada et al., 2004) and the capacity for 

self-organization and pattern formation (Lieberman-Aiden et al., 2009). 

Third, genomes (within limits) can accumulate changes across an organ-

ism ’ s lifetime as they undergo epigenetic modifications that reflect a 

history of environmental interactions (Richards, 2006). Fourth, genomic 

variability across individual organisms gives rise to variable phenotypes 

in ways that are still only poorly understood. Finally, the expression of 

gene products generates complex networks of protein – protein and meta-

bolic interactions that unfold on multiple temporal and spatial scales. 

These complex networks are targets of ongoing research efforts in emerg-

ing fields like metabolomics and systems biology (chapter 1). Thus, while 

the first-order representations of genomes and connectomes share 

appealing simplicity (a string of letters, a matrix of ones and zeros), 

understanding their architecture and functional expression is demanding, 

to say the very least. 

 In addressing these challenges, network tools and network thinking 

are of particular importance. For example, network approaches are well 

suited for characterizing patterns of variability across individuals and for 

generating predictions about those aspects of individual variability that 

are most informative and most likely to result in significant differences 

in function and behavior. When observing networks across time — for 

example, during development — patterns of change can be reconceptual-

ized as resulting from network dynamics, the interplay between develop-
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mental processes that shape human cognition and concurrent changes in 

brain connectivity that modify network topology. Similarly, variations in 

individual behavior can be related to variations in network architecture 

that are due to genetic factors or environmental influences. And detailed 

knowledge of structural connectivity allows the formulation of predictive 

and generative models for complex neural activity. The description of the 

human brain as a complex network can materially advance our under-

standing of how the brain ’ s connectivity gives rise to individual differ-

ences in behavior and cognition. 

 The first genome-mapping efforts were fueled by technological inno-

vations that dramatically increased feasible sequence length while lower-

ing sequencing cost.  9   These same forces are likely to play a major role in 

shaping the future of connectomics. A broad spectrum of empirical strat-

egies for mapping the connectome across a variety of species including 

humans is currently under development. New technologies enable the 

acquisition of progressively larger data sets with increasing resolution 

and accuracy. However, at the time of writing, it appears unlikely that a 

single empirical strategy for mapping the connectome will emerge. This 

has several reasons. First and foremost, the multiscale arrangement of 

neural elements and their connections demand that mapping techniques 

capture patterns that range over many orders of magnitude — no single 

technique may ever be optimal for capturing the network all at once. 

Every scale faces its own set of formidable technical challenges for col-

lecting and analyzing connectome data, and promising new avenues are 

continually being developed. Relating connectome data to neural activ-

ity and behavior imposes additional requirements, such as collecting 

connectome maps in ways that are economical and preserve the integrity 

of the brain and the organism. 

 As a result, connectomics continues to evolve, utilizing an ever-

increasing range of techniques for mapping structural brain connectivity. 

These techniques are beginning to deliver an abundance of data on brain 

connectivity in unprecedented detail, from the microscale of neurons to 

the macroscale of brain systems. In the next two chapters, we turn to a 

brief survey of some of the main empirical strategies that drive connec-

tomics today. 
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 The observation of individual neurons through a microscope or the ren-

dering of fiber tracts of the human brain obtained from neuroimaging 

data represent two rather different approaches to mapping the connec-

tome (  figure 4.1 ). Microscopy directly visualizes the structure of indi-

vidual neurons including their processes and synaptic connections, at 

varying degrees of spatial resolution in the micrometer to nanometer 

range. In contrast, neuroimaging relies on statistical inferences based on 

complex signals sampled from relatively large volumes of neural tissue 

on a scale of several millimeters. Currently, there are no noninvasive 

techniques for the direct visualization of individual cells and axons in the 

live human brain. Hence, there is a significant gap between micro- and 

macroscales. Techniques at the microscale allow the tracing and recon-

struction of a small number of neural elements in exquisite detail but so 

far have fallen short of providing complete network diagrams (with the 

sole exception of  C. elegans ). Techniques at the macroscale can yield a 

global picture of a whole-brain network but do so at the expense of 

spatial resolution. Given this impasse, attaining the grand scientific 

objective of assembling a comprehensive map of the human connectome 

requires pursuing a combination of empirical strategies with complemen-

tary strengths and weaknesses. The next two chapters will introduce a 

broad range of techniques and approaches that are currently deployed 

in this endeavor, at the micro- and macroscale. 

    In the immediate future, significant progress in  human  connectomics 

will mainly derive from mapping connectivity among millimeter-scale 

volumes of neural tissue. In contrast, near-term prospects for acquiring 

comprehensive connectome maps of the human brain at cellular resolu-

tion are dim at best, as current methods face significant, though perhaps 

not insurmountable, obstacles and challenges. While the human connec-

tome at microscale resolution may currently be beyond reach, cellular 

The Connectome at the Microscale 
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connectome maps of extended circuits or even of complete nervous 

systems of other animal species with smaller brains will soon become a 

reality. These studies will provide invaluable insights into the network 

architecture of microscopic and mesoscopic neural circuits that comple-

ment insights gained at the large scale from human neuroimaging. Since 

no single approach is able to provide a complete picture of the human 

connectome, integration among different connectome-mapping tech-

niques is ultimately needed to harness their complementary strengths 

and mitigate their weaknesses. 

 In this chapter, we will survey some of the empirical approaches to 

mapping the connectome that are currently pursued at the microscale 

(see also Lichtman and Denk, 2011; Kleinfeld et al., 2011; Denk et al., 

2012). While most strategies that rely on EM, LM, or tract tracing have 

not been applied to the mapping of human brain connectivity due to 

their invasive nature, they are included here because of their consider-

able power and promise for elucidating neural circuitry in model organ-

isms, both vertebrate and invertebrate. Also, possible future application 

of EM or LM technology to postmortem human brain tissue may add to 

our understanding of the microcircuitry of the human brain. 

Figure 4.1 
 Microscopy and neuroimaging. (A) A fluorescence microscopy image of a cultured rat 
hippocampal neuron labeled for an abundant synaptic protein, synapsin, resulting in stain-
ing of numerous punctate synaptic sites. The image was taken by the author (modified after 
Sporns and Jenkinson, 1998). (B) A 3D computer reconstruction of callosal and cerebro-
spinal pathways obtained with diffusion magnetic resonance imaging. Courtesy of Martijn 
van den Heuvel (University Medical Center Utrecht, The Netherlands). 
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EM Reconstruction of Neural Tissue 

 Arguably, of all strategies for mapping connectome networks, the recon-

struction of cellular morphology and connectivity from EM data imaged 

at nanometer resolution offers the most complete and detailed informa-

tion about the structure of neurons and the patterns of neural circuitry 

(Briggman and Bock, 2012). In principle, EM reconstructions allow the 

creation of a dense connectome map that includes all cells and synapses 

(including electrical junctions), possibly even with the inclusion of non-

neuronal cells. In reality, the creation of such a map presents a formidable 

challenge, even for relatively small volumes of neural tissue. Braitenberg 

and Sch ü z (1998) estimated that 1 mm 3  of cortical gray matter of a mam-

malian brain contains more than 100,000 neurons, more than 700 million 

synapses, and more than 4 kilometers of axonal wiring.  1   Imaging of such 

a block of tissue at a typical EM resolution of 5  ×  5  ×  25 nm would yield 

1.6  ×  10 15  voxels, which translates into roughly 1.6 petabytes of raw data.  2

Making sense of such large amounts of data requires sound strategies for 

data compression and reduction. 

 All EM reconstruction approaches operate by assembling a three-

dimensional (3D) description of fixed tissue on the basis of series of 

two-dimensional (2D) image stacks (  figure 4.2, plate 2 ). Spatial resolu-

tion is often very high (on the order of a few nanometers) in the first 

two image dimensions, but in the third dimension resolution is limited 

by the section thickness (currently on the order of tens of nanometers). 

Because of this limitation, image stacks are composed of voxels with 

unequal dimensions, and various technical refinements are directed 

toward reducing this spatial anisotropy. Once image stacks have been 

acquired, a number of methodological challenges must be addressed, 

including the registration and alignment of multiple sections, the segmen-

tation of imaged sections into discrete cellular objects, and the tracing of 

these objects through hundreds, and potentially thousands, of image 

slices. Virtually all past and current studies of neural architecture at the 

nanometer scale have relied either exclusively or in part on manual 

supervision and error correction by human experts, particularly for 

determining the continuity of neuronal objects through stacks of sections 

and for the detection of synapses between neurons. However, human 

intervention is extremely costly and time-consuming and thus cannot be 

pursued for reconstructions of larger tissue blocks or even whole nervous 

systems.  3   Thus, significant research efforts are directed toward achieving 

automation of the reconstruction pipeline, including the use of machine 
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Figure 4.2 (plate 2) 
 Electron microscopy (EM) serial sectioning and reconstruction. Panels (A) and (B) show 
stacks of 12 EM serial sections, with each section covering an area of about 5  ×  7  μ m. The 
stack is rotated counterclockwise in the panels on the right, to provide a different visual 
perspective. Panels (C) and (D) show profiles of reconstructed synapses found within the 
volume; green objects represent asymmetrical synaptic profiles while red objects represent 
symmetrical synaptic profiles. Some of the synapses intersecting the front plane are labeled 
1 – 10. Reproduced with permission from Merch á n-P é rez et al. (2009). 

learning techniques for automated segmentation and alignment of neural 

objects (e.g., Jain et al., 2010; Turaga et al., 2010; Jaume et al., 2011; 

Helmstaedter and Mitra, 2012) and the tracing of neuronal connections 

(Lu, 2011). 

    EM processing pipelines start with tissue preparation including fixa-

tion and labeling, followed by automated serial sectioning. The labeling 

step is important for improved detection of different cellular compart-

ments — for example, cell membranes (surfaces) or synaptic junctions. A 

number of techniques for automated serial sectioning have been devel-
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oped over the past few years. Serial block-face scanning EM (SBF-SEM; 

Denk and Horstmann, 2004) involves placing an ultramicrotome inside 

the imaging chamber of an electron microscope. A diamond knife 

removes thin slices from the fixed tissue block, and a scanning electron 

micrograph of the freshly cut block surface is taken. The process is 

repeated until the entire tissue block has been sectioned and imaged. 

Sectioning destroys the tissue block, and each sample can therefore be 

imaged only once. Successive removal of thin sections from a stationary 

tissue block improves alignment and distortion correction of adjacent 

images and thus aids in neuronal reconstruction. Mechanical removal of 

thin sections is not the only way to image neural tissue in three dimen-

sions. Focused ion beam scanning EM (FIB-SEM; Knott et al., 2008) uses 

a nonmechanical approach to gradually ablate embedded tissue. Removal 

of tissue is effected by a focused beam of gallium ions which creates a 

milled surface that can be imaged with scanning EM. Removed tissue 

layers can be as thin as 15 nanometers, and the technique thus achieves 

very high spatial resolution in the depth dimension. A different approach 

is taken with a device called the automated tape-collection lathe ultra-

microtome (ATLUM; Kasthuri et al., 2007). Automatically generated 

ultrathin sections are first collected on a carbon-coated tape, which is 

later processed for SEM imaging. Yet another alternative is the collection 

of serially sectioned material followed by transmission EM (ssTEM; 

Harris et al., 2006; Chklovski et al., 2010). 

 Regardless of how images of tissue sections are acquired, a necessary 

next step is to determine the locations and spatial arrangements of cel-

lular objects (cells bodies, axons, synapses) with the ultimate goal of 

determining neuronal connectivity. Segmentation of EM images involves 

parsing of the image into distinct and internally coherent regions 

corresponding to individual cells or cellular compartments (  figure 4.3 ). 

Full 3D reconstruction then faces the additional problem of determining 

the continuity of detected regions across multiple adjacent sections. 

Interestingly, some of the algorithms used to accomplish image segmen-

tation are closely related to those employed in the regional parcellation 

of whole-brain imaging data acquired at the large scale (see chapter 5). 

Both problems involve the detection of coherent regions separated by 

boundaries in an imaged tissue section or on the cortical surface. The 

segmentation problem can in principle be tackled with two (mathe-

matically equivalent) approaches, the detection and labeling of boundar-

ies or the creation of an affinity graph between pixels that records 

whether two pixels belong to the same object or not (Jain et al., 2010). 
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Boundaries can be detected via image gradients by searching for sharp 

discontinuities in image properties such as intensity or texture, followed 

by error correction that capitalizes on contextual or global information 

to  “ clean up ”  boundaries that are inaccurate or incomplete. Once bound-

ary detection is completed, individual voxels in an image are labeled as 

either belonging to a boundary or not. In contrast, the edges of affinity 

graphs link pairs of voxels (not necessarily adjacent in the image), and 

the sign of the edge indicates if the two voxels belong to the same or 

different regions. Hence boundaries exist between voxels, which increases 

spatial resolution. Affinity is determined on the basis of the similarity 

between voxels, again driven by image properties such as intensity or 

texture. Affinity graphs can be constructed not only for 2D images but 

also in 3D volumes linking voxels belonging to the same object across 

serial sections. Boundaries or affinity graphs can be expressed in binary 

form or, preserving the original similarity or dissimilarity measurements, 

in the form of probabilities. 

Figure 4.3 
 Image segmentation in electron microscopy (EM) connectomics. The left panel shows an 
example of a natural image (top) and a scanning EM image of mouse cortex (bottom). 
Boundaries between coherent image regions have been labeled in the center panels, and 
the segmented image regions are filled in (shaded in tones of gray) at the right. Modified 
(converted to grayscale) and reproduced with permission from Jain et al. (2010). See the 
original publication for more information on image sources. 
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    A very large number of algorithms have been devised to solve various 

instances of the image segmentation problem. The specific qualities of 

EM images favor particular algorithms and processing parameters over 

others. Sebastian Seung and colleagues have argued that the most pro-

ductive and efficient approach toward automated image segmentation in 

connectomics involves the use of machine learning to automatically 

select optimal algorithms (Jain et al., 2010). Human involvement, the 

main bottleneck in terms of speed and resources, will still be needed, 

particularly for the creation of training sets needed to optimize machine 

vision routines and for a final  “ merge and split ”  editing step to resolve 

inconsistencies. It is expected that more sophisticated use of contextual 

information, possibly across multiple spatial scales, will further increase 

the efficiency of automated segmentation routines.  4   Speed and accuracy 

of neurite reconstruction can be substantially improved by creating a 

skeletonized graph-like representation of fibers rather than retaining the 

full volume of contours (Helmstaedter et al., 2011) although the detec-

tion of synapses may still require full volume reconstruction. It should 

be noted that regardless of the level of precision of EM imaging or the 

accuracy of image registration, segmentation, and 3D linkage, some level 

of error in tracing and annotation will remain. Given the labor involved 

in manual error correction, statistical approaches are needed (Donohue 

and Ascoli, 2011). Helmstaedter et al. (2011) developed a statistical 

method for creating consensus estimates of neurite morphology from 

tracings performed by a large group of nonexpert individuals. This 

approach allows the identification of locations that are inconsistently 

captured and that need to be revisited and reexamined by experts. 

Despite the success of these refined reconstruction approaches, it seems 

likely that a certain level of error will remain and that statistical inference 

will eventually have to be performed on incomplete or noisy data. The 

extent to which this compromises the  “ ground truth ”  of synaptic con-

nectivity is unknown. 

 Clearly, EM strategies for mapping the connectome are in rapid transi-

tion, and future technological developments will likely dramatically 

improve image resolution and automated 3D reconstruction. Current 

techniques have begun to reveal the cellular architecture of several 

neural structures in both vertebrate and invertebrate brains. Detailed 

analyses of small volumes of neural tissue in  Drosophila  (Cardona et al., 

2010) and in rat hippocampus (Mishchenko et al., 2010) have demon-

strated differences as well as similarities in cellular and subcellular orga-

nization of invertebrate and vertebrate neuropil. Reconstructions in 
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Drosophila  revealed axonal cable lengths per tissue volume that were 

comparable to those found in vertebrates while the total length of den-

dritic processes was substantially greater. This increased profusion of 

dendrites was paralleled by a higher density of branch points. Synaptic 

density in  Drosophila  is relatively similar to that found in mammalian 

brains, but only when density is determined by counting presynaptic 

boutons. A much greater proportion of  Drosophila  synapses are found 

to be polyadic, that is, involve multiple postsynaptic sites for any single 

presynaptic site. Thus, the density of synaptic connections is significantly 

higher than that found in mammalian brains, where monadic synapses 

consisting of one presynaptic and one postsynaptic site prevail. Greater 

density of synaptic connections and dendritic branch points result in 

much greater compactness of microcircuits and in higher packing density 

of connection motifs. 

 Serial transmission electron microscopy was used to reconstruct neu-

ronal circuitry in volumes of several hundred  μ m 3  of the rat hippocampus 

(Mishchenko et al., 2010). The study yielded important information 

about the density and size of neuronal compartments that can be used 

to discover or validate statistical rules of connectivity. For example, a 

long-standing statistical rule states that synapse formation between pre-

synaptic boutons and postsynaptic dendrites is governed only by the 

spatial proximity of axons and dendrites (also called  “ Peters ’  Rule ” ; 

Braitenberg and Sch ü z, 1998). Contrary to the predictions of Peters ’  Rule, 

the EM data of Michchenko et al. (2010) indicated that synaptic density 

was only poorly predicted by the presence of axons near dendrites. 

Instead, dendritic circumference and ultrastructurally determined 

touches between dendritic spines and axons were strong predictors. Thus, 

synaptic connectivity cannot be inferred on the basis of axodendritic 

overlap alone, instead requiring the inclusion of parameters that depend 

on ultrastructural information. 

 This result implies that synaptic connectivity cannot be reliably inferred 

from geometric descriptions of cells and the overlap or relative proximity 

of their neurites — direct imaging of subcellular synaptic specializations 

like spines, presynaptic vesicles, or the postsynaptic density may be 

required. This endeavor may be aided by EM studies that include data 

on molecular distributions — for example, by visualizing synaptically 

expressed proteins. The inclusion of multiple molecular markers in a 

TEM analysis of a portion of the rabbit retina allowed the identification 

of cell types expressing different neurotransmitters as well as the mapping 

of complex connection motifs among different retinal cells (Anderson 
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et al., 2011). The study confirmed the abundant existence of close spatial 

proximities between neurites that are not associated with synaptic 

contact, thus underscoring the necessity for ultrastructural mapping to 

derive network connectivity. 

 One of the most significant  “ next frontiers ”  in all connectome-map-

ping studies regardless of scale is the relationship between neuronal 

structure (morphology and connectivity) and function (dynamics and 

physiology). At the microscale, significant inroads have been made by 

combining physiological measurements and EM reconstruction carried 

out within the same tissue volume. Working in mouse primary visual 

cortex, Bock et al. (2011) first characterized functional properties of 

neurons such as their preferred stimulus orientation and then performed 

serial sectioning EM of the same tissue volume to determine synaptic 

interconnections and construct a network graph (  figure 4.4, plate 3 ). The 

analysis of the connection diagram revealed convergence of inputs 

from multiple pyramidal cells with diverse orientation preference onto 

Figure 4.4 (plate 3) 
 Reconstruction and network diagram of physiologically identified neurons in mouse visual 
cortex. (A) The image shows a computer-generated, three-dimensional rendering of 14 
functionally characterized visual neurons and their synaptic targets. Cell bodies, dendrites, 
and axons of the 14 neurons are colored according to their orientation preference. Target 
neurons are colored according to whether they are excitatory or inhibitory cells. (B) 
Directed graph of the anatomically reconstructed synaptic connections between the 
neurons shown in (A). Cell bodies of target neurons (excitatory, inhibitory) are shown as 
circles while other postsynaptic targets corresponding to dendritic fragments unconnected 
to cell bodies within the imaged volume are shown as squares. EM, electron microscopy. 
Modified and reproduced with permission from Bock et al. (2011). 
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inhibitory neurons. This pattern of convergence, while unrelated to the 

physiological specializations of the presynaptic cells, was partially pre-

dicted by axonal geometry, specifically the pairwise spatial overlap of 

their synaptic boutons. Another study that combined anatomy and physi-

ology was carried out by Briggman et al. (2011) in the mouse retina 

(  figure 4.5, plate 4 ). Following measurements of the physiological 

response properties of several hundred individual direction-selective 

ganglion cells, the tissue block containing their cell bodies, the adjoining 

inner plexiform layer, and part of the inner nuclear layer was fixed and 

subjected to SBF-SEM. Mapping of synaptic connections within a sub-

network of 24 starburst amacrine cells and 6 ganglion cells revealed 

highly nonrandom patterns of connectivity that form the structural sub-

strate for previously observed asymmetries in physiological inputs of 

ganglion cells underlying their direction preference. Both studies (Bock 

et al., 2011; Briggman et al., 2011) present instructive examples of how 

physiological properties of cells can be traced to specific patterns of 

structural connections. 

       As this brief survey shows, the field of EM connectomics seems poised 

soon to deliver the first examples of connectivity matrices, at least from 

some restricted portions of the nervous system of a model organism. 

What is the potential of EM approaches for human connectomics? The 

difficulty of obtaining suitable material from either living or postmortem 

human brains will remain a major obstacle far into the future. All EM 

technology must operate on fixed specimens and involves the destruc-

tion of the brain in the process of acquiring images. This limits the poten-

tial of EM for revealing links between physiology and anatomy in the 

human brain. Nevertheless, EM has already begun and will continue to 

provide important information on the elementary rules that govern brain 

connectivity at cellular scales in both vertebrate and invertebrate nervous 

systems. It will be particularly important to determine the degree to 

which cellular connectivity is highly specific, varying from cell to cell in 

ways that matter for their functional specialization, or mainly random, 

implying that structural variation can be described in the form of param-

eters that characterize statistical distributions (see chapter 2). This ques-

tion will also be addressed by complementary approaches that use light, 

not electron beams, to image cellular architecture. 

Light Microscopy 

 Light microscopic (LM) approaches toward neuronal and circuit recon-

struction face some of the same challenges encountered previously for 
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Figure 4.5 (plate 4) 
 Specificity of synaptic connectivity in the retina. The image shows the cell bodies (large 
round symbols) and dendrites of three neurons, one starburst amacrine cell (yellow) and 
two direction-selective ganglion cells (green), all reconstructed with SBF-SEM. Synaptic 
varicosities of the amacrine cell are marked by small yellow dots. Note that the dendrite 
of the amacrine cell shows substantial overlap with the dendrites of the two ganglion cells. 
However, the reconstruction reveals no synaptic connections between the amacrine cell 
and the ganglion cell at the left, while there are numerous synaptic connections between 
the amacrine cell and the ganglion cell at the right (magenta dots), demonstrating specific-
ity of synaptic connections independent of dendritic overlap. The anatomical specificity of 
amacrine synapses is directly related to the physiological specificity (direction selectivity) 
of the ganglion cell. Courtesy of Kevin Briggman (Max-Planck-Institute for Medical 
Research, Heidelberg, Germany). 
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EM, including the need to correct for image distortions and deformations 

due to sectioning, to ensure accurate image alignment between sections, 

to segment images into neural objects, and to trace these objects across 

multiple sections while performing error correction. 3D neuronal recon-

structions of neurons from LM images have a long history, with manual 

approaches increasingly supplanted by imaging algorithms. Digital and 

automated neuronal reconstruction techniques involve the tracing of 

axonal and dendritic processes and their translation into a geometric 

representation that can be used for quantitative comparison and model-

ing (Donohue and Ascoli, 2011). While LM reconstructions of individual 

cells have been carried out for some time, the determination of connec-

tivity with the explicit goal of a network diagram or connection matrix 

has only just begun. LM has inherent limitations in this regard. With a 

resolution limit set by light diffraction at minimally 200 to 250 nm, LM 

approaches are generally considered to be insufficient for the unambigu-

ous identification of small synaptic junctions, unmyelinated axons, den-

dritic spines, and other ultrastructural detail of neurons and neuronal 

processes. A new set of superresolution optical microscopy techniques 

aims at lowering the resolution limit by imaging individual fluorescently 

labeled molecules (Galbraith and Galbraith, 2011; Sigrist and Sabatini, 

2012), but these approaches have yet to be applied to connectome studies. 

 Most LM approaches rely on various staining techniques to reveal the 

cellular morphology of neurons.  5   Sparse and monochrome stains include 

the Golgi method, as well as a host of tracers such as horseradish peroxi-

dase, plant lectins, and lipophilic carbocyanine dyes used for visualizing 

long-range regional connectivity. These techniques allow the mapping of 

individual neuronal cell bodies and processes provided that there is suf-

ficient separation and little overlap between imaged neurons. They, in 

general, do not permit the direct identification of synaptic contacts 

between cells — instead, neuronal connectivity must be inferred — for 

example, from the spatial overlap between axonal and dendritic pro-

cesses of different cells. More recent technological developments involve 

the use of multiple colors to intracellularly label individual neurons 

within the same block of tissue (Livet et al., 2007). The expression of 

randomly varied combinations of green, yellow, cyan, and red fluorescent 

protein yields around 100 colors that can be individually distinguished 

and tracked (Lichtman et al., 2008). As is the case for all LM techniques, 

cellular details that are below the dimensions of the resolution limit 

cannot be imaged or mapped. A third set of techniques uses viral vec-
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tors — for example, herpes and pseudorabies virus — to reveal synaptic 

connectivity by utilizing the transsynaptic spread of virus particles from 

postsynaptic to presynaptic neurons. This technique allows for the joint 

identification of sets of pre- and postsynaptic neurons in sparsely labeled 

material. 

 In an earlier chapter (chapter 2) I discussed the influential idea that 

connection patterns among morphologically distinct classes of neurons 

in a given circuit may be described on the basis of empirically derived 

statistical patterns. These statistical descriptions deliver  “ canonical cir-

cuits, ”  and candidates of such circuits have been proposed for cerebral 

cortex (Douglas and Martin, 2004). A comprehensive analysis of fully 

reconstructed individual neurons in cat visual cortex was carried out by 

Binzegger et al. (2004), resulting in a quantitative circuit diagram. Con-

nections between neurons were not directly mapped but were inferred 

from the overlap of cell-type specific axonal and dendritic projection 

patterns. The resulting circuit topology (Binzegger et al., 2009;   figure 4.6 ) 

exhibits high levels of connectivity among cell populations, with a few 

strong and many comparatively weak projections. If weaker projections 

are excluded, the circuit exhibits high clustering and a short path length, 

indicative of small-world organization. Dynamically, the circuit is stable, 

but the balance between excitatory and inhibitory influences places it 

close to the transition to dynamic instability. Canonical circuits that 

embody statistical rules of connectivity may become important ingredi-

ents for integrating specific details of microscale anatomy with large-

scale connectivity. 

    Knife-edge scanning microscopy (KESM), developed by Yoonsuck 

Choe and colleagues (Mayerich et al., 2008; Choe et al., 2011; Chung 

et al., 2011;   figure 4.7 ), allows the sectioning of whole animal brains while 

achieving near isotropic spatial resolution with voxel sizes below 1  μ m. 

KESM has been successfully used for reconstructions of Golgi-stained 

neurons in the mouse brain. Using a similar technique, Li et al. (2010a) 

took a first step toward the construction of a cellular map of the whole 

mouse brain. A fixed and stained brain was sectioned at 1  μ m thickness 

with an automatic micro-optical sectioning tomography (MOST) instru-

ment and imaged with a light microscope. Data acquisition covered more 

than 15,000 coronal whole-brain sections, acquired over a period of more 

than 10 days and resulting in 8 terabytes of raw data. Sections reveal 

small brain structures including individual neurons and neuronal pro-

cesses. The Golgi method stains only a random subset of all neurons and 
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Figure 4.6 
 Network topology of a cortical canonical circuit. (A) Weighted and directed connection 
matrix between cell types of cat visual cortical area 17, with gray levels indicating the esti-
mated number of synapses (target cell types are arranged as vertical columns). Abbrevia-
tions are as follows: b2/3, b4, b5 are basket cells in layer 2/3, 4, and 5, respectively; db2/3 
are double bouquet cells in layer 2/3; p2/3, p4, p5, p6 are pyramidal cells in layer 2/3, 4, 5, 
and 6, respectively; ss4 are spiny stellate cells in layer 4; spiny stellate cells and pyramidal 
cells in layers 5 and 6 are further classified by their preferred layer of axonal innervations 
(e.g., L5/6). (B) The connection matrix as a directed graph, with the gray level of arrows 
indicating the number of synapses comprising the projection (black = maximal). Circles 
are excitatory cells, squares are inhibitory cells, and the symbol size is proportional to 
number of cells. Layers are numbered on the left; wm refers to white matter. Modified and 
reproduced with permission from Binzegger et al. (2009). 
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generally does not permit the identification of individual synapses. 

Therefore, MOST must infer synaptic connections based on the overlap 

of axonal and dendritic arbors and is thus not well suited for the dense 

reconstruction of a whole-brain connectome. Among the advantages of 

MOST are its applicability to the large scale of whole brain neural 

systems and its possible extension involving fluorescent labeling to 

further characterize neuronal phenotype. 

    The brain of the fruit fly  Drosophila melanogaster  contains about 

100,000 neurons, most of which are found within a tiny volume easily 

fitting into a cube of around 500  μ m on each side (Rein et al., 2002). 

Several efforts are under way to map the neural connectivity of  Dro-

sophila  at the microscopic and mesoscopic scale. Yu et al. (2010) used 

genetic methods to divide a set of approximately 1,500 neurons that 

express a specific transcript related to courtship behavior into 100 distinct 

classes that are anatomically and functionally distinct. These 100 cell 

Figure 4.7 
 Purkinje cells reconstructed with knife-edge scanning microscopy. Cell bodies are at the 
bottom of the image, and dendrites extend upward. Courtesy of Yoonsuck Choe (Texas 
A & M University). 
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classes were placed into a 3D digital atlas, and their cellular polarity and 

presumptive connectivity pattern was determined, resulting in a network 

diagram that could be examined for sexual dimorphisms in the wiring 

pattern. Chiang et al. (2011) assembled a detailed and comprehensive 

connectivity map of the brain of  Drosophila  from high-resolution 3D 

images of approximately 16,000 single neurons. Each of these single 

neurons was positioned in and registered to one of two standard tem-

plates representing two adult (one male, one female)  Drosophila  brains. 

Anatomical segmentation of the neuropil stained for a synaptic marker 

protein yielded 58 morphologically distinguishable regions. In parallel, 

functional subdivision of the nervous system was performed by categoriz-

ing neurons into two classes: local interneurons and projection neurons. 

Processes of interneurons remain confined within a putative  “ local pro-

cessing unit ”  (LPU) while processes of projection neurons connect LPUs 

to each other. Spatially distinct populations of local interneurons were 

taken to be a key criterion for the definition of LPU boundaries, and an 

analysis of the distribution of their cellular processes yielded 41 candidate 

LPUs which largely overlapped with anatomically segregated neuropil 

regions. Aggregation of processes extending between LPUs into a meso-

scopic brain-wide wiring diagram resulted in a connection matrix, a 

weighted graph of LPUs linked by processes of projection neurons (  figure 

4.8, plate 5 ). Clustering of LPUs reveals distinct communities or modules, 

including four modules containing neurons primarily involved in vision, 

olfaction, audition, and locomotion. Clustering of neurons whose pro-

cesses followed similar trajectories yielded 58 interregional fiber bundles 

or tracts, including 14 tracts that linked corresponding LPUs in the two 

hemispheres. While the study did not provide a complete cellular map 

and individually identified synaptic connections, it took a first important 

step toward characterizing the intermediate-scale (mesoscopic) arrange-

ment of functionally coherent modules and processing elements in the 

fly brain. This mesoscopic description results from a subsampling strategy. 

Statistical analysis suggests that a sample of only a few thousand neurons 

is sufficient to provide an accurate representation of major cell groupings 

and their interconnections. 

    Color variations in the expression of transgenic fluorescent proteins 

(Brainbow; Livet et al., 2007) can densely label neuronal circuitry 

and thus offer one possible avenue toward tracing neurons and their 

connections for reconstructing dense connectomes (Lichtman et al., 

2008). The application of this imaging strategy in complex 3D circuits is 

facing some difficulties related to the reliable and uniform expression of 
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Figure 4.8 (plate 5) 
 Network diagram of the mesoscale  Drosophila  connectome. (A) Individual neurons were 
labeled using a fluorescent cell marker, imaged at high resolution and digitally mapped 
into standard brain coordinates. The image shows seven individually imaged neurons. 
(B) Composite image of cells colored by their membership in one of several dozen local 
processing units (LPUs). (C) Undirected network diagram summarizing inferred connec-
tions between LPUs. Prominent clusters corresponding to visual, auditory (Aud.), olfactory, 
and motor systems are reproduced at the right. For abbreviations of neural centers, please 
see original publication. Modified and reproduced with permission from Chiang et al. 
(2011). 
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marker proteins, the limited set of discriminable color variations (cur-

rently on the order of 100), and the limited resolution of LM fluorescent 

imaging. In a sparser environment, the technique has been successfully 

applied to tracing neuromuscular circuits in the mouse interscutularis 

muscle (Lu et al., 2009) and has revealed extensive individual variations 

and a spatial layout of neuronal processes that does not appear to mini-

mize wiring length. Recent applications include zebrafish (Pan et al., 

2011) and  Drosophila  (Hampel et al., 2011; Hadjieconomou et al., 2011). 

 Various genetic strategies for labeling neuronal structures including 

synapses allow fine temporal and spatial control and are thus good can-

didates for mapping connectivity profiles of specific cell types. One set 

of strategies relies on viruses which can be used for tracing monosynaptic 

connections because they afford both high transsynaptic specificity and 

signal amplification. A combination of viral vectors and transgenic strate-

gies for targeting specific neuronal cell types allows for robust monosyn-

aptic retrograde labeling of their input sources (Wickersham et al., 2007; 

Weible et al., 2010). While the approach enables the unambiguous detec-

tion of monosynaptic inputs to specific targets, the large number of cell 

types in the mammalian nervous system and the need to combine input 

maps from many different individual brains render the technique unsuit-

able for dense connectome-mapping efforts. It may be useful, however, 

for validation of EM reconstructions as well as for linking dense recon-

structions obtained in smaller volumes to large-scale whole-brain maps 

of neuronal connections. Additional strategies for controlled labeling of 

specific synapses are available. One approach toward visualizing chemi-

cal synapses in specific neurons or neuronal populations involves a 

genetic method that combines high cellular specificity and temporally 

controlled expression (Li et al., 2010). Applied to cerebellar ganglion 

cells, the method generated new estimates of synaptic densities as well 

as new insights into synaptic distributions relative to other components 

of the cerebellar circuit. 

 Another approach to cellular reconstruction, array tomography, com-

bines the advantages of immunofluorescence labeling with the high reso-

lution of EM (Micheva and Smith, 2007; Micheva and Bruchez, 2012). 

Ultrathin serial sections cut from a fixed block of neural tissue can be 

repeatedly stained and imaged with different fluorescent markers, and 

the imaged sections can be processed further to yield EM micrographs 

and 3D volume reconstructions. Using this approach, targeting of a range 

of synaptically expressed proteins allows for the unambiguous identifica-
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tion of very large numbers of synapses in mouse cortex (Micheva et al., 

2010).  6   The overlay of multiple layers of immunofluorescence, each 

labeling a different protein, yields colocalization patterns indicative of 

distinctive pre- and postsynaptic molecular components that define a 

repertoire of synaptic diversity.  7   The high-throughput capacity of array 

tomography opens an avenue toward creating a catalog of synaptic sub-

types defined by their molecular composition across large regions of the 

brain. Such a catalog would be very useful for annotating connectome 

data recording patterns of connectivity with additional synaptic 

parameters. 

 The great utility of LM fluorescence imaging either alone or in com-

bination with genetic protocols ensuring precise targeting of cell types 

complements the high resolution afforded by EM approaches. Additional 

challenges remain — for example, the detection of electrical junctions or 

the estimation of synaptic efficacy from morphological or molecular 

measurements. Factors that limit the usefulness of LM to human 

connectomics mirror those of EM techniques, including the invasiveness 

of the tissue preparation and the need for genetic modification in some 

LM approaches. Despite these limitations, efforts directed at the discov-

ery of general rules that govern synaptic connectivity in the mammalian 

brain will ultimately prove fruitful for creating human connectome maps 

that span multiple scales. Perhaps most promising in this regard would 

be the combination of connectome maps of local circuits with those 

obtained from tract-tracing methods that specifically target long-range 

connections (see chapter 5), thus bridging cellular and large-scale con-

nectome studies. 

Statistics or Specificity? 

 The neuroanatomist Valentino Braitenberg once argued that the general 

shape of neurons is specified only in outline, with  “ details being filled 

in by largely random processes of growth. ”  This randomness opened 

up the prospect of adopting statistical concepts to render the essential 

information contained in neuroanatomical structures, which according to 

Braitenberg was much preferable over  “ the very pessimistic note which 

the impossibility of unraveling precise circuitry for an enormous number 

of neurons would imply ”  (Braitenberg, 1990, p. 4). Braitenberg ’ s pessi-

mism expressed that it may be impossible to truly understand the bewil-

dering intricacy of brain connectivity unless there is a discernable pattern, 
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described by a set of statistical regularities. However, it is unclear whether 

such statistical regularities, assuming they can be identified, will be 

sufficient for a comprehensive description of the connectome. It seems 

that as more and more details of cellular morphology and connectivity 

are revealed, even minute structural variations, rather than representing 

 “ structural noise, ”  are found to contribute to generating specific func-

tionalities. One of the most important controversies in microscale 

connectomics centers on this conflict between specificity and random-

ness. The controversy plays out between proponents of statistical or 

population descriptions of circuitry (e.g., Douglas and Martin, 2011) and 

other investigators who point to the ever-increasing evidence for speci-

ficity in connections between individual neurons (e.g., Lee and Reid, 

2011). If it turns out that specific patterns of connectivity cannot be 

reduced to statistical rules, the project of microscale connectomics and 

its integration with large-scale efforts will become significantly more 

difficult. 

 What should be included in a complete description of the human con-

nectome at the microscale? Early efforts have put great emphasis on 

neurons and synaptic connections in the central nervous system (CNS). 

However, neurons can communicate, electrically and chemically, by other 

means, including gap junctions and extracellular signaling. In some 

tissues and circuits, gap junctions make up a large proportion of cellular 

communication, and the important role of gap junctions for electrophysi-

ological processes is well documented. Slower and more diffuse bio-

chemical signaling mechanisms by which cells can communicate include 

retrograde synaptic communication, neuromodulation, and hormonal 

control. Outside the CNS, a myriad of sensory and motor neurons inner-

vate virtually all bodily tissues, relaying extremely important signals 

without which the integrity of the human body and adaptive behavior 

could not be maintained.  8   Neurons are chemically coupled to surround-

ing glial cells, particularly astrocytes, and the important roles of these 

nonneuronal cells for neuronal functioning are only beginning to be 

recognized (Fields, 2010). Finally, both neurons and glial cells interact 

with the brain ’ s vasculature, and neurovascular coupling is important for 

energy metabolism and a key mechanism underlying noninvasive neuro-

imaging. Clearly, no microscale connectome can ever be fully compre-

hensive — even the most ambitious and fine-grained connectome efforts 

on the drawing boards today can only report on a small selection of cell 

types (mostly neurons), structures (mostly the CNS), and mechanisms 

(mostly synaptic). 
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 Several orders of magnitude separate spines and dendritic branches 

from the myelinated tracts of the brain ’ s white matter, to which we now 

turn. In moving to the meso- and macroscales of the brain, cellular reso-

lution is lost. However, what is lost in resolution is gained in coverage, 

as modern histological and neuroimaging techniques can map the brain 

in its entirety and deliver complete descriptions of the connection topol-

ogy at the large scale of regions and systems. 



 5 

 EM and LM techniques for dense connectome reconstruction currently 

operate within restricted (submillimeter) volumes of tissue and thus do 

not offer the field of view that would enable tracing of axons over longer 

distances. A different set of techniques is needed to accomplish this 

complementary goal. Mapping the human connectome at larger scales 

aims to deliver connectivity matrices of regions and interregional con-

nections, most of which course through the brain ’ s white matter. Charting 

the brain ’ s major pathways has been an objective of classical neuro-

anatomy for over a hundred years, originally proceeding through a com-

bination of anatomical dissection and histology (  figure 5.1 ). The relation 

of these pathways to human cognition and its disturbances was a central 

concern for pioneers like the Viennese neurologist and psychiatrist 

Theodor Meynert, who began studying the projection fibers ( “ Projek-

tionsfasern ” ) of the brain 150 years ago.  1   Meynert became particularly 

interested in  “ cerebral architecture, ”  major components of which were 

the  “ association systems ”  of fibers that linked brain regions both within 

and between hemispheres. Foreshadowing the core theme of connec-

tomics, he wrote that  “ if we are acquainted with the principles upon 

which this mechanism [the brain] operates, we may infer its function from 

its structure, regarding the former as the natural outcome of the latter ”  

(Meynert, 1885, p. 138). Almost in passing, when discussing the  “ arciform 

nerve-bundles ”  comprising the brain ’ s white matter, Meynert notes that 

 “ the wealth of such fibres, and their variation in length, connecting as 

they do near and remote parts of the cortex, will suffice, without formu-

lating an anatomical hypothesis, to unite any one part of the cortex to 

any other ”  (ibid., p. 150). 

    While commissural and association fibers of the brain have long been 

regarded as a plausible substrate for functional integration, creating a 

complete map of such connections for the human brain has been an 

 The Connectome at the Macroscale 
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Figure 5.1 
 Nineteenth-century depictions of the brain ’ s white matter architecture. (A) Diagram of 
major association pathways by Arthur Van Gehuchten (Van Gehuchten, 1894, p. 656). 
Pathways are f. long. sup., superior longitudinal fasciculus; f. long. inf., inferior longitudinal 
fasciculus; f. arque, arcuate fasciculus; f. unciforme, unciform fasciculus. (B) A similar illus-
tration by Heinrich Obersteiner. In the accompanying text, Obersteiner described these 
pathways as designed  “ for bringing into  functional connection  distant parts of the brain 
and so providing the mechanism for concerted actions ”  (Obersteiner, 1890, pp. 348 – 349; 
italics mine). PF, frontal pole; PT, temporal pole; PO, occipital pole; Fa, fasciculus arcuatus; 
Fu, fasciculus uncinatus; Fli, fasciculus longitudinalis inferior; Op, fasciculus occipitalis 
perpendicularis. (C) A drawing of the superior and inferior segments of the corona radiata 
(CR), stained using the method of Weigert and drawn by M. Gillet, from the monumental 
Anatomie des Centres Nerveux  by Jules Dejerine (Dejerine, 1895, p. 10). Note the intricate 
texture of stained association, commissural and projection fibers. 
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elusive goal. In part, this was due to the extreme delicacy of nervous 

tissue, subject to rapid decay after death, and the lack of sensitive and 

reliable empirical methods for tracking connections over long distances 

through the brain ’ s volume. Today, new methods for charting neuroana-

tomical connections invasively with chemical tracers or noninvasively 

with methods from neuroimaging have become available. At present, 

these methods are deployed in several concerted efforts to compile 

whole-brain maps of structural connectivity with the explicit aim of cre-

ating network descriptions of brain architecture. 

Tract Tracing 

 Tract tracing represents a set of anatomical mapping strategies that rely 

on the sparse labeling of cells with a tracer substance to visualize their 

projections throughout the brain (K ö tter, 2007). Different anterograde 

and retrograde tracers, injected intracellulary or applied extracellularly, 

have been used over several decades in numerous anatomical studies 

of neuronal projections in various mammalian nervous systems. Tract-

tracing studies formed the basis of some of the very first large-scale 

connection matrices, collected for the corticocortical projections of the 

cat (Scannell et al., 1995, 1999) and macaque monkey (Felleman and Van 

Essen, 1991), and the first examples of neuroinformatics databases spe-

cifically designed for collating information on brain connectivity (e.g., 

 “ Collations of Connectivity Data on the Macaque Brain, ”  or CoCoMac; 

see K ö tter, 2004). Tract tracing is usually best suited for long-range inter-

regional projections since it cannot resolve circuitry in the immediate 

vicinity of the tracer injection site. By their nature, anatomical tract-

tracing methods are highly invasive, requiring tracer injection, fixation, 

and histological processing of brain sections. Furthermore, the assembly 

of a comprehensive connectome map necessarily involves the combina-

tion of data from many individuals and tracer injections into numerous 

anatomical sites. These limitations preclude studies of large populations 

of individuals as well as the systematic assessment of individual differ-

ences or longitudinal changes across time. However, unlike diffusion 

imaging, the technique allows the direct quantification of axonal fibers, 

including their directionality and branching patterns, at microscopic reso-

lution, and it sensitively detects both strong and weak pathways. 

 Virtually no tract-tracing data are available for the human brain, and 

progress in the development of postmortem axonal tracing methods suit-

able for the human brain has been slow. However, tract tracing remains 
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important in other mammalian species, including in nonhuman primates, 

not least of all for its role in providing essential validation for other 

noninvasive large-scale mapping strategies such as diffusion MRI (see 

below). Most previous studies of anatomical pathways have reported 

their presence or absence or have recorded their strength on an ordinal 

(strong, intermediate, weak) scale. Increasingly, anatomical tracing is 

accompanied by the application of sophisticated quantitative methods 

for establishing precise estimates for the magnitude or density of indi-

vidual projections. 

 Two recent examples involve tracing of structural connections in 

mouse and macaque monkey. Wang et al. (2011b) carried out a detailed 

mapping study of corticocortical connections of two central areas of 

mouse visual cortex, the lateromedial field and the anterolateral field, 

both recipients of major projections from area V1. Injections of an 

anterograde tracer were used to quantify the density of synaptic boutons 

in each projection pathway. Labeling patterns revealed characteristic 

differences in the density of projections to the lateromedial field and 

anterolateral field. These differences support the idea that mouse visual 

cortex is organized into two parallel visual processing streams analogous 

to the ventral and dorsal streams of primate visual cortex (Wang et al., 

2012). Importantly, differences in the projections of the lateromedial 

field and anterolateral field only emerged if projection densities were 

taken into account — a binary representation recording the presence of 

absence of projections would have revealed no differences as both areas 

project to a common set of target regions. 

 Significant variations in the density of corticocortical pathways, con-

sistent across individuals, were reported recently for new tract-tracing 

data collected in the macaque monkey (Markov et al., 2011). The weight 

of interregional connections was estimated by measuring the  “ fraction 

of labeled neurons ”  detected after injection of a retrograde tracer into a 

target region. Quantitative analysis revealed a remarkable range of con-

nection weights spanning over five orders of magnitude and scaling 

according to a lognormal distribution (  figure 5.2 ), including a significant 

number of previously unreported pathways. The study confirmed earlier 

results indicating a robust relationship between metric connection dis-

tance and connection density, with a strong bias in density towards local 

and short interregional projections. The data reported in Markov et al. 

(2011) and Wang et al. (2011b) strongly suggest that functional special-

ization of cortical regions not only depends on the presence or absence 

of connections but relies on their differential density or weight. These 
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Figure 5.2 
 Density profiles for interregional connections of macaque visual regions. Connection 
density is measured as the  “ fraction of labeled neurons ”  (FLN) measured after injection 
of retrograde tracers into three target regions, visual regions V1 (A), V2 (B), and V4 (C). 
The plots show log-transformed and rank-ordered connection densities from a set of 
cortical and subcortical regions, averaged over several injections. The fitted curve repre-
sents a log-normal distribution. Note that connection density varies over at least 5 orders 
of magnitude, with an overall log-normal shape that is shared between the three regions. 
Note also that each region ’ s connection profile is unique. More recently, quite similar 
results were obtained for projections in mouse cortex (Wang et al., 2012). For abbreviations, 
please con sult the original publication. Modified and reproduced with permission from 
Markov et al. (2011). 

findings underscore the need to develop reliable and validated measures 

that can estimate the magnitude of projections in large-scale neuro-

anatomy, regardless of the technique employed. 

    Several coordinated efforts are under way to compile connectome data 

at the mesoscale. A large group of investigators (Bohland et al., 2009) 

proposed an effort to assemble a connectivity matrix for the mouse 

brain by using standard tract-tracing protocols but scaling up the project 

to achieve uniform whole-brain coverage and quantitative analysis. 

In the spirit of the proposal, the Brain Architecture Project ( http://

brainarchitecture.org ) aims at developing standardized high-throughput 
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methodologies for mapping whole-brain structural connectivity in model 

organisms at the mesoscale, as well as devising new techniques for 

mapping structural connections in postmortem human brain. The Mouse 

Connectome Project ( http://www.mouseconnectome.org ), centered at 

the University of California, Los Angeles, aims to provide a 3D whole-

brain connectome atlas by combining data from approximately 400 

injections of anterograde and retrograde tracers. These injections will 

be applied to a grid of positions, and projection patterns will be regis-

tered to a 3D standard reference atlas. A similar project is currently 

under way at the Allen Institute for Brain Science. Thus, the prospects 

for a achieving a mesoscale mouse connectome within the very near 

future appear bright.  2   Such a connectome would likely comprise several 

hundred anatomically distinct neural regions and their mutual directed 

projections. 

 Chemical tracers combine high sensitivity with the ability to map 

whole-brain circuitry, but they cannot be used in humans. 3D polarized 

light imaging (3D-PLI) offers a new approach to large-scale connec-

tomics that can be applied to postmortem human brain and allows the 

tracing of axonal fiber bundles at a resolution of hundreds of microme-

ters (Palm et al., 2010; Axer et al., 2011). The technique exploits optical 

properties of thin sections of brain tissue, specifically due to the interac-

tion of polarized light with the spatially anisotropic fiber architecture of 

the brain ’ s white matter (  figure 5.3, plate 6 ). Collection of polarized light 

images at different polarization angles and acquired from thin (100- μ m) 

sections of fixed whole brain is followed by computational reconstruc-

tion of 3D fiber models at each voxel. The pathways of long-range pro-

jections can then be reconstructed using various tractography techniques 

(covered in more detail in the next section). This opens the possibility 

that 3D-PLI might be used in the near future for compiling a compre-

hensive description of fiber architecture in the human brain at a spatial 

resolution that is superior to that offered in current diffusion MR tech-

nology. Such a description would be very useful for validating tracts 

derived from noninvasive imaging data. 3D-PLI shares some of the limi-

tations of tract tracing as it relies on the availability of postmortem brains 

and does not allow for longitudinal or population studies. 

    Tract tracing serves an important role in connectomics, as it joins the 

microscales tackled by EM and LM approaches to the macroscale of 

whole-brain anatomy. EM (and, to some extent, LM) deliver connec-

tional information with high specificity. In contrast, the profusion of 
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axonal processes labeled by even small injections of tracer compounds 

generally rules out precise tracking of individual axons, nor does it 

allow the unambiguous identification of synaptic junctions between 

individual cells. Tract-tracing data are inherently statistical in nature, 

reporting connection densities and distributions while leaving the 

issue of connection specificity unresolved. However, while tract-tracing 

approaches are well suited for detecting long-range axonal projections, 

it appears doubtful that dense reconstructions at the EM level can be 

scaled up to cover distances of many millimeters or centimeters in the 

foreseeable future. Tracking individual axons over a modest distance of 

1 cm requires error-free reconstruction across an image stack of nearly 

half a million slices (assuming 25-nm section thickness). The strengths 

and weaknesses of dense EM reconstructions, other related LM strate-

gies, and of tract tracing appear largely complementary, and given this 

methodological trade-off, a feasible near-term goal may be to com-

pile an integrated statistical description of local and long-range brain 

Figure 5.3 (plate 6) 
 Three-dimensional polarized light imaging (3D-PLI) of a human brain. After removal and 
fixation, the brain was embedded in gelatin and frozen, followed by sectioning in the 
coronal plane on a cryostat microtome with a section thickness of 100  μ m. (A) Blockface 
image of a representative section, clearly showing gray and white matter regions. (B) After 
imaging of the section in polarized light and various transformations to extract information 
about the orientation of fibers, 3D fiber vectors can be graphically visualized. The color 
map encodes the direction of fibers at each position: left – right (red), basal – dorsal (up –
 down, green), and rostral – occipital (in – out, blue). Modified and reproduced with permis-
sion from Palm et al. (2010). 
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connectivity drawing on EM, LM, and tract tracing in a model organism 

like the mouse. 

 We now turn to the status and promise of compiling a map of the 

human connectome from data about structural connectivity acquired 

with modern MRI methods. Most of the following discussion will focus 

on parcellation and structural connectivity of the human cerebral cortex. 

This bias reflects the challenges that are involved in establishing objec-

tive regional partitions and validated interregional connections for this 

large subdivision of the brain. It should be emphasized that all methods 

discussed in the remainder of the chapter fully extend to subcortical 

structures and that these structures are naturally included in all ongoing 

and future efforts to map the human connectome. 

Magnetic Resonance Connectomics 

 There are two main avenues toward collecting data on structural connec-

tions in the human brain with magnetic resonance (MR) technology. 

