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Foreword 

The 13th International Conference on Human–Computer Interaction, HCI Interna-

tional 2009, was held in San Diego, California, USA, July 19–24, 2009, jointly with 

the Symposium on Human Interface (Japan) 2009, the 8th International Conference on 

Engineering Psychology and Cognitive Ergonomics, the 5th International Conference 

on Universal Access in Human–Computer Interaction, the Third International Confer-

ence on Virtual and Mixed Reality, the Third International Conference on Internation-

alization, Design and Global Development, the Third International Conference on 

Online Communities and Social Computing, the 5th International Conference on 

Augmented Cognition, the Second International Conference on Digital Human Model-

ing, and the First International Conference on Human Centered Design.   

A total of 4,348 individuals from academia, research institutes, industry and govern-

mental agencies from 73 countries submitted contributions, and 1,397 papers that were 

judged to be of high scientific quality were included in the program. These papers ad-

dress the latest research and development efforts and highlight the human aspects of the 

design and use of computing systems. The papers accepted for presentation thoroughly 

cover the entire field of human–computer interaction, addressing major advances in 

knowledge and effective use of computers in a variety of application areas. 

This volume, edited by Dylan Schmorrow, Ivy Estabrooke, and Marc Grootjen, 

contains papers in the thematic area of Augmented Cognition, addressing the follow-

ing major topics: 

• Understanding Human Cognition and Behavior in Complex Tasks and 

Environments  

• Cognitive Modeling, Perception, Emotion and Interaction  

• Cognitive Load and Performance  

• Electroencephalography and Brain Activity Measurement  

• Physiological Measuring  

• Augmented Cognition in Training and Education  

• Brain-Computer Interfaces  

• Rehabilitation and Cognitive Aids  

The remaining volumes of the HCI International 2009 proceedings are: 

• Volume 1, LNCS 5610, Human–Computer Interaction––New Trends (Part I), 

edited by Julie A. Jacko 

• Volume 2, LNCS 5611, Human–Computer Interaction––Novel Interaction 

Methods and Techniques (Part II), edited by Julie A. Jacko 

• Volume 3, LNCS 5612, Human–Computer Interaction––Ambient,  

Ubiquitous and Intelligent Interaction (Part III), edited by Julie A. Jacko 

• Volume 4, LNCS 5613, Human–Computer Interaction––Interacting in Vari-

ous Application Domains (Part IV), edited by Julie A. Jacko 



VI Foreword 

• Volume 5, LNCS 5614, Universal Access in Human–Computer  

Interaction––Addressing Diversity (Part I), edited by Constantine  

Stephanidis 

• Volume 6, LNCS 5615, Universal Access in Human–Computer  

Interaction––Intelligent and Ubiquitous Interaction Environments (Part II), 

edited by Constantine Stephanidis 

• Volume 7, LNCS 5616, Universal Access in Human–Computer  

Interaction––Applications and Services (Part III), edited by Constantine 

Stephanidis 

• Volume 8, LNCS 5617, Human Interface and the Management of  

Information––Designing Information Environments (Part I), edited by  

Michael J. Smith and Gavriel Salvendy 

• Volume 9, LNCS 5618, Human Interface and the Management of  

Information––Information and Interaction (Part II), edited by Gavriel 

Salvendy and Michael J. Smith 

• Volume 10, LNCS 5619, Human Centered Design, edited by Masaaki Kurosu 

• Volume 11, LNCS 5620, Digital Human Modeling, edited by Vincent G. Duffy 

• Volume 12, LNCS 5621, Online Communities and Social Computing, edited 

by A. Ant Ozok and Panayiotis Zaphiris 

• Volume 13, LNCS 5622, Virtual and Mixed Reality, edited by Randall 

Shumaker 

• Volume 14, LNCS 5623, Internationalization, Design and Global Develop-

ment, edited by Nuray Aykin 

• Volume 15, LNCS 5624, Ergonomics and Health Aspects of Work with 

Computers, edited by Ben-Tzion Karsh 

• Volume 17, LNAI 5639, Engineering Psychology and Cognitive Ergonomics, 

edited by Don Harris 

I would like to thank the Program Chairs and the members of the Program Boards 

of all thematic areas, listed below, for their contribution to the highest scientific 

quality and the overall success of HCI International 2009. 

Ergonomics and Health Aspects of Work with Computers 

Program Chair: Ben-Tzion Karsh 

Arne Aarås, Norway 

Pascale Carayon, USA 

Barbara G.F. Cohen, USA 

Wolfgang Friesdorf, Germany 

John Gosbee, USA 

Martin Helander, Singapore 

Ed Israelski, USA  

Waldemar Karwowski, USA 

Peter Kern, Germany 

Danuta Koradecka, Poland 

Kari Lindström, Finland 

Holger Luczak, Germany 

Aura C. Matias, Philippines 

Kyung (Ken) Park, Korea 

Michelle M. Robertson, USA 

Michelle L. Rogers, USA 

Steven L. Sauter, USA 

Dominique L. Scapin, France 

Naomi Swanson, USA 

Peter Vink, The Netherlands 

John Wilson, UK 

Teresa Zayas-Cabán, USA 
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Human Interface and the Management of Information 

Program Chair: Michael J. Smith 

Gunilla Bradley, Sweden 

Hans-Jörg Bullinger, Germany 

Alan Chan, Hong Kong 

Klaus-Peter Fähnrich, Germany 

Michitaka Hirose, Japan 

Jhilmil Jain, USA 

Yasufumi Kume, Japan 

Mark Lehto, USA 

Fiona Fui-Hoon Nah, USA 

Shogo Nishida, Japan 

Robert Proctor, USA  

Youngho Rhee, Korea 

Anxo Cereijo Roibás, UK 

Katsunori Shimohara, Japan 

Dieter Spath, Germany 

Tsutomu Tabe, Japan 

Alvaro D. Taveira, USA 

Kim-Phuong L. Vu, USA 

Tomio Watanabe, Japan 

Sakae Yamamoto, Japan 

Hidekazu Yoshikawa, Japan 

Li Zheng, P.R. China 

Bernhard Zimolong, Germany 

Human–Computer Interaction 

Program Chair: Julie A. Jacko 

Sebastiano Bagnara, Italy 

Sherry Y. Chen, UK 

Marvin J. Dainoff, USA 

Jianming Dong, USA 

John Eklund, Australia 

Xiaowen Fang, USA 

Ayse Gurses, USA 

Vicki L. Hanson, UK 

Sheue-Ling Hwang, Taiwan 

Wonil Hwang, Korea 

Yong Gu Ji, Korea 

Steven Landry, USA 

Gitte Lindgaard, Canada 

Chen Ling, USA 

Yan Liu, USA 

Chang S. Nam, USA 

Celestine A. Ntuen, USA 

Philippe Palanque, France 

P.L. Patrick Rau, P.R. China 

Ling Rothrock, USA 

Guangfeng Song, USA 

Steffen Staab, Germany 

Wan Chul Yoon, Korea 

Wenli Zhu, P.R. China 

Engineering Psychology and Cognitive Ergonomics 

Program Chair: Don Harris 

Guy A. Boy, USA 

John Huddlestone, UK 

Kenji Itoh, Japan 

Hung-Sying Jing, Taiwan 

Ron Laughery, USA 

Wen-Chin Li, Taiwan 

James T. Luxhøj, USA  

 

Nicolas Marmaras, Greece 

Sundaram Narayanan, USA 

Mark A. Neerincx, The Netherlands 

Jan M. Noyes, UK 

Kjell Ohlsson, Sweden 

Axel Schulte, Germany 

Sarah C. Sharples, UK 
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Neville A. Stanton, UK 

Xianghong Sun, P.R. China 

Andrew Thatcher, South Africa 

Matthew J.W. Thomas, Australia 

Mark Young, UK 

 

Universal Access in Human–Computer Interaction 

Program Chair: Constantine Stephanidis 

Julio Abascal, Spain 

Ray Adams, UK 

Elisabeth André, Germany 

Margherita Antona, Greece 

Chieko Asakawa, Japan 

Christian Bühler, Germany 

Noelle Carbonell, France 

Jerzy Charytonowicz, Poland 

Pier Luigi Emiliani, Italy 

Michael Fairhurst, UK 

Dimitris Grammenos, Greece 

Andreas Holzinger, Austria 

Arthur I. Karshmer, USA 

Simeon Keates, Denmark 

Georgios Kouroupetroglou, Greece 

Sri Kurniawan, USA 

Patrick M. Langdon, UK 

Seongil Lee, Korea 

Zhengjie Liu, P.R. China 

Klaus Miesenberger, Austria 

Helen Petrie, UK 

Michael Pieper, Germany 

Anthony Savidis, Greece 

Andrew Sears, USA 

Christian Stary, Austria 

Hirotada Ueda, Japan 

Jean Vanderdonckt, Belgium 

Gregg C. Vanderheiden, USA 

Gerhard Weber, Germany 

Harald Weber, Germany 

Toshiki Yamaoka, Japan 

Panayiotis Zaphiris, UK 

Virtual and Mixed Reality 

Program Chair: Randall Shumaker 

Pat Banerjee, USA 

Mark Billinghurst, New Zealand 

Charles E. Hughes, USA 

David Kaber, USA 

Hirokazu Kato, Japan 

Robert S. Kennedy, USA 

Young J. Kim, Korea 

Ben Lawson, USA 

Gordon M. Mair, UK 

Miguel A. Otaduy, Switzerland 

David Pratt, UK 
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Dieter Schmalstieg, Austria 

Dylan Schmorrow, USA 

Mark Wiederhold, USA 

Internationalization, Design and Global Development 

Program Chair: Nuray Aykin 

Michael L. Best, USA 

Ram Bishu, USA 

Alan Chan, Hong Kong 

Andy M. Dearden, UK 

Susan M. Dray, USA 

Vanessa Evers, The Netherlands 

Paul Fu, USA 
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Online Communities and Social Computing 
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Chadia N. Abras, USA 

Chee Siang Ang, UK 

Amy Bruckman, USA 

Peter Day, UK 

Fiorella De Cindio, Italy 

Michael Gurstein, Canada 

Tom Horan, USA 

Anita Komlodi, USA 

Piet A.M. Kommers, The Netherlands 

Jonathan Lazar, USA 

Stefanie Lindstaedt, Austria 

Gabriele Meiselwitz, USA 

Hideyuki Nakanishi, Japan 

Anthony F. Norcio, USA 

Jennifer Preece, USA 

Elaine M. Raybourn, USA 

Douglas Schuler, USA 

Gilson Schwartz, Brazil 

Sergei Stafeev, Russia 

Charalambos Vrasidas, Cyprus 

Cheng-Yen Wang, Taiwan 
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Andy Bellenkes, USA 

Andrew Belyavin, UK 

Joseph Cohn, USA 

Martha E. Crosby, USA 

Tjerk de Greef, The Netherlands 

Blair Dickson, UK 

Traci Downs, USA 

Julie Drexler, USA 

Ivy Estabrooke, USA 

Cali Fidopiastis, USA 

Chris Forsythe, USA 

Wai Tat Fu, USA 

Henry Girolamo, USA 

Marc Grootjen, The Netherlands 

Taro Kanno, Japan 

Wilhelm E. Kincses, Germany 

David Kobus, USA 

Santosh Mathan, USA 

Rob Matthews, Australia 

Dennis McBride, USA 

Robert McCann, USA 

Jeff Morrison, USA 

Eric Muth, USA 

Mark A. Neerincx, The Netherlands 

Denise Nicholson, USA 

Glenn Osga, USA 



X Foreword 

Dennis Proffitt, USA 

Leah Reeves, USA 

Mike Russo, USA 

Kay Stanney, USA 

Roy Stripling, USA 

Mike Swetnam, USA 

Rob Taylor, UK 

Maria L. Thomas, USA 

Peter-Paul van Maanen, The Netherlands 

Karl van Orden, USA 

Roman Vilimek, Germany 

Glenn Wilson, USA 

Thorsten Zander, Germany 

Digital Human Modeling 

Program Chair: Vincent G. Duffy 

Karim Abdel-Malek, USA 

Thomas J. Armstrong, USA 

Norm Badler, USA 

Kathryn Cormican, Ireland 

Afzal Godil, USA 

Ravindra Goonetilleke, Hong Kong 

Anand Gramopadhye, USA 

Sung H. Han, Korea 

Lars Hanson, Sweden 

Pheng Ann Heng, Hong Kong 

Tianzi Jiang, P.R. China 

Kang Li, USA 

Zhizhong Li, P.R. China 

Timo J. Määttä, Finland 

Woojin Park, USA 

Matthew Parkinson, USA 

Jim Potvin, Canada 

Rajesh Subramanian, USA 

Xuguang Wang, France 

John F. Wiechel, USA 

Jingzhou (James) Yang, USA 

Xiu-gan Yuan, P.R. China 

Human Centered Design 

Program Chair: Masaaki Kurosu 

Gerhard Fischer, USA 

Tom Gross, Germany 

Naotake Hirasawa, Japan 

Yasuhiro Horibe, Japan 

Minna Isomursu, Finland 

Mitsuhiko Karashima, Japan 

Tadashi Kobayashi, Japan 

Kun-Pyo Lee, Korea 

Loïc Martínez-Normand, Spain 

Dominique L. Scapin, France 

Haruhiko Urokohara, Japan 

Gerrit C. van der Veer, The Netherlands 

Kazuhiko Yamazaki, Japan 

 

 
In addition to the members of the Program Boards above, I also wish to thank the 

following volunteer external reviewers: Gavin Lew from the USA, Daniel Su from the 
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I would also like to thank for their contribution toward the organization of the HCI 

International 2009 conference the members of the Human–Computer Interaction 

Laboratory of ICS-FORTH, and in particular Margherita Antona, George Paparoulis, 

Maria Pitsoulaki, Stavroula Ntoa, and Maria Bouhli. 
 

 

 Constantine Stephanidis 

 



 

HCI International 2011 

 

The 14th International Conference on Human–Computer Interaction, HCI Interna-

tional 2011, will be held jointly with the affiliated conferences in the summer of 2011. 

It will cover a broad spectrum of themes related to human–computer interaction, in-

cluding theoretical issues, methods, tools, processes and case studies in HCI design, as 

well as novel interaction techniques, interfaces and applications. The proceedings will 

be published by Springer. More information about the topics, as well as the venue and 

dates of the conference, will be announced through the HCI International Conference 

series website: http://www.hci-international.org/ 

 

 

General Chair  

Professor Constantine Stephanidis 

University of Crete and ICS-FORTH 

Heraklion, Crete, Greece 

Email: cs@ics.forth.gr  
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Abstract. Human task performance may vary depending on the characteristics 

of the human, the task and the environment over time. To ensure high effective-

ness and efficiency of the execution of tasks, automated personal assistance 

may be provided to task performers. A personal assistant agent may constantly 

monitor the human’s state and task execution, analyse the state of the human 

and task, and intervene when a problem is detected. This paper proposes a ge-

neric design for a Personal Assistant agent model which can be deployed in a 

variety of domains. Application of the Personal Assistant model is illustrated by 

a case study from the naval domain. 

1   Introduction 

Human task performance can degrade over time when demanding tasks are being per-

formed. Such degradation can for instance be caused by available resources being 

exceeded [1]. Furthermore, the effectiveness and efficiency of the task execution are 

often dependent on the capabilities, experience, and condition of the actor performing 

the task. Different actors may require different degrees of assistance and various re-

sources for the task execution. High effectiveness and efficiency levels are of particu-

lar importance for critical tasks. Furthermore, as a longer term aim, the human should 

remain healthy during the processes of task execution. To overcome the limitations of 

human cognition (e.g. in attention span, working memory and problem solving), the 

term augmented cognition (AugCog) has been proposed, which can be defined as a 

research field that aims at supporting humans by development of computational sys-

tems that ‘extend’ their cognition [2].  

As examples of AugCog, intelligent personal assistants exist that support humans 

during the execution of tasks (see e.g. [3], [4]). Such personal assistants usually in-

clude models that represent the state of the human and his or her tasks at particular 

time points, which can be utilized to determine when intervention is needed. An ex-

ample of such a model addresses the cognitive load of the human (see e.g. [5]). The 

considered aspect of human behaviour and of the execution of tasks is unique. The 

existing models proposed for personal assistants focus on a certain domain and hence 
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are not generic. This paper presents a generic design for a Personal Assistant agent 

model. The Personal Assistant can use specific dynamical models to monitor and ana-

lyse the current processes of the human. Specific sensors measure the human’s psy-

chophysiological state (e.g., heart rate) and the state of the environment (e.g., noise) 

to detect a possible problem and to test hypotheses. If needed, intervention actions are 

selected for the specific state, domain and task. 

The paper is organized as follows. The generic model for a Personal Assistant 

agent which performs monitoring and guidance is described in Section 2. A scenario 

realised in a prototype implementation is described in Section 3. The multi-agent con-

text for the Personal Assistant agent is described in Section 4. Finally, Section 5 con-

cludes the paper. 

2   The Generic Personal Assistant Agent Model 

The personal assistant agent (PA) supports a human during the execution of a task. A 

personal assistant’s main function is monitoring and guidance of the human to whom it 

is related. Personal assistants also interact with the physical world by performing ob-

servations (e.g., of the human’s actions and their effects).The agent model for PA was 

designed based on the component-based Generic Agent Model (GAM) presented in 

[6]. Within the Generic Agent Model the component World Interaction Management 

takes care of interaction with the world, the component Agent Interaction Management 

takes care of communication with other agents. Moreover, the component Maintenance 

of World Information maintains information about the world, and the component Main-

tenance of Agent Information maintains information about other agents. The compo-

nent Own Process Control initiates and coordinates the internal agent processes. In the 

component Agent Specific Task, domain-specific tasks were modelled, in particular 

monitoring and guidance. At the highest abstraction level the component consists of 5 

subcomponents: Coordination, Monitoring, Analysis, Plan Determination, and Plan 

Execution Preparation. 

2.1   Coordination  

The initial inputs for the process are the goals provided from PA’s Own Process Con-

trol component, which are refined within the Coordination component into more spe-

cific criteria that should hold for the human’s functioning (e.g., 80% of certain objects 

on a radar screen should be identified within 30 seconds). Note that goal refinement 

may also occur after the initialization phase based on the results of particular observa-

tions. For example, based on the acceptance observation of a task by the human, the 

criteria for particular task execution states may be generated from task-related goals. 

More specifically, for the Personal Assistant agent a set of prioritized general goals is 

defined, which it strives to achieve. Some of these goals are related to the quality of 

the task execution, others concern the human’s well-being (see Table 1). Goals of two 

types are distinguished:  

(1) achievement goals (e.g., goals 1-3 in Table 3) that express that some state is re-

quired to be achieved at (or until) some time point, specified by  

has_goal(agent, achieve(state, time)) 
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(2) maintenance goals (e.g., goals 4-7 in Table 3) that express that some state is re-

quired to be maintained during a time interval specified by  
 

has_goal(agent, maintain(state, begin_time, end_time))  
 

A role description may contain role-specific goals that are added to general goals.  

Although refinement may be defined for some general goals of the personal assis-

tant agent, most of them remain rather abstract. Using the information about the hu-

man and the assigned tasks, some goals of the personal assistant agent may be refined 

and instantiated into more specific, operational goals. This is done by the Own Proc-

ess Control component of the personal assistant agent. For example, one of the sub-

goals of goal 7 (‘It is required to maintain a satisfactory health condition’) expresses 

‘It is required to maintain the human’s heart rate within the acceptable range’. Based 

on the available information about the physical characteristics of the human (e.g., the 

acceptable heart rate range is 80-100 beats per minute), this goal may be instantiated 

as ‘It is required to maintain the human’s heart rate 80-100 beats per minute’. Also 

the task-related generic goals can be refined into more specific goals related to the 

particular tasks from the provided package (e.g., ‘It is required to achieve the timely 

execution of the task repair sensor TX324’). New goals resulting from refinement and 

instantiation are provided by the Own Process Control component to the Agent  

Specific Task component of the Personal Assistant agent, which is responsible for 

checking if the generated goals are satisfied. The criteria are fed to the Monitoring 

component, which is discussed below. 

Table 1. General goals defined for the Personal Assistant agent 

# Goal 
1 It is required to achieve the timely task execution 

2 It is required to achieve a high degree of effectiveness and efficiency of the task execution 

3 It is required to achieve a high degree of safety of the task execution  

4 It is required to maintain the compliance to a workflow for an assigned task 

5 It is required to maintain an acceptable level of experienced pressure during the task execution 

6 It is required to maintain the human’s health condition appropriate for the task execution 

7 It is required to maintain a satisfactory health condition of the human  

2.2   Monitoring  

Within the Monitoring component, it is determined what kinds of observation foci 

are needed to be able to verify whether the criteria hold. In the object identification 

example, this could be “identification” (i.e. the event that the human identified an 

object).  

The identified observation foci are translated into a number of concrete sensors be-

ing activated. As a form of refinement it is determined how specific information of a 

desired type can be obtained. For this a hierarchy of information types and types of 

sensors is used, as is information about the availability of sensors. For example, if the 

observation focus “identification” is established, the monitoring component could 

refine this into two more specific observation foci “start identification” and “stop 

identification”. For the first observation an eye tracker could be turned on, while the 

second could be observed by looking at the events generated by a specific software 
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component. Finally, Monitoring combines the detailed observations and reports the 

higher-level observation to Analysis.   

2.3   Analysis 

If the Analysis component infers (based on a conflict between the criteria and the ob-

servations) that there is a problem, it aims to find a cause of the problem. Based on an 

appropriate dynamic model, hypotheses about the causes are generated using forward 

and backward reasoning methods (cf. [7]). First, temporal backward reasoning rules 

are used to derive a possible hypothesis regarding the cause of the problem: 
 

if   problem(at(S:STATE, I1:integers), pos)   
then  derivable_backward_state(at(S:STATE, I1:integers)); 

if   leads_to_after(M:MODEL, S1:STATE, S2:STATE, I2:integers,pos) 
   and  derivable_backward_state(at(S2:STATE, I1:integers))  and I3:integers = I1:integers - I2:integers 
then  derivable_backward_state(at(S1:STATE, I3:integers)); 

if     intermediate_state(S:STATE)   and derivable_backward_state(at(S:STATE, I:integers)) 
then  possible_hypothesis(at(S:STATE, I:integers)) 
 

Hereby, the first rule indicates that in case a problem is detected (a state S holding 

at a particular time point I1), then this is a derivable backward state. The second rule 

states that if a causal rule specifies that from state S1 state S2 can be derived after 

duration I2 with a specific model (represented via the leads_to_after predicate), and the 

state S2 has been marked as a derivable backward state (at I1), then S1 is also a deriv-

able backward state, which holds at I1 – I2. Finally, if something is a derivable back-

ward state, and it is an internal state (which are the ones used as causes of problems), 

then this state is a possible hypothesis. Using such abductive reasoning of course does 

not guarantee that such hypotheses are correct (e.g. it might also be possible to derive 

J from another state). Therefore, the analysis component assumes one hypothesis 

(based upon certain heuristic knowledge, see e.g. [7]) and starts to reason forwards to 

derive the consequences of the hypothesis (i.e. the expected observations): 
 

if       possible_hypothesis(at(S:STATE, I:integers)) 
then  derivable_forward_state_from(at(S:STATE, I:integers), at(S:STATE, I:integers)); 

if        leads_to_after(M:MODEL, S1:STATE, S2:STATE, I1:integers, pos) 
   and   derivable_forward_state_from(at(S1:STATE, I2:integers),at(S3:STATE, I3:integers)) 
   and  I4:integers = I2:integers + I1:integers 
then derivable_forward_state_from(at(S2:STATE, I4:integers), at(S3:STATE, I3:integers)); 

if       observable_state(S1:STATE) 
   and  derivable_forward_state_from(at(S1:STATE, I1:integers), at(S2:STATE, I2:integers)) 
then  predicted_for(at(S1:STATE, I1:integers), at(S2:STATE, I2:integers)); 
 

The predictions are verified by a request from the Monitoring component to per-

form these observations. For example, if a hypothesis based on a cognitive model is 

that the undesired function is caused by an experienced pressure that is too high, then 

the observation focus will be set on the heart rate. The monitoring component selects 

the sensors to measure this. After these observation results come in, the selected hy-

pothesis can be rejected in case the observations do not match the predicted observa-

tions. An example rule thereof is specified below: 
 

if       observation_result(at(S1:STATE, I1:integers), neg)   
   and  selected_hypothesis(at(S2:STATE, I2:integers)) 
   and  predicted_for(at(S1:STATE, I1:integers), at(S2:STATE, I2:integers)) 
then  to_be_rejected(S2:STATE); 
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Eventually, this leads to the identification of one or more specific causes of the 

problems, which are communicated to Plan Determination.  

2.4   Plan Determination  

Within Plan Determination, based on the identified causes of undesired functioning, 

plans are determined to remedy these causes. This makes use of causal relations be-

tween aspects in a dynamic model that can be affected and the (internal) states identi-

fied as causes of the undesired functioning. Hereby, backward reasoning methods (as 

explained for the Analysis component) are used. These use the specific cause of the 

problem as input, and derive what actions would remedy this cause. To decide which 

actions are best, the Plan Determination component also uses knowledge about the 

compatibility of solutions, their effectiveness and their side effects. See [7] for more a 

detailed overview of possible selection strategies. In the example, this component 

could conclude that the “noise level” should be reduced to lower the experienced pres-

sure. The analysis component monitors the effectiveness of this measure. If it does not 

solve the problem, or causes undesired side effects, this will be considered as a new 

problem, which will be handled through the same process. 

2.5   Plan Execution Preparation  

Finally, within Plan Execution Preparation the plan is refined by relating it more spe-

cifically to certain actions that have to be executed at certain time points. For exam-

ple, reducing the noise level could be achieved by reducing the power of an engine, or 

closing a door. 

3   An Example Scenario  

A prototype of the system has been implemented in the modelling and prototyping 

environment for the component-based agent design method DESIRE [8]. This proto-

type has been used to evaluate the model for a specific scenario as specified by do-

main experts of the Royal Netherlands Navy. The scenario concerns the mechanic 

Dave, who works on a ship of the Navy: 
 

Dave just started his shift when he got an alarm that he had to do a regular check in the 

machine room; he accepted the alarm and walked towards the room. There he heard a 

strange sound and went to sit down to find the solution. However, he could not immediately 

identify the problem. At the same time, Dave received a critical alarm on his PDA: the 

close-in weapon system (CIWS) of the ship was broken. He immediately accepted the 

alarm, however continued to work on the engine problem, resulting in the more critical task 

to fix the close-in weapon system not being performed according to schedule. 
 

To apply the approach presented in this paper for this scenario, a number of models 

have been specified. First of all, the workflow models for the two tasks from the  

mechanic’s task package have been specified. For the sake of brevity, these models 

are not shown, but specified in [9]. Furthermore, a cognitive model concerning the 

experienced pressure is specified, which is shown in Figure 1. Hereby, the nodes indi-

cate states and the arrows represent causal relationships between these states. 
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Fig. 1. Simplified cognitive model for experienced task pressure 

In the agent model, relations between the states have been represented using the 

leads_to_after predicate, specified by means of four parameters: the model name, a condi-

tion state, a consequence state, and a delay between the two. For instance, the relation 

leads_to_after(cogn1, and(normal_exp_pressure, normal_vitality), high_perf_quality, 1) 

indicates that a normal experienced pressure combined with normal vitality leads to a 

high performance quality of the task in one step. 

The presented scenario has been simulated within the prototype of the proposed ar-

chitecture. Below, a brief overview of the steps the system takes is presented. When 

the system is started, the mechanic’s task package that comprises two task types main-

tain_engine and solve_ciws_problem is provided to Own Process Control of PA. The me-

chanic is characterized by the default profile with standard characteristics (e.g., the 

heart rate range is 60-100 beats per minute). Furthermore, a set of generic goals pro-

vided to Own Process Control is defined to achieve timely task execution for each 

task, and to maintain a good health for the human it supports. The goal related to the 

mechanic’s health is further refined stating that the experienced pressure and the vital-

ity should remain normal: 
 

own_characteristic(has_goal(PA, achieve(ontime_task_execution, -1)) 
own_characteristic(has_goal(PA, maintain(good_health_condition, 0, -1))) 
own_characteristic(has_goal(PA, maintain(normal_exp_pressure, 0, -1))) 
own_characteristic(has_goal(PA , maintain(normal_vitality, 0, -1))) 

 

Here, ‘-1’ indicates infinite time. Based on the goals related to the mechanic’s 

health condition, the query for a cognitive model with the value normal_exp_pressure of 

the parameter states is generated and communicated by Own Process Control to MMA. 

As a result of this query, the model annotated by the corresponding parameters is in-

deed retrieved from MMA, and stored within the component MAI within PA: 
 

maintenance of agent information (PA) 

input: belief(leads_to_after(cogn1, and(normal_exp_pressure, normal_vitality), high_perf_quality, 1), pos)    
 etc. 
output:  see input 

 

The workflow models for the assigned tasks are extracted from MMA in a similar 

manner. 

Eventually, the models and the goals are also received by the Coordination com-

ponent in Agent Specific Task. Based on this input Coordination generates specific 

criteria. In particular, based on the goals to maintain normal_exp_pressure and nor-

mal_vitality, the criteria to maintain the medium heart rate and the high performance 

quality are generated using the cognitive model. The generated criteria are provided to 
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the Monitoring component, which sets the observation foci corresponding for these 

criteria.  

After this has all been done, a new assignment of a task is received from the World 

component, namely that a task of type maintain_engine has been assigned to the me-

chanic: 
 

physical world  

input:  -   
output:  observation_result(at(assigned_task_at(maintain_engine, 3), 3), pos)) 

 

Based on this information Coordination generates new criteria using the workflow 

model corresponding to the task. Most of these criteria establish the time points at 

which the execution states from the workflow should hold, for example:  
 

achieve(walk_to_engine, 4) 
 

These criteria are again sent to the Monitoring component within Agent Specific 

Task. Therefore, the component sets the observation foci to the states within the work-

flow. If no goal violation is detected, no actions are undertaken by the agent. After a 

while however, a new task is assigned, namely the task to fix the close-in weapon 

system (of type solve_ciws_problem), which is outputted by the world: 
 

observation_result(at(assigned_task_at(solve_ciws_problem, 23), 23), pos)) 
 

Again, the appropriate criteria are derived based on the corresponding workflow 

model. The Monitoring component continuously observes whether the criteria are 

being violated, and at time point 66 (when the mechanic should walk to the close-in 

weapon system) it observes that this is not the case. Therefore, a criterion violation is 

derived by the Monitoring component. 

monitoring (AST - PA) 

input:  observation_result(at(walk_to_ciws, 66), neg);  etc.    
output:  criterion_violation(walk_to_ciws)   etc. 

 

This criterion violation is received by the component Analysis, which is triggered 

to start analysing why the mechanic did not perform the task in a timely fashion. This 

analysis is performed using the cognitive model. The first hypothesis which is gener-

ated is that the cause is that the experienced pressure is normal, but the vitality ab-

normal. The Analysis component derives that a low heart rate must be observed to 

confirm this hypothesis (an observation that is not available yet): 

analysis (AST - PA) 

input:    observation_result(at(walk_to_ciws, 66), neg);    
 criterion_violation(walk_to_ciws) 
output:   selected_hypothesis(at(and(normal_exp_pressure, abnormal_vitality), 65);   
 to_be_observed(low_heart_rate)) 

Since the heart rate is not observed to be low, but high, the Analysis component  

selects another hypothesis that is confirmed by the observation results that are now 

present (after the heart rate has been received). The resulting hypothesis is abnormal 

experienced pressure, and normal vitality. This hypothesis is passed on to the Plan 

Determination component within Agent Specific Task of the PA agent. Agent Specific 

Task derives that the task level should be adjusted: 

plan determination (AST - PA) 

input:  selected_hypothesis(at(and(abnormal_exp_pressure, normal_vitality), 65) 
output:  to_be_adjusted(abnormal_task_level) 
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To achieve this adjustment, the mechanic is informed that the maintenance task is 

not so important, and that the mechanic should focus on the close-in weapon system 

task. This eventually results in a normal task level of the mechanic. 

4   The Multi-agent Context for the Personal Assistant Agent 

The Personal Assistant agent PA functions within the context of a multi-agent system 

consisting of different types of agents. In addition to the Personal Assistant itself the 

following agents are involved; models for all of them were designed based on the 

component-based Generic Agent Model (GAM) presented in [6]. The Model Mainte-

nance Agent (MMA) contains a library of four types of models: monitoring and guid-

ance models, cognitive models, workflow models and dialogue models. Models can 

be provided to PA upon request; to facilitate this process, each model is annotated 

with specific parameters. The State Maintenance Agent (SMA) maintains characteris-

tics, states and histories of other agents, of the physical world and of the workflows. 

Information can be requested by the PA’s, using a specific element (i.e. agent, physi-

cal world, a workflow), an aspect (i.e. state, history) and a time interval for which 

information should be provided. In addition, the Mental Operations Agent (MOA) 

represents the mental part of the human. MOA is connected to the human’s physical 

body, which can act in the physical worlds. The Task Execution Support Agent 

(TESA) is used by the human as an (active) tool during the execution of a task.  

For each human that needs to be supported during the task execution a Personal 

Assistant agent is created. Initially, the Personal Assistant agent contains generic 

components only. The configuration of it is performed based on the role that needs to 

be supported by the agent, on the characteristics of a human who is assigned to this 

role, and on the goals defined for the Personal Assistant agent.  

The configuration of the self-maintaining personal assistant agent begins with the 

identification of the suitable monitoring and guidance task model(s) that need(s) to be 

requested from the model maintenance agent. To this end, the model parameters are 

identified by the Own Process Control component based on the goals of the personal 

assistant agent. For example, to establish if the human complies with a workflow 

model, diagnosis of the human’s state may need to be performed. Thus, a query to the 

model maintenance agent is given which includes the parameter type of analysis with 

value diagnosis. When a query is specified, the function model_query(query_id, param, 

list_of_values) is used, where the first argument indicates a query identifier, the second 

argument indicates a parameter and the third argument indicates a list of parameter 

values.  

The choice of cognitive models is guided by the goals that concern internal states 

of the human. From the goals in Table 1 and their refinements and instantiations, a 

number of internal states can be identified, among which experienced pressure and heart 

rate. For such states and for each task the appropriate cognitive, workflow and dia-

logue models are extracted from the model maintenance agent. By matching queries 

received from the personal assistant agent with the annotations of the maintained 

models, the model maintenance agent identifies the most suitable model(s), which is 

(are) communicated to the requestor. The provided models are stored in the Mainte-

nance of Agent Information component of the personal assistant. 
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More details about the multi-agent context of the personal assistant agent can be 

found in [10]. 

5   Conclusions  

In every organisation a set of critical tasks exists that greatly influence the satisfaction 

of important organisational goals. Thus, it is required to ensure effective and efficient 

execution of such tasks. To this end, automated personalized assistance for the task 

performers may be used. In this paper, a generic agent model for personal support 

during task execution has been proposed. This agent model allows the use of dynami-

cal models and information about the assigned goals and tasks. The personal assistant 

agent performs monitoring and analysis of the behaviour of the supported human in 

his/her environment. In case a known problem is detected, the agent tries to identify 

and execute an appropriate repair action. The fact that the architecture is generic dif-

ferentiates the approach from other personal assistants such as presented in [5; 6]. 

Besides being generic, the proposed personal assistant agent has an advantage of be-

ing relatively lightweight, as it only maintains and processes those models that are 

actually needed for the performance of the tasks. It can therefore run upon for in-

stance a PDA or cell phone. To provide the required functionality for personal assis-

tant agents, the multi-agent context in which it functions includes model maintenance 

and state maintenance agents. 

When performing a task, especially in highly demanding circumstances, human 

performance can be degraded due to increased cognitive workload. A possible nega-

tive effect of high cognitive workload is that it leads to a reduction in attention and 

situation awareness [11]. Situation awareness refers to the picture that people have of 

the environment (e.g., [12]). In case of low situation awareness this picture is wrong, 

which will often lead to wrong decision making (e.g., [13]). In the literature, it is 

known that automated systems can also impose a negative effect on cognitive work-

load or situation awareness [14]. Therefore, systems have been designed that are 

adaptive, e.g. in only providing aiding when it is necessary [5]. For this, a human’s 

cognitive state should be assessed online; since this is difficult, often adaptive systems 

like this are based on psychophysiological measurements, like brain activity and eye 

movements (e.g. [15], [5]). The personal assistant model described in this paper 

makes use of such measurements, but in addition uses models of cognitive states and 

dynamics, and the current workflow to be able to assess the online state of the human. 

This allows for an optimal support of the human.  
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Abstract. The automotive domain is an excellent domain for investigating 

augmented cognition methods, and one of the domains that can provide the ap-

plications. We developed, applied and tested indirect (or derived) measures to 

estimate driver state risks, validated by direct state-sensing methods, with major 

European vehicle manufacturers, suppliers and research institutes in the project 

AIDE (Adaptive Integrated Driver-vehicle InterfacE). The project developed an 

interface with the driver that integrates different advanced driver assistant sys-

tems and in-vehicle information systems and adapted the interface to different 

driver or traffic conditions. This paper presents an overview of the AIDE pro-

ject and will then focus on the adaptation aspect of AIDE. Information pre-

sented to the driver could be adapted on basis of environmental conditions 

(weather and traffic), and on basis of assessed workload, distraction, and physi-

cal condition of the driver. The adaptation of how information is presented to 

the driver or the timing of when information is presented to the driver is of im-

portance. Adapting information, however, also results in systems that are less 

transparent to the driver.  

Keywords: In-car services, workload, adaptive user interface, central manage-

ment. 

1   Introduction 

A major research effort on augmented cognition takes place in the defense domain, 

aiming at systems that support or extend the limited human information processes for 

operations in high-demand situations [1].  To augment cognition in dynamic condi-

tions, the momentary human state is often sensed via (psycho)physiological meas-

urements, such as EEG and heart rate [2]. New non-obtrusive methods can be used, 

such as camera sensors and microphones to assess emotion out of, respectively, facial 

expressions and voice [3]. In general, we propose to use a mixture of methods, includ-

ing measures of human, task and context [4] 

In our view, the automotive domain is an excellent domain for investigating aug-

mented cognition methods, and one of the domains that can provide the applications. 

First, the human is in a constrained (relatively fixed, “indoor”) position, sitting in an 

environment that can be relatively easily enriched with driver-state sensing technol-

ogy. Second, the driver’s tasks is rather well-defined, and can be tracked well, and 
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context factors can be easily assessed via both current sensor technology (e.g., slip-

pery road) and data acquisition via wireless networks (e.g., traffic density and 

weather). These domain and task characteristics allow for high-levels of automation 

to support safety and comfort, but the human task performance will remain a crucial 

factor of the overall driver-car performance.  Third, there seems to be a real need for 

AugCog technology. Drivers can access more and more services in the car, for exam-

ple for navigation, traffic information, news and communication. Furthermore, the car 

itself provides more and more information that should support drivers’ tasks, such as 

speed limit warnings and parking guidance “beeps”. The consequences of providing 

in-car traffic management information (like route information) in combination with 

infotainment services (like news headlines) can be negative; distraction or high work-

load could adversely affect the interaction between the driver and the in-car system 

(e.g. [5], [6]). Overload means that the driver is unable to process all relevant infor-

mation necessary to perform the primary driving task. This may lead to increased 

error rates and delayed detection of other traffic participants and, hence, to reduced 

safety [7]. 

A recent study showed that 93% of observed crashes related to ‘inattention’ [8]. 

Within traffic research detection of ‘inattention’ (eyes not on the road) plays an  

important role. The ‘eyes not on the road’ can be caused by many things such as dis-

traction, drowsiness, intoxication, workload, etc. It is not an easy task to detect ‘inat-

tention’. Clearly drowsiness can be detected through EEG signals but no driver will 

step into a car and puts an EEG cap on. So alternative measures needed to be devel-

oped. A lot of research effort was put into developing such measures. However still 

none provided a detection good enough to develop an in-vehicle system. The number 

of accidents is the measure for traffic safety. Although they happen on a daily basis 

accidents are fortunately still quite rare. So also with respect to the traffic safety alter-

native measures or indicators are needed. In traffic research, objective measures were 

developed that relate to the lateral part (e.g., how does a driver keeps its lane) and the 

longitudinal part of the driving task (e.g., car following). Of some of these measures it 

could be shown that there was a correlation between the measurement (e.g., speed) 

and traffic safety [9]. Other measures such as the duration until a driver crosses a line 

marking given the same speed and acceleration (time-to-line crossing) or the time-to-

collision have also shown to be related to traffic safety. Subjective questionnaires 

were developed to indicate workload experienced by the driver. However under nor-

mal driving conditions it is unwise to fill out a questionnaire to assess the workload of 

the driver. So objective measures were used that a related to the steering behaviour of 

the driver (such as steering reversal rate). An extended list of measures that are com-

monly used in traffic research was generated by the AIDE project (e.g., [6]).  

The importance of measuring the status of the driver (workload, distraction, etc) 

while driving lies in the possibility to warn a driver for potential hazardous situations 

and for adapting the interface to the driver. A driver that is distracted will need an 

earlier warning of a system in order to avoid a possible collision then a driver who is 

not distracted. However adapting the HMI to the driver requires storing some data of 

that driver. So adapting the HMI brings along privacy issues (e.g., who has access to 

the stored data). Also the introduction of driver support systems brings along other 

problems then just technical or HMI related. For example, an adaptive cruise control 

(ACC) can not only maintain a certain speed but also a certain distance to a leading 
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vehicle. If that vehicle drives slower then the ACC vehicle then the ACC vehicle has 

to slow down too. However this deceleration is limited. If the leading vehicle sud-

denly brakes harsh then the ACC might technically able to cope but this cannot be 

guaranteed for all kind of situations. To avoid such legal issues on who is the blame in 

case of an accident when there are driver assistance systems on board, it is always 

stated that the driver is responsible, meaning should always stay in the loop with re-

spect to the driving task.  

To address all appplication constraints of AugCog technology, the AIDE project 

developed, applied and tested alternative (or derived) measures to estimate driver 

state risks. In this approach, the direct state-sensing methods (like eye-tracking and 

hear rate) are used to validate these measures. 

2   The AIDE Project 

Within Europe in 2007 about 43000 people died as the consequence of a traffic accident 

and about 1.7 million people were injured. Human error is the main contributing factor 

in accidents. To assist drivers in their task Advanced Driver Assistance Systems (ADAS 

such as forward collision warning systems, lane departure warning systems, vision 

enhancement systems) have been developed that offer great potential for improving 

road safety. These systems can warn the driver with respect to (potential) dangerous 

situations but can also to a certain extent take over part of the driving task. In-vehicle 

information systems only inform the driver and are most of the time not directly related 

to the driving task (e.g., mobile phone, fleet management, but also route navigation). 

Although these systems have benefits either with respect to driving safety or comfort 

there is huge risk that if the systems work in isolation the workload of the driver may 

increase thereby compromising traffic safety. Integration and adaptation of the systems 

are important tools to have the benefits of these systems without having the side effects. 

The AIDE project (Adaptive Integrated Driver-vehicle interfacE; IST-1-507674-IP) 

wanted to generate the knowledge and develop methodologies and human-machine 

interface technologies required for safe and efficient integration of ADAS, IVIS and 

nomad devices into the driving environment. The objectives of AIDE are  

• to maximize the efficiency, and hence the safety benefits, of advanced driver assis-

tance systems,  

• to minimize the level of workload and distraction imposed by in-vehicle informa-

tion systems and nomad devices and  

• to enable the potential benefits of new in-vehicle technologies and nomad devices 

in terms of mobility and comfort. 

To reach the objectives an integrated HMI was developed and tested in which the 

following components was developed  

− Multimodal HMI I/O devices shared by different ADAS and IVIS (e.g. head-up 

displays, speech input/output, seats vibrators, haptic input devices, directional 

sound output)  

− A centralised intelligence for resolving conflicts between systems (e.g. by means 

of information prioritisation and scheduling).  
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− Seamless integration of nomadic devices into the on-board driver-vehicle interface.  

− Adaptivity of the integrated HMI to the current driver state/driving context. The 

adaptive interface should also be re-configurable for the different drivers’ charac-

teristics, needs and preferences. This requires techniques for real-time monitoring 

of the state of the driver-vehicle-interface system. 

To illustrate best what AIDE aimed at is the vision that was laid down in the AIDE 

proposal: 

“Maria starts the car and drives through the city centre towards the mo-

torway that leads to the small seaside town where she lives. When the car 

starts moving, all functions not suitable for use while driving are disabled. It 

is rush hour and the streets are crowded with other vehicles, pedestrians and 

bicyclists. 

By means of using information gathered from on-board sensors combined 

with a satellite-based positioning system, the car knows that the driving situa-

tion is demanding and adapts the driver-vehicle interface so that Maria can 

concentrate on the driving. Thus, the information given through the interface is 

reduced to a minimum and all non-critical information is put on hold until later. 

Moreover, irrelevant safety systems, e.g. lateral control support, are disabled.   
When Maria stops at a traffic light a voice message is given informing her 

that the road ahead is blocked and suggests an alternative route. This message 
was judged by to be sufficiently important to be let through despite the over-
all demanding driving context, but the system waited to present it until the 
workload was temporary reduced at the traffic light. 

After driving for a few minutes on the highway, Maria starts thinking about 
a complex lawsuit that she has been assigned the responsibility for at work. The 
vehicle detects the increased cognitive activity from changes in her eye-
movement patterns (detected by the cameras in the dashboard). After a while, 
the vehicle in front of hers brakes for a traffic queue. This is detected by the 
collision avoidance system, which alerts Maria of the potential danger using a 
flashing light combined with a slight seat vibration. She gets the alert well in 
time to be able to avoid the danger. However, since Maria was cognitively dis-
tracted, the warning was given earlier and the intensity of the warning was 
stronger than would have been the case if Maria had been fully attentive.”

1
 

Clearly not everything can not yet be implemented but for example adjusting the 

HMI based on “satellite-based positioning system” can easily be achieved. Within 

AIDE three different prototypes were developed: One truck and two cars. 

An example: Adapting a forward collision warning system 

This paper focuses on the adaptivity aspect of the AIDE project and more precisely on 

the acceptance of an adaptive system.
2
 In AIDE a large number of experiments were 

performed with respect to the different aspects of the AIDE system. Three closely 

                                                           
1 Taken from the AIDE website http://www.aide-eu.org/index.html 
2 For more information on the AIDE project the interested reader is referred to the AIDE  

IP website (http://www.aide-eu.org/index.html) or you can contact Rino Brouwer at 

rino.brouwer@tno.nl 
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related experiments were performed by ITS Leeds (UK), VTI (Sweden) and TNO. In 

these experiments the effects of a Forward Collision Warning system were investi-

gated. A Forward Collision Warning (FCW) is an on-board electronic safety device 

that continuously monitors traffic obstacles in front of the host vehicle and warns the 

driver when a risk of collision is imminent. The benefits of an FCW in reducing the 

number and severity of front-to-back collisions or ‘shunts’ have been reported  

(e.g, [10]). The effects of the system on driving behavior and on acceptance of the 

system were investigated in three driving simulator experiments (see Figure 1). In 

the experiment performed by ITS Leeds the FCW was adapted to the driver, in the 

experiment of VTI it adapted to the road friction, and in the experiment by TNO to 

distraction.  

 

 

  

Fig. 1. The driving simulators used in the experiments. Top left, the TNO simulator; bottom 

left, the (old) ITS Leeds simulator; right the moving base driving simulator at VTI. 

In all three experiments participants had to drive a route of 40 km in which a lead-

ing vehicle could sometimes suddenly brake in which the FCW could give a warning. 

In all experiment driving with an adapted FCW was compared to driving without an 

adapted FCW. As stated at ITS Leeds the system was adapted to individual differ-

ences. For drivers with a short reaction time the system warned later then for drivers 

with a longer reaction time. At VTI the FCWwas adapted whether the roads was slip-

pery or not. In case of a slippery road the system warned earlier than on a dry road. At 

TNO the FCW warned earlier when the driver was distracted which was achieved by 

letting the driver perform a secondary task (for more detailed information on these 

experiments see [11]).  
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User acceptance was assessed by using the Van der Laan scale [12], giving a rating 

for satisfaction and usefulness of each FCW type. This scale consist of nine questions 

which reflect the underlying scale satisfaction and usefulness. (see Table 1).  

Table 1. The questions in the van der Laan scale 

Useful  |__| __| __| __| __| Useless  

Pleasant  |__| __| __| __| __| Unpleasant  

Bad  |__| __| __| __| __| Good  

Nice  |__| __| __| __| __| Annoying  

Effective  |__| __| __| __| __| Superfluous  

Irritating  |__| __| __| __| __| Likeable  

Assisting  |__| __| __| __| __| Worthless  

Undesirable  |__| __| __| __| __| Desirable  

Raising Alertness  |__| __| __| __| __| Sleep-inducing  

 
The results for the three experiments showed that only the adaptive FCW in the 

experiment of Leeds was rated more positively then the non-adaptive FCW.  In both 

experiments of VTI and TNO the non-adaptive system was rated more positively. 

Although there are some differences between the three experiments an important 

difference was that in the experiment of ITS Leeds the system was adapted to indi-

vidual differences while at VTI and TNO the system was adapted to circumstances 

(slippery roads or distraction). The adaptation of the system to a driver’s preference is 

more likely to be noticed by the driver then a system that adapts to circumstances. 

Although the road may look slippery it may not be clear to the driver that the system 

warns earlier because of less friction. And although the driver has to perform a secon-

dary task and is distracted (at least that is assumed) the driving task might still be 

manageable together with the secondary task. So it may not clear to the driver why 

the system warns earlier. In both the friction and the distraction experiment the driver 

may only perceive that a warning is given earlier but not why.  

3   Conclusions 

This paper presented an approach to realize “Augemented Cognition” in a car by 

adaptive in-car information and service presentations.  According to this approach 

critical user states are assessed via context information, and validated in high-fidelity 

driver simulators. Via sensing the driver behaviour, information provision and  

environmental conditions, the actual critical states can be detected, and the in-car 

interfaces can be changed to establish adequate load levels. The most important de-

velopments in this area are the Advanced Driver Assistance Systems (ADAS) and In 

Vehicle Information Systems (IVIS) [11].  

The AIDE project showed that information presented to the driver could be adapted 

on basis of environmental conditions (weather and traffic), and on basis of assessed 

workload, distraction, and physical condition of the driver [13]. The adaptation of how 
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information is presented to the driver or the timing of when information is presented to 

the driver proved to be of importance. Adapting information, however, also proved to 

result in systems that are less transparent to the driver. Tests in the driver simulators 

showed that the rationale of adaptation, such as assumed distraction, is not always clear 

for the drivers, resulting in less acceptance. Actually, the drivers may have to learn that 

the circumtances and own state bring about a safety risk, and feedback on this aspect 

might help to improve the acceptance. In other words, the adaptive interface should 

explain its behaviour (e.g., during a training session). Furthermore, the experiments 

showed that personalization can be beneficial on this aspect. 
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Abstract. We present a context-based machine-learning approach for identify-

ing difficult driving situations using sensor data that is readily available in 

commercial vehicles. The goal of this system is improve vehicle safety by alert-

ing drivers to potentially dangerous situations. The context-based approach is a 

two-step learning process by first performing unsupervised learning to discover 

meaningful regularities, or “contexts,” in the vehicle data and then performing 

supervised learning, mapping the current context to a measure of driving diffi-

culty. To validate the benefit of this approach, we collected driving data from a 

set of experiments involving both on-road and off-road driving tasks in unstruc-

tured environments. We demonstrate that context recognition greatly improves 

the performance of identifying difficult driving situations and show that the 

driving-difficulty system achieves a human level of performance on cross-

validation data. 

1   Introduction 

Cars are an essential means of transportation for much of the world. However, the 

widespread use of automobiles exacts a large toll in the form of property damage, 

injury, and death. The United States National Highway Traffic Safety Administration 

reports that “In 2005, there were an estimated 6,159,000 police-reported traffic 

crashes, in which 43,443 people were killed and 2,699,000 people were injured;” it is 

the leading cause of death of people aged 3 through 33 [1]. Naturalistic driving stud-

ies have shown that having a passenger in the vehicle reduces the odds-ratio of having 

a crash by 50% [2]. The goal of this research is not to automate driving, but to iden-

tify and mitigate potentially dangerous situations for the driver, similar to a “backseat 

driver,” improving safety. To this end, we have conducted a series of experiments in 

both on-road and off-road driving in unstructured environments. In these experiments, 

we have shown that our system identifies difficult driving situations with performance 

similar to that of a human backseat driver, and see significant improvements in the 

performance of drivers during the experimental conditions. Our driving-difficulty 

classifier system operates in real time in unstructured environments without human 

intervention, using sensors that are readily available on commercial vehicles without 

additional instrumentation. 
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Fig. 1. Data-flow diagram in the context-based difficulty classifier system 

We create the driving-difficulty detector using a two-step semi-supervised ma-

chine-learning approach [3]. The first step takes unlabeled data from the vehicle's data 

bus and automatically extracts the context by automatically identifying statistical 

regularities in the vehicle data. Our hypothesis is that the driver performing the under-

lying physical task - driving in the given conditions - induces observable regularities 

in the vehicle data and identifying these regularities, or “contexts,” is crucial in 

achieving a human-level of performance. For example, entering a high-speed roadway 

tends to result in a driver pressing down the accelerator pedal, entering a period of 

relatively high lateral acceleration, turning on a lane-change signal, and achieving a 

fast speed. In this example, the underlying physical task induces regularities in how 

the driver interacts with the vehicle. We are interested in automatically extracting 

contexts to determine when the driver is entering a potentially difficult situation. With 

the contexts identified, the system then maps these contexts onto a difficulty score 

using a supervised-learning machine-learning algorithm (Fig. 1). To validate the sys-

tem, we compare the performance of an actual human backseat driver with our auto-

mated system, both with and without context recognition, in identifying potentially 

dangerous driving conditions. 

2   Related Work 

For over twenty years, there has been interest in developing autonomous driving sys-

tems, with an early example being the NAVLAB project [4] and research is ongoing 

[5]. Autonomous driving systems have recently gained widespread attention in the 

research community and mainstream media, due in large part to the DARPA Grand 

Challenge [6] and the follow-on DARPA Urban Grand Challenge. While computer 

systems and robots may one day replace humans as the main users of the world's 

highways, it is likely that humans will continue to be the primary drivers of motor 

vehicles for the near future. This will continue the trend of over 40,000 fatalities per 

year in the United States alone, coupled with incalculable related damages [1]. The 

100-car naturalistic driving study [2] recorded almost 10,000 crashes, near crashes, 

and “crash-relevant conflicts” over the course of about one year. This averages to 

about seven incidents per subject per month. One bright spot is that the same study 

showed that having a passenger in the vehicle reduces the odds-ratio of having a crash 

by 50% [2]. In some sense, the goal of this research is to have the same crash-

reducing effect that passengers had in the naturalistic driving study. There has been 

substantial research into driver-assistance systems. Many systems focus on placing 

additional sensors on the vehicle, particularly visible-light cameras [7, 8], to identify 

previously undetectable situations. Other groups have focused on developing models 

of human drivers to focus attention [9]. While these are very promising avenues to 

pursue, we feel that we can offer powerful driver-assistance tools by intelligently 

analyzing readily available sensors on commercial vehicles to determine how the 
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current situation can impact driver performance. Unsupervised learning has been used 

as a basis for context recognition for mobile devices [10] and for improving image 

classification [11] 

The work presented in this paper extends the previous work in driving-difficulty 

systems of [12], which trained a classification system to identify potentially danger-

ous driving conditions using predefined situations. This system identified eight high-

level situations with high accuracy: 1) Approaching or Waiting at Intersection, 2) 

Leaving Intersection, 3) Entering On-ramp or High-Speed Roadway, 4) Being Over-

taken, 5) High Acceleration or Dynamic State of Vehicle, 6) Approaching Slow-

Moving Vehicle, 7) Preparing to Change Lanes, and 8) Changing Lanes. However, 

this system was based purely on supervised-learning classifications on predefined 

categories. The primary limitation is that predefined categories are inherently limited 

by the cleverness of the developers to identify all relevant situations, while ignoring 

irrelevant ones. This also means that the system must have numerous examples of 

each situation against which to train the classifier. Out of the 24 hours of data col-

lected, the rarest situation, “Entering On-ramp or High-Speed Roadway,” was present 

for less than 1% of the data and it is very challenging for any machine-learning classi-

fier to identify rare events [13]. Building on this previous work, our system uses a 

two-stage approach to identifying potentially dangerous driving conditions. 

3   Algorithms 

The central component of our approach is the automated unsupervised learning of 

context. Because we typically have a much larger amount of unlabeled data than la-

beled data, we take a semi-supervised approach to learning. The creation of contexts 

using unsupervised clustering algorithms makes use of all data recorded from an ex-

perimental vehicle. The supervised learning of driving difficulty makes use of the 

smaller amount of labeled data. This allows the driving-difficulty classifier to make 

productive use of all the unlabeled and labeled data. 

3.1   Data Representation 

The input to the system is a discrete-time temporal signal, which is extracted from 

sensors aboard an experimental vehicle from its standard Controller Area Network 

(CAN) bus (Section 4.1). Because we are interested in the change of the sensor values 

over time, we extract the rate-of-change and current-value information from each 

signal over a fixed time window. This feature-extraction process converts temporal 

signals into a vector-based representation. In terms of the features to use in the driv-

ing-context recognition, we feel that: 

1. The magnitude of a signal is important. For example, knowing the speed of the 

vehicle or brake-pedal force can help to disambiguate similar contexts. 

2. The general trend of a signal is also important. For example, knowing how sensors 

are changing can differentiate otherwise identical contexts.  

With this in mind, at each time step for each input sensor, we construct a window 

over some predefined length into the past (typically 5 seconds) and compute the  

first-order linear-regression slope-intercept coefficients {m,b} for that time window. 
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Converting a windowed temporal signal into a vector using the linear-regression coef-

ficients creates two coordinates; the regression slope (m) and the regression intercept 

(b). Consequently, if there are 5 input signals, the result will be a 10-dimensional 

vector. Our unsupervised-clustering algorithms search for driving contexts in this 

vector space. 

3.2   Unsupervised Context Learning 

At each time step, the input to the unsupervised-learning context classifier is the col-

lection of vectors with the slope-intercept regression parameters for each sensor. The 

unsupervised context-learning algorithm is a reductionist version of the prevalent k-

means clustering algorithm [3]. To determine vector similarity, we use the Mahalano-

bis distance and compute the sample mean and full covariance matrices belonging to 

each cluster. We make an assumption that each regression-coefficient vector is gener-

ated independently of all others. With this assumption, the number of data points 

assigned to a particular cluster is a binomial random variable, and we remove a clus-

ter if its corresponding probability is too low. By evaluating the binomial cumulative 

distribution function, we can determine if a cluster is not significant, in a statistical 

sense, and should be removed. If we have k clusters and N data-points, then the ex-

pectation is that each cluster contains N/k data-points. From this perspective, we can 

set a removal threshold based on the fraction of data-points of the expectation. For 

example, a threshold of 0.5 means that we will remove any clusters containing less 

than 0.5N/k data-points. In practice on our experimental data, this reductionist cluster-

ing approach yields relatively stable numbers of clusters from random initializations 

(E{k}=53.5,±1.92, p<0.05 for a removal threshold of 0.5). We also find the reduction-

ist clustering approach to less sensitive to the initial parameter k because if the value 

of k is initially set too high, the algorithm will compensate by removing spurious 

clusters. Thus, to set k we can initially choose a relatively high value and then let the 

algorithm iteratively remove clusters to find a stable value. 

3.3   Supervised Learning of Driving Difficulty 

Up to this point, the system has mapped temporal vehicle sensors to a k-dimensional 

vector of context probabilities (cf. Fig. 1). We use supervised learning to map this 

context-probability vector to a difficulty score. As we describe later in more detail in 

Section 4.1.2, we collected labels of driving difficulty for a subset of the experimental 

data, by either backseat observation or post hoc video analysis. We use these scalar  

1-100 value labels as ground-truth outputs for a supervised-learning algorithm. Be-

cause the values are continuous, this difficulty classifier can be stated as a standard 

regression formulation. Not surprisingly, driving difficulty does not change dramati-

cally from second to second and the ground-truth difficulty labels are highly auto-

correlated (R=0.89 at 5-second lag). 

4   Experimental Description 

We have conducted a series of driving experiments in unstructured environments over 

the past several years. The first studies were a proof of concept that we could infer  
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Fig. 2. Frontal camera view from the Camp Pendleton experiments used for post hoc labeling 

and analysis 

difficult driving situation from readily available sensors from a commercial vehicle in 

naturalistic on-road driving conditions [12]. The set of experiments covered by this 

analysis involved driving in off-road conditions, on semi-improved and unimproved 

paths, at the United States Marine Corps Base Camp Pendleton. These experiments 

tested the ability for our system to identify high-difficulty driving conditions without 

the presence of human-made regularities, such as traffic lights, lanes, and signage. 

Drivers were instructed to drive on a predefined road circuit, but we did not attempt to 

alter the roadway and or control external conditions in any of the experiments. As 

such, we have encountered snow, rain, fog, traffic jams, road construction, mechani-

cal problems, armed guards, artillery howitzers, lost vehicles, and even flocks of 

sheep (complete with over-protective herding dogs). Through the evolution of these 

experiments and the knowledge gained, we have learned that identifying driving con-

text is crucial in achieving human-level accuracy with a driving-classification system. 

By context, we mean those regularities that are caused by the human operator (the 

driver) making the vehicle behave in a constrained manner. 

4.1   Data Collection 

Before each experiment, the subjects familiarize themselves with the test vehicle and 

drive on a sample course. Additionally, before the main experiment, we conduct a 

calibration study where we collect data from a small number of subjects with which 

we train our difficulty-classification system. The purpose of the calibration study was 

to duplicate the experimental conditions and gain insight into the phenomena that 

would be helpful in identifying high-difficulty situations. The use of calibration data 

also meant that a general driving-difficulty model is used, rather than a unique model 

for each driver. After the calibration study is complete, the main pool of subjects 

performs the driving study, as in [14]. 

 

Vehicle Data. To obtain information about the state of the vehicle and how the driver 

is interacting with it, we interfaced through the Controller Area Network (CAN) bus  
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Fig. 3. Performance of the difficulty classifier with and without context recognition in terms of 

normalized correlation coefficient (ρ). The error bars are the cross-subject 95% confidence 

intervals. Same persons have an average of ρ=0.95 for subsequent scoring of the same round. 

Different persons difficulty scores have an average of ρ=0.74 agreement. 

of the vehicle to record sensors that are readily available on many commercial vehi-

cles. In all experiments, we sampled data from the CAN bus at 4Hz. In our experi-

ence, sampling rates above 4Hz did not improve performance, and sampling slower 

than 2Hz could result in missed events. Our difficulty-classification system incorpo-

rated two types of sensors: sensors that directly measure how the driver is interacting 

with the vehicle and sensors that measure secondary interactions or vehicle state. 

From the control-surface state, we made use of steering-wheel position, force applied 

to the brake pedal, and accelerator-pedal deflection. From the physical state of the 

vehicle, we made use of wheel speeds, adaptive cruise-control radar, and current gear 

number. There are many driver-assistance systems that require special-purpose in-

strumentation [8] and these provide valuable insight into the cost-benefit analysis of 

additional instrumentation to vehicles. However, our driving-difficulty classifier does 

not require any experiment-specific instrumentation of the driver or vehicle, meaning 

that this system is deployable on currently available commercial vehicles. 

 

Difficulty Labels. To generate the ground-truth labels, the difficulty of the current 

driving situation were scored on 100-point scale (1 to 100) entered by a human labeler 

with an external dial or a software slider bar. A value of 1 means that the driving is 

very easy, while a value of 100 means that there is imminent danger. Furthermore, the 

labelers were instructed that a score of 50 or above indicated a judgment that it would 

be a bad time to burden the driver with additional tasks, such as a mobile-phone call. 

Allowing the labelers to input a continuous value on a 100-point scale, instead of a 

binary difficulty decision, makes it possible to create more accurate machine-learning 

classifiers. A human labeler can generate difficulty scores in two ways: sitting in the 

back seat of the vehicle during the experiment or a graphical user interface for post 

hoc analysis. For post hoc labeling, we constructed a user interface that displays a 

video recording taken out the front window of the vehicle, such as Fig. 2, and controls 

that allowed the labeler to move forward and backward in time so that users may  
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Fig. 4. Performance of the difficulty classifier with and without context recognition in terms of 

the receiver operator characteristic (ROC) area under curve (AUC). The error bars are the 95% 

cross-subject confidence intervals.  Same persons average an AUC of 0.87 for subsequent 

scoring of the same round.  Different persons agree with each other with an average AUC of 

0.78. 

adjust difficulty labels to ensure their accuracy. While the human labeler may use the 

video to generate difficulty labels, the classifier system did not process the images in 

keeping with the requirement that the system only use sensors currently available on 

commercial vehicles. 

4.2   Off-Road Experiments in Camp Pendleton 

We conducted a series of experiments at the United States Marine Corps Base Camp 
Pendleton, where the experimental platform was a Mercedes-Benz G-class 500 SUV. 
In these experiments, subjects drove on a mixed semi-improved and off-road circuit 
four times at 30 km/hour, with each circuit lasting about half an hour. We collected 
data from nineteen drivers, resulting in 42 hours (609,744 samples) of data. As in our 
previous experiments, we had to contend with unforeseen events, such as vehicle 
traffic, road guards, and other equipment. The results described in this paper will be 
based on the data collected from these experiments (Section 5). 

5   Results 

To evaluate the results of our driving-difficulty classifier, we compared the context-

based difficulty recognizers to those without context recognition. For the results with-

out context recognition, we mapped directly from the regression-coefficients (cf. Fig. 

1) to the difficulty labels
1
. In all cases, we tried several regression architectures, in-

cluding a linear dynamical system, a linear mapping, and a feedforward artificial 

neural network (ANN). 

The linear dynamical system was trained using an iterative one-step optimal Ex-

pectation-Maximization routine using least-squares pseudoinversion of the feedfor-

ward and feedback matrices. The linear mapping was trained using the closed-form 

                                                           
1 Mapping from the sensors to driving difficulty did not produce results better than random. 
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optimal least-squares pseudoinverse. The ANN had arctan node activation with 50 

hidden units
2
, trained with the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) algorithm with Fletcher-type line search [15]. The unsupervised context-
learning algorithm was given 7.5 hours (107,313 samples) of unlabeled driving data 
from which to extract driving context. The supervised-learning algorithms were 
trained with 4.6 hours (65,678 samples) of labeled driving-difficulty data. The hold-

out cross-validation set was 2.4 hours (34,581 samples) of labeled data from subjects 
not contained in the supervised-training or context-learning sets. 

To compare the performance of the different approaches, we use the correlation 

coefficient between the estimated driving difficulty (the scalar 1-100 values) and the 

ground-truth driving difficulty generated by the human labelers. To baseline the re-

sults, we also asked human labelers to generate difficulty labels for the same round on 

subsequent days, and asked different human labelers to generate difficulty labels, and 

compared their results to other labelers. This yields a correlation for how consistent 

humans are with themselves, and how consistent different persons are with each 

other. The results are summarized in Fig. 3. In terms of correlation coefficients, all 

context-based difficulty classifiers outperform those that do not use context recogni-

tion. The context-based linear dynamical systems (ρ=0.76) and the context-based 

ANN (ρ=0.73) perform to the consistency level of different persons with each other 

(ρ=0.74). The best non-context-based classifier, the ANN, achieved a statistically 

significantly worse correlation of ρ=0.56. 

Another measure of performance is the receiver operating characteristic (ROC) 

area under curve (AUC) measure [3]. In our case, this measures the probability that a 

difficulty estimate will agree with a ground-truth label that the situation is “too  

difficult,” cf. Section 4.1.2. The results are summarized in Fig. 4. Once again, all 

context-based classifiers outperform those that do not use context recognition. The 

best performer was the context-based linear dynamical system (AUC=0.92), which 

performed as well as the self-consistency of human labelers (AUC=0.87). The best 

non-context-based classifier, the linear mapping, achieved a statistically significantly 

worse result of AUC=0.80. Thus, the best context-based classifier reduces the AUC 

error rate by almost 60% over those classifiers that do not use context recognition, 

achieving human levels of performance on both correlation and AUC measures. 

6   Conclusions and Future Work 

We have presented a context-based semi-supervised machine-learning approach to 

identify difficult driving situations. We showed that context-based classifiers outper-

form those that do not use context recognition and that a context-based linear dynami-

cal system can achieve human-like performance on real-world experimental data. In 

future work, we plan to look at techniques for automatically adapting the generalized 

contexts to the behavior of a new driver. This will create contexts that are representa-

tive of the actual person-specific driving style. In addition, because we have much 

                                                           
2 An ANN with 50 hidden units performed better than other hidden-layer sizes on cross-

validation data, which is, incidentally, close to the number of contexts discovered by our un-

supervised context-learning algorithm on this data set. 
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more unlabeled data than labeled data, we want to look at bootstrapping techniques 

for the difficulty scorer. 

In the experiments so far, we have applied this technique within the realm of driver 

overload. In the future, we plan to change our focus to look at the more common 

condition of driver underload. By underload, we mean those situations that become 

potentially dangerous because the driver is distracted, inattentive, drowsy, or bored. 

We plan to extend the context-based approach to unsupervised learning approach in 

order to identify unusual, potentially dangerous driving situations due to underload. 
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Abstract. Warfighters are constantly challenged with increasingly complex 

mission environments, roles, and tasks, which require rapid and accurate deci-

sion making. Most current military and commercial decision aids leverage a 

single strategy: they retrieve and fuse information about well-defined objects 

and events for the user. Such aids effectively discourage users from considering 

contextual information and patterns that may help them recognize or think criti-

cally about hostile or innocent events. If a decision aiding system were to be 

truly effective, its adaptive strategies should be driven by more than manipula-

tion of well-defined information presented to the user. In this paper, we propose 

several critical factors - (1) Information state, (2) User cognitive state, and (3) 

Interaction state – that will enable for discern what must be decided and by 

when; discriminate which cognitive state and process are in play; and assess in-

teractions (queries, selections, etc.) with the information. Most importantly, 

these factors will allow for a decision aid to capitalize on –the distinctly human 

ability to find meaning in swarm of objects and events being perceived.   

Keywords: adoptive decision aids, intuition, cognitive state, warfighters. 

1   Decision Aids 

Warfighters are often faced with dynamic and increasingly complex mission envi-

ronments, roles, and tasks, which necessitate rapid and accurate decision making. 

Army combat operations occur in densely-populated urban settings where the physi-

cal dimensions and cultural and social characteristics of the environment interact to 

dramatically compress and complicate the dynamics of the battlespace. The enemy is 

no longer a large, slow-moving, monolithic entity from the Cold War; the enemy is 

diverse, numerous, and includes asymmetric threats—small bands of unknown and 

highly adaptive terrorists, insurgents, drug-traffickers, and other criminal elements. 

There is a need for adaptive decision aids that support operators in these complex, 
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dynamic contexts. Most current military and commercial decision aids leverage a 

single strategy: they retrieve and fuse information about well-defined objects and 

events for the user. This is the purpose of track correlation functions (which associate 

track radar, emissions, ID and other data) on consoles in the AEGIS Combat Informa-

tion Center (CIC). It is the function of most information management tools for the 

intelligence community [1]. Such aids effectively discourage users from considering 

contextual information and patterns that may help them recognize or think critically 

about hostile or innocent events. These aids, in short, focus user attention on the most 

recognizable data at the finest level of granularity.  They fail to capitalize on – and 

may even suppress – the distinctly human ability to find meaning in swarm of objects 

and events they perceive.  For example, CIC systems encourage users to focus on the 

kinematics of individual entities, but do not support inferences about coordinated 

actions (e.g., one aircraft is the sensor, another is the shooter) between them. 

If a decision aiding system were to be truly effective, its adaptive strategies should 

be driven by more than manipulation of well-defined information presented to the 

user. An effective system should be able to dynamically adapt the aid it offers as a 

function of several critical factors: (1) Information state - the evolution of the decision 

task over time towards a deadline; (2) User cognitive state - the decision maker’s 

cognitive state and decision processes; and (3) Interaction state - the decision maker’s 

interactions (queries, selections, etc.) with the information.  

(1) Automated assessment of the state of Information should enable the aid to 

discern what must be decided and by when. Specifically, these measures en-

able the system to (A) estimate the focus of decision activity, (B) the time 

course of a decision (to discriminate early from late decisions, and (C) ma-

nipulate that information in many of the ways above (testing, exploration, al-

gorithm support). 

(2) Automated assessment of the Cognitive state should enable the aid to dis-

criminate which cognitive state and process are in play. 

(3) Automated assessment of Interaction state should provide behavioral data 

with which to triangulate on information state and cognitive state. 

Assessing each of the three states described above presents challenges in an envi-

ronment in which time is scarce, stakes are high, and uncertainty is ever present. 

However, the challenge of measuring cognitive state is perhaps the most difficult. 

Cognitive psychology has developed methods of inferring cognitive state and process 

from reaction time and accuracy data but these methods are highly artificial, suitable 

only for laboratories and not for operational environments. However, recent advances 

in neuroscience may enable us to measure aspects of cognitive state and cognitive 

process reliably, in operational settings. For example, a number of neuroimaging and 

neurophisiological studies examined the nature of decision making and the process 

that underlie it, such as – Intuition [2][3][4]. We are engaged in research in research 

that focuses on intuition. 

2   Intuition 

Intuition is often credited with helping warfighters succeed in critical situations. Re-

search in human pattern recognition and decision-making suggest that there is a sixth 
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sense through which humans can sense unique patterns without consciously seeing 

them [5][6]. This fast-acting mode of recognition may act as a first-pass filter for 

gleaning insight of an entire scene [7]. Cursory evidence at an aggregate level sug-

gests that this capability, known as “sixth sense” or “intuition” may be detectable at 

both the behavioral [8] and neurophysiological [2] [3]. We define intuition as an af-

fectively charged, internal cue to the existence of meaningful information in the envi-

ronment that arises rapidly and unconsciously. Intuition is not a decision or solution. 

There is accumulating evidence that indicates that this capability may be trainable [5] 

[8] and malleable [9] in extremely limited contexts, although it is certainly subject to 

biases [10] and other types of errors [11]. 

Recent advances in neuroscience may enable us to reliably measure aspects of 

cognitive states and cognitive processes involved in decision making, in operational 

settings [2] [3] [4] [12] [13]. For example, Volz et al. (2006) utilized functional Mag-

netic Resonance Imaging (fMRI) to examine the neural basis of intuition in partici-

pants who were engaged in a modified version of the Waterloo Gestalt Closure Task 

that involved presentation of images that had been fragmented (i.e., some of the pixels 

were removed) to varying degrees. The participants were instructed to indicate 

whether each image contained an object.  Fragmenting the images as well as the brief 

presentation (400ms) made it harder for participants to identify objects in the images. 

Some of the fragmented images were also scrambled in a way that made them appear 

incoherent. Participants were instructed to use their “feeling” of whether each image 

contained/did not contain an object, but they did not have to identify the object. The 

results of this study revealed activations in the median Obitofrontal Cortex (OFC), the 

lateral portion of the amygdale, anterior insula, and ventral occipito-temporal regions. 

The authors identified the OFC to be the area subservient for intuitive coherence 

judgments. Volz et al. (2008) study further confirmed these conclusions as well as 

demonstrated that activation in the OFC is modality independent.  

In order to further characterize the temporal, spatial, and contextual parameters of 

intuition, we recently carried out an experiment, utilizing high-density array Electroe-

ncephalography (EEG). The results of experiment demonstrated activation in the 

Orbitofrontal Cortex (preciously identified to be associated with intuitive processing, 

see [3] [4]) as early as 220ms after stimulus onset in response to images that were 

perceived to be coherent, regardless of whether there was an actual object in the im-

age or not. These results provided additional support for the notion that intuition can 

be characterized temporally and spatially, and that we can reliably measured its occur-

rence with neurophysiological tools. 

3   Decision Aids Guided by Intuition 

The development of reliable measures of intuition provides new opportunities to un-

derstand and aid human cognition. Here, speculate on the function of intuition in 

human cognition, and the way that intuition-aware devices might enhance human 

performance. 

Intuition is a rapid, automatic cue to the decision maker that aspects of the current 

situation are coherent or meaningful. Intuition in and of itself does not convey the 
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meaning of an object or event. It merely signals that recognition or comprehension of 

a scene is approaching. 

This signal may help a domain expert to manage the decision process. Thus, intui-

tion serves a metacognitive function. For example (see Figure 1): 

The presence of intuition indicates to the decision maker that it is better to wait out 

the process of recognition than to guess, if time is short. Even if time is plentiful, it 

may be best to wait briefly for recognition to produce solutions instead of (or before) 

engaging in deliberate analysis. 

Conversely, the absence of intuition indicates that waiting for recognition may be fu-

tile. Thus, it may be best for the decision maker to apply a default response or guess if 

time is short; it may be best to invoke deliberate, analytic processes if time is plentiful. 
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Fig. 1. Intuition may support metacognition and decision aiding. Its presence (1) may  

promote recognitional processing and rapid action. Its absence (2) may promote guessing or 

deliberation.  

If intuition helps people to manage decision processes and decision time, then reli-

able measures of intuition might enable us to create a new generation of machines to 

support decision making. 

A decision aid that senses its user's intuitive moments might, perversely, serve its 

owner best by withholding information that could conflict with the user's rising solu-

tion. For example, automated target recognition aid typically overlays sensor imagery 

(e.g., a vehicle obscured by trees) with a diagrammatic template of the most likely 

target (e.g., a technical or pickup truck mounted with a machine gun). Given a reliable 

signal of intuition, the aid might withhold that template while the user's recognition of 



34 A. Geyer et al. 

the scene resolves, with the expectation that the user's response will be more accurate 

and sufficiently quick. 

A decision aid that senses the absence of an intuitive moment might serve its 

owner by rapidly cueing a solution (e.g., a technical) if time is short. It might, if time 

is plentiful, present its owner with decision analysis tools (e.g., a decision tree for 

discriminating technicals from standard pickups, light armored vehicles, etc.). 

