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Abstract— The concept of an artificial cognitive system 

uCepCortex is discussed that integrates multiple sources of 

information, including from specialized sensors and software 

agents in the cloud, and acts as an exocortex for human users. It 

combines a high degree of autonomy with sophisticated human 

interface techniques to ensure that the human is kept in the loop 

and exercises control, while greatly extending his/her effective 

cognitive range by off-loading processes to the cognitive system. 

The uCepCortex approach utilizes the emerging disciplines of 

Ubiquitous Complex Event Processing and Event-Driven Process 

Management to implement a human-inspired cognitive model 

that complements human abilities and can detect, correlate, 

filter, enrich, process and learn from millions of events per 

second from arbitrary event types, and that implements flexible 

(re-) actions or processes in rapidly changing scenarios. Finally 

we propose a mathematical model for a neuro-bio-ICT system, as 

an application of the theory of Memory Evolutive Systems and its 

handling of uCepCortex applications.  
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I. “ARTIFICIAL COGNITIVE SYSTEM” (ACS) 

A brainstorming on the definition of ACS was started in 
connection with the ICT Workprogramme of the European 
FP7, Call 9, Challenge 2.1 "Cognitive Systems and Robotics" 
[1]. Objective 2.1b specifically focusses on ACS. That is what 
we address with the uCepCortex approach.  

As there is no generally accepted definition of ACS, we 
define in the following an ACS as a system which (i) is 
artificially made by humans (ii) is designed to enhance the 
cognition or abilities of humans (iii) has one or more explicitly 
defined aims (iv) can recognize or even predict or foresee 
complex events (e.g. environmental situations, natural 
catastrophes, economical or political forecasts, health hazards) 
and (v) can react to such complex events as a self-contained 
autonomous system, or can notify affected humans and provide 
helpful advice to aid decision-making. 

II. MISSION OF THE UCEPCORTEX APPROACH 

The main idea of the uCepCortex project is to enhance 
human abilities by a complex cognitive system which adds and 
supplements senses and integrates the information of these 
senses for an optimal output, thereby overcoming the 
limitations of the human brain. Its typical limitations are:  

• the amount of events that can be processed at any one 
time: The human brain can only process around 
120.000 events per second unconsciously and less than 
ten consciously; 

• the number of event types we can consciously integrate 
at any one time: integrating of multiple information 
sources requires tracking, memorizing and retrieving 
of past, recent and current events;  

• the performance and scalability of the event processing 
and the correlation of apparently meaningless basic 
events to senseful complex events; 

• the sensitivity ranges (modalities) of the five senses 
what a human can hear, see, smell, taste and feel; 

• the degeneration of the number and the sensitivity of 
senses: loss or damage due to aging, illness or 
accident; the inability to substitute or to add additional 
senses. 

The evolution of the human brain and the human senses are 
responsible for how humans construct their reality and how 
they react to events – sensibly, or counterproductively, or even 
resulting in mental diseases. The “mechanisms” of the so far 
evolved brain seem to be well adapted to filter hundreds of 
thousands of events per second and to react only on those we 
must process consciously according to a specific situation, or 
automatically and unconsciously when our executive brain 
would work too slow – e.g. in the case of a danger or 
emergency or when a complex event pattern has already been 
processed in the past and must not be consciously processed 
again. These mechanisms have worked more or less efficiently 
and effectively for around 40.000 years. However, the 
accelerating complexity of human life, society, economics, 



communication and ready access to virtualized information 
requires the enhancement of human mental abilities, and of the 
much too slow cognitive-physiological evolutionary process. 
Therefore a cognitive system should not mimic the human 
brain in such a context, but should provide the missing 
components and capabilities as illustrated in [2]. 

The uCepCortex project develops an artificial cognitive 
system that integrates multiple sources of information, 
including from specialized sensors and agents in the cloud, 
providing an exocortex for humans. It combines a high degree 
of autonomy with sophisticated human interface techniques to 
ensure that the human is kept “in the loop” and exercises 
control, while greatly extending the effective cognitive range 
by off-loading processes to the cognitive system. 

The uCepCortex approach utilizes the emerging disciplines 
of Ubiquitous Complex Event Processing and Event-Driven 
Process Management to implement a cognitive model that 
complements human abilities and can detect, correlate, filter, 
enrich, process and learn from millions of events per second 
from arbitrary event types, and that implements flexible (re-) 
actions or processes in rapidly changing scenarios. 