Before turning to a set of techniques that are of central interest 

for mapping the connectome in individual human brains, we briefly 

discuss a more indirect approach based on brain morphometry. The 

method infers the presence of structural connections on the basis of 

cross-correlations in cortical thickness (Lerch et al., 2006). The morpho-

metric assessment of cortical thickness is carried out on MR images that 

are segmented into cortical gray and white matter, and measurements 

for each pair of vertices or regions on the cortical surface are then cross-

correlated across individuals in a population. Validation studies have 

shown that the resultant correlation maps resemble pathways known 

from classical neuroanatomy or mapped with diffusion MRI (Lerch 

et al., 2006). The neurobiological mechanisms that drive these cross-

correlations are only partially understood and probably involve 

developmental mechanisms in addition to adult neuroplasticity. Because 

correlations in cortical thickness are estimated across a population of 

multiple brains, the approach cannot be used for measuring structural 

connectivity in individual participants. Nevertheless, the approach was 

instrumental for creating some of the very first connectome maps at the 

large scale (He et al., 2007) and, in combination with network analysis, 

continues to be deployed in clinical and developmental contexts (Bern-

hardt et al., 2011; Chen et al., 2011). 

 The other main branch of MR connectomics involves the mapping of 

structural connectivity based on diffusion MRI and tractography (Basser 
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et al., 1994; Le Bihan et al., 2001; Le Bihan, 2003; Johansen-Berg and 

Behrens, 2009; Hagmann et al., 2010a; Behrens and Sporns, 2012; Van 

Essen and Ugurbil, 2012). Diffusion MRI is based on measurements of 

the diffusion anisotropy of water or other small molecules within biologi-

cal tissue, and the technique is widely applied in the noninvasive study 

of skeletal and heart muscle as well as the brain. Diffusion anisotropy 

arises as a spatial asymmetry of the random displacement of water mol-

ecules undergoing Brownian motion (  figure 5.4 ). The asymmetry is due 

to the presence of oriented cellular structures which restrict and amplify 

diffusion in specific directions. In the case of the brain, these cellular 

structures might correspond to myelin sheaths surrounding axonal pro-

cesses. Measuring diffusion anisotropy thus provides information on the 

spatial orientation of myelinated axon bundles coursing through the 

brain ’ s white matter. Diffusion signals can be detected in an MR scanner, 

exploiting a relationship between the diffusion-related displacement 

probability density function and the observed MR signal. Appropriate 

sampling of the MR signal by using motion-sensitized magnetic gradients 

oriented in multiple directions allows the recovery of the diffusion signal 

at each voxel. Sampling a larger number of diffusion directions generally 

improves resolution, which is important for voxels that contain crossing 

fibers (see below), but it also tends to increase imaging time. As is the 

case with all MR imaging modalities, signals are subject to a host of noise 

sources, from scanner instability to eddy currents and physiologically 

induced artifacts. In the latter category, uncontrolled tissue movements 

in conjunction with physiological processes such as cardiac pulsation and 

respiration can introduce unwanted signal components (Chung et al., 

2010; Walker et al., 2010). 

    It is important to emphasize that diffusion imaging and tractography 

cannot directly trace or visualize anatomical connections. Rather, the 

approach rests on the inference of a connectivity model that best explains 

an observed MR signal distribution.  3   The original approach, diffusion 

tensor imaging, assumed that each voxel can be characterized by a single 

diffusion direction, corresponding to a single coherent axonal bundle. 

However, voxels may contain crossing fibers that belong to different 

axonal tracts originating and terminating in widely dispersed regions of 

the brain. Such crossing fibers can give rise to a complex diffusion signal 

that is no longer adequately modeled by a simple diffusion tensor but 

constitutes a mixture of diffusion directions. Complex fiber architecture 

is encountered in numerous regions of white matter, possibly comprising 

a majority of all white matter voxels. Several methods for imaging 
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Figure 5.4 
 Diffusion MRI and tractography. (A) A schematic diagram showing the diffusion of a water 
molecule (along the black line) in a tissue volume that contains oriented fibers. Diffusion 
is restricted in any direction that is perpendicular to the orientation of the fiber bundle. 
(B) At each voxel the diffusion of water can be expressed as a tensor defined by three 
principal eigenvectors (shown here as arrows) and their associated eigenvalues ( λ 1,  λ 2,  λ 3). 
(C) The tensor model describes the principal direction of diffusion and the degree of 
fractional anisotropy (FA), which can range between 0 (no anisotropy) and 1. (D) Multiple 
tensors form a tensor field, and streamline tractography proceeds by tracing a line through 
the field, corresponding to the trajectory of a putative axonal fiber. Multiple streamlines 
can be seeded throughout the white matter, and their trajectories can be combined across 
the brain (see, e.g., figure 4.1B). Reproduced with permission from Johansen-Berg and 
Rushworth (2009). 
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complex fiber architecture aimed at resolving multiple diffusion direc-

tions at single voxels have been proposed (e.g., Behrens et al., 2003; Tuch 

et al., 2003). One such approach is diffusion spectrum imaging (DSI), 

which measures the full 3D distribution of the displacement probability 

density function (Wedeen et al., 2005).   Figure 5.5  (plate 7) shows an 

application of DSI to the centrum semiovale, a white matter region that 

is notoriously difficult to resolve. Located underneath frontoparietal 

regions of cortex, multiple pathways intersect in this region including 

callosal fibers traveling mediolaterally, long association fibers extending 

rostrocaudally, and fibers running in the corona radiata (cf.   figure 5.1 ). 

Comparative analyses indicate that these major pathways are jointly 

detected by DSI in concordance with known neuroanatomical patterns 

of connectivity (Wedeen et al., 2008). 

    Most tractography algorithms can be classified as either deterministic 

or probabilistic. Deterministic algorithms construct individual  “ stream-

lines ”  corresponding to putative axonal fibers by local path integration 

along principal diffusion directions (Conturo et al., 1999; Mori et al., 

1999). Deterministic tractography can be adapted to handle fiber cross-

ings and take into account complex distributions of diffusion directions 

within single voxels (Wedeen et al., 2008). Multiple tractography stream-

lines obtained by propagating fibers from a large number of seed loca-

tions in the white matter can be combined into pathways that link pairs 

of gray matter voxels or regions (Hagmann, 2005; Hagmann et al., 2007). 

In contrast to deterministic tractography, which only records connections 

between voxels or regions for which at least one streamline has been 

found, probabilistic tractography estimates connection probabilities 

between all voxel or region pairs (Behrens et al., 2003, 2007). Probabi-

listic approaches deliver information about the uncertainty of each con-

nection given the data, information that is fundamentally lacking from 

representations based on deterministic streamlines. 

 To date, most deterministic or probabilistic tractography algorithms 

operate primarily on local diffusion estimates but do not take into 

account more global constraints on brain connectivity such as conserva-

tion of tissue volume or additional local measures that report on tissue 

microstructure. One example of the application of global constraints 

involves an optimization algorithm for creating connectome maps that 

searches for connectivity patterns that fit both diffusion data and tissue 

volume constraints (Sherbondy et al., 2009). Other approaches aim at 

combining global tractography and local measurement of connectional 

microstructure into a single algorithmic framework (Sherbondy et al., 
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Figure 5.5 (plate 7) 
 Diffusion imaging of intersecting fibers. The four panels show fibers reconstructed with 
streamline tractography within the centrum semiovale. Panels A and C show results from 
diffusion spectrum imaging (DSI) while panels B and D show results obtained with diffu-
sion tensor imaging (DTI). Multiple fiber pathways intersect in the area marked by a white 
sphere: Commissural (Comm) fibers traveling through the corpus callosum (CC) are shown 
in red/orange; long association (Assn) fibers are shown in green; corona radiate fibers are 
shown in blue. Note the great reduction and spurious trajectories of intersecting tracts in 
DTI scans. Cd, caudate nucleus; ICp, posterior limb of internal capsule; SB, subcortical 
bundle projection fibers; Th, thalamus. Reproduced with permission from Wedeen et al. 
(2008). 
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2010). Based on the assumption that microstructural characteristics such 

as axon diameter (see below) remain constant along the entire length of 

a pathway, tractography and microstructure estimates can be jointly opti-

mized to fit the observed signal distribution. 

 The end result of whole-brain tractography can be summarized in a 

connection matrix recording estimates of the magnitude or strengths of 

long-range interregional connections. For data obtained with determin-

istic tractography, the number and density of streamlines connecting 

voxels or regions is often taken as an indication of the magnitude of the 

pathway. If streamlines are aggregated between anatomical parcels of 

unequal size or volume, estimates of the  “ strength ”  or magnitude of 

structural connectivity are often expressed as a streamline density, 

derived by dividing off the combined volumes of the connected parcels 

(e.g., Hagmann et al., 2007, 2008).  4   Probabilistic tractography delivers 

estimates for the likelihood of projections, which generally differ depend-

ing on the direction in which tractography is carried out. These asym-

metrical probabilities must be transformed into (undirected) projection 

magnitudes or densities. It remains unclear how streamline counts, densi-

ties, or connection probabilities translate to the morphology of the 

underlying biological substrate (Jbabdi and Johansen-Berg, 2011), and 

joint imaging and histological work directed at clarifying these relations 

are urgently needed. 

 Once tractography is complete, unless further steps are taken to parti-

tion the brain into anatomically or functionally defined regions (see the 

next section), the result is a connectivity map for individual voxels 

(usually comprising all gray matter regions of the brain) or, in the case 

of the cerebral cortex, for individual vertices forming a surface mesh. 

This high-resolution connectome map reports connectivity among many 

thousands of nodes representing individual surface or volume elements 

at a scale of several millimeters. The locations and boundaries of these 

nodes result from an essentially random process of dividing the brain 

into small volume elements during image acquisition. These nodes 

therefore do not represent neurobiologically distinct subdivisions or 

functionally defined units. Network analysis can be performed on these 

high-resolution partitions or on more compact connectome maps whose 

nodes and edges correspond to coherent functional elements defined on 

the basis of neurobiological criteria (see the next section). 

 Diffusion imaging and tractography are subject to a number of meth-

odological biases and limitations. Diffusion imaging only works in parts 

of the brain where diffusion is anisotropic — for example, cerebral white 
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matter. For the most part, this excludes gray matter voxels and thus 

prevents the detection of connections in gray matter or in unmyelinated 

axons in general. Because of the nature of molecular diffusion, the 

method currently cannot provide any information about the direction of 

axonal pathways, nor can it reveal axonal branching. Shallow fiber cross-

ings which result in closely spaced diffusion maxima are difficult to dis-

tinguish from cases where fibers converge and diverge without crossing 

(so-called  “ kissing ”  fibers). Fiber-tracking algorithms tend to be biased 

towards the detection of shorter fiber tracts involving fewer reconstruc-

tion steps. Weaker tracts can be difficult to identify in the presence of 

much stronger pathways as their diffusion signals become harder to 

detect. Finally, statistical approaches towards resolving complex fiber 

architecture rest on various assumptions about how the diffusion signal 

is generated and measured. Intensive efforts are under way to address 

these biases and limitations, to validate existing diffusion MR technology 

against other methods that measure anatomical connectivity more 

directly, and to obtain additional information from the imaging signal 

that can further characterize structural brain connectivity. 

 Diffusion MRI not only delivers information about fiber orientation 

that can be used for tractography. The fractional anisotropy (FA) 

expresses the degree to which a voxel ’ s diffusion profile deviates from 

being equal in all directions (see   figure 5.4 ). FA is thought to depend on 

a combination of several microstructural features such as the diameter 

of fibers, their local density, and the degree to which they are myelinated. 

Together with other related measures of diffusion, the FA can provide 

an indication of white matter  “ integrity ”  — for example, the local coher-

ence of axonal fibers or their myelination status. Characteristic changes 

in FA are observed during brain development, and in the adult brain FA 

can index structural alterations due to neuroplasticity (see chapter 3). 

More recent studies have shown that diffusion MRI can also disclose 

other important microstructural parameters such as the local distribution 

of axonal diameters and the density of axons within imaged white matter 

voxels (Alexander et al., 2010). Zhang et al. (2011) proposed an improved 

detection scheme for the robust estimation of axonal diameters even in 

places where the orientations of diffusion directions are dispersed. 

Axonal diameter is an important structural parameter because it may be 

related to the axon ’ s speed of transmission and thus the conduction delay 

between brain regions, as well as the rate at which the axon transmits 

information (Perge et al., 2012). Currently, there are no noninvasive ways 

to assess the physiological efficacy of a structural connection. Some 
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studies have used the myelination status of tracts as a proxy for connec-

tional efficacy, estimated from FA or the mean diffusivity (e.g., Hagmann 

et al., 2010b) or from the level of macromolecules including myelin (van 

den Heuvel et al., 2010). However, these measures only capture some 

aspects of the microstructural or molecular organization of fiber anatomy 

and do not record biophysical parameters that contribute to synaptic 

strength or efficacy. 

 Given the nature of diffusion imaging and tractography, it is important 

to validate results obtained from these approaches with more direct 

observations of connectivity obtained through anatomical methods. One 

avenue involves the comparison of axonal tracts reconstructed from dif-

fusion imaging and tractography carried out in postmortem human brain 

with subsequent anatomical dissection, a technique that has recently 

become feasible (Miller et al., 2011) and should soon allow progress in 

this direction. Another avenue towards validating data from noninvasive 

imaging is the use of animal models where invasive anatomical approaches 

are possible, particularly nonhuman primates.  5   In macaque monkey, 

Schmahmann et al. (2007; see also Dauguet et al., 2007) compared obser-

vations on several long association fiber bundles obtained by diffusion 

imaging with results from autoradiographic tract tracing, a sensitive 

method for tracing long-range connections in histological material. Com-

parisons of the two techniques showed good overall agreement, thus 

supporting the notion that diffusion imaging can indeed map anatomi-

cally verifiable fiber tracts in humans (  figure 5.6 ). While these initial 

studies are encouraging, agreement or disagreement is largely estab-

lished on the basis of visual comparison. More detailed analyses should 

include quantitative comparison of connectivity matrices and metrics of 

network topology (e.g., Hagmann et al., 2008). 

    MR technology, and particularly diffusion imaging, stands out among 

other strategies for mapping the human connectome. It alone permits 

the assembly of connectivity maps in a manner that is noninvasive and 

relatively economical. Continued technological innovation — for example, 

the development of new pulse sequences that greatly accelerate acquisi-

tion times (Feinberg et al., 2010) — helps to improve both signal quality 

and ease of application. Diffusion imaging allows studies of large human 

populations and the longitudinal assessment of change and plasticity 

across the human life span from early development into senescence. 

Other distinct advantages are its applicability to individual whole brains, 

without the need to compose connection maps assembled from multiple 

individuals and reported in a standard reference frame. At this time, all 
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Figure 5.6 
 Comparison of diffusion imaging/tractography and monkey tract-tracing data. Panels A 
and B show results obtained from tract tracing using an autoradiography labeling tech-
nique. Panels C and D show reconstructed fiber tracts after imaging of macaque cortex 
with DSI. The figure depicts the arcuate fasciculus (AF). Cortical landmarks: AS, arcuate 
sulcus; CS, central sulcus; IPS, intraparietal sulcus; IOS, inferior occipital sulcus; LF, lateral 
fissure; LS, lateral sulcus; PS, principal sulcus; STS, superior temporal sulcus; Cing S, cingu-
late sulcus. Cortical regions: 6D, frontal area 6D; 8Ad; dorsal frontal area 8A; 9/46d, dorsal 
prefrontal area 9/46; TPO; area TPO of the superior temporal sulcus; Tpt, superior temporal 
area Tpt. Modified (converted to grayscale) and reproduced with permission from Schmah-
mann et al. (2007). 
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EM and most LM strategies operate only on fixed (ex vivo or postmor-

tem) specimens that are destroyed during serial sectioning and imaging. 

Some strategies, in addition, need the insertion of genetic markers. None 

have yet been applied to a large vertebrate nervous system. Tract tracing, 

often described as a  “ gold standard ”  in neuroanatomy, suffers from some 

of the same drawbacks, and it cannot be used in the human brain. At the 

time of writing, the use of sophisticated diffusion imaging technology 

offers the most viable road toward mapping the human connectome and 

understanding its role in behavior and cognition, as well as its depen-

dence on genetic and environmental factors. 

Assembling a Large-Scale Network Description 

 As I have argued from the outset (see chapter 1), one of the most com-

pelling ways to represent connectivity data sets efficiently and compactly 

is by characterizing them as networks, defined as a set of neural elements 

and their structural relations, that is, nodes and edges. While formal 

descriptions of networks in terms of graph theory record mainly topo-

logical aspects of the connectivity pattern, the annotation of nodes and 

edges with spatial (metric) coordinates or measures — for example, node 

positions or edge lengths — captures important additional information 

that is invaluable for studies relating network topology to spatial embed-

ding (see chapter 7). Network descriptions are useful regardless of the 

empirical approach used to map connectome data and regardless of the 

scale of organization at which connectivity is observed, thus representing 

a major point of methodological and analytic convergence. 

 Network descriptions are encountered at all scales. At subcellular 

scales, neuronal compartments, particularly those forming dendritic 

arborizations, can be described as graphs (Cuntz et al., 2010; chapter 3; 

figure 3.1). Dendrites form tree-like structures with numerous linear 

segments that connect at branch points. Thus, the geometry of dendrites 

can be formally described by their topology (the relation between branch 

points and segments, i.e., nodes and edges). Overlaid on this topology 

are the electrotonic properties of the dendrite, describing how currents 

flow among its branches and segments. This formulation lends itself 

to structure – function mappings that can relate morphology to com-

putation within subcellular networks. An interesting possibility is that 

reconstructions of individual neurons from different cell types will reveal 

cell-type-specific topologies for these subcellular networks that corre-

spond to the particular signal transformations carried out by these cells. 
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If such topological classes should exist, they might form important build-

ing blocks (akin to motifs) for linking subcellular to circuit-level com-

putation. 

 Network descriptions are perhaps most conveniently derived at the 

cellular scale, where nodes and edges naturally correspond to individual 

cells and their synaptic connections. Asymmetrical chemical synapses 

correspond to single directed edges, while symmetrical synapses or elec-

trical junctions correspond to bidirectional edges. Once EM and LM 

approaches to mapping the connectome have identified neurons and 

their synaptic connections, an important next step will be to reduce the 

enormous volume of raw data to compact graphs that represent the 

topology of cellular networks. Some of the first studies in this area have 

indeed begun to create graphical models (see, e.g., figure 4.4) to report 

connectivity. Dense reconstructions aim to deliver precise cell-to-cell 

connection patterns while cellular networks based on statistical descrip-

tions of cell-type-specific connection profiles are inherently probabilistic, 

with network edges corresponding to likelihoods and densities of con-

nections. As discussed earlier, there is continuing controversy over the 

value of statistical models of circuits and cell populations, and the 

outcome of this discussion will likely determine which network descrip-

tion at cellular scales will prevail. 

 At the large scale, partitioning of the brain into regions defined on the 

basis of structural criteria such as cytoarchitectonic differences or 

myelination patterns has a long history. Driven by the influential notion 

that specific brain functions are localized in specific brain regions, numer-

ous large-scale parcellation schemes for the human brain, particularly 

cerebral cortex, have been devised.  6   Modern approaches to anatomical 

parcellation use a wide range of structural criteria. Underlying all these 

anatomical partitioning approaches is the idea that a region is defined 

by some structural measure (e.g., cell density, layer structure, receptor or 

gene expression profiles) that is uniform within regions but distinct from 

other, particularly neighboring, regions. Once these regions are identi-

fied, they are candidates for nodes in large-scale network descriptions. 

Building on efforts in classical histology, objective and quantitative 

methods for detecting regional boundaries in cytoarchitecture have been 

applied to large portions of the human brain with considerable success 

in refining older partitions derived from largely subjective observations 

(for a recent study of insular cortex, see Kurth et al., 2010). Additional 

criteria for regional boundaries come from data on the distribution of 

important molecules related to neurotransmission such as neurotrans-
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mitter receptors (Zilles and Amunts, 2009) and, more recently, from 

comprehensive gene expression profiles. Building on the first brain-wide 

gene expression atlas (Ng et al., 2009), Bohland et al. (2010) used cluster-

ing techniques to derive a regional partition of the mouse brain based 

on the regional coherence of gene expression patterns. Regions defined 

according to their unique gene expression signature showed strong cor-

respondence to anatomical areas defined by classical histology. 

 Connectome studies employing noninvasive MR strategies require the 

definition of nodes and edges to derive network descriptions. The small-

est spatial unit obtained with noninvasive imaging is the individual 

volume element (voxel) whose dimensions are entirely defined by 

parameters of image acquisition. It is important to recall that noninvasive 

imaging does not allow the observation of individual neurons or circuits 

and that the voxel partition imposed when images are acquired is arbi-

trarily placed and does not reflect any underlying neurobiological enti-

ties. In addition, the nature of imaging technology often introduces 

spatial blurring or autocorrelations that are reflected in signal redundan-

cies between neighboring voxels. To create more meaningful partitions 

requires the aggregation or grouping of voxels into coherent regions 

according to structural or functional criteria. This is essentially a process 

of clustering, where the quality of a cluster partition depends on within-

cluster coherence and between-cluster separation. 

 In the context of connectomics, a  “ good ”  partition or clustering is one 

that maximizes information about connectivity. This can be achieved by 

maximizing specificity and minimizing redundancy in connectivity 

ascribed to discrete regions. High specificity and low redundancy jointly 

optimize the uniqueness of each region ’ s connection pattern. Generally, 

partitions that are too coarse will degrade specificity as regions contain 

a mixture of connection profiles and information on their origin and 

destination is lost. Conversely, partitions that are too fine result in high 

redundancy (as in a voxel-wise partition) since many nodes are simply 

copies of each other and hence do not contribute unique information. 

The trade-off between specificity and redundancy can be explored by 

performing random partitions of the brain into parcels of different size 

or coarseness. Extremely fine random partitions (down to voxel size) 

result in larger networks with high redundancy among nodes while 

coarse random partitions yield smaller networks with low specificity. In 

general, random partitions are not ideal for connectome studies since 

they do not respect regional boundaries, thus resulting in an imprecise 

view of the connection topology and a resultant loss in sensitivity.  7   
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 At the time of writing, the most commonly used partitioning schemes 

are based on atlases that use standard coordinates or anatomical land-

marks such as characteristic folds or boundaries on the cortical surface. 

These partitions generally do not correspond to structurally or function-

ally coherent regions and do not take into account individual data on 

either connectivity or activation. More recently, a number of innovative 

techniques for defining coherent brain regions based on data from indi-

vidual brains have been developed. One set of techniques is based on 

the observation that different brain regions have different connection 

profiles, also called  “ connectional fingerprints ”  (Passingham et al., 2002) 

that define their functionality.  8   Data on structural and/or functional con-

nectivity allows the detection of boundaries between regions where con-

nectional profiles change. For example, measurement of the connection 

profiles over many voxels within a given brain volume (or surface) can 

be used to compute local gradients of change whose peaks correspond 

to putative regional boundaries. Another approach is to cluster connec-

tion profiles to identify coherent regions, either directly or via their cor-

relation matrix (e.g., Johansen-Berg et al., 2004;   figure 5.7, plate 8 ). 

Interestingly, it is connectivity itself that leads to an objective definition 

of the elementary functional units of the human connectome (Kn ö sche 

and Tittgemeyer, 2011). 

    Information about brain connectivity used in these approaches can 

come from either diffusion imaging or resting-state fMRI.  9   Connectivity 

profiles derived from diffusion imaging have been successfully used to 

parcellate coherent regions in medial frontal cortex (Johansen-Berg 

et al., 2004), inferior frontal cortex (Anwander et al., 2007), and cingulate 

cortex (Beckmann et al., 2009), as well as subcortically for the definition 

of thalamic nuclei (Johansen-Berg et al., 2005). Gradient-based bound-

ary detection techniques have been applied to resting-state fMRI data 

(Cohen et al., 2008;   figure 5.8 ). This approach uses algorithms applied in 

machine vision for image segmentation to detect discontinuities in con-

nection profiles in surface-based cortical maps. In an alternative approach, 

pattern separation techniques such as independent component analysis 

(ICA) can be used for detecting voxel clusters with shared covariance 

structure in resting-state time series data. Complementing approaches 

based on connectivity are other approaches based on measures of corti-

cal microstructure — for example, patterns of cyto- and myeloarchitec-

ture. Using structural MRI data, Glasser and Van Essen (2011) developed 

a method for detecting sharp transitions in myelination patterns mapped 

across the cortical surface. The method could be successfully validated 
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Figure 5.8 
 Detection of regional boundaries on the basis of resting-state fMRI gradients. Panels A, B, 
and C show the locations of the supramarginal gyrus (SMG) and the angular gyrus (AG), 
projected onto an inflated surface of the cerebral cortex (A), and a cortical flat map (B) 
and (C). The dotted line marks the positions of several seed regions between SMG and 
AG. (D) Maps at the top represent resting-state functional correlations for several of the 
seed regions, with circles highlighting parts of the map where connectivity exhibits marked 
changes across regions. The plot at the bottom represents a measure (eta coefficient) that 
captures the similarity of connection profiles between each seed pair. For example, the 
connection profile for seed AG is highly similar to neighboring seeds R2 to R6 and then 
drops significantly. The combination of multiple similarity patterns defines a gradient where 
connectivity changes most abruptly, here located in the vicinity of R7 to R9. This location 
corresponds to a putative regional boundary. ROI, region of interest. Modified (converted 
to grayscale) and reproduced with permission from Cohen et al. (2008). 

functional connectivity profiles were examined and compared. Addition-

ally, a comparison of the architecture of human parietal cortex to that of 

the macaque monkey was carried out, revealing both similarities and 

differences. 

 While a consistent strategy for noninvasive regional parcellation across 

the human brain has not yet emerged, it appears likely that a combina-

tion of multiple structural and functional criteria will be needed to derive 

robust and maximally informative network descriptions at the large 

scale. Significant improvements in the definition of network nodes will 

greatly increase the sensitivity of network analysis across populations of 
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individual participants, thus allowing more sensitive comparisons of 

network measures with behavioral and genetic variables. 

The Two Cultures 

 The discovery of the human connectome has only just begun. At the time 

of this writing, no single strategy for mapping the human connectome 

has crystallized, nor is it likely that a single empirical approach will ever 

do justice to the multiscale and multifaceted nature of brain connectivity. 

Instead, it will take the concerted and sustained effort of several different 

research communities to chart a comprehensive map of the human con-

nectome linking all of its neurons and regions. Different branches of 

connectomics have begun a process of slow and gradual refinement at 

all levels, ranging from the reconstruction of spatially highly resolved 

neurites and synapses in small volumes of neural tissue to the systematic 

tracing of macroscopic pathways among brain regions. The need for 

understanding the multiscale nature of the connectome requires growing 

cooperation and collaboration among scientists who work at different 

scales in the brain — a merging of the  “ two cultures ”  of connectomics 

aiming at cells and systems. 

 An important future goal is methodological cross-validation and 

convergence onto a common description of brain connectivity. In this 

regard, several opportunities present themselves. EM reconstructions 

and physiological recordings have already been combined in several 

recent studies conducted at the microscale (e.g., Bock et al., 2011; Brigg-

man et al., 2011). Validation studies have sought to relate tract tracing 

and diffusion imaging data in nonhuman primates (e.g., Schmahmann 

et al., 2007). Other opportunities for cross-scale collaboration exist in the 

area of segmentation and image reconstruction algorithms which share 

some of the same logic across all scales — for example, in the definition 

of neurons in EM sections and in regional parcellation efforts in diffusion 

imaging. 3D-PLI is a promising new approach leading to data structures 

that have much in common with diffusion tensor imaging (DTI) and 

tractography, and both sides stand to gain from sharing computational 

methods and cross-validating their analyses. Finally, the nascent field of 

optogenetics applied in animal fMRI (see chapter 6) provides an area of 

intersection between histology and light microscopy on the one side and 

noninvasive imaging on the other. 

 Most of these opportunities for convergence are more easily realized 

in model organisms since they are invasive and require the manipulation 
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of cells and tissues. This leaves a significant empirical gap for the research 

enterprise of human connectomics: the establishment of ground truth 

about circuits and connections in the human brain. For the most part, 

empirical strategies for mapping the human connectome will have to rely 

on testing and validation in nonhuman species since the ground truth 

about neural connections in the human brain will continue to remain 

largely inaccessible, at least below the level of macroscopic white matter 

pathways that can be identified in postmortem dissection. This clearly 

argues for the need to supplement human connectomics with parallel 

research efforts in model organisms and at all scales. Barring an unfore-

seen experimental breakthrough, in the near term human connectomics 

will have to rely on indirect methods to observe connectivity. Such 

methods require the inference of connectivity models based on observed 

signal distributions, as for example through the use of tractography in 

diffusion imaging. It is important to ensure that model inference rests on 

sound statistical practices and that the validity of inferred connectivity 

can be tested against new data and predictions. It should be noted that 

inference comes into play even in microscale connectome strategies such 

as EM reconstructions because gaps and noise in the data require statisti-

cal estimation and error control. 

 Perhaps the greatest payoff for connectomics will be that it will furnish 

connectivity models that can explain and predict neural function under-

lying organismic behavior. Hence, a growing number of empirical studies 

now focus on  “ functional connectomics, ”  explicitly combining the record-

ing of neural activity with the conceptual framework of network con-

nectivity. In doing so, the complex functioning of the connectome in 

circuits and systems is beginning to be revealed. We now turn to the new 

challenges that are encountered as we consider the connectome in 

motion. 
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 Like genes, structural connections alone are powerless. The causal effi-

cacy of genes and connections depends on their functional expression as 

part of complex biological networks. Genomic sequences come to life 

through transcriptional and protein networks which are essential for 

organizing cellular metabolism and for creating differentiated cells, 

tissues, and organs. Similarly, the connectome must be expressed in 

dynamic neural activity to be effective in behavior and cognition. How 

this is accomplished is far from trivial. Given the nature of networked 

systems, each of the elements and connections of the brain contributes 

to multiple functional domains and outcomes. Establishing how the 

structure of brain networks translates into behavior is therefore a par-

ticularly challenging research goal for human connectomics. This chapter 

summarizes our current knowledge about how the connectome shapes 

the dynamics of neural activity, the changing pattern of functional rela-

tions between neural elements unfolding on multiple time scales. 

 The connectome is both the source and the target of brain dynamics. 

Its topology enables specific neural interactions and is thus a major 

factor in generating patterns of functional connectivity (  figure 6.1 ). At 

the same time, connectome topology is subject to neuroplasticity inscrib-

ing lasting traces of past events and experience (see chapter 3). This 

mutual interaction of topology and dynamics introduces the element of 

time. Plasticity renders the topological structure of the connectome time 

dependent, and neural activity gives rise to a rich set of time-varying 

patterns which can be described as a set of functional networks. These 

functional networks depend not only on the connectome ’ s structural 

linkages but on powerful modulation by changes in the internal state of 

the organism and by the momentary demands of the external environ-

ment. Thus, the structure of the connectome turns into dynamic patterns 

 The Connectome in Motion 
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Figure 6.1 
 Functional connectivity at different levels of organization. At the top, networks of brain 
regions give rise to population dynamics that can be observed with functional magnetic 
resonance imaging (Bold signal; blood oxygenation level dependent signal). At the bottom, 
networks of individual neurons give rise to activity patterns that can be observed with 
optical imaging or neurophysiological methods. In both cases, the resulting neural time 
series can be processed as functional connectivity which allows the detection of conspicu-
ous highly connected hub regions or hub neurons. Modified (converted to grayscale) and 
reproduced with permission from Feldt et al. (2011). 
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that are essential for the temporal continuity of sensorimotor activity 

and cognitive processes. 

    The dynamic nature of the connectome has a close parallel in systems 

biology. Cellular processes depend on networks of dynamic interactions 

between molecular components, including RNA transcripts, proteins, and 

metabolites. These dynamic networks represent the cell ’ s  “ functional 

connectivity, ”  and their state dependence and time dependence is an 

emerging research focus (Przytycka et al., 2010).  1   It is through these 

dynamic patterns that genetic information is  “ read out ”  (a form of decod-

ing) and gives rise to biological forms and functions. The nature of these 

dynamic networks makes it difficult, if not impossible, to relate individual 

genetic elements to specific phenotypic traits of organisms. For connec-

tomics, a principal challenge for the future is to understand how informa-

tion encoded in neural wiring becomes expressed in cognition and 

behavior, and it seems likely that the challenge will be at least as difficult 

as the one currently faced in genomics. Nevertheless, a beginning is made 

as our increasing knowledge about the human connectome starts to link 

up with the investigation of functional brain states and their dynamic 

networks. 

The Structural Basis of Functional Connectivity 

 Brain recordings yield time series of neural activity that can be captured 

by a wide range of signals from neural spike trains to field potentials and 

hemodynamic responses. Neural activations and their time courses often 

display highly characteristic statistical patterns, encoding specific infor-

mation in relation to external inputs, varying with the internal state of 

the organism, and reflecting past experience and future expectations. 

These highly specific response properties are in part due to specific pat-

terns in the brain ’ s structural connectivity, its connectome. Structural 

connections channel the signal flow between network elements and thus 

contribute to observed neural activations and interactions. 

 The strength and pattern of neuronal interactions can be estimated 

from observed brain dynamics with a broad range of measures and tech-

niques. Recordings of neural time series are usually obtained from mul-

tiple neural elements represented by sets of individual neurons or neural 

populations, field potential electrodes, electromagnetic sensors, or neu-

roimaging voxels. Numerous analysis methods are available for estimat-

ing statistical dependencies or dynamic interactions from time series data 

recorded from multiple neural elements. Once these dependencies have 
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been computed they can be converted into a connectivity matrix repre-

senting a functional brain network (see chapter 1).  2   For most measures, 

functional connections can vary in magnitude on a continuous scale, 

and if they are expressed as linear cross-correlations they can have 

positive or negative sign. It is important to note that unlike structural 

connectivity, which refers to an objectively verifiable pattern of anatomi-

cal links, functional networks are statistical constructs that exhibit 

considerable variability on short time scales, either spontaneously (see 

figure 2.3) or in response to varying conditions of input and task (e.g., 

Moussa et al., 2011). Thus, the number of possible configurations of 

functional connections far exceeds the number of underlying structural 

connections. This once again underscores the important distinction 

between the connectome itself and its dynamics. Functional connections 

reflect network dynamics unfolding within or emerging from the con-

nectome ’ s structural substrate. 

 Statistical dependencies can exist regardless of whether two neural 

elements are anatomically linked or not  3   and thus do not reflect struc-

tural connectivity in any simple way. While statistical dependencies are 

often easily computed from time series data, they do not allow solid 

inferences about causal interactions. In contrast, such interactions may 

be revealed by effective connectivity, generally defined as a set of causal 

relations between neural elements or, more specifically, as a network 

representing a generative model underlying observed data (see chapter 

1; table 1.1). This definition differs considerably from the much broader, 

fundamentally acausal and model-free nature of functional connectivity. 

Yet, even if one considers effective connectivity, the causal relations it 

describes are continually modulated by endogenous transitions in inter-

nal state as well as exogenous perturbations of inputs and task set. 

Hence, effective connectivity, like functional connectivity, emerges from 

the human connectome as a large repertoire of variable relationships 

among neural elements. Effective connectivity has a long history in 

systems neuroscience, beginning with the first applications of statistical 

techniques designed to extract directed neural interactions in neuro-

physiology and human imaging studies (e.g., Aertsen et al., 1989; McIn-

tosh et al., 1994). Since then, research on effective connectivity has 

proceeded along several paths, including lag-based measures such as 

Granger causality (now often classified as a measure of functional con-

nectivity) as well as Bayesian model selection approaches. For now, I will 

focus the discussion on simple measures of functional connectivity 

described by correlations of neural events recorded over time. 
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 The nature of the relationship between observed neural correlations 

and the underlying structural network has become a topic of inves-

tigation in both empirical and computational studies. The revival of 

circuit anatomy has stimulated a number of studies attempting to relate 

spike patterns to the topological layout of synaptic connections. In a 

network setting, the relative timing of spikes and the resulting cross-

correlations depend on multiple types of effects, including direct and 

indirect interactions, and common input (  figure 6.2, plate 9 ). Modeling 

studies have examined how different connection topologies can induce 

pairwise correlations among spiking neurons (Pernice et al., 2011). In 

networks with random topology that is either uniform or distance 

dependent, average pairwise correlations were found to be low and 

highly variable. Mutual connections between highly connected hub 

neurons increased average correlations, and similar increases were seen 

in topologies where neurons were organized into highly connected local 

patches. Overall, not only did different architectures exhibit different 

levels of pairwise correlations but different local motifs were found to 

make different contributions to the observed distribution of dynamic 

couplings. 

Figure 6.2 (plate 9) 
 Sources of correlations in neural activity. Circles represent neural elements and arrows 
represent directed synaptic connections. We consider the pair of neurons indicated by red 
circles. (A) Correlations between these two neurons can be due to a direct synaptic con-
nection (dark blue arrow), or common input from directly connected elements (light blue 
arrows). (B) In addition, network-wide effects can play a role, including indirect paths of 
synaptic connections (orange, yellow) and indirect common input (light and dark green). 
Nodes and connections shaded in gray cannot exert any influence on the two red circles. 
The nature of network-wide effects on local correlations is the same at the microscale and 
at the macroscale. Reproduced from Pernice et al. (2011). 
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    Neural recordings of cells in sensory cortices have generally reported 

a preponderance of weak average correlations, even among neurons 

that exhibit similar stimulus preferences (Ecker et al., 2010; Renart 

et al., 2010), implying active decorrelation through recurrent and inhibi-

tory mechanisms. Closer analysis of correlations across different spatial 

scales in macaque visual cortex revealed that correlation patterns are 

scale-dependent (Ohiorhenuan et al., 2010). At fine scales of a few 

hundred micrometers, visual stimuli induced rapid reconfigurations 

of correlations while neurons separated by longer distances remained 

only weakly correlated. These local effects are presumed to result from 

nonrandom features of synaptic connectivity, including the observed 

abundance of specific network motifs (Song et al., 2005). Such network 

motifs can generate specific patterns of connectivity that drive functional 

specificity. An analysis of synaptic connections between mouse visual 

cortical neurons demonstrated higher numbers of structural connections 

between neurons with similar response preferences, as well as a greater 

incidence of bidirectional connections than expected by chance (Ko 

et al., 2011), consistent with correlation patterns observed in physiologi-

cal recordings (Ch ’ ng and Reid, 2010). Other empirical studies have 

attempted to directly relate reconstructed neural circuits to specific func-

tional properties of neurons (see chapter 4; Briggman et al., 2011; Bock 

et al., 2011). Consistently, specific patterns of structural connections were 

associated with specific physiological response properties or interactions 

among neurons. These studies represent initial forays into  “ functional 

connectomics, ”  an area of research that attempts to establish links 

between patterns of structural connectivity and the statistics of neural 

responses through correlated observations of circuit structure and 

function. 

 A very similar approach, albeit at a different scale, has documented 

significant relationships between structural and functional connectivity 

in whole-brain MRI (Honey et al., 2010). Hemodynamic signal fluctua-

tions recorded during the brain ’ s resting-state are readily processed into 

networks of cross-correlations between nodes, either individual voxels 

or parcellated regions (Bullmore and Sporns, 2009). Aggregated over the 

whole brain, this analysis yields resting-state functional connectivity 

matrices that describe statistical dependencies averaged over relatively 

long sampling epochs (often on the order of 6 – 10 minutes). An abun-

dance of empirical studies has shown that these longtime averages dis-

close the architecture of human neurocognitive networks in remarkable 

detail (see the next section). It appears that the stability and consistency 
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of these functional patterns can partly be traced to underlying patterns 

of structural connectivity. A landmark study conducted in macaque 

monkey cerebral cortex first provided compelling evidence for signifi-

cant overlap between neuroanatomical connections and correlations in 

fMRI signals (Vincent et al., 2007;   figure 6.3, plate 10 ). In humans, 

Hagmann et al. (2008) compared whole-brain structural networks derived 

from diffusion MRI and functional networks acquired during the resting 

state. Key to the comparison was that both networks were mapped onto 

the same brain parcellation and compared within the same set of indi-

vidual participants. A more detailed analysis (Honey et al., 2009;   figure 

6.4 ) demonstrated that the presence and strength of a structural connec-

tion significantly predicted the strength of a functional connection across 

all node pairs. Furthermore, a computational model of neural popula-

tions with structural couplings derived from diffusion MRI could sub-

stantially reproduce the empirically observed fMRI functional 

connectivity (see chapter 8). Thus, it appears it is possible, up to a degree, 

to predict resting-state functional networks from structural networks. 

However, the reverse inference of structural couplings from functional 

connections turned out to be impractical due to the high base rate of 

false positives when thresholding to retain strong functional links. The 

density of strong functional connections is far greater than the density 

of structural connections, reflecting the propensity of statistical correla-

tions to span nodes that are structurally only indirectly connected. Nev-

ertheless, despite the impossibility of reverse inference, a plausible 

hypothesis suggests that all functional connections are ultimately caused 

by the structural links comprising the connectome, through a combina-

tion of direct and indirect network effects. 

       In rare cases, experimental manipulations of the human connectome 

can be directly linked to concomitant alterations in functional connectiv-

ity. Callosotomy is a surgical procedure performed in some cases to treat 

intractable epilepsy. It involves the complete sectioning of the corpus 

callosum and thus interrupts most direct structural connections between 

the two cortical hemispheres.  4   The role of callosal connections in generat-

ing interhemispheric functional connectivity was directly demonstrated 

by performing mapping of resting-state functional connectivity before 

and after the procedure was performed in a single 6-year-old patient 

(Johnston et al., 2008;   figure 6.5, plate 11 ). Before callosotomy, strong 

interhemispheric functional connectivity linked corresponding regions 

in frontal and parietal cortex. Immediately after surgery, these func-

tional connections had disappeared while intrahemispheric functional 
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Figure 6.3 (plate 10) 
 Anatomical and functional connectivity in macaque parietal and frontal cortex. Anatomical 
connectivity was determined from tracer injections, and functional connectivity is repre-
sented as blood oxygen level dependent (BOLD) cross-correlations, recorded during spon-
taneous brain activity under anesthesia. Both panels show data displayed on the top surface 
of the two macaque cerebral hemispheres. (A) A map of retrogradely labeled brain regions 
after injection into the lateral intraparietal area (LIP). (B) A map of voxels exhibiting 
BOLD correlations among at least three out of four regions of the monkey oculomotor 
system (FEF, frontal eye fields; LIP; MT, middle temporal area; MST, middle superior 
temporal area). AS, arcuate sulcus; CeS, central sulcus; IPS, intraparietal sulcus; SF, sylvian 
fissure; STS, superior temporal sulcus. Adapted and reproduced with permission from 
Vincent et al. (2007). 

connections were largely unperturbed.  5   This rare case of direct manipula-

tion of a major pathway in the human connectome directly demonstrates 

the important role of structural connections in generating functional 

connectivity. The effect of callosotomy on interhemispheric functional 

connectivity can be reproduced in a computational model (see   figure 6.5 ; 

chapter 8). 

    Numerous other studies have documented the relation between struc-

tural and functional connectivity in human brain recordings (e.g., Skud-

larski et al., 2008; Greicius et al., 2009; van den Heuvel et al., 2009a). Not 

only are structure – function relations of interest in the healthy brain, they 

can be of particular value in conditions where functional disruptions can 

be traced to a structural cause. A large number of studies of patient 

populations have shown disturbed functional connectivity, and such dis-

turbances are often attributed to  “ miswiring, ”  a physical or structural 

alteration of the connectome. Systematic and correlated structure – 

function studies in brain disorders are promising but have yet to be 

carried out in a systematic way. Another important target of investigation 
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Figure 6.4 
 Relation of structural to functional connectivity. The data plotted here are comparing 
structural connectivity (SC) and resting-state functional connectivity (rsFC) among 998 
regions of interest (nodes) randomly partitioning the cerebral cortex (Hagmann et al., 
2008) (A) Histograms of the strength of rsFC between pairs of regions that are linked by 
a structural connection ( “ connected node pairs ” ) and pairs of regions for which direct SC 
is absent ( “ unconnected node pairs ” ). Since structural connections are sparse, there are far 
more unconnected than connected node pairs. Note that the two distributions overlap, with 
numerous instances of strong rsFC between unconnected node pairs. (B) Scatter plots of 
direct SC and indirect SC (computed as the sum of the product of edge weights along all 
paths of length 2), and rsFC. Both relationships are significant at p  <  0.001 and indicate 
that direct as well as indirect SC is partially predictive of rsFC. Data replotted from 
Hagmann et al. (2008). 
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is brain development. Two independent studies have examined the 

normal development of the structure – function relationship in the human 

cerebral cortex (Hagmann et al., 2010b; Supekar et al., 2010). Both 

studies found evidence for a progressive strengthening of structural path-

ways, particularly those linking remote brain regions, and concomitant 

changes in functional interactions. In addition, Hagmann et al. (2010b) 

reported that the degree to which structural connections predicted func-

tional connections strengthened over developmental time. This pattern 

may reflect the protracted time course for maturation of pathways or 

greater variability of signal fluctuations at early developmental stages. 

 Several points deserve to be emphasized (and some will be taken up 

in more detail in the next two chapters). First, these results confirm the 

important predictive power of structural connections for physiological 

responses, and the value of an accurate structural model for  “ forward 

computation ”  of neural activity patterns. This is the main rationale for 

the construction of computational models that are akin to a  “ virtual 

brain. ”  Second, the inverse problem of inferring a structural network 

from dynamic time series recordings generally cannot be solved, at least 

Figure 6.5 (plate 11) 
 Functional connectivity before and after callosotomy. Both sets of images show a z-score 
correlation map of resting-state functional magnetic resonance imaging seeded in the vicin-
ity of the frontal eye fields located in the right cortical hemisphere (marked  “ + ” ). (A) 
Empirical recordings from a human patient before (left) and after (right) transection of 
the corpus callosum. Preoperatively, positive functional connectivity extends across the 
frontal and parietal cortex in both hemispheres. Postoperatively, functional connectivity is 
restricted to the right hemisphere, and interhemipsheric functional connectivity is largely 
absent. Figure modified and reproduced with permission from Johnston et al. (2008). (B) 
Simulated functional connectivity from a computational model of the human brain (Honey 
et al., 2009) with an intact (left) and cut (right) corpus callosum. Note the lack of functional 
connectivity between hemispheres. 
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not with simple  “ model-free ”  approaches like thresholding.  6   Functional 

connectivity alone is insufficient as it is generally derived from brain 

signal fluctuations without reference to a generative model, and its origin 

is thus structurally and causally unspecified. Instead, model-based 

approaches stand a much better chance at providing a principled solution 

to the problem. A strategy based on Bayesian model selection applied 

to families of generative models that are evaluated in the context of 

task-evoked or resting brain activity has been successfully deployed in 

brain network discovery (Friston et al., 2011). We will explore the dual 

roles of forward modeling and model inference further in chapter 8. 

 An entirely different way to probe the structure – function relationship 

is offered by approaches that introduce a local perturbation or an exter-

nal stimulus and observe its effects across brain regions, presumably 

mediated by structural pathways. These perturbational approaches 

permit more direct inferences of causal relations between network ele-

ments, particularly if results from multiple perturbations are combined 

into a coherent network model. In humans, perturbations are most often 

performed by applying sensory stimulation or imposing task conditions. 

More invasive perturbations include the use of transcranial magnetic 

stimulation (TMS). TMS can selectively disrupt sensory and cognitive 

processing, and its effects on neural activity can be mapped with simul-

taneous EEG recordings. Using this approach, it has been shown that 

identical TMS perturbations can have different neural effects depending 

on the global state of the brain — for example, when applied in different 

stages of waking, sleep, and anesthesia (Massimini et al., 2005; Ferrarelli 

et al., 2010). Perturbations travel more widely and involve a larger set of 

brain regions remote to the site of stimulation during waking whereas 

their effects remain much more localized during sleep and anesthesia. 

 Another opportunity for targeted perturbations and causal network 

mapping is provided by direct stimulation of specific cell populations. In 

animal models, the use of optogenetic techniques (Boyden et al., 2005) 

renders specific cell populations responsive to light through the targeted 

introduction of a microbial light-sensitive membrane protein. Applica-

tion of light stimuli allows the temporally precise activation (or deactiva-

tion) of specific brain regions. Extending the approach to fMRI in the 

rat brain, Lee et al. (2010) recorded hemodynamic signals both locally 

within a stimulated region and in other regions known to be anatomically 

linked. In an extension of the technique to mouse brain, targeted stimula-

tion of cortical pyramidal cells has been shown to evoke interregional 

functional connectivity in BOLD signals (Desai et al., 2011). These 
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experiments lend additional support to the notion that BOLD functional 

connectivity is caused by neural signal flow in the structural circuits of 

the connectome. Opto-fMRI may thus open the door to causal mapping 

and activation of specific circuits in live animals (Lee, 2011) and may 

perhaps even provide a new way to deliver therapeutic deep-brain stimu-

lation in humans. 

 The neural elements and connections comprising the complex network 

of the human brain contribute to its operation in ways that transcend 

simple one-to-one structure – function relations. Despite this complexity, 

evidence from cellular and systems-level studies suggests that structural 

connectivity can indeed predict statistical interactions between neurons 

and brain regions as well as their specific physiological and functional 

properties. In the human brain, the functional networks derived from 

spontaneous fluctuations of the BOLD signal during rest have received 

significant attention, for they have proven to be extraordinarily informa-

tive about brain organization. 

Functional Modules and Neurocognitive Networks 

 Resting-state fMRI generally involves the collection of BOLD time 

series over a period of several minutes while the person is quietly awake 

and cognitively at rest. Resting-state functional connectivity is then 

derived from statistical dependencies between the time series, most com-

monly expressed as their cross-correlation. Despite the unconstrained 

nature of  “ quiet rest, ”  functional connectivity exhibits characteristic pat-

terns of interactions that are consistent within and across individual 

participants (Fox and Raichle, 2007; van den Heuvel and Hulshoff Pol, 

2010; Raichle, 2011). These patterns have proven extremely useful in the 

analysis of brain organization and connectivity in healthy adults, as well 

as in developing and diseased brains.  7   The neuronal basis for low-

frequency spontaneous fluctuations of the BOLD response observed in 

the resting state remains a matter of continued investigation. Recent 

work has established a strong link between BOLD fluctuations and oscil-

lations in power and synchrony of neural activity (Nir et al., 2008; Shmuel 

and Leopold, 2008; Sch ö lvinck et al., 2010), but the origin of these fluc-

tuations and the mechanisms by which they are translated into hemody-

namic signals are yet to be fully uncovered. 

 The utility of resting-state fMRI for human connectomics derives from 

its consistency across individual participants (Damoiseaux et al., 2006), 

test – retest reliability (van Dijk et al., 2010), relative stability over time 
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(Shehzad et al., 2009) and across changes in brain state including aware-

ness (Boly et al., 2008), its dependable developmental time course 

(Fair et al., 2009), heritability (Glahn et al., 2010), and characteristic 

alterations in various states of brain disease (Zhang and Raichle, 2010; 

Bassett and Bullmore, 2009). Network and cluster analysis of resting-

state functional connectivity has revealed a number of  “ resting-state 

networks ”  (RSNs) consisting of spatially distributed and interconnected 

brain regions that form core functional modules. Most prominent among 

these is a set of brain regions including the precuneus/posterior cingulate 

cortex, lateral parietal cortex, and medial frontal cortex whose neuronal 

and metabolic activity is elevated at rest (Raichle et al., 2001), and that 

are mutually interconnected to form the  “ default mode network ”  (Grei-

cius et al., 2003; Buckner et al., 2008). Other networks are involved in 

mediating attention, cognitive control, salience, and motor and sensory 

processing (Damoiseaux et al., 2006; De Luca et al., 2006). When one is 

mapping functional connections within and between RSNs, they appear 

as distinct modules whose elements are strongly linked within modules 

and are less strongly linked between modules (Raichle, 2011;   figure 6.6, 

plate 12 ). 

    Various clustering, modularity, or segmentation approaches applied to 

resting-state fMRI are beginning to converge on a consistent set of 

resting-state networks that comprise the building blocks of spontaneous 

and task-evoked brain dynamics. Two of the leading segmentation tech-

niques are network-based partitioning into functional modules and the 

detection of temporally independent components. The spatial resolution 

of both approaches depends in part on parameters governing data acqui-

sition and postprocessing like run length, voxel dimensions, elimination 

of physiological noise and movement artifacts. Hence there is no final 

agreement yet across methods and experimental procedures on the 

inventory of large-scale human functional networks. Three recent studies 

that have attempted to map these networks across the human brain have 

reported largely consistent findings. Doucet et al. (2011) identified 23 

RSNs in a sample of 180 participants. These RSNs were arranged hier-

archically, with two very extensive anticorrelated systems associated with 

 “ intrinsic ”  versus  “ extrinsic ”  processing at the top of the hierarchy (  figure 

6.7, plate 13 ). Yeo et al. (2011) partitioned the cerebral cortex into a 

smaller number of RSNs using a clustering algorithm, deriving a coarse 

partition into 7 networks and a finer partition into 17 networks from a 

total of 1,000 individual data sets. Power et al. (2011) used modularity 

detection to identify coherent networks called subgraphs in resting-state 
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Figure 6.6 (plate 12) 
 Seven resting-state brain networks and their interconnections. The seven networks are 
displayed at the right of the diagram, with their central regions of interest listed at the left. 
The matrix shows BOLD signal cross-correlations obtained from a single 30-minute period 
of resting brain activity recorded from a healthy adult male participant. Note the distinctive 
block structure of the correlation matrix, indicative of mostly strong and positive correla-
tions within each network. Note also that some degree of correlation persists between 
networks. A movie showing windowed cross-correlation and illustrating the waxing and 
waning of correlations within and between networks can be found at  ftp://imaging.wustl
.edu/pub/raichlab/restless_brain . IPS, inferior parietal sulcus; MT, middle temporal area; 
PFC, prefrontal cortex; SMA, supplementary motor area; V1, visual area 1; A1, auditory 
area 1. Reproduced with permission from Raichle (2011). 

fMRI data and in many cases established correspondence between these 

RSNs and functional subsystems previously identified on the basis of 

task activations. Taken together, the results from these studies suggest 

that most networks identified in resting brain activity can be associated 

with specific cognitive or behavioral domains. While it is certainly tempt-

ing to stress the functional specialization of these networks, it is also 

important to note that they do not operate in isolation from one another. 