These are real time, personal applications, in which the intuitions of the decision 

maker instantaneously drive his (or her) own decision aid. 

We are devising an array of other applications that may use measures of intuition 

in real time to support teams of humans in real time, and other applications that use 

intuition offline to train autonomous robots. 

In sum, reliable measures of intuition may help us to devise a new generation of 

tools that enhance human decision processes or protect them from interference.  The 

net result should be faster and better decisions when they are needed most. 
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Abstract. Many challenges remain for understanding how the human brain 

functions in complex dynamic environments. For example, how do we measure 

brain physiology of humans interacting in their natural environments where 

data acquisition systems are intrusive and environmental and biological artifacts 

severely confound brain source signals? How do we understand the full context 

within which the human brain is operating? How do we know which informa-

tion is most meaningful to extract from the data? How can we best utilize that 

extracted information and what are the implications for human performance? 

The papers comprising this section address these questions from conceptual, 

technical, and applied perspectives. It is clearly seen that significant progress 

has been made since the inception of the Augmented Cognition program and 

that, to overcome these challenges, a continued multidisciplinary approach is 

required across basic and applied research from cognitive scientists, neuroscien-

tists, computer scientists, and engineers. 

Keywords: electroencephalography (EEG), natural environment, operational 

neuroscience, Augmented Cognition, cognitive engineering, human dimension. 

1   Introduction 

Over the past several decades, the field of neuroscience has made significant contribu-

tions to our understanding of human cognition. Neuroimaging, in particular, has un-

veiled a great deal more about the structure and function of the brain and how mental 

representations and behavior are generated. Much of this research has been conducted 

in controlled laboratory environments in which isolated auditory or visual stimuli are 

presented and simple behavioral responses are required. Moreover, such tightly con-

trolled laboratory settings often study participants in acoustically and eletromagneti-

cally shielded rooms while operating under conditions of minimal or highly restricted 

movement. Although it has advanced our basic understanding of how the brain  

functions within highly constrained environments, the extent to which controlled 

laboratory research generalizes to how the brain functions in complex and dynamic 

environments in the real world is currently not well understood. In fact, it may be ar-

gued that "laboratory studies conceived and interpreted in isolation from real-world 

experience may do far worse than fail to generalize back to the natural environment; 

they may generate fundamental misunderstandings …" [1; p. 177]. Furthermore, what 
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we know about degeneracy and complexity of biological systems [2,3] suggests that 

the brain is capable of using its estimated quadrillion neural connections in different 

ways to accomplish the same task. Based on these concepts, it's likely that there are 

fundamental differences in how the human brain actually functions to control behav-

ior when it is situated in ecologically valid environments (i.e., situated cognition) rela-

tive to that observed in highly controlled laboratory environments. 

Because of the complexity of the brain and the natural world, and the inherent 

measurement challenges of recording neurocognitive activity in uncontrolled envi-

ronments, we are only now beginning to understand how humans process information 

and interact in the real world. Ecological approaches [4,5] have for a long time advo-

cated the need to focus on human, task, and environmental interactions to understand 

behavior in realistic settings. Over the past decade, these concepts have been extended 

to understanding the interactions between brain functions and operational environ-

ments [6-18]. Tools designed to examine these interactions have been and are con-

tinuing to rapidly advance through programs such as Augmented Cognition [16-18]. 

Much progress has been made in neurotechnology as evidenced by advances in sensor 

technologies [19,20], signal processing techniques such as independent component 

analysis [21-23], directed component analysis [24], and single-trial phase synchroni-

zation [25,26], as well as computational algorithms for classifying cognitive states 

[13-15,27-29] and brain-computer interfaces [30-32].  

While these advancements are enabling preliminary insights into situated cogni-

tion, there exists a need to further advance such technologies and validate methodolo-

gies for conducting research in real-world environments. Sensor technologies and 

signal processing techniques have not yet matured to a level at which brain function 

can be reliably observed in naturalistic settings to the extent possible in laboratory 

settings [33]. While this goal may ultimately be untenable, science and technology are 

fast approaching toward this end. Due to challenges of experimental control, one ap-

proach is to integrate and synchronize multivariate data (e.g., physiological, behav-

ioral, and contextual) and then apply data mining techniques to search for “hidden” 

relationships [22,34]. 

These advancing technologies and methods are expected to provide important in-

sights into how people “think” about the information that they encounter – and how 

well they can translate that thinking into effective behavior. From an application 

standpoint, ensuring that people “think well” is non-trivial. The complicated nature of 

the human-task-environment interactions is seen in the analysis of military and indus-

trial disasters, in which decision makers unsuccessfully interacted with equipment and 

other personnel in stressful, dynamic environments (e.g., see the shooting down of 

Iran Air flight 655 by the U.S. Navy in 1988 or the partial core meltdown of the nu-

clear reactor on Three Mile Island in 1979). Analysis of such disasters reveals that 

cognitive aspects of complex human-system interactions can have dramatic and unex-

pected consequences [35]. As the explosive advances in information and computing 

technologies that have occurred over the past several decades continue, and as the 

relationships in society become increasingly dynamic and nonlinear, it is expected 

that the nature of cognitive processing will continue to change from a model that pri-

marily relies on people to one that involves a balance between people and technology.  
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As a consequence, it is expected that human-system performance in the real world 

will be largely dependent on how well such systems are cognitively engineered 

[10,34]. 

To highlight the state-of-the-art in neurotechnology, the current fundamental re-

search gaps, and the potential benefits of advancing our understanding human cogni-

tion in operational environments, we have selected papers in several critical areas. 

The session starts with Stephen Whitlow presenting recent research on wireless, dry-

sensor EEG-based workload classification conducted on dismounted soldiers during 

performance of military operations in urban terrain (MOUT). This paper frames the 

problems and illustrates the successes and issues of neurocognitive monitoring of am-

bulatory soldiers in the real-world. From that basic framework, the next two papers 

present cutting-edge hardware and software developments for mobile brain imaging. 

Chin-Teng Lin presents engineering advances of a wireless, dry sensor EEG system 

featuring micro-electrico-mechanical systems (MEMS) sensors with digital signal 

processing on a chip. Robert Frank introduces a novel real-time artifact mitigation 

algorithm based on a spatial filtering to direct the removal of biological artifacts from 

brain signals in EEG data. The following two papers extend the discussion from EEG 

to a more comprehensive multidimensional approach to understanding brain and be-

havior. Scott Makeig presents a new mobile brain/body imaging (MoBI) concept for 

integrating multisensory inputs such as eye, head, and body movements along with 

EEG and contextual data from behavior and the environment. Don Tucker then dis-

cusses data fusion and data mining approaches to creating and interpreting data sets 

that include eye- and head-tracking, high-density EEG, and system-based information 

and the challenges associated with data synchronization and integration. The final two 

papers in the session present the application of neurotechnology for enhancing our 

understanding of cognitive states of individuals in ecologically valid task environ-

ments. Ruey-Song Huang presents EEG correlates of driving performance based on 

time-frequency analysis of independent components derived from ICA and discusses 

implications for the design of human-computer interface design. Bradley Hatfield 

concludes the session by discussing a broad framework for understanding principles 

of brain function for highly skilled visuomotor performance. He also presents re-

search on the effects of stress on performance and the application of a neurofeedback 

training program to enhance performance.  

2   Session Papers 

1. Whitlow, Mathan, Dorneich: "EEG-based Cognitive Workload Estimation of Mo-

bile Soldiers in Training Missions." One of the most difficult problems facing sci-

entists and engineers is to better understand human dimensions of performance in 

the real world, especially in complex dynamic environments in which soldiers per-

form. Whitlow and colleagues confronted this problem head-on by acquiring EEG 

data continuously from dismounted soldiers during training of military operations 

in urban environments (MOUT) using a six-channel, wireless, dry electrode EEG 

system (QUASAR, Inc.) fitted under the helmet. High and load cognitive workload 

periods were identified from a video log of soldiers performing various tasks 

throughout training during day and night operations, as rated by independent  
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observers and by the soldiers themselves immediately following the completion of 

each training mission, and statistical machine learning techniques were applied to 

the EEG spectra to determine classification accuracy. Results revealed 75-90% 

classification accuracy depending on duration of the temporal smoothing windows. 

Challenges posed by individual differences and dynamically changing tasks are 

discussed, as are implications for future research.  

2. Lin, Ko, Chang, Wang, Chung, Jung: "Wearable & Wireless Brain-Computer  

Interface and Its Applications." Lin and colleagues introduce a new prototype, 

four-channel, mobile and wireless EEG system featuring miniature data acquisition 

circuitry and dry Micro-Electro-Mechanical System (MEMS) electrodes embedded 

in a headband. The system consists of a data acquisition (DAQ) unit, a wireless-

transmission unit, and a real-time signal-processing unit. They also present re-

search from their lab validating the system with participants performing a realistic 

lane-maintenance driving task in a virtual-reality-based dynamic driving simulator. 

Results verified that the system performed comparable to established wet-electrode 

systems. Challenges and future directions for application of this exciting new tech-

nology are discussed. 

3. Luu, Frank, Kerick, Tucker: "Directed Components Analysis: An Analytic Method 

for the Removal of Biophysical Artifacts from EEG Data." Luu and colleagues in-

troduce a new signal processing technique, directed components analysis (DCA), 

for removing biological artifacts from EEG data in real-time. DCA is a spatial fil-

tering method that employs a spatial template to direct the selection of targeted ar-

tifacts, is computationally efficient, and can be applied online in real-time. In this 

paper they examine the effects of undersampling the scalp potential field on the 

ability of DCA to remove blink artifacts from event-related potential (ERP) data 

without distortion using high (128 channel) and low (32 channel) density re-

cordings. The results revealed error fractions of .22 and .34 for high and low den-

sity recordings, respectively. Strengths and weaknesses of DCA are discussed with 

respect to alternative methods and future directions are also discussed.  

4. Makeig: "Mind Monitoring via Mobile Brain-Body Imaging." Makeig and col-

leagues expand on existing concepts in brain-computer interface (BCI) design and 

application based on mobile brain/body imaging (MoBI) for brain/body interface 

(BBI). MoBI proposes a multisensory modeling approach (brain, eye-movement, 

body motion and environmental/contextual data integration) to cognitive state 

monitoring for application to a new, more robust brain/body interface (BBI). This 

approach extends existing brain-computer interface (BCI) designs by enabling the 

assessment of complex, natural behaviors in realistic environments and makes 

greater use of information embedded within the EEG signal (previous BCI systems 

underutilize information in the EEG; e.g., only one spectral band or time domain 

signal feature). Additionally, fundamental questions regarding individual differ-

ences, brain systems that effect BCI modulation, integration of multisensory in-

puts, and the effects of training on phasic and tonic brain states are discussed. 

5. Tucker, Luu: "Operational Brain Dynamics: Data Fusion Technology for Neuro-

physiological, Behavioral, and Scenario Context Information in Operational  

Environments." One major challenge to understanding brain dynamics in opera-

tional environments is to be able to synchronize and integrate multiple sources of 

data from the individual, task, and environment in order to better understand the 
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operator's current state. Tucker and Luu present a state-of-the-art net-centric, dis-

tributed-parallel informatics architecture for increasing the bandwidth of the in-

strumentation and fused analysis of neurophysiological, behavioral, operational 

scenario events.  
6. Huang, Jung, Makeig:  "Tonic Changes in EEG Power Spectra During Simulated 

Driving." Huang and colleagues present research on the relation between brain ac-

tivity patterns and driving performance. Independent component analysis (ICA) 

was applied to EEG data acquired from subjects during a simulated lane-

maintenance driving task and time-frequency analysis was conducted on clusters of 
independent components. The results revealed that several clusters of independent 
component activities showed tonic elevation in alpha- and theta-band power  
spectral baseline as reaction time to lane-drift events increased, while other clusters 
showed broadband or delta-band increases. Implications of this research are  
discussed with respect to practical applications in human-machine interface/ 
interaction design. 

7. Hatfield, Haufler, Contreras-Vidal: "Brain Processes and Neurofeedback for Per-
formance Enhancement of Precision Motor Behavior." Understanding the how the 
brain adapts with training (i.e., neural plasticity), how it functions during highly 
skilled motor behavior, and how stress effects brain function and performance are 
interesting scientific endeavors with important potential implications for education 
and training. Hatfield and colleagues discuss a conceptual framework of psycho-
motor efficiency for motor skill learning and elite-level performance and review 
current research illustrating the effects of competitive stress on cortical perturba-
tions and shooting performance. They also review new research on how neuro-
feedback training influences cortical dynamics and shooting performance. Finally, 
future directions are discussed with respect to the relevance of genetic influences 
and individual differences in brain function of skilled performers under stress and 
the role of social factors. 

3   Summary 

The presentations comprising this session represent advances in basic research and  
engineering of the hardware and software required for neurocognitive assessment in 
operational environments, as well as field research, applications and vision for future 
application. While this session has focused on the ecological principle of examining 
cognitive function in realistic settings, great progress is being made and will continue to 
be made through highly-controlled laboratory-based investigation. However, we must 
focus on converging laboratory and field research with cognitive engineering to ensure 
the development of system designs that present information to people in ways that  
enable greater comprehension in shorter durations without inducing undue cognitive 
demands; intuitive designs that decrease the need for training; and adaptive systems that 
understand a person's state and adjust training or augment the system accordingly.  
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Abstract. This paper aims at describing the requirements of an off-highway 

human-machine system able to recognize potential risky situations and conse-

quently prevent them. The developed methodology is based on two techniques 

derived from the field of human factors studies, namely the Hierarchical Task 

Analysis (HTA) and the Function Allocation (FA), which have been integrated 

and revised to suit the specific domain of off-highway machinery. The para-

digms of adaptive automation and persuasive technology will be followed in the 

design process. After the off-highway domain analysis a system aiming at im-

proving operator and machine safety is presented. The information system ex-

tends the human intelligence monitoring the stability of the machine. 

Keywords: Adaptive Automation, Collision, Function Allocation, Human-

Machine Interaction, Hierarchical Task Analysis, Off-Highway Vehicles, 

Overun, Rollover, Runover, Safety, Tractors. 

1   Introduction 

The complexity of on-board equipment for agricultural and off-highway machinery 

has dramatically grown during the last years. The increased number of functions and 

devices has led to a substantial modification in working procedures, the contrary of 

what has been seen in the automotive domain. Cars have been equipped with elec-

tronic information- and/or safety-related systems, which have improved the reliability 

of the vehicles and the user comfort although this has not affected the essential nature 

of the driving task [1] [2].  

On the contrary, the introduction of electronics in agricultural and off-highway 

machinery has led to a strong centralization of controls inside the vehicle cabin, 

bringing a significant modification in the way users must manage their working task. 

This modification has been especially strong in the agricultural field, where most of 

the tractor functions can be performed from inside the cabin. Moreover, the incoming 
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diffusion of electronics to implements will allow the user to perform settings, calibra-

tions and corrections while inside the tractor. As a consequence, users are facing an 

increased number of tasks [3]. In spite of its high complexity, the off-highway driving 

domain has been considered only in a few scientific works concerning human factors 

and the optimization of the in-vehicle human-machine interaction.  

This paper proposes a methodology for selection and subsequent design of tasks 

that are suitable for partial or total automation within the cabin of an agricultural or 

off-highway vehicle. The methodology was applied to the domain of agricultural 

vehicles. The result of the case study led to the development of an on-board applica-

tion, based on: 

• a joystick with haptic force feedback capabilities for a loader of an agricultural 

machine. The joystick behaved in different ways depending on the scenario around 

the vehicle.  

• a visual display providing relevant vehicle information to the operator. The display 

alerted the operator of incurring critical conditions, then providing the procedure to 

keep the system in a safety configuration; 

• a set of rules for risk estimation which define the information provision strategies 

for risk mitigation adopted by the visual display and the joystick. 

This work derives from an Italian regionally funded project called PRO-TRACT 

(www.pro-tract.it). 

2   Approach and Method 

The methodology that was developed in this study is based on two techniques derived 

from the field of human factors studies, namely the Hierarchical Task Analysis (HTA) 

and the Function Allocation (FA), which have been integrated and revised to suit this 

specific domain.  

The design methodology is divided into three steps. In the first step, the most  

critical tasks has been established and analyzed through the use of a Hierarchical Task 

Analysis with the decomposition categories presented by [4]. The second step  

identified the sub-tasks in the vehicle cabin that would be suitable for partial or total 

automation and subsequently, different alternatives for automation and relevant in-

formation visualization have been generated and evaluated. A method for Function 

Allocation based on the so-called “York-method” [5] was used here. The appliance of 

the York-method gave appreciable results in a previous work yet, were a forward 

collision warning system for the automotive domain was analyzed and designed [6]. 

Moreover these first two steps have been discussed in [7] and here relevant results 

will be summarized. 

In the last step, the control strategies of the joystick and the strategies to provide 

information on the visual display have been designed with the aim to keep the opera-

tor aware of the most frequent and risky accidents highlighted after the first two 

phases. These accidents are:  

• collision; 

• overturn. 
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A risk-focused design methodology has been followed for the development of the 

control of the joystick and the information provision strategies of the visual display. 

This methodology has been defined as a set of rules which describe: 

• the vehicle information needed to identify the possible risky condition: e.g. vehicle 

speed, bucket position; 

• how the level of risk associated to both accidents is identified according to the 

value of these information: e.g., high speed and high bucket position might lead to 

an overturn accident, coded as an high level of risk. 

• how the identified risk level is translated into a haptic feedback on the joystick 

and/or a visual information on the visual display. 

Risk-based feedback strategies were designed, that prompt users to perform appro-

priate control actions, by signaling unsafe handling of machine controls and limiting 

possible actions to a subset of safe actions. Strategies were implemented by exploiting 

all available channels: information about the machine’s status was presented on the 

display with two color-coded levels of warning (medium-amber, high-red) and icons 

identifying the kind of risk currently run by the operator (overturn or collision). Fi-

nally, a set of icons suggested how the operator could intervene on the on-board con-

trols (pedals, joystick, steering wheel) in order to get the machine back into full safety 

conditions. 

The approach aimed at extending operator’s capabilities of monitoring the stability 

of the machine, which are currently limited on several respects. On existing machin-

ery, visual monitoring is hindered by poor visibility from inside the cabin, often wors-

ened by dust, dirt and high visual load devoted to the working implement; concur-

rently, auditory monitoring is mainly hindered by engine and implement noise. The 

haptic channel is hardly employed for monitoring purposes although largely involved 

in managing the machine controls (i.e. pedals, knobs, joysticks). Haptic channels has 

a strong potential for information provision, as operators perform several safety-

critical actions (i.e.: controlling implements) by using physical devices: this qualifies 

them as strong candidates for delivering safety critical information, and for limiting 

possible actions when such limitation may prevent severe consequences. As a whole, 

operators’ situation awareness is improved, and capability of avoiding risky opera-

tions is boosted. 

3   The Off Highway Domain  

The off-highway domain encompasses farm machinery, construction machinery and 

special vehicles. The operative context of such vehicles is heterogeneous, therefore 

operators often accomplish very different tasks. This heterogeneity is due to several 

aspects:  

1. the environment: visibility, climate 

2. working area: type of farming and used machinery, road transit 

3. equipment: tools layout 

4. operator posture: slopes and equipment position 
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5. telemanipulation: correct action, force, weight perception, consequences on the 

material integrity 

6. precision Farming
1
: activity organisation 

In the automotive domain, the driver should lead the vehicle along the road, keep-

ing it safely; the human machine systems complete the driving task and give driver 

further information. In the off-highway domain instead, the vehicle transition path is 

not clearly defined and it lacks of precise road signals. Hence the human machine 

systems are strictly related to the working task, whose are often the exclusive control 

system. 

Recently, some ISO norms (i.e. ISO 11783) have take care of various on-board de-

vices, like virtual terminals, aiming at define physical constraints. These norms are 

not enough to deal with the off-highway domain complexity because they consider 

only technological and productive aspects, which represent a little set of the available 

vehicle functions. It is needed, in the future, the definition of “Off-highway perform-

ance science”, like the automotive “Driving Science” [8]. 

Nevertheless there are some user-centred design principles feasible for this do-

main: 

1. Display: displays are classified by i) physical features; ii) target user features; iii) 

task features. The designer aim is to obtain a correct mapping between the display 

shape and layout and the task to be accomplished, taking care of strength and weak-

ness of human perception, attention, cognition memory, and mental model [9]. 

2. Control: control involves two crucial processes: i) user action selection and per-

formance; ii) feedback loop
2
. Selecting an action is a process influenced by several 

factors [10] [11] i) decision complexity [12] [13]; ii) events expectation [9]; iv) 

compatibility between stimulus and response [14], v) trade-off between speed and 

accuracy; vi) feedback (feedback is dramatically relevant in the joystick design, 

because in drive-by-wire vehicles the mechanical feedback are missing and they 

should be emulated by the multifunction joystick). 

3. automation: automation is generally applied in order to ensure efficiency or to 

perform dangerous or heavy tasks. For example in the off-highway domain auto-

mation is applied in the headline turn function
3
. 

3.1   On-Board Equipment: Technology Evolution and Safety 

The complex growth of on-board equipment for farm tractors and other off-highway 

machinery has been rather disordered in terms of its consequences for vehicle 

dashboard and cabin design, into which many complex human-machine interfaces 

have been introduced [15].  

                                                           
1 Precision Farming refers to the in-field variability, By using satellite data to determine soil 

conditions and plant development, these technologies can lower the production cost by fine-

tuning seeding, fertilizer, chemical and water use, and potentially increasing production and 

lowering costs 
2 The feedback loop allows the user to evaluate whether his/her action obtained the desired 

effects. 
3 This automated system optimize all the operations needed to set the vehicle to work on a new 

field section, whenever the last one is finished. 
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The introduction in the automotive domain of new electronic devices (both infor-

matics and driving assistance systems) that improve the reliability of the vehicle and 

the user’s comfort has not altered the essential nature of the automobile driving task 

[2] [1], leading to a proliferation of controls in the cabin, which significantly modifies 

the way users must manage their working task. The use of electronics to manage im-

plements (hitches, loaders, bailers, sprayers, etc.) allows the user to perform settings, 

calibrations, and corrections while inside the tractor [7]. As a consequence, users must 

perform an increasing number of tasks [3]. This means that the evolution trend is 

technological-centred [16]: there is little attention for the consequences innovations 

have on the operator-vehicle system. 

On one hand, automation improves efficiency, on the other hand it dramatically 

impacts on the human performance. The monitoring of an automated task puts the 

operator “out of the control loop” [17], favouring his/her deskilling [18], which has 

crucial consequences in dealing with malfunctions and high risk situations. The de-

skilling effects would make safety and efficiency worse. 

The final aim of a human-centered automation system is the operator and machine 

safety, putting to use the adaptive automation and the persuasive technologies para-

digms [19].  

Accident data collected in the last few years (National Ag Safety Database 

[NASD], 2003) identify the task of moving loads with front-loading tractors as one of 

the riskiest operations in the field. Furthermore, lifting and moving operations con-

ducted with front loaders are related to rollover and runover events [7]. 

4   The Riskiest Task: An Overview and a Method of Analysis 

The methodology proposed in this article had been implemented during the develop-

ment of a risk mitigation system for farm tractors as part of the Italian publicly funded 

project Pro-Tract
4
.  

During the Pro-Tract project in-depth interviews with experienced drivers were 

conducted. Drivers said that avoiding a rollover was their most serious safety concern. 

After the goal was defined, the Hierarchical Task Analysis (HTA) was carried out  on 

the basis of detailed information from interviews and video recordings of seven trac-

tor operators performing this task [7].  

The HTA enabled designers to isolate criticalities in tasks carried out by operators 

inside the cab and, consequently, the automation designs could be targeted for solving 

very specific problems (e.g., operator overload). The function allocation (FA) pro-

vided criteria for assessing the feasibility of viable design alternatives, which facili-

tated this phase and reduced the potential randomness of the selection process. On the 

human factors side, this method helped developing detailed descriptions of farmers' 

activities during fieldwork. Differences between off-highway machinery and the 

automobile-rooted concept of “driving” (starting from the user’s posture inside the 

                                                           
4 The partners were Comer Industries S.p.A., a mechatronic research and manufacturing com-

pany; Ognibene S.p.A., a hydraulic manufacturer; Walvoil S.p.A., a manufacturer of hydrau-

lic components and joysticks; and the Human Machine Interaction Group at the University of 

Modena and Reggio Emilia, Italy. 
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cab) could be highlighted. The apparent similarities between automotive driving and 

off-highway driving were found to be inaccurate [7].  

In next paragraph, the methodology to identify requirements for warning systems 

will be proposed. The warnings aimed at reducing the risk of rollover and runover 

accidents while moving loads (e.g., hay, grain, soil) with front-loading tractors.  

4.1   Application of Hierarchical Task Analysis and of Function Allocation to the 

Riskiest Task  

The HTA [4] [20] allowed at creating a precise description of the tasks being consid-

ered. The analysis consisted of decomposing the tasks into elementary units and orga-

nizing them into three hierarchical levels: 

1. goals (system state to be achieved), 

2. tasks (structured sets of activities required for achieving goals), and 

3. subtasks or operations (different sequences of actions that the machine-operator 

system must perform). 

The HTA was applied to one of the most risky work situations for operators of 

farm tractors, described as follows: “To move a load (e.g., equipment, hay, sand, 

manure) by means of an implement connected to a farm tractor (operator in cabin 

with engine on).” Rollovers and pedestrian runovers are two of the most serious and 

frequent accident types with farm tractors [21] during this activity,  

Hence, this task was decomposed in sub-task, in turn decomposed in other sub-

tasks, each of them performed with specific modalities. The template in which the 

descriptions were included was based on the table proposed by [4]. From the HTA 

arose one key tasks: an example is “Check physical obstacles”, which may put both the 

operator and pedestrians in imminent danger. The following function analysis (FA) 

showed that this specific subtask could be partially automated [7]. The tasks structured 

description derived from the decomposition analysis facilitated the scenario description 

required for the FA based on the York-method [5], in which different scenarios and 

trade-offs are used with regard to the allocation of tasks and operations between  

humans and machines. Task analysis and function allocation both aim to match the 

human abilities with the system ones, in order to automate the tasks best suited to ma-

chines and to maintain as manual the functions best suited to human [22], considering 

also the benefits with respect to workload, performance, and situation awareness. 

Once the basilar functions have been founded, they will be allocated to the ma-

chine or to the operator, considering that “a function may be separable from all roles, 

and technically feasible and cost effective to automate, in which case the function 

may be totally automated. Alternatively it is possible that the function maps entirely 

to one of the roles, and is infeasible to automate, in which case the function is totally 

performed within that role. In most cases however functions fit into neither category. 

In this situation the function is to be partially automated” [22], [7]. 

4.2   Constructing Scenarios and Evaluating Candidates for Total Automation 

The scenarios were selected in order to focus on critical situations (for example, 

where workload is likely to be high). Each scenario was described with a subset of 
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functions required in the scenario. In our case, the HTA and decomposition categories 

defined the most critical subtasks within the areas associated with rollover and 

runover risks. Hence, we selected the scenarios to include those two risky areas. Each 

scenario was then described with a subset of functions that were evaluated as candi-

dates for total automation.  

Tasks that have low significance for the operator’s role are generally proposed as 

candidates for total automation. For example, for the “work in courtyard” scenario, 

the operator role is: “the operator is the only person responsible for an efficient 

(quickness and accuracy) and safe execution of the job. During execution, he/she 

must prioritize safety over efficiency. Safety is prioritized according to the following 

hierarchy: safety of vulnerable persons (e.g., pedestrians), own personal safety, safety 

of objects and items. During the execution of the task, he/she monitors the protection 

of machines, vehicles, buildings, and the transported load”. The function “estimation 

of the terrain slope” could be totally automated, while “keep the implement height 

under the critical threshold” is an example of a partially automated task, that is done 

by the operator with assistance from the vehicle, which provides information about 

load height or prevents the operator from raising the implement too high for safe 

operation [7]. 

When automation would decrease the operator’s overall performance it means that 

these functions should not be fully automated, either because of a substantial cost or 

because they were considered to be central to the operator’s role [7]. 

4.3   Development of the Risk Mitigation System 

The final phase of the work consisted of defining how to translate the inputs from the 

machine (e.g., terrain slope) or the operator (e.g., a sudden turn) into the in-cab de-

vices. The solution advanced by the PRO-TRACT project team consisted of an on-

board computer screen and a haptic joystick. These devices should be set and used in 

order to allow the operator to safely perform critical task. 

When the risk is high, a suggestion is displayed on the screen about how the opera-

tor can mitigate the risk. The suggestion is given in descriptive symbols and icons 

with color coding that corresponds to the risk level and is accompanied by a brief text 

message. Simultaneously, a beep sounds to draw the operator’s attention to the dis-

play. For instance, in the case of a high risk for rollover, the display suggestion would 

most likely be to lower the loader. Simultaneously, a partial automation device would 

intervene and impede certain joystick movements by generating resistance in the 

direction that would raise the loader to an unsafe height. On the other hand, if there is 

less of a risk for rollover, only the visual and auditory warnings would be presented, 

leaving the joystick functions unaffected.  

This solution would require a low R&D cost, given that the main barrier is the cal-

culation of the risk level for rollover or runover. Joysticks for haptic feedback exist on 

the market; the display design doesn’t require significant costs, and the risk parame-

ters would be measured by sensors installed in the vehicle. Several sensor packages 

that would meet this need have been developed for the automobile market.  
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4.3.1   The on Board Computer Screen  

This display is foreseen in the ISO11783 norm. It inform the operator about the status 

and the layout of the vehicle equipment. The display a has a data mask and soft keys. 

The display must allow the operator to build the correct scenario risk evaluation, 

giving him/her useful hints to mitigate the risk. 

4.3.2   The HapticJoystick 

The joystick has four motion possibilities (up/down, left/right) and some buttons. It is 

placed on the operator’s right side. The joystick palys a crucial role, because it is the 

control device of the vehicle equipment and in the most part of dangerous situations it 

is the decisive intervention tool. Its haptic feedback allows the operator which are the 

correct or inadequate manoeuvre.  

5   Conclusion  

Thanks to the hierarchical task analysis and the function allocation methodologies 

operative scenario were traced and matched with design solutions adequate to the de-

tected risk level (rollover vs pedestrian runover) and to the working context (courtyard 

vs field). Thanks to the function allocation activity, designers have at disposal a gen-

eral description of the system behaviour, essential to write the system requirements. 

The proposed methodology allowed us at selecting tasks suitable for partial or total 

automation concerning off-highway vehicle maneuvers.  

The resulting on-board application and risk mitigation system, were formed by: 

• a haptic joystick with force feedback that behaved in different ways depending on 

the current scenario.  

• a visual display providing crucial vehicle information to the operator. 

• a set of rules for risk estimation which define the information provision strategies 

adopted by the visual display and the joystick. 
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Abstract. In this paper the topic of the augmented cognition applied to the driv-
ing task, and specifically to the steering maneuver, is discussed. We analyze 
how the presence of haptic feedback on the steering wheel could help drivers to 
perform a visually-guided task by providing relevant information like vehicle 
speed and trajectory. Starting from these considerations, a Context-Dependant 
Steering Wheel force feedback (CDSW) had been developed, able to provide to 
the driver the most suitable feeling of the vehicle dynamics according to the 
driven context. With a driving simulator the CSWD software had been tested 
twice and then compared with a traditional steering wheel. 

Keywords: adaptive steering wheel, augmented cognition, driver performance, 
force feedback, haptic feedback, lane change. 

1   Introduction 

Driving a car is usually considered a visual-guided task, where drivers are asked to 
couple their visual perception of the context with actions on the vehicle trajectory. 

In the case of steering, drivers should translate their visual perception of vehicle 
speed, position, road geometries and presence of obstacles in steering wheel move-
ments. For a decade researchers [1] have been finding that the presence of haptic 
feedback on the steering wheel could help drivers to perform a visually-guided task 
by providing relevant information like vehicle speed and trajectory. Referring to the 
augmented cognition field, we can assess that when using a haptic assist steering 
wheel rather than a traditional passive steering wheel, drivers are better able to follow 
a reference path and at the same time, they required fewer visual cues [2]. 

The effect of steering torque and steering gain, respectively, on the driver’s feeling, 
can be investigated by using some objective measurement parameters, as showed in 
[3]. The researchers highlight three main conclusions [3]: 

1. “The driver’s good feeling is influenced by two factors, namely the steering torque 
magnitude and steering torque delay to driver’s steer input. Firstly, steering torque 
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magnitude is related to driver’s physical effort, and its optimum value depends on 
driver’s individual physical capability. Secondly, steering torque delay is related to 
driver’s mental effort, where minimum delay is desirable by both drivers. Driver’s 
driving manner is considered to have an influence on driver’s ability to adapt to 
larger steering torque delay”. 

2. “Higher steering gain (smaller overall steering gear ratio) reduces the driver’s 
physical effort in terms of amount of steer angle and steer velocity required to 
complete the lane change task, and thus contributes to driver’s ease of driving”. 

3. “It is assumed that the amount of steering torque desired by the driver remains the 
same for a particular driving task”. 
 

Many studies showed also how performance varied as a function of the type of 
road used in the test (e.g. highway, rural road, urban road – [4]) or the specific driving 
task (e.g. car following, lane change - [5]). 

In more recent years, other studies found that drivers performance could be af-
fected by the specific type of road or force feedback reproduced by the steering wheel 
([6] [7] [8] [9]. This suggests that performances could be improved by reproducing on 
the steering wheel the most suitable force feedback for a specific driving context.  
Some studies showed how adding vehicle behavior feedback (e.g. lateral acceleration, 
yaw rate) on the steering wheel provides steering reactivity torque with maneuverabil-
ity superior to that of a conventional control [7] [8]. 

During one of our latest research [10], six force feedback had been compared 
among three different driving contexts. Results suggested that the effect of the type of 
force feedback in terms of drivers’ performance could depend on the specific context. 

Starting from these findings we developed a Context-Dependant Steering Wheel 
force feedback (CDSW), able to provide to the driver the most suitable feeling of the 
vehicle dynamics according to the driven context. We reproduced CDSW software on 
the haptic steering wheel of a driving simulator; finally, we tested it to evaluate the 
effects on drivers’ performances compared with a traditional steering wheel. 

The experiment conducted in [10] has been repeated in a more recent report [11], 
whose main results will be explained in this paper. In fact, during the last experiment 
authors found that for each context, at least one force feedback algorithm allowed 
drivers to better perform the driving task. 

2   Selection of the Set of Best Force-Feedback Algorithms 

The force-feedback algorithms used for the development of the CDSW and the  
correspondent scenario where they are activated had been selected from a previous 
study [11]. 

In this work a driving experiment has been conducted on eighteen participants, di-
vided into six groups (3 participants/group) and each group was asked to drive using a 
specific force-feedback reproduced by a haptic steering wheel.  

• Three force-feedback based on a steering angle (two linear and one parabolic simu-
lating the self aligning moment of the tyre); 

• three based on the vehicle dynamic (speed, lateral acceleration and yaw rate). 
Three different scenarios were used: urban road, rural road and freeway.  
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Force-feedback were reproduced by a haptic steering wheel installed on a driving 
simulator. By means of HFC (High Frequency Component of steering angle – [12] 
drivers’ performance has been evaluated 

The ANOVA (ANalysis of VAriance) with scenario as within-subject variable and 
FF dynamic as between-subjects variable showed a main effect of scenario 
(p<.0.001). The effect of force-feedback significantly interacted with scenario 
(p<0.001). In particular, lower values of HCF have been founded in the following 
conditions: 

• freeway: force feedback proportional to tyres self alignment force, simulated with a 
proportional to steering angle function with a coefficient of  0.052 deg/Nm; 

• urban road: like highway but with a coefficient of  0.285 deg/Nm; 
• rural road: proportional to vehicle lateral acceleration. 

3   Context Dependant Steering Wheel Design 

We implemented the best performing algorithms into our Context-Dependant Steering 
Wheel force feedback (CDSW) software. We reproduced the CDSW with Matlab 
Simulink and Stateflow1 because this software could be easily interfaced with the 
haptic steering wheel of the driving simulator we used to test its efficacy. 

Information on vehicle dynamic needed to compute each algorithm were available 
on the software of the simulator, as well as data needed to recognized the context. 

 

 
Fig. 1. CDSW implemented on the driving simulator 

While driving, a GPS (or the most suitable navigation system) identifies the sce-
nario (e.g. freeway); then, according to the type of FF and scenario, a steering control 
unit selects and reproduces the pre-loaded best-performing FF. This solution could  
be easily implemented on a Steer-By-Wire (SBW) system, that is a steering wheel 
                                                           
1 www.mathworks.com 
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electronically-controlled, and without mechanical junctions between the front wheels 
and the steering control. 

The CDSW also includes a smooth transition function (see the bottom of the figure 
below) from a force feedback algorithm (FF1, FF2, FF3) to the next expected for the 
recognized context the driver is going to drive. This strategy provides a linear interpo-
lation between two consecutive algorithms which enable the CDSW to move to the 
next expected force feedback algorithm in a defined distance interval. The strategy 
has been evaluated by a team of developer and ergonomic experts before implement-
ing it on the final system. 

 

 

Fig. 2. Interpolation between consecutive Force-Feedback (FF) 

The final system represents an adaptive steering wheel that dynamically and 
smoothly changes the force feedback when the driver move from a context to another. 
The aim of this device is to improve drivers’ performance and perception of the driv-
ing task, by providing the most relevant information on vehicle dynamic drivers need 
in a specific context.  

4   Context Dependant Steering Wheel Test on Driving Simulator 

The purpose of the previous test was to evaluate whether driving performance could 
be improved by six different-steering Force-Feedback (FF) dynamics in different 
driving scenarios. 

The test described in this work aimed to assess the performances of the drivers 
with and without the use of the CDSW in a driving context that changes, in terms of 
road scenario. 

Our objective was to confirm that providing a force-feedback based on information 
from vehicle dynamic (i.e. angle of steering and lateral acceleration) can improve driv-
ers’ behaviour in the lateral control of the car, taking into account. As a recent study 

Urban Rural Freeway 

FF1 

FF2 

FF3 
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[2] showed by a user test on a fixed-base driving simulator, a path following task can 
be improved by using a motorized steering wheel. The test results indicated that the 
haptic assist through the steering wheel improves lane keeping by at least 30% reduces 
visual demand by 29% (p<0.0001) and improves reaction time by 18 ms (p=0.0009). 

4.1   Study Protocol 

Twelve participants in the age between 22 and 42 years old with a 4 year driving 
experience have been involved in the preliminary evaluation of the CDSW efficacy in 
a test  driving . 

We asked drivers to drive for 15 minutes in a scenario with three consecutive driv-
ing context, respectively freeway, rural and urban road. Six drivers drove with a tradi-
tional steering wheel force feedback (control group); the other six drove with the 
CDSW system.  

Performance has been evaluated by mean of indicators previously used in [6], [10], 
[11], based on vehicle lateral deviation and steering wheel angle variability, namely: 

• Standard deviation of Steering Angle; 
• Standard deviation of Time To line Crossing [12]; 
• High Frequency Component of steering angle. 

Data needed to the computation of each indicator have been recorded by the 
simulator during the experiment at a frequency of 20Hz.  

4.2   Experiment Results 

Driver performance was submitted to an analysis of variance (ANOVA) with scenario 
as within-subject variable and drivers’ group as between-subjects variable. 

The analysis confirmed the main effect on scenario as showed in [11] for all the 
indicators, with a significance different for each indicator. Furthermore, it was also 
found a significant difference between the two groups, specifically pointing in favor 
of the CDSW. The following table shows the results concerning Standard Deviation 
of steering angle. 

Table 1. p-values of the Standard Deviation of steering angle, with reference to the scenario 
and drivers' group 

P - scenario P – drivers’ group 

0.0194  0.0106 

The following figure shows the observed mean values of Standard Deviation of 
steering angle of each participant belonging to the different groups. 

The left side of the figure represents the between-subjects analysis conducted with 
reference to the group factor, while in the right side the interaction between group and 
scenario is considered. Both conditions highlight the differences in performance driv-
ing with and without the CDSW.  
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Fig. 3.  Drivers' group performances measured with Standard Deviation of steering angle 

5   Conclusions 

Both the test had confirmed the hypothesis of this work: the driving performance 
significantly improved when the system activated the FF model. The model is particu-
larly effective in the urban road. These results had been evaluated considering also 
that the transition strategy among force-feedback models was not intrusive in the 
vehicle control. 

Evaluating the results of our test referring to the augmented cognition field, we 
may agree that observations confirm the essential role of coherent haptic information 
for driving real cars and simulators, and also suggest the existence of driver adapta-
tion mechanisms in steering control. As other researchers stated, driver behavior  
adaptation can occur efficiently for a range of steering force feedback configurations, 
but this range is limited by certain acceptability limits [6]. 

We interpreted our results comparing them with data arose from other studies in 
the literature [13] and the conclusions suggested that, using an intelligent, haptic 
steering wheel rather than a traditional passive steering wheel, drivers are better able 
to closely follow a reference path while requiring fewer visual cues.  
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AAbstract.  We studied how spatial locations and luminance affect finding and 

re-finding information in a desktop environment. In an experiment conducted 

with computer icons, fixed locations led to more frequent accesses to icons 

while change of luminance led to worse recall of icon titles and locations. In an 

analysis of icon access transition, a sequential search pattern was identified in 

earlier sessions, which suggests that participants were minimizing efforts in ex-

ternal search and were not utilizing internal memory of titles and locations yet. 

In later sessions, icon accesses were more focused to information directly rele-

vant to search tasks as participants started using titles and locations for re-

finding icons. Results are consistent with the notion that information search be-

havior is adaptive to the cost-benefit structure of the interface, and search 

strategies are adaptive to different external representations of icons. Results also 

suggest that both external representations and human information processes are 

critical in determining the effectiveness of different GUI designs. 

Keywords: Adaptive human behavior, re-finding information, spatial memory, 

interface design. 

1   Introduction 

Imagine you are a real estate agent who recommends apartments for your clients. You 

have a wide range of information (from monthly rent to neighborhood safety) filed on 

your computer desktop. How would you utilize your distributed information resources 

(e.g., electronic documents) to make recommendations for different clients across 

time? Indeed, it is becoming more common that users need to perform routine,  

comprehensive information search that requires finding, re-finding, and integrating 

information from multiple sources depending on the dynamic needs of information 

(e.g. client’s requests). Finding and re-finding information becomes a difficult task 

especially when we don’t know where to look for the right information. The current 

study was motivated by the realization that re-finding information has not been fully 

studied in the context of computer icon search in a desktop environment.  

1.1   Use of Contextual Information in Information Search 

Studies suggest that people take advantage of contextual information they have about 

their information target when looking for electronic information [1, 7]. Especially, 



 Where Is My Stuff? Augmenting Finding and Re-finding Information 59 

information re-finding process relies heavily on the use of contextual information [7]. 

In GUIs, computer icons not only can be used to associate with information source, 

but also can convey interpretive meaning with slight alteration of visual features of 

icons [9, 15]. Therefore, contextual information can be represented as characteristics 

of interface objects in GUI so that users can easily pick up this information to guide 

them to find the relevant information. For example, if contextual information such as 

when and how many times file icons were previously accessed is visually represented 

(e.g. using varied luminance levels), users may find it easier to re-find information.  

Previous findings on icon search process make this claim more convincing. Icon 

search is known to consist of the two processes: searching the graphic picture of the 

icon and searching the text label representing the file name [9]. These two processes 

of icon search suggest the efficacy of combining bottom-up visual information proc-

essing and top-down contextual information processing to aid re-finding icons. 

1.2   Spatial Memory and Locations of File Icons 

Studies [8, 19] suggest that, as a by-product of interaction with interface objects, 

learning of the locations of these objects is often incidental and effortless. Ehret [8] 

claimed that location learning is not only pervasive, but also subject to the cost  

structure of the interface. When search cost was increased, learning and reliance on 

location knowledge increased as well. However, the efficacy of a spatially oriented 

approach to object reference in a computing system, whether this approach is used 

alone or in conjunction with symbolic reference, may be severely impaired [17]. 

1.3   Luminance Changes and History of Uses 

The metaphor of light has been used as a method to implicitly convey information by 

bridging physical and digital spaces [16]. Luminance of icons seems to be an intuitive 

feature to visually represent contextual information (history of use). It is less disrup-

tive compared with other features such as color, size, or location of icons which may 

involve conflicts with long-term memory. In the Windows operating systems, for 

example, an icon selected becomes highlighted which gives an implicit but intuitive 

indication that the icon has been just selected. The assumption is that representing 

history of use by differences in luminance will facilitate re-finding of the icon in the 

future. However, how exactly this representation may interact with the adaptive proc-

esses of the user remains unclear.  

1.4   The Theory of Soft Constraints  

We hypothesized that changes in external representations will induce adaptive shift in 

processing strategies. This adaptive perspective casts the interplay between percep-

tual-motor and memory processes as an optimization process that maximizes the ex-

pected utility of the human information processing system by balancing the cost of 

internal memory retrieval with the cost of external search [10, 11, 12]. Indeed, re-

search has found that people might ignore perfect knowledge in-the-world (KIW) for 

imperfect knowledge in-the-head (KIH) when information access cost increases, 

which induces a new set of soft constraints to the dynamic interplays between internal 

memory and external search processes [13, 14]. The current prediction is that more 
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contextual information will lower the cost of external search, thus encouraging more 

external search strategies that exploit this interface feature (KIW); and the lack of 

contextual information will encourage relatively less costly memory-based strategies 

that rely on internal memory (KIH). An experiment was designed to directly test this 

prediction. 

2   Method 

2.1   Participants and Design 

64 participants recruited from the University of Illinois community were randomly 

assigned to one of the four conditions in a 2x2 between-participant design (Table 1). 

Participants in each condition were given an interface with file icons with or without 

the luminance and location features. In the Control and Spatial Memory conditions, 

luminance of icons was identical and did not change throughout the experiment. In 

the Control condition, locations of file icons were randomly changed after participants 

opened or closed an icon. In the Spatial Memory condition, locations of file icons 

were fixed. In the Luminance and Luminance-Spatial Memory conditions, luminance 

of icons was initially identical. Over time, however, icons accessed more recently or 

frequently became brighter than the others. In the Luminance condition, locations of 

file icons were randomly changed, but in the Luminance-Spatial Memory condition, 

locations of icons were fixed.  

Table 1. Experiment Design 

 Randomized Location Fixed Location 

No Luminance changes Control (C) Spatial Memory (SM) 

With Luminance changes Luminance (L) 
Luminance-Spatial Memory 

(L-SM) 

2.2   Task 

All participants were given the same set of eight information search tasks. Each par-

ticipant was instructed to imagine that he or she were a real estate agent, and was 

asked to recommend an apartment that met different criteria provided by a different 

client in each of the eight tasks. Participants were instructed to use any information 

available in the files. There was a time limit of seven minutes for each task. However, 

accuracy was emphasized over speed in order to encourage more thorough informa-

tion search. All participants finished the tasks within the time limit. 

Search tasks (Fig. 1) were designed such that participants had to make multiple ac-

cesses to icons to find, re-find, and integrate information. For example, participants 

had to view multiple files to figure out the price category (upper, medium, lower) of a 

certain apartment. Participants were free to access any of the icons in any order as 

many times as they wanted.  
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Fig. 1. Example of information search task 

After the search tasks, the interface was removed and all participants were given 

the icon-title-recall test which asked them to write down titles of icons that they saw 

during the experiment. Then, only participants in the Spatial Memory and the Lumi-

nance-Spatial Memory conditions (with fixed-location icons) were also given the 

icon-location-recall test. Participants were given titles of icons and were asked to 

recall where exactly each of the icons was located in the interface by filling out each 

cell in the 4x5 grid (as in Fig. 2) with the matching title. 

2.3   Interface 

The interface (Fig. 2) simulated a computer desktop with 20 file icons (grey squares 

in the top left panel) in the black background. Each icon had a short title with the first 

four letters of the main content of a file (e.g. ‘Garf’ for a file about ‘Garfield apart-

ment’). We used this naming convention to equalize reliance on icon titles to search. 

The short titles were intended to minimize effects of differences in working memory 

capacity (longer names would be more taxing for lower-capacity participants).  

Contents of the files varied from more relevant (e.g. apartment) to less relevant (e.g. 

neighborhood) to irrelevant information (e.g. football statistics) in terms of how help-

ful the given information is to find a correct answer. However, participants had to 

figure out relative importance of files by exploring icons.  

When an icon was double-clicked, the content of the selected file would be dis-

played in the right panel. Participants had to close the current file in order to open the 

other file since only one file could be displayed at a time. The search task was dis-

played one at a time in the bottom left panel. Participants entered the name of the 

apartment that they recommend for each client and clicked “enter” button to finish 

that task. Participants repeated the same procedure (with different search tasks) until 

they finished all eight tasks.   

Luminance of icons was manipulated to reflect contextual information (recency 

and frequency) of icon access. We set five levels of luminance from the brightest to 

the darkest. In the very beginning of the experiment, luminance of all icons was iden-

tical (the darkest luminance level) for all conditions. In the L and L-SM conditions, 

however, luminance of icons started changing once the experiment began and partici-

pants started accessing icons. Base-level activation values in ACT-R cognitive archi-

tecture were calculated for each of the 20 icons, and were normalized and categorized 

to one of the five luminance levels every time a participant opened or closed a file. To 

participants’ perspective, whenever an icon access was made, luminance level of each 

of all icons (including the one just accessed) changed (some became brighter while 

others became darker depending on when and how often it was accessed).  
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Fig. 2. Interface (left) and close-up view of 20 icons with luminance feature (right) 

The use of recency and frequency as contextual information is relevant to the pre-

vious findings on human memory in rational approaches. In rational perspectives, 

sensitivity of human memory to frequency and recency values is adaptive since they 

predict the likelihood of encountering the same items in the future, which can be 

treated as a measure of the memory’s future usefulness [5, 6]. In the subsymbolic 

level of ACT-R cognitive architecture, activation value (1) of a chunk (unit of de-

clarative memory) reflects the degree to which past experience and current context 

indicate that chunk will be useful at any particular moment. Particularly, base-level 

activation (2) of chunk reflects the frequency (n) and recency (t) of its previous use. 

We focused on recency and frequency of information use (icon access) as predicting 

measure of future usefulness of information and provided them through luminance 

feature to support re-finding information. 
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n: The number of presentations for chunk i. 
tj: The time since the jth presentation. 
d: The decay parameter 
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3   Results 

A number of dependent measures were analyzed to measure performance as well as 

process. Accuracies were measured by assigning scores (from 1 to 4) depending on 

how close the answer was to the ‘ideal’ answer. Search times measured the total time 

to finish all eight tasks. We did not find significant difference between conditions in 

accuracies and average search times, which was probably due to a ceiling effect.  

3.1   Access to Knowledge In-the-World 

Despite the lack of significant difference in accuracies and search times, we found 

interesting differences in the search processes between conditions. Fig. 3 shows the  
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Fig. 3. Frequency of icon access (left) and result of icon-title-recall test (right) 

average number of icon accesses per task. Participants with fixed-location icons (SM 

and L-SM condition) made significantly more accesses (F (1, 60) = 4.641, p = .035) 

than participants with randomized-location icons did. The effect of luminance was not 

significant.  

The result was consistent with our prediction, which assumes that as the cost of ac-

cessing perfect knowledge in-the-world (KIW) increases, the cognitive system may 

satisfice with imperfect knowledge in-the-head (KIH). Randomizing locations (in the 

Control and Luminance conditions) increased external search costs, thus leading to 

fewer accesses to icons.  

3.2   Access to Knowledge In-the-Head 

Increased external search costs also implied that participants would rely more on 

internal memory. In order to test this, we conducted separate ANOVAs on the results 

from the memory tests of icon titles and locations across conditions. In the icon-title-

recall test (Fig. 3), there was a significant main effect of luminance (F(1, 58) = 4.560, 

p = .037) as well as location (F(1, 58) = 3.856, p = .054). Participants with the lumi-

nance feature performed worse in recalling titles of the icons, suggesting that they 

relied less on titles during search. Similarly, participants with fixed-location icons 

performed worse than those with randomized-location icons. The interaction between 

luminance and location was not significant.  

Results were again consistent with our predictions. Participants without the lumi-

nance feature performed better on the icon-title-recall test because remembering titles 

helped them to re-find the icons. When icon locations were randomly changed, they 

had to rely more on memory of the titles because the location cues were not available. 

On the other hand, the luminance feature has provided a useful cue for identification 

of target icons in addition to the titles. Participants with luminance features recalled 

fewer titles when location cues were not available (comparing participants in the C 

and L conditions) and when location cues were available (comparing participants in 

the SM and L-SM conditions). In either case, the presence of the luminance cues 

induced less reliance on the titles to re-find the icons.  
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The results of the icon-location-recall test provided further support to this claim. 

Participants in the SM condition recalled the locations significantly better than par-

ticipants in the L-SM condition (MSM = 22.75, ML-SM = 31.3125, p = .035). Lower 

scores mean better performance (the provided answer was either correct or closer to 

the correct location) in the test. Given that participants in the SM and L-SM condi-

tions showed similar frequencies of icon accesses (Fig. 3), better recall of icon loca-

tions in the SM condition (no luminance) could be attributed to participants’ higher 

reliance on spatial memory. Participants in the L-SM condition (with luminance), on 

the other hand, were worse in recall of icon locations, which could be attributed to 

their lower reliance on spatial memory. It is possible that the luminance feature, when 

combined with spatial memory, led to less precise encoding of spatial memory (i.e., 

remembering that the icon is somewhere at the top of the screen rather than remem-

bering its exact location). 

A notable point is that participants were not informed that they would be tested on 

either their memory of titles or locations of icons, and thus there was no reason to 

believe that they would have made any intentional effort to memorize them. There-

fore, the scores in both tests reflected the strategic choice of utilizing knowledge-in-

the-head vs. knowledge-in-the-world, as it emerged from the process of natural, dy-

namic interactions with the different interfaces.   

3.3   Transition of Icon Access 

In addition to the above mentioned findings, there were a couple of findings from the 

analysis of icon access transitions which was designed to identify patterns of search 

strategies. Transition data (Table 2) shows how a current icon access predicts a next 

icon access. For example, the number 52 in cell (1, 2) (in the first row and the second 

column in the table) means there were 52 times accesses to d2 (icon2) right after ac-

cesses to d1 (icon1) when access frequencies were aggregated for all participants in 

the SM condition. It also means that many participants accessed d1 located in the top 

left position in the grid, and then they accessed d2 which was located right next to d1.  

A couple of interesting patterns were observed. First, in both the SM and L-SM 

conditions with fixed location icons, cells on the diagonal have relatively larger num-

bers (numbers marked bold), which suggests that participants did sequential search by 

accessing icons from top left toward bottom right (d1-d2-d3-…-d19-d20). This se-

quential search seems to be a strategy to minimize perceptual-motor efforts in search 

and to learn titles or locations of icons by accessing each one of them at a time. Se-

quential search might have been a strategy to easily identify icons already accessed 

and avoid redundant accesses. 

This strategy might have been especially useful in the earlier sessions (task 1-4) 

when titles and locations were not fully encoded enough to be easily retrieved. How-

ever, as learning of titles and locations occurred over time, it is likely that participants 

were able to retrieve and use them for search in later sessions (task 5-8) of the ex-

periment.  

To further investigate the changes on the sequential search pattern over time,  

we split the table of the SM condition into two parts: part 1 (earlier sessions) and  

part 2 (later sessions). As expected, the sequential search pattern was more apparent  
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Table 2. Icon locations in the interface (left) and transition data of the SM condition (right) 

  

 
in part 1 (40.49%) than in part 2 (24.58%). Although the sequential search pattern still 

appeared in part 2 possibly due to the fact that some of the ‘more relevant’ files were 

next to each other and due to this proximity, icon accesses might have been still se-

quential even when participants were using other strategies. The similar pattern was 

observed for the L-SM condition. 

We were also interested in icon accesses made to the more relevant files versus the 

less relevant files over time to verify that participants were using the features of icons 

effectively in search. Patterns of transition data seem to support this idea. For in-

stance, in the C condition with random-location icons, icon accesses were suboptimal 

in the earlier sessions. Only 46.42% of the total icon accesses were made to the files 

which contained information more directly relevant to correct answers. However, in 

the later sessions, 63.51% (17% increases) of the total icon accesses were made to 

those more relevant files. This pattern suggests that participants optimized icon ac-

cesses over time by utilizing features of icons in the absence of location cue. Al-

though it does not directly show exactly what features they were using for search, the 

pattern of focused accesses is clear enough to support the optimization of information 

search over the sessions.  

In addition, as similar as in the SM condition, participants initially made more fre-

quent accesses to the icons in the top left area (when the same data was coded based 

on location) in the earlier sessions (19.70%). It seems that participants were learning 

the titles while minimizing perceptual-motor efforts (by accessing particular locations 

redundantly) until the titles of icons were encoded enough to be retrieved.  This pat-

tern was weakened in the later sessions (9.33%), suggesting that they started using 

titles of icons more actively over time. 

4   Discussions 

The results from the experiment were consistent with the theory of soft constraints, 

which was derived based on the perspective that human information processing is 

highly adaptive to the characteristics of the external environment. Randomized loca-

tions had increased the cost of accessing knowledge in-the-world, and thus induced a 
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shift to more accesses to knowledge in-the-head (more memory encoding and re-

trieval of icon titles and locations). Fixed locations, on the other hand, had reduced 

cost of accessing knowledge in-the-world, and thus induced a shift to fewer accesses 

to knowledge in-the-head. Similarly, the luminance feature had reduced the cost of 

accessing knowledge in-the-world, and resulted in less reliance on knowledge in-the-

head. Results therefore supported the notion that presentation of contextual informa-

tion not only led to different external representations of information, but also led to 

changes in the processes of the users. 

The fact that participants in the L-SM condition, with significantly less episodic 

and spatial memory encoding, could attain comparable search performance is worth 

noting. The luminance feature apparently guided re-finding of icons by highlighting 

and providing contextual information. Results highlight the importance of integrating 

bottom-up visual features and top-down contextual information to augment knowl-

edge in-the-head. Participants without luminance and/or location cues compensated 

for the poor interface support by using more of their memory of titles and location. It 

was therefore possible that the luminance feature could reduce the memory load, but 

this hypothesis apparently needs to be further tested.  

One implication of this study is that representations and processes are interde-

pendent and are both essential for interface design. Given different interfaces, partici-

pants could adapt their strategies (processes) to attain the same level of performance. 

It is therefore superficial to argue that a particular interface is a good representation 

without carefully examining also the processes that interact with that representation. 

The study also shows that systematic testing and understanding of how people utilize 

contextual information (e.g. recency, frequency, types of contents) is critical in decid-

ing what are their best representations (e.g. luminance, colors, etc), and when these 

representations are best in what situations (e.g. short-term, long-term, intermittent, 

persistent use). 
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Abstract. We introduce a support system concept that offers both work-

centered and human-aware support for operators in tactical command and con-

trol environments. The support system augments the cognitive capabilities of 

the operator by offering instant, personalized task and work support. The opera-

tor obtains support by entering into a collaborative agreement with support 

agents. Such an agreement creates opportunities to establish adaptive capabili-

ties and human-aware support features. We describe the concept in and propose 

an experimental design to evaluate its effectiveness in tactical environments. 

1   Introduction 

Tactical command and control environments present demanding challenges to opera-

tors because of their task complexity, time-criticality and the risk associated with poor 

decisions. With the increasing complexity of defense missions and the ongoing pres-

sure to reduce manning in defense environments, operators will have more difficulty 

in handling their tasks than before. Operators will continue to face new challenges in 

properly focusing attention, keeping correct situation awareness and preventing over-

load situations. Conventional technology-driven support systems are not capable and 

adaptive enough to fulfill such support demands. There is a need for novel support 

concepts that focus on augmenting the operator’s cognitive capabilities. 

Support systems for tactical environments come in many flavors, but many recent 

developments show support systems that resemble active companions rather than 

conventional decision aids. The key feature of such companions is adaptivity. Adap-

tive capabilities for support systems come in two varieties: (a) adaptivity based on the 

behavior and performance of the human operator, and (b) adaptivity based on the state 

of the environment. The first variety could be called human-aware adaptivity, because 

it requires the support system to have a certain degree of awareness about the behav-

ior and motivations of the human operator. The second variety could be called work-

centered adaptivity, because it revolves about events in the environment, and thus 

mainly requires knowledge about the work domain. Both types of adaptivity result in 

changes in the interaction between the human operator and his support systems. This 

includes every option from a change in notification method to a change in the division 
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of labor between operator and support system. We believe that a support system 

should include both types of adaptivity, and be readily configurable, so that the opera-

tor can benefit from adaptive capabilities at the right moment, and in the right form.  

We propose an support system based on work on human aware agents (Van 

Maanen, 2008), adaptive autonomy (Van de Vecht, 2007), and work-centered support 

systems (Scott, 2005), that specifically targets the attention allocation problem and 

task overload issue of tactical officers. The concept gives the officer options to ar-

range and configure support capabilities at will in the form of autonomous software 

agents that act as versatile companions. It is the responsibility of the human user to 

instantiate support agents, and to tune them to the task at hand. By making it the re-

sponsibility of the operator to create his own support functions, we lessen the possi-

bility of ‘automation surprises’ (Sarter, 1997), and make the operator better aware of 

his system surroundings, goals, and states.  

1.1   Work-Centered Support Systems 

Work-centered support system design uses methods from cognitive system engineer-

ing (cognitive work and task analysis, work-centered design) to understand and  

support operators in complex work environments. It adds agent technology to create 

practical support tools that help to reduce work complexity and keep the user in con-

trol of his work (Scott, 2005). Traditional user interface design is primarily focused 

on the capabilities of the system, and forms the interface so that system features are as 

accessible as possible. Work-centered support system design seeks to shape the work-

ing environment in such a way that it agrees with the user’s work, and make relation-

ships between elements, constraints and affordances in the environment easier to  

observe. Support systems built on this premise are context sensitive, easily adaptable 

and tuned to the antics and ontologies of the human way of working.  

A good example of a work-centered support system is the work by Eggleston on 

support agents for weather forecasters in a military airlift organization (Scott, 2002). 

Their design allows operators to create agents instantly for various types of work sup-

port. For example, operators can use visual signs to instruct watch agents to monitor 

certain events on the interface, such as the formation of thunderstorms. Other types of 

agents in the system monitor external information sources and manage the presenta-

tion of information to the user. By letting the operator self-initiate support agents and 

providing a high level of observability and directability of automation behavior, there 

is less chance of automation surprises, which makes the system easier to accept.  

1.2   Human-Aware Support Systems 

Van Maanen (2008) introduces a generic human attention-based task allocation 

(HABTA) agent component for tactical command and control environments. When 

the complexity of the in- and external environment increases, so will the information 

volumes for navigation, system monitoring, and tactical tasks (Grootjen, 2006). With 

expanding information volumes, keeping a proper attention focus becomes a challeng-

ing task, especially for novice operators and in situations where there is a need for fre-

quent attention switches between tasks or objects. 
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Human-aware support agents augment the meta-cognitive capabilities of human 

operators. A HABTA-component is based on two cognitive models: one that de-

scribes the current allocation of a human’s attention and one that prescribes the way 

his attention should be allocated. If there is a discrepancy between the outputs of both 

models, HABTA reallocates the tasks between the human and the agent. The 

HABTA-based agent presented in (Van Maanen, 2008) is able to monitor the com-

plete environment, and when the agent decides that human attention is needed within 

a specific area, it draws the attention of the human operator. In other words, it has a 

high level of human-aware adaptivity (directs human attention), but a low level of 

work-centered adaptivity (does not perform the task itself). 

1.3   Adaptive Autonomy 

Adaptivity is an often-sought feature of support systems. Most recent work in this 

field use autonomous agents to model adaptive capabilities. Autonomy is a defining 

characteristic of intelligent agents (Jennings, 2000) and it usually interpreted as the 

amount of freedom an agent has from intervention by other agents, including humans 

(Barber, 2001). An agent heavily influenced in its decision making by other agents 

displays obedient behavior. An agent that does not allow any external influence in its 

decision making is maximally independent. By altering the amount of external influ-

ences on its decision making, an agent can self-adapt its autonomy, and effectively 

display adaptive autonomy. In this fashion, agents can actively select the level of 

autonomy that best fits the circumstances and their own objectives. Van der Vecht 

(2007) developed a model that implements this perception of autonomy by means of 

reasoning rules that decide on adoption or rejection of certain influences.  

 

Fig. 1. Illustration how influence control can affect agent behaviour (Van der Vecht, 2007) 

By giving the agent self-control over these rules, the agent can filter out certain events 

and communications and consequently adjust his own level of autonomy.  

The approach of Van der Vecht to adaptive autonomy offers interesting perspec-

tives for use in support system design, because it provides a comprehensive way to 

represent the rules that produce adaptive behavior. It also returns the responsibility for 

adaptive behavior itself to the agent, while giving the operator straightforward means 

to convey preferences (i.e. by manipulating the influence control settings of the sup-

port agent so that the boundaries of the autonomy of the agent become clear). Van der 

Vecht uses social contracts, as proposed in the OperA framework (Dignum, 2004), to 

convey organizational knowledge into the influence control rules. Upon entering an 

organization, the agent signs a contract that specifies its role and hierarchical relations 
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to other actors. Similarly, we propose to use interaction contracts between operator 

and support agent to specify adaptive behaviors in a support setting.  

2   Combining Work-Centered and Human-Aware Adaptivity 

We combine elements from work-centered design, human-aware support systems and 

adaptive autonomy to form a novel approach to tactical C2 support system design. 

Our basic stance is that the operator should be responsible for creating his own set of 

support agents. The operator creates agents by means of tasking descriptions and  

interaction contracts. These instructions give the agents a basis for their behavior.  

Because the operator actively creates an agent for a specific task, and explicitly com-

municates his expectations about the agent’s behavior, it will be easier for the opera-

tor to remain in control over his suite of support tools.  

There are two types of agents that the operator can create, namely work-centered 

agents and human-aware agents. Work-centered agents deal with events in the work 

domain, such as the monitoring of a certain geographical map for dangerous events. 

Human-aware agents deal with the meta-cognitive aspects of the operator, such as 

workload management and attention strategies. Most human-aware tasks will require 

a normative model for assessing the operators’ state or actions. Therefore, the use of 

human-aware task agents will often give rise to the use of work-centered agents. 

Jointly, human-aware task agents and work-centered task agents make it possible to 

create comparative support features, such as human attention assessment. Figure 2 

shows the interactions between user and agents.  

 

Fig. 2. Interactions between the operator, human-aware agents and work-centered agents 

2.1   Creating Support Agents 

The creation of support agents consists of three steps for the operator: defining the 

support task, defining the interaction, and instantiating the agent (see Figure 3). In 

the first step, the operator expresses a functional task description for the support 

agent. This description includes essential aspects such as objectives, start- and stop-

criteria, and pre- and post-conditions. How the operator actually communicates this 



72 M. Neef et al. 

tasking description is of less importance, as long as the process uses visualizations 

and terms from the work-domain itself. Tactical C2 officers usually have a map-based 

work environment, and most of their tasks have geographical attributes (‘monitor this 

area’, ‘follow this track’). It would make sense to use a tasking method that uses ob-

jects and terms from that environment, which seamlessly integrates with the opera-

tors’ own way of working. For example, for a work-centered agent, the operator could 

mark out an area using his input device, and make a selection from a predefined set of 

typical support tasks (e.g. ‘monitor this area for suspect tracks’, see Table 1). This 

would be a straightforward manner for the operator to request help, without having to 

leave his work domain to enter a ‘programming process’. On the side of the agent, the 

visual tasking would be translated in a set of actions and pre- and post-conditions.  

 

Fig. 3. Definition and instantiation of support agents 

The second part of the agent creation process deals with defining the interaction 

between operator and support agent by means of an interaction contract. The interac-

tion contract defines the desired behavior of the agent towards the operator. It delimits 

the extent of its autonomy (in how far the agent can take control of its own behavior), 

it defines communication requirements towards the operator (what should the agent 

communicate and under which conditions), and sets collaborative aspects (what is the 

division of labor between agent and operator). It defines the degree of autonomy that 

the agent is granted, and states in how far, and under which conditions the agents may 

perform its task independently from the operator. The interaction contract describes 

per task, when it is permitted. For example, if the agent has been instructed to monitor 

an area and act upon certain events, then the interaction contract may specify whether 

the operator needs to be consulted before acting. In this case the contract can contain 

conditions related to the agent’s awareness of the user’s task execution of current at-

tention division and based on these conditions determines either to interrupt the user, 

wait until a more appropriate moment, or execute his task anyway. In the tasking de-

scription, this actually sets the pre-condition.  

The support agents use a reasoning model to decide on their behavior. In this 

model (Van der Vecht, 2007) there is a distinction between ‘influence control’ and 

‘decision making’ (see figure 2). The autonomy of an agent is determined by the  
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Table 1. Examples of tasking and interactions descriptions in pseudo code  

Tasking description (work-centered task) 

task  Monitor (area) for contacts 

type work-centered 

agent WCA_1 

subtasks MONITOR (area) 
CLASSIFY (object) 

REACT (object) 

INFORM (actor, form, status) 

observe area 
classify object  

activate countermeasures 

provide information 

rules MONITOR (area) for contacts 

IF status(contact) = new, THEN CLASSIFY (contact) 
IF status(contact) = suspect THEN REACT (contact) 

preconditions main: IF operator permission THEN do (main_task) 

for all subtasks: 

interpret interaction contract 

determine permission and information requirement 

 
Tasking description (human-aware task) 

task  Attention support (area) 

type human-aware 

agent HAA_1 

subtasks OBSERVE (actor) 
COMPARE (actor1, actor2) 

ASSIGN (objects, actors) 

INFORM (actor, form, status) 

observe actions of actor 
compare actions of actors 

allocate actions to actor 

provide information 

rules O1 = OBSERVE (operator) 

O2 = OBSERVE (WCA_1) 
IF difference (O1, O2) > threshold THEN  

INFORM (operator, form, status) 

ASSIGN (contacts, WCA_1) 

preconditions main: IF operator permission THEN do (main_task) 

for all subtasks: 
interpret interaction contract 

determine conditions and information requirements 

 
Interaction description 

parties operator, WCA_1 

task Monitor (area) for contacts 

rules relevant trigger: workload 

MONITOR: allowed(agent, MONITOR) 

CLASSIFY: allowed(agent, CLASSIFY)  
IF status(contact) = suspect THEN 

required(agent, INFORM (suspect), warning) 

REACT: conditional 

IF workload (operator) > threshold2 THEN  
allowed(agent, REACT) 

required(agent, INFORM (operator, notification, action) 

IF workload (operator) > threshold1 THEN 

required(agent, INFORM (operator, warning, workload) 

amount of influence that other actors have on the agent’s decision making. The influ-

ence-control function actively regulates which events and commands reach the deci-

sion-making process. It filters out those external events that should not influence the 

decision making, and thus it indirectly controls the agent’s behavior. Similarly, the in-

fluence-control function can adapt the agent’s behavior by altering its settings. For 

example, if the agent should take the workload of the operator into account in its deci-

sion making process (human-awareness), the influence control rules can be adjusted 

so that cues pertaining to the state of the operator are admitted to the agent. 

Table 2 show examples of rules that govern the influence control. If the former part 

of the rule (the head) of the rule agrees with the condition (the guard), then the latter 

part (the body) is performed. Adding a ‘goal’ boils down to obliging the agent to  
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Table 2. Three examples of reasoning rules for setting influence control  

‘Whenever status-suspect then agent is obliged to do inform-operator-about-status’ 
observation( status-suspect ) å TRUE | AddGoal( send( operator, inform, new-suspect-contact)) 

 

‘Whenever workload-high then agent is permitted to do propose-operator-contact-takeover’ 
observation( workload-high ) å TRUE | AddBelief( permitted( propose-operator-contact-takeover)) 

 

‘Whenever takeover-request from operator then agent is obliged to do accept-request’ 
message( operator, request, raise-support-level ) å TRUE | AddGoal( takeover(Task) ) 

perform a certain action. Adding a ‘belief’ gives the agent a notion of permissible ac-

tions. By giving the agents simple rules like these, the operator can communicate his 

preferences, and easily change agent behavior. 

3   Experimental Validation Strategy 

In this section, we describe an experimental design for a first-order validation of the 

concept. We draw inspiration from earlier work on active support systems such as the 

TANDEM experiments in the TADMUS project (Sycara, 2004), and the aforemen-

tioned studies on HABTA-based agents (Van Maanen, 2008), and propose an experi-

mental setting in which we evaluate the operator performance under different satura-

tion conditions. When stressed enough, the attention of the operator will become more 

and more saturated and will need support to achieve his objectives.  

Fig. 4. Left: Task sequence in the experiment. Right: Basic scenario environment layout 

We propose a common tactical scenario: the protection of a High Value Target 

(HVT). The HVT is an airport, threatened by hostile entities. The airport is defended 

by mobile guards, who can intercept individuals that pose a security threat. A com-

mander with global overview of the HVT area instructs the guards. Sensor networks 

around the HVT reveal movements of individuals, but cannot reveal whether their in-

tent is malicious. If the commander has reasons to believe that a certain individual 

poses a threat to the airport, then he can instruct guards to identify, and, if necessary, 

disarm that individual. The challenge for the operator is to keep track of all contacts 

on the screen, while commanding his guards in such a way that they do not miss out 

on any threats to the airport. This implies two vital decisions on the part of the com-

mander: (a) deciding whether a contact is suspect or not, and (b) deciding whether 

guards should intercept the contact. Figure 4 shows the sequence of tasks.  
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The operator will have a limited number of options to create support agents. Work-

centered agents can do the exact same tasks as the operator (observe, select contact, 

classify, send guard, adjust status), but the operator decides which tasks the agent 

may perform. The operator can opt to have a work-centered support agent to help 

monitor a certain area (observe and classify), or assist by also actually instructing 

guards (observe, classify and send guard). This selection equals setting the degree of 

autonomy. In addition, the operator can include a limited number of human-aware 

features, such as attention monitoring (based on comparing classification assessments 

between operator and a work-centered agent) and workload management (based on 

the time it takes for a contact to be classified by the operator). Furthermore, the task-

ing interface will give the operator a number of ways to divide the labor between him-

self and the agents. The most reasonable options would be via spatial arrangements 

(sectors, perimeters or free-form areas that the operator can draw on the screen), 

based on perceived threat (the operator deals with all suspect contacts, the agent is re-

sponsible for monitoring unknown or safe contacts).  

By varying three scenario parameters, we can challenge the operator, and evaluate 

the behavior of the support agents. By increasing the number of contacts on the screen 

(volume), or increasing the movement speed of contacts (time), we can drive the op-

erator into a work overload situation. We can also make the classification task harder 

(complexity) by letting contacts follow paths that are more diverse. A contact that 

takes a long detour along the area before turning towards the airport will be harder to 

assess than a contact that follows a straight line towards the airport. Another option to 

increase complexity would be to include more non-threatening entities. Varying set-

tings of these parameters will likely lead to a different use of the support system, and 

thus give an interesting insight in the value of such a support system in tactical envi-

ronments. For instance, a higher level of complexity could possibly lead to more reli-

ance on human-aware support, while the operator will most likely benefit more from 

work-centered agents under higher volume circumstances. Exploring the range of use 

scenarios is essential given the many different types of missions in tactical command 

and control. 

We expect that this experimental setting will reveal critical usability and efficiency 

indicators, and give us a better understanding of the relationship between scenario-

type and most favorable type of support, in terms of adaptive capabilities and user  

interaction.  

4   Summary and Conclusion 

In this paper, we have introduced the approach of combining work-centered and hu-

man-aware adaptivity in support agents for operators working in tactical command 

and control environments. We can summarize the approach in the following set of de-

sign requirements: 
 

• Support functions are embodied by autonomous software agents. 

• It should be possible for the operator to create a support agent for a specific 

task at his will. This includes work-centered tasks (tasks that relate to the 

domain), and human-aware tasks (tasks that relate to the behavior of the op-

erator), or the combination thereof. 
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• It should be possible for the operator to observe and configure the behavior of 

the support agents, including the limits of its autonomy and specific interac-

tion requirements via suitable controls. 

• The support agent should have a suitable normative model of user behavior and 

(part of) the work domain. These models may be available by design, or 

given to the support agent by the operator through simple instructions (for 

instance, performance indicators, geographical cues). 

• Human-aware agents must be able to instruct existing work-centered agents, or 

create such agents themselves. This allows a human-aware agent to autono-

mously reallocate tasks from the human operator user to the support suite in 

the case of suboptimal performance by the operator. 

• Work-centered agents instantiated by a human-aware agent should behave ac-

cording to the interaction contract set between the operator and the human-

aware agent.  
 

We expect that this strategy is going to be very effective in domains where there is 

limited time and resources for the execution of multiple tasks, but where the operating 

environment provides high volumes of information.  

This approach is a first step towards a framework that can cater both technical and 

operational demands, and that is open enough to fit all sorts of cognitive require-

ments. We believe that our approach is novel and worthwhile, because it joins several 

established lines of thought on support system design. It augments cognition by pro-

viding assistance in meta-cognitive processes (human-aware) and lessening decision 

making complexity by offering work-centered task support. By keeping a distinction 

between human-aware tasks and work-centered tasks, it becomes easier to design tai-

lored, adaptive support. Clear interaction contracts between operator and support 

agents define the boundaries of agent behavior, and minimize the chances on automa-

tion surprises. The practice of interaction contracts agrees with most cognitive system 

engineering proposition, and help to maintain observability and directability of system 

functions (Klein, 2004). By giving the operator agent controls that use visualizations 

and ontologies from his work-domain, user acceptance will be easier to achieve.  

