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Preface

Arma virumque cano, Trojae qui primus ab oris
Italiam fato profugus, Laviniaque venit
litora.

This is the beginning of Ovid’s story about Odysseus leaving Trojae
to find his way home. I here tell about my own Odysee-like expe-
riences that I have undergone when I attempted to simulate visual
recognition. The Odyssee started with a structural description at-
tempt, then continued with region encoding with wave propagation
and may possibly continue with a mixture of several shape descrip-
tion methods. Although my odyssey is still under its way I have made
enough progress to convey the gist of my approach and to compare it
to other vision systems.

My driving intuition is that visual category representations need
to be loose in order to be able to cope with the visual structural vari-
ability existent within categories and that these loose representations
are somehow expressed as neural activity in the nervous system. I re-
gard such loose representations as the cause for experiencing visual
illusions and the cause for many of those effects discovered in atten-
tional experiments. During my effort to find such loose representa-
tions, I have made sometimes unexpected experiences that forced me
to continuously rethink my approach and to abandon or turn over
some of my initially strongly believed viewpoints. The book therefore
represents somewhat the odyssey through different attempts: At the
beginning I pursued a typical structural description scheme (chapter
5), which eventually has turned into a search of a mixture of shape
description methods using wave-propagating networks (chapter 10).
What the exact nature of these representations should look like, is
yet still unclear to me, but one would simply work towards it by con-
structing, testing and refining different architectures. I regard the
construction of a visual system therefore as a stepwise process, very
similar to the invention and evolutionary-like refinement of other tech-
nical systems like the automobile, airplane, rocket or computer. In
order to build a visual system that processes with the same or simi-
lar efficiency, I believe that it is worth to understand how the human
visual system may achieve this performance on a behavioral, on an
architectural as well as on a network level. To emulate the envisioned
mechanisms and processes with the same swiftness, it may be nec-
essary to employ a substrate that can cope with the intensity of the
demanded computations, for example the here mentioned neuromor-
phic analog circuits (chapter 4).

More specifically, I have approached the design endeavor by firstly
looking at some behavioral aspects of the seeing process. Chapter 1
lists these observations, which help to identify the motor of vision, the
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basic-level categorization process, and which help to define its very
basic operation. I consider the understanding and construction of this
categorization process as a starting point to engineer a visual system.
Chapter 2 describes two more characteristics of the basic-level cate-
gorization process, with which I review some of the past and current
vision systems. Chapter 3 reviews the progress made so far in the
neuroscientific search for the biological architecture. Chapter 4 men-
tions the necessary neuromorphic analog circuits for the processes I
simulate. Chapter 5 reports about a computer vision simulation study
using line drawing objects, from which I gained the insight that region
(or space) is important information for representation and evolvement.
I then turn towards gray-scale images. The idea of region encod-
ing is translated into the neuromorphic language, whereas chapter 6
presents retinal circuits that signal contours in gray-scale images, and
chapter 7 introduces the networks that perform Blum’s symmetric-
axis transform. With the obtained symmetric-axes one could already
carry out a substantial amount of categorization using a computer vi-
sion back-end that associates the obtained axes - it would be a hybrid
categorization system. Chapter 8 makes a small detour into motion
detection, specifically speed detection. Chapter 9 is a collection of
neuromorphic architectures and thoughts on structural description,
template matching, position and size invariance, all of which is rel-
evant when one tries to build a fully neuromorphic visual system.
An instantiation of those ideas is presented in chapter 10, which de-
scribes a novel region encoding mechanism, and which has the po-
tential to be the fundament for an efficient shape description. The
experiences made thus far, are translated to the issue of scene recog-
nition, which is summarized in chapter 11. The final chapter, number
12, recapitulates my journey and experiences.

The inspiring literature for my vision approach was Palmer’s book
(1999), which I consider as indispensable reading for anyone who tries
to understand representational issues in vision from an interdisci-
plinary viewpoint. Some of the points I make in this discourse are
much broader embedded in Palmer’s book. The inspiring literature
for my ‘euromorphic’ realization was Blum’s thoughts on the possi-
bility of the brain working as a broadcast-receiver principle (1967), an
idea that has never been seriously explored, but which I pick up here,
because it solves certain problems elegantly.

A word on terminology: As Fu already noted (Lee and Fu, 1983),
visual recognition and representation is difficult in problem formula-
tion and in computational methodology. I have therefore created a
short terminology section (page 119), that hopefully clarifies some of
the terms which are floating throughout the chapters and other vision
literature, and that puts those terms into perspective.
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1 Seeing: Blazing Processing Characteristics

We start by listing a few, selected behavioral phenomena of the vision
process, which help us to define its very basic operation.

1.1 An Infinite Reservoir of Information

When we look at a visual scene, like a room or outdoor scene, we can
endlessly explore its content using eye movements. During the course
of this exploration, we find an infinite number of details like different
colors, textures, shapes of objects and object parts and their struc-
tural relations. The saying ‘A picture is more worth than a 1000 words’
is an understatement of the enormous information content in a scene.
This endless amount of information is scientifically well pointed out
by Yarbus’ studies on human eye movements (Yarbus, 1967). Yarbus
has traced the fixation points of a person when he/she was brows-
ing the photo of a room scene containing people engaged in a social
situation. Yarbus recorded this sequence of eye movements for a few
minutes, thereby giving the subject a different task for each recording.
In an unbiased condition, the observer was instructed to investigate
the scene in general. In other conditions, the observer was given for
example the task to judge the ages of the people present in the scene.
Each condition resulted in a very distinct fixation pattern in which
fixation points are often clustered around specific features. Hence,
the information content of a scene is an infinite reservoir of interest-
ing details, whose thorough investigation requires an extensive visual
search.

1.2 Speed

Probably one of the most amazing characteristics of visual processing
is its operation speed. When we look at a picture, we instantaneously
comprehend its rough content. This property is exploited for exam-
ple by makers of TV commercials, who create fast-paced TV commer-
cials in order to minimize broadcast costs. Potter has determined the
speed with which humans are able to apprehend the gist of a scene
or object using the rapid-serial-visual-presentation technique (Potter,
1976). Before an experiment, a subject was shown a target picture.
The subject was then presented a rapid sequence of different images,
of which one could be the target picture. At the end of a sequence, the
subject had to tell whether the sequence contained the target picture
or not. When the presentation rate was four pictures a second (ev-
ery 250ms), subjects had little problems to detect the target picture.
For shorter intervals, the recognition percentage would drop, but still
be significantly above chance level even for presentation intervals of
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100ms only. This time span is way less than the average fixation pe-
riod between eye movements which is around 200 to 300ms.

1.3 Illusions

Given the speed of recognition, one may think we sometimes err in
our interpretation of a scene or object? Indeed, it happens frequently:
we often mistake an object for another one, for example either be-
cause it is out of focus or because we are in a rush or because it is an
unusual view. But most of the time we are not particularly aware of
these minor mistakes, because they are immediately corrected by the
continuous stream of visual analysis. Certain visual illusions expose
this property very distinctively. When we see an illusion, like the Im-
possible Trident (figure 1), we immediately have an idea of what the
structure is about. After a short while of inspection though, we real-
ize that the structure is impossible. Escher’s paintings - possessing
similar types of illusions - are an elegant example of how the visual
system can be tricked. One may therefore regard the visual system as
faulty or as processing to hastily. Yet, it is more likely that it was built
for speed, a property which is of greater importance for survival than
a slow and detailed reconstruction.

Figure 1: Impossible Trident. Illusions like this one are able to explic-
itly trick the recognition process. They evidence that representations
are structurally loose.

1.4 Recognition Evolvement

Based on the above three mentioned properties, one may already start
to characterize the recognition process. Despite the enormous amount
of information in a scene, the visual system is able to understand its
rough content almost instantaneously. Thus, there must be a process
at work, that is able to organize the information suitable for quick
understanding. Given that this process can be deceited, one may in-
fer that it is structurally not accurate in its evolvement or in the type
of representations it uses - an inaccuracy that is exposed only rarely
and that can quickly be corrected by swift, subsequent analysis. Al-
though we believe that this recognition evolvement is a fluent process,
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it makes sense to divide it into two separate stages and to label it
with commonly used terms for reason of clarity, see figure 2. In a
perceptual stage, visual structure is initially guessed by using some
inaccurate representation. This rapid association in turn triggers a
cognitive stage employing a semantic representation, that allows to
confirm or verify the perceived structure. Based on similar reflections
about visual illusions, Gregory has proposed are more refined concept
of the recognition process (Gregory, 1997), but our present, simpler
proposal suffices for the beginning.

Figure 2: A simplified, discretized illustration of the fluent object
recognition evolvement process. In a ‘perceptual’ stage, the system
quickly categorizes the object using loose representations, which trig-
gers a frame. In a ‘cognitive’ stage, semantic rules verify the perceived
structure.

The idea of a continuous recognition evolvement fits well with the
idea of frames. Frames are collections of representations, which are
retrieved when we have recognized the gist of a scene or object for
example. Frames would allow us to browse a scene much quicker than
if they were not existent. The idea has been put forward by different
researchers from fields like Psychology and Artificial Intelligence. The
most specific and concise formulation was given by Minsky (Minsky,
1975) (and see references therein). We relate the idea of frames to
our envisioned scheme as follows: the perceptual stage (or perceptual
category representations) would trigger such a frame containing a set
of semantic rules describing the representations of objects or scenes
in a structurally exhaustive manner. A more general term of this type
of guidance would be ‘top-down’ influence.

1.5 Basic-Level Categorization

The process that enables to quickly organize visual structure into use-
ful information packages is termed the basic-level categorization pro-
cess (Rosch et al., 1976). Rosch et al. carried out experiments, in
which humans had to name objects that they were presented. The
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experiments showed that humans classify objects into categories like
car, table and chair, which Rosch et al. termed basic-level categories.
They found other levels of categories as well (figure 3). On a more ab-
stract level, there are categories like tool, vehicle or food, which they
termed super-ordinate categories. On a more specific level, there are
categories like sports car, kitchen table or beach chair, which they
termed subordinate categories. In the hierarchy shown in figure 3
we have added another level, the identity level, at which one recog-
nizes objects that represent particular instances of categories, e.g. a
car model or a chair model. If one looks at different instances of the
same category, then one realizes there are many, slight structural dif-
ferences between them. For example a desktop can have one or two
chests of drawers, the chest can have a different number of draw-
ers and so on. The representation of visual objects must therefore
be something loose in order to be able to deal with such variability.
This loose representation may be the reason why the recognition sys-
tem is prune to structural visual illusion. But that may not even be
the proper formulation of this characteristic: it may very well be that
representations have to be inaccurate and loose in order to be able to
efficiently categorize. In some sense, the ‘structural inaccuracy’ may
be a crucial strength.

Figure 3: Category levels in the visual system.

When we perform a categorization, the recognition process has
likely ignored a lot of details of that object. The object has been per-
ceived with some sort of abstract representation, which we believe is
the cause for experiencing visual illusions and which is the cause for
the many effects seen in attentional experiments, like the lack of full
understanding of the image (O’Regan, 1992; Rensink, 2000). This
abstract representation is what guides our seeing process.

Objects of the same basic-level category can come in different tex-
tures, colors and parts. From this variety of visual cues, it is generally
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shape that retains most similarity across the instances of a basic-level
category and that is the cue we primarily focus on in this book.

1.6 Memory Capacity and Access

Another stunning characteristic of the visual system is its memory
capacity. We swiftly memorize most new locations where we have
been to, we instantaneously memorize a torrent of image sequences
of a movie or TV commercial. And we can easily recall many of these
images and sequences even after a long period of time. Standing et
al. have shown these immense storage capacities and stunningly fast
access capabilities by presenting subjects with several hundreds of
pictures, most of which could be recalled next day or later (Standing
et al., 1970).

There seems to be a paradox now. On the one hand, when we see a
novel image, we comprehend only a fraction of its information content
and it would require a visual search to accurately describe a scene. On
the other hand, we are able to memorize a seemingly infinite number
of images relatively swiftly. Ergo, if we see only a fraction of the im-
age, then it should be surprising that we are still able to distinguish
it so well from other images. The likeliest explanation is that with
a few glances at an image, one has swallowed enough information,
that makes the percept distinct from most other scenes. Speaking
metaphorically, a single scoop from this infinite information reservoir
apparently suffices to make the accumulated percept distinguishable
from many other pictures.

1.7 Summary

The visual machinery organizes visual structure into classes, so called
basic-level categories. It does this fast and efficiently, but structurally
inaccurate as evidenced by visual illusions. The type of representation
it uses may be inaccurate and loose, in order to be able to recognize
novel objects of the same category that are structurally somewhat dif-
ferent. Because of this representational inaccuracy, the visual system
occasionally errs, but that is often quickly overplayed by rapid contin-
uous analysis. The machinery ignores many structural details during
the categorization process. Still it retains sufficient information to be
distinct from other images.

We understand this as the coarsest formulation of the seeing pro-
cess and it suffices already to envisage how to construct a visual sys-
tem. We believe that the primary engineering goal should be to firstly
build this categorization process. In a first construction step, one
would solely focus on the perceptual stage (left side in figure 2): this
stage would categorize objects using only some sort of inaccurate, per-
ceptual representation. In a second step, one may think about how
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to represent semantic knowledge, that would allow for verification of
the perceived structure (right side in figure 2). The first step is al-
ready challenging enough and that is what this book aims at: working
towards a neuromorphic architecture that carries out the perceptual
stage performing swift categorization. In the next chapter we are try-
ing to specify the nature of this perceptual stage by looking closer at
some aspects of the basic-level categorization process.



2 Category Representation and Recognition

Evolvement

We here list two more aspects of the recognition process, the aspect of
structural variability independence and the aspect of viewpoint inde-
pendence (Palmer, 1999). With these two aspects in mind, we char-
acterize previous and current vision systems and it will allow us to
better outline the systematics of our approach.

2.1 Structural Variability Independence

We have already touched the aspect of structural variability indepen-
dence in the previous chapter. Here we take a refined look at it. Fig-
ure 4 shows different instances of the category ‘chair’, with the goal
to point out the structural variability existent within a category. We
intuitively classify the variability into three types:

a) Part-shape variability: the different parts of a chair - leg, seat and
back-rest - can be of varying geometry. The legs’ shape for example
can be cylindrical, conic or cuboid, sometimes they are even slightly
bent. The seating shape can be round or square like or of any other
shape, so can the back-rest (compare chairs in figure 4a).

b) Part-alignment variability: the exact alignment of parts can dif-
fer: the legs can be askew, as well as the back-rest for more relaxed
sitting (top chair in figure 4b). The legs can be exactly aligned with the
corners of the seating area, or they can meet underneath it. Similar,
the back-rest can align with the seating area exactly or it can align
within the seating width (bottom chair in figure 4b).

c) Part redundancy: there are sometimes parts that are not nec-
essary for categorization, as for example the arrest or the stability
support for the legs (figure 4c). Omitting these parts does still lead to
proper categorization.

Despite this variability, the visual system is able to categorize these
instances: the process operates independent of structural variability.
A chair representation in the visual system may therefore not depend
on exact part shapes or exact alignments of parts. It may neither
contain any structures that are not absolutely necessary for catego-
rization. The corresponding category representation would therefore
be something very loose and flexible. The degree of looseness would
depend on the degree of variability found in a category. For example,
the category chair certainly requires a larger degree of looseness than
the category book or ball.

2.2 Viewpoint Independence

Another aspect of recognition is its viewpoint independence. We are
able to recognize an object from different viewpoints despite the dif-
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Figure 4: Intuitive classification of structural variability in the cate-
gory chair. a. Part-shape variability. b. Part-alignment variability.
c. Part redundancy. The category representation must be something
loose and flexible.

ferent 2D appearance of the object’s structure for any given viewpoint.
The viewpoints of an object can be roughly divided into canonical and
non-canonical (Palmer et al., 1981). Canonical viewpoints exhibit the
object’s typical parts and its relations, like the chairs seen in the left of
figure 5. In contrast, non-canonical viewpoints exhibit only a fraction
of the object’s typical parts or show the object in unexpected poses,
and are less familiar to the human observer, like the chairs seen in
the right of figure 5.

In our daily lives we see many objects primarily from canonical
viewpoints, because the objects happen to be in certain poses: chairs
are generally seen on their legs or cars are generally on their wheels.
Canonical viewpoints can certainly be recognized within a single glance
(Potter, 1975; Thorpe et al., 1996; Schendan et al., 1998). In contrast,
non-canonical viewpoints are rare and one can assume that the recog-
nition of non-canonical viewpoints requires more processing time than
a single glance. Recognizing a non-canonical viewpoint may consist of
a short visual search using a few saccades, during which textural
details are explored; or the perceived structure of the object is trans-
formed in some way to find the appropriate category (Farah, 2000).
Behavioral evidence from a person with visual agnosia suggests that
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non-canonical views are indeed something unusual (Humphreys and
Riddoch, 1987a). The person is able to recognize objects in daily live
without problems, yet struggles to comprehend non-canonical views of
objects given in a picture. This type of visual disorder was termed per-
ceptual categorization deficit, but pertains to the categorization of un-
usual (non-canonical) views only. One may conclude from this case,
as Farah does, that such views do not represent any real-world visual
tasks.

Figure 5: Different poses and hence viewpoints of a chair. Viewpoint
and processing time are correlated. Left: canonical views that are
quickly recognizable. Right: non-canonical views that take longer to
comprehend, possibly including a saccadic visual search.

2.3 Representation and Evolvement

We now approach the heart of the matter: how are we supposed to
represent categories? Ideally, the design of a visual system starts by
defining the nature of representation of the object or category, for ex-
ample the object is described by a set of 3D coordinates or a list of
2D features. This representation is sometimes also called the object
model. In a second step, after defining the representation, a suit-
able reconstruction method is contrived that extracts crucial infor-
mation from the image, which in turn enables the corresponding cat-
egory. One may call this object reconstruction or evolvement Such
approaches were primarily developed from the 60’s to the 80’s, but
are generally not extendable into real-world objects and gray-scale im-
ages. Recent approaches have taken a heuristic approach, in which
the exact representation and evolvement is found by testing.

Most of these systems - whether fully designed or heuristically de-
veloped - start with some sort of contour extraction as the first step,
followed by classifying contours and relating them to each other in
some way to form higher features, followed by finding the appropri-
ate category. We here review mainly Artificial Intelligence (computer
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vision) approaches and some psychological approaches . Neural net-
work approaches are mentioned in the next chapter.

2.3.1 Identification Systems

Early object recognition systems aimed at identifying simple build-
ing blocks from different viewpoints. Because they intended to do
that precisely, the object model was defined as a set of corner points
specified in a 3D coordinate system. Robert devised such a system
performing this task in roughly three steps (figure 6, (Robert, 1965)):
Firstly, contours were extracted and 2D features formed. Secondly,
these extracted 2D features were matched against a set of stored 2D
features that would point towards a specific object. Finally, each of
those object models, whose 2D features were successfully matched in
the second step, were matched against the contours, determining so
the object identity. With the identified object model it is possible to
find the object’s exact pose in 3D space.

Figure 6: Roberts identification and pose determination system. The
object was represented as a set of 3D coordinates representing the
corners of a building block. Recognition evolved firstly by extracting
contours and lines, followed by a matching process with stored 2D
features, followed by eventual matching some of the possible models
against the image.

Many later systems have applied this identification and pose de-
termination task to more complex objects using variants, elaborations
and refinements of Roberts’ scheme (Brooks, 1981; Lowe, 1987; ULL-
MAN, 1990; Grimson, 1990). Some of them are constructed to serve
as vision systems for part assembly in industry performed by roboters.
Some of them are able to deal with highly cluttered scenes, in which
the object identity is literally hidden in a mixture of lines. These sys-
tems do so well with this task, they may even surpass the performance
of an untrained human ‘eye’.

All of these systems work on the identity level (figure 3, chapter 1).
They do not categorize and therefore do not deal with structural vari-
ability and have in some sense ‘only’ dealt with the viewpoint indepen-
dence aspect. They have been applied in a well defined environment
with a limited number of objects. The real world however contains
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an almost infinite number of different objects, which can be catego-
rized into different levels. The structural variability that one then
faces therefore demands different object representations and possibly
a different recognition evolvement.

The construction of such pose-determining systems may have also
influenced some psychological research on object recognition, which
attempts to uncover that humans recognize objects from different
viewpoints by performing a similar transformational process as these
computer vision systems do (e.g. see (Tarr and Bulthoff, 1998; Edel-
man, 1999) for a review).

2.3.2 Part-based Descriptions

Part-based approaches attempt to describe objects by a set of forms
or ‘parts’, arranged in a certain configuration: it is also called a struc-
tural description approach (figure 7).

Guzman suggested a description by 2D features (Guzman, 1971).
In his examples, an object is described by individual shapes: For ex-
ample, a human body is described by a shape for the hand, a shape
for the leg, a shape for the foot and so on. These shapes were speci-
fied only in two dimensions. Figure 7 shows a leg made of a shape for
the leg itself and a shape for a shoe. Guzman did not specifically dis-
cuss the aspect of structural variability independence, but considered
that objects can have deformations like bumps or distortions and that
despite such deformations the visual system is still able to recognize
the object correctly. In order to be able to cope with such deforma-
tions, he proposed that representations must be sort of ‘sloppy’. This
aspect of ‘deformation independence’ is actually not so different from
the aspect of structural variability independence.

Binford came up with a system that measures the depth of a scene
by means of a laser-scanning device (Binford, 1971). His objects were
primarily expressed as a single 3D volume termed ‘generalized cones’,
which were individual to the object. For example the body of a snake
is described as one long cone (Agin and BINFORD, 1976). Recon-
struction would occur by firstly extracting contours, followed by de-
termining the axis of the cones using a series of closely spaced cone
intersections. The example in figure 7 shows a snake, which is repre-
sented by a single, winding cone. Binford did not specifically address
the structural variability aspect.

Binford’s system likely influenced Marr’s approach to represent an-
imal bodies by cylinders (Marr and Nishihara, 1978). The human body
for example would be represented as shown in figure 7. Similar to Bin-
ford, Marr planned to reconstruct the cylinders by finding their axes:
firstly, surfaces of objects are reconstructed using multiple cues like
edges, luminance, stereopsis, texture gradients and motion, yielding
the 2.5D ‘primal sketch’ (Marr, 1982); secondly, the axis would be re-
constructed and put together to form the objects. Marr did not specif-
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ically address the aspect of structural variability either, but cylinders
as part representations would indeed swallow a substantial amount of
structural variability. The idea to reconstruct surfaces as a first step
in recognition was emphasized by Gibson (e.g. (Gibson, 1950)).

Pentland described natural objects like trees with superquadrics
like diamonds and pyramidal shapes (Pentland, 1986) (not shown in
figure 7).

Figure 7: Object representations by parts. Guzman: individual 2D
shapes. Binford: ‘generalized cones’. Marr: cylinders. Biederman:
geons. Fu: surfaces. Loosely redrawn from corresponding references
given in text.

Fueled by the idea of a representation by 3D volumes, Biederman
proposed an even larger set of ‘parts’ for representation, like cylinders,
cuboids and wedges, 36 in total, which he called ‘geons’ (Biederman,
1987). The example in figure 7 shows a penguin made of 9 differ-
ent such geons. To account for the structural variability, Biederman
suggested that a category representation may contain interchangeable
geons for certain parts. This may however run into a combinatorial
explosion for certain categories, especially the ones with a high struc-
tural variability. The evolvement of the geons and objects would start
with finding firstly vertex features.

These part-based approaches have never really been successfully
applied to a large body of gray-scale images. One reason is, that it is
computationally very expensive to extract the volumetric information
of each single object part. Another reason is that the contour informa-
tion is often fragmentary in gray-scale images and that this incomplete
contour information does not give enough hints about the shape of 3D
parts, although Marr tried hard to obtain a complete contour image
(Marr, 1982). Instead of this 3D reconstruction, it is cheaper and eas-
ier to interpret merely 2D contours, as Guzman proposed it. Fu has
done that using a car as an example (figure 7): the parallelograms
that a car projects onto a 2D plane, can be interpreted as a surface
(Lee and Fu, 1983). Still, an extension to other objects could not be
worked out.