It includes the development of low-cost smart sensors that 
may be either worn or distributed in the environment, including 
some extending senses beyond human abilities, and that 
implement cognitive processes including attention, collision 
avoidance, recognition, anomaly detection and detection of 
emotional cues, thus providing high-value information to the 
human users. These components of the exocortex use rapid, 
parallel and reconfigurable computational hardware (FPGA) to 
implement the artificial cognitive architecture. 

The uCepCortex cloud-based agents provide services for 
interaction with wider information systems, including 
interaction with other uCepCortex agents and social media, 
integrating this with sensory data. 

The exocortex includes rich information flow to the human, 
and limited control flow from the human, consistent with 
emerging interface technology. System to human interfacing 
includes rapid, high-bandwidth augmented sensory input via a 
belt device, and linguistic/visual feedback for symbolic 
information. Human to system control will include audio 
command and traditional input devices. 

The uCepCortex cognitive system is designed to 
complement human cognitive processes. We will investigate 
how the brain responds to exocortex interaction using emerging 
Mind Reading technologies as realized in brain-neural 
computer interfacing approaches (see website about future 
BNCI), and uCepCortex learning algorithms will support co-
adaptation of the exocortex and user. 

uCepCortex capabilities are generic and can ultimately be 
used to address a wide range of needs. We include two types of 
demonstrators exploring improved quality of life:  

Impaired subjects: For subjects with restricted sensory or 
cognitive ability, uCepCortex will provide compensatory 
capabilities including presence of other humans, recognition, 
social context and interpretation of non-verbal emotional cues. 

Emergency management: For subjects whose roles present 
high cognitive demand, uCepCortex will integrate a broad 
range of sensory and information inputs allowing real-time 
exploration and control of a complex, changing environment. 

Special work packages of the project, which cannot be 
covered in this paper and are subjects of dedicated submissions 
to specific conferences, deal with the definitions of 

• Deterministic [3] and non-deterministic reference 
models of uCepCortex applications [4] 

• a reference architecture based on an enhancement of 
the NEXOF-RA [5] 

• a standard Notification Event Architecture of Thought 
(NEAT) as a class diagram following the idea of 
NEAR [5] 

• a U-CEP modeling notation as a suggestion of a future 
OMG standard [4]. 

III. MULTI-LEVEL DYNAMIC COGNITIVE MODELING 

Mathematical modeling of cognitive processes is still an 
open challenge towards the long-term vision of understanding, 
simulating and interacting with the human brain. Studies in 
cognitive psychology suggest that a cognitive model should be 
considered at multiple levels [6], be aware of uncertainty [7], 
and allow for adaptation to changes in the surrounding 
environment [8]. In this context the lowest level of cognitive 
processing deals with multi-source sensory information from 
the environment, and propagates that information to the higher 
cognitive processing levels after abstraction. The higher 
cognitive processing levels enable representation of, and 
reasoning, between semantically expressible concepts, such as 
objects, properties, relations, actions and conditions. The 
uCepCortex concept accepts the challenge to investigate multi-
level cognitive modeling through a novel mathematical 
formalism that enables complex event processing in 
dynamically changing environments. System ubiquity, 
adaptability, autonomy, and interactivity between system 
components and between the system and the environment can 
be facilitated by a hardware/software multi-agent 
implementation featuring cloud/grid connectivity, efficient 
resource allocation and high throughput event processing 
capabilities [9]. 

A. Low-level cognitive modeling 

Low level cognitive modeling should consider 
mathematical representations of events from multiple 
sources/modalities, including sensors of visual and 
physiological signals. Signal filtering, feature extraction and 
feature fusion techniques, are considered as means to develop 
such representations through efficient machine learning 
approaches enabling identification of complex patterns, 
knowledge extraction and system personalization for different 
users. 