The approach needs practical evaluation, and this will most likely reveal many im-

plications. We may inadvertently introduce many new issues. By effectively shifting 

the agent design process from designer to user, we lessen many design challenges that 

stem from user modeling. At the same time, this implies that the user becomes partly 

responsible for system management as well. The management of a large number of 

autonomous support agents will require extra attention and take up valuable work ca-

pacity. The use of contracts to instantly create support agents is a fascinating concept, 

but it will require an extensive exploration into user tasking controls, interaction for-

mats and management procedures.  
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Abstract. Assignment of easy-to-use and well-timed services staying invisible 
for a user is one of important features of ambient intelligent. Multimodal user 
interface capable to perceive speech, movements, poses and gestures of partici-
pants in order to determinate their needs provides the natural and intuitively un-
derstandable way of interaction with the developed intelligent meeting room. 
Awareness of the room about spatial position of the participants, their current 
activities, roles in a current event, their preferences helps to predict more accu-
rately the intentions and needs of participants. Technological framework, 
equipment and description of technologies applied to the intelligent meeting 
room are presented. Some scenarios and data structures used for a formalization 
of context and behavior information from practical human-human, human-
machine and machine-machine interaction are discussed. 

Keywords: ambient intelligence, cognitive-centric design, multimodal inter-
faces, context awareness, smart home, intelligent meeting room. 

1   Introduction 

An idea of recognition of a current situation and behavior of a user, as well as an 
unobtrusive satisfaction of his needs underlies the “ambient intelligence” (AmI). 
These tasks deal with three directions of science and technique: ubiquitous comput-
ing, ubiquitous communication, and multimodal interfaces [1]. Integration of diverse 
computation, information and communication resources into a united framework is 
one of the important issues at design of ambient intelligence and it identifies the mod-
ern tendency to transition from smart devices to an ambient intelligent space. Multi-
modal interfaces provide natural and intuitively comprehensible interaction between a 
user and intellectual devices, which are embedded into the environment. All the 
means should be hidden, thus the user can see only the results of intellectual devices 
activities and concentrate attention on her/his work. 

The so-called “smart home” (SH) is the most profoundly studied area from the 
domain of the ambient intelligence. A smart home can be defined as a dwelling house 
equipped with computational and informational technologies guessing and reacting 
upon needs of the inhabitants, working on comfort maintenance, security and good 
entertainment by means of control of domestic equipment and communications [2]. 
 In spite of the fact that SH idea was well established in the late 1990s, SH technolo-
gies still have no popularity among potential users. It is Gann’s opinion [3] that the 
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principle barriers to uptake are the following: high cost, difficulties of integration with 
contemporary domestic appliances and lack of usability. 

Industry of SH should take into account a number of criteria to motivate customers 
in its advantages [3]. First, it is necessary to consider real needs of users. Secondly, 
development should be conducted at three levels at once: (1) generic technologies 
necessary for a base configuration applied to all appendices; (2) context-dependent 
technologies which can be adapted for the majority of homes; (3) personified tech-
nologies developed with respect to requirements of concrete customers and facilities. 
Thirdly, the offered decisions should be flexible, simple of use, reasonable of price, 
reliable, ease of installation and reconfiguration. 

Taking into account functionality available to a user it is necessary to distinguish 
homes with smart devices and homes providing interactive computing both inside and 
beyond the home. Five classes of SH were proposed in [3]: (1) home, which contains 
stand-alone intelligent objects, actions of which are mutually independent; (2) home, 
which contains network of intelligent objects worked by own rules, but due to ex-
change information between one another, their functions are enhanced; (3) connected 
home has internal networks connected to external ones and allows interactive and 
remote control of home systems, as well as access to services both inside and outside 
the house; (4) learning home, able to record and store data about activities patterns in 
order to use them in future; (5) attentive home, constantly recording data of family 
members localization in order to predict users’ behavior, satisfying their needs and 
unobtrusively interact with them. 

The classification takes into account not only functional abilities of SH, but also 
highlights different levels of communication within and beyond the house, starting 
from the simplest systems with mechanical toggle switches, and to complicated sys-
tems, forecasting user’s behavior and interacting with him. 

Ambient intelligence paradigm and the subsequent development of ambient intelli-
gent space have led to formation of the so-called cognitive approach become of great 
importance for designing SH systems. Intelligent agents embedded into the environ-
ment, allow AmI distinguishing people behavior and reacting to their needs in an 
unobtrusive and even invisible way owing to intuitive interfaces [1]. The cognitive 
approach to design, with the aim of AmI, gives to the developer a way to compare 
demands and cognitive processes of the end user. This goal can be reached owing to 
intellectual agents networks, which provide synchronization of information streams, 
remote control and user notification, in the aggregate with adaptive interfaces and the 
means for achievement of full situational awareness [4]. The knowledge of a context 
helps to explain behavior of the user in a concrete situation and to train the system to 
react adequately. 

Cognitive and perceptive systems of a human being automatically use a context for 
identification in everyday life. The context can be defined as a set of relevant condi-
tions and ambient influences which make a certain situation unique and distinguished. 
The context implies a notion of weight of influencing factors, considered subcon-
sciously by people but being beyond perception of artificial systems. The optimal 
approach to formalization of contextual information is an iterative two-step proce-
dure: (1) collection of the detailed expert description of situations; (2) check of accu-
racy of automatic recognition of the certain contexts on the basis of previously created 
descriptions [5]. 
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One of the basic directions within the AmI paradigm is a development of multimo-
dal user interfaces providing natural and intuitively clear way of human-computer 
interaction. Speech, gestures, handwriting and other means, which are natural of inter-
human dialogue, are applied to management of machines in multimodal interfaces [6]. 
Audio-visual information processing allows automatic identifying the person, his 
intentions, speech, movements and the current position. Due to the analysis of single 
modalities and their subsequent fusion on the semantic level it is possible to improve 
naturalness and robustness of interactions. 

Multimodal integration combines semantic hypotheses coming from modules of 
single modalities processing and carries on joint interpretation of a user’s command. 
For recognition of user’s intention (communicative or practical) it is necessary to use 
information from different sources, and to consider various types of the contextual 
information. Three types of contexts are proposed to use during the fusion of multi-
modal information [7]: (1) context of a subject domain, which contains some a priori 
knowledge, the user’s preferences, models of situations, descriptions of objects and 
subjects, their possible activities and their location to each other; (2) conversational 
context describing possible dialogues with the system and a current condition of a 
discourse; (3) visual context including the analysis of a direction of vision, gestures, 
actions of the user in the course of the observable situation. Data and knowledge, 
accumulated by the system in advance, determine an interpretation of user’s inten-
tions and the current situation. The result of recognition of a command is, theoreti-
cally, a multimodal representation of user’s behavior, conclusion about his intentions 
and a succession of activities which are to be performed by the system. 

There are more fields for applying areas of AmI besides that of a SH. One may 
state that requirements for a SH were worked out already, but requirements for meet-
ing and lecture rooms are somewhat insufficiently standardized. Sometimes even 
users have no idea what they should expect from such intelligent rooms. The user 
cannot quickly become familiar with a simultaneous use of several wide-screen dis-
plays, interactive multimedia support, integration of mobile devices and others new 
resources. All these means and tools must be intuitively comprehensible. Usually such 
rooms function in a semi-automatic mode, and all the embedded systems are main-
tained by experts. 

Peculiar features of multimodal interfaces exploiting and human behavior in the  
intelligent meeting room of SPIIRAS are regarded in the present paper. Testing of 
audio-visual processing is made during laboratory meetings and lectures. Besides, 
control of the equipment was realized on a basis of mobile-phone, while collecting of 
data concerning SPIIRAS members was performed with the aim of a mobile robot 
with a multimodal interface, moving along a corridor of the institute. 

The next section presents basic features of the equipment and description of tech-
nologies applied to the intelligent meeting room. Apart from that, some scenarios and 
data structures used for a formalization of context and user behavior in the meeting 
room will be presented. 

2   Technological Framework of Intelligent Meeting Room 

A premises of 72 square meters located inside the institute building was supplied for 
intelligent meeting room. The room scheme and arrangement of base equipments are 



 Designing Cognition-Centric Smart Room Predicting Inhabitant Activities 81 

 

presented in Figure 1. Monitoring of the room is performed by 16 video cameras 
mounted on the walls, ceiling and tables and provides tracking of moving objects, 
face detection and other functions. Three T-shape 4 channel microphone arrays 
mounted on the different walls serve for localization of sound sources, far-field re-
cording and following speech processing. Besides video recording the personal web 
cameras mounted on the tables have internal microphones and are used for recording 
speech of each meeting participant. 

 

Fig. 1. Scheme of intelligent meeting room and equipment arrangement 

A wide touchscreen plasma panel and multimedia projector (projection screen) are 
located one under another in the left side of the room and provide output of multimo-
dal information. Operated electro gears are connected to the projection screen and 
curtain rail. The curtains are made from special lighttight cloth in order to suppress 
the outside influence on the illumination changing in the room. The processing of 
recorded audio-visual data, control the multimedia and electro mechanic equipment 
are performed by six four-cored computers, two multichannel audio boards Presound 
FirePod, as well as some devices providing cable and wireless network. The referred 
service equipment is mounted in a rack and located on the adjacent room from the 
meeting one. Thus, users inside the meeting room could see only appliances for in-
put/output information, but other devices and computational resources are invisible. 
To provide service and the same time be hidden for a user is one of the main features 
of ambient intelligence. 

Availability of multimodal user interface is a distinguishing characteristic of the 
developed intelligent meeting room. The developed earlier technologies of audio-
visual data processing were successfully implemented in the room to provide natural 
and intuitively understandable way of interaction with the room equipment. Most 
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important technologies are automatic speech recognition, speaker identification, 
sound source localization, detection of position and tracking moving objects and user 
faces, detection of user pose. A bimodal audio-visual Russian speech synthesis tech-
nology (talking head) is used for developed interactive applications. 

A method for spectral-spatial analysis of speech activity has been developed.  
Spatial speaker localization is based on the calculation of phase difference between 
the signals recorded by different microphones. The energy level of mutual signal 
spectrum and estimation of acceptable position of a speaker is used for finding  
the boundaries of speech in a multichannel acoustical stream, recorded in noisy  
environments. 

Russian speech recognition is realized by SIRIUS engine with a model of compact 
representation of extra large vocabularies based on two-level morphophonemic prefix 
graph (TMPG). Integration of morpheme and phonetic levels into a united tree-based 
structure of vocabulary provides compact representation of word-forms and their 
phonemic transcriptions [8]. Usage of the proposed graph while decoding continuous 
Russian speech provides formation of grammatically correct words at the recognition 
output and increase of recognition speed. 

A model of text-independent speaker identification based on assessment of cepstral 
features distribution of the input speech signal was developed. The minimal length of 
the speech signal, necessary for speaker pattern training and decision making during 
verification, is thirty seconds. A multithreaded program model for speaker identifica-
tion provides simultaneous estimation of several participants of a meeting. 

Determination of position and face tracking are based on an algorithm for tracking 
movements of natural markers of human face. Automatic restoring of lost tracking 
points allows the face tracking system to increase robustness of identifying head-
position during quick motions and occasional video noise. An algorithm for cursor 
controlling is adaptive to velocity of head movements. It provides comfortable cursor 
controlling on high-resolution screen, using a low-resolution camera. These algo-
rithms have been embedded into the multimodal system ICANDO for assistance to 
disabled people at hands-free PC-controlling [6]. 

An algorithm for position and video tracking of moving object is based on estima-
tion of difference between adjacent frames and takes into account the measurements 
of users, velocity and trajectory of their movements, acceptable regions of user ap-
pearance. It makes the algorithm robust to sudden changing luminosity and capable to 
differentiate moving objects closely located to each other. Intel OpenCV library is 
used for base procedures of video capture and processing. Also two statistic poses 
(staying and sitting) are detected in intellectual room applications. A criterion for pose 
recognition is height of an object. The list of recognized poses could be extended by 
some gestures, which users often apply during meetings [9]: nod, nutation, rise of a 
hand by sitting user, hand pointing. 

A model of audio-visual speech synthesis (“talking head”) of Russian texts has 
been developed jointly with United Institute of Informatics Problems (Belarus) and 
University of West Bohemia (Czech Republic). Two methods for creation of visual 
synthesis of facial organs have been elaborated [10]: (1) model-based method; 
(2) data-based method. The former is used for creation of 3D avatars. The latter ap-
proach allows creating a 2D personalized audio-visual TTS-synthesis model. In this 
model visual facial synthesis is combined with acoustical speech synthesizer. 
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Figure 2 shows a technological framework of the intelligent meeting room. Col-
laborative work of the referred technologies supplies a room control system with data 
about current situation, participant’s behavior and provides robust recognition of 
voice command due to the analysis of spatial-temporal, situational information and 
user preferences. 

  

Fig. 2. Technological framework of the intelligent meeting room 

Distant speech recognition based on microphone array processing allows a user to 
control light, curtains, projector screen, PTZ functions of video cameras and more 
complex devices like TV set, radio, audio-video player and other multimodal applica-
tions. In all the applications interactive feedback is realized by a talking head, which 
shows an awareness of the room about participant’s behavior and pronounces required 
speech information. 

3   Case Studies of Intelligent Meeting Room 

First scenario, which was experimentally tested, was focused on conjugation of the 
actuators (light, curtains, and screen) with the distant speech recognition system and 
other manual controls. A user could give a command by voice, touchscreen panel, 
remote control panel or via web-interface from a computer or a mobile phone. A 
scheme of user command processing and possible automatic room control in accor-
dance with a current situation is presented in Figure 3. 

Data about current states of all the actuators, presence of users and their positions 
are recorded every time at the arrival of a user command. Boolean descriptions of  
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Fig. 3. Scheme of user and automatic control of the equipment of the room 

actuator states were used for the light, the curtains, the screen, the plasma panel, the 
projector. The plasma panel and the projector have certainly many other functions, 
but their execution was realized without actuators in the framework of concrete appli-
cations. For example, changing graphical content showed by TV set and projector is 
processed by a computer, and then corresponding video signal outputs via DVI or 
VGA cables. 

A description of situational information was simplified in given scenario too. Time 
of day was described by four categories (morning, day, evening, night). Number of 
participants presented inside the room was divided into four groups too (0, 1, 2-10, 
more than 10). Positions of participants were evaluated in relation to the meeting 
table, the plasma panel, the window. The chairs located in the right side of the room 
are used in the case of large number of presented participants. Therefore a special 
category of participant’s position was defined: participants are distributed throughout 
the room. A situational map of the meeting room is used for verification of events and 
analysis of the room state. Table 1 presents structure and states of the map. 

The black cells corresponding to the turned-on devices and other features of the 
room indicated a current situation. The right column consists of examples of the 
commands, automatically generated at occurrence of corresponding combination of 
events and equipment state. These commands were received during matching the real 
user command and the state of situational map. For some commands the conditions 
arisen them are slightly changed and adapted for implementation in automatic mode. 
For instance, a voice command to turn-off the light is said by user inside the room 
before she/he goes out. In automatic mode this action is performed when all the 
participants left the room. By this reason commands 6-8 in Table 1 to turn-off the 
light, lift the screen and close the curtains are performed when the number of partici-
pants is zero. 

By Figure 3 now we can explain how to control the meeting room in the automatic 
mode. Changing the situation caused by user behavior or day time or switching the 
actuators calls the procedure of the map analysis. If a predefined situation is detected 
a corresponding command for activation or deactivation of actuators is sent. The in-
teraction between various software modules distributed on several computers is ac-
complished by client-server architecture via TCP/IP protocol. At that command and 
notification of the actuator states are collected and processed in queue. 
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Table 1. The situational map of the meeting room and automatic commands 

State of actuator devices Situational information 
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Commands 
generated 
automatically, 
when specific 
combination of 
actuator states 
and events 
occurs 

1. Turn-on the 
light group L4 

2. Open the 
curtains 

3. Lower the 
screen 

4. Turn-off the 
light group L1 

5. Open the 
curtains 

6. Turn-off whole 
the light 

7. Lift the screen 
8. Close the 
curtains 
… 

 
Scenarios of control of multimedia appliances were based on special dialogues of 

speech interaction between a user and the meeting room. The multimodal applications 
“SPIIRAS inquiry” and “St. Petersburg map” were adopted based on similar systems 
realized in a multimodal kiosk [11]. Voice control system for TV set and radio im-
plements commands to select a channel by its number or title, to change the settings 
of sound and picture. In the application “Smart board” voice commands intended for 
selecting color, width of pen, brush or other instruments for handwrited sketches on 
the touchscreen. Only examples of voice commands are mentioned above, which 
could be useful at interaction with the intellectual applications. Moreover, most of the 
commands could be activated by gestures on the touchscreen. In particular, in map-
based applications a direct pointing to a graphical object is more needed, but speech 
commands are used for operation with objects [6]. 

Besides the current state of the dialogue the spatial position of a user should be 
taken into account. In contrast to control of the actuator devices the voice commands 
aimed for to the multimedia applications are perceived only from a space near the 
plasma panel (not far than 1.5 meters). This limitation helps to decrease number of 
false voice commands appeared as a result of background noise and parallel user 
conversations that increases accuracy of distant speech recognition. 

Special attention should be paid to influence of activity of controlled devices dur-
ing transitional stages on the systems of audio-visual data processing. For instance, 
the speech recognition and sound source localization systems should be notified be-
fore starting the gears of screen and curtains, because their noise influences on the 
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system performance. The analogical situation is appeared at turning-on the multime-
dia projector and condition system. Since these devices will work continuously then a 
system of spatial filtration of sound signal should suppress noises before the speech 
recognition phase. 

Opening the curtains can significantly influence on changing the luminosity in the 
room and lead to fail of the video tracking systems, for example loss of existent ob-
jects or appearance a false object in the room. The same problem happens when turn-
ing-on/turning-off the light, so the systems of video processing should be preliminary 
notified about changing the luminosity in the meeting room. 

Verification of the technological framework and experimental detection of poten-
tial conflicts at the room control appeared owing to uncoordinated work of equipment 
or unpredicted behavior of users are conducted. Analysis of the extended situational 
map, as well as discursive information of real dialogues, personified user data will 
allow us to extract templates of behaviors and preferences of main groups of users, 
scenarios of man-machine interactions and most important commands, which should 
be automatically performed to facilitate efficiency of meetings and lectures in the 
intelligent room. 

4   Conclusion 

The developed intelligent meeting room is a distributed system with the network of 
intelligent agents (software modules), actuator devices, multimedia equipment and 
audio-visual sensors. The main aim of the room is providing of meeting or lecture 
participants with required services based on analysis of the current situation. Aware-
ness of the room about spatial position of the participants, their activities, role in the 
current event, their preferences helps to predict the intentions and needs of partici-
pants. Context modeling, context reasoning, knowledge sharing are stayed the most 
important challenges of the ambient intelligent design. 

Assignment of easy-to-use and well-timed services, at that stay invisible for user, is 
one of another important feature of ambient intelligent. In the developed intelligent 
room all the computational resources are located in the adjacent premises, so the par-
ticipants could observe only microphones, video cameras, as well as equipment for 
output of visual and audio information. Implementation of multimodal user interface 
capable to perceive speech, movements, poses and gestures of participants in order to 
determinate their needs provides the natural and intuitively understandable way of 
interaction with the intelligent room. 

Development of a network of intelligent meeting rooms gives the opportunity to 
organize a videoconference between spatially distributed participants and facilitates to 
increase collaboration, access to higher knowledge/competence, reduce costs for 
transport and staff, and increase the quality of education due to automatic immediate 
monitoring by every student during the lessons. Using the various combinations of 
multimodal interfaces and the equipment of the intelligent meeting room the funda-
mental issues of human-machine interaction are studied and applied models in secu-
rity medicine, robotics, logistics and other scientific areas are investigated now. 
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Abstract. To optimally distribute tasks within police teams during mobile sur-

veillance, a context-aware task allocation system is designed and evaluated with 

end-users. This system selects and notifies appropriate team members of current 

incidents, based on context information (officer availability, officer proximity 

to the incident and incident priority) and decision rules. Eight teams of three 

experienced police officers evaluated this system in a surveillance task through 

a virtual environment, comparing it to a non-adaptive system. Task perform-

ance, communication, workload and preferences were measured. Results show 

that team communication, decision making and response times improve using 

the adaptive system and that this system is preferred. We conclude that context-

aware task allocation helps police teams to coordinate incidents efficiently.  

Keywords: Context-aware computing, mobile computing, police surveillance, 

task allocation, notification. 

1   Introduction 

To work efficiently as a distributed team, mobile police officers need to coordinate 

actions together. During surveillance, current incidents require fast and accurate re-

sponses from available team members. However, keeping track of availability and 

appropriately allocating tasks to team members is challenging in such a distributed 

work environment [1, 2]. In addition, unwanted interruptions can cause distraction 

[3], e.g. a colleague requesting assistance while you are talking to a violent suspect. 

This results in increased response times and potentially dangerous situations. What is 

needed is a system that supports team decision making and task allocation and pro-

vides appropriate notification to team members (e.g. on current incidents).  

In this study, a support system is designed that provides advice on task allocation 

(which team member can handle which incident best) based on officer availability, 

task priority and officer proximity to the incident location. Selected team members are 

notified using appropriate notification styles (timing and presentation of notifications) 

to limit interruptiveness of notifications [4]. This team task allocation support is 

evaluated in a surveillance task with police teams, addressing the following questions: 

1) how can user availability, task priority and proximity be used for team task alloca-

tion support and 2) what are the effects of this support on police team task perform-

ance, workload and subjective judgments? We expect that this support will improve 
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task allocation and task performance, result in less team communication and positive 

user preferences. Based on this study, implications for the design of mobile profes-

sional support systems are discussed. 

1.1   Previous Research on Task Allocation 

Employing mobile technology in operational domains aims to increase shared situa-

tion awareness and enable flexible decision making, for example for soldiers (e.g. 

Network Centric Warfare; [5]) and first responders [6]. These efforts explicitly visual-

ize team information in geographical overviews [2] or using mobile awareness cues 

[7]. Such designs for activity awareness in mobile computer-supported cooperative 

work (e.g. [8]) lead to increased team performance and awareness as well as reduc-

tions in mental workload [2, 9]. However, users still have to integrate information 

from a small mobile display, straining their cognitive resources. In addition, these 

awareness displays do not directly support task allocation. 

To realize efficient task allocation support systems, such systems have to be aware 

of team members’ activities and locations. Currently, mobile context-aware services 

adapt information presentation to dynamically changing user needs or changes in the 

work environment (e.g. [10]). Mobile context-aware information delivery was pro-

posed for fire-fighters [11, 12] and construction workers [13]. In the police domain, 

an in-car support system was proposed to improve task allocation between the emer-

gency room and police officers in the field, based on police officers’ current tasks 

[14]. However, as no user evaluations were reported, it is not clear whether these 

systems actually support decision making and task allocation.  

Using context information to optimize task allocation falls within the area of Aug-

mented Cognition, which seeks to model the user and use context to dynamically 

adapt the user-system interaction. For example, in the naval domain, tasks were allo-

cated dynamically to human operators or to an automated system based on task in-

formation (e.g. priority and number of radar contacts) or physiological measures as-

sessing workload [15]. On the downside, some authors argue that such high levels of 

system automation are not advisable in time-critical environments [16]. Still, few 

empirical users studies address automated task allocation in mobile, operational do-

mains [15, 17].  

In the current study, a prototype system is designed that not only visualizes team 

information to support activity awareness, but also advises team members about ap-

propriate task allocation. Although some studies have focused on task allocation and 

notification in the police domain [14, 18], such support has not yet been realized for 

mobile police officers. To assess how this task allocation support prototype effects 

police team performance, the prototype is evaluated with police end-users in a virtual 

environment. This allows users to experience the adaptive system within the task flow 

and facilitates control over external variables [17, 19].  

2   Designing Team Task Allocation Support 

Following a concise analysis of police team surveillance based on police interviews 

[2], a task allocation support system was designed and implemented. Based on a set of 
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decision rules (on officer availability, incident priority and officer proximity), this 

system distributes incidents optimally over team members.  

2.1   Police Team Surveillance 

Police officers on surveillance work together as distributed, ad hoc teams. When an 

incident occurs, they communicate with colleagues to determine who should handle 

which incident. For this process to work efficiently, they have to be aware of location 

and priority of current incidents as well as location, identity and availability of  

colleagues. 

Efficient task allocation is threatened by two problems. First, police officers cur-

rently have no overview of availability and location of team members. This makes it 

often unclear who is available to handle an incident, potentially resulting in miscom-

munications or incidents that remain unattended. Second, team members communi-

cate using radio transceivers over an open channel. For officers who are handling a 

critical incident, not all communication is directly relevant and might cause unwanted 

interruptions. Busy police officers have been observed to turn off their radios. How-

ever, they still need to be aware of other high priority emergency situations (e.g. when 

colleagues are requesting assistance).  

To address these problems, a mobile support system is designed that is aware of 

team members’ location and availability (handling an incident or not) and the priority 

of the incident (high or low). This information is acquired from location tracking data, 

user responses and established incident categorizations in the police domain. Based 

on this knowledge and a set of decision rules, the system selects the most appropriate 

team member(s) to handle the current incident. These team members receive a  

notification message with task allocation advice (i.e. “John and Mary can handle the 

burglary incident best”). As in previous work [4], the presentation style of these mes-

sages (information density and auditory salience) is adapted to limit unwanted inter-

ruptions. The prototype uses the following decision rules:  

1. Priority: high priority incidents require the nearest two available officers as soon 

as possible while low priority incidents require the nearest available officer. 

2. Availability: if the nearest officers are busy with a lower priority incident, they 

should switch to the new incident. If they are busy with a higher priority incident, 

they should finish that incident first. 

3. Notification: if officers are selected to handle an incident, the full incident mes-

sage is presented with a salient notification sound. If they need to be aware that 

an incident is waiting for them, the system presents an indicator with a less sali-

ent sound. If they are not selected to handle the incident, an indicator is presented 

without sound. 

2.2   Prototype Implementation  

A prototype support system is implemented for experimental purposes using a simu-

lated Personal Digital Assistant (PDA) on a touch screen monitor. It provides a geo-

graphical north-up map with icons indicating team members’ location, identity (name) 

and availability (red icon means busy, green icon means available) as well as the  
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Fig. 1. PDA screenshots showing the geographical map with the officer’s location (left), an 

incident message (center) and the task list (right) 

location of incidents. The map is centered on the users’ location and can be dragged 

to reveal the rest of the map. See Fig. 1 for screenshots of the application. 

Incident messages are displayed as full text messages with two buttons to “Accept” 

or “Ignore” the incident. Accepted messages move to the task list and can be checked 

off when the incident is finished. User actions (“Accept”, “Ignore”, “Finish”) are used 

to infer user availability. Indicators are presented as small clickable icons in the lower 

right corner of the screen, opening the incident message when clicked.  

3   Evaluation  

In this study, police teams performed a surveillance task through a virtual city envi-

ronment. The task allocation support system presented low or high priority incident 

messages. At these moments, team members negotiated who would handle which 

incident, navigated to the incident location and handled the incident. Task allocation 

advice, notification presentation and communication were manipulated, creating two 

conditions (adaptive and control). Effects on task performance, workload and subjec-

tive ratings were assessed between the two conditions.  

3.1   Method  

Participants. Eight teams of three police officers (20 male, 4 female, mean age = 

33.0 years, SD = 9.9) participated in this study. All team members were experienced 

police officers (average 11.2 years of experience) and had collaborated previously 

with each other on surveillance. They used personal computers on a daily basis and 

only two teams used a PDA for police work.  

 

Surveillance Task and Incident Handling Task. Teams performed the surveillance 

task and incident handling task through a virtual city environment [20]. The surveil-

lance task required them to collect a maximum of 30 targets, represented by barrels 

that appeared at random locations throughout the environment. 
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The incident handling task was a time-paced, scenario-based task. At predeter-

mined moments during the surveillance round, the system presented in total twelve 

incident messages to the team. Six incident messages indicated high priority incidents, 

which had to be handled by two colleagues together. The other six indicated low pri-

ority incidents, which could be handled by a single team member. Team members 

suspended the surveillance task to read the incident message and communicated with 

colleagues (using a headset) who would handle this incident. The selected team mem-

ber(s) responded to it (using the “Accept” or “Ignore” buttons below the message) and 

navigated to the incident location as fast as possible (see Fig. 2). Handling the inci-

dent consisted of reading and memorizing the incident description on screen. When 

done, they checked the incident off the task list and returned to the surveillance task. 

Participants could decide for themselves when to attend to each message, whether or 

not to accept an incident and which of their colleagues to approach for assistance.  

 

Experimental Design. A within-subjects design was employed with two experimen-

tal conditions (adaptive or control). In the adaptive condition, the system provided 

task allocation advice and adaptive notification following the decision rules. Team 

members could choose to communicate with all team members or selected team 

members only (closed channel). In the control condition, full incident messages were 

presented to all team members without task allocation advice and the communication 

channel was open to all team members. 

Two similar experimental scenarios (equal duration, number and type of incidents) 

were established in cooperation with two experienced police officers to maximize 

external validity. All teams experienced both conditions and the presentation order of 

the conditions and scenarios was counterbalanced across teams to avoid order effects. 

 

Measures. Before the experiment, age, gender, (mobile) computer experience and 

police experience were assessed using a questionnaire. Furthermore, spatial ability 

was assessed in a computer-based spatial rotation task [21].  

During the experimental sessions, task performance on the surveillance task was 

measured as the total distance traveled and the number of targets collected. Task 

performance on the incident handling task was measured as the response time to inci-

dent messages, errors in decision making, incident handling time, total time on task 

and recall of incident details. Furthermore, the number of communication utterances 

on task allocation between team members was counted. These variables were meas-

ured per team and averaged over incidents. 

Subjective judgments were collected individually using questionnaires and rating 

scales. After each session, experienced workload was measured using the RSME 

[22] and judgment on own performance and team performance was measured with a 

six-item team effectiveness scale. After both sessions, team members were asked 

individually to compare both experimental sessions. On the preference question-

naire they indicated which of the two prototypes they would prefer in their daily 

police practice regarding task allocation advice, presentation of the messages and 

team communication. 
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Fig. 2. The virtual environment with an incident location (left) and a police officer behind the 

experimental setup (right) 

Apparatus. Participants were seated behind two 17” monitors, one above another. 

The top monitor displayed the virtual environment and the incident details. Partici-

pants moved through the environment using a game controller. The bottom (touch-

screen) monitor displayed the simulated PDA and communication interface (see  

Fig. 2). To avoid overhearing each other, city background noise was played over the 

headset. While navigating through the environment, the PDA was blanked out to 

avoid overreliance on the geographical map.  

 

Procedure. In total, the experiment took about three hours to complete. First, the 

personal characteristics questionnaire and the spatial ability test were administered. 

Participants received instructions on both tasks and familiarized themselves with 

navigation and incident handling in two short practice scenarios (control first, adap-

tive second). In the control condition, participants were instructed to follow the set of 

decision rules for task allocation (see paragraph 2.1), while in the adaptive condition 

the system provided task allocation advice. The two experimental sessions took about 

twenty minutes each, after which the RSME, the performance and detail recall ques-

tionnaires were administered. After both sessions, the preference questionnaire was 

administered.  

3.2   Results 

Data on all performance variables was averaged and compared per condition using t-

tests for repeated measures. Means for all variables are presented in Table 1. For 

response time, decision errors and navigation efficiency, follow-up analyses per prior-

ity level (high or low) were performed. Subjective judgments were analyzed using 

non-parametric tests. Multiple regression analyses were performed on performance 

measures, communication and workload with age, spatial ability, education, computer 

experience, police experience and game experience (averaged over teams) as predic-

tor variables.  

 

Surveillance Task Performance. The difference in total distance traveled between 

de adaptive and control condition approached significance (t(7) = 2.13, p = 0.07). 

Less distance was traveled in the adaptive condition. On average, more targets were 
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collected in the adaptive condition (M = 18.5) compared to the control condition  

(M = 17.4). However, this difference was not significant (t(7) = -0.44, p = 0.67).  

Regression analysis showed that variance in distance traveled was significantly 

predicted by age (R
2
 adj. = 61%, B = 8956, p < 0.05) and variance in targets collected 

was also explained by age (R
2
 adj. = 64%, B = -0.5, p < 0.05); younger teams col-

lected more targets and traveled less distance in the control condition. In the adaptive 

condition, no significant predictors were found on these variables. 

 

Incident Handling Task Performance. Response time to incident messages was 

slightly lower for the adaptive condition, however not significant. This can be ex-

plained by the extra line of message text (with the task allocation advice) that had to 

be read in this condition. When response times were analyzed separately for high and 

low priority messages, the interaction effect of condition and priority approaches 

significance (F(1, 7) = 4.32, p = 0.076; see Fig. 3). In the control condition response 

time to low and high priority incidents is almost identical, while in the adaptive condi-

tion, participants’ response time differs between low and high priority incidents. 

Both incident handling time and total time on task did not differ significantly be-

tween the adaptive and the control condition. Regression analysis showed that vari-

ance in incident handling time was also predicted by age (R
2
 adj. = 91%, B = -5.37, p 

< 0.01) and variance in time on task in the control condition was predicted by age (R
2
 

adj. = 65%, B = -4.92, p < 0.05); younger teams took more time than older teams. 

This effect was not present in the adaptive condition. 

The number of decision errors on task allocation was lower in the adaptive condi-

tion (M = 3.4) than in the control condition (M = 5.0), approaching significance  

(t(7) = 2.09, p = 0.07). Analyzed separately for high or low priority incidents, no 

significant interaction effect was found (see Fig. 4). The adaptive support helped 

teams to reduce decision errors. 

The number of details recalled was slightly higher in the adaptive condition than in 

the control condition (see Table 1), however not significant. Regression analysis 

showed that variance in detail recall in the control condition was predicted by age (R
2
 

adj. = 59%, B = -0.34, p < 0.05); older teams recalled less details. However, in the 

adaptive condition, this effect was not present. 

 

Communication. The number of communication utterances on task allocation  

differed significantly between conditions (t(7) = 4.17, p < 0.005). In the adaptive  
 

Table 1. Means on the main performance variables (TG = targets, RT = response time, DE = 

decision errors, HT = incident handling time, TT = total time, Com = communication utter-

ances, Det = details recalled and WL = workload) for the control (Co) and adaptive (Ad) condi-

tions. * significant at p < 0.05, bold indicates a trend approaching significance.  

 Distance TG (#) RT (s) DE (#) HT (s) TT (s) Det (#) Com (#) WL 

Co 383425 17.4 11.0 5.0 70.1 129.5 16.9 *33.2 49.3 

Ad 332734 18.5 13.5 3.4 67.0 123.6 17.5 *23.3 51.0 
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condition, team members communicated less on task allocation than in the control 

condition (23 and 33 utterances respectively). When they had the choice between 

open or closed channel of communication in the adaptive condition, informal observa-

tions showed that almost all teams preferred and used an open channel. 

 
Workload. There was no significant difference in workload between both conditions. 

Regression analysis showed that workload in the control condition was predicted by 

spatial ability (R
2
 adj. = 89%, B = -5.80, p < 0.05), game experience (B = 14.8, p < 

0.05) and education (B = 8.06, p < 0.05); participants with high spatial ability and less 

game experience indicated lower workload ratings. Workload in the adaptive condi-

tion was also predicted by spatial ability (R
2
 adj. = 84%, B = -5.17, p < 0.05) and 

game experience (B = -8.18, p < 0.05), but showed that participants with more game 

experience indicated lower workload.  

 

Subjective Judgments. The questionnaire items on own performance and team per-

formance showed no significant differences between conditions. Participants did not 

rate their own performance or team performance differently in one of the conditions. 

The mean scores on the team effectiveness scale showed a ceiling effect (5.8 and 5.9 

for control and adaptive condition respectively).  

Participants’ preferences after both conditions showed that 76% of the participants 

preferred the adaptive condition in their daily police work because it supported deci-

sion making. Half of the participants preferred the adaptive condition because of the 

lower disruptiveness of messages. However, 58% of the participants found it to be 

more difficult to divide attention between the PDA and the surveillance in the adap-

tive condition.  

4   Discussion and Conclusion  

This study evaluated team task allocation support based on relevant context factors 

(location, availability and priority). In a surveillance task with experienced police 

Fig. 3. Response times to low and high prior-

ity incident messages 

Fig. 4. Number of decision errors on low and 

high priority incidents  
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teams, two conditions (with and without context-aware task allocation and notifica-

tion) were compared. Using task allocation support, less team communication and less 

decision errors are observed and less distance is traveled. In addition, adaptive notifi-

cation causes response times to be more varied, appropriate for the priority of the 

incident. The majority of the officers preferred this support in their daily work, al-

though some found the adaptive system behavior hard to understand. Regression 

analysis showed that older police officers profited from the support in terms of more 

details recalled, distance and targets collected and younger officers profited in terms 

of incident handling time. Our results show that context-aware task allocation support 

helps police teams in decision making and communication.  

Contrary to our expectations, no effects of support were found on time on task, in-

cident handling time and workload; the support does not make police officers faster 

nor lessen their workload. The time benefits of the task allocation support may be too 

small compared to the incident handling time (over 120 seconds). In addition, learn-

ing to work with an adaptive system might have increased officers’ workload. These 

effects are expected to decrease with prolonged system use. An interesting observa-

tion on team collaboration is that without task allocation support, tasks were allocated 

to whoever called first or loudest. While this may not have been the most appropriate 

decision, still teams rated team performance very positively.  

These results have implications for the design of task allocation support systems on 

mobile devices. Because the use context (location, availability) can change unexpect-

edly, task allocation advice may become outdated or wrong. Consequently, the task 

list must allow team members to pass over incidents or tasks to others. Or task alloca-

tion should be dynamically revised, based on the current situation. This is an opportu-

nity to extend the principles of Augmented Cognition to the mobile domain. Further 

research should focus on the usability and predictability of such dynamic task alloca-

tion systems. In ongoing research, we will investigate how teams deal with unex-

pected breakdowns in task allocation support and what the role is of shared situation 

awareness in handling such situations.   
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Abstract. Classical laboratory studies of human performance have always re-

quired some form of data integration, such as the synchronization of stimulus 

display, behavioral accuracy, and reaction time. Studies of performance in  

operational environments have typically been limited in the precision of  

behavioral observations. As improved digital informatics have expanded the 

laboratory data acquisition from a few bytes to terabytes, there has been a simi-

lar expansion in both the opportunities and the challenges for data fusion. 

Keywords: EEG, information systems, brain activity, neuroergonomics. 

1   Introduction 

An advanced window on human neurophysiological function has been opened by 

dense-array (256-channel) electroencephalography (DA-EEG). The improved sam-

pling of the brain’s electrical fields has been combined with improved physics models 

of the human head to allow accurate estimates of the electrical source activity of spe-

cific brain networks, such as the ventromedial frontal cortex or posterior cinguate 

cortex, that are known to be required for effective attention and cognition in demand-

ing military environments. Recent advances in dermal bond hydrogel technology have 

improved DA-EEG signal quality even in high noise high movement operational  

environments such as mounted vehicle platforms. Advances in computer vision have 

allowed inobtrusive capture of critical details of behavior, such as head and eye track-

ing, in operational as well as laboratory environments with the millisecond accuracy 

required for fusion with electrophysiological data. At least in simulator environments, 

the instrumentation of the simulator software allows precise timing and description of 

events in the simulated operational context. With improved video recognition and 

sensor technologies, the information on operational contexts is also expanding.  Ad-

vances in high-performance computation have allowed powerful mathematical algo-

rithms such as independent components analysis and directed components analysis to 

separate unique sources of variance in the fused data streams. We describe a net-

centric, distributed-parallel informatics architecture for increasing the bandwidth of 

the instrumentation and fused analysis of neurophysiological, behavioral, operational 

scenario events. 
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Fig. 1.  Tracking of a subject’s gaze with free head movement in a 3D environment 

The immediate objectives of the proposed project are to: 1) implement a mobile, 

field-deployable hardware and software platform (AmpServer) capable of integrating 

and synchronizing the acquisition of neurological (high-density electroencephalogra-

phy and near-infrared spectroscopy), behavioral (head- and eye-tracking), and  

autonomic (e.g., EKG) data during field operations, and 2) adapt and refine advanced 

artifact-cleaning and pattern classification methods to identify and separate the rele-

vant data signals.  

Under the DARPA Augmented Cognition program, EGI developed methods for 

real-time data acquisition and analysis to integrate dense array (256-channel) EEG 

with head and eye tracking information from infrared video.  Under the 

DARPA/NGA Neurotechnology for Intelligence Analysts program, EGI developed 

methods for real-time recognition of visual system responses that indicate that an ana-

lyst has detected a military target in a rapid (10/sec) stream of visually presented sat-

ellite images. Under the ONR Human Performance Training and Education program, 

EGI has developed methods for assessing the neural mechanisms in the development 

of expertise during training.   

Learning, or performance, seen as action regulation inherently emphasizes the need 

to adjust behavior according to both internal states and external demands, requiring 

different learning and memory systems; these systems reflect cybernetic constraints 

on action control. Learning, adaptive performance, and memory naturally arise from 

these action regulation processes. Two complementary cortico-limbic-thalamic cir-

cuits have been identified, each providing a unique strategic control on the learning 

process [1]. The ventral limbic circuit is made up of the anterior cingulate cortex 

(ACC) and the medial nuclei of the thalamus, with input from the amygdala. This 

ACC-based circuit is triggered by exogenous feedback, and leads to rapid changes in 

learning in response to new information, discrepancies with expectations, and threat. 

It is involved in the early stages of learning, whenever new tasks must be learned, or 

when routine actions and a priori knowledge are no longer appropriate for current 

demands [2-4]. The dorsal limbic circuit is centered on the posterior cingulate cortex 

and anterior ventral nucleus of the thalamus, with input from the hippocampus. It is 

involved in the later stages of learning and expert performance [5], when consolida-

tion of information into long-term memory is important [2]. In these late stages, a 
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contextual model is fully formed, and minor changes that are consistent with the con-

textual model can be made with minimal attention demands.  

Human research in our laboratory with DA-EEG measures has yielded results 

largely consistent with this model. For example, we have observed greater ACC activ-

ity, as assessed through source analysis of the scalp-recorded EEG, when expectan-

cies were violated [6], under particularly challenging performance demands [7,8], and 

following errors and negative feedback [9]. Moreover, increased anxiety was associ-

ated with the modulation of ACC engagement [10]. In contrast, we observed greater 

activity associated with the PCC circuit during the later stages of learning [11], after 

extensive practice [7,8], and in expert versus novice performance. Extension of these 

findings to realistic operational environments will help in identifying individual dif-

ferences and contextual events that impact these fundamental self-regulatory mecha-

nisms and enhance or impede adaptive performance.  

2   Method 

Significant technological advances have been made in the field of eye tracking. This 

project uses the state-of-the-art Smart Eye eye-tracking system. The Smart Eye sys-

tem is completely unobtrusive (i.e., remote and not head mounted), and measures eye 

and head movements given the inputs from up to four cameras at 60 fps (see Figure 

1).  Head movement is measured to an accuracy of 0.5 degrees (rotation). The accu-

racy of the computed gaze-vector is 1 degree. The Smart Eye system allows us to 

track saccades and fixation within a 210-degree field of view. Pupillometry and a 

video stream with the image analyst’s gaze position overlaid on the scene camera 

video, are also available as output. Additional benefits include flexible camera-mount 

positions, fast camera calibration, and handling of occluded cameras. 

EGI, in collaboration with Smart-Eye engineers, has integrated the Smart-Eye sys-

tem into our EEG acquisition platform. Because of the unobtrusive nature of this 

technology as well as the importance of understanding behaviors during performance 

we propose to employ it for tracking of attentional focus in a complex field environ-

ment. Integration of data acquisition from multiple sensors can be enabled through 

use of a common, network-capable, software architecture. Currently, EGI employs a 

software application called AmpServer for our dense-array EEG system. AmpServer 

has the capability to control multiple amplifiers, if they are all connected to the same 

machine and the bandwidth for all amplifiers are within the limits of Firewire tech-

nology. If the bandwidth requirements exceed the limits and the application requires 

integration of multiple amplifiers on the same machine, then multiple Firewire cards 

can be utilized. AmpServer currently is developed on Mac OS X but can be modified 

to run on Linux or Vista (when it is stable) with minor to moderate work. AmpServer 

can be made to support non-EGI amplifiers provided the amplifiers are stable and 

control and interface protocols are documented (see Figure 2). 

With AmpServer as the platform, anyone can write client applications (on any plat-

form) to access the raw data being broadcast by AmpServer. Alternatively, NetStation 

(EGI's acquisition software) can be used as the client.  

The importance of electroencephalography (EEG) for tracking a human operator’s 

cognitive state is well established. Moreover, our understanding of real-time brain  
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Fig. 2.  Schematic of AmpServer architecture 

activity is crucial in fulfilling the goal of monitoring performance to facilitate the 

mitigation of cognitive bottlenecks through dynamically modifying system behavior.  

Non-brain activity in continuous EEG severely masks and hampers the detection and 

interpretation of brain activity.  Sources of non-brain activity include physiological 

artifacts, electromagnetic interference, and amplifier noise. The effectiveness of met-

rics derived from EEG to measure cognitive performance is severely diminished 

given the multitude of these artifact and noise sources. It therefore becomes both a 

crucial necessity as well as a major challenge to parse brain activity from the raw 

EEG signal in real time, while carefully minimizing the distortion of the actual brain 

activity components. 

In a related effort (Luu et al., this volume), we developed a framework for detect-

ing and extracting physiological artifacts due to ocular (i.e. eye blinks and move-

ments) and cardiac activity from the recorded EEG in real time.  Within this frame-

work, the integration of continuous electrocardiography (EKG) as well as head and 

eye tracking enhances the robustness and stability of the artifact removal procedure. 

Both EKG and head and eye tracking have become ubiquitous in operator perform-

ance measurement environments. 

Although Independent Component Analysis (ICA) has demonstrated the ability to 

cleanly separate ocular from brain activity, its reliance on computationally intensive 

higher-order statistics precludes its use in real-time applications. These higher order 

statistics can only be reliably calculated on long epochs, and exposes another draw-

back of ICA in that it is assumed that the measured EEG is derived from a limited set 

(equal to the number of EEG sensors) of spatially stationary brain and artifact genera-

tors over the entire epoch. Methods based on Principal Components Analysis (PCA), 

employing only computationally simpler second–order statistics, can be applied for 

artifact removal in real time. Special care is needed to ensure their effectiveness, as 
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the reliance of PCA on orthogonal topographies has an important drawback. Existing 

PCA artifact removal methodologies can be classified as either methods that remove 

artifacts without considering brain activity, or techniques that attempt to separate arti-

fact and brain activity. As part of our artifact removal framework, we propose a hy-

brid method that harnesses our ability to monitor and evaluate the temporal evolution 

of artifact activity. By identifying, selecting and segregating time slices of EEG data 

from contaminated and artifact-free epochs, we derive separate, finely detailed topog-

raphies for the artifact and brain activity in the signal, enabling a much cleaner re-

moval of artifact contamination without distortion of the brain activity measurements. 

The integration and synchronization of head and eye tracking with EEG acquisition is 

essential for extracting eye (and head) movement artifacts effectively. By employing 

a separate EKG trace, we can cleanly extract cardiac artifacts, even in the presence of 

spike activity emanating from brain sources. 

3   Results 

In a series of eight studies investigating the effects of stress in simulated flight and a 

task analogous to pilots executing instructions from air traffic control we found that 

many people experienced stress-induced decrements in performance, particularly as 

task difficulty increased. However, others experienced no ill-effects of stress and for 

some people performance actually improved, despite equal levels of task difficulty. A 

unitary arousal model or the Yerkes-Dodson quantitative model [12], which associ-

ated performance with levels of difficulty and arousal, thus cannot explain these dif-

ferences in performance under stress. Instead, we observed that qualitative differences 

in the emotional response to stress best accounted for these findings. Our results indi-

cated that several factors influenced emotion response to stress. The following are 

particularly important to our understanding of the effects of stress in operational envi-

ronments: 

1. Context: Predictability of the stressor was related to decreased anxiety. 

2. Experience: Early exposure to a stressor (i.e., when learning a new task) was re-

lated to increased anxiety, larger stressor-condition performance decrements, and 

lower levels of competency after two weeks of training. 

3. Appraisal: Both experimental manipulation and participants’ own appraisals of the 

stressor were predictably related to emotion response to stress. 

4. Trait differences: When emotion responses to stress were most variable (due to 

differences in predictability of the stressor and appraisal manipulations), trait anxi-

ety and behavioral inhibition were predictive of emotion responses to stress, but 

did not directly predict stressor-condition performance.  
 

Although the body is adapted to respond with little or no ill effect to the acute  

mobilization of physiological distress reactions, it is clear that chronic or repeated 

activation of threat systems can have adverse long-term physiological, cognitive, and 

affective health effects [13]. Over the short-term, such reactions can also be maladap-

tive when individuals fail to flexibly regulate threat systems in the face of changing 

circumstances (e.g., when the threat no longer exists) or when the situation precludes 

fight or flight (e.g., work environments). Assessment of the autonomic stress response 
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in complex, operational environments via EKG and EMG sensors in an integrated 

platform will provide a greater understanding of how these autonomic changes inter-

act with the engagement of neural self-regulatory systems, such as the anterior,  

ventral limbic system under perceived threat. Head and eye-tracking measures will 

further clarify the attentional response to stress by tracking gaze duration and eye 

fixations. This information can indicate, for example, if one performer is more easily 

distracted under stress, rapidly shifting fixations across irrelevant information, 

whereas another performer is able to shift attention systematically to relevant infor-

mation in a goal-directed fashion.  

4   Discussion 

The implementation of an integrated information environment for both behavioral and 

electrophysiological observations allows novel approaches to real-time measurement 

of human brain activity in operational environments. Key features of this implementa-

tion are single-trial data measures (rather than averaged event-related potentials) and 

exact precision of timing of high-bandwidth data streams. The technical capacities 

now available with video head and eye tracking and dense array EEG are well suited 

to the challenges of neuroergonomics in operational environments. 
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Abstract.  Applications such as individually tailored training and behavior 

emulation call for cognitive models tailored to unique individuals on the basis 

of empirical data.  While the study of individual differences has been a main-

stay of psychology, a prevailing assumption in cognitive theory and related 

modeling has been that cognitive processes are largely invariant across indi-

viduals and across different conditions for an individual.  Attention has focused 

on identifying a universally correct set of components and their interactions.  At 

the same time, it is known that aptitudes for specific skills vary across individu-

als and different individuals will employ different strategies to perform the 

same task [3].  Moreover, individuals will perform tasks differently over time 

and under different conditions (e.g. Taylor et al, 2004).  To reach their full po-

tential, systems designed to augment cognitive performance must thus account 

for such between- and within-individual differences in cognitive processes.  We 

propose that cognitive adaptability is a trait necessary to explain the inherently 

dynamic nature of cognitive processes as individuals adapt their available re-

sources to ongoing circumstances.  This does not imply a “blank slate;” humans 

are predisposed to process information in particular ways.  Instead, we assert 

that given variation in the structure and functioning of the brain, there exists in-

herent flexibility that may be quantified and used to predict differences in cog-

nitive performance between individuals and for a given individual over time.  

This paper presents an early report on research we are undertaking to discover 

the dynamics of cognitive adaptability, with emphasis on a task environment 

designed to evoke and quantify adaptation in controlled experiments. 

1   Cognitive Adaptability in Cognitive Modeling  

While the study of individual differences has been a mainstay of psychology, a pre-

vailing assumption in cognitive theory and related modeling has been that cognitive 

processes are largely invariant across individuals and across different conditions for 

an individual.  Attention has focused on identifying a universally correct set of com-

ponents and their interactions.  Between-subject and within-subject variability is gen-

erally regarded as measurement error. 

At the same time, it is known that aptitudes for specific skills vary across individu-

als and different individuals will employ different strategies to perform the same  

task [e.g. 3].  Moreover, individuals will perform tasks differently over time and un-

der different conditions (e.g. Taylor et al, 2004). To reach their full potential, systems 
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designed to augment cognitive performance must thus account for such between- and 

within-individual differences in cognitive processes. 

We propose that cognitive adaptability is a trait necessary to explain the inherently 

dynamic nature of cognitive processes as individuals adapt their available resources to 

ongoing circumstances.  This does not imply a “blank slate;” humans are predisposed 

to process information in particular ways.  Instead, we assert that given variation in 

the structure and functioning of the brain, there exists inherent flexibility that may be 

quantified and used to predict differences in cognitive performance between individu-

als and for a given individual over time. 

2   Testing and Characterizing Cognitive Adaptability 

A fundamental challenge in establishing cognitive adaptability is modeling individu-

als’ relative strengths and weaknesses, and tendencies to adopt different strategies.  

Unfortunately, tools that permit human knowledge and behavior to be automatically 

modeled at a level of individual specificity have largely been ignored within the cog-

nitive neurosciences.  Automated Knowledge Capture (AKC) is the most promising 

avenue for efficiently supplying cognitive models tailored to differences relevant to 

performance, decision making, and learning in complex environments. 

Sandia National Laboratories, the University of Memphis, the University of Notre 

Dame, and the Mind Research Network are undertaking a study to test two founda-

tional hypotheses of cognitive adaptability: 

 

• Hypothesis 1: For a given task, individuals will exhibit different strategies with the 

specific strategy employed being a product of their intrinsic skills. 

• Hypothesis 2: Individuals will exhibit varying levels of adaptability with an indi-

vidual’s adaptability determining their propensity to switch strategies in response 

to changing circumstances. 

 

To test these hypotheses, we are developing AKC techniques to allow us to charac-

terize cognitive adaptability.  Specifically, we will develop techniques to: (1) model 

patterns of selective information retrieval; (2) detect strategic biases revealing beliefs 

and intrinsic skills; (3) detect shifts in strategy over time; (4) develop mathematical 

techniques to bound the uncertainty in the individual cognitive models derived 

through AKC.  We further intend to conduct experimental studies to establish neural 

correlates of behavioral metrics for cognitive adaptability. 

3   Related Work 

The study of individual differences has been a mainstay of psychology.  Accord-

ingly, a variety of traits, personality factors and performance dimensions have been 

discussed [2]. More recently, attention has focused on identifying neuro-physiological 

correlates of individual differences (e.g. Gevins & Smith, 2000).  While psychological 

theories commonly accommodate individual differences and some fo-cus on explain-

ing covariance in psychological measures across individuals, attention is generally  



 Characterizing Cognitive Adaptability via Robust Automated Knowledge Capture 109 

focused on specific traits, as opposed to generalized mechanisms that ac-count for  

individual differences across a range of different dimensions.  Furthermore, represen-

tations of cognitive theory within computational cognitive models have pro-vided 

provisions for adjusting various model parameters, but have offered little logic for ad-

justments beyond fitting the model to data obtained from a given experimental study 

[1; 5]. 

A central premise of the Cognitive Adaptability is that individuals differentially 

deploy their cognitive resources in response to ongoing circumstances.  The same ba-

sic idea appears within other conceptualizations such as: Cognitive Continuum The-

ory (Dunwoody et al, 2000), which addresses judgments; Self-Organizing Cognition  

and dynamical systems approaches (Tschacher & Scheier, 1996; Tschacher & Dau-

walder), which have been more heavily influenced by computer science than experi-

mental cognitive research; and control theory applications to cognition (Jordan, 2000) 

which are based on engineering constructs that do not readily translate to biological 

systems. 

4   Project Outline 

Initial experiments will use a simple task in which subjects reproduce a line drawing 

within experimental conditions that place different demands upon their cognitive re-

sources (e.g. retaining an image in working memory) or impose different task contin-

gencies (e.g. different payoffs for speed vs. accuracy).  Prior to experimental testing, 

separate measures will establish subjects proficiency for intrinsic skills associated 

with the experimental task (e.g. drawing precision, ability to handle mirror transfor-

mations) and personal biases (e.g. tendency to pursue high versus low risk rewards).  

Additionally, subjects’ cognitive adaptability will be assessed using a response set 

switching paradigm (i.e. assessment of subjects’ differential capacity to recognize that 

the rules governing a task have changed and adjust their behavior accordingly). It is 

hypothesized that for a given experimental condition, subjects will employ strategies 

that emphasize their individual cognitive strengths and biases.  Furthermore, a  

subject’s tendency to adopt strategies that emphasize skills for which they are less 

proficient or are contrary to their personal biases will vary in accordance with their 

cognitive adaptability.   In the second year, the same paradigm will be employed but 

with a more complex task (the NASA Multi-Attribute Task Battery) that requires not 

only spatial skills, but also verbal processing, memory, and reasoning. 

Current approaches for modeling cognitive task performance will be elaborated to 

encompass how an individual allocates their attention in performing a task.  The re-

sulting cognitive model will actively retrieve information from the task environment 

and exhibit information biases observed in the individual.  To support automated 

knowledge capture, the task environment will be instrumented to include nonintrusive 

behavioral sensors such as eye tracking, posture recognition, mouse and keyboard 

manipulations, as well as a capacity to extract information from the graphical display 

including symbols, text, spatial positions and optical flow (i.e. movement of display 

elements in relation to one another).  
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5   Pilot Study 

This section describes a pilot study of the line drawing task currently underway.  The 

objectives of this study are 1) characterize strategies for the line drawing task, and 2) 

determine whether individual strategies correlate to aptitudes measured with a battery 

of standard psychometrics.  

 

Fig. 1. A subject performing the line drawing task.  Each subject in our pilot study draws for 

approximately 45 minutes. 

5.1   Apparatus 

The line drawing task is performed on a Wacom Cintiq 21UX interactive pen display.  

The display is approximately 43 cm wide by 33mm tall, however the drawing task  

is performed in a subregion approximately 22cm by 22cm.  The resolution is 1200 

rows and 1600 columns of pixels. This display was selected for its relatively large  

display/drawing area and low-latency response time (27ms claimed). All inputs  

are performed with the pen; the mouse and keyboard are not used by subjects in the 

experiment.  

5.2   Drawing Task 

Line drawing is performed in a software application shown in Fig. 2.  The Picture 

Area (left) displays a figure to draw, while the Drawing Area (right) receives input.  

The picture need not be continuous and the subject may lift the pen and resume 

drawing at any time.  The subject indicates completion of the trial by tapping out-

side the Drawing Area.  Then the score for the trial is displayed briefly, then the 

task advances to the next trial.  All of the settings described below are configured 

on a per-trial basis, so they can vary parametrically or randomly within a block of 

trials.  An experiment session contains several blocks of trials.  The order of blocks 

is randomized. 
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Fig. 2. The drawing task supports a variety of input and feedback conditions to elicit strategy 

shifts between and within subjects  

5.3   Task Feedback 

The task environment continuously scores each trial as the subject draws.  There are 

three sub-scores and an overall score.  Optionally, the scores are displayed and con-

tinuously updated to influence strategy selection. 

• Accuracy: given sets of points Ppi ∈ and Dd i ∈ for the picture and drawing, re-

spectively, with 1,0 ≤≤
yx ii pp (and likewise for jd ) an accuracy score As is 

assigned according to Equation 1.  The parameter τ determines how “strict” the 

metric is, with 500=τ  a typical value.  Dpi , denotes 

( ) ( )22
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• Speed: the speed score Ss is a decay function of t , the duration of the trial, with 

parameter 
2

1t specifying the number of seconds before the score decays to 0.5 

(Equation 2): 
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• Memory: the memory score Ms is also defined by Equation 2, but taking the place 

of t is vt , the number of seconds the picture has been visible during the current 

trial.  Thus the memory score is maximized by viewing the picture only briefly.  

The memory score is calculated only in trials where the subject manually shows 

and hides the picture.  There is a forced delay (typical value 2s) after each time the 

picture shown, which imposes a fixed penalty for each viewing (through the speed 

score) and requires the subject to hold the picture in memory.  The picture is ini-

tially hidden, so the subject may predict the next picture in the sequence of trials to 

achieve a perfect memory score, at the cost of a low accuracy score if the predic-

tion is incorrect. 

• Overall: the overall score Os combines the subscores { }MSA sssS ,,= , each 

with a corresponding weight 10 ≤≤ iα  in Equation 3.  Thus renders the corre-

sponding metric entirely moot, while 1=iα implies that the overall score cannot 

be higher than the subscore. 

∏ +−≡
i

iiiO Ss αα1  (3) 

If required by the experiment design, visual feedback is presented by displaying 

the composite and overall scores graphically and numerically (Fig. 2).  Below the 

overall score is a graph which shows proceeding trial scores, which may help a sub-

ject identify performance trends and motivate him or her to improve over time.   The 

score display is updated at 10hz. 

Significantly, the user interface does not display the system parameters (e.g. speed 

score half-life, nor subscore weights).   For a good score, a subject must develop a 

strategy that is both consistent with their abilities, and which is rewarded by the envi-

ronment at the time. 

5.4   Task Manipulations 

The drawing software supports several task manipulations to elicit strategy shift be-

tween and within subjects, including:  

• Picture: The picture being drawn may be familiar or novel, detailed or simple, 

sharp-cornered vs. smooth, etc. 

• Affine Transformation:  The position, scale, and orientation of the Picture and 

Drawing areas can be set independently, forcing the subject to mentally transform 

the picture. 

• Drawing vs. Tracing: The Picture and Drawing areas may coincide, resulting in a 

tracing task. 

• Memory: The picture may be hidden and a delay imposed before drawing, forcing 

the subject to draw from memory. 

• Timeout: Drawing time may be limited.  The timeout is a normally distributed ran-

dom variable invisible to the subject.  This condition prompts the subject to choose 

between reliably earning a lower score by drawing quickly, or drawing more 
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slowly in hopes of a higher score at the risk of receiving no credit if the timeout is 

exceeded. 

• Interstimulus Interval:  The delay between trials is varied. 

• Background: The backgrounds displayed in the Picture Area and Drawing Area 

(e.g. a grid) can be used to vary landmarks for the drawing task. 

• Invisible Drawing:  The marks drawn by the pen may be hidden (as if the pen 

were out of ink).  This requires the subject to remember which parts of a figure 

have been completed and makes it harder to identify errors, decreasing the accu-

racy score. 

5.5   Output 

For each trial, the drawing task software outputs the following information: 

• Each point in the picture  

• Each point drawn by the subject, with time stamps.  The sample rate averages 140 

Hz which is limited by the windowing system (X.Org X Server 1.5.2 on Ubuntu 

Linux 8.10). 

• All of the settings in effect during the trial 

• The duration of the trial and the scores displayed to the subject. 

6   Conclusion 

This paper proposed that cognitive adaptability is a trait necessary to explain the  

inherently dynamic nature of cognitive processes as individuals adapt their available 

resources to ongoing circumstances.  We outlined a research plan that is intended to 

establish cognitive adaptability by measurement and prediction of behavioral data and 

the discovery of neural correlates.  Subsequent papers will document experiments and 

findings from this course of research. 
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Abstract. In a pilot study, we investigated the effect of anxiety on users’ sus-

ceptibility to deceptive information on Web pages. Specifically, we manipu-

lated the perceived control and associated anxiety of participants with and  

without visual disabilities  as they used an assistive technology, a screen reader.  

Preliminary findings indicated that anxious participants (i.e., without visual dis-

abilities) using the unfamiliar assistive technology were more susceptible to de-

ception and expressed more suspicion regarding the Web pages. We interpret 

these preliminary findings as consistent with the work of Whitson and Galinsky 

[1] and discuss implications for further research in Web site credibility determi-

nations and users’ susceptibility to deception. 

Keywords: Deception, Web Sites, Anxiety, Control, Assistive Technology. 

1   Introduction 

Why do people fall prey to deceptive information on the Web?  What factors affect 
their susceptibility to deception? While it is clear that the information itself and how it 
is presented effects people’s determinations of the credibility of Web-based informa-
tion [2, 3], it is not yet clear to what extent user characteristics or user contexts can 
affect those determinations. For example, are users more or less vulnerable to decep-
tion under anxiety-provoking circumstances such as when they experience a de-
creased sense of control?  In this paper, we examine the use of an assistive technology 
for reading and its effects upon the anxiety levels of persons with and without visual 
impairments as they assess deception in Web pages.  In initiating this work, we draw 
upon several research areas from which we briefly describe relevant findings: charac-
teristics of users that are known to affect credibility determinations, research examin-
ing illusion of control and people’s perceptions of distortions [1], and basic educa-
tional work with assistive technology. 

1.1   Characteristics of Users  

Several characteristics affect user determinations of credibility including socioeco-

nomic status, educational and reading levels.  For example, Benotsch et al. [4]  
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compared HIV positive patients’ and medical professionals’ ratings of a credible Web 

site presenting HIV treatments (from Journal of the American Medical Association or 

JAMA) to that of a Web site describing a purported cure for HIV involving goat se-

rum. Medical professionals and those from higher socioeconomic, educational and 

literacy levels were better able to discriminate the difference in information quality 

than those from lower SES and literacy levels.  Benotsch et al argue that vulnerable 

populations need to receive special instruction in Web site/information evaluations so 

as to be less vulnerable to deceptive cures and misinformation. 

In work by Iding et al. [5] more highly educated participants were more confident 

about their determinations of Web site credibility in a very specific area of software 

engineering. Less educated (e.g., students) were less confident, but in this particular 

case, were equally accurate in their credibility determinations.  While this result 

would seem incontrovertible, in other research, among film studies students in Nor-

way, Iding, et al. [5] found that the more educated people were, the less confident 

they were about their credibility determinations.  Upon initial consideration, these 

findings appear counterintuitive.  Although without further research we cannot fully 

account for these differences, it appears that the software engineering topic that was 

the focus of the former research was a narrow topic that had been covered in classes 

and was known to participants.  The film studies Web sites, although selected by 

professors in the field, covered films and related topics that were had a lesser prob-

ability of being specifically known to participants.  We speculate that this field might 

be more diffuse than a specific software engineering topic and so might account for 

people’s greater awareness of their knowledge limitations with education. 

These are examples of only a few user characteristics that can be associated with 

people’s abilities to adequately assess credibility of Web pages and detect deception.  

How do contextual factors affect people’s determinations? 

1.2   Sense of Control and Pattern Perception 

In “Lacking Control Increases Illusory Pattern Perception,” Whitson and Galinsky [1] 

describe research in which people’s sense of control is reduced in various conditions.  

Participants tended to perceive patterns in arrays of stimuli where none actually exist. 

Whitson and Galinsky explain: “Participants who lacked control were more likely to 

perceive a variety of illusory patterns, including seeing images in noise, forming illu-

sory correlations in stock market information, perceiving conspiracies and developing 

superstitions…. when individuals are unable to gain a sense of control objectively, 

they will try to gain it perceptually” (p. 115) [1].  This is confirmed by Rudski’s re-

search with college students who tended to rely on rituals and superstitions when they 

were less prepared, less in control of the outcome, and the stakes were high [7]. 

What effect would manipulating people’s sense of control and related anxiety have 

upon their ability to detect deception in Web pages?  In the present research, we hy-

pothesized that reducing control could be achieved for participants without visual 

disabilities by using an unfamiliar assistive technology, a screen reader, for examining 

Web pages. We would expect these participants to be less accurate in detecting  

deception and more apt to perceive conspiracies in accurate Web-based information. 

Participants with visual disabilities would be familiar with the assistive technology, so  
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we hypothesized that the opposite would happen: they would experience a heightened 

sense of control and reduced anxiety and thus be less susceptible to deception on Web 

pages. 

1.3   Assistive Technology for Reading on the Web 

Because the present research utilizes assistive technology as a means to manipulate 

users’ “sense of control” and associated anxiety, an introduction to assistive technol-

ogy for reading and its relationship to user control merits discussion. Anderson-Inman 

and Horney [8] describe “text that has been altered to increase access and provide 

support to learners as supported electronic text or supported e-text” (p. 153), and 

provide a brief overview of kinds of supports possible, “Including embedded supports 

(e.g., definitions of unfamiliar terms), multiple modalities (e.g., text that can be read 

out loud), and links to useful resources (e.g., background information, concept map, 

notepad) – all of which can transform electronic text so that it is more accessible and 

supportive to diverse learners” (p. 153).  The authors also describe a typology for 

supported eText adapted by the National Center for Supported eText (NCSeT). 

They mention that a case cannot be made that text-to-speech  devices when used 

alone improve comprehension for users with visual disabilities. For example, they 

describe prior work in which users with hearing disabilities preferred to use a pronun-

ciation tool although it had been deemed not useful for this group.  The authors  

contend, “Personal choice when interacting with supportive resources can be highly 

motivating in itself, resulting in increased engagement with the text and potential for 

increased comprehension” (p. 158).   

This conclusion is corroborated by the work of Badge et al. [9], who found that a 

group with disabilities used far more features for creating PowerPoint presentations 

for the Web than their counterparts without disabilities.  As they explain, “It is possi-

ble that these students [with disabilities] were used to customizing their own learning 

experiences and personalizing their computing environment and as such were perhaps 

more self-aware than the control group who mostly appeared to passively watch the 

presentations with little interaction” (p. 111). 

2   Method 

In this preliminary study we examine the relationship between users perceived sense 

of control and how they make determinations of deception in websites.  Our  research 

question was:  How does user control affect credibility determination?  Our hypothe-

ses were: 1) that in environments where the participants felt that they lacked control, 

they would be more likely to consider the websites to be deceptive and 2) when par-

ticipants were in an environment where they felt in control, they were more likely to 

give accurate assessments of the websites veracity. Control was measured in two 

ways.  

First, the environment was manipulated by having participants view some Web 

pages, and  only hear the information that existed on other  Web pages. Second, the 

results of the Rotter’s Locus of Control Inventory should indicate the  extent partici-

pants consider themselves generally “in control.”  In addition to their credibility 
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judgments, we were also interested in how much control that the participants felt that 

they had, as well as their confidence in their own credibility judgments. 

2.1   Participants 

Participants consisted of one person with a visual disability and 13 individuals with-

out visually disabilities recruited from the University of Hawaii and California State 

University, Fresno. 

2.2   Materials and Procedure 

Before the participants without a visual disability begin the experiment, they installed 

the Fire Vox add-on to the Firefox browser, and make sure that they could start the 

“automatic read mode” to read entire Web pages.  Fire Vox is an open source, multi-

platform screen reader, freely available from http://firevox.clcworld.net.  The Fire 

Vox developers describe it as: 

 

A screen reader for everyone - Fire Vox is designed to accommodate differ-

ent users with different needs. For visually impaired users, all Fire Vox 

commands are keyboard activated. In addition, the keyboard commands can 

be easily reconfigured in the self-voicing Fire Vox Options menu to avoid 

conflicts with other accessibility software products or to suit personal prefer-

ences. For sighted users who need a screen reader, such as web developers 

interested in testing their webpages or educators who work with visually im-

paired students, Fire Vox's highlighting feature makes it easy to keep track of 

where it is reading from on a page. This highlighting feature is also useful for 

dyslexic users and partially sighted users. 

The participant with a visual disability used the JAWS commercial screen  

reader (http://www.freedomscientific.com/)  that they was accustomed to. For the 

other participants  the Fire Vox screen reader was an unfamiliar and uncomfortable 

environment.  

We categorized three of the websites as accurate and the other three as deceptive.  

We found the six Web pages using personal knowledge and search engines.  The 

deceptive Web pages were either purposely deceptive (such as http://www.dhmo.org/) 

or described ideas not recognized by mainstream science.  The accurate Web pages 

described real, but unusual, information or situations.   

Next, an order for presentation of the Web pages was randomly determined. Then 

within that order, Web pages were assigned at random to be seen or heard.  To bal-

ance the experiment a second list of the same Web pages was created in the same 

order as the first, but with “seen” and “heard” flipped. So, participants without a vis-

ual disability heard half the Web pages and saw half the Web pages. The participant  

with a visual disability participated in the “sound only” interface where they felt com-

fortable and in-control. 

The participants visited six Web sites and in turn completed a survey about each 

page. The survey asked them whether or not they believed the information on the 

Web page and how confident they were in their answer. The questionnaires gave the 

participants a choice of seven rating levels. 
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In addition to the questionnaires about the Web pages, the participants answered the 

following follow-up questions at the end of the study:  

 

• “In general, rate the level of control that you felt while carrying out this task” 

• “Rate the level of anxiety that you felt while carrying out this task” 

• “Please add any comments that you might have about your experience com-

pleting these tasks.”  

Participants then completed Rotter’s twenty-nine item Locus of Control Inventory 

[10]. The inventory measures the extent to which people attribute outcomes to their 

own efforts or external factors. 

3   Results and Discussion 

The authors coded the participants’ written comments in response to each question in 

terms of a range of possibilities from accurate to deceptive. Even with the limited data 

set, the data suggests that if the participants, regardless of whether they had a visual 

disability, were comfortable and felt in control, they were more likely to discern 

which Web pages were accurate and which ones were deceptive. On the other hand, if 

the participants were forced into an unfamiliar environment where they were uncom-

fortable and felt as though they little control, they were unable to discriminate the 

accurate from the deceptive Web pages as well. Interestingly, the Rotter’s Locus of 

Control Inventory  did not seem to have as much influence on the participants’ deci-

sions as the authors anticipated.  Findings from this pilot experiment highlighted con-

tradictions between what some participants viewed as credible and others did not.  

Furthermore, the results pointed out differences in confidence about one’s ability to 

evaluate information on the Web in general. 

Finally, we note that all users can find assistive technologies helpful.  For example,  

consider a user-submitted “strategy” on the Lexdis website (http://www.lexdis.org/ 

strategy/152)  helpful to users with and without a visual disability:  

 

The first thing I had to do was use text-reading software over some poetry, 

just to slow myself down. Text-reading software is atonal, finding recordings 

of people reading is a much better option, but in this case it had the desired 

effect of making me pay attention to every word. 

 

The approach of “universal usability” [11], an extension of the physical Universal 

Design movement (http://www.design.ncsu.edu/cud/), is a rich research area for Web 

and interface designers.  As richer interfaces become widespread, users will be more 

comfortable with technologies such as screen readers  -- much as we’ve become ac-

customed to sidewalk curb cuts and ramps – and all will benefit.  Sarah Horton 

(http://universalusability.com/) quotes Ben Shneiderman’s definition of universal 

usability: “enabling all citizens to succeed using communication and information 

technology in their tasks”.  
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Abstract. The main objective of this work is the study of EEG signals in order 
to investigate sleepiness induced from drug administration for insomnia and 
sleep deprivation. Data used in this work were obtained from real experiments 
in FORENAP, France and in CERTH, Thessaloniki, Greece. The features under 
consideration are Power Spectrum in certain frequency areas, alpha slow-wave 
index (ASI) and Fractal Dimension (FD) for placebo and verum subjects. 
Studying these features in the above groups, we found that sleepiness due to 
hypnotic medication and due to sleep deprivation can cause different behaviour 
in brain activity at certain locations. These EEG characteristics could be used 
for the classification of the medication intake (verum or placebo) and its effect.  

Keywords: insomnia, sleep deprivation, EEG signals. 

1   Introduction 

Insomnia is a medical disorder of sleep patterns characterized by difficulty in falling 
asleep, remaining asleep, or both. It affects millions of people and can be caused by 
many different conditions, diseases, and circumstances. Some effective insomnia 
treatments focus on changing the sleep behaviours and habits, while others require 
medications and supplements. 

It is known that in humans sleep does not begin the same time in all cortical areas. 
Topographical and frequency changes observed in EEG data effect the wakefulness-
sleep transition and allow us to describe the state of human brain before and after 
sleep on set [1]. 

Sleep deprivation is an overall lack of the necessary amount of sleep. Changes in 
brain activity have been observed during sustained wakefulness. Assessment of EEG 
power density in sleep deprived people [2] demonstrated an incensement in the 6.25-
9.00 frequency range. Fluctuations in the energy of theta and alpha bands can be elec-
trophysiological correlated to the “waking intensity” [3], [4]. Sleep-deprived subjects 
showed shifted patterns of brain activity, but research in this area is still controversial. 

In this work we examine the coexistence of EEG topographical and frequency 
changes in order to elucidate differences in sleepiness due to hypnotic drug admini-
stration and due to sleep deprivation. 
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2   Methods 

In this analysis two datasets were used: a) dataset with drug induced sleepiness, b) 
dataset with sleepiness induced by sleep deprivation.  

Concerning the first one, 14 male subjects aged from 18 to 40 years were selected 
as volunteers, in FORENAP. EEG data were collected after lorazepam 2.5 mg single 
administration in the morning to healthy people participated in the study. Lorazepam 
is a benzodiazepine drug with short to medium duration of action. It is known for its 
anxiolytic, amnesic, sedative/hypnotic, anticonvulsant and muscle relaxant properties 
by slowing down the central nervous system. As a psychoactive drug, it is useful in 
treating insomnia. For each subject two conditions were examined: verum and pla-
cebo, with recordings corresponding to different times during the day and night until 
next morning (recordings: t1: one hour before drug intake, t2: drug intake, t3:one hour 
after drug intake, t4:two hours after drug intake, t5: three hours after drug intake, 
t6:four hours after drug intake, t7:five hours after drug intake, t8:six hours after drug 
intake, t9:eight hours after drug intake, t10:ten hours after drug intake, t11:twelve hours 
after drug intake, t12:thirteen hours after drug intake). EEG signals were obtained with 
eyes closed during 3 minutes in resting condition. Standard channels used : chan.1 : 
FP1,  chan.2 :  FP2, chan.3 :  F7, chan.4 :  F3, chan.5 :  FZ, chan.6 :  F4, chan.7 : F8, 
chan.8 : T3, chan.9 : C3, chan.10 : CZ, chan.11 : C4, chan.12 : T4, chan.13 : T5, 
chan.14 : P3, chan.15 : PZ, chan.16 : P4, chan.17 : T6, chan.18 : O1, chan.19 : 0Z, 
chan.20 : O2. 

For the pre-processing of the data, the average of all channels were calculated as 
reference and subtracted from all channels. Designated artifact regions were zeroed. 
Basic filtering was done at: 0.5-25 Hz. During the basic processing part, the standard 
20 channels mentioned before have been used for analysis, not the extra ones. 

The second dataset was obtained from an experiment [5] that took place at 
CERTH, Thessaloniki, Greece, from 6 June till 27 July 2005. Subjects participated in 
this one, were average drivers (mean driving experience: 8.3 years), with a mean 26.5 
years and were asked to stay awake for at least 24 hours. The level of sleepiness was 
estimated by using the Karolinska Sleepiness Scale (KSS), [6] ranging from 1(very 
alert) to 9(very sleepy). The KSS test has been found to be related to EEG and behav-
ioral variables, indicating a high validity in measuring sleepiness [7].  