Furthermore, in most of these part-based approaches, the repre-
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sentations are somewhat chosen according to human interpretation
of objects, meaning a part of the recognition system corresponds to
a part in a real object, in particular in Guzman’s, Marr’s and Bieder-
man’s approach. But these types of parts may be rather a component
of the semantic representation of objects (figure 2, right side). As we
pointed out already, the perceptual representations we look for, do not
need to be that elaborate (figure 2, left side). Nor do they need to rely
on parts.

2.3.3 Template Matching

In a template matching approach, objects are stored as a 2D template
and directly matched against the (2D) visual image. These approaches
are primarily developed for detection of objects in gray-scale images,
e.g. finding a face in a social scene or detecting a car in a street scene.
Early attempts tried to carry out such detection tasks employing only
a 2D luminance distribution, which was highly characteristic to the
category. To find the object’s location, the template is slid across the
entire image. To match the template to the size of the object in the
image, the template is scaled. Because this sliding and scaling is a
computationally intensive search procedure, the developers of such
systems spend considerable effort in finding clever search strategies.

Recent attempts are getting more sophisticated in their represen-
tations (Amit, 2002; Burl et al., 2001). Instead of using only the
luminance distribution per se, the distribution is nowadays tenden-
tially characterized by determining its local gradients, the differential
of neighboring values. This gradient profile enables a more flexible
matching. Such a vision system would thus run first a gradient detec-
tion algorithm and the resulting scene gradient-profile (or landscape)
is then searched by the object templates. In addition, an object is often
represented as a set of sub-templates representing significant ‘parts’
of objects. For instance, a face is represented by templates for the
eyes and a template for the mouth. In some sense, these approaches
move toward more flexible representations in order to be able to cope
with the structural variability existent in categories. These systems
can also perform very well, when the image resolution is low. In com-
parison, in such low resolution cases, a human would probably recog-
nize the object rather with help of contextual information, that means
that neighboring objects facilitate the detection of the searched object.
Such contextual guidance can take place with frames.

2.3.4 Scene Recognition

The first scene recognition systems dealt with the analysis of building
blocks like cuboids and wedges depicted in line drawings, so-called
polyhedral scenes. Guzman developed a program that was able to
segment a polyhedral scene into its building blocks (Guzman, 1969).
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His study trailed a host of other studies refining and discussing this
type of scene analysis (Clowes, 1971; Huffman, 1971; Waltz, 1975).
The goal of such studies was to determine a general set of algorithms
and rules that would effectively analyze a scene. However the explored
algorithms and representations are difficult to apply to scenes and ob-
jects in the real world because their structure is much more variable.

Modern scene recognition attempts aim at the analysis of street
scenes depicted in gray-scale images. A number of groups tries to
form representations for objects made of simple features like lines and
curves, and of a large set of rules connecting them (e.g. (Draper et al.,
1996)). Evolvement would occur by a set of control feedback loops,
searching for the correct match. These groups have faced the struc-
tural variability aspect and addressed it as follows: when they are
confronted with a large variability, they ‘sub-categorize’ a basic-level
category, moving thus toward an increasing number of ‘templates’.

Many of these systems intend to recognize objects from gray-scale
images that have a relatively low resolution. In these images, objects
can appear very blurred and it is very difficult and probably even im-
possible to perform proper recognition without taking context into ac-
count, as the developers realized. The human observer has of course
no problem categorizing such images, thanks to the power of frames
that can provide rich contextual information. We have more on the
subject of scene recognition in chapter 11.

2.4 Recapitulation

We summarize the different approaches with regard to their type of
representations - whether they are specified in 2D or 3D - and their
method of reconstruction (figure 8).

Some artificial intelligence approaches focused on object represen-
tations specified in a 3D dimensional coordinate system and they at-
tempted to reconstruct the constituent 3D parts directly from the im-
age, like Binford’s and Marr’s approach, as well as Brook’s identifi-
cation system (figure 8a). Roberts’ and Lowe’s system also represent
objects in 3D, but evolvement was more direct by going via 2D fea-
tures (figure 8b). Scene recognition approaches search for represen-
tations using merely simple 2D features and extensive feedback loops
for matching (figure 8c). The most direct recognition systems are the
template matching systems, which can be roughly labeled as 2D-2D
systems (figure 8d). We also assign neural networks (NN) to that cate-
gory, because many of them aim at a feature matching in some sense
(chapter 3, section 3.1). The single arrow should indicate that evolve-
ment is either direct (in case of templates) or continuous (for neural
networks). Figure 8e refers to spatial transformations which we will
also discuss in chapter 3.

In case of the identification systems, the representation and evolve-
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Figure 8: Summary of recognition systems, roughly ordered by evolve-
ment strategies and representation type. Top (a): pure 3D approaches,
the model as well as reconstruction occurred via 3D volumes. Bottom
(f): representation and evolvement involving spatial transformations.

ment was defined beforehand. This worked well because the range
of objects was finite and their environment was often well defined.
The part-based approach also defined representation and evolvement
ahead, but this has not led to general applicable systems. Their type
of representations seemed to correspond to a human interpretation of
objects and may therefore serve better as a cognitive representation
(right side of figure 2). Because successful representations are diffi-
cult to define, approaches like template matching and scene recogni-
tion employ an exploratory approach.

2.5 Refining the Primary Engineering Goal

Given the large amount of variability, it is difficult to envision a cate-
gory representation made of a fixed set of rigid features. Our proposal
is to view a category representation as a loose structure: the shape of
features as well as their relations amongst each other is to be formu-
lated as a loose skeleton. The idea of loose representations has already
been suggested by others. 1) Ullman has used fragmented template
representations to detect objects depicted in photos (Ullman and Sali,
2000). 2) Guzman has also proposed that a representation needs to
be loose (Guzman, 1971). He developed this intuition - as mentioned
before - by reflecting on how to recognize an object, that has deforma-
tions like bumps or distorted parts. He termed the required represen-
tation as ‘sloppy’. 3) Results from memory research on geographical
maps suggests that human (visual) object representations are indeed
fragments: Maps seem to be remembered as a collage of different spa-
tial descriptors (Bryant and Tversky, 1999). Geographical maps are
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instances of the identity level (figure 3): Hence, if even an instance
of an identity is represented as a loose collage, then one can assume
that basic-level category representations are loose as well, if not even
much looser. Loose representations can also provide a certain degree
of viewpoint invariance. Because the structural relations are not ex-
actly specified, this looseness that would enable to recognize objects
from slightly different viewpoints. We imagine that this looseness is
restricted to canonical views only. Non-canonical views likely trigger
an alternate recognition evolvement, for instance starting with textu-
ral cues.

At this point we are not able to further specify the nature of repre-
sentations, nor the nature of recognition evolvement. We will do this in
our simulation chapters (chapters 5, 7 and 8). Because it is difficult to
define a more specific representation and evolvement beforehand, our
approach is therefore exploratory like the template and scene recogni-
tion systems, but with the primary focus on the basic-level categoriza-
tion process. The specific goal is to achieve categorization of canonical
views. Non-canonical views are not of interest because they are rare
(section 2.2). Thus, the effort has to go into finding the neuromorphic
networks that are able to deal with the structural variability. Further-
more, this system should firstly be explored using objects which are
depicted at a reasonable resolution. Once this ‘motor’ of vision, the
categorization process, has been established, then one would refine it
and make it work on low-resolution gray-scale images or extend it to
recognition of objects in scenes.
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Ideally one would understand how the real, biological visual system
processes visual information and then one would mimic these mech-
anisms using the same networks. To gain such neuroscientific inspi-
ration, we start by looking at the prevailing neuroscientific paradigm
of visual processing, followed by reviewing some of the criticism it
has drawn to. The criticism comes from the neuroscientific discipline
itself, but also from psychological as well as from computational view-
points.

Many of the experiments, giving us insight about the biological
visual system, are carried out in monkeys (and sometimes even cats),
but it is assumed that the human visual system has a functionally
similar architecture allowing so for an analogy.

3.1 Hierarchy and Models

Neurophysiology The neuroscientific view of recognition can be termed
a local-to-global evolvement, that is, an evolvement starting with small
features and then gradually integrating toward global features and the
eventual percept, see figure 9 (Palmer, 1999; Farah, 2000).

Figure 9: Schematic illustration of the (supposed) local-to-global
recognition evolvement along the cortical hierarchy. Brain: Outline
of the primate brain with important visual areas. Areas: The areas
depicted as hierarchy. Features: Increasing complexity along the hi-
erarchy. RF size: receptive field sizes. Evolvement: local-to-global.
Supposed information flow: supposed flow in cortical areas.

In the retina, a visual image is analyzed point by point. Retinal
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ganglion cells respond to a small, circular spot of the visual field, the
so-called receptive field (RF), by generating a firing rate that corre-
sponds to the luminance value impinging its receptive field (Barlow,
1953; Kuffler, 1953). The thalamus seems to relay this point-wise
analysis. In the primary visual cortex (V1), there exist orientation-
selective cells that respond with a high firing frequency for a short
piece of contour of a certain angle, or also called orientation. Their
receptive field is elongated and they systematically cover the entire
visual field, forming an organized structure that has been termed ori-
entation columns (Hubel and Wiesel, 1962; Hubel and Wiesel, 1968),
see figure 10c. Some of these orientation-selective cells respond to
static orientation. Yet, most of them are motion-sensitive and respond
to an oriented bar or edge moving across their RF, see figure 10a and b
for a schematic summary. Higher cortical areas, like V2 and V4, have
many cells responding to similar features like the ones in V1, but have
a larger receptive field, thus covering a larger area of the visual field.
In addition, and more interestingly, some of the cells in V2 and V4
respond also to more complex features, like angles, stars, concentric
circles, radial features, polar plots and so on (e.g. (Hegde and Essen,
2000; Gallant et al., 1996; Pasupathy and Connor, 1999). Some of
these features are schematically shown in figure 11. Cells in the in-
ferior temporal cortex (IT) also respond to simple stimuli like oriented
lines but some of them signal for even more complex shapes than the
cells in areas V2 and V4 do (Gross et al., 1972; Tanaka et al., 1993),
see figure 11 for some examples. Some of the IT cells signal for pho-
tographed objects (Kreiman et al., 2000). IT cells have large receptive
field sizes and show some invariance to the exact position and size of
the object or shape they respond to. Visual recognition may even con-
tinue into the prefrontal cortex, where cells are apparently involved
in visual categorization (e.g. (Freedman et al., 2002), not shown in
figure). In all these recordings, those cells were designated as ‘fea-
ture detectors’, that responded with a high firing rate, because it is
believed that a ‘rate code’ is the type of signal with which the neurons
communicate with each other.

There is a number of reasons that led to this idea of a hierarchi-
cal ‘feature integration’: One is, that the complexity of the detected
features seemingly increases along the hierarchy. Another reason is,
that these areas seem to be serially connected. A third reason is,
that receptive field sizes are increasing from lower areas (e.g. V1)
to higher areas (e.g. IT). This feature-integration scheme has been
most explicitly formulated by Barlow, whereby he envisioned that the
neuron is the fundamental perceptual unit responding to individual
aspects of the visual field (Barlow, 1972). This ‘vision’ was given the
term grandmother-cell theory, because Barlow’s example object was
a line-drawing picture of a grandmother.
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Figure 10: Orientation selectivity of V1 cells. a. Spiking of a V1 cell
in response to different orientations. This cell prefers orientations of
66 degrees approximately, showing a high firing frequency for that
orientation. b. Orientation-tuning curve for the cell in a. c. Ori-
entation columns, d. V1 cell stimulated with oriented gratings. S:
spontaneous firing rate. e. Additional dimension: resolutional scale
(or spatial frequency).

Models Models, that mimic this hierarchy, have been contrived since
the 60’s, see (Rolls and Deco, 2002) for a history. Fukushima was the
first to thoroughly simulate a hierarchical system applying it to recog-
nition of digits (e.g. (Fukushima, 1988)). Recent models refine this
concept (Edelman, 1999; Riesenhuber and Poggio, 1999). These mod-
els generally operate in a feed-forward (bottom-up) manner. Other
researchers like Grossberg as well as Rolls and Deco have invented
more elaborate models that are not necessarily as strictly hierarchical
as sketched here. But all the models share the idea of feature inte-
gration (Francis et al., 1994; Bradski and Grossberg, 1995; Rolls and
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Figure 11: Feature selectivity of some of the cells in cortical areas V2,
V4, IT. Most cells respond to simpler stimuli like in V1 but there are
also cells that respond to complex stimuli like the ones displayed here.
Features redrawn from corresponding references, see text.

Deco, 2002). And in all these models, the input-output function of a
neuron expresses the idea of a rate code.

3.2 Criticism and Variants

Distributed Hierarchy and Representation The idea of feature in-
tegration comes in variants. The one discussed in the previous sub-
section can be termed an evolvement by convergence of neuronal con-
nections ((Rolls and Deco, 2002), figure 12a, ‘single neuron’). One
aspect that can be criticized on this scheme is the strictly hierarchi-
cal interpretation of the cortical connectivity. The cortical connectiv-
ity scheme looked simple and straightforward in early years, but has
turned out to be much more complex after some time and can for ex-
ample be termed a distributed hierarchy (Felleman and Van Essen,
1991). Others call it a heterarchy. One can therefore assume that
object recognition does not necessarily occur as strictly hierarchical
but that there may be feedback interactions providing a so-called top-
down influence.

Furthermore, object representations maybe encoded in a distributed
manner and not by a mere single neuron. For example, Tanaka’s
recordings in IT showed that neighboring neurons fired for the same
object, which he took as evidence that an object is distributedly rep-
resented by a local population of neurons (Tanaka, 1996) (figure 12a,
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‘locally distributed’). Because it seems that different visual cues are
encoded in different areas, it may well be that an object is completely
distributedly represented across several areas. Such a distributed
representation requires a mechanism that would signal, which prop-
erties belonged together, or put differently, a mechanism that binds
properties. Singer proposed that such a binding mechanism is ex-
pressed by the observed synchronization in spikes amongst far dis-
tant neurons (Singer et al., 1993) (figure 12a, ‘synchronization’). This
is sometimes called a timing code, because the specific, timed occur-
rences of spikes matters. Another candidate that has been proposed
for binding is attention (Treisman, 1988).

Receptive Field and Firing Frequencies The receptive field (RF) of

a visual neuron is roughly defined as the area of the visual field, that
causes the neuron to respond with a high firing frequency (caricatured
in figure 12b, ‘optimal’) For example, if a cortical orientation selective
V1 cell is stimulated with a bar of preferred orientation, it fires at
about 50 to 150Hz, depending whether the animal is anesthetized or
not (e.g. (Hubel and Wiesel, 1962; Sugita, 1999)). It is now commonly
accepted that such a preferred stimulus is in some sense an optimal
stimulus - if one solely searches for a high-firing response in a neu-
ron. Firing rates are generally lower if one adds other stimuli either
inside or outside the RF. For example, if a stimulus is placed outside
the RF, then often a suppression in the firing rate is observed (e.g.
(Cavanaugh et al., 2002) for a review). Thus, one may assume that
the receptive field is actually larger than when it is determined with
an optimal stimulus only. The receptive field, as determined with an
optimal stimulus, is therefore sometimes called the classical receptive
field. Another case that can cause a decrease in firing response, is
when a second stimulus is placed inside the RF. One possible source
for such modulation in the firing rate are the horizontal connections
found across hypercolumns: these connections seem to gather infor-
mation from a much wider area of the visual field than the classical
receptive field. Ergo, one may suspect that much more global pro-
cessing takes place in area V1, than only the local analysis (Albright
and Stoner, 2002; Bruce et al., 2003). The response suppression from
inside the RF has been interpreted as attentional processing (Moran
and Desimone, 1985).

But neuronal firing responses can be even lower, in particular
when natural stimuli are presented (e.g. (Baddeley et al., 1997; Luck
et al., 1997; Vinje and Gallant, 2000)). For example when test an-
imals were presented a video sequence of their typical environment,
V1 neurons fired at only around 14-50Hz; In humans (epileptic pa-
tients) the firing frequency of enthorhinal and temporal cortical neu-
rons was measured around 4-10Hz for recognized images (Kreiman
et al., 2000). This very low firing frequency stands in clear contrast
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Figure 12: Coding concepts and receptive field responses. a. Some of
the coding concepts existent in the computational neuroscience dis-
cipline: Single neuron, locally distributed, synchronization (or timing
code). b. Response of a visual neuron to different features around its
receptive field (RF): optimal stimulus, additional stimulus outside and
inside the RF, natural stimulus.

with the observed high-frequency measurements of simple stimuli and
one may therefore raise suspicion about the rate code and receptive
field concept.

Filter Theory Some vision researchers interpret the response of vi-
sual neurons differently: Instead of interpreting these cells as detec-
tors of contour features, they propose that these cells may filter the
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spatial frequency of the visual Image and thereby perform some sort
of Fourier-like analysis. This view was propelled after it was discov-
ered that the response characteristics of V1 cells are more subtle,
when they are stimulated with sinusoidal gratings - instead of a sin-
gle line or bar only (De Valois and De Valois, 1988). For example,
the orientation tuning curve looked as shown in figure 10d. The hor-
izontal dashed line crossing the orientation tuning curve represents
the ‘spontaneous’ firing rate, that is the mean firing rate when a neu-
ron is not stimulated. This spontaneous firing rate can be in the
range of less than one spike per second (0.5 Hertz) to up to several
spikes a second. For the preferred grating orientation the cell fires
with a high frequency - as recorded in experiments using single line
orientations. But for grating angles that deviate a few degrees off
the preferred orientation, the response of the neuron is actually be-
low the spontaneous firing rate. A second ‘refined’ finding was, that
the receptive field profile looked more like a Gabor

1 function than a
Gaussian (not shown). A third intricate discovery was that different
cells showed a preference for gratings of specific frequency. Taken
together, it looks like there are cells that code for different spatial (or
resolutional) scales and for different orientations, which suggests that
some sort of wavelet encoding may occur in the primary visual cor-
tex. If one translated that into the picture of the orientation columns,
then one would add the dimension of spatial scale to each orientation
(figure 10e). Many vision models perform image-filtering operations
inspired by the above framework. They use filters whose exact form
is motivated by those recordings. For example, an elegant model by
Perona and Malik performs texture segregation and produces a con-
tour image as output (Malik and Perona, 1990). A number of neu-
rophysiology studies have tried to find filter detectors in higher areas
(V2 and upwards in the cortical hierarchy). They used polar and hy-
perbolic patterns that could possibly serve as complex filter detectors
(e.g. (Hegde and Essen, 2000; Gallant et al., 1996)). Such patterns
are shown in the bottom row of figure 11.

3.3 Speed

Latency Code Many of the neurophysiological experiments are car-
ried out using (visual) presentation times of several hundreds of mil-
liseconds, which is a long time span compared to the fast-paced dy-
namics of visual selection: saccades are launched every 200-300ms,
attentional shifts are carried out several times between saccades (Para-
suraman, 1998). One may therefore question the interpretation of ex-
periments with long stimulation durations. Indeed, it has long been
neglected that visual processing occurs blazingly fast. Although Pot-
ter had already shown this with behavioral experiments (see section

1
A Gaussian multiplied by a sinusoid (Gabor, 1946)
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1.2), it was Thorpe who sharply pointed out this characteristic using
event-related potential (ERP) studies (Thorpe et al., 1996) (see also
(Schendan et al., 1998)). In his experiments, subjects had to decide
whether a picture contained an animal or not. The picture was pre-
sented for only 20ms. The analysis of the ERP patterns showed, that
after 150ms only, a subject has already made a reliable decision and
that this decision was made in the frontal cortex, indicating that vi-
sual information has made the loop from V1 over IT to frontal cortex
somehow. It should be mentioned however, that Thorpe’s and Potter’s
experiments work with expectation: the subject knows in about what
to look for - in other terms certain frames may have been activated
already and this preactivation could possibly reduce the reaction time
by some amount. Still, 150ms is blazingly fast and without expecta-
tion it would probably take only a few tens of milliseconds more.

Figure 13: A latency code. The amount of input determines the onset
of firing: a large input triggers early onset, a small input triggers late
onset (0: onset of stimulus, t: time). This type of timing code would
swiftly convert a complex pattern into a subtly timed spike pattern.
Proposed in variants by Thorpe and Hopfield. Adapted from Thorpe,
1990.

Because visual processing happens so rapidly - and possibly any
neural processing -, one may doubt whether there is a frequency code
at work, because such a code may be simply too slow. Thorpe himself
therefore proposed a timing code in which computation is performed
by precisely timed spikes (Thorpe, 1990). Figure 13 expresses the
idea. The amount of input determines when the cell fires its first
spike after stimulus onset: a large input triggers early firing, a small
input triggers late firing. VanRullen et al. developed a network that is
made of a large stack of neuronal layers using this type of encoding.
The network is designed to mimic Thorpe’s visual experiment (Rullen
et al., 1998). The idea of such a latency code has also been proposed
by Hopfield (Hopfield, 1995).
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Global-to-local Some psychologists were aware of the the blazing
processing speed long before the above debates and were wondering
how the visual system may analyze visual information so rapidly. They
argue, that because we can recognize the gist of a scene so rapidly,
that the visual system processes a scene by decomposing it in a global-
to-local manner, basically the reverse to the neuroscientific paradigm.
Neisser has formulated this idea in the 60’s already (Neisser, 1967),
Navon was the first to seriously investigate this concept (Navon, 1977).
Navon described this view concisely with ‘forest before trees’: In exper-
iments with large letters made of small letters (figure 14), Navon tried
to prove that first a global perception of the large letter takes place, fol-
lowed by a local perception of the small letters. If such a ‘global-first’

Figure 14: Navon’s task to test for a global-to-local recognition evolve-
ment: Is the global ‘H’ or the local ‘S’ perceived first?

evolvement would take place in the visual system, one may wonder
how. Because it had to happen fast, global processing may have to
take place in low cortical areas already. This stands in apparent con-
trast to the long-assumed picture that only a spatially local analysis
occurs in V1. But this picture has already been criticized from two
sides. One side are the neurophysiological recordings on the charac-
teristics of the receptive field (previous section). Another side are the
psychophysical measurements on contour integration, which evidence
that perceptual grouping operations may take place in V1 (Kovacs,
1996; Hess and Field, 1999). It may therefore be worth considering
whether a possible global-to-local analysis starts in V1 already. On
a complementary note, there is an attempt to model a global-to-local
analysis (see (GERRISSEN, 1984; GERRISSEN, 1982)).

3.4 Alternative ‘Codes’

The dominant view of how neurons communicate with each other is
guided by regarding it as some sort of Morse code or also called a
‘neural code’ (Koch, 1999). The sequence of spikes, that a neuron
generates, is interpreted as being part of a rate or timing code. Both,
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rate and timing codes, come in many different variants (deCharms
and Zador, 2000). We have mentioned a few examples previously. An
alternative to this Morse code thinking is to regard spikes merely as
connectors between far distant sites: the sequence of spikes would
have no meaning, but each single spike may be part of a computation
connecting distal sites.

Cortical Potential Distributions One such alternative is Tuckwell’s
theory, in which the critical measure is a potential distribution across
cortex (Tuckwell, 2000). One component of the cortical potential dis-
tribution can be the field potential, which is a voltage that reflects pri-
marily post-synaptic potentials and only to a minor extent the spikes
themselves. Another component can be the magnetic fields. Both
potentials can be regarded as a general electromagnetic field descrip-
tion for cortical states. According to Tuckwell, such global cortical
potential distributions could define cognitive states. A change be-
tween these states could occur very rapidly simply by the simultane-
ous change of the entire distribution at each locus.

Waves Another alternative would be to regard an observed (or mea-
sured) spike as being part of a traveling wave. Traveling waves exist
in the nervous system of many animals (e.g. (Hughes, 1995; Prechtl
et al., 1997; Wilson et al., 2001; Shevelev and Tsicalov, 1997). Gen-
erally, they are considered as non-functional, accidentally emerging
from networks of neurons. Recently, there has been some effort to
attribute computational functions to traveling waves. Jacobs and
Werblin measured traveling waves in the salamander retina in re-
sponse to visual stimulation, and speculated that it may have edge
enhancing effects (Jacobs and Werblin, 1998). They envision that
such waves are possibly involved in different neural computations.
Barch and Glaser use excitable membranes to detect motion: differ-
ent motion signals leave traveling waves of characteristic shape on an
excitable membrane (Barch and Glaser, 2002).

Yet, long before the discovery and reinterpretation of travelingwaves,
there existed some computational reflections on coding and visual rep-
resentations, which have never really been pursued in neuroscience.
One is the broadcast receiver principle and the other is the idea of
self-interacting shape. Both use the idea of wave propagation, which
can be readily interpreted as traveling waves.