The uCepCortex concept includes a distributed cognitive 
system consisting of two types of components: smart sensors 
and cloud-based agents, integrated in a CEP architecture. To 
apply the CEP model, sensor input streams must first be 



processed to identify low-level (atomic) events. We identify an 
appropriate set of atomic events that: a) are semantically 
meaningful, conveying significant information in isolation or 
combination; b) can be derived efficiently from sensor input 
streams. The set of events include a variety of attributes, such 
as visual attributes; motion signals; detection, tracking and 
identification of objects of interest, e.g. humans, facial 
indicators correlated with their emotional state and objects in 
their environment that would enable inference about their 
activities or the context of their activities. In order to cope with 
the challenge of adaptation to real-world changing 
environments, noise tolerant, uncertainty-aware, feature 
representations that are invariant to environmental changes will 
be considered [10, 11, 12]. Further challenges arise considering 
the multitude of the available data sources and the respective 
feature representations, demanding effective and informative 
feature fusion methods that enable discriminative cross-feature 
space representations for machine learning [13, 14, 15]. The 
low-level event dictionary includes a mixture of generic, low-
level events that may be of widespread use; and more 
specialized events servicing particularly high-value needs e.g. 
detection of non-verbal cues from human interlocutors. The 
resulting event stream can be further processed by the 
uCepCortex distributed cognitive architecture and/or conveyed 
to the human user via a brain-computer interface. The sensor 
analysis includes attentional mechanisms, allowing a focus on 
salient parts of the signals, driven both bottom-up (i.e. by 
anomaly or significant pattern identification) and top-down (by 
attentional prompts from the user). Challenges regarding the 
machine learning methods to be investigated include: a) 
identification of complex event patterns corresponding to 
concepts, necessary for inference by the high-level cognitive 
models to be developed; b) extraction of knowledge about 
cognitive processes and the related concepts, enabling 
construction of high-level cognitive models; c) knowledge 
transfer between subjects and personalization of the system to 
be developed according to subject-specific characteristics. The 
efficiency of the machine learning methods in the context of 
low-level cognitive processing can be investigated from both 
an algorithmic and an implementation perspective. 

B. Higher-level cognitive modeling 

Higher-level cognitive tasks include reasoning and 
knowledge inference for decision making and complex system 
control in real-world conditions. Challenges include automatic 
or semi-automatic construction of cognitive models, self-
adaptation, integration of low-level cognitive processing 
methods and evolutionary optimization processes. Towards this 
direction we consider uncertainty modeling as a priority to 
develop robust approaches being able to cope with 
indeterminacy, imprecision and missing information.  

The theory of fuzzy sets provides a sound mathematical 
framework for uncertainty modeling that has proved its 
effectiveness in a variety of applications. Fuzzy knowledge-
based reasoning methods require that knowledge is represented 
in the form of rules between higher-level concepts [16]. 
Machine learning-based methods are considered for the 
development of hybrid approaches that enable dynamic 
adaptation of the fuzzy knowledge models to changing 

environments [17]. The fuzzy cognitive map (FCM) approach 
can be the basis for enhanced networks for dynamic knowledge 
representation [18]. An FCM is a fuzzy directed graph with 
causally interrelated nodes that correspond to the concepts 
involved in a knowledge domain. It is able to reason through an 
iterative algorithm updating the values of the graph nodes until 
a steady state is reached [19].  

Since the introduction of the original FCM model, several 
extensions have been proposed. In the context of uCepCortex, 
dynamic cognitive networks [18] could enable the definition of 
dynamic causal relationships, and a temporal concept can be 
exemplified by the timed automata-based FCMs [20] and a 
recent study on the temporal granularity of FCMs [21]. In [22] 
genetic algorithms have been considered for edge weight 
recalculation of the FCM, whereas the synergy of fuzzy 
modeling and evolutionary optimization has been highlighted 
for efficient design of FCMs in [23].  

Recently, the mathematical framework of intuitionistic 
fuzzy sets (IFSs) has been applied by members of our 
consortium for modeling uncertainty in the context of FCMs 
[24, 25]. An IFS [26] is a generalized fuzzy set whose elements 
are characterized by both a membership and a non-membership 
degree to that set. The non-membership may not necessarily be 
symmetric to the membership, whereas a formal definition of 
hesitancy is obtained as a function of both of these quantifiers. 
It has been shown that this modeling approach enables a better 
approximation of human thinking by considering hesitation as 
part of intuitionistic reasoning and uncertainty propagation 
through the steps of the reasoning process [25]. 