Data acquisition was performed for 20 minutes in a quite, dark environment. Re-
cordings corresponding to the last 3 minutes were analyzed, in correlation with the 
data from the previous experiment. A sampling rate of 200Hz was used and the ampli-
tude range was ± 20μV. Band bass filtering at the range of 0.5 to 70Hz was applied, 
with a notch filter ate the 50Hz power supply component.  

During preprocessing [8], EEG data were Band pass filtered (3rd order Butterworth 
filter, Band pass range: 0.5 – 45 Hz) and artifacts were removed by Independent 
Component Analysis (ICA) technique. Finally, data were filtered to  0.5-25Ηz, in 
order to have the same spectral range as the first dataset. 

For the assessment of differences in brain activity between subjects manifesting 
sleepiness under insomnia medication (verum and placebo groups) and sleep deprived 
subjects with manifested sleepiness, spectrum analysis was applied. The extracted 
features were Power Spectrum in the frequency bands: delta (1-4Hz), theta  
(4-8Hz), alpha (8-13 Hz), beta (13-22 Hz) and ASI- alpha slow-wave index 
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(ASI=alpha/(delta+theta)) , related to arousal level. Fractal Dimension (FD) was also 
calculated for EEG signals, an indicatr of the system’s complexity, related to both 
arousal/sleepiness and vigilance.   

3   Results 

Using the aforementioned features, the verum/placebo differences before medication 
were first assessed, forming the baseline for the drug effect. Then the differences be-
tween the two conditions were assessed again for the recordings one hour after medica-
tion intake, when drug effect is expected to be high. In parallel, these characteristics 
were compared with the ones of sleep- deprived subjects manifesting sleepiness. 

Power spectral analysis revealed important differences between verum and placebo 
group in delta, alpha and beta frequency ranges for certain scalp locations. 

 
Fig. 1. Topographic map of a scalp data field with specified channel locations, show the brain 
activity for a subject for delta band, one hour after lorazepam administration and for a sleep 
deprived subject   

 

Fig. 2. Energy distribution for a verum and placebo subject one hour after drug intake at  
13-22Hz 

 



 Investigation of Sleepiness Induced by Insomnia Medication Treatment 123 

 

Fig. 3. Energy distribution for a verum and placebo subject one hour after drug intake and for a 
sleep deprived subject, for the alpha band 

 

Fig. 4. Topographic map of a scalp data field with specified channel locations, show ASI one 
hour after lorazepam administration for a subject under verum - placebo conditions and for a 
sleep deprived subject 

More specifically, for 1-4Hz frequency range and for the verum group, after drug 
intake, a predominance was observed for channels Fp1, F7, F3, Fz, P3, P4, and Pz. 
Placebo subjects showed lower energy values in comparison with verum and sleep 
deprived subjects. A topographic map of a scalp data field in a 2-D circular view 
shown in Fig.1, illustrates energy distribution at 1-4Hz, for a verum and a placebo 
subject one hour after drug administration and for a sleep deprived subject. 

Energy increases for channels F3, C3, P3, P4, Cz, C4, T5 and T1 in beta (13-22 
Hz) band for subjects that took lorazepam, one hour after the drug intake. Fig.2 shows 
an example with the energy distribution in the channels mentioned before for a verum 
and placebo subject, one hour after having 2.5 mg of lorazepam. 
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Fig. 5. Evolution of FD with time, for a specific subject and channel C3 

 

Fig. 6. FD for all channels, one hour before drug intake and FD for all channels, one hour after 
drug intake 

 
Fig. 7. FD difference between verum and placebo (FDv - FDp) for filtered signals at 25 Hz and 
12.5 Hz for one subject 

After one hour of drug administration, energy for alpha band (channels: F3, C3, 
Cz, C4, T5, T6) decreased for verum subjects, compared to placebo, and the alpha 
band levels where lower than in sleep-deprived subjects (Fig.3).  

ASI feature indicating arousal decreases with verum in comparison not only with 
placebo, but also with sleep deprived group, since energy in delta and theta frequency  
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ASI: F7, F3, C3, CZ, P4 
 

 

Delta band : FP1, Fp7, F3, 
C3, P3, Pz, P4 

 

Alpha 1 band : F7, F3, FZ, 
C3, T4 

 

 
Beta 2 band: F3, Fz, C3, 
C4, T5, T6 

 

 
Fractal Dim : FP1, F3, FZ, 
F8, T3, CZ, C4, T5, P3, P4 

 

 

Fig. 8. Topographic map of a scalp data field with specified channel locations, show with red 
the positions that correspond to the statistically significant changes described above between 
verum and placebo, one hour after drug intake 

bands for subjects under medication has higher values in comparison with sleep de-
prived subjects. An example can be seen in Fig.5. 

EEG activity across delta/theta/sigma (12-15Hz) frequency range for channels FP1, 
FP2, F7, F3, Fz, F4, F8,  C3, Cz, C4 was also significant different between verum and  
placebo groups, for all the EEG recordings.  

Finally FD feature was calculated for subjects that took hypnotic drug and for pla-
cebo subjects. FD for verum group appeared significantly higher than in placebo 
group, while these differences dimish after 24 hrs. Fig.5 shows the FD evolution for 
C3 channel for a specific subject.  In Fig.6 FD is plotted versus channels for the same 
subject, one hour before drug intake, while Fig.7 shows the situation one hour after 
drug intake, both for verum and placebo subjects. The difference between FD values 
for verum and placebo decreases by filtering the EEG signals, as shown in Fig.9 at 25 
Hz and 12.5 Hz, indicating that the observed increased energy in beta band for verum 
could be partly responsible for the altered FD values in this group. However, more 
studies are needed, as fractal dimension is known to be affected by the EEG signal 
bandwidth. Furthermore, it is characteristic that on average the fractal dimension of 
the sleep deprived subjects who manifested sleepiness was also high, in comparison 
with the FD measured in the other subject group.  

Overall, statistical differences were detected with the Wilcoxon rank sum test. 
Comparing the verum/placebo features before drug intake, statistical differences were 
not found in any EEG channel. On the other hand, one hour after drug intake, statisti-
cally significant changes were found between verum and placebo in ASI, Fractal 
Dimension, and bands Delta, Alpha1 ans Beta 2, as depicted in Fig.8 and Table. 1. 
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Table 1. P-values for Wilcoxon rank sum test results, corresponding to differences in EEG 
channel recordings as described above, between verum and placebo subjects, one hour after 
drug intake 

 ASI Delta Alpha 1 Beta 2 FD 
FP1  0.0409   0.0229 
F3 0.0366 0.012 0.0229 0.0203 0.0409 
F5   0.0409   
FZ    0.0291 0.0456 
F8     0.0366 
F7 0.0123  0.0409   
C3 0.0258 0.0203 0.0229 0.0456  
C4    0/0366 0.0456 
CZ 0.0159    0.0291 
P3  0.0229   0.014 
P4 0.0326 0.0054   0.0336 
PZ  0.0366    
T3     0.0291 
T4   0.0159   
T5    0.0366 0.0203 
T6    0.014  

4   Discussion 

The analysis in this work demonstrates that power spectrum energy and ASI for cer-
tain EEG channels can be characteristics different for the three subject groups under 
consideration. Studying these features in the above groups, we found how sleepiness 
after drug intake is reflected in the EEG features, and moreover that sleepiness due to 
medication (one hour after drug intake) and due to sleep deprivation can cause differ-
ent behaviour in brain activity at certain locations. Drug intake causes increase in 
delta/beta band and decrease in alpha band, as well as an increase of the fractal di-
mension in almost all channels.. Differences were not significant in the occipital 
channels, but rather in the left centro-parietal area. Furthermore, it is interesting to 
note that ASI index as well as fractal dimension was higher for the sleep deprived 
than medication group, suggesting that drowsiness or sleepiness due to medication is 
higher, or that the sleep-deprived group maintains more mental ability than the medi-
cation group. However, the fact that data for these two groups (medication and sleep 
deprivation) were produced from two distinct experiments consists a limitation to this 
study. Furthermore, extended experiments would be required to reveal to what extent 
these conditions cause a combination of sleepiness and hypovigilance, or preferably 
one of them. 

Concluding, altered FD of EEG signals could support the detection of brain pat-
terns in verum group, for the specific drug administration. Spectral characteristics 
discussed in this paper could also address the detection of drug administration effects, 
discriminating between verum and placebo, and also between medically and naturally 
induced sleepiness.  
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Abstract. Task forces of expert knowledge workers would benefit from more 

advanced web tools supporting activity awareness and social sensemaking. This 

paper proposes the design of a task force workspace, which is under develop-

ment. It introduces the problem through a scenario, specifies requirements, il-

lustrates a modeling approach and the mockups of the functions in the proposed 

workspace. Design issues and future work are finally discussed.  

Keywords: Awareness, Sensemaking, Task Force, Roles, User Modeling, 

CSCW Design, RSS or Atom Feeds. 

1   Problem  

Numerous and diverse task forces of expert knowledge workers would benefit from 

more advanced web tools supporting awareness and social sensemaking. Examples of 

task forces are a national scientific committee writing an official report on climate 

change, a team of professionals writing a proposal for a large contract bid on behalf of 

their company, a corporate group learning about and identifying opportunities in a 

new business area, a group of financial analysts or a tiger military team strategizing a 

solution to a complex problem, an inter-agency task force planning and managing 

responses to a major natural disaster such as a hurricane.  

The tasks of these large work groups tend to be novel in topic, ad hoc in method, 

and have a number of constraints in time and space (e.g., limited time, asynchronous 

work, and distributed across different places). The large amount of labor, the broad 

variety of skills required, and the critical implication of the final product make it nec-

essary that multiple experts contribute to the work. This paper describes an ongoing 

research that focuses on supporting a specific set of needs of these task forces. Such 

needs include managing a large amount of noisy data, summarizing data coming from 

multiple sources, and coordinating among collaborators with diverse roles toward the 

common goal of delivering a final report (or a solution to a problem) which synthe-

sizes the information content foraged and the judgments made on it. 

Two classes of tools help task forces, respectively, to collect information and au-

thor a final report. Web tools have expanded knowledge workers’ abilities in foraging 
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large numbers of tokens or chunks of information, such as web pages, wiki pages, 

blogs, documents (or portions of them) and share them with others (e.g., through 

email, search engines, feed readers or aggregators, shared databases). Moreover, 

workers typically have access to collaborative editing applications for collaboratively 

writing reports (e.g., wikis, Google Docs, groupware applications). Despite the abun-

dance of tools in these two classes, currently there are very few tools to assist the 

workers in doing the in-between work of filtering, abstracting, and organizing low-

level tokens of information into intermediate representations that progress towards the 

components of the desired final product (e.g., see preliminary attempts in 10, 10].  

That is, in a nutshell, we lack social sensemaking tools. 

This paper proposes a workspace design that supports awareness, monitoring, and 

social sensemaking in a task force. The next sections present a scenario and, in rela-

tion to it, illustrate requirements for task forces. Then, we describe the functions of 

our prototype and briefly discuss the main design issues and future research. 

2   Context 

Task scenario  

Let us consider a real problem scenario for a task force.   

The US government establishes a scientific task force on climate change. The task 

force includes about thirty-five members with very diverse specialties: biologists, 

economists, climatologists, lawyers, policy analysts, and other professionals. The 

goal is to identify the science and information needed to assist the government in 

addressing the consequences of climate change and to suggest possible options for 

getting the needed science. The concrete task is to produce a progress report in a 

period of about 6-9 months. The task force needs to forage and summarize large 

amount of information from various digital sources such as scientific libraries, gov-

ernment databases, the Internet, personal media (e.g., email, private databases). The 

members need to share and discuss the relevant chunks of information, then write and 

assemble sub-sections of the progress report in a shared wiki. That is, they generate 

intermediate summaries that are later used to compose the final proposal. 

This problem scenario is modeled after a real task force formed in 2007 to identify 

the science and information needed to assist the government in addressing the conse-

quences of climate change and to suggest possible options for doing the needed sci-

ence [1]. It exemplifies aspects of a task force that are useful when specifying design 

requirements, which are: 

1. Specialized co-workers: large group of knowledge workers, including a chair and 

domain experts of very diverse backgrounds as members.  

2. Collaborative task: progress report writing is a complex knowledge task requiring 

labor division across experts who share a goal, i.e., delivering a high-quality report. 

3. Setting: the work is distributed across places, the projects is completed over several 

months, members collaborate mostly asynchronously with few coordination meet-

ings. 

4. Tools: Web, various databases, and a wiki for drafting the progress report. 
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Design Goal 

The goal is to engineer tools as part of a web-based workspace that ultimately im-

prove the quality of the task force’s final report by reducing the costs (or increasing 

the benefits) for the members to:  

• Construct and share intermediate sensemaking products. 

• Maintain awareness of relevant content and roles of contributors.   

The theory guiding the design is the sensemaking model [2] and research on col-

laborative tools supporting awareness and sensemaking in teams [e.g., 3]. Pirolli and 

Card’s notional model of sensemaking [2] was initially applied to develop new tech-

nologies for intelligence analysts. Here the focus is specifically on tools that support 

the intermediate stages of extracting information, schematizing, and summarizing 

within a task force. 

3   Requirements 

In traditional collaboration settings, a benefit of forming a co-located task force was 

that the members would learn incrementally about each other and share content by 

working in close coordination, via face-to-face meetings and intermittent periods of 

asynchronous collaboration. A free benefit of working together was the effortless 

increment of mutual awareness and the common ground established, which would 

make members’ coordination and sensemaking more efficient.  

With the introduction of groupware applications, first, and web-based collaborative 

tools, later, collaborations in enterprises have become increasingly distributed in 

space and asynchronous in time. However, this greater flexibility in the setting and 

the ability to easily share large amount of data came with a big cost. In distributed, 

asynchronous collaboration, maintaining awareness and making sense of massive 

amount of content now requires both an active effort from the collaborators and ade-

quate tools need to be provided within the shared workspace.  

Nowadays, many tools (e.g., FriendFeed [4]) support task force members to collect 

low-level tokens of information such as web pages and Word documents into a shoe-

box-like repository (see left box in Figure 1). Similarly, several collaborative editing 

tools support the members at the end of the collaboration, while the report is being 

finalized (e.g., collaborative editing tools such as Google Docs or some features of 

Microsoft Office, see right box in Figure 1). But very little support is available for 

supporting awareness and sensemaking while the task force is engaged in the process  

 

Shoebox

(e.g., FriendFeed)

Intermediate 

Representation

(e.g., TOC)

Final Report

(e.g., wiki)

 
Fig. 1. Sensemaking process and sample tools: adaptation of model in [2]  
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of filtering out noisy collections of data to arrive at relevant information tokens, creat-

ing intermediate representations from the low-level tokens, and communicating the 

individual contributions to other people.  

 

Proposition 1. Knowledge sharing. In a task force, where collaborators have differ-

ent roles, it is not the case that everyone in the team should know everything.  

This proposition emphasizes the need to reduce the things that collaborators need to 

attend to. This contrasts with the simplistic view of knowledge sharing as the forma-

tion of uniform mental models shared across team members (i.e. see this distinction in 

the literature on the transactive memory models [5]). It is, in fact, endemic to task 

forces dealing with massive amount of information to manage different skill sets and 

jobs. It is more efficient if the members divide the labor and attend to only what is 

relevant to their jobs. In this context, the performance can be improved via tools that 

support the awareness of each member for relevant content in ways that take into 

account the role specialization within the task force [e.g., 6].  

Proposition 2. Content representation. Collaborators assimilate shared content at a 

lower cognitive cost if they organize the large amount of information into higher-

order content abstractions rather than low-order tokens or chunks of information 

(e.g., a few paragraphs of text, a spreadsheet or a table with data).  

This proposition points to a first solution to help with the management of very large 

amount of shared information (see proposition 1). It is quite common in large hierar-

chical organizations to generate briefings for the leaders that summarize large amount 

of data and detailed analyses (e.g., briefings for the US president).  

Search engines, feed readers, and plain wikis allow the members of a task force to 

forage large amounts of detailed and unstructured data but provide little or no help for 

filtering, categorizing, and organizing the content. On the other hand, research on 

information processing and information visualization suggests that if a workspace 

integrates these foraging tools and in addition supports the construction of intermedi-

ate content abstractions, then it can significantly improve the quality of knowledge 

sharing and sensemaking [e.g., 7, 2]. 

Proposition 3. Role-specificity of representations. The awareness and coordination 

of the collaborators improve if the abstractions also reveal about the roles of the 

authors. 

This proposition follows from the combination of propositions 1 and 2: if the co-

workers are more efficient when they selectively attend to only what is relevant to 

them and if they can easily construct and share high-order representations of informa-

tion, then it would be also helpful if such high-order representations can be personal-

ized based on the members’ roles (i.e., focusing on details relevant to each role) and 

carry also information about what role has contributed what content (i.e., supporting 

awareness of roles). Examples of features supporting awareness of different roles are 

provided in [3, 6]. 

Proposition 4. Content-argument proximity. Sensemaking quality and motivation 

to contribute increase if the workspace presents the content (e.g., raw evi-

dence) close to the rationale for sharing it (e.g., added arguments). 
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This proposition points to the fact that the overall process of sharing, summarizing, 

and judging ideas in work groups has the general form of a dialog (e.g., initial  

proposal, reply, reply-to-reply, ..., deliberation). Moreover, when sharing a token of 

information that was already processed individually, collaborators tend to naturally 

attach their rationale or argument for sharing it [e.g., 8]. However, groupware applica-

tions (e.g., Groove) and wikis (e.g., MediaWiki applications) are designed with an 

unnecessarily marked separation between the content shared (documents or pages) 

and the discussion on it (i.e., discussion tools in groupware systems or discussion 

pages in wikis). This imposes extra steps (i.e., clicks) and context switches when 

users need to match the content with its rationale (and who contributed what).  

In contrast, other web tools (i.e., blogs, forums) or groupware prototypes designed 

to make arguments both visible and visually related to the shared tokens have been 

successful in enabling high-quality sharing [9] and understanding [12], and high par-

ticipation (see FriendFeed [4] or web blogs such as TechCrunch and Slashdot). 

4   Workspace Design 

In relation to the scenario above, this section illustrates the design of a workspace that 

helps to channel information from the foraging tools to the editing tool (i.e., the wiki) 

used by the task force. Each member has a personal and a shared space where the 

numerous pieces of information found can be pre-processed individually and then 

analyzed collaboratively (see Notebook in SparTag.us tool [15]). The filtered and 

commented content is then summarized and assembled in the wiki.  

To address the requirements synthesized in the propositions above, the design in-

cludes support for content abstraction (proposition 2), selective awareness of shared 

content and contributors (propositions 1, 2, 3), discussion in context (propositions 2, 

4) and guided discovery (propositions 1, 2, 3). Providing such support requires an 

adaptive workspace that models the knowledge, role, and interaction of each member 

and then provides support that is informed by each user model.  

4.1   Modeling the Task Force at Work 

Past work on adaptive systems (e.g., handheld guides in museums or online recom-

mender systems) contributed sophisticated approaches to model individual users and 

guide their exploration of large amount of content [13, 14]. Such models allow tailor-

ing the presentation on user’s knowledge, interest, and interaction history and ena-

bling personalized recommendations that guide the discovery of new content. 

We adapt the model for individual users proposed in [13] and extend it to the case 

of a task force (Figure 2). The proposed model has four modules that keep track of 

four different sets of attributes for each member:  

• Static member characteristics: e.g., age, gender, interface preferences  

• Three sets of dynamic characteristics: 

1. Individual knowledge (i.e., facts s/he knows in the problem domain)  

2. Role (i.e., responsibilities in the task force and personal interests) 

3. Interaction history (i.e., content searched, content found, annotations, and sum-

maries generated).  
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All the four modules of the model are initialized with information from users pro-

files (member-specified or imported from pre-existing task forces) and the roles as-

signed by the team leader of this task force. Then, the three dynamic modules are 

incrementally refined as the members work on the task.  

A first novel element of this model is the account for the members’ roles, which 

makes it a model for a work group. When considered collectively the different roles 

represent the strategy of the group. Key interdependencies among the roles can be 

inferred and used. This relates to recent attempts in collaborative computing to model 

the structure of collaborative activities or business projects rather than just their actors 

(activity-centric design [17]). A second novel aspect is that the model tracks no only 

the behavior of retrieving existing information but also the results of generating syn-

theses (written summaries), which includes content added ex-novo by members. Fi-

nally, in contrast with black-box modeling approaches, we propose a “see-through 

model”: the facts collected by the system on the members are made visible to the 

members. This aim at enhancing their mutual awareness at a project level.   

  

Fig. 2. Task Force Model Components  

4.2   User Interface Functions  

Let us consider the situation of a scientific task force sharing, discussing, and organiz-

ing information for a report on climate change. The leader has given the members 

different roles based on their expertise. The members pooled in a shared web-based 

repository a large number of pieces of content from papers, books, and web pages. 

These are presented in a list, which can be rearranged or filtered. Each piece can be 

annotated (e.g., highlighted, tagged).  

To illustrate the functions of the user interface we use the table of contents (TOC) 

as our example content abstraction to organize and share information. A TOC is an 

intermediate representation on the content that is typically exploited in collaborative 

report-writing tasks. Note however that it is not the only possible embodiment of 
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content abstraction. Alternative kinds of representations are clouds of tags, concept 

maps, affinity diagrams, flow charts, box-and-arrow (or Entity Relationship) dia-

grams, etc. The aim of this paper is to present the design ideas underlying the model-

ing approach and the UI functions, rather than the specific TOC representation. 

We propose an augmented version of a TOC where the members can refine the 

items, access the low-level tokens in the leaf nodes, browse new low-level tokens 

selected by the system, and look at the contributions of other members, etc. 

 

 

Fig. 3a (left) and 3b (right). 3a shows the shared repository with annotated pieces of content 

and tag cloud (functions implemented in SparTag.us [15]). 3b shows the proposed intermediate 

shared representation: a table of contents of the task force report. 

4.2.1   Creating Intermediate Representations (Content Abstraction Function)  

Group members select and categorize the low-order chunks of content from docu-

ments in the repository. Then they create items in the TOC (see proposition 2). Pur-

pose-tagging can be used by the collaborators either while foraging [10] or later 

when sharing to explain why added tokens are relevant, or why contributed summa-

ries are useful [8]. This enables clustering of content by purpose or argument (see 

proposition 4). 

4.2.2   Selective Awareness of the Knowledge That Was Shared (Awareness Function) 

More importantly, the TOC is displayed to each member as a personalized view 

(point-of-view) that takes into accounts the member’s prior knowledge, role, and prior 

activity in the system (see proposition 3). Visual cues used to personalize the view 

are: expanding vs. collapsing parts of the table, boldening vs. graying out items, 

adapting font size of items, and showing visual traces of amount of overall content  
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Fig. 4a (left) and 4b (right). Role-specific views of TOC shown in Figure 3a. For two experts 

who are focusing on, respectively, sections 1 and 4 of the report.  

(overview on content) and other members’ activity on the different parts of the table 

(activity progress bar). Figure 4a and 4b present views of the TOC to two members: 

Climate Issues and Capacity expert and Information Dissemination expert. 

4.2.3   Supporting Discussion in Context (Discussion Function) and Scaffolding the 

Foraging of New Knowledge via Recommendations (Discovery Function) 

A dialog or discussion concerning an item of the TOC can be conducted in context as 

shown in Figure 5a (see proposition 4). The contributor of an item can explain why he 

chooses to add the item. In addition, as shown in figure 5b, the system leverages the 

model (i.e., the information about prior activity of each member) to filter recommen-

dations of new content or notification of related contributions. The member can adjust  

 
 

 

Fig. 5a (left). and 5b (right). 5a shows discussion messages in context. 5b shows three items 

recommended by the system. The icons indicate that two were rated as relevant. 
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the weight that the model has accumulated to influence the recommendations and 

notifications.  

5   Discussion and Future Work  

The sections above motivated and presented the design of a shared workspace. First, 

the approach to model knowledge, roles, and past contributions of the members, 

which are incrementally defined as they continue working together. Then, for the user 

interface (UI), the design of the workspace includes functions for (1) constructing 

intermediate representations to abstract and share knowledge efficiently, (2) selective 

awareness of what relevant knowledge was shared and who contributed it (3) discus-

sion in context on the representation and discovery of new knowledge guided by noti-

fication of related contributions. These functions require a workspace that adapts to 

the needs of each member. This requisite motivates the modeling functions. 

We presented design mockups and ideas to illustrate these UI functions. The pro-

posed design builds on prior studies conducted in the Augmented Social Computing 

Area at the Palo Alto Research Center. Prior work has provided us with a web tool 

supporting individuals and groups at an early stage of sensemaking while they collect 

information, share, and learn from collaborators (see SparTag.us prototype [15] and 

study [16]). A precursor of the adaptive representations (TOCs) in this paper is the 

ScentIndex UI technique [18], which supports individual information foraging from a 

book via an enhanced subject index that reorganizes the content to suit the user’s 

information needs. In other research we studied computer-supported teams at their 

final stage of sensemaking, while a final complex decision was made (see CACHE 

prototype and study [3]). Currently, we are extracting requirements by observing the 

work of real task forces. We have been observing expert professionals in an enterprise 

who take part in task forces, such as corporate teams that write business proposals on 

behalf of their company for competing in large bids. 

As part of our future research, we plan to iteratively develop the design and per-

form formative evaluations with members of the task forces that are currently being 

observed for requirement elicitation. Consistently with our two design goals the 

evaluation measures include measures of process (costs for content abstraction and 

costs of awareness for content & roles) and measure of performance (quality of the 

report and total coverage of relevant information). 
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Abstract. This paper presents the application of deception theory to improve 

the success of client honeypots at detecting malicious web page attacks from in-

fected servers programmed by online criminals to launch drive-by-download at-

tacks. The design of honeypots faces three main challenges: deception, how to 

design honeypots that seem real systems; counter-deception, techniques used to 

identify honeypots and hence defeating their deceiving nature; and counter 

counter-deception, how to design honeypots that deceive attackers. The authors 

propose the application of a deception model known as the deception planning 

loop to identify the current status on honeypot research, development and de-

ployment. The analysis leads to a proposal to formulate a landscape of the 

honeypot research and planning of steps ahead.  

Keywords: deception, counter-deception, honeypots, drive-by-downloads,  

cyber-attacks. 

1   Introduction 

With increasing reliance on computer networks, important expected security con-

cepts―confidentiality, integrity and availability―are under constant threat: 1)  

personal information, such as names/credit card numbers, is stolen; 2) office desktop 

computers are compromised into sending e-mail spam; and 3) risk of power grid out-

ages caused by denial-of-service attacks on SCADA systems [1] might escalate.  

A particularly insidious type of online attack has emerged in recent years, which 

targets clients through malicious servers that deliver an attack as part of the server’s 

response to a client request. As the web browser requests content from a web server, 

the server returns a malicious page that launches a so-called drive-by-download attack 

on the browser. If successful, the web server pushes and executes arbitrary programs 

on the client machine.  
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Security devices called high-interaction client honeypots are able to find these ma-

licious web pages by driving a client to visit web pages and make an assessment as to 

whether the page launches an attack. However, if the malicious server can first iden-

tify the client as a honeypot, it could choose not to launch attack code, rendering the 

client honeypot ineffective. Attacker counteracts are exemplified by articles on 

honeypot detection, in which several ways to fingerprint honeypots are introduced [2].  

These researchers have concluded that the use of detection techniques in drive-by 

attacks necessitates the inclusion of deception techniques in client honeypots. With an 

understanding of the anti-detection techniques used by malicious servers, this paper 

proposes deception methodologies designed to develop client honeypots that elude 

detection. As the adversary improves in sophistication, so do the defenders. 

2   Background 

"A honeypot is a security resource whose value lies in being probed, attacked, or 

compromised".  Even though the notions of honeypots were originated in the early 

1990's, only recently commercial products have been developed and papers have been 

published [3]. The concepts of honeypots were formulated in 1990/1991 with the 

work of Clifford Stoll's ”The Cuckoo's Egg" and Bill Cheswick's  "An Evening With 

Berferd" [4]. The use of honeypots and decoys as a deception in the defense of infor-

mation systems was related by Cheswick, Bellovin, D'Angelo and Glick, in 1991 [5] 

in the paper "An Evening with Berferd In Which a Cracker is Lured, Endured, and 

Studied."  The paper is a chronicle of how the researchers offered a “bite” to a 

cracker, the traps used to lure and detect him, and the chroot “Jail” the researchers 

built to watch his activities [6].  

Types of honeypots can be differentiated by their ability to interact with an at-

tacker. Systems that emulate vulnerabilities and allow limited interaction with the 

attacker are low-interaction honeypots. Systems that are vulnerable and allow interac-

tion with the attacker at all levels are high-interaction honeypots [7]. Another differ-

entiation is between physical honeypots, which run on physical machines, and virtual 

honeypots, which run on virtual machines [2]. 

As a result of attackers exploiting vulnerabilities in client programs (such as 

browsers), honeypots have evolved to simulate the behavior of a human and analyze 

how such behavior is exploited by an attacker [2]. 

2.1   Client Honeypots 

A client honeypot consists of three components: the queuer, visitor, and analysis en-

gine (Fig. 1 illustrates components). This client is controlled by a visitor component 

which interacts with potentially malicious web servers. Information about what server 

to interact with and the data to be sent to the server is created by a queuer component, 

for example a web crawler, that generates server requests. Lastly, the analysis engine 

assesses whether the server is malicious or benign. 

The visitor component maps to high- and low-interaction client honeypots. The 

former allows the honeypot system full functional interaction. As the client interacts 

with the server, the system monitors for unauthorized state changes, such as file  
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Fig. 1. Client Honeypot Component Diagram 

modifications or process adjustments that would indicate a successful attack [8,9]. 
The latter signifies that the functionality of the client is limited, typically by using 
emulated services. Because no active exploitation occurs, the low-interaction client 
honeypot inspects the response directly using signatures, heuristics, and security 
predicates to detect attacks [9, 10, 11]. 

Given that honeypots are deceptive by nature, there is a wealth of wisdom to be 
gained from the study of deception theory in other sciences, such as social science.  

2.2   Deception 

The Longman Dictionary of American English defines Deception as "An act of de-
ceiving." Deceiving is defined as "To cause someone to accept as true or good what is 
false or bad [13]." Multiple studies and theories of deception have been proposed. 
Cohen states that "Deception exploits errors in cognitive systems for advantage. It is 
achieved by systematically inducing and suppressing signals entering the target cogni-
tive system [5]." 

Bell and Whaley studied the general theory of deception and types of deception 
[14]. They argue that there are two levels of basic deceptive methods found in nature: 
hiding and showing. Humans consciously use these two methods found in nature.   

Hiding, level one, is divided into three parts: masking, repacking and dazzling. 
Masking: the real thing is hidden by blending with the background, integrating itself 
with the surroundings, or seeking invisibility. Repacking: the real thing is perceived 
in various ways, as dangerous, harmless or irrelevant. Dazzling: ultimate problem of 
what to do when masking and repacking do not work and the attacker knows the vic-
tim is there. The qualities of the object might be changed as to confound [14]. 

Showing, level two, is divided into three parts: mimicking, inventing and decoying. 
Mimicking: a replica of reality is created by selecting one or more characteristics of the 
real in order to achieve an advantageous effect. Inventing: the false is presented through 
the creation of an alternative reality, e.g. the false document appears to be real, but it is 
not. Decoying: gives an additional alternative pattern, increasing its certainty [14]. The 
work performed by honeypots fits within these levels and categories of deception. 

3   Problem: Detecting Honeypots  

The design of honeypots faces three main challenges: deception, counter-deception 

and counter-counter-deception [15]. a) Deception problem: how to design honeypots 
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that look like normal computer systems. b) Counter-deception problem: techniques 

used to identify if a computer is a honeypot. Objectives of counter-deception include 

the appraisal of whether an attacker can detect a honeypot, and the identification of 

whether the data collected from such a honeypot are misinformation. c) Counter-

counter-deception: how to design honeypots that make attackers think that they are 

real systems [15].  

4   Analysis 

Honeypots are used to research and to prevent, detect, and respond to attacks. For 

research purposes, honeypots collect information on threats, which can be used for 

trend analysis, identification of new tools or methods, and attacker identification [16]. 

In this section, the authors focus the analysis on the research purpose of honeypots. 

4.1   Deception 

Before launching an attack, adversaries collect information about the host operating 

system and services running. Learning about the operating system allows attackers to 

understand what vulnerabilities the host might have. Learning about the services and 

versions facilitates planning of a route of attack [2].  Researchers value the knowledge 

of how the adversary breaks into a target machine and honeypots enable them to do 

that. The type of honeypot used varies according to the intended victim of attacks, 

which can be targeted attacks or targets of opportunity.  

Targeted attacks are directed to targets of choice, which are organizations with 

high value information resources. For these targets of choice, production honeypot 

file servers could be used to provide falsified information to a human attacker who 

analyzes information given out by the honeypot [4]. Creating fake file systems is a 

form of mimicking and inventing [15]. Spitzner proposes the use of honeytokens, 

which are digital information entities, not computers. Any interaction with them is an 

unauthorized interaction. This form of honeypot is also useful to detect, identify and 

gather information about the malicious insider threat [17].  

Targets of opportunity attacks can use multiple deception techniques, e.g. honeypot 

farms, in which honeypots are services. All the traffic coming to the production server 

is re-routed to pass through honeypots that are locally or remotely located. The 

honeypots need to emulate the production systems. In the event of detecting malicious 

activity, this can be logged, trapped, and traced back [18]. Roaming honeypots are 

mechanisms that allow the locations of honeypots to be unpredictable, continuously 

changing, and disguised within a server pool, from which a subset of servers provides 

services and the rest of the server pool is idle and acts as honeypots [19]. 

Client honeypots simulate the behavior of a human and actively search for attacks 

and malicious content on the Internet [2]. The level of interaction between client 

honeypots with servers can be low or high. Low-interaction client honeypots use a 

simulated client in place of a browser and assess the malicious nature of a server via 

static analysis such as signatures. High-interaction client honeypots interact with 

servers and assess the malicious nature of the server based on state changes [7]. 
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Significant development of client honeypots is expected for web clients, the most 

critical of the cross-platform vulnerabilities in the SANS Top 20 list. Honeypots for 

newer applications such as VoIP and SCADA may become widespread [7]. 

4.2   Counter-Deception 

Malware is increasingly more sophisticated. Developers of malware aim to make it 

undetectable. New offensive techniques are adopted once they are made public and 

quickly adapted to face new defensive techniques [21].  

Examples of counter-deception are found in publications in Phrack magazine de-

scribing methods to detect, disable, and defeat Sebek 
1
 [22] in an attempt to avoid 

malware collection and hence malware analysis.   

A trend has emerged in which malware uses evasion, e.g. the Agobot botnet family 

uses polymorphism as an obfuscation mechanism [20]. Malware is able to detect 

whether it is running in a virtual machine and change its behavior, e.g. a specimen 

discovered by Intelguardians [12], the worm Conficker, the Storm worm [24], and 

Agobot [23]. Examples developed by security researchers include Nopill [26], Vmde-

tect [27], Redpill [28], Scoopy Doo [2], and VMwareTools [29]. Scientific literature 

on the topic of detecting honeynets includes NoSEBrEaK - Attacking Honeynets, by 

Dornseif et al. who demonstrate methods to control honeynets [22].    

In [30] two broad groups of strategies for detecting deception were identified:  

strategies based on detection of evidence of deception in the environment, and inspec-

tion for signs of deception in the information within the environment.  
Honeypot detection methods usually exploit discrepancies between the real sys-

tems and honeypots [2]. Provos and Holz discuss several techniques to detect  
low-interaction and high-interaction honeypots. Realistic looking low-interaction 
honeypots need to deceive network scanning tools. High-interaction honeypots need 
to simulate an entire operating system environment. The deceiving nature of physical 
high-interaction honeypots can be concealed; however, honeypots running in virtual 
environments have additional challenges as virtualization is detectable [2]. 

Methods of virtualization detection exploit logical discrepancies, resource discrep-
ancies and timing discrepancies. a) Logical discrepancies evaluate semantic differ-
ences in the interfaces of real and virtual hardware. b) Resource discrepancies  
evaluate the resources that the virtual machine shares with its guests, such as CPU 
cycles, physical memory and cache footprint. c) Timing discrepancies evaluate the 
variance in latency, relative differences in the latency of any two operations, and the 
behavior of these latencies over time [31]. The main reason for these discrepancies is 
that the virtual machines were designed to provide fidelity, performance and safety, 
but not transparency [2]. 

Several methods suggest themselves for detecting client honeypots. a) Observing 
click rate and dwell time could identify a client honeypot tasked with identifying  
malicious web pages as fast as possible. b) Referrer evaluation is another mechanism 
that identifies client honeypots based on their navigational characteristics. c) Another 
possible identification means is the network location of the incoming requests. These 
techniques are applicable to both low- and high-interaction client honeypots.  

                                                           
1 Developed by the Honeynet Project [25], Sebek is a tool for collecting forensic data from 

compromised high-interaction honeypots [2]. 
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There are other techniques that are specific to this type of client honeypot. High-

interaction client honeypots could be identified by rendering checks. As a page is 

loaded, an adversary could check whether the page is actually displayed.  

A low-interaction client honeypot likely appears like a regular browser. Using the 

header fields of entire requests can uncover this deception. Header order and data 

formatting might also give the deception away or the TCP/IP track can be analyzed 

with the passive OS fingerprinting tool p0f [32].The header lines and values of an http 

request can be analyzed and compared to a fingerprint database to identify a given 

web browser using browserrecon [33]. Further, low-interaction client honeypots are 

light weight, stripped-down versions of the browser. An adversary can discern it by 

calling functionality that is present in a full-fledged browser, but not in a low-

interaction client honeypot [34]. Because low-interaction honeypots simulate a system 

and do not provide a complete operating system environment to the adversary, they 

can be detected more easily than high-interaction client honeypots. 

4.3   Counter Counter-Deception 

These researchers refer to counter counter-deception as the analysis of attackers' 

counter-deception techniques that result in new deception designs. The changes oc-

curring in Sebek's code after publication of Advanced Honey Pot Identification [22], 

describing methods to defeat Sebek, is an example of counter counter-deception.     

Counter counter-deception focuses on two main areas: creation of defenses and 

understanding how attackers work and think. The authors believe that this understand-

ing will lead to improvements in honeypot research and development, applying de-

ception techniques. Seifert, et. al., proposed a taxonomy of honeypot systems that 

facilitates the understanding of honeypot technology by presenting a faceted classifi-

cation that addresses six areas of honeypot study: interaction level, data capture,  

containment, distribution appearance, communication interface and role in multi-tier 

architecture. This taxonomy offers a framework for describing honeypot research 

[35]. The values for each area [35] are shown in Table 1. 

Table 1. Honeypot Taxonomy 

Category Interaction 

Level 

Data 

Capture 

Containment Distribution 

Appearance 

Communication 

Interface 

Role in Multi 

Tier 

Architecture 

Values -High 

-Low 

-Intrusions 

-Events 

-Attacks 

-None 

-Defuse 

-Block 

-Slow Down 

-None 

-Distributed 

-Stand-  

 Alone 

-Software API 

-Network IP  

-Non Network  

 Hardware IF 

-Client  

-Server 

The authors argue that the systematic application of Bell and Whaley's theory of 

deception, using the taxonomy of honeypots, facilitates the identification of potential 

research gaps. According to Bell and Whaley, even though most cheating is done in-

tuitively, the complex process to plan and design a deception can be depicted in a 

Deception Planning Loop. Deception falls in categories within two levels, hiding and 

showing [14], as shown in Table 2.  
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Table 2. Deception Levels and Categories 

Level Hiding Showing 

Category - Masking 

- Repacking  

- Dazzling 

- Mimicking 

- Inventing  

- Decoying 

These categories give a spectrum of characteristics or charcs [14] (e.g. taxonomy 

of honeypots) to be used during the deception. The ruse is the process of selecting the 

appropriate categories of cheating and subsequently the characteristics to create a 

cover or effect. Ruses fall in categories: unnoticed, benign, desirable, unappealing and 

dangerous. The ruse creates a cover or effect for the attacker to accept the illusion. 

The planning of the deception aims at anticipating the illusion; however, the illusion 

depends only on the perception of the target audience [14].  

 

Bell and Whaley describe the Deception Planning Loop as:  

…Fashioning a RUSE from CHARCS that are projected by a selected CHANNEL 

as an EFFECT or COVER that, if successful, created an ILLUSION made up of the 

perceived CHARCS that is, therefore, a successful stratagem supporting the De-

ception Goal and hence the Strategic Goal [14].   

 

The deception model varies for attacks focused on targets of choice, and attacks fo-

cused on targets of opportunity executed with automated tools such as worms [4].   It 

also varies according to the type of honeypot. High-interaction honeypots are exam-

ples of mimicking users, browsers, and active content. Low-interaction honeypots are 

examples of decoying.  

For example, the deception goal of a high-interaction client honeypot is to "look" 

like a human user and be attacked.  The ruse is to mimic the human behavior by navi-

gating on the Internet (charc/channel) and interacting with servers using a web 

browser (charc/channel). The operating system and applications have a degree of 

known vulnerabilities that are controlled according to the empirical experiment 

(charc/channel). If successful, the malicious server will have the illusion that the cli-

ent honeypot is an actual user and will execute the attack.  

The definitions of new approaches to develop honeypots are examples of different 

ruses. Some new approaches to develop honeypots have been formulated. For exam-

ple, Vukasin Pejovic et al. conducted an initial investigation and implementation steps 

for the deployment of honeypots as an independent hardware device with the incorpo-

rated honeypot behavior [36]. 

These researchers argue that for the future development of honeypots, the results of 

a deception plan should retro-feed the Deception Planning Loop, making the definition 

of charcs and channels an ongoing process. For example, attackers frequently use 

compromised computers to spread attacks. To prevent these attacks, using deception 

techniques, honeypots control the data leaving them. E.g. Sebek and other Gen II 

honeynets impose a hidden limit to the number of outbound connections [37]. Lessons 

learned from some experiments are useful when planning the deception. For instance, 

Rowe and Goh observed increasing number of attacks after the system went down and 

came back up. This analysis suggests that keeping an existing long-used IP address and 

responding normally to packets might lead to a decrease in the number of attacks [38]. 
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The authors believe that counter counter-deception in the development of client 

honeypots, in addition to a technical approach, should be complemented by a political 

and social approach to learning about trends and alerts in the attacker community. 

This is part of a framework to study malware, attackers' behavior and attack trends. 

The Honeynet Project deployed the Global Distributed Honeynet project, with 

goals such as global deployment of more high-interaction honeynets, and cross refer-

encing of incident data for correlation against historical forensic databases [39].  

The NOAH Project, funded by the European Commission, is a three year project 

that intends to gather and analyze information about the nature of Internet cyber at-

tacks [40]. Its Honey At Home implementation project extends its network to homes 

and small businesses [41]. It will develop an infrastructure to detect and provide early 

warning of attacks to expedite countermeasures to combat them. 

Fred Cohen proposes the creation of a set of red teaming experiments in which at-

tackers as well as defenders are studied, to understand how attackers work and think, 

and the effects of defenses on attackers [42]. Moreover, to isolate the effects of decep-

tion, he proposes the creation of control groups, and experiments with double blind 

data collection [42]. 

5   Conclusions 

The determination of the current status of honeypot research and deployment by using 

deception theory can help identify which areas of honeypot technology research are 

priorities. This would be part of a framework to analyze malware, attacks and attack-

ers' trends.  

Stating the strategic deception goals, studying the feasibility of application of  

deception techniques available in the social sciences, becoming aware of what tech-

nology is available and the research status of such technology, and assessing the level 

of accomplishment of goals, would guide the depiction of the honeypot research and 

deployment landscape in order to indicate future research direction. 

These researchers believe that aggregation, sharing and analysis of data captured 

with honeypots help describe the status of attacks and attacker trends. Adopting a 

taxonomy of honeypots enables the research community to agree on the object of 

study and facilitates needed communication.  
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Abstract. Model-driven simulation can make the design and delivery of in-

struction more efficient and effective. We describe two computational models 

that support both the design and delivery of instruction. BEST (the Bench-

marked Experiential System for Training) can guide experts through the space 

of domain problems during the knowledge engineering phase of instructional 

design; it can guide trainees through the space of training objectives during in-

struction. PRESTO (Pedagogically Relevant Engineering of Scenarios for 

Training Objectives) builds scenarios on the fly to elicit the knowledge of ex-

perts during instructional design, and to satisfy the instructional objectives of 

trainees.  
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Programming, Markov Decision Process. 

1   Introduction 

Training organizations often marry 21
st
 century simulation technology to 20

th
 century 

methods of designing instructional content and training scenarios.  

Instructional design, which defines the objectives and content of training, engage 

scarce experts in interviews and qualitative analyses that are so time-consuming they 

are derided as a bottleneck [1]. 

Scenario design in simulation-based training creates artworks – engaging but sin-

gular products that present fundamentally the same instructional experience to all 

students. Rarely are training scenarios developed in libraries that systematically vary 

factors related to training objectives, and rarely can simulators adapt scenarios on the 

fly to respond to the instructional needs of each student. This is true, in general, 

whether we conceive of scenarios as brief vignettes (e.g., a specific air-to-air engage-

ment) or as the larger events in which they are combined (e.g., a mission of many 

engagements), and whether the training simulator serves a one trainee (e.g., a game) 

or many (e.g., a military exercise with live, virtual, and constructive components).  

We are exploring ways in which simulations can be mated to computational mod-

els that specify and construct scenarios to meet their users’ needs. This strategy has 

value during scenario design; it configures training scenarios to the needs of multiple 

students. The technologies also have value during instructional design, where they 

could improve the capture and analysis of expertise.  
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We open this paper with a brief discussion of expertise. It is what instructional de-

signers seek and what scenario designers hope to deliver to students through their 

simulations. In particular, we develop a spatial metaphor for expertise, and we use 

this to describe how two modeling technologies that we have implemented automate 

scenario design and could, potentially, automate instructional design. 

2   Expertise 

Expertise is the ability to discriminate meaningful classes of domain features and 

patterns, and to take decisions or actions that are appropriate to the class at hand.  

This conceptualization of expertise is illustrated in Figure 1, which depicts the nov-

ice’s conception of a domain as an undifferentiated space of objects and events. In 

contrast, the expert’s understanding is structured to distinguish functionally distinct 

and important objects, events, and situations. Expert partitioning of the domain space 

supports decision making and action. Each partition 

of the space is associated with distinct issues for 

consideration in decision making, or with unique 

actions such as tactics. 

Studies of physicists, software engineers, chess 

masters, and others validate that domain knowledge 

is more functional (useful) among experts than nov-

ices, and more uniform. For example, expert physi-

cists sort physics problems by the deep structure or 

functions they represent (e.g., acceleration), while 

novices sort by surface features such as the materials 

(e.g., balls rolling down hills) cited in the problem [2] 

Expert software engineers sort programming terms 

into groups that are similar to those of other software 

experts and are relevant to programming, while less 

expert engineers are more varied in their classifica-

tion schemes and those schemes are often based on 

everyday meanings of the terms [3]. Chess masters 

reconstruct briefly viewed chess boards in tactically 

important clusters of pieces (e.g., defensive and of-

fensive clusters), while novices rebuild boards in an 

order that is arbitrary, with respect the strategies of 

chess [4]. In short, expert knowledge of domains is 

partitioned in ways that reflect meaningful differ-

ences between problems, differences that bear on the 

accuracy of decisions and actions.  

The concept that expert knowledge is functionally 

structured has two ramifications for the design of scenarios or their component vi-

gnettes. First, we should create the range of scenarios that represent each partition of 

the domain, so that students can experience the challenges they pose. Such scenarios 

must represent the training objectives students need to address, the conditions (e.g., 

events) under which students must learn to perform, and the measures with which 

 

 
Fig. 1. Novices perceive and 

respond to surface features of 

domain problems (shading, 

above). Experts detect underly-

ing problem structure (patterns, 

below), which maps well to 

correct solutions. 



150 J. Freeman et al. 

trainers evaluate student expertise. Second, we must guide students from scenario to 

scenario (partition to partition) so that they learn to distinguish between the problems 

each presents, and respond to them as experts do. 

This concept of expertise also has implications for using simulations as knowledge 

engineering tools during instructional design. First, we can build scenarios (or vi-

gnettes) that represent the full range of domain problems, to enable experts to demon-

strate their capabilities. Second, we can guide experts through that space in a way that 

enables us to efficiently discover the bounds experts draw, the partitions. This capa-

bility is most useful in domains in which experts are known to exist, in which the 

structure of expert domain knowledge is unknown or contested, and actions or tactics 

are not well mapped to that structure.    

We are developing two modeling technologies that address these opportunities to 

improve training. To deliver scenarios that meet the specific needs of each student, 

BEST (the Benchmarked Experiential System for Training) guides students through 

the space of instructional objectives and corresponding scenarios; this demonstrably 

accelerates the development of expertise. PRESTO (Pedagogically Relevant Engi-

neering of Scenarios for Training Objectives) adapts scenarios on the fly to satisfy 

instructional objectives or specifications, such as those BEST recommends. These 

models also have the potential to break the bottleneck of knowledge engineering. 

BEST can pilot experts efficiently through a potentially vast space of domain  

problems, which PRESTO then composes in scenarios on demand. The clusters of 

problems to which experts respond similarly each define a partition, a subspace of 

functionally similar domain problems. Instructional designers, having discovered 

these partitions, can rapidly develop didactic training that emphasizes the characteris-

tics that distinguish each partition (or cluster of problems). They can transform the 

scenarios used in knowledge engineering into training scenarios that give novices a 

truly representative sample of experiences in the domain. We describe each of these 

technologies, below. 

3   Scenario Specification and Sequencing with BEST 

The Benchmarked Experiential System for Training (BEST) specifies the training 

treatment that a simulation should present next to advance a student farthest towards 

expertise.  

To accomplish this, BEST uses a Partially Observable Markov Decision Process 

(POMDP) model to represent our probabilistic knowledge of the level of student 

competency (in multiple dimensions), and the probabilistic effects of training treat-

ments on these competencies. These training treatments may be expressed as training 

objectives (“The student should acquire skill X, next”), training conditions (“Increase 

the challenge from enemies.”), or training scenarios (“Present scenario 127 next”). 

Their instructional effects of each treatment on students of different abilities can be 

estimated by experts or learned from training performance data. BEST computes an 

optimal training policy [5] that adapts over time to specify next most beneficial simu-

lation scenario given the trainee’s most recent as well as history of performance.   

In two experiments to validate BEST as a training adaptation tool, teams of sub-

jects received simulator training in the complex tasks of the Air Operations Center 
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Dynamic Targeting Cell. The training experiences were drawn from a large library of 

approximately 50 scenarios that varied systematically on the intensity of defensive 

and offensive challenges. The instructional strategy for selecting from this library was 

controlled either by the BEST POMDP or by a hierarchical part-task training scheme 

that advanced trainees through increasing numbers of targets (offensive challenges), 

and then increasing numbers of threats (defensive challenges). The BEST solution 

reliably increased learning relative to the control condition, holding the number of 

training trials constant (see Figure 2) [6]. 

 

 

Fig. 2. Experimental tests of BEST found that teams learned the complex task of the Air  

Operations Center Dynamic Targeting Cell (p<.01); that far transfer within the task degrades 

performance (p<.01); that, on far transfer problems, teams in hierarchical part-task condition 

(control) do not reliably learn (p>.05), while those in the BEST / POMDP condition do (p<.01) 

In the same way that BEST navigates a space of existing scenarios or training ob-

jectives, it can be used to learn the structure of an ill-defined domain space by observ-

ing expert behavior. This application of BEST, which we plan to attempt in the near 

future, requires that a large library of scenarios be constructed or generated on the fly 

(see PRESTO, below). These scenarios would sample the space of domain conditions 

randomly (at worst) or systematically according to some theory about important 

classes of domain problems or features. BEST would apply policy learning techniques 

to (1) formal descriptions of the features of each scenario and (2) expert decisions or 

actions in the scenarios. It would discover those partitions of the space (clusters of 

scenarios) to which experts generally respond in a uniform manner. Each such parti-

tion in the domain space consists, by definition, of functionally equivalent problems. 

In the terms of a Markov Decision Process, BEST would discover the groups of sce-

narios that constitute each unique “state”, and it would discern the “action” that ex-

perts apply to the state to address the challenge it poses. 
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This application of BEST could be used to confirm theories about how experts un-

derstand and act in complex domains. In air-to-air warfare, the tactics of enemies are 

well known and our responses are well documented. However, experts make subtle 

distinctions in their interpretation of enemy approaches and their own application of 

tactics; model-driven simulations might efficiently discover these distinctions. BEST 

may have greater value in domains of human performance that are not well under-

stood. It might, for example, be used to analyze how experts inspect multi-spectral 

imagery, how they monitor crowds to identify potential insurgents, and how they scan 

roadways for Improvised Explosive Devices. In all of these cases, experts perceive 

configurations of the environment as innocent, suspicious, or threatening; the take 

actions to test their perceptions; and they may take actions to address threats. To train 

the next generation of experts, we must analyze how today’s experts understand (i.e., 

partition) the problem space in the domain, and how they choose their actions. Model-

driven simulation should make this analysis much more thorough and efficient than 

traditional interview methods alone.  

4   Scenario Construction with PRESTO 

PRESTO (Pedagogically Relevant Engineering of Scenarios for Training Objectives) 

builds or revises simulation scenarios to ensure that they present the conditions re-

quired to meet specific training objectives [7, 8].  

PRESTO accomplishes this by formally representing training objectives, domain 

objects, and domain events. PRESTO applies constraint logic programming (CLP) 

techniques to (re)formulate the schedule of training objectives and events addressed 

by a scenario.  PRESTO defines temporal relations between domain events, spatial 

relations between domain objects that are required for training events, and other nec-

essary scenario preconditions, so that it is possible for students to address training 

objectives (see Figure 3). It is particularly useful in simulations in which there are 

many students with potentially conflicting training objectives, all operating in a sin-

gle, complex environment.   

For example, suppose that a helicopter crew is training on a sensor fusion task.  

Performance measures indicate that they need additional work when certain combina-

tions of targets are present. However, this combination occurs only once in the  

original scenario, and that occurrence was fouled when the crew unexpectedly chose a 

course that took them far away from the sensor targets, early the training scenario. In 

mid-exercise, PRESTO can determine whether it is feasible to add more instances of 

this target combination, and determine when and how to do so, given the constraints 

imposed by satisfying all other training objectives for all trainees engaged in the sce-

nario. In reworking the scenario, PRESTO takes care not to interfere with the ongoing 

training of other students. 

PRESTO is designed to support training delivery, per the description above. How-

ever, we hope to apply it to facilitate knowledge engineering as well. PRESTO can 

represent theories about the classes of problems experts perceive in a domain, and 

generate scenarios that present each class. When expert actions are relatively uniform 

across a group of scenario events (i.e., problems), a coherent partition of the space has  
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been discovered. When expert actions vary between scenarios, they represent mean-

ingfully different problems or partitions of domain knowledge. PRESTO, in short, can 

generate representative samples of domain problems in a controlled manner, so that 

analysts can learn which problems are substantively different to experts. 

5   Conclusion 

We have described two computational models that can drive simulations to improve 

training delivery and knowledge elicitation. BEST specifies the training objective or 

class of problem from which a student can glean the greatest instructional benefit. 

PRESTO constructs scenarios that present such problems. These models were devel-

oped to ensure that simulators adapt to trainees, whether by selecting the best scenario 

among a library of many, or generating a scenario customized to the trainee. These 

technologies have potential, also, to accelerate knowledge engineering during instruc-

tional design. They should, if adapted to that task, help define and generate the  

content for training in new and complex domains. Model-driven simulation has the 

potential to make instructional design and scenario design more systematic and effec-

tive. This should greatly increase the impact of simulation-based training. 
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Fig. 3. Simulation scenarios are traditionally designed to draw trainees through a specific 

series of instructionally critical events (above), but these plans are often foiled by the ac-

tions of other trainees or system failures. PRESTO effectively models the bounds (con-

straints) of the simulation space and generates scenario events within those bounds to meet 

training objectives (below). 
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Abstract. We studied the dynamic effects of information needs and social in-

fluence of tags in an exploratory search task. Although initially differences in 

information needs led to diversity in tag choices, this diversity disappeared as 

participants collaboratively tagged the same set of resources. Our findings are 

in general consistent with the notion that people conform to the collective inter-

pretation of contents in an information system. In addition, our results showed 

that conformity does not only arise out of imitation of behavior, but also from 

the same underlying semantic interpretation or knowledge structures of users as 

they engage in informal collaboration through the social tagging system. Impli-

cations for design of social information system are discussed. 

Keywords: Exploratory search, tag choice, information needs diversity, seman-

tic interpretation of tags. 

1   Introduction 

Information seeking activities can be characterized as a form of problem solving (e.g., 

[6], [8], [14]), in which people are searching for and comprehending information to 

fulfill their information goals. However, there are often situations in which the infor-

mation seeker has not yet developed well-defined information goals to guide their 

search. Instead, the information seeker may have to start with an abstract representa-

tion of information needs derived from a broader task context. In these situations, the 

information seeker has to engage in some forms of exploratory information search, 

through which information goals can be iteratively refined and enriched (e.g., [5], 

[7]). Recently, researchers have reasoned that the traditional search engines are insuf-

ficient for this kind of exploratory search [11]. Instead, many have proposed that the 

evolving Web 2.0 technologies have great potential for helping people to conduct 

exploratory information search. However, what is still lacking is a scientific under-

standing on the interactive cycle of tag-based exploratory search and tag creation in a 

typical social tagging system. The goal of this paper is to investigate the processes 

involved in tagging behavior and how it is related to tag-based exploratory search.   
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Social tagging systems allow users to annotate, categorize and share information 

on web resources (links, papers, books, blogs etc.) by assigning tags to them and 

share the tagged resources with other members of the system. One major reason for 

the popularity of tagging systems arises from its benefits in supporting exploratory 

search [13], social navigation [12] and information sharing. Prior research on social 

tagging systems has primarily focused on characterizing aggregate patterns in tagging 

behavior (e.g., [3], [4], [9]). However, with a few exceptions [13], there is still a lack 

of scientific study on how social tags could facilitate exploratory information search.  

One important question underlying the success of social tagging system is whether 

the tags created by the large number of users provide any useful information for oth-

ers. Indeed, users in any knowledge sharing system may have different underlying 

motivations to seek and share information, and this may lead to a continuous growth 

of diversified tags in a single system. For example, a particular user may tag a book 

based on its content with a tag “Star Trek”, while another user may tag the same book 

as “To read”, referring to personal intent of this book. Nevertheless, in spite of the 

perceived unstructuredness, researchers (e.g. [3], [9]) have found long-term stability 

in tagging behavior. For example, by analyzing a set of data from del.icio.us, Golder 

& Huberman [7] supported that tag choices are influenced by tags created by other 

users, even if users may have different information needs when they tag. Sen et.al 

[16] showed that community influence can directly impact user’s personal tendency in 

choosing tag vocabulary. A recent study by Rader and Wash [15], however, has raised 

questions regarding the social influence on tag choices. By analyzing a different set of 

data from del.icio.us using logistic regression techniques, they found that tag choices 

could be better explained by personal information needs, which provided evidence 

against the presumed social influence of tags. 

A relevant question regarding this controversy is: what motivates a user’s tag crea-

tion (or use) in a social tagging system: personal information needs or social influ-

ence? Specifically, we explored how the dynamic effect of social tags and information 

needs elicits different tag choices among users. Instead of characterizing just the 

overall aggregate patterns, we specifically focused on users’ information needs to 

understand how different tag choices emerge. Additionally, we also investigated how 

people created tags and how tag could facilitate exploratory information search, and 

how they could be related to each other. To preview our results, we found that tag 

choices were not only influenced by the information needs of the user, but were also 

influenced by the semantic interpretation of existing tags. In addition, consistent with 

results by Millen D.R. et.al [13], we found that browsing was used most often in ex-

ploratory information search, and this finding could be explained by theory of per-

ceived information gain. 

2   Method 

2.1   Participants and Platform 

Thirty two participants (12 Male, 20 Female; average age =22.6 years, S.D. = 4.5) 

were recruited from the University of Illinois community. Most Participants rated 

themselves as moderate computer users with an experience of about 12 years (87.5% 

browse the web more than once a day).  
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CiteULike (www.citeulike.com), a research literature sharing website with tagging 

and search features, was used as our research platform. CiteULike allows users add 

links to papers and books, and add references from other digital libraries and option-

ally tag the available content for future reference.  We chose CiteUlike mainly for its 

simplicity of use and the relative ease of creating a library containing book informa-

tion from external websites. Because CiteULike has all the basic functions of social 

tagging systems and a large number of users, we believe that our results can be gener-

alized to other systems. User activities including mouse events, URLs, time stamps, 

and contents of web pages were recorded for further analysis. 

2.2   Tasks 

The information resource consisted of 150 books that were imported directly from 

Books@Amazon.com. This “library” of books covered eight categories with ap-

proximately equal number of books in each category: Arts & Photography, Business 

& Investing, Children, Computers & Internet, Cooking, Food & Wine, Health, Mind 

& Body, Medical, and Self-Help. We designed eight exploratory search tasks to rep-

resent different information needs based on the eight categories of books. The search 

tasks thus provided an abstract representation of information needs for participants to 

explore the library. For example, participants were asked to find and tag books to 

recommend for a library in a retirement community. The other seven tasks are Soft-

ware Company, Local Arts Center, Traveler’s Books, Career Center, Rehabilitation 

Center, Daycare Center, Wellness Center. 

During the experiment, participants were asked to search for books by browsing in 

the main library, choosing tags from the tag cloud, or using keywords to search. When 

participants decided to select the book, they were encouraged to create new tags or 

reuse existing tags for the selected book after reading the description of the book.  

Participants were instructed to imagine that they were working with a group of other 

co-workers who were also selecting books for the same or different organizations, and 

the tags that they created should be useful not only to themselves but also to others.  

2.3   Analysis 

The 32 participants were randomly divided into 4 sessions. In each session, each par-

ticipant was randomly assigned to one of the eight tasks. In other words, there was 

exactly one participant assigned to each of the 8 tasks in each session. In addition to 

controlling the same initial library, we imitated the social environment of tagging 

system by enabling participants to see all tags created by previous participants.  

We compared the tags created by participants on different books across the 4 ses-

sions to investigate how tag choices were influenced by tags created by previous par-

ticipants. We use Latent semantic analysis (LSA, see [10]) to estimate the semantic 

relatedness between every set of new tags created and the existing tags in each book 

selected by the participants. LSA is a statistical technique for extracting and repre-

senting the similarity of meaning of words and passages by analysis of large bodies of 

text. The similarity between resulting vectors for words and contexts has been shown 

to closely mimic human judgments of meaning similarity. In the current analysis, we 
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performed the LSA calculations through the web site at http://lsa.colorado.edu, using 

the general reading topic space with 300 factors. 

3   Results 

Participants selected about the same average number of books across all the sessions 

(F (3, 21) = .249, p >0.10). On average, subjects created 4.76 tags (S.D. = 2.27) for 

each selected book. As users proceeded through the sessions, fewer tags were created 

for each selected book (F (3, 21) = 3.110, p <.05).  

3.1   Tag Creation and Tag Choice 

The mean number of unique tags assigned to each book decreased across sessions 

(See Table1), as confirmed by the significant linear downward trend (F (1, 30) = 3.92, 

p < 0.05). The decreasing number of unique tags suggests the increasing agreement 

among participants on the creation of tags to the current set of books.  

Table 1. The mean number of unique tags created per book across sessions 

Session 1 2 3 4 

Number of unique tags 8.0 4.5 3.6 2.9 

To understand how different information needs influenced the tag use, we ex-

tracted all book-selection episodes from all participants, and calculated the correlation 

between users’ information needs and new tag creation episodes. We believe that tag 

creation was not solely based on books or tasks, but also on the book “selection” 

under different tasks, because the “selection” can represent how users interpret the 

search tasks. Fig. 1 shows how we represent the selections and tags between the task 

and book space. Each selection in the figure represented the selection of one of the 

150 books given that the participant was given one of the eight search tasks. A new-

selection between book i and task j therefore indicated that the participant was the 

first one to select book i under task j. Different users may create different selections 

based on their own information needs and interpretation of the tagged resources.   

To measure the relationship between the search tasks and users’ motivation to cre-

ate new tags, we coded each selection as either new or old (1 and 0, respectively) and 

called this the “new-selection code”, and coded each tag creation as either new or old 

(1 and 0, respectively) and called this the “new-tag code” (See Fig. 1). 

Using the coding scheme described above, we calculated the correlation between 

the new-tag and new-selection codes, which reflected the extent to which the creation 

of new tags were related to the fact that participants were assigned to a new search 

task. A high correlation would imply that most of the tag creation occurred when 

participants were given a new search task. A low correlation would imply that crea-

tion of new tags were not related to the search tasks of the participants, in the sense 

that new tags were created equally often when participants were given the same or 

different search tasks.  
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Fig. 1. Users selected books and created tags under different search tasks. Each book-selection 

episode is represented as an arrow from task to book in the figure. Each selection was associ-

ated with a set of tags created by the user.  Users could repeat existing selections (select books 

that had been selected by other participants under the same search tasks before) or create new 

selections (select books that had not been selected before under the same search tasks). For old 

selections, tags could be new (not used before for the selected book, regardless of search tasks) 

or old (reused tags for the selected book). 

Table 2. Correlation between the new-tag and new-selection codes in all book-selection epi-

sodes across sessions 2 to 4 

Session 2 3 4 

Correlation between new-tag and new-selection codes 0.62 0.42 0.24 

Table 2 shows that the correlation between the new-tag and new-selection codes 

steadily decreased across sessions. All correlations were significant (p<0.05), so was 

the obvious downward trend (F (1, 22) = 4.21, p < 0.05), which implied that the crea-

tion of new tags was more strongly related to differences in the search tasks (which 

imposed different information needs) early on than in the later stage. There was no 

significant difference between the numbers of tags created on the same or different 

selections. The results were consistent with the notion that as the number of tags 

increased, participants became more likely to agree with the existing tags associated 
with a book, even though these tags were associated with distinct selections as de-

fined in Fig. 1.  

To further understand whether users tended to conform to existing tags created by 

others, we calculated the LSA scores for all new tags created, and divided these “new-

tag episodes” into whether they were associated with a new- or old-selection (see 

definitions in Fig. 1). Fig. 2 shows the mean LSA scores for the new-tag episodes. 

The main effect of new/old selections was not significant, but the interaction between 

new/old selections and sessions was significant (F (2, 23) =3.41, p < 0.05). The LSA 

scores for episodes on old-selection were not significantly different across sessions, 

but the LSA scores for episodes on new selection in sessions 3 and 4 were signifi-

cantly higher than that in sessions 2 and 3 respectively. In other words, the LSA 

scores stayed approximately at the same level for the old-selection episodes (books 

selected under the same search tasks) across sessions, but the LSA scores increased 

significantly across sessions for the new selection (books selected under different  
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Fig. 2. The mean LSA scores for episodes with new tag creation under new- and old-selection. 

(In the first session all participants were given new search tasks, so the new-selection codes in 

all book-selection episodes in the first session were 1 and the correlation is not meaningful) 

search tasks) episodes. The LSA score for the new-selection was significantly lower 

than that for the old-selection in sessions 2 and 3 (p<0.05).  

Results in Fig. 2 show that initially new tags created under the same search tasks 

were more semantically related than those created under different search tasks, but  

as more tags were created, this difference disappeared (see values at session 4).  

This provides further support to the notion that different search tasks (thus different 

information needs) have influence on tag choices, presumably because different in-

formation needs may prime users to focus on different aspects of a resource or have 

different interpretation of the information content. However, as the number of tags 

increased, their “bottom-up” influence on future tag creation increased and eventually 

outweighed the “top-down” influence from the information needs. This was con-

firmed by the same level of semantic relatedness for tags under same and different 

selections in session 4 (see Fig. 2). Over time, the semantic relatedness of tags for a 

resource increased irrespective of the information need, suggesting that the top-down 

influence of information need was gradually replaced by the bottom-up influence of 

existing tags at the semantic level. 

3.2   Tag-Based Exploratory Information Search 

Exploratory search strategy. In addition to the dynamics of information needs and 

social influence of tags, we also investigated into the characteristics of exploratory 

search in social tagging system. First, we extracted the strategies that participants 

used to select each book to understand how tags influence the use of strategies and 

how it varied across sessions. There were three major strategies used by the partici-

pants: browsing, choosing tags from tag cloud and keyword searching.  Most partici-

pants selected books by browsing the book titles and tags on the main screen. We 

called this a browsing strategy. The tag cloud strategy was when participants clicked 

on any tag in the cloud and reached a list of books assigned with that tag. The third 

strategy was keyword searching. Participants clicked on “search” and typed in key-

words to reach a list of books matching the keywords either in the title or tags. 
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Fig. 3. Proportions of strategy use across sessions 

As shown in Fig. 3, the use proportions of the browsing strategy increased but the 

use of the other two strategies decreased across sessions. Analysis of variance showed 

that the main effect of strategy was significant (F (2, 31) = 4.21, p < 0.05), confirming 

the obviously higher proportion of the browsing strategy than the other two strategies. 

The strategy × sessions interaction was also significant (F (6, 31) = 2.43, p < .05), 

confirming the upward trend for the browsing strategy and the downward trends of 

the tag-cloud and search strategies.   

The results were consistent with the conclusion by Millen [13] that community 

browsing (topic search) is the most frequently used search strategy in social book-

marking system. One possible reason was that the browsing strategy tends to have 

higher perceived information gain than the other two strategies. In this task, informa-

tion gain can be defined in terms of the perceived usefulness of information cues in 

satisfying the information goal, i.e., the perception that the title words and tags could 

help participants to judge whether a book is relevant or not. Indeed, previous research 

has shown that selection of information search strategies is sensitive to the moment-

to-moment measure of information gain per unit time cost ([1], [2], [8], [14]). One 

important implication from these studies was the discovery that selection of informa-

tion search strategy was more sensitive to the on-going evaluation of information gain 

than the overall efficiency of the strategy.  

In the browsing strategy, the continuous evaluation of the title words and tags 

could lead to a high perceived information gain, as they provided on-going informa-

tion for participants to judge the relevance of a book. Thus, the perceived moment-to-

moment information gain per unit cost could actually increase as more tags were 

added to the books. We also believe that the higher perceived information gain for the 

browsing strategy was particularly prominent in exploratory search, as participants 

only had a rough idea of what they were looking for (as opposed to a well-defined 

information task in which, for example, a specific title or keywords were given). 

Thus, browsing not only allowed participants to find relevant books, but also allowed 

them to refine and enrich their information goals as specified in the search task. As a 

result, the perceived information gain was likely to be higher for the browsing strate-

gies than the other two strategies. 

Failed search episodes. To further test our assumption that tags will facilitate  

exploratory search, we counted the number of events when participants clicked on  

a book title, read its content description and decided not to select the book across 
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sessions. We called each of these episodes a failed-search. If the tags associated with 

each book indeed provided more useful information for participants to judge the rele-

vance of the book, the number of failed-search episodes should have decreased across 

sessions as more tags were assigned. Indeed, we found that the number of failed-

search episodes decreased steadily across sessions as more tags were added to the 

library (table. 3), as confirmed by the significant linear downward trend (F 

(1,30)=4.93, p<0.05).  

Table 3. Total number of failed-search episode for all participants across sessions 

Session 1 2 3 4 

Total number of failed search 57 46 32 29 

This pattern
1
 was consistent with the idea that new tags provided higher informa-

tion gain for participants as they browsed through the books and the new tags did help 

them to judge the whether the book should be selected or not without looking at the 

detailed description of the book. In other words, participants’ judgment on the rele-

vance of books based on these tags actually improved as more tags were added.  

4   Discussion 

The current findings provide a novel explanation of tag creation from the semantic 

level and support the assumption that tags can facilitate exploratory search. Through 

the collaborative tagging effort by multiple users, the collective interpretation of in-

formation content becomes a more important factor that influences tagging behavior 

than differences in information needs, which is represented by the increasing semantic 

relatedness between tags. Not only did social tags influence how likely users may 

come up with new tags to describe the same information resource (Table 1), but when 

they did decide to create new tags, these new tags were closer in meaning to existing 

tags (Fig. 2). Researchers have argued that one reason why proportions of tag use tend 

to stabilize is because people tend to imitate others behavior [9]. Our results provide 

direct empirical evidence supporting this idea; but in addition to that, our results also 

highlight the dynamic interaction between personal information needs and social 

tagging behavior across time, which provides a more in-depth explanation to the sta-

bilization pattern in large scale tagging systems. 

Although initially different information needs led to creation of semantically dif-

ferent tags, as more tags were assigned to the resources across a session, new tags 

created became semantically more similar to existing tags (note that across sessions 

participants were given the exact same set of different information needs). In fact, in 

the last session, the level of semantic relatedness between new and existing tags cre-

ated by participants with different information needs was about the same as those 

created by participants with the same information needs. The increase in semantic 

relatedness between new and existing tags across sessions is a novel finding that  

                                                           
1 The count was pooled across all strategies as they involved the clicking on the book title 

before they could select the book.  
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provides strong empirical support for the social nature of tags: As tags accumulated 

from the collaborative efforts from participants with different information needs, 

these tags presumably provided increasing depth and breadth to the description of the 

books. In fact, we believe that a major function of social tags is to provide semantic 

cues to the content of a resource, so that other users can utilize these semantic cues to 

estimate the relevance of a particular information resource with respect to their own 

information need. Thus, it is no surprise that users are conforming to certain underly-

ing semantic structures through repeated interactions with the social tagging system. 

Our next set of studies will focus on extending the current findings to other “semanti-

cally rich” domains (e.g., biologists tagging research articles) to further test this idea. 

Lastly, our results have significant implications for the design of next generation 

social tagging support tools. We established that social tags can facilitate information 

search because the failed search number significantly decreased across sessions and 

users chose the search strategy based on perceived information gain. Therefore, in-

corporating the semantic relatedness between existing tags would provide users a 

better representation for developing an understanding about current tags and help 

them to create new tags that would provide more informational value for the user and 

improve the effectiveness of information search. Given that our results show that the 

tagging process is sensitive to user’s interpretation of existing tags, we speculate that 

different knowledge backgrounds may influence users’ tagging and searching behav-

ior by influencing their interpretation process. Our future study will look into how 

different knowledge structure may influence users’ tagging behavior.  
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Abstract. The popularity of social information systems has been driven by their 

ability to help users manage, organize and share online resources. Though the 

research exploring the use of tags is relatively new, two things are widely  

acknowledged in the research community: (a) tags act as a medium for social 

collaboration, navigation and browsing and (b) an overall stable equilibrium ex-

ists among tag patterns due to the social nature of the tagging process. But there 

is very little agreement on what causes these stable patterns. In this paper, we 

take an evolutionary perspective to understand the process of tagging to investi-

gate whether tags act as "way finders" or digital pheromones in social tagging 

systems. We investigate the existence of tag trails based on a semantic similar-

ity measure among existing tags. We found that over 50% of the resources we 

evaluated exhibited strong trail patterns. The implications of these patterns for 

the design and management of social tagging systems is discussed. 

Keywords: Social Tagging Systems (STS), Stigmergy, Pheromones, Web 2.0. 

1   Introduction 

With the widespread popularity of Web 2.0, social tagging is a common feature in 

several web-based systems. Social tagging systems (STS) provide the flexibility to its 

users for annotating, organizing and categorizing their information content on the web 

using tags. Tags help in supporting online search, navigation, managing content and 

sharing with other users who have similar interests. Examples of social systems in-

clude del.icio.us (http://del.icio.us) (URLs), Flickr (http://flickr.com) (for photos), 

CiteULike (www.citeulike.org) (for academic papers and books). Due to its wide-

spread popularity and use, tagging systems contain hundreds of thousands of users, 

tags and resources (URLs, photos, books etc.). Users of STS are free to create tags at 

their free will and in most cases user activities are not moderated by administrators. In 

this environment, one would expect relative chaos and unstructuredness in tagging 

patterns. But, researchers have established that stable tagging patterns arise in social 

tagging systems (e.g., [3, 8]). 

The stability of tagging patterns has been attributed to a variety of reasons: social 

imitation [8], semantic organization and clustering [11], information theory based 
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models [4], preferential attachment [3, 10], personal preferences [14],  recency of tag 

use [3] and a rational model [6]. The most widely accepted idea on overall tag stabil-

ity is social imitation. Researchers [8] have argued that tag equilibrium is achieved 

through users’ direct imitation of tags created by other users. They suggest that users 

directly use the tags that are previously created. The underlying assumption on  

the occurrence of social imitation is that tags act as a medium of direct coordination 

activity.  

We believe that there are more subtle nuances by which users appropriate tags 

(e.g., by creating tag synonyms, semantically similar tags, or some personalized form 

of tags). Thus a direct imitation model may not completely explain tag pattern equi-

librium. We investigate the effect of the social medium on the coordination practices 

during tagging and the role of indirect social coordination in the creation of stable 

tagging patterns. We use the principles of stigmergy, a mechanism for explaining the 

indirect coordination between agents (or humans), to investigate the causes for stable 

patterns of tagging behavior.  

Stigmergy is based on the idea that physical traces of work left by others in a me-

dium act as the basis for future coordination activities. The idea of stigmergy was 

developed by Grassé [9] to describe the emergence of collective coordination activi-

ties of social insects. The concept was initially used to explain the coordination para-

dox in group activities: i.e., looking at a group of social insects (Grassé looked at nest 

building activities of termites), it would seem that they are cooperating in an organ-

ized manner, but looking at an individual would present the picture of independent 

work and not being involved in the collective activity. The explanation based on 

stigmergy for coordination paradox is that the collective interaction is indirect [15]. In 

other words, the agents affect the behavior of other agents through indirect communi-

cation using social artifacts in the physical environment. For example, in the case of 

termites, nest building material; in the case of ants, ant trails are supported by phero-

mones. A detailed review of stigmergy can be found in Theraulaz and Bonabeau [15].   