Partitioned modules or networks are found to share interconnecting 

nodes and edges that are of critical importance for the global functional 

coherence of the cortical system. These hub nodes or edges are the 

articulation points of the cortical architecture. 
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Figure 6.7 (plate 13) 
 Hierarchical clustering of resting-state networks. A total of 22 resting networks (RNs) were 
identified by independent components analysis carried out on 8-minute resting-state func-
tional magnetic resonance imaging blood oxygen level dependent time series acquired from 
a total of 180 participants (Doucet et al., 2011). (A) The dendrogram at the left was con-
structed on the basis of temporal correlations of resting-state networks, averaged over all 
participants. The first levels of the dendrogram revealed two global systems (S1, S2) and 
five modules (M1a, M1b, M1c for S1; M2a, M2b for S2). The averaged temporal correlations 
are displayed at the right. (B) Spatial maps of systems and modules (cf.   figure 6.6 and 6.8 ). 
Module M1a comprises a number of default mode regions, including the posterior cingu-
late/precuneus and parts of medial frontal and lateral parietal cortex. Module M2b consists 
mostly of occipital (visual) regions. Modified and reproduced with permission from Doucet 
et al. (2011). 
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Figure 6.8 
 Networks extracted from resting-state and task-evoked activation data. Each of the 10 
panels shows two matched independent components (based on a 20-component indepen-
dent components analysis [ICA], displayed in three informative orthogonal slices each, 
oriented along the coronal, sagittal, and horizontal planes). The components were extracted 
from resting-state fMRI data (RSN) and the BrainMap database of neuroimaging activa-
tion studies (BM). ICA spatial maps were thresholded at z = 3 and are shown here as bright 
areas overlaid on standard brain images. Their association with different domains of cogni-
tion and behavior is shown in figure 8.6. Modified (converted to grayscale) and reproduced 
with permission from Smith et al. (2009). 

    Importantly, the functional architecture disclosed by signal fluctua-

tions at rest is consistent with coactivation patterns observed under task 

demands (Smith et al., 2009). Thousands of activation maps collected in 

a large repository of task-based imaging studies (Laird et al., 2005) were 

used to derive covariance patterns that identify coherently activated 

brain regions in the context of specific behavioral domains. Indepen-

dently, the covariance structure of resting-state fMRI time series was 

used to identify coherent subnetworks as independent components in 

brain dynamics. A common set of networks was identified, and each 

network was found to be associated with a unique set of behavioral 

domains (  figure 6.8 ; see also chapter 8 and figure 8.6). The significant 

similarity between the two sets of networks implies that resting brain 
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dynamics involves a succession or  “ rehearsal ”  of a repertoire of task-

related functional networks. This consistency in functional network 

architecture across task and rest conditions strongly points to a shared 

structural basis in the topology of the large-scale connectome. A plau-

sible hypothesis suggests that the composition and covariance structure 

of large-scale functional networks is the product of dynamic processes 

unfolding on a specific structural connection pattern. 

    Resting-state functional connectivity as measured with fMRI exhibits 

experience-dependent changes over time, possibly the result of synaptic 

plasticity. Intense practice of a visual perceptual learning task was found 

to induce changes in the pattern of resting-state BOLD signal fluctua-

tions in specific and task-related functional networks (Lewis et al., 2009). 

These results are consistent with other studies reporting modulation 

of resting-state BOLD functional connectivity by recent experience 

(Stevens et al., 2010; Grigg and Grady, 2010). The relation to plasticity 

may illuminate possible functional roles of spontaneous neural activity 

in preserving and continually rehearsing traces of sensory and motor 

experience. The history of regional coactivation during behavior results 

in the differential modification of structural links that, in turn, become 

engaged during spontaneous neural activity (Power et al., 2011). Resting-

state correlations may thus partly reflect accumulated experience traces 

that have become inscribed in the structure of the connectome. At 

rest, the connectome enables spontaneous neural activity that actively 

rehearses past mental states, a powerful process of reactivation and con-

solidation that is largely hidden from consciousness. 

 Thus, resting-state functional connectivity can be regarded as a robust 

neural trait reflecting both genetic and experiential modifications of the 

connectome. While the global pattern is largely held in common across 

participants, important individual differences in connectivity, driven 

by heritable variation and environmental experience, jointly underpin 

individual differences in behavior. Given their consistency, functional 

networks recorded in the resting state are uniquely relevant for human 

connectomics as they allow rapid, reproducible, and noninvasive assess-

ment of brain architecture, potentially across very large numbers of 

human participants. Building on this premise, Biswal et al. (2010) have 

suggested that resting-state fMRI may present a general paradigm for 

mapping individual brain architecture, referred to as the  “ functional 

connectome. ”  In an unprecedented effort involving the sharing and 

public posting of over a thousand neuroimaging data sets from across 35 

globally distributed MRI centers, Biswal and colleagues demonstrated 
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both the universality and the individual variability of resting-state func-

tional networks. Pooled data from the 1000 Functional Connectomes 

Project has since been mined and analyzed in numerous other studies 

directed at finding patterns of variation and developing new analysis 

tools. The creation of an open-access data repository of this magni-

tude and geographic range is significant for other reasons as well (see 

chapter 8). It complements the prevailing research model of collecting 

data from relatively small-scale investigations and marks the arrival of 

large-scale discovery science in human neuroimaging. Here, emphasis 

is placed on collecting and disseminating large data sets with the goal 

of generating new hypotheses and integrating data across research 

domains, including imaging, behavior, and genetics. The impending 

availability of thousands and perhaps tens of thousands of functional 

connectivity data sets will allow the exploration of brain – behavior rela-

tionships and of genetic influences on brain architecture at an unprece-

dented scale. 

 Particularly promising is the integration of structural and functional 

connectome data with data that relate to tissue metabolism and gene 

expression. Functional neuroimaging depends on the transduction of 

neural activity into a hemodynamic signal and is thus closely associated 

with mechanisms of neurovascular coupling, local tissue metabolism, 

and energy consumption. The high energy demands of the brain  8   place 

tight constraints on the availability and utilization of energy in response 

to neural activity. Various considerations of cellular processes involving 

the consumption of glucose, oxygen, and ATP lead to the conclusion that 

much of the brain ’ s metabolic energy is devoted to non-task-dependent 

or intrinsic neural activity (Raichle and Mintun, 2006). Of particular 

interest in the current context are regional variations in some metabolic 

processes such as glycolysis as measured by positron emission tomogra-

phy (PET; Vaishnavi et al., 2010;   figure 6.9, plate 14 ). Aerobic glycolysis 

refers to the partial breakdown of glucose in the presence of oxygen, 

but without engaging a chain of reactions called oxidative phosphoryla-

tion whose ultimate products are carbon dioxide and water. It is com-

monly found in cancer cells as well as in highly active brain tissue where 

the level of glycolysis exhibits regional fluctuations accompanying both 

task-evoked and resting brain activity. Interestingly, high levels of aerobic 

glycolysis are associated with specific brain networks, particularly those 

involved in the default mode and in cognitive control (Vaishnavi et al., 

2010). Regional levels of anaerobic glycolysis are also found to be 

correlated with regional centrality in the brain ’ s structural networks 
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Figure 6.9 (plate 14) 
 Relation between brain metabolism and network architecture. (A) Panels show (top to 
bottom) regional distribution of aerobic glycolysis measured by the glycolytic index (Vaish-
navi et al., 2010), the default mode system and the cognitive control system measured by 
resting-state functional magnetic resonance imaging mapping, and a conjunction of the top 
panel with the union of the two middle panels illustrating their overlap. Image reproduced 
with permission from Vaishnavi et al. (2010). (B) A scatter plot of the centrality rank, 
estimated from the betweenness centrality of the connectomes of five participants reported 
in Hagmann et al. (2008), and the glycolytic index as reported in Vaishnavi et al. (2010), 
for 41 Brodmann areas of cerebral cortex. Higher centrality rank indicates that the region 
participates in a larger number of short communication paths in the structural network. 
High centrality is a key criterion for a structural hub. The correlation is highly significant, 
with r = 0.66 (p  <  10  – 5 ). 

(Hagmann et al., 2008; see   figure 6.9 ).  9   Given that high centrality is a 

central feature of hub regions, the association suggests the hypothesis 

that hubs differ in their energy metabolism with respect to other less 

central regions of the brain. Thus, structural connectivity patterns may 

not only impact neural processing but also drive metabolic cost and 

demand.  10   It is to be expected that the availability of large imaging data 

sets through efforts like the 1000 Functional Connectomes and the 

Human Connectome Project will be instrumental in bringing about a 

new level of integration across multiple structural and functional data 

domains defining the human brain in terms of connectivity, metabolism, 

energy utilization, and gene expression. 

    As this brief survey shows, the future goals of functional connectomics 

are highly complementary to parallel efforts to map the structural 
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connections of the human brain. Functional connectomics captures net-

works of dynamic interactions in order to characterize invariant and 

characteristic features of brain organization. However, it is important to 

remember that when estimated from signals acquired over relatively long 

observation periods (several minutes in the case of resting-state fMRI), 

the strengths of functional connections only provide information about 

average levels of interactions. Connections (edges) that appear weak on 

a time scale of minutes may show intermittent periods of strong dynamic 

linkage or even switch between positive and negative coupling. Such 

 “ edge dynamics ”  are revealed only when functional connectivity is esti-

mated from brief time windows. Average estimates of dynamic couplings 

on a time scale of minutes provide only limited information about how 

these couplings relate to cognitive processes, commonly thought to occur 

on time scales of tens and hundreds of milliseconds. While observing 

functional connectivity at fast time scales presents many technical and 

analytical challenges, it is an essential step toward characterizing the 

connectional substrate of cognition. 

Variable Neural Dynamics and the Functional Repertoire 

 As neuronal and regional activations fluctuate on fast time scales, 

networks defined by their covariance or causal dependency undergo 

equally fast temporal modulations. These fast modulations and recon-

figurations of functional networks are of central importance for under-

standing information flow and computation in the brain. Computation, 

when viewed from the network perspective, is the dynamic generation 

and integration of information in a connected system resulting in coor-

dinated neural population activity. These coordinated states are associ-

ated with functional networks and their dynamic changes through time. 

Changing network topology will be reflected in fluctuations of local and 

global network measures that assess the balance between local (segre-

gated) and global (integrated) processing as well as the contributions 

of regions and pathways to network-wide dynamics. Since neural com-

putation is so closely tied to network dynamics, it is important to 

discover the driving force behind variability in brain functional 

networks. 

 Before we explore this question more fully, we first need to make a 

crucial distinction between fluctuations that arise from stochastic or 

random processes and those that arise from nonlinear dynamics. Stochas-

ticity generates noise, defined as random and undesirable disturbances 
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of signals. Noise can have many origins, from thermal noise in ion move-

ments, to cellular variations in number or arrangement of molecular 

components, stochastic signal transmission at synapses, activation of 

sensory receptors or recruitment of motor circuits. Such stochastic noise 

is often viewed as an unwanted corruption of true signal components. 

But noise driven by stochastic processes at microscales can contribute to 

variability in macroscopic neural and behavioral responses. Additionally, 

large-scale dynamic variability can arise even in an entirely deterministic 

system if the system is sensitive to small differences in initial conditions, 

a hallmark of chaos. Jointly, stochastic fluctuations and dynamic vari-

ability may well be regarded as  “ signal, ”  in the sense that they become 

manifest in macroscopic system behavior and contribute to the system ’ s 

functional capability (Deco and Corbetta, 2011). 

 Much of the recent work in functional brain networks has focused on 

identifying consistent and stable dynamic patterns — for example, in the 

course of spontaneous resting-state activity. More recently, the extent 

and possible functional role of variability in brain dynamics has received 

renewed attention. This recent work is building on a long history of 

research on variable brain dynamics, particularly in electrophysiology. 

Despite this rich body of work, how variable dynamics arises from brain 

connectivity has remained elusive. On fast time scales, several recent 

reports have documented nonstationary dynamics of functional connec-

tivity in EEG and MEG recordings. Unlike stationary processes whose 

statistical parameters remain stable across time, nonstationary dynamics 

exhibits significant fluctuations in the probability distributions of system 

states. Nonstationarity can be tracked by recording changes in the 

dynamic association between nodes, essentially creating edge time series 

data for statistical measures of their dependence or causal interactions. 

These edge time series, when aggregated among a set of nodes, define 

time-varying networks of functional interactions. 

 Analyzing the spatial distribution of electric potentials generated by 

human brain activity, Dietrich Lehmann developed the concept of  “ EEG 

microstates, ”  brief episodes of stability lasting on the order of 100 mil-

liseconds (Lehmann et al., 1987; Lehmann, 1990). These stable distribu-

tions of electric potentials are interspersed with rapid transitions, 

rendering the system overall quasi- or metastable. EEG microstates can 

be classified into a small set of patterns, and they unfold across time in 

specific sequences that are thought to reflect the momentary fluctuations 

of mental processing.  11   Recent work has established a link between spon-

taneously occurring EEG microstates and resting-state brain dynamics 
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as recorded by fMRI. In simultaneous EEG/fMRI recordings, specific 

EEG microstates were shown to correlate with BOLD activation pat-

terns that resembled the signatures of resting-state networks (Britz et al., 

2010; Musso et al., 2010). These findings raise the possibility that the 

stable and robust patterns described by longtime averages of BOLD 

fluctuations represent the accumulated effects of much faster, much 

more dynamic fluctuations in global network states. Much work remains 

to be done to close the gap between fast and highly variable changes in 

neural couplings and the slow, coherent and distributed patterns described 

by large-scale RSNs. 

 The relation of fast electrophysiological processes and the slow BOLD 

fluctuations that are measured in resting-state fMRI is further illumi-

nated by MEG studies examining both stationary and nonstationary 

signal components. MEG recordings of spontaneous brain activity exhibit 

anatomical patterns that are significantly correlated with those of several 

fMRI resting-state networks (de Pasquale et al., 2010). Some of these 

relationships are revealed when taking into account only stationary 

aspects of the MEG data. However, additional structural features of 

resting-state networks appear when the nonstationarity aspects of MEG 

are considered. Broadband MEG power time series show marked non-

stationarity, with large power fluctuations that occur on a time scale of 

seconds. These nonstationarities result in more variable synchronization 

patterns, with intermittent epochs of high functional coupling that are 

interspersed by more weakly coherent episodes. These results suggest the 

possibility that MEG and fMRI recordings probe somewhat different 

physiological processes reflecting neural synchronization at different 

levels of variability and robustness. 

 Even the slow and seemingly stationary signal fluctuations measured 

by fMRI during cognitive rest now appear more variable and heteroge-

neous than previously suspected (see, e.g., Smith et al., 2012). Chang and 

Glover (2010) conducted a detailed analysis of resting-state functional 

connectivity, including temporal variability of cross-correlations. When 

they used a sliding window for estimating correlations between neural 

time series of the posterior cingulate cortex (PCC) and other regions of 

the brain, significant variations in the strength of these correlations on a 

time scale of tens of seconds became apparent (  figure 6.10 ). Interestingly, 

the sliding-window analysis revealed transient correlations of PCC with 

a set of regions that included not only other regions within the default 

mode network but also regions that are commonly engaged in attention-

demanding task processing.  12   While efforts were made to exclude physi-
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ological or motion-induced artifacts, future studies are needed to identify 

the neural origin for these fMRI nonstationarities. One possible explana-

tion suggests that nonstationary correlations are associated with changes 

in internal state and cognition. The hypothesis is supported by recent 

fMRI data on specific patterns of dynamic reconfiguration of functional 

brain networks in the course of motor learning (Bassett et al., 2011). 

    It is important to emphasize once again that these nonstationarities 

and fluctuating patterns of interregional coherence unfold on multiple 

time scales (from minutes to milliseconds) and all occur within the same 

structural network described by the connectome. Multiple mechanisms 

contribute to these fluctuations including the metastable nature of neural 

dynamics as well as varying patterns of neuromodulation that transiently 

boost or suppress the efficacy of circuit elements (Brezina, 2010). Thus, 

an identical structural network can, at different times, support variable 

Figure 6.10 
 Dynamic changes in functional connectivity. Data displayed in both panels are from a single 
resting functional magnetic resonance imaging scan of a single participant. (A) Blood 
oxygen level dependent signal fluctuations in posterior cingulate cortex (PCC) and a region 
of interest (ROI) located in the right inferior frontal operculum (Brodmann area 44). (B) 
Correlations between the two time courses in (A) for a 2-minute and a 4-minute sliding 
window. Note that correlations vary greatly in magnitude and even change sign several 
times during the run. Modified (relabeled and converted to grayscale) and reproduced with 
permission from Chang and Glover (2010). 
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functional couplings and interactions. Clearly, this underscores the need 

for a much more dynamical view of how function emerges from the con-

nectome than is implied by the simplistic view of the connectome as 

wiring diagram (see chapter 1). This is all the more the case since 

dynamic variability is increasingly viewed as an important ingredient for 

flexibility in behavior and cognitive processing. 

 The rich dynamics of fluctuating functional interactions appear to 

transcend the narrow bounds imposed by the sparse and rigid skeleton 

of neuroanatomy. Does this imply that when it comes to understanding 

these fast dynamic processes the underlying anatomy simply does not 

matter? Here, an important question to ask is whether different archi-

tectures of structural networks are equally capable of fostering rich and 

variable dynamics. The answer appears to be that certain types of struc-

tural brain connectivity create conditions that favor the emergence of 

rich system dynamics and, thus, flexible computation (see chapter 7). 

Several architectural features of the human connectome, particularly its 

hierarchical modularity, play a key role in this process. The emerging 

picture is one where the architecture of the connectome promotes or 

enables rich dynamic behavior, rather than acting as a circuit board 

whose wiring rigidly determines the flow of neural operations. 

More Than a Wiring Diagram 

 The research program of connectomics encompasses not only the tracing 

and tracking of neural connections at micro-, meso-, and macroscales 

(see chapters 4 and 5). It must also address the complex problem of how 

these connections are functionally expressed. As this chapter docu-

mented, the connectivity of the human brain powerfully shapes its neural 

dynamics, the firing patterns of neurons and activations of brain regions. 

As connectivity shapes dynamics, it is also subject to spontaneous and 

experience-dependent mechanisms of structural plasticity that constantly 

rewire and remodel its connection topology (see chapter 3). This dia-

logue between structure and dynamics is a central feature of many 

complex networks whose connectivity evolves through time, subject to 

multiple sources of selection pressure and adaptation. It is important to 

remember that brain function extends to brain – body – environment inter-

actions, an extended network of relationships through which behavior 

exerts causative effects on the structure and dynamics of the nervous 

system. Sensory inputs, and thus their associated brain states, depend on 
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an organism ’ s action in the environment. Thus, in so many ways, under-

standing the connectome must go beyond the wiring diagram. 

 This point is significant because it relates to the central issue of how 

the  “ connectome in motion ”  turns brain structure into function. The 

importance of the connectome partly derives from its role as an inter-

mediate phenotype positioned at the intersection between genetics and 

environment (  figure 6.11 ). The connectome reflects heritable traits laid 

down in connectivity, participates in generating behavior, and retains 

records of an organism ’ s past experience in its biological and social 

environment. This places the connectome in a central position within 

a hierarchy of forces that shape an organism ’ s physical form and behav-

ior. This central role is a key motivating factor for studying the connec-

tome in the context of brain and mental disorders, where the clear 

definition of neurocognitive phenotypes faces numerous difficulties 

(Congdon et al., 2010). The connectome may offer a new approach 

 Figure 6.11 
 The connectome as an intermediate phenotype. This schematic diagram illustrates a hier-
archy of brain phenotypes, driven by genetic variation and environmental factors. Con-
nectomics is placed near the center of the hierarchy. Modified after Bullmore et al. (2009). 
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toward unraveling the genetic bases of disease states of the brain. Altera-

tions of large-scale brain networks have been found to be associated 

with virtually all neurological or psychiatric conditions studied so far 

(Menon, 2011). A growing number of studies suggest that many of these 

disease-related alterations can be traced to structural differences in the 

spatial layout and topology of the human connectome, reflecting the 

combined effects of genetic factors, developmental processes, physiology, 

and environment.  13   

    The convergence of genetic and environmental factors onto the struc-

ture of the connectome predicts an important role in disease states. It 

also presents significant new opportunities for collecting comprehensive 

data on connectivity, behavior, and genetics that can be examined 

for previously unknown statistical dependencies and regularities. The 

growing availability of neuroinformatics databases not only promotes 

innovative new strategies for relating connectivity to brain function but 

also stimulates the application of network theory (see chapter 7) and the 

development of integrative brain models (see chapter 8). These new 

theoretical and computational approaches are beginning to provide a 

wealth of new insights about the principles that underlie human brain 

architecture. 



 7 

 The characterization of the brain ’ s topological and spatial network archi-

tecture is a prime goal of human connectomics (  figure 7.1 ). As connec-

tome-mapping techniques continue to evolve, it is all but inevitable that 

future technological breakthroughs will substantially enhance our current 

picture of the network architecture of the human brain. The application 

of network analysis and modeling tools has already become a core area 

of computational connectomics by not only offering a variety of tools for 

data analysis but also providing an important theoretical framework for 

representing and interpreting connectomes. While our understanding of 

the network architecture of the human connectome is still incomplete, a 

number of features of the brain ’ s connection topology and its spatial 

embedding have been consistently identified (for review, see Bullmore 

and Sporns, 2009; Sporns, 2011a). Analyses of connectome data include 

a broad range of local and global network metrics (see chapter 1; Rubinov 

and Sporns, 2010; Kaiser, 2011). These metrics range from degree distri-

butions, clustering, and path length to the identification of modules and 

subnetworks, and their hierarchical and spatial embedding. To date, a 

great majority of studies have used standard anatomical atlases or 

random partitioning schemes to define network nodes. More recently, 

parcellation methods developed on the basis of regional differences in 

cytoarchitectonics, gene expression, and connectivity are beginning to 

deliver more objective and neurobiologically realistic node definitions 

(see chapter 5), and thus more accurate network descriptions. 

    These methodological refinements continue to bring the topological 

and spatial attributes of the human brain into sharper focus. Here we 

review some of the major themes that have consistently emerged over 

recent years. Perhaps the most compelling insights have revealed the 

human brain as a set of interconnected communities ranging in scale 

from neurons to brain regions. 

 Emerging Principles of Network Architectures 
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Modules and Hubs in the Human Brain 

 There is a dearth of data describing structural connectivity matrices for 

cellular networks, and not a single such data set currently exists for any 

portion of the human brain. This lack of microscale data on human syn-

aptic connectivity is a major rationale for studies conducted in  “ model 

systems ”  from other species. An important ongoing controversy is 

whether statistical descriptions of cellular connectivity suffice to account 

for physiological observations (see chapter 3). Since dense reconstruc-

tions of neural volumes are still difficult to obtain, most extant connec-

tional data on circuitry come from statistical descriptions of cellular 

connectivity (Binzegger et al., 2010) or are based on inferences from 

physiological recordings (Song et al., 2005; Perin et al., 2011) obtained 

mostly in rodent cortex. Both types of data suggest that cellular con-

nectivity exhibits numerous nonrandom features, including layer- and 

cell-type-specific as well as distance-dependent connection patterns and 

Figure 7.1 
 Topology and spatial embedding. The two images show the same network of a human brain, 
a subset of the connections forming its structural backbone as reported in Hagmann et al. 
(2008). (A) The network is displayed in two dimensions using a topology-based layout 
algorithm that places nodes and edges in order to minimize a spring-based energy function 
(Kamada and Kawai, 1989). (B) The same network displayed as a three-dimensional spa-
tially embedded object. Nodes correspond to brain regions and are placed at their anatomi-
cal coordinates. Edges are drawn as straight lines between them (see also figure 1.1 for a 
different example). Data from Hagmann et al. (2008). 
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specific connection motifs (see also Ganmor et al., 2011). In one of the 

first studies in this area, Song et al. (2005) simultaneously recorded activ-

ity from multiple cells in rat visual cortex and detected several network 

motifs that were highly overrepresented compared to null models. Syn-

aptic strength appeared to follow a lognormal distribution, indicating the 

presence of a significant proportion of stronger synapses among mostly 

weak ones. Interestingly, the density of corticocortical axonal projections 

determined by tract tracing also follows a broad non-Gaussian (lognor-

mal) distribution (Markov et al., 2011; Wang et al., 2012) suggesting a 

universal scaling relation across different levels of organization. 

 Until very recently, virtually no information was available on the 

degree distributions of different cell types, and data derived from ana-

tomical (as opposed to physiological) observations remain scarce. The 

average number of synaptic connections (the synaptic degree) for typical 

cortical neurons is usually estimated to lie between 1,000 and 10,000, but 

there is a scarcity of data on how this number varies across individual 

cells belonging to the same morphological class, and hence there is no 

information on the shape of the degree distribution. A reasonable expec-

tation is that scale-free distributions will likely only exist (if encountered 

at all) over fairly narrow ranges due to stringent physical limits on syn-

aptic connectivity at the upper end of the scale. This entails that  “ hub 

neurons ”  might derive their centrality primarily from their embedding 

in the connection topology rather than from their high degree. 

 A couple of recent reports have added important information regard-

ing cellular circuit topology. In a study involving optical imaging of 

neurons in developing rodent hippocampus, Bonifazi et al. (2009) dem-

onstrated the existence of functionally highly connected hub neurons in 

a subpopulation of inhibitory cells. How this high level of functional 

connectivity relates to underlying structural connection patterns remains 

to be determined. Most recently, recording activity from up to 12 pyra-

midal neurons simultaneously, Perin et al. (2011) investigated the topol-

ogy and synaptic weights among groups of cortical neurons in neonate 

rat cortex. The study found evidence for nonrandom connectivity that 

was arranged into a clustered architecture forming a topological small 

world. Multiple clusters appeared to be interlaced within the same 

volume of space. The degree distribution of these circuits did not show 

evidence of scale-free organization, indicating that there were no dispro-

portionately highly connected hub neurons, possibly due to spatial or 

volume constraints on neuroanatomy. Several statistical relationships 

between synapse number and density, synaptic weight, and neuronal 
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cluster size could be discerned. Taken together, these studies represent 

some of the first glimpses of network principles underlying cellular con-

nectivity in a mammalian brain. The emerging picture is one of highly 

nonrandom organization, with robust statistical patterns for connectivity 

among neurons and an as yet unknown degree of neuron-to-neuron 

specificity. 

 Much more is known about the connection topology of large-scale 

human brain networks. As reviewed in chapter 5, most structural network 

analyses of the human connectome are carried out on data acquired with 

noninvasive diffusion imaging.  1   In most of these studies, primary diffu-

sion imaging and tractography data sets were processed into sparse undi-

rected networks and analyzed with tools from graph theory. Binary 

network analysis is sometimes carried out by thresholding graded con-

nection information (e.g., Li et al., 2009) or by creating a consensus 

matrix across a group of participants (e.g., Gong et al., 2009). In weighted 

network analysis, the edge weights usually represent streamline counts 

or densities, derived from deterministic tractography. Streamline counts 

are sometimes taken to be proportional to the magnitude or strengths 

of axonal tracts linking brain regions (e.g., Hagmann et al., 2008). Other 

approaches use measurements of the myelination status of pathways to 

represent connection strength (van den Heuvel et al., 2010; Hagmann 

et al., 2010b). As noted earlier (see chapter 5), how measures such as 

numbers of reconstructed fibers or probabilities of fiber tracts relate to 

neuroanatomy is still far from obvious (Jbabdi and Johansen-Berg, 2011). 

Tractography infers the probable trajectories of axonal connections, but 

it does not report directly on their density, magnitude, strength, or direc-

tion. Important cross-validation with physiological and anatomical tech-

niques in animal models is urgently needed to better connect imaging 

constructs to parameters that more directly describe underlying neuro-

biological structure. 

 The most fundamental graph measure is the node degree, together 

with its counterpart in weighted networks, the node strength. Despite the 

fact that degree and strength are very simple to calculate, there is still 

some uncertainty regarding the shape of the human connectome ’ s large-

scale degree distribution. In good part, this uncertainty is due to the use 

of variable parcellation methods for node definition.  2   Several studies 

using random or regional partitions have reported exponential (Hagmann 

et al., 2008) or exponentially truncated power-law distributions for node 

degree (Iturria-Medina et al., 2008; Gong et al., 2009; Zalesky et al., 

2010). There is general consensus in finding fairly broad degree distribu-
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tions indicating that brain regions can differ considerably in both node 

degree and strength. It appears that some regions have considerably 

stronger and more diverse connection patterns than others.  3    

 All human brain network studies published so far have reported the 

presence of small-world attributes (Bassett and Bullmore, 2006), specifi-

cally high clustering and short path length or, equivalently, high local and 

global efficiency (e.g., Ituria-Medina et al., 2007; Hagmann et al., 2007, 

2008; Gong et al., 2009). The coexistence of these two structural charac-

teristics reflects important aspects of network organization, specifically 

the balance between functional segregation and functional integration 

which are indexed separately by clustering and path length. Functional 

segregation ensures that brain regions that are engaged in a common 

sensory, cognitive, or motor domain can effectively process and share 

specialized information. High clustering promotes functional segregation 

because clustered connectivity tends to be concentrated within local 

network neighborhoods. On the other hand, functional integration 

ensures that this specialized information can be unified to create coher-

ent brain states and behavioral responses. Short path length or high 

efficiency indicates that any two nodes in the network can, at least in 

principle, communicate along fairly direct paths that minimize noise and 

maximize speed.  4   

 It should be noted that small-world attributes provide only very limited 

information about the network architecture. For example, the original 

Watts – Strogatz architecture (Watts and Strogatz, 1998) consisted of a 

regular lattice with a small proportion of randomly rewired edges. 

However, the organization of large-scale brain networks looks quite dif-

ferent. Connections that are critical for inducing short path length, for 

example, long-range white matter pathways, have not been added through 

a process of random rewiring and do not link parts of a uniform lattice. 

Instead, high clustering in structural brain networks is due to the pres-

ence of modules, or local communities of highly and densely connected 

nodes (Hagmann et al., 2008). These clusters or modules comprise 

regions that exhibit correlated physiological responses and form coher-

ent functional systems (Hilgetag and Kaiser, 2004). Network elements 

that belong to the same module often reside within the same volume of 

space, a design that conserves wiring length as within-module connec-

tions tend to be shorter, on average, than between-module connections. 

Long-distance between-module connections are important for integrat-

ing the functionalities of different modules through short paths. Modu-

larity not only is found at the largest scale of whole-brain connectivity 
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but extends to smaller scales as well, an organization that can be described 

as hierarchical modularity (modules within modules). Modularity at 

multiple hierarchical scales is found in not only biological but also 

some electronic information-processing circuits (Bassett et al., 2010; 

  figure 7.2, plate 15 ) as well as functional brain networks (Meunier et al., 

2009).  5   

    Degree correlations express the tendency of connected nodes to have 

a matching number of neighbors. A positive correlation implies that 

nodes with similar degree tend to be connected while a negative correla-

tion indicates that nodes with dissimilar degree share mutual edges. The 

metric of assortativity captures this degree correlation across a network 

(see chapter 1). Many biological networks — for example, protein-

interaction networks and food webs — exhibit negative assortativity, indi-

cating that high-degree nodes tend to connect to low-degree nodes and 

not to each other. Interestingly, the human brain exhibits positive assor-

tativity (Hagmann et al., 2008; Bassett et al., 2010), which is indicative of 

a tendency for high-degree nodes to connect to other high-degree nodes.  6

High degree is one characteristic of regional hubs, and positive assorta-

tivity provides a first indication that high-degree hub nodes are mutually 

interconnected, forming a hub complex (Sporns et al., 2007), structural 

core (Hagmann et al., 2008), or a  “ rich club. ”  

 This aggregation of hub nodes is of particular interest in brain net-

works. In terms of network topology, a rich club is defined as a set of 

high-degree nodes that forms a tightly interconnected community, often 

found to play a dominant role in social systems (Colizza et al., 2006). A 

rich club was first demonstrated in cortical networks of other mamma-

lian species (Zamora-L ó pez et al., 2010) where it was found to form a 

community positioned at the highest level of the connectional hierarchy. 

More recently, a detailed analysis of the connection topology of the 

human brain has demonstrated the existence of a rich club of highly 

connected hub nodes comprising the superior frontal cortex, superior 

parietal cortex, and the precuneus, in addition to several subcortical 

regions including the thalamus, hippocampus, and part of the basal 

ganglia (van den Heuvel and Sporns, 2011;   figure 7.3, plate 16 ). A large 

fraction of all short paths linking pairs of brain regions pass through the 

rich club, underscoring its important role in neuronal information trans-

mission and processing. Network models suggest that selective damage 

to network elements of the rich club has a disproportionate effect on 

the global efficiency of the remaining network by disrupting numerous 

long-distance communication paths. Thus, it appears that the human 
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Figure 7.2 (plate 15) 
 Multiscale modularity in biological and electronic circuits. The four panels show a hierar-
chical cluster tree of nested modules identified from networks of a very large scale inte-
grated (VLSI) circuit (A), the nematode  C. elegans  (B), a group-averaged anatomical 
network estimated from structural magnetic resonance imaging (MRI) data of human 
cerebral cortex (C), and a group-averaged structural network obtained from diffusion 
spectrum imaging (DSI) and tractography of human cerebral cortex (D). Each branch of 
the tree shows the breakdown of module sizes and the magnitude of the modularity score 
m . Insets show a color-coded and reordered co-classification matrix expressing, for each 
node pair, their modular interconnectivity. Reproduced from Bassett et al. (2010a). 
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Figure 7.3 (plate 16) 
 Rich club organization of the human connectome. (A) Plot of the normalized rich-club 
coefficient   φ  norm   (red curve) against the number of nodes  k . At each value of  k , all nodes 
with a degree  <  k  are removed from the network, and the density of connections between 
the remaining set of nodes (dark gray curve) is evaluated and normalized relative to a 
random model (light gray curve). A ratio of   φ  norm    >  1 indicates that the set of  k  nodes is 
more highly interconnected than expected by chance. (B) A network diagram for 1,170 
randomly partitioned regions of cerebral cortex (nodes) and their interconnections (edges). 
Color coding (scale at left) indicates the level of participation in the rich club. (C) Same 
as (B), but only showing the rich-club connections for  k   >  9. Reproduced with permission 
from van den Heuvel and Sporns (2011). 
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connectome not only forms a modular small world but also contains a 

central core of highly and mutually interconnected brain regions. The 

position of the core or rich club within the connectome ’ s topology pre-

dicts a central role for system-wide information flow and integration. 

    Whether the hub nodes of the human brain are organized in a hierar-

chy or whether they communicate among each other more  “ democrati-

cally ”  along uniformly arranged pathways remains to be seen. Multiple 

lines of evidence support a hierarchical model of hub organization, most 

of them pointing to the posterior cingulate cortex and adjacent regions 

of the medial (mesial) parietal cortex, particularly the precuneus, as 

having a highly central role in structural and functional brain networks. 

This complex of brain regions is a core component of the default mode 

network, participating in a large number of functional interactions 

(Fransson and Marrelec, 2008; Leech et al., 2012). It is activated in a 

broad range of cognitive tasks, particularly those that involve self-

referential processing. Its level of activation or deactivation correlates 

with the level of consciousness (Laureys et al., 2004), and it exhibits 

extremely high levels of metabolic activity. Structural analysis of the 

human connectome has consistently demonstrated not only that the 

posterior cingulate/precuneus has high centrality (e.g., Hagmann et al., 

2008; Gong et al., 2009; van den Heuvel and Sporns, 2011) but also that 

its position in the network is such that the majority of structural paths 

that link modules are attached to its core. Interestingly, the high density 

of cross-hemispheric connections linking core regions across the cerebral 

hemispheres effectively renders the core a  single  coherent complex. In 

other words, the topology suggests the existence of an integrated bihemi-

spheric core in medial parietal cortex instead of two separate cores 

linked by homotopic callosal connections.  7   

 Why is the core located in that particular portion of the brain? Part of 

the explanation may have to do with the fact that the brain is a network 

that occupies physical space. In such networks, hubs are often found in 

locations that are not only topologically but also spatially central.  8

Several studies have documented that globally central and highly con-

nected hubs of the human brain aggregate along the cortical midline and 

are thus positioned between the two cerebral hemispheres in a location 

that is spatially close to much of the brain. The insula often ranks highly 

among cortical hubs, and it occupies a spatially central location in each 

of the two hemispheres (see figure 3.1). Placing hubs in the center of the 

brain allows them to be reached faster and more efficiently. Recent 

studies of brain connectivity have begun to focus on this and other 
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aspects of network organization that may have been shaped by the 3D 

structure of the brain, by its spatial embedding. 

Spatial Networks and the Cost-Efficiency Trade-Off 

 Networks are costly to build and run. The wiring of the physical Internet 

consumes material resources and energy, as do the transmission lines and 

transformers of the power grid or the layout of an electronic circuit or 

computer chip. The cost of these networks principally depends on the 

spatial placement of their constituent elements. Many social, technologi-

cal, and natural systems are embedded in space, with nodes and edges 

taking on specific locations (Barrat et al., 2005; Gastner and Newman, 

2006; Barthelemy, 2011). Space is one of the most fundamental factors 

driving network organization. In many cases, spatial embedding is a key 

contributor to network cost and performance. For example, spatial 

embedding can be a decisive factor in determining the location of hub 

nodes. The topology of transportation networks offers many examples. 

In airline networks, the topology of connecting flights depends strongly 

on geographic distances and the distribution of population centers, 

in addition to community structure reflecting geopolitical constraints 

(Guimer à  et al., 2005). The greater cost of long-distance flights dictates 

a  “ hub-and-spoke ”  organization and generates selection pressure toward 

locations that offer a combination of low cost and efficient performance. 

The rise of Dubai as a major international hub can be partially attributed 

to its geographic location placing it within four hours ’  flying time of 2 

billion people and allowing most large cities on Earth to be linked via 

Dubai in only one stop.  9   Other examples of spatial embedding that 

shapes connection topology are found in the physical infrastructure of 

the Internet ’ s routers and cables (Yook et al., 2002). 

 The human brain is another example of such a spatial network.  10   Its 

neural elements and connections occupy specific spatial positions rela-

tive to each other. This spatial embedding of nodes and edges is critical 

as it imposes cost constraints on the network that are reflected in its 

topology. The growth and maintenance of neural elements and connec-

tions consumes metabolic energy, and the neural infrastructure occupies 

brain volume and imposes conduction delays on neuronal communica-

tion (Laughlin and Sejnowski, 2003). It has long been recognized that 

the design of the nervous system appears to have many features that 

suggest economical use of limited resources.  11   Cost constraints appear to 

have shaped topology to a considerable degree, as many network studies 
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have shown that length and volume of neural wiring is highly conserved 

and near minimal (Chen et al., 2006; Kaiser and Hilgetag, 2006; Rivera-

Alba et al., 2011). Wiring length and volume are closely related to the 

speed with which impulses are conducted and thus influence the timing 

of neural processing. The spatial embedding of the brain imposes severe 

upper bounds on how many physical connections a given neuron or brain 

region can sustain, reflected in high-degree  “ cutoffs ”  that are often seen 

in degree distributions of structural networks. Connections not only 

consume space and volume but also require large amounts of metabolic 

energy for signal flow and transmission, in addition to the steady supply 

of cellular material to sustain the rapid turnover and remodeling of their 

structural components (see chapter 3). In fact, as noted in chapter 6, the 

brain ’ s energy demand accounts for a disproportionate amount of the 

organism ’ s entire energy budget. 

 However, while the combined cost imposed by energy demand and 

spatial embedding places stringent constraints on brain architecture and 

topology, it cannot fully account for all its characteristic features. Some 

aspects of topology — for example, the propensity for efficient informa-

tion flow and short path length — can only be achieved if cost constraints 

are relaxed — for example, by permitting the existence of costly long-

distance connection pathways (Kaiser and Hilgetag, 2006). The presence 

of these pathways promotes the network ’ s capacity to integrate informa-

tion, but it does so at the expense of energy and volume. This trade-off 

between cost and efficiency has a powerful influence on human brain 

connectivity (Bullmore and Sporns, 2012). It may also be the key driving 

force behind commonalities in topological features observed across mul-

tiple natural and artificial information-processing networks. These com-

monalities include a scaling relation between the number of processing 

elements and connections that holds for both network topology and 

spatial embedding (Bassett et al., 2010a). 

 Is human brain connectivity optimal, either in regard to its computa-

tional capacity or its use of material resources? The availability of 

increasing amounts of connectome data will enable the systematic 

assessment of  “ optimality ”  of brain connectivity, as measured against 

criteria of metabolic and wiring cost, on the one side, and processing 

efficiency on the other. Initial indications are that human brain organiza-

tion reflects a closely negotiated trade-off between cost and efficiency. 

Computational explorations support this idea. For example, rewiring the 

human cerebral cortex by randomizing connections not only degrades 

topological small-world attributes and thus disrupts the balance between 
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segregation and integration but also sharply increases the cost imposed 

by wiring length (  figure 7.4 ). Random rewiring tends to disrupt modular-

ity and thus degrades one of the most prominent features of brain 

network architecture that both conserves cost and promotes functional 

specialization. 

    A review of the rapidly growing literature on network correlates of 

brain and mental disorders reveals a tendency for disease conditions to 

be associated with disturbances of the brain ’ s  “ high-cost ”  architectural 

elements. For example, degenerative conditions such as Alzheimer ’ s 

disease are accompanied by reduced network efficiency, possibly due to 

loss of costly long-range connections (Sorg et al., 2007; Stam et al., 2007). 

The early accumulation of molecules indicative of cell damage and 

degeneration in central hub regions such as the posterior cingulate 

cortex/precuneus (Buckner et al., 2009) may be due to the high metabolic 

cost of connectivity attached to hub nodes, which renders them suscep-

tible to cell damage. A pattern of damage to high-cost network elements 

is also seen in schizophrenia albeit in different ways. For example, the 

path lengths of some brain regions, specifically subsets of frontal and 

temporal regions, were increased, and their centrality was decreased, in 

structural networks of patients with schizophrenia compared to healthy 

controls (van den Heuvel et al., 2010), perhaps a result of global reduc-

tions in white matter connectivity (Zalesky et al., 2011). Whether these 

or other clinical conditions are indeed caused by an imbalance in the 

cost-efficiency trade-off, through developmental or degenerative pro-

cesses, remains to be seen. If, in fact, high-cost elements like hubs and 

long-range pathways are centrally responsible for integrative aspects of 

brain function, even subtle disruptions of their functionality may become 

manifest in disproportionate disturbances of cognition and behavior. 

 Finally, the architecture of brain networks must be regarded as the 

product of development. Numerous aspects of network topology are 

constrained by molecular and cellular mechanisms of axonal pathfinding 

and synaptogenesis that favor specific spatial layouts of axonal connec-

tions, ranging from genetic  “ tool kits ”  and gene regulatory mechanisms 

to mechanical and tensile forces resulting from differential tissue growth, 

layering, and folding.  12   These developmental processes mold connectivity 

patterns and thus leave an imprint on network topology in the adult 

brain. Physical and developmental constraints rule out a vast set of con-

nection patterns that simply cannot exist as part of a real biological 

organism, regardless of its evolutionary history, because they cannot 

be built or sustained (Sporns, 2011a). This observation opens up the 
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Figure 7.4 
 Small-world topology and wiring cost in the human cerebral cortex. The figure shows how 
randomly rewiring the human brain gradually degrades small-world attributes and results 
in higher wiring cost. The connection matrix at the right corresponds to the right hemi-
sphere (RH) of cerebral cortex, as reported in Hagmann et al. (2008). The matrix consists 
of 500 patches of cortex, arranged in a frontal – parietal – occipital – temporal ordering. Note 
that many connections fall along the matrix diagonal, indicating that they are short and 
connect nearby patches. The matrix at the right is derived from the matrix on the left by 
fully randomizing the connectivity but preserving node degrees. As randomization pro-
ceeds (bottom diagram) the cortical matrix loses its small-world organization. At the same 
time, its wiring cost, estimated as the total length of all fibers in the brain, more than 
doubles. Reproduced with permission from Sporns (2011b). 
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interesting possibility that much about human cognition, to the extent 

that it depends on the network structure of the connectome, can be 

explained with reference to the genetic and physical forces that shape 

brain connectivity in development, subject to the trade-off between 

network cost and efficiency. Put differently, a combination of factors that 

per se have little to do with  “ adaptation for function ”  or with selection 

pressure on specific behaviors may have exerted a powerful influence on 

shaping human cognitive styles and abilities. 

 While much about the architecture of the connectome remains to be 

discovered, some consistent themes have already emerged, especially the 

importance of modularity and hubs for functional specialization and 

integration. It appears that the cost-efficiency trade-off imposed on the 

brain by its physical embedding and energy demand drives several major 

features of brain network organization discerned so far, including its 

hierarchical modularity as well as its core and rich-club hub-and-spoke 

architecture. These structural features of the human connectome have 

important consequences for brain dynamics and for the configuration of 

functional brain networks. 

Functional Networks 

 In the previous chapter, I discussed at length how functional connectivity, 

or more generally brain dynamics, emerges from the underlying anatomi-

cal pattern of the connectome. A major insight was that variable func-

tional connections give rise to a large repertoire of network states that 

far transcends the sparse set of couplings comprising a description of the 

brain ’ s wiring diagram. The size and diversity of this repertoire critically 

depend on connectome topology. Put differently, given a fixed number 

of nodes and edges, the way these nodes and edges are interconnected 

shapes the type of dynamics that can emerge. Neural dynamics, whether 

measured as sequences of action potentials among individual neurons or 

as mean firing levels among neuronal populations, give rise to informa-

tion processing and computation.  13   Neural information processing relies 

on the capacity of neurons to generate complex probability distributions 

that represent and encode important features of the internal and external 

world. Connectivity is absolutely critical for creating and maintaining the 

informational capacities of neurons and neuronal populations. 

 As it turns out, not all types of neural dynamics are equally capable 

of supporting rich information processing. Of particular interest are 

brain dynamics that exhibit critical behavior (Plenz and Thiagarajan, 



149 Emerging Principles of Network Architectures

2007; Chialvo, 2010), characterized by a mixture of randomness and 

order, with dynamic transients that ripple across multiple spatial and 

temporal scales. Theoretical studies suggest that such transients are well 

suited for flexible computation, and they are thought to be important for 

information processing in the brain (Beggs, 2008). Transients are also a 

hallmark of spontaneous and task-evoked brain dynamics, independent 

of recording method. Which patterns of brain connectivity optimally 

promote the rich computational capacity associated with critical brain 

dynamics? Computational studies have demonstrated that key charac-

teristics of critical brain dynamics are strongly associated with specific 

architectural motifs. Rubinov et al. (2011) investigated this relationship 

in simulations of ensembles of spiking neurons by varying their connec-

tion topology. Hierarchical modularity was found to not only promote 

low wiring cost but also to broaden a critical regime in neural dynamics, 

supporting a rich repertoire of population neural activity spanning mul-

tiple spatial and temporal scales. Graph-theoretic studies of the human 

connectome have suggested that hierarchical modularity is indeed one 

of the hallmarks of brain organization (e.g., Bassett et al., 2010a). The 

association between dynamic criticality and hierarchical modularity is 

strongly suggestive of a potential link between connectome topology and 

the richness of the brain ’ s functional repertoire. 

 Human brain functional networks share several topological attributes 

with those of the underlying structural substrate. One example is the 

shape of degree distributions, which is broad and non-Gaussian for both 

structural and functional networks. The exact shape of degree distribu-

tions of functional brain networks depends in part on the parcellation 

scheme. Comparing voxel and regional partitions, Hayasaka and Lauri-

enti (2010) found that functional degrees were best modeled by expo-

nentially truncated power laws, with a more pronounced tendency toward 

power laws at finer partitions. Another example is the tendency of both 

structural and functional networks to form clusters or modules. Com-

monly derived by thresholding of strong functional linkages, functional 

connectivity in the resting brain is organized into communities or modules 

that correspond to resting-state networks (see chapter 6). These resting-

state networks often have components that are spatially distributed and 

linked by long-distance structural connections. 

 Another area of considerable interest is the identification of  “ func-

tional hubs ”  — brain regions that occupy a central position within func-

tional brain networks. In the earlier discussion of structural hubs we had 

identified several prominent parts of the cerebral cortex, particularly 
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along the cortical midline, as well as several subcortical regions as widely 

and centrally connected. Are the same regions exhibiting high centrality 

in functional brain networks? At first glance, there is indeed some overlap 

between structural and functional hubs as demonstrated by two studies 

based on resting-state fMRI. Buckner et al. (2009) identified several core 

regions of the default mode network as functional hubs in resting-state 

connectivity, including the posterior cingulate cortex/precuneus, the 

lateral parietal cortex, and the medial prefrontal cortex. These regions 

were identified on the basis of node degree, essentially counting the 

number of strong and positive functional relationships they maintained. 

Tomasi and Volkow (2010, 2011a, 2011b) used a measure of regional 

density of functional connections to search for functional hubs and iden-

tified a region located in the posterior cingulate cortex/ventral precuneus 

as the most prominent functional hub in the human brain. This region is 

virtually identical to the structural core identified with diffusion imaging 

and tractography (Hagmann et al., 2008). 

 A caveat in studies of functional networks is the statistical nature of 

the principal measure, usually a simple linear cross-correlation between 

time series which, in the case of resting-state fMRI, is sampled over an 

extended recording period lasting several minutes. The magnitude of 

these correlations may not have a simple relationship to the true func-

tional centrality of a brain region. For example, a functional hub may be 

expected to participate in the activity of a diverse set of brain regions 

and networks, which might increase its dynamic variance and, paradoxi-

cally, decrease the longtime average of many of its functional connec-

tions. Thus, the  “ functional centrality ”  of a neural hub may be difficult to 

assess. To further investigate this issue, Zuo et al. (2012) conducted a 

systematic comparison of several network centrality measures applied to 

resting-state fMRI. These measures included degree, subgraph cen-

trality (Estrada and Rodriguez-Vel á zquez, 2005), eigenvector centrality 

(Bonacich, 1972), and page-rank centrality (Page et al., 1999). The two 

latter measures express centrality not only on the basis of local node 

properties but recursively take into account the centrality of connected 

nodes. Zuo et al. (2012) found that each measure disclosed different 

aspects of  “ functional centrality ”  and suggested that a combination of 

several different centrality measures might be useful for charting differ-

ent aspects of information flow in the human functional connectome. 

 The search for  “ functional hubs ”  illustrates some of the caveats that 

must be taken into account when comparing graph measures in structural 

and functional networks. The interpretation of connection topology in 
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functional connectivity requires careful consideration of the neurobio-

logical meaning of nodes and edges (Rubinov and Sporns, 2010). For 

example, anatomical interpretations of MEG or EEG recordings are 

made difficult because of the nonlocal nature of the recorded electro-

magnetic fields while networks derived from fMRI time series cross-

correlations necessarily include many couplings along indirect structural 

paths (see chapter 6). Furthermore, functional networks are increasingly 

viewed as evolving across time, with rapid changes in connectivity that 

reflect nonstationary neural dynamics (e.g., Smith et al., 2012). These and 

other considerations strongly suggest that despite some commonalities in 

topology, structural and functional brain networks must be carefully dis-

tinguished from one another when it comes to analysis and interpretation. 

Future studies of their relationship will benefit from more advanced meth-

odology — for example, in the area of effective (or causal) connectivity. 

 These methodological developments are particularly important since 

functional connectivity, particularly longtime averages of resting-state 

BOLD signal fluctuations, are widely studied in the context of disease 

states. Virtually all brain and mental disorders have been found to be 

associated with specific disturbances of functional connectivity. In some 

disorders, like schizophrenia, theories of  “ disconnection ”  have a long 

history extending over more than a century. Network analysis of con-

nectome data represents a new and promising approach toward under-

standing how cognitive and behavioral deficits originate from disruptions 

of network connectivity and information flow (Bassett and Bullmore, 

2009; Guye et al., 2010; Zhang and Raichle, 2010). Network analysis can 

sensitively capture individual variations of network topology in relation 

to cognitive capacity in healthy participants (e.g., van den Heuvel et al., 

2009b; Bassett et al., 2009; Li et al., 2009). These variations then provide 

connectivity phenotypes that can be investigated in the context of indi-

vidual experience, development, and genetic background, possibly yield-

ing novel biomarkers for brain and mental disorders. Noninvasive MR 

connectomics has already provided new insights into changes in network 

organization associated with mental diseases such as schizophrenia 

(Bassett et al., 2008; Skudlarski et al., 2010; van den Heuvel et al., 2010; 

Zalesky et al., 2011). Studies of structural and functional networks in 

schizophrenia are beginning to converge on identifying globally dis-

turbed network topology that results from deficits in specific hub nodes 

and cortical pathways. Future studies will likely combine graph analysis 

with heritability and genomic data to disentangle genetic and environ-

mental influences on connectome topology. Harnessing the full potential 
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of connectomics for understanding disease states will require new 

methods for quantitative comparison of connectomes across individuals 

and control/patient populations. 