Broadcast Receiver Principle This idea has been expressed by sev-
eral people (e.g. (Blum, 1967; Deutsch, 1962), see (Blum, 1967) for
references). Blum has given the most illustrative example, see figure
15a. The schematic depicts an excitable 3D volume that propagates
waves. He imagined that a feature extraction process places filtered
properties (of a visual field for example) onto this propagation medium.
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Wherever these triggered waves would meet simultaneously, the neu-
ron at that locus would signal the presence of those properties. Blum
called this the simultaneity observer, which in modern terminology
would be called coincidence detector. In some sense it is an inte-
gration by propagation, as opposed to for example the integration by
convergence or synchrony (figure 12a). The advantage of integration
by propagation is that it is not bound to a specific wiring pattern.
Blum suggested this process in order to address the problem of ‘fast
access’. He considered this, as Thorpe does recently, as the foremost
issue that needs to be addressed in visual recognition.

Figure 15: Coding by waves. a. Broadcast receiver principle: 3 fea-
tures have been extracted and their signal is placed on an excitable 3D
medium that propagates waves. At the location where all three waves
coincide, integration would take place. b. Self-interacting shape.
The symmetric-axis transform: the rectangle has been transformed
into the dotted symmetric-axes by contour propagation (more on this
transform in chapter 7). Adapted from Blum 1967, 1973.

3.5 Alternative Shape Recognition

Visual shape is generally described by its contours, like in the com-
puter vision approaches mentioned in chapter 2 or like in the neuro-
scientific feature integration concept. An alternative is to encode the
space that a shape engulfs. One method to achieve that would be by
extracting the spatial frequencies like in the channel theory. Another
method would be to encode the region directly: early Gestaltists pro-
posed that a shape interacts with itself, (e.g. (Koffka, 1935)). During
such a self-interaction, the enclosed space is automatically encoded.
Based on these ideas there have been several models (see (Blum, 1967;
Psotka, 1978) for references). We discuss two of them.

The most specific and influential one is probably Blum’s symmetric-
axis transform (SAT) (Blum, 1973) (see figure 15b). He specifically de-
signed the transformation to perform as a biologically plausible pro-
cess. The idea is to dip a shape into an excitable medium that would
trigger a ‘grassfire’ process as Blum called it. A more modern term for
grassfire would be contour propagation or wave propagation. Wher-
ever these propagating contours collide, they cancel each other out,
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evolving a geometrical pattern in time called the symmetric axis.
There is some psychological and neuroscientific evidence, that the

SAT is carried out in the primate visual system. For example, Psotka
asked human subjects to place a single dot into a shape. It turned out,
that the superposition of all the dots (from many different subjects) is
a pattern that resembles the symmetric axis for that shape (Psotka,
1978). Kovacs and Julesz found that human sensitivity to orientation
stimuli is higher in the center of a region, which they interpreted as
evidence for SAT-like processes (Kovacs and Julesz, 1994). Kovacs in
particular summarizes a number of psychological studies that sup-
port that regions are transformed into ‘skeletonal’ structures in V1
already (Kovacs, 1996) (see also ‘Global-to-local’ in previous section).
A neuroscientific study on primates indicates, that the SAT or similar
region-based processes, may take place in the primary visual cortex
(Lee et al., 1998).

Figure 16: Shape description by a distance measure. Deutsch sug-
gested a mechanism that measures the distance between pairs of
points along the contour. Four examples are shown. The histogram
plots the number of ‘distance pairs’ (#) for a given distance (d). Re-
drawn from Deutsch 1962.

Another type of shape interaction was suggested by Deutsch (1962).
Based on the histology of the bee’s optical lobe, he contrived a system
that would ‘measure the distance between all pairs of points on the
boundary of the shape and so produce a distribution of how many
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pairs of points there are at each distance from another’, see figure 16
for examples. He posited that a shape recognition system should pos-
sess qualia that allow the system to recognize the shape independent
of its position, size, orientation and mirror image. His shape encod-
ing mechanism could account for all of these aspects except of size
invariance. We discuss some of these aspects later again in chapter 9.

3.6 Insight from Cases of Visual Agnosia

The study of humans with visual deficits may give us also some in-
sight on the functioning of the vision process (Humphreys and Rid-
doch, 1987a; Humphreys and Riddoch, 1987b; Farah, 1990). It is
a study on the behavioral level again and the following observations
may also have fitted into chapter 1, but we felt that they are bet-
ter placed in the neuroscience chapter. Drawing conclusions from
agnosia cases is especially intriguing, because many of these cases
can appear very similar at a first glance, but are actually very in-
dividual in their deficits. Humphrey and Riddoch (Humphreys and
Riddoch, 1987a; Humphreys and Riddoch, 1987b) concentrated on
a few subjects and analyzed them thoroughly with a large variety of
tasks. For example, subjects were tested with one of the tasks that
Navon used to determine whether perception may occur in a global-
to-local manner (see section 3.3). Some subjects struggled with some
of these letter tasks, for example some subjects were able to compre-
hend either the global or local letter only. One subject was able to
recognize the outlines (silhouettes) of line-drawing objects better than
if they were presented the same object with all its major contours.
From such observations, Humphrey and Riddoch concluded that two
separate structure-processing streams exist, one for local feature pro-
cessing and the other for global shape processing (figure 17). Both
of these streams converge to viewpoint-dependent object descriptions
and to abstract episodic object descriptions, which are collections of
viewpoint-dependent descriptions. Both object descriptions point to-
wards object form knowledge, which in turn points toward semantic
knowledge.

But recognition evolvement maybe even more individual than just
a separation into a local and a global structure-processing stream. To
point this out, we mention a few cases which Farah has described
(Farah, 1990) and we thereby follow her classification, because it is
the most recent attempt to classify those multi-faceted cases:

1) One subject who suffers from ‘apperceptive agnosia’ had greater
difficulty with curved lines than with straight lines, which evidences
that there may be distinct mechanism to evolve curves and straight
lines.

2) Some of the associative subjects - classified as ‘narrow sense’
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Figure 17: Humphrey and Riddoch’s scheme of object recognition as
derived from studies of visual agnosia cases. Redrawn from Humphrey
and Riddoch, 1987a.

by Farah - were able to ‘see’
2 line-drawings and to slowly copy them

(figure 18). For example a structure like in the top left (under ‘shown’),
was copied in a part-wise manner, meaning it has been perceived as
two separate regions, see middle, schematic graph under ‘patient’s
copy’. An alternative may have been that the structure was copied as
shown under ‘alternate possibility’. One may conclude from this ex-
ample, that because the patient copied the drawing region-wise, that
perception is based on parts or regions. The second example shows
that the patient copied a wheel with spokes as a circle with lines go-
ing through it (bottom row in figure 18). An alternative could have
been that the subject copies the structure slice-wise, which would be
a region-wise manner. This example is in contrast to the first one. It
does not point toward a perception based on regions but to a percep-
tion of spatially distinct features.

3) Quite a number of visual agnosia cases have troubles recog-
nizing objects of certain categories, in particular subjects that have
difficulties with face recognition. Those subjects could not recognize
for example fruits and vegetables, or objects found indoors. This may
evidence a failure of making an association to ‘action representations’.
Still, one may also take this as evidence that object representations

2but not recognize



Figure 18: Some of the copying results (schematic) of an associative
case (narrow sense). Left: what the subject was shown. Middle: the
way the subject copied it. Right: theoretically, alternate possibility.

are spatially very distinct.
In summary, we regard these findings as an indication that per-

ception - or recognition evolvement and representation - may be more
individual to an object and does not follow a standard evolvement
scheme.

3.7 Neuronal Level

Until now we have only addressed the system level. But what may we
learn from the neuronal level? We start with the electrical properties
of the nerve cell membrane.

Subthreshold dynamics Below the spiking threshold, the membrane
behaves roughly like a resistor-capacitor (RC) circuit, in which the ca-
pacitance, Cm, represents the membrane capacitance; the resistor,
Rleak, expresses the ‘leakiness’ of the membrane; and the voltage
node, Vm, represents the membrane voltage (figure 19a). If one stim-
ulates the nerve cell membrane with a step current of low amplitude
(see two ‘I’ traces), its membrane voltage will gradually increase and
then saturate. After offset of the stimulating current, the membrane
voltage will bounce back (see corresponding two ‘Vm’ traces). How
fast this increase and decay occurs depends on the parameter values
for the resistance and membrane capacitance. A neuron’s membrane
capacitance can be reliably estimated, but its membrane resistance is
not alway easy to determine, especially in case of the small neocortical
neurons. The decay times range from a few milliseconds to a couple
of tens of milliseconds (Johnston and Wu, 1995). If the decay time is
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rather long, a neuron may function simply as an integrator, because
it would continuously add up synaptic input. In contrast, if the decay
time is short, then the neuron may function as a coincidence detec-
tor: synaptic input is only added up, when it occurs almost simul-
taneously, otherwise synaptic input leaks away before other synaptic
input adds up. In which one of these two modi a cortical neuron oper-
ates, is still an on-going debate (e.g.(Koenig et al., 1996; Koch, 1999)).

Synaptics The synaptic responses can be very diverse. There ex-
ist the simple excitatory and inhibitory synapses, that cause a tran-
sient increase or decrease in the membrane potential respectively. A
schematic excitatory postsynaptic potential (EPSP) is shown in figure
19b on the left side. Its duration lasts several milliseconds. Two exci-
tatory synapses sum up linearly as shown in figure 19b (upper right).
There exist also voltage-dependent synapses that produce non-linear
summation: they generate a larger synaptic response, when the mem-
brane potential has already been elevated by other stimulation (figure
19b, lower right). This type of response can be interpreted as multi-
plicative (gray trace indicates mere summation). There are a number
of other synaptic interactions, as for example divisive inhibition. This
variety of synaptic responses could therefore perform quite a spec-
trum of arithmetic operations (Koch, 1999).

Dendritics The tree-like dendrite of a neuron collects synaptic sig-
nals in some way. In a first instance, the dendrite may be regarded
as a passive cable conveying the synaptic signals that were placed on
it. The propagation properties of such a dendritic cable have been
characterized to a great extent by Rall (Rall, 1964). For practical sim-
ulation purposes, a dendritic tree is discretized into so-called com-
partments, each of which simulates a patch of membrane by a RC
circuit. The compartments are connected by a horizontal (or axial)
resistance, Raxial, which simulates the internal, cellular resistance.
Figure 19c (left) shows two compartments connected by a horizontal
resistance. If synaptic input is placed for example in the left compart-
ment (voltage node Vm1), then it will spread towards its neighboring
compartments and decay in amplitude due to the horizontal resis-
tance and the membrane resistance of each RC circuit. The schematic
in figure 19c (right side) shows this propagation decay for a synap-
tic input placed on Vm1. Given these decay properties, a dendrite
may be regarded as a low-pass filter. But there maybe more complex
processing going on in a dendrite than just mere synaptic response
integration along a passive cable. Because many dendrites contain
also voltage-dependent processes that could cause quite a number of
different operations. For instance, a dendritic tree sprinkled with the
voltage-dependent ‘multiplicative’ synapse just mentioned previously,
could carry out sophisticated computations (Mel, 1993). Or a den-



Figure 19: Schematic neuronal dynamics. a. Resistor-capacitor dy-
namics represent the nerve cell membrane dynamics (below spiking
threshold). Left: RC circuit: Cm: membrane capacitance; Vm mem-
brane potential: Rleak: membrane resistance. Right: The response
of Vm to two (superimposed) step currents. b. Synaptic response
and integration. Left: typical excitatory postsynaptic potential. Right:
linear summation (above), multiplicative summation (below). c. Com-
partmental modeling of a piece of dendritic cable. Left: A cable is
well simulated by discretizing it into separate RC circuits connected
by axial (‘horizontal’) resistors, Raxial; Right: Synaptic response decay
along compartments.

dritic tree containing voltage-dependent channels like the ones in the
soma (see next paragraph) could actively propagate a synaptic input
toward the soma. Furthermore, spike waves have been discovered
that run up and down the dendrite (e.g (Svoboda et al., 1997). Thus,
there could be a substantial amount of active processing taking place
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in a dendrite (Johnston et al., 1996; Koch, 1999).

Somatics (above threshold dynamics) In the soma, spikes are gen-
erated. Once the membrane voltage crosses a certain threshold, an
action potential is generated that is the result of a marvelous interac-
tion of subtly timed ionic currents (Hodgkin and Huxley, 1952). Such
an impulse is generated within 1-2 milliseconds. If the neuron is
stimulated continuously, for example with a step current of sufficient
magnitude, then the neuron spikes repetitively. There is a large num-
ber of models that mimic this spiking behavior ranging from detailed
models, that simulate the exact dynamics of the ionic current, over to
oscillatory models and to simplified spiking models. From this wide
range of suggested neuronal functions and models we here mention
only one type, the integrate-and-fire (I&F) model (Koch, 1999). It is the
simplest type of spiking neuron that incorporates explicit subthresh-
old and spiking dynamics.

Figure 20: Integrate-and-fire (I&F) variants. a. Perfect I&F neuron: C
represents the membrane capacitance, V the membrane potential, the
box with the pulse icon represents the spiking unit which activates a
switch (S) resetting the membrane potential. b. Leaky I&F neuron: it
contains a resistance (R) in addition. Modified from Koch, 1999.

The most elementary I&F variant is the perfect I&F neuron (fig-
ure 20a). It merely consists of a capacitance, representing the mem-
brane capacitance, and a spike-generating unit possessing a thresh-



old. When synaptic input reaches the (spiking) threshold, the spike-
generating unit will trigger a spike and reset the activity level back to
0 (ground). If desired, a refractory period can be simulated by clamp-
ing the activity level to 0 for a short while. This model just suffices
to simulate simple synaptic integration. A more elaborate variant is
the leaky I&F neuron (figure 20b), which consists of the perfect I&F
circuit plus a membrane resistor. Or put with above terminology, it is
the RC circuit plus a spiking unit. The membrane resistance has the
effect that any input is only transient, which renders this model much
more realistic than the perfect I&F model. This model is for example
suitable for detecting coincidences amongst synaptic input.

3.8 Recapitulation and Conclusion

The experimental results in visual systems neuroscience are fascinat-
ing but remain puzzling as a whole. The innumerous recordings and
measurements have been interpreted in many different ways and have
not led to a unifying picture of the recognition process but rather to a
continuing diversification in theories and approaches. The prevailing
idea of feature integrating does not directly help us out in specifying
the loose category representations we look for and that is primarily for
two reasons:

1) If the features found in the visual field are integrated, then a
single category instance has been described, an object of the identity
level in some sense (figure 3). What would have to follow that de-
scription, is a continued evolvement leading to the abstract category
representation, which is able to deal with the structural variability.

2) Most of the feature or object detectors found in higher areas do
not exactly represent structure seen in the real world. The exception
are a few neurons firing for real-world objects, yet they hardly repre-
sent abstract representations but rather objects of the identity level
(figure 3). The feature integration concept would be much more com-
pelling if there were neurons that fired for different instances of the
same category, for example a cell responding to structurally different
trees, fruits or flowers.

The neural networks performing this feature integration do not
make an explicit distinction between representation and evolvement
- as opposed to the computer vision systems reviewed in the previous
chapter. Evolvement is representation and vice versa. The strength
of many of these neural network architectures is that they learn au-
tomatically after some initial help. Their downside is that their neu-
ronal units or connections share too many object representations and
this shared substrate leads to a considerable overlap. Thus, they are
structurally not specific enough to represent different categories. In
order to differentiate between structurally more diverse objects, a net-
work has to evolve structurally more distinct features and contain

3.8 Recapitulation and Conclusion 35



36 Neuroscientific Inspiration

distinct representations. The cases of visual agnosia suggest that
the visual system may indeed have mechanisms that perceive spe-
cific structures and that object representations maybe spatially very
distinct.

The low spiking frequency found with complex stimuli presenta-
tions stands in apparent contrast with the lightning processing speed
and casts serious doubts on the prevailing rate-code concept. Several
researchers have therefore looked for alternative codes, ranging from
wave propagation, over to timing codes, to cortical potential distribu-
tions. As we have already pointed out in chapter 1, we also consider
speed a pivotal characteristic that needs to be explained when one
attempts to unravel the evolvement and representation of the visual
recognition process - and likely any computation in the nervous sys-
tem.

If one adopts the idea that waves perform computation - as we will
do later - then one may regard a spike merely as part of a wave run-
ning across the neuron. In order to account for the processing speed,
such a wave would need to be fast. We argue in our later chapters - in
particular chapter 7 - that fast waves may exist (section 7.5). Taking
the ‘wave view’, the occasionally observed high firing frequencies (for
simple stimuli) may then be interpreted as the continuous accumula-
tion (or collision) of waves, because the visual system is idling due to
the lack of meaningful input.

The detailed function of the neuron remains also an enigma, de-
spite quite a number of experiments and model simulations: Is it a
simple integrator? A sophisticated calculator? A coincidence detector?
Is its dendrite a fine-tuned ‘spatio-temporal’ filter? In the remaining
chapters we will only make use of the ‘crude’ I&F neuron type, not
because we think that is what the neuron can be reduced to, but be-
cause it suffices for the wave-propagation processes we will describe
in later chapters.



4 Neuromorphic Tools

The operation of the nervous system requires amazingly little energy.
The average nerve cells dissipates power in the range; the
average logic gate in a computer dissipates 10 million times as much
(Mead, 1989). Can one not create electronic circuits that operate as
swift and economic as the nervous system’s circuits do? Neuromor-
phic engineers do so using analog circuits, whose graded, analog volt-
ages and currents are the computing signals, and whose emulation
runs in real-time and with little energy consumption (Douglas et al.,
1995). The idea was started in the 60’s using bulky electrical devices
very much like the ones in (old) radios and TVs, but it was soon flat-
tened by the uprise of digital integrated circuits. The idea was effec-
tively revived in the late 80’s by Mead, who built analog circuits using
modern chip technology, so-called very-large-scale-integrated (VLSI)
circuits (Mead, 1989). The most famous example of such an analog
VLSI (aVLSI) circuit is the ‘silicon’ retina, which simulates some of the
processing taking place in the retina (Mahowald and Mead, 1991). In
this chapter we present a few simple circuits that simulate those neu-
ronal dynamics we have just sketched in the last section (3.7) of the
previous chapter.

4.1 The Transistor

To grasp the gist of the neuromorphic approach, it is convenient to
introduce the digital operation of the transistor first. A transistor has
a gate, drain, source and a channel connecting source and drain (fig-
ure 21). The voltage at the gate determines the amount of current
flowing through the channel. In a digital circuit, the gate voltage is
either 0 or 5 Volts, corresponding to the binary values 0 and 1. The
corresponding current flowing through the channel is therefore either

Figure 21: Transistor schematic and analog electrical properties. a.
Icon of a transistor. D: drain, G: gate, S: source, I: current. The
amount of current flowing through the channel is determined by the
gate voltage. b. Current-voltage relationship in the analog domain: it
is exponential in the subthreshold domain.
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fully on or totally off. In an analog circuit in contrast, the gate voltage
is typically in a low voltage range from ca. 0.1 to 0.8 Volts gener-
ating small currents in the range of pico and nano ampere. In this
so-called subthreshold range the amount of current flowing through
the channel is an exponential function of the applied gate voltage. Us-
ing this current-voltage relationship, one can construct other useful
functions, like a sigmoid, which would be generated by a circuit called
the transconductance amplifier. For the present essay, it suffices to
understand that a small gate voltage will generate only small currents.

4.2 A Synaptic Circuit

A simple postsynaptic response, as schematically shown in figure 19b,
can be generated with a circuit consisting of only four transistors (fig-
ure 22a). Transistor T1 receives presynaptic (binary) voltage spikes
and therefore operates pretty much like a transistor in digital cir-
cuits: on or off. Transistor T2 emulates the weight of the synaptic
circuit: at its gate, a small voltage is applied, which reduces the large
‘digital’ current flowing through transistor T1, to a smaller current
IWGT. This ‘weighted’ synaptic current then makes a quasi-U-turn
through transistors T3 and T4, in which the sign of the current - pre-

Figure 22: Synaptic circuit and response. a. Circuit made of four
transistors (T1-T4) and a capacitance (C1). Input: (presynaptic) volt-
age pulse, SPK, at T1. Output: postsynaptic-like response, Vm. b.
Response of a silicon synapse (Vm) to presynaptic stimulation (SPK).
Four different spike frequency stimulations are shown (the presynap-
tic spikes are scaled down). From Rasche and Douglas, 1999.



viously negative - is inverted and then dumped as a positive current,
IAMPA, onto a capacitor emulating the neuron’s membrane potential
(capacitor not shown in figure). The capacitance C1 delays the synap-
tic current to make it resemble a real postsynaptic current: without
that capacitance, the synaptic current would be pulse shaped like the
pulse-shaped presynaptic spike entering the circuit at the gate of tran-
sistor T1. Figure 22b shows the synaptic response for a presynaptic
stimulation of five spikes for four different stimulation frequencies.

This silicon synapse only outlines a raw circuit. Many little amend-
ments can be made to convert it for example into a learning synapse
(e.g. (Häfliger and Rasche, 1999)), an inhibitory synapse (e.g. (Rasche,
1999), a voltage-dependent synapse (Rasche and Douglas, 1999) and
a depressing synapse (Rasche and Hahnloser, 2001).

4.3 Dendritic Compartments

Cable-like signal propagation can also be emulated in aVLSI. One
meets a fundamental problem though, the implementation of a useful
resistor in analog circuits. There exists no actual resistor device, but a
lot of work-arounds. Depending on the task, elegant solutions can be
found (Mead, 1989), but for the emulation of dendritic signal spread
the lack of useful resistors is even more blatant. One method is to use
so-called switched capacitors, which consist of two transistors aligned
sequentially and a small capacitance between them (figure 23a). The
alternate digital activation of the two transistors by a clock, piece-
wise moves the charge from one side of the resistance to the other.

Figure 23: Dendritic propagation in aVLSI. a. Emulating a resistor
using switched capacitors: two transistors (T1, T2) in sequence with
a tiny capacitance between the transistors. The transistors are driven
alternatively by a clock. b. Propagation of a postsynaptic signal along
three compartments (postsynaptic signal placed in compartment 1
[Vm1]). From Rasche and Douglas, 2001.

The size of the resistance would depend on the switching frequency
- the speed of the clock - and the capacitance between them. The
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drawback of this method is the use of clocks, which renders the ap-
proach rather a mixed analog-digital implementation. Elias has mod-
eled dendritic cable properties using this type of resistance for both
resistances - horizontal and leakage - of the compartmental modeling
approach (Elias, 1993). We also have played around with this method,
but preferred to simulate the leakage resistance with either an ampli-
fier or a simple transistor that drains activity continuously. Figure
23b shows the propagation decay for a synaptic signal running down
three compartments (Rasche and Douglas, 2001).

4.4 An Integrate-and-Fire Neuron

The I&F neuron model can be emulated in analog VLSI with a mixture
of analog operating transistors and some digital circuitry for generat-
ing the neuronal spike (figure 24). A schematic version of the elemen-
tary spike generating circuit is shown in figure 24b: it consists of two
capacitances, C1 and C2, and an amplifier A. If the membrane node
voltage, Vm, crosses a certain threshold, for instance by current in-
jection (Iinj), the amplifier will generate a sudden strong current and
cause Vm as well as node Vspk to rise abruptly. Thus, there are two
separate dynamic variables, Vm, the actual membrane potential as
well as Vspk, a digital output of the circuit. Figure 24c shows the dy-
namics of these two nodes. The spiking threshold is denoted as Vt in
the upper graph. Once Vspk is high, it will turn on M1 (lower left tran-
sistor in figure 24a) and draw a current, IReset, from the membrane
node via the transistor with gate voltage RESET. These two transistors
act like the bottom two transistors (T1 and T2) of the synaptic circuit
(in figure 22). It is therefore the gate voltage RESET that determines
how fast the spike resets, which is expressed by the time period th in
the lower plot of figure 24c.

The amplifier consists of four transistors, which are basically two
‘NOT’ gates (digital circuitry) aligned in sequence. The gate voltage PU
of the upper left transistor determines the spiking threshold.