One of the most popular examples of stigmergy is the food tracing behavior in ant-

colonies. Ants in the real world wander randomly between the food source and their 

colony. The (initial) ants leave pheromones in their trail as they move from the food 

source to the colony (and vice versa). Other ants are more likely to follow the phero-

mone trail rather than a random trail, thereby reinforcing a previously existing trail. If 

the path to the food source is long, the pheromone trail evaporates over time. Alterna-

tively, ants choosing shorter paths will have their pheromone trails reinforced by 

consistent ant-traffic and shorter path length. As a result of the pheromone evapora-

tion in longer paths, less preferred longer routes are no longer followed by ants. But 

when a (random) ant finds a shorter path, other ants are likely to follow that path 

resulting in an overall positive feedback along that path [5]. In this example, ants 

coordinate their action through the indirect interaction with the physical medium and 

pheromones act as the medium for their coordination activities.  

There are many parallels between a social tagging environment and the ant-colony 

described above. Users in social tagging systems are driven by their local goals that 

are driven primarily by their information needs. The global behavior of the users are 

emergent and occurs as they use the social tagging system. The global behavior is 

spurred by the instinctive response to traces in the medium (in this case, tags). The 

trail strength is developed as more users add tags that are similar to the existing tags.  
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Table 1. A comparison between an ant food searching pattern and social tagging 

 Ant Colony Social Tagging  

Local behavior Ants searching for food 

Users searching STS for their 

information needs 

Coordinating medium 

Pheromones left on  

trails by previous ants  

Tags that are added by prior 

users of a resource; tags act as 

“digital pheromones” 

Trail Strength 

Shorter trails have more 

ant traffic leading to 

trail strengthening 

Addition of semantically simi-

lar (or same) tags leads to a 

stronger strength for that tag as 

a descriptor for the resource 

Global behavior 

Ants have a coordinated 

shortest path trail to the 

food source 

Coordinated overall global 

stable pattern across the STS 

This leads to later users perceiving the resource in a particular way. The comparison 

between an ant colony and social tagging is shown in table 1.  

The concept of stigmergy is extremely relevant in the case of social tagging activi-

ties. We believe that social tagging systems present a medium where collective action 

is based on the distributed cognitive activities of a set of users. The indirect coordina-

tion practices can be considered as the interconnecting glue for distributed cognitive 

system, with users, resources and tags, creating a balance between individual action 

and social phenomena. But we know very little about how these users coordinate their 

tagging behavior without any direct communication. We believe that the coordination 

activities are indirect and are an effect of the tagging environment. We hypothesize 

that similar to the ant-colony environment, tags act as digital pheromones, creating 

trails for users. The digital trails are strengthened by the addition of semantically 

similar tags by other users. Specifically, we investigate the following research ques-

tions: (a) Do tags act as “digital pheromones” to support indirect coordination? (b) 

How do these trails affect the overall equilibrium in tagging patterns?  

We define a trail strength index to evaluate the strength of a trail based on the se-

mantic similarity between tags. Let us consider the following scenario: A user adds a 

tag “network” to a paper on “Facebook use”. The tag “network” acts as a digital trace 

in the medium for future users for the paper. The addition of a new tag (or modifica-

tion of an existing) that is semantically similar to the existing tag would mean that the 

existing trail for the tag “network” is strengthened. In other words, a new user indi-

rectly has a general degree of collective agreement on a resource. As more tags are 

added, the presence of semantically similar tags strengthens the trail in a certain direc-

tion. Thus, if more tags similar to the tag “network” are added, the paper becomes 

perceived by future users as a paper related to networks based on its tags. Addition of 

tags that are not semantically related to network (e.g., a tag “food”) would lead to 

lesser strength to the tag trail.  Using data from the popular scholarly social tagging 

system CiteULike, we investigate the development of trails in tagging networks.  

We found that over 50% of the resources exhibited the strong trails, where a digital 

trail was created with semantically similar tags. About 23% of the resources had  

weak trails phenomena, where there was little agreement among the taggers (nor were 
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semantically similar tags) by later users. We describe the implications of strong and 

weak trails for growth of stable patterns and discuss its importance for the design and 

management of social tagging systems.  

2   Process of Social Tagging  

There are three main components for any tagging system: users, tags created by the 

users and resources (URL, books, pictures, movies etc.) for which tags are assigned.  

 

Fig. 1. Process of tagging: User 1 (U1) has one tag (T1) applied to one resource (R1) (blue 

arrow) User 2 (U2) has one tag (T2) applied to two resources (R1 & R2) (red arrow) 

The primary difference between different tagging systems is the type of resource. 

Resources can be different depending on the specific purpose of the social tagging 

system. For CiteULike (www.citeulike.com), a resource is an academic paper or 

book, while for del.icio.us it is a web site URL. Other media such as photos and vid-

eos have also been resources for social tagging systems. As explained earlier, a tag-

ging system can be represented as a tuple: users, tags and resources (see U, T, and R 

in Figure 1). For example, consider that a user U1 applies tag T1 to a resource (R1) 

(see blue arrows) and user U2 applies the tag T2 to two resources R1 and R2 (see red 

arrows).  Each of these assignments is called a tag application. Thus there are three 

tag applications in this system (U1, T1, R1; U2, T2, R1; U2, T2, R2). This is the 

widely accepted conceptual model of a social tagging system. Large social tagging 

systems contain hundreds of thousands of such tag applications resulting in significant 

interaction patterns among tags such as re-use, growth and informational value.  

3   Method 

In this section, the data source and the related analysis methods that were used for this 

study are described.  

3.1   CiteULike Tagging Data 

The data for this study consisted of tagging data from the popular social tagging sys-

tem, CiteULike. CiteULike is an online social bookmarking service supporting the 
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storage, sharing and organization of information on research papers. It is primarily 

used by researchers. CiteULike users can link papers and import references from 

other scholarly digital libraries. User can also add their favorite papers to their collec-

tion and assign tags to them. Our data consisted of tagging data from CiteULike over 

a 5-month period from November, 2004 to March, 2005. In total, there were 65,347 

tag applications by 1205 users and 12067 total unique tags. The source of the data 

was publicly posted logs from www.citeulike.org.  The data was processed to extract 

the user-tag-resource relationship during this time period.  

3.2   Data Analysis 

One of the main challenges of large datasets from public web portals is the presence 

of spam. While an analysis of all the tag applications is certainly useful, the results 

would likely be spurious due to the presence of significant spam content. As a re-

sult, we decided to process a select set of tags and manually ascertain its quality to 

avoid this problem. The CiteULike tagging data for the 5 month period was organ-

ized in a database. We then randomly selected 100 resources (books or papers) that 

had at least 5 tags and was tagged at least by 5 different users. This was done for 

two purposes. First, we needed to have a clear time-sequence of tagging events 

(hence the 5 tag application limit). Second, in order to establish the effect of indirect 

coordination practices, we needed to observe the effect of previous tags on the 

choice of future tags. The selected set of resources was manually evaluated to re-

move the spurious tags.   

After the first 100 resources were extracted along with the corresponding users, 

tags and time of tags, Latent Semantic Analysis (LSA) was performed on each set 

[12]. LSA is used to extract and represent similarity of word meanings by comparison 

to large corpora of text. The LSA values reflect the general semantic similarity among 

words. It uses singular value decomposition, a general form of factor analysis, to 

condense a very large matrix of word-by-context data into a much smaller dimen-

sional representation. LSA, as well as variations of similar statistical language  

techniques such as information scent [1, 2, 7, 13], had been successfully applied to 

explain how users interpret the relevance of link text on web pages (e.g., [1, 2]). Prior 

research shows significant support for the use of LSA as a method for measuring 

human interpretation of relatedness in text. For our analysis, LSA was performed 

using the algorithm available through the website at http://lsa.colorado.edu, using the 

general reading topic space of 300 factors.  

Our analysis was conducted in the following manner: the tags created by the first 

user were selected. Each of these tags is compared with the rest of the tags created for 

that resource. In other words, the semantic similarity of each initial tag with respect to 

all the other available tags is computed. The matrix LSA comparison was used for our 

analysis. For each initial tag, we then computed the average semantic similarity score 

across all other available tags. We call this trail strength index (TSI). The higher the 

value of TSI, greater the semantic similarity between a tag and its follow up (trailing) 

tags. Lower values of trail strength indicate that successive users do not use this tag 

for their tagging processes.  
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Fig. 2. Evaluating the trail strength index: If a user creates semantically related tags to  

pre-existing tags, the strength of trail is increased (see dark line between T1 and T4, higher 

LSA score, therefore greater trail strength). The dotted lines show lower semantic relatedness 

between tags created by successive users (thus the trail strength is lower across user tagging 

sessions). The trail strength in this case is for tag T1 (and its semantically related tags T4 and 

T6) resulting in future user applying tags that are similar to T1 (or semantically similar).  

The concept of strong and weak trails is shown in figure 2. As new tags are cre-

ated, they are compared with prior tags to evaluate their semantic relatedness. If new 

tags are semantically related to previous tags, then it means users are following a trail 

left by previous users (hence strengthening the trail). Thus in figure 2, the semantic 

similarity between T1 (created by user 1) and T4 (created by user 2) is high (shown 

by the dark line) than with other tags. This trail is strengthened further by the addition 

of a new tag T6 (user 3) which is again semantically related to T1. Thus the trail of 

tag T1 is strengthened leading future users to perceive that T1 is the most appropriate 

tag for that resource. The dotted arrows show tag trails with lesser semantic related-

ness. It is also likely that users may follow more than one trail. In summary, the tags 

that have a higher TSI score will act as trails for that resource resulting in future 

users applying that tag to the resource.  

4   Results 

In this section we report on the results from our analysis. As explained earlier, the 

analysis was conducted on 100 randomly selected resources which had more than 5 

unique tags assigned to them and also had at least 5 different users tag the resource. 

We use examples to show two different processes that happen during tagging: strong 

trails and weak trails. 

Of the 100 resources that we used for our analysis 53 of them fell in the strong 

trails category, while 23 fell in the weak trails category. The rest could not be classi-

fied into either category. That is, 76% (76/100) of the resources exhibit some form of 

trail properties. These trail properties were calculated based on the semantic related-

ness between temporally sequenced tags. While strong trails were fairly prominent 

and easy to identify and explain, weakening of trails was significantly more subtle. In 

the sections below we present an example of strong and weak trails based on the TSI 

score.  
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4.1   Strong Trails 

Let us consider an example to explain the strong trails phenomenon. A total of 10 tags 

were created by 5 users (8 unique tags) for a resource (see table 2 for a sub-set of the 

tags). Tags were added in the order they are presented in the table (user 1 adds the 

tags “oscillations” and “synchronization”; then user 2 add the tag “oscillations”, etc.). 

The trail strength index was computed by comparing each of the first two tags to the 

rest of the tags that were created for the resource over the five month period. Table 2 

shows the computed LSA scores (and the tag trail strength index) for the two tags 

created by the first user.  

Table 2. Average latent semantic indices for the first and second tags created by the first user 

for a resource are computed  

 Oscillations (User 1) Synchronization (User 1)  

Oscillations (User 2) 1 0.22 

Biochemical (User 3) 0.07 0.08 

Bioelectronics (User 3) 0.42 0.19 

Networks (User 3) 0.04 0.23 

Dynamics (User 4) 0.18 0.12 

Oscillations (User 4) 1 0.22 

Oscillators (User 4) 0.51 0.23 

Trail Strength Index 0.46 0.19 

Two important deductions can be made: (a) the first tag (“oscillations”) or a highly 

semantically related (or similar) tag is used by future users (except User 3, who cre-

ates two tags unrelated to previous tags and one tag (“bioelectronics”) which is se-

mantically similar to pre-existing tags) leading to a fairly strong trail (avg. score 

=0.46, in spite of a user creating semantically unrelated tags). Thus a fairly strong 

“tag-trail” exists for this resource with the tag “oscillations” and (b) the second tag 

(“synchronization”) has low semantic relatedness with other tags and it does not show 

decay or strengthening across all users. It is difficult to draw anything conclusive 

about the trail strength of the second tag.  

Strong tag trails occurs by the addition of tags that are similar (or same) as the 

original tag. In the case of this resource, there is a stronger “tag-trail” for the tag “os-

cillations”. Similar to the case of ants where pheromones act as a mechanism for trac-

ing food-trail paths, strong tag trail, in terms of the semantic relatedness between a 

group of tags, acts as probable guidance for future users. While, it is possible to say 

that “oscillations” act as a digital trace (or pheromone trail) we cannot establish this 

unless we investigate its trail over a longer period of time. For this, we extracted all 

the tags that were created for this resource over the next 24 months. The next eight 

tags that were created for this resource were the following: oscillation, network, vi-

bration, test, bio, frequency, oscillator, and connections. If the trail strength that has 

been originally established for the tag “oscillation” is strong, then more users are 

likely to add a tag that is semantically related to it. For this we computed the LSA 

scores for the six tags that were created after the 5 month period. The mean LSA  
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score for this set was 0.39 (the TSI score). This means that the trail of the tag “oscilla-

tor” was significantly strong and thus it is likely for other users to apply this tag (or a 

semantically related tag).  

4.2   Weak Trails  

Weakening of tag trails is the opposite of trail strengthening, i.e., the effects of tags 

that are created during the early phases of tagging have no effect on the more recent 

tags. In other words, there is no semantic relatedness between tags created earlier 

and recent tags. As with strong trails, we use an example to demonstrate the weaken-

ing of tag trails. As it can be noted from table 3, the initial tags that are created by 

user 1 (collaboration and computer-mediated) have very little semantic similarity 

with future tags. There does not seem to be any semantic relationship between the 

tags created by the first user and the ensuing tags (the TSI score for tag “collabora-

tion” was 0.03; TSI for tag “computer-mediated” was 0.07). We also did not find any 

significant semantic relationships between the tags created by the second user and 

the third user to the later tags. 

Table 3. Decaying trail strength index. This resource had more tags but some of these tags did 

not have LSA documentation (e.g., folksonomy, blog) so they are not shown in this list. 

 Collaboration (User 1)  

Computer-

Mediated (User 1) 

Psychology (User 2) 0.01 0.04 

Social (User 2) 0.13 0.00 

Email (User 2) 0.00 0.00 

Technology (User 3) 0.03 0.31 

Group (User 4) 0.04 0.01 

Psychology (User 4) 0.01 0.04 

Communication (User 5) 0.03 0.09 

Trail Strength Index 0.03 0.07 

Similar to strong trails, we investigated whether any of the tags created over the 

following 24 months had semantic similarity to these tags. Based on the set of next 8 

tags, we found that there were no pairs of tags that had a tag trail index score greater 

than 0.1. This means that in the case of weak trails, the tags are semantically “spread” 

without any clear paths or trails. In such resources, the medium creates a divergence 

of ideas and concepts. A users’ tagging choice becomes less clear in such resources.  

5   Discussion  

Based on the analysis of data from a social tagging system, we identified the role of 

tags as digital pheromones, amplifying a significant number of resources with strong 

tag trails. Resources with strengthened trails exhibit clear “themes” for a resource, 

while the resources with weak trails had divergent tags without clear “themes” that 

identify the resource. While it is almost impossible to ascertain the accuracy of the 
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themes in resources with strong trails, it is still a useful benchmark for users who have 

limited expertise and experience with a topic.  

Based on our analysis we found the following: (a) Digital traces of tags are a func-

tion of social and semantic imitation. Tag imitation may not be direct, as described by 

Golder and Huberman [8], but in a more nuanced, semantic manner. (b) Stronger 

trails do not imply higher informational value for the tags. Tags are generally used in 

social navigation and search. If a resource has high tag-trail strength, it means that 

those tags are likely to be general descriptors of the resource and would be highly 

unlikely to have high informational value during search. (c) There is also the possibil-

ity that the tags that act as pheromones (with high tag-trail strength) could not be the 

best descriptor of the resource (possibly by the lack of or incomplete knowledge of 

the tag creator). This is a real possibility and could lead to spurious tags for the re-

source. Conversely, resources that have weak trails are likely to have tags with high 

informational value (i.e., able to uniquely identify a resource). Lower tag-trail 

strength is often a function of the nature of the tag (general vs. specific).  

Additionally, it is possible to draw some interesting insights on tagging patterns 

based on the presence of strong and weak tag trails. The resources that have tags with 

strong trails are exhibit convergence of ideas and are likely to converge to a stable 

equilibrium much faster. This is because the tags that are added to strengthen the trail 

(semantically related tags) are concepts and ideas that are closely related to a central 

theme. One important aspect of trails which cannot be explored with a general dataset 

such as the one we used is to investigate the effect of expertise on the tag strength. It 

is likely that users’ with lesser knowledge on a topic that create general tags or use 

their limited knowledge to create tags (resulting in semantically related tags). The 

creation of semantically related tags by users with lesser expertise or knowledge 

could also be explained based on the principle of least effort. In other words, adding 

existing tags (or semantically similar tags) involves less cognitive effort. Users, 

thereby take the easiest path of adding new tags.  

In contrast, resources with weaker trails have tags that are semantically distributed 

or spread. It is more likely that these tags would converge at a much lower rate and 

are likely to be very specific (e.g., in our example, “computer-mediated”). These tags 

have higher informational value for search and navigation purposes.  

The identification of strong and weak trails has implications for the design of so-

cial tagging systems. First, it is easy for system administrators to identify resources 

that have strong trails. These can be identified as resources which are less likely to be 

reached by users and salient tags that are not on the tag-trail can be amplified to help 

users in their search. Second, resources with weak trails should be amplified with tags 

in multiple directions to support search and retrieval. This is because these resources 

would otherwise not be discoverable by a large percentage of users who do not know 

the specific keywords.  

Based on our current study, it is difficult to emphatically establish that stable equi-

librium in social tagging systems is caused as a result of indirect coordination mecha-

nisms achieved through the creation of semantically related tag-trails. But the use of 

semantically tags during tagging is evident (in the case of strong trails). We need to 

conduct more analyses to explore whether the tags that cause tag trails contribute 

more towards overall equilibrium than tags that have lower tag-trail strengths. Our 
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results show that indirect coordination using tags is a strong basis for the explanation 

of social tagging systems as distributed cognitive systems.  
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Abstract. The paper presents design and evaluation of emotional state estimator 

based on artificial neural networks for physiology-driven adaptive virtual reality 

(VR) stimulation. Real-time emotional state estimation from physiological sig-

nals enables adapting the stimulations to the emotional response of each indi-

vidual. Estimation is first evaluated on artificial subjects, which are convenient 

during software development and testing of physiology-driven adaptive VR 

stimulation. Artificial subjects are implemented in the form of parameterized 

skin conductance and heart rate generators that respond to emotional inputs. 

Emotional inputs are a temporal sequence of valence/arousal annotations, which 

quantitatively express emotion along unpleasant-pleasant and calm-aroused 

axes. Preliminary evaluation of emotional state estimation is also performed 

with a limited set of humans. Human physiological signals are acquired during 

simultaneous presentation of static pictures and sounds from valence/arousal-

annotated International Affective Picture System and International Affective 

Digitized Sounds databases.  

Keywords: Real-Time Emotional State Estimator, Adaptive Virtual Reality 

Stimulation, Artificial Neural Network, Stimuli Generation, Physiological 

Measurements. 

1   Introduction  

Research described in this paper is a part of ongoing efforts to design and develop 
the physiology-driven adaptive stimulation for VR exposure therapy (VRET) [1,2]. 
In VRET, a treatment method for various anxiety disorders, the therapist (the super-

visor) operates a user interface to deliver gradually to the patient (the subject) the 
virtual stimuli of anxiety-provoking situations [3,4,5]. Physiology-driven adaptive 
VR stimulation attempts to optimize and customize the therapy by relieving the  
supervisor of repetitive interface manipulation and monitoring of the subject’s 
physiology. However, it may also be useful in a broader range of human-computer 
interaction applications. 

Physiology-driven adaptive VR stimulation includes [1]: time-synchronized stimuli 
generation, acquisition of the subject’s physiological response, subject’s emotional 
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state estimation, and closed-loop control that leads to subsequent generation of new 
stimuli. Control signals may specify semantics, emotional properties, and media form 
of the stimuli. The stimuli are presented in various media forms, like static pictures, 
sounds and synthetic virtual stimuli combined with real-life video clips. Emotional 
state estimation is based on the dimensional model of emotions organized along the 
axes of valence (unpleasant-pleasant) and arousal (calm-aroused) [6]. Mappings to 
other emotion representations may be added if necessary. For example, representation 
of relevant emotional states in VRET may be more coarse-grained [2]: non-aroused, 
aroused and overly aroused.  

The paper is focused on the real-time Emotional State Estimator component of the 
physiology-driven adaptive VR stimulation. This component is crucial for adaptation 
of VR stimulations to the emotional response of each individual. The remainder of the 
paper lays out design and preliminary evaluation of the real-time Emotional State Es-
timator based on artificial neural networks, also describing accompanying stimuli 
generation and physiological measurements.  

2   Stimuli Generation  

Within the physiology-driven adaptive VR stimulation, the Stimuli Generator is re-
sponsible for finding the best-matching stimuli with respect to the semantics, emo-
tional properties and media form specified by the control signals. In this process, it is 
important that the signals result in emotionally and semantically aligned stimuli, 
which are individually conformed to a specific subject’s mental state.  

The Stimuli Generator uses emotionally and semantically annotated stimuli data-
bases. International Affective Picture System (IAPS) [7] and International Affective 
Digitized Sounds (IADS) [8] are such publicly available databases of static pictures 
and sounds. Valence and arousal emotional annotations of IAPS and IADS stimuli are 
decimal numbers in the range from 1.00 through 9.00, representing maximum un-
pleasantness through maximum pleasantness, and maximum calmness through maxi-
mum arousal, respectively. These databases also use free-text keywords, or tags, to 
describe the semantics of stimuli. However, the keywords are semantically scattered, 
taxonomically disordered, and subsequently cumbersome for information extraction.  

Stimuli generation plans to introduce ontology-based tagging in the existing emo-
tionally and semantically annotated databases, in order to achieve more informative 
descriptions of stimuli and more efficient extraction of context knowledge [9]. This 
work builds on the current Stimuli Generator that generates IAPS and IADS stimuli 
[10]. Media forms supported by the Stimuli Generator are also being extended to vir-
tual stimuli in the context of VRET [11].  

3   Physiological Measurements 

Two physiological measurement approaches are used during the research and devel-
opment of the physiology-driven adaptive VR stimulation. One approach involves  
artificial subjects that computationally generate physiological signals, and the other 
acquisition of physiological signals from real human subjects. Artificial subjects  
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approach is convenient for software development of the physiology-driven adaptive 
VR stimulation. It allows generating numerous subjects and measuring their physio-
logical reactions to a large number of stimuli. This facilitates development of the real-
time Emotional State Estimator without requiring time-consuming and sophisticated 
emotion elicitation and physiological measurements on real humans. Approach with 
human subjects is relevant for the ultimate goal of estimating human emotional state, 
as artificial subjects provide only crude approximations of human physiological re-
sponse to stimuli. 

Artificial subjects consist of parameterized skin conductance (SC) and heart rate 
(HR) generators that accept valence/arousal of the generated stimuli (Fig. 1). Gener-
ated SC and HR signals exhibit simpler and more deterministic behavior than human 
physiological signals. However, some principles from the literature on relationship 
between physiology and valence/arousal have been incorporated, including initial 
post-stimulus HR deceleration dependent mostly on valence [12], HR acceleration af-
fected by increase of arousal [12], and SC increase with increase of arousal [12].  
Approximate parameter values of SC response have been found in [13] and the basic 
SC response model has been adopted from [14]. HR generator is a modification of the 
open-source generator ECGSYN [15] with parameter adjustments based on va-
lence/arousal inputs. Description of the underlying modeling used in ECGSYN gen-
erator can be found in [16]. 

Human physiological signals can be acquired by a variety of multi-channel physio-
logical acquisition systems. Acquisition system used in the paper is BIOPAC MP 150. 
This system is synchronized with SuperLab stimulus presentation system, which pre-
sents emotion eliciting stimuli to the human subjects. In order to collect the same sig-
nals for humans as for the artificial subjects, acquired physiological signals include  

 

 

Fig. 1. An example of generated SC and HR reaction to a “step” input, a change from a pleas-
ant relaxing stimulus to an unpleasant arousing stimulus  
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SC and ECG signal. RR interval algorithm provided with the acquisition system is 
used in computing the HR signal from the ECG. In-house physiological acquisition 
system has also been developed, which is more convenient for physiology-driven 
adaptive VR stimulation. 

4   Real-Time Estimation Concept Design 

Real-time Emotional State Estimator in physiology-driven adaptive VR stimulation 
estimates the subject’s emotional state repeatedly as physiological signals are ac-
quired (Fig. 2). Subject’s emotional state is changed in response to the presented 
stimuli and is generally affected by other influences, internal or external to the sub-
ject. The paper investigates emotional state estimation with sequential delivery of 
stimuli. Stimuli sequence is represented as s1, s2, ..., sm, where stimulus si has an asso-
ciated valence/arousal annotation (vi, ai) in the stimuli database. Corresponding stim-

uli durations in seconds are d1, d2, ..., dm, and stimuli onset times t1 := 0, t2, ..., tm, with 
t
i := ti–1+d

i–1, for i = 2, ..., m.  
Frequency of outputting the estimated valence/arousal is a predetermined fixed 

number of outputs per second, called the estimator framerate fe. Acceptable real-time 
framerate in VRET is 1 Hz. Estimator frame is a time interval, in seconds, that ex-
tends from the beginning to the end of computation eventually producing one estima-
tor output. Frame duration is Te := 1/fe.  

For each frame, valence/arousal emotional state is estimated from physiological 
samples acquired during a time interval that starts a number of seconds in past and 

ends at the beginning of the frame. This interval is the frame window 
i

jw , indexed in 

the same manner as the beginning of the frame. Physiological samples from the frame 
window are used in computing the features required for valence/arousal estimation. 
Generally, frame windows can have equal fixed length, in seconds, or the length may  

 

 

Fig. 2. Real-time emotional state estimation 
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vary from frame to frame, e.g. to adjust to the dynamics of the features. Frame win-
dows of fixed length le are applied, since the logic that may adjust window length to 
the feature dynamics is beyond the scope of the paper. 

The Emotional State Estimator is disabled (does not estimate valence/arousal) 
whenever the frame window includes onset time of a stimulus; otherwise, it is en-

abled. Frame windows that overlap with a change from one stimulus to the next are 
avoided in emotional state estimation, as they introduce conceptual difficulties in de-
fining the subject’s emotional state. Illustration is given in Fig. 2, where no frame 
window overlaps with stimulus onset time t2 and, therefore, no black-point markers of 

estimator output appear on time axis between eTt +1

2  and 2

1t . Ability to disable and 

enable the estimator may rest in some higher-level logic with information regarding 
the frame windows and stimuli onset times.  

5   Emotional State Estimator Based on Artificial Neural Networks  

There is a variety of research works that address emotion recognition based on physi-
ology. Numerous methods for emotion recognition have been used, like k-nearest 
neighbor [17,18,19], discriminant analysis [17,18,20], support vector machine  
[19, 21], artificial neural network (ANN) [17,18,22,23], Bayesian classification meth-
ods [19] or regression tree [19]. In the surveyed articles, majority of the focus is on 
discrete emotion recognition, like pleasure, sadness, fear, anger etc. One encountered 
article [22], investigates valence and arousal estimation. 

Complementing the previous research, the Emotional State Estimator presented in 
this paper gives unquantized real-time estimation of valence and arousal based on ex-
tracted physiological features. This is important in order to implement the closed loop 
of adaptive control presented in [1,2].  

Estimator design is based on ANNs, due to their ability to model complex relation-
ships between inputs and outputs. Unlike previous similar research [22], several ANN 
designs are tested:  

1. One multi-input multi-output feedforward ANN with two output nodes, for va-
lence and arousal, 

2. Two separate feedforward ANNs for valence and arousal, each with a single 
output node, 

3. One multi-input multi-output ANN with two output nodes, for valence and 
arousal, with feedback from output to input, 

4. Two separate ANNs for valence and arousal, with feedback from output to  
input. 

All designs have one hidden layer with 10 neurons, tansig activation function for hid-
den layer and purelin for output layer. 

Training samples for the ANN are obtained by joining the features extracted from 
the physiological signals with the emotional annotations of the presented stimuli. 
Training samples are generated according to the concept of real-time estimation in the 
previous section; one training sample is obtained from each frame window. SC  
and HR signals of each subject are firstly divided by their respective mean at baseline, 
obtained during the initial neutral stimulus, for robustness to inter-subject baseline 
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variation. After this transformation, two preliminary feature sets are extracted from 
both signals. Common features in both sets are mean, standard deviation and slope; 
the first set (FS1) further includes minimum and maximum, and the second (FS2) in-
cludes difference of maximum to minimum and difference of means between the cur-
rent and the previous frame window. Every feature is normalized to [–1, 1] range, 
across all subjects used in training, by linearly mapping the minimum value of the 
feature to –1 and maximum value to 1. Stimuli emotional annotations in the training 
samples are normalized by linear mapping of their original range [1.00, 9.00] to  
[–1, 1]. The supervised training is performed with Levenberg-Marquardt learning al-
gorithm, including early stopping for enhanced generalization. 

Using emotional annotations of the presented stimuli for estimator training, as in 
this paper, is one of the possible training approaches (e.g. [22]). Another approach in-
cludes training the estimator with the subject’s self-reported emotional state for each 
presented stimulus (e.g. [19]). Selected approach avoids the effect that human  
subjects’ mental construction of self-report may have on physiology. Downside of the 
selected approach, however, is its inability to incorporate inter-subject differences in 
emotional experiences of the same stimulus.  

6   Preliminary Estimator Evaluation 

Accuracy of the estimated valence/arousal is evaluated against the valence/arousal 
values from the stimuli emotional annotations. Evaluation results are reported sepa-
rately for valence and arousal, in terms of mean absolute error (mean AE) and maxi-
mum absolute error (maximum AE) over all subjects and stimuli sequences in the 
testing set. Testing set is kept separate from both the training set and the validation 
set, which is used for early stopping of the training process. Each subject’s collected 
data are exclusively assigned either to the training, validation or testing set. 

Evaluation is performed separately for artificial and human subjects, thus assessing 
inter-subject generalization in both cases. This differs from the protocol in reference 
[22], which performs valence/arousal estimation with a single human subject. Results 
are reported only for the best ANN design and feature set, which minimize the 
Euclidean norm of valence and arousal mean AEs.  

Even though evaluation is performed offline in MATLAB, it is carried out in a 
manner suitable for real-time implementation. Estimator frame duration is set to 1 
second, in order to achieve 1 Hz real-time framerate. Normalization of each feature 
during evaluation relies only on the minimum and maximum values computed during 
the training. Frame window length is 5 seconds.  

6.1   Artificial Subjects 

Artificial subjects process the sequences in which stimuli are represented as va-
lence/arousal pairs with associated onset times. Two analyzed cases include evalua-
tion on a variety of stimuli sequences, and evaluation on the sequence that is also used 
with human subjects. Duration of each stimulus in any sequence is set to 30 seconds. 

In the first case (called “stimuli 1”), 10 artificial subjects are exposed to 10 stimuli 
sequences, each sequence having 21 stimuli. The first stimulus in each sequence has 
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valence and arousal values of 5.00, and represents the ideal neutral stimulus for meas-
urement of the subject’s baseline values. Other valence/arousal pairs are randomly se-
lected from IAPS. Six artificial subjects are used for training of the estimator, two 
subjects for validation and two for testing. The best results are presented in Table 1, 
achieved by ANN design 4 and feature set FS2.  

Table 1. Estimation errors for the best ANN designs and feature sets with artificial subjects 
(rounded to two decimal places) 

  mean AE maximum AE 

stimuli 1 valence 0.64 4.37 
 arousal 0.34 3.58 
stimuli 2 valence 0.46 1.77 
 arousal 0.32 1.42 

In the second case (“stimuli 2”), valence/arousal pairs and onset times from the 

human stimuli sequence are used as inputs for the artificial subjects. Human stimuli 

sequence starts with a teal background, to establish the baseline physiology of the 

subject. Teal color has been chosen as the intermediate hue with the best ratio of elic-

ited positive to negative emotions in a study with college students [24]. The sequence 

proceeds with 8 pairs of IAPS pictures and looping IADS sounds of matching onset 

and duration, having as similar as possible semantics and valence/arousal values. The 

first 2 stimuli are neutral, followed by a group of 3 pleasant relaxing stimuli and, fi-

nally, a group of 3 unpleasant highly arousing stimuli. Averages and standard devia-

tions of valence and arousal within each group of stimuli, rounded to two decimal 

places, are (5.69±0.33, 4.50±0.48), (7.46±0.51, 3.27±0.05), (1.92±0.30, 6.90±0.31), 

respectively. Four randomly selected artificial subjects are used in training, one in 

validation and one in testing, to match the numbers of human subjects whose results 

are given in the next section. The best results are again achieved by ANN design 4 

and feature set FS2 (Table 1).  
With many random stimuli, arousal estimation is superior to valence estimation, as 

exemplified by the nearly twice lower arousal than valence mean AE in “stimuli 1”. 
Generated physiological signals indeed provide more information regarding arousal 
than valence, as valence affects only initial HR deceleration after the stimulus onset. 
Improvements in valence mean AE and maximum AEs from “stimuli 1” to “stimuli 
2”, may reflect heavily polarized structure of the human stimuli sequence, i.e. strong 
negative correlation between valence and arousal. 

6.2   Human Subjects 

Six male students, 24.0±0.9 years of age, participate in the experiment. Stimuli are de-
livered via eMagin Z800 3DVisor head mounted display (HMD) with earphones, in 
order to help the subjects focus on the stimuli. Experiment is conducted in a dim air-
conditioned technical laboratory with ambient temperature of 23–24˚C. After reading 
of instructions to the subject, applying the electrodes and the HMD, the subject is left  
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Table 2. Estimation errors for the best ANN design and feature set with human subjects 
(rounded to two decimal places) 

  mean AE maximum AE 

stimuli 2 valence 1.33 5.09 
 arousal 0.74 3.24 

 
to rest for about three minutes, and the stimuli presentation and physiological acquisi-
tion are started. Four subjects are used in the estimator training, one in validation and 
one in testing. The best results are in Table 2, achieved by ANN design 3 and feature 
set FS1. 

Mean and maximum AEs exhibit twofold to threefold increase from artificial to 
human subjects (cf. “stimuli 2” in Table 1). Therefore, generalization of estimation to 
the testing set, which includes a subject not encountered during training, is more prob-
lematic for humans. This underscores complexity of human individuality relative to 
SC and HR generators, mentioned in section 3.  

Evaluation of different ANN designs and feature sets indicates that they may also 
affect generalization of estimation to previously unseen subjects. Moreover, feature 
set FS2 seems better suited for artificial subjects, probably because artificial physio-
logical signals exhibit stronger tendency than human signals to settle in a steady state 
after each stimulus. Reasons behind the differences in the best ANN design for artifi-
cial versus human subjects remain to be elucidated by further experiments. 

In order to assess if any generalization might have happened with human subjects, 
valence and arousal mean AEs from Table 2 are benchmarked against the expected 
mean AEs of two simplified estimators. The first one performs unbiased constant esti-
mation that always returns the mean values of valence and arousal for the stimuli se-
quence; the human stimuli sequence has both mean values equal to 4.94. The second 
estimator returns random numbers from uniform distribution on [1.00, 9.00]. Expected 
mean AEs for valence and arousal, after rounding, are 2.27 and 1.47 for the first esti-
mator and 2.76 and 2.32 for the second, based on the following derived formulas: 

Eunbiased constant[mean AE] = ∑
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In the formulas, N stands for the number of estimated valence/arousal outputs, Xi 

represents valence, or arousal, in the corresponding stimuli annotations, and X is the 
mean value of all Xi. Therefore, valence mean AE from Table 2 is about two times 
lower, and arousal mean AE is about two or three times lower, than the corresponding 
expected mean AEs of the two simplified estimators.  

7   Conclusion 

The paper has presented design and evaluation of the real-time Emotional State Esti-
mator, using both artificial subjects and real humans. Inconveniences of using human 
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subjects in early development and testing of the physiology-driven adaptive VR 
stimulation have been among the motivating factors for development of artificial sub-
jects. Estimation accuracy is superior for artificial subjects, which is expected and ac-
ceptable with regard to their purpose.  

In future work, comparative analysis is planned between different emotional state 
estimation methods, like various modifications of ANNs, hidden Markov models etc., 
different feature sets, as well as additional sensor inputs, like EEG, EMG etc. Larger 
homogenous samples of human subjects and more sophisticated fusion of multiple es-
timators’ outputs might also improve real-time emotional state estimation. However, 
in order to emphasize human individuality, some form of estimator customization to 
each individual will also be applied.  
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Abstract. We have developed a new sensing device, named by “CyARM“. 

CyARM is one of Active Perception device, based on activeness of human per-

ception. In order to clarify information for shape perception using CyARM, an 

experiment had conducted. Results of this experiment show that shapes with 

sharp edges are identified easily, but shapes with smooth edges are identified 

with greater difficulty. In other words, the subjects perceived changes in dis-

tance from the sensor to the object as object edges. Furthermore, from the re-

sults of multi-dimensional scaling, it is suggested that object shapes perceived 

by the subjects were classified according to the sharpness of the edge and by the 

ratio of height and width. In addition, motion analyses were conducted. The re-

sult shows, it is suggested that user tend to swing arm to front arm mainly in 

motion of lateral direction. 

Keywords: Active Perception Device, CyARM, and Shape Perception. 

1   Introduction 

In recent years, with developments in sensor technologies sensing devices for assist-

ing people to perceive their environments have developed. Such devices get data and 

provide it to the user. Sensing devices need to provide this data as meaningful infor-

mation to users, because user cannot perceive environment from only such law data. 

Therefore, sensing devices have to be designed in view of human perceptions.  

In this article, it is investigated about next two points through introduction of sens-

ing device, which is thought human perception, and shape perception experiment 

using sensing device. 1) Information for shape perception using a sensing device. 2) 

How to move a sensing device for shape perception using a sensing device.  

2   Concept 

In this article, we focus on active human perception. Sensing devices for assisting 

people to perceive their environments are used at their daily environments. Such  
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environment has complexity and change sequentially. Sensing devices need to  

provide this complex data as meaningful information to users. So that, in our study, 

ecological approach to human perception is adopted. In this approach, complex envi-

ronments are intended. 

2.1   Activeness of Perception 

In the ecological approach, human perception is known as ‘active’ [1]. This means 

that the action is comprehended in the perception [2]. For example, head moving to 

see or listen surroundings is action for perception. For another example, in order to 

detect and perceive an environment, humans stretch arms, make sounds and listen to 

reflected sounds (echolocation). In other words, human pick up the information within 

the environment employing sensory organs (eyes, ears, and arms, et al.) for various 

purposes [3]. Therefore sensing devices, which help user’s perceptions, should be 

movable in ways that mimic sensory organs. 

In this approach, it is thought the advantage of moving sensory organ is that such 

action can change the energy structure in the environment. By changing the energy 

structure, human can pick up the invariant. The invariant is information for perceive 

the environment. 

2.2   Active Perception Device 

We thought sensing devices, which help user’s perceptions, should be movable in 

ways that mimic sensory organs under activeness of human perception. Users may be 

able to pick up invariant to change sensing data using such sensing devices, and  

perceive their environment. 

We called such sensing device, which user can move sensors freely, “Active Per-

ception Device”[4]. 

2.3   CyARM 

Over the past few years our research team has been developing a new sensing device, 

which we refer to as CyARM [5], to be applied specifically for the environment per-

ception of visually impaired persons.  

CyARM measures the distance between a user and an object by ultra sonic sensor 

and transmits it to the wire’s length, which connects to body of CyARM and user’s 

waist. Accordingly, distance data is offered as bending user’s arm. CyARM is Active 

Perception Device, which is able to be used changing sensing data. 

2.4   Shape Perception Using CyARM 

CyARM does not only measures and transmits the distance between a user and an 

object to the user’s haptic sense, but also helps perceive the shape of objects with-

out viewing of the object (See Fig. 2). CyARM also extends arm movements so that 

the user can shake or walk with the device to perceive the shapes of the object. With 

the successive measurement of distance, CyARM records different distances when 

the user changes position or direction. It is assumed, hence, that the pattern in 

changing measured distances depends on the shape of object. From these points we  
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Fig. 1. CyARM 

hypothesized that CyARM may enable the user to identify the shape by moving the 
device to trace the surface. 

If user can perceive object shape using CyARM, what is the information for shape 
perception? It is thought that changing pattern of distance from sensor to object is 
able to be shape specific information. Therefore, user may be able to perceive object 
shape to pick up shape-specific changing pattern of distance from sensor to object. 

The changing pattern from sensor to object is depends on two things following  

below. 

1. Object shape 
2. Way to move CyARM by user 

In object shape, especially, object edges make changing of distance from sensor to 
object. There are two kinds of edges: sharp edge and rounded edge. At sharp edge, 
distance may change immediately. By contrast, at rounded edge, distance may change 
slowly. Therefore, edge kind is expected to be cue for shape perception using CyARM. 

 

Fig. 2. Concept of Shape Perception using CyARM 

3   Purpose 

We conducted an experiment to prove the perceptibility of CyARM, to clarify infor-

mation in shape perception, and to clarify the relationship between the way of moving  
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CyARM and the accuracy of shape perception by using it. Changes of distance by 

object shapes were focused on, specially, features of perceived shapes and classifying 

them. 

4   Method 

4.1   Subject and Material 

Subjects were eight university students and two graduate students. They have never 

used CyARM by this experiment. Subjects ware blindfolded and equipped with 

mounted headphone. 

As a device to perceive object’s shapes, CyARM was adopted. In order to maintain 

distance from a subject and the object, the “guide” for locomotion was put into the 

place. The guide was 1.5m in radius. There were four shapes: “sphere”, “cube”, “rec-

tangular solid”, and “cylinder”. Objects surfaces were common material (papers), 

because ultrasonic reflectance depends on object’s surface material. All objects vol-

ume was 47713 cm
3
. This experiment condition can be seen in Fig. 3. Furthermore, in 

this experiment, user’s motions were captured by two video cameras  (30 frame/s) and 

motion capture system (PV Studio 3D). 

 

Fig. 3. Experiment Environment 

4.2   Procedure 

1. Subjects were asked to use CyARM and scan an object in a distant place. They 

were allowed to move only within the guide. 

2. Then the subjects were required to state their judgments of the shape. There were 

four shapes: “sphere”, “cube”, “rectangular solid”, and “cylinder”. The objects 

were presented randomly. 

3. The 12 trials consisted of three trials at each of the four objects. Before trials, there 

were training trials. In training trials, there ware two shapes: “cone” and “triangle 

pole”.   Subjects were informed start and end of trials by knocked their shoulders.  
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5   Result Specifying Shapes 

The mean percentage correct identification score for the sphere, cube, rectangular 

solid, and cylinder were 26.7, 46.7, 40.0, and 20.0, respectively. A percentage re-

sponse matrix for this experiment can be seen in Table 1. T tests compared the mean 

percentage of correct identification for each shape relative to the chance level 

(25.0%). Results of the T test show that performance with cube and rectangular solid 

was better than chance level at p < .05. By contrast, performance with sphere and 

cylinder was not significantly better than chance. 

Table 1. Percentage of responses for each shape 

Reported Presented shape 

shape sphere cube rectangular cylinder

sphere 26.70 20.00 36.70 16.70 

cube 10.00 46.70 23.00 20.00 

rectangular 17.00 20.00 40.00 23.30 

cylinder 40.00 30.00 10.00 20.00 
 

5.1   Classification of Perceived Shapes  

An additional analysis was conducted to determine similarities of identified shapes by 

multi-dimensional scaling. Result of this analysis, cube and rectangular solid are laid 

out in the superior region, and sphere and cylinder are laid out in the inferior region 

along vertical axis (dimension 1). Cube and sphere are laid out in the right side, and 

rectangular solid and cylinder are laid out in the left side along vertical axis 

(dimension 2). This chart can be seen in Fig. 4. 

5.2   User’s Motion   

Motion analysis was conducted to clarify the relationship between the way of moving 
CyARM, and the accuracy of shape perception by using it. The motion data of each 
arm’s joints (wrist, elbow, shoulder) and a sensor of CyARM while shape perception 
tasks were analyzed. 

In order to analyze motion relationship between each arm’s joint (sensor-wrist, 
wrist-elbow, elbow-shoulder), each cross-correlation coefficient between time series 
of them were calculated. The mean of square values of cross correlation coefficient 
(r

2
) are used to ANOVA for each pairs of arm’s joints and a sensor. the cross correla-

tion coefficient of elbow-shoulder pair (0.70) was larger than sensor-wrist pair (0.61) 
and wrist-elbow pair (0.59). An ANOVA revealed significant main effects for each 
arm’s joints and sensor, F (3, 10) = 3.83, p < .05. Pairwise comparison tests for each 
pairs of joint showed that the cross correlation coefficient of elbow-shoulder pair was 
larger than wrist pairs significantly (p< .05). 

The mean of square values of cross correlation coefficient in correct identification 
for the sensor-wrist pair, wrist-elbow pair, and elbow-shoulder were 0.69, 0.66, and 
0.68, respectively. On the other hand, the mean of square values of cross correlation 



190 R. Mizuno et al. 

coefficient in erroneous identification for the sensor-wrist pair, wrist-elbow pair, and 

elbow-shoulder were 0.58, 0.57, and 0.70, respectively. 

6   Discussion 

6.1   Accuracy of Specifying Shapes 

Performance results for the cube and rectangular solid were higher than random 
chance. In contrast, performance results for the sphere and cylinder were not signifi-
cantly higher than random chance. These results show that shapes with sharp edges 
(cube and rectangular solid) are identified easily, but shapes with smooth edges 
(sphere and cylinder) are identified with greater difficulty. In other words, the sub-
jects perceived changes in distance from the sensor to the object as object edges. 
Gradual changes in distance were not easily specified.  

The low accuracy of the “cube” and “rectangular solid” testing may have been in-

fluenced by the fact that the subjects of the experiment had no prior experience using 
CyARM. Further study is needed to determine whether improvement in accuracy can 
be achieved after becoming acquainted with the use of CyARM. 

6.2   Classification of Perceived Shapes   

From the results of multi-dimensional scaling, it is suggested that object shapes per-

ceived by the subjects were classified according to the sharpness of the edge and by 

the ratio of height and width. It is also possible to classify actual shapes in this man-

ner. Therefore, these results may indicate no qualitative difference between identified 

shapes and actual shapes. 

 

Fig. 4. Similarity of Shape identified by participants 

6.3   User’s Motion   

If user swing elbow, the relationship between his elbow and his shoulder is not con-

stant, and elbow-shoulder pair’s cross-correlation coefficient is lower value. From the 

result of motion analysis, elbow-shoulder pair’s cross-correlation coefficient was 

higher value than other pairs of body parts. Therefore, it is suggested that user tend to 

swing arm to front arm mainly in motion of lateral direction. 
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7   Summary and Future Works 

In this article, we attempted to test whether a shape could be perceived using an “Ac-

tive Perception Device” that moves similar to a sensory organ. In the experiment, the 

active perception device called CyARM was used. Results of the experiment showed 

that sharp-edged shapes could be identified, but smooth-edged shapes were more 

difficult to identify. Object shapes were classified by sharpness of the shape’s edge 

and by the ratio of height and width. 

As previously mentioned, identification of the shape of an object is determined not 

only by the change in distance between the user and the object, but also by how the 

user moves CyARM.  Perceived shapes do not depend on only how to move, because 

percentage correct identification scores was not significantly difference. As such, 

continued study of the CyARM device is needed to analyze the relationship between 

the method of moving CyARM and the accuracy of shape perception, as well as the 

perception of shape itself, using the motion data between shape perception tasks.  

Furthermore, motion analysis was conducted to clarify the relationship between the 

way of moving CyARM, and the accuracy of shape perception by using the motion 

data of each arm’s joints and sensor of CyARM between shape perception tasks. In 

order to analyze motion relationship between each joint, each cross-correlation func-

tion between time series of them were calculated. As a result, he maximum value 

squared of cross-correlation coefficient between wrist and elbow motion of horizontal 

axis were marked difference. This result suggests that user swing arm to front arm 

mainly in motion of lateral direction. 

We will conduct additional experiment in order to clarify effective motion for 

shape perception using CyARM. In the experiment, it is compared user’s motion 

between expert of shape perception using CyARM and novice’s it.  

These findings will be eventually applied to the designing of a more sophisticated 

environment perception device. CyARM also is able to use as sensory substitution 

system for blind people. The information for shape perception using CyARM and 

effective way to move sensor of it for blind people and for general people would be 

not the same. In order to apply CyARM for sensory substitution system, we will.  
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Abstract. In order to simulate the human control behavior during a
manipulation task in a remote controlled or in a X-by-wire systems, first
it is necessary to measure and analyze the human control characteristics.
The aim of this research is to measure the operator reaction time and
analyze the human visual and force sensory feedback integration related
to a manipulation task. Using the developed master-slave type exper-
imental device it was possible to identify and build a human operator
control model related to different sensory feedback. The human model
related to visual feedback solely and visual/force feedback was identified
using the techniques of system identification methods.

Keywords: Human-Machine Interface, System Identification, Reaction
Time, Sensory Feedback Information.

1 Introduction

In order to simulate the human control behavior during a manipulation task in
a remote controlled or in a X-by-wire systems, first it is necessary to measure
and analyze the human control characteristics. The aim of this research is to an-
alyze the human control characteristics in respect to the visual, force and audio
feedback information and build a human control model that can also represent
a control strategy based on multi-sensory feedback. This control model would
be useful to assist the design, simulation and evaluation of human-machine sys-
tems like telerobots [1] and also computer assisted systems as power-assist and
drive-by-wire vehicles. In this work the measurement of the reaction time will be
compared to the time delay identified during a visual tracking task using only
visual feedback and with force feedback information. An experiment device ca-
pable of measuring the human control characteristics in the presence of different
sensory feedback information was developed.
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2 Human Control Model

Many studies in the area of visual tracking have been done to understand the
human control characteristics due to visual feedback information. However, quite
a few researches have been conducted in the field of force and audio feedback
information with the objective of analyzing how the human operator makes use
of this sensory feedback information in a manipulation task.

2.1 Visual Feedback

One result of McRuer [2] [3] works about the analytical theory on manual control
of vehicles was the Crossover Model. See Eq. 1 and Fig. 1. According to the
manipulated machine characteristics the human operator can modify his/her
own dynamic characteristics so as the open-loop transfer function remains a
first order system.

G (s ) represents the machine dynamics.

H (s )G (s ) ≈
ω ce

−τs

s
(n e a r ω c) (1)

where, τ (0.1 ∼ 0.4s) represents the time lag due to human responses, ω c(0.5 ∼

0.8Hz) is the crossover frequency.

Fig. 1. Human Machine Block System

2.2 Force Feedback

The force feedback felt by the human operator is a result of a combination of
tactile sensors and proprioceptive feedback. Although the individuals properties
of each sensor have been studied, how the human operator uses those information
and how they affect the human control characteristics are still not well known.
However, it is of general agreement that the force feedback information is very
important to identify the controlled object dynamics properties.

2.3 Audio Feedback

A primary function of audio feedback is said to direct the eyes to the source
of the sound. More specifically in a tracking task the audio feedback provides
information about the localization and velocity of the moving target. Although
the space discrimination of auditory localization is not so accurate (about 15
degrees) compared to the visual, it provides supplementary information to assist
other sensory feedback.
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2.4 Human Control Model Based on Multimodal Sensory Feedback

This work proposes a human control model based on multiple sensory feedback
information. (See Fig. 2). The human control characteristics related to visual,
force and audio feedback information will be measured separately and then a
combination of different sensory feedback will be analyzed in order to understand
how the human operator uses these sensory feedback information to acquire an
internal model of the controlled machine. First, in this work, the analysis of the
human control strategy in the presence of visual, force and the combination of
visual and force feedback information was conducted.

Visual Feedback

Force Feedback

Audio Feedback

Control

Action

)(sH
V

)(sH
V

)(sH
F

)(sH
F

)(sH
A

)(sH
A )(sH

Sensor

Fusion

Fig. 2. Multimodal sensory feedback scheme

3 Experiments

Two types of experiments were conducted. First, the human reaction time was
measured. The second experiment is based on visual tracking in the absence
and presence of force feedback. The proposal for this study was reviewed by
the Institutional Committee for Ergonomic Experiments and approved by the
Director of Safety and Environmental Protection Department.

3.1 Reaction Time Experiment

Before conducting the operator model identification experiments, each subject’s
Single Reaction Time (SRT) and Choice Reaction Time (CRT) were measured
to be compared to the time delay obtained from the second experiment. During
this experiment the forearm pronator and supinator muscles EMG was also
measured.

Single Reaction Time (SRT). In the SRT experiment the subject was in-
structed to turn the dial after the visual cue, which is a LED source, is presented.
The instructed direction of rotation was clockwise (CW). The visual cue is pre-
sented in a random time between 3s and 9s after the go signal. After some
training each subject executed 10 trials.
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Fig. 3. SEesaw Experimental Device (SEED)

Choice Reaction Time (CRT). In the CRT experiment the subject has to
turn the dial in the CW direction if the right visual cue is presented or in counter
clockwise (CCW) direction if the left LED turns on. The side, right or left, and
the visual cue presenting time is showed randomly to the subject. After become
familiar with the task each subject performed 20 trials.

SRT and CRT Results. The results of the SRT and CRT experiments are
shown in Table 1. In both SRT and CRT experiments the reaction time was
defined as the time necessary to the subject rotate the dial more than 45 degrees
after the visual cue was presented. The subject A was the fastest and the subject
B had the slowest response. The difference between these 2 subjects can be
attributed to the time necessary to perceive the visual cue and send the motor
commands to the muscles since the starting of EMG activation differs greatly
between subjects. (See Fig. 4 and Fig. 5). The time necessary to process the visual
cue information and send motor command to the muscles varied from 0.15s to
0.29s in SRT experiment and was between 0.19s to 0.34s in CRT experiments.
Thus it can be inferred that the time need to decide which direction to move
was between 0.04s to 0.15s. On other side, there were no much difference among
subjects in the time between the muscle activation and movement onset which
corresponds to 0.02s - 0.05s. These results demonstrate that the cognition and
decision making are responsible for great part of the human response delay.

3.2 Operator Control Characteristics Identification Experiment

The method to model the human operator adopted in this study is based basi-
cally in the system identification used in control theory. However, it is crucial
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Table 1. Results of SRT and CRT Experiments (mean ± SD)

Experiment Subject A Subject B Subject C

SRT [s] 0.29 ± 0.03 0.38 ± 0.05 0.32 ± 0.03

CRT [s] 0.34 ± 0.04 0.46 ± 0.07 0.38 ± 0.05
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Fig. 4. CRT experiment subject A (fastest). The EMG activation before the movement
actually started can be noticed.

to select a task that can provide an analysis of the operator characteristics in a
visual and force control manipulation independently, i.e. a task that can be per-
formed with only one type of sensory feedback information. It is also preferable to
be a continuous task for system identification analysis in a wide frequency range.
The peg-in-hole task is widely used as an example of robot control, but it is very
hard to decompose the position and force control strategies. The inverted pendu-
lum is also commonly used to demonstrate different control methods. However,
it is a task very difficult to accomplish with the eyes closed. After considering
many tasks performed by a human operator, the control of a slider on a seesaw
was chosen as a suitable task that can pull together all the necessary features to
analyze and identify the human-machine system related to visual, force and also
audio feedback information independently. To analyze the human control char-
acteristics related to different sensory feedback properties a master-slave type
SEesaw Experimental Device (SEED) was developed. The master haptic device
consists of a dial with a force sensor and the slave is an actuated linear guide
that works as a seesaw bar with a slider over it. (See Fig. 3 and Fig. 6). After
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Fig. 5. CRT experiment subject B (slowest). The starting of the EMG activation
ocurred later than the time compared to the fastest subject.

analyzing the control characteristics based on visual (Hv(s)), force (Hf(s)) sen-
sory feedback information separately, the combination visual and force feedback
(Hvf(s)) was analyzed.

Visual Pursuit Tracking with a Normal Slider. In this first experiment to
analyze the human visual feedback properties, the human operator manipulates
the master dial in order to make the slider, PD controlled, follow a random
reference signal displayed in a monitor. The machine characteristics is a first
order system. After 20 training trials, 10 trials were measured. Fig. 7 shows the
reference signal, the measured data and the output of the identified operator
model. The technique used to identify the human operator’s characteristics is
common to all the following two experiments. First, it was assumed that the
human-machine open loop transfer function has the generalized form of Eq. (2).

H(s) = K
(1 + TLs)

(1 + TIs)
e−τs (2)

where K represents proportional gain, e−τs : time delay due to human response,
(1 + TLs) is the lead time constant (relative rate-to-displacement), (1 + TIs)

−1

is the lag time constant.
Using the process model identification of Matlab toolbox the appropriate pa-

rameters were calculated by minimizing the error between the model output and
the measured data. By this search the most suitable form was selected and then
the time delay which corresponds to the smaller fitting error was explored. In all
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Fig. 6. Seesaw and slider model

the cases a priori knowledge about the controlled machine was used in order to
obtain the operator characteristics. After obtaining the parameters, they were
averaged separately and the results are shown in Table 2.

Visual Feedback using a Seesaw Task. Here the subject is instructed to
follow the random reference signal as the previous experiment. But this time the
machine dynamics behaves as a slider over a seesaw, i.e. like Eq. (3). There is
no force feedback. After some practice the subject is able to execute successfully
the task. To avoid the subject to notice that the slider behavior corresponds to
a seesaw task, the seesaw bar was maintained in horizontal position.

(θ s ≈ 0 ⇒ sinθs ≈ θs) G(s) =
xs

θs

=
g

s2
(3)

where g is the gravity, θs is the seesaw bar inclination, xs is the slider position
and s is the Laplace operator

Visual and Force Feedback using a Seesaw Task. In this task the subject
has to follow a random reference signal feeling the torque caused by the dislo-
cation of the slider over the seesaw. The proficiency in the task execution was
similar to the visual feedback solely, but the human modeling error increased
due to the need of extra operational force. (Fig. 9).

3.3 Human Control Characteristics Experiment Results

The results of identified human control characteristics are shown in Table 2.
The human control model related to visual pursuit task showed a first order

Table 2. Identified Human Control Model

Experiment Subject A Subject B Subject C

Pursuit Hp(s) 2.3
1+0.4s

e
−0.20s 2.1

1+0.6s
e
−0.27s 2.2

1+0.5s
e
−0.22s

Visual Hv(s) 6 1+4s
1+0.06s

e
−0.24s 4 1+4s

1+0.2s
e
−0.31s 10 1+2s

1+0.03s
e
−0.21s

Visual/Force Hvf (s) 10 1+2s
1+0.04s

e
−0.23s 8 1+2s

1+0.1s
e
−0.29s 13 1+2s

1+0.04s
e
−0.22s
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Fig. 7. Visual pursuit experiment

Fig. 8. Seesaw task experiment using only visual feedback information

characteristic. Comparing the three subjects it can be noticed that the lag time
element T I is proportional to the correspondent time delay τ . Fig. 7 shows
the reference target, the measured data and the control model output of the
identified mean human model. The model output has the same behavior of the
human operator except the high frequency features.
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Fig. 9. Seesaw task experiment using visual and force feedback information

In the case of seesaw task using visual feedback with or without the presence
of force feedback, all the subjects presented a lead time element TL. This lead
time element is responsible for the prediction of the slider’s behavior. Due to
the high acceleration of the gravity, a predictive element was necessary to make
possible the control by the human operator.

The presence of force feedback had the effect of decreasing the time constant
and increasing the gain element. The latter one can be attributed to the high
stiffness of the forearm because of the haptic feedback.

4 Discussion

From Table 2, it can be noticed that according to the characteristics of the task
the time delay identified has different values. But the relation between subjects is
preserved as the subject B has the biggest time delay. Although the time delay is
different from the RT experiment results, the direct measurement of the human
response time presents a reasonable and practical method of identifying the time
delay reducing the number of parameters to be fitted. Further investigation about
the muscle activation time and neuromuscular dynamics should be conducted to
achieve a better estimation of the human response delay.

5 Conclusion

This research proposed an analytical method using the SEED to identify the
human control characteristics related different sensory feedback information. The



Human Control Modeling 201

human model related to visual feedback solely and visual/force feedback was
identified using the techniques of identification methods. It is important to notice
that all the experiments were performed without audio information. The next
step is to build a human sensory feedback integration model to represent the
human operator including also the audio feedback information. These sensorial
feedback information are believed to play an important role in the acquisition
of the internal model of manipulated machines. Future work will be done to
analyze how the human model could be decoupled in feedforward, representing
the internal model, and feedback elements.
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Abstract. The Human++ program aims at achieving highly miniaturized, wire-

less, intelligent and autonomous body sensor nodes to assist our health, comfort 

and lifestyle. In this paper the concept of body area network is applied to wire-

less monitoring of emotions, thus opening a new, affective, dimension in human 

computer interaction. A prototype body area network targeting the monitoring 

of physiological responses from the autonomous system is introduced, and 

tested for the classification of discrete emotions. Using data fusion and regres-

sion analysis, we show that the wireless physiological data can be mapped in 

real-time to an estimation of an individual’s arousal level. Results in a con-

trolled environment are presented, and specific challenges that need to be over-

come for a widespread use of the technology are discussed. Finally, we show 

how advances in micro-power generation devices may lead to fully autonomous 

systems in the future.  

Keywords: Ambulatory, Body area networks, Emotion monitoring, Ultra-low-

power, Wireless. 

1   Introduction 

It is anticipated that micro and nano-system technology will increase the functionality 

of lifestyle and healthcare devices to gradually match the needs of society. It is ex-

pected that, in the next decade, technology will enable people to carry their personal 

body area network (BAN) that provides medical, lifestyle, assisted living, sports, 

entertainment and computer interface functions for the user. This network comprises a 

series of miniature sensor/actuator nodes, implanted or located at the body surface. 

Each node has its own energy supply, consisting of storage and energy scavenging 

devices. Each node has enough intelligence to carry out its task. Furthermore, each 

node is able to communicate with other sensor nodes or with a gateway node worn on 

the body. The gateway node communicates with the outside world using a standard 

telecommunication infrastructure such as a wireless local area or cellular phone net-

work. On the other extremity of the network, experts then provide services to the 

individual wearing the BAN. Intelligent or expert systems further include data fusion 

algorithms for the aggregation of body sensor data into metrics quantifying an indi-

vidual’s health status, his physical, cognitive and emotional state. Next generation of 
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BAN will include feedback loops for health, performance or stress management, and 

may enable a new, affective, dimension in human computer interface.  

Early deployment of technology in different application cases are translated into 

critical technology obstacles that will need to be solved. The Human++ research pro-

gram tackles key technology challenges associated to micro-power generation and 

storage, ultra-low-power radios, ultra-low-power DSPs, sensors and actuators [1].  

The ultimate target is the development of miniaturized body sensor nodes, truly  

non-invasive, capable of data analysis and wireless communication and powered by 

body-energy.  

In this paper the use of body area network technologies to enable affective human 

computer interface is discussed. In the following sections we will present a body area 

network for ambulatory monitoring of physiological responses from the autonomous 

nervous system, and show how this platform can be used to monitor an individual’s 

arousal level in real-time. Furthermore, we will highlight key challenges that need to 

be addressed in the coming future. Finally, we will show how recent advances in 

micro-power harvesters enable autonomous wireless physiological monitors. A world 

which adapts to one’s emotions and feelings may not be that far out anymore… 

2   Enabling Ambulatory Wireless Emotion Monitoring 

Monitoring of emotions or mental health has received a special interest in the last few 

years. In this context, emotion is usually defined as a mental and physiological state 

associated with a wide variety of feelings, thoughts, and behaviors. Following this 

definition, monitoring physiological and cognitive signals should enable to 

understand and “read” the emotional state of an individual in a particular situation. 

When based on non-intrusive measurements, this will enable new ways of human-

machine interaction, and therewith a new range of applications in the domains of 

(mental) health management, safety, entertainment and ambient intelligence.  

Emotion can be defined in terms of discrete emotional states [2] or as a position on 

the 2-dimensional arousal-valence space [3], or as a combination of both [4]. A num-

ber of groups have reported a wide range of studies to the objective evaluation of 

emotions, investigating varying modalities such as facial expressions [5], vocal pat-

terns [6, 7], physiological responses [8, 9] or combinations of the above [10]. As a 

starting point to better capture technology opportunities and challenges for body area 

networks when applied to mental health monitoring and affective HCI, we have 

chosen to focus on monitoring physiological responses from the Autonomic Nervous 

System. 

2.1   Body Area Network for Monitoring Autonomic Nervous System Responses 

We recently reported the realization of a low-power body area network for monitoring 

ECG, respiration, skin conductance and skin temperature [13]. Each of these 

modalities is known to be regulated by the Autonomic Nervous System, and thus 

represent interesting candidates to capture ANS responses to external stimuli. The 

system, illustrated on Fig. 1, consists of two low-power miniaturized body sensor 

nodes which communicate with a receiver connected to a pc or to a data logger. The 
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first node is integrated in a wireless chest belt and monitors ECG (lead-I) and respira-

tion. The second node is integrated in a wireless wrist sensor and monitors skin  

conductance and skin temperature. The total size of each individual node is approxi-

mately 40 x 25 x 8 mm
3
, including battery, sensors and read-outs. Power consumption 

of the ECG/respiration node is 2.5mA, whereas the wrist-based sensor consumes 

4mA, mainly due to an infra-red temperature sensor. Low-power and high perform-

ance ECG monitoring is achieved through the use of a proprietary single channel 

ASIC for biopotential read-out [11]. The ASIC consists of AC coupled chopped in-

strumentation amplifier, a spike filter, and amplification stage with constant gain, and 

a variable gain amplifier stage. The variable gain amplifier can be used to electroni-

cally adjust the gain of the readout for varying needs of EEG, ECG and EMG applica-

tions. Power consumption of the ASIC is 60uW, leading to an average consumption 

of 75 uW for the ECG read-out. 

 

Fig. 1. Integrated body area network for ambulatory monitoring of physiological responses 

from the Autonomic Nervous System 

This body area network for ANS responses monitoring has been tested in con-

trolled environment to evaluate its potential usage for monitoring emotional states 

[13]. 10 subjects (mean age 29.3, 3 females, 7 males) are involved in the study. They 

are asked to watch 5 emotionally arousing film clips to elicit sadness, happiness, fear, 

disgust and neutrality [12], while wearing the wireless monitoring equipment. At the 

end of each clip, the subjects fill a self-report questionnaire. The 5 film clips are 

grouped into 3 categories in function of their expected arousal level: fear and disgust, 

happiness and neutral, and sadness. The four physiological signals are analyzed off-

line, and a set of 13 features are extracted based on general physiology considerations 

and previous studies on emotion recognition [16]. The 13 features are then mapped to 

2 axes using Fisher Mapping. Linear Discriminant Classification is finally used to 

classify the data. This process eventually leads to error rates of 0.36 computed using 

leave-one-out cross-validation on the data-set, which is similar to previous studies on 

emotion classification [9, 13, 15]. 
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2.2   Real-Time Arousal Monitoring  

In a second study, we have investigated the possibility to use the proposed BAN sys-

tem as an enabling technology platform for performing real-time measurement of an 

individual’s arousal level [17]. 20 healthy volunteers are involved in the experiment. 

A movie extract is chosen as the arousal stimulus, characterized by a calm beginning 

followed by a building-up phase culminating to a frightening event. A reference or 

target arousal function is defined as being zero during most of the movie, except in a 

region surrounding the frightening event (see [17] for all details on the choice of the 

target function). Volunteers are asked to watch the movie while their physiological 

signals are monitored using the wireless system. All tests have been performed in a 

controlled laboratory environment, in order to minimize the sources of distraction that 

may eventually lead to unexpected and uncontrolled increases in arousal. A set of 

features is extracted from the ECG and skin conductance signals, found to be the most 

responsive parameters to the tests. In a second step, these features are combined in an 

optimal arousal estimator using linear regression against the target arousal level. The 

outcome of the regression analysis is a set of coefficients, characterizing the impor-

tance of each individual feature in the final estimation of arousal. All algorithms are 

implemented in the Matlab computing environment. All algorithms are real-time, 

such that the process of feature extraction and arousal estimation can be applied in 

real-time on incoming signals measured using the BAN system.  

The resulting estimator has then been used to monitor the arousal level of individu-

als wearing the system. Several tests have been performed in various environments, 

varying from laboratory to public places. As much as possible, the test subject was 

isolated from the outside world, for instance by using headphones. The test protocol 

used for these tests consists of four parts: a short movie to get acclimatized, a modi-

fied Stroop test [], an audio extract and a movie fragment. The Stroop test is modified 

to induce confusion (and hence mental stress) in the second part of the test. The audio 

extract is a 3-minute very relaxing piece of classical music abruptly disturbed by 

noises of several kinds after 120 and 150 seconds, expected to trigger startling re-

sponses. The movie clip is identical to the one used to develop the arousal monitor. 

An example of the estimated arousal level over the test sequence is given in Fig. 2 or 

one of the test subjects. In this figure, the solid line gives the estimated arousal over 

time. The dashed, vertical lines represent the events, as specified by the name shown 

directly to the right of these lines. It can be seen from this picture that the subject did 

not show a significant increase in estimated arousal during the modified Stroop test. 

There was, however, a sharp and large increase in estimated arousal level just after 

the audio events and the movie event. Apart from the expected responses, there are 

also some responses that clearly do not origin in any of the events. These false posi-

tives can be due to anything that triggers the subject’s mind, such as an arousal trig-

gering thought, or something surprising in the surrounding environment. 

Overall, the arousal monitor has proven to work quite reliability in controlled  

environment—that is, in a lab setting where distraction opportunities are minimized. 

It has also been shown that the conclusions can be generalized from movie to other 

arousing stimuli, as suggested in Fig. 2. However, further experiments are needed 

before conclusions can be drawn about the extension of the results to non-controlled  
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Fig. 2. Estimated arousal level over the part of the test protocol: modified Stroop test, audio 

extract and movie clip. Dashed vertical lines give the timing of the events. 

environments. The low-power monitoring platform presented here certainly will fa-

cilitate the transition from lab to real-life environments.    

2.3   Technology Challenges  

The evaluation of the low-power body sensor network for ANS responses monitoring 

in different application cases offers new perspectives towards an objective, wireless 

and ambulatory monitoring of an individual’s emotions. This technology evaluation 

exercise also leads to a better understanding of application requirements, and to  

the identification of important technology challenges that shall be addressed to even-

tually enable widespread deployment of body area networks for human computer 

interaction.  

• Ultra-low-power electronics: current prototypes still mostly rely on low-

power COTS components, from which the best lead to typical current  

consumption ranging from 1 to 10 mA, depending on the application. We pre-

viously showed that most of the power is consumed in the wireless transmis-

sion of the data, or in local processing of the data [1]. In some cases, sensors 

are also found to consume a significant part of the power. Further research is 

needed on ultra-low-power analog interfaces, sensors, DSP and radios. The ul-

timate target is to reach a total power consumption of 100 μW per body sensor 

node.  

• Autonomous systems: the prototypes presented in this paper can run for a few 

days at full functionality. Breakthroughs in ultra-low-power technologies will 
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eventually enable months or years of autonomy. To come to a truly autono-

mous system however, it should be able to operate over its full lifetime without 

maintenance. Harvesting energy from the environment during the operation of 

the system will allow the system to run eternally with a battery or a super-

capacitor acting only as a temporary energy buffer. 

• Multi-parameter sensors: emotion monitoring is a complex problem, which 

is further reinforced by the fact that the underlying psycho-physiological as-

pects are not yet fully understood. Extending the range of functionality to in-

clude new sensing modalities will be crucial in fostering research in this area, 

leading to new discoveries. On the short term, multiple available sensors can 

be combined in the same system to enrich the information available, such as 

muscle tension, brain activity, voice, etc. On the longer term, novel sensing 

technologies are needed to reliably measure more complex parameters such as 

chemical compounds, hormones and proteins in body fluids, whilst pursuing 

ultra-low-power consumption. Continuous measurement of cortisol in saliva 

would for instance open new perspectives in stress monitoring.  

• Dry electrodes: widespread acceptance of body area networks for human 

computer interface is expected to be intimately related to the comfort and easy 

of use of the system. Most of current systems for ECG, EMG and EEG moni-

toring require wet, gel electrodes to be attached to the skin or the scalp. Al-

though they have the major advantage of providing good quality signals, gel 

electrodes exhibit significant drawbacks with regards to long-term use and 

ease of set-up. Dry electrode technology is required to enable simple setup of 

the system by the user itself. Several research groups have explored the area of 

dry electrode for EEG monitoring applications, for instance [19]. Further re-

search is required to systemically tackle the issues of signal quality, robustness 

to motion artifact and bio-compatibility.ï

• Increasing functionality: most of today’s body-worn sensors act as simple 

gateways, passing on the information to a central hub where the data is  

converted into actionable information. Emotion monitoring requires simulta-

neous monitoring of multiple sensors on the body, and the local extraction of 

relevant information out of the sensor data. Low-complexity and real-time al-

gorithms are required to enable intelligent autonomous systems. Furthermore, 

compromises between local processing of the data versus data streaming or 

data storage exist and need to be investigated. A rational approach to distrib-

uted processing will allow achieving optimal performances for minimized 

power consumption. 

• Integration technology: as body sensor nodes shrink in size and power con-

sumption, end-user acceptance and compliance will eventually be bound to 

comfortable of use. Pioneering research in electronic integration technology 

has led to first functional prototypes of ultra thin chip packages [20] and 

stretchable interconnects [21]. Electronic integration in bi-dimensional flexible 

and stretchable foils will enable disappearing body sensor nodes, integrated in 

patches, clothes or even fashion accessories.  

Addressing these technology challenges will lead to increased functionality, higher 

performance, better integration and decreased power consumption, thus bringing 
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technology for ambulatory emotion monitoring closer to the end-user. In the next 

section we show how advances in micro-power generation systems already pave the 

way towards autonomous wireless sensor systems, enabling new perspectives for 

affective human computer interaction. 

3   Towards Autonomous Wireless Health Monitors 

The body is an under-estimated source of energy. It has been shown that the heat flow 

generated by the human body generates a power density of about 20 mW/cm
2
 in aver-

age. This makes body thermal energy an interesting candidate for harvesting. Ther-

mal-energy harvesters are thermoelectric generators which exploit the Seebeck effect 

to transform the heat flow from the human body to the environment into electrical 

energy, typically showing efficiencies of 0.1 to 3 %. Besides the energy dissipated by 

the body, much energy is also available from the surrounding environment, mainly 

from electromagnetic radiation (natural and artificial light). A recent survey of com-

mercially available photovoltaic solar-cells has shown that indoor photovoltaic cells 

are capable of generating a maximum of 8 to 14 µW/cm
2
 (depending on the type of 

cell) at perpendicular incidence and under 400 Lux. The type of light source was 

found to have only a minor effect on the generated power density.  

In 2007, we reported the first autonomous health monitoring systems powered by 

thermal-energy harvesters: a wireless autonomous pulse-oximeter powered by a wrist-

watch type TEG, and a wireless autonomous EEG monitoring system powered by a 

head-band type TEG [22, 23]. An important issue with these prototypes was the de-

pendence of the generated power on the ambient temperature. To cope with this issue, 

we realized an improved prototype of autonomous wireless EEG monitor, featuring a 

hybrid power supply [24], as illustrated in Fig. 3. This power supply combines a TEG, 

which uses the heat dissipated from a person’s temples, and Si photovoltaic cells. The 

TEG is composed of six thermoelectric units made up from miniature commercial 

BiTe thermopiles. Two high-efficiency Si photovoltaic cells are integrated on the left 

and right sides of the head, each of them having an area of 4x8 cm
2
. These cells play 

the double function of converting ambient light into electricity, and serving as a part 

of the radiator to ensure effective heat transfer from the head into the environment. 

Exploiting the advantages of dual energy sources, the dimensions (size and weight) of 

the TEG have been reduced in comparison to previous prototypes, the power/volume 

ratio increased, and the range of ambient temperature at which the system works reli-

ability widened.  

To enable their use in electronic device, the TEG requires advanced power  

management circuitry to optimize harvested power efficiency. Typically, the TEG 

continuously charges a battery or a super-capacitor, which then provides power to 

electronic modules. Voltage up-converters are usually added to match the need for 

higher voltage power-supply of different electronic components. In parallel to the 

TEG power conversion circuit, a secondary power management circuit allows charg-

ing the battery directly from photovoltaic (PV) cells. 
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Fig. 3. Autonomous wireless EEG system powered by body heat and ambient light 

The EEG system integrates a proprietary ultra-low-power biopotential readout 

ASIC [11], and the whole system consumes only 0.8 mW. The entire battery-free 2-

channel EEG system is wearable and integrated into a device resembling headphones, 

as illustrated in Fig. 3. 

This example shows that prototypes of autonomous health monitoring systems can 

be achieved today. Nevertheless, it also suggests that research in miniaturization of 

energy harvesters system using micro-machining techniques is necessary to further 

miniaturize the devices, and make them available at a reasonable cost. Furthermore, 

miniaturization is intrinsically related to power consumption, as the micro-power 

module, harvester and/or battery, is making up for most of the size of wireless sensor 

systems. Energy harvesting techniques for body sensor network can achieve a power 

density of 10 to 100 µW/cm
2
, with today’s TEG achieving 25 µW/cm

2
 in average. 

The technology challenge will thus be to make the step from low-power electronics 

(10-100 mW) to ultra-low-power technologies (0.1-1 mW).  