What ’ s Human about the Human Connectome? 

 Early studies of connection maps, mostly acquired through noninvasive 

diffusion imaging and tractography, are beginning to reveal key attributes 

of human brain network organization. Among these attributes is a pro-

nounced community structure with modules that are hierarchically 

arranged and interconnected through a core complex or rich club of hub 

nodes. The connectome is arranged economically, conserving structural 

and metabolic cost, while also performing efficiently by ensuring direct 

and global information flow. The origin of this cost-efficiency trade-off 

lies in the spatial embedding of the human brain, in its physical realiza-

tion as a collective of cells and circuits that consume space and energy. 

 Do these early studies allow us to pinpoint any features of network 

organization that are specifically human? Are there any aspects of con-

nection topology or complexity that set the human brain apart from 

those of other species? At the time of writing, the answer to this question 

is unknown.  14   Comparative analyses point to many aspects of network 

organization that are common among a range of biological nervous 

systems, even including technological information-processing systems 

such as electronic circuits (Bassett et al., 2010a). At least some of these 

commonalities may be explained on the basis of shared selection pres-

sures that relate to the trade-off between cost and efficiency that must 

be negotiated by all information-processing networks. Other features of 

the human connectome may yet turn out to be, if not unique to humans, 

then perhaps more highly expressed in the human brain compared to 

that of other species. For example, the aggregation of hub nodes into a 

rich club (van den Heuvel and Sporns, 2011) and the elaboration of a 

subset of long-range pathways related to specifically human cognitive 

capacities such as language (Catani et al., 2005) are good candidates for 

important structural substrates of integrative cognitive processes. It may 

also be important to look beyond the confines of the brain itself. Perhaps 

some of our uniquely human cognitive capacities are not a simple func-

tion of the number of neurons and synapses, or even their networked 

interactions, and instead are better understood as the product of how our 

brains are acting in and on our increasingly complex social and cultural 

environments. 
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 We still know very little about the evolution of brain networks. Ongoing 

and future studies promise significant new insights in this regard, for 

example by way of assembling comprehensive connectome maps across 

a range of vertebrate and invertebrate species. As connectomics technol-

ogy continues to mature, the cost and effort needed to extract a given 

brain ’ s connection pattern is likely to fall considerably. A worthwhile 

albeit distant goal is the collection and comparison of connectivity maps 

from a broad range of species in order to identify their commonalities 

and differences.  15   A catalog of connectomes would allow identifying rela-

tions between brain architecture and body plans, developmental mecha-

nisms, behavioral capacities, and cognition. Such a catalog could lay a 

foundation for  “ comparative connectomics ”  and provide clues about 

potential evolutionary trends in brain connectivity. A promising target 

of investigation is the evolution of modularity. Based on current knowl-

edge, it appears that structural modules and small-world attributes are 

found in both invertebrate (e.g., Chiang et al., 2011) and vertebrate 

species, but it is not known if modularity increases with species complex-

ity or how it relates to scaling laws — for example, the relation of gray 

and white matter volume in mammalian brains (Zhang and Sejnowski, 

2000) or the number of anatomically distinct brain regions (Krubitzer, 

2007). 

 Extracting principles of brain architecture is a major goal of connec-

tomics, not only because it provides insight into brain organization, 

including its developmental and evolutionary origins, but also because 

such principles are key ingredients of computational models of brain 

function. Such models play an increasing role in neuroscience, and as 

connectomics matures, we may expect to see a new generation of such 

models emerge — models of  “ virtual brains. ”  The final chapter explores 

the current status and future growth of computational connectomics. 



 8 

 The complementarity of structure – function relations in the brain, the 

parallel existence of multiple spatial and temporal scales, and the sheer 

size of connectome data sets make computational approaches to model-

ing and data analysis essential and indispensable. While some modeling 

and analysis can proceed by way of heuristics, deeper explorations of the 

human connectome must be guided by the theoretical framework of 

network science. As discussed at length in the previous chapter, network 

approaches provide far more than just capable and versatile data analysis 

methods. They also establish a link between brain connectivity, on the 

one side, and the considerable body of theory on complex networks on 

the other. This final chapter is about the rapidly expanding role of infor-

matics and computation in analysis and modeling of connectome data, 

including the use of network models for creating computer simulations 

of the human brain. 

 The arrival of connectome data sets has already opened up new pos-

sibilities for computational modeling in neuroscience. Network models 

of the connectome have begun to reveal architectural principles that 

enable the brain ’ s computational efficiency and flexibility. For the first 

time, empirically measured whole-brain connectivity matrices have been 

employed in large-scale simulations of neural dynamics, a step toward 

constructing comprehensive mechanistic models of the human brain. 

Such models are important because, as we discussed earlier, the connec-

tome does not translate into functional connectivity or, for that matter, 

into cognition and behavior in ways that can simply be read out from the 

connection topology. Instead, models are needed to both explain and 

predict system behavior. Such models offer much more than tools for 

describing empirical data or for performing statistical inferences on 

hypotheses. They are essential for uncovering causal and generative 

mechanisms underlying neural and behavioral observations (Breakspear 

 Computational Connectomics 
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and McIntosh, 2011). One of the main motivating forces at the origin of 

connectomics was the creation of whole-brain models whose dynamics 

match empirical neural recordings and that can give rise to realistic 

behavior (Sporns, 2012). The availability of connectome data sets now 

allows the construction of such virtual brain models that can be tested 

against empirical data. 

 This chapter surveys the prospects for developing realistic computa-

tional models of the human brain that can aid basic and applied research 

and provide an objective way to organize our knowledge about human 

cognition. But first, we turn to the considerable challenge posed by cata-

loguing and disseminating the growing amount of human connectome 

data. 

Neuroinformatics Challenges 

 In 1989 nanotechnology and cryonics expert Ralph Merkle wrote a 

remarkably prescient technical report for Xerox Corporation, in which 

he predicted that  “ a complete analysis of the cellular connectivity of a 

structure as large as the human brain is only a few decades away ”  (Merkle, 

1989, p. 1). Merkle sketched out an approach to imaging the structure of 

the human brain at subcellular resolution quite similar to EM strategies 

that are currently pursued in microscale connectomics (see chapter 4). 

He realized that carrying out such a project would require automated 

reconstruction and storage of very large data sets — so large in fact that 

the computational resources available at the time were far outmatched. 

Assuming around 10 24  elementary computational operations for imaging 

and reconstruction, and given the cost of computing around 1990, Merk-

le ’ s estimate for the total price tag of the project came to 34 billion 

dollars, a number he expected to drop to 34 million dollars over the fol-

lowing 20 years.  1   

 Clearly, estimates for the size of data sets and the computational effort 

involved in reconstruction and analysis depend on the scale at which data 

are acquired. On the microscale of EM and LM approaches, the raw data 

for a structure the size of the human brain would require a zettabyte 

(a trillion gigabytes) of memory, currently beyond the storage capacity 

of any computer (Kasthuri and Lichtman, 2010).  2   On the other hand, 

connectome data sets obtained at the macroscale with noninvasive 

imaging technology are large but manageable. For example, the con-

nectomes of 1,200 participants acquired as part of the Human Connec-

tome Project will consume around a petabyte (a million gigabytes) of 
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online storage (Akil et al., 2011). Importantly, the size of raw data sets 

acquired in microscopy or imaging can be effectively reduced by render-

ing connectomes in the much more compact form of network descrip-

tions. For example, a connection matrix of a single human brain at the 

level of millimeter-size voxels would at most require a few gigabytes of 

memory. 

 Going beyond data size and storage, additional challenges involve 

creating data structures that can accommodate different recording 

methods and modalities, as well as providing resources for users who 

wish to mine and visualize data sets (  figure 8.1 ). Data types include 

volume- and surface-based representations of the brain that assign a set 

of spatial coordinates to each voxel. These coordinates (or  “ brainordi-

nates ” ; Marcus et al., 2011) can then be mapped to rows and/or columns 

of connectivity matrices comprising a separate connectivity-based data 

type. Jointly, locations in the brain and their mutual associations can be 

stored, visualized, and processed with a variety of software and rendering 

tools. Additional neuroinformatics challenges for connectomics involve 

linking connectivity data to other domains that record individual char-

acteristics of participants, such as data on demographics, behavior, cogni-

tive performance, or genomics. 

    Several visualization platforms for connectomics are currently under 

development. These tools allow for interactive queries of specific 

brain regions or pathways and display data on brain volumes, surfaces, 

or in network format. The Connectome Workbench, currently under 

Figure 8.1 
 Data mining and visualizing the human connectome. Shown here is a schematic example 
utilizing the tool set envisioned for the National Institutes of Health – funded Human 
Connectome Project. Connectome data sets can be queried, metrics of interest can be 
computed from selected subsets, and results can be visualized and rendered graphically. 
DB, database. Modified (converted to grayscale) and reproduced with permission from 
Akil et al. (2011). 
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development (Marcus et al., 2011), will be closely linked to a database 

called ConnectomeDB which will house data from the Human Connec-

tome Project ( http://www.humanconnectome.org ). Visualization options 

include fMRI activation data, regional parcellations, contours between 

cortical areas or parcels, connectivity profiles (essentially the rows/

columns of connection matrices projected back into anatomical space), 

and network metrics computed for specific locations in the brain, as well 

as time series data in graphical or movie format. Connectivity profiles 

can be rendered for direct as well as indirect connections. Data can be 

visualized for individual participants or as group-averaged representa-

tions for participant groups selected according to user-supplied criteria. 

Interactive exploration will include multimodal comparisons, such as 

between structural and functional connectivity data. Another online soft-

ware platform, the Connectome Viewer (Gerhard et al., 2011;  http://www

.connectomics.org/viewer ) is more specifically geared toward analysis 

and visualization of structural connectivity data sets, with numerous 

options for displaying brain surfaces, fiber trajectories, and distributions 

of network metrics. Connectome visualization platforms will also allow 

for the export of brain connectivity data to more generic network analy-

sis tool sets.  3   

 Very little progress has been made to date in merging or cross-

referencing of connectome data across scales — for example, relating con-

nection data from networks at cellular resolution to large-scale projections 

and pathways. In part, this is due to the relative paucity of cellular 

network data, particularly in human brain. The development of multi-

modal registration tools and connectivity-based data formats for 

diffusion and functional MRI provides a potential model for future inte-

gration efforts across scales. These efforts will be facilitated by the use 

of network theory, which relies on the universal mathematical structure 

of graphs, defined as sets of nodes and edges. Graphs can capture con-

nectivity at any scale and thus naturally encompass multiscale architec-

tures and nested connectivity patterns. Future connectome databases 

may not only provide multimodal linkage at single scales but also allow 

users to  “ zoom in ”  on details of cellular connectivity from large-scale 

maps, not unlike what is currently possible in Google Earth. For human 

connectomics, the feasibility of a multiscale connectome database 

requires the availability of at least some regional volumes for which con-

nectivity is resolved at the microscale. To render the data interpretable 

to the human user, significant data reduction into network form will be 

essential. 
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 The future success of connectomics will depend on broad availability 

of data in open-access repositories and archives.  4   This will allow research-

ers to gain access to normative data sets, explore and mine data for 

statistical patterns, and use these data to inform computational models 

bridging levels of analysis. A major driving force behind efforts to collect 

and share large data sets is the growing realization that understanding 

the complexities of brain and behavior requires the integration of scien-

tific findings across a broad array of methods, approaches, and systems 

(Akil et al., 2011). Whether it is normal behavior and cognition, or 

disease states, a full understanding is only possible if genetic, neural, and 

behavioral data are combined and analyzed in context. The creation 

of open-access large biological data sets enables discovery science, 

thus complementing more conventional focused and hypothesis-driven 

research. Progress in this direction will come not only from large, 

centrally funded research consortia but also from community-driven 

 “ grassroots ”  initiatives.  5   Biswal et al. (2010) spearheaded efforts to 

create a public repository for resting-state fMRI combining data sets of 

1,414 participants independently collected at more than 30 globally dis-

tributed MR centers. This 1000 Functional Connectomes Project ( http://

fcon_1000.projects.nitrc.org/ ) was made possible not only by an unprec-

edented degree of global collaboration among researchers but also by 

the adoption of a connectomics framework, which allowed representa-

tion of these data with the common  “ language ”  of connectivity and 

networks.  6   These data have already been widely used by a number of 

researchers and have led to new insights about universal and individual 

features of brain organization (e.g., community structure and hub regions; 

Tomasi and Volkow, 2010, 2011a, 2011b; Rubinov and Sporns, 2011; Zuo 

et al., 2012). 

 It is likely that interest in connectome data will further increase as a 

growing number of studies disclose relations between brain connectivity 

and genetic markers (see below). Atlas-based comparisons between gene 

expression and connectivity have already been carried out in rodents 

(French and Pavlidis, 2011; French et al., 2011; Wolf et al., 2011) and 

will soon become possible in the human brain as well, as online databases 

on gene expression in the human brain  7   become cross-referenced with 

human connectome data. For example, spatially registered bidirec-

tional links between the Allen Human Brain Atlas and the Human 

Connectome Project will allow users of both databases to access geno-

mic or connectivity data for specific anatomic locations (Marcus et al., 

2011). 
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 Neuroinformatics efforts benefit from the adoption of a common 

format for how connectome data are represented. The sheer size and 

volume of primary data sets from EM/LM or neuroimaging is a major 

challenge for effective data sharing. The reduction of these data to struc-

tural and functional networks not only is economical but greatly facili-

tates comparison and interpretation, and it enables the use of a broad 

range of network analysis and modeling approaches. 

Building a Virtual Brain 

 Complex systems cannot be fully understood without the use of compu-

tational models that simulate system dynamics and allow prediction of 

future behavior following perturbation. Such computational models typi-

cally build on an understanding of the basic elements and interactions 

that are relevant for global system behavior. In physics, computational 

models are deployed over an astounding range of systems, all the way 

from the dynamics of single molecules to the motions of galaxies. In the 

social sciences, the increasing availability of massive amounts of data 

through digital communication, financial and economic monitoring, and 

social media has led to a surge in the creation of quantitative data-driven 

models of social systems (Lazer et al., 2009).  8   In computational biology, 

significant efforts have been directed at designing models of cells that 

allow an understanding of how their molecular components work 

together to generate global functional states. The cell biologist Masaru 

Tomita suggested that the  “ study of the cell will never be complete unless 

its dynamic behavior is understood ”  (Tomita, 2001, p. 205). He argues 

that dynamic behavior of the cell is more than an inventory of all the 

parts and goes beyond a static flowchart of chemical reactions and path-

ways. Accurate prediction requires simulation of system dynamics, setting 

in motion parts and pathways. 

 Computational models are becoming an integral part of neuroscience, 

and connectomics contributes to this trend through fostering the devel-

opment of connectivity-based models of neural dynamics and behavior. 

This type of model instantiates specific hypotheses about the causes 

and mechanisms that generate observed data on neural responses. The 

process of model building and testing can be visualized as proceeding in 

two main directions (Valdes-Sosa et al., 2011;   figure 8.2 ). Model-driven 

approaches instantiate a neural model specified by a set of state equa-

tions describing, for example, membrane conductances or mean firing 

levels, as well as a connection matrix determining the model ’ s synaptic 
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coupling. The purpose of the model is to explain and predict dynamic 

behavior, in the process testing the hypothesis that the form and param-

eters of the model can account for empirical observations. In contrast, 

data-driven approaches start from observations and then attempt to fit 

models to the observed data. These models are generative and causal in 

that they instantiate neural processes and effective connectivity that 

jointly account for the empirical observations. A large number of causal 

models are tested, and rigorous model selection criteria are then used to 

evaluate the evidence provided by each candidate model. It is important 

to realize that both models and empirical observations are subject to 

revision and expansion — hence a  “ final model ”  of brain function is 

unlikely to be achieved in the near (or even distant) future. Rather, 

model building and empirical testing is part of an ongoing iterative dia-

logue between model-driven ( “ forward modeling ” ) and data-driven 

( “ model inversion ” ) approaches. 

    System identification is an important part of control theory where it 

refers to the inference of dynamical models on the basis of observed data. 

Figure 8.2 
 Forward models and model inversion. Forward modeling involves computational models 
that instantiate biophysical mechanisms and structural connectivity (bottom) and give rise 
to organized neural dynamics (middle) that can be compared to empirically observed brain 
responses (top). Model inversion involves the objective inference of models that best 
explain observed data and can account for important features of brain dynamics. Based on 
a similar diagram in Valdes-Sosa et al. (2011). 
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For example, fluctuations in economic measures in relation to external 

perturbations may be used to specify a dynamic model that relates inputs 

to observations. If there is some knowledge about the mechanisms that 

underlie system behavior, system identification may be used to infer the 

parameter distribution of a generative model that can best explain 

observed responses. In cognitive neuroscience, the framework of dynamic 

causal modeling (DCM; Friston et al., 2003; Penny et al., 2004) allows 

not only the comparison of competing hypotheses, implemented as 

network models, about the neural causes for observed dynamic responses, 

but also the identification of a network model that best explains data 

through a process of  “ network discovery ”  (Friston et al., 2011). In prin-

ciple, given the observations and a formally specified generative model, 

a large model space can be constructed within which DCM, using Bayes-

ian model selection, identifies the model that best explains the data. 

Critically, DCM compares dynamic models that describe different sets 

of causal relations specified as directed graphs whereas comparisons of 

functional connectivity can only yield correlational information without 

access to underlying neural causes. A current drawback of DCM for 

network discovery is that it can only be applied to fairly small sets of 

nodes and edges due to combinatorial explosion of the model space. 

Here, the incorporation of connectome data could provide strong addi-

tional priors that help to constrain the space over which models need to 

be compared. 

 Forward models of neural dynamics based on connectome data sets 

have been used to explain the neural basis of spatiotemporal patterns 

in spontaneous neural activity — for example, those seen in the brain ’ s 

resting-state (see chapter 6). A comparative analysis of several compu-

tational models (Honey et al., 2007, 2009; Ghosh et al., 2008; Deco et al., 

2009) has identified an overall modeling framework that can account for 

a large body of empirical data (Deco et al., 2011). Three main concepts 

contribute to this framework: Resting-state dynamics is constrained by 

the underlying structural connectivity, depends on variable time delays 

for signal transmission between proximal or remote brain regions, and 

arises from local interactions among populations of neurons within each 

region. Jointly, connection topology, conduction delays, and local dynam-

ics give rise to a rich set of functional networks. 

 Implemented on the connection matrix of a large part of the macaque 

cortex, a model of coupled chaotic oscillators first demonstrated the 

dependence of coherent BOLD signal fluctuations on structural con-

nectivity (Honey et al., 2007). Slow changes in BOLD signals were driven 
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by variations in fast synchronization among neural elements that, in turn, 

are shaped by the structural coupling matrix. Longtime averages of 

BOLD responses showed significant correspondence between structural 

and functional connectivity, but at shorter time scales the model exhib-

ited series of transients with variable functional couplings, thus predict-

ing nonstationarities of the type that were later discovered in empirical 

data (e.g., Chang and Glover, 2010; see figure 6.10). A recent analysis of 

spontaneous BOLD fluctuations recorded in the macaque monkey and 

processed into a functional network demonstrated significant agreement 

between model and empirical data (Adachi et al., 2012;   figure 8.3 ). The 

model was later expanded to simulate human resting-state functional 

connectivity. The structural coupling matrix was a weighted representa-

tion of anatomical connectivity inferred from diffusion imaging and trac-

tography (Hagmann et al., 2008). The model was able to generate 

dynamics that closely matched empirically recorded resting-state func-

tional connectivity (Honey et al., 2009). It could also reproduce effects 

on functional connectivity due to perturbations of specific pathways —

 for example, the disruption of interhemispheric couplings following cal-

losotomy (Johnston et al., 2008; see figure 6.5). 

    The model of resting-state dynamics by Ghosh et al. (2008) was also 

based on a network of anatomical couplings but in addition to the 

network topology also included conduction delays, thus incorporating 

the full spatiotemporal coupling matrix, as well as noise. Noise drove the 

system away from dynamic equilibrium, and subsequent relaxation of 

model dynamics back toward the stable regime generated series of 

dynamic transients. The temporal succession of these transients created 

fluctuations that resembled the brain ’ s resting state. This noise-driven 

exploration of the neighborhood around the equilibrium state was most 

pronounced if the system was poised at or near the onset of spontaneous 

oscillations. The model by Deco et al. (2009) suggested that noise-driven 

transitions between dynamically multistable states give rise to fluctua-

tions in synchronization patterns which, in turn, drive slow BOLD 

fluctuations. Connection topology as well as conduction delays were 

important model ingredients that determine the spatiotemporal pattern-

ing of resting-state neural activity. A related model comprising coupled 

oscillators that engage in time-delayed network interactions showed the 

emergence of slow fluctuations in neural activity that were related to 

concomitant BOLD functional connectivity (Cabral et al., 2011). Despite 

the simplicity of the basic oscillator, the topology and time delays incor-

porated into the structural connectivity were found to induce patterns of 
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Figure 8.3 
 Empirical and modeled blood oxygen level dependent (BOLD) functional connectivity in 
the macaque cortex. (A) A functional connectivity matrix computed from functional mag-
netic resonance imaging recordings of spontaneous BOLD signals in two anesthetized 
macaque monkeys. The cortex was parcellated into 39 regions (please see original publica-
tion). (B) The anatomical connectivity was derived from published tract-tracing data col-
lated in the CoCoMac database (see chapter 5). The functional connectivity was computed 
using a neural mass model and simulated BOLD mechanism as reported in Honey et al. 
(2007). (C) The scatter plot of simulated versus functional connectivity reveals a statisti-
cally highly significant correlation of r = 0.55. Modified (converted to grayscale) and 
reproduced with permission from Adachi et al. (2012). 
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simulated functional connectivity that matched those seen in empirical 

recordings (  figure 8.4, plate 17 ). 

    Several insights can be gained from these modeling efforts. All three 

models reinforce the notion that the connectome shapes spontaneous 

brain dynamics. As discussed in chapter 6, a growing body of empirical 

evidence also supports this important idea. However, the models also 

clearly illustrate some significant limitations. While anatomy can be 

said to  “ shape ”  or  “ constrain ”  functional connectivity, even a fixed and 

unchanging anatomical  “ skeleton ”  can give rise to a large number of 

time-varying patterns of dynamic interactions. This set of patterns can be 

conceptualized as a  “ dynamic repertoire ”  that is continually rehearsed 

in the resting brain (see chapter 6). Enabling these fluctuations is the 

proximity of the system to a marginally stable critical dynamic regime. 

Being close to instability ensures that system dynamics neither die out 

Figure 8.4 (plate 17) 
 A model of whole-brain dynamics based on coupled oscillators. The figure shows a com-
parison of structural connectivity (SC), empirically measured functional connectivity 
(FCemp), and simulated functional connectivity (FCsim), rendered on a standard surface 
map of the cerebral cortex after seeding from the precuneus in the right hemisphere 
(rPCun, light blue star). Connectivity patterns are highly correlated, not only between the 
empirical SC and FCemp (as discussed in chapter 6) but also between FCemp and FCsim, 
suggesting that the computational model can reproduce many of the anatomical details of 
functional connectivity. Modified and reproduced with permission from Cabral et al. 
(2011). 
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nor become completely random. As a result, functional connectivity is 

not a static pattern — it is a series of patterns that emerge from the 

continual flow of neural dynamics through the state space of the brain. 

The connectome, through its topology and spatial embedding (as 

expressed in conduction delays), shapes this flow by creating a dynamic 

manifold, a low-dimensional subset of brain states that appear as coher-

ent functional units in the resting and working brain. Over longer time 

scales, these brain states can in turn modify and mold the anatomical 

linkages of the connectome through mechanisms of activity-dependent 

plasticity. 

 It is worth noting that nonstationarities in BOLD fluctuations (see 

chapter 6; figure 6.10) were first predicted by these models and have only 

recently come under closer empirical scrutiny. Future applications of the 

modeling approach involve the construction of a  “ Virtual Brain ”  to 

model human neural dynamics (Jirsa et al., 2010;  http://thevirtualbrain

.org ). Building on empirical data, including data coming from connec-

tome-mapping studies, the goal is to create detailed models that can 

generate neuronal time series matching those obtained from neuroimag-

ing experiments. The Virtual Brain will allow for the implementation of 

different formulations of neural population dynamics, and its connectiv-

ity structure can come from either group-averaged or individual con-

nectome data sets. The models will include realistic conduction delays 

and will be explicitly embedded in 3D space, allowing results to be dis-

played in brain volumes and surfaces. Models can be tested against 

empirical observations, and they can be subjected to systematic perturba-

tions to evaluate model responses, explicitly in the context of clinical 

applications. Particularly important will be to devise perturbations that 

replicate disease processes or the effects of focal brain lesions (e.g., 

Alstott et al., 2009). The Virtual Brain thus becomes a test bed for explor-

ing disease-related disturbances of the connectome and their dynamic 

manifestations, opening up new possibilities for developing diagnostic 

and therapeutic strategies. A future goal is to create patient-specific brain 

models that build on the individual ’ s connectome and brain geometry to 

allow the assessment of the dynamic consequences of disease or injury 

and the prediction of successful intervention and rehabilitation. 

 Other efforts to build working models of mammalian or human brains 

are under way, and connectome data will be critical for steering these 

models toward realistic performance. Dharmendra Modha and col-

leagues have created an extremely large simulation of a neural model 

incorporating neuronal spiking dynamics, plasticity, and axonal conduc-
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tion delays, altogether comprising on the order of 1 billion neurons and 

10 trillion synapses (Ananthanarayanan et al., 2009).  9   The size of the 

model is on the same scale as the cerebral cortex of the cat, and contin-

ued improvements in efficient implementation and supercomputing 

resources may soon allow the model to be run in near-real time. A critical 

ingredient for generating a model of the cat cortex that resembles its 

biological counterpart is the cat connectome. Ananthanarayanan et al. 

implemented probabilistic data on connectivity of local circuits of cat 

cortex derived from reconstructions of individual neurons (Binzegger 

et al., 2004). Additional steps toward constructing a working model of 

the brain will involve the incorporation of interregional projections and 

of the cerebellum and subcortical regions such as the thalamus.  10   An even 

greater amount of detail, in particular with respect to cellular morphol-

ogy and synaptic physiology, is incorporated into Henry Markram ’ s Blue 

Brain architecture (Markram, 2006. One of the initial project goals is the 

creation of a realistic simulation of a cortical column, based on data from 

the rat somatosensory cortex, later to be expanded to a full-sized model 

of a whole brain. 

 What do these attempts at modeling complex brains have in common, 

and how do they differ from each other? Markram ’ s Blue Brain as well 

as Modha ’ s model of cat cortex aim at simulating the brain at cellular 

resolution, from the  “ bottom up, ”  by aggregating cells into circuits, and 

circuits into neural systems. Modha ’ s model, at the current stage, provides 

an  “ existence proof ”  demonstrating the feasibility of simulating a brain-

size model in near real-time on a supercomputer. Markram ’ s model more 

explicitly aims at generating data that can be related to neurobiological 

experimentation and guide empirical brain research. An important next 

step will be for these models to generate specific results that can explain 

or predict empirical knowledge about cells, circuits, or whole-brain 

dynamics. So far, neither model has made significant contact with empiri-

cal research on human brain anatomy or physiology, despite widely pub-

licized claims that the ultimate goal is to simulate the functioning of the 

human brain and human cognition.  11   Is ultimate success in this area 

simply a matter of computational resources, of waiting until Moore ’ s law 

makes real-time simulations of large brains at cellular or subcellular 

resolution technologically feasible? 

 The task of building a truly functional model of the human brain from 

individual neurons is similar to that of creating models of complex cel-

lular processes by simulating the cell ’ s molecular components, one at a 

time. However, a successful outcome of such ambitious projects critically 
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depends on knowledge about the organization of neurons and molecules 

into complex networks whose function underpins system dynamics. A 

fundamental difficulty facing the bottom-up approach to brain modeling 

is that it tends to neglect the multiscale nature of brain connectivity and 

the complex role of connectivity in generating neural dynamics and func-

tion. Rather than designing an architecture that incorporates patterns 

from all scales that are experimentally accessible, including the large 

scale of neural populations and brain regions, bottom-up approaches 

attempt to construct the brain by brute force, neuron by neuron and 

synapse by synapse. What is lacking are the important constraints pro-

vided by empirical and theoretical research on principles of brain orga-

nization and architecture. Essentially, such bottom-up models perpetuate 

the Laplacian dream of nineteenth-century physics, encapsulated in the 

belief that the future of the universe (including brain states) can be fully 

predicted once the positions and velocities of all elementary particles 

(neurons and synapses) are known. The point of building brain models, 

however, is to advance understanding of brain function, not creating in 

silico replicas that are as complex and incomprehensible as the real thing. 

 In contrast, the Virtual Brain and related modeling efforts explicitly 

build on a multiscale, or at least  “ multiscale-minded, ”  theoretical frame-

work (  figure 8.5 ). This framework recognizes that dynamics at different 

scales are mutually interdependent across hierarchies of space and time. 

Multiscale approaches are widely adopted in the physical sciences where 

they have been extremely successful in areas such as fluid dynamics, 

magnetization, climatology, materials engineering, and seismicity. Multi-

scale organization is also a hallmark of many complex networks (see 

chapter 1), including those found in power systems, the Internet, trans-

portation, epidemiology, and genomic and cellular regulation. What is 

common to all multiscale approaches is that  “ scaling up ”  of system 

dynamics is not attempted by brute force, involving the explicit simula-

tion of all particles and their interactions. For example, models of fluid 

dynamics are simply infeasible if all that is allowed are water molecules 

and their motions. Instead, multiscale approaches embrace models for 

dimension reduction where processes at smaller scales become part of 

compact descriptions of regularities at larger scales. Small-scale pro-

cesses are not  “ averaged away ”  — rather, they become part of and 

contribute to the reduced parameterized description of what the system 

does as a whole. Computational explorations can iterate between scales, 

searching for important small-scale mechanisms that have to be incor-

porated into larger-scale descriptions to afford greater realism. No 
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 Figure 8.5 
 Multiscale modeling. Schematic illustration of three different modeling approaches to 
address the brain ’ s multiscale organization. (A) An explicitly multiscale framework that 
combines and integrates dynamic models at several scales. (B) A  “ multiscale-minded ”  
approach that models dynamics explicitly at only one scale but attempts to incorporate 
mechanisms that reside at smaller scales and to predict dynamics at larger scales (see   figure 
8.2 ). (C) A  “ brute-force ”  approach working by aggregating dynamics of microscale pro-
cesses without explicit consideration of how these processes are organized across scales. 
Redrawn from a similar figure in Jirsa et al. (2010). 
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single scale is privileged — all scales contribute to macroscopic system 

behavior. 

    Multiscale models of brain dynamics are of critical importance for 

achieving a principled understanding of how neural substrates give rise 

to behavior and cognition. Such models give rise to a dimensionally 

reduced set of dynamic patterns that are shaped and constrained by brain 

connectivity. A major goal for connectomics will be to discern how these 

patterns are related to the architecture of human cognition. 

New Ontology for Human Cognition 

 In the present context, the term  “ ontology ”  refers to a way to organize 

information about a specific knowledge domain, a structured knowledge 

base designed to facilitate information sharing. Ontology represents 

distinct entities or categories within the domain and specifies their prop-

erties and relations. Such categorization only makes sense if members 

of different categories can be distinguished along meaningful dimen-

sions of variance. Thus, finding a suitable ontology requires the 

identification of the main dimensions of variance that best represent the 

domain in question. Ontology is an extremely useful tool for organizing 

large data sets (e.g., gene ontologies; Ashburner et al., 2000; Bard and 

Rhee, 2004) and for building conceptual maps that relate, explain, 

and predict research findings. Regarding the human mind, defining a 

classification scheme or ontology of mental processes has remained an 

unfulfilled challenge. Psychologists and cognitive scientists continue to 

rely, for the most part, on an ontology that largely derives from schemes 

and distinctions drawn decades if not centuries ago. Can connectomics 

help to find a more principled map for the relations among categories 

of human mental processing by grounding these categories in the brain ’ s 

network architecture? 

 Traditionally, mappings between neural substrates and cognition have 

been created on the basis of brain activations, sets of univariate (location-

based) measurements of the level of regional brain activity. If these 

mappings are indeed accurate and specific, it should be possible to 

decode specific cognitive states on the basis of observed brain activity. 

The basic idea is simple. In principle, if two mental states result in differ-

ences in brain activation for at least some locations in the brain, these 

mental states can be inferred. In practice, such  “ brain reading ”  is difficult 

to achieve by examining patterns of brain activation in single locations 

due to the small size of signal differences as well as the inherently dis-
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tributed character of neural activity. Multivariate pattern-based analyses 

are significantly more successful as they take advantage of distributed 

information about mental states carried by activity in multiple locations 

(Haynes and Rees, 2006). Machine learning and statistical pattern rec-

ognition techniques can be employed to achieve optimal separation 

between different patterns of brain activity and thus to increase detec-

tion accuracy. Decoding of mental states has been attempted in the 

context of visual object recognition, capitalizing on known differences in 

the pattern of neural responses to different object categories (Haxby 

et al., 2001). Functional specialization in the visual cortex results in 

spatial separation of brain activation for images of faces and buildings. 

These local differences allow observers to accurately track visual percep-

tion for at least some object categories. Extending this paradigm to 

spontaneous changes in visual perception such as those experienced in 

binocular rivalry, a pattern classifier trained to distinguish fMRI response 

patterns to the two perceptual alternatives can be used to predict per-

ceptual fluctuations as they occur in real time (Haynes and Rees, 2005).  12

 However, when interpreting relationships between cognition and brain 

activity, one must be mindful of caveats relating to the  “ reverse infer-

ence ”  of mental states from brain states. We stated above that once a 

mapping between mental states and neural responses has been estab-

lished, it should be possible to infer mental states from neural observa-

tions. However, the logic of this argument is flawed — the mapping from 

mental state to neural response can only be reliably inverted if there is 

a one-to-one mapping between these two domains, that is, a specific 

neural response is seen  if and only if  a specific mental state occurs (Pol-

drack, 2006). That, however, is not the case, given the nature of brain 

networks and their distributed responses to essentially all exogenous or 

endogenous perturbations (stimuli and tasks). The degree to which 

neural responses can provide evidence about mental processes can be 

quantified since it depends on the degree to which local responses 

vary across the repertoire of mental or cognitive states. Put differently, 

the selectivity of a brain region ’ s response in a variety of contexts can 

provide an estimate of the evidence the region provides about the 

presence of specific mental states. Russ Poldrack has conducted exten-

sive statistical analyses of large databases reporting on focal brain activa-

tions in response to a broad spectrum of cognitive tasks. These studies 

depend on the ability to access and mine large numbers of fMRI studies. 

In a recent effort combining automated text mining, meta-analysis, 

and machine learning approaches, Yarkoni et al. (2011) constructed a 



172 Chapter 8

database called NeuroSynth that allows both forward and reverse infer-

ence ( http://neurosynth.org ). The framework allows for decoding of a 

broad range of cognitive and psychological states in individual subjects 

on the basis of distributed patterns of brain activity and at a high level 

of accuracy. 

 Reverse inference or brain reading relies on an accurate classification 

of mental processes, a cognitive ontology. Text-mining tools and pattern 

classifiers depend on the prior definition of these categories to establish 

mind – brain relationships. How can one improve on the relatively coarse 

cognitive ontology that is currently employed, and can such an ontology 

be objectively extracted from brain data? Building a map of major con-

cepts and relations for human mental processing is akin to identifying a 

low-dimensional space that best represents cognitive or psychological 

states. Each dimension corresponds to a mental category, or a related set 

of cognitive and behavioral capacities. Poldrack et al. (2009) attempted 

to map brain activation patterns obtained from a cohort of participants 

engaged in a variety of cognitive tasks onto a low-dimensional space. 

These dimensions may be viewed as corresponding to high-dimensional 

 “ features ”  of functional brain activation and contribute to each of the 

cognitive tasks to a varying degree. A simple ontology of mental pro-

cesses was successfully mapped onto these dimensions, thus suggesting 

a correlation between mental architecture and its distributed neural 

substrate. 

 An appealing hypothesis is that categories of mental processes are 

related to distinct brain networks, for example, those identified in studies 

of the resting-state functional connectome (see chapter 6). As we 

reviewed earlier, longtime averages of correlations in spontaneous 

BOLD signal fluctuations allow the identification of several resting-

state networks, varying in number depending on scan resolution and 

clustering technique. Several  “ canonical networks ”  primarily involved 

in default mode, attention, executive control, salience, sensorimotor, 

visual, and auditory processing are reliably found (Raichle, 2011; see 

figure 6.6). Using ICA, Smith et al. (2009) identified major components 

in BOLD time series with significant shared signal variance (i.e., coher-

ent subsystems; see figure 6.8). These components were found to be 

significantly related to regional activations in various tasks. Thus, func-

tional brain networks can be correlated with distinct cognitive challenges. 

Displayed in matrix format (  figure 8.6 ), it appears that each distinct 

cognitive or behavioral domain is associated with a unique pattern 

of activity engaging a subset of network components. Building on 
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Figure 8.6 
 Association between brain networks and domains of behavior and cognition. Brain net-
works are numbered 1 to 10 and correspond to the ICA-derived spatial maps shown in 
figure 6.8. Behavioral domains are a subset of 66 categories defined in the BrainMap 
database, which is a large repository of functional magnetic resonance imaging and positron 
emission tomography brain activation studies (Fox and Lancaster, 2002). The matrix entries 
express the strength (in arbitrary units) of the association of a given network with a given 
behavioral domain, as determined by the comparison of each network ’ s spatial signature 
against activation data in BrainMap. Modified (converted to grayscale) and reproduced 
with permission from Smith et al., 2009. 
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the association of cognitive processes and resting-state networks, two 

studies (Richiardi et al., 2011; Shirer et al., 2012) have successfully 

used whole-brain functional connectivity to decode mental states occur-

ring in the course of spontaneous cognition, both within and across 

individuals. 

    The emerging picture is one where multiple regions and networks are 

associated with multiple cognitive tasks or mental processes. Building on 

large-scale databases and automated clustering and machine learning 

approaches, efforts are under way to extract  “ functional ontologies ”  that 

systematically record which uni- and multivariate brain activation pat-

terns, or functional networks, map onto which domain of cognition.  13   The 

utility of any functional and/or cognitive ontology depends on its ability 

to efficiently and accurately translate structure (neural substrate) into 

function (task or cognitive state) and back (Price and Friston, 2005). The 

connectome will turn out to be an important ingredient for creating this 

ontology. The architecture of the human connectome will allow us 

to anchor cognitive ontology in network connectivity, thus providing 

a structural foundation for the major categories of human mental 

processes. 

The Next Ten Years 

 In the near future, computational approaches to connectomics will likely 

undergo rapid expansion, particularly in the areas of shared neuroinfor-

matics resources, network analysis, and modeling. The increasingly broad 

availability of high-quality data on human structural and functional con-

nectivity, together with matching data on behavior and genomics, as, for 

example, planned in the context of the Human Connectome Project, will 

open new opportunities for both discovery science and hypothesis-driven 

investigation. The complex relationship between genotype and connec-

tional or behavioral phenotype will be a prime target of analysis, aided 

by new metrics to extract characteristic patterns of local and global 

network architecture. These analyses will, for the first time, provide 

invaluable information on the genetic basis and behavioral manifesta-

tions of connectome topology. 

 A major rationale for mapping the human connectome is to learn 

more about the role of connectional disturbances in brain dysfunction 

and disease. Numerous studies have already been conducted, and many 

more are under way, to probe for differences in the layout of structural 

and functional connections between healthy and diseased brains. Some 
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of these studies suggest that network theory applied to connectome maps 

may supply long-sought objective biomarkers for common diseases 

of the nervous system. Throughout the book, we have underscored 

the importance of structural connectivity for the specificity of neural 

responses and for their system-wide integration. Supporting this idea, 

there is strong evidence suggesting a relationship between specific 

aspects of network organization and cognitive performance among 

cohorts of healthy volunteers. The approach is readily extended to 

include clinical populations. While most studies so far consider disease 

conditions as categorically different from a healthy state, following a 

case/control design, new views suggest that disorders represent extreme 

variations along continuous dimensions and are thus quantitative rather 

than qualitative deviations from health (Hyman, 2010; Kendler et al., 

2011).  14   This idea is concordant with a genetic basis for many common 

diseases that represents the accumulation of small effects contributed by 

numerous genetic variants rather than the presence or absence of single 

genetic factors (Plomin et al., 2009). Thus, common disease conditions, 

including those affecting the nervous system and resulting in psychopa-

thology, may be best understood as quantitative traits that represent the 

extremes of otherwise continuous phenotypic distributions. Given the 

variability of individual brain connectivity (see chapter 3) and its partial 

heritability, an attractive hypothesis suggests that dimensional variations 

of connectivity measures can capture neurobiological substrates for mul-

tiple forms of brain and mental disorders. Some of these disorders, par-

ticularly those that share common genetic bases and show comorbidity, 

may vary along common dimensions. 

 Today,  “ personal genomics ”  is just over the horizon.  “ Personal con-

nectomics ”  may not be far behind. If (as the author anticipates) the 

connectome turns out to be of clinical importance, and if its status as an 

important phenotypic maker of individual behavioral and cognitive per-

formance is confirmed, personal connectomes may become integral com-

ponents of individual medical records. For example, individual connectome 

maps may be helpful in designing optimal strategies for  “ network recov-

ery ”  following traumatic brain injury or stroke (see, e.g., Irimia et al., 

2012). People who are at high risk of sustaining such injuries may benefit 

from the preemptive acquisition of a whole-brain connectome map, to 

establish a reference or ground state that can guide therapeutic strategies 

aiming at restoring connectivity in case of brain trauma. Connectome 

maps may also provide important tools for tracking progressive changes 

in brain connectivity in individuals with a degenerative brain disease, 
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thus continually providing specific information about the status of the 

biological substrate and allowing more targeted intervention or therapy. 

 Genome and connectome are undoubtedly important biological sub-

strates of human individuality. However, this notion, when pushed too 

far, greatly overstates the deterministic power of genes and connections. 

While it is certainly true that genome and connectome jointly preserve 

a record of natural history and personal experience, their translation into 

biological form and function results from processes and systems that 

range over many scales of organization. Function emerges from the 

expression of genes and connections in morphogenesis and development, 

culminating in complex brain dynamics that underpin the behavior and 

mental experience of each living individual. The connectome, like the 

genome, cannot be read like a book. The connectome must express itself 

in dynamics and behavior before the information it contains can be real-

ized and understood. As the connectome is set in motion, fast and slow 

fluctuations of neuronal activity give rise to the intrinsic flow of mental 

experience, molded by the gradual accumulation of structural changes 

that retain traces of a person ’ s interaction with the physical and social 

world. The connectome constrains what is possible, but it does not deter-

mine what actually occurs. Along the winding path of each person ’ s 

unique life story, much of what matters most remains irreducible. 



 This book has covered a wide range of topics, all of them related to the 

nascent field of connectomics. Let us look back and review some of the 

main ideas. 

•    Exemplifying the fundamental role of structure for biological function, 

the connectome delivers a structural description of the network of con-

nections comprising the human brain. The network architecture of the 

connectome informs our understanding of the brain as an integrated 

system, and the empirical and computational strategies of connectomics 

resemble those of modern systems biology. 

•    While the primary objective of connectomics is the mapping of struc-

tural brain connectivity, knowledge of the structure alone is insufficient 

for understanding brain function. Neural activity unfolding within the 

 “ wiring diagram ”  of the brain gives rise to complex dynamics character-

ized by a large repertoire of spatial and temporal patterns. 

•    Connectomics faces many challenges, including those posed by the 

multiscale aspect of connectivity, its considerable variability across indi-

viduals, and its plasticity across time. Overcoming these challenges 

requires the deployment of empirical techniques that can reveal con-

nectivity from the micro- to the macroscale and a focus on populations 

of individuals to systematically assess connectional variability. 

•    A broad range of empirical techniques aim to deliver detailed con-

nectivity maps of neurons, circuits, and systems. All scales matter for the 

functioning of the system as a whole, and technology for integrating con-

nectivity data across scales is urgently needed. One essential tool to 

achieve this integration is the theoretical framework of network science, 

and the description of the connectome as a network or graph. 

Epilogue 
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•    Current work in human connectomics builds on the capacity of nonin-

vasive neuroimaging technology to infer structural connectivity and 

observe brain dynamics in relation to human behavior. Since anatomical 

patterns cannot be directly measured in live humans, existing empirical 

approaches are subject to important limitations. As these limitations are 

addressed and results are validated, a more consistent picture of the 

human connectome begins to emerge. 

•    Brain dynamics, especially when observed over long periods of time, 

generates characteristic patterns, summarized in the  “ functional connec-

tome. ”  Structured by the underlying substrate of synaptic connections, 

detailed study of functional brain connectivity has led to the definition 

of characteristic brain networks that participate in different aspects of 

function and that exhibit individual variability and plasticity. 

•    Functional networks are not rigidly specified but engage in temporal 

fluctuations on multiple time scales, forming a repertoire of network 

states that far transcends the connectome ’ s wiring diagram. The dynamics 

of functional networks and their propensity for modulation by internal 

state and external input invalidate any simple-minded attempt to reduce 

brain function to brain wiring. 

•    The complex architecture of the human connectome can be described 

as a network or graph, composed of nodes and edges. The network exhib-

its highly nonrandom organization, with structural modules that are 

interlinked by hub nodes and arranged into a nested hierarchy. Network 

topology reflects a trade-off between conserving connection and meta-

bolic cost while at the same time promoting high efficiency of informa-

tion flow and neural processing. 

•    Connectomics increasingly depends on cumulative and integrative 

efforts to bring together data on connectivity, behavior, and genomics. A 

growing neuroinformatics infrastructure facilitates efforts to create com-

putational models of the human brain. These  “ virtual brains ”  are impor-

tant tools for understanding how brain structure turns into brain function, 

and they provide new insights into disease states, brain injury, and repair. 

 Throughout the book I have attempted to lay out a vision of connec-

tomics that embraces the complexity of the brain and remains faithful to 

its neurobiology. Connectivity was a central theme in this endeavor, and 

the creation of a comprehensive map of the brain ’ s connections, from 

synapses to pathways, constitutes the principal challenge of connec-

tomics. And yet, even if such a complete map of the human connectome 
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were at hand, important questions about how this map relates to human 

behavior and cognition remain to be addressed. The map alone is not the 

answer — connectomics must include the study of how circuits give rise 

to variable neural dynamics and how these dynamics underpin brain 

function. Like genes, connections must be functionally expressed to exert 

causal efficacy. Brain function arises from the coordinated action of 

neural elements organized into a complex multiscale system. The network 

structure of the connectome provides a fundamental constraint for what 

is functionally possible and probable. 

 It is my hope and expectation that connectomics, or  “ network neuro-

science, ”  will not only provide deep insights into how the human brain 

is organized but also allow us to ask new questions about how brain 

structure gives rise to brain function. These new questions will illuminate 

how the connections between neural elements enable integrative and 

emergent neural processes. I think we ’ ll find that the complex architec-

ture of the connectome and its variable dynamics fundamentally resist 

reductionist explanation. Instead, connectomics offers a complementary 

perspective, one that is rooted in thinking about networked systems that 

are complex, yet robust and resilient, and whose dynamics give rise to a 

seemingly endless variety of expression — constrained, yet running free. 



Chapter 1 

 1.   Individual protein molecules can be conceptualized as networks of interacting chemical 
domains. Protein structure networks define the interactions of amino acid residues and are 
useful models for predicting folding probability, the spatial configuration of the protein as 
a whole, and the position of active centers (Krishnan et al., 2008). 

 2.   The origins of systems biology go back at least to theoreticians like Ludwig von Berta-
lanffy and Nicolas Rashevsky, who were among the first to link biological processes to 
general systems theory (von Bertalanffy, 1968) and quantitative models (Rashevsky, 1948). 

 3.   Winkler referred to the genome as the haploid set of all chromosomes, which represents 
 “ the material foundation of the species ”  ( “ die materielle Grundlage der systematischen 
Einheit ” ; Winkler, 1920, p. 165). 

 4.   The corresponding research areas are denoted with the suffix  “ omics ”  as in genomics, 
proteomics, transciptomics, metabolomics, and interactomics. 

 5.   It should be noted that the connectome (and even, to an extent, the genome) is subject 
to modification during the lifetime of an organism, an issue I will discuss in much more 
detail in chapter 3. However, at least at the large-scale of regions and pathways, the basic 
network architecture of the connectome maintains a consistent pattern across time. 

 6.   In the past, systems biology and computational neuroscience have had little interaction 
(De Schutter, 2008). Both disciplines are concerned with modeling of biological systems, 
but from different perspectives. Connectomics offers an attractive opportunity to bring the 
two complementary research agendas closer together. 

 7.   Data-driven or  “ inductive ”  approaches to science are sometimes criticized since they 
don ’ t view scientific progress as deriving primarily from testing specific hypotheses. A good 
summary of the argument and a defense of data-driven scientific approaches are given by 
Kell and Oliver (2004). As they point out,  “ neither Darwin nor Wallace, at the time they 
started to collect specimens and make observations of the living world in far-flung parts 
of the globe, sought to test any specific hypothesis. [ … ] It was only when they started to 
organize their specimens [ … ] that they entered upon the grand synthesis that is the Theory 
of Evolution by Natural Selection ”  (Kell and Oliver, 2004, p. 102). 

 8.   Translation by the author. The original formulation, highlighted in the Introduction to 
Exner ’ s 1894 book, reads:  “ Ich betrachte es also als meine Aufgabe, die wichtigsten psy-
chischen Erscheinungen auf die Abstufungen von Erregungszust ä nden der Nerven and 
Nervencentren, demnach alles, was uns im Bewusstsein als Mannigfaltigkeit erscheint, auf 
quantitative Verh ä ltnisse und auf die Verschiedenheit der centralen Verbindungen von 
sonst wesentlich gleichartigen Nerven und Centren zur ü ckzuf ü hren ”  (Exner, 1894, p. 3). 

 9.   Echoing Granovetter, neuroscience faces a similar challenge of linking small-scale (e.g., 
neuronal) to large-scale (e.g., systems) processes. 

Notes 
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 10.   The appeal of the small-world phenomenon in social networks was captured in John 
Guare ’ s evocative play  Six Degrees of Separation , which I remember seeing at New York ’ s 
Lincoln Center in the early 1990s. 

 11.   In principle, the detection of network communities is a clustering problem and can thus 
be addressed with a broad array of clustering and segmentation algorithms. While these 
techniques can certainly be productively applied to multivariate brain data, the study of 
network communities with graph analysis offers some unique advantages. For example, 
module detection directly leads to quantifying the functional roles of nodes and edges 
within the graph ’ s community structure and, furthermore, allows an assessment of the 
network ’ s robustness and vulnerability. Complex networks not only offer a rich repertoire 
of analytic tools but also represent a theoretical framework for brain function. 

 12.   In China, a parallel effort to map the human brain connectome, dubbed the  “ Brain-
netome, ”  is under way ( www.brainnetome.org ). The CONNECT consortium funded under 
the European Union ’ s Framework Programme 7 ( www.brain-connect.eu ) aims at diffusion 
imaging of the human brain and plans to use noninvasive brain imaging to link the mea-
surement of structural connectivity across multiple scales. 

 13.   In the wake of the announcement of the NIH ’ s Human Connectome Project, the 
journal editors of  Nature Neuroscience  took the unusual step of publishing an editorial 
warning of misconceptions and misrepresentations that may result from an uncritical 
assessment of connectomics and an overstatement of its potential benefits. Drawing a 
parallel to the Human Genome Project, the article warned that  “ given the challenges that 
this field [connectomics] is facing, it seems ill-advised to present connectomics as providing 
immediate answers for disease when it is clear that this is a long-term goal [ … ] ”  (Editorial, 
2010, p. 1441). 

 14.   The link between synaptic wiring (the connectome at the microscale) and human indi-
viduality is the core thesis developed in Sebastian Seung ’ s recent book entitled  Connec-
tome — How the Brain ’ s Wiring Makes Us Who We Are  (Seung, 2012). 

 15.   The process by which the Human Genome Project became transformed from an 
unfunded visionary idea to a concerted and focused effort centered around several U.S. 
federal science agencies, foremost the NIH, is described in detail in Cook-Deegan (1991). 
The intriguing intellectual history of the project is more fully charted in Cook-Deegan 
(1994). 