The uCepCortex concept involves novel mathematical 
approaches for uncertainty modeling based on generalized 
fuzzy sets, such as IFSs, in the context of hybrid, dynamic and 
adaptive systems that combine both knowledge-based and 
machine learning methods. The proposed approaches are 
generic, extending well beyond uCepCortex, to a variety of 
intelligent applications. 

IV. MATHEMATICAL MODELING APPROACH 

The uCepCortex approach contains also a mathematical 
model of complex multi-scale, multi-agent systems with U-
CEP, such as biological, cognitive or social systems, in view of 
enhancing their capabilities, performance and control. 
Traditional mathematical models are well adapted at a local 
level, but an integrative approach is required in multi-degree-
of-freedom systems with interactions backfiring between 
several levels and temporalities. The objective is to develop 
new models, based on recent mathematical domains (e.g., 
category theory), to understand the organizing principles of 
high level cognitive systems and how U-CEP affects their 
behavior, while suggesting ways to counteract the deficiencies 
and implement higher capabilities in an engineering sense. 

The Memory Evolutive Systems (MES) give such a model 
for multi-scale systems with a tangled hierarchy of components 
varying over time, self-organized by a network of internal 
agents with different rhythms, functions and logics, in which 
U-CEP plays an important role [28, 29]. A particular 
application of MES is the model MENS for a neuro-cognitive 
system. It singles out two characteristics of the human brain 



which have been proved essential for the emergence of high 
level cognitive processes and U-CEP: 

(i) Degeneracy: this is a kind of "flexible redundancy", 
defined as: "the ability of elements that are structurally 
different to perform the same function or yield the same output, 
[...] a ubiquitous biological property, […] it is a feature of 
complexity both necessary for, and an inevitable outcome of, 
natural selection" [30]. This property ensures robustness and 
flexibility, and allows for the emergence over time of cognitive 
processes of increasing complexity [28]. 

(ii) Existence of a Central Core with several hubs forming a 
"rich club", discovered in 2008: "existence of a structural core 
in human cerebral cortex […] both spatially and topologically 
central", "linked to self-referential processing and 
consciousness." [31]. This allows for the development of an 
'internal model' integrating knowledge of different modalities, 
and  is at the root of consciousness and anticipation [32]. 

Similar characteristics must be imposed when modeling 
high level cognitive systems, in particular neuro-bio-ICT 
systems. This can be explained using a general MES.  

The configuration of a MES at a time t is a category (= 
graph with a composition of successive arrows satisfying some 
associativity and identity axioms) [33]: its objects represent the 
states of the components at t, and the arrows (or links) are 
channels through which they can communicate. A link has a 
propagation delay and a force, and it is active or passive at t.  

The components are distributed in a finite number of levels 
so that the components of a given level are homogeneous 
between them, but more 'complex' than those of lower levels. 
Formally, a component C of level n+1 acts as the aggregate (or 
categorical "colimit" [33]) of a pattern P of linked lower level 
components, so that P, operating as a whole, and C, by itself, 
have the same functional role. 

The degeneracy property is translated into the following 
Multiplicity Principle (MP): there are multiform components C 
which admit several decompositions into structurally different 
and non well-interconnected patterns of lower levels, and C can 
operate through one or the other, and even switch between 
them depending on the context. MP gives flexibility and 
robustness to the system, and it is necessary for the emergence 
of components of higher complexity order (cf. [28]).  

The change of configuration from t to t' consists in events 
of the following kinds: addition, suppression or decomposition 
of some components, formation of complex components by 
binding or strengthening some pre-existing patterns. It is 
modeled by the complexification process [28] which explicitly 
describes the new configuration of the system after realization 
of a procedure with objectives of this sort. It is computable, for 
instance using topologically inspired languages such as MGS. 

The dynamic is modulated by the cooperation/competition 
between a net of internal co-regulators (CR); they operate with 
the help of a central dynamic memory, a sub-system whose 
multiform components represent knowledge of different 
modalities in a robust and flexible manner (thanks to MP).   

A CR is a functional sub-system which acts stepwise at its 
own rhythm. A step from t to t' consists of different phases: (i) 

Reception and analysis of the partial incoming information 
transmitted to CR through active links, leading to the formation 
of the landscape of CR at t (modeled by a category). (ii) 
Selection of an admissible procedure Pr with the help of the 
memory; the commands of Pr are sent to effectors. (iii) At the 
beginning t' of the next step, evaluation of the result. In the 
event the result is not adequate, there is a fracture for CR. 