4   Conclusion 

In this paper, the concept of body area network has been applied to wireless monitor-

ing of physiological responses from the autonomic nervous system, paving the way 

towards wireless ambulatory monitoring of emotions. The proposed prototype inte-

grates early technology achievements from the Human++ research program on wire-

less autonomous sensors. Using data fusion and regression analysis the wireless 

physiological data can be automatically analyzed in real time, allowing the determina-

tion of an estimated arousal level. The future will see the integration of additional 

sensor modalities, to enable real time monitoring of a person’s emotional state as a 

combination of arousal and valence. Furthermore, widespread acceptance of body 

area networks for human computer interface will require overcoming key technology 
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challenges in terms of ultra-low-power radios, DSPs and analog interfaces, dry elec-

trode research and 2D flex/stretch electronic integration. In particular, this paper sug-

gests how advances in micro-power generation devices may lead to fully autonomous 

systems in the future.  
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Abstract. The U.S. armed services are widely adopting simulation-based  

training, largely to reduce costs associated with live training. However simula-

tion-based training still requires a high instructor-to-student ratio which is  

expensive. Intelligent tutoring systems target this need, but they are often  

associated with high costs for knowledge engineering and implementation. To 

reduce these costs, we are investigating the use of machine learning to produce 

models of expert behavior for automated student assessment. A key concern 

about the expert modeling approach is whether it can provide accurate assess-

ments on complex tasks of real-world interest. This study evaluates of the accu-

racy of model-based assessments on a complex task. We trained employees at 

Sandia National Laboratories on a Navy simulator and then compared their 

simulation performance to the performance of experts using both automated and 

manual assessment. Results show that automated assessments were comparable 

to the manual assessments on three metrics. 

Keywords: Automated assessment, Naval training systems, simulation-based 

training, intelligent tutoring systems. 

1   Introduction 

A significant cost in simulation-based training is the workload on human instructors 

to monitor student actions and provide corrective feedback. For example, the U.S. 

Navy trains Naval Flight Officers for the E2-Hawkeye aircraft using a high-fidelity 

Weapons Systems Trainer (E2 WST). Currently this requires a separate instructor to 

observe each student within the context of team performance and provide instruction 

based on observed misunderstandings, inefficient task execution, ineffective or inap-

propriate actions, etc. Individualized instruction contributes to high training costs.  

Intelligent tutoring systems target this need, but they are often associated with high 

costs for knowledge engineering and implementation.  New technologies are required 

that assist instructors in providing individually-relevant instruction.  

1.1   Simulation Training 

Establishing the validity of automated assessments requires studies in a realistic train-

ing environment, rather than just a simple laboratory task. E2 operators are trained 

and tested on several different simulators ranging from a part-task computer-based 
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training (CBT) system that runs on a single PC, to the high-end E2 WST system 

which faithfully replicates most aspects of E2 operations (ranging from the physical 
controls to system fault diagnosis and recovery) and requires a team of instructors of 
operators to conduct training.  For this study we used the E2 Distributed Readiness 
Trainer (EDRT), a medium-fidelity trainer which presents students with the same 
mission software used on the E2 aircraft. Multiple instructors are needed to evaluate 
simulation training and sessions can last hours at a time. Automated assessment of E2 
operator performance in these sessions would greatly reduce instructor workload and 
would increase overall efficiency. 

1.2   AEMASE 

Sandia National Laboratories has shown the feasibility of automated performance 
assessment tools such as the Sandia-developed Automated Expert Modeling and  
Student Evaluation (AEMASE) software. One technique employed by AEMASE is 
the grading of students performance by comparing their actions to a model of expert 
behavior. Models of expert behavior are derived by collecting sample data from simu-
lator exercises or other means and then employing machine learning techniques to 
capture patterns of expert performance. During training, the student behavior is com-
pared to the expert model to identify and target training to individual deficiencies.  
Another technique utilized by AEMASE is the grading of students performance by 
comparing their actions to models of good and/or poor student performance. Students 
with good and bad performance are identified and machine learning techniques are 
employed to construct models of these two types of performance in the same manner 
as expert performance. Student performance from other training sessions is then com-
pared to these models to identify and target training to individual deficiencies.  Both 
techniques avoid the costly and time-intensive process of manual knowledge elicita-
tion and expert system implementation (Abbott, 2006).  

In a pilot study, AEMASE achieved a high degree of agreement with a human 
grader (89%) in assessing tactical air engagement scenarios (Abbott, 2006). However, 
the 68 trials assessed utilized only four subjects under three different initial training 
scenarios and the range of correct behaviors was quite limited. The current study 
provides a more rigorous empirical evaluation of the accuracy of these assessments.  
User modeling, based on behavioral and/or physiological measures, will be a key 
component of technologies implementing augmented cognition tools for training.  

Purpose of Study. Automated assessments, such as AEMASE, would be a helpful 
tool in assessing E2 operator performance in an EDRT. Using AEMASE, user models 
can be derived with data generated from students executing scenarios within a simula-
tion trainer or on actual equipment platforms.  We trained employees at Sandia Na-
tional Laboratories on an EDRT and then assessed their simulation performance using 
both AEMASE and manual assessment.     

2   Methods 

2.1   Participants 

Twelve employees from Sandia National Laboratories volunteered to participate in 

the experiment. The participants met certain required criteria for the experiment 
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which reflected the requirements for an entry-level E2 Hawkeye operator. In addition, 

two former E2 Hawkeye operators participated in the experiment and served as sub-

ject matter experts (SME’s). 

2.2   Materials 

Materials included an E2 Deployment Readiness Trainer (EDRT) simulator that was 

obtained from the Naval Air Systems Command’s Manned Flight Simulator organiza-

tion. The Joint Semi-Automated Forces (JSAF) simulation software was used to cre-

ate and drive the training and testing scenarios. In addition, the Sandia-developed 

Automated Expert Modeling and Student Evaluation (AEMASE) software and the 

Command Distributed Mission Training System (CDMTS) software were used in the 

analyses of the data.   

2.3   Procedure 

The participants were recruited via an advertisement and those who responded posi-

tively and met the required criteria were included in the study. The participants were 

scheduled for an initial all-day training session in which a former E2 Hawkeye Naval 

Flight Officer provided a tutorial on E2 operations emphasizing the basic radar sys-

tems task that would be the subject of the experiment. The participants were also 

asked to sign an informed consent. After the initial training session, the participants 

were scheduled for seven additional training sessions. The participants were lead 

through the sessions in the same order. Once they had finished the training sessions, 

the participants completed two testing sessions. The participants completed the seven 

training and two testing sessions individually. 
 

Training Sessions. The first five sessions consisted of additional training sessions 

designed to teach the participants the basic operations of the E2 radar system in depth 

on the EDRT. For each session, the experimenters first demonstrated the proximate 

operation(s) on the EDRT and then the participant was asked to perform the opera-

tion(s) in scaled down, yet realistic, simulations. Since all five of these sessions were 

for training purposes, the experimenters were available to answer questions. At the 

end of each training session, the participants filled out a questionnaire indicating their 

understanding of the operation(s) on the preceding training session. At the end of the 

fifth scenario, the participants completed a questionnaire assessing their knowledge of 

all of the operations learned in the training sessions.  

 

Testing Sessions. The last two sessions were testing sessions in which the partici-

pants were assessed on their knowledge of the operations and tactics covered in the 

five training sessions.  The participants completed these more difficult simulations 

without the help of the experimenters. At the end of each testing session, the partici-

pants were asked to complete a questionnaire which queried their confidence of their 

performance on the preceding testing scenario. 

 

Metrics. Based on guidance from the SMEs, three metrics were developed which 

were used to grade the participants’ performance on the testing sessions. These met-

rics included fleet protection, labeling of neutral entities and Combat Air Patrol 
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(CAP) Asset Management. These metrics were used in both the manual and auto-

mated assessments. 

 

Fleet Protection. Participants were instructed to prevent non-friendly entities from 

nearing the carrier group. The amount of time the non-friendly entities spent too close 

to the carrier group was assessed. 

 

Labeling neutral entities. Participants were instructed to promptly and appropriately 

label any neutral entity that appeared on the radar scope. The latency with which the 

participants took to label these entities was assessed.  

 

Combat Air Patrol (CAP) Assessment. Participants were instructed to effectively 

manage their air assets as the battle space evolved during the scenario. This included 

reordering CAP stations so that the airspace would not be violated.  

 

Manual Assessment. Two trained experimenters independently reviewed video re-

cordings of each of the testing scenarios for all participants. The experimenters graded 

the participants’ performance on the three metrics for the two testing scenarios. For 

each metric, the two experiments specified at least one instance of good and one in-

stance poor student performance. These instances formed subsets of manual assess-

ment data that was used in training the AEMASE system. 

 

Automated Assessment. The participant performance on the two testing scenarios 

was assessed by AEMASE. AEMASE used the good and poor instances indentified 

by the two experimenters as base examples from which to assess participant  

performance. 

3   Results 

The manual assessments and the automated assessments were compared for each of 

the three metrics. 

Fleet Protection 

Manual assessment was based on the amount of time the non-friendly fighters spent 

too close to the carrier group. The interrater reliability between the two experimenters 

was 99%.  The automated assessment used a proxy measure, which consisted of the 

distance between the carrier group and the closest non-friendly asset. The results 

indicate a 100% agreement between the automated and manual assessments in terms 

of identification of unsatisfactory student performance (i.e., those students whose 

non-friendly assets got closest to the carrier group). 

Labeling of entities 

Manual assessment was based on reviewing the timestamped recording of when the 

neutral entities were labeled. The interrater reliability between the two experimenters 

was 94%. The automated assessment was based on the analysis of network messages 
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from the mission computer. The results indicate a 95% agreement between the auto-

mated and manual assessment for correct labeling of the neutral entities. 

CAP Station Rotation 

Manual assessment was based on the time and accuracy with which the CAP stations 

were reordered. The interrater reliability between the two experimenters was 99%.  

The automated assessment was based on post-hoc analysis of radio communications.  

Results indicate an 83% agreement between the automated and manual assessment.  

4   Discussion 

AEMASE surpassed target performance criteria with agreement of up to 100% with 

the manual assessment. Even with an undeniably difficult metric that was based on 

radio communication (the CAP station rotation metric), agreement between AEMASE 

and manual assessment was an impressive 83%. 
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Abstract. This research describes an approach to objective assessment of men-

tal workload, by analyzing differences in pupil diameter and several aspects of 

eye movement (fixation time, saccade distance, and saccade speed) under dif-

ferent levels of mental workload. In an experiment, these aspects were meas-

ured by an eye-tracking device to examine whether these are indeed indicators 

for mental workload. Pupil diameter and fixation time both show a general sig-

nificant increase if the mental workload increases while saccade distance and 

saccade speed do not show any significant differences. This assessment of men-

tal workload could be a trigger for aiding the operator of an information system, 

in order to meet operational requirements.   

Keywords: mental workload, adaptive automation, eye movement, pupil di-

ameter, saccade, fixation time. 

1   Introduction 

In 1988, in the straight of Hormuz, the USS Vincennes mistakenly shot down a com-

mercial Iranian airplane because it was misidentified as an Iranian F-14 combat air-

plane. Much is written [1] about contributing factors that lead to this tragic accident 

and some authors summarize it as human error. This is a typical example of a high-

risk professional domain where humans carry large responsibility and where mistakes 

result in tragic accidents and/or heavy losses. In these information-rich and dynamic 

environments, a competition for the human’s attention is going on between numerous 

different information items, at times leading to a cognitive overload. This overload 

originates from the limitations in human attention and constitutes a well-studied  

bottleneck in human information processing. If the human is getting overloaded, a 

control mechanism capable of adjusting the balance of work between the human op-

erator and the machine might lower the cognitive burden of the human and in effect 

optimize the performance of the human machine ensemble. A so-called adaptive sys-

tem [2] in which the division of labor between human and machine is flexible and 
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responsive to task or human demands, is thought to represent a better solution to the 

problem of function allocation than the static ones currently in use. Rouse [3]  

introduced adaptive aiding as an initial type of adaptive automation and stated that 

adaptive aiding is a human-machine system-design concept that involves using aid-

ing/automation only at those points in time when human performance needs support 

to meet operational requirements [3]. Whether one uses the terms adaptive automa-

tion, dynamic task allocation, dynamic function allocation, or adaptive aiding, they all 

reflect the dynamic reallocation of work in order to improve human performance or to 

prevent performance degradation. 

As a matter of fact, adaptive automation should scale itself down when things be-

come quieter again and the goal of adaptive automation could be stated as trying to 

keep the human occupied within a band of ‘proper’ workload [see 4]. Periods of ‘un-

derload’ can have equally disastrous consequences as periods of overload due to slip-

ping of attention and loss of situational awareness. 

As stated, an adaptive system changes the division of labor between the human 

and machine as the effectiveness of a human operator is a concern in relation to the 

task demands. Parasuraman [5], for example, found superior performance when the 

control of a fault management task (i.e., to monitor an automated system and diag-

nose the problem in case the system halts) was allocated back to the human for some 

time. Other studies shift control from the human to the machine in case the human is 

incapable or indecisive to make a decision as seen in the (no)go decision in case of a 

engine failure in the takeoff run of an airplane [6]. More recently, adaptive automa-

tion is applied to the domain of naval warfare [7] where part of the identification of 

airplanes or vessels is executed by the system when the human starts to fall behind. 

In synopsis, a number of studies have shown that the application of adaptive automa-

tion enhances performance, reduces workload, improves situational awareness,  

and maintains skills that are deteriorating as a consequence of too highly automated 

systems [5-9]. 

One of the challenging factors in the development of successful adaptive automa-

tion concerns the question of when changes in the level of automation must be effec-

tuated. Wilson and Russell [10] define operator psychophysiology as one of five 

triggering strategies based on an previous division by Parasuraman et al [5]. Psycho-

physiological data from the operator are employed in various studies [9-13] and 

prove an objective measure. Examples of these measurements are: heartbeat rate, 

respiratory, facial expressions, perspiration, eye blink rate (see [14] for an overview). 

Although various studies [9-13] indicate a mental workload effect on psychophysi-

ological characteristics, no single psychophysiological measure can be directly inter-

preted as such [15]. Variations in psychophysiological measurements, however, can 

be assigned to a lot of different aspects, with mental workload just being one of 

them. The main advantages of objective measurements are that they do not have to 

interrupt the operator in task execution.  

One popular type of psychophysiological data measurement involves workload ef-

fects on properties and movement of the eye [16-20]. Although a number of studies 

found [17-19] empirical evidence in the favor of utilizing an increased pupil diameter 

as an of increased mental workload, not all studies have obtained similar results. 

Kramer [21], for example, relates the failure to find similar results to factors unrelated 
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to the task that produce larger changes in pupil dilatation such as changes in ambient 

illumination or screen luminance. 

Alternatively, other relations between mental workload and properties of the eye 

exist. During visual scanning, muscles direct the eye to interesting areas where fixa-

tions occur. A fixation is usually defined as a steady focus of the eye for 100 to 200 

milliseconds, which provides the visual system with detailed input about the visual 

stimulus. Simultaneously, parallel processes use peripheral visual information to de-

termine where the next fixation will be located [22]. The movement to another fixa-

tion stimulus is defined as a saccade. Tole, Harris, Stephens, and Ephrath [20] found 

an increase in fixation time when the mental workload increased. However, saccade 

measurements show no consequent results in relation to mental workload [16, 18].  

The previous paragraphs clearly indicate a challenge in utilizing eye properties as 

indicator for mental workload. One side of the scientific literature shows that pupil 

diameter, fixation times, saccade distance, and saccade speed can be used as an indi-

cator of mental workload while other studies show counterarguments. We are inter-

ested how the properties of the eye respond in various workload conditions in a naval 

warfare domain. Once successful, these properties of the eye can be used to trigger 

adaptive automation.  

We conducted an experiment where certain properties of eye movement and pupil 

diameter were measured under different levels of mental workload. Consequently we 

question whether fixation time, saccade distance, saccade speed, and pupil diameter 

can be used as objective indicator for mental workload in such a task setting. 

As the study evolves around a measure of mental workload, we will manipulate 

mental workload using a validated model of cognitive task load. Therefore our first 

hypothesis reads that: 

1: three scenarios are generated having a predicted and different mental workload. 

Using these differences in mental workload we can perform measurements on 

properties of the eye. Following experimental effects on pupil diameter and fixation 

times found in respectively [17-19] and [20], we hypothesize that: 

2: if the mental workload of an operator increases, pupil diameter increases, and 

3: if the mental workload of an operator increases, fixation time increases. 

Furthermore, it is expected that saccade distance will decrease in response to an  

increase of mental workload due to an effect called tunnel vision (i.e. the loss of  

peripheral vision with retention of central vision, resulting in a constricted circular 

tunnel-like field of vision). Also, saccade speed is expected to decrease due to fatigue 

of the muscles, as evidence for fatigue in pupillary muscles exists [23]. Consequently, 

we hypothesize that  

4: if the mental workload of an operator increases, saccade speed decreases, and 

5: if the mental workload of an operator increases, saccade distance decreases. 

The next section discusses the method & materials used in this study and section 3 

presents the results of the experiment. Section 4 discusses the results and draws con-

clusions from these results from the perspective of adaptive automation.  
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2   Research Method 

2.1   Participants 

Eighteen subjects participated in the experiment and were paid to participate. The test 

subjects were all university students, with a good knowledge of English. The partici-

pant group consisted of ten men and eight women. They had an average age of 25, 

with a standard deviation of 5.1. 

2.2   Experimental Tasks 

The subjects were given the role of human operators of (an abstracted version of) a 

combat management workstation (CMS) aboard naval vessels. The workstation com-

prised a schematic visual overview of the nearby area of the ship on a computer dis-

play, constructed from the data of radar systems. On the workstation the subject could 

manage all the actions required to achieve mission goals. 

More specifically, the goal of the human operator during the scenarios was to 

monitor, classify, and identify every track (i.e. airplanes and vessels) within a 38 

nautical miles range around the ship. Furthermore, in case one of these tracks showed 

hostile intent (in this simplified case a dive toward the ship), they were mandated to 

protect the naval vessel and eliminate the track. 

To achieve these goals, the subject was required to perform three tasks. First, the 

classification task gained knowledge of the type of the track and its properties using 

information from radar and communication with the track, air controller, and/or the 

coastguard. The subject could communicate with these entities using chat functional-

ity within the CMS. The experiment leader responded to such communications. The 

second task was the identification process that labeled a track as friendly, neutral, or 

hostile. The last task was weapon engagement in case of hostile intent as derived from 

certain behavior. The subject was required to follow a specific procedure to use the 

weapons.  

2.3   Scenarios 

We designed three different scenarios, each implying a different cognitive task load. 

The task loads were under-load, normal load, and an overload achieved by manipulat-

ing two of the three cognitive task load factors as defined in Neerincx model [24] of 

cognitive task load (CTL).  

The CTL model is comprised of three factors that have a substantial effect on the 

cognitive task load. The first factor, percentage time occupied, has been used to assess 

workload for time-line assessments. The second load factor is the level of information 

processing that addresses cognitive task demands. The model therefore incorporates 

the skill-rule-knowledge framework of Rasmussen [26] where the knowledge-based 

component involves the highest workload. To address the demands of attention shifts, 

the model distinguishes task-set switching as a third load factor. It represents the fact 

that a human operator requires time and effort to reorient himself to a different con-

text. These factors present a three-dimensional space in which all human activities can 
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be projected as a combined factor. Specific regions indicate the cognitive demands 

activities impose on a human operator. 

Creating scenarios using the CTL mode has been applied successfully in a number 

of experimental [27] and realistic [28] settings. We applied the model to implement a 

certain cognitive load. First, the total number of tracks in a scenario was changed. If 

many tracks are in the observation range, the percentage of the total time that the 

human is occupied is high. Second, a larger amount of tracks that show special behav-

ior and more ambiguous properties increases the operator’s cognitive workload due to 

applying more rule and knowledge based reasoning. It forces the human operator to 

focus attention and to communicate more in order to complete the tasks. 

2.4   Variables and Experimental Design 

In order to control for intra-individual variability in cognition, we chose to use a 

within-subject design. In order to limit the potential for individual differences on any 

experimental condition and to filter out sequence effects, we applied a Latin square 

design to the combination of independent variables and the sequence of scenarios.  

The independent variable was the workload as manipulated in a scenario (see pre-

vious section). Furthermore, five dependent variables were measured:  

• Mental workload was measured and controlled using an adapted version of a 

workload watch [25] that signaled the subject every 100 seconds to rate his/her 

perceived workload on a scale (one to five), by clicking on the corresponding 

button present on the lower right of the screen. Button 1 indicated low workload, 

button 3 normal workload and button 5 high workload. The buttons in between 

indicate intermediate levels of workload. 

• Pupil diameter in micrometers during the trials (averaging both eyes). 

• Fixation time: the time that fixations lasted within a radius of 40 pixels and a 

minimum of 100 milliseconds. The fixation times were divided by the total num-

ber of fixation to derive the average time a fixation lasts and only the fixations on 

a track were accounted to get a reliable representation of cognitive processing 

time.  

• Saccade distance: the distance in pixels between one fixation and the next. 

• Saccade speed defined as the saccade distance divided by the saccade time. 

2.5   Apparatus 

The CMS application was run on a computer connected to a 17-inch monitor, with a 

resolution 1280x1024. The eye-tracking device Tobii X50 was connected to another 

computer. The experimental leader was situated behind a desk with a third computer 

running the same scenario as the test person to ensure good communication. 

The Tobii X50 recorded the required aspects of eye movement and pupil diameter 

of the subjects during the task.  The Tobii X50 was placed in front and underneath the 

monitor that the subjects used for the task. This was approximately 60 cm in front of 

them. 
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2.6   Procedure 

Before the experiment, the subjects were given a clear description of the various tasks 
to be executed during the scenarios and various test round were offered to the sub-
jects. Before every scenario, a description about the position of the naval ship and its 
mission was provided. The experiment was conducted in a closed room where the 
subjects were not disturbed during the task. During the experiment, an experimental 
leader was situated roughly two meters behind the subject to assist when necessary. 

3   Results 

For each dependent variable a repeated-measures analysis ANOVA with within-factor 
scenario was used to analyze the data as the subjects are exposed to each condition in 
turn. In all cases, an alpha level of .05 was used to determine statistical significance. 
The data were analyzed using SPSS. For post-hoc analysis, the least significant dif-

ference (LSD) test was used and the partial eta square statistics (ηp
2
) was adopted to 

describe the estimated proportion of variance explained by the factors. The partial eta 
square has the advantage that it is independent on the number of factors.  

Verification of the mental workload used data of all but one subject due to a failure 
in logging (N = 17). The rest of the statistical tests utilized N = 13 because the eye-
tracker data from four subjects could not be used due to a technical failure of the eye-
tracking device in one of the three scenarios. 

3.1   Workload Verification 

Repeated-measures ANOVA reveals a significant effect in subjective (indicated) 
mental workload between the three scenario’s (F(2, 33) = 190.632, p < .001,  

ηp
2
 = .923). Least square difference post-hoc analysis reveals that all three means 

were significantly different (p < .05). Compared to the under-load scenario, the per-
ceived mental workload was significantly higher in the normal workload scenario. In 
turn, the perceived mental workload in the overload scenario was significantly higher 
again than in the normal-workload scenario (see Fig. 1). 

 

Fig. 1. The subjective workload per scenario as indicated every 100 seconds on a five point 

scale 



 Eye Movement as Indicators of Mental Workload to Trigger Adaptive Automation 225 

3.2   Pupil Diameter 

Repeated measures one-way ANOVA reveals that there are significant differences in 

pupil diameter between the three workload scenario’s, F (2, 69) = 3.720 , p < .005,  

ηp
2
 = .237). A post-hoc LSD comparisons revealed that the underload scenario and 

the overload scenario were significantly different. Compared to the underload sce-

nario (M = 4957.42, SD = 511.164), the average pupil diameter was significantly 

higher in the overload scenario (M = 5094.90, SD = 547.797). Furthermore the nor-

mal scenario (M = 5069.84, SD =152.676) had a significant higher average pupil 

diameter in comparison with the underload scenario. However, no significant differ-

ences were found between normal scenario and the overload scenario.  

3.3   Fixation Time 

SPSS repeated measures one-way ANOVA displays a significant effect of fixation 

time on the different types of scenario (F (2, 69) = 13.411 , p < .05, ηp
2 

 = .528). LSD 

comparisons revealed that all scenario’s were significantly different from each other. 

Compared to the underload scenario (M = 249.177, SD = 113.192), the average fixa-

tion time was significantly higher in the normal scenario (M = 287.992, SD =108.710) 

and on its turn the normal scenario differed significantly from the overload scenario 

(M = 334.838, SD = 130.823).  

3.4   Saccade Distance and Speed 

No significant differences are found with a repeated measures one-way ANOVA in 

saccade distance between the three scenario’s (F (2, 69)= 0.388, p = .683, ηp
2 
 = .031). 

In addition, no significant differences are found with a repeated measures one-way 

ANOVA in saccade speed between the three scenario’s (F (2,69) = 1.768, p = .192, 

ηp
2 
 = .128). 

4   Conclusion and Discussion 

In high-risk professional domains, like a naval warfare, it is preferred to keep humans 

in control to handle unanticipated novel situations. However, increased mental work-

load might decrease human performance resulting in endangering mission goals. 

Therefore it is important to detect such situations. Various studies suggest that the 

machine should aid the human operator in those situations to meet operational re-

quirements [3]. However the measurement of such situations is much debated and this 

research describes an approach to assess mental workload objectively by analyzing 

differences in pupil diameter, fixation time, saccade distance, and saccade speed un-

der different levels of mental workload. We consequently conducted an experiment to 

measure these four aspects under various workload conditions to ascertain their utility 

as an objective mental workload indicator.  

The results show that the manipulation of the scenario’s worked as expected in that 

the manipulation of two of the three CTL model variables resulted in significant dif-

ferent subjective mental workload. The results not only confirm hypothesis 1 but also 
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extend the knowledge [27, 28] on the successful application of the CTL model to 

design scenarios with an intended mental workload.  

Although the results reveal a general significant effect of pupil diameter on work-

load manipulations, the results fail to discriminate between all workload manipula-

tions. We therefore partly accept hypothesis 2 because of the general nature to utilize 

pupil diameter as an indicator of workload. Consequently we agree with [21] that the 

pupil diameter responds to many factors with workload being one of them in contrasts 

other research that found pupil diameter effects [17-19].  

 Results show, on the other hand, a significant and discriminatory effect of mental 

workload manipulations on fixation time. This means that we accept hypothesis 3 

because fixation time can be used to distinguish between workload conditions. The 

results comply with research by Tole [20] who found an increase in fixation time 

when the mental workload increased and [29] found a negative correlation between 

fixation time and performance. This complies with the findings in this research, given 

that higher fixation times indicate a higher level of mental workload and mental work-

load has a negative effect on performance.  
Saccade distance and saccade speed show no significant differences when the men-

tal workload increases and we therefore reject hypothesis 4 & 5. These results comply 
with research [16] that failed to find a relation between saccade measures and mental 
workload. However, [18] did find a decrease in saccade distance if mental workload 
increases but stated that many properties of the eye, including saccades, are highly 
task dependent.  

Much research has been done to find a relation between operator psychophysiology 
and operator workload. As stated before, no single psychophysiological measure can 
be interpreted as a workload indicator. Therefore, in order to obtain a reliable objec-
tive indicator for mental workload, it is necessary to work towards a model that inte-
grates several psychophysiological measurements. The construction of such a model 
is complex because the reliability and relative importance of the different measure-
ments are hard to define. The results of this research contribute to this model by ex-
amining the effects on pupil diameter, fixation time, saccade distance, and saccade 
speed under different levels of mental workload in a naval warfare setting. 

As this research shows that measurements of properties of the eye with an eye-
tracking device can provide a valuable addition to the determination of the level of 
aiding, problems arise when it comes to the practical application of the concept. As 
indicated throughout the paper, many factors influence workload and properties of the 
eye. In an experiment, these aspects can be kept as constant as possible. In a practical 
application, for example with defense tasks on a navy ship, it cannot be expected of 
the human operator to refrain from drinking caffeine-holding beverages. These as-
pects make the deduction of mental workload from for example pupil diameter unreli-
able. However, if a combination of psychophysiological measurements is used and 
they all indicate a similar operator workload, this indication can be very usable. 
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Abstract. Eye tracking under naturalistic viewing conditions may provide a 

means to assess operator workload in an unobtrusive manner. Specifically, we 

explore the use of a nearest neighbor index of workload calculated using eye 

fixation patterns obtained from operators navigating an unmanned ground vehi-

cle under different task loads and levels of automation. Results showed that 

fixation patterns map to the operator’s experimental condition suggesting that 

systematic eye movements may characterize each task. Further, different meth-

ods of calculating the workload index are highly correlated, r(46) = .94, p = .01. 

While the eye movement workload index matches operator reports of workload 

based on the NASA TLX, the metric fails on some instances. Interestingly, 

these departure points may relate to the operator’s perceived attentional control 

score. We discuss these results in relation to automation triggers for unmanned 

systems.  

Keywords: Adaptive Automation, Unmanned Ground Systems, Eye Tracking, 

Workload. 

1   Introduction 

Unmanned air and ground vehicles are the inevitable future of the United States Army 

Future Combat Systems [1]. Suggested roles for unmanned ground vehicles (UGVs), 

in particular, are as remote weapons platforms, soldier companions, or substitutes for 

reconnaissance, surveillance, and target acquisition (RSTA). The level of autonomy, 

or capability of the UGV to perform tasks without human assistance, is determined by 

the robot’s primary function [2]. For example, teleoperated ground vehicles are not 

typically equipped with onboard terrain or environment maneuvering capabilities; 

consequently, their level of autonomy is low. The human assumes the role of an  

operator, monitoring the environment and making all task related decisions.  

In contrast, semi-automated vehicles are intelligent enough to assume a navigator 

role with point A to B mobility. Thus, the human team member can perform other 

tasks requiring higher cognitive skills (e.g., problem solving) that the robot is not 

capable of, or less successful at, executing. The logical compromise between human 
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and machine systems such as these is to provide a means to share or trade control over 

tasking through adaptive automation [3] [4].  

Automation within human-machine systems can be thought of as a tool that allows 

the human to turnover designated tasking to a machine agent, thereby improving 

overall work performance [5]. Adaptive automation (AA) refers to a system capability 

that enables flexible task allocations between the human operator and the machine 

agent in the context of the work environment [6]. Within high stress, time-pressured 

operations, the goal of the adaptive system would be to reduce operator workload and 

fatigue by automating select activities. In contrast, during times of underload, the 

system would reengage the operator to improve situational awareness by returning 

tasks. Thus, the human-machine system trades off assignments cooperatively, yet with 

an emphasis on the human operator. This human-centered approach keeps the opera-

tor in the control loop, which minimizes deleterious performance issues such as reori-

enting to tasks slowly and overlooking automation failures [7].    

Developers of AA use several strategies to determine when to invoke changes in 

automation level. These strategies include: 1) operator performance measures, moni-

toring operator performance criterion levels; 2) critical events, signaling system  

failures or environmental changes; 3) system models, comparing human-machine 

performance to an a priori determined pattern of system performance; 4) operator 

state assessments, using psychophysiological measures to determine operator work-

load; and 5) hybrid methods, combining one or more of the above strategies [7] [5] 

[8]. With the exception of hybrid methods, assessing the operator’s state using psy-

chophysiological measures is the only triggering technique that provides real-time 

monitoring of the operator’s state.  

Monitoring the operator’s psychophysiological changes in real-time additionally 

provides an unobtrusive means to evaluate his or her internal status without interrupt-

ing the task. Given that the human operator may be construed as an adaptive system 

that can rapidly shift mental and physical resources or change cognitive strategies to 

meet task demands, identifying detrimental system shifts such as high mental work-

load at onset, or even prior to onset, may be paramount to successful human-robotic 

team efforts [6].  For example, cognitive workload levels are typically higher when a 

human operator teleoperates a UGV or intervenes when an autonomous operation 

fails [9]. Increased task load concomitant with increases in cognitive workload lead to 

reduced situational awareness [7] [10]. These effects increase the potential for catas-

trophic errors that can harm not only the team, but compromise the mission as a 

whole.   

Task load, however, is not the only determinant of degraded human performance 

within human-robotic teams. As Chen and Terrence (2008) showed, operator’s per-

ceived attentional control (PAC) scores were associated with error rates determined 

by different types of unreliable automation. More specifically, persons scoring high 

on attentional control were more affected by false-alarm prone alerts than miss-prone 

alerts. A relationship between two types of aided target recognition (AiTR), tactile or 

visual cueing, and spatial ability scores of the participants was also found. Persons 

with low spatial ability preferred visual cueing, while person’s with high spatial abil-

ity scores preferred tactile cueing. These examples of individual differences imply 

that hybrid automation strategies may provide a more accurate means of varying 
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automation during real-world tasking. Further, these strategies should include real-

time operator state assessments [11] [4].   

The focus of the current research is to determine automation timing through objec-

tive psychophysiological measures. In this paper, we present preliminary data on 

assessing operator workload using eye gaze patterns and operator characteristics such 

as attentional control. These results extend previously reported work [12].  

Chen et al. (2008) simulated a generic mounted crew station and examined the 

workload and performance of a UGV operator. The operator completed one of four 

types of tasking: 1) navigating the robot only, 2) navigating the robot plus a visual 

monitoring task, 3) navigating the robot plus an auditory monitoring task, and 4) 

navigating the robot plus both the auditory and visual tasks. These tasks were per-

formed with differing levels of robot autonomy (teleoperated versus semi-

autonomous) and levels of aiding for target recognition (AiTR versus no AiTR). 

While the psychophysiological measure of heart rate variability failed to predict 

changes in workload with changing task load, other findings support Chen and Ter-

rence (2008).  For example, participants with low PAC scores performed worse when 

teleoperating the robot than did those with higher PAC scores.  

Participants’ eye tracking data collected during the Chen et al. (2008) experiment 

was analyzed for this study. It was hypothesized that gaze patterns as assessed by 

fixations within areas of interest (AOI) could predict the type of tasking condition 

experienced by the operator [13]. Further, these visual patterns may predict the mental 

workload level of the operator [14]. Discussed here is the assessment of the utility of 

the eye fixation-based workload metric in future studies of adaptive automation.   

2   Method 

2.1   Participants  

A total of 64 students from the University of Central Florida and the U. S. Military 

Academy participated in the original study. Eye tracking data from nine participants 

(Female = 3 and Male = 6) were further analyzed for this current study based on par-

ticipant’s high task performance scores and the existence of a complete eye tracking 

dataset. Participants ages ranged from 18 to 25 (M = 20.44, SD = 2.60).  

2.2   Apparatus 

2.2.1   Simulation 

The Mixed Initiative eXperimental (MIX) testbed is a distributed simulation envi-

ronment designed to empirically evaluate human-robot interactions and the affects of 

automation on operator performance.  Details of the design and capabilities of the 

MIX testbed are provided in Barber, Davis, Nicholson, Finkelstein, and Chen [15]. 

We outline the robotic vehicle control capabilities, along with the operator control 

interface.  

 

Robotic Vehicle Control.  The MIX testbed can generate simulated unmanned ground 

or air vehicles through its Unmanned Vehicle Simulator (UVSIM). A UGV was used 



232 C.M. Fidopiastis et al. 

in this experiment. The UGV system supports manual control and two types of auto-

mation: waypoint navigation (i.e., semi-autonomous) and AiTR.  In teleoperation 

mode, the operator must manually navigate the UGV along the mission route through 

the use of a standard joystick. Waypoint navigation allows the UGV to follow a pre-

planned route without operator input. There are four checkpoints encountered along 

the mission route where the operator must pause and perform a RSTA (Reconnais-

sance, Surveillance, and Target Acquisition) task. In this experiment, participants 

scanned for friendly versus foe targets either with AiTR support or without. When 

enabled, AiTR pans the vehicle’s camera (up to 360 degrees), scans for targets within 

the environment, and generates a list of all targets (friendly and foe) within the scene. 

Without this automation, the operator must perform the target acquisition procedure 

him or herself through the interface controls. Operators performed each of the four 

control conditions, teleoperation with and without AiTR and semi-autonomous with 

andwithout AiTR, under varying task load.  

 

Operator Control Unit. The Operator Control Unit (OCU) provides the graphical 

user interface with which to interact with the UGV. For example, Figure 1 shows the 

button controls along with the main viewing screen (center) and a “bird’s eye” view 

of the UGV location on the upper left. The navigation bar allows the operator to 

zoom in/out as well as move across the maps. In addition, auditory and visual moni-

toring tasks are available to increase the operator’s task load and simulate real-world 

conditions. 

 

Fig. 1. OCU areas used for AOI for the fixation analysis 

The visual monitoring display is also shown in Figure 1. This task required the op-

erator to monitor the four gauges and assess whether they entered critical high or low 

levels. When these critical levels were detected, the operator pressed a “reset’ button 

on the OCU display to return them to normal. The auditory task required the operator 

to monitor a series of auditory cues (i.e., call signs) periodically presented throughout 

the scenario and type his or her responses to each cue in the communication panel 

located below the visual monitoring display. These three areas, main view, bird’s eye 

view, and secondary task display, were also used as the areas of interest (AOI) for the 

eye fixation analysis, which we describe next. 
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2.2.2   Eye Tracker and Nearest Neighbor Index 

Figure 2a shows the Applied Science Laboratories (ASL) R6000 remote pan/tilt head 

and monocular eye tracker system that was used to track both head and eye move-

ments during the study. The head and eye tracker system uses facial features, as 

shown in Figure 2b, to first detect the position of both eyes.  The eye camera and eye 

illuminator are integrated into the pan and tilt mechanism to allow the system to  

dynamically move as the operator changes head position.  Using a bright pupil tech-

nique, the illuminator projects near infrared light through the pupil such that the light 

reflects off the retina. The reflection created by the returning light traversing the  

cornea produces a bright pupil effect. This allows the eye camera, which captures 

pictures of the eye every 17 ms (60 Hz), to estimate the eye pupil center and to dis-

criminate the corneal reflection (CR). These two parameters are then used to estimate 

the point of gaze of the operator.  

Because the relationship between the pupil center and the CR are different for  

everyone, each participant performed a calibration procedure before entering the  

experiment. Participants were directed to look at 17 points (i.e., pre-defined XY coor-

dinates) one at a time at different locations on the display. The eye tracker then 

mapped the participants’ eye position relative to the monitor used to display the OCU.  

The accuracy of the point of gaze estimation by the ASL eye tracker is less than 1 

degree visual angle (roughly a 7 mm error when the participant is seated at 76 cm 

from the display, as in this study).   

Eye movement during viewing allows the fovea of the retina to scan an area, pro-

viding the fine details necessary to accurately locate and identify objects within a 

scene [16]. In general, rapid eye movements (velocities reaching 500 degrees per 

second) are typically referred to as saccades and provide little new information about 

the changing visual information. Fixations, which are brief moments of stability 

(roughly 200-300 ms and depend on the task), facilitate visual processing [17]. Fea-

ture detection algorithms are needed to identify saccades and fixations within the 

stream of raw eye tracking data. Given the type of eye tracker and the type of task,  

 
 

 

 

 
 

 

Fig. 2a. Fig. 2b. 
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Fig. 3. Smallest rectangle and convex hull area methods for calculating the NNI 

fixations and saccades were calculated using a dispersion-based algorithm that ac-

counts for both the temporal and the spatial characteristics of eye movements [18].  

Eye movements are driven by task requirements; current research suggests that 

only objects needed for the task are fixated upon in a serial manner when performing 

everyday activities [13]. Workload may be indirectly measured through the dispersion 

pattern or distribution of fixations in regions of the scene important for executing a 

task [19]. More specifically, persons experiencing periods of high workload may 

perform more stereotyped scanning patterns across the work space. The Nearest 

Neighbor Index (NNI) was developed to capture shifts between random and more 

focused fixations during real-world task performance and relate these shifts to levels 

of workload [14]. The goal of this effort was to develop an unobtrusive and reliable 

metric for applying adaptive automation within operational environments.  

The NNI is calculated as a ratio, where the numerator represents the average near-

est neighbor distances for fixation points and denominator represents the mean ran-

dom distances for an AOI that one would expect if the fixation distribution were ran-

dom [19]. Thus, ratio values closer to 1 suggest a random distribution of fixations or 

low workload, while the converse is true for high workload. The main and bird’s eye  

views along with the visual and the auditory monitoring task display were designated 

as the AOIs for this study. Figure 3 shows two methods for determining clusters of 

fixation points in an AOI, smallest rectangle and convex hull (i.e., convex polygon). 

NNI’s were calculated using both methods for comparison. 

2.2.3   Attentional Control and NASA TLX Questionnaires 

Perceived attentional control (PAC) was measured using the attentional control  

survey [20]. The survey consisted of 21 items and provided a measure of perceived 

attention focus and shifting. Research shows a relationship between eye fixations and 

focused attention [16]. Given that the scale has good internal reliability (α = .88), it 

may provide a means to further assess the NNI metric.    

The NNI has also been assessed against the National Aeronautics and Space Ad-

ministration-task load index [2] [19]. The NASA-TLX is a self-reported questionnaire 

of perceived demands in six areas: mental, physical, temporal, effort (mental and 

physical), frustration, and performance [21].  The computerized version was used in 

the original study. We also compare the NNI with the NASA-TLX scores. 
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2.2.4   Experimental Design 

NNI scores were only calculated for participants who had a complete eye tracking 

data and performed the best within their task load condition and level of automation 

(e.g., robotic x teleop x no AiTR). A participant could represent more than one condi-

tion because of missing data.  However, given that PAC is a global measure of atten-

tional control and the NASA-TLX was reported for each scenario, the measures are 

independent of condition and should not affect the validity of the comparisons with 

the NNI.  The NNI scores were calculated using the smallest rectangle and convex 

hull methods and a Pearson’s correlation was conducted for comparison.  

2.2.5   Dependent Measures 

The dependent measures for this study were: percent fixation for an AOI, workload 

based on the NNI scores, perceived workload based on the NASA-TLX, and per-

ceived attentional control based on the attentional control survey.  

3   Results 

Figure 4, 5 and 6 show the % fixations calculated the AOI, main view, bird’s eye 

view, and secondary task display respectively. The bars represent the different task 

loads: robotic (R), robotic and auditory monitoring (R+A), robotic and visual moni-

toring (R+V), and all three (R+V+A). The results show a different fixation pattern 

based on level of automation, AOI, and task load. For example, those in teleoperated  
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Fig. 4. % Fixations for the main viewing area 
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Fig. 5. % Fixations for the bird’s eye viewing area 
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Fig. 6. % Fixations for the secondary task display for auditory and visual monitoring tasks 

mode spent more time looking at the bird’s eye view to navigate than looking at the 

main view. The participant in the semi R+A condition with no AiTR monitored the 

secondary display window more than the main view (Figure 6).  

Participants’ NASA-TLX scores are presented in Table 1. High TLX scores indicate 

high work load for that task. There was a significant positive correlation between the 

smallest rectangle and convex hull NNI calculations, r(46) = .94, p = .01. In Table 2 
 

Table 1. Perceived work load as measured by the NASA-TLX scores 

Semi Auto   Teleop 

Task Load  AiTR No AiTR   AiTR No AiTR 

R 40.33 39.25  44.33 35 

R + V 43 25  24 39.67 

R + A 5 77.67  78.67 53.33 

R + V + A 52 58   72.33 74.33 
 

Table 2. NNI calculated using the smallest rectangle method 

Semi Auto   Teleop 

  AiTR No AiTR   AiTR No AiTR 

Task Load                             Main Video 

R 0.51 0.45  0.47 0.46 

R + V 0.44 0.47  0.48 0.46 

R + A 0.5 0.45  0.44 0.47 

R + V + A 0.46 0.47   0.5 0.48 

Task Load                           Birds-Eye-View 

R 0.47 0.48  0.42 0.45 

R + V 0.44 0.48  0.38 0.47 

R + A 0.47 0.44  0.44 0.5 

R + V + A 0.46 0.48   0.48 0.47 

Task Load  Secondary Task   

R 0.42 0.37  0.42 0.34 

R + V 0.34 0.41  0.54 0.38 

R + A 0.42 0.34  0.34 0.41 

R + V + A 0.38 0.38   0.49 0.39 
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we present the NNI scores based on the smallest rectangle calculation since either 

measure provides similar comparisons. In comparing Table 2 NNI scores to Table 1 

TLX scores, the overall trends match. For example, the secondary task for the R+A 

condition shows lower NNI scores, which match the higher perceived workload as 

measured by the NASA-TLX scores.  However, this mapping is not perfect.  

The participant in the R+V+A teleop, AiTR condition reported a high workload 

based on the NASA-TLX score. The NNI for the each AOI does not suggest that the 

participant is in high workload. The PAC score for this participant was the lowest of 

the group, (PAC score = 46). In contrast, the NNI for the participant in the same task 

load and navigation automation, but No AiTR matched their high NASA-TLX score. 

This participant reported a higher PAC score, (PAC score = 64).  

4   Discussion 

While preliminary, the results suggest that the NNI may predict workload levels as 

compared to the NASA-TLX. However, perceived attentional control of the operator 

may affect the fixation pattern such that it appears more random due to lack of atten-

tional focus. Further, the high correlation between methods of calculating NNI sug-

gests that it may be a robust measure. Taken together these result suggest that NNI as 

a means to provide adaptive automation warrants further exploration.   
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Abstract. We discuss the physiological metrics that can be measured with elec-

troencephalography (EEG) and functional near infrared spectroscopy (fNIRs). 

We address the functional and practical limitations of each device, and techni-

cal issues to be mindful of when combining the devices. We also present ma-

chine learning methods that can be used on concurrent recordings of EEG and 

fNIRs data.  We discuss an experiment that combines fNIRs and EEG to meas-

ure a range of user states that are of interest in HCI.  While our fNIRS machine 

learning results showed promise for the measurement of workload states in 

HCI, our EEG results indicate that more research must be done in order to com-

bine these two devices in practice. 

Keywords: fNIRs, EEG, near infrared spectroscopy, workload. 

1   Introduction 

Current research in human computer interaction (HCI) explores the measurement of 
computer users’ brain activity in an attempt to increase the effectiveness of usability 
testing and to create adaptive user interfaces.  By measuring users’ mental states ob-
jectively, and in real time, usability experts use information about users’ mental work-
load (WL) as an additional metric during usability studies. Designers of adaptive 
systems hope to use this  information as passive input, providing the system with 
reliable, real time information about the user’s state, so that the system can adapt and 
make the human-computer interaction as flawless as possible. 

Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRs) 
are popular, non-invasive, brain imaging techniques. Unlike other brain devices which 
require subjects to lie in restricted positions (fMRI), or to drink hazardous materials 
(PET), EEG and fNIRs can non-invasively measure users’ brain activity in real work-
ing conditions [1].  This makes EEG and fNIRs appropriate choices for brain meas-
urement in HCI. The majority of brain measurement research in HCI uses EEG to 
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measure users’ states while a smaller body of research uses fNIRs. Only a handful of 
researchers have explored the combination of the two devices to measure brain  
function [2-5]. This is unfortunate, as combining the two devices can provide com-
plementary information about different physiological responses to brain function and 
compensate for practical and functional limitations of each measurement technology. 

EEG and fNIRS measure different physiological responses to mental state changes. 
EEG measures the electrical potentials caused by neurons firing during brain activity.  
fNIRs measures blood volume and oxygenation changes, reflecting hemodynamic 
responses to brain activity. Therefore, combining EEG and fNIRS can provide infor-
mation about both the neural activations and the subsequent oxygenation and blood 
flow changes in the brain. Additionally, each device has functional and practical limi-
tations that make it difficult to acquire a range of user states in real world settings. We 
discuss these benefits and pitfalls in detail in the next section, and we show how com-
bining the devices allows us to compensate for the measurement pitfalls that either 
device has on its own.   

This paper has three primary contributions to the HCI realm. First, the paper is in-
tended as a useful guide for researchers interested in combining fNIRs and EEG. We 
discuss the physiological metrics that EEG and fNIRs can measure, the functional and 
practical limitations of each device, and technical issues to be mindful of when com-
bining the devices. Second, we present simple machine learning methods that can be 
used on concurrent recordings of EEG and fNIRs data.  Third, we describe results 
from an experiment using concurrent recordings of EEG and fNIRs. 

The rest of this paper proceeds as follows: First, we discuss background literature 
about EEG and fNIRs. Next we present an experiment designed to elicit varying  
levels of working memory load on subjects. We then describe the machine learning 
techniques that we implemented to analyze the experiment data. After describing the 
results of our data analysis, we discuss our concluding thoughts and extensions for 
future work. 

2   Background and Relevant Literature 

2.1   Electroencephalography  

EEG is the most studied non-invasive brain imaging device due to its fine temporal 
resolution, ease of use, and low set-up cost.  EEG uses electrodes placed on the scalp 
to measure and record the electrical potential caused by neurons firing in the brain 
during brain activity. These measurements vary predictably in response to changing 
levels of cognitive stimuli [6]. Additionally, EEG benefits from high temporal resolu-
tion, enabling it to measure changes in cognitive activity on the millisecond scale. 
Therefore, EEG measurements are continuously reflective of a participant's cognitive 
states [7]. However, there are some significant limitations to EEG signals. EEG has 
low spatial resolution (about 10 cm) [7] , making it difficult to make precise meas-
urements about the area of the brain being activated.  EEG is also susceptible to mo-
tion artifacts, such as blinking and movement. These actions create artifacts or noise 
in the data which is, in some cases, stronger than the signal from the neural activity 
[7]. Noise is also introduced into the EEG signal from electrical interference and the 
subjects’ breathing and heartbeat.  Despite these limitations, EEG is a promising tool 
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for the continuous measurement of cognitive states.  Lee and Tan used a simple and 
inexpensive EEG system (~$1,500) to differentiate between various users’ states that 
have relevance within the HCI domain [8]. They helped to bridge the gap between  
brain imaging research and the field of HCI, by providing detailed information about 
the nature of the EEG signal, its potential within the HCI field, preprocessing meth-
ods, and machine learning techniques for the EEG signal [8].  In a later paper, Grimes 
et al provided an overview of the pragmatics and practicality of using EEG for classi-
fication of users’ working memory load [9]. They classified two working memory 
(WM) states with up to 99% accuracy, and four WM states with up to 88% accuracy. 
They discuss possible applications of EEG memory load measurements as additional 
metrics for usability testing, and as an additional input to adaptive systems [9].  EEG 
has also been used in more realistic experimental settings that apply to the military 
domain.  For example, ‘smart’ EEG helmets have been designed to monitor pilots’ 
mental state while in the air [10]. Other experiments have used portable EEG systems 
that  monitor soldiers’ mental WL while completing realistic training scenarios [11]. 

2.2   Functional near Infrared Spectroscopy  

fNIRs has been introduced in the last two decades [12], and it is primarily used in the 
medical domain, and in research labs where the focus is to validate and re-design the 
device itself. fNIRs uses optical fibers placed on the scalp or forehead to send light in 
the wavelength range of 650-850 nm into the head. A small percentage of this light 
migrates through the scalp, skull and brain cortex and eventually is collected by other 
optical fibers placed 2-3 cm away from the source fibers. In the near-infrared range 
the main tissue absorbers are oxy-and deoxy-hemoglobin, therefore any change in the 
concentration of these two chromophores (as during brain function) is reflected into 
intensity changes at the detector’s sites[12]. The spatial resolution in fNIRs is limited 
to approximately 5 mm. Researchers have shown that by placing the probes on a sub-
ject’s forehead, fNIRs provides an accurate measure of activity within the frontal lobe 
of the brain, which is responsible for many high order cognitive functions, such as 
memory and problem solving that make up mental WL  [1]. More specifically, there 
is a positive correlation between the increase of oxygenated blood and the increase in 
cognitive WL [1, 13]. These results are promising since fNIRs is portable, safe, less 
invasive than other imaging techniques, and has been implemented wirelessly, ena-
bling use in real world settings [1]. However, fNIRs is not without its own limitations. 
Unlike PET or fMRI, fNIRs can not measure deep brain structures and it is primarily 
placed on the forehead, as hair can introduce noise into the signal. fNIRs is also lim-
ited by its low temporal resolution, as it take several seconds to monitor blood in the 
brain. Since most research in fNIRs concerns validating the tool itself, the extensive 
applications conducted with brain imaging techniques such as EEG, have yet to be 
implemented with fNIRs.  Only a handful of researchers have paired the fNIRs data 
with machine learning techniques [14-17].  

2.3   Combining EEG and fNIRs 

A few researchers have explored concurrent recordings of EEG and fNIRS [2-5]. 
These researchers note the functional limitations of each device. By pairing the low 
spatial and high temporal resolution of EEG with the high spatial and low temporal 
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resolution of fNIRs, it may be possible to overcome limitations of each measurement 
technology.  Not only do the two devices complement each other by improving on 
one another’s measurement pitfalls, but they also measure different physiological 
markers in the brain, providing further information about a user’s mental state than 
either device could achieve alone. EEG and fNIRs data were concurrently recorded in 
the DARPA Augmented Cognition Technical Integration Experiment, where partici-
pants were instructed to play Warship Commander, a task which involves monitoring 
a radar screen for airplanes and then responding to their presence [2]. Researchers 
collected fNIRs and EEG data, in addition to several other types of physical and men-
tal measurements in an attempt to compare sensor technologies [2].  Another instance 
in which fNIRS and EEG were used concurrently is a study conducted by Salvatori et 
al [5]. Due to the novel nature of this research, Salvatori’s study was primarily inter-
ested in the logistics of combining the two devices and emphasis was placed on issues 
such as data synchronization and sensor placement.  Participants in the study were 
asked to watch a computer screen that displayed an alternating white and black 
checkerboard pattern[5]. Savran et al took concurrent recordings of EEG and fNIRS 
data while subjects viewed images from the International Affective Picture System 
(IAPS) [4]. They described the creation of a database to hold EEG and fNIRs data, 
and they discussed issues in data synchronization and sensor placement. Researchers 
combining EEG and fNIRs look at the concurrent data separately, and  while some 
initial ideas for concurrent data analysis have been discussed [4], research to date has 
not taken the next step of actually combining EEG and fNIRS data during data analy-
sis. To the best of our knowledge, we are the first to attempt classification of concur-
rent recordings of EEG and fNIRs data with machine learning. 

3   Experiment 

3.1   Equipment  

The fNIRs device used in this study is an OxyplexTS (ISS Inc. Champagne, IL) 
frequency-domain tissue spectrometer with two optical probes. Each probe has a 
detector and four light sources (Fig. 1c). Each light source emits near infrared light 
at two separate wavelengths (690nm and 830nm) which are pulsed intermittently in 
time.  This results in 2 probes x 4 light sources x 2 wavelengths = 16 light readings 
at each timepoint (sampled at 50Hz). Electroencephalograms were collected using 
32-channel caps.  

Electrodes were arranged according to the International 10-20 system (1b).  The 
EEG was amplified using an SA Bioamplifier (SA Instruments, San Diego Ca.) with a 
bandpass of .01 and 40 Hz.  The computer sampled at a rate of 200 Hz. The fNIRs 
probes were placed on subjects’ forehead using an athletic headband, leaving room 
for the electrode cap to fit on their heads (1a). 

3.2   Experiment Tasks 

Our experiment had three conditions (Fig. 2). In each condition, users viewed rows of 
randomly generated red and blue planes moving down a screen.  
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Fig. 1. a) A subject wears fNIRs/EEG setup. b) electrode placement c) fNIRs sensors. 

 

Fig. 2. The three experiment conditions are low WL (a), high WL (b) and random WL (c) 

Users kept track of the total number of red and blue planes that they had seen, and 

after 60 seconds, they were prompted to give the total count.  While the figure below 

shows 2 rows of planes in each condition, in reality, only one row of planes was on 

the screen at any given time. In the first condition (Figure 2a) subjects made WM 

updates based on the two planes that were in each row. In the second condition (2b) 

subjects viewed six planes per row, and in the final condition (2c), subjects viewed 

randomly generated rows of two or six planes. We based our WL conditions on the 

fact that set size has been used to manipulate WM for decades.  We will refer to these 

conditions as the low WL (2 planes per row), random WL (2 or 6 planes per row), and 

high WL (6 planes per row) conditions. 

3.3   Task Events and Synchronization 

Events were automatically generated and logged each time that one of the 60 second 

long tasks began or ended. Ideally, the EEG and fNIRs data acquisition would be 

synchronized in time, and any events recorded throughout the experiment would be 

logged in the concurrently recorded EEG and fNIRs acquisition systems [4, 5]. Due to 

hardware limitations, an approximation was made.  The EEG and fNIRs acquisition 

systems were set to start at the same time via two button presses (one for the fNIRs 

acquisition system and one for the EEG system). Each event was logged directly into 

the fNIRs acquisition system, which sampled at 50Hz, and added to the EEG data 

after the experiment ended.  
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3.4   Experiment Methodology 

Four right handed, undergraduate students at Tufts completed this experiment (3 
women, 1 male).  Subjects were instructed to keep movement to a minimum, and to 
count the number of red and blue planes that they saw during each 60 second task 
period. After each task ended, they verbally gave their answers. Subjects rested for 20 
seconds between each task.  We used a randomized block design with 8 trials, result-
ing in 24 tasks. 

4   Results and Analysis  

4.1   Performance Results 

We calculated subjects’ performance (whether they said the correct number of 
red/blue planes) on the three experiment conditions.  WM load increased as the num-
ber of planes per row increased, and subjects’ performance on each of the experiment 
conditions reflected this increase in WL. Subjects had the highest accuracy for the 
tasks that involved 2 planes per row (low WL). They had the lowest accuracy on tasks 
with 6 planes per row (high WL), and their accuracy on the random WL condition 
was always between the accuracy on the high and low WL conditions. 

4.2   Data Preprocessing and Machine Learning Analysis 

As brain activity differs widely on a person to person basis, we run all analyses sepa-
rately for each subject. We developed machine learning techniques to classify the 
EEG and fNIRs data from the experiment. Our analysis is not intended to compare 

the two techniques of brain measurement or the machine learning techniques.  

fNIRs: Each experiment lasted about 35 minutes, with fNIRs data recorded every .02 
seconds. We recorded 16 channel readings at each timepoint, where we refer to the 
readings of one source detector pair at one wavelength, as one channel. We first nor-
malize the intensity data in each channel by their own baseline values. We then apply 
a moving average band pass filter to each channel (saving frequency values between 
.1 and .01 Hz) and we use the modified Beer-Lambert Law[12] to convert our light 
intensity data to measures of the change in oxygenated hemoglobin (HbO) and de-
oxygenated hemoglobin (Hb) concentrations in the brain. This results in eight read-
ings of HbO and eight readings of Hb data at each timepoint in the experiment. To 
choose the best HbO and Hb channels for classification we use the techniques de-
scribed in [14].We implemented a weighted k-nearest-neighbor classifier (k=3) with a 
distance metric computed with Symbolic Aggregate Approximation (SAX). SAX 
creates a symbolic approximation of time series data, allowing for dimensionality 
reduction. For a review of SAX, see [18].   

EEG: We implemented signal processing and feature generation schemes that have 
been used with EEG data previously [8]. We split the continuous EEG data into small 
overlapping windows and we took a Fourier transform of the data in each window.  
We chose a window size of 2 seconds, with windows overlapping every second. For  
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each window, we compute the magnitude and phase of the signal and the spectral 

power of the signal in the delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), beta-low (12-

20Hz), beta-high (20-30Hz), and gamma (30-50Hz) frequency bands. We also com-

pute the coherence and cross spectrum between each channel for each frequency band 

in each window. This results in over 6,200 features for each instance. We use blocked 

cross validation to select our most relevant attributes for classification. We use an 

information gain heuristic followed by Weka’s CfsSubsetEval function to choose the 

features that best predict the class label in the training data. We then apply a Naïve 

Bayes classifier to data. 

4.3   Classifying Working Memory Load  

We attempted to classify each 60 second long period of time when subjects were 

completing one of the 3 conditions described in Fig 2.  We classified these conditions 

with our fNIRs data, and with our EEG data.  Classification results are depicted in 

Table 1. We looked at our ability to classify low and high WL, low and random WL, 

random and high WL, and low, random, and high WL. When using just the fNIRs 

data for analysis, we see that we achieved promising accuracy for each subject. How-

ever, with the exception of subject 1, the EEG data yields nearly random accuracy. It 

is promising that the fNIRs classification yielded accuracy as high as 82% distin-

guishing two WL classes and up to 50% for distinguishing three WL classes. 

Table 1. Classification accuracy on just fNIRs data (unshaded) and just EEG data (shaded 

columns) for the three conditions in Fig 4.  S1 = subject 1, etc  

 random 
v. low 

random 
v. low 

random 
v .high 

random 
v. high 

low v. 
high 

low v. 
high 

low v. 
random 
v. high 

low v 
random 
v. high 

s1 57% 63% 64% 75% 61% 69% 45% 42% 

s2 53% 56% 53% 69% 51% 69% 34% 46% 

s3 50% 82% 52% 69% 49% 75% 33% 50% 

s4 52% 78% 50% 65% 52% 75% 34% 46% 

4.4   Analysis of Results 

There are many possible explanations for the low EEG classification accuracy in this 

experiment. Our ability to accurately measure users’ states depends on a number of 

factors.  Any changes in the placement of the fNIRs and EEG sensors on subjects, 

changes in the analysis techniques applied to the brain data, or changes in the experi-

ment tasks could result in higher or lower classification accuracy of fNIRs or EEG 

brain data.  It is possible that the chosen task elicited brain activity primarily in the 

prefrontal cortex, which was dominated by the fNIRs sensors. It is also possible that 

the fNIRs light sources introduced noise into the EEG signal that was difficult to 

remove [4]. Therefore, the EEG sensors may not have been able to pick up the result-

ing brain activity.  
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5   Conclusion and Future Work 

In this paper, we discussed the physiological metrics that EEG and fNIRs can meas-
ure, the functional and practical limitations of each device, and technical issues to be 
mindful of when combining the devices. We presented machine learning methods that 
can be used on EEG and fNIRs data.  We presented an experiment designed to com-
bine fNIRs and EEG to measure three user states.  While the EEG results were low, 
we demonstrated the ability of fNIRs to classify mental WL states. fNIRs is a rela-
tively new device, and it holds great potential for the HCI domain. Future work will 
explore factors that may have contributed to the low EEG results. It is possible that 
EEG and fNIRS can best complement eachother when subjects complete tasks that 
activate more than just the prefrontal cortex. It is apparent that EEG and fNIRs, when 
combined, have the potential to acquire complementary information about user states. 
However, more research is needed to achieve this goal.   
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Abstract. Intentional errors are considered a form of deceit.  In this pilot study, 

the pressures applied to a computer mouse will be analyzed to determine if it is 

possible to detect intentional errors. Twenty participants ranging in age from 18 

to 21 years performed a task involving intentionally making errors when in-

structed.  A comparison will be made between the pressures applied to a com-

puter mouse when answering the questions with the intention of being correct 

and with the intention of making an error.  The data will need to be normalized 

for each individual to obtain accurate results.  The analysis of the pressures may 

indicate that there are detectable variations within some individuals.  Due to the 

preliminary nature of this study further research will be required. 

Keywords: Intentional errors, deceit, pressure sensitive computer mouse. 

1   Introduction 

Deception is a broad category of acts to convince another to believe false information.  

Within the category of deceitful acts, a lie can be a statement one knows as false with 

the intention of the statement being taken as the truth.  Studies using functional mag-

netic resonance imaging show that different areas in the brain are active during decep-

tive acts [1, 2].  Evidence that mental acts of deception can influence physiological 

factors include a variety of physiological measures used to detect deception (e.g., 

polygraph – breathing, electro-dermal activity and cardiovascular activity), but other 

emotions unrelated to lying can cause physiological responses that confound the de-

tection of deception [3].  Facial expressions, derived from the facial muscles, have 

been used to detect deceit [4].  The pressures, derived from finger and hand muscles, 

applied to a pressure sensitive computer mouse has been used to evaluate the mental 

activity of a user’s cognitive load [5, 6].  In this pilot study, a comparison will be 

made between the pressures applied to a computer mouse when answering questions 

with the intention of being correct and with the intention of making an error. 

For this study, an intentional error is when a person purposefully provides the 

wrong answer when instructed.  Being instructed to make an error reduces the emo-

tion associated with trying to deceive another person, but the intent of making an 

error, or lying, is still present. 

Walczyk, Roper, Seemann and Humphre [8] posited three cognitive stages of lying 

which are activation (i.e., question is received and truth accessed), decision to lie, and 
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construction of lie.  The three stages typically are in sequence. For this pilot study, 

questions are being presented on a computer-based multiple choice response system 

that instructs the person when to lie and provides the person with false answers fixing 

the time spent on these stages. 

A person can approach making an intentional error in several ways.  An example 

would be after the person determines the correct answer in the activation stage and 

following the instruction to lie in the decision stage the person would select the first 

wrong answer, but this may not necessarily be the order of mental activity.  The per-

son may first follow the lie instruction in the decision stage, which could then inter-

fere with the activation stage (i.e., determining the correct answer) making the task of 

finding a solution more cognitively difficult and possibly increasing the time spent in 

the activation stage. 

A comparison will be made between the pressure patterns applied to a computer 

mouse when answering the questions with the intention of being correct and with the 

intention of making an error.  It is hypothesized that the instruction to give the wrong 

answer (i.e., to lie) can for some people increase their cognitive load which can be 

detected in the patterns of pressures applied to a pressure sensitive computer mouse. 

2   Method 

Twenty participants performed a task involving intentionally making errors when 

instructed on a computer system.  They used a pressure sensitive computer mouse 

(PSCM) to answer the questions.  Data from the PSCM was recorded along with the 

participant responses.  

2.1   Participants 

Twenty volunteers, 18 males and 2 females, from the US Air Force Academy ranging 

in age from 18 to 21 years, participated in the study.  Each volunteer was tested indi-

vidually during an approximately one hour session where the task for this experiment 

was conducted after two previous unrelated experimental tasks. 

 

 

 

 

 

 

 

Fig. 1.  Computer mouse with pressure sensors on buttons 
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Fig. 2. A sample view of a question presented to the participant.  Buttons to select the correct 

answer are at the bottom of the screen. 

Table 1. An example of one of the three sets of questions 

 Instruction Question A B C D 

1 Select the Correct 

Answer  

What is the result of 

7 + 3? 

8 9 10 11 

 

2 Select the Correct 

Answer  

What word that has 

the same meaning as 

"jump." 

bean leap rope tool 

3 Select the Correct 

Answer  

What is the result of 

7 + 17 + 3 + 5? 

31 32 33 34 

4 Select your  

Best Guess 

What is the result of 

1472 times 27? 

20000 

to 

30000 

30000 

to 

40000 

40000 

to 

50000 

50000 to 

60000 

5 Select your  

Best Guess 

What word has the 

same meaning as 

"hold"? 

grip clasp keep contain 

6 Select the Wrong 

Answer  

What is the result of 

7 + 3? 

8 9 10 11 

7 Select the Wrong 

Answer 

What word that has 

the same meaning as 

"jump"? 

bean leap rope tool 

8 Select the Wrong 

Answer 

What is the result of 

7 + 17 + 4 + 5? 

31 32 33 34 

2.2   Equipment 

A custom designed computer mouse equipped with pressure sensors inside the body 

and the buttons of the mouse was used to detect the pressures applied during task 

performance.  Data of the pressures applied to the computer mouse while clicking on 

answers during the task was collected (see Figure 1).  
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2.3   Task 

The task involved answering three sets of questions (see Table 1).  Each set consisted 

of eight questions with four possible responses.  The first three questions were simple 

math or language questions.  The next two questions are difficult or ambiguous.  Note 

that for question 5 in Table 1, all the answers mean hold in different context.  The last 

three were similar to the first three, but the participant was instructed to give a wrong 

answer.  Each question was displayed individually on the screen (see Figure 2). 

3   Results 

Analysis: A comparison will be made between the pressures applied to a pressure 

sensitive computer mouse (PSCM) when answering the questions with the intention  
 
 

Fig. 3. Shown are the pressures applied to the computer mouse, the instructions to the partici-

pant and the questions being asked 
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of being correct and with the intention of making an error (see Figure 3).  Previous  

pilot studies indicated that minimal difficulty or cognitive load is indicated by a  

sudden sharp pressure on the mouse button when selecting a response while high 

difficulty is indicated by a distortion in the shape of the pressure on the mouse button. 

It is hypothesized there will be a differential between the pressure patterns applied to 

a PSCM when the intention is to be correct versus the intention of making an error. 

To obtain the optimal differentiation of patterns, the pressures applied to the PSCM 

will need to be normalize to the pressure characteristics of each individual.  Previous 

studies have found pressure variations unique to the individual [9, 10]. 

4   Discussion 

Analysis of the pressures on a computer mouse will indicate that there may be detect-

able variations within some individuals and it is likely that the data needs to be nor-

malized for each individual to optimize categorization of the pressure patterns when a 

person is giving the correct answer and giving the wrong answer.  Should the results 

of this study support the hypothesis, the pressures applied to a computer mouse could 

be used for detecting deception. 

When detecting deception, an interviewer’s personality can affect the response of a 

person being questioned making it difficult to determine if deception is occurring.  

Since it is common for people to answer questions on a computer using a mouse it is 

possible to minimize the variable emotional impact of an interviewer on the inter-

viewee.  A pressure sensitive computer mouse (PSCM) that via pressure patterns and 

cognitive load can detect deceit would be a valuable asset for security screening.  Due 

to the preliminary nature of this study further research will be required. 
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Abstract. Eye tracking technology is a prospective tool for augmenting cogni-

tion in real-time in response to screen navigation and other eye movements that 

can be monitored. This paper examines eye movements associated with differ-

ences in problem complexity. The experiment utilized constraint satisfaction 

problems of differing difficulty measured by the number of steps necessary to 

complete and the relative time required to solve it. Participants were observed 

and tested through an eye-tracking experiment to see if correlations between 

visual navigation and problem complexity were present. Eye movement pat-

terns, in particular pupil size, have been used to measure cognitive load in other 

contexts [6-9].  The results showed overall increases in fixations and pupil size 

that corresponded to increases in problem complexity.  

Keywords: Cognitive load, eye tracking, analytical reasoning. 

1   Introduction 

This paper explores the consequences of different levels of complexity on screen 

navigation during problem-solving tasks. Participants were observed and tested 

through an eye-tracking experiment to determine whether correlations between visual 

navigation and problem complexity could be detected and measured.  In addition, 

individual differences in domain expertise, short-term memory, spatial ability, cogni-

tive style and learning preference, which are thought to affect internal and external 

problem representation and comprehension of prepared external representations of 

problems, were measured [1-5] for possible affect as well.  Eye movement patterns, in 

particular pupil size, have been used to measure cognitive load in other contexts [6-9]. 

If differences in visual navigation and other measures such as the duration and loca-

tion of fixations and changes in pupil size can be observed using eye tracking, these 

differences can be used to augment cognition or customize views appropriately as eye 

tracking and other monitoring devices improve. Changes in pupil size are easier to 

track with eye tracking cameras because calibration is not required. 

To better understand how increases in cognitive load due to an increase in task  

difficulty are present in the visual process and the strategy of the individual, the  

following question was considered. Do different eye tracking patterns occur for dif-

ferent levels of complexity in analytical reasoning?  This was examined within sub-

ject as well as between subjects to see if measurable trends exist that could be used to 

augment cognition and lessen cognitive overload for a specific user.  This would be 
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particularly important for kiosks and computers in schools and public places that are 

used by people of varying levels of expertise.   

In order to measure changes related to increased cognitive load, eye movements 

were tracked as participants attempted to find a missing entry on a series of five sim-

ple 2x2 sudoku puzzles.  The placement of the missing entry ranged in difficulty by 

the number of entries that must be remembered in order to deduce the missing entry.  

The goal was to see if changes in visual process corresponding to changes in com-

plexity could be detected from eye movement patterns within subjects. 

Problem complexity was defined in two basic ways in the study.  Initially, prob-

lems were ranked for complexity according to the number of steps necessary to solve 

them. All of the problems were constraint satisfaction problems and grouped accord-

ing to this definition of difficulty.  The second measure of difficulty was calculated by 

the actual time taken to complete the problem and they were ranked accordingly. This 

method allowed for each participant to have his or her own unique ranking, but prob-

lems were also averaged over all participants to give an overall difficulty ranking 

based on duration. These rankings were used to compare visual navigation of similar 

problem types based on these two measures of difficulty. 

Measuring and understanding differences that correlate to changes in complexity 

during problem solving can further our understanding of how representations can be 

customized to improve problem solving and recognize cognitive load for individuals 

and groups.  The ability to identify cognitive load levels using a passive monitoring 

technique or sensors would benefit interface design and artificial intelligence in a va-

riety of fields including education and business.  

2   Previous Research 

Cognitive overload presents problems for users as well as learners. As problem com-

plexity increases, adequate problem representation becomes very important and often 

determines how successful the person will be in solving a problem [1, 2].  Jonasson 

states that qualitative representation of a problem prior to the quantitative solution 

indicates deeper conceptual understanding of the problem, whereas attempting to ap-

ply formulas without a qualitative and structural understanding of the problem is less 

effective and typical of novices[3]. Differences in visual navigation can indicate 

whether the problem solver is using a strategy that indicates structural understanding 

of the problem, leading to lower cognitive load from more efficient visual navigation 

and problem solving. Also, when problems require collaborative and interdisciplinary 

solutions, successful communication of a problem representation grows in importance 

[4, 5]. This research can also lead to better understanding of the effectiveness of  

representations for visual communication.  If cognitive overload can be measured 

automatically, the information can be used to mitigate this through various techniques 

such as scaffolding, multiple problem representation, worked problems, etc. 

Eye tracking represents a promising technique for measuring cognitive load. It is 

thought that fixation duration is a measure of difficulty of information extraction and 

interpretation; while the number of fixations in a region indicates level of interest [6]. 

The pupil size can also indicate things about the viewer and level of cognitive  

activity. Eye movements and changes in pupil size can reveal whether a person is  
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experiencing cognitive overload [7]. Kahneman's theory of attention is partially based 

on the relationship between cognitive activity and pupil dilation [8]. Differences in 

pupillary response is seen as the most promising physiological indicator of cognitive 

load, although it may be less reliable for older users [9]. This methodology was  

further investigated using sudoku puzzles, which are examples of diagrammatic  

constraint satisfaction problems. Since they require no reading to complete, they are 

useful for measuring cognitive load in diagrammatic contexts, yet the semantics and 

rules are very simple and easy to remember.  

3   Methodology  

Eye movements were tracked and analyzed as seven university students completed a 

series of five simple sudoku analytical problems of varying complexity. The partici-

pants were also tested for other individual differences related to diagrammatic com-

munication and reasoning, such as working memory capacity, visual and verbal  

preferences for learning and thinking, and spatial ability. This information was used 

to analyze possible correlations between these factors, strategies used, and indications 

of resulting cognitive load.  

The goal of the study was to see if changes in cognitive load corresponding to 

problem complexity could be observed and recognized in eye movement patterns.  

This was analyzed quantitatively in terms of changes in pupil size and the number and 

duration of eye fixations.  It was also analyzed qualitatively in terms of navigation 

patterns and the strategy used to solve problems. These were examined to understand 

the different solution strategies used and how the level of cognitive load impacted the 

strategy or process within and between subjects. 

The following set of hypotheses was used to test for changes in eye-movements 

and pupil size correlating to differences in problem difficulty. The participants com-

pleted one practice sudoku problem and five sudoku problems of varying difficulty. 

Difficulty was measured in terms of the number of steps that must be remembered in 

order to find the correct solution. Problems increased in difficulty level according to 

the number of steps required to solve it.  This was used to see if corresponding differ-

ences in the number of fixations, duration of fixations, average fixation, and average 

pupil size could be measured. These differences were also evaluated in terms of the 

other independent variables, such as the visual-verbal factors from the questionnaire, 

the spatial test and memory test scores. 

 

Ha:  Participants will have more eye fixations while solving higher diffi-

culty problems than lower difficulty problems.  

 

Hb:  Participants will have longer duration of eye fixations while solving 

higher difficulty problems than lower difficulty problems.  

 

Hc:  Participants will have higher average pupil sizes while solving 

higher difficulty problems than lower difficulty problems.  
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Participants completed constraint satisfaction problems using a computer while 

their time per screen, fixation locations and durations, pupil size, and answers to prob-

lems were recorded using EventStream software and an ASL eye tracker. Their eye 

movements were tracked sixty times per second. The information from EventStream 

on the task completion times, answers to problems, and fixation locations, durations 

of fixations by area of screen, and pupil size from the eye tracker was coded by par-

ticipant and kept in spreadsheets for further processing.  The data included the re-

sponse time, accuracy, pupil size, the number of fixations and gazes on different parts 

of the display for each problem. A qualitative analysis was done to understand the 

participant’s strategy and use of the graphic representation in relation to accuracy and 

response time. 

All problems were designed to be solvable while viewing a computer screen with-

out additional notes or calculations, although for increased difficulty some required 

more working memory capacity than others. 

4   Results  

The eye movements showed trends for increased fixations, longer fixation durations, 

and increased pupil size as complexity increased.  Figure 1 shows the increase in fixa-

tions as the problem difficulty increases.  Despite individual differences in the number 

of fixations, an overall trend of the average of all subjects shows an increase as prob-

lem difficulty increased. Figure 2 highlights the increased average fixation duration as 

complexity increased.  Although less pronounced, the tendency is for the duration of 

fixation to increase with problem complexity. Figure 3 shows the change in average 

pupil size for the problems as they increased in complexity. Pupil size is measured 

using a raw data coding to show the relative changes, but since each participant sat at  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 1.  Number of fixations per subject as problem difficulty increased 
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Fig. 2. Average fixation duration per subject as problem difficulty increased 

 

Fig. 3. Average pupil size per subject as problem difficulty increased 

slightly different distance from the screen, it does not represent an exact measurement 
in millimeters.  

Although, the change in average pupil size is small, there is a consistent upward 
trend for all subjects as the problem difficulty increased. The average was based on 
the pupil size averaged for each fixation. The blinks which caused the pupil size to be 
measured as zero were not used in the calculation. The wider range in pupil size 
seemed to be a better indicator of cognitive load than the average size. 

The pupil size fluctuated throughout the problem solving tasks. The standard 
deviation increased as the difficulty increased as well, but the relationship was much 
noisier. Qualitative examination of the video of the eye movements and the pupil size 
seemed to indicate that the pupil size increased in connection with increased search 
behavior.  However, this relationship is still being researched for a more specific and 
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linkage. Intuitively, reacting to increased cognitive demand by increased search for 
relevant information seems plausible.  

The three hypotheses were supported by the trends in the sample. The differences 
were not great, but there was a consistent increase in the average pupil size as well as 
the gap between the minimum and maximum pupil size. Eye tracking, in particular, 
changes in pupil size, may be feasible for detecting increases in cognitive load for 
augmenting cognition or determining performance level remotely. 