 16.   The impact of genomics is felt far beyond the biological sciences and has begun to 
transform medical practice as well as creating enormous new economic opportunities. The 
U.S. government invested an estimated $3.8 billion in the Human Genome Project. Accord-
ing to a 2011 study carried out by the Battelle Memorial Institute, the project has generated 
$796 billion in economic impact between 1988 and 2010 for a return on investment of 141 
to 1 (Battelle, 2011). 

 Chapter 2 

 1.   Cajal ’ s monumental work built on or paralleled that of many predecessors and contem-
poraries, including most notably Theodor Schwann, Albrecht von K ö lliker, Wilhelm 
Waldeyer, Joseph von Gerlach, Fridtjof Nansen, and Camillo Golgi. 

 2.   The term  “ ground truth ”  generally refers to an objective reality against which remotely 
sensed observational data are compared. Inferred or predicted features of models based 
on observational data can then be validated. A classic example is the comparison of satellite 
or aerial images, acquired from a great distance and with limited resolution, to objects and 
features that are actually present  “ on the ground. ”  

 3.   The anatomist and geneticist Richard Goldschmidt conducted detailed microscopic 
analyses of the cellular anatomy of the worm  Ascaris  over 100 years ago. In the introduc-
tion to his 1908 account of the structure of the worm ’ s nervous system, Goldschmidt clearly 
articulated the main rationale for the endeavor:  “ to obtain the necessary anatomical basis 
for understanding physiological processes it would be highly desirable to know the com-
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plete composition of the nervous system of an organism ”  (Goldschmidt, 1908, p. 74; transla-
tion by the author). 

 4.   The map has been continually refined and updated and includes, in its latest edition 
(Varshney et al., 2011), 280 neurons, 6,393 chemical synapses, 890 electrical junctions, and 
1,410 neuromuscular junctions. The network can be downloaded at  http://www.wormatlas
.org/neuronalwiring.html . 

 5.   The similarity structure of the matrix was subsequently investigated by Malcolm Young 
(Young, 1992), who also extended the collation of macaque cortical regions and their 
interconnections to other sensory and motor domains (Young, 1993). First graph analyses 
of Felleman and Van Essen ’ s connection matrix focused on the clustered and small-world 
architecture of the connection patterns (Sporns et al., 2000; Hilgetag et al., 2000). 

 6.   Macaque connectivity is cataloged in the CoCoMac database ( www.cocomac.org ), origi-
nated by Rolf K ö tter (K ö tter, 2004). Rat connectivity is cataloged in the Brain Architecture 
Management System ( http://brancusi.usc.edu/bkms ), curated by Mihail Bota (Bota et al., 
2005; Bota and Swanson, 2010). The neuronal structure of the nervous system of  C. elegans
is available at  http://www.wormatlas.org/neuronalwiring.html . 

 7.   For a personal perspective on the history of graph theory and the connectome, see 
Sporns (2012). 

 8.   See  http://hebb.mit.edu/courses/connectomics/index07.html . 

 9.   Connection length is particularly important as it is, together with the axonal diameter, 
a major determinant of the conduction delay and hence of the speed with which informa-
tion is transmitted. Time delays are critical for system dynamics. Following a suggestion by 
Viktor Jirsa (Jirsa, 2004), the connectome might be viewed as having a  “ space – time struc-
ture ”  defining not only which nodes are connected but also the relative timing of impulses 
sent between them. 

 10.   The connectivity patterns revealed by longtime averages of resting-state functional 
networks measured by fMRI represent an important exception and form the basis of 
 “ functional connectomics ”  (see chapter 6). These patterns are quite stable within and across 
individuals and provide important information about functional brain systems. It is likely 
that they derive much of their consistency from the underlying anatomy of structural 
pathways (see chapter 6). 

 11.   In the run-up to the completion of the human genome sequence, estimates for the 
number of genes ranged rather widely, from less than 30,000 to more than 150,000 (Pennisi, 
2000). We now know that the number is far lower than most experts had originally pre-
dicted, perhaps less than 25,000 and thus only slightly greater than the number of genes 
in  C. elegans . It is worth noting that despite the fact that sequences have now been available 
for over a decade, the exact number of genes comprising the human genome is still 
unknown, due to the difficulty of segmenting coding from noncoding regions (a problem 
of genomic parcellation, analogous to connectomic parcellation; see chapter 5). 

 12.   Data on the number, sizes, and interconnections of cortical regions of various mam-
malian species suggest robust scaling relationships relative to brain volume. Extrapolating 
from these data to the human brain, Changizi and Shimojo (2005) projected that human 
neocortex contains approximately 150 brain areas, with on average 60 connections per area, 
for a total of 9,000 distinct interareal connections. David Van Essen has independently 
estimated a total of 100 to 200 anatomically distinct areas for human cortex (Van Essen, 
2004). Using a combination of task-evoked and spontaneous neural activity measured with 
fMRI, Power et al. (2011) devised a parcellation scheme that resulted in 264 cortical and 
subcortical regions within one brain hemisphere. 

 13.   Dense connectome mapping may be contrasted with sparse mapping strategies 
that require overlay and assembly of structural information sampled from multiple 
individuals. 

 14.   The idea that neuronal circuits could be understood on the basis of statistical properties 
of ensembles has a long history. McCulloch and Pitts wrote in 1948 that  “ the nervous system 
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as a whole is ordered and operated on statistical principles ”  (McCulloch and Pitts, 1948, 
p. 98), and the neuroanatomist D. A. Sholl argued in 1956 for a statistical description of 
neural circuits:  “ Histological studies show that no theory [ … ] relying on specific circuits 
can be maintained. The alternative approach must depend upon statistical considerations 
in which the connections of individual neurons are of less concern and the connectivity 
pattern of the neuronal aggregates is studied ”  (Sholl, 1956, p. 102). 

 15.   Two copies of human DNA, the molecules measuring about 4 meters in length, are 
densely packed and folded into each cell ’ s nucleus. The locations of chromosomes and 
individual genes within the nucleus are highly nonrandom and linked to transcriptional 
activity and coordinate gene expression. It is unclear to what extent these spatially defined 
functional interactions depend on long-range correlations present in coding and noncoding 
DNA sequences (e.g., Audit et al., 2001). 

 16.    “ Whether it be the sweeping eagle in his flight or the open apple blossom, the toiling 
work horse, the blithe swan, the branching oak, the winding stream at its base, the drifting 
clouds, over all the coursing sun, form ever follows function ”  (Sullivan, 1896, p. 403). 

 17.   The problem and its history are lucidly presented in Schall (2004). 

Chapter 3 

 1.   In contrast, establishing the anatomical and functional correspondence of individual 
neurons across individuals is often possible (to a degree) in invertebrate species. 

 2.   Paul Nunez refers to the (in his view undeserved and unjustified) emphasis on a single 
scale for understanding brain function as  “ scale chauvinism ”  (e.g., Nunez, 2000). 

 3.   The estimate is based on binary representations of mammalian cortex derived from 
tract-tracing studies over several decades (see chapter 5). More recent reexamination of 
interregional pathways in mammalian cortex with quantitative tracer methods suggests that 
a majority of areas are directly connected and that the connection density varies over up 
to five orders of magnitude (e.g., Markov et al., 2011). 

 4.   It also poses a major theoretical problem for relating psychological and cognitive func-
tion to neural substrates. Aizawa and Gillett (2009) discuss the problem in the context of 
the  “ massive multiple realization hypothesis, ”  which states that human psychological (cog-
nitive, behavioral) properties are found to be associated with a great number of multiple 
realizations of properties and mechanisms at different levels of neurobiology. This notion, 
if indeed correct, may be viewed as supporting the idea that the study of cognition is 
autonomous with respect to neuroscience since neuroscience cannot deliver a unique set 
of neurobiological elements and properties that are required for human cognition to 
emerge. In the present context of connectomics, an attractive hypothesis suggests that what 
matters most for human cognition are specific aspects of network organization that are 
invariant across multiple realizations (see chapter 7). 

 5.   It appears that the individual variability of the volume of the primary visual cortex is 
greater than the variability of cortical volume as a whole (Glissen and Zilles, 1995). 

 6.   A recent systematic study of molecular turnover in mouse fibroblasts examined the 
dynamics of more than 5,000 different mRNA and proteins (Schwanh ä usser et al., 2011). 
Proteins were found to have a median half-life of 46 hours, with only a very small percent-
age reaching half-lives longer than 200 hours. Proteins with greater stability were mainly 
involved in  “ housekeeping ”  processes such as cellular respiration, ribosomal translation, 
glycolysis, and the citric acid cycle. 

 7.   Some studies have examined the development of structural connectivity in nonhuman 
mammalian species. For example, diffusion spectrum imaging has been used to map cortical 
tracts at various developmental stages in the cat brain (Takahashi et al., 2010). 

 8.   Genetic terminology is deeply imbued with metaphors that refer to the genome as 
 “ information, ”  which is  “ encoding ”  phenotypes and is  “ translated ”  or  “ read-out ”  during 
protein synthesis. Among the general public, this notion of  “ genome-as-text, ”  comprising 
the  “ book of life, ”  is widespread, reflected, for example, in public statements of political 



185 Notes

leaders. In their joint press conference on June 26, 2000, announcing the completion of the 
first DNA sequence of the human genome, U.S. President Bill Clinton remarked that 
 “ today, we are learning the language in which God created life ”  while British Prime Min-
ister Tony Blair called it  “ a working blueprint of the human race. ”  Such rhetoric vastly 
underestimates the complex relationship between the genetic material and its instantiation 
in biological form and function. 

 9.   Sequencing of the first human genome came at the cost of several hundred million U.S. 
dollars and took many months of work. Since then, the cost of whole genome sequencing 
has fallen dramatically, to less than $100,000 in 2008, and around $5,000 in 2009. In January 
2012, the biotech company Life Technologies announced a new device designed to sequence 
a human genome in a day, for a cost of less than $1,000. Ultimately that price tag may 
decrease to as little as $100. None of these estimates figure in the considerable cost involved 
in making sense of these data. 

Chapter 4 

 1.   Dendritic branches add a further 500 meters to the wiring diagram, according to Brait-
enberg and Sch ü z (1998), who arrived at these estimates based on an analysis of mouse 
cortex. Data on human brain indicate that a total length of around 220 meters of axonal 
length is contained in each cubic millimeter of cerebral white matter, which given a white 
matter volume of approximately 500 – 700 cm 3  adds to between 110,000 and 150,000 km of 
aggregate axonal length (Pakkenberg et al., 2003). 

 2.   The earth ’ s land surface extends over approximately 150 million km 2 . Imaging at 1 m 2

resolution (a common resolution found in Google Earth 6.0) with 8 bits per voxel results 
in 1.5  ×  10 14  bytes (0.15 petabyte) of data. Thus, a high-resolution map of the entire earth 
corresponds to one tenth of the data coming from EM microscopy of 1 mm 3  of neural 
tissue. 

 3.   Informal estimates indicate that mapping only 1 mm 3  of neural tissue would take thou-
sands of work years with current technology. Helmstaedter et al. (2011) suggested that the 
full contouring of every neurite in a 100  ×  100  ×  100  μ m 3  volume would consume 60,000 
hours of work and that following individual neurites in EM volumes would require a deci-
sion about continuing, terminating, or branching (leaving aside spines and synapses) 
roughly every 4  μ m, resulting in a total of 100 million decisions for a single mouse cortical 
column containing 400 meters of neurites. 

 4.   To stimulate progress in this area, a competition called DIADEM challenge (DIgital 
reconstructions of Axonal and DEndridic Morphology) was held in 2009 – 2010. Registered 
teams participated by developing automated neuronal reconstruction algorithms that were 
scored on specific data sets. New approaches to automated reconstruction are viewed as a 
 “ neuroinformatics grand challenge, ”  an essential milestone toward comprehensive circuit 
mapping (Ascoli, 2008). 

 5.   Hama et al. (2011) recently introduced a very different approach to imaging brain con-
nectivity, relying on fluorescent labeling of anatomical structures combined with a tech-
nique to render the brain volume translucent. Using this approach, the authors were able 
to image and trace deep regions and pathways of the mouse brain. 

 6.   A related strategy for reconstructing synaptic connectivity with the aid of fluorescent 
markers has been suggested by Mishchenko (2011). 

 7.   As Stephen J. Smith has suggested, the complete set of structurally and functionally 
distinct synapses might be called the  “ synaptome. ”  In a slightly different sense, the term 
has also been proposed by De Felipe (2010). 

 8.   The enteric division of the autonomic nervous system consists of approximately 100 
million neurons that are embedded in the wall of the gastrointestinal tract. The operation 
of this system is vital to ensure proper functioning of the digestive system. Capable of 
autonomous operation, the enteric division contains more motor neurons than the entire 
spinal cord as well as a large percentage of the body ’ s neuromodulators. Its connectome is 
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entirely unmapped. I am not aware of anyone who has stepped forward to take on this 
sobering assignment. 

Chapter 5 

 1.   Meynert discovered numerous important neuroanatomical structures including the 
nucleus basalis and the habenular-peduncular tract. 

 2.   In addition to efforts under way in the mouse brain, data on rat brain connectivity have 
also been rendered into a connectome (network) format. An interactive database on rat 
hippocampal and retrosplenial connections has recently been compiled by Sugar et al. 
(2011), and a complete map of the connections among cell types of the hippocampus (the 
 “ hippocampome ” ) is on the horizon (Ascoli, 2010). 

 3.   The inferential nature of structural connectivity data obtained from diffusion imaging 
sets it apart from other more direct ways of observing anatomical connections — for 
example, with classical anatomy or microscopy. However, while these more classical tech-
niques are often designated as the  “ ground truth, ”  they still face difficult obstacles when 
attempting precise quantification of anatomical relationships and the uniform assessment 
of connectivity across a whole brain. Statistical approaches necessarily enter into descrip-
tions of connectivity even when more direct anatomical measures are pursued. 

 4.   This approach is particularly appropriate for random or atlas-based parcellations. In 
more objective parcellations that identify functionally coherent brain regions, the uncor-
rected streamline count might be more appropriate. Further corrections for various biases 
introduced by imaging or tractography can be applied. For example, in deterministic 
streamline tractography connection densities may be normalized by fiber length since 
longer connections traverse greater numbers of voxels and are therefore more likely to be 
seeded in the initial reconstruction step (Hagmann et al., 2007, 2008). 

 5.   Significant inroads have also been made in other  “ model organisms ”  such as the mouse, 
where noninvasive imaging of anatomical connectivity is now possible (Jiang and Johnson, 
2011). Rodent anatomy also provides an excellent test bed for validation of noninvasive 
diffusion imaging approaches (e.g., Leergaard et al., 2010), and a recently compiled 
population-averaged DTI atlas for the rat brain may be useful for relating diffusion imaging 
to tract tracing data (Veraart et al., 2011). 

 6.   For a historical perspective on the classical cytoarchitectonic map described by Korbin-
ian Brodmann in 1909, see Zilles and Amunts (2010). 

 7.   To drive home this point, imagine randomly partitioning the earth into patches of land 
while attempting to chart social or economic interactions. A randomly partitioned map of 
Europe would, for example, greatly diminish the distinctive contributions of nations or 
geographic communities at a scale below the average parcel size (for an instructive figure, 
see Wig et al., 2011). Instead, partitioning geography based on patterns of human transac-
tions (human  “ functional connectivity ” ) provides a much better way to reveal cohesive 
social and economic regions (e.g., Ratti et al., 2010). 

 8.   The idea that connectivity defines function was perhaps most clearly expressed by 
Marcel Mesulam:  “ Nothing defines the function of a neuron more faithfully than the nature 
of its inputs and outputs ”  (Mesulam, 2005, p. 6). 

 9.   Eickhoff et al. (2011) have argued that cortical modules or parcels derived on the basis 
of structural and/or functional connectivity have to be aligned with information from task-
evoked activations. In their approach, comprehensive data on brain activations across task 
is combined through  “ meta-analytic connectivity mapping ”  to yield information on pat-
terns of functional segregation. 

Chapter 6 

 1.   Networks of interacting molecules can be viewed as processing information (Missiuro 
et al., 2009), and the centrality of proteins in cellular information flow is predictive of its 
importance for global network integrity. 
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 2.   The term  “ functional connectivity ”  refers to an estimate of the statistical dependence 
between spatially separated neurophysiological time series, often expressed as a simple 
cross-correlation. This is a  “ functional ”  estimate only insofar as it is obtained from a func-
tioning brain — functional connectivity generally does not imply a causative role of the 
measured dependencies in a specific functional process. 

 3.   Functional connectivity can be measured even between neural elements in the brains 
of different people that are engaged in social interaction (Anders et al., 2011) or viewing 
a common source of input — for example, a movie (Hasson et al., 2004). Clearly, the source 
of the statistical dependence in these cases is found in the environment; it is not due to 
causal effects mediated by the anatomy. It is also important to remember that long-range 
correlations can also arise as a result of global coherence in a system of locally coupled 
elements, for example, a spin glass. 

 4.   Callosotomy does not always involve cutting all interhemispheric communication paths. 
Fibers traveling in the anterior commissure may be spared, and indirect synaptic paths 
through the thalamus are unperturbed. 

 5.   In contrast with these results obtained acutely after callosotomy, two recent studies of 
persons with agenesis of the corpus callosum revealed significant interhemisperic func-
tional connectivity at rest (Khanna et al., 2011; Tyszka et al., 2011). These functional con-
nections likely result from subcortical structural pathways that compensate for the lack of 
direct corticocortical structural connections. 

 6.   A comprehensive analysis of a range of methods for extracting functional and effective 
connections from fMRI data sets (Smith et al., 2011) concluded that covariance-based 
methods perform reasonably well while lag-based methods such as Granger causality 
perform relatively poorly. The study also once again demonstrated the importance of 
accurate parcellation for deriving sound estimates of interregional relationships. 

 7.   BOLD fluctuations and the resulting functional connectivity can also be measured in 
animal models, for example, nonhuman primates (Vincent et al., 2007; Hutchison et al., 
2011; Adachi et al., 2011; Mantini et al., 2011), as well as in rat (Pawela et al., 2008) and 
mouse (White et al., 2011). 

 8.   The brain accounts for only about 2 percent of total body mass but consumes approxi-
mately 20 percent of all energy (Clarke and Sokoloff, 1999). Of that amount, roughly 80 
percent is devoted to neuronal signaling processes, including action potentials and post-
synaptic potentials (Attwell and Laughlin, 2001) — the estimated  “ signaling-related energy 
use of 30  μ mol ATP/g/min is equal to that in human leg muscle running the marathon ”  
(Attwell and Laughlin, 2001, p. 1143). 

 9.   The relation between the location of the default mode network, regionally elevated 
aerobic glycolysis, and distributions of  β -amyloid, a key molecule involved in degenerative 
brain disease, has been noted in several studies (Vlassenko et al., 2010; Drzezga et al. 2011). 

 10.   The link between the level of regional brain metabolism and connection patterns was 
further explored in recent work on correlations between gray matter structure and con-
nectivity (Varkuti et al., 2011). 

 11.   Lehmann has referred to these microstates as basic building blocks of mental experi-
ence, the  “ atoms of thought ”  (Lehmann, 1990). 

 12.   The temporal dynamics of interactions within and among resting-state networks as 
recorded with fMRI are best visualized in movie format. A movie of windowed cross-
correlations sampled over a 30-minute period can be downloaded from  ftp://imaging.wustl
.edu/pub/raichlab/restless_brain/movies/correlation/  (Raichle, 2011). The longtime average 
of these correlations can be seen in   figure 6.6 . 

 13.   A stronger version of the idea postulates that genetic or environmental factors that 
have no impact on the connectome also do not contribute to disease processes. Put yet 
another way, if connectivity is the final common path to brain and mental disease, then the 
causal role of genetic or environmental perturbations in pathogenesis should be directly 
correlated with their deleterious effects on brain networks. 
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Chapter 7 

 1.   A small number of studies have been carried out using cross-correlations in gray matter 
volume or thickness across populations of subjects (see chapter 5). However, the biological 
basis for the relationship between these correlations and the presence of structural con-
nections remains unclear, and the approach may not distinguish between direct and indirect 
structural pathways. 

 2.   The robustness of graph measures under varying parcellations (Zalesky et al., 2010b) 
and in test – retest conditions (Wang et al., 2011a) is an important topic of methodological 
investigation. It should be noted that graph measures can only report robust and reproduc-
ible results if sound data acquisition and preprocessing strategies are employed. Noisy 
imaging, registration errors, faulty parcellation, or excessively short resting-state fMRI runs 
will introduce undesired variability, and graph measures cannot give consistent results 
under those circumstances. 

 3.   At present it is unclear how these differences in the number and diversity of projections 
across cortical regions relate to regional differences in neuron densities (Collins et al., 
2010). Contrary to earlier data suggesting structural uniformity across cortex (Rockel 
et al., 1980), Collins and colleagues reported that neuron densities vary several-fold 
between cortical regions of the macaque. Primary sensory regions such as V1 have the 
highest cell densities. However, neither tract tracing nor diffusion tractography confer 
highest degree or projection density to V1 or other primary sensory cortical areas. 

 4.   It is by no means obvious that all neuronal communication should follow along the 
shortest paths only. As neurons emit signals or  “ messages ”  these signals may propagate 
along many different alternative routes, as it is not clear that such messages carry  “ address 
labels ”  that specify their intended targets as well as routing instructions. An alternative 
model to targeted routing of messages is provided by random walks or diffusion (e.g., Costa 
and Travieso, 2007; Costa et al., 2007). 

 5.   The notion of hierarchy is used here as a way of describing a topologically nested 
network architecture that can be decomposed into modules at different scales. This mode 
of network organization does not imply centralized control or serial processing as more 
common notions of hierarchy in control systems. The contrast between network and hier-
archical models of brain architecture is discussed further in Thompson and Swanson (2010). 

 6.   Positive assortativity is more pronounced in structural brain networks that are parcel-
lated into a large number of regions — for example, in random parcellations that divide the 
brain into hundreds or thousands of nodes. This is an example of how graph metrics can 
depend on node definition (see chapter 5). Interestingly, the only example so far of a cel-
lular connectome, coming from the invertebrate nervous system of  C. elegans , exhibits 
negative assortativity. It remains to be seen if different patterns of assortativity are indica-
tive of fundamental differences in brain topology at large versus small scales or in verte-
brates versus invertebrates. 

 7.   Interhemispheric connections, particularly among cortical regions that are farther away 
from the midline, continue to be difficult to detect with diffusion imaging and tractography. 
It is possible that the prominence of callosal projections along the medial wall is due to 
methodological bias. Alternatively, a gradient of interhemispheric connection density away 
from the midline would be consistent with wiring conservation. 

 8.   Think of the central location of the hub of a bicycle or ferris wheel, or of the orbital 
hubs in Iain Banks ’ s Culture universe. 

 9.   Dubai ’ s emergence as a global air transportation hub is partly attributed to an explicit 
hub-and-spoke strategy espoused by major airlines like Etihad and Emirates. 

 10.   Numerous early studies of connectivity have explored the spatiality of brain networks. 
For example, the relationship between spatial distance and topological connectivity was 
explored in work by Malcolm Young (Young, 1992), and the role of allometric scaling in 
shaping connectivity over evolutionary time was recognized long ago by Chuck Stevens, 
James Ringo, and Terry Deacon (Stevens, 1989; Deacon, 1990; Ringo, 1991). 
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 11.   One of the clearest and earliest expressions of the idea can be found in the writings of 
Santiago Ram ó n y Cajal, who noted in 1899 that  “ all of the various conformations of the 
neuron and its various components are simply morphological adaptations governed by laws 
of conservation for time, space and material ”  (Cajal, 1995, pp. 115 – 116). 

 12.   The idea that connectivity-driven tensile forces influence cortical folding was first 
proposed by David Van Essen (Van Essen, 1997; see also Herculano-Houzel et al., 2010). 

 13.   Computation and dynamics are sometimes seen as opposite rather than related forces. 
I once heard Melanie Mitchell cogently expressing their relation in a lecture by defining 
computation as  “ dynamics with a purpose. ”  

 14.   In the end, the human brain may not be as special as it is sometimes made out to be. 
It is neither the largest, nor, possibly, the most complex nervous system in the known 
universe. The brain of an adult elephant is about four times the weight of a human brain 
and contains two to three times more neurons (Williams and Herrup, 1988). 

 15.   For example, this could be accomplished by imaging and tractography, followed by 
network analysis, of preserved brains of a number of species (Wedeen et al., 2009, 2012). 

Chapter 8

 1.   Remarkably, that number is close to the 30 million dollars allocated by the NIH for the 
Human Connectome Project at its inception in 2010. The cost of mapping the human brain 
at the ultrastructural level, however, would still far exceed the amount predicted by Merkle 
20 years ago. 

 2.   For the year 2007, the world ’ s data storage capacity, including all media from electronic 
storage to books and newspapers, was estimated at 295 billion gigabytes (Hilbert and 
L ó pez, 2011) and was thus insufficient to store the complete data of even a single human 
brain at subcellular resolution. In comparison, storing a single human genome only requires 
a few gigabytes. 

 3.   These tool sets include the Brain Connectivity Toolbox (Rubinov and Sporns, 2010;  www
.brain-connectivity-toolbox.net ), NetworkX ( http://networkx.lanl.gov ), NetworkWork-
Bench ( http://nwb.cns.iu.edu ), Pajek ( http://pajek.imfm.si ), and the visualization package 
Circos ( http://circos.ca ). 

 4.   Numerous open-access databases have been created to facilitate progress and collabora-
tion in genomics, for example, a gene-expression atlas of the mouse developing and adult 
central nervous system (GENSAT;  http://www.gensat.org ). 

 5.   One of these initiatives, the Open Connectome Project ( http://openconnectomeproject
.org/ ) explicitly encourages data sharing across connectome methodologies, from EM to 
MRI. 

 6.   The project was the first to make large numbers of resting-state fMRI data sets freely 
available to the scientific community. Among its principal goals is to enable the study of 
variability in brain – behavior relations. This goal parallels that of the 1000 Genomes Project 
( http://www.1000genomes.org ), an international public – private consortium that was 
launched in 2008 and aims to collect genomic data from about 2,500 people in 27 popula-
tions around the world. Pilot data sets are already freely available to biomedical 
researchers. 

 7.   The Allen Institute for Brain Science is currently compiling a multimodal atlas for gene 
expression in the human brain, including genomic data from microarray and in situ hybrid-
ization studies as well as anatomical data from MR imaging, building on an earlier effort 
in mouse brain (Dong, 2007; Lein et al., 2007). 

 8.   Similar ideas have been articulated by Duncan Watts (Watts, 2007). An extremely ambi-
tious proposal to create a  “ Living Earth Simulator ”  was put forward by Dirk Helbing 
and colleagues, as part of a 10-year, 1 billion Euro project that would be funded by the 
European Commission ( http://www.futurict.ethz.ch ). The model would allow detailed simu-
lation and forecasting of social, technological, and environmental systems on a planetary 
scale. 
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 9.   More recently, the same group of researchers conducted a simulation of 1.6 billion 
neurons connected by 9 trillion synapses. The model was run on one of the fastest super-
computers in the world, which consumed 1 megawatt of electrical power and occupied an 
acre-sized room filled with over 147,000 processors and many miles of wiring. 

 10.   In August 2011, researchers at IBM led by Dharmendra Modha were awarded $21 
million by the U.S. Defense Advanced Research Projects Agency to develop a new genera-
tion of neurosynaptic chips that allow the implementation of neural architectures in 
computing hardware ( http://www-03.ibm.com/press/us/en/pressrelease/35251.wss ). Working 
prototypes contain 256 neurons and thousands of programmable or learning synapses. 
Eventual applications might include the simulation of an entire connectome at synaptic 
resolution (Modha et al., 2011). 

 11.   Some advocates of  “ whole brain emulation ”  have proposed that a detailed simulation 
of a functioning artificial human brain can be achieved within a matter of years. The futurist 
Ray Kurzweil has calculated that with 100 trillion connections performing 200 calculations 
per second the human brain carries out 20 million billion calculations per second. Given 
current trends in hardware development computing machinery, matching this performance 
should be available by the year 2020 (Kurzweil, 2000). Others have, rather optimistically, 
suggested that brain simulations will enable  “ mind downloading ”  and thus allow humans 
to achieve cognitive immortality (Sandberg and Bostrom, 2008). 

 12.   Brain reading has many potential applications. For example, the accurate decoding of 
brain signals is an important component of prosthetic devices that operate on the basis of 
user-generated neural activity. Other applications are considerably more controversial, 
ranging from using data on mental responses in marketing and advertising to  “ deception 
detection. ”  Despite current limitations in the range and accuracy of brain reading, concerns 
have been raised about the protection of  “ mental privacy ”  against involuntary or intrusive 
practices. 

 13.   Poldrack et al. (2011; see also Yarkoni et al., 2010) have recently launched an effort to 
create a cumulative knowledge base (ontology) for cognitive neuroscience called the Cog-
nitive Atlas ( http://www.cognitiveatlas.org ). The goal is to provide a systematic description 
of human mental processes and the tasks that are used to manipulate these processes in 
cognitive experiments. 

 14.   The problem of diagnosing mental disorders on the basis of categorical distinctions has 
led to intensive discussions among clinicians and basic scientists in the run-up to the release 
of the new edition of the  Diagnostic and Statistical Manual of Mental Disorders  (fifth 
edition) by the American Psychiatric Association, planned for May 2013. Critics point to 
the relative lack of objective diagnostic criteria based on genetics or neuroimaging and 
question the emphasis on cataloguing individual disorders rather than representing them 
as dimensional phenomena with shared symptoms, possibly driven by shared endopheno-
types. In the future, connectome analysis may contribute important new objective metrics 
and can help to define meaningful dimensions of variation and relations between disorders 
(e.g., Insel et al., 2010). 



   Adachi   Y ,  Osada   T ,  Sporns   O ,  Watanabe   T ,  Matsui   T ,  et al .  2012 .  Functional connectivity 
between anatomically unconnected areas is shaped by collective network-level effects in 
the macaque cortex.    Cereb Cortex   doi: 10.1093/cercor/bhr234.  

   Aertsen   AM ,  Gerstein   GL ,  Habib   MK ,  Palm   G .  1989 .  Dynamics of neuronal firing correla-
tion: Modulation of  “ effective connectivity. ”     J Neurophysiol    61 :  900  –  917 .  

   Aitchison   JD ,  Galitski   T .  2003 .  Inventories to insights.    J Cell Biol    161 :  465  –  469 .  

   Aizawa   K ,  Gillett   C .  2009 .  Levels, individual variation, and massive multiple realization in 
neurobiology.  In:  Bickle   J  (ed.),   The Oxford Handbook of Philosophy and Neuroscience  , 
pp.  539  –  581 .  New York :  Oxford University Press .  

   Akil   H ,  Martone   ME ,  Van Essen   DC .  2011 .  Challenges and opportunities in mining neu-
roscience data.    Science    331 :  708  –  712 .  

   Alexander   DC ,  Hubbard   PL ,  Hall   MG ,  Moore   EA ,  Ptito   M ,  et al .  2010 .  Orientationally 
invariant indices of axon diameter and density from diffusion MRI.    Neuroimage    52 : 
 1374  –  1389 .  

   Alstott   J ,  Breakspear   M ,  Hagmann   P ,  Cammoun   L ,  Sporns   O .  2009 .  Modeling the impact 
of lesions in the human brain.    PLoS Comput Biol    5 :  e1000408 .  

   Ananthanarayanan   R ,  Esser   SK ,  Simon   HD ,  Modha   DS .  2009 . The cat is out of the bag: 
Cortical simulations with 10 9  neurons and 10 13  synapses. In: Proceedings of the conference 
on high performance computing networking, storage and analysis, pp. 1 – 12, New York: ACM.  

   Anders   S ,  Heinzle   J ,  Weiskopf   N ,  Ethofer   T ,  Haynes   JD .  2011 .  Flow of affective information 
between communicating brains.    Neuroimage    54 :  439  –  446 .  

   Anderson   JR ,  Jones   BW ,  Watt   CB ,  Shaw   MV ,  Yang   JH ,  et al .  2011 .  Exploring the retinal 
connectome.    Mol Vis    17 :  355  –  379 .  

   Andrews   TJ ,  Halpern   SD ,  Purves   D .  1997 .  Correlated size variations in human visual cortex, 
lateral geniculate nucleus, and optic tract.    J Neurosci    17 :  2859  –  2868 .  

   Anwander   A ,  Tittgemeyer   M ,  von Cramon   DY ,  Friederici   AD ,  Kn ö sche   TR .  2007 .  Connec-
tivity-based parcellation of Broca ’ s area.    Cereb Cortex    17 :  816  –  825 .  

   Ascoli   GA .  2008 .  Neuroinformatics grand challenges.    Neuroinformatics    6 :  1  –  3 .  

   Ascoli   G .  2010 .  The coming of age of the hippocampome .   Neuroinformatics    8 :  1  –  3 .  

   Ashburner   M ,  Ball   CA ,  Blake   JA ,  Botstein   D ,  Butler   H ,  et al .  2000 .  Gene ontology: Tool 
for the unification of biology. The Gene Ontology Consortium.    Nat Genet    25 :  25  –  29 .  

   Attwell   D ,  Laughlin   SB .  2001 .  An energy budget for signaling in the grey matter of the 
brain.    J Cereb Blood Flow Metab    21 :  1133  –  1145 .  

   Audit   B ,  Thermes   C ,  Vaillant   C ,  d ’ Aubenton-Carafa   Y ,  Muzy   JF ,  et al .  2001 .  Long-range 
correlations in genomic DNA: A signature of the nucleosomal structure.    Phys Rev Lett    86 : 
 2471  –  2474 .  

References 



192 References

   Axer   M ,  Amunts   K ,  Graessel   D ,  Palm   C ,  Dammers   J ,  et al .  2011 .  A novel approach to the 
human connectome: Ultra-high resolution mapping of fibre tracts in the brain.    Neuroimage
 54 :  1091  –  1101 .  

   Barab á si   AL ,  Oltvai   ZN .  2004 .  Network biology: Understanding the cell ’ s functional orga-
nization.    Nat Rev Genet    5 :  101  –  111 .  

   Bard   JB ,  Rhee   SY .  2004 .  Ontologies in biology: Design, applications and future challenges.  
Nat Rev Genet    5 :  213  –  222 .  

   Barrat   A ,  Barth é lemy   M ,  Vespignani   A .  2005 .  The effects of spatial constraints on the evolu-
tion of weighted complex networks.    J Stat Mech   P05003.  

   Barthelemy   M .  2011 .  Spatial networks.    Phys Rep    499 :  1  –  101 .  

   Bascompte   J .  2007 .  Networks in ecology.    Basic Appl Ecol    8 :  485  –  490 .  

   Basser   PJ ,  Mattiello   J ,  Le Bihan   D .  1994 .  MR diffusion tensor spectroscopy and imaging.  
Biophys J    66 :  259  –  267 .  

   Bassett   DS ,  Bullmore   ET .  2006 .  Small world brain networks.    Neuroscientist    12 :  512  –  523 .  

   Bassett   DS ,  Bullmore   ET ,  Verchinksi   BA ,  Mattay   VS ,  Weinberger   DR ,  et al .  2008 .  Hierarchi-
cal organization of human cortical networks in health and schizophrenia.    J Neurosci    28 : 
 9239  –  9248 .  

   Bassett   DS ,  Bullmore   ET .  2009 .  Human brain networks in health and disease.    Curr Opin 
Neurol    22 :  340  –  347 .  

   Bassett   DS ,  Bullmore   ET ,  Meyer-Lindenberg   A ,  Apud   JA ,  Weinberger   DR ,  Coppola   R . 
 2009 .  Cognitive fitness of cost-efficient brain functional networks.    Proc Natl Acad Sci USA   
 106 :  11747  –  11752 .  

   Bassett   DS ,  Greenfield   DL ,  Meyer-Lindenberg   A ,  Weinberger   DR ,  Moore   SW ,  et al .  2010a . 
 Efficient physical embedding of topologically complex information processing networks in 
brains and computer circuits.    PLoS Comput Biol    6 :  e1000748 .  

   Bassett   DS ,  Brown   JA ,  Deshpande   V ,  Carlson   JM ,  Grafton   ST .  2010b .  Conserved and 
variable architecture of human white matter connectivity.    Neuroimage    54 :  1262  –  
1279 .  

   Bassett   DS ,  Gazzaniga   MS .  2011 .  Understanding complexity in the human brain.    Trends 
Cogn Sci    15 :  200  –  209 .  

   Bassett   DS ,  Wymbs   NF ,  Porter   MA ,  Mucha   PJ ,  Carlson   JM ,  et al .  2011 .  Dynamic reconfigu-
ration of human brain networks during learning.    Proc Natl Acad Sci USA    108 : 
 7641  –  7646 .  

   Battelle .  2011 . Economic Impact of the Human Genome Project. A report prepared by 
Battelle Technology Partnership Practice, May 2011.  

   Beckmann   M ,  Johansen-Berg   H ,  Rushworth   MFS .  2009 .  Connectivity-based parcellation 
of human cingulate cortex and its relation to functional specialization.    J Neurosci    29 : 
 1175  –  1190 .  

   Beggs   JM .  2008 .  The criticality hypothesis: How local cortical networks might optimize 
information processing.    Phil Trans R Soc A    366 :  329  –  343 .  

   Behrens   TEJ ,  Woolrich   MW ,  Jenkinson   M ,  Johansen-Berg   H ,  Nunes   RG ,  et al .  2003 .  Char-
acterization and propagation of uncertainty in diffusion-weighted MR imaging.    Magn 
Reson Med    50 :  1077  –  1088 .  

   Behrens   TEJ ,  Johansen-Berg   H ,  Jbabdi   S ,  Rushworth   MFS ,  Woolrich   MW .  2007 .  Probabi-
listic diffusion tractography with multiple fibre orientations: What can we gain?    Neuroim-
age    34 :  144  –  155 .  

   Behrens   TEJ ,  Sporns   O.   2012 .  Human connectomics .   Curr Opin Neurobiol    22 :  144  –  153 .  

   Bernhardt   BC ,  Chen   Z ,  He   Y ,  Evans   AC ,  Bernasconi   N .  2011 .  Graph-theoretical analysis 
reveals disrupted small-world organization of cortical thickness correlation networks in 
temporal lobe epilepsy .   Cereb Cortex    21 :  2147  –  2157 .  



193 References

   Binzegger   T ,  Douglas   RJ ,  Martin   KAC .  2004 .  A quantitative map of the circuit of cat 
primary visual cortex.    J Neurosci    24 :  8441  –  8453 .  

   Binzegger   T ,  Douglas   RJ ,  Martin   KAC .  2009 .  Topology and dynamics of the canonical 
circuit of cat V1.    Neural Netw    22 :  1071  –  1078 .  

   Binzegger   T ,  Douglas   RJ ,  Martin   KAC .  2010 .  An axonal perspective on cortical circuits.  In: 
 Feldmayer   D ,  L ü bke   JHR  (eds.),   New Aspects of Axonal Structure and Function  , pp.  117  –
  139 . Berlin:  Springer .  

   Biswal   BB ,  Mennes   M ,  Zuo   XN ,  Gohel   S ,  Kelly   C ,  et al .  2010 .  Toward discovery science of 
human brain function.    Proc Natl Acad Sci USA    107 :  4734  –  4739 .  

   Bock   DD ,  Lee   WCA ,  Kerlin   AM ,  Andermann   ML ,  Hood   G ,  et al .  2011 .  Network anatomy 
and in vivo physiology of visual cortical neurons.    Nature    471 :  177  –  182 .  

   Bohland   JW ,  Wu   C ,  Barbas   H ,  Bokil   H ,  Bota   M ,  et al .  2009 .  A proposal for a coordinated 
effort for the determination of brainwide neuroanatomical connectivity in model organ-
isms at a mesoscopic scale.    PLoS Comput Biol    5 :  e1000334 .  

   Bohland   JW ,  Bokil   H ,  Pathak   SD ,  Lee   CK ,  Ng   L ,  et al .  2010 .  Clustering of spatial gene 
expression patterns in the mouse brain and comparison with classical neuroanatomy.  
  Methods    50 :  105  –  112 .  

   Boly   M ,  Phillips   C ,  Tshibanda   L ,  Vanhaudenhuyse   A ,  Schabus   M ,  et al .  2008 .  Intrinsic brain 
activity in altered states of consciousness: How conscious is the default mode of brain 
function?    Ann N Y Acad Sci    1129 :  119  –  129 .  

   Bonacich   P .  1972 .  Factoring and weighting approaches to clique identification .   J Math 
Sociol    2 :  113  –  120 .  

   Bonifazi   P ,  Goldin   M ,  Picardo   MA ,  Jorquera   I ,  Cattani   A ,  et al .  2009 .  GABAergic hub 
neurons orchestrate synchrony in developing hippocampal networks.    Science    326 :  1419  –
  1424 .  

   Bota   M ,  Dong   HW ,  Swanson   LW .  2005 .  Brain architecture management system.    Neuroin-
formatics    3 :  15  –  48 .  

   Bota   M ,  Swanson   LW .  2010 .  Collating and curating neuroanatomical nomenclatures: Prin-
ciples and use of the Brain Architecture Knowledge Management System (BAMS).    Front 
Neuroinf    4 :  3 .  

   Botteron   K ,  Dierker   D ,  Todd   R ,  Alexopolous   J ,  Seung   D ,  et al .  2008 . Human vs. computer 
algorithm choices in identifying identical twin pairs based on cortical shape characteristics: 
Who ’ s better? Org. Human Brain Mapping Annual Meeting, Abstract #1595.  

   Boyden   ES ,  Zhang   F ,  Bamberg   E ,  Nagel   G ,  Deisseroth   K .  2005 .  Millisecond-timescale, 
genetically targeted optical control of neural activity.    Nat Neurosci    8 :  1263  –  1268 .  

   Braitenberg   V .  1990 .  Reading the structure of brains.    Network    1 :  1  –  11 .  

   Braitenberg   V ,  Sch ü z   A .  1998 .   Statistics and Geometry of Neuronal Connectivity .   Berlin : 
 Springer .  

   Branco   T ,  H ä usser   M .  2010 .  The single dendritic branch as a fundamental functional unit 
in the nervous system.    Trends Neurosci    20 :  494  –  502 .  

   Branco   T ,  Clark   BA ,  H ä usser   M .  2011 .  Dendritic discrimination of temporal input sequences 
in cortical neurons.    Science    329 :  1671  –  1675 .  

   Breakspear   M ,  McIntosh   AR .  2011 .  Networks, noise and models: Reconceptualizing the 
brain as a complex, distributed system.    Neuroimage    58 :  293  –  295 .  

   Brezina   V .  2010 .  Beyond the wiring diagram: Signalling through complex neuromodulator 
networks.    Phil Trans Roy Soc B    365 :  2363  –  2374 .  

   Briggman   KL ,  Denk   W .  2006 .  Towards neural circuit reconstruction with volume electron 
microscopy techniques.    Curr Opin Neurobiol    16 :  562  –  570 .  

   Briggman   KL ,  Bock   DD .  2012 .  Volume electron microscopy for neuronal circuit reconstruc-
tion.    Curr Opin Neurobiol    22 :  154  –  161 .  



194 References

   Briggman   KL ,  Helmstaedter   M ,  Denk   W .  2011 .  Wiring specificity in the direction-selectivity 
circuit of the retina.    Nature    471 :  183  –  188 .  

   Britz   J ,  Van de Ville   D ,  Michel   CM .  2010 .  BOLD correlates of EEG topography reveal 
rapid resting-state network dynamics.    Neuroimage    52 :  1162  –  1170 .  

   Bucher   D .  2009 .  Neuronal homeostasis: Does form follow function or vice versa?    Curr Biol
 19 :  R64  –  R67 .  

   Buckner   RL ,  Andrews-Hanna   JR ,  Schacter   DL .  2008 .  The brain ’ s default network: Anatomy, 
function, and relevance to disease.    Ann N Y Acad Sci    1124 :  1  –  38 .  

   Buckner   RL ,  Sepulcre   J ,  Talukdar   T ,  Krienen   FM ,  Liu   H ,  et al .  2009 .  Cortical hubs revealed 
by intrinsic functional connectivity: Mapping, assessment of stability, and relation to 
Alzheimer ’ s disease.    J Neurosci    29 :  1860  –  1873 .  

   Bullmore   E ,  Sporns   O .  2009 .  Complex brain networks: Graph theoretical analysis of struc-
tural and functional systems.    Nat Rev Neurosci    10 :  186  –  198 .  

   Bullmore   ET ,  Sporns   O .  2012 .  The economy of brain network organization .   Nat Rev Neu-
rosci   13 :  336  –  349 .   

   Bullmore   ET ,  Fletcher   P ,  Jones   PB .  2009 .  Why psychiatry can ’ t afford to be neurophobic.  
  Br J Psychol    194 :  293  –  295 .  

   Bullmore   ET ,  Bassett   DS .  2011 .  Brain graphs: Graphical models of the human brain con-
nectome.    Annu Rev Clin Psychol    7 :  113  –  140 .  

   Bushey   D ,  Tononi   G ,  Cirelli   C .  2011 .  Sleep and synaptic homeostasis: Structural evidence 
in  Drosophila .    Science    332 :  1576  –  1581 .  

   Cabral   J ,  Hugues   E ,  Sporns   O ,  Deco   G .  2011 .  Role of local network oscillations in resting-
state functional connectivity.    Neuroimage    57 :  130  –  139 .  

   Cajal   SR .  1995 .   Histology of the Nervous System of Man and Vertebrates .   New York :  Oxford 
University Press .  

   Cardona   A ,  Saalfeld   S ,  Preibisch   S ,  Schmid   B ,  Cheng   A ,  et al .  2010 .  An integrated micro- 
and macroarchitectural analysis of the  Drosophila  brain by computer-assisted serial section 
electron microscopy.    PLoS Biol    8 :  e1000502 .  

   Catani   M ,  Jones   DK , ffytche DH.  2005 .  Perisylvian language networks of the human brain.  
  Ann Neurol    57 :  8  –  16 .  

   Chang   C ,  Glover   GH .  2010 .  Time-frequency dynamics of resting-state brain connectivity 
measured with fMRI.    Neuroimage    50 :  81  –  98 .  

   Changizi   MA ,  Shimojo   S .  2005 .  Parcellation and area-area connectivity as a function of 
neocortex size.    Brain Behav Evol    66 :  88  –  98 .  

   Chen   BL ,  Hall   DH ,  Chklovskii   DB .  2006 .  Wiring optimization can relate neuronal structure 
and function.    Proc Natl Acad Sci USA    103 :  4723  –  4728 .  

   Chen   JL ,  Nedivi   E .  2010 .  Neuronal structural remodeling: Is it all about access?    Curr Opin 
Neurobiol    20 :  557  –  562 .  

   Chen   ZJ ,  He   Y ,  Rosa-Neto   P ,  Gong   G ,  Evans   AC .  2011 .  Age-related alterations in the 
modular organization of structural cortical network by using cortical thickness from MRI.  
Neuroimage    56 :  235  –  245 .  

   Chialvo   DR .  2010 .  Emergent complex neural dynamics.    Nat Phys    6 :  744  –  750 .  

   Chiang   AS ,  Lin   CY ,  Chuang   CC ,  Chang   HM ,  Hsieh   CH ,  et al .  2011 .  Three-dimensional 
reconstruction of brain-wide wiring networks in  Drosophila  at single-cell resolution.    Curr 
Biol    21 :  1  –  11 .  

   Chklovskii   DB ,  Vitaladevuni   S ,  Scheffer   LK .  2010 .  Semi-automated reconstruction of 
neural circuits using electron microscopy.    Curr Opin Neurobiol    20 :  667  –  675 .  

   Ch ’ ng   YH ,  Reid   RC .  2010 .  Cellular imaging of visual cortex reveals the spatial and func-
tional organization of spontaneous activity.    Front Integr Neurosci    4 :  1 .  



195 References

   Choe   Y ,  Meyerich   D ,  Kwon   J ,  Miller   DE ,  Chung   JR ,  et al .  2011 . Knife-edge scanning 
microscopy for connectomics research. In Proceedings of the International Joint Confer-
ence on Neural Networks, Piscataway, NJ, 2011. IEEE Press.  

   Chou   YH ,  Spletter   ML ,  Yaksi   E ,  Leong   JCS ,  Wilson   RI ,  et al .  2010 .  Diversity and wiring 
variability of olfactory local interneurons in the  Drosophila  antennal lobe.    Nat Neurosci   
 13 :  439  –  449 .  

   Chung   JR ,  Sung   C ,  Mayerich   D ,  Kwon   J ,  Miller   DE ,  et al .  2011 .  Multiscale exploration of 
mouse brain microstructures using the knife-edge scanning microscope brain atlas.    Front 
Neuroinform    5 :  29 .  

   Chung   S ,  Courcot   B ,  Sdika   M ,  Moffat   K ,  Rae   C ,  et al .  2010 .  Bootstrap quantification of 
cardiac pulsation artifact in DTI.    Neuroimage    49 :  631  –  640 .  

   Churchland   PS ,  Sejnowski   TJ .  1992 .   The Computational Brain .   Cambridge :  MIT Press .  

   Cirelli   C .  2009 .  The genetic and molecular regulation of sleep: From fruit flies to humans.  
  Nat Rev Neurosci    10 :  549  –  560 .  

   Clarke   DD ,  Sokoloff   L .  1999 .  Circulation and energy metabolism of the brain.  In:  Siegel  
 GJ ,  Agranoff   BW ,  Albers   RW ,  Fisher   SK ,  Uhler   MD  (eds.),   Basic Neurochemistry  , 6th ed., 
pp.  637  −  669 .  Philadelphia :  Lippincott-Raven .  

   Cohen   AL ,  Fair   DA ,  Dosenbach   NUF ,  Miezin   FM ,  Dierker   D ,  et al .  2008 .  Defining func-
tional areas in individual human brains using resting state functional connectivity MRI.  
  Neuroimage    41 :  45  –  57 .  

   Coleman   JE ,  Nahmani   M ,  Gavornik   JP ,  Haslinger   R ,  Heynen   AJ ,  et al .  2010 .  Rapid struc-
tural remodelling of thalamocortical synapses parallels experience-dependent functional 
plasticity in mouse primary visual cortex.    J Neurosci    30 :  9670  –  9682 .  

   Colizza   V ,  Flammini   A ,  Serrano   MA ,  Vespignani   A .  2006 .  Detecting rich-club ordering in 
complex networks.    Nat Phys    2 :  110  –  115 .  

   Collins   CE ,  Airey   DC ,  Young   NA ,  Leitch   DB ,  Kaas   JH .  2010 .  Neuron densities vary across 
and within cortical areas in primates.    Proc Natl Acad Sci USA    107 :  15927  –  15932 .  

   Congdon   E ,  Poldrack   RA ,  Freimer   NB .  2010 .  Neurocognitive phenotypes and genetic dis-
section of disorders of brain and behavior.    Neuron    68 :  218  –  230 .  

   Conturo   TE ,  Lori   NF ,  Cull   TS ,  Akbudak   E ,  Snyder   AZ ,  et al .  1999 .  Tracking neuronal fiber 
pathways in the living human brain.    Proc Natl Acad Sci USA    96 :  10422  –  10427 .  

   Cook-Deegan   RM .  1991 .  The Human Genome Project: The formation of federal policies 
in the United States, 1986 – 1990.  In:  Hanna   KE  (ed.),   Biomedical Politics  , pp.  99  –  168 .  Wash-
ington, DC :  National Academy of Sciences .  

   Cook-Degan   RM .  1994 .   The Gene Wars: Science, Politics, and the Human Genome .   New 
York :  Norton .  

   Costa   LF ,  Travieso   G .  2007 .  Exploring complex networks through random walks.    Phys Rev 
E Stat Nonlin Soft Matter Phys    75 :  016102 .  

   Costa   LF ,  Sporns   O ,  Antiqueira   L ,  Nunes   M ,  Oliveira   ON .  2007 .  Correlations between 
structure and random walk dynamics in directed complex networks.    Appl Phys Lett    91 : 
 054107 .  

   Coveney   PV ,  Fowler   PW .  2005 .  Modelling biological complexity: A physical scientist ’ s 
perspective.    J R Soc Interface    22 :  267  –  280 .  

   Crick   F .  1984 .  Neurobiology: Memory and molecular turnover.    Nature    312 :  101 .  

   Crofts   JJ ,  Higham   DJ ,  Bosnell   R ,  Jbabdi   S ,  Matthews   PM ,  et al .  2011 .  Network analysis 
detects changes in the contralesional hemisphere following stroke.    Neuroimage    54 : 
 161  –  169 .  

   Cuntz   H ,  Forstner   F ,  Borst   A ,  H ä usser   M .  2010 .  One rule to grow them all: A general theory 
of neuronal branching and its practical application.    PLoS Comput Biol    6 :  e1000877 .  



196 References

   Curcio   CA ,  Sloan   KR ,  Packer   O ,  Hendrickson   AE ,  Kalina   RE .  1987 .  Distribution of cones 
in human and monkey retina: Individual variability and radial asymmetry.    Science    236 : 
 579  –  582 .  

   da Costa   NM ,  Martin   KAC .  2010 .  Whose cortical column would that be?    Front Neuroanat
 4 :  16 .  