This circuit represents a perfect I&F integrator and can be modified
to emulate the various I&F types discussed in the previous chapter.
For example, to make it a leaky neuron, one would simply add another
transistor that continuously drains activity away from the membrane
node.

4.5 A Silicon Cortex

The amount of circuitry that can be stuffed on a single chip is limited.
To put it more direct: only a limited number of silicon neurons can fit
on a single chip. It is therefore necessary to distribute the circuitry
over several chips, for example having a retina circuit on one chip, a
part of the cortical circuit on another chip and so on. This naturally



Figure 24: Circuits and dynamics for a perfect I&F neuron. a. 6
transistors and 2 capacitances. b. Schematic of the spiking unit (2
capacitances and amplifier). c. Dynamics of the Vm and Vspk node.
Adapted from Mead, 1989.

leads to an architecture that resembles the real visual system in some
sense. The neuromorphic term for such a system is multi-chip archi-
tecture. In this neuromorphic architecture, chips communicate with
each other by pulses, very much like the computational maps in the
biological visual system do, e.g. the retina sends spikes to the orien-
tation columns. The challenge is to get the chips to fluently communi-
cate with each other. This problem does not appear for the operation
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of digital circuits, because they are synchronized by a common clock
determining their pace. In contrast, the operation of the analog multi-
chip system needs an asynchronous communication scheme allowing
for an exchange of pulses at any time, meaning without relying on
any pace maker. Such an asynchronous communication scheme has
been invented by several groups (Deiss et al., 1999). I mention here
only the one I grew up with, the Silicon Cortex. Originally designed by
Mahowald and collaborators, it is now in the process of being refined
and tested by Douglas and coworkers (Liu et al., 2001). It uses a so-
called Address-Event Representation and basically consists of a list of
the specific neuronal connections between chips, whose wiring has to
be programmed.

4.6 Fabrication Vagrancies require Simplest Models

There is a little catch though with the emulation of analog circuits.
Because the fabrication process of chips does not generate each tran-
sistor exactly equally - irrespective whether it contains digital or ana-
log circuits -, there exist slight variations amongst transistors: even if
one applies the exact same gate voltage to different transistors on the
same chip, the resulting currents flowing through the channels are
slightly different which can cause inequalities in summation. These
variations do not pose a problem for digital circuits, because they op-
erate in those two extreme states only. Due to this fabrication noise,
models that are intended for aVLSI construction, need to be simple
and robust. There are a number of simple tricks to counteract to
these fabrication variations, for example to increase the transistor
size for crucial transistors, like the weight transistor in a synaptic
circuit, or to incorporate adaptive circuits into the design like in the
silicon retina. Still, simplicity and robustness must accompany any
approach to neural modeling in analog circuits.

4.7 Recapitulation

Almost anything goes in analog VLSI circuits - as long as it is sim-
ple and robust. One can emulate a palette of synaptic responses,
the propagation qualities of dendritic cables and a variety of somatic
spiking patterns. A multi-chip architecture enables the communica-
tion between several chips and so allows for the distributed emulation
of large networks. The really exciting part of this entire approach is,
that it can run at reasonable low power, compared to a pure digital
approach. Moreover, it is blazingly fast: it runs in real-time like the
real visual system does.

Neuromorphic engineering goes of course way beyond of what we
have touched in the few paragraphs: there exist silicon cochleas, ol-
faction systems, visual attention systems and much more (e.g. (Mead,



1989; Indiveri, 2001)): The few above mentioned circuits suffice to en-
vision an implementation of the networks we will be talking about in
some of the remaining chapters (6-10).
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5 Insight From Line Drawings Studies

We now take a first step toward exploring the possible nature of cate-
gory representations. We do this using line drawing objects and com-
puter vision methods. The line drawings represent only the rough
structure of objects (see figure 25). They are certainly a simplification
of the existent variability in real-world objects, but we will show in
chapter 7 how we can apply the experiences and discoveries made in
the present chapter to real-world objects depicted in gray-scale im-
ages.

The studied categories are chair, desk, bed, table, drawers and
closet. The detailed voluminous structure of each single part, like the
voluminous shape of a chair leg, is omitted, but can be imagined to
be there. We chose the following two main restrictions on part-shape
variability: 1) Only straight lines are used. 2) Only rectangular sur-
faces are used. The drawn objects show part-alignment variability
and sometimes part redundancy. The objects are shown primarily in
canonical views, yet not from fixed viewpoints. The goal is to find a
set of 2D descriptors which is easily extractable with a few rules. The
type of recognition system we pursue is therefore a 2D-2D recognition
system (figure 8 in chapter 2). Because we are looking for loose rep-
resentations, which we have not defined exactly yet, we approach this
task as follows: we attempt to get the categories distinguished with as
few features as possible.

Initial Thoughts Let us first think through a hypothetical descrip-
tion scenario. Imagine one had to specify these objects using only line
pieces as elementary features. A chair would have to be described as
three to four lines with an approximate vertical orientation and some
spacing in between them - representing the legs -, another few lines
with approximate horizontal orientation connecting to a surface - rep-
resenting the seating area -, and so on. Such a description would
result in an overwhelmingly large amount of structural relations be-
tween lines. It therefore makes sense to extract higher features first,
like vertex features (intersections of two or more lines) or surfaces,
with which one could form representations having less structural re-
lations. That is what we do in the first subsection.

5.1 A Representation with Polygons

In a first step, L features are extracted (2 intersecting lines). In a sec-
ond step, these L features are used to form two basic features, the
surface rectangle and the ‘3-line-polygon’ (figure 26a, 1 and 2). The
surface rectangle represents surfaces that are tilted and slanted in
space like rectangles, trapezoids and parallelograms. The 3-line poly-
gon consists of three sequentially connected lines and can outline any
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Figure 25: Categories used in the line-drawing studies. Left side:
chair (top), desktop (middle), drawers (bottom). Right side: bed (top),
table (bottom).



structural characteristic of a category. An alternative to these surface
and 3-line polygon features would be vertex features made of more
than 3 intersecting lines, but such features are rare in objects of our
environment and are difficult to extract. Fu has already pointed that
out: this is the reason why he chose to describe his objects by sur-
faces (Lee and Fu, 1983). The surface rectangle is then used to form
features like nested surfaces, folded surfaces and parallel surfaces
(figure 26a, 3 to 5). None of the structural relations amongst these
surfaces has been specified exactly in order to be able to deal with the
part-alignment variability.

With this set of extracted features, category representations are
formulated. For example a chair is represented by two different 3-
line polygons and a surface (figure 26b, chair, ‘entire rep’). One 3-line
polygon is formed by the frontal legs of the chair and the connecting
seating contour: it is a U-like feature whose outer lines point down-
wards, which we call a ‘bridge’. As the chairs legs are sometimes
askew, we define the direction of the bridge’s legs loosely with a tol-
erant angle (see in figure 26b, chair, ‘bridge’). Because the bridge
feature per se is not specific enough for chairs, it is also found in
other categories as well. We therefore combine two bridges to a ‘dou-
ble bridge’, sharing a close or even common leg. The middle angle of
both bridges should differ by a minimum angle (see in figure 26b,
chair, ‘double-bridge’). Generally, such double bridges are character-
istic to objects having legs as part of their structure and are thus also
found in tables and beds. The second characteristic 3-line polygon is
the ‘seat’: A chair’s leg the seating contour and the back-rest contour
form a Z-like feature (figure 26b, ‘seat’). The surface is taken to be
the back-rest. Because the back-rest can be askew as well, the sur-
face rectangle geometry was not defined exactly. To form the category
representation, the three features - double bridge, seat and surface
rectangle - were set only into loose relation.

A desktop is generally made of a plate and one or two corpi con-
taining drawers. The conditions for the plate are a surface rectangle
of approximate geometry (parallelogram or trapezoid) with a maximum
tilt and a minimum slant. The conditions for a chest with drawers are
a surface of frontal face, containing a nested rectangle. The plate sur-
face and the chest surface should form a foldable surface. There is
another characteristic feature grouping that is unique to some desks:
parallel aligned 3D rectangles. They occur if the desk has two corpi.

The remaining category representations can be similarly expressed
as the two objects described above. With such descriptions however,
the categories were not distinct enough. There was still overlap be-
tween the descriptions, either because they are structurally similar or
due to accidental feature grouping, which is often caused by category
redundant structure - or what we have specifically termed part redun-
dancy. We therefore had to specify the category representations more
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Figure 26: A representation with rectangles (surfaces) and character-
istic 3-line polygons. a. Extracted features. b. Category representa-
tions with the features shown in a.

elaborately, for example in terms of their geometrical proportions. We
describe one example.

The chair structure, as described in the previous paragraph is de-
tected in all chairs, in three beds (numbers 1, 3 and 6) and one desk
(number 7). The accidental chair in desk number 7 is found in the
double bridge of the chest and the drawer rectangle just above. To
further refine the chair structure, we introduce a geometrical con-
straint on the bridge feature: it is only accepted as such if the sum of
the two leg lengths is larger than the length of the middle line. This
expresses that the legs of a chair are generally longer in proportion to
the seat length than for a bed. With that condition, all the chairs are
uniquely distinguished from all other objects, including the accidental
chair detection in the desk.

Conclusion It was possible to get the categories distinguished but
it required quite a number of structural relations to form a category
representation. Our expectation was however to find representations
that were easier to form and easier distinguishable from each other.



Despite the use of high-level features, there were still a lot of acci-
dental detections in other categories. In other words, there was still
some sort of representational overlap between categories. Our intu-
ition was, that there was an important feature of the evolvement and
representations missing, namely space (or region). For example, if one
knew the immediate surround of a feature, like the surround of a 3-
line polygon or a surface, then one gains much more category-specific
information. The exploitation of such context is what we explored in
our second simulation study.

5.2 A Representation with Polygons and their Con-

text

Simulations The features we evolve in this simulation are the same
in terms of contour geometry as the ones before, but each feature
will contain information about its immediate context. This proceeds
as follows. After L feature extraction, the structure ‘inside’ and ‘out-
side’ of each L feature is determined (figure 27a, L feature analysis).
Looking at the ‘emptiness’ of these two areas, an L feature is divided
into an In, Out or Lone feature. In features have one or more lines in
their outside but no line in their inside area. Out features have one
or more lines inside but no line outside. Lone features have no lines
around their corner, neither in their inside nor in their outside. Lone
features are simultaneously In and Out features. As implied with this
classification, we are not so much interested in the exact structure
around a L feature, but mainly in finding its empty side. To progress
toward complex, global features, we start connecting neighboring L
features to 3-line polygons. The 3-line polygons, with their classified
two corners, contain already an enormously valuable source of struc-
tural information that we will exploit for object description. Out of a
possible set of 6 U-like and 6 Z-like features only a fraction makes
sense in our typical environment (Rasche, 2002b). Some of them are
shown in figure 27a, numbers 1-4.

This type of context analysis leads naturally to a description as
made of surfaces and silhouette features. Examples of such silhouette
features for a chair are: The seat feature is generally a Z-like 3-line
polygon made of one In feature and one Out feature; The back-rest is
typically a U-like 3-line polygon made of two Out features; The bridge
is a U-like 3-line polygon made of two In features. Many of such
silhouette features are highly characteristic to a category.

The context of many surfaces is also highly characteristic. Both,
the silhouette features as well as the surface features (with context),
are distinct enough that it generally suffices to describe a category
just by a list of such features, without setting them into structural
relation with each other! The exploitation of contextual information
vastly reduced the representational overlap between categories and
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Figure 27: Evolvement and representation with context. a. L feature
analysis: its inside and outside. 1-3: some of the useful Ulike fea-
tures. 4: One useful Zlike feature. b. The context of features is only
selectively shown.

many of the geometrical conditions, that we used before - to get the
categories laboriously distinguished -, could be dropped.

Conclusion If a representation were a collection of such silhouette
and surface features, then representations would be over-determined,
because many contour pieces of an object are used for surface and
silhouette features simultaneously. Consequently, only a fraction of
features is necessary to categorize the object. This is not useless re-
dundancy, but advantageous, if not even necessary whenever only a
fraction of the set of features is available. This frequently occurs:

1) In real-world scenes in which part of the contours are often of
low contrast or ambiguous due to noise and thus not easily detectable,
see for example (Canny, 1986) or chapter 6.

2) When we see a novel category instance that has partially new
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features. The remaining, familiar features would trigger the category
process and the new features could be learned immediately.

3) When objects are in their real-world background, the silhouette
contours can be interrupted by contours from objects in the back-
ground, e.g. a floor contour. In such situations, surface features are
more decisive in the categorization process.

4) Or when the object is in sharp contrast with its background.
This may occur when we enter a dark room in which we are only able
to see the outline of objects. In this case, silhouette features are more
stringent in determining the category type.

This over-representation could also explain, why humans never
make categorization mistakes if the object is seen from a canonical
viewpoint.

Flexible Recognition Evolvement. The list of items in the previ-
ous paragraph implied something regarding recognition evolvement:
because there are so many different situations, in which the exact
same object can display a different subset of its features, the recog-
nition process has to start with a given feature subset and still yield
the same categorization result. Recognition evolvement may thus not
progress along a fixed path. A prominent debate relating to this issue,
is the discussion whether local or global structure is interpreted first
((Navon, 1977; Palmer, 1999), see also chapter 3). If local structure
was interpreted first, then the furniture objects had to be interpreted
by their local surfaces and gradually integrated to the global object
structure. If global structure was to be interpreted first, then one had
to start with silhouette features and work toward local surfaces. Given
the previously sketched situations, neither recognition evolvement is
preferred: its starting point depends on the situation and its result-
ing displayed features. Thus, recognition evolvement may be a highly
flexible process.

5.3 Recapitulation

The goal was to find a set of descriptors and their loose arrangement
that would enable swift categorization. Such representations are sup-
posed to represent the loose perceptual representations envisioned
in figure 2 (left side), and specified in chapter 2 (section 2.5). In a
first attempt we described the objects by surfaces as well as poly-
gons that are characteristic to a category (Rasche, 2002a). Despite
the use of such complex features, there was a considerable overlap in
representations that could only be avoided by introducing structural
conditions regarding the proportions of a category. From this first at-
tempt we felt that an important, missing feature was the immediate
context (or region or 2D space) around features. In a second attempt,
we therefore started with a context analysis of each L feature that led
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to a description with surfaces and silhouettes (Rasche, 2002b). The
inclusion of the silhouette descriptors vastly improved the recognition
process. In an evolvement including context it is straightforward to
figure out which local contour belongs to which other one: context (or
space) binds contours. The features, with their attached ‘context in-
formation’, were consequently very distinct from other categories and
category representations could be formed using feature lists only. The
conclusion that space is essential for evolvement and representation
is the foremost insight of this simulation study, and of the work de-
scribed in this book. And by space is meant any space (or 2D region).
Not only space engulfed by the contours of a surface, but also space
around and between surfaces or parts. That space can be described
as silhouette regions. To summarize that in one single phrase: space
binds contours and leads to distinct representations.

Figure 28: Two chairs and some of their common silhouette regions.
The open polygons (three sequentially connected lines) outline some
silhouette regions (seat, back-rest and bridge feature), which are
largely independent of the structural variability found in the category
chair.

With this idea of using space for representation, in particular the
silhouette space, let us look at the two chairs in figure 28. Both show
quite some part-shape variability, some part-alignment variability and
a little bit of part redundancy. But what they share most are the re-
gions, some of which are outlined by the open polygons (three sequen-
tial lines). These silhouette features may not always be present in a
visual scene, meaning when the object is found in its typical scene
context: for example a background contour, like one formed by the
floor and the wall, may intersect these silhouette features. We regard
this background structure as part of the structural variability aspect,
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with which the recognition process has to deal. A substantial part of
the remainder of this book can be roughly outlined as a quest for a
neuromorphic network encoding space, in particular chapter 7 and 9.

Much more can be explored with such line drawings regarding the
nature of loose category representation and the nature of an efficient
evolvement, but we will now move toward gray-scale images in the
next chapter. The primary issue, in particular in chapter 7, will then
be, how to efficiently encode space with a neuromorphic network.
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6 Retina Circuits Signaling and Propagating

Contours

6.1 The Input: a Luminance Landscape

The retina absorbs the luminance distribution of our visual environ-
ment and transforms it into a signal useful for the analysis in higher
areas in cortex. Before we worry about how this transformation is
carried out in neural terms, it is sensible to understand the charac-
teristics of the input and too see how computer science approaches
have dealt with it.

If one plotted the luminance distribution (or gray-scale image) as
a 3D plot with the third dimension being luminance, then one could
see a profile reminiscent of a landscape. Fu has nicely expressed this
view by describing it as a geographic structure made of plains, slopes,
ridges, valleys, shoulders and feet (Lee and Fu, 1981). To extract con-
tours and segments of the image, they created algorithms to detect
each of these geographic features. Most other contour-detection ap-
proaches have not adopted such a specific viewpoint, but have merely
extracted ‘general’ edges. Each of these algorithms has its advantages
and drawbacks. They roughly work in two steps. Firstly, the gradient
at each image point (pixel) is determined by looking at its immediate
neighborhood, e.g. a 3x3 array with the center pixel taken as the in-
vestigated image point. Secondly, neighboring gradients with similar
orientations are connected to form contours. The output of such al-
gorithms is thus a list of contours, which can be readily used to filter
geometrical features like we did in chapter 5.

The visual system performs this contour extraction a little bit dif-
ferently. The retina does signal the contours somehow, but the con-
tours stay in the 2D visual field - and are not extracted as lists. This
transformation from the luminance landscape to a contour signal is
discussed next.

6.2 Spatial Analysis in the Real Retina

The retina consists of roughly 5 neuron classes: photoreceptors, bipo-
lar cells, ganglion cells, horizontal cells and amacrine cells (Dowling,
1987). The first four cells generate only analog potentials: they are
non-spiking. The ganglion cells are the only spiking cells, with ax-
ons projecting to the thalamus. There exists a so-called direct path-
way from the photoreceptors via the bipolar cells to the ganglion cells,
whose transformation can be summarized as follows: the luminance
(gray-scale) value hitting the photoreceptor determines its analog po-
tential, which is linearly transformed into a spike frequency in the
ganglion cell (see figure 29a, number 1 and 2). The analysis of this
transform has been carried out with small spotlight stimulations and
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Figure 29: Retinal analog-to-spike transformation. a. Frequency
(rate-coded) output. 3 cases: 1) low intensity input, low frequency
output; 2) high intensity input, high frequency output; 3) edge input,
two frequencies as output. P: photoreceptor; B: bipolar cell; G: gan-
glion cell. b. Our transformation: an edge triggers a single spike. c.
Dynamics of our transformation for two neighboring ’ganglion’ cells
(time steps 1 and 2). In a fast process (t=0), the edge determines their
membrane potentials Vm1 and Vm2, and their spiking thresholds Vt1
and Vt2, which are set above the membrane potential with some fixed
voltage offset, In a subsequent, slower process, the charge will
spread (t=1, t=2) and Vm1 and Vm2 will even out (spiking thresholds
stay fixed), and cause the neighboring cell to fire, thus signaling the
edge.
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has led to the picture that the spatial analysis in the retina occurs
point-wise, and that a frequency code is at work. It is however not ex-
actly clear, what happens when an edge is presented (see figure 29a,
number 3). If the edge was transmitted as two frequencies, a low and
a high frequency respectively, then cortical cells would have to disen-
tangle the frequencies to detect an edge (or contour piece). Because
the specific transformation is actually not clear in detail, we here sug-
gest two alternate transformations. One exploits the possibility that
spiking thresholds are adjustable and that leads to detection of edges.
We call this now the method of adjustable thresholds; the other trans-
formation employs a latency code to separate edges in time. We call
this now the method of latencies. In addition, both transformations
make use of the idea of wave propagation.

6.2.1 Method of Adjustable Thresholds

Let us assume - as we did in the introduction already -, that the retina
signals contours, specifically that it responds to large luminance edges
(Rasche, 2004). Furthermore, the output of the neuron should only be
a single spike because that can suffice for shape analysis. The trans-
formation process can then be described as: we need a process that
generates a single spike in response to a large contrast edge (figure
29b).

We imagine that this may occur with a combination of two sepa-
rate processes, a fast one and a slow one (figure 29c). In the fast pro-
cess, a receptor potential determines the initial membrane potential
and the adjustable spiking threshold of its successor (spiking) neuron,
which we call ganglion cell now. For reason of simplicity, the second
layer (bipolar and horizontal cells) is omitted. The adjustable spiking
threshold of the ganglion cells is set above the initial potential with
a fixed offset. This fast process is not explicitly shown in figure 29c
but merely its ’end result’, which is at t=0 of the time axis of the slow
process. In the slow process, the charge spreads laterally through
the network of connected ganglion cells (time steps 1 and 2 in figure
29c). The spiking thresholds stay fixed during this slow process. The
charge of a high potential ganglion cell will spread towards its neigh-
boring ganglion cell with a lower potential as well as a lower spiking
threshold, and cause it to fire (time step 2).

The motivation for the fast process is that receptors directly de-
termine the membrane potential in their successive ganglion cells,
whereas they indirectly determine their adjustable spiking threshold
through an extra-cellular process. For example it has been shown for
various brain cell cultures, including retinal preparations, that cal-
cium waves can spread quickly through the gap-junctions of the glia
network (Charles, 1998). These calcium waves can alter the extra-
cellular calcium concentration rapidly and substantially, and could
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therefore have a significant effect on the electrical behavior of neu-
rons within short time. The charge propagation is motivated by the
fact that there exist traveling waves in the retina (Jacobs and Werblin,
1998).

6.2.2 Method of Latencies

The second transformation that we suggest uses the idea that the in-
put magnitude determines the latency of the first spike, a transforma-
tion called time-to-first spike by Thorpe (Thorpe, 1990), or generally
called a latency code (section 3.3, see specifically figure 13). To im-
plement this, one would continuously feed the neuron with a specific
intensity value - it charges up the neuron at a rate determined by this
value: hence, high pixel values will trigger early firing, low pixel values
will trigger late firing. That will result in signaling bright areas first,
followed by signaling of darker areas. Hence, contours are separated
in time.

Before demonstrating the operation of the above processes on gray-
scale images, we firstly introduce the idea of charge propagation in a
two-dimensional map and subsequently introduce the above contour
detection process.

6.3 The Propagation Map

The propagation map is a two-dimensional array of connected neu-
ronal units (figure 30). Each neuron, depicted as circle, is connected
with its eight neighbors via a ‘horizontal’ resistance. The neuron
model is a perfect integrate-and-fire unit (chapter 3, section 3.7), but
the exact neuron model does not matter: a different model would just
require an adjustment of certain parameters. The map is in some
sense the compartmental modeling approach used for approximating
dendrites, laid out in two dimensions, with each compartment having
a spiking unit.

Figure 30: Connectivity of the propagation map. A circle represents a
neuron, modeled as an integrate-and-fire type.

If the activity level of a neuron is raised above the spiking threshold
of the map, then the generated spike will contribute significantly to the
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Figure 31: Behavior of the propagation map in response to simple
stimuli (Matlab simulation). a. Block source. b. Diagonal line. c.
Horizontal line with gap. The snapshots are taken at times t=2, t=10
and t=18, with time equal the number of time steps. Grey: subthresh-
old voltages. Black: Spikes.

activity level of its neighbors and cause them to fire, thus triggering a
traveling spike wave. In order to avoid the bounce back of a wave, the
neuronal unit requires a short refractory period. Figure 31 illustrates
this propagation process for three different stimuli. In figure 31a the
stimulus is a point source: four neurons are activated by raising their
activity threshold above the spiking threshold. The spikes are shown
in black, the gray values ahead of the spike front represent subthresh-
old activity. The traveling wave is an annular outward growing wave.
For a straight line, the traveling wave is of oval shape (figure 31b).

The propagation map has a characteristic which is extremely use-
ful for encoding space: when the two traveling waves meet, they merge.
This is shown in figure 31c for two short lines triggering traveling
waves, which eventually merge into a single one. Thus, contour prop-
agation seals gaps.

When a luminance landscape is placed into such a map - that
does not raise the activity level above the spiking threshold -, then a
smoothening process takes place by means of the lateral connections:
the landscape starts to even out, but in particularly fast for ‘noisy’
values that pop out of an area or a local plateau. This subthreshold
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propagation does not play such a big role for the method of adjustable
thresholds, but somewhat more for the method of latencies.