5   Conclusion 

Results showed that increases in cognitive load due to an increase in task difficulty 

were observed in the visual process and strategy of most participants.  There is sup-
port for different eye tracking patterns to occur under increased complexity. This phe-
nomena was examined within-subjects to see if measurable trends existed that could 
be used to augment cognition for a specific user during a visual task that requires rea-
soning. This type of user modeling and detection of cognitive load could be particu-
larly useful for systems and interfaces that are used by people of varying levels of 
expertise, such as in schools and other public places.  

Further research is underway to better understand how this and other visual indica-
tors can be used to augment cognition and improve user experience with information 
and communication technology.  Pupil size changes have potential for use in usability 
testing as well.  Since tracking pupil size requires less calibration and is easier to do 
than eye movement tracking, it has potential for use with Web cameras that have be-
come ubiquitous with Web 2.0 technologies.   
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Abstract. Operators on naval ships have to act in dynamic, critical and high-

demand task environments. For these environments, a cognitive task load 

(CTL) model has been proposed as foundation of three operator support func-

tions: adaptive task allocation, cognitive aids and resource feedback. This pa-

per presents the construction of such a model as a Bayesian network with 

probability relationships between CTL and performance. The network is 

trained and tested with two datasets: operator performance with an adaptive 

user interface in a lab-setting and operator performance on a high-tech sailing 

ship. The “Naïve Bayesian network” tuned out to be the best choice, providing 

performance estimations with 86% and 74% accuracy for respectively the lab 

and ship data. Overall, the resulting model nicely generalizes over the two 

datasets. It will be used to estimate operator performance under momentary 

CTL-conditions, and to set the thresholds of the load-mitigation strategies for 

the three support functions.  

Keywords: mental load, emotion, Bayesian networks, cognitive engineering, 

Defense and Space operations. 

1   Introduction 

Crews on naval ships have to operate in dynamic, critical and complex task environ-

ments, which impose high fluctuations of the required cognitive resources. These 

resources are constrained and may not fit the momentary task demands, resulting in 

performance decrements. To mitigate such load bottlenecks, three operator support 

functions are being developed: adaptive task allocation, cognitive aids and resource 

feedback [1, 2, 3]. Important foundations of these support functions are situated  

theories on cognitive task load (CTL) and emotional state (ES) [4]. Such theories 

include accepted features of cognition such as limited processing capacity, are vali-

dated in the context of a specific domain and possibly group of task performers, and 
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provide predictions of the task performance within this domain. Consequently, they 

can provide the “context-awareness” for the proposed support functions. Face validity 

is required to realize adequate trust and involvement of users.  This paper presents the 

construction of a Bayesian network model for CTL as refinement of a situated theory 

on naval operators’ information processes. 

1.1   Cognitive Task Load 

The cognitive task load (CTL) theory distinguishes three load dimensions. The first 

dimension is the time occupied, which is high when the operator has to work with 

maximum cognitive processing speed to search and compare known visual symbols or 

patterns, to perform simple (decision-making) tasks, and to manipulate and deal with 

numbers in a fast and accurate way. With respect to the second dimension, the level of 

information processing, (a) information that is processed automatically, results into 

actions that are hardly cognitively demanding, (b) routine procedures involve rather 

efficient information processing, and (c) problem solving and action planning for 

relatively new situations involve a heavy load on the limited capacity of working 

memory. Task-Set Switches is the third load dimenssion, addressing the demands of 

attention shifts or divergences in which different sources of human task knowledge 

have to be activated. It should be noted that the effects of cognitive task load depend 

on the concerning task duration. In general, the negative effects of under- and over-

load increase over time. 

1.2   Emotional State 

Neerincx [4] proposes to combine the CTL-model with a model of the Emotional 

State (ES) for high-demand task domains in which the human sometimes works in 

extreme and critical conditions. The ES-model distinguishes two dimensions: the 

arousal level—low versus high—and the valence level—positive versus negative [5]. 

Emotion and CTL are related: for specific load conditions a specific emotional state 

(“response”) can be expected. For example, when task load increases, an adequate 

response is to invest extra effort (i.e., arousal increases) in order to maintain good 

performance [3].  

1.3   Model Levels 

For the CTL-ES model, we distinguish three levels (Fig 1). The first level describes 

the human act observables, which are behavioral and bodily variables that correlate 

with human information processes (HIP).  

At the second level, HIP dimensions represent variables that correlate with human 

performance. SOWAT, an activity monitoring tool, can be used to derive the CTL-

dimensions’ values from observables as user-interface acts [2], while affective com-

puting techniques can be used to derive the ES-dimensions’ values from, for example, 

facial and speech expressions [6]. An operator profile can be applied for personalized 

estimation of HIP-dimensions’ values from observables. For example, the level of 

experience influences the Level of Information Processing (LIP): the higher the ex-

perience, the lower the LIP value. The dimensional model is trained in advance by  



262 M.A. Neerincx et al. 

datasets that include performance measures. This estimation may concern the current 

performance and the near-future performance.  

At the third level, HIP classes are derived from the dimensional models. CTL-

classes are underload (UL), overload (OL), vigilance (VI), cognitive lock-up (CL), 

and neutral (NE); ES-classes are boredom (BO), relaxed (RE), excited (EX), stressed 

(ST), and neutral (NE).  

 

Fig. 1. The Performance, Cognitive Task Load and Emotional State model 

1.4   Performance Estimation 

This paper focuses on the construction of the dimensional CTL-model (i.e., the 2
nd

 

level of Fig. 1). For this purpose, we need a method to analyze data from training and 

actual task performances, which can cope with missing data. Furthermore, it should 

be easy to extend the model, for example, starting with CTL-dimensions and adding 

ES-dimensions when appropriate. In addition, the model should be transparent (i.e., 

providing a structure that gives insight in which variable influences other variables), 

enabling estimations of near-future values. Bayesian networks seem to fulfill these 

requirements.  This paper investigates whether a Bayesian network can be constructed 

that provides adequate estimations of the CTL-performance relationships for two 

datasets: operator performance on a high-tech sailing ship and operator performance 

with an adaptive user interface in a lab-setting. 

2   Bayesian Networks 

Bayesian networks are graphical models for reasoning under uncertainty. A Bayesian 

network consists of a network structure and conditional probability tables. The struc-

ture of a Bayesian network consists of nodes and arcs. The nodes represent variables, 

and the arcs represent direct dependencies between the variables. If there is an arc 

from one node to another, then the first node is called the parent of the latter (the 

child). The structure of a Bayesian network is a directed acyclic graph (DAG). In 

other words, the structure does not contain any cycles. Each node has a conditional 

probability table. This table defines the probabilities of that node on taking each of  

its values, given its parent(s). Bayesian networks are often applied in the medical 
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domain. Given symptoms, the Bayesian network can compute the probability of the 

presence of a disease using Bayes’ Theorem (see Equation 1). 

)(

)()|(
)|(

BP

APABP
BAP =  (1) 

This is called Bayesian inference and can be explained with the hypothetical net-

work structure of Fig. 2d as example, in which performance relates to TO, TSS and 

LIP. Table 1 shows possible conditional probability tables. If there is evidence that a 

certain person has low performance, the probability that this person experiences high 

TO, TSS and LIP can be read in the tables. These probabilities are respectively 0.5, 

0.4 and 0.6. The other way around, it is possible to calculate the probability that a 

person has a low performance when high TO, TSS and LIP are observed. This can be 

done using Bayes’ Theorem: 

 

 

Table 1. Possible conditional probability tables for the network structure of Fig. 2d 

Performance 

low medium high 

0.3 0.4 0.3  

 TSS 

Performance low medium high 

low 0.3 0.3 0.4 

medium 0.6 0.3 0.1 

high 0.6 0.4 0.0  
 

 TO 

Performance low medium high 

low 0.0 0.5 0.5 

medium 0.1 0.4 0.5 

high 0.7 0.2 0.1  

 

 LIP 

Performance low medium high 

low 0.0 0.4 0.6 

medium 0.1 0.4 0.5 

high 0.7 0.2 0.1  

3   Experiment: Analysis of Two Datasets 

To create a Bayesian Network for Performance and Cognitive Task Load, we ana-

lyzed two datasets: the first dataset was automatically collected during operator’s 
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interaction with a prototype user interface, and the second dataset was manually col-

lected during operator’s performance on a sailing ship.  

3.1   Lab Dataset 

The Lab data were acquired during an experiment at the MBO Shipping & Transpor-

tation College of Rotterdam (for details, see [7]). 12 students participated, all second 

and third year students (average age of 20.1 with a standard deviation of 2.1, 11 

males, 1 female; relevant knowledge about the maritime domain). All participants had 

to deal with alarms during platform supervision, damage control and navigation tasks. 

All performed actions were recorded in log files and used to calculate TO, TSS, LIP 

and performance, with use of SOWAT [2]. 

The Lab data contained 1407 cases with data for LIP, TSS, TO and Performance. 

Each case in the data file corresponds to a sliding window of 60 seconds with 50 

seconds overlap. The values for LIP range from 0 (low) to 6.5 (high), TSS ranges 

from 0 to 5, TO ranges from 0% to 100%, and performance ranges form 0 (low) to 4 

(high). All values of the variables were converted to the values low, medium and high 

for our analyses. Since Bayesian networks are best trained with data that have an 

equal distribution, we have chosen the thresholds to accomplish this as much as pos-

sible (see Table 2 for the distribution). 

From this data file we created a balanced train and test set. We have selected  333 cases 

with low performance randomly form the total of 427 cases with low performance, and 

did the same for medium and high performance. The test set contained 150 cases, also 

with an equal distribution that was randomly selected. The other 258 cases were not used 

for training or testing since this would result in unbalanced train and test sets. 

Table 2. Distribution of cases over CTL and Performance for the two datasets 

 Lab data Ship data 

 TO TSS LIP Perf. TO TSS LIP Perf. 

Low 476 722 462 427 571 1123 426 373 

Medium 460 425 468 398 599 378 591 390 

High 471 260 477 582 582 251 735 989 

3.2   Ship Dataset 

The Ship data were acquired during an experiment in the Ship Control Centers of 

three sailing air defense and command frigates (for details, see [8]). Each ship was 

manned with four active duty teams, data collection concerned two persons of each 

team. In total there were 12 teams and 24 participants (all male). Each team had to 

perform three scenarios that varied in TO, TSS and LIP. All scenarios were recorded 

on video and scored by experts afterwards on TO and LIP.  LIP was scored by the 

participants themselves. SOWAT [2] was used for integration of all data and genera-

tion of 1752 cases. Each case in the data file corresponds to a sliding window of 60 

seconds with 40 seconds overlap. The values for LIP range form 1 (low) to 5 (high), 

TSS ranges from 0 to 6, TO ranges from 0% to 100%, and performance ranges form 0 

(incorrect or too slow response) to 2 (correct response). All values of the variables 
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were converted to the values low, medium and high. For this  dataset we have also 

chosen the thresholds to accomplish an equal distribution as much as possible (see 

Table 2 for the distribution).  

From this data file we created a train set and a test set. The train set contained 969 

cases with an equal distribution of performance. The cases were also randomly se-

lected. The test set contained 150 cases, also with an equal distribution that was ran-

domly selected. The other 633 cases were not used for training or testing. 

3.3   Creating the Network Structure 

When creating a Bayesian network, the structure of the network can either be defined 

by an expert, or learned from a dataset. We used GeNIe 2.0
1
 to create four network 

structures for each dataset. GeNIe is equipped with four structure learning algorithms: 

• Essential Graph Search (EGS) algorithm [9] 

• PC algorithm [10] 

• Greedy Thick Thinning (GTT) algorithm 

• Naïve Bayesian network (NBN) algorithm [11] 

After creating the network structures we created the conditional probability tables 

using Netica-J’s
2
 parameter learning algorithm. This algorithm was applied to the 

same train sets that were used for structure learning. 

Finally, the performance of the created Bayesian networks was tested with the test 

sets using Netica-J’s performance testing algorithm. These results were evaluated 

using a Chi-square test. 

3.4   Results 

This section first shows the results for the Lab and Ship datasets, then discusses the 

generalizability of the networks. 

3.4.1   Lab Data 

The network structures that were created by the four structure learning algorithms 

using the Lab train set are, with the exception of the NBN algorithm, very similar. 

The first three algorithm produce a fully connected network structure, the only differ-

ence is the direction of the arcs (Fig. 2). 

 
Fig. 2a. EGS 

 
Fig. 2b. PC 

 
Fig. 2c. GTT 

 
Fig. 2d. NBN 

Fig. 2. The created network structures for the Lab dataset using the four algorithms 

                                                           
1 http://genie.sis.pitt.edu/ 
2 http://www.norsys.com/ 
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As a result of the similarity in the network structure of Fig. 2, the percentages of 
cases classified correctly are the same for these three algorithms. All four algorithms 
perform overall significantly better than random guessing a performance level (all 
p<0.000). The NBN algorithm performed overall slightly better than the other algo-
rithms, but this difference was not significant (p<0.816). When we zoom in to the 
different performance categories, we see that de difference between random guessing 
and the NBN algorithm is significant for low performance (p<0.014). For medium 
performance, the difference between the EGS, PC and GTT algorithms and random 
guessing are significant (p<0.008). Finally, for high performance the difference be-
tween the four algorithms and random guessing is significant (p<0.001). 

When we look at the network with the highest performance in detail, we see that it 
is not able to distinguishing well between low and medium performance (see Table 3, 
left). When we join the performance categories low and medium together, the per-
centage correct classified increased from 58% to 85% (see table 3, middle), while the 
expectation value (“random”) increased to from 33% to 50%. A drawback of this 
method is that the dataset is not distributed equally for performance. To accomplish 
an equal distribution we adjusted the threshold for performance. The Bayesian net-
work was trained with a train set that consisted of 500 cases with low and 500 cases 
with high performance. The network was tested with a test set that contained 50 cases 
with low and 50 cases with high performance. This network classified 86% of the 
cases correct. More importantly, all cases with low performance were recognized, see 
Table 3, right. This Table is the same for all network structures that were tested. In 
other words, all network structures perform the same, see Fig. 3, right. 

Table 3. Performance of the networks with the highest percentage correct classified with three 

(left) and two performance levels, unbalanced (middle) and balanced (right) 

 Prediction 

Actual low medium high 

low 29 21 0 

medium 20 23 7 

high 10 5 35  

 Prediction 

Actual low high 

low 93 7 

high 15 35  

 Prediction 

Actual low high 

low 50 0 

high 14 36  

The networks that were trained with two performance categories performed overall 
better than the networks that were trained with three performance categories, even 
after correction for chance using Cohen’s Kappa. 
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Fig. 3. Network performance of the different algorithms for the for the Lab dataset with three 

(left) and two (right) performance levels (balanced) 
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3.4.2   Ship Data 

The network structures that were created by the four structure learning algorithms 

using the Ship train set show more variation (Fig. 4) than we have seen with the Lab 

dataset (Fig. 2). The structures are not fully connected and with the exception of the 

NBN algorithm, there is no direct dependence between TSS and performance. 

 

 
Fig. 4a. EGS 

 
Fig. 4b. PC 

 
Fig. 4c. GTT 

 
Fig. 4d. NBN 

Fig. 4. The created network structures for the Ship dataset using the four algorithms 

As a result of the variation in network structure, the percentages of cases classified 

correctly differ considerable (Fig. 5, left). All four algorithms perform overall signifi-

cantly better than random guessing a performance level (p<0.000 for the EGS and PC 

algorithm, p<0.005 for the GTT algorithm and p<0.045 for the NBN algorithm). The 

PC algorithm shows the best performance, but does only perform significantly better 

than the NBN algorithm (p<0.029). 

The Ship dataset was also tested with two performance levels (Fig. 5, right). The 

percentage classified correct of the best network increased from 57% to 76%, while 

the expectation value (“random”) increased to from 33% to 50%. 

The networks that were trained with two performance categories performed overall 

better than the networks that were trained with three performance categories, even 

after correction for chance using Cohen’s Kappa. 
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Fig. 5. Network performance of the different algorithms for the for the Ship datasets with three 

(left) and two (right) performance categories (balanced) 

3.5   Generalizability 

To test the generalizability of the networks, we tested the performance of the net-

works that were trained with the Ship train-set with the Lab test-set and vice versa 

(Table 4). When these results are compared with the results of the networks that have  
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Table 4. Cross dataset testing 

  Correct classification (%) 

  3 performance categories 2 performance categories 

Train set Test set EGS PC GTT NBN EGS PC GTT NBN 

Lab Lab 56.7 56.7 56.7 58.0 86.0 86.0 86.0 86.0 

Ship Lab 56.0 53.3 54.0 56.0 79.0 81.0 84.0 84.0 

Lab Ship 56.7 56.7 56.7 58.0 70.0 63.0 71.0 74.0 

Ship Ship 55.3 57.3 49.3 44.7 76.0 74.0 72.0 74.0 

been tested with the same datasets as they were trained, we see that almost all differ-

ences are not significant. The only exception is the network that was created with the 

PC algorithm using the Lab data with two performance categories, and tested with the 

Ship data (p<0.009). 

4   Conclusions and Discussion 

Previous research showed the effects of CTL on operator task performance, and pos-

sible mitigation methods (adaptive task allocation, cognitive aids and resource feed-

back). This paper provides the first results on applying Bayesian Networks to model 

these effects in order to estimate and predict possible performance shortcomings. We 

derived the CTL-performance relationships for two datasets: operator performance 

with an adaptive user interface in a lab-setting and operator performance on a high-

tech sailing ship (Ship). The first dataset provides the best results, probably because 

the recording was conducted in rather controlled conditions and all three CTL-factors 

showed variance in the scenario. In contrast, the dataset of the sailing ships contained 

relatively few Task-Set Switches (TSS), which might explain the creation of network 

structures that do not include a direct relationship of TSS with Performance (see  

Fig. 4). However, the “Naïve Bayesian Network” model that is trained with the more-

balanced Lab dataset proves to provide similar performance prediction results for the 

Ship dataset as the models that are derived from the Ship training dataset (i.e., for the 

two category performance, see Table 4). So, the “Naïve Bayesian Network” algorithm 

seems to be a good choice, providing performance estimations with 86% and 74% 

accuracy for respectively the lab-setting and sailing ship data (with respectively a 

100% and 78% hit-rate for the low performance category). Overall, the resulting 

model nicely generalizes over the two datasets. Although the results are relatively 

positive, there is a clear room for improvement. Currently, we are extending the mod-

eling approach with emotion, both for the defense and the space domain. A major 

question is how to adequately address the occurrence of very rare cases for which the 

dataset is not trained? A method to detect such occurrences would be very beneficial. 
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Abstract. Social annotation systems such as SparTag.us and del.icio.us have 

been designed to encourage individual reading and marking behaviors that, 

when shared, accumulate to build collective knowledge spaces. Prior work  

reported on the experimental design and performance effects observed in a con-

trolled study of SparTag.us. Study participants working independently on a sen-

semaking task who had access to a set of expert annotations were compared 

against participants using SparTag.us without those annotations and participants 

using only office software for annotation support. A learning effect favored the 

participants exposed to expert annotations. In this paper, we analyze the behav-

ioral data captured during the experiment and identify differences in the work 

process that can explain the performance effects reported previously. 

Keywords: Convergent measures, social annotation systems, evaluation, social 

sensemaking. 

1   Introduction and Approach 

Learning and knowledge handoff are becoming critical in the workplace. In fact, 
knowledge work is increasingly depended on (or equivalent to) learning and profes-
sional development (Tapscott 1996). Also, corporations are often losing critical  
domain knowledge as older workers are leaving before they could transfer their 
knowledge. 

But new technologies are showing new opportunities. Web 2.0 tools have lowered 
the costs for social construction of knowledge (e.g., Wikipedia, social bookmarking) 
and made possible user-defined combinations of content across web services (e.g., 
mashups). New semantic web techniques are also allowing users to give structure to 
the content that they share (e.g., microformats in blogs).  

In this context of new social needs and social technology, researchers in Human-
Computer Interaction and Information Retrieval are redirecting their focus of inquiry 
from solitary individuals working with systems and content to models of social in-
formation foraging, knowledge sharing, and sensemaking [7, 11]. Social annotation 
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systems such as SparTag.us [2] and del.icio.us1 exemplify socially constructed under-
standings of content. 

However, the settings in which collaborative software is employed are full of ex-
perimental confounds: real-world socio-technical systems introduce greater complex-
ity into the evaluation process [2]. Measures of performance in social sensemaking 
remain difficult [4]. Researchers of communication and collaboration technologies 
have faced this problem repeatedly. As a result, they have started including also proc-
ess measures (e.g., measures of costs in the process such as turn-based measures of 
efficiency in communication). Monk and collaborators [5] reconstruct the evolution of 
measures in these studies. They observe that the traditional measures of task perform-
ance such as number of errors and completion time were only sensitive to gross 
changes in the technology utilized. For example, when performing tasks within ex-
periments, the participants may tend to protect their primary task and get the work 
done efficiently through extra effort (i.e., costs) at the expense of any secondary tasks.  
In order to capture these hidden effects the researchers have introduced measures that 
characterize aspects of the process of communication, rather than just the final out-
comes (e.g., number of the turns, length of the turns, kind of turns, see [9]).  More 
recently, experiments on knowledge sharing in teams have combined both process 
and performance measures in order to assess the effects of the new tool on the sharing 
process (quality and costs) and then the consequences of these effects on the group 
performance [e.g., 1].  

Previously we reported the main results obtained from performance measures on 
the use of the social annotation tool, SparTag.us [6]. This show a statistically signifi-
cant increase in subject matter learning for participants using the tool in a condition of 
access to annotations of another. In this paper we briefly summarize the method and 
the effects on performance and then focus on the process measures that were also 
taken during the experiment. The goal is to use behavioral measures (e.g., URLs  
visited) and supplemental products (e.g., responses to essay questions) to help charac-
terize visible changes in the process that led to the differences in performance (ques-
tionnaire-based outcome). The analysis of these process measures is in part quantita-
tive and in part qualitative. 

We next briefly introduce the object of study, the social annotation tool, 
SparTag.us. We then summarize the experiment and its measures and detail selected 
process measures found. We discuss these in light of the significant performance gain 
seen in subject matter learning. We conclude with implications for design and future 
research. 

2   The Study System, SparTag.us 

Inspired by the work of Schraefel et al. [8] showing that in many cases of information 

foraging the content of interest is at the sub-document level, SparTag.us uses annota-

tion as a means to collect paragraphs of interest. Specifically, when a user loads a web 

page in his browser, we modify the underlying representation of the page to partition 

its textual content into paragraphs and make the words of the paragraphs live and 

                                                           
1 http://del.icio.us 
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clickable [3]. Here the user can annotate the content in various ways. S/he can click 

on words of a paragraph to tag the paragraph, This Click2Tag interface offers a low-

cost option for the user to annotate paragraphs of interest in situ while reading the 

web page. S/he can also highlight phrases and sentences in situ through click-and-

drag actions. Thirdly, as the user tags or highlights, SparTag.us automatically extracts 

the annotated paragraphs from the page and inserts them into a system-created note-

book, where further annotations can be made later. 

In SparTag.us, a user can also subscribe to the annotations of another user by des-

ignating that user as a friend. Consequently, the user will see his friend’s annotations 

when viewing pages containing the same paragraphs annotated by his friend. Color-

coding is used to distinguish between own and friends’ annotations. Figure 1 shows 

the friend’s notebook as viewed by the user. Note that the friend’s highlights and tags 

are displayed in light blue and the user’s own highlights in yellow.  

 

Fig. 1. Study participants using the SparTag.us annotation tool may view the collected tags and 

highlights of another in a friend’s Notebook. The view here shows annotated paragraph with 

another’s annotations shown in blue and the other person’s tag cloud. 

3   A Social Reading Experiment  

We conducted a ‘Social Reading Experiment’ where participants needed to use Web 

resources to learn about a topic area: “Enterprise 2.0 Mashups”, which is a combina-

tion of the technology areas of “Enterprise 2.0”2 and “Web 2.0 Mashups”. Study par-

ticipants would need to find and understand many web pages because at the time of 

the study there was no single source of information on the topic area.   
 

                                                           
2 http://en.wikipedia.org/wiki/Enterprise_2.0 
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Our experiment compared three groups of participants who worked:  

1. Without SparTag.us (WS), but with traditional note-taking tools.  
2. With SparTag.us only, used individually (SO).  
3. With SparTag.us with the annotations of a ‘Friend’ (SF).  

The conditions WS and SO were control conditions in which individuals read web 
content without access to others’ annotations. To provide for an ecologically valid 
comparison, WS participants could take notes in MS Word or with pen and paper. In 
the SF condition, people independently read web content but also had access to social 
annotations created by an experimenter-simulated subject-matter expert. 

Tools like SparTag.us and del.icio.us are tools used at an Internet scale and scope. 
In our experimental setup we look at the performance of individual users. However, 
we extended the scope of inquiry beyond the individual by simulating a social reading 
condition. That is, in one of the conditions each user was exposed to the SparTag.us 
Friend, which is an organized collection of annotations comprising a tag cloud, a list 
of URLs, and a set of paragraphs. These annotations are derived from the following 
social resources. Twenty tags associated with the top 100 annotated URLs from a 
del.icio.us query on “enterprise mashup” constituted the target tag cloud. URLs found 
by top hits from a Google search that used each tag as a search term. These URLS 
were manually tagged with these ‘expert’ tags using SparTag.us. 

The hypothesis is that participants that were exposed to tags, URLs, and highlights 
from a knowledgeable other would perform better than the participants without this 
exposure. We thus evaluate performance measures between subjects in the experi-
mental condition, SF, with those in control conditions, SO and WS. Eighteen partici-
pants completed two experimental sessions. The first day was a four hour series of 
demographic survey, true-false question answering, learning in the domain area last-
ing two hours, one writing essay, and a debrief. Day 2 lasted one hour and involved 
one true-false question set and a second writing task. More details on the procedure 
can be found in [6]. 

We used a combination of performance and process measures to understand the 
impact of the annotation support used, but also give indications of how people are 
employing the technology in the context of their reading and annotation practices. The 
performance was measured using a questionnaire (created for this study). The ques-
tionnaire included a set of true-false questions, which were generated from an expert 
elicitation process and were used to assess objective learning gains in the subject 
matter domain before and after the users foraged the information in each of the three 
conditions.  

The process measures pertained to the reading and writing behaviors of each par-
ticipant: the number and sequence of Web resources visited (logged by Universal 
Resource Locator or URL), loaded and scrolled; the annotations made (tags and key-
words used), and the personal notes taken during the task.  

The main measure of learning (equation (1)) was obtained through a metric of 
learning effect developed as part of the experimental method. The Gain metric is a 
composite indicator that was computed on the basis of several scores derived from the 
questionnaire: Pretest to Posttest questionnaire scores for each participant, and maxi-
mum score. Specifically, gain scores were calculated as: 
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Using the Gain metric as the measure of learning performance, we report in [6] a 

learning effect, with the SF group showing significantly greater gains than the SO 

group and the WS group. The WS and SO groups were not significantly different. 

This establishes that participants with access to resources from a knowledgeable 

other exhibited a greater learning performance. What might have caused this effect? 

What costs are reduced or what kinds of benefits are increased? In the remainder of 

this paper we turn to the other measures taken during this experiment to explore these 

questions. 

4   Results of Process Measures of Reading Activities 

We previously reported in [6] differences in reading activities amongst the groups. 
While not statistically significant there was a consistent trend seen that on average SF 
participants visited fewer URLs, but spent more reading time on those they visited. 
This suggests a more in-depth analysis of the fewer sources of information chosen by 
SF participants. 

Table 1. Trends suggest different reading behaviors between conditions 

 URL Visits Time on URL 

Group Mean SD Mean (sec) SD 

SF 59 23.7 144.5 73.0 

SO 71.2 25.5 128.2 56.1 

WS 79.3 35.9 87.3 24.0 

We look further into this by examining what kind of URLs were being visited. 
Sites were classified as representing the following kind of information sources: 

• Blog, indicating the site was an individual’s Web log; 

• Conference, an industry or academic conference site; 

• Consultant, the business site of a consulting service; 

• Employment, a job posting site; 

• MySpartagus, use of the SparTag.us Noteboook; 

• News, a general or technology news service; 

• OpenSource, information site of the Open Source community; 

• Search, an Internet Search service; 

• Vendor, a site of a business selling in the domain area;  

• Wikipedia. 
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Fig. 2. Counts of URLs visits by kind of source while Reading. Search actions are fewer for SF 
than for SO and WS participants. 

Our aim here is to look at the differences in Web resources used to discover traces 

of cost/benefit differences between the study groups. Figure 1 shows the classification 

of the 1149 web sites visited by the 18 participants during the reading portions of the 

experiment. We can see that search is a main resource (16.5% of all URL visited) and 

that search behavior exhibits the same trend of distinguishing SF against SO and WS 

in terms of lower use of search during the observed information foraging.  

5   Results of Process Measures of Writing Activities 

We previously reported [6] differences in writing activities amongst the groups. 

While not statistically significant there was a consistent trend seen that on average SF 

participants used more domain terminology in writing answers to their essay ques-

tions (see Table 2).  

Table 2. People using SparTag.us used more domain words 

Group All 
Words 

SD Domain 
Words 

SD 

SF 549.92 207.01 141.50 46.27 

SO 528.92 202.08 136.00 58.68 

WS 459.67 174.32 117.00 48.17 
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Similar to the previous section we used a classification of the kind of URLs visited 
during writing activities. We looked at only new Web resources that were used during 
the writing tasks to supplement those found during the prior reading activity. This 
includes far fewer URLs visited, where ‘Consultant’ Web sites were not visited and 
new kinds were seen (i.e., private library catalogs and pages from online copies of 
published books). Table 3 shows the collected use of new Web resources during writ-
ing. We again see a trend indicating need for less information finding amongst SF 
participants over the other groups. 

Table 3. Participants in the SF condition accessed fewer supplemental Web resources to answer 
the essay questions 

Group  Total M SD

SF 39 6.5 5.1 

SO 58 9.7 7.7 

WS 60 10.0 12.6 

6   The Devil Is in the (Process) Details  

We had found that users supported by our social annotation tool and having access to 
annotations from a domain expert (i.e., SF condition) showed a significant increment 
in subject matter learning. In this study we addressed the question of ‘how’ (i.e., ‘in 
what ways’) such improvement in performance had occurred. To this end, we ana-
lyzed process measures characterizing the foraging behavior both before and during 
the writing of the report (i.e., number of URLs read, average time spent per URL, 
kind of URL, number of searches). We found that compared to the other two condi-
tions the participants in the SF condition exhibited greater efficiency in foraging (i.e., 
fewer sources visited, more time per source, fewer searches) and greater efficiency in 
producing the final report (i.e., more words written in the same with less additional 
foraging activity done while writing).  

Given the experimental differences imposed among the conditions (WS, SO, SF) 
and the abovementioned better learning performance of the SF participants, these 
results about the process suggest that having access to the annotations from a domain 
expert reduced the costs of foraging information, promoted more focus and depth of 
analysis, and saved time that the SF participants used to write content in the report.  

These results point to directions for future work. A more detailed explanation of 
the how and why these effects occurred will help us understand how they could be 
induced in other situations (e.g., in peer-to-peer group collaboration or within com-
munities of practice). More detailed exploration of the stimuli used in the interven-
tions is needed.  

The SO condition (with SparTag.us only) affords collecting relevant paragraphs in 
a notebook and, for each paragraph, highlighting relevant sentences, or labeling it 
with any of its own word (click-to-tag) or with a new user-entered keyword. The SF 
condition was, by design, the condition with highest support for learning because it 
further included structured information including three kinds of stimuli:  
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1. A cloud of tags that represented the expert’s terms for the domain.  
2. A set of URL to jumpstart the foraging process from relevant sources. 
3. A set of sample paragraphs in the expert’s (or friend’s) notebook which were 

examples of pieces of relevant information that the user could expect to find 
and then annotate in her/his notebook. 

As part of our future work we plan to examine in detail which of these three sets of 
stimuli has more effects, at what stage of the process, and potential interactions be-
tween them. This requires focused follow-up studies that adopt measures consistent 
with the present study.  These could manipulate solely the exposure to the expert’s 
tags and then measure the effects on the terms typed while foraging new information; 
or could manipulate only the exposure to the expert’s set of URLs and measure the 
volume and ordering of the sources read and annotated in the user’s notebook; or, 
finally, could manipulate the visibility of sample paragraphs in the friend’s Notebook 
and measure if the final reports by users exposed are individually more focused on 
fewer topics and/or more consistent among each other (e.g., measure, within each 
condition, how similar the content of the report is to the content of the paragraphs 
and/or the cloud tags). In summary, what beneficial effects do experts’ tags, URLs, 
and relevant paragraphs have? How and at what stage of the process are learners in-
fluenced by these expert traces? What are the extra cognitive costs when these cues 
are missing? 
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Abstract. This paper presents a process to conceive strategies to prevent the 

human error when operating industrial systems. The process adopts a broader 

view to error prevention, going beyond the error analysis to consider the user 

profile, the task and context description. The error classification is done accord-

ing to a task execution cognitive model. The conceived strategies focus on the 

human interface component of those systems since it is this work’s premise that 

the human interface design has a strong impact on the human error rate.  

Keywords: Human-Machine Interfaces, Human error, Cognitive model. 

1   Introduction 

With the technology development and the consequent rise in system robustness it 

becomes more common the occurrence of incidents and accidents related to human 

errors. In parallel, automated systems concentrate information and decision making 

on the hands of fewer operators who under time pressure are subjected to high cogni-

tive loads. In the electricity industry, as it will be discussed later in the case study, 

20% of system failures are related to human errors. This work is part of a broader 

study that aims to build more ergonomic human interfaces for automated industrial 

systems. Those systems operate efficiently during routine but are highly dependant on 

the human operator during exception and critical situations, when tasks are more 

complex and deadlines more strict. 

This paper presents a process to conceive strategies to prevent the human error 

when operating industrial systems. The process is based on the error classification 

according to a task execution cognitive model. The strategies are conceived for the 

human interface component of the automated systems since it is this work’s premise 

that the human interface design has a strong impact on the human error rate. 

The process is based on a broad context analysis that includes: work context, op-

erator profile, task analysis and the history of incidents and accidents that are related 

to the human error in the industrial installation. The operator profile brings informa-

tion on the human abilities and limitations, thus being essential to understand the 

causes of errors and how to prevent these. The task analysis, beyond describing task 

characteristics, must also give insight into task frequency, the impact of the error and 
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the interaction rules for the system operating devices. The context analysis is based  

on ergonomic principles and consists on detailing the work environment from the 

physical and organizational points of view. It must highlight issues related to work 

ergonomics and their potential relation with system failures due to human error. To 

complete this phase, there is the analysis of the history of system failures related to 

human error, according to reports on accidents and incidents. The errors are then 

classified according to the categories proposed in the work of Rouse and Rouse, apud 

Cellier [2]. 

The purpose of this broad analysis is to identify the relationship between the hu-

man errors and the quality of the human interface; in order to propose effective strate-

gies to prevent errors. Each proposed strategy must then be validated based on criteria 

such as extra time taken to execute the task and the error rate with and without the 

strategies incorporated to the human interface component. 

As a result of this work the authors intend to incorporate the process for strategy 

conception into a method for user interface conception – the MCIE [15] that will 

allow the designers to account for the human error when conceiving the user interface 

for automated industrial systems. 

In the first session, this paper will present a review on human error classification. 

Then, in session two, it will give a brief description of the case study context, i.e. the 

operation of electrical systems. Section three presents the proposed process whereas 

session 4 gives an example on how to conceive strategies using the process. The paper 

concludes presenting the preliminary results of a validating experiment using a simu-

lated environment and presents the future steps for this research. 

2   The Human Error and Its Classification 

A system is considered adequate when it behaves according to its design specifica-

tion. A human action that modifies this behavior can be considered an error. Accord-

ing to Van Elslande and Alberton [13], every error can be considered human since it 

would have originated either from the human design or during human operation. 

Rasmussen [9], on the other hand argues that an error must not be considered an  

isolated result of a human action but rather the result of the interaction between the 

human operator and the system. Avizienis et al. [1] distinguish the result of an inter-

action and the interaction itself, which take the system into an invalid state, by catego-

rizing them as an error and a fault respectively. To Laprie [7], the error can originate 

in the system (fault) or in the human operator (error); and a system fault can lead into 

a human error.  

According to Holnagell [5] errors can cause incidents and accidents. An accident is 

defined as a short and sudden event that results in an unwanted situation directly or 

indirectly linked to a human action; whereas an incident is an unwanted event that 

ends a normal activity. Along this text the two concepts will be employed indistinctly. 

Regardless of their differences most authors agree that the error originates during 

the interaction between the human agent and the system, and thus cannot be analyzed 

in an isolated manner neither from the system nor from the human points of view. 

Therefore, this is the viewpoint adopted in this work. It is also considered that the 
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human error consists in an action that takes the system into an invalid state according 

to a predefined standard.  

2.1   A Brief Review on the Human Error Classification 

The human error has been classified according to different aspects. According to 

Reason’s classification [10] it is based upon the user level of experience. His classifi-

cation consists of: lapses that are made by experienced users who know the task and 

the work; whereas errors of intention happen when inexperienced users, due to lack of 

training, mistake the actions.  

Swain’s [12] classification is based on the task level execution mode. According to 

him there are: errors of omission, when parts of the task are omitted; errors of execu-

tion, when the task is executed in an incorrect manner; derivation errors, when an 

extra part is added to the task; errors of sequence, when the task sequence is altered 

and errors of timing, when the task execution time is altered.  

Norman’s [8] error classification is essentially based on the task action` level. He 

identified and classified errors according to the following patterns: (a) different tasks 

with initial actions in common and an unusual follow-up sequence; (b) a correct ac-

tion performed on the wrong object; (c) sensory data interfere and unconsciously 

modify the course of action; (d) an internal association between thoughts and ideas; 

(e) loss of objective before concluding an action; (f) different devices have operation 

modes in common but with different meanings.   

To conclude this brief review on error classification, Rouse & Rouse, apud Cellier 

[2], present an error classification based on Rasmussen’s [9] cognitive model of task 

execution. This classification is effective to point out potential faults along the prob-

lem solving phases. Since this work intends to propose strategies for error prevention 

according to those phases. There is a particular interest in the execution phase that is 

characterized by Rouse & Rouse as follows: (a) omitting parts (actions) of a task; (b) 

executing a task repeatedly; (c) introducing a non prescribed action in the task; (d) 

executing actions out of a prescribed sequence; (e) inappropriate action timing; (f) 

incorrectly placed action; (g) task completed, but incorrectly and (h) task finished, but 

without completion (task goal was not achieved).  

Analyzing the given classifications it becomes evident that many of the cited au-

thors center their error analysis in the task execution phase and do not consider the 

preceding phases when cognitive factors lead the user into the error. To comprehend 

the error mechanisms it is necessary to extend the error analysis in order to clarify the 

mental processes behind the error and then propose effective strategies to prevent it. 

Therefore this paper proposes to extend the conventional error analysis which is based 

upon the history of errors in order to account for the characteristics of: the operator, 

the task and the work context.  

3   Context Analysis  

To better understand the error mechanisms it is necessary to understand the context in 

which it happens. According to Dekker [3], when analyzing an error incident, better 
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than understanding the causes of the error is to understand why the information at the 

time of the error made sense to the system operator and why the specific reaction to it.  

In automated systems the operator is a key figure during exceptional situations 

when the complexity of the required tasks requires human intervention. In spite of the 

importance of the human intervention, automation system designers tend to prioritize 

the system functionalities in detriment of the physical and cognitive abilities of their 

users.  

This work is based on a study of human errors in the operation of electrical sys-

tems [4]. The authors had access to a corpus of study consisting of ten years of reports 

on human error that triggered accidents and incidents in the operation context of  

substations. The operation consists of performing maneuvers in order to put the  

substation in predefined configurations. These operations can be fully or partially 

automated, or manually executed by the human operators. Currently in the electricity 

industry, various levels of interaction with the plant are simultaneously available to 

the operator. It is possible to interact directly with the equipment panel; or  through 

panels located in control rooms in the plant, as illustrated in Figure 1, and through 

supervisory system which represent the entire system allowing for the interaction 

through computer screens. During the interaction with supervisory systems, the in-

formation volume and content, presented to the operator is typically very high, allow-

ing the access to a variety of devices and equipment statuses. Part of this information 

is available just for monitoring purposes whereas other demands acting within strict 

or hard deadlines. From the task point of view, the supervisory systems offer a com-

pletely new form of interacting with the plant. Figure 2 illustrates the screen of a 

supervisory system installed in the same electrical substation representing the plant 

information. 

  

Fig. 1. Control pannel Fig. 2. Supervisory screen 

4   Error Prevention Strategies - A Conception Process 

To be effective, a strategy must anticipate potential errors looking into previously 

reported errors. To complement this approach one must also consider context factors 

that might lead into new error situations. Therefore it is proposed to analyze existing 

error reports using Rasmussen’s [9] cognitive model of task resolution, adapted to the 
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error classification proposed by Cellier [2]. It is also proposed to analyze other factors 

which might lead into novel error situations in the work context.  

The process here proposed is based on the history of human triggered incidents and 

accidents in specific contexts. It considers the user profile, the work context and the 

task description. The process steps are illustrated in Figure 3.  

 

Fig. 3. Process to conceive strategies for error prevention 

Knowing the user profile: characteristics and limitations; is essential to propose ef-

fective error prevention strategies. The proposed process is based on information 

collected in the context for which the strategies are proposed. The process does not 

propose an order for the information gathering, the order presented on this paper is 

just a suggestion, as represented in Figure 3. 

One step in the process consists of raising the user profile. This is done by means 

of questionnaires answered by the system’s operators. The questions cover profes-

sional aspects such as the level of expertise as well as personal characteristics such as 

age group, gender, etc. 

Another relevant aspect is the task description, which includes information on: how 

often the task must be executed, how critical are the tasks results, how complex are 

the rules employed in the task execution procedure. This information can be gathered 

from interviews, observation of the work routine and documentation analysis.  

The context data analysis is based on the norm ISO 9241 - part 11[6] and consists 

of the following steps.  
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• Data gathering: analyzes the physical, technical and organizational as-

pects of the work environment through documents. Build a questionnaire 

and a checklist, to gather more detailed information about specific ergo-

nomic aspects, which were not clarified in the previous step. Apply the 

questionnaire to operators and use the checklist during visits to the work 

environment, as a guide to interviews and further observation. 

• Data analysis: highlights the work context aspects that need to be con-

trolled in order to prevent the human error.  

Before proposing strategies it is important to review and critically analyze the ef-

fectiveness of the strategies adopted in the company. As part of the data gathering, 

one must collect information on previous strategies and their efficacy. This can be a 

source of invaluable information.  

The strategies must be formulated in a clear manner, stating the kind of error to be 

prevented, how to be implemented and validated in the real environment. Before 

putting these in practice they must be validated. The validation can go through vari-

ous levels that can consist of interviews, technical visits, and document analysis; but 

must be concluded with a pilot test in the real work context. A negative outcome must 

take the strategist back to step one of context analysis, i.e. data gathering. The pro-

posed validation criteria should include the strategy influence on: the task duration, 

error incidence, and impact on the work routine, implementation viability and the 

impact on the operator’s learning curve. 

5   Applying the Process to a Substation Operation: A Case Study 

The process was applied, as a case study, to the operation of an industrial an electric 

substation. This choice of context was made on the basis that this electric system is a 

critical one, where the human error can cause material losses as well as endanger the 

lives of the ones directly and indirectly involved with the system. This kind of task 

poses a high stress load on the operators. 

The chosen substation is a real installation that belongs to one of the most impor-

tant suppliers of the Brazilian electricity grid. The substation itself is an important 

node of the grid. There, the operators must be able to interact in any of the three levels 

described previously. The company, CHESF (Companhia Hidro Elétrica do São Fran-

cisco), has made available in a previous study a set of reports on human errors trig-

gered accidents and incidents in a ten years period [4]. This set of reports constituted 

the main corpus of study for the process. It follows the description of each step in the 

strategy proposal process, applied to this case study.  

5.1   The Operator Profile 

To collect the data relative to the substation operator’s profile (age, gender, back-

ground, levels of training and experience) it was applied the questionnaire Webquest 

[15]. The gathered profile describes an operator predominantly male, aged between 35 

and 65, with the technical training acquired in the company; familiar with the use of 

computers and who worked mainly for the same company and in the same substation. 



 Proposing Strategies to Prevent the Human Error 285 

Therefore we are talking about an expert. The operators work environment is the 

substation control room and the patio where the equipment is placed. 

5.2   Task Analysis 

From technical visits to the installation, from observations, interviews and the analy-

sis of the error reports, one arrived to the following task description. The task in the 

substation consists essentially in supervising and controlling the equipment to main-

tain or put the installation in previously defined configurations. To perform this task 

the operators interact with the supervisory system, the control panels in the control 

room and directly with the equipment panels in the patio. During routine or emer-

gency situations, the task execution is formally bound by documents that prescribe the 

system final configuration and the procedure to reach it. Although, with time some  

of the procedures can be learned, the operators must strictly follow the documents. 

With time the procedures can change due to equipment replacement and installation 

upgrading. 

From the error reports it was extracted the information that routine tasks, particu-

larly the more frequent ones, are strongly related to errors. On the other hand,  

the error incidence during rare programmed tasks is higher than during urgency  

and emergency procedures. Simple tasks and emergency tasks had the highest error 

incidence. 

5.3    The Work Context 

The information on the work context was gathered through guided interviews, and 

observations based on checklists built according to the standard ISO 9241, part 11. 

The intention was to investigate and highlight ergonomic aspects of the operator’s 

task. From the analysis it was found that the operators work in pairs and in shifts. It 

was also registered complaints of work fatigue and cognitive overload. The error 

reports registered situations when steps of the prescribed procedure were bypassed 

during routine situations. From the equipment point of view, it was found that equip-

ments with similar functions but from different manufactures were not compatible in 

terms of interaction rules, leading into errors. From the organizational point of view 

the operators were generally unsatisfied with the management of faulty behavior. 

From the physical point of view there was dissatisfaction with the acoustics and light-

ing in the control room. 

5.4   Error Analysis 

The error report analysis step was based on the Rasmussen’s [9] cognitive model of 

task resolution, adapted to the error classification proposed by Cellier [2]. The corpus 

analyzed consisted of 35 human error reports related to incidents and accidents in the 

company spread over a period of 10 years. It follows the findings according to each 

phase of the task resolution Rasmussen’s model. 

System observation: in 32 out of the 35 cases, the error happened during this phase.  

No observation and incorrect observation responded for 62% of the reported causes 

of error. Hypothesis proposal: in 11 reports out of the 35 cases no hypothesis was 

formulated. From the analysis it was found that not formulating a hypothesis and 
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formulating either an insufficient or inconsistent one responded for 56% of the prob-

lems during this phase. Hypothesis evaluation: during this phase, 86% of the errors 

were associated to accepting the hypothesis or not evaluating one. Goal setting: From 

the study it was found that in 72% of the cases the goal set was correct, in the remain-

ing 28% cases were either incorrect or incomplete. Choice of procedure: 17 out of the 

35 reports mentioned the correct choice of procedure whereas 12 reports mentioned 

incorrect choice and 6 mentioned the choice of an incomplete procedure. Task execu-

tion; this phase evidenced a high incidence of cases where the procedures were not 

completed (6 out of 35) and where the intermediate actions were either performed on 

the wrong device (15 out of 35) or were omitted (3). The remaining cases accounted 

for actions out of a sequence or inappropriate timing. An example of performing the 

correct action over the wrong device in this context is when the operator follows the 

prescribed procedure and closes a wrong switch break. 

5.5   Previous Strategies 

During the technical visits to the substation installation it became evident the efforts 

made by the technical personnel to prevent errors during the operation. It follows the 

description of some of these initiatives.  

Placing a physical barrier over the interaction devices (switches, buttons, etc.) lo-

cated on control panels, in order to delay the action and give the operator a chance to 

reflect over it. Another strategy consists in demanding the operator to confirm with 

his colleague each step (action) in the procedure and to acknowledge the system feed-

back to this action. It has also been placed a safety warning in the form of a yellow 

strip painted around the equipment to avoid unintended actions on the panels (acci-

dently pressing a button) due to close proximity. Restriction notes, in the format of 

warning cards, are also placed by the side of an interaction device on the equipment 

panels, to warn the operators of a restriction related either to safety or to temporary 

unavailability of equipment due to maintenance.  

5.6   Strategy Proposal 

The following strategies were proposed on the basis of: relevance (the error report 

studies highlight the cognitive phases of task execution when the operator is more 

likely to err); operator profile (skills and limitations); task description (relevance and 

impact of not being completed successfully); knowledge of the context (work condi-

tions) and the effectiveness of the error prevention strategies already in use. The pro-

posed strategies are the following. To increase the visual distance between similar 

interaction devices found on the panels (buttons, switches, etc.). To review the use of 

terms in the panels user interface to ensure a standard. Visually highlight the objects 

involved in the programmed procedures. Provide a mechanism to indicate the se-

quence of actions to be performed during the execution of a procedure, highlighting 

the action currently being executed in relation to the sequence to be followed  

(evolution along the sequence).  Generate an alert when an action being performed is 

missing or unduly introduced in the sequence. Call the operator’s attention to time 

restriction during the procedure execution. Block an action which is out of a sequence 

or overdue, informing the operator of such prohibition. 
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5.7   Validating the Strategies 

Given the practical impossibility of validating the proposed strategies directly in the 

real work environment these have been tested in a simulated work environment. This 

environment consists of a virtual reality representation of the control room offering 

the two abstraction levels of interaction:  control panels and the supervisory system 

work station. The simulator [11] represents the plant behavior using Petri net models. 

The two levels are interconnected and the effect of any action performed in one level 

will cause an update in the other.  

The strategies were initially tested using the simulated environment, nonetheless 

these are still to be validated in the real work environment, in a pilot situation, adopt-

ing the criteria mentioned before. The validation protocol is currently under discus-

sion with the company. The preliminary results of the pilot testing in the virtual work 

environment already indicate a positive influence on the error rate. 

6   Concluding Remarks 

Given the extent of the consequences of the human error during the operation of in-

dustrial systems, a process for error prevention strategies can be of great help to plan-

ners and designers. Usually, error prevention strategies are conceived on the basis of 

specific events and rarely consider the human interface component. The knowledge of 

the task, the operator profile, and the error episodes issued by the process has resulted 

in effective strategies to prevent the error; since it can anticipate potential errors and 

not just prepare for already known situations. The following steps in this research will 

consist in validating the strategies in the real work context as well as applying the 

process to a different work context. The objective is to investigate how effective the 

strategies can be in reducing the operator’s cognitive load, the human error rate, thus 

improving operation safety. 
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Abstract. Sleep deprivation-induced deficiencies in performance can be associ-

ated with high financial and human costs. Napping is an effective countermea-

sure, but the effects depend on previously accumulated sleep debt and timing, 

duration and sleep architecture of the naps. Long-term assessment of sleep ar-

chitecture of nap/sleep episodes could yield an estimate of the accumulated 

sleep debt and help optimize the napping schedule. Moreover, sensory stimula-

tion coupled with real-time assessment of sleep states could optimize sleep ar-

chitecture and duration of each nap. With these goals in mind we designed a 

wearable device, dubbed Nap Cap, which integrates real-time EEG analysis 

with audio, visual and thermal stimulation. The prototype was evaluated on 

seven subjects (fully rested vs. sleep-deprived). While the prototype provided 

high quality EEG and comfort, sensory stimulation did not significantly influ-

ence sleep architecture. Evaluation of more paradigms of sensory stimulation on 

larger samples is warranted before final conclusions can be made.  

Keywords: Nap, Sleep Deprivation, Performance Optimization, Wearable  

Devices. 

1   Introduction 

Sleep restriction has a profound impact on human behavior, performance and physical 

health. Even small amounts of sleep loss accumulate over time resulting in a “sleep 

debt”, and manifest in impairments of alertness, memory and other cognitive func-

tions [1]. Deficient performance can be associated with significant social, financial 

and human costs. Impaired vigilance is the leading cause of transportation and indus-

trial accidents in the US [2, 3], while recent National Aeronautics and Space Admini-

stration (NASA) reports revealed that pilots often experience brief episodes of sleep 

while flying [4]. Due to the large number of shift workers or workers with irregular 

schedule sleep restriction is considered a serious public health and safety concern [5].  

While temporary amelioration of the effects of sleep restriction on motor and cog-

nitive performance can be achieved by natural or pharmacological stimulants (e.g. 

caffeine) or overt stimulation of the senses, brief naps taken at appropriate times 

throughout the day are the only intervention without long-term adverse effects that 
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efficiently counter chronic sleep restriction. Unfortunately, attempts at designing op-

timal napping schedules [6] have been unsuccessful. The main reason for failure was 

the narrow focus on duration and timing of naps, whereas the influence of other fac-

tors such as sleep architecture, sleep debt accumulated prior to a nap and the subject's 

susceptibility to sleep deprivation, was neglected. However, adequate amounts of sta-

ble NREM Stage 2 sleep in each nap [7] and long-term balance among NREM, REM 

and slow-wave sleep [1, 6] have been identified as key determinants of post-nap per-

formance. These findings suggested that manipulating the proportions of the key sleep 

stages during napping could substantially reduce the number and/or duration of naps 

necessary to optimize motor and cognitive performance. 

Our group has recently developed a modular device for optimization of napping in 

operational environments. Dubbed the “Nap Cap”, the device is designed  to assess 

sleep architecture of each nap in real-time by measuring brain electrical activity 

(EEG), maintain a record of all naps taken, provide protection from environmental 

disturbances, deliver sensory stimulation to influence the sleep architecture in the 

desired way and awaken the subject at an appropriate time to avoid sleep inertia 

(Fig.1A). This article presents the results of a pilot evaluation of a prototype device.  

 

Fig. 1. A. Architecture of the Nap Cap device consisting of four main modules. B. Prototype 

device assembled of off-the-shelf component. 

2   Methods 

2.1   Prototype Nap Cap Device 

The prototype Nap Cap device (Fig.1B) was assembled with off-the-shelf compo-

nents. EEG was recorded with a wireless wearable 9-channel headset (Advanced 

Brain Monitoring Inc., Carlsbad, CA). Recorded channels included C3-A2, C4-A1,  

Fp-Fp2, Fz-PO, Cz-PO, vertical and horizontal electrooculogram and submental 

EMG. Bose® noise cancelling headphones and an eye cover provided protection from 

environmental noise and light respectively. The headphones also delivered auditory 

stimulation, whereas two blue LED arrays built into the foam of the eye cover  

provided visual stimulation. Blue light was chosen because of its reported beneficial 

effect on duration and severity of post-nap sleep inertia [8]. An inflatable neck pillow 

with a battery powered heating element ensured increased comfort, and provided 

thermal stimulation of the neck which was expected to produce effects similar to the 

well known ‘hot bath effect’ [9]. 
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2.2   Study Design 

Seven healthy subjects (three females, age range: 22-25 yrs) participated in the study. 

The subjects reported no significant previous or existing health problems, including 

substance abuse, and specifically, had no sleep-related complaints. 

The subjects took a 1-hour midday nap wearing the Nap Cap on two separate occa-

sions: fully rested, and after sleep deprivation. The rested and sleep-deprived sessions 

were between one and seven days apart. The subjects completed sleep logs and wore 

actigraphs for three days prior to either session so that their sleep schedule could be 

assessed. Subjects were required to abstain from caffeinated beverages on the days the 

experimental sessions were conducted.   

On the night before their second session the subjects were allowed only 2 hours of 

sleep. Compliance with the instructions was enforced by requiring that the subjects 

leave phone messages and send emails every 30 minutes between 12AM and 6AM 

except for the 2 hours they were allowed to sleep. The compliance was further con-

firmed by a visual inspection of the actigraphic data for all seven subjects.  

2.3   Experimental Sessions 

Both experimental sessions consisted of four main parts (Fig.2). The subjects were 

evaluated with the proprietary battery of psycho-physiological tests called Attention 

and Memory Profiler (AMP) before and after the nap during each session. Upon com-

pletion of the pre-nap AMP, the subjects were given lunch and then took a 60-minute 

nap wearing the Nap Cap prototype. The subjects completed a brief questionnaire 

about comfort of the Nap Cap immediately after the nap, and then started the post-nap 

AMP evaluation.  

 

Fig. 2. Experimental protocol on both experimental sessions 

AMP evaluation: The AMP evaluation included three tests of vigilance and memory. 

The 3-Choice Vigilance Test (3C-VT) required the subjects to discriminate primary 

(70%) from two secondary geometric shapes and respond as quickly as possible over 

a 20-minute test period. The memory tests, each 7 minutes long, were variants of the 

Image Recognition Test (IR) where the subject had to memorize 20 images and iden-

tify the 20 training images among 80 previously unseen testing images. In Numbers 

Paired Associate Learning Test, (N-PAL), a number was assigned to each image and 

subjects had to identify the correct image-number pairs. Five-minute breaks were 

given to the subjects in between the tests, thus the total duration of the AMP evalua-

tion was little less than an hour. 

 

Napping: The subjects napped in a room at the temperature of 24-25
o
C, lying supine 

in a comfortable chair with the back tilted so that the angle to the ground was  
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Fig. 3. Experimental manipulations during rested (above) and sleep-deprived session (below) 

approximately 30
o
. The lights in the room were turned on in order to test the efficacy 

of the eye cover in blocking the environmental light. The subjects were constantly 

monitored through a camera mounted next to the chair, and the recorded EEG was 

transmitted in real-time to the computer in front of the experimenter.  

On both sessions napping consisted of three parts during which the heating element 

was alternately turned on and off (Fig.3). Such design aimed at separating effects of 

increasing the local skin temperature on sleep variables (see below) from the expected 

effects of sleep deprivation and sleep propensity. The emphasis during the rested ses-

sion was on interventions facilitating transitions from wakefulness to solid sleep. 

Therefore, the subjects were not allowed to progress beyond NREM Stage 2, and 

were awakened with a 2-minute long alarm after they had spent 10 minutes in stable 

sleep. In contrast, during the sleep deprived session the emphasis was on procedures 

facilitating a smooth transition from deep sleep to wakefulness with minimal post-nap 

sleep inertia. Consequently, the nap was interrupted after 5 minutes of slow-wave 

sleep with either light from the LED arrays, or the alarm sound delivered through the 

headphones. If slow-wave sleep had not occurred, the nap was interrupted after 30 

minutes while the subject was in deep Stage 2 sleep. The LEDs were activated for 90 

seconds only during the first interruption. In case the subjects did not wake up during 

this manipulation, the alarm sound was played briefly (30 seconds) to awaken them. 

On subsequent interruptions only a 2-minute alarm sound was used to awaken the 

subjects. Upon each interruption the subjects were asked to complete an auditory digit 

span test (2 sequences of 7 random digits that the subjects were supposed to repro-

duce immediately after hearing them). Failure to correctly reproduce the digits was 

interpreted as a presence of sleep inertia.  
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2.4   Outcome Measures 

Sleep staging and sleep variables: The EEG records of the naps were scored by a 

board-certified sleep specialist in 30 second epochs according to the AASM standard 

rules [10]. Recorded EEG contained very few artifacts. Generated hypnograms were 

then used to calculate total sleep time (TST), sleep efficiency (SE), number of sponta-

neous awakenings after sleep onset (WASO), % time spent in each sleep stage, sleep 

onset latency (SOL), latencies to NREM stage 2 and SWS (Table 1 and 2, and Figure 

4). Sleep onset latency (SOL) was defined as time from the beginning of each part of 

a nap till the first occurrence of 3 or more consecutive epochs of Stage 1 or 1 epoch of 

any deeper stage of sleep. Latencies to stage 2 and SWS were defined as the time 

from the sleep onset till the first epoch of stage 2 or slow-wave sleep respectively.  

 

Performance measures: included reaction times and percentages of correct re-

sponses on AMP tests as well as the digit span test. Any error during reproduction of 

digits was interpreted as a presence of sleep inertia. 

 

Questionnaire: Comfort of the Nap Cap prototype was evaluated with a question-

naire which the subjects filled after the nap on both their rested and sleep-deprived 

session. The subjects graded perceived comfort for each component (EEG Headset, 

pillow, eye cover, headphones) and the device as a whole on a nominal scale with 5 

categories that were later converted into ranks for the purposes of analysis (1-very 

uncomfortable, 2-uncomfortable, 3-neutral, 4-comfortable, 5-very comfortable).  

 

Statistical analyses: The effects of experimental conditions on the sleep variables 

were tested by a 3-way ANOVA, with session (rested, sleep-deprived), time (Part 1  

or 2) and heat (off, on) as the factors. Factor Time essentially modeled sleep propen-

sity – it was expected that latencies to all stages will be shorter and % time spent in 

deeper sleep stages (Stage 2 and SWS) bigger in Part 2 than Part 1. Only main effects 

were tested because of the small sample size which created numerical problems in a 

model with interactions. Part 3 was excluded from the analysis because its duration 

was very variable (from 5 to 15 minutes) during the rested session, while most sub-

jects did not complete it at all on the sleep-deprived session. The results of the ques-

tionnaire were analyzed only descriptively. 

AMP performance measures were analyzed with a 2-factor RMANOVA with Ses-

sion (rested, sleep-deprived) and Condition (pre- and post-nap) as the factors.  

3   Results 

3.1   Effects of Sleep Deprivation, Sleep Propensity and Thermal Stimulation on 

Sleep Variables 

Consistent with our expectations, latency to Stage 2 (F(3,18)=3.8, p=0.05) and % time 

spent in Wake (F(3,18)=6.05, p=0.023), and Stage 1 (F(3,18)=7.57, p=0.013) decreased 

while TST (F(3,18)=6.01, p=0.027), SE (F(3,18)=6.45, p=0.017) and % time spent in 

SWS (F(3,18)=4.22, p=0.054) increased after sleep deprivation. SOL was significantly 
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shorter in Part 2 in both sessions (F(3,18) =4.85, p=0.041). The magnitudes of all the 

significant effects can be inferred from Figure 4 and Tables 2 and 3. 

Contrary to our expectations, the heating did not seem to have had any effect on 

the sleep architecture. The only variable that was (marginally) affected by heat was 

the number of awakenings after sleep onset (3.8±2.2 without vs. 2.3±1.7 with heat, 

p=0.08). 
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Fig. 4. Sleep onset latency and latency to Stage 2 (both in seconds) across various parts of the 

experiment. Red lines – medians; blue boxes - lower and upper quartile; black whiskers - full 

range.   

 

Table 1. Sleep architecture of naps with subjects fully rested (SE in %, all other variables in 

minutes) 

Subject TST SE  Wake S1 S2 SWS 

1626 52.8 84.4 14.1 18.6 65.8 0.0 

1627 41.6 70.4 28.5 13.5 55.5 1.4 

1628 31.8 64.9 33.7 17.4 47.6 0.0 

1629 42.3 71.9 26.9 23.8 48.2 0.0 

1630 39.8 65.5 33.4 46.0 19.5 0.0 

1631 38.3 61.3 37.6 25.9 35.5 0.0 

mean±sd 
41.8±8.2 69.7±8.1 29.0±8.3 24.2±11.6 45.3±16.1 0.2±0.6 

 
Performance measures: Reaction times and percentages of correct responses showed 

the expected pattern of performance deterioration following sleep deprivation, and its 

restoration after a nap (Fig.5). However, none of the visually apparent differences was 

statistically significant, probably due to the small sample size and high within-subject 

variability. No subject failed the digit span test. 

 

Comfort: The subjects found the Nap Cap comfortable (grade: 3.3±0.7) with the EEG 

headset being the least comfortable component (grade: 2.7±0.6). The most frequent 

complaint/suggestion about the prototype as a whole was that it contained too much  
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Table 2. Sleep architecture of naps following sleep deprivation (SE in %, all other variables in 

minutes) 

Subject TST SE  Wake S1 S2 SWS  

1626 45.3 76.0 24.0 15.0 50.8 10.0 

1627 48.7 84.8 12.2 02.2 52.9 32.7 

1628 47.5 78.7 21.0 13.8 64.9 00.0 

1629 44.8 72.7 27.3 15.1 57.6 00.0 

1630 47.0 82.0 18.0 12.2 36.6 33.4 

1631 45.8 82.8 17.2 07.8 43.4 31.6 

1632 51.5 85.6 14.4 21.8 63.7 00.0 

mean±sd 
47.2±2.3 80.4±4.8 19.2±5.3 12.6±6.2 52.8±10.4 15.4±16.4 

 
stuff and should be lighter and less obtrusive. Grades were consistently (although in-

significantly) higher on all items on the sleep deprived session, which may reflect a 

change in perceptual threshold due to sleep deprivation, or an adaptation to wearing 

the Nap Cap. The two subjects who gave the lowest grade for comfort had the lowest 

sleep efficiencies and highest % of stage 1. Their complaints had however little to do 

with the Nap Cap: one was uncomfortable about sleeping under surveillance and an-

other complained of not being able to sleep well in the supine position.  

4   Discussion and Conclusions 

Contrary to common reports of low signal quality in unattended sleep recording with 

ambulatory polysomnographs the Nap Cap prototype delivered high quality EEG 

with very few artifacts, demonstrating that careful mechanical and electrical design 

can result in a robust yet easy to use wearable EEG acquisition system. Algorithms 

for real-time sleep staging have been developed and successfully tested on a larger 

data set [11]. However, the EEG headset used in the Nap Cap prototype acquires 

many more channels that it is needed for accurate sleep staging, and utilizes modi-

fied ‘wet’ Ag/AgCl electrodes with a small amount of conductive paste, which is a 

clear disadvantage for in-field use. The next generation of Nap Cap will be designed 

to use forehead and peri-orbital dry electrodes, possibly similar to those used in the 

ARES
TM

 Unicorder. Forehead EEG in combination with head actigraphy suffices for 

accurate automated distinction among wakefulness, REM, light NREM and slow-

wave sleep [12]. 

While the sleep monitoring in real time was successfully accomplished, sleep 

modulation by means of sensory stimulation achieved very little effect on the transi-

tion from wakefulness to sleep. Thermal stimulation of the neck that we hoped would 

have replicated the ‘hot bath’ effect bore no objective impact on sleep architecture of 

the naps, and some subjects even found it distracting. The heating was however not 

excessive since the skin temperature increased in all subjects for less than 4
o
C during  
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Fig. 5. Mean reaction times (RT) and percentages of correct responses (%CR) on AMP tests. 

Black error bars between the box plots represent the mean and standard deviation of the same 

variables from a reference database of over 1,000 rested and sleep-deprived subjects. 

the parts of the experiment when the heating element was switched on (rested session: 

2.18±1.01
o
C, sleep deprived session: 2.81±0.52

o
C, in both cases measured after 20 

minutes). The measured increase in skin temperature is comparable to that in recent 

reports of the successful use of thermal suits to increase the depth and quality of sleep 

[9]. The failure of thermal stimulation in our experiment could perhaps be explained 

by the substantially smaller area of the skin that was heated with the Nap Cap. Effi-

cient heating of larger areas of the skin would be difficult to achieve with a battery 

powered system without compromising the lifetime of usage before the batteries need 

to be replaced or recharged. We plan to conduct more studies of the effects of thermal 

stimulation on sleep architecture, and build eventual positive findings into an im-

proved version of the Nap Cap.   
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Fig. 6. Two potential form factors: a soft ski-mask design (left) and a more rigid visor design 

(right). In both cases the electronics and batteries will be housed in the appropriately designed 

eye cover. 

Awakened by the applied auditory stimulation the subjects showed no gross signs 

of residual sleep inertia on the digit span test. The applied visual stimulation on the 

other hand did not awaken most of the subjects, and there was no evidence that it 

added anything to the subsequent brief auditory stimulation in terms of mitigating the 

post-nap sleep inertia. It is however unclear whether subtle deficits in motor or cogni-

tive performance would have been noted, and differences between the visual plus 

auditory vs. auditory stimulation alone detected if a more sensitive (but still brief) test 

had been applied upon each awakening. Furthermore, it would be premature to draw 

general conclusions on the basis of few fixed stimulation patterns that have been 

tested so far. Our future research will focus on designing a variety of the stimulation 

patterns, exploring more sensitive metrics for quick detection of residual sleep inertia, 

and improving the experimental design of the future validation studies. Comfort of the 

Nap Cap also needs to be further improved as it is crucial for success of a device that 

aims at optimizing sleep. This will be achieved by reduction in the number of sensors 

and weight of electronic circuitry, custom design of the earphones, and integration of 

all components into one-piece easy-to-apply device (figure 6). 

In conclusion, the results of the pilot validation confirmed the viability of the con-

cept of using an EEG-based wearable device to monitor and optimize sleep, but more 

psycho-physiological research and further technical improvements are warranted be-

fore it becomes ready for field use. 
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Abstract. Effective teams are an integral component to the success and the ad-

vancement of any organization. This issue emphasizes the need to develop valid 

measures for team performance especially in operational environments. The use 

of psychophysiological data has been proposed as a candidate for developing 

these team-level measures. In this paper, we review past research in the field 

and discuss two contrasting approaches to model human cognition used in the 

context of teams. We then propose a test-bed for evaluating these models for 

human-in-the loop adaptive systems using psychophysiological measures. 

Keywords: Team Performance, Team Cognition, Psychophysiology, Social 

Cybernetics, Information Processing, Closed-Loop Human Systems. 

1   Introduction 

Improvements in team performance are related to team members’ understanding of 

the shared mental model (SMM) represented within the team [1]. This understanding 

implies that each team member knows his/her own capabilities, the task at hand, and 

the capabilities of the other teammates. Good team members use this information to 

mentally simulate how others on the team will react in different situations [2]. More 

specifically, SMM consists of the following factors: team cognition, team skills, team 

attitudes, team dynamics and team environment [3]. Team cognition is defined as a 

mechanism that produces coordinated behavior, emerging from the interplay between 

each team member's individual cognition and team process behaviors such as coordi-

nation and communication [4]. Understanding team cognition is a key aspect for pre-

dicting team performance [1]. 

Measurement of team cognition is still in its initial stages. The lack of research in 

this field [5] may be attributed to the inadequate development of the construct itself 

along with confusion over how these cognitive variables can be measured at a team 

level. Even so, theories governing the construct of team cognition continue to be so-

lidified with the establishment of related terminology and methodologies [4]. Studies 

in several laboratory settings have provided a better understanding of the candidate 

techniques for measuring team cognition. In this paper, we will describe relevant 

results from such studies. We also describe two opposing views on cognition within 
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individual/teams, namely social cybernetics and information processing. Finally,  

we propose a test-bed for evaluating these two models using psychophysiological 

measures. 

2   Previous Work 

Kiekel et al. [6] attempted to use voice communication data to evaluate team per-

formance. In this study, the authors collected communication logs from a team of 

three members performing a task of flying a simulated plane over 10 missions. 

Changes in dominance patterns (how much each team member spoke) for each  

mission were then analyzed. The results showed that higher numbers of distinct domi-

nance patterns in a mission correlated with poorer team performance.  

Another study by Henning et al. [7] made use of psychophysiological data to  

determine team performance. The authors applied their cybernetic model of social-

psychophysiological compliance (SPC) and evaluated it as a predictor of team  

performance. SPC, in this regard, predicts that psychophysiological measures between 

team members will synchronize when team performance is optimal because of the 

ability of good team members to anticipate each other’s responding.  As a part of this 

study, 18 teams of two participants each were tasked with manipulating a simulated 

object through a complex two dimensional path. SPC was calculated from heart rate 

variability (HRV), skin conductance response (SCR) and respiration data and cross 

correlated between team members. The results showed significant coherence among 

the psychophysiological measures for high performing teams. Based on these results, 

the authors claim SPC not only effectively predicts team performance, but provides a 

reliable means to trigger adaptive automation. 

3   Social Cybernetics 

The study by Henning et al. [7] is based on the cybernetics perspective.  This perspec-

tive views motor behavior as a means of self-regulation via effects of motor activity 

on cardio-respiration, hormonal activity and other physiological systems in addition to 

its role in body locomotion. [8]. The cybernetics perspective for one person is ex-

tended to a social context with multiple persons interacting with each other. This 

theory is based upon the hypothesis that an individual can control sensory feedback 

not only from their own behavioral movements, but also from others with whom 

he/she is interacting. The cybernetics approach applied to teams is in contrast to the 

information processing approach, which views all motor activity as end event follow-

ing series of mental processing steps. In an extension of the virtual object manipula-

tion study described above Henning et al. [9] evaluated the use of SPC as a predictor 

by varying the difficulty level of task as a function of the SPC metric. In matched 

condition the difficulty level was increased when SPC indicated that the team could 

handle increased task demand and lowered when SPC indicated that the team could 

not. In the unmatched condition, the difficulty level was decreased when SPC indi-

cated that the team could handle increased task demand and vice versa. Task perform-

ance was analyzed for both conditions and the error of tracking was found to be lower 
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in the matched condition. However this was accompanied with an increase in task 

completion time. 

4   Information Processing 

The social cybernetics view opposes the information processing view, in which the 

motor actions performed are considered as the end result of mental process. Within an 

augmented cognition framework, an information processing approach focuses on 

determining the instantaneous cognitive load using physiological sensors. Mitigation 

strategies such as task scheduling, modality encoding are sketched to cope for indi-

viduals performing under stress. Task sharing and offloading is mentioned as an addi-

tion when the approach is extended to a team environment [12]. Other mitigation 

strategies such as automation of information acquisition and automation of informa-

tion analysis are also suggested, with a caution that automating the decision making 

process would hinder the team performance [13]. The effectiveness of these mitiga-

tions is usually measured with the NASA Task Load Index [14]. The use of psycho-

physiological sensors to predict the mental workload is an unobtrusive method with 

the potential to estimate the workload in real time.  

5   Test-Bed for Evaluation of Different Theories 

The challenges for bringing the measurement into an operational environment are 

numerous. The architecture described in [10] was developed to provide mitigation to a 

single operator with psychophysiological sensors. In this architecture the cognitive 

state of the operator is estimated by multiple sensor data streams. Salient features 

extracted from the streams are further classified into levels of cognitive states. This 

architecture can be extended to a team of operators as shown in Figure 1. Using the 

social cybernetics model described above, the sensor data from a team of operators 

could be combined into a set of features (such as metric of similarity of HRV, GSR 

data) and these features could be classified into levels of compliances. These levels 

could then drive a mitigation which adapts to the over-all level of compliance be-

tween the team members to suggest an appropriate strategy. 

 

Fig. 1. Test-bed based on social cybernetics model 
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To test the information processing model for teams, cognitive state estimation of 

each of the operators in the team must be done (Figure 2). These individual estimates 

are then used to consider adaptations to suite the cognitive needs of each of the team 

members. 

 

Fig. 2. Test-bed based on information processing model 

The differences between these two models as seen from figures 1 and 2 are, in  

social cybernetic model, a single estimation of compliance metric (SPC) drives the 

mitigation, and same mitigation is applied to all the members of the team. In the in-

formation processing model, cognitive state estimations from all the operators is 

evaluated separately by the mitigation engine and adaptations are made reflecting the 

current need of each operator. As suggested by Henning et al. [11], using the social 

cybernetic model, a display of trajectory of SPC over time in a shared display to all 

the operators could also render helpful in achieving high over all team performance. 

The model based on social cybernetics (Figure 1) would be only effective when all 

the operators are performing the same kind of synchronized task (such as, the labora-

tory experiment in section 2, in which two team members guided a virtual heavy  

object through a maze). In situations which require the operators to perform mutually 

exclusive tasks, the SPC might not be a good indicator of the overall team perform-

ance. In such cases the two models described above could be augmented where the 

SPC would become a part of individual cognitive estimates, and it could be used by 

the mitigation engine at appropriate times. 

6   Conclusion and Future Work 

In this paper we have sketched a test-bed framework for testing two models of cogni-

tion (social cybernetics and information processing). Each of these models holds 

contrasting views about cognition. Testing the usability of these models in terms  

of task specificity is essential before deploying any model in operational environment. 

In our future work, we intend to design experiments that involve tasks that require 

team members to perform compensatory actions (i.e. similar to maneuvering a virtual 
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object in a maze) and compare them to tasks requiring members to perform mutually 

exclusive actions. Our goal then is to analyze the physiological data and find if there 

exists any relationship between the type of cognition model and team performance. 
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Abstract. Augmented Cognition manifesting in the DARPA project is
becoming of more and more interest to non-military application areas.
First areas it is going to be applied are in flight control and power plant
control. Measuring cognitive workload in the context of Augmented Cog-
nition is bound to the application of sensor technologies and frameworks
which are going to be applied to users. It is necessary to make Augmented
Cognition Application in non-military areas as comfortable to the user
as possible as we do not want to disturb her but to support her in her
tasks. In this paper we will define criteria to be considered when design-
ing Augmented Cognition applications in non-military environments.

Keywords: Augmented Cognition, Application, Sensors systems, sen-
sor chriteria.

1 Introduction and Objective

Augmented Cognition is becoming more and more of interest to non-military
application areas. First areas it is going to be applied are flight control centers,
power plant control centers or simulation centers. Extending this thought one
might think of other control scenarios where users and computer have to work
collaboratively together, where tasks are to be carried both by men and machine,
one supporing the other.

As Schmorrow and Kruse discussed “Augmented Cognition distinguished from
its predecessors by the focus on the real-time feedback cognitive state of the
user, as assessed through modern neuro-scientific tools.” [1] Systems developed
by using Task-Centered Design need to monitor both information flow as well as
the cognitive state of the user to meet the objectives they are designed for [2].

This shortly leads to the application of Augmented Cognition in everyday life
scenarios like buying train tickets at ticket machines, ATM usage, or writing
articles, email and reports, programming new software or doing technology sup-
ported workplace learning [3]. As people in todays business life do not work on
one task only at a time but many tasks simultaneously support is needed [4].

We are aiming at introducing Augmented Cognition technologies into different
application areas and are looking for sensor types which can be used to recognize
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the users cognitive workload in a way the user would accept and provide the
computer with the information it needs to support the user as best as possible.
So the objective of the research presented here is to find criteria for sensor
types in the respective environments and tasks acceptable by the users in their
distinguished situations.