   Dada   JO ,  Mendes   P .  2011 .  Multi-scale modelling and simulation in systems biology.    Integr 
Biol    3 :  86  –  96 .  

   Damoiseaux   JS ,  Rombouts   SARB ,  Barkhof   F ,  Scheltens   P ,  Stam   CJ ,  et al .  2006 .  Consis-
tent resting-state networks across healthy subjects.    Proc Natl Acad Sci USA    103 : 
 13848  –  13853 .  

   Damoiseaux   JS ,  Greicius   MD .  2009 .  Greater than the sum of its parts: A review of studies 
combining structural connectivity and resting-state functional connectivity.    Brain Struct 
Funct    213 :  525  –  533 .  

   Das   A ,  Gilbert   CD .  1995 .  Long-range horizontal connections and their role in cortical 
reorganization revealed by optical recording of cat primary visual cortex.    Nature    375 : 
 780  –  784 .  

   Dauguet   J ,  Peled   S ,  Berezovskii   V ,  Delzescaux   T ,  Warfield   SK ,  et al .  2007 .  Comparison of 
fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer 
reconstruction on a macaque brain.    Neuroimage    27 :  530  –  538 .  

   Deacon   TW .  1990 .  Rethinking mammalian brain evolution.    Am Zool    30 :  629  –  705 .  

   Deco   G ,  Jirsa   V ,  McIntosh   AR ,  Sporns   O ,  K ö tter   R .  2009 .  Key role of coupling, delay, and 
noise in resting brain fluctuations.    Proc Natl Acad Sci USA    106 :  10302  –  10307 .  

   Deco   G ,  Corbetta   M .  2011 .  The dynamical balance of the brain at rest.    Neuroscientist    17 : 
 107  –  123 .  

   Deco   G ,  Jirsa   VK ,  McIntosh   AR .  2011 .  Emerging concepts for the dynamical organization 
of resting-state activity in the brain.    Nat Rev Neurosci    12 :  43  –  56 .  

   De Felipe   J .  2010 .  From the connectome to the synaptome: An epic love story.    Science    330 : 
 1198  –  1201 .  

   Dejerine   J .  1895 .   Anatomie des Centres Nerveux .   Paris :  Rueff .  

   De Luca   M ,  Beckmann   CF ,  De Stefano   N ,  Matthews   PM ,  Smith   SM .  2006 .  fMRI resting 
state networks define distinct modes of long-distance interactions in the human brain.  
  Neuroimage    29 :  1359  –  1367 .  

   Denk   W ,  Briggman   KL ,  Helmstaedter   M .  2012 .  Structural neurobiology: Missing link to a 
mechanistic understanding of neural computation .   Nat Rev Neurosci   doi: 10.1038/nrn3169.  

   Denk   W ,  Horstmann   H .  2004 .  Serial block-face scanning electron microscopy to reconstruct 
three-dimensional tissue nanostructure.    PLoS Biol    2 :  e329 .  

   de Pasquale   F ,  Della Penna   S ,  Snyder   AZ ,  Lewis   C ,  Mantini   D ,  et al .  2010 .  Temporal dynam-
ics of spontaneous MEG activity in brain networks.    Proc Natl Acad Sci USA    107 : 
 6040  –  6045 .  

   Desai   M ,  Kahn   I ,  Knoblich   U ,  Bernstein   J ,  Atallah   H ,  et al .  2011 .  Mapping brain networks 
in awake mice using combined optical neural control and fMRI.    J Neurophysiol    105 : 
 1393  –  1405 .  

   De Schutter   E .  2008 .  Why are computational neuroscience and systems biology so sepa-
rate?    PLoS Comput Biol    4 :  e1000078 .  

   Dong   HW .  2007 .   The Allen Atlas: A Digital Brain Atlas of C57BL/6J Male Mouse .   Hoboken, 
NJ :  Wiley .  

   Donohue   DE ,  Ascoli   GA .  2011 .  Automated reconstruction of neuronal morphology: An 
overview.    Brain Res Brain Res Rev    67 :  94  –  102 .  

   Doucet   G ,  Naveau   M ,  Petit   L ,  Delcroix   N ,  Zago   L ,  et al .  2011 .  Brain activity at rest: A 
multiscale hierarchical functional organization.    J Neurophysiol    105 :  2753  –  2763 .  



197 References

   Douglas   RJ ,  Martin   KAC ,  Whitteridge   D .  1989 .  A canonical microcircuit for neocortex.  
Neural Comput    1 :  480  –  488 .  

   Douglas   RJ ,  Martin   KAC .  2004 .  Neuronal circuits of the neocortex.    Annu Rev Neurosci    27 : 
 419  –  451 .  

   Douglas   RJ ,  Martin   KAC .  2011 .  What ’ s black and white about the grey matter?    Neuroin-
formatics    9 :  167  –  179 .  

   Doyle   DA ,  Cabral   JM ,  Pfuetzner   RA ,  Kuo   A ,  Gulbis   JM ,  et al .  1998 .  The structure of the 
potassium channel: Molecular basis of K +  conduction and selectivity.    Science    280 :  69  –  77 .  

   Drzezga   A ,  Becker   JA ,  van Dijk   KRA ,  Sreenivasan   A ,  Talukdar   T ,  et al .  2011 .  Neuronal 
dysfunction and disconnection of cortical hubs in non-demented subjects with elevated 
amyloid burden.    Brain    134 :  1635  –  1646 .  

   Durbin   RM ,  Abecasis   GR ,  Altshuler   DL ,  Auton   A ,  Brooks   LD ,  et al .  2010 .  A map of human 
genome variation from population-scale sequencing.    Nature    467 :  1061  –  1073 .  

   Ecker   AS ,  Berens   P ,  Keliris   GA ,  Bethge   M ,  Logothetis   NK ,  et al .  2010 .  Decorrelated neu-
ronal firing in cortical microcircuits.    Science    327 :  584  –  587 .  

  Editorial.  2010 .  A critical look at connectomics .   Nature Neuroscience    13 :  1441 .  

   Ehlers   MD .  2003 .  Activity level controls postsynaptic composition and signaling via the 
ubiquitin – proteasome system.    Nat Neurosci    6 :  231  –  242 .  

   Eickhoff   SB ,  Bzdok   D ,  Laird   AR ,  Roski   C ,  Caspers   S ,  et al .  2011 .  Co-activation patterns 
distinguish cortical modules, their connectivity and functional differentiation.    Neuroimage   
 57 :  938  –  949 .  

   Estrada   E ,  Rodriguez-Vel á zquez   JA .  2005 .  Subgraph centrality in complex networks.    Phys 
Rev E Stat Nonlin Soft Matter Phys    71 :  056103 .  

   Exner   S .  1894    Entwurf zu einer physiologischen Erkl ä rung der psychischen Erscheinungen.   
 Leipzig :  Franz Deuticke .  

   Fair   DA ,  Cohen   AL ,  Power   JD ,  Dosenbach   NUF ,  Church   JA ,  et al .  2009 .  Functional brain 
networks develop from a  “ local to distributed ”  organization.    PLoS Comput Biol    5 : 
 e1000381 .  

   Fan   Y ,  Shi   F ,  Smith   JK ,  Lin   W ,  Gilmore   JH ,  et al .  2011 .  Brain anatomical networks in early 
human brain development.    Neuroimage    54 :  1862  –  1871 .  

   Feinberg   DA ,  Moeller   S ,  Smith   SM ,  Auerbach   E ,  Ramanna   S ,  et al .  2010 .  Multiplexed echo 
planar imaging for sub-second whole brain fMRI and fast diffusion imaging.    PLoS ONE   
 5 :  e15710 .  

   Feldt   S ,  Bonifazi   P ,  Cossart   R .  2011 .  Dissecting functional connectivity of neuronal micro-
curcuits: Experimental and theoretical insights.    Trends Neurosci    34 :  225  –  236 .  

   Felleman   DJ ,  van Essen   DC .  1991 .  Distributed hierarchical processing in the primate cere-
bral cortex.    Cereb Cortex    1 :  1  –  47 .  

   Ferrarelli   F ,  Massimini   M ,  Sarasso   S ,  Casali   A ,  Riedner   BA ,  et al .  2010 .  Breakdown in corti-
cal effective connectivity during midazolam-induced loss of consciousness.    Proc Natl Acad 
Sci USA    107 :  2681  –  2686 .  

   Fields   RD .  2010 .   The Other Brain .   New York :  Simon and Schuster .  

   Fox   MD ,  Raichle   M .  2007 .  Spontaneous fluctuations in brain activity observed with func-
tional magnetic resonance imaging.    Nat Rev Neurosci    8 :  700  –  711 .  

   Fox   PT ,  Lancaster   JL .  2002 .  Mapping context and content: The BrainMap model.    Nat Rev 
Neurosci    3 :  319  –  321 .  

   Fransson   P ,  Marrelec   G .  2008 .  The precuneus/posterior cingulate cortex plays a pivotal role 
in the default mode network: Evidence from a partial correlation network analysis.    Neu-
roimage    42 :  1178  –  1184 .  

   French   L ,  Pavlidis   P .  2011 .  Relationships between gene expression and brain wiring in the 
adult rodent brain.    PLoS Comput Biol    7 :  e1001049 .  



198 References

   French   L ,  Tan   PPC ,  Pavlidis   P .  2011 .  Large-scale analysis of gene expression and connectiv-
ity in the rodent brain: Insights through data integration.    Front Neuroinf    5 :  12 .  

   Freud   S .  1966 .  Project for a scientific psychology . In  Strachey   J  (ed. and trans.),   The Standard 
Edition of the Complete Psychological Works of Sigmund Freud  , vol.  1 , pp.  295  –  397 .  London : 
 Hogarth Press .  

   Friston   KJ ,  Harrison   L ,  Penny   W .  2003 .  Dynamic causal modelling.    Neuroimage    19 : 
 1273  –  1302 .  

   Friston   KJ .  2009 .  Modalities, modes, and models in functional neuroimaging.    Science    326 : 
 399  –  403 .  

   Friston   KJ .  2011 .  Functional and effective connectivity: A review.    Brain Connectivity    1 : 
 13  –  36 .  

   Friston   KJ ,  Li   B ,  Daunizeau   J ,  Stephan   KE .  2011 .  Network discovery with DCM.    Neuroim-
age    56 :  1202  –  1221 .  

   Galbraith   CG ,  Galbraith   JA .  2011 .  Super-resolution microscopy at a glance.    J Cell Sci    124 : 
 1607  –  1611 .  

   Ganmor   E ,  Segev   R ,  Schneidman   E .  2011 .  The architecture of functional interaction net-
works in the retina.    J Neurosci    23 :  3044  –  3054 .  

   Gastner   MT ,  Newman   MEJ .  2006 .  The spatial structure of networks.    Eur Phys J B    49 : 
 247  –  252 .  

   Gerhard   S ,  Daducci   A ,  Lemkaddem   A ,  Meuli   R ,  Thiran   JP ,  et al .  2011 .  The Connectome 
Viewer Toolkit: An open source framework to manage, analyze, and visualize connectomes.  
  Front Neuroinf    5 :  3 .  

   Ghosh   A ,  Rho   Y ,  McIntosh   AR ,  K ö tter   R ,  Jirsa   VK .  2008 .  Noise during rest enables the 
exploration of the brain ’ s dynamic repertoire.    PLoS Comput Biol    4 :  e1000196 .  

   Gilbert   CD ,  Sigman   M ,  Crist   RE .  2001 .  The neural basis of perceptual learning.    Neuron    31 : 
 681  –  697 .  

   Giot   L ,  Bader   JS ,  Brouwer   C ,  Chauduri   A ,  Kuang   B ,  et al .  2003 .  A protein interaction map 
of  Drosophila  melanogaster.    Science    302 :  1727  –  1736 .  

   Glahn   DC ,  Thompson   PM ,  Blangero   J .  2007 .  Neuroimaging endophenotypes: Strategies for 
finding genes influencing brain structure and function.    Hum Brain Mapp    28 :  488  –  501 .  

   Glahn   DC ,  Winkler   AM ,  Kochunov   P ,  Almasy   L ,  Duggirala   R ,  et al .  2010 .  Genetic control 
over the resting brain.    Proc Natl Acad Sci USA    107 :  1223  –  1228 .  

   Glasser   MF ,  Van Essen   DC .  2011 .  Mapping human cortical areas in vivo based on myelin 
content as revealed by T1- and T2-weighted MRI.    J Neurosci    31 :  11597  –  11616 .  

   Glissen   E ,  Zilles   K .  1995 .  The relative volume of the primary visual cortex and its inter-
subject variability among humans: A new morphometric strudy.    C.R. Acad Sci Paris    320 : 
 897  –  902 .  

   Goaillard   JM ,  Taylor   AL ,  Schulz   DJ ,  Marder   E .  2009 .  Functional consequences of animal-
to-animal variation in circuit parameters.    Nat Neurosci    12 :  1424  –  1430 .  

   Goldschmidt   R .  1908 .  Das Nervensystem von Ascaris lumbricoides und megalocephala: 
Ein Versuch, in den Aufbau eines einfachen Nervensystems einzudringen.    Erster Teil 
Zeitschrift Wiss Zool    90 :  73  –  136 .  

   Gong   G ,  He   Y ,  Concha   L ,  Lebel   C ,  Gross   DW ,  et al .  2009 .  Mapping anatomical connectivity 
patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography.  
  Cereb Cortex    19 :  524  –  536 .  

   Granovetter   MS .  1973 .  The strength of weak ties.    Am J Sociol    78 :  1360  –  1380 .  

   Grefkes   C ,  Fink   GR .  2011 .  Reorganization of cerebral networks after stroke: New insights 
from neuroimaging with connectivity approaches.    Brain    134 :  1264  –  1276 .  

   Greicius   MD ,  Krasnow   B ,  Reiss   AL ,  Menon   V .  2003 .  Functional connectivity in the resting 
brain: A network analysis of the default mode hypothesis.    Proc Natl Acad Sci USA    100 : 
 253  –  258 .  



199 References

   Greicius   MD ,  Supekar   K ,  Menon   V ,  Dougherty   RF .  2009 .  Resting state functional connec-
tivity reflects structural connectivity in the default mode network.    Cereb Cortex    19 : 
 72  –  78 .  

   Grigg   O ,  Grady   CL .  2010 .  Task-related effects on the temporal and spatial dynamics 
of resting-state functional connectivity in the default network.    PLoS ONE    5 :  
e13311 .  

   Guimer à    R ,  Mossa   S ,  Turtschi   A ,  Amaral   LAN .  2005 .  The worldwide air transportation 
network: Anomalous centrality, community structure, and cities ’  global roles.    Proc Natl 
Acad Sci USA    102 :  7794  –  7799 .  

   Guye   M ,  Bettus   G ,  Bartolomei   F ,  Cozzone   PJ .  2010 .  Graph theoretical analysis of structural 
and functional connectivity MRI in normal and pathological brain networks.    Magn Reson 
Mater Phy    23 :  409  –  421 .  

   Hadjieconomou   D ,  Rotkopf   S ,  Alexandre   C ,  Bell   DM ,  Dickson   BJ ,  et al .  2011 .  Flybow: 
Genetic multicolor cell labeling for neural circuit analysis in  Drosophila  melanogaster.    Nat 
Methods    8 :  260  –  266 .  

   Hagmann   P .  2005 . From Diffusion MRI to Brain Connectomics. PhD Thesis, Ecole Poly-
technique F é d é rale de Lausanne, Lausanne, France.  

   Hagmann   P ,  Kurant   M ,  Gigandet   X ,  Thiran   P ,  Wedeen   VJ ,  et al .  2007 .  Mapping human 
whole-brain structural networks with diffusion MRI.    PLoS ONE    2 :  e597 .  

   Hagmann   P ,  Cammoun   L ,  Gigandet   X ,  Meuli   R ,  Honey   CJ ,  et al .  2008 .  Mapping the struc-
tural core of human cerebral cortex.    PLoS Biol    6 :  e159 .  

   Hagmann   P ,  Cammoun   L ,  Gigandet   X ,  Gerhard   S ,  Grant   PE ,  et al .  2010a .  MR connec-
tomics: Principles and challenges.    J Neurosci Methods    194 :  34  –  45 .  

   Hagmann   P ,  Sporns   O ,  Madan   N ,  Cammoun   L ,  Pienaar   R ,  et al .  2010b .  White matter matu-
ration reshapes structural connectivity in the late developing human brain.    Proc Natl Acad 
Sci USA    107 :  19067  –  19072 .  

   Hall   DH ,  Russell   RL .  1991 .  The posterior nervous system of the nematode  Caenorhabditis 
elegans : Serial reconstruction of identified neurons and complete pattern of synaptic inter-
actions.    J Neurosci    11 :  1  –  22 .  

   Hama   H ,  Kurokawa   H ,  Kawano   H ,  Ando   R ,  Shimogori   T ,  et al.   2011 .  Scale: A chemical 
approach for fluorescence imaging and reconstruction of transparent mouse brain .   Nature 
Neurosci    14 :  1481  –  1488 .  

   Hampel   S ,  Chung   P ,  McKellar   CE ,  Hall   D ,  Looger   LL ,  et al .  2011 .   Drosophila  Brainbow: 
A recombinase-based fluorescence labeling technique to subdivide neural expression pat-
terns.    Nat Methods    8 :  253  –  259 .  

   Harris   KM ,  Perry   E ,  Bourne   J ,  Feinberg   M ,  Ostroff   L ,  et al .  2006 .  Uniform serial sectioning 
for transmission electron microscopy.    J Neurosci    26 :  12101  –  12103 .  

   Hasson   U ,  Nir   Y ,  Levy   I ,  Fuhrmann   G ,  Malach   R .  2004 .  Intersubject synchronization of 
cortical activity during natural vision.    Science    303 :  1634  –  1640 .  

   Haxby   JV ,  Gobbini   MI ,  Furey   ML ,  Ishai   A ,  Schouten   JL ,  et al .  2001 .  Distributed and over-
lapping representations of faces and objects in ventral temporal cortex.    Science    293 : 
 2425  –  2430 .  

   Hayasaka   S ,  Laurienti   PJ .  2010 .  Comparison of characteristics between region- and voxel-
based network analyses in resting-state fMRI data.    Neuroimage    50 :  499  –  508 .  

   Haynes   JD ,  Rees   G .  2005 .  Predicting the stream of consciousness from activity in human 
visual cortex.    Curr Biol    15 :  1301  –  1307 .  

   Haynes   JD ,  Rees   G .  2006 .  Decoding mental states from brain activity in humans.    Nat Rev 
Neurosci    7 :  523  –  534 .  

   He   Y ,  Chen   ZJ ,  Evans   AC .  2007 .  Small-world anatomical networks in the human brain 
revealed by cortical thickness from MRI.    Cereb Cortex    17 :  2407  –  2419 .  

   Helmstaedter   M ,  Briggman   KL ,  Denk   W .  2011 .  High-accuracy neurite reconstruction for 
high-throughput neuroanatomy.    Nat Neurosci    14 :  1081  –  1088 .  



200 References

   Helmstaedter   M ,  Mitra   PP .  2012 .  Computational methods and challenges for large-scale 
circuit mapping.    Curr Opin Neurobiol    22 :  162  –  169 .  

   Herculano-Houzel   S ,  Mota   B ,  Wong   P ,  Kaas   JH .  2010 .  Connectivity-driven white matter 
scaling and folding in primate cerebral cortex.    Proc Natl Acad Sci USA    107 : 
 19008  –  19013 .  

   Hilbert   M ,  L ó pez   P .  2011 .  The world ’ s technological capacity to store, communicate, and 
compute information.    Science    332 :  60  –  65 .  

   Hilgetag   CC ,  Burns   GA ,  O ’ Neill   MA ,  Scannell   JW ,  Young   MP .  2000 .  Anatomical connectiv-
ity defines the organization of clusters of cortical areas in the macaque monkey and the 
cat.    Phil Trans R Soc B    355 :  91  –  110 .  

   Hilgetag   CC ,  Kaiser   M .  2004 .  Clustered organization of cortical connectivity.    Neuroinfor-
matics    2 :  353  –  360 .  

   Hofer   SB ,  Mrsic-Flogel   TD ,  Bonhoeffer   T ,  H ü bener   M .  2009 .  Experience leaves a lasting 
structural trace in cortical circuits.    Nature    457 :  313  –  317 .  

   Holtmaat   AJGD ,  Trachtenberg   JT ,  Wilbrecht   L ,  Shepherd   GM ,  Zhang   X ,  et al .  2005 .  Tran-
sient and persistent dendritic spines in the neocortex in vivo.    Neuron    45 :  279  –  291 .  

   Holtmaat   A ,  Svoboda   K .  2009 .  Experience-dependent structural synaptic plasticity in the 
mammalian brain.    Nat Rev Neurosci    10 :  647  –  658 .  

   Honey   CJ ,  K ö tter   R ,  Breakspear   M ,  Sporns   O .  2007 .  Network structure of cerebral cortex 
shapes functional connectivity on multiple time scales.    Proc Natl Acad Sci USA    104 : 
 10240  –  10245 .  

   Honey   CJ ,  Sporns   O ,  Cammoun   L ,  Gigandet   X ,  Thiran   JP ,  et al .  2009 .  Predicting human 
resting-state functional connectivity from structural connectivity.    Proc Natl Acad Sci USA   
 106 :  2035  –  2040 .  

   Honey   CJ ,  Thivierge   JP ,  Sporns   O .  2010 .  Can structure predict function in the human brain?  
  Neuroimage    52 :  766  –  776 .  

   Hood   L ,  Heath   JR ,  Phelps   ME ,  Lin   B .  2004 .  Systems biology and new technologies enable 
predictive and preventative medicine.    Science    306 :  640  –  643 .  

   Hunter   PJ ,  Borg   TK .  2003 .  Integration from proteins to organs: The Physiome Project.    Nat 
Rev Mol Cell Biol    4 :  237  –  243 .  

   Hutchison   RM ,  Leung   LS ,  Mirsattari   SM ,  Gati   JS ,  Menon   RS ,  et al .  2011 .  Resting-state 
networks in the macaque at 7T.    Neuroimage    56 :  1546  –  1555 .  

   Hyman   SE .  2010 .  The diagnosis of mental disorders: The problem of reification.    Annu Rev 
Clin Psychol    6 :  155  –  179 .  

   Ideker   T ,  Galitski   T ,  Hood   L .  2001 .  A new approach to decoding life: Systems biology.    Annu 
Rev Genomics Hum Genet    2 :  343  –  372 .  

   Insel   T ,  Cuthbert   B ,  Garvey   M ,  Heinssen   R ,  Pine   DS ,  et al .  2010 .  Research domain criteria 
(RDoC): Toward a new classification framework for research on mental disorders .   Am J 
Psychiatry    167 :  748  –  751 .  

   Irimia   A ,  Chambers   MC ,  Torgerson   CM ,  Filippou   M ,  Hovda   DA ,  et al .  2012 .  Patient-
tailored connectomics visualization for the assessment of white matter atrophy in traumatic 
brain injury .   Front Neurol    3 :  10 .  

   Iturria-Medina   Y ,  Canales-Rodriguez   EJ ,  Melie-Garcia   L ,  Valdes-Hernandez   PA ,  Martinez-
Montes   E ,  et al .  2007 .  Characterizing brain anatomical connections using diffusion weighted 
MRI and graph theory.    Neuroimage    36 :  645  –  660 .  

   Iturria-Medina   Y ,  Sotero   RC ,  Canales-Rodriguez   EJ ,  Aleman-Gomez   Y ,  Melie-Garcia   L . 
 2008 .  Studying the human brain anatomical network via diffusion-weighted MRI and graph 
theory.    Neuroimage    40 :  1064  –  1076 .  

   Jain   V ,  Seung   HS ,  Turaga   SS .  2010 .  Machines that learn to segment images: A crucial tech-
nology for connectomics.    Curr Opin Neurobiol    20 :  653  –  666 .  



201 References

   Jaume   S ,  Knobe   K ,  Newton   R ,  Schlimbach   F ,  Blower   M ,  et al .  2011 .  A multi-scale parallel 
computing architecture for automated segmentation of the brain connectome.    IEEE Trans 
Biomed Eng    99 :  1 .  

   Jbabdi   S ,  Johansen-Berg   H .  2011 .  Tractography: Where do we go from here?    Brain Con-
nectivity    1 :  169  –  183 .  

   Jeong   WK ,  Beyer   J ,  Hadwiger   M ,  Blue   R ,  Law   C ,  et al .  2010 .  Scecrett and NeuroTrace: 
Interactive visualization and analysis tools for large-scale neuroscience data sets.    IEEE 
Comput Graph Appl    30 :  58  –  70 .  

   Jiang   Y ,  Johnson   GA .  2011 .  Microscopic diffusion tensor atlas of the mouse brain.    Neuroim-
age    56 :  1235  –  1243 .  

   Jirsa   VK .  2004 .  Connectivity and dynamics of neural information processing.    Neuroinfor-
matics    2 :  183  –  204 .  

   Jirsa   VK ,  McIntosh   AR .  2007 .   Handbook of Brain Connectivity .   New York :  Springer .  

   Jirsa   VK ,  Sporns   O ,  Breakspear   M ,  Deco   G ,  McIntosh   AR .  2010 .  Towards the virtual brain: 
Network modeling of the intact and the damaged brain.    Arch Ital Biol    148 :  189  –  205 .  

   Johansen-Berg   H ,  Behrens   TE ,  Robson   MD ,  Drobnjak   I ,  Rushworth   MF ,  et al .  2004 . 
 Changes in connectivity profiles define functionally distinct regions in human medial 
frontal cortex.    Proc Natl Acad Sci USA    101 :  13335  –  13340 .  

   Johansen-Berg   H ,  Behrens   TEJ ,  Sillery   E ,  Ciccarelli   O ,  Thompson   AJ ,  et al .  2005 .  Func-
tional – anatomical validation and individual variation of diffusion tractography-based seg-
mentation of the human thalamus.    Cereb Cortex    15 :  31  –  39 .  

   Johansen-Berg   H ,  Della-Maggiore   V ,  Behrens   TEJ ,  Smith   SM ,  Paus   T .  2007 .  Integrity of 
white matter in the corpus callosum correlates with bimanual co-ordination skills.    Neuroim-
age    36 ( Suppl. 2 ):  T16  –  T21 .  

   Johansen-Berg   H ,  Rushworth   MFS .  2009 .  Using diffusion imaging to study human con-
nectional anatomy.    Annu Rev Neurosci    32 :  75  –  94 .  

   Johansen-Berg   H ,  Behrens   TEJ , eds.  2009 .   Diffusion MRI: From Quantitative Measurement 
to in Vivo Neuroanatomy .   Amsterdam :  Academic Press .  

   Johansen-Berg   H ,  Scholz   J ,  Stagg   CJ .  2010 .  Relevance of structural brain connectivity to 
learning and recovery from stroke.    Front Syst Neurosci    4 :  146 .  

   Johnston   JM ,  Vaishnavi   SN ,  Smyth   MD ,  Zhang   D ,  He   BJ ,  et al .  2008 .  Loss of resting inter-
hemispheric functional connectivity after complete section of the corpus callosum.    J Neu-
rosci    28 :  6453  –  6458 .  

   Joyce   AR ,  Palsson   BO .  2007 .  The model organism as a system: Integrating  “ omics ”  data sets.  
  Nat Rev Mol Cell Biol    7 :  198  –  210 .  

   Kaiser   M ,  Hilgetag   CC .  2006 .  Nonoptimal component placement, but short processing 
paths, due to long-distance projections in neural systems.    PLoS Comput Biol    2 :  e95 .  

   Kaiser   M .  2011 .  Tutorial in connectome analysis: Topological and spatial features of brain 
networks.    Neuroimage    57 :  892  –  907 .  

   Kamada   T ,  Kawai   S .  1989 .  An algorithm for drawing general undirected graphs.    Inf Process 
Lett    31 :  7  –  15 .  

   Kanai   R ,  Bahrami   B ,  Rees   G .  2010 .  Human parietal cortex structure predicts individual 
differences in perceptual rivalry.    Curr Biol    20 :  1626  –  1630 .  

   Kanai   R ,  Rees   G .  2011 .  The structural basis of inter-individual differences in human behav-
iour and cognition.    Nat Rev Neurosci    12 :  231  –  242 .  

   Kasparian   G ,  Brugger   PC ,  Weber   M ,  Krss á k   M ,  Krampl   E ,  et al .  2008 .  In utero tractography 
of fetal white matter development.    Neuroimage    43 :  213  –  224 .  

   Kasthuri   N ,  Hayworth   K ,  Lichtman   J ,  Erdman   N ,  Ackerley   CA .  2007 .  New technique for 
ultra-thin serial brain section imaging using scanning electron microscopy.    Microsc Micro-
anal    13 :  26  –  27 .  



202 References

   Kasthuri   N ,  Lichtman   JW .  2010 .  Neurocartography.    Neuropsychopharmacology    35 :  342  –  
343 .  

   Keck   T ,  Mrsic-Flogel   TD ,  Afonso   MV ,  Eysel   UT ,  Bonhoeffer   T ,  et al .  2008 .  Massive restruc-
turing of neuronal circuits during functional reorganization of adult visual cortex.    Nat 
Neurosci    11 :  1162  –  1167 .  

   Kell   DB ,  Oliver   SG .  2004 .  Here is the evidence, now what is the hypothesis? The comple-
mentary roles of inductive and hypothesis-driven science in the post-genomic era.    Bioes-
says    26 :  99  –  105 .  

   Kendler   KS ,  Aggen   SH ,  Knudsen   GP ,  R ø ysamb   E ,  Neale   MC ,  et al .  2011 .  The structure of 
genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV 
axis I and all axis II disorders.    Am J Psychiatry    168 :  29  –  39 .  

   Khanna   PC ,  Poliakov   AV ,  Ishak   GE ,  Poliachik   SL ,  Friedman   SD ,  et al .  2011 .  Preserved 
interhemispheric functional connectivity in a case of corpus callosum agenesis .   Neuroradi-
ology    54 :  177  –  179 .  

   Kinnunen   KM ,  Greenwood   R ,  Powell   JH ,  Leech   R ,  Hawkins   PC ,  et al .  2011 .  White matter 
damage and cognitive impairment after traumatic brain injury.    Brain    134 :  449  –  463 .  

   Kitano   H .  2001 .   Foundations of Systems Biology .   Cambridge :  MIT Press .  

   Kitano   H .  2002 .  Systems biology: A brief overview.    Science    295 :  1662  –  1664 .  

   Kleinfeld   D ,  Bharioke   A ,  Blinder   P ,  Bock   DD ,  Briggman   KL ,  et al .  2011 .  Large-scale auto-
mated histology in the pursuit of connectomes.    J Neurosci    31 :  16125  –  16138 .  

   Kn ö sche   TR ,  Tittgemeyer   M .  2011 .  The role of long-range connectivity for the characteriza-
tion of the functional – anatomical organization of the cortex.    Front Syst Neurosci    5 :  58 .  

   Knott   G ,  Marchman   H ,  Wall   D ,  Lich   B .  2008 .  Serial section scanning electron microscopy 
of adult brain tissue using focused ion beam milling.    J Neurosci    28 :  2959  –  2964 .  

   Ko   H ,  Hofer   SB ,  Pichler   B ,  Buchanan   KA ,  Sj ö str ö m   PJ ,  et al .  2011 .  Functional specificity 
of local synaptic connections in neocortical networks.    Nature    473 :  87  –  91 .  

   K ö tter   R .  2004 .  Online retrieval, processing, and visualization of primate connectivity data 
from the CoCoMac database.    Neuroinformatics    2 :  127  –  144 .  

   K ö tter   R .  2007 .  Anatomical concepts of brain connectivity.  In:  Jirsa   VK ,  McIntosh   AR  (eds), 
  Handbook of Brain Connectivity  , pp.  149  –  167 .  Berlin :  Springer .  

   Krishnan   A ,  Zbilut   JP ,  Tomita   M ,  Giuliani   A .  2008 .  Proteins as networks: Usefulness of 
graph theory in protein science.    Curr Protein Pept Sci    9 :  28  –  38 .  

   Krubitzer   L .  2007 .  The magnificent compromise: Cortical field evolution in mammals.  
  Neuron    56 :  201  –  208 .  

   Kurth   F ,  Eickhoff   SB ,  Schleicher   A ,  Hoemke   L ,  Zilles   K ,  et al .  2010 .  Cytoarchitecture and 
probabilistic maps of the human posterior insular cortex.    Cereb Cortex    20 :  1448  –  1461 .  

   Kurzweil   R .  2000 .   The Age of Spiritual Machines .   New York :  Penguin Books .  

   Laird   AR ,  Lancaster   JL ,  Fox   PT .  2005 .  BrainMap: The social evolution of a human brain 
mapping database.    Neuroinformatics    3 :  65  –  78 .  

   Laughlin   SB ,  Sejnowski   TJ .  2003 .  Communication in neuronal networks.    Science    301 : 
 1870  –  1874 .  

   Laureys   S ,  Owen   AM ,  Schiff   ND .  2004 .  Brain function in coma, vegetative state, and related 
disorders.    Lancet Neurol    3 :  537  –  546 .  

   Lazer   D ,  Pentland   A ,  Adamic   L ,  Aral   S ,  Barabasi   AL ,  et al .  2009 .  Life in the network: The 
coming age of computational social science.    Science    323 :  721  –  723 .  

   Le Bihan   D ,  Mangin   JF ,  Poupon   C ,  Clark   CA ,  Pappata   S ,  et al .  2001 .  Diffusion tensor 
imaging: Concepts and applications.    J Magn Reson Imaging    13 :  534  –  546 .  

   Le Bihan   D .  2003 .  Looking into the functional architecture of the brain with diffusion MRI.  
  Nat Rev Neurosci    4 :  469  –  480 .  



203 References

   Lee   JH ,  Durand   R ,  Gradinaru   V ,  Zhang   F ,  Goshen   I ,  et al .  2010 .  Global and local fMRI 
signals driven by neurons defined optogenetically by type and wiring.    Nature    465 : 
 788  –  792 .  

   Lee   JH .  2011 .  Tracing activity across the whole brain neural network with optogenetic 
functional magnetic resonance imaging.    Front Neuroinform    5 :  21 .  

   Lee   WCA ,  Huang   H ,  Feng   G ,  Sanes   JR ,  Brown   EN ,  et al .  2005 .  Dynamic remodeling of 
dendritic arbors in GABAergic interneurons of adult visual cortex.    PLoS Biol    4 :  e29 .  

   Lee   WCA ,  Reid   RC.   2011 .  Specificity and randomness: Structure – function relationships in 
neural circuits .   Curr Opin Neurobiol   21: 801 – 807.  

   Leech   R ,  Braga   R ,  Sharp   DJ .  2012 .  Echoes of the brain within the posterior cingulate cortex.  
  J Neurosci    32 :  215  –  222 .  

   Leergaard   TB ,  White   NS ,  de Crespigny   A ,  Bolstad   I ,  D’Arceuil   H ,  et al .  2010 .  Quantitative 
histological validation of diffusion MRI fiber orientation distributions in the rat brain.  
  PLoS ONE    5 :  e8595 .  

   Legenstein   R ,  Maass   W .  2011 .  Branch-specific plasticity enables self-organization of non-
linear computation in single neurons.    J Neurosci    31 :  10787  –  10802 .  

   Lehmann   D ,  Ozaki   H ,  Pal   I .  1987 .  EEG alpha map series: Brain micro-states by space-
oriented adaptive segmentation.    Electroencephalogr Clin Neurophysiol    67 :  271  –  288 .  

   Lehmann   D .  1990 .  Brain electric microstates and cognition: The atoms of thought.  In:  John  
 ER  (ed),   Machinery of the Mind  , pp.  209  –  224 .  Boston :  Birkh ä user .  

   Lein   ES ,  Hawrylycz   MJ ,  Ao   N ,  Ayres   M ,  Bensinger   A ,  et al .  2007 .  Genome-wide atlas of 
gene expression in the adult mouse brain.    Nature    445 :  168  –  176 .  

   Lerch   JP ,  Worsley   K ,  Shaw   WP ,  Greenstein   DK ,  Lenroot   RK ,  et al .  2006 .  Mapping anatomi-
cal correlations across cerebral cortex (MACACC) using cortical thickness from MRI.  
  Neuroimage    31 :  993  –  1003 .  

   Lewis   CM ,  Baldassare   A ,  Committeri   G ,  Romani   GL ,  Corbetta   M .  2009 .  Learning sculpts 
the spontaneous activity of the resting human brain.    Proc Natl Acad Sci USA    106 : 
 17558  –  17563 .  

   Li   A ,  Gong   H ,  Zhang   B ,  Wang   Q ,  Yan   C ,  et al .  2010a .  Micro-optical sectioning tomography 
to obtain a high-resolution atlas of the mouse brain.    Science    330 :  1401  –  1408 .  

   Li   L ,  Taskic   B ,  Micheva   KD ,  Ivanov   VM ,  Spletter   ML ,  et al .  2010b .  Visualizing the distribu-
tion of synapses from individual neurons in the mouse brain.    PLoS ONE    5 :  e11503 .  

   Li   S ,  Armstrong   CM ,  Bertin   N ,  Ge   H ,  Milstein   S ,  et al .  2004 .  A map of the interactome 
network of the metazoan C. elegans.    Science    303 :  540  –  543 .  

   Li   Y ,  Liu   Y ,  Li   J ,  Qin   W ,  Li   K ,  et al .  2009 .  Brain anatomical network and intelligence.    PLoS 
Comput Biol    5 :  e1000395 .  

   Lichtman   JW ,  Livet   J ,  Sanes   JR .  2008 .  A technicolour approach to the connectome.    Nat 
Rev Neurosci    9 :  417  –  422 .  

   Lichtman   JW ,  Denk   W .  2011 .  The big and the small: Challenges of imaging the brain ’ s 
circuits.    Science    334 :  618  –  623 .  

   Lieberman-Aiden   E ,  van Berkum   NL ,  Williams   L ,  Imakaev   M ,  Ragoczy   T ,  et al .  2009 . 
 Comprehensive mapping of long-range interactions reveals folding principles of the human 
genome.    Science    326 :  289  –  293 .  

   Lisman   JE .  1985 .  A mechanism for memory storage insensitive to molecular turnover: A 
bistable autophoshorylating kinase.    Proc Natl Acad Sci USA    82 :  3055  –  3057 .  

   Liu   ZW ,  Faraguna   U ,  Cirelli   C ,  Tononi   G ,  Gao   XB .  2010 .  Direct evidence for wake-related 
increases and sleep-related decreases in synaptic strength in rodent cortex.    J Neurosci    30 : 
 8671  –  8675 .  

   Livet   J ,  Weissman   TA ,  Kang   H ,  Draft   RW ,  Lu   J ,  et al .  2007 .  Transgenic strategies for com-
binatorial expression of fluorescent proteins in the nervous system.    Nature    450 :  56  –  62 .  



204 References

   London   M ,  H ä usser   M .  2005 .  Dendritic computation.    Annu Rev Neurosci    28 :  503  –  532 .  

   Long   F ,  Peng   H ,  Liu   X ,  Kim   SK ,  Myers   E .  2008 .  A 3D digital atlas of  C. elegans  and its 
application to single-cell analyses.    Nat Methods    6 :  667  –  672 .  

   Lu   J ,  Tapia   JC ,  White   OL ,  Lichtman   JW .  2009 .  The interscutularis muscle connectome.  
  PLoS Biol    7 :  e1000032 .  

   Lu   J .  2011 .  Neuronal tracing for connectomic studies.    Neuroinformatics    9 :  159  –  166 .  

   Mantini   D ,  Gerits   A ,  Nelissen   K ,  Durand   JB ,  Joly   O ,  et al .  2011 .  Default mode of brain 
function in monkeys.    J Neurosci    31 :  12954  –  12962 .  

   Marcus   DS ,  Harwell   J ,  Olsen   T ,  Hodge   M ,  Glasser   MF ,  et al .  2011 .  Informatics and data 
mining tools and strategies for the Human Connectome Project.    Front Neuroinf    5 :  4 .  

   Marder   E .  2011 .  Variability, compensation, and modulation in neurons and circuits.    Proc 
Natl Acad Sci USA    108 :  15542  –  15548 .  

   Marder   E ,  Taylor   AL .  2011 .  Multiple models to capture the variability in biological neurons 
and networks.    Nat Neurosci    14 :  133  –  138 .  

   Markov   NT ,  Misery   P ,  Falchier   A ,  Lamy   C ,  Vezoli   J ,  et al .  2011 .  Weight consistency specifies 
regularities of macaque cortical networks.    Cereb Cortex    21 :  1254  –  1272 .  

   Markram   H .  2006 .  The Blue Brain Project.    Nat Rev Neurosci    7 :  153  –  160 .  

   Mars   RB ,  Jbabdi   S ,  Sallet   J ,  O ’ Reilly   JX ,  Croxson   PL ,  et al .  2011 .  Diffusion-
weighted imaging tractography-based parcellation of the human parietal cortex and com-
parison with human and macaque resting-state functional connectivity.    J Neurosci    31 : 
 4087  –  4100 .  

   Massimini   M ,  Ferrarelli   F ,  Huber   R ,  Esser   SK ,  Singh   H ,  et al .  2005 .  Breakdown of cortical 
effective connectivity during sleep.    Science    309 :  2228  –  2232 .  

   Mayerich   D ,  Abbott   LC ,  McCormick   BH .  2008 .  Knife-edge scanning microscopy for 
imaging and reconstruction of three-dimensional anatomical structures of the mouse brain.  
  J Microsc    231 :  134  –  143 .  

   McCulloch   WS .  1944 .  The functional organization of the cerebral cortex.    Physiol Rev    24 : 
 390  –  407 .  

   McCulloch   WS ,  Pitts   W .  1948 .  The statistical organization of nervous activity.    Biometrics    4 : 
 91  –  99 .  

   McIntosh   AR ,  Grady   CL ,  Ungerleider   LG ,  Haxby   JV ,  Rapoport   SI ,  et al .  1994 .  Network 
analysis of cortical visual pathways mapped with PET.    J Neurosci    14 :  655  –  666 .  

   Menon   V .  2011 .  Large-scale brain networks and psychopathology: A unifying triple network 
model.    Trends Cogn Sci    15 :  483  –  506 .  

   Merch á n-P é rez   A ,  Rodriguez   JR ,  Alonso-Nanclares   L ,  Schertel   A ,  De Felipe   J .  2009 .  Count-
ing synapses using FIB/SEM microscopy: A true revolution for ultrastructural volume 
reconstruction.    Front Neuroanat    3 :  18 .  

   Merkle   RC.   1989 . Large Scale Analysis of Neural Structures. Xerox PARC technical report: 
CSL-89 – 10 November 1989, [P89 – 00173].  

   Mesulam   M .  2005 .  Imaging connectivity in the human cerebral cortex: The next frontier?  
  Ann Neurol    57 :  5  –  7 .  

   Meunier   D ,  Lambiotte   R ,  Fornito   A ,  Ersche   KD ,  Bullmore   ET .  2009 .  Hierarchical modular-
ity in human brain functional networks.    Front Neuroinf    3 :  37 .  

   Meynert   T .  1885 .   Psychiatry: A Clinical Treatise on Diseases of the Fore-Brain .   New York : 
 Putnam ’ s .  

   Micheva   KD ,  Smith   SK .  2007 .  Array tomography: A new tool for imaging the molecular 
architecture and ultrastructure of neural circuits.    Neuron    55 :  25  –  36 .  

   Micheva   KD ,  Busse   B ,  Weiler   NC ,  O ’ Rourke   N ,  Smith   SJ .  2010 .  Single-synapse analysis of 
a diverse synapse population: Proteomic imaging methods and markers.    Neuron    68 : 
 639  –  653 .  



205 References

   Micheva   KD ,  Bruchez   MP .  2012 .  The gain in brain: Novel imaging techniques and multi-
plexed proteomic imaging of brain tissue architecture.    Curr Opin Neurobiol    22 :  94  –  100 .  

   Miller   KL ,  Stagg   CJ ,  Douaud   G ,  Jbabdi   S ,  Smith   SM ,  et al .  2011 .  Diffusion imaging of whole, 
post-mortem human brains on a clinical MRI scanner.    Neuroimage    57 :  167  –  181 .  

   Mishchenko   Y ,  Hu   T ,  Spacek   J ,  Mendenhall   J ,  Harris   KM ,  et al .  2010 .  Ultrastructural 
analysis of hippocampal neuropil from the connectomics perspective.    Neuron    67 :  1009  –  
1020 .  

   Mishchenko   Y .  2011 .  Reconstruction of complete connectivity matrix for connectomics by 
sampling neural connectivity with fluorescent synaptic markers.    J Neurosci Methods    196 : 
 289  –  302 .  

   Missiuro   PV ,  Liu   K ,  Zou   L ,  Ross   BC ,  Zhao   G ,  et al .  2009 .  Information flow analysis of 
interactome networks.    PLoS Comput Biol    5 :  e1000350 .  

   Modha   DS ,  Ananthanarayanan   R ,  Esser   SK ,  Ndirango   A ,  Sherbondy   AJ ,  et al .  2011 .  Cogni-
tive computing.    Commun ACM    54 ( 8 ):  62  –  71 .  

   Mori   S ,  Crain   BJ ,  Chacko   VP ,  van Zijl   PCM .  1999 .  Three-dimensional tracking of 
axonal projections in the brain by magnetic resonance imaging.    Ann Neurol    45 :  265  –  
269 .  

   Mountcastle   VB .  1997 .  The columnar organization of the neocortex.    Brain    120 :  701  –  722 .  

   Moussa   MN ,  Vechlekar   CD ,  Burdette   JH ,  Steen   MR ,  Hugenschmidt   CE ,  et al .  2011 . 
 Changes in cognitive state alter human functional brain networks.    Front Hum Neurosci   
 5 :  83 .  

   Musso   F ,  Brinkmeyer   J ,  Mobascher   A ,  Warbrick   T ,  Winterer   G .  2010 .  Spontaneous brain 
activity and EEG microstates: A novel EEG/fMRI analysis approach to explore resting-
state networks.    Neuroimage    52 :  1149  –  1161 .  

   Nelson   SM ,  Cohen   AL ,  Power   JD ,  Wig   GS ,  Miezin   FM ,  et al .  2010 .  A parcellation scheme 
for human left lateral parietal cortex.    Neuron    67 :  156  –  170 .  

   Ng   L ,  Bernard   A ,  Lau   C ,  Overly   CC ,  Dong   HW ,  et al .  2009 .  An anatomic gene expression 
atlas of the adult mouse brain.    Nat Neurosci    12 :  356  –  362 .  

   Nir   Y ,  Mukamel   R ,  Dinstein   I ,  Privman   E ,  Harel   M ,  et al .  2008 .  Interhemispheric correla-
tions of slow spontaneous neuronal fluctuations revealed in human sensory cortex.    Nat 
Neurosci    11 :  1100  –  1108 .  

   Noble   D .  2002 .  Modeling the heart — From genes to cells to the whole organ.    Science    295 : 
 1678  –  1682 .  

   Norris   BJ ,  Wenning   A ,  Wright   TM ,  Calabrese   RL .  2011 .  Constancy and variability in the 
output of a central pattern generator.    J Neurosci    31 :  4663  –  4674 .  

   Nunez   PL .  2000 .  Towards a quantitative description of large scale neocortical dynamic 
behavior and EEG.    Behav Brain Sci    23 :  371  –  398 .  

   Obersteiner   H .  1890 .   The Anatomy of the Central Nervous Organs in Health and Disease .  
 Philadelphia :  Blakiston .  

   Ohiorhenuan   IE ,  Mechler   F ,  Purpura   KP ,  Schmid   AM ,  Hu   Q ,  et al .  2010 .  Sparse coding and 
high-order correlations in fine-scale cortical networks.    Nature    466 :  617  –  621 .  

   Ohki   K ,  Reid   RC .  2007 .  Specificity and randomness in the visual cortex.    Curr Opin Neuro-
biol    17 :  401  –  407 .  

   Ostroff   LE ,  Cain   CK ,  Bedont   J ,  Monfils   MH ,  LeDoux   JE .  2010 .  Fear and safety learning 
differentially affect synapse size and dendritic translation in the lateral amygdala.    Proc Natl 
Acad Sci USA    107 :  9418  –  9423 .  

   Page   L ,  Brin   S ,  Motwani   R ,  Winograd   T .  1999 . The PageRank Citation Ranking: Bringing 
Order to the Web. Technical Report, Stanford InfoLab.  

   Pakkenberg   B ,  Pelvig   D ,  Marner   L ,  Bundgaard   MJ ,  Gundersen   HJ ,  et al .  2003 .  Aging and 
the human neocortex.    Exp Gerontol    38 :  95  –  99 .  



206 References

   Palm   C ,  Axer   M ,  Graessel   D ,  Dammers   J ,  Lindemeyer   J ,  et al .  2010 .  Towards ultra-high 
resolution fibre tract mapping of the human brain — Registration of polarized light images 
and reorientation of fibre vectors.    Front Hum Neurosci    4 :  9 .  

   Pan   YA ,  Livet   J ,  Sanes   JR ,  Lichtman   JW ,  Schier   AF .  2011 . Multicolor Brainbow Imaging in 
Zebrafish. Cold Spring Harb Protoc pdb.prot5546.  

   Parada   LA ,  McQueen   PG ,  Misteli   T .  2004 .  Tissue-specific spatial organization of genomes.  
  Genome Biol    5 :  R44 .  

   Parker   D .  2010 .  Neuronal network analyses: Premises, promises and uncertainties.    Phil 
Trans R Soc B    365 :  2315  –  2328 .  

   Passingham   RE ,  Stephan   KE ,  K ö tter   R .  2002 .  The anatomical basis of functional localiza-
tion in the cortex.    Nat Rev Neurosci    3 :  606  –  616 .  

   Pawela   CP ,  Biswal   BB ,  Cho   YR ,  Kao   DS ,  Li   R ,  et al .  2008 .  Resting-state functional con-
nectivity of the rat brain.    Magn Reson Med    59 :  1021  –  1029 .  

   Pennisi   E .  2000 .  And the gene number is  … ?    Science    288 :  1146  –  1147 .  

   Penny   WD ,  Stephan   KE ,  Mechelli   A ,  Friston   KJ .  2004 .  Comparing dynamic causal models.  
Neuroimage    22 :  1157  –  1172 .  

   Perge   JA ,  Niven   JE ,  Mugnaini   E ,  Balasubramanian   V ,  Sterling   P .  2012 .  Why do axons differ 
in caliber?    J Neurosci    32 :  626  –  638 .  

   Perin   R ,  Berger   TK ,  Markram   H .  2011 .  A synaptic organizing principle for cortical neuronal 
groups.    Proc Natl Acad Sci USA    108 :  5419  –  5424 .  

   Pernice   V ,  Staude   B ,  Cardanobile   S ,  Rotter   S .  2011 .  How structure determines correlations 
in neuronal networks.    PLoS Comput Biol    7 :  e10002059 .  

   Petreanu   L ,  Mao   T ,  Sternson   SM ,  Svoboda   K .  2009 .  The subcellular organization of neo-
cortical excitatory connections.    Nature    457 :  1142  –  1145 .  

   Phillips   S ,  Wilson   WH .  2010 .  Categorical compositionality: A category theory explanation 
for the systematicity of human cognition.    PLoS Comput Biol    6 :  e1000858 .  

   Plenz   D ,  Thiagarajan   TC .  2007 .  The organizing principles of neuronal avalanches: Cell 
assemblies in the cortex?    Trends Neurosci    30 :  101  –  110 .  

   Plomin   R ,  Haworth   CMA ,  Davis   OSP .  2009 .  Common disorders are quantitative traits.    Nat 
Rev Genet    10 :  872  –  878 .  

   Poirazi   P ,  Brannon   T ,  Mel   BW .  2003 .  Pyramidal neuron as two-layer neural network.    Neuron
 37 :  989  –  999 .  

   Poldrack   RA .  2006 .  Can cognitive processes be inferred from neuroimaging data?    Trends 
Cogn Sci    10 :  59  –  63 .  

   Poldrack   RA ,  Halchenko   YO ,  Hanson   SJ .  2009 .  Decoding the large-scale structure of 
brain function by classifying mental states across individuals.    Psychol Sci    20 :  1364  –  
1372 .  

   Poldrack   RA ,  Kittur   A ,  Kalar   D ,  Miller   E ,  Seppa   C ,  et al .  2011 .  The cognitive atlas: Toward 
a knowledge foundation for cognitive neuroscience.    Front Neuroinf    5 :  17 .  

   Polsky   A ,  Mel   BW ,  Schiller   J .  2004 .  Computational subunits in thin dendrites of pyramidal 
cells.    Nat Neurosci    7 :  621  –  627 .  

   Power   JD ,  Cohen   AL ,  Nelson   SM ,  Wig   GS ,  Barnes   KA ,  et al .  2011 .  Functional network 
organization of the human brain.    Neuron    72 :  665  –  678 .  

   Price   CJ ,  Friston   JL .  2005 .  Functional ontologies for cognition: The systematic definition 
of structure and function.    Cogn Neuropsychol    22 :  262  –  275 .  

   Price   JC ,  Guan   S ,  Burlingame   A ,  Prusiner   SB ,  Ghaemmaghami   S .  2010 .  Analysis of pro-
teome dynamics in the mouse brain.    Proc Natl Acad Sci USA    107 :  14508  –  14513 .  