One cause of fracture is the fact that each of the several co-
regulators operates with its own rhythm and local logic. As all 
their commands at a given time can be conflicting, an interplay 
among the co-regulators is necessary, leading to a kind of 
Darwinian selection among their commands, made flexible 
enough by the possibility of switches between different 
decompositions of the commands to select the most adapted 
ones. The interplay may pass over some commands, causing a 
fracture for the corresponding co-regulators. 

An important cause of fractures is non-respect of the 
synchronicity laws which relate the rhythm of a co-regulator to 
the propagation delays of the links and the stability spans of the 
components in its landscape. Fractures not repaired soon give 
de-synchronies, and can backfire through  levels, forcing a 
cascade of re-synchronisations to co-regulators of increasing 
levels, a process at the root of a Theory of Aging [28]. 

Over time, a MES develops a central core, called the 
Archetypal Core (AC), through the emergence of components 
of higher complexity order integrating knowledge of different 
modalities; these components become connected by strong 
links forming loops which self-preserve their activation for a 
long time. AC plays the role of an 'internal model' reflecting 
the identity of the system; it plays a central role in the 
dynamics, taking part of the diffusion and processing of 
information. Indeed, an unexpected event will activate part of 
AC; this activation diffuses through self-maintained archetypal 
loops, and then propagates to lower levels through 
decompositions; it leads to the formation of a global landscape 
GL in which U-CEP takes place, through two intermingled 
processes: (i) a retrospection process for "sensemaking" of the 
event and its possible causes; (ii) a prospection process for 
developing adequate strategies to deal with it. 

The construction of the model MENS for a neuro-cognitive 
system relies on a common process in brain dynamics: a 
cognitive event depends on the activation of more or less 
complex and distributed neuronal assemblies acting 
synchronously (Hebb). The level 0 of MENS models the neural 
system Neur (whose components are the neurons and the links 
the synaptic paths between them). The higher level components 
are conceptual objects, called category–neurons, which code 
information under the form of more or less distributed neuronal 
(hyper-) assemblies acting synchronously. MENS is obtained 
by successive complexifications of Neur, and its Archetypal 
Core AC is based on the structural core of the brain (i.e., its 
components have ramifications down to it). 

A Neuro-Bio-ICT system is obtained by connecting the 
brain to an uCepCortex. Its functioning will be modeled by a 
MES, called NBIS, constructed by the same process that leads 
from Neur to MENS: we construct a large system ENeur, 
containing Neur and the uCepCortex, as well as the links 
between them; NBIS will be obtained by successive 



complexifications of ENeur. The preceding results show that, 
for a good handling of U-CEP by NBIS, both the uCepCortex 
and the whole system ENeur must satisfy the above 
Degeneracy and Central Core properties. This imposes 
sufficiently strict conditions on them and on the links between 
the uCepCortex and Neur. The results obtained for MENS (in 
particular the role of AC in the construction of a global 
landscape where to handle U-CEP) can be transposed to NBIS.  

NBIS might allow the development of new methods to 
increase mental and learning capacities, and to cope with 
mental deficits and impairments due to neuro-degenerative 
pathologies, such as Alzheimer or Parkinson. In aging it could 
help monitoring dysfunctions, e.g. those leading to re-
synchronizations, and allow for preventive treatment.  

V.    CONCLUSIONS AND FUTURE WORK 

Mathematical approaches are essential when we must 
describe use cases on a higher and generalized abstraction 
level, which is the basis for a concrete realisation of 
applications in specific domains such as the bio-medical or 
socio-processes of our mentioned demonstrators. In this paper 
we concentrated on formal modelling aspects, focusing on the 
mathematical modelling approaches. Another formalism of the 
uCepCortex project is needed as a precondition to transform 
the models into an executable model. Future work will 
exemplify these mathematical approaches within our 
demonstrators, e.g. emergency management. Such applications 
could never work without such a basic foundation; they would 
be "hand-made" and tuned for a specific situation, or for a 
specifically anticipated range of circumstances, which is not a 
sufficiently adaptive approach to deal with the complexities of 
real world events. 
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