The exact propagation characteristics can be modulated in many
different ways (Rasche, 2005a). In the above example, the traveling
wave has a width of a single spike, but can be tuned to show a broader
width by changing parameter values of the map or by increasing the
radius of the local connections. Likewise, the waves can be made
faster or slower by changing parameters, something we will exploit to
perform motion detection (chapter 8).

6.4 Signaling Contours in Gray-Scale Images

6.4.1 Method of Adjustable Thresholds

We now return to the idea of signaling contours within a network of
connected ganglion cells. We take the same map as discussed in the
previous section and add the mechanism discussed in figure 29c. We
do not emulate the fast process explicitly, but take the luminance
distribution of an image directly as the membrane potential of the
entire map. A fixed offset value is added to each neuron, which repre-
sents the adjustable spiking threshold. Then, in the slow process, the
charge propagates and will trigger spikes at steep luminance edges
(contours). And once such a contour front is signaled as a line of
spikes, it will start traveling across the map. Figure 32 shows this
for two objects. After the first two simulation steps (t=1 and t=2), the
high contrast contours are already signaled. After further propaga-
tion, lower contrast contours are detected as well. As a comparison,
the contours found by a popular computer vision algorithm are shown
(Canny, 1986).

It should be pointed out that the contours are signaled indepen-
dently of the absolute luminance level. In a contour profile (of our
visual environment) the contrasts can be at any level and the level
itself often varies along a contour. The mechanism of figure 29c au-
tomatically takes care of that. Thus, there is only one parameter in
this network, the offset for the adjustable spiking thresholds. An in-
crease or decrease of the offset value will cause the network to detect
higher or lower contrast contours respectively (see figure 33). This
offset parameter roughly corresponds to the threshold values used in
the Canny algorithm.

6.4.2 Method of Latencies

If one used this method without the laterally connected network (with-
out the propagation network), then noisy pixels are signaled ahead
of the area they are placed in. The charge propagation counteracts
that a bit, by smoothening the areas slightly and thus leveling out
noisy pixels. Figure 34 shows preliminary results with this method.
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Figure 32: Contour signaling and propagation with the method of ad-
justable spiking threshold. Top row: photos. 2nd, 3rd and 4th row:
Contour propagation after 1, 2 and 4 time steps, respectively. Black
lines and dots represent spikes. Bottom row: Contours obtained from
the Canny algorithm (finest scale). From Rasche 2004.
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Figure 33: Effects of varying offset values. Compare also to figure 32.
a. low more low-contrast contours are signaled. b. high only
high-contrast contours are detected. Time steps 2 and 4 are shown
only. From Rasche 2004.
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Figure 34: Signaling contours with the method of latencies. Only the
spiking output is shown - starting at t = 11. Bright areas are signaled
first.
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At t=11, the first spikes are signaled representing the silhouette ar-
eas. No contours per se are signaled within that time slice, but after
this the border spikes start to propagate across the lower-intensity
(darker) areas (t=13 and later). Darker areas are signaled later, like
the lines dividing the drawers. In this specific simulation the signal-
ing of bright areas starts late (at t =11), and causes propagation across
many dark areas before those have been signaled. Other contours can
be signaled by adjusting the parameter values accordingly, but that
needs to be further elaborated. This specific transformation does not
offer any contour propagation across the bright areas, but could be
achieved by feeding the spikes of this transformation into a subse-
quent propagation map.

6.4.3 Discussion

The method of adjustable spiking thresholds signals contours rela-
tively immediately as compared to the method of latencies and prop-
agates them across its map. It therefore represents a compact way to
obtain contours and their propagation simultaneously. The method
of latencies is somewhat more intricate: the contours are stretched
out in time and the retinal network does provide only partial propaga-
tion. But it offers the following advantages. Firstly, it may be easier
to implement into analog hardware than the method of adjustable
thresholds, whose fast process is not explicitly simulated. Secondly,
if one looked at a neuron ‘patiently’, then one would observe a firing
rate which actually reflects the intensity of the pixel. This latter point
has already been suggested by Thorpe: the latency information would
provide fast computation, the rate information would provide slower
computation. Specifically applied to the purpose of categorization, the
latencies provide enough for generating the contour image and subse-
quent perceptual categorization, but for determining other aspects of
visual information, which may happen on a slower time scale, a rate
code may serve well.

6.5 Recapitulation

We have started this chapter by reviewing Fu’s description of the lu-
minance profile as a geographical map. We have not specifically ad-
dressed the diversity of this profile, but one should keep it in mind, if
one plans to extend this approach into low-resolution gray-scale im-
ages in which structure can be very subtly embedded.

We have proposed two methods for contour extraction. The method
of adjustable thresholds is a process that detects steep gradients (con-
tours) in a luminance profile. Initially, very high-contrast contours
are signaled, followed by signaling lower-contrast contours. Due to
the propagation process, gaps in the contour image are filled by the
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expanding and merging propagation process. To put it into a succinct
phrase: contour propagation seals gaps. In the method of latencies,
the edges are separated in time.

The output of the retina looks very similar to the output of an edge-
detection algorithm used in computer vision. Still, the obtained con-
tours are fragmented - as they are with any method performing con-
tour detection. In computer vision, much effort has been directed to-
ward obtaining a more complete contour image, often combined with
efforts that are called image segmentation (Palmer, 1999). Yet, the
fragmented contour image already provides an enormous wealth of
structural information: it delineates many regions as we have deter-
mined them in our line drawing studies. The output therefore suffices
for the perceptual categorization we aim at (figure 2, left side). The
loose representations that we search for, have to be able to cope with
part-shape variability, part-alignment variability and part redundancy
anyway (section 2.1): It therefore does not matter, whether there is
one or the other contour missing after the contour extraction process.
This lack of contour pieces is likely to the smaller problem in the con-
struction of a visual system - if it is one at all -, than the challenge to
deal with structural variability.

The simulations presented so far have been merely software sim-
ulations. How either retina model can be translated into analog VLSI
remains to be worked out. A starting point would be to develop the
propagation map using maybe the propagation tools for neuromorphic
dendrites (section 4.3); in the next step, one would insert the contour
detection mechanism.
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7 The Symmetric-Axis Transform

From our line drawing studies in chapter 5 we have gained the in-
tuition that encoding space is valuable for evolvement and represen-
tation. The empty space between contours helps to determine which
local contours belong together and that leads to a description by sur-
face and silhouette regions. The goal in this chapter is to find a neural
way to encode space. We thereby seek inspiration from the two mecha-
nisms that we have discussed in chapter 3. One mechanism is Blum’s
symmetric-axis transform, the other one is the Fourier-like filter (or
channel) approach. In this chapter we focus on Blum’s symmetric-
axis transform because it operates more specifically and because it
returns a shape description useful for high-level representations. We
show how to simulate this transform with a neuronal architecture
made of integrate-and-fire neurons.

7.1 The Transform

The symmetric-axis transform (SAT) is a process in which the con-
tours of a shape are propagated across an excitable map and wherever
two propagating contours meet at a given point in time, they leave a
symmetric point (sym-point). The loci of sym-points form the sym-
metric axis (sym-ax), which completely defines the contour geometry
of the shape and its including space (Blum, 1973). Figure 35a shows
the SAT for a rectangle at three stages: at the beginning (0), in the
middle (mid) and at the end (final). To understand the usefulness of
the sym-axes, their completed evolvement is plotted in a 3D space
with dimensions x, y and time (figure 35b). In this 3D space, the sym-
ax of the rectangle forms a roof shape, made of five (straight) trajectory
pieces. Four of them point from the rectangle’s corner toward the cor-
responding ends of the middle line, which in turn is evolved at last
and at once. For a circle, the sym-ax is a single point, which occurs at
a time depending on the size of the radius (not shown). For an ellipse
it is a sym-ax made of two increasing trajectories running toward each
other and meeting in the center of the ellipse (figure 35b, right side).
All these trajectories are easily graspable and therefore convenient for
higher level representations.

The SAT readily encodes the inside of a shape. It is therefore useful
to extract many of the features we have developed in our line-drawing
study (chapter 5). It does not, however, encode the outside of an
L feature or shape. For instance, the rectangle’s silhouette is not
directly encoded. In a later chapter, we will offer possible solutions to
this lack of ’outside’ encoding (section 9.1).
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Figure 35: The symmetric-axis transform (SAT). a. Evolvement of the
symmetric axis (sym-ax) for a rectangle. b. 3D plot of the sym-ax
trajectories for a rectangle and an ellipse.

7.2 Architecture

Outline Blum envisioned that the SAT can be implemented by an
excitable map with the following properties for each point: ’ 1) it has
value either one or zero (all-or-none excitation); 2) it may be excited by
an adjacent point or by an external source; 3) an excited point cannot
be re-excited for some interval of time (refractory property)’. This list
of properties suggests to use a single map of I&F neurons. Yet, there
is a difficulty with using only a single map: it is tedious to distinguish
whether two wave fronts coincide or whether there is only a single
wave traveling across a given point (neuron) in the map. We imagine
that this is easiest solved by a selective mechanism: it is able to clearly
sense when two waves clash and to ignore when a single wave trav-
els across the map. We therefore decided to separate the process into
three ‘layers’ (figure 36): a propagation map, a set of wave-detecting
orientation columns and a coincidence detector map. The propagation
map (PM) is an excitable membrane that actively propagates contours
like the propagation map presented in chapter 6 (section 6.3). To
sense whether two distinct waves are about to collide, we were in-
spired by the orientation column architecture of the primary visual
cortex. As reviewed in chapter 3, V1 neurons are believed to per-
form edge detection or spatial filtering of oriented structure. But it
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has also been suggested that they may be involved in region encoding
(Palmer, 1999). And that is how we exploit the orientation column
(OC) structure: V1 cells detect when a wave of certain orientation
propagates through their receptive field. Put shortly, ’V1 cells’ act as
wave-detectors. The top map, the symmetric-axis map (SAM), signals
sym-points by detecting when two distinct waves are close. It does
that by correlating the activity of the V1 cells.

Figure 36: SAT architecture. Processing occurs from bottom to top.
The propagation map (PM) is an excitable membrane that allows con-
tours to travel across it. The orientation columns (OC) contain an
array of neurons that sense the orientation of waves in the propa-
gating map and fire a single spike when a wave of preferred orienta-
tion travels through their receptive field (RF indicated by circles). The
symmetric-axis map (SAM) evolves the sym-points by sensing when
two proximal orientation-selective neurons of different orientation fire.

Implementation An implementation of the propagation map has al-
ready been discussed in section 6.3 (see also (Rasche, 2005b)). The
output of this propagation map is then sent to the OC structure. An
OC neuron fires a single spike, whenever a wave piece of preferred
orientation travels through their receptive field. To obtain this selec-
tivity, the neurons need to be correspondingly wired (1) and possess
dynamics that filter the ‘coincidence’ of its input (2).

1) Wiring: Each neuron receives input from three linearly aligned
neurons of the propagating map (figure 36, ’receptive fields’). For
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simplicity, we employ only 12 orientations (only 4 orientations are
shown in figure 36). The wiring alone does not achieve the preferred
orientation-selectivity because a wave of any orientation - propagating
through the receptive field - will stimulate the receiving neuron. The
neuron is therefore modeled as a coincidence detector:

2) Coincidence: A neuron is modeled as a leaky integrate-and-fire
type, which possesses a constant leakage, continuously draining from
the neuron’s activity level (section 3.7). Due to this continuous leak-
age, activity input to the neuron is only transient. In order to effi-
ciently integrate, its synaptic input has to occur coincidentally. The
neuronal dynamics are tuned such that the neuron will only fire when
its input neurons fire simultaneously, which only happens when a
wave of appropriate orientation travels through their receptive field. If
the wave has non-preferred orientation, then the synaptic input oc-
curs sequentially, which is insufficient for integration to the spiking
threshold.

The symmetric-axis map is a two-dimensional sheet of neurons,
also possessing specific input wiring and specific neuronal tuning.
Each neuron receives input from proximal orientation-column neu-
rons, whereby the exact pairing of orientation-selective neurons does
not matter, because a sym-point is supposed to signal the coincidence
of any two waves that are about to collide. An exception are pairs of
orientations that are of similar angle and sequentially aligned, be-
cause such a pairing would also signal if a contour was curved. Be-
cause of this dilemma and because we use merely 12 orientation an-
gles, only L features of small angle are encoded (smaller than 110
degrees approximately).

The neurons of the symmetric-axis map are also modeled as leaky
integrate-and-fire neurons, because they need to detect the coinci-
dence of its input, analogous as the orientation-selective cells do. The
neuron dynamics are adjusted such that the symmetric-axis neuron
fires a single spike, when its two input neurons fire simultaneously.

7.3 Performance

Space as a Structurally Robust Feature Figure 37 shows how the
implementation performs for a set of L features and should demon-
strate the usefulness of encoding space. Although the various L fea-
tures have structural differences, their space between the two lines is
similar for all of them. The sym-ax for the dashed and curved L starts
with a delay compared to the sym-ax of the solid L, but their direction
and endpoints are the same, indicating thus the similar space but
also the similar contour geometry of the feature. In a pure contour
description approach in contrast, the dashed L had to be described
by integrating the individual line pieces, which is an expensive un-
dertaking. Using the neuromorphic SAT, the space between the legs
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Figure 37: Sym-ax evolvement of varying L features. a. solid L. b.
dashed L. c. curved L. The snapshots are taken at times t=4, t=6, t=8
and t=31, with time being the number of time steps. For t=4,6,8: grey
dots or lines represents spiking activity in the PM; black represents
sym-points as evolved in the SAM (no subthreshold activity shown in
this figure). For t=31: lightest gray: original L shape; grey to black:
sym-ax evolved in time.

is exploited and provides a large amount of robustness to incomplete
contours and structural variability, in particular part-shape variabil-
ity. At the core of this robustness is the sealing property of the PM as
discussed in section 6.3 (see figure 31c).

Gray-scale Images The performance of the SAT in gray-scale images
is illustrated in figure 38. The top row shows the objects, a chair and
a desk. The middle row shows the contours that have been extracted
using a computer vision algorithm (Canny, 1986). It would of course
make sense to employ the retina of chapter 6, but we have not devel-
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oped a synthesis between these two systems yet: it required modifica-
tion of the coincidence-detecting OC cells. The bottom row shows how
the regions are encoded. These encoded regions readily correspond to
features as developed in our line drawing simulations (chapter 5). For
example the regions between the chair’s legs are encoded, which we
termed bridge features in chapter 5.

Figure 38: Sym-ax of complex objects. Top row: Photos of a chair and
a desktop. Middle row: Contours extracted with the Canny algorithm
at finest scale. Bottom row: Completed SAT. The major spaces (re-
gions) have been encoded. The object contours are shown in lightest
gray as in the figure before.



7.3 Performance 73

The enormous advantage of the SAT lies in its robustness - as
we have already tried to express with figure 37. For example, the
chair’s legs could possess ornament; the back-rest could be slightly
differently shaped; the desk’s drawers could be of rectangular shape
with rounded corners, and so on. Despite this part-shape variability,
the resulting sym-axes are structurally very similar, they are closely
spaced in the 3D space mentioned in figure 35.

Albeit this benefit of robustness, the SAT can not capture certain
silhouette features as we have already mentioned before. To express
it with the feature language used in chapter 5, it is Out and Lone
features that are not encoded: For instance, the space around the
back-rest or the space around the desktop’s plate is not encoded. One
can find these features by analysing the spatial relations of the sym-
ax pattern: for example, if the starting point of a L vector has no
other starting points (of neighboring L vectors) in its surround, then
the starting point of that vector represents a Lone feature. If one an-
alyzed the sym-ax trajectories of an object using a (computer vision)
list-approach like we did in chapter 5, then one could readily deter-
mine the context of the trajectories. If one analyzed the sym-ax tra-
jectories with neural networks, then one had to find either a method
to determine the context of the trajectories or to find a substrate that
recognizes the ’outward’ propagating contours. We discuss some pos-
sibilities in chapter 9.

Another short-coming of the existent architecture is that ’speckled’
noise or sometimes fine texture in the middle of regions may trigger
traveling waves that prohibit the proper sym-ax encoding of the region.
We can think of a number of possibilities to deal with that. One would
be to introduce some contour grouping mechanisms like Marr did to
filter out the long-connecting contours (Marr, 1982). Such contour
grouping mechanisms are akin to the Gestaltist’s ideas of perceptual
grouping (Bruce et al., 2003). Another possibility would be to modify
the wave propagation map and to let contours propagate depending
on their qualities: high-contrast contours would trigger large waves,
low-contrast contours would trigger small waves. Some of the speck-
led noise tends to be of low contrast and would thus be swallowed by
large waves from high-contrast contours. Contour propagation could
be made less active in the sense that contours would only travel a cer-
tain distance, depending on their length or some sort of energy. That
would also favor long contours, and certain noise and texture would
be ignored. Such ’segmentation’ efforts however, should not result in
the pursuit of immaculate segmentation, which we regard as impossi-
ble: the contour image obtained from our retina (or a computer vision
algorithm) is far sufficient for much of the perceptual categorization
we pursue in this book.
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7.4 SAT Variants

Blum’s SAT has already been implemented by computer vision sci-
entists using a variety of computer algorithms (see (Ogniewicz and
Kubler, 1995) for a review). These implementations have been applied
to problems like shape identification (Pizer et al., 1987; Leymarie and
Levine, 1992), letter recognition (Kegl and Krzyak, 2002) and medical
image analysis (Dill and Levine, 1987) to mention only a few exam-
ples. These approaches are partially inspired by a variant of the origi-
nal SAT, which aimed at reconstructing 3D bodies from images (Blum
and Nagel, 1978). Many of these algorithms are concerned with an ex-
act reconstruction of the shape and often require closed and complete
contours. Some of them iterate until the exact sym-ax - reflecting the
detailed shape - has been evolved. The purpose of our SAT is differ-
ent. It transforms the major regions into coarse sym-axes which are
suitable for forming the abstract category representations we look for.
During the transformation, a lot of structural detail is washed out,
which can be omitted for the purpose of categorization. The SAT pre-
sented here can operate on incomplete contours and is performed in
a single sweep, that means without iteration.

Other vision researchers suggested a region-encoding mechanism,
that turns space into smaller regions, so-called cores (Burbeck and
Pizer, 1995).

7.5 Fast Waves

As mentioned before one can regard the propagation of contours across
the propagating map as a traveling wave. Traveling waves have been
measured in the nervous system of a number of animals (paragraph
‘waves’, section 3.4). Some of those reported waves are slow though -
propagating at a speed of on the order of millimeters per second (e.g.
(Hughes, 1995; Prechtl et al., 1997; Wilson et al., 2001; Shevelev and
Tsicalov, 1997)). That is too inert to account for the high processing
speed (chapter 1 and 3) and can therefore not be responsible for re-
gion encoding. Faster waves were measured by Jacobs and Werblin: a
(visual) square triggered inward-propagating waves in the salamander
retina, which would collapse after a few hundreds of milliseconds (Ja-
cobs and Werblin, 1998). This maybe just sufficiently fast to account
for region encoding . Possibly even faster could be traveling waves in
the presence of oscillatory activity: Ermentrout and Kleinfeld demon-
strate in a computational study, that coupled oscillators can evoke
traveling waves (Ermentrout and Kleinfeld, 2001). They envision that
such waves are possibly involved in different neural computations.
We can think of some other biophysically plausible alternatives. One
alternative is that real neurons could operate close to spiking thresh-
old and act as coincidence detectors, avoiding thus costly (membrane
potential) integration time. Studies show that cortical neurons may
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indeed operate as rapid coincidence detectors (Koenig et al., 1996). A
traveling wave ‘riding’ on such coincidence detecting neurons could
therefore be much quicker. Another alternative would be propagation
through gap junctions, which transmit electric charge much quicker
than chemical synapses and therefore minimize integration time. It
was long believed that gap junctions hardly exist in neocortical neu-
rons (Shepard, 1998), yet they are difficult to discover. Two recent
studies in rats have indeed found a neocortical network of electri-
cally coupled inhibitory neurons (Gibson et al., 1999; Galarreta and
Hestrin, 1999). Another possibility for fast contour propagation are
the existence of horizontal connections amongst cortical neurons of
primary visual cortex (see (Kovacs, 1996) for a review). Its discover-
ies have helped loosen the picture that the primary visual cortex is
involved in local, patch-wise analysis only. The existence of these far-
reaching connections has led some researchers to propose that region
processing and perceptual grouping processes may take place in V1
already (reviewed in (Kovacs, 1996; Hess and Field, 1999)). Contours
‘spread’ along these connections could occur very swiftly due to their
far reaching connections. In summary, we see a number of biophysi-
cally plausible mechanisms that could provide fast traveling waves or
other forms of contour spread that would serve the purpose of rapid
encoding of visual space. Such fast wave processes may however be
difficult to discover (Glaser and Barch, 1999).

7.6 Recapitulation

The goal in this chapter was to encode space in a neural manner.
We have done that using Blum’s symmetric-axis transform (SAT), be-
cause it is a precise method to turn a region into a trajectory that can
be easily used for high-level representations. The transformation was
constructed with three separate network structures: 1) a layer per-
forming contour propagation; 2) an orientation column architecture
in which ’V1 cells’ act as wave detectors; 3) a layer that detects sym-
points. The transform encodes closed regions, even if their contours
are fragmented and incomplete. The sym-axes naturally express many
regions as determined in the line-drawing studies (chapter 5). How-
ever, the outside of a shape is not captured by the SAT and certain
silhouette regions, in particular Out and Lone regions are therefore
not encoded. We discuss a possible fixture for the lack of those sil-
houette regions in chapter 9 (section 9.1).

The SAT swallows some of the part-shape and part-alignment vari-
ability by generating sym-axes which represent the region without the
exact geometry of the bounding contours. This is a property, which
is actually based on the contour propagation map (see section 6.3).
Because of this structural robustness, we imagine that the sym-axes
can form a significant component of those abstract and loose repre-
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sentations necessary for fast categorization (see figure 39, compare to
figure 2).

Figure 39: Recognition evolvement with sym-axes. Sym-axes may be
a significant component of perceptual category representations. Com-
pare to figure 2 in chapter 1.

A Hybrid Evolvement Process The simulations presented are only
software simulations so far, but are conceptually simple enough to be
emulated in the framework of the silicon cortex project (chapter 4).
And if it were implemented in analog hardware, the SAT could take
place within tens of milliseconds - depending on the speed of the wave
propagation process: The transform would be carried out at the same
speed as the real visual system performs region encoding processes
using traveling waves. This comparison only makes sense if the vi-
sual system does indeed use such region encoding. If a retina like
the one in chapter 6 was developed, and if a neuromorphic SAT was
connected to it, then one had a pure neuromorphic front-end gener-
ating sym-axes. How the sym-axes maybe read out we discuss in the
following two chapters. Alternatively, one may already envisage a hy-
brid categorization system, in which in a first stage this neuromorphic
front-end would be used to swiftly generate the sym-axes, and then,
in a second stage, the resulting sym-axes are read out by a computer
vision ‘back-end’.
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The symmetric axes, that we have evolved in the previous chapter,
represent a trajectory in a 3D space. For L features, that trajectory
is a vector having a certain direction and certain speed, very much
like the vector of a motion stimulus. If one attempted to create a
neuromorphic substrate that reads out such trajectories, one may as
well seek inspiration from models that perform motion analysis and
this brings us to the topic of motion detection.

8.1 Models

8.1.1 Computational

The earliest, thorough experimental and computational study of mo-
tion detection is the one by Reichardt on the fly’s motion system (Re-
ichardt, 1961). Reichardt measured systematically the fly’s turning
response to a large number of schematic motion stimuli. From the
collected response patterns he dervied an elaborate algorithm, that
consists of a number of stages performing various types of filtering
and correlating between inputs. Its very basic gist is shown in figure
40a. The input signals converge to a unit that correlates them: cor-
relation is only successful if the two signals are received in sequence
and in preferred order. If the stimulation direction is reversed (non-
preferred), then the unit reports no correlation. There is a number of
computational studies that is roughly analogous to the Reichardt ap-
proach: these studies model the responses of humans to certain mo-
tion stimuli and motion illusions (Adelson and Bergen, 1985; Vansan-
ten and Sperling, 1984; Watson and Ahumada, 1985).