   Przytycka   TM ,  Singh   M ,  Slonim   DK .  2010 .  Toward the dynamic interactome: It ’ s about 
time.    Brief Bioinf    11 :  15  –  29 .  



207 References

   Raichle   ME ,  MacLeod   AM ,  Snyder   AZ ,  Powers   WJ ,  Gusnard   DA ,  Shulman   GL .  2001 .  A 
default mode of brain function.    Proc Natl Acad Sci USA    98 :  676  –  682 .  

   Raichle   ME ,  Mintun   MA .  2006 .  Brain work and brain imaging.    Annu Rev Neurosci    29 : 
 449  –  476 .  

   Raichle   ME .  2011 .  The restless brain.    Brain Connectivity    1 :  3  –  12 .  

   Rajapakse   I ,  Groudine   M .  2011 .  On emerging nuclear order.    J Cell Biol    192 :  711  –  721 .  

   Rashevsky   N .  1948 .   Mathematical Biophysics .   Chicago :  University of Chicago Press .   

   Ratti   C ,  Sobolevsky   S ,  Calabrese   F ,  Andris   C ,  Reades   J ,  et al .  2010 .  Redrawing the map of 
Great Britain from a network of human interactions.    PLoS ONE    5 :  e14248 .  

   Rein   K ,  Z ö ckler   M ,  Mader   MT ,  Gr ü bel   C ,  Heisenberg   M .  2002 .  The  Drosophila  standard 
brain.    Curr Biol    12 :  227  –  231 .  

   Renart   A ,  de la Rocha   J ,  Bartho   P ,  Hollender   L ,  Parga   N ,  et al .  2010 .  The asynchronous 
state in cortical circuits.    Science    327 :  587  –  590 .  

   Richards   EJ .  2006 .  Inherited epigenetic variation — Revisiting soft inheritance.    Nat Rev 
Genet    5 :  395  –  401 .  

   Richiardi   J ,  Eryilmaz   H ,  Schwartz   S ,  Vuilleumier   P ,  Van De Ville   D .  2011 .  Decoding brain 
states from fMRI connectivity graphs.    Neuroimage    56 :  616  –  626 .  

   Ringo   JL .  1991 .  Neuronal interconnection as a function of brain size.    Brain Behav Evol    38 : 
 1  –  6 .  

   Rivera-Alba   M ,  Vitaladevuni   SN ,  Michchenko   Y ,  Lu   Z ,  Takemura   S ,  et al .  2011 .  Wiring 
economy and volume exclusion determine neuronal placement in the  Drosophila  brain.  
  Curr Biol    21 :  2000  –  2005 .  

   Rockel   AJ ,  Hiorns   RW ,  Powell   TP .  1980 .  The basic uniformity in structure of the neocortex.  
  Brain    103 :  221  –  244 .  

   Rockland   KS .  2010 .  Five points on columns.    Front Neuroanat    4 :  22 .  

   Rual   JF ,  Venkatesan   K ,  Hao   T ,  et al .  2005 .  Towards a proteomescale map of the human 
protein – protein interaction network.    Nature    437 :  1173  –  1178 .  

   Rubinov   M ,  Sporns   O .  2010 .  Complex network measures of brain connectivity: Uses and 
interpretations.    Neuroimage    2 :  10 .  

   Rubinov   M ,  Sporns   O .  2011 .  Weight-conserving characterization of complex functional 
brain networks.    Neuroimage    56 :  2068  –  2079 .  

   Rubinov   M ,  Sporns   O ,  Thivierge   JP ,  Breakspear   M .  2011 .  Neurobiologically realistic deter-
minants of self-organized criticality in networks of spiking neurons.    PLoS Comput Biol    7 : 
 e1002038 .  

   Sandberg   A ,  Bostrom   N .  2008 .  Whole Brain Emulation: A Roadmap . Technical Report 
#2008 – 3, Future of Humanity Institute, Oxford University.  

   Sauer   U ,  Heinemann   M ,  Zamboni   N .  2007 .  Getting closer to the whole picture.    Science    316 : 
 593  –  597 .  

   Scannell   JW ,  Blakemore   C ,  Young   MP .  1995 .  Analysis of connectivity in the cat cerebral 
cortex.    J Neurosci    15 :  1463  –  1483 .  

   Scannell   JW ,  Burns   GAPC ,  Hilgetag   CC ,  O ’ Neil   MA ,  Young   MP .  1999 .  The connectional 
organization of the cortico-thalamic system of the cat.    Cereb Cortex    9 :  277  –  299 .  

   Schall   JD .  2004 .  On building a bridge between brain and behavior.    Annu Rev Psychol    55 : 
 23  –  50 .  

   Schmahmann   JD ,  Pandya   DN ,  Wang   R ,  Dai   G ,  D’Arceuil   HE ,  et al .  2007 .  Association fibre 
pathways of the brain: Parallel observations from diffusion spectrum imaging and autora-
diography.    Brain    130 :  630  –  653 .  

   Sch ö lvinck   ML ,  Maier   A ,  Ye   FQ ,  Duyn   JH ,  Leopold   DA .  2010 .  Neural basis of global 
resting-state fMRI activity.    Proc Natl Acad Sci USA    107 :  10238  –  10243 .  



208 References

   Scholz   J ,  Klein   MC ,  Behrens   TEJ ,  Johansen-Berg   H .  2009 .  Training induces changes in 
white-matter architecture.    Nat Neurosci    12 :  1370  –  1371 .  

   Schwanh ä usser   B ,  Busse   D ,  Li   N ,  Dittmar   G ,  Schuchhardt   J ,  et al .  2011 .  Global quantifica-
tion of mammalian gene expression control.    Nature    473 :  337  –  342 .  

   Seung   HS .  2012 .   Connectome: How the Brain ’ s Wiring Makes Us Who We Are .   New York:   
Houghton Mifflin Harcourt .  

   Shehzad   Z ,  Kelly   AM ,  Reiss   PT ,  Gee   DG ,  Gotimer   K ,  et al .  2009 .  The resting brain: Uncon-
strained yet reliable.    Cereb Cortex    19 :  2209  –  2229 .  

   Sherbondy   AJ ,  Dougherty   RF ,  Ananthanarayanan   R ,  Modha   DS ,  Wandell   BA .  2009 .  Think 
global, act local: Projectome estimation with BlueMatter.    LNCS    5761 :  861  –  868 .  

   Sherbondy   AJ ,  Rowe   MC ,  Alexander   DC .  2010 .  MicroTrack: An algorithm for concurrent 
projectome and microstructure estimation.  In:  Jiang   T   et al.  (eds),   LNCS 6361  , pp.  183  –  190 . 
 Berlin :  Springer .  

   Shirer   WR ,  Ryali   S ,  Rykhlevskaia   E ,  Menon   V ,  Greicius   MD .  2012 .  Decoding subject-driven 
cognitive states with whole-brain connectivity patterns .   Cereb Cortex    22 :  158  –  165 .  

   Shmuel   A ,  Leopold   DA .  2008 .  Neuronal correlates of spontaneous fluctuations in fMRI 
signals in monkey visual cortex: Implications for functional connectivity at rest.    Hum Brain 
Mapp    29 :  751  –  761 .  

   Sholl   DA .  1956 .   The Organisation of the Cerebral Cortex .   London :  Methuen .  

   Sidaros   A ,  Engberg   AW ,  Sidaros   K ,  Liptrot   MG ,  Herning   M ,  et al .  2008 .  Diffusion tensor 
imaging during recovery from severe traumatic brain injury and relation to clinical outcome: 
A longitudinal study.    Brain    131 :  559  –  572 .  

   Sigrist   SJ ,  Sabatini   BL .  2012 .  Optical super-resolution microscopy in neurobiology.    Curr 
Opin Neurobiol    22 :  86  –  93 .  

   Silva   AJ ,  Zhou   Y ,  Rogerson   T ,  Shobe   J ,  Balaji   J .  2009 .  Molecular and cellular approaches 
to memory allocation in neural circuits.    Science    326 :  391  –  395 .  

   Skudlarski   P ,  Jagannathan   K ,  Calhoun   VD ,  Hampson   M ,  Skudlarska   BA ,  et al .  2008 .  Mea-
suring brain connectivity: Diffusion tensor imaging validates resting state temporal correla-
tions.    Neuroimage    43 :  554  –  561 .  

   Skudlarski   P ,  Jagannathan   K ,  Anderson   K ,  Stevens   MC ,  Calhoun   VD ,  et al .  2010 .  Brain 
connectivity is not only lower but different in schizophrenia: A combined anatomical and 
functional approach.    Biol Psychiatry    68 :  61  –  69 .  

   Smith   SM ,  Fox   PT ,  Miller   KL ,  Glahn   DC ,  Fox   PM ,  et al .  2009 .  Correspondence of the brain ’ s 
functional architecture during activation and rest.    Proc Natl Acad Sci USA    106 : 
 13040  –  13045 .  

   Smith   SM ,  Miller   KL ,  Moeller   S ,  Xu   J ,  Auerbach   EJ   et al .  2012 .  Temporally-independent 
functional modes of spontaneous brain activity .   Proc Natl Acad Sci USA    109 :  3131  –  
3136 .  

   Smith   SM ,  Miller   KL ,  Salimi-Khorshidi   G ,  Webster   M ,  Beckmann   CF ,  et al .  2011 .  Network 
modeling methods for FMRI.    Neuroimage    54 :  875  –  891 .  

   Song   S ,  Sj ö str ö m   PJ ,  Reigl   M ,  Nelson   S ,  Chklovskii   DB .  2005 .  Highly nonrandom features 
of synaptic connectivity in local cortical circuits.    PLoS Biol    3 :  e68 .  

   Sorg   C ,  Riedl   V ,  M ü hlau   M ,  Calhoun   V ,  Eichele   T ,  et al .  2007 .  Selective changes of resting-
state networks in individuals at risk for Alzheimer ’ s disease.    Proc Natl Acad Sci USA    104 : 
 18760  –  18765 .  

   Southern   J ,  Pitt-Francis   J ,  Whiteley   J ,  Stokeley   D ,  Kobashi   H ,  et al .  2008 .  Multi-scale com-
putational modelling in biology and physiology.    Prog Biophys Mol Biol    96 :  60  –  89 .  

   Sporns   O ,  Jenkinson   S .  1998 .  Potassium ion- and nitric oxide-induced exocytosis from 
populations of hippocampal synapses during synaptic maturation in vitro.    Neuroscience    80 : 
 1057  –  1073 .  



209 References

   Sporns   O ,  Tononi   G ,  Edelman   GM .  2000 .  Theoretical neuroanatomy: Relating anatomical 
and functional connectivity in graphs and cortical connection matrices.    Cereb Cortex    10 : 
 127  –  141 .  

   Sporns   O ,  Chialvo   D ,  Kaiser   M ,  Hilgetag   CC .  2004 .  Organization, development and func-
tion of complex brain networks.    Trends Cogn Sci    8 :  418  –  425 .  

   Sporns   O ,  Zwi   J .  2004 .  The small world of the cerebral cortex.    Neuroinformatics    2 : 
 145  –  162 .  

   Sporns   O ,  Tononi   G ,  K ö tter   R .  2005 .  The human connectome: A structural description of 
the human brain.    PLoS Comput Biol    1 :  245  –  251 .  

   Sporns   O ,  Honey   CJ ,  K ö tter   R .  2007 .  Identification and classification of hubs in brain net-
works.    PLoS ONE    2 :  e1049 .  

   Sporns   O .  2011a .   Networks of the Brain .   Cambridge :  MIT Press .  

   Sporns   O .  2011b .  The non-random brain: Efficiency, economy, and complex dynamics.    Front 
Comput Neurosci    5 :  5 .  

   Sporns   O .  2011c .  The human connectome: A complex network.    Ann N Y Acad Sci    1224 : 
 109  –  125 .  

   Sporns   O .  2012 .  From simple graphs to the connectome: Networks in neuroscience .   Neu-
roimage   doi: 10.1016/j.neuroimage.2011.08.085.  

   Stam   CJ ,  Reijneveld   JC .  2007 .  Graph theoretical analysis of complex networks in the brain.  
  Nonlinear Biomed Phys    1 :  3 .  

   Stam   CJ ,  Jones   BF ,  Nolte   G ,  Breakspear   M ,  Scheltens   P .  2007 .  Small-world networks and 
functional connectivity in Alzheimer ’ s disease.    Cereb Cortex    17 :  92  –  99 .  

   Stam   CJ ,  van Straaten   ECW .  2012 .  The organization of physiological brain networks .   Clin 
Neurophysiol   doi: 10.1016/j.clinph.2012.01.011 . 

   Star   EN ,  Kwiatkowski   DJ ,  Murthy   VN .  2002 .  Rapid turnover of actin in dendritic spines 
and its regulation by activity.    Nat Neurosci    5 :  239  –  246 .  

   Stephan   KE ,  Tittgemeyer   M ,  Kn ö sche   TR ,  Moran   RJ ,  Friston   KJ .  2009 .  Tractography-based 
priors for dynamic causal models.    Neuroimage    47 :  1628  –  1638 .  

   Stettler   DD ,  Yamahachi   H ,  Li   W ,  Denk   W ,  Gilbert   CD .  2006 .  Axons and synaptic boutons 
are highly dynamic in adult visual cortex.    Neuron    49 :  877  –  887 .  

   Stevens   CF .  1989 .  How cortical interconnectedness varies with network size.    Neural Comput   
 1 :  473  –  479 .  

   Stevens   WD ,  Buckner   RL ,  Schacter   DL .  2010 .  Correlated low-frequency BOLD fluctua-
tions in the resting human brain are modulated by recent experience in category-
preferential visual regions.    Cereb Cortex    20 :  1997  –  2006 .  

   Sugar   J ,  Witter   MP ,  van Strien   NM ,  Cappaert   NLM .  2011 .  The retrosplenial cortex: Intrinsic 
connectivity and connections with the (para)hippocampal regions in the rat. An interactive 
connectome.    Front Neuroinf    5 :  7 .  

   Sullivan   L .  1896 .  The tall office building artistically considered.    Lippincott ’ s Monthly Maga-
zine    57 :  403  –  409 .  

   Supekar   K ,  Musen   M ,  Menon   V .  2009 .  Development of large-scale functional brain net-
works in children.    PLoS Biol    7 :  e1000157 .  

   Supekar   K ,  Uddin   LQ ,  Prater   K ,  Amin   H ,  Greicius   MD ,  et al .  2010 .  Development of func-
tional and structural connectivity within the default mode network in young children.  
  Neuroimage    52 :  290  –  301 .  

   Swanson   LW .  2007 .  Quest for the basic plan of nervous system circuitry.    Brain Res Brain 
Res Rev    55 :  356  –  372 .  

   Takahashi   E ,  Dai   G ,  Wang   R ,  Ohki   K ,  Rosen   GD ,  et al .  2010 .  Development of cerebral 
fiber pathways in cats revealed by diffusion spectrum imaging.    Neuroimage    49 :  1231  –  
1240 .  



210 References

   Taylor   AL ,  Goalliard   JM ,  Marder   E .  2009 .  How multiple conductances determine electro-
physiological properties in a multicompartment model.    J Neurosci    29 :  5573  –  5586 .  

   Telesford   QK ,  Simpson   SL ,  Burdette   JH ,  Hayasaka   S ,  Laurienti   PJ .  2011 .  The brain as a 
complex system: Using network science as a tool for understanding the brain.    Brain Con-
nectivity    1 :  295  –  308 .  

   Thompson   RH ,  Swanson   LW .  2010 .  Hypothesis-driven structural connectivity analysis sup-
ports network over hierarchical model of brain architecture.    Proc Natl Acad Sci USA    107 : 
 15235  –  15239 .  

   Thomson   AM ,  West   DC ,  Wang   Y ,  Bannister   AP .  2002 .  Synaptic connections and small 
circuits involving excitatory and inhibitory neurons in layers 2 – 5 of adult rat and cat 
neocortex: Triple intracellular recordings and biocytin labeling in vitro.    Cereb Cortex    12 : 
 936  –  953 .  

   Tomasi   D ,  Volkow   ND .  2010 .  Functional connectivity density mapping.    Proc Natl Acad Sci 
USA    107 :  9885  –  9890 .  

   Tomasi   D ,  Volkow   ND .  2011a .  Functional connectivity hubs in the human brain .   Neuroim-
age    57 :  908  –  917 .  

   Tomasi   D ,  Volkow   ND .  2011b .  Association between functional connectivity hubs and brain 
networks.    Cereb Cortex    21 :  2003  –  2013 .  

   Tomita   M .  2001 .  Whole-cell simulation: A grand challenge of the 21 st  century.    Trends Bio-
technol    19 :  205  –  210 .  

   Torben-Nielsen   B ,  Stiefel   KM .  2009 .  Systematic mapping between dendritic function and 
structure.    Network    20 :  69  –  105 .  

   Trachtenberg   JT ,  Chen   BE ,  Knott   GW ,  Feng   G ,  Sanes   JR ,  et al .  2002 .  Long-term in vivo 
imaging of experience-dependent synaptic plasticity in adult cortex.    Nature    420 :  788  –  794 .  

   Travers   J ,  Milgram   S .  1969 .  An experimental study of the small world problem.    Sociometry   
 32 :  425  –  443 .  

   Tripodi   M ,  Evers   JF ,  Mauss   A ,  Bate   M ,  Landgraf   M .  2008 .  Structural homeostasis: Com-
pensatory adjustments of dendritic arbor geometry in response to variations of synaptic 
input.    PLoS Biol    6 :  e260 .  

   Tsuriel   S ,  Geva   R ,  Zamorano   P ,  Dresbach   T ,  Boeckers   T ,  et al .  2006 .  Local sharing as a 
predominant determinant of synaptic matrix molecular dynamics.    PLoS Biol    4 :  e271 .  

   Tuch   DS ,  Reese   TG ,  Wiegell   MR ,  Wedeen   VJ .  2003 .  Diffusion MRI of complex neural 
architecture.    Neuron    40 :  885  –  895 .  

   Turaga   SC ,  Murray   JF ,  Jain   V ,  Roth   F ,  Helmstaedter   M ,  et al .  2010 .  Convolutional networks 
can learn to generate affinity graphs for image segmentation.    Neural Comput    22 : 
 511  –  538 .  

   Tyszka   JM ,  Kennedy   DP ,  Adolphs   R ,  Paul   LK .  2011 .  Intact bilateral resting-state networks 
in the absence of the corpus callosum.    J Neurosci    31 :  15154  –  15162 .  

   Vaishnavi   SN ,  Vlassenko   AG ,  Rundle   MM ,  Snyder   AZ ,  Mintun   MA ,  et al .  2010 .  Regional 
aerobic glycolysis in the human brain.    Proc Natl Acad Sci USA    107 :  17757  –  17762 .  

   Valdes-Sosa   PA ,  Roebroeck   A ,  Daunizeau   J ,  Friston   K .  2011 .  Effective connectivity: Influ-
ence, causality and biophysical modeling.    Neuroimage    58 :  339  –  361 .  

   Van den Heuvel   MP ,  Mandl   RCW ,  Kahn   RS ,  Hulshoff Pol   HE .  2009a .  Functionally linked 
resting-state networks reflect the underlying structural connectivity architecture of the 
human brain.    Hum Brain Mapp    30 :  3127  –  3141 .  

   Van den Heuvel   MP ,  Stam   CJ ,  Kahn   RS ,  Hulshoff Pol   HE .  2009b .  Efficiency of functional 
brain networks and intellectual performance.    J Neurosci    29 :  7619  –  7624 .  

   Van den Heuvel   MP ,  Hulshoff Pol   HE .  2010 .  Exploring the brain network: A review on 
resting-state fMRI functional connectivity.    Eur Neuropsychopharmacol    20 :  519  –  534 .  



211 References

   Van den Heuvel   MP ,  Mandl   RCW ,  Stam   CJ ,  Kahn   RS ,  Hulshoff Pol   HE .  2010 .  Aberrant 
frontal and temporal complex network structure in schizophrenia: A graph theoretical 
analysis.    J Neurosci    30 :  15915  –  15926 .  

   Van den Heuvel   MP ,  Sporns   O.   2011 .  Rich-club organization of the human connectome.    J 
Neurosci    31 :  15775  –  15786 .  

   Van de Ville   D ,  Britz   J ,  Michel   CM .  2010 .  EEG microstate sequences in healthy humans at 
rest reveal scale-free dynamics.    Proc Natl Acad Sci USA    107 :  18179  –  18184 .  

   Van Dijk   KRA ,  Hedden   T ,  Venkataraman   A ,  Evans   KC ,  Lazar   SW ,  et al .  2010 .  Intrinsic 
functional connectivity as a tool for human connectomics: Theory, properties, and optimiza-
tion.    J Neurophysiol    103 :  297  –  321 .  

   Van Driel   R ,  Fransz   PF ,  Verschure   PJ .  2003 .  The eukaryotic genome: A system regulated 
at different hierarchical levels.    J Cell Sci    116 :  4067  –  4075 .  

   Van Essen   DC .  1997 .  A tension-based theory of morphogenesis and compact wiring in the 
central nervous system.    Nature    385 :  313  –  318 .  

   Van Essen   DC .  2004 .  Organization of visual areas in Macaque and human cerebral cortex.  
In:  Chalupa   L ,  Werner   JS  (eds),   The Visual Neurosciences  , pp.  507  –  521 .  Cambridge :    MIT 
Press .  

   Van Essen   DC ,  Ugurbil   K .  2012 .  The future of the human connectome .   Neuroimage   doi: 
10.1016/j.neuroimage.2012.01.032.  

   Van Gehuchten   A .  1894 .   Le Syst è me Nerveux de L ’ Homme .   Louvain :  Uystpuyst-
Dieudonn é  .  

   Varkuti   B ,  Cavusoglu   M ,  Kullik   A ,  Schiffler   B ,  Veit   R ,  et al .  2011 .  Quantifying the link 
between anatomical connectivity, gray matter volume and regional cerebral blood flow: An 
integrative MRI study.    PLoS ONE    6 :  e14801 .  

   Varshney   LR ,  Chen   BL ,  Paniagua   E ,  Hall   DH ,  Chklovskii   DB .  2011 .  Structural properties 
of the  Caenorhabditis elegans  neuronal network.    PLoS Comput Biol    7 :  e1001066 .  

   Veraart   J ,  Leergaard   TB ,  Antonsen   BT ,  Van Hecke   W ,  Blockx   I ,  et al .  2011 .  Population-
averaged diffusion tensor imaging atlas of the Sprague Dawley rat brain.    Neuroimage    58 : 
 975  –  983 .  

   Vincent   JL ,  Patel   GH ,  Fox   MD ,  Snyder   AZ ,  Baker   JT ,  et al .  2007 .  Intrinsic functional archi-
tecture in the anaesthetized monkey brain.    Nature    447 :  83  –  86 .  

   Vlassenko   AG ,  Vaishnavi   SN ,  Couture   L ,  Sacco   D ,  Shannon   BJ ,  et al .  2010 .  Spatial correla-
tion between aerobic glycolysis and amyloid- β  (A β ) deposition.    Proc Natl Acad Sci USA   
 107 :  17763  –  17767 .  

   Von Bertalanffy   L .  1968 .   General Systems Theory .   New York :  Braziller .  

   Voss   HU ,  Uluc   AM ,  Dyke   JP ,  Watts   R ,  Kobylarz   EJ ,  et al .  2006 .  Possible axonal regrowth 
in late recovery from the minimally conscious state.    J Clin Invest    116 :  2005  –  2011 .  

   Walker   L ,  Chang   LC ,  Koay   CG ,  Sharma   N ,  Cohen   L .  2010 .  Effects of physiological noise 
in population analysis of diffusion tensor MRI data.    Neuroimage    54 :  1168  –  1177 .  

   Wang   J ,  Zuo   X ,  He   Y .  2010 .  Graph-based network analysis of resting-state functional MRI.  
  Front Syst Neurosci    4 :  16 .  

   Wang   JH ,  Zuo   XN ,  Gohel   S ,  Milham   MP ,  Biswal   BB ,  et al .  2011a .  Graph theoretical analysis 
of functional brain networks: Test – retest evaluation on short- and long-term resting-state 
functional MRI data.    PLoS ONE    6 :  e21976 .  

   Wang   Q ,  Gao   E ,  Burkhalter   A .  2011b .  Gateways of ventral and dorsal streams in mouse 
visual cortex.    J Neurosci    31 :  1905  –  1918 .  

   Wang   Q ,  Sporns   O ,  Burkhalter   A .  2012 .  Network analysis of corticocortical connections 
reveals ventral and dorsal processing streams in mouse visual cortex .   J Neurosci    32 : 
 4386  –  4399 .  



212 References

   Watson   JD ,  Crick   FHC .  1953 .  A structure for deoxyribose nucleic acid.    Nature    171 : 
 737  –  738 .  

   Watson   JD .  1990 .  The human genome project: Past, present, and future.    Science    248 : 
 44  –  49 .  

   Watts   DJ ,  Strogatz   SH .  1998 .  Collective dynamics of  “ small-world ”  networks.    Nature    393 : 
 440  –  442 .  

   Watts   DJ .  2007 .  A twenty-first century science.    Nature    445 :  489 .  

   Wedeen   VJ ,  Hagmann   P ,  Tseng   WY ,  Reese   TG ,  Weisskoff   RM .  2005 .  Mapping complex 
tissue architecture with diffusion spectrum magnetic resonance imaging.    Magn Reson Med   
 54 :  1377  –  1386 .  

   Wedeen   VJ ,  Rosene   DL ,  Wang   R ,  Dai   G ,  Mortazavi   F ,  et al .  2012 .  The geometric structure 
of the brain fiber pathways .   Science    335 :  1628  –  1634 .  

   Wedeen   VJ ,  Wang   RP ,  Schmahmann   JD ,  Benner   T ,  Tseng   WYI ,  et al .  2008 .  Diffusion spec-
trum magnetic resonance imaging (DSI) tractography of crossing fibers.    Neuroimage    41 : 
 1267  –  1277 .  

   Wedeen   VJ ,  Wang   R ,  Schmahmann   JD ,  Takahashi   E ,  Kaas   JH ,  et al .  2009 .  Diffusion spec-
trum MRI in three mammals: Rat, monkey and human.    Front Neurosci    3 :  74  –  77 .  

   Weible   AP ,  Schwarcz   L ,  Wickersham   IR ,  Deblander   L ,  Wu   H ,  et al .  2010 .  Transgenic target-
ing of recombinant rabies virus reveals monosynaptic connectivity of specific neurons.    J 
Neurosci    30 :  16509  –  16513 .  

   White   BR ,  Bauer   AQ ,  Snyder   AZ ,  Schlaggar   BL ,  Lee   JM ,  et al .  2011 .  Imaging of functional 
connectivity in the mouse brain.    PLoS ONE    6 :  e16322 .  

   White   JG ,  Southgate   E ,  Thomson   JN ,  Brenner   S .  1983 .  Factors that determine connectivity 
in the nervous system of  Caenorhabditis elegans .    Cold Spring Harb Symp Quant Biol    48 : 
 633  –  640 .  

   White   JG ,  Southgate   E ,  Thomson   JN ,  Brenner   S .  1986 .  The structure of the nervous system 
of the nematode  Caenorhabditis elegans .    Philos Trans R Soc Lond, B    314 :  1  –  340 .  

   Wickersham   IR ,  Finke   S ,  Conzelmann   KK ,  Callaway   EM .  2007 .  Retrograde neuronal 
tracing with a deletion-mutant rabies virus.    Nat Methods    4 :  47  –  49 .  

   Wig   GS ,  Schlaggar   BL ,  Petersen   SE .  2011 .  Concepts and principles in the analysis of brain 
networks.    Ann N Y Acad Sci    1224 :  126  –  146 .  

   Williams   RW ,  Herrup   K .  1988 .  The control of neuron number.    Annu Rev Neurosci    11 : 
 423  –  453 .  

   Winkler   H .  1920 .   Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche.   
 Jena :  Verlag Fischer .  

   Wolf   L ,  Goldberg   C ,  Manor   N ,  Sharan   R ,  Ruppin   E .  2011 .  Gene expression in the rodent 
brain is associated with its regional connectivity.    PLoS Comput Biol    7 :  e1002040 .  

   Xu   T ,  Yu   X ,  Perlik   AJ ,  Tobin   WF ,  Zweig   JA ,  et al .  2009 .  Rapid formation and selective 
stabilization of synapses for enduring motor memories.    Nature    462 :  915  –  919 .  

   Yamahachi   H ,  Marik   SA ,  McManus   JNJ ,  Denk   W ,  Gilbert   CD .  2009 .  Rapid axonal sprout-
ing and pruning accompany functional reorganization in primary visual cortex.    Neuron    64 : 
 719  –  729 .  

   Yang   G ,  Pan   F ,  Gan   WB .  2009 .  Stably maintained dendritic spines are associated with 
lifelong memories.    Nature    462 :  920  –  924 .  

   Yarkoni   T ,  Poldrack   RA ,  van Essen   DC ,  Wager   TD .  2010 .  Cognitive neuroscience 2.0: 
Building a cumulative science of human brain function.    Trends Cogn Sci    14 :  489  –
  496 .  

   Yarkoni   T ,  Poldrack   RA ,  Nichols   TE ,  Van Essen   DC ,  Wager   TD .  2011 .  Large-scale 
automated synthesis of human functional neuroimaging data.    Nat Methods    8 :  665  –
  670 .  



213 References

   Yeo   BTT ,  Krienen   FM ,  Sepulchre   J ,  Sabuncu   MR ,  Lashkari   D ,  et al .  2011 .  The organization 
of the human cerebral cortex estimated by functional connectivity .   J Neurophysiol   106: 
1125 – 1165.  

   Yook   SH ,  Jeong   HW ,  Barabasi   AL .  2002 .  Modeling the Internet ’ s large-scale topology.    Proc 
Natl Acad Sci USA    99 :  13382  –  13386 .  

   Young   MP .  1992 .  Objective analysis of the topological organization of the primate cortical 
visual system.    Nature    358 :  152  –  155 .  

   Young   MP .  1993 .  The organization of neural systems in the primate cerebral cortex.    Proc 
Biol Sci    252 :  13  –  18 .  

   Yu   JY ,  Kanai   MI ,  Demir   E ,  Jefferis   GSXE ,  Dickson   BJ .  2010 .  Cellular organization of the 
neural circuit that drives  Drosophila  courtship behavior.    Curr Biol    20 :  1602  –  1614 .  

   Zalesky   A ,  Fornito   A ,  Bullmore   ET .  2010a .  Network-based statistic: Identifying differences 
in brain networks.    Neuroimage    53 :  1197  –  1207 .  

   Zalesky   A ,  Fornito   A ,  Harding   IH ,  Cocchi   L ,  Yucel   M ,  et al .  2010b .  Whole-brain anatomical 
networks: Does the choice of nodes matter?    Neuroimage    50 :  970  –  983 .  

   Zalesky   A ,  Fornito   A ,  Seal   ML ,  Cocchi   L ,  Westin   CF ,  et al .  2011 .  Disrupted axonal fiber 
connectivity in schizophrenia.    Biol Psychiatry    69 :  80  –  89 .  

   Zamora-L ó pez   G ,  Zhou   C ,  Kurths   J .  2010 .  Cortical hubs form a module for multisensory 
integration on top of the hierarchy of cortical networks.    Front Neuroinf    4 :  1 .  

   Zeki   S ,  Shipp   S .  1988 .  The functional logic of cortical connections.    Nature    335 :  311  –  317 .  

   Zhang   D ,  Raichle   ME .  2010 .  Disease and the brain ’ s dark energy.    Nature Rev Neurol    6 : 
 15  –  28 .  

   Zhang   H ,  Hubbard   PL ,  Parker   GJM ,  Alexander   DC .  2011 .  Axon diameter mapping in the 
presence of orientation dispersion with diffusion MRI.    Neuroimage    56 :  1301  –  1315 .  

   Zhang   K ,  Sejnowski   TJ .  2000 .  A universal scaling law between gray matter and white matter 
of the cerebral cortex.    Proc Natl Acad Sci USA    97 :  5621  –  5626 .  

   Zhu   X ,  Gerstein   M ,  Snyder   M .  2007 .  Getting connected: Analysis and principles of biologi-
cal networks.    Genes Dev    21 :  1010  –  1024 .  

   Zilles   K ,  Amunts   K .  2009 .  Receptor mapping: Architecture of the human cerebral cortex.  
  Curr Opin Neurol    22 :  331  –  339 .  

   Zilles   K ,  Amunts   K .  2010 .  Centenary of Brodmann ’ s map — Conception and fate.    Nat Rev 
Neurosci    11 :  139  –  145 .  

   Zuo   XN ,  Ehmke   R ,  Mennes   M ,  Imperati   D ,  Castellanos   FX ,  et al .  2012 .  Network centrality 
in the human functional connectome.    Cereb Cortex  .  



 Actin, 51 
 Adjacency matrix, 16t, 31, 41 
 Affinity graphs, 67 – 68 
 Aizawa, K., 184n4 
 Allen Human Brain Atlas, 169 
 Allen Institute for Brain Science, 90, 

189n7 
 Alzheimer ’ s disease, 146 
 Amacrine cells, 72 
 Anaerobic glycolysis, 126 – 127 
 Ananthanarayanan, R., 167 
 Array tomography, 80 – 81 
  Ascaris , 182n3 
 Association fibers, 85, 95, 99 
 Association systems, 85 
 Assortativity, 140, 188n6 
 ATP, 126 
 Attention, 121, 130, 172 
 Automated tape-collection lathe 

ultramicrotome (ATLUM), 67 
 Awareness, 121 
 Axons 
 branch size and, 54 
 computational connectomics and, 
166 – 167 

 connection length and, 183n9 
 density and, 47, 70, 98, 137 
 DIADEM and, 185n4 
 diameter and, 97 – 98, 183n9 
 diffusion imaging and, 87, 90 – 99 
  Drosophila  and, 70 
 emerging principles of network 
architectures and, 137 – 138, 146 

 geometry of, 72, 74 
 injury and, 58 
 known profiles of, 43 
 lack of noninvasive techniques for 
visualizing, 63 

 length and, 65, 70, 185n1 
 macroscale and, 85, 87, 90 – 99 
 mapping and, 40, 43, 45, 47, 51 – 54, 56, 58 

 Index 

 micro-optical sectioning tomography 
(MOST) and, 77 

 microscale and, 63, 65, 67, 70 – 72, 74 – 77, 
185nn1,4 

 myelin sheaths and, 93, 98 
 Peters ’  Rule and, 70 
 projection patterns and, 75 
 sprouting of, 54, 58 
 streamlines and, 95 
 structural dynamics and, 53 
 3D-PLI and, 90, 107 
 tracing of, 85, 87 – 91 
 tractography and, 87 – 99 
 unmyelinated, 74, 98 

  
 Barrel cortex, 43, 51 
 Basal ganglia, 140 
 Bayesian model, 112, 119, 162 
 Behavior, 2, 12, 178 – 179, 184n4 
 body sensors and, 4 
 brain dynamics and, 33 
 cognition and, 109, 111 ( see also  
Cognition) 

 computational connectomics and, 
155 – 162, 170 – 176, 189n6 

 dynamic, 8, 23 
 emergent, 5 – 6 
 flexibility and, 132 
 fMRI and, 122, 124 
 functional segregation and, 27, 56, 139, 
186n9 

 genetics and, 22 
 global system, 9 
 large data sets and, 126 
 macroscale and, 101, 107 – 108, 129 
 mapping and, 40, 45 – 51, 55, 58 – 61 
 mechanistic understanding of, 36 – 37 
 microscale and, 77, 82 
 network architectures and, 139, 146, 148, 
151, 153 

 neural dynamics and, 21 



216 Index

 organismic, 36 
 regional coactivation and, 125 
 resting-state networks (RSNs) and, 122 
 structural connectivity and, 36 – 37 
 wiring diagrams and, 132 – 134 

 Binzegger, T., 75 
 Biswal, B. B., 125 – 126, 159 
 Block-face scanning, 67 
 Blue Brain, 167 
 Bock, D. D., 71 
 BOLD (blood oxygen level dependent) 

signals 
 cognition and, 171, 173 
 computational connectomics and, 
162 – 166, 172 

 EEG microstates and, 130 
 functional connectivity and, 119 – 120, 
125 

 interregional functional connectivity and, 
119 – 120, 187n7 

 macaques and, 162 – 163 
 mice and, 119, 187n7 
 microstates and, 130 
 network architectures and, 151 
 neurocognitive networks and, 120 
 rats and, 187n7 
 resting-state fMRI and, 120, 125, 151 
 Virtual Brain and, 162 – 166 

 Bonifazi, P., 137 
 Bottom-up models, 167 – 168 
 Boutons, 53 – 54, 70, 72, 88 
 Brain Architecture Project, 89 – 90 
Brainbow  technique, 29 
 Brain reading, 170 – 171 
 Braitenberg, Valentino, 65, 81 – 82 
 Brenner, Sydney, 27 
 Briggman, Kevin, 28, 34, 36, 72 
 Buckner, R. L., 150 
 Bullmore, E., 135 
  
  Caenorhabditis elegans , 19, 27, 45, 63, 

183nn6,11, 188n6 
 Callosotomy, 95, 115 – 116, 143, 163, 

187nn4,5, 188n7 
 Canonical circuits, 34, 39, 43 – 44, 75, 172 
 Cat brain, 75, 184n7 
 Cell groupings, 41, 43, 78, 103 
 Cellular computation, 25 
 Centrality, 5, 18 
 defined, 17t 
 dynamic connectomes and, 126, 186n1 
 hubs and, 16t ( see also  Hubs) 
 mapping and, 58 
 network architectures and, 137, 143, 146, 
150 

 page-rank, 150 

 Cerebral cortex, 19 
 anatomical subdivisions of, 44 
 canonical circuits and, 75 
 cats and, 167 
 computational connectomics and, 167 
 functional architecture of, 56 
 functional hubs and, 149 – 150 
 large-scale projections and, 19 
 macaques and, 115 
 macroscale and, 92, 97, 102 
 mapping and, 44, 56 
 microscale and, 75 
 network architectures and, 145, 149 – 150 
 randomized connections and, 145 
 resting state networks (RSNs) and, 121 
 structure-function relationship and, 118 

 Chang, C., 130 
 Chiang, A. S., 78 
 Cingulate cortex, 104, 121, 130 – 131, 143, 

146, 150 
 Clustering, 17t, 18 – 19, 182n11, 183n5 
 assembling large-scale network 
descriptions and, 103 – 105 

 computational connectomics and, 172, 174 
 macroscale and, 103 – 105 
 mapping and, 41 – 42, 56 
 microscale and, 75, 78 
 network architectures and, 135 – 139, 149 
 resting-state networks (RSNs) and, 121 

 Cognition, 179 
 BOLD signals and, 171, 173 
 brain reading and, 170 – 171 
 capacities of, 5, 12, 19, 22 – 23 
 computational connectomics and, 
155 – 159, 162, 167, 170 – 174, 190nn11,13 

 forward inference and, 171 – 172 
 functional modules and, 120 – 128 
 future studies and, 174 – 175 
 genetics and, 109, 133 
 macroscale and, 85, 101 
 mapping and, 40, 45, 48, 58, 61, 184n4 
 mental states and, 125, 170 – 171, 174 
 network architectures and, 114, 120 – 128, 
139, 143, 146, 148, 151 – 153 

 neurocognitive networks and, 114, 
120 – 128, 133 – 134 

 new ontology for, 170 – 174, 190n13 
 phenotypes and, 133 
 reverse inference and, 171 – 172 
 sensorimotor activity and, 111 
 tasks and, 31 ( see also  Tasks) 
 transcranial magnetic stimulation and, 
119 

 variable neural dynamics and, 130 – 132 
 Collations of Connectivity Date on the 

Macaque Brain (CoCoMac) database, 
87, 183n6 

Behavior (cont.)



217 Index

 grassroots initiatives and, 159 
 hubs and, 159 
 Human Connectome Project and, 
156 – 159, 174, 189n1 

 information and, 156 – 160, 162, 170 – 171, 
174, 176 

 light microscopy (LM) and, 156, 160 
 macaques and, 162 – 163 
 mice and, 189n4, 189n7 
 Moore ’ s law and, 167 
 multiscale systems and, 158, 168 – 170 
 network architectures and, 170, 174 
 neuroinformatics challenges and, 156 – 160 
 new cognition ontology and, 170 – 174, 
190n13 

 1000 Functional Connectomes Project 
and, 159 

 parcellation and, 158 
 rats and, 167 
 reconstruction techniques and, 156, 167 
 resting-state networks (RSNs) and, 
162 – 163 

 statistics and, 155 – 156, 159, 171 
 structural connectivity and, 158, 162 – 163, 
175 

 synapses and, 190nn9,11 
 tasks and, 167, 171 – 174, 190n13 
 time series and, 158, 166, 172 
 topology and, 162 – 163, 166, 174 
 tractography and, 163 
 visual cortex and, 171 
 visualization platforms and, 157 – 158 
 voxels and, 157 
 whole-brain models and, 155 – 156, 
160 – 170, 174 – 175, 190n11 

 CONNECT consortium, 182n12 
 Connectional fingerprints, 104 
 Connection length, 31, 183n9 
 Connection matrices, 12, 28, 183n5 
 adjacency matrix and, 16t, 31, 41 
 building Virtual Brain and, 160 – 162 
 computational connectomics and, 155, 
157, 160, 162 

 defined, 16t 
 dynamic connectomes and, 112, 114 
 electron microscopy (EM) and, 72 
 Felleman/Van Essen and, 28, 183n5 
 macroscale and, 85, 89, 97, 99 
 mapping and, 41, 44, 56 
 microscale and, 72, 74, 78 
 network architectures and, 136, 157, 
160 – 162 

 Connectomes 
 as architectural description, 33 – 34 
 canonical circuits and, 34, 39, 43 – 44, 75, 
172 

 cerebral cortex and, 167 

 Complexity 
 behavior and, 27 ( see also  Behavior) 
 building Virtual Brain and, 160 – 170 
 computational connectomics and, 155, 

159 – 160, 167 – 168, 174, 176 
 dynamic behavior and, 23, 27 
 emerging science of, 20 
 graphs and, 178 ( see also  Graphs) 
 human brain and, 1, 23, 28, 30, 41, 

160 – 170 
 macroscale and, 93 – 95, 98, 108 
 mapping and, 39, 41, 44, 48, 53, 58, 60 – 61 
 microscale and, 63, 70, 78 
 nature of, 2 
 network architectures and, 5 – 10, 23, 30, 
35, 60 – 61, 120, 132, 140, 143, 148, 
152 – 153, 155, 168, 179, 182n11, 189n14 

 self-organization and, 36 
 structure and, 2 – 5, 21 
 wiring diagrams and, 8, 22 – 23, 37, 45, 78, 
132 – 133, 148, 177 – 178, 185n1 

 Complex networks, 5, 23, 30, 35, 182n11 
 computational connectomics and, 155, 
168 

 mapping and, 60 
 neural elements of, 120 
 structural connectivity and, 132 ( see also  
Structural connectivity) 

 Computational connectomics 
 Allen Human Brain Atlas and, 169 
 axons and, 166 – 167 
 behavior and, 155 – 162, 170 – 176, 189n6 
 BOLD signals and, 162 – 166, 172 
 building Virtual Brain and, 160 – 170 
 cerebral cortex and, 167 
 clustering and, 172, 174 
 cognition and, 155 – 159, 162, 167, 170 – 174, 
190nn11,13 

 complexity and, 155, 159 – 160, 167 – 168, 
174, 176 

 connectivity matrices and, 155, 157, 160, 
162 

 Connectome Viewer and, 158 
 Connectome Workbench and, 157 – 158 
 couplings and, 160 – 161, 163 
 data sets and, 155 – 162, 166, 170, 189n6 
 diffusion imaging and, 163 
 effective connectivity and, 161 
 electron microscopy (EM) and, 156, 160, 
189n5 

 fMRI and, 158 – 159, 171, 189n6 
 functional connectivity and, 155, 158 – 166, 
172, 174 

 functional integration and, 158 – 159, 175 
 future studies and, 174 – 176 
 genetics and, 159, 174 – 176, 189nn2,6, 
190n14 



218 Index

 Dauguet, J., 99 
 Deco, G., 163 
 Degree distribution, 14, 17t, 135, 137 – 139, 

145, 149 
 Dendrites 
 actin filaments and, 51 
 arbors and, 53, 77, 101 
 branch size and, 54 
 density and, 51, 70 
 DIADEM and, 185n4 
 geometry of, 72, 74, 101 
 length and, 70 
 long-term observations and, 51 
 macroscale and, 101 
 mapping and, 40 – 43, 51 – 55 
 microscale and, 70, 74 – 75, 77, 83, 185n1 
 multiscale architecture and, 40 – 43 
 Peters ’  Rule and, 70 
 postsynaptic, 70 
 projection patterns and, 75 
 remodeling and, 51 – 55 
 spines and, 40, 51 – 53, 55, 70, 74, 83 
 structural modifications and, 51, 53 
 turnover rates and, 50 – 51 
 white matter and, 83 

 Denk, Winfried, 28, 34, 36 
 Deoxyribonucleic acid (DNA), 3, 33 – 35, 

60, 184nn8,15 
 DIADEM (DIgital reconstructions of 

Axonal and DEndritic Morphology), 
185n4 

 Diffusion anisotropy, 93 
 Diffusion imaging, 182n12 
 anisotropy and, 93, 97 – 98 
 axons and, 90 – 99 
 computational connectomics and, 163 
 fibers and, 87, 93, 95, 98 
 gray matter and, 98 
 local axonal distributions and, 98 
 macaques and, 99 
 macroscale and, 87, 93, 96 – 101, 104 – 108, 
186nn3,5 

 MRI technologies and, 56, 58, 88, 92 – 100, 
115 

 network architectures and, 138, 150, 152, 
188n7 

 as noninvasive, 56 
 spectrum (DI), 95 
 structural connectivity and, 92 – 93, 
96 – 100 

 tensor, 93 
 validation and, 99 
 white matter voxels and, 93 – 98 

 Discovery science, 6 – 7, 126, 159, 174 
 Disease, 23, 183n13 
 computational connectomics and, 159, 
166, 174 – 175, 178 

 common motivations for, 27 – 30 
 complexity and, 2 – 5 
 computational, 155 – 176 
 conceptual foundations for, 31 – 36 
 contribution to neurosocience and, 21 – 23 
 defined, 1 – 2 
 discovery of, 21, 60 
 dynamic, 109 – 134 
 emerging principles of network 
architectures and, 135 – 153 

  “ form follows function ”  and, 36 – 37 
 as fundamental research goal, 30 
 future studies and, 174 – 176 
 historical perspective on, 9 – 20 
 Human Connectome Project and, 22, 127, 
156 – 159, 174, 182n13, 189n1 

 human uniqueness and, 152 – 153 
 individual variability and, 39, 44 – 50 
 macroscale, 85 – 108 
 microscale, 63 – 83 
 miswiring and, 116 
 multiple origins of term, 28 – 30 
 neural tissue reconstruction and, 65 – 72 
 purpose of, 30 
 structure and, 2 – 5 
 systems biology and, 5 – 9 
 3D-PLI and, 90, 107 
 tracing and, 87 

 Connectome Viewer, 158 
 Connectome Workbench, 157 – 158 
 Connectomics 
 central claim of, 32 – 33 
 definition of, 29 
 multiple origins of term, 28 – 30 
 two cultures of, 107 – 108 

 Control theory, 161 
 Core, 16t, 121, 135, 140, 143, 148, 150 
 Cost – efficiency trade-off, 144 – 148 
 Couplings 
 computational connectomics and, 
160 – 161, 163 

 dynamic, 56, 113, 128 
 functional networks and, 148 
 high functional, 130 – 132 
 negative, 128 
 neurovascular, 82, 126 
 physical, 4 
 regulatory, 34 
 resting-state networks (RSNs) and, 130 
 structural, 115 
 time series correlations and, 151 

 Covariance, 104, 124 – 125, 128, 187n6 
 Crofts, J. J., 58 
 Cryonics, 156 
 Cytoarchitectonics, 40, 44, 48, 102, 135, 

186n6 

Connectomes (cont.)