2 Measuares for of Cognitive Workload

As in military applications both “high demand” and “vigilance” scenarios are
to be supported in adaptive automation application [5]. Application shall sup-
port users in their task work by optimizing her workload for optimal perfor-
mance [6,7,8].

As measuring cognitive workload unfortunately is not possible directly, we
have to use tools to recognize the humans load. There are different methods
For measuring cognitive workload mostly applicable in laboratory environments.
First subjective workload measures like Cooper-Harper-Scale [9], NASA task
load index [10] or Subjective Workload Assessment Technique [11] and perfor-
mance-based measures [12,13] have been proposed. Later estimation methods
using psychophysiological parameter and body observations (e.g. Index of cog-
nitive activity [14]) which would support the criteria on in-time estimation were
developed. We focus on the estimation of cognitive workload by analyzing psy-
chophysiological parameters and other data acquirable by sensors from the user.

3 Criteria for Sensor Technologies

Depending on the application area different criteria have to be met by the sen-
sors. As they are the basis for Augmented Cognition applications they need
to be accepted by the operators themselves [15,12]. Therefor the sensors need
to be:

non-intrusive. Users will not carry implants or needles or other devices which
may hurt them in any way [16].

non-obtrusive. The applied sensors do not disturb the handling of the user
during the tasks performance.

easily applicable. The sensors are easily applicable to the user or work in
remote sensing way, so would n’t take much effort to start gathering data.

In technological terms sensors need to be usable for calculating estimates
of the cognitive workload of the user. Technologically sensors should provide
adequate data precision, should have an adequate data rate, and should be easily
combinable with other sensors. Technological requirements are:

adequate precision. Sensors should be able to deliver data in a quality high
enough to calculate estimates of the users cognitive workload.

adequate data rate. Data rate and transmission rate from sensors should be
adequate to calculate estimates of cognitive workload.
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combinability. Sensors support industrial and other standards, which allow
them in any combination and connect them easily to a data transmission
and collection framework [17,18].

Those criteria apply to all technical components, meaning sensors as well as
data transmission components and computers necessary for cognitive workload
estimation. When designing user friendly systems and applications those criteria
should be taken into consideration. It is recommended to apply methods of
human-centered and task-centered design [2].

Furthermore the factors sensitivity, diagnosticity, primary task intrusion, im-
plementation requirements and selectivity should be taken care of [15,12]. An
overview of sensor types vs. sensitity, obtrusiveness, avalibilty is given in [19].

4 Sensor Types and Classification

Science reports on research attempting to connect workload indices to one psy-
chophysiological parameter. Unfortunately the

“. . . indirect nature of derived psychophysiological parameters pre-
vents a straightforward interpretation concerning the functional aspects
of the human organic system. . . ” [20]

– as it prevents from directly concluding from measured signals to cognitive
workload. The main reason is that there is not a direct physical or physiologi-
cal connection as the measured psychophysiological parameters finally just are
reactions of the human brain and body on external and internal exposure and
their resulting workload. Therefore it is absolutely necessary to receive high qual-
ity data of the measured psychophysiological signals. Advises on ensuring high
quality signal data can be found in the references (e.g. [20]).

Estimates of the current cognitive workload can be calculated using combina-
tions of measurements of different sensor types. When following up those criteria
we may classify different sensor types in respect to their usability in new applica-
tion areas and their acceptance by users. Different sensor types may be used and
combined to acquire information on the users cognitive workload [21,12]. This
approach works well in the field of emotion recognition [22] and accounts for
measuring cognitive workload, as well. The following sensors have been proved
to support reognition of cognitive workload:

– Electroencephalography (EEG), Magnetoencephalography (MEG) [23,24]
– Functional Near Infrared Neuroimaging (FNIR) [25,26]
– Pupil diameter using eye tracker [27,28,29,2,14,30,31,32]
– Psycho-physiological sensors like galvanic skin respondance, heart rate, blood

pressure [23,33,34,35]
– Eye blink [30,28,36,34,8,37,27,32]
– Facial skin temperature [38,30]
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–Other sensors types including selfmonitoring methods [39]
–Ad hoc wireless Body area network [17]

Sensors and technologies used to estimated users emotions might be applicable
as well like for example facial play or voice and speech anaylysis [40,41].

Table 1 shows the sensor types and their respective criteria quality.

Table 1. Overview over sensortypes in respect to criteria

Sensor name sensor type n
o
n
-i
n
tr

u
si

v
e

n
o
n
-o

b
tr

u
si

v
e

ea
si

ly
a
p
p
li
ca

b
le

a
d
eq

u
a
te

p
re

c
is

io
n

a
d
eq

u
a
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d
a
ta

ra
te

co
m

b
in

a
b
il
it
y

EEG / MEG directly connected to body −− −− − ◦ + +
Near infrared directly connected to body −− −− − ◦ + +
Pupil diameter remote sensor ++ + ◦ − − +
Psycho-physiology directly connected to body −− −− − ◦ + +
Eye blink remote sensor ++ + ◦ − − +
Facial skin temperature remote sensor ++ + ◦ − − ◦

Looking at those criteria one finds out that remotely working sensors which
automatically track the user during her task performance are in favor to the
user acceptance criteria, whereas the sensors directly connected to the users
body deliver the necessary data quality and data rate. All sensor types can be
combined when using data wrapping technologies.

5 Conclusion, Outlook

We focus at applying Augmented Cognition in new application areas like In-
teractive electronic technical documentation1, adaptive electronic tutorials and
learning materials as well as adaptive user interfaces. User-centered technologies
appraising cognitive workload will be accepted by the user if the sensing part is
acceptable. As we showed those sensors have to be remotely operational, non-
intrusive and non-obtrusive. Therefor more effort has to be spend on new and
further development of tracking technologies remotely working. One new tech-
nology could for example include the users activity in the estimation of cognitive
workload [42].

One key criterium to be considered furthermore in prospective investigations
is the users privacy. Being able to track a users cognitive workload remotely may
conflict with her idea of privacy.

1 IETM – Interactive Electronic Technical Manual, for explanation see http://en.

wikipedia.org/wiki/IETM or http://www.cpt.fsu.edu/pdf/ietm1.pdf
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Even though the research area Augmented Cognition is still looking for its
“killer app” [4], it is leaving the military sector and extends to application areas
in every day life. In this paper we discussed the use and the combination of
different sensor types for capturing user data relevant to her cognitive workload.
We proposed several criteria which might be useful to select sensor types for new
applications of Augmented Cognition.
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Abstract. This study aims to investigate the effects of sleep deprivation on the 

cognitive abilities of Chinese subjects under a combined scenario of narrow 

space, social isolation, and high cognitive workload. Twelve subjects partici-

pated in the experiment of 72-hour sleep deprivation, and took 15 cognitive 

ability tests for three times at the first day of sleep deprivation (level 1), the 

second day of sleep deprivation (level 2) and the third day of sleep deprivation 

(level 3) respectively. The result data analyses show that: most of the cognitive 

abilities do not change significantly, but the value of special graphics search is 

increased significantly with the increasing of sleep deprivation time (p=0.01). 

In addition, when four cognitive ability tests were combined into one complex 

measure, the effect of sleep deprivation becomes more significant. The results 

mainly support the Hockey’s compensatory control model. And they may be 

due to two other reasons: one is that the combined stressors will counteract each 

other; the other is that learning effect can improve operators’ performance. The 

results also imply that sensitive and complex measures need to be developed 

and used to reflect the compound effects of sleep deprivation under such com-

bined situation. 

Keywords: Sleep deprivation; narrow space; social isolation; high cognitive 

workload; cognitive ability. 

1   Introduction 

Realized in a large number of anecdotal reports and observations, astronauts’  

cognitive performance in spaceflight may be seriously influenced due to the extreme 

working and living conditions in space, such as microgravity, narrow space, social 

isolation, sleep disturbance, and high cognitive loading
 
[1, 2]. Two factors which may 

impair the cognitive and psychomotor performance of astronauts were distinguished 

by Hockey [1, 3]: the direct effects of microgravity on specific brain mechanism and 

non-specific stressors such as cumulative sleep loss, workload, or the physical and 

emotional burden of adapting to the conditions in space. Among those non-specific 
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stressors, sleep disturbances in spaceflight was recognized as one of the most impor-

tant factors contributing to impaired performance of astronauts [4]. 

The possible effects of sleep restriction or sleep deprivation on cognitive perform-

ance were studied [5-8]. Some studies suggest that restrictions of sleep may result in 

cognitive performance decrements, which include increased response times and num-

ber of lapses in simple reaction time tasks, slowing of performance in mental arithme-

tic tasks, or impaired working memory functions. Russo also indicated that acute 

sleep deprivation degraded visual perceptual and simple motor performance [8]. 

However, some experiment results also supported the compensatory theory
 
[9-11]

.
 It 

was also found that the effects of sleep deprivation might be attenuated as the cogni-

tive demands of a task increased
 
[3, 12]. Sleep deprivation may cause some perform-

ance impairment which does not show apparently
 
[13].  

From the above studies, it can be noticed that sleep deprivation has effects on cog-

nitive ability with complicated phenomena. Through one 48 hours sleep deprivation 

experiment, May et al concluded that the cognitive abilities requiring high response 

speed and high attention were obviously damaged by sleep deprivation, and those 

which included much intellectual element were not depressed but enhancive during 

the sleep deprivation
 
[14]. It was also found that the effects of sleep deprivation might 

be attenuated as the cognitive demands of a task increased
 
[15]. 

Although many studies have been conducted on the non-specific stressors, most of 

them considered sleep deprivation as a single factor, without paying attention to the 

combined effects of the non-specific stresses. Additionally, there is very limited 

knowledge about the cognitive ability of Chinese population under such extreme 

conditions. In this study, an experiment was designed to investigate the effects of 

sleep deprivation on the cognitive abilities of Chinese subjects under a combined 

scenario of narrow space, social isolation and high cognitive workload. 

2   The Experiment 

This experiment was a single-factor experiment, in which the subjects were asked to 

keep awake for 72 hours in an isolated room. 

2.1   Subjects 

Twelve male subjects were selected from twenty students of China Agricultural Uni-

versity. Their ages ranged from 20 to 26 years (M =22.3, SD =1.82). All subjects 

passed a general physical examination and a mental health evaluation by the Eysenck 

Personality Questionnaire (EPQ) and the Symptom Checklist 90 (SCL-90). The 

twelve subjects were divided into four groups randomly and equally. One group with 

three subjects attended the experiment at a time. This is the standard size for a Chi-

nese spaceship crew. However, unlike the normal space flight, the subjects in a group 

had very limited social contact with each other, but focused on their experiment tasks. 

2.2   Independent Variables 

Sleep deprivation was considered as an independent variable in this experiment, 

which lasted for approximately 72 hours (over a four-day span). Three levels of sleep 
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deprivation were examined: level 1 (the first day), level 2 (the second day), and level 

3 (the third day). During the experiments, subjects were monitored by video cameras 

and waken up by a ring if they tried to sleep. 

2.3   Fixed Variables 

The three fixed variables, narrow space, social isolation and high cognitive workload, 

were tested in this experiment. 

The experiment room was small and isolated, the wall of which was sound and 

magnetic signal proofing. During the experiment, all the direct channels for informa-

tion exchange were cut off. Necessaries were delivered through a double-layer win-

dow. All subjects performed experiment tasks according to the experiment schedule. 

In order to monitor the experiment process and keep the subjects awake, video cam-

eras and loudspeakers were equipped in the room. 

For giving high cognitive workload, various cognitive tasks were assigned to the 

subjects throughout the experiment. Beside those cognition tasks, spaceflight task 

operations, physiological measurements, emotion evaluations, and personality meas-

urements were also performed to check the status of the subjects. There were multiple 

research objectives in this experiment. In this paper, we focused on the 15 cognitive 

ability tests and the analyses on the other data were not reported. 

2.4   Dependent Variables 

During the experiment, 15 cognitive ability tests were measured three times at the 

first day of sleep deprivation (level 1), the second day of sleep deprivation (level 2) 

and the third day of sleep deprivation (level 3), respectively. The 15 tested cognitive 

ability items were memory search, rule finding, direction discrimination, symbol 

substitution, spatial rotation, speed estimation, combined graph, comparative scale, 

digit search, mental rotation, symbol discrimination, attention span, special graph 

search, analogic test, and hiding graph. The value of each cognitive ability test ranges 

from 1 to 10. 

The 15 cognitive ability items were tested with a computer software toolkit for 

psychology measurement, which has well designed and tested in astronaut selection 

and training. 

2.5   Experiment Procedure 

The experiment was conducted in China Astronaut Training Centre and had three 

phases. The first phase was subject screening. Through both medical examination and 

mental health screening, 12 subjects were selected from 20 volunteers and were ad-

mitted to participate in the formal experiment after they signed informed consent 

forms. 

The second phase was experiment preparation which began for one to three days 

before the experiment was started. First, the subjects provided their personal informa-

tion such as gender, age, and education background. Then they listened to instructions 

of the experiment, and then practised all the 15 cognition tests and other required 

operations. 
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The third phase was the formal sleep deprivation experiment which was started at 

9:00 am of the first day and ended at the same time of the forth day. The subjects took 

the 15 cognitive ability tests once on each day. 

3   Results 

SPSS 15.0 was used for the data processing in this study. The effects of sleep depriva-

tion at the 15 cognitive ability tests were analyzed. Four of the 15 items passed both 

the normality and homogeneity of variances tests and thus One-way ANOVA method 

was applied, including memory search, rule finding, direction discrimination, and 

symbol substitution. The other items failed to pass the normality and homogeneity of 

variances tests. Hence, nonparametric tests (Friedman test) were applied for those 

data. Table 1 shows the results. 

From Table 1 it can be seen that most of the cognitive ability do not significantly 

change during the four days. However, the value of special graphics search is signifi-

cantly increased as the sleep deprivation time passed (p=0.01). Among these cognitive 

tests, some show a decreasing trend while others show an increasing trend. 

Though the 15 tests were designed to test different cognitive abilities, some of 

them could measure the same cognitive function. For example, memory search, sym-

bol substitution, digit search and symbol discrimination all reflect short-term memory. 

To study the effect of sleep deprivation on short-term memory, the sum of the four 

test values were analyzed. The sum did not pass the normality and homogeneity of 

variances tests, and thus Friedman test was applied. It show that the short-term mem-

ory (combined tests) has a marginally significant decrease (p = 0.098). 

4   Discussion 

As a whole, these results support the Hockey’s compensatory control model which 

means operators have the mechanism of maintaining performance
 
[9, 10]. The results 

may be due to another two reasons in this experiment. The first is the interaction of 

various factors. Those factors that include narrow environment, isolation, sleep depriva-

tion and high cognitive workload had shown significant effects on cognitive ability 

impairment separately; however, when they appear together, the results may turn differ-

ent, e.g. the tiredness caused by sleep deprivation might be reduced by the high cogni-

tive workload. The second reason is the learning effect. Although the subjects were well 

trained before the formal experiment, the learning effect can not be totally avoided.  

In addition, it should be noticed that sleep deprivation has different effects on dif-

ferent cognitive abilities. Those cognitive abilities with low cognitive load show a 

decreasing trend, such as digit search; while those requiring high cognitive demand 

show an increasing trend, such as special graph search. In this experiment, each of the 

four tests reflecting short-term memory individually show a decreasing trend, but it is 

not statistically significant. When they were combined into one complex measure, the 

effect of sleep deprivation becomes more significant. It implies that more sensitive 

and complex cognition measurements need to be developed to reflect the compound 

effects of sleep deprivation under such combined situation. 
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Table 1. The analysis result of 15 items of cognitive ability 

1
st
 day 2

nd
 day 3

rd
 day  

Cognition measures 

M SD M SD M SD F(2, 33) p 

Memory search 6.48 1.28 6.45 1.42 6.15 0.903 0.132 0.877 

Rule finding 6.04 1.30 6.13 1.35 6.30 1.48 0.094 0.910 

Direction 

discrimination 

6.06 3.07 6.43 2.74 6.39 2.40 0.067 0.935 

Symbol substitution  6.72 1.41 6.25 1.56 5.86 1.77 0.879 0.425 

Spatial rotation
 a
 0.49 0.056 0.47 0.072 0.52 0.081 0.110 0.897 

Speed estimation
 a
 0.61 0.065 0.62 0.046 0.51 0.067 0.881 0.424 

Combined graph
 b
 7.08 0.446 7.55 0.48 7.81 0.420 3.95 0.139 

Comparative scale
 b
 7.86 0.420 7.93 0.552 7.74 0.594 1.62 0.446 

Digit search
 b
 7.98 0.509 7.68 0.58 6.78 0.971 3.55 0.17 

Mental rotation
 b
 5.48 0.774 6.35 0.71 4.93 0.872 2.84 0.242 

Symbol 

discrimination
b
 

8.63 0.269 8.34 0.224 8.09 0.432 2.48 0.289 

Attention span
 b
 8.57 0.339 8.59 0.285 8.34 0.286 0.667 0.717 

Special graph 

search
 b
 

5.35 0.811 5.14 0.721 7.13 0.634 9.19 0.01 

Analogic test 
b
 8.49 0.291 8.38 0.309 8.23 0.324 1.08 0.582 

Hiding graph
 b
 8.30 0.294 8.27 0.321 8.24 0.353 1.70 0.428 

Short-term memory 

(combined tests)
 b
 

29.8 4.07 28.7 4.09 26.9 5.70 4.64 0.098 

Note: a - Logarithm conversion was applied on the original data. b - Friedman Test.  

5   Conclusions 

This study tries to explore the effects of sleep deprivation on the cognitive ability of 

the Chinese under a combined situation. Though it is not found that sleep deprivation 

combined with other performance influencing factors would lead to significant cogni-

tive impairments for Chinese operators, the effect of sleep deprivation exist in reality 

and cannot be neglected. 
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Abstract. The EEG for use in augmented cognition produces large amounts of 

compressible data from multiple electrodes mounted on the scalp. This huge 

amount of data needs to be processed, stored and transmitted and consumes 

large amounts of power. In turn this leads to physically large EEG units with 

limited lifetimes which limit the ease of use, and robustness and reliability of 

the recording. This work investigates the suitability of compressive sensing, a 

recent development in compression theory, for providing online data reduction 

to decrease the amount of system power required. System modeling which in-

corporates a review of state-of-the-art EEG suitable integrated circuits shows 

that compressive sensing offers no benefits when using an EEG system with 

only a few channels. It can, however, lead to significant power savings in situa-

tions where more than approximately 20 channels are required. This result 

shows that the further investigation and optimization of compressive sensing 

algorithms for EEG data is justified. 

Keywords: Compressive Sensing, Electroencephalogram, Power efficient, 

Wireless Systems. 

1   Introduction 

Augmented cognition systems which aim to close the loop on human-computer inter-

actions intrinsically require some form of physiological monitoring of the human. The 

electroencephalogram (EEG), which places multiple recording electrodes on the head 

and records the micro-Volt sized signals produced, is a popular choice for this. The 

eventual level of end-user acceptance of augmented cognition technology will thus be 

strongly dependent on the miniaturization of the EEG technology so that it is discrete, 

comfortable and long-lasting. This last point is also an important factor in the design 

of robust systems. For example, in the dismounted solider scenario the EEG equip-

ment may have to operate reliably over many days while the solider is out of contact 

with friendly forces. Also, when using EEG devices with people with learning diffi-

culties, physically large systems requiring frequent battery changes could be a major 

impediment to producing reliable and repeatable results. 

It has been shown [1] that power consumption, and in turn the battery size, is the 

major determining factor in the overall device size and system lifetime. For wireless 
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EEG systems (which are potentially more discrete and wearable) most of the system 

power is consumed by the wireless transmitter, and thus it is desirable to compress the 

raw EEG data in real-time on the wearable device, in order to reduce the amount of 

data to transmit, and thus increase the operating lifetime or decrease the battery size. 

This paper investigates applicability of compressive sensing, a recent development 

in compression theory, for this online data compression. An overview of compressive 

sensing theory is given in Section 2, but the work here assumes, based upon previous 

studies with EEG data [2] as well as in applications such as MRI where compressive 

sensing has been used very successfully [3], that compressive sensing can be used to 

achieve an acceptable compression ratio and reconstruction error. Instead, the focus 

here is on investigating the computational complexity of the method, and the implica-

tions of this for its implementation in an online, low power system. 

Based upon the system modeling presented in Section 3, it is found that compres-

sive sensing is not a beneficial compression technique when applied to an EEG sys-

tem consisting of only a few channels, as commonly used in augmented cognition 

systems. However, as more channels are used, and many systems may commonly use 

128 or more channels, the compressive sensing scheme can lead to a significant re-

duction in the overall power consumption. These results are presented, and the impli-

cations discussed, in Section 4. 

2   Compressive Sensing Overview 

The concept of compressive sensing [4] and [5] is based on the fact that there is a 

difference between the rate of change of a signal and the rate of information in the 

signal. Traditional Nyquist sampling, putting the signal into the digital domain ready 

for wireless transmission, is based on the former. The Nyquist theorem states that it is 

necessary to sample the signal at a rate at least twice the maximum rate of change 

present. A conventional compression algorithm would then be applied to all of these 

samples taken to remove any redundancy present, giving a reduced number of bits 

that represent the signal. 

In contrast, compressive sensing exploits the information rate within a particular 

signal. Redundancy in the signal is removed during the sampling process itself, lead-

ing to a lower effective sampling rate. Provided certain conditions are satisfied [5], 

sampling at a sub-Nyquist rate the signal can still be accurately recovered.  

To illustrate this, consider an EEG signal of interest x which is a vector of N digital 

samples; i.e. x[n] where n =1, 2 … N. Then assume that this signal can be represented 

by a projection onto a different basis set: 
 

∑
=

Ψ=

N

i

iisx
1

 or Ψsx =  

 

(1) 

where s is a N×1 basis function vector and Ψ is a N×N basis matrix. The matrix s can 

be calculated from the inner product of x and Ψ: 
 〉Ψ〈= iis ,x . 
 

(2) 
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For example, if Ψ is the Fourier basis set of complex exponential functions, s is the 

Fourier transform of x and both s and x represent the signal equivalently, but in dif-

ferent domains. In compressive sensing Ψ is chosen so that s is sparse – a vector is K-

sparse if has K non-zero entries and the remaining N–K entries are all zero. s is thus a 

more compact representation of the signal than the original x. 

Similar to this projection, assume that x can be related to another signal y: 
 

Φxy =  
 

(3) 

where y is a M×1 vector and Ф is a matrix of dimensions M×N where M<N. Thus: 
 

ΦΨsy = . 
 

(4) 

Provided that Ф is correctly chosen so that no significant information is lost during 

the reduction in dimensionality, it is possible to use Ф to sample the sparse signal s, 

rather than the original signal x to give an output vector y which has only M entries  

rather than the original N. If M<N data compression is thus achieved, and the signal y 

would be transmitted from the portable EEG unit. It can be shown [5] that this tech-

nique is possible if Ф and Ψ are incoherent; that is if the elements of Ф and Ψ have 

low correlation.  

Given a compressed measurement y at the receiver, the signal x can be recon-

structed by solving the L1 problem: 
 

1
min

l
s

s Nℜ∈
 subject to 〉Φ〈= Ψs,iiy  

 

(5) 

which finds the vector s with the lowest L1 norm that satisfies the observations made. 

This is then easily converted back into x. In general, the L1 minimization problem is 

non-trivial and computationally complex, but there is no need for this to run online in 

the portable EEG unit. The EEG signal x will be sampled as signal y, and these  

samples wirelessly transmitted to a base station which will then regenerate x from y 

offline. The fact that compressive sensing based data compression has all of its com-

putational complexity in the backend, where power and size constraints are not as 

stringent is a major factor motivating its investigation. 

Previous work, [2], using Gaussian Random matrices with independent and identi-

cally distributed random variables or the Bernoulli matrix as the measurement matrix 

Ф has shown promising (although not conclusive) results on the application of com-

pressive sensing theory to EEG signals. However, the optimal choice of N and M, 

which set the amount of data compression but also reconstruction error, and the 

choice of optimization algorithm for the reconstruction are still open questions.  

3   System Modeling and Feasibility Analysis Framework 

The answering of these open questions is not the focus of this work. Before consider-

ing them it is instead essential to assess the feasibility of the overall scheme from the 

power point of view: the aim of compression must be to reduce the system power 

consumption so it is necessary to assess whether this is achievable. There is little 
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practical point in optimizing the parameters identified above if this decrease is system 

power is not achievable.  

An investigation of this can be carried out by considering the simplified EEG sys-

tem model from Figure 1a. This incorporates an input instrumentation amplifier to 

amplify the small EEG signals from the head, an analogue-to-digital converter (ADC) 

to convert the EEG signals into the digital domain ready for transmission, and a 

transmitter. Given this, the system power consumption for a C channel system (Psys) is 

given by: 
 

( )RJfPPCP sADCAmpsys ++=  

 

(6) 

where Px is the power consumption of block x from Figure 1a, fs is the ADC sampling 

frequency, R the number of bits per sample and J the net transmission power per bit 

such that JfsR gives the transmitter power consumption. It is assumed that band-

limiting of the EEG signal is incorporated into the instrumentation amplifier. 

 

  
 

a) A standard EEG unit. b) An EEG unit incorporating compres-

sive sensing. 

Fig. 1. Simplified EEG system model to enable power modeling 

For comparison, Figure 1b illustrates the necessary modifications required to in-

corporate compressive sensing into the EEG system. The compressive sensing is  

implemented in the discrete domain and all that is required is a block to generate the 

measurement matrix Ф which would be used to select a random set of samples to 

form y. Elements in Ф form a pseudo-random sequence following a particular prob-

ability distribution.  

Given this, the system power consumption per channel (Psys_cs) is now modified to: 
 

( ) ⎟⎠
⎞⎜⎝

⎛
+⋅+++++= SRCf

N

M
JPPPPPCP sSyncDSPRNGADCAmpcssys _ . 

 

(7) 

Here the instrumentation amplifier and ADC power consumptions are unchanged, but 

three extra terms representing the extra hardware required are also present: a random 

number generator (PRNG) is used to generate the Ф matrix; a DSP or microcontroller 

(PDSP) is used to carry out the matrix multiplications from (4); and a synchronization 

unit (PSync) is used so that Ф matrix does not need to be transmitted – it can be recon-

structed at the receiver based upon the known pseudo-random sequence and a seed. 

Only one of each of these blocks is required regardless of the number of channels in 
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the system. In addition to these blocks, the transmitter power consumption has 

changed in a number of ways. 

Firstly, the power required to transmit the number of data bits (CJfsR in (6)) has 

been reduced by a factor of M/N. This corresponds to the compressive sampling in (3) 

where there is a reduction in dimensionality between x and y. In addition, however, it 

is necessary to also transmit S bits of extra data corresponding to the synchronization 

required between the EEG unit and the receiver to regenerate the Ф matrix. Again the 

number of bits needed does not depend on the number of channels present as the same 

Ф matrix will be used for all channels. 

To assess the feasibility of compressive sensing based systems in low power port-

able EEG equipment it is thus simply a matter of comparing (6) and (7) using realis-

tic, and state-of-the-art, figures. For this, five separate blocks need to be considered. 

These are discussed in turn below and the end figures used, incorporating some 

rounding and safety factors, are summarized in Table 3. 

 

Instrumentation amplifier. The input amplifier is responsible for amplifying the 

small EEG signals detected on the scalp (typically in the range 2 µV to 500 µV) so 

that they match the input range of the analogue-to-digital converter. In addition it is 

assumed that the signal is band-limited (to the approximate range 0.5 Hz to 70 Hz) in 

this stage. The performance of a range of state-of-the-art integrated circuit EEG am-

plifiers is illustrated in Table 1. 

Table 1. A comparison of state-of-the-art EEG suitable instrumentation amplifiers 

Reference [6] [7] [8] [9] [10] [11] [12] 

Gain [dB] 40 44 77 40 44 48 38 

Bandwidth [Hz] 30 1000 600 500 200 100 200 

Input referred 

noise integrated 

over bandwidth 

[µVrms] 

1.6 1.5 0.26 10 1.3 0.59 0.89 

Process technol-

ogy [µm] 
1.5 0.35 1 3 0.35 0.5 3 

Supply voltage 

[V] 
2.5 1 5 2.5 1 3 2 

Power consump-

tion (PAmp) [µW] 
0.9 1.4 3,000 75 50 7 34 

 
Analogue-to-digital converter. The ADC is responsible for digitizing the EEG ready 

for transmission, and the core parameter of interest is the resolution which sets the 

number of bits taken per sample and the end level of quantization noise. If any d.c. 

offset in the EEG signal is removed by the instrumentation amplifier a resolution of 

10-12 bits is generally sufficient for the clinical recording of the EEG [13]. Given 

this, and the approximate 200 Hz sampling rate required, the performance of a selec-

tion of state-of-the-art ADCs is illustrated in Table 2. Thus, based upon Table 1 and 

Table 2, an overall power consumption for the instrumentation amplifier and the ADC 

of 2 µW is assumed to be reasonable. 
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Table 2. A comparison of state-of-the-art ADCs with suitable resolutions and sampling rates 

Reference [11] [14] [15] [16] [17] [18] 

Resolution (R) [bits] 11 8 12 10 10 10 

Sampling rate (fs) [kS/s] 8 1000 0.5 0.7 100 3.2 

Process technology [µm] 0.5 0.18 0.18 0.8 0.09 0.5 

Supply voltage [V] 3 0.6 1 2 0.65 1.2 

Power consumption (PADC) 

[µW] 
23 0.4 0.2 2.3 27 0.055 

 
Random number generator. An example random number generator for use in gen-

erating the Ф matrix is given in [19], and as [19] also contains a comparison with 

other random number generators with respect to bit rates and power consumption, it is 

taken to be representative. This operates at 5V on a 0.35 µm process consuming 2.9 

µW for an output data rate of 500 bps. 

 

Processor unit for matrix multiplications. The matrix multiplications to carry out 

the compressive sensing will need to be implemented in either a dedicated digital 

signal processing chip or a microcontroller. The overall power of this depends 

strongly on the specifications of the model chosen for use. To be representative here, 

the estimates are taken based upon the popular TI MSP430 family, although possibly 

lower power dedicated components may be available. 

In addition, the complexity of the multiplication operation depends on the size of 

the matrix used. In general for an N×N matrix it is an O(N
3
) process [20]. In the case 

for compressive sensing, however, where the Ф matrix is M×N this bound reduces to 

O(M
1.594

N) [21], significantly reducing the power required. Even so, based upon a Ф 

resolution of 16 bits, for any reasonable M and N it is likely that the MSP430 will 

have to be operated at the maximum clock frequency of 1 MHz, corresponding to an 

active mode power consumption of approximately 352 µW [22]. It is unlikely that 

portable EEG systems will be designed to have more than 64 channels, hence this 

power rating is considered to be the worst case scenario for systems having 64 or 

smaller number of channels. 

 

Synchronization unit. For the purposes of the analysis here PSync and S are assumed 

to be negligible: they are essentially one time (start-up) operations that require the 

generation and transmission of approximately 48 bits (16 to initiate the random num-

ber process and 32 for the synchronization with the receiver). Compared to a continu-

ous data rate in the range of kbps even for compressively sensed EEG this is deemed 

negligible. 

 
Transmitter. The figure for J, the net energy per bit transmitted is simply taken from 

[23] which summaries the performance of several off-the-self transmitters finding that 

50nJ/b is a conservative figure which should be readily achievable in most usage 

situations, and 5nJ/b is a more speculative figure for what may be possible. In this 

work this speculative 5nJ/b figure is used. 
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Table 3. Summary of the model parameters used and their justification 

Parameter Symbol Value Reasoning 

Front end power PAmp + PADC 2 µW From Tables 1 and 2. 

Random number generator 

power 
PRNG 3 µW From [19]. 

Matrix multiplication power PDSP 352 µW From [22] and discussion above. 

Seed and synchronization 

power 
PSync 0 µW 

From discussion above assumed 

negligible. 

Transmitter energy required per 

bit transmitted  
J 5nJ/b From [28]. 

Net number of samples taken:  M Variable 
The effect of this will be investi-

gated in Section 4. 

Compressive sensing frame 

size:  
N 750 

Arbitrary choice to illustrate one 

performance point. 

Nyquist sampling frequency  fs 200 kS/s 
From standard EEG specifica-

tions [13]. 

ADC sampling resolution  R 16 bits Idealized value 

Bits required to initialize ran-

dom number process and syn-

chronize with receiver  

S 0 bit 
From discussion above assumed 

negligible 

Number of channels in the 

system  
C Variable 

The effect of this will be investi-

gated in Section 4. 

4   Results and Discussion 

Given the figures from Table 3 the implications of (6) and (7) can be investigated. 

Fig. 2 shows how the ratio M/N, which determines the amount of compression 

achieved as well as the end reconstruction error, affects the system power. In Fig. 2, N 

is arbitrarily set to 750 samples to limit the size of each matrix multiplication re-

quired. As may be expected, increasing M results in transmitting more data and so the 

system power consumption increases. The overall power consumption is also seen to 

be a strong function of the number of channels used.  

This is illustrated more clearly in Fig. 3 which takes a compressive sensing operat-

ing point of M=80, N=750, and shows how the system power consumption varies with 

the number of channels present when compressive sensing is and isn’t present. From 

this it is seen that for this operating point a compressive sensing based system is only 

feasible if more than 22 channels are to be present. When fewer channels than this are 

needed it is preferable to simply transmit the raw data. 

This potentially has significant implications for augmented cognition applications 

of the EEG. For example, many augmented cognition applications such as [24] and 

[25] are using in the region of six channels. If this is sufficient for use there is no 

benefit to a compressive sensing based system, and optimizing the reconstruction 

performance and answering the open questions about basis functions and similar is 

not of practical interest at this time.  
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Fig. 2. The trade-off between the number of measurement samples taken (M), the number of 

channels used and the total system power consumption 
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Fig. 3. The trade-off between the system power consumption and the number of channels (C) 

used for M/N=80/750 illustrates that a compressive sensing based system is only feasible when 

more than 22 channels are used 

In contrast, there are other augmented cognition systems such as [26, 27] which are 

using 128 or more channels for recording. In this situation the use of compressive 

sensing is highly beneficial, with a reduction in system power consumption by 

1.5mW being achievable for a 128 channel system. Using a conventional 30mWh 

small coin cell battery this could increase operational lifetime from 13 hours to 36 

hours. In turn this can lead to significant improvements in the reliability, robustness 

and ease of use of systems allowing the accurate collection of physiological data. 
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5   Conclusions 

Online data compression can be of significant use in facilitating the operation of 

portable EEG units from physically small batteries over a long period of time. In turn 

this aids the reliability and robustness of the overall system as the device is easier to 

use and more comfortable to wear. This paper has quantified the feasibility, from a 

power point of view, of using compressive sensing in order to provide this online 

data reduction. 

Compressive sensing is a recent development in compression theory that states that 

it is possible to effectively sample a signal at a sub-Nyquist rate and yet still be able to 

accurately reconstruct the signal. Assuming that acceptable signal reconstruction is 

possible, this paper has presented a system modeling framework that quantifies the 

required power overhead for the compression system. 

It was found that the feasibility of a compressive sensing based EEG system is a 

strong function of the number of channels present in the system; no benefit is present 

when less than 22 channels are needed (for the case considered here), but large power 

savings can be made when high numbers of channels are present. The feasibility of a 

compressive sensing based EEG system thus varies on an application-by-application 

basis, and the framework presented here can be used to assess this.  

Given this result, there are potential benefits to using a compressive sensing sys-

tem. Future work will thus focus on answering the many open questions still present: 

for example what basis functions and compression ratios can be used to minimize the 

reconstruction error.  
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Abstract. Eye movement recordings do not tell us whether observers are 'really 

looking' or whether they are paying attention to something else than the visual 

environment. We want to determine whether an observer's main current occupa-

tion is visual or not by investigating fixation patterns and EEG. Subjects were 

presented with auditory and visual stimuli. In some conditions, they focused on 

the auditory information whereas in others they searched or judged the visual 

stimuli. Observers made more fixations that are less cluttered in the visual com-

pared to the auditory tasks, and they were less variable in their average fixation 

location. Fixated features revealed which target the observers were looking for. 

Gaze was not attracted more by salient features when performing the auditory 

task. 8-12 Hz EEG oscillations recorded over the parieto-occipital regions were 

stronger during the auditory task than during visual search. Our results are di-

rectly relevant for monitoring surveillance workers. 

1   Introduction 

Imagine a man sitting behind a desk, looking at several monitors that display the im-

ages produced by surveillance cameras. His eyes are open and the radio is turned on. 

How do we know whether he is actually paying attention to what happens on the 

monitors rather than listening attentively to the radio or thinking about the groceries? 

We want to see whether we can distinguish between these kinds of situations - in 

particular, whether an observer's main current occupation is visual or not. We propose 

that fixation patterns and EEG could contribute to this distinction. 

With respect to fixation patterns, we will test three different hypotheses.  

Firstly, we expect that fixations will be guided more by bottom-up, low level visual 

features when observers are not occupied with a visual task compared to when they 

are. The idea is that if there is no explicit top-down, high level visual goal, low-level 

visual features will play a more important role. In order to test this hypothesis, we will 

compare fixation locations to saliency maps [1, 2]. Saliency maps indicate how sali-

ency varies across the visual environment, based on low-level visual features such as, 

in our case, orientation, intensity and color. Rather than absolute values, center-

surround values are used such that it is the contrast within a feature space that counts. 
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Secondly, we predict that in a visual search task fixations will be spread more than 

in an auditory task since in the first case, subjects have to scan an area whereas in the 

second case, they can choose to view one particular interesting area. We will both 

look at the standard deviation of fixation location and at measures defined by using 

Voronoi diagrams, following [3]. A Voronoi diagram is a division of an area into 

cells, with the borders of each cell surrounding a point of interest, in our case, a fixa-

tion. Every point within the cell is closer to the cell's fixation than to any other fixa-

tion. Small cell sizes go together with a densely fixated region whereas large cell sizes 

indicate occasional fixations. Fixation clutter produces a large difference in cell sizes, 

while evenly distributed fixations produce more similar cell sizes. Thus, fixation clut-

ter can be quantified by the standard deviation of cell size or the skewness of the cell 

size distribution. [3] determined skewness in a free viewing condition, visual search 

in structured images and visual search in homogeneous images. Fixation clutter as 

determined by skewness decreased across these three conditions. 

Thirdly, we expect that image patches around fixations will reveal features of a 

searched target (only when observers are performing a visual search task). 

With respect to EEG correlates, we expect low alpha power over the parieto-

occipital (visual) cortex when a visual search task is performed. Alpha refers to 8 to 

12 Hz oscillatory EEG activity. It has been shown to be negatively correlated with 

visual (and not auditory) attention [4, 5] which is in agreement with the alpha inhibi-

tion hypothesis [6]. 

In order to determine whether a person is engaged in a visual task or not, the pro-

posed fixation- and EEG cues could be combined. The particular (non)visual tasks 

included in this study are a visual search task, a visual judgment task and an auditory 

attention or short term memory task. 

2   Methods 

2.1   Equipment and Stimuli 

The setup involved four computers. One was used to control the eye recordings, one 

to record EEG data, and one to present stimulus images. These computer units were 

synchronized. The fourth computer was used to present auditory stimuli. 

Subjects were sitting in a shielded room (Faraday cage) with their head in a chin-

rest and their right index and middle fingers on computer mouse buttons. Their eyes 

were approximately 65 cm away and at the height of the center of a 20 inch LCD 

monitor. Auditory stimuli were presented using speakers in the room. A Tobii 

eyetracker sampling eye position at 50 Hz, was positioned under the monitor. 

EEG activity was recorded at the Fz, Cz, Pz, Oz, C3, C4, TP7, TP8, P3, P4, O1 and 

O2 electrode sites. A ground electrode was attached to the forehead and the reference 

was positioned on the left mastoid. The impedances between relevant pairs of elec-

trodes were below 5 kΩ. The sampling rate was 256 Hz and the signal was bandpass 

filtered in the range of 0.1 - 100 Hz. Also, a 50 Hz notch filter was applied. 

We used both natural and artificial images as visual stimuli (see for examples Fig-

ure 1). The natural images were pictures of landscapes, sometimes containing a 

(rather inconspicuous) military vehicle. These images were chosen from the Search_2 
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database [7] and from a larger collection of images of which Search_2 is a subset. The 

artificial images were generated by custom software, and consisted of a collection of 

colored simple geometric shapes. 20% of the images contained a green diamond and a 

blue pentagon. 

The landscape images subtended the complete width of the monitor but not the 

complete height. The shapes images subtended the whole screen. Each image was 

presented for 5 s. In between images, a black screen was presented for 1 s.  

The auditory stimuli consisted of the spoken letters a, b, c, x, y and z. Every 2.0 ± 

0.2 s a letter randomly chosen from this sequence was presented for the entire dura-

tion of the experimental block. 

 

Fig. 1. On the left are examples of a landscape and a shapes image with accompanying gaze 

tracks and fixations as recorded during a trial of visual search. On the right is the saliency map 

from the shapes image example as computed by the Saliency Toolbox 2.1 [2]. 

2.2   Tasks 

In the visual search task, subjects were asked to look for a target: a military vehicle in 

the landscape images or, either a green diamond (5 subjects) or a blue pentagon (6 

subjects) in the shapes images. Subjects were requested to press the right mouse but-

ton when they had found the target and the left button if they could not find it. They 

were told to ignore the auditory presented letters. 

In the visual judgment task, subjects were asked to judge the spread of the trees in 

the landscape images, and the spread of the red symbols in the shapes images. If sub-

jects assessed these to be grouped, they pressed the left button, if they thought they 

were evenly spread, they pressed the right button. Subjects were told to ignore the 

auditory presented letters and advised to fixate their gaze at the center of the screen. 

The auditory task was an auditory version of the Continuous Memory Task [8]. 

Subjects had to keep track of the letters 'a' and 'z'. Each time that one of these letters 

was presented for the first time, they were asked to right-click. When they were pre-

sented for the second time, subjects were supposed to left-click. After the second 

presentation subjects received feedback (a spoken 'correct' or 'false'). After the feed-

back, the counting started anew for the given letter. We refer to this task as an audi-

tory task, but one could also consider it to be a short term memory or an auditory 

attention task. Although subjects were asked to watch the presented pictures, we 

stressed that keeping track of the letters was their main task. 



332 A.-M. Brouwer et al. 

2.3   Design and Procedure 

10 naïve subjects plus the first author voluntarily participated in the study. Subjects 

were between 21 and 32 years old. Prior to the experiment they received written and 

spoken instructions. 

The task order was random. For every task, a block of landscape images and a 

block of shapes images was presented (or vice versa). Each experimental block con-

sisted of 40 images, shown in random order. Each block was preceded by a practice 

block of 5 images. Different images were used for each block. Before the start of each 

experimental block, a 9-point eye calibration session (ClearView 2.7) was performed 

to minimize fixation errors. 

The first six subjects only performed the visual search and the auditory task; the 

last five subjects additionally performed the visual judgment task. Thus, the first 

group performed a total of 2 (tasks) * 2 (stimulus type) * 40 (number of repetitions) = 

160 experimental trials, and the second group 3 (tasks) * 2 (stimulus type) * 40 (num-

ber of repetitions) = 240 experimental trials. 

2.4   Analysis 

We used the ClearView 2.7 default settings to define fixations. Examples of fixations 

plotted on the accompanying gaze track are presented in Figure 1. For each trial, we 

determined the number of fixations and the average fixation location. We also calcu-

lated the standard deviation of average fixation location between subjects. For trials 

with more than one fixation, the standard deviations in the horizontal and vertical 

direction were computed. In addition, we created Voronoi diagrams with every cell 

containing a fixation. The boundaries of the diagram were defined as the boundaries 

of the image. For each Voronoi diagram we normalized the cell sizes such that the 

average cell size was 1. Then we computed the standard deviation. A large standard 

deviation indicates more fixation clutter. Further, we computed the skewness of the 

distribution of cell sizes [3]. Higher values indicate more clutter. 

For every stimulus image, we computed intensity, orientation, color and overall sa-

liency maps according to [1] using the SaliencyToolbox 2.1 [2]. Figure 1 shows an 

example saliency map. For each fixation, we multiplied the saliency maps with a 

Gaussian window (standard deviation of 3 pixels) centered on the fixation. The aver-

age pixel value was determined. The results for all fixations within a trial were aver-

aged. This value will be high when subjects fixate salient locations. To be able to 

compare between different images, the fixation saliency measure was defined as the 

ratio between this value and the average pixel value of the saliency map multiplied by 

the inverse of the Gaussian fixation windows (per trial, not per fixation). 

For the shapes images, we wanted to identify the looked-for target from the fixa-

tions. Voronoi diagrams were calculated such that the center of each shape was the 

point around which cells were created. Next, we determined for each fixation location 

the color and the type of shape that was in the same cell as the fixation. 

Repeated measures ANOVAs and paired t-tests were used to evaluate the results. 

For most variables, two ANOVAs were performed: one on the data of all 11 subjects 

with factors task ('visual search' and 'auditory') and stimulus type ('landscape' and 

'shapes'), and one on the data of the last 5 subjects where the factor task had the levels 
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'visual judgment' and 'auditory'. Note that for the auditory task, the data in the second 

type of ANOVA (the grey symbols in the graphs) are a subset of the first (the black 

symbols). The significance level was set to 0.05. All significant effects are mentioned. 

We visually inspected EEG signals in order to reject trials with excessive noise and 

artefacts. Then we performed power spectral analysis using the short-time Fourier 

transform (STFT) with Hanning window. We compared the average 8-12 Hz alpha 

power over the parieto-occipital region (Pz, P3, P4, Oz, O1 and O2) between the 

visual search and the auditory task, separately for shapes and landscapes images. The 

hypothesis that alpha power was larger in the auditory than in the visual task was 

verified using a one-sided Monte-Carlo testing procedure with dependent t-statistics. 

A Bonferroni correction was applied to correct for multiple comparisons (i.e. the 

significance level for each pair was set to 0.025). The entire EEG analysis was carried 

out using the Matlab package Fieldtrip (http://www.ru.nl/fcdonders/fieldtrip). 

3   Results 

3.1   Fixation Number 

Figure 2 shows the average number of fixations per trial for each condition. In the 

visual task there are more fixations than in the auditory task, both when the task is 

visual search (effect of task p<0.01) and visual judgment (p=0.02). For visual search 

and the auditory task, there is an interaction between task and stimulus (p<0.01), such 

that the number of fixations is higher for the shape than the landscape stimuli in the 

search task, whereas there is no difference between the two in the auditory task. 

 

Fig. 2. Number of fixations. In all figures, error bars indicate standard errors of the mean. Black 

symbols represent data of all eleven subjects, grey symbols represent the subset of five subjects 

who also performed the visual judgment task. 

3.2   Fixation Location 

On average, subjects fixate around the center of the screen for all tasks and all stimuli. 

However, the average fixation locations are more variable between subjects in the 

auditory task compared to the visual tasks. The standard deviation of the average 

horizontal fixation location is 23 pixels (≈0.80 deg) for visual search, 28 pixels for 

visual judgment and 174 for the auditory task (all collapsed over stimulus type). For 

the vertical fixation location, these numbers are 22, 17 and 133, respectively. This 



334 A.-M. Brouwer et al. 

suggests that in the auditory task, each individual subject had his/her own preferred 

fixation location in space. 

3.3   Fixation Clutter 

To investigate the spread of the fixation locations within trials, we computed the stan-
dard deviation of the horizontal and vertical fixation location for each trial that con-
tained more than one fixation. Fixations were clearly more spread in the visual search 
condition as compared to the auditory condition (Figure 3, effect of task as indicated 
by p-values <0.01 for both the horizontal (3A, black symbols) and vertical direction 
(3B, black symbols)). There were also interactions with stimulus type (p=0.02 for the 
horizontal and p<0.01 for the vertical direction), indicating that the fixations were 
especially spread out when subjects were searching for vehicles compared to shapes, 
whereas the effect of stimulus type was the other way around during the auditory task. 
This indicates that the subjects scan more of the scene when looking for the target 
among shapes than in landscapes. For the subjects who performed the visual judgment 
task and the auditory task (Figure 3, grey values), there is only an effect of task 
(p=0.03 for the horizontal direction and p=0.02 for vertical), again indicating that the 
fixations are more spread in the visual condition compared to the auditory condition. 

We also quantified clutter of fixations using Voronoi diagrams. Figure 4 displays 

the results of the two Voronoi measures, the standard deviation of the normalized cell 

size (A) and the skewness of the cell size distribution (B). The pattern of results is 

very similar for both measures: comparing visual search to the auditory task (black 

symbols) results in a main effect of task (p<0.01 for both standard deviation and 

skewness) and an interaction between task and stimulus type (p=0.04 for standard 

deviation and p<0.01 for skewness). The main effect of task indicates more fixation 

clutter in the auditory task than in visual search. The interaction suggests a trend to-

ward more fixation clutter for the landscapes than for the shapes in the auditory con-

dition, whereas it tends to be the other way around in the visual search condition. The 

ANOVAs performed on the data of the subjects who performed the visual judgment 

task did not result in any significant effect, neither for the standard deviation of the 

normalized cell size nor for the skewness. 

Note that stimulus type can have an effect on fixation clutter in the auditory task. 

Paired t-tests comparing the two stimulus types in the auditory condition result in 

significant effects for the standard deviation of fixations in both directions, and for the 

standard deviation of the normalized Voronoi cell size (p-values <0.05). For skewness 

significance is approached (p=0.06). 

 

Fig. 3. Standard deviation of horizontal (A) and vertical (B) fixation locations 
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Fig. 4. Vonoroi measures of clutter: standard deviation of normalized cell size (A) and the 

skewness of cell size distribution (B) 

 

Fig. 5. Saliency of fixated locations (A) and distribution of the difference in alpha EEG power 

between the auditory and visual search tasks (B: landscapes, C: shapes) 

3.4   Fixation Saliency 

Figure 5 shows to what extent subjects fixate salient regions in the different condi-

tions. When comparing the visual search task to the auditory task, the overall fixation 

saliency value is affected by task (p<0.01) and stimulus (p<0.01). Contrary to what 

we predicted, the task effect indicates that subjects fixate salient features more in the 

visual search task than in the auditory task. This is especially the case for the land-

scape stimuli. When comparing the visual search task to the auditory task, there is no 

significant effect of task, but an effect of stimulus type (p=0.02) and an interaction 

(p=0.02). When judging landscape rather than shape stimuli, subjects fixate highly 

salient features. 

3.5   Fixation Target  

For the shape stimuli, we had a closer look at the specific shapes that were fixated in 

the different conditions. Figure 6A shows the proportion of fixations close to blue, 

green and red shapes in the different tasks. In 6B, the data is split up by the form of 

the shape that subjects fixated. The data of the auditory and visual judgment task 

overlap in both graphs. This is in accordance with the saliency data where we did not 

observe any difference between the two tasks when the shapes were presented. One 

might have expected to find relatively many fixations close to red shapes in the visual 

judgment task (where the spread of red symbols had to be judged) but this is not  

 



336 A.-M. Brouwer et al. 

 

Fig. 6. Proportions of fixations close to differently colored (A) and formed (B) shapes. Note 

that all data points are together; except for the squares representing the search condition. The 

open squares indicate  subject 1-5 who searched for the green diamond,  the filled squares 

subject 6-11 who looked for the blue pentagon. 

apparent. In general, red shapes (6A) and triangles (6B) seem to draw gaze. Our main 

objective was to determine the looked-for target from fixated features. Indeed, almost 

70% of the fixations is on shapes of the same color as the target. Also, the form corre-

sponding to that of the target is fixated most. Note that the target itself is hardly ever 

fixated because most trials did not contain a target, and if they did, those trials usually 

contained many more fixations on the other shapes. 

3.6   EEG 

As hypothesized, the average power of the parieto-occipital EEG alpha activity was 

higher during the auditory task than during visual search (p=0.015 for the landscape 

images with an average increase of alpha power of 52%, and p=0.022 for the shapes 

with an increase of 55%). Figure 5BC shows the distribution of the alpha power dif-

ference over the skull.  

4   Discussion 

Our experiment yielded several important findings. 

Subjects make more fixations in both of the visual tasks compared to the auditory 

task. This is the case even though we asked subjects to view the pictures during the 

auditory task, and we tried to minimize the number of eye movements in the visual 

judgment task by instructing subjects to look at the center of the image. Note that the 

number of eye movements in visually judging the landscape images is the same as in 

searching them. 

In the auditory task, subjects seem to have their own preferred fixation location in 

space. This suggests that fixation locations during non-visual tasks are not completely 

determined by low-level visual features. Although all subjects used a chin rest and an 

adjustable chair such that their eyes were approximately directed to the center of the 

screen, the preferred fixation location may have been influenced by the exact sitting 

and 'straight ahead' posture of the subject. 

Fixations are more widely spread in both visual tasks than in the auditory task. 

The standard deviations of fixation locations indicate that when searching the shape 

stimuli, fixations were more spread than when searching the landscapes, while in the 

auditory task, fixations were less spread when viewing shape stimuli than landscapes. 
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Perhaps, the difficult shape stimuli forced subjects to scan a larger area when search-

ing for the target, whereas, when there was no visual task to be done, subjects pre-

ferred scanning the landscape stimuli over the shape stimuli. 

Computationally, the standard deviation does not depend on the number of data 

points. However, in fixation studies, the number of fixations could correlate positively 

with the standard deviation of fixation location: if subjects want to scan a larger area 

they will probably make more fixations. Still, this relation is not very strong as seen 

when Figures 2 and 3 are compared. This means that besides the number of fixations, 

fixation spread as indicated by the standard deviation may still add information when 

determining which task is being performed. 

Fixation spread or clutter as measured using Voronoi diagrams provided similar re-

sults as when it was measured by the standard deviation. Fixations are less cluttered in 

the visual search task than in the auditory task, with an interaction effect such that 

landscapes cause more clutter in visual search than shape stimuli (consistent with [3]). 

The opposite effect of image type is observed in the auditory task. In contrast to the 

standard deviation, the Voronoi measures did not indicate any significant effect when 

comparing visual judgment to the auditory task. This is probably due to the larger 

variability in the Voronoi measures - the trend of the results is similar.  

Interestingly, we found that the type of visual stimulus affects fixation spread in 

the auditory task. Thus, while the subject specific preferred fixation location in space 

during the auditory task indicates that fixation locations during non-visual tasks are 

not only determined by low-level visual features, visual stimuli do have an effect. 

This appears to be a higher level effect, such as an increased tendency to look around 

when natural, more meaningful stimuli are presented. 

Our prediction that gaze is especially attracted by salient stimuli when subjects do 

not have a specific visual task did not bear out. On the contrary, especially for the 

landscape stimuli, subjects look more at salient features during visual tasks than dur-

ing the auditory task. In the visual search task, this could be explained by the fact that 

some aspects of the target are salient. The findings suggest once again that during 

non-visual tasks low-level visual features do not determine fixation. We do not expect 

that these results can be easily reversed by using another definition of saliency since 

the significant effects of our variables indicate that the saliency maps as defined here 

are indeed meaningful. 

We can deduce from fixations which target subjects are looking for, even if they 

hardly ever fixate the actual target. We showed this now for simple geometrical 

shapes, but if the eye tracking is accurate enough, it could work for more complex 

images as well. This could be done by applying different filters to the image patch 

around fixation and comparing the averaged results to randomly chosen patches. 

The power of EEG alpha activity monitored over the parieto-occipital area is 

higher for the auditory task than visual search. This finding is completely in accor-

dance with the alpha inhibition hypothesis [4, 5]. The emerging concept goes beyond 

the common notion of alpha as an ‘idling’ rhythm [9].   

To sum up, our results suggest the following markers for a visual task: many fixa-

tions, a large fixation spread, and an average fixation location close to the center of 

the region of interest. Depending on the specific relevant items in the visual field, 

fixated features tend to be salient and can reveal which target the observer is looking 

for. The power of EEG alpha is low. Markers identified for a non-visual task are the 
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following: few and cluttered fixations, average fixation locations far from the center 

of the region of interest, fixations that are not specifically directed at salient features 

and a relatively high EEG alpha power. 

In order to effectively exploit these findings in monitoring surveillance workers, 

these different cues should be incorporated in a collective model. One way to address 

this challenge is to use classification techniques. This would entail training a classifi-

cation model on features extracted from experimental data with the aim of enhancing 

the classifier’s capability to generalize and categorize unseen data examples (in the 

given context, visual versus non-visual task). Pilot investigations into the robustness 

of this approach using solely the EEG data are promising.  
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Abstract. Previous research has demonstrated that EEG data can be used to 

identify and remove unintentional responses from a data set (guesses and slips).  

This study sought to determine if removing this error variance has a significant 

impact on the interpretation of a trainee’s performance. Participants were taught 

to recognize tank silhouettes.  Multiple linear regression models were built for 

each participant based on three sets of their data: 1) all trials of their perform-

ance data, 2) only trials that were learned according to a state space analysis, 

and 3) their intentional data as identified by EEG.  When compared to an expert 

model, each of the three models for every participant yielded a different diagno-

sis, indicating that filtering performance data with EEG data changes the inter-

pretation of a participant’s competence. 

Keywords: electroencephalography, training, and student modeling.  

1   Introduction 

There is a growing movement to incorporate measures of physiological and neuro-

logical data collected from warfighters into military systems.  The premise is that the 

systems could make intelligent adaptations on the basis of those measurements, in 

order to increase the overall effectiveness of the warfighter [1].  Training seems to be 

a particularly promising field for the incorporation of these data [2].  Many research-

ers in this area have proposed monitoring physiological data to ensure that the trainee 

is being kept at an optimal level of alertness and engagement during the exercise – 

neither bored nor overwhelmed [3].   

Of course, alternative applications of neurophysiological data in training systems 

have been suggested as well. This work follows up on the proposal that electroe-

ncephalography data (EEG) could be used to support the process of diagnosing a 

trainee’s underlying competence [4]. Currently, trainers make inferences about a 

trainee’s competence based on the pattern of correct and incorrect actions that he or 

she takes during an exercise. While these data are obviously highly relevant, it has 

long been known that performance is not a perfect reflection of competence.  Some 

actions, for example, represent guesses (lucky or unlucky) and slips (unintentional 
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actions, which are more likely to occur when a person is working quickly) and thus 

are not representative of stable cognitive patterns.   

In fact, it has been shown that EEG data can reliably discriminate between inten-

tional and unintentional responses [5].  While these results are suggestive of the po-

tential for neurophysiological data to support the accomplishment of training goals, 

many questions still remain.  Of particular interest is the question of whether or not 

distinguishing between intentional and unintentional responses has any practical im-

pact on the actual diagnosis of trainee performance.  In other words, it has yet to be 

demonstrated that diagnosing only the intentional behaviors will lead a trainer to draw 

different conclusions about a trainee’s underlying competence from what he or she 

would have concluded based on a diagnosis of the entire set of performance data.   

We address this issue in the current study, using the Brunswik Lens Model [6] as 

our paradigm for diagnosing underlying trainee competence in a decision-making 

task. According to this paradigm, a mathematical model is derived relating trainee 

decisions to the characteristics of the environment or stimulus being processed.  This 

model is interpreted as indicating which characteristics the trainee is using, and to 

what degree, when making an identification decision.  An analogous model is built on 

either expert performance data or perfect performance data and the two models are 

compared. Discrepancies between the two models are interpreted as weaknesses in the 

student’s strategy of using characteristics or cues to make decisions.   

Our hypothesis is that using EEG data to remove guesses and slips (unintentional 

responses) from a trainee’s performance data set will result in a different interpreta-

tion of that trainee’s competence than would have been derived if the entire set of 

performance data had been modeled.  As an additional control condition, we used a 

statistical technique to try to identify and remove guesses from each trainee’s per-

formance data set, to see if the EEG data had any impact over and above that which 

could be achieved by a simpler and cheaper methodology.   

2   Method 

2.1   Participants 

Ten right-handed volunteers, 7 women and 3 men, over the age of 18 were recruited 

for this study. The mean age of the participants was 28 years (SD = 11; range: 18-48). 

Each received financial compensation for their participation.  

2.2   Apparatus 

A 256-channel HydroCel Geodesic Sensor Net (Electrical Geodesics, Inc., Eugene, 

OR) was used to acquire the EEG data.   All recordings were referenced to Cz and all 

of the electrodes were kept below 70 KΩ.  The EEG was bandpass filtered (0.1- to 

100-Hz) and sampled with a 16-bit analog-to-digital converter at 250 s/s.  Eprime© 

(Psychology Software Tools, Pittsburgh, PA) was used for stimulus control.   

2.3   Materials 

Participants were trained on identification of military vehicles in a computer-based 

learning program created in EPrime©.  The images used were bitmap files scanned 
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from images selected from the United States Marine Corps unclassified anti-armor 

training materials.  They consisted of eight tank silhouettes: the ASU85, Centurion, 

Chieftain, Leopard, M60A1, T62, T72, and ZSU23-4.  The program presented a  

bitmap file of the tank silhouette, allowed a fixed amount of time for a response,  

provided feedback, and kept a record of the stimuli presented as well as participant 

responses including reaction times.  Trials were presented in a block randomized or-

der so that for each consecutive eight trials each stimulus was presented once but in 

random sequence.   

2.4   Procedure 

After completing the informed consent paperwork, each participant was fitted with a 

256-channel sensor array, and then began the computer-based learning task, which 

was divided into four stages.  The first stage consisted of 120 trials divided into 15 

randomized blocks of the eight tanks. The goal of this stage was to familiarize partici-

pants of the association between tank names and response keys.  A target tank name 

was displayed in the center of the screen.  Near the bottom of the screen a representa-

tion of the response keys with the tank names indicated on each key was displayed.  

The participant’s task was to press the corresponding key as quickly as possible.  

Pressing the correct response key initiated the next trial in the program. 

The goal of the second stage was to oblige participants to remember which re-

sponse keys corresponded to each tank name.  The task was identical to the task in the 

first stage except that the labeled keyboard display was removed.  Participants en-

gaged in seven randomized blocks of the eight tank names for a total of 56 trials.  

Feedback was given after each trial, and the next trial was initiated by a correct key 

press by the participant.   

The third stage consisted of the primary learning task in which participants were 

asked to learn to identify the tank silhouettes.   Each trial began with presentation of 

a silhouette in the center of the computer screen.  Participants had 2000 milliseconds 

to identify the silhouette by pressing the appropriate response key.  Immediately fol-

lowing the response, or if the response time ended before a key press was made, the 

participant was given feedback including information about the correctness of their 

response and the correct name of the tank.  The feedback remained on the display for 

2000 milliseconds, or until the participant pressed a key, upon which the computer 

screen went blank for 100 milliseconds and then the next trial began.  This stage  

proceeded through 400 trials divided into 50 randomized blocks of the eight tank 

silhouettes.   

Finally, the fourth stage consisted of the testing stage. Similar to the previous task, 

participants were asked to identify the tank silhouettes in a brief period of time (1000 

milliseconds) by pressing the appropriate key.  No feedback was provided, however, 

at any time during this stage.  There were 32 test trials divided into four randomized 

blocks of the eight tank silhouettes.   

Following these four stages participants filled out a standard questionnaire regarding 

the comfort of the 256-channel sensor array net and a debriefing questionnaire regard-

ing the learning task.  This was comprised of Likert scale ratings of both the difficulty 

of the learning task and usefulness of the feedback as well as questions in which  



342 G.E. Campbell, C.L. Belz, and P. Luu 

participants were asked to describe the features that they used to identify the tank sil-

houettes and any learning strategies they may have used during the experiment.   

3   Results 

In preparation for modeling, the eight tank images were decomposed into a set of 7 

features, for example, the ratio of the length of the gun barrel to the length of the ve-

hicle body.  This was accomplished partly through visual inspection by the authors 

and partly using subjective reports from pilot subjects.  These features were sufficient 

to uniquely discriminate each of the images.  The following paragraphs describe the 

steps used to build models.  It should be noted that separate models were built for 

each participant and data were never combined across participants.   

Each participant’s data from stage three of the procedure (400 trials) were assem-

bled into a table that contained one row per trial, and detailed the actual stimulus, the 

participant’s response, the participant’s reaction time and the values that those seven 

features took on for that stimulus.  The analysis tool pack from Microsoft Excel ® 

was used to conduct a multiple linear regression on each participant’s complete data 

set from stage three, with the constant set to zero, resulting in the first of the three 

models for each participant.   

While logistic regression would technically have been more appropriate given the 

nature of the response (a vehicle name), a logical ordering of the vehicles (based on 

similarity) was imposed and a comparison of the two regression techniques indicated 

that they derived representations that were equally predictive of the participants’ re-

sponses.  The linear regression representation was used for this study because it pro-

vided cue weights that were easier to interpret within the context of the Brunswik 

Lens Model.   

Next, following [7], state space analyses were applied separately to each partici-

pant’s performance on each of the eight stimulus images, in an attempt to estimate the 

trial (if any) at which each image was reliably learned.  Responses made before these 

learning points were discarded (as guesses) and the subset of performance data re-

maining was again analyzed by multiple linear regression.   

The results of the state space analyses were also used as inputs to support the  

single trial analyses of the EEG data that was collected during stage three of the pro-

cedure.  EEG-based indices were developed to discriminate between intentional  

(or learned) responses, guesses and slips.  More details on the single trial analysis 

procedure that was applied can be found in [5].  Once the single trial analyses were 

complete, the results were used to identify and discard all of the responses that were 

not flagged as intentional and learned by the EEG signal.  The remaining subset of 

data was used to generate the third model for each participant, following the proce-

dure described above.  Beta weights for each of the three models built for each par-

ticipant can be found in Table 1.   

In order to apply the Brunswik Lens Model paradigm, we needed to create one last 

model using hypothetical data from a “perfect participant.”  This was accomplished 

by using the correct stimulus images as the criterion in a regression analysis, instead 

of the responses given by a real participant.  The beta weights and the 95% confi-

dence intervals around those beta weights are presented in Table 2.   
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Table 1. Cue weights from Regression Equations Built from Three Different Subsets of Each 

Participant’s Data   

CUES 1 2 3 4 5 6 7 

Participant #1 

All 0.16 3.07 0.77 -0.79 1.22 0.00 1.71 

SSA 0.05 3.40 0.91 -0.93 1.21 0.00 1.89 

EEG -0.28 5.20 1.32 -1.40 1.74 -0.01 2.18 

Participant #2 

All -0.23 7.02 1.65 -1.55 3.02 -0.02 1.64 

SSA -0.37 7.17 1.70 -1.62 2.91 -0.02 1.83 

EEG -0.26 5.22 1.34 -1.39 1.75 -0.01 2.18 

Participant #3 

All 0.60 2.76 0.36 -1.97 2.17 0.01 0.40 

SSA -1.02 0.00 -0.26 -0.38 -1.11 0.03 3.25 

EEG -0.21 4.98 1.26 -1.37 1.64 -0.01 2.17 

Participant #4 

All 0.71 -0.67 0.28 -1.23 0.46 0.02 0.74 

SSA -0.11 -4.14 0.50 0.00 1.38 0.05 0.92 

EEG -0.27 4.95 1.29 -1.37 1.71 -0.01 2.15 

Participant #5 

All 0.88 4.81 -0.57 -2.06 1.16 0.00 0.94 

SSA 0.71 5.10 0.13 -1.64 0.59 -0.01 1.81 

EEG -0.30 5.09 1.32 -1.39 1.76 -0.01 2.17 

Participant #6 

All 0.46 -1.11 -0.67 -1.46 -0.30 0.03 0.96 

SSA 0.72 0.00 0.36 -0.73 0.00 0.01 1.64 

EEG -0.18 5.05 1.31 -1.31 1.59 -0.01 2.22 

Participant #7 

All -0.14 4.58 1.13 -1.33 1.75 -0.01 1.97 

SSA -0.11 3.92 1.18 -1.09 1.44 0.00 2.09 

EEG -0.22 4.80 1.37 -1.24 1.64 -0.01 2.19 

Participant #8 

All 0.44 5.60 -0.38 -2.89 1.56 0.00 1.14 

SSA -0.07 4.92 1.04 -1.72 2.00 -0.01 1.71 

EEG -0.36 5.26 1.42 -1.38 1.88 -0.01 2.18 

Participant #9 

All 0.06 -0.46 -1.18 -0.98 -0.19 0.04 1.10 

SSA 0.24 0.17 -0.45 -1.07 -0.19 0.02 1.59 

EEG -0.27 4.94 1.32 -1.33 1.69 -0.01 2.18 

Participant #10 

All 0.88 3.32 -0.05 -1.38 0.31 0.00 1.55 

SSA 0.85 0.00 0.14 -0.47 -0.46 0.01 1.87 

EEG -0.38 5.08 1.43 -1.34 1.89 -0.01 2.16 

Table 2. Beta weights and 95% confidence intervals in hypothetical perfect participant model   

CUES 1 2 3 4 5 6 7 

Perfect Performance Model 

Lower 95th 

confidence 

interval -0.37 4.43 1.20 -1.44 1.43 -0.01 2.14 

Beta weights -0.25 4.93 1.38 -1.27 1.70 -0.01 2.19 

Upper 95th 

confidence 

interval -0.12 5.43 1.56 -1.11 1.97 -0.01 2.24 
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Table 3. Summary of beta weight comparisons between the perfect participant’s model and 

each of the three models built per participant  

 # of Beta Weights 

 β > Upper Bound 

OR  

β < Lower 

Bound on P.P. 

Model 

Lower < β < Upper 

Bounds of P.P. Model 

Participant 1 

All 7 0 

SSA 7 0 

EEG 0 7 

Participant 2 

All 6 1 

SSA 6 1 

EEG 0 7 

Participant 3 

All 7 0 

SSA 7 0 

EEG 0 7 

Participant 4 

All 6 1 

SSA 7 0 

EEG 0 7 

Participant 5 

All 6 1 

SSA 6 1 

EEG 0 7 

Participant 6 

All 7 0 

SSA 7 0 

EEG 0 7 

Participant 7 

All 3 4 

SSA 6 1 

EEG 0 7 

Participant 8 

All 6 1 

SSA 6 1 

EEG 0 7 

Participant 9 

All 7 0 

SSA 7 0 

EEG 0 7 

Participant 10 

All 6 1 

SSA 7 0 

EEG 1 6 

 
The final step was to conduct the diagnosis of each participant model.  This was 

accomplished by comparing each of the beta weights in the participant’s model to the 

95% confidence intervals around the beta weights in the perfect model.  If a beta 

weight fell outside of a confidence interval, the qualitative interpretation would be 

that the participant did not use information available in that cue appropriately.   
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For example, consider the regression equation built for participant #1 using all of 

his or her data.  The beta weight on the second cue is 3.07.  The perfect participant 

model shows a beta weight of 4.93, and the lower bound on the 95% confidence in-

terval around this beta weight is 4.43.  This could be interpreted as saying that, ac-

cording to the participant’s data, the participant is under-utilizing the information 

available in this cue or characteristic of the vehicle images.   

Next, consider the same cue for participant #2.  This participant has a beta weight 

of 7.02 on the second cue, which is above the upper bound of 5.43 on the 95% confi-

dence interval around the beta weight in the perfect participant’s model.  It would 

appear that participant #2 over-relies upon information contained in this feature of the 

vehicle images when making his or her identification decision.    

The results of this comparison are summarized in Table 3.  The comparison of  

interest is, for each participant, the interpretation of the accuracy of his or her cue 

usage to make identification decisions within each of the three models.  More spe-

cifically, an examination of the table reveals a high degree of overlap in the first two 

rows of each participant’s section of the table, and a large deviation in the third row 

of each participant’s section of the table.  In other words, the model based on EEG 

information led to a different diagnosis of competence for every single one of the 10 

participants.   

4   Discussion 

Currently, the measurement and analysis of electroencephalographic (EEG) signals 

can be a complicated, cumbersome and costly procedure.  While there has been some 

scientific work suggesting that single trial analysis of EEG data can distinguish be-

tween intentional and unintentional responses given in a training context [5], that is 

only a first step towards determining the potential practical value added of using neu-

rophysiological data in a real training setting.  In this paper, we investigated the ques-

tion of whether or not making this discrimination at a response-by-response level has 

the potential to influence a more global diagnosis of a trainee’s cognitive strategy.  If 

discriminating intentional from unintentional responses doesn’t change the ultimate 

diagnosis of a trainee’s strengths and weaknesses, then it is unlikely that this extra 

step is worth the required resources.   

We used multiple linear regression equations to estimate the extent to which a 

trainee was over-, under- or appropriately using the various features of tanks to help 

identify them.  We evaluated the appropriateness of their cue usage by comparing cue 

weights from their strategy regression equations to cue weights from the strategy re-

gression equation of a hypothetical perfect participant.  More specifically, we con-

cluded that a participant was appropriately using a particular vehicle feature if his cue 

weight on that feature fell within the 95% confidence intervals around the perfect par-

ticipant’s cue weight for that feature.   

In total, we built three equations for each participant.  We built the first equation 

using all of that participant’s data.  Next, we applied a statistical technique to try to 

discriminate guesses from learned responses.  The second equation for each subject 

was based on only the subset of responses that appeared to be learned according  

to this state-space analysis.  Finally, we used single trial analyses of EEG data to  
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discriminate between guesses, slips and intentional responses.  The third equation for 

each subject was based on only the subset of responses that appeared to be intentional 

according to this neurophysiological analysis.   

As our results clearly demonstrate, when compared to a diagnosis based on the en-

tire set of responses given by a single participant, the statistical technique of identify-

ing learned responses had little impact on the conclusions that a trainer would draw 

about the trainee’s mental strategy.  However, using the EEG-based filter to identify 

intentional responses had a dramatic impact on the conclusions that a trainer would 

draw for every single one of our ten participants.  In each case, the diagnosis would 

flip from indicating that the participant was using few, if any, cues appropriately to 

indicating that the participant was using most, if not all, cues appropriately.  Needless 

to say, these two sets of diagnoses would lead to very different instructional “next 

steps” for these trainees.     

The fact that the use of the EEG filter led to the conclusion that most of the  

trainees were using all of the available information appropriately to make their identi-

fications is not really surprising, given our training methodology.  Remember that 

trainees were given the correct identification of each vehicle after every response.  

What this suggests is that this particular training paradigm led to accurate learning 

and that the trainees may have been further along that learning path than their per-

formance data alone would lead us to believe.     

While this work moves us one step closer to addressing the practical question of 

whether or not the incorporation of EEG-based measurement in a training system has 

value added, it is still not a final answer.  We have demonstrated that the use of an 

EEG-based filter may lead to a different diagnosis of a trainee’s underlying compe-

tence, however these data do not tell us if that diagnosis is, in fact, more accurate.  

The next step, which we are currently working on, is to see if using the EEG-based 

diagnosis to control the instructional response is either more effective or more effi-

cient than relying on the trainee’s entire data set.   

It should be noted that there are also technical challenges that must be overcome, 

even if the EEG-based diagnosis does turn out to be more accurate.  The method we 

used to conduct the single trial analysis of EEG data was largely data-driven and rea-

sonably time consuming.  To truly have practical application in a military training 

system, the EEG analyses would need to be automated and able to run in very-close to 

real-time.   

Finally, of course, the fact that the EEG-based diagnoses differed substantially 

from the full data diagnoses for this particular training context does not guarantee that 

it will always have an impact.  There could easily be many environments in which the 

use of this technology does not confer any advantage.  For example, in slow moving 

domains that allow for a lot of deliberation before taking a single action, we would 

not expect to see a lot of unintentional responses that needed to be filtered out with 

EEG data.  Similarly, in a domain that allowed operators to “undo” an accidental ac-

tion, the use of EEG data to identify these slips would be overkill.  Also, statistical 

techniques to distinguish intentional (or reliable) from unintentional (or unreliable) 

data are likely to be more cost effective then neurological data when there is the op-

portunity to collect a large enough sample of performance data from a trainee.   

Despite the limitations of this study and the possible limitations on the use of this 

technology, we think that this work represents an important step forward towards the 
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goal of effectively incorporating neurophysiological measurement into the assessment 

and diagnosis of trainee performance patterns.  Our data have shown that, at least un-

der some circumstances, the use of EEG data to filter the corresponding set of per-

formance data can have a substantial impact on the conclusions that a trainer would 

draw about the trainee’s underlying knowledge and competence.   
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Abstract. This study investigates electroencephalographic (EEG) correlates of 

motion sickness in a virtual-reality based driving simulator.  The driving simula-

tor comprised an actual automobile mounted on a Stewart motion platform with 

six degrees of freedom, providing both visual and vestibular stimulations to in-

duce motion-sickness in a manner that is close to that in daily life. EEG data 

were acquired at a sampling rate of 500 Hz using a 32-channel EEG system. The 

acquired EEG signals were analyzed using independent component analysis 

(ICA) and time-frequency analysis to assess EEG correlates of motion sickness. 

Subject’s degree of motion-sickness was simultaneously and continuously re-

ported using an onsite joystick, providing non-stop psychophysical references to 

the recorded EEG changes. Five Motion-sickness related brain processes with 

equivalent dipoles located in the left motor, the parietal, the right motor, the oc-

cipital and the occipital midline areas were consistently identified across all sub-

jects. These components exhibited distinct spectral suppressions or augmentation 

in motion sickness. The results of this study could lead to a practical human-

machine interface for noninvasive monitoring of motion sickness of drivers or 

passengers in real-world environments. 

Keywords: EEG, ICA, motion-sickness, delta, theta, alpha, time-frequency. 

1   Introduction 

Motion-sickness is a common experience to everybody, and it has provoked a great 

deal of attentiveness in plenty of studies. The sensory conflict theory that came about 

in the 1970’s has become the most widely accepted theorem of motion-sickness 

among scientists [1]. The theory proposed that the conflict between the incoming 

sensory inputs could induce motion-sickness. Accordingly, new research studies have 

appeared to tackle the issue of the vestibular function in central nervous system 

(CNS). In the previous human subject studies, researchers attempt to confirm the 

brain areas involved in the conflict in multi-modal sensory systems by means of clini-

cal or anatomical methods. Brandt et al. demonstrated that the posterior insula in 
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human brain was homologous to PIVC in the monkey by evaluating vestibular func-

tions in patients with vestibular cortex lesions [2]. In agreement