Several neuromorphic implementations of the Reichardt principle
already exist in analog hardware (e.g. (Tanner and Mead, 1986; Kramer
et al., 1995)). They are implementations of the proposed algorithms
using analog circuitry performing the necessary types of filtering and
correlation. These motion detectors work well if the motion crosses a
substantial part of their visual field, meaning their ‘receptive field’ cor-
responds to the entire visual field. But one may also intend to develop
an implementation in which a motion stimulus is analyzed, when it
has only crossed part of the visual field, for example only the left half
of the visual field, or speaking in terms of sym-axes, when a trajectory
is generated in only part of the visual field. A solution to that may lie
in a neural emulation using a retinotopic map.

8.1.2 Biophysical

The computational models mentioned previously have not been spe-
cific about an exact biophysical implementation but the proposed al-
gorithms lend themselves toward a neural interpretation. For example
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Figure 40: Variants of the delay-and-compare principle. a. Photore-
ceptors 1 and 2 receive motion input (indicated by two dots). The
elicited signals are correlated in the unit C, whereas the second signal
arrives with a certain delay Stimulation in the reverse direction
would not yield a correlation between the signals. b. Schematics of a
dendrite (rectangular shape) and a soma (circle). The four synapses of
the dendrite receive sequential inputs from 1 through 4. Each synap-
tic stimulation contributes to an increasing wave running towards the
soma. The ‘comparison’ would take place in the soma.

the correlation unit C (in figure 40a) could be simply a neuron sum-
ming or multiplying postsynaptic signals. Because neurons can pos-
sibly perform such calculating operations (section 3.7), and because
such operations have been proposed (Barlow and Levick, 1964; Koch
et al., 1983), this may be one way to develop a retinotopic map for
motion detection. But there are also alternative biophysical models:
One on the dendritic level, and one on a ‘map’ level.

Dendritic Level A model for the dendritic site comes from Rall, who
applied cable theory to the study of dendritic processing (Rall, 1964)
(see section 3.7). He proposed that a dendritic cable can act as a di-
rection sensitive ‘wire’ (figure 40b): If one stimulates a dendritic cable
sequentially - with stimulations approaching the soma -, then an in-
creasing activity wave runs towards the soma, causing the soma to
spike. If stimulations occured into the opposite (non-preferred) direc-
tion, the wave would run into the tip of the dendrite where it has no
effect. This type of dendritic direction selectivity has been modeled with
compartmental models and some researchers have interpreted neuro-
physiological data according to it (Livingstone, 1998). It has also been
implemented into analog hardware ((Elias, 1993; Rasche and Douglas,
2001), see also section 4.3).

Map Level Because of the abundant research performed on a neu-
ronal level, it is tempting to think that the neuron is the sole site
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of computation. But motion may also be encoded at the map level,
as Glaser and Barch proposed it (Glaser and Barch, 1999). In their
model, a motion is encoded by an excitable membrane, that triggers
traveling waves. We have mentioned their model in section 3.4 al-
ready.

Speed estimation Biophysical models tend to explain direction se-
lectivity only. Less effort has been invested into inventing biophys-
ical models that estimate the speed of object motion. To solve this
task one could build on the above mentioned neural mechanism by
introducing a range of different synaptic dynamics covering different
speeds. Fast dynamics (‘short’ decay time constants) would be used
for detecting high speeds, slow dynamics (‘long’ decay time constants)
would be used for low speeds. If such a scheme is used by the nervous
system, then one might possibly find different synaptic decay times.
Indeed, the nervous system possesses a variety of excitatory and in-
hibitory synaptic dynamics (Johnston and Wu, 1995). For exam-
ple, the alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid
(AMPA) synapse releases a post-synaptic current (PSC) of short dura-
tion (several milliseconds), the N-methyl-D-aspartate (NMDA) synapse
releases a current of long-duration (several tens of milliseconds) - the
latter however only after the membrane potential has already been
elevated to a certain level (see figure 19b, right side; section 3.7).
Inhibitory synapses, like the gamma-aminobutyric acid (GABA), also
come in variants with different dynamics. The use of such synap-
tic dynamics may however be too intricate to cover an entire range of
speeds. We therefore propose an alternative, which solves the problem
on an architectural level.

8.2 Speed Detecting Architectures

One possible solution is to build a pyramid of different neuronal layers
made of direction-selective neurons with higher layers receiving only
intermittent input from lower layers (see figure 41). At the bottom
level would be motion-detecting neurons sensitive to any speed. Their
output would feed into multiple layers. Each layer is governed by the
same neuronal dynamics, but would receive intermittent input from
the bottom level: A low level would receive input with small intervals
and be sensitive to low speeds; higher levels would receive only sparse
input (large intervals) and therefore only detect high speeds. Such
an architecture, hereafter referred to as the speed-pyramid, would
depend to a lesser degree on the need for different neuronal dynamics.

We raise another alternative: speed may be computed with maps of
different dynamics (Rasche, 2005c). The idea to detect motion with dy-
namic maps was introduced by Glaser and Barch (Glaser and Barch,
1999): they simulate an excitable membrane of locally interconnected
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Figure 41: Speed pyramid. The bottom level is sensitive to motion
for any speed (MOTION DETECTION). It feeds into layers that esti-
mate speed (SPEED ESTIMATION). Higher levels of the speed pyramid
receive only intermittent input (with large intervals) and would thus
code for high speeds only.

neurons, which - when stimulated - propagates activity into all direc-
tions. Stimulating such a map with a moving input induces charac-
teristic propagation patterns, some of which can explain certain types
of motion illusions. Motivated by that study and by our own work
on contour propagation using similar excitable maps, we introduce
here propagating maps that respond to a motion stimulus of preferred
speed.

We basically take the same propagation map as introduced in sec-
tion 6.3 but tune its dynamics subtly different: the propagation dy-
namics are made inert, such that when the activity raises above the
spiking threshold only a single spike is generated. In order to obtain
continous spiking in the map, the motion has to stimulate the map
continuously at the same speed. Synaptic input placed into such a
propagation map will spread to all directions and decay in amplitude
similar to the propagation properties of synaptic input in a dendritic
cable. Sequential synaptic input along any direction will gradually
integrate and eventually reach the spiking threshold and cause spik-
ing. In order to differentiate between different speeds, the dynamics
of the map are adjusted correspondingly to filter only a certain speed
or range of speeds. An important advantage of such speed maps is
that they are independent of direction. That is, the tedious placement
of direction-selective cables or the spatial arrangement of synapses is
unnecessary. Summarized roughly, these speed maps embody Rall’s
dendritic delay-and-compare scheme but irrespective of motion direc-
tion. We have simulated such speed maps and report about them in
the next section.
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8.3 Simulation

Tuning We firstly try to understand how to tune the parameters of
a propagation map to make it behave as a speed map. As mentioned
above, the speed-map dynamics that we seek are inert as compared
to the dynamics of the propagation map. The propagation map prop-
agates its input actively (section 6.3). The speed map, in contrast,
is supposed to propagate its input only passively, meaning it should
decay away - even if input has been raised above the threshold. Thus,
the horizontal resistance of the speed map is generally much higher to
prevent active propagation. To fine-tune a map to a specific speed, we
need to understand the general propagation properties through the
resistive network in more detail. The properties are analogous to the
propagation properties of a dendritic cable. Changing the axial (hor-
izontal) conductance will primarily change the distance with which a
signal spreads: a high value results in far spread, a low value in short
spread, or put more formally, a high and low space constant respec-
tively. Changing the axial conductance also affects the decay time
constant, to a smaller extent though: a high value causes a faster de-
cay of activity at a given neuronal unit, a low value causes a slower
decay. Changing the amount of leakage, L, will primarily modulate
the decay time constant: a low value results in a slow decay, a high
value results in a fast decay, or a long and short time constant re-
spectively. It will secondarily affect the space constant: a low leakage
causes farther spread, a high leakage causes shorter spread.

In order to detect different speeds, the above parameters are ad-
justed correspondingly. To detect fast speeds, the axial conductance
is set to a high value to allow for quick and far spread resulting only in
synaptic integration when there is a rapid sequence of EPSP drops. To
avoid an integration of low speeds, the leakage is set high. To detect
slow speeds, the reverse applies: a low value for the axial conductance
avoids the fast run-away of activity and only slowly transmits activ-
ity to neighboring units. Additionally, the leakage conductance is set
to a small value in order to give slow motion stimulation a chance to
integrate.

Simulations Three differently tuned maps were employed, with fast,
medium and slow dynamics; each was tested with 10 different speeds
(1: slow, 10: fast). Figure 42 shows the response of each map for
selected speeds. The stimulating shape was an arrow consisting of 5
dots pointing towards the right side (equivalent to a ‘>’ sign). A plot
shows map’s spike occurrences with gray-scale values indicating the
time of firing (bright and dark dots represent early and late spiking,
respectively).

For the fast map, there was only spiking for speed numbers 8 to 10.
For the medium map, there was spiking for a larger range of speeds,
numbers 3 to 10 (only 3, 5 and 10 shown). For the slow map, the
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map responded to every speed (only 1, 5 and 10 shown). For each of

Figure 42: Map spiking in response to a moving arrow shape (shape
indicated in upper left subplot with asterisks) for three dynamically
different maps (fast, medium and slow) and three selected speeds. All
spike occurrences are plotted into the map (size: 10x20), with bright
and dark dots representing early and late spiking, respectively (no
subthreshold activity is shown). Fast map: response to speed num-
bers 10, 9 and 8 is shown. Medium map: response to speed numbers
10, 5 and 3 is shown. Slow map: response to speed numbers 10, 5
and 1 is shown.

these maps, there was more spiking for its preferred speed than for
other speeds. This is expressed with a spike histogram as shown in
figure 43: The total number of spikes for the entire motion stimulus is
plotted as a function of each speed number. We call these curves from
now on speed-tuning curves. For the fast map, the speed-tuning curve
starts at speed number 8 and increases with higher speeds. For the
medium map, the tuning curve starts at speed number 3 and shows
signs of decrease at speed numbers 9 and 10. For the slow map,
the tuning curve covers the entire speed range, but declines towards
higher speeds. Summarized roughly, for the fast map the tuning curve
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is sharp, for slower maps, the tuning curve is broad. Thus, the speed

Figure 43: Speed-tuning curves. a. Obtained from simulation for
each map (fast, medium, slow) for a dot stimulation (dashed-dotted
lines) and an arrow stimulation (solid lines) stimulation. X-axis: total
number of occurred spikes for the entire stimulation. Y-axis: speed
number. b. Schematic version of a.

maps are only useful for a rough estimate of speed. In order to de-
termine speed accurately, one could possibly use more maps and try
to achieve a narrow tuning for each one, which however would likely
result in a tuning ordeal. A better solution would be the employment
of a speed pyramid (section 8.2), in which one used the same dynam-
ics for each level. In either case, the creation of such a set of maps
to cover all speeds is costly in terms of size - thinking in engineering
terms. Instead, it is more size efficient and even more accurate to
create a set of neurons reading out a small number of tuning curves,
see figure 43b. This idea is analogous to the formation of color sensa-
tion with only three photoreceptors tuned to three different luminance
sensitivities. For example, a speed-detecting neuron would read the
ratio of firing rates from two or more speed maps (see speed number
‘5’ in figure 43), and so accurately determine speed, despite the broad
tuning-curves.

8.4 Biophysical Plausibility

If the nervous system used such propagation maps for speed estima-
tion, how might the cortical tissue emulate them? And where are they
likely to be found?

Regarding the biological emulation, it is firstly the horizontal con-
nection that demands an interpretation, in particular the subthresh-
old propagation through the horizontal connections. We have already
looked for such horizontal activity spread in the section on ‘fast waves’
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(section 7.5): there we were seeking possibilities that would allow for
active propagation of contours. Here, we search for a substrate that
rather passively propagates activity and that allows for different dy-
namics selecting different speeds. One possibility for such propaga-
tion is the extracellular activity spread through the glia substrate (e.g.
(Charles, 1998)). We already suggested this possibility in the retina
chapter to motivate the change of spiking thresholds (section 6.2). It
was also pointed out by Koch that such extracellular dynamics are not
well understood, yet worth to model (Koch, 1999). There is a number
of other studies that report about some sort of activity spread through
the neural substrate (e.g. (Grinvald et al., 1994; Beggs and Plenz,
2003)). Another possiblity could be activity spread through dendro-
dendritic synapses. If any of these possibilities could be the basis for
passive spread useful for speed detection, then there may also be dif-
ferent dynamics, which would allow for detection of different spread-
ing speeds. Different dynamics maybe caused by different ‘packing’
density of neurons. Alternatively, evolution may have evolved a speed
pyramid, which would not require different dynamics but just sparser
connections with higher levels (figure 41).

Regarding the location of such maps, one may readily suggest that
they exist in area MT (V5), where many neurons seem to signal exclu-
sively for speed ((Perrone and Thiele, 2001), but see also (Priebe et al.,
2003)). But some neurons in primary visual cortex seem also to fire for
speed only (see (Nakayama, 1985) for a review). A thorough review of
these studies may give hints about whether the brain uses for exam-
ple a speed pyramid. For instance, we imagine that ‘speed-neurons’ in
lower areas like the primary visual cortex, may fire for lower speeds,
whereas higher areas may possess neurons firing for higher speeds.

In some motion detection studies, a reoccuring issue has been the
aperture problem, which addresses the difficulty to estimate the over-
all, global direction of object motion from local receptive fields. Local
receptive fields, as they exist in primary visual cortex, only sense a
subset of the visual field and hence the entire object. An edge wan-
dering through the receptive field may therefore not reflect the global
motion direction (reviewed in (Nakayama, 1985)). Furthermore, us-
ing only local receptive fields, it is also difficult to estimate the exact
speed due to that aperture ambiguity. Attentional networks may solve
the problem (e.g. (Nowlan and Sejnowski, 1995)), but here we have
proposed a speed-estimation architecture, in which this problem does
not really appear, because the architecture does not rely on any local
receptive fields. In our architecture, motion direction is not computed
at all, but merely motion speed is sensed.
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8.5 Recapitulation

The purpose of this chapter was to find a neural substrate that can
read the direction and speed of a trajectory - whether this is a sym-ax
or a motion trajectory. We have approached this task using propa-
gation maps and illustrated how speed can be estimated with them.
What we have not addressed is how to read out direction. To perform
that for sym-axes, one could use propagation maps with oriented con-
nections. To perform direction selectivity for actual objects, the chal-
lenge of solving - or maybe circumventing - the aperture problem still
remains.

A hardware implementation of this speed-estimating architecture
required firstly the generation of spikes in response to motion, that
could serve as input to the speed architecture (see bottom layer in
figure 41). This already exists in form of a silicon retina (Boahen,
2002): it generates spikes in response to any object moving at almost
any speed. Those spikes would feed into speed maps, which still had
to be developed but could be easily derived from an implementation of
the propagation map as presented in section 6.3.

The simulations in this chapter gave us the inspiration that shape
could be detected analogous as speed is: a structure maybe stored
as electric dynamics in a map, which would be activated only if the
corresponding structure would ‘run’ across the map: the map would
reverberate in some sense in response to the appropriate input struc-
ture. We continue this thought in later sections of the next chapter
and we will also present a specific idea in chapter 10.
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9 Neuromorphic Architectures: Pieces and

Proposals

At the end of chapter 7, we have envisioned a hybrid categorization
system consisting of two stages: in a first stage, a neuromorphic front-
end encodes regions into sym-axes, and in a second stage, a computer
vision back-end performs categorization with those sym-axes. But
what if we intended to construct a pure neuromorphic system? It
meant that we had to replace the computer vision back-end with a
neuromporphic substrate that evolves and represents the categories.
In what follows, we will firstly think about how one may continue
such a neural evolvement using the sym-axes. We then gradually
turn towards alternative proposals.

9.1 Integration Perspectives

If one intended to continue with the sym-axes of the SAT, then a sub-
strate had to be created that can integrate the sym-axes. Let us take
the rectangle as an example (figure 44a). One may read out the indi-
vidual trajectory pieces (numbers 1 to 5) by developing detectors that
can sense the specific trajectory dynamics. The output of those detec-
tors had to be added up to form the shape - in this case the rectangle.
Alternative to this piecewise trajectory integration, one may create a
detector that reads out the entire sym-ax of the rectangle. Either way,
the rectangle represented had to be integrated with other regions of
the entire object, as we did in chapter 5.

There are several approaches one could think of designing such
trajectory detectors, as listed below. The first two ideas (1 and 2) have
already been mentioned in chapter 8, when we aimed at reading out
the trajectory of a L feature, whose sym-ax dynamics corresponds to a
simple motion stimulus. The second two ideas (3 and 4) revolve about
reusing and modifying the SAT.

1) Synaptic interaction: Trajectories may be decoded by synaptic
interaction in the soma or the dendrite (section 8.1.2). Once, such
single-neuron trajectory detectors had been designed, then a neuron
would have to be developed that integrated the trajectory pieces to the
representation (or detector) of the rectangle. Or, as mentioned above,
there may be a detector for the entire sym-ax.

2) Maps: As mentioned in the previous chapter, a problem with
synaptic interaction as just described in 1) could be the tedious align-
ment of orientations. To overcome this, one may use maps again:
analogous to the idea of speed estimation, there would be maps read-
ing out the trajectories wherever they would occur.

3) Stacking SATs: Instead of carrying out integration with single
neurons or maps, one may also employ the SAT a second time. For in-
stance, if one takes the sym-ax of a rectangle and squeezes it through
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another SAT, then one obtains a sym-ax as shown in figure 44b. Each
of those four, new sym-axes would represent three sides of the recan-
gle (e.g. sym-ax 1 would represent sides a, b and c).

Figure 44: Integration of sym-axes. a. Sym-ax trajectories of the
rectangle. b. Sym-axes of the rectangle’s sym-axes (of a.). c. Sym-
axes if only parallel structures would be detected. d. End-stopped
cells to detect the space around sym-ax ‘starting points’.

4) Specialized region encoding: There is a number of repeating
structures in our environment, like parallel lines, certain curvatures
or even entire shapes like the rectangle (see also (Lowe, 1987)). For
such repeating structures, it may be worth to construct their own
SATs. For example parallel lines would have their ‘own’ propagation
map; the set of orientation columns would remain the same; and the
symmetric-axis map would be accordingly wired to detect solely these
specialized structures. The rectangle in figure 44a would so be rep-
resented by two sym-axis pieces forming a cross, of which each piece
describes two parallel sides, see figure 44c.

As mentioned before, one type of region that has not been captured
with the SAT is the encoding of outside space, in particular the silhou-
ette of a feature, like the outside of a rectangle (section 7.1). In order
to encode that outside region, one can analyze the spatial relationship
of the sym-axes (section 7.3). One way is to employ end-stopped cells
to signal Lone features. They are generally found in primary visual
cortex and fire for the end-point of a line. This ‘end-stopped’ encoding
can be applied for the beginning of a sym-ax as shown in figure 44d.
Taking the rectangle as an example again, it would be described by
the sym-ax as seen before, and in addition by four end-stopped cells,
signaling the outside of each corner.
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9.2 Position and Size Invariance

We now turn toward two aspects of the recognition process that we
have only shortly mentioned in connection with Deutsch’s shape recog-
nition system (section 3.5).

When we take a first glance at a scene, the fovea may land some-
where, where there is not exactly the ‘center’ of an object: the object’s
position may be just slightly off the center. Still, recognition occurs
without interupt and one refers to this recognition aspect as position
or translation invariance. Likewise, the object may not be always of
the exact same size but sometimes it appears a little bit bigger or
smaller. Still, recognition is fluent and this aspect is termed size or
scale invariance (figure 45a).

We have not mentioned these two recognition aspects before, be-
cause they do not appear when one employs list methods, as for ex-
ample with the extraction of polygon features as done in chapter 5,
or the analysis of sym-axes, if one used the hybrid category system
only. One is apparently confronted with those two aspects if one at-
tempts to construct a pure neural recognition system. For example, if
one attempted to construct a neuromorphic system as outlined in the
previous section, then those trajectory detectors had to be able to deal
with these variances as well, because the evolved sym-axes would be
at slightly different places in the SAM, depending on the objects exact
location and size.

Both, position and size invariance, are generally believed to be solv-
able with a pyramidal architecture made of neuronal layers, whose re-
ceptive field sizes increase with higher levels (figure 45b; (Rolls and
Deco, 2002)). This concept is suggested by the finding that recep-
tive field sizes increase along the cortical hierarchy (chapter 3, section
3.1). The most prominent model pursuing this pyramid is Fukushima’s
Neocognitron (Fukushima, 1988). In such a pyramid, the position of
an object is found by integrating its contours through higher layers.
This may be unspecific however, because this integration represents
a ‘coarsening’ in which structural information gets washed out.

An alternative to pyramidal contour integration is contour propaga-
tion (figure 45c): McCulloch proposed that a shape is propagated con-
centrically thereby scaling it in size (McCulloch, 1965). But he was
not specific about a detailed architecture. We suggest one in figure
46a. It comprises a representation map (RM) and a propagation map
(PM), both connected neuron by neuron in a spatially corresponding
manner. The synaptic weight values between the two layers would
correspond to the shape to be represented, e.g. the connections along
the shape’s contours would have a high value, the connections dis-
tant from the contours would have a low value. This weight matrix
is illustrated by the gray shape in the representation map. Let us
think through some scenarios how the RM would answer in response
to certain input shapes: 1) If the appropriate shape is placed concen-
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Figure 45: Position and size invariance of recognition and approaches
to solve it. a. An object may be slightly off center (lower left) or slightly
bigger or smaller (lower right). b. Pyramidal architecture with in-
creasing receptive field sizes in higher levels. c. Concentric contour
propagation as proposed by McCulloch (1965).

trically onto the PM, as outlined with i1 and i2 in figure 46b, then the
outward- and inward-propagating contours would travel through the
weight matrix simultaneously and the RM neurons would flame up si-
multaneously as well. 2) If the (appropriate) shape is placed with some
offset or asymmetrically onto the PM, see corresponding rectangles i1
and i2 in figure 46c, then some sides will be activated before others
and also partially only. Thus, the RM neurons would fire with some
delay. 3) If a different shape, like a triangle or circle, was placed onto
the PM, then the RM neurons would also fire at some point in time,
but sequentially. In order to recognize the appropriate shape, one had
to devise a recognition network that can cluster situations 1 and 2,



9.2 Position and Size Invariance 91

but ignore situation 3.

The proposed architecture is certainly not useful in this exact for-
mat, but such thinking may be helpful for finding a more appropriate
recognition architecture. This specific architecture would also neglect
the idea of encoding space, something that we would not abandon
after having made the valuable experiences in chapter 5.

A PM could also perform other transformations than just trans-
lation of contours. For example a map of ring-connected neurons
arranged concentrically could perform a rotation of contours to some
extent. That could allow for some rotation invariance, which would be
helpful for recognizing objects that do not possess a certain orienta-
tion, like tools.

Figure 46: Propagation architectures for achieving size and position
invariance. a. A template-matching architecture. b. Scenarios of
concentric shape input: RM: shape represented in the RM. i1, i2:
shape as placed onto the PM. c. Scenarios for offset and asymmetry.

It is difficult to foresee, whether the pyramidal or the propagation
architecture (figure 45b versus c) solves the size and scale invariance
aspect better. This had to be explored systematically. The optimal
solution may possibly be a combination of both architectures. And it
seems plausible to us that the visual system may bear such a com-
bined architecture too: on the one side, the increase in receptive field
sizes along the ‘hierarchy’ seemingly supports the pyramidal architec-
ture (section 3.1); on the other side, most of the visually responsive
cells are also motion selective, which ultimately may just reveal con-
tour propagation dynamics.
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Dynamic Representation In the above discussion, both architec-
tures share the idea that the shape needs to be conveyed toward
a representation expressed as a fixed set of neurons, which in turn
have to be activated for recognition. Stated shortly, the input is made
dynamic to move it into its correct slot, a fixed representation. But
maybe it is this fixed representation that makes our search for posi-
tion and scale invariance so awkward. How about making the repre-
sentation dynamic? For instance, instead of representing the shape
by a spatially fixed set of synaptic weights, it may be represented by
a set of perpetually active (spiking) neurons in the RM, which would
represent the shape in a structurally loose manner. After the shape
is placed onto the PM and has triggered a number of waves, those
waves in turn would stir up the activity in the RM and both the PM
and the RM would transiently establish a strong connection between
them, a ‘locked’ state in some sense: one may also term this a recog-
nition by reverberation or attraction. Such dynamics have already
been implemented in ‘classical’ neural networks (e.g. (Haykin, 1994)
for a review). Our specific proposal here is that they would occur with
waves that specifically encode space and that would solve some of the
part-shape variability. A dynamic representation could also be of ad-
vantage for constructing the loose basic-level object representations
we aim at throughout our book (section 2.5).