219 Index

 topology and, 150 – 151 ( see also  
Topology) 

 weight and, 17t, 138 
 Effective connectivity, 12, 32 
 computational connectomics and, 161 
 dynamic connectomes and, 112, 187n6 
 modality of, 14t 

 Electroencephalograms (EEGs), 119, 
129 – 130, 151 

 Electron microscopy (EM), 2 
 assembling large-scale network 
descriptions and, 102 

 automated segmentation and, 66 
 boundary detection and, 68 
 Brenner and, 27 
  C. elegans  and, 27 
 computational connectomics and, 156, 
160, 189n5 

 connectivity matrices and, 72 
 elementary circuits and, 35 
 fixation and, 66 
 focused ion beam scanning and, 67 
 image segmentation and, 67 
 labeling and, 66 – 68, 80 
 macroscale and, 85, 90 – 92, 101 – 102, 
107 – 108 

 mapping challenges of, 64 – 72 
 merge/split editing and, 69 
 microscale and, 64 – 72, 74, 80 – 81, 
185nn2,3 

 neural tissue reconstruction and, 28, 35, 
65 – 72 

 neuroinformatics and, 156 
 Open Connectome Project and, 189n5 
 Peters ’  Rule and, 70 
 proteins and, 70 
 reconstruction techniques and, 27 – 28, 35, 
55 – 56, 64 – 72, 80, 85, 91, 107 – 108 

 remodeling and, 54 – 55 
 serial block-face scanning, 67, 72 
 statistics and, 35 
 synapses and, 65 – 81 
 three-dimensional descriptions and, 65, 
67 – 69, 80 

 tract tracing and, 90 – 92 
 transmission, 67, 70 
 two-dimensional image stacks and, 65, 
68 

  Entwurf zu einer Physiologischen 
Erkul ä rung der Psychischen 
Erscheinnugen  (Exner), 10 

 Excitatory neurons, 35, 43, 75 
 Executive control, 172 
 Exner, Sigmund, 10 
  
 Fan, Y., 56 
 Felleman, Dan, 28 

 dynamic connectomes and, 120 – 121, 134, 
187nn9,13 

 network architectures and, 146, 151 – 152 
 Distance matrix, 16t – 17t 
 Doucet, G., 121 
  Drosophila , 22 
 axonal length and, 70 
 mapping and, 45, 55, 77 – 78 
 microscale and, 69 – 70, 77 – 80 
 number of neurons of, 77 
 spine number and, 55 
 synaptic density and, 70 

 Dynamic causal modeling (DCM), 162 
 Dynamic connectomes 
 Bayesian models and, 112, 119 
 centrality and, 126, 186n1 
 connectivity matrices and, 112, 114 
 effective connectivity and, 112, 187n6 
 functional connectivity and, 109 – 121, 
125 – 131 

 functional repertoire and, 128 – 132 
 genetics and, 109, 111, 119, 125 – 126, 
133 – 134, 187n13 

 Granger causality and, 112 
 hubs and, 113, 122, 127 
 information and, 111, 128 
 modules and, 120 – 128 
 neural elements and, 109 – 113, 120 
 neurocognitive networks and, 114, 
120 – 128, 133 – 134 

 proteins and, 109, 111, 119, 186n1 
 segregation and, 128 
 statistics and, 111 – 115, 120, 129, 134 
 tissue and, 109, 126 
 topology and, 109, 113, 125, 128, 132 – 134 
 variable neural dynamics and, 128 – 132 
 visual cortex and, 114 
 whole-brain models and, 114 – 115 
 wiring diagrams and, 132 – 134 

  
 Eddy currents, 93 
 Edges, 10 – 19, 28, 43, 182n11 
 assembling large-scale network 
descriptions and, 101 – 107 

 computational connectomics and, 158, 
162, 178 

 cost – efficiency trade-off and, 144 
 dynamic connectomes and, 101 – 103, 122, 
128 

 functional networks and, 148, 151 
 macroscale and, 97, 101 – 103 
 microscale and, 68 
 neurocognitive networks and, 122, 127, 
128 

 nodes with similar degree and, 140 ( see 
also  Nodes) 

 randomly rewired, 139 



220 Index

 association fibers and, 85, 95, 99 
 BOLD, 119 – 120, 125, 163, 187n7 
 causal efficacy and, 109 
 data sets for, 126 – 127, 216 
 defined, 187n2 
 density of, 150 
 dynamic causal modeling (DCM) and, 
162 

 dynamic connectomes and, 109 – 121, 
125 – 131 

 edge dynamics and, 128 
 fMRI and, 128, 183n10 
 future issues and, 174 – 175 
 genetics and, 125 – 126 
 important role of, 2 
 invariant features and, 128 
 macroscale and, 104 – 105, 108 – 120, 
186nn7,9 

 mapping and, 44 
 mesoscopic scale and, 43 – 44, 64, 77 – 78 
 miswiring and, 116 
 modality of, 14t, 16t 
 network architectures and, 137, 148 – 151 
 neural elements and, 187n3 
 nonstationary dynamics of, 129 
 resting-state, 114, 120 – 121, 125, 128, 130, 
163, 172, 187n5 

 scale and, 3 – 4 
 social interaction and, 187n3 
 static patterns and, 166 
 structural basis of, 111 – 120 
 temporal fluctuations and, 31 – 32 
 time series and, 31 – 32 
 Virtual Brain and, 160 – 170 

 Functional Connectomes Project, 126 – 127, 
159 

 Functional hubs, 149 – 150 
 Functional integration, 64, 82 
 computational connectomics and, 
158 – 159, 175 

 information measures and, 18 
 long-distance module connections and, 
139 

 macroscale and, 85, 95 
 mapping and, 56 
 measures of, 18 
 network architectures and, 1 – 9, 20 – 28, 
139, 143, 146, 148 

 system biology and, 5 – 9 
 tissue metabolism and, 126 – 127 
 variable neural networks and, 128 – 132 
 visual cortex and, 27 

 Functional modules, 120 – 128 
 Functional networks, 19 – 20, 31, 178 
 computational connectomics and, 
160 – 163, 174 

 dynamic connectomes and, 109, 112, 115, 
120 – 121, 125 – 128 

 Fibers 
 association, 85, 95, 99 
 callosal, 95, 187n4 
 crossing, 93, 95, 98 
 diameter of, 98 
 diffusion imaging and, 87, 93, 95 
 graph representation of, 69 
 interregional bundles of, 78 
 kissing, 98 
 length and, 186n4 
 orientation of, 98 
 projection, 85 
 synaptic strength and, 99 
 3D-PLI and, 90, 107 
 tracking algorithms for, 98 
 tracts of, 47, 63, 98 – 99, 138 
 trajectories of, 148 

 Fixation, 66, 87 
 Fluorescent markers, 5, 54, 74, 77 – 81, 

185nn5,6 
 fMRI (functional magnetic resonance 

imaging) 
 activation data and, 158 
 assembling large-scale network 
descriptions and, 104 – 105 

 BOLD signals and, 120, 125 
 computational connectomics and, 
158 – 159, 171, 189n6 

 covariance-based methods and, 187n6 
 functional connectivity and, 128, 183n10 
 functional networks and, 56 
 macaques and, 115 
 microstates and, 130 
 motor learning and, 131 
 network architectures and, 150 – 151, 
188n2 

 neurocognitive networks and, 120, 
124 – 125, 128 

 nonstationarities and, 131 
 optogenetics and, 107, 119 – 120 
 parcellation and, 183n12, 187n6 
 partitions and, 149 
 rats and, 119 
 remodeling and, 56 
 resting-state, 104, 120 – 125, 128 – 130, 150, 
159, 187n12, 188n2, 189n6 

 subgraphs and, 121 – 122 
 tasks and, 105, 121 – 122, 124, 183n12 
 time series and, 124, 150 – 151 
 voxels and, 121 

 Forward inference, 171 – 172 
 Forward modeling, 119, 161 – 162, 169 
 Fractional anistropy (FA), 98 – 99 
 Fruit flies, 22, 77 
 Functional centrality, 150 
 Functional connectivity, 12, 178, 183n10 
 assembling large-scale network 
descriptions and, 104 – 105 



221 Index

 affinity, 67 – 68 
 assembling large-scale network 
descriptions and, 101 – 107 

 binary, 12, 16t 
 core and, 16t, 121, 135, 140, 143, 148, 150 
 cost – efficiency trade-off and, 144 – 148 
 degree distribution and, 14, 17t, 135, 
137 – 138, 145, 149 

 directed, 12 
 edges and, 10 – 19 ( see also  Edges) 
 global connectivity and, 13 
 global efficiency and, 17t, 18, 56, 139 – 140 
 local connectivity and, 13 
 macroscale and, 101 
 measurement robustness and, 188n2 
 modules and, 18 ( see also  Modules) 
 network data and, 12 – 14 
 nodes and, 140 – 141 ( see also  Nodes) 
 parcellation and, 12 ( see also  
Parcellation) 

 path length and, 18 – 19, 75, 135, 139, 145 
 random network and, 17t 
 rich club and, 17t, 140, 143, 148, 152 
 segregation and, 18 ( see also  Segregation) 
 small-world network and, 17t, 19, 56, 75, 
139, 145, 153, 182n10, 183n5 

 static representations and, 12 
 undirected, 12 
 weighted, 12, 14 

 Gray matter 
 density and, 48 – 49, 58 – 59 
 diffusion imaging and, 98 
 individual variability and, 48 – 49 
 macroscale and, 95 – 98 
 mapping and, 40, 48, 51 
 microscale and, 65 
 network architectures and, 140, 143, 150, 
188n1 

 regional metabolism and, 187n10 
 remodeling and, 58 – 59 

 Ground truth, 27, 31, 36, 69, 108, 182n2, 
186n3 

  
 Hagmann, Patric, 28, 138 – 139 
 Hayasaka, S., 149 
 Helmstaedter, M., 69 
 Heritability, 4, 49, 121, 125, 133, 151, 175 
 Heterogeneity, 39, 45, 60 
 Hippocampus, 69 – 70, 137, 140 
 Hubs, 18 
 centrality and, 127 
 computational connectomics and, 159 
 cost – efficiency trade-off and, 144 – 148 
 definition of, 16t 
 dynamic connectomes and, 113, 122, 127 
 functional, 149 – 150 
 human brain and, 136 – 144 
 mapping and, 56 

 mapping and, 56 
 network architectures and, 148 – 152 
 resting-state, 126, 183n10 

 Functional segregation, 27, 56, 139, 186n9 
  
 GABA-ergic interneurons, 53 
 Gallium, 67 
 Ganglion cells, 72, 80 
 Genetics 
  Ascaris  and, 182n3 
 behavior and, 22 
 biological information and, 23 
 computational connectomics and, 159, 
174 – 176, 189nn2,6, 190n14 

 disease and, 134 
 DNA and, 3, 33 – 35, 60, 184nn8,15 
 dynamic connectomes and, 109, 111, 119, 
125 – 126, 133 – 134, 187n13 

 heritability and, 4, 49, 121, 125, 133, 151, 
175 

 Human Genome Project and, 33, 
182nn13,15,16 

 macroscale and, 101, 107 
 mapping and, 33 – 34, 47 – 50, 59 – 61, 184n8, 
185n9 

 microscale and, 77, 80 – 81 
 network architectures and, 146, 148, 151 
 personal genomics and, 175 – 176 
 phenotypes and, 60, 77, 133, 151, 174, 
184n8, 190n14 

 remodeling and, 181n5 ( see also  
Remodeling) 

 resting-state functional connectivity and, 
125 – 126 

 RNA and, 7, 111 
 sequencing and, 33 – 34, 61, 185n0 
 size of human genome sequence and, 
183n11 

 spatiotemporal networks and, 33 
 systems biology and, 5 – 9 
 terminology of, 184n8 
 translation and, 33 
 Winkler and, 7, 181n3 

 Ghosh, A., 163 
 Gillett, C., 184n4 
 Glasser, M. F., 104 – 105 
 Global efficiency, 17t, 18, 56, 139 – 140 
 Glover, G. H., 130 
 Glucose, 126 
 Goldschmidt, Richard, 182n3 
 Golgi method, 74 – 75 
 Gong, G., 138 – 139 
 Google Earth, 158 
 Granger causality, 112 
 Granovetter, Mark, 10 
 Graphs, 28, 177 – 178.  See also  Network 

architectures 
 adjacency and, 12 



222 Index

 functional studies and, 25 ( see also  
Functional connectivity) 

 genetics and, 23 ( see also  Genetics) 
 ground truth and, 27, 31, 36, 69, 108, 
182n2, 186n3 

 Human Connectome Project and, 22, 127, 
156 – 159, 174, 182n13, 189n1 

 integration measures and, 18 
 macroscale, 87, 90 – 95, 98, 101, 103 – 104, 
186n9 

 mapping and, 40, 42, 50, 55, 60 
 microscale, 65, 68 – 72, 81 
 Moore ’ s law and, 167 
 network architectures and, 137 – 140, 143, 
145, 148 – 152 

 neurons and, 1, 4 
 1000 Functional Connectomes Project 
and, 159 

 structural, 31 ( see also  Structural 
connectivity) 

 synapses and, 12 ( see also  Synapses) 
 systems biology and, 5 – 9, 183n10 
 topological, 30 
 transmission speeds and, 183n9 

 Inhibitory neurons, 35, 43, 72, 75, 114, 137 
 Interscutularis muscle, 80 
 Iturria-Medina, Y., 139 

 Juggling, 58 

 Kaiser, M., 135 
 Kinnumen, K. M., 58 
 Kissing fibers, 98 
 Kitano, Hiroaki, 6 
 Knife-edge scanning microscopy (KESM), 

75 

 Labeling 
Brainbow  method and, 29 
 electron microscopy (EM) and, 66 – 68, 
80 

 fluorescent, 5, 54, 74, 77 – 81, 185n6 
 light microscopy (LM) and, 74 – 81 
 neural tissue reconstruction and, 66 – 68 
 neuronal communication and, 188n4 
 retrograde, 80 
 tracing and, 80, 87 – 90 
 translucent, 185n5 

 Laurienti, P. J., 149 
 Lee, J. H., 119 
 Lehmann, Dietrich, 129 – 130, 187n11 
 Lesions, 27, 53 – 54, 166 
 Li, Y., 138 
 Lichtman, Jeff, 28, 29 
 Light microscopy (LM) 
 assembling large-scale network 
descriptions and, 102 

 network architectures and, 136 – 152, 178, 
188nn8,9 

 neurocognitive networks and, 122 
 node aggregation and, 140, 143 
 regional, 140 
 scale-free organization and, 137 
 spokes and, 144, 148, 188n9 
 synaptic parameters and, 137 – 138 

 Human brain 
 Allen Human Brain Atlas and, 169 
 building a virtual, 160 – 170 
 complexity of, 1, 23, 28, 30, 41 
 comprehensive computation model for, 2 
 computational connectomics and, 
155 – 176 

 connectome comparison and, 40 
 cost – efficiency trade-off and, 144 – 148 
 dynamic connectomes and, 109 – 134 
 emerging network architectures of, 
135 – 153 

 hubs in, 136 – 144 
 individual variability and, 39, 44 – 50, 60 
 as interconnected communities, 135 
 macroscale structure and, 85 – 108 
 mapping and, 4, 44 – 48, 56, 61 ( see also  
Mapping) 

 mechanistic models for, 21, 27, 30, 36 – 37, 
155 

 mental states and, 125, 170 – 171, 174 
 microscale structure and, 63 – 83 
 modules in, 136 – 144 
 network architectures and, 135 – 152 
 number of synaptic connections in, 41 
 parcellation and, 12 ( see also  
Parcellation) 

 small-world attributes and, 19, 56, 75, 137, 
139, 143, 145, 153, 182n10, 183n5 

 as spatial network, 144 
 three-dimensional structure of, 144 

 Human Connectome Project, 22, 127, 
156 – 159, 174, 182n13, 189n1 

 Human Genome Project, 33, 182nn13,15,16 

 Individual variability 
 human brain and, 39, 44 – 50, 60 
 network architectures and, 39, 44 – 50, 151 
 plasticity and, 178 
 resting-state networks (RSNs) and, 126 
 visual cortex and, 184n5 
 wiring length and, 80 

 Information, 178 
 building Virtual Brain and, 160 – 170 
 computational connectomics and, 
156 – 160, 162, 170 – 171, 174, 176 

 dynamic connectomes and, 111, 128, 
186n1 

Hubs (cont.)



223 Index

 light microscopy (LM) and, 85, 90 – 92, 
101 – 102 

 magnetic resonance imaging (MRI) and, 
92 – 101 

 Meynert and, 85 
 mice and, 88 – 92, 103, 186nn2,5 
 modules and, 105, 186n9 
 neural elements and, 101 
 parcellation and, 92, 102, 104 – 107, 186n4 
 parietal cortex and, 105 – 106 
 partitions and, 92, 97, 102 – 105, 186n7 
 rats and, 186nn2,5 
 reconstruction techniques and, 85, 90 – 91, 
98, 101 – 102, 107 – 108, 186n4 

 segregation and, 186n9 
 spatial resolution and, 63 
 statistics and, 91 – 92, 98, 102, 108, 186n3 
 structural connectivity and, 87 – 92, 97 – 98, 
104 – 106, 186n3 

 synapses and, 88, 91, 99, 102, 107 
 systems biology and, 101 
 tasks and, 105, 186n9 
 3D-PLI and, 90, 107 
 tissue and, 85, 87, 90, 93 – 95, 107 – 108 
 topology and, 99 – 103 
 tracing and, 85, 87 – 92, 99 – 101, 107, 132, 
186n5 

 tractography and, 90 – 100, 105 – 108, 186n4 
 visual cortex and, 88 
 voxels and, 90, 93 – 98, 103 – 105, 186n4 
 white matter and, 85, 90 – 95, 98, 108 
 whole-brain models and, 63, 87, 89 – 90, 97 

 Magnetic resonance imaging (MRI), 2 – 3, 
115, 125, 158, 189n5 

 assembling large-scale network 
descriptions and, 103 – 105 

 connectivity maps and, 99, 101 
 diffusion, 15, 56, 58, 88, 92 – 93, 98 
 functional, 56 ( see also  fMRI (functional 
magnetic resonance imaging)) 

 macroscale and, 92 – 101 
 structural data and, 104 
 tractography and, 92 – 100 
 whole-brain, 114 

 Magnetoencephalography (MEG), 
129 – 130, 151 

 Mapping, 177 
 Allen Human Brain Atlas and, 169 
 assembling large-scale network 
descriptions and, 101 – 107 

 axons and, 40, 43, 45, 47, 51 – 54, 56, 58 
 behavior and, 40, 45 – 51, 55, 58 – 61 
 brain reading and, 170 – 171 
 building Virtual Brain and, 160 – 170 
 centrality and, 58 
 cerebral cortex and, 44, 56 
 clustering and, 41 – 42, 56 

 computational connectomics and, 156, 
160 

 labeling and, 74 – 81 
 local processing units (LPUs) and, 78 
 macroscale and, 85, 90 – 92, 101 – 102 
 mapping challenges of, 72 – 81 
 microscale and, 64, 71 – 81 
 neuroinformatics and, 156 
 reconstruction techniques and, 55 – 56, 
72 – 81, 85, 91 

 remodeling and, 55 
 synapses and, 72 – 81 
 three-dimensional digital atlas and, 78 
 tract tracing and, 90 – 92 
 viral vectors and, 74 – 75, 80 

 Local processing units (LPUs), 78 
  
 Macaques, 183n5 
 BOLD and, 162 – 163 
 cerebral cortex and, 115 
 CoCoMac database and, 87, 183n6 
 computational connectomics and, 
162 – 163 

 connection matrix and, 162 
 diffusion imaging and, 99 
 fMRI studies and, 115 
 mapping and, 28, 53 – 54 
 network architectures and, 188n3 
 parietal cortex and, 106 
 tracing and, 87 – 88 
 visual cortex and, 28, 53 – 54, 114 

 Machine learning, 69, 171, 174 
 Macroscale 
 assembling large-scale network 
descriptions and, 101 – 107 

 association systems and, 85 
 axons and, 85, 87, 90 – 99 
 behavior and, 101, 107 – 108, 129 
 Brain Architecture Project and, 89 – 90 
 cerebral cortex and, 92, 97, 102 
 clustering and, 103 – 105 
 cognition and, 85, 101 
 complexity and, 93 – 95, 98, 108 
 connectivity matrices and, 85, 89, 97, 
99 

 dendrites and, 101 
 diffusion imaging and, 87, 93, 96 – 101, 
104 – 108, 186nn3,5 

 electron microscopy (EM) and, 85, 90 – 92, 
101 – 102, 107 – 108 

 functional connectivity and, 104 – 105, 
108 – 120, 186nn7,9 

 functional integration and, 85, 95 
 genetics and, 101, 107 
 gray matter and, 95 – 98 
 information and, 87, 90 – 95, 98, 101, 
103 – 104, 186n9 



224 Index

 resting-state networks (RSNs) and, 
121 – 123 

 segregation and, 44, 56 
 spines and, 40, 51 – 53, 55 
 statistics and, 40, 44 
 structural connectivity and, 27, 54, 56, 61 
 synapses and, 39 – 46, 50 – 55, 60, 183n4 
 systems biology and, 60 
 3D-PLI and, 90, 107 
 time series and, 60 – 61 
 topology and, 44 – 51, 55 – 61 
 tracing and, 87 – 92 ( see also  Tracing) 
 visual cortex and, 48, 51 – 54, 184n5 
 white matter and, 48 – 49, 51, 56 – 59 
 whole-brain, 30, 63, 67, 75, 77, 80, 87 – 90, 
97, 114 – 115, 139, 155 – 156, 167, 174 – 175 

 work years needed for, 185n3 
 Marder, Eve, 46 – 47 
 Markov, N. T., 88 
 Markram, Henry, 167 
 Massachusetts General Hospital, 22 
 Mechanistic models, 21, 27, 30, 36 – 37, 155 
 Membrane potentials, 1, 4 
 Mental disorders, 133, 146, 151, 175, 190n14 
 Mental states, 125, 170 – 171, 174 
 Merkle, Ralph, 156 
 Mesoscale, 43 – 44, 64, 77 – 78, 89 – 90 
 Metabolism, 181n4 
 anaerobic glycolysis and, 126 – 127 
 ATP and, 126 
 cellular, 109, 111 
 connection patterns and, 187n10 
 cost of, 127, 178 
 glucose and, 126 
 hub regions and, 127 
 mapping and, 60 
 microscale and, 82 
 network architectures and, 143 – 146, 152 
 resting-state networks (RSNs) and, 121 
( see also  Resting-state networks 
(RSNs)) 

 tasks and, 126 
 tissue, 126 – 127 

 Meynert, Theodor, 10, 85 
 Mice, 184n16 
 barrel cortex and, 43, 51 
 BOLD signals and, 119, 187n7 
 computational connectomics and, 
189nn4,7 

 connectivity matrix and, 89 
 interscutularis muscle and, 80 
 KESM and, 75 
 macroscale and, 88 – 92, 103, 186nn2,5 
 mapping and, 22, 51 – 53 
 microscale and, 71 – 72, 75, 80 – 81, 
185nn1,3,5 

 retina and, 72 

 cognition and, 40, 45, 48, 58, 61, 184n4 
 comparisons of, 39 – 40 
 complexity and, 39, 41, 44, 48, 53, 58, 
60 – 61 

 connection matrix and, 41, 56 
 dendrites and, 40 – 43, 51 – 55 
 diffusion imaging and, 56 ( see also  
Diffusion imaging) 

  Drosophila  and, 45, 55, 77, 77 – 78 
 dynamic connectomes and, 109 – 134 
 electroencephalograms (EEGs) and, 119, 
129 – 130, 151 

 electron microscopy (EM) and, 54 – 55 
 fMRI and, 56 ( see also  fMRI (functional 
magnetic resonance imaging)) 

 fruit flies and, 22 
 functional connectivity and, 44, 56 
 future studies and, 174 – 176 
 genetics and, 33 – 34, 47 – 50, 59 – 61, 184n8, 
185n9 

 genome sequencing and, 33 – 34, 61, 185n0 
 goal of connectomics and, 25, 27 
 gray matter and, 40, 48, 51 
 heterogeneity and, 39, 45, 60 
 hubs and, 56 
 human brain and, 44 – 48, 56, 61, 401 
 individual variability and, 39, 44 – 50, 60 
 information and, 40, 42, 50, 55, 60 
 lesions and, 53 – 54 
 light microscopy (LM) and, 55 
 macaques and, 28, 53, 53 – 54 
 macroscale structure and, 85 – 108 
 magnetoencephalograpy (MEG) and, 
129 – 130, 151 

 major rationale for, 174 – 175 
 mechanistic models and, 21, 27, 30, 36 – 37, 
155 

 mesoscale structure and, 43, 89 – 90 
 metabolism and, 60 
 mice and, 22, 51 – 53 
 microscale structure and, 63 – 83 
 modules and, 41, 43, 56 
 multiscale systems and, 39 – 44, 60 – 61 
 network architectures and, 40 – 44, 61, 64 
 network tools and, 60 
 neural elements and, 34 – 35, 41, 54, 61 
 neural tissue reconstruction and, 65 – 72 
 noninvasive techniques and, 56, 63, 82, 
87 – 90, 93, 98 – 99, 103, 106 – 107, 125, 138, 
151 – 152, 156, 178, 182n12, 186n5 

 parcellation and, 44, 115 
 parietal cortex and, 48, 59 
 plasticity and, 50 – 59 
 proteins and, 51, 60, 184nn6,8 
 rats and, 55 
 remodeling and, 50 – 59 

Mapping (cont.)



225 Index

 mapping and, 56 
 multiple hierarchical scales and, 140 
 network architectures and, 139 – 141, 
146 – 149, 153 

 Power method and, 121 – 122 
 Modules, 18 – 19, 178, 182n11 
 core as single coherent complex and, 
143 

 defined, 16t 
 dynamic connectomes and, 120 – 128 
 functional, 120 – 128 
 human brain and, 136 – 144 
 macroscale and, 186n9 
 mapping and, 41, 43 
 microscale and, 78 
 network architectures and, 135 – 144, 149, 
152 – 153, 188n5 

 Monocular closure, 54 
 Monocular deprivation, 51 
 Moore ’ s law, 167 
 Motor cortex, 53 
 Motor learning, 53, 131 
 Motor neurons, 46, 82, 185n8 
 Mouse Connectome Project, 90 
 Moussa, M. N., 112 
 Multiscale systems, 2, 5, 9, 37, 177, 179 
 computational connectomics and, 158, 
168 – 170 

 macroscale and, 107 ( see also  
Macroscale) 

 mapping and, 39 – 44, 60 – 61 
 microscale and, 63 ( see also  Microscale) 
 Virtual Brain and, 168 – 170 

 Myelin 
 assembling large-scale network 
descriptions and, 104 

 changing composition of, 56 
 connection strength and, 138 
 Glasser/Van Essen studies and, 104 – 105 
 maturation and, 56 
 partitioning and, 102 
 regional myelination and, 44 
 remodeling and, 56 
 tract status and, 99 
 unmyelinated axons and, 74, 98 
 white matter and, 83, 93 

  
 Nanotechnology, 156 
 National Institutes of Health, 22 
 Nematodes, 19, 27 
 Network architectures, 177, 181n5 
 assembling large-scale network 
descriptions and, 101 – 107 

 axons and, 137 – 138, 146 
 behavior and, 139, 146, 148, 151, 153 
 Blue Brain and, 167 
 BOLD signals and, 151 

 tracing and, 81, 88, 92 
 visual cortex and, 71, 88, 114 

 Michchenko, Y., 70 
 Microscale 
 axons and, 63, 65, 67, 70 – 72, 74 – 77, 
185nn1,4 

 behavior and, 77, 82 
 cerebral cortex and, 75 
 clustering and, 75, 78 
 complexity and, 63, 70, 78 
 connection matrix and, 74, 78 
 dendrites and, 70, 74 – 75, 77, 83, 185n1 
  Drosophila  and, 69 – 70, 77 – 80 
 electron microscopy (EM) and, 64, 64 – 72, 
74, 80 – 81, 185nn2,3 

 functional integration and, 64, 82 
 genetics and, 77, 80 – 81 
 gray matter and, 65 
 individual neurons and, 63 
 information and, 65, 68 – 72, 81 
 light microscopy (LM) and, 64, 71 – 81 
 metabolism and, 82 
 mice and, 71 – 72, 75, 80 – 81, 185nn1,3,5 
 modules and, 78 
 neural elements and, 63 
 parcellation and, 67 
 proteins and, 70, 74, 78 – 81 
 rats and, 69 – 70 
 reconstruction techniques and, 49 – 50, 
63 – 81, 185n4 

 segregation and, 78 
 spatial resolution and, 63 – 69, 74 – 75, 
78 – 83 

 spines and, 70, 74, 83, 185n3 
 statistics and, 63, 69 – 72, 75, 78, 81 – 83 
 structural connectivity and, 72 
 synapses and, 63 – 82, 182n14, 185nn3,6,7 
 tissue and, 63 – 74, 80 – 82, 184n2, 185n3 
 topology and, 75, 83 
 tracing and, 63 – 66, 69, 74, 78 – 81, 132 
 visual cortex and, 71, 75 
 voxels and, 65, 68, 75, 185n2 
 white matter and, 83, 185n1 
 whole-brain models and, 63, 67, 75 – 77, 80 

 Microstates, 129 – 130, 187n11 
 Mirco-optical sectioning tomography 

(MOST), 75, 77 
 Miswiring, 116 
 Modalities, 14t, 93, 157 – 158, 189n7 
 Model inversion, 161 
 Modha, Dharmendra, 166 – 167 
 Modularity 
 clustering and, 56, 121 
 defined, 17t 
 functional modules and, 120 – 128 
 hierarchical, 132, 149 
 macroscale and, 105 



226 Index

 parietal cortex and, 140, 143, 150 
 partitions and, 135, 138, 149 
 path length and, 18 – 19, 75, 135, 139, 145 
 proteins and, 140 
 rats and, 137 
 reconstruction techniques and, 136 
 resting-state networks (RSNs) and, 125 
( see also  Resting-state networks 
(RSNs)) 

 segregation and, 139, 146 
 small-world network and, 17t, 19, 56, 75, 
137, 139, 143, 145, 153, 182n10, 183n5 

 spatial embedding and, 13, 16t, 101, 
135 – 136, 144 – 145, 152, 166 

 specificity and, 25 
 statistics and, 136 – 138, 150 
 structural connectivity and, 136 – 137, 149, 
188n1 

 subcellular scale and, 42 – 43, 67 – 70, 
101 – 102, 156, 167, 189n2 

 synapses and, 136 – 137, 146, 152 
 systems biology and, 138 
 tasks and, 140, 143 
 time series and, 150 – 151 
 tissue and, 146 ( see also  Tissue) 
 topology and, 135 – 140, 143 – 152 ( see also  
Topology) 

 tracing and, 137, 188n3 
 tractography and, 138, 150, 152, 188nn3,7, 
189n15 

 Virtual Brain and, 160 – 170 
 voxels and, 149 
 Watts-Strogatz, 139 
 white matter and, 139, 146, 153 
 whole-brain models and, 139 
 wiring diagrams and, 8, 22 – 23, 37, 45, 78, 
132 – 133, 148, 177 – 178, 185n1 

 Network diagrams, 9 – 10, 63, 74, 78 
 Network discovery, 119, 162 
 Network recovery, 175 
 Neural elements, 23, 179 
 computational connectomics and, 163 
 cost – efficiency trade-off and, 144 – 148 
 dynamic connectomes and, 109 – 113, 120 
 finite set of, 31 
 functional connectivity and, 30, 187n3 
 macroscale and, 101 
 mapping and, 25 – 26, 31, 34 – 35, 41, 54, 61 
 microscale and, 63 
 network architectures and, 144 
 patterns in, 37 
 physiological relations of, 27 

 Neurocognitive networks 
 anaerobic glycolysis and, 126 – 127 
 dynamic connectomes and, 114, 120 – 128, 
133 – 134 

 edges and, 122, 128 

 canonical circuits and, 34, 39, 43 – 44, 75, 
172 

 cell groupings and, 41, 43, 78, 103 
 centrality and, 137, 143, 146, 150 
 cerebral cortex and, 145, 149 – 150 
 challenge of multiscale, 40 – 44 
 clustering and, 135 – 139, 149 
 cognition and, 114, 120 – 128, 139, 143, 146, 
148, 151 – 153 

 compact descriptions of, 34 – 35 
 complexity and, 5, 23, 30, 35, 60 – 61, 120, 
132, 140, 143, 148, 152 – 153, 155, 168, 179, 
182n11, 189n14 

 computational connectomics and, 155, 
158 – 159, 162 – 166, 170, 172, 174 

 connection matrix and, 157, 160 – 162 
 core and, 16t, 121, 135, 140, 143, 148, 150 
 cost – efficiency trade-off and, 144 – 148 
 cytoarchitectonics and, 40, 44, 48, 102, 
135, 186n6 

 degree distribution and, 14, 17t, 135, 
137 – 139, 145, 149 

 diffusion imaging and, 138, 150, 152, 
188n7 

 edges and, 10 – 19, 28, 43, 68, 97, 101 – 103, 
122, 128, 139 – 140, 144, 148, 151, 158, 162, 
178, 182n11 

 emerging principles of, 19, 135 – 153, 188n5 
 fMRI and, 150 – 151, 188n2 
 functional connectivity and, 137, 148 – 151 
 functional integration and, 1 – 9, 20 – 28, 
139, 143, 146, 148 

 functional modules and, 120 – 128 
 functional networks and, 19 – 20, 31, 
148 – 152 ( see also  Functional networks) 

 genetics and, 146, 148, 151 
 global efficiency and, 17t, 18, 56, 139 – 140 
 graphs and, 12 – 13 ( see also  Graphs) 
 gray matter and, 188n1 
 hierarchical cortical arrangements and, 28 
 hubs and, 136 – 152, 178, 188nn8,9 
 human brain and, 135 – 152 
 individual variability and, 39, 44 – 50, 151 
 information and, 137 – 140, 143, 145, 
148 – 152 

 long-distance module connections and, 
139 

 macaques and, 188n3 
 mapping and, 40 – 44, 61, 64 
 metabolism and, 143 – 146, 152 
 Meynert and, 85 
 modules and, 135 – 149, 152 – 153, 188n5 
 nodes and, 10 – 19, 28, 43, 97, 101 – 103, 106, 
114 – 115, 122, 129, 135, 138 – 152, 158, 162, 
178, 182n11, 183n9, 188n6 

 parcellation and, 135, 138, 149, 188nn2,6 

Network architectures (cont.)



227 Index

 macaques and, 106 
 macroscale and, 105 – 106 
 mapping and, 48, 59 
 medial, 143 
 neurocognitive networks and, 121 
 resting state networks (RSNs) and, 121 

 Partitions 
 assembling large-scale network 
descriptions and, 102 – 105 

 functional modules and, 121 
 macroscale and, 92, 97, 102 – 105, 186n7 
 modularity and, 17t 
 network architectures and, 135, 138, 149 
 neurocognitive networks and, 122 
 random, 138 – 139, 186n7 
 regional, 138 – 139 
 resting-state networks (RSNs) and, 
121 – 122 

 specificity and, 103 
 voxels and, 149 

 Path length, 17t, 18 – 19, 75, 135, 139, 145 
 Perin, R., 137 
 Personal genomics, 176 
 Peters ’  Rule, 70 
 Phenotypes, 60, 77, 133, 151, 174, 184n8, 

190n14 
 Plasticity, 1, 177 
 activity-dependent, 166 
 diffusion imaging and, 99 
 experience-dependent, 49 – 50, 109, 132 
 fractional anistoropy (FA) and, 98 
 individual variability and, 178 
 mapping and, 50 – 59 
 mechanisms of, 43, 92, 132 
 neurocognitive networks and, 125 
 remodeling and, 39, 50 – 59 
 resting-state functional connectivity and, 
125 

 spontaneous neural activity and, 125 
 turnover rates and, 50 – 51 
 Virtual Brain and, 166 – 167 

 Poldrack, Russ, 171 – 172 
 Positron emission tomography (PET) 

scans, 126 
 Posterior cingulate cortex (PCC), 130 – 131 
 Power, J. D., 121 – 122 
  Project for a Scientific Psychology, A  

(Freud), 10 
 Projektionsfasern, 85 
 Protein-protein networks, 60 
 Proteins 
 dynamic connectomes and, 109, 111, 119, 
186n1 

 electron microscopy (EM) and, 70 
 genetics and, 33 ( see also  Genetics) 
 mapping and, 51, 60, 184nn6,8 
 marker, 74, 78 – 81 

 fMRI and, 120, 124 – 125, 128 
 functional modules and, 120 – 128 
 hubs and, 122, 127 
 nodes and, 122 
 parietal cortex and, 121 
 phenotypes and, 133 – 134 
 plasticity and, 125 
 resting-state networks (RSNs) and, 
121 – 123 

 subgraphs and, 121 – 122 
 tasks and, 124 – 125 
 validation and, 120 – 121 

 Neuron theory, 10 
 Neuropil, 69, 78 
 NeuroSynth, 172 
 Nodes, 10 – 19, 28, 43, 178, 182n11, 183n9 
 assembling large-scale network 
descriptions and, 101 – 107 

 computational connectomes and, 158, 162 
 degree and, 14, 17t, 18, 138 – 139, 150 
 dynamic connectomes and, 114 – 115, 122, 
129 

 emerging network principles and, 135, 
138 – 152, 188n6 

 hub aggregation and, 140, 143 
 local properties and, 150 
 macroscale and, 97, 101 – 103, 106 
 modules and, 16t ( see also  Modules) 
 neurocognitive networks and, 122 
 strength, 14, 138 
 topology and, 150 – 151 ( see also  
Topology) 

 Noise, 82, 93, 108, 121, 128 – 129, 139, 163 
 Non-Gaussian distribution, 137, 149 
  
 1000 Functional Connectomes Project, 159 
 Ontology, 170 – 174, 190n13 
 Open Connectome Project, 189n5 
 Optogenetics, 107, 119 – 120 
  
 Page-rank centrality, 150 
 Parcellation, 12, 19, 183n11 
 assembling large-scale network 
descriptions and, 105 

 atlas-based, 186n4 
 computational connectomics and, 158 
 fMRI and, 187n6 
 macroscale and, 92, 102, 104 – 107, 186n4 
 mapping and, 44, 115 
 microscale and, 67 
 network architectures and, 135, 138, 149, 
188n2, 188n6 

 Power method and, 183n12 
 whole-brain MRI and, 114 

 Parietal cortex 
 callosotomy and, 115 
 diffusion spectrum imaging (DSI) and, 95 



228 Index

 dendrites and, 51 – 55 
 dynamic connectomes and, 132 
 electron microscopy (EM) and, 55 
 experience-based, 51 – 55, 58 – 59 
 fMRI and, 56 
 gray matter and, 58 – 59 
 light microscopy (LM) and, 55 
 mapping and, 50 – 59 
 network architectures and, 145 
 perturbations and, 53 – 54 
 plasticity and, 39, 50 – 59 
 state-dependent, 55, 58 
 structural connectivity and, 39, 50 – 59, 
132, 145 

 tissue and, 50 – 59 
 turnover rates and, 50 – 51 

 Resting state networks (RSNs), 174 
 BOLD signals and, 125, 151 
 clustering and, 121 
 computational connectomics and, 
162 – 163 

 covariance structure and, 124 
 cross-correlation and, 114 
 EEG microstate and, 129 – 130 
 fMRI and, 104, 120 – 125, 128 – 130, 150, 
159, 187n12, 188n2, 189n6 

 functional connectivity and, 115, 120 – 121, 
125, 130, 149 – 150, 163, 172, 183n10 

 individual variability and, 126 
 microstates and, 130 
 network architectures and, 125 
 neurocognitive networks and, 121 – 123 
 parietal cortex and, 121 
 partitions and, 121 – 122 
 spontaneous activity and, 129 
 structural connectivity and, 162 
 subgraphs and, 121 – 122 
 tasks and, 119 
 time series and, 104, 150 
 Virtual Brain and, 162 – 163 

 Retina, 48, 54, 70 – 72 
 Reverse inference, 115, 171 – 172 
 Rhesus monkey, 26f 
 Ribonucleic acid (RNA), 7, 111 
 Rich club, 17t, 140, 143, 148, 152 
 Rubinov, M.,135, 149 

 Scales, 177 
 cellular, 1, 4 
 macroscale, 85 ( see also  Macroscale) 
 microscale, 63 ( see also  Microscale) 
 molecular, 1 
 multiscale systems and, 2, 5 ( see also  

Multiscale systems) 
 nanometer, 3, 63, 65, 67 
 spatial, 9, 45, 60, 69, 114 
 systems, 1 
 temporal, 9, 55, 149, 155 

 metabolic interactions and, 60 
 microscale and, 70, 74, 78 – 81 
 network architectures and, 140, 181n1 
 postsynaptic, 51 
 presynaptic, 51 
 systems biology and, 5 – 8 
 transmembrane channels and, 3 
 voltage-gating and, 4 

 Pyramidal cells, 41, 71 – 72, 119, 137 

 Rabbits, 70 
 Ram ó n y Cajal, Santiago, 25, 189n11 
 Random network, 17t 
 Random noise, 128 – 129 
 Rats, 183n6 
 BOLD fluctuations and, 187n7 
 computational connectomics and, 167 
 fMRI studies and, 119 
 hemodynamic signals and, 119 
 hippocampus of, 69 
 macroscale and, 186nn2,5 
 mapping and, 55 
 microscale and, 69 – 70 
 network architectures and, 137 
 somatosensory cortex and, 167 
 visual cortex and, 137 

 Reconstruction techniques 
 array tomography and, 80 – 81 
 assembling large-scale network 
descriptions and, 101 – 107 

 cell-to-cell patterns and, 102 
 combinatorial rules and, 42 
 complete cellular, 34 
 computational, 90, 156, 167 
 deterministic, 95 – 97 
 DIADEM and, 185n4 
 electron microscopy (EM) and, 27 – 28, 35, 
55 – 56, 64 – 72, 80, 85, 91, 107 – 108 

 fiber-tracking algorithms and, 98 
 individual neurons and, 101, 167 
 light microscopy (LM) and, 55 – 56, 72 – 81, 
85, 91 

 macroscale, 85, 90 – 91, 98, 101 – 102, 
107 – 108, 186n4 

 microscale, 49 – 50, 63 – 81, 185n4 
 network architectures and, 136 
 probabalistic, 95 – 97, 102 
 staining techniques and, 74 – 75, 78, 80 
 statistical rules and, 44 
 structural connectivity and, 14t 
 tissue and, 50, 65 – 83 
 validation and, 80, 107 – 108 
 viral vectors and, 74 – 75, 80 
 wiring diagrams and, 45 

 Reid, Clay, 29 
 Remodeling 
 axons and, 51 – 54, 56, 58 

Proteins (cont.)



229 Index

 dynamic connectomes and, 111 – 115, 120, 
129, 134 

 electron microscopy (EM) and, 35 
 Helmstaedter method and, 69 
 machine learning and, 171 
 macroscale and, 91 – 92, 98, 102, 108, 
186n3 

 mapping and, 40, 44 
 microscale and, 63, 69 – 72, 75, 78, 81 – 83 
 network architectures and, 136 – 138, 
150 

 non-Gaussian distribution and, 137, 149 
 patterns and, 7, 111, 171 
 predictions and, 120 
 reconstruction techniques and, 44 
 scale and, 34 
 specificity and, 81 – 83 
 stationary processes and, 129 

 Stochasticity, 45, 128 – 129 
 Streamline tractography, 95 – 97, 138, 

186n4 
 Structural connectivity, 12, 14, 31, 177 – 178, 

187n5 
 assembling large-scale network 
descriptions and, 104 – 106 

 behavior and, 36 – 37 
 causal efficacy and, 109 
 computational connectomics and, 158, 
162 – 163, 175 

 developmental time and, 118 
 diffusion MRI and, 92 – 93, 96 – 100 
 functional connectivity and, 111 – 112 
( see also  Functional connectivity) 

 important role of, 30, 116 
 individual variability and, 39, 44 – 50 
 inferential nature of, 186n3 
 macroscale and, 87 – 92, 97 – 98, 104 – 106, 
186n3 

 magnitude of, 97 
 mapping and, 27, 54, 56, 61 
 microscale and, 72 
 miswiring and, 116 
 modality of, 14t 
 multiple scales and, 182n12 
 network architectures and, 136 – 137, 149, 
188n1 

 patterns in, 115, 125, 127 
 power and, 109 
 predictions from, 118, 120 
 remodeling and, 39, 50 – 59, 132, 145 
 scale and, 3 – 4 
 small-world architectures and, 19 
 specificity and, 175 
 stability across time and, 32 – 33 
 synapses and, 114 
 tracing and, 88 
 tractography and, 92 – 100 
 Virtual Brain and, 160 – 170 

 time, 5 ( see also  Time series) 
 Virtual Brain and, 168 – 170 
 zooming and, 158 

 Schmahmann, J. D., 99 
 Sch ü z, A., 65, 70, 185n1 
 Segregation, 18, 27 – 28, 34 
 dynamic connectomes and, 128 
 macroscale and, 186n9 
 mapping and, 44, 56 
 microscale and, 78 
 network architectures and, 139, 146 

 Sensorimotor function, 12, 111, 172 
 Serial sectioning, 66 – 68, 71, 80, 101 
 Seung, Sebastian, 28, 69 
 Sleep, 55, 119 
 Small-world networks, 17t, 19, 182n10, 

183n5 
 mapping and, 56 
 microscale and, 75 
 network architectures and, 137, 139, 143, 
145, 153 

 Smith, S. M., 172 
 Somatosensory cortex, 53, 167 
 Spatial embedding, 13, 16t, 101, 135 – 136, 

144 – 145, 152, 166 
 Spatial proximity, 4, 35, 43, 70, 165 
 Spatiotemporal networks, 33, 162 – 163 
 Specificity 
 enzyme chemicals and, 3 
 functional attributes and, 4, 19 – 20, 114 
 minimizing redundancy and, 103 
 network architectures and, 25 
 neuron-to-neuron, 138 
 partitions and, 103 
 Ram ó n y Cajal and, 25 
 statistics and, 81 – 83 
 structural connectivity and, 175 
 tract tracing and, 90 – 91 
 transsynaptic, 80 

 Spikes, 111, 113, 149, 166 
 Spines 
 density and, 51, 53 
  Drosophila  and, 55 
 filament half-life and, 51 
 mapping and, 40, 51 – 53, 55 
 microscale and, 70, 74, 83 
 turnover rates and, 50 – 51 

 Staining techniques 
 Golgi, 74 – 75 
 light microscopy (LM) and, 74 – 75, 78, 
80 

 multiple color, 74 
 neuropil and, 69, 78 

 Statistics, 8, 20, 183n14 
 computational connectomics and, 
155 – 156, 159, 171 

 dependencies and, 12 ( see also  Functional 
connectivity) 



230 Index

 computational connectomics and, 167, 
171 – 174, 190n13 

 fMRI and, 105, 121 – 122, 124, 183n12 
 functional networks and, 125 
 imaging studies and, 124 
 imposed conditions and, 119 
 juggling and, 58 
 macroscale and, 186n9 
 mapping and, 53, 58 
 metabolism and, 126 
 network architectures and, 140, 143 
 neurocognitive networks and, 124 – 125 
 rehearsal and, 125 
 resting-state networks (RSNs) and, 119 
 varying conditions and, 112 

 Thalamus, 54, 104, 140, 167, 187n4 
 Three-dimensional polarized light imaging 

(3D-PLI), 90, 107 
 Time series 
 BOLD signals and, 120, 172 
 broadband MEG, 130 
 computational connectomics and, 158, 
166, 172 

 edge data and, 129 
 fMRI and, 124, 150 – 151, 158 
 functional connectivity and, 31 – 32, 
111 – 112, 187n2 

 macroscale and, 10 – 14, 111 – 112 
 mapping and, 60 – 61 
 network architectures and, 150 – 151 
 resting-state networks (RSNs) and, 104 
 structural network inference and, 
118 – 119 

 voxels and, 111 
 Tissue 
 affinity graphs and, 67 – 68 
 boundary detection and, 68 
 dynamic connectomes and, 109, 126 
 electron microscopy (EM) and, 28 
 emerging principles of network 
architectures and, 146 

 excitation waves and, 9 
 extreme delicacy of, 87 
 fluorescent markers and, 5, 54, 74, 77 – 81, 
185nn5,6 

 heart, 9 
 knife-edge scanning microscopy (KESM) 
and, 75 

 macroscale and, 85, 87, 90, 93 – 95, 
107 – 108 

 microscale and, 63 – 74, 80 – 82, 184n2, 
185n3 

 Peters ’  Rule and, 70 
 reconstruction techniques and, 50, 65 – 83 
 remodeling and, 50 – 59 
 serial sectioning of, 66 – 68, 71, 80, 101 
 staining techniques and, 74 – 75, 78, 80 

 Structural segregation, 44 
 Subcellular scale, 42 – 43, 67 – 70, 101 – 102, 

156, 167, 189n2 
 Subgraphs, 121, 150 
 Sullivan, Louis, 36 
 Supercomputers, 167, 190n9 
 Synapses, 178 
 boutons and, 53 – 54, 70, 72, 88 
 cell geometry and, 70 
 computational connectomics and, 160, 
167 – 168, 190nn9,11 

 conceptual foundations and, 31, 34 
 connectome ’ s primary goal and, 8 
 density and, 51, 70 
 dynamic connectomes and, 113 – 114, 125, 
129, 187nn4,8 

 efficacy of individual, 42 – 43 
 electron miscropy (EM) and, 65 – 81 
 emerging principles of network 
architectures and, 136 – 137, 146, 152 

 estimated number of in human brain, 41 
 functional specificity and, 4 
 human brain and, 23, 41 
 importance of patterns in, 25, 27 
 individual variability and, 44 – 46, 182n14 
 light microscopy (LM) and, 72 – 81 
 linkage strength and, 12 
 macroscale and, 88, 91, 99, 102, 107 
 mapping challenges and, 39 – 46, 50 – 55, 60, 
183n4 

 microscale and, 63 – 82, 182n14, 185nn3,6,7 
 motion and, 113 – 114, 125, 129, 187nn4,8 
 nematodes and, 19 
 Peters ’  Rule and, 70 
 physiological attributes and, 4 
 plasticity and, 50 – 55, 125 
 postsynaptic connections and, 28 
 sequence-specific responses and, 41 – 42 
 structural connectivity and, 114 
 thalamacortical, 54 
 transsynaptic specificity and, 80 
 turnover rates and, 50 – 51 
 variety of neurotransmitter systems and, 1 
 viral vectors and, 74 – 75, 80 

 Synaptic degree, 137 
 Systems biology, 183n7 
 computational neuroscience and, 181n6 
 connectomics and, 5 – 9, 21, 23, 177 
 dynamic connectome and, 111 
 large-scale data sets and, 7 
 mapping and, 60 
 network architectures and, 138 
 origins of, 5 – 6, 181n2 

 Tasks, 31 
 attention-demanding, 130 
 Bayesian models and, 119 



231 Index

 tract, 64, 81, 87 – 92, 99 – 101, 107, 137, 
184n3, 186n5, 188n3 

 visual cortex and, 88 
 Tractography 
 axons and, 90 – 99, 138 
 computational connectomics and, 163 
 deterministic, 95 – 97 
 global, 95 
 local, 95 
 macroscale and, 90 – 100, 105 – 108, 186n4 
 MRI technologies and, 92 – 100 
 network architectures and, 138, 150, 152, 
188nn3,7, 189n15 

 probabalistic, 95 – 97 
 validation and, 99 

 Transcranial magnetic stimulation (TMS), 
119 

 Turnover rates, 50 – 51 
  
 Universality, 7, 126 
 University of California (Los Angeles), 22, 

90 
  
 Validation, 22 
 cross, 107, 138 
 diffusion imaging and, 99 
 MRI technologies and, 88, 92, 186n5 
 network architectures and, 138 
 neurocognitive networks and, 120 – 121 
 reconstruction techniques and, 80, 
107 – 108 

 statistical rules and, 44 
 test – retest reliability and, 120 – 121 
 tractography and, 99 

 Van Essen, David, 28, 104 – 105 
 Viral vectors, 74 – 75, 80 
 Virtual Brain 
 BOLD signals and, 162 – 166 
 bottom-up models and, 167 – 168 
 building, 160 – 170 
 computational connectomics and, 
160 – 170 

 connection matrix and, 160 – 161 
 control theory and, 161 
 dynamic repertoire and, 165 
 forward modeling and, 161 – 162, 169 
 instability and, 165 – 166 
 model inversion and, 161 
 Moore ’ s law and, 167 
 multiscale-minded framework and, 
168 – 170 

 plasticity and, 166 – 167 
 Visual cortex 
 between-subject variations and, 48 
 cats and, 75 
 computational connectomics and, 171 
 dynamic connectomes and, 114 

 statistical inferences from, 63 
 three-dimensional descriptions and, 65, 
67 – 68, 69 

 Tomasi, D., 150 
 Topology, 12, 30, 178 
 assembling large-scale network 
descriptions and, 101 – 107 

 computational connectomics and, 
162 – 163, 166, 174 

 cost – efficiency trade-off and, 144 – 148 
 definition of, 16t 
 dynamic connectomes and, 109, 113, 125, 
128, 132 – 134 

 full characterization and, 18 
 functional connectivity and, 150 – 151 
 individual variability and, 44 – 50 
 macroscale and, 99 – 103 
 mapping and, 44 – 51, 55 – 61 
 microscale and, 75, 83 
 modules and, 16t ( see also  Modules) 
 network architectures and, 135 – 140, 
143 – 152, 188n6 

 small-world attributes and, 19, 56, 75, 137, 
139, 143, 145, 153, 182n10, 183n5 

 spatial embedding and, 13, 16t, 101, 
135 – 136, 144 – 145, 152, 166 

 transportation networks and, 144 
 Tracing, 22 
 anterograde, 87 – 88, 90 
 audioradiographic, 99 
 axons and, 85, 87 – 91 
 cats and, 87 
 challenges of, 25 
 diffusion MRI and, 88 
 electron microscopy (EM) and, 90 – 92 
 Golgi stains and, 74 – 75 
 labeling and, 80, 87 – 90 
 lack of data for human brain, 87 – 88 
 light microscopy (LM) and, 90 – 92 
 long-range inter-regional projections and, 
87 

 macaques and, 87, 87 – 88 
 macroscale and, 85, 87 – 92, 99 – 101, 107, 
132, 186n5 

 mice and, 81, 88, 92 
 microscale and, 63 – 66, 69, 74, 78 – 81, 
132 

 network architectures and, 137, 188n3 
 non-Gaussian distribution and, 137 
 postmortem methods and, 87 
 reconstruction techniques and, 63 ( see 

also  Reconstruction techniques) 
 retrograde, 80, 87 – 90 
 sophisticated quantitative methods for, 
88 

 staining techniques and, 74 – 75, 78, 80 
 structural connectivity and, 88 



232 Index

 Xerox Corporation, 156 
 Xu, T., 53 

 Yarkoni, T., 171 – 172 
 Yeo, B. T. T., 121 
 Yu, J. Y., 77 

 Zebrafish, 80 
 Zeki, Semir, 27 
 Zuo, X. N., 150 

 functional integration and, 27 
 functional specialization and, 171 
 individual variability and, 184n5 
 macaques and, 28, 53 – 54, 114 
 macroscale and, 88 
 mapping and, 48, 51 – 54, 184n5 
 mice and, 71, 88, 114 
 microscale and, 71, 75 
 rats and, 137 
 stimulus orientation and, 71 
 tracing and, 88 
 Zeki and, 27 

 Visual integration, 27 
 Volkow, N. D., 150 
 Voss, H. U., 58 
 Voxels 
 assembling large-scale network 
descriptions and, 103 – 105 

 computational connectomics and, 157 
 diffusion imaging and, 93 – 98 
 fMRI and, 121 
 macroscale and, 90, 93 – 98, 103 – 105, 186n4 
 microscale and, 65, 68, 75, 185n2 
 network architectures and, 149 
 neural time series and, 111 
 parcellated regions and, 114 

 Wang, Q., 88 
 Watts-Strogatz architecture, 139 
 Weighted degree, 14 
 White matter 
 diffusion imaging and, 93 – 98 
 fractional anisotropy (FA) and, 98 – 100 
 global connectivity reduction and, 146 
 integrity of, 98 
 long-range pathways and, 139 
 macroscale and, 85, 90 – 95, 98, 108 
 mapping and, 48 – 49, 51, 56 – 59 
 microscale and, 83, 185n1 
 myelin and, 83, 93 
 network architectures and, 139, 146, 153 

 Whole-brain models, 30 
 computational connectomics and, 
155 – 156, 160 – 170, 174 – 175, 190n11 

 dynamic connectomes and, 114 – 115 
 macroscale and, 87, 89 – 90, 97 
 microscale and, 63, 67, 75 – 77, 80 
 network architectures and, 139 
 Virtual Brain and, 160 – 170 

 Winkler, Hans, 7, 181n3 
 Wiring diagrams 
 dendritic branches and, 185n1 
 dynamic connectomes and, 132 – 134 
 network architectures and, 8, 22 – 23, 37, 
45, 78, 132 – 133, 148, 177 – 178, 185n1 

 reconstruction techniques and, 45 

Visual cortex (cont.)



100

100

200

200

300

300

Brain Area Position Index

High

Low

B
ra

in
 A

re
a

 P
o

s
it

io
n

 I
n

d
e

x C
o

n
n

e
c
tio

n
 D

e
n

s
ity

400

400

500

500

600

600

700

700

Plate 1 (figure 2.2)

Plate 2 (figure 4.2)



Plate 3 (figure 4.4)

Plate 4 (figure 4.5)



Plate 5 (figure 4.8)

Plate 6 (figure 5.3)





Plate 9 (figure 6.2)

Plate 10 (figure 6.3)

Plate 11 (figure 6.5)



Plate 12 (figure 6.6)

Plate 13 (figure 6.7)



Plate 14 (figure 6.9)

Plate 15 (figure 7.2)



Plate 16 (figure 7.3)

Plate 17 (figure 8.4)