To what degree this size and position invariance is necessary is also
something that has to be explored heuristically. To contrive the op-
timal architecture, it may be best to develop it with a system that
performs saccades or attentional shifts that would bring the object
into the ‘exact’ center of the focus.

9.3 Architecture for a Template Approach

In the section on ‘Integration Perspectives’ (9.1), we have listed a num-
ber of schemes on how to set the regions (sym-axes) into relation with
each other to describe an object, which basically represents a struc-
tural description approach as pursued in chapter 5. However, in the
end, any type of integration may be too tedious for the rapid asso-
ciation we look for (figure 2). Considering again that the visual sys-
tem remembers pictures extraordinarily well (chapter 1), one may also
ponder the possibility that some sort of template matching is at work
in the real visual system. The idea exists since early on, but is often
dismissed as too simple (Palmer, 1999). Nontheless, it is this sim-
plicity that could beat any sophisticated integration scheme. With the
previously suggested architecture for solving size and position invari-
ance, we have already moved toward some sort of template-matching
scheme. We here give one outline on how to start thinking about a
template architecture.
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Figure 47: Recognition process with broadcast receiver principle. a.
Lower cortical areas may perform a region-encoding transformation
(T), whose product is sent across higher cortical areas to find the ap-
propriate match (slot S). b. Neuromorphic architecture.

Let us assume that in the initial stages of recognition evolvement a
number of transformations take place. These transformations would
convert region space into an abstraction like a sym-ax, a set of waves,
or a wavelet-like product, which would bear some structural variabil-
ity independence (see ‘T’ in figure 47a). We imagine that such an ab-
straction could be stored as a whole. It maybe stored in a slot (‘S’) in
a higher area of cortex, where it is appropriate for other associations,
like other objects of a specific frame, or a set of motor actions that
would be triggered if one intended to act upon the perceived object.
Recognition matching would occur by propagation of the abstraction
through the cortical medium until its corresponding slot is found.
This idea can be classified as an instance of the broadcast receiver
principle as it has been proposed by Blum. Blum’s specific idea was
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that object properties would be integrated by coincidence of waves;
our thinking, in turn, is that visual abstractions of whole objects or
structures are propagated across the cortex.

In a neuromorphic system, this propagation process could be mim-
icked by projecting the output of the transformation maps into the
chips containig the abstract representations (figure 47b).

9.4 Basic-Level Representations

In chapter 1 we have mentioned the existence of different category
levels (section 1.5, figure 3), but throughout our chapters we have
not been specific about the level we were talking about. We have an
addendum on that.

Figure 48: More variability in the basic-level category chair. Chairs
like the office chair or bar stool are only partially similar to the ‘regu-
lar’ chair that we have seen so far in this essay.

As mentioned in section 2.1 already, some basic-level categories
possess a high structural variability, others a low variability. Cate-
gories with a low variability, like the category book, could be repre-
sented by a few regions or possibly by a single, abstract template.
Basic-level categories with a high structural variability in contrast,
likely require a larger, more diverse representation. Figure 48 should
exemplify that point. The chair on the left, labeled as ‘regular’ chair, is
the one discussed throughout this book, but chairs show also struc-
tures like the right two ones, labeled as office chair and as bar stool.
They can be regarded as subordinate categories and are structurally
only partially similar to the regular chair. The regular and the of-
fice chair share similar regions around the backrest and the seating
area. The legs however are completely differently aligned, but share
the property of having the ‘legs’ stick out into space. The bar stool
is least similar to the other two. Only the bottom regions of the legs
share some similarity with those of the regular chair. Given this vari-
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ability, it is difficult to imagine that there is a single representational
construct for this basic-level category. Rather, the variety of subor-
dinate categories in this category has to be represented by several,
distinct structural descriptions or maybe even different templates.

9.5 Recapitulation

In this chapter, we have reflected about how to construct a pure neu-
romorphic system - one that evolves and represents categories ex-
clusively with networks. We have started by thinking about how to
integrate sym-axes. We then have turned towards the recognition
aspects of position and size invariance and discussed the pyramidal
and contour propagation architecture that may solve these two as-
pects. We have expressed the intuition that representations may also
be dynamic for example consisting of a set of waves. Furthermore, we
have considered a template architecture that may store structures as
a template, because a structural description scheme could be simply
too sophisticated and expensive for rapid associations.

Figure 49: A perceptual representation maybe a collection of waves.
Compare again to figure 2.

At this point, it is not clear to us yet, at what level exactly all these
aspects and processes should take place in a recognition sytem and
whether there is a specific architecture that can solve everything ele-
gantly in a smooth manner. The following chapter can be understood
as a step towards that direction. To conclude this chapter, we cari-
cature this view with figure 49 (compare again to figure 2): it should
express the thinking that waves can represent perceptual categories
in some way.
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10 Shape Recognition with Contour Propa-

gation Fields

We continue the thought just discussed in the previous chapter, namely
the idea that representation is some neural substrate that remembers
propagating waves. In this chapter we present a network that can be
regarded as an instance of this thinking. We demonstrate the oper-
ation of the network on simple shapes first and then discuss how it
may be extended to basic-level categories.

10.1 The Idea of the Contour Propagation Field

In the search for a suitable network, we also aimed at a mechanism
that would encode not only the inside but also the outside of a shape.
The simplest principle that one could think of, is to remember the
entire flow of inward- and outward propagating contours of a shape as
is, meaning without the generation of a particular transformation. In
order to represent the geometry somehow, one can look continuously
at this contour flow through a set of orientation columns. By doing
that, one observes a field of vectors as shown on the example of a
rectangle in figure 50. Both, the inward- and the outward-propagating
contours, contribute to this vector field, which looks akin to the optical
flow field used in motion detection studies (Palmer, 1999). We call this
vector field now the contour propagation field (CPF) (Rasche, 2005d).

Figure 50: Describing shape with the contour-propagation field (CPF).
Looking at the propagation pattern through a set of orientation
columns generates a vector field analogous to the optical flow field
used in motion detection studies. We call this flow field now the
contour-propagation field.

Next, we need a neural substrate that is able to remember this CPF.
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For example, one can make use of those motion-sensitive maps dis-
cussed in chapter 8. If the connectivity of such a motion-sensitive map
is altered in such a way that it corresponds to the CPF pattern, then
the motion-sensitive map would react only to input of corresponding
contour flow (or CPF). We now call such a motion-sensitive map, with
a specific connection pattern bearing a CPF, a shape map (SM). For
each shape, a separate shape map is created. Recognition would oc-
cur by feeding the contour flow across each shape map. Only, the
map with corresponding CPF will generate a vigorous response, and
that map response serves as recognition signal. This comparison pro-
cess is in some sense a template matching system. We therefore call
it CPF matching, or CPFM.

10.2 Architecture

An architecture for a CPFM can be constructed with the components
discussed in chapters 7 and 8. Figure 51 shows the principal ar-
chitecture for both solutions. The input shape (input) is fed into a
propagation map (PM) and analysed by a set of orientation columns
(OCs). On top of that, a set of direction-selective columns (DCs) de-
termine the direction into which a wave propagates. (The use of such
a direction-selective cells would of course be also beneficial for the
SAT, but has not been modeled yet). The direction selectivity can be
obtained by cross-correlating the input of two neighboring orientation-
selective cells, very much according to the principles discussed in the
introduction of the motion detection chapter (number 8). At the very
top of the architecture is the set of shape maps (SM), each represent-
ing an individual shape. Each shape map receives input from the
direction-selective columns.

Shape map A shape-sensitive map is basically equivalent to a prop-
agation map, except of two modifications: 1) The connection between
two neurons are modeled as two unidirectional connections, see fig-
ure 52. 2) Most of its connections are turned off, and only those are
turned on, whose direction corresponds to a local direction of the CPF.
For example, the connections around the center neuron shown in fig-
ure 52 are turned off (grey) except those two pointing toward the right
(black): this local piece of shape map, will prefer contour propagation
toward the right only. To learn a novel shape, the shape is squeezed
through the architecture and the evolving CPF is ‘burned’ into an ‘un-
written’ shape map, which then becomes part of the system. Once
the novel shape map has been burned, it basically consists of lines of
connected neurons.

The architecture suffers from the problem of a coarse connectivity,
in particular the SM. Specifically, a direction column provides 16 dis-
tinguishable directions, whereas a SM neuron has only 8 neighbors
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Figure 51: Architecture for a CPFM. From bottom to top: the in-
put shape (input) is dipped into the propagation map (PM), where
it propagates inward and outward (gray outlines). The orienta-
tion columns (OCs) and the direction columns (DCs) determine the
contour-propagation field (CPF) which is then fed into each shape map
(SM).
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and thus 8 directions, which is too coarse for representing simple
shapes distinctively. For the present study, the problem is solved by
using two propagation layers for each shape map, each one propagat-
ing the input from 8 different directions.

Figure 52: a. Reciprocal, unidirectional connections in a propagation
map for one unit. b. Only one direction of the ‘directed connections’ is
turned on (black), the others are turned off (gray): this map will prefer
contour input moving towards the right only.

10.3 Testing

We have simulated this architecture with integrate-and-fire neurons,
except of the block of direction selective cells, which has been com-
puted by traditional bit-wise (computer) correlation for reason of sim-
plicity. To determine the recognition signal, the entire spiking activ-
ity of each shape map is observed by summing it up and plotting it
against time. This sum is now called the population activity. Five
shapes were used for testing, see figure 53: a rectangle, a circle, a
triangle, a cross and a shape consisting of the superposition of the
rectangle and the cross, which we now call square board. The 1st col-
umn is the centered shape, which was used for learning - for burning
the CPF into the shape map. The 2nd column is a translated version
of the shape, shifted to the lower right by 5 pixels in each dimen-
sion, which represents about 10 to 12 percent of the shape’s width
and height. The 3rd column is scaled version of the (centered) shape,
made smaller by 6 pixels in each dimension. The 4th column is the
(centered) shape with a ‘disturbance’, a straight line extending from
the right side of the image center to the upper right. The 5th col-
umn contains the shape made of a dotted contour, an input that is
hereafter called fragmented. Figure 54 shows the CPF of two shapes.

The ability of a shape map to identify was tested with its own
centered, shifted, scaled (smaller), ‘disturbed’ and fragmented shape.
The ability to discriminate was tested by placing the other, centered
shapes on it.
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Figure 53: Shapes used for testing. From top to bottom: rectangle,
cross, triangle, circle, square board. The 1st column shows the cen-
tered shapes. The 2nd column shows the translated shapes, which
were shifted by 5 pixels into both axis directions (shifted to the lower
right), which is about 10 to 12 percent of the shape width. The 3rd
column is a down-scaled (smaller) version of the (centered) shape. The
4th column shows the (centered) shape with a ‘disturbance’, a straight
line extending from the right of the image center to the upper right.
The 5th column is a dotted version of the shape, called fragmented.

Figure 55 illustrates the population activity of the shape maps
in response to various stimuli. The identification responses are dis-
cussed first.

The response to its ‘centered’ shape, called the signature now, is
denoted as a thick, solid line: it rises steeply and stays well above the
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Figure 54: Contour propagation field (CPF) of the centered rectangle
(top) and circle (bottom). An inward-pointing and outward-pointing
vector field is present.

response activity for any other identification response. Its amplitude
is determined by the length of the shape contour. It may increase or
decrease during the propagation process depending on whether con-
tours cancel each other out (e.g. square board) or whether they are
only growing (e.g. cross). Part of the fluctuations are due to the alias-
ing problem (coarse nature of our network).
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Figure 55: Population activity during recognition evolvement for the
five different shapes. X-axis: time. Y-axis: spike activity of the entire
map (population activity).
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The response of a shape map to its ‘disturbed’ shape is shown as
a thin, dash-dotted line, which also rises steeply but then runs below
the signature: The ‘disturbing’ line causes a subtraction because it
‘steals’ a piece of area.

The response to the fragmented shape starts with a delay (of one
time step) because it takes a short while for the PM to fuse all the
contour pieces to one continuous (inward- or outward-propagating)
contour.

The response to the down-scaled (smaller) shape starts immedi-
ately but reaches its peak stepwise because it takes a short while un-
til both inward- and outward-pointing vector fields are covered, except
for the cross shape.

The response to the shifted shape - plotted as thick, dashed line -
is slower and reduced compared to the other identification responses.
It also reaches its peak stepwise for the same reason as for the smaller
shape. A translation by 10 pixels was also tested but those responses
were not significantly different anymore from the discrimination re-
sponses.

The discrimination responses - the response to other (centered)
shapes - are plotted as thin, solid lines. All those responses are
mostly below and sometimes minimal compared to the identification
responses. If, however, two patterns are similar in their exterior space,
as it is the case for the rectangle and the square board, then they may
have overlapping identification and discrimination response.

10.4 Discussion

The use of two propagation maps for each shape (to circumvent the
aliasing problem) is somewhat awkward. A better solution may lie
in the usage of synapses representing the range of orientations for
determining direction, instead of an actual propagation map. Never-
theless, the simulation results so far suggest that any shape can be
easily distinguished from any other shape, as long as they are not
structurally too similar. The architecture is therefore good for sim-
ple ‘shape categorization’: a learned shape can appear fragmented,
scaled, disturbed, shifted to some extent and still be identified; like-
wise the learned shape may have minor deformations or slightly dif-
ferent structure, it would still be recognized and hence categorized.
Consequently, the architecture is less suitable for an exact identifi-
cation and it could less efficiently discriminate between subtle shape
differences, like the ones shown in figure 56. We discuss improve-
ments in a subsequent paragraph.

The CPFM system possesses all the desired features we dream of a
potent neuromorphic visual system:
1) The system learns the shape by itself. This is a feature we have
not sufficiently pointed out yet and will be further discussed in the
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subsequent subsection.
2) The system shows some size and position invariance to its input
shape.
3) The system is enormously robust to ‘noise’ sources like contour
fragmentation or additional contours.

Features 2 and 3 are the result of two properties of the system. One
is the propagation of the input in the propagation map (PM), and the
other is the wide-spread encoding of the shape, the CPF. Thus, this
network is an answer to the problem formulated so well in Palmer’s
book ((Palmer, 1999), p.86-88): How is that a shape can be recognized
although its contour image is always incomplete and varies with dif-
ferent illumination? The answer may be in a network as described
here: A network that encodes the region and uses wave propagation
to do so.

Comparison to the SAT How does the CPFM compare to the SAT?
Both mechanisms are region-encoding mechanisms, but they differ
significantly in their specific evolvement and representation.

- Recognition duration: The time it takes to signal the proper shape
is relatively immediate for the CPFM system because the CPF repre-
sentation is wide-spread in some sense and thus allows for a quick
response. In contrast, the SAT requires more time, because the entire
region - or at least a substantial fraction of it - has to be explored by
the traveling wave in order to form a least part of the sym-ax.

- ‘Noise’ sources: Contour gaps: Both mechanisms deal well with
contour gaps. In case of the SAT, the gaps are closed by the propa-
gation map (PM) only. In case of the CPFM, it is also the propagation
map, but also the wide-spread CPF representation that circumvents
the need for closing all gaps. Additional contours: The CPFM is very
robust to noise sources like the additional line. The SAT has a larger
problem with that, because additional contours can substantially al-
ter the outcome of the SAT process and generate sym-axes that are
only remotely similar.

- Size and position invariance: The SAT does not really address this
aspect because it does not contain a substrate that stores the sym-
axes. Using a computer vision back-end however, a list-approach,
would show a large degree of size and position invariance as it is the
case for any list-approach, like the one carried out in chapter 5. In
contrast, the CPFM shows a limited size and position invariance due
to the somewhat fixed representation.

- Representation: The SAT only encodes regions that are ‘engulfed’
by contours, whereas the CPFM encodes any region - the inside as well
as the outside. The output of the SAT is graspable for a list approach,
whereas the present CPFM is only suitable for a pure neuromorphic
approach. Both processes likely have difficulties to efficiently distin-
guish between subtly different shapes like the ones in figure 56.
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- Structural variability: both processes are robust to structural
variability, although we have not specifically shown that for the CPFM.

CPFM improvements There are several directions one may pursue
to improve the present CPFM system. Firstly, it may be useful to dis-
tinguish between straight lines and arcs. To extract straight lines,
one would employ larger receptive fields - as it is possibly done in the
real visual system by a local-to-global recognition evolvement (section
3.1). That would lead to the employment of a set of different maps,
each for a different size of receptive field. Curves would then be repre-
sented in maps with small receptive-field size, and straight segments
in maps with large receptive-field size. Another direction of improve-
ment could be to represent shape on different scales (coarse-to-fine)
as Koenderink and vanDoorn proposed (Koenderink and van Doorn,
1986). This may indeed work with some objects and even textures,
but for the shapes shown in figure 56, this could be of limited use
because at a coarse scale, those shapes appear even more similar.

Figure 56: Similar shapes. The CPFM, but also the SAT, may have
difficulties to efficiently distinguish between these shapes. That may
be solved by employing different receptive field sizes (local/global) or
different spatial scales (coarse/fine) or by inventing a differentiation
mechanism.

Extension to Basic-Level Objects The CPFM is able to represent
simple shapes only. Basic-level categories, as we have used them in
chapter 5, can probably not be efficiently described by a single CPF.
There is likely too little position and size invariance and too little view-
point independence, all of which relates to each other somewhat for
this type of representation. Thus, the CPF idea had to be elaborated
in some way. For example, if the tolerance for size and position in-
variance would be larger, then it may suffice to represent a basic-level
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category by a set of CPFs, one for each region as determined in chap-
ter 5 for instance. Stated differently, each of the features that we have
determined in chapter 5 would be expressed by some sort of CPF.

Broader Implications If a more potent CPFM system can be con-
structed, one that can perform basic-level categorization and that
would recognize its input as easily and distinct as the present CPFM
does, then that would have a number of broader implications.

1) The system can potentially recognize serveral objects at the same
time. Imagine that the above simple CPFM system is stimulated with
a square containing a circle inside. The shape maps for both shapes
would lit up, without little interference during the recognition pro-
cess. Thus, objects that overlap each other, could easily activate their
representations simultaneously.

2) The system has the potential to operate in a complete bottom-up
manner, meaning it does not need any ‘top-down’ control, frame in-
teraction or other representational control to understand noisy scenes
or scene parts, unless the object or scene is vastly degraded in some
form. Thorpe has argued that the visual system has to operate purely
bottom-up because of its tremendous processing speed (section 3.3).
CPF matching could explain that speed.

Biophysical Plausibility Because we regard the CPFM as an instan-
tiation of the thoughts in the previous chapter, we do not particulary
explain the plausibility of this system, but comment on the speed of
recognition only. In the CPFM system, the waves travel only a rela-
tively short time until the proper shape has been recognized. Because
of this short recognition time, the waves do not have to be as fast as
for example for the SAT, in which a wave has to travel some portion of
the region to establish the sym-ax. Hence, the fast part of recognition
may be only the propagation to different shape maps in cortex, but
the wave that actually would stimulate a shape map did not have to
be particularly fast.

10.5 Learning

The shape-recognition system has a formidable property, which is of
great importance for the construction of a self-organizing neuromor-
phic system: it learns. We have not talked about this property before,
because we have focused on finding an effective description. Once,
such an effective descriptor is found, then it makes sense to develop
a learning system. The invent of the CPF idea brings us closer to
this goal, because the CPFM system represents effectively and is able
to learn simple shapes in a single pass. It may be noteworthy that
learning in the CPFM system requires an ‘unwritten’ map. This is in
contrast, to traditional neural networks which do not increase their
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number of neuronal units but retune their existing weights to incor-
porate the novel shape.

Figure 57: Learning the representation of a chair. Ideally, one would
create a neurmorphic system that learns the significant regions by

itself by hopping from one region to another and thereby gradually

acquiring the template-like region representations that form the loose
category representation.

If one would be able to construct an expanded CPFM system, that
can deal with basic-level categories - as envisioned above for instance
-, then that would mean that there needs to be a process that detects
these regions in a novel object. This process may consist of a saccadic-
like visual search to acquire the various regions. For example, the
system would jump from region to region and generate a template for
each region (figure 57). To find the center of a novel region, one could
preform a simplified or modified SAT on the object, although not all
regions can be found with the SAT due to its drawbacks.

Differentiation If an efficient learning system can be found, then a
subsequent challenge would be to construct a system that learns to
differentiate. For example, if some input may appear very similar to
a learned (stored) shape, but has to be distinguished from that one,
then the system has to generate a novel shape map or modify that
stored one. This would occur for instance, if the system tries to form
subordinate categories, like kitchen chair or recliner seat (section 1.5).
One may exercise this differentiation step on the example of simple
shapes first, and then extend it to basic-level categories.
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10.6 Recapitulation

We have described simple shapes by remembering their contour prop-
agation pattern as viewed through a set of orientation columns. The
resulting vector field - called the contour propagation field, CPF - de-
scribes the inside and outside of shape (expressed in figure 58). A neu-
ral substrate storing this CPF can properly recognize learned shapes,
even if they are scaled in size, translated in position and degraded in
various manners. The system learns a novel shape with a single ‘shot’
using an ‘unwritten’ map for each new shape. The CPF matching sys-
tem can deal with simple shapes, that are structurally not too similar.
We have mentioned several possibilities to extend the system, like op-
erating on different axes (local/global) or by creating a differentiation
mechanism. If such a system can be developed for basic-level objects,
it has the potential to work purely bottom-up despite the persistent
presence of noise in the contour image, and it has the potential to rec-
ognize several objects simultaneously, even if they partially overlap.

Figure 58: The idea of using a CPF for representation is expressed

with a set of arrows indicating the direction of waves.

In search of an expansion to a basic-level categorization system,
one would firstly attempt to succeed on line-drawings like the ones
in chapter 5. Such line-drawing objects could include a substantial
amount of variability - more then the ones in chapter 5 -, because
the present CPF system is already able to deal with a significant level
of variability. Ideally, in a second step, one would design a learning
system that can acquire the necessary regions by a saccadic visual
search. Then, one would elaborate the system to perform on gray-
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11 Scene Recognition

Scenes are made of basic-level objects. To determine a scene’s con-
tent, it seems obvious to firstly recognize its individual objects sequen-
tially and then to construct the ‘understanding’ of the entire scene.
Our belief is that once the categorization process is properly built,
then it can be readily applied to scene recognition. The goal in this
chapter is to argue for that belief but also to suggest that scene un-
derstanding is more instantaneous than the commonly believed se-
quential build-up from object information.

11.1 Objects in Scenes, Scene Regularity

If an object is placed into a scene, then its silhouette (or outside) space
is often dissected by structure that is part of the scene’s global struc-
ture. For example floor contours intersect with the lower section of
a piece of furniture. Or furniture that is close to each other masks
out each other’s silhouette features. But despite these ‘background
contours’ there is plenty of typical silhouette space around an object
that could allow a network using region encoding - as we have pur-
sued it in the previous chapter - to perform proper recognition. What
would happen if the scene was densely cluttered with objects? It cer-
tainly took longer to understand the scene and to comprehend each
object. Two examples come to our mind where this is obvious: 1) In a
garbage dump, objects are intermingled - and also seen from unusual
viewpoints. 2) In certain bars (theme bars), it is popular to decorate
the walls and ceilings with diverse objects. In both cases, it takes a
long-lasting visual exploration to recognize each object. Biederman
has elegantly shown that point in the context of scene understanding
(Biederman, 1972; Biederman et al., 1973): If objects are placed in
unusual locations, or if scenes are jumbled, it takes the human ob-
server some while to understand the contents of a scene or to find
a typical object. Thus, objects possess a typical scene context. One
can take the conclusion a step further and claim that scenes as a
whole possess a ‘regular’ structure like basic-level objects do and that
they show the same types of variabilities as we described for objects,
see section 2.1. And because scenes are so regular, most objects will
have at least some of their silhouette region always ‘available’ for rapid
analysis.

11.2 Representation, Evolvement, Gist

How are scenes represented? Because scenes consists of basic-level
objects, it is commonly believed that scenes are best represented by
them. This is the same thinking as for the description of objects by
parts. And because a scene has apparently more structure than an
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object, it is believed that scene Evolvement requires a set of mech-
anisms to decompose the scene into its constituent objects. Such
segregation mechanisms have been termed for example perceptual
grouping, region segmentation or figure-ground separation (Palmer,
1999). Such an elaborate reconstruction process may be in contrast
with the speed, with which humans can understand the gist of scenes.
Gist perception can occur within a glance (section 1.2), and it creates
a rich sensation of impressions. There is a large debate on how much
is perceived within a single glance and how much of it reaches our
awareness or consciousness (Koch, 2004). And there have been ef-
forts to find a specific evolvement type for gist perception, some of
which we have already discussed. For example, we have already dis-
cussed the local/global debate (page 25). Likewise, followers of the
channel theory have wondered, whether an image is firstly processed
from a fine (high frequency) to a coarse (low frequency) scale or the
opposite way. Specifically, Schyns and Oliva proposed that for short
image presentations a coarse to fine scale analysis takes place. Yet,
after further studies this conclusion seemed not to be that firm any-
more: gist perception can also occur from fine-to-coarse depending
on the task (Oliva and Schyns, 1997). Another way to formalize gist
perception is to separate scene information into foreground and back-
ground: Some psychologists claim, that we understand a scene by
perceiving a few key-objects (foreground) in a scene and then to con-
clude to the embedding content (background). However, the majority
believes that scene analysis starts with the background information
and then determines what objects there are in the scene (debate re-
viewed in (Henderson and Hollingworth, 1999)).

The multitude of suggested mechanisms and the diversity of ex-
perimental results may also be simply the results of a flexible recogni-
tion evolvement that allows to analyze the scene the easiest possible
way. The scene may actually drive the mechanisms (Rasche and Koch,
2002). But our preferred viewpoint of scene recognition is to regard a
scene as a basic-level object in some sense. For example, room scenes
share a certain structure as opposed to for example landscape scenes.
And because they possess a lot of regularity as argued in the previous
section, they possess the same types of structural variabilities as ob-
jects do (section 2.1). We therefore propose to apply our idea of loose
representations to scenes as well: as for basic-level objects, there may
be some sort of pattern, that can be expressed with a set of templates.
Or a scene maybe can be even classified based on its regions. The
idea of mere classification has already been put forward by Duda and
Hart (Duda and Hart, 1973).

We attempt to clarify our idea of equating scenes with basic-level
objects on the example scene in figure 59a. Assume that one enters a
room scene as shown in figure 59a. With the first glance into the room
scene, one would categorize the object in the fovea, in this example the
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painting on the wall (figure 59b). The region (or 2D space) around the
painting is a characteristic region found with most paintings: they
tend to be isolated on the wall - for reason of aesthetics. The sur-
rounding, peripheral structure (shown in gray) has been perceived as
well with this first glance, but it has not been specifically categorized:
it merely represents typical structure that triggers - together with the
categorized object - the corresponding frame, in this case the frame
‘room scene’. Both, the categorized object and the peripheral struc-
ture, can be structurally variable. With this activated frame, much of
the peripheral structure can already be guessed, even if the contours
have not been completely extracted. For example the rectangle to the
left is likely to be a window, the structure on the right is likely to be
a standing lamp, the structure below is a desktop or table. If we had
only this first glance of a room scene, like in Thorpe’s experiment (sec-
tion 3.3), it would already suffice to determine a number of objects in
very short time.

Thus, scene categorization, or gist perception, would occur based
on the categorized object in focus and the structure in the periphery.
No detailed or sequential reconstruction would have occurred: it is
merely the typical scene pattern that has triggered a host of associa-
tions, a frame. In some sense, our idea is not far removed from the
Gestaltist’s idea that a scene is swallowed as a whole.

11.3 Scene Exploration

Following gist perception, the visual system begins to explore the
scene by choosing different spots in the image for further analysis
- it starts performing saccades to these spots. The selection of those
subsequent spots is possibly guided by the activated frame and this
guidance may be called hypothesis-driven or top-down control. But
there may also be bottom-up or also called stimulus-driven aspects
of the visual scene that guide the saccadic selection process. For
instance, Koch and Ullman have proposed that a saliency map exists
somewhere in a high visual area (Koch and Ullman, 1985) that collects
the most conspicuous spots of the visual image in a purely bottom-up
manner, which in turn are selected based on the degree of saliency.
Itti has modeled this idea using an interaction of orientations, colors
and blobs taken at different resolutional scales (Itti and Koch, 2000).
This pure stimulus-driven exploration may occur when there is no
particular motivation during scene exploration. On the other hand, if
a human searches for a specific object, then a visual search occurs,
which may be hypothesis-driven.

There may also be intermediate forms of those two extreme types
of scene exploration. What exactly happens during exploration is dif-
ficult to elucidate and is further complicated by the fact that there
are also attentional shifts between saccades. Let us assume that the
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Figure 59: Scene recognition. a. The room scene. b. The 1st glance
may land on the painting triggering the frame room scene and giving

the sensation of gist. c. The 2nd glance is part of a visual exploration
already.

selection of the next spot has taken place somehow and that the first
saccade brings the focus onto that specific spot (figure 59c). This sec-
ond glance may investigate the windows sills and may be already part
of a scene-exploratory process. Another part of the desktop and the
window is now in focus, as in the first glance already, but neither
object has been necessarily fully categorized, nor is their structure
verified: it could be an illusion! Thus, a scene would be explored us-
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ing only those loose and abstract perceptual category representations
we were hunting throughout the book (figure 2, left side; figure 61).

Even if one had seemingly much understood of the scene with these
two glances, there are still big Junks of it, that are not actually recog-
nized. We think that this is the reason why phenomena like change
blindness occur (Rensink, 2000; O’Regan et al., 1999): there is just
way to much detail in a scene that could be comprehended, even after
a long visual search (chapter 1). This point has already been made
by others in one or the other way, for example (O’Regan, 1992; Koch,
2004). But what we specifically would like to emphasize is that the
scene is understood with perceptual category representations that are
loose and abstract, and that this is the major cause for those observed
phenomena.

In summary, scene exploration is not so much about the system-
atic, stepwise recovery of its content, but is a process consisting pri-
marily of making rapid associations based on a small fraction of the
structure perceived in a scene. The first rapid association triggers a
frame, the gist perception, which in turn is the guidance for the sub-
sequent eye fixation causing another rapid association, and so on.

11.4 Engineering

How would one then approach the construction of a scene recognition
system? As we have tried to argue in the previous sections, recogniz-
ing a scene is like recognizing a basic-level object. Ergo, one has to
seek the neural substrate that is able to deal with structural variabil-
ity. In other words, it boils down to the construction of the basic-level
categorization process as we have pursued in the chapters presented
in this book. Once such a basic-level categorization process has been
constructed for the line-drawings in chapter 5 for example, then one
may test it on scenes like in figure 60. Although the ultimate goal is
certainly to have a system recognizing objects in gray-scale images,
tackling the structural variability in real-world scenes at once may
be just too overwhelming. It may therefore be sensible to develop a
system that is able to deal with a reduced variability as we did in
chapter 5. The room scenes in figure 60 are literally identical with
regard to scene content but contain structural variability that can
still not be dealt with in an elegant manner by any scene recogni-
tion system. Many representational issues can be explored with such
simple scenes, without dealing with the full-blown variability existent
in real-world scenes. We think that the translation of a line-drawing
analyzing system to a real-world (gray-scale) analyzing system could
then be systematically carried out.

One may not intend to wait until the categorization machinery has
been thoroughly constructed and one may already plan to develop a
search system that tries to find and identify simple shapes in scenes.
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Figure 60: Two similar room scenes (a and b). There is still no elegant
network that can deal with that type of variability.

Since we have a shape-recognition system that is capable of identify-
ing simple shapes (the CPFM system, chapter 10), one may test this
system on real scenes and gain possibly valuable experiences. For
instance, one could design a saliency process aiming at regions using
a crude form of the SAT that locates the center of shapes. The sys-
tem would determine simple structures by saccading to those center
points and by sequentially applying the CPFM system to identify the
shapes.

11.5 Recapitulation

Scenes have a very regular structure and the representations one has
about these scenes incorporate this regularity in some way. It there-
fore makes sense to treat scenes similar to basic-level objects: there
is a common structure amongst scenes of the same category and that
common structure - including its characteristic region of course - is
stored in some way; and when it is perceived, it triggers the sensation
of gist perception. Exploring a scene by saccades is making associ-
ations between perceived fragments of the scene; scene exploration
does not require detailed reconstruction. We have suggested that one
could begin building a crude scene-exploration system using a pro-
cess to find salient regions, like a modified SAT, and employing the
CPFM system to determine the shape of the regions.
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Our approach to the construction of a visual system focuses on an
implementation of the categorization process. The basic assumption
is that if an architecture can be developed that performs this process,
it will lead to an extension into scene recognition and to a refinement
required for recognition in low-resolution images (section 2.5).

12.1 The Quest for Efficient Representation and Evolve-
ment

The goal was and still is to find category representations for canonical
views, that are distinct and easily evolvable. These category repre-
sentations have to be loose in order to be able to deal with the struc-
tural variability existent across category instances (chapters 1 and
2). Structural variability can be classified into part-shape variability,
part-alignment variability and part redundancy (chapter 2, section
2.1). Because it is difficult to contrive such a loose representation
beforehand - or the architecture that evolves and bears such repre-
sentations -, we have approached our goal in an exploratory manner.
Figure 61 summarizes this quest, whereby the top two chair drawings
(a+b) represent two popular approaches to object description and the
bottom four chairs (in c) summarize the progress we have made.

The chair schematic in figure 61a caricatures the part-based ap-
proach in which an object is organized into its constituent parts. We
have not followed this type of representation, because it focuses on
object parts solely, which may not be able to deal with the structural
variability and because a part-based interpretation rather represents
an end-stage of cognition (chapter 2). The chair in figure 61b illus-
trates the neural network approach (‘NN’) in which in a first step the
object is dissected into its local orientations, and in a second step
these orientations are gradually integrated. We have not followed this
line of reconstruction either, because it is structurally to unspecific
(chapter 3). Our approach aims roughly at an intermediate level be-
tween these two descriptions: Similar to some of the neural network
approaches, we try to find a fast match between image and represen-
tation, but it should be structurally more specific, yet not as elabo-
rate as a part-based approach. The top left chair in figure 61c (la-
beled ‘space’) summarizes our computer vision studies of chapter 5.
In these studies we have identified region (or 2D space) as a crucial
component of representation: region encoding helps to bind contours
and to form distinct representations. The regions that were used as
features can be described as surface and silhouette regions. We then
translated the idea of encoding space into a neuromorphic language,
thereby using traveling waves as a means to sense space. Specifically,
we employed Blum’s symmetric-axis transform, that encodes regions
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Figure 61: Chair representations. Part-based reviewed in chapter

2. Neural network (‘NN’) reviewed in chapter 3. Representation with

space (chapter 5). Encoding space with the SAT (chapter 7). Repre-
sentation by waves (chapter 9). Representation and evolvement with
the CPFM system (chapter 10).

into sym-axes (top right chair in figure 61c, labeled ‘SAT’; chapter 7).
The traveling waves of our propagation maps have the characteristic
of sealing gaps of the extracted, fragmented contour image, and they
also smoothen out some of the structural variability. Finally, the bot-
tom left chair in figure 61c caricatures the ideas we have proposed
in chapter 9: we envisage that structure maybe represented as a set
of waves somehow, thereby possibly solving also position and size in-
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variance to some degree. A structure may trigger specific and dis-
tinct waves which are remembered by a neural substrate sensing the
emitted waves. The bottom right chair expresses the idea of contour-
propagation-field matching followed in chapter 10, which can be re-
garded as an instantiation of the ideas formulated in chapter 9. If
this mechanism can be extended to represent objects then it had the
potential to run completely ‘bottom-up’ and to run blazingly fast.

A melange of various mechanisms? After having tried out several
shape and object descriptions, invented a new one, discussed some
more and considered even mixtures between them, it dawns me that
there may not be a single method or mechanism for representing vi-
sual information. All the proposed mechanisms have their benefits
and drawbacks, see Palmer (1999) for an elaborate comparison of
some of them. However, we regard the encoding of space as a cru-
cial fundament of visual description. Mounted on top of that space-
encoding mechanism, could reign a structural description approach,
a classifier approach or maybe another step of space encoding. In our
studies we have sensed space with traveling waves. One alternative
possibility would be to carry out some sort of channel approach, al-
though an exact transform of that type is not desirable, because the
encoding should allow for categorization. That means it has to be able
to deal with structural variability. Another alternative maybe a sys-
tem as Deutsch proposed it (see section 3.5;(Deutsch, 1962)). But as
we just noted above, one may have also to consider that basic-level
categorization is simply not solvable with any single type of space en-
coding and structure representation, but can only be performed with
a mixture of several types. Evolution may have hacked together those
different types of mechanisms and representations.

Object, scene and texture all the same? We have primarily focused
on object recognition and have marginally touched the issue of scene
recognition. We proposed that objects and scenes may not be so dif-
ferent in their representation after all. One may take this a step fur-
ther and suggest that textures may also be described like objects and
scenes: by some sort of loose structure. Followers of the channel the-
ory have already proposed that there may be a single type of encoding,
but that approach has not generated any specific example of shape or
object description - and as argued above, we anticipate that the so-
lution to the problem maybe somewhat more elaborate than just a
single transformation. Although there may be several mechanisms at
work to represent structure, they may all serve to describe any type of
visual information, whether it is texture, object or scene.

Perception-Action An animal reacts to its visual percepts, and some-
times it does it as fast as it can (Bruce et al., 2003). Therefore, per-
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Figure 62: Linking the loose perceptual category representations di-
rectly to action. There is no particular need to reconstruct everything
during interaction with our environment. The loose representations
could be directly associated with ‘motor frames’.

ception is likely directly connected to action, meaning there is a direct
association. We think that not much has changed about that princi-
ple throughout evolution: even if the percepts are basic-level category
objects as in humans, and even if humans have the possibility to
respond in many more different ways to an object than simple ani-
mals. In our daily lives we rapidly and fluently carry out innumerous
perceptual decisions that lead to instantaneous actions. This swift-
ness could require a direct association between percepts and action.
We therefore envision that the perceptual category representations we
aim at, do directly trigger motor actions. For instance, if we see a chair
and intend to sit on it, this would trigger a motor frame loaded with
actions like ‘approach’, ‘turn yourself’, ‘bend knees’, and so on (figure
62). Or in response to seeing an apple, a motor frame is triggered with
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actions like ‘grab with fingers’,‘move to mouth’,‘bite’. Neither the chair,
nor the apple has to be structurally verified during visual recognition.
In short, perceptual category representations would directly trigger
motor frames. A structural verification would only seldomly occur be-
cause there may not be any particular need for it.

12.2 Contour Extraction and Grouping

To extract contours we have used a single neuronal layer with local
connections and adjustable spiking thresholds or spike latencies. The
resulting contour image looks like a contour image obtained with a
computer vision algorithm. The contour image is sufficient for en-
coding the regions which are necessary to perform a perceptual cat-
egorization. One may seek to improve the contour image by applying
perceptual grouping processes that are either purely computationally
motivated, as Marr did (Marr, 1982), or that are motivated by psy-
chophysical studies on contour grouping. There is a good amount of
psychophysical work that may be easily applicable for that purpose
(e.g. (Hess and Field, 1999; Bruce et al., 2003)). Such aspirations
should not however result in the pursuit of an immaculate contour
image. As we have already pointed out, there is enough region infor-
mation in the contour image as it is obtained with our retina circuits.
The long-term effort should be rather spent in finding efficient region
and category representations.

12.3 Neuroscientific Inspiration

Much of current computational neuroscience has focused on unrav-
eling the spike code that the brain maybe using (Dayan and Abbott,
2001; Gerstner and Kistler, 2002; Koch, 1999; Trappenberg, 2002).
Given the blazing speed with which the brain operates and given that
neurons fire at a low frequency (sections 3.2-3.4), it may well be that
the brain does not use a spike code at all. Because the computations
in this book are done with waves, the viewpoint that one therefore
may adopt is that spikes appear as part of a wave: a wave propagating
through the neuron, or a wave triggered by the neuron. With waves we
have solved tasks like contour detection, contour binding and speed
estimation, whereby the specifics of the implemented waves are vari-
able: To signal contours, the wave is a charge-propagation mecha-
nism; to encode space - or to bind contours -, the wave is an actively
propagating wave; to estimate speed, the wave is inert and responds
to preferred speeds only. For contour detection and speed estima-
tion, the wave does not have to be particularly fast, because both
tasks could possibly be performed within milliseconds. In contrast,
for region encoding of the SAT a wave needs to propagate rapidly. We
argued that fast waves may run through cortical areas (section 7.5).
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On the other hand, if the visual system used something like contour-
propagation fields, then a wave would not have to be as fast due to
the wide-spread representation of the shape. The idea that the brain
operates according to some broadcast receiver principle, is certainly
unusual too for contemporary computational neuroscience; but given
that we have solved some tasks in a relatively simple way with waves,
we can only encourage other neuroscientists to consider this viewpoint
as well.

The neuronal models we have used in our neuromorphic simu-
lations are merely integrate-and-fire neurons, which are embedded
into excitable maps (propagation maps). Their parameter values were
sometimes tuned to make the model operate as coincidence detectors
that sense when two waves collide (chapter 7). Again, this is not to
say that the neuron’s function can be reduced to this simple model.
The neuron’s anatomical and physiological diversity may well be the
cause for a variety of distinct wave propagation characteristics.

12.4 Neuromorphic Implementation

We have not presented any analog hardware implementation of our
envisioned wave-propagation mechanisms. But they are conceptually
simple enough to be implementable with the existing ‘silicon ingredi-
ents’, as for example the circuits presented in chapter 4, which mimic
synaptic responses, dendritic propagation and somatic spiking. The
wiring substrate, that would enable communication between maps,
also already exists: a multichip architecture - the silicon cortex - pro-
vides the ‘fluent’ communication between analog chips (section 4.5).
A first step towards a neural hardware realization of our networks
would be to build a wave-propagating map as presented in section
6.3, from which one would derive the various variants. It is this analog
hardware that allows for a time- and energy-efficient emulation of our
wave-propagating maps. The computation of such wave maps in digi-
tal computers is and will always be too slow or too energy-consuming.
It is therefore the neuromorphic hardware approach that offers the
best solution to our envisioned wave networks.

12.5 Future Approach

Short term One short-term goal is to refine some of the map sim-
ulations presented in this essay and I am currently in the process of
doing so. A next step would be to implement those maps. But even
if some of those proposed maps are implemented, it likely requires
another round of simulations to ensure that they properly operate in
the silicon cortex. This may not be only a minor technical issue, but
may also require extensive adjustment and tuning of the dynamics of
the respective maps. For example, the SAT architecture (figure 36) or
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the CPFM system (figure 51), seem straightforward at first, but may
bear some intricacies regarding the matching of the map dynamics.
Another short-term goal should therefore be the establishment of a
soft-ware simulation methodology that guarantees that the envisioned
architecture is also transferable into a silicon cortex system.

Long term The challenge of finding the loose basic-level category
representations is too vast, that one can give a detailed, meticulous
plan on how to proceed. But we have given two broad approaches
which may benefit from each other, or may be even converge. One ap-
proach was envisioned as the hybrid categorization system in which a
neuromorphic front-end extracts contours and encodes regions by the
SAT; a computer vision back-end would associate the generated sym-
axes (chapter 7). This system can be particularly useful for explor-
ing certain ‘high-level’ aspects; like the degree of looseness necessary
for representing the part-alignment variability and part redundancy.
After this looseness has been further characterized, the appropriate
networks can be designed. The existent scene recognition approaches
(section 2.3.4) may thereby be helpful in determining this looseness
- even though they do not exploit the idea of encoding space as we
have pursued it here. Thus, we regard the combined employment of
computer vision methods and neuromorphic methods as a possibly
fruitful approach to explore and develop the future architecture nec-
essary for recognition.

The second approach is the pursuit of a pure neuromorphic sys-
tem using the CPFM system as a basis (chapters 9 and 10). This
approach encodes the region completely as opposed to the SAT. The
system learns simple shapes in a single pass and recognizes them
even under noisy circumstances. If this network can be extended to
basic-level objects, may be with insight from the hybrid approach,
then that would be a formidable starting point for the construction of
a self-organizing neuromorphic visual system. The most reasonable
route would be to extend this system and to make it succeed on line-
drawing objects similar to the ones used in chapter 5; then one would
further refine the system and make it functioning with gray-scale im-
age input.

Thus, regarding the search for basic-level category representations,
the Odysee continues in some sense. But a significant part of it has
been completed by constructing networks that encode space. The re-
mainder of the Odysee is now rather a directed one, an exploration
towards associating regions somehow.
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Terminology

In the vision literature The vision literature (e.g. (Palmer, 1999))
uses a variety of expressions to circumscribe representations and
recognition processes, some of which are difficult to define or dis-
tinguish from each other. In figure 63 we attempt to organize and
clarify those expressions a bit: the left side shows an axis labeled with
‘elementary’ and ‘composite’ at the bottom and top respectively. Prob-
ably most vision researchers would categorize descriptions and rep-
resentations along such an axis and would assume that the object-
or scene-reconstruction process occurs along that axis somehow, for
example into one direction only, or along both directions at the same
time.

It is common to use terms like ‘features’, ‘regions’, ‘parts’, ‘objects’
and ‘scenes’ which may be ordered according to that axis. The term
‘structure’ is generally associated with structural description. Struc-
tural description is the representation format that describes an ob-
ject as made of well-specified elements. The term structure therefore
rather applies to parts, objects and scenes, which are often consid-
ered to be made of elementary features. The terms local and global
are tendentially used by neuroscientists and psychologists. The terms
refer to the size of the structure in the visual field and that idea leans
very much on the receptive field concept (see also figure 9). The terms
whole and part are primarily used by psychologists to describe the
composition of a structural description, which in some sense repre-
sents a nesting of the ‘russian puppets’, because there is always an-
other part on a more elementary level. The terms coarse and fine
describe the resolution of the visual image and those terms are not
to be confused with the terms global and local (see also (Oliva and
Schyns, 1997) for a clarification). On each level of resolution, a sepa-
rate local/global processing can take place. Both axes can be regarded
as partially aligned with the elementary/composite axis. Often, a hi-
erarchical organization is associated with most of the axes and thus
the terms bottom-up and top-down come along with it, expressing
the direction of information flow: higher levels of the hierarchy are
generally believed to contain more abstract information, lower areas
contain (or extract) simpler information.

Neuroscientists tend to think of representation and evolvement as
a local-to-global process (chapter 3). Psychologists are influenced by
neuroscientific insight, but also by purely computational reflections
like the global-to-local concept, which roots in Gestaltists ideas.

In our discourse We use some of the above terms to describe our
architectures and components of it, but we do not intend to promote
any specific terms, nor do we see any of those evolvement or repre-
sentation axes rigidly connected to our network. For example in the
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Figure 63: Expressions used in the vision literature to describe repre-
sentation and reconstruction. See also figure 9.

line-drawing studies with context (section 5.2) made in chapter 5, one
can regard a region, like a polygon feature with context analysis, as
an elementary feature, but which can extend across large parts of the
image, like the Z feature of a chair: hence that feature is of rather
global than local nature. Or the CPFM system described in chapter
9.5: the CPF is made of local orientations, but the propagation pro-
cess does not go along with any of those axes. The following specifies
a few terms:

Evolvement The process of unfolding. I prefer this term to describe
the reconstruction or recognition process, because it is less assum-
ing about its exact nature. (The term reconstruction rather implies a
systematic, step-wise recovery).

Perceptual Category Representation Category representations that
are loose, flexible and sloppy and that enable quick categorization
without detailed analysis. One can regard these representations as
the beginning of the evolvement process leading to ‘cognition’ for ex-
ample.

Region The inside and/or outside area of a shape. We refer to the
outside also as to the ‘silhouette’.

Shape Simple, two-dimensional form, whose contours can be closed
(connected) or open (unconnected).

Space Synonymous with region, two-dimensional region.
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Structure The usage of this term is commonly restricted to contour
description. We relax the term somewhat and include the space (or
region), for example like the polygon features used in chapter 5.

Template Largely fixed representation, which however may contain
a small degree of flexibility in order to deal with structural variability.

Visual Exploration The process of exploring a scene by saccades
without a specific motivation.

Visual Search Commonly used for visual exploration but we under-
stand it as a more goal-oriented search, for example trying to find an
object.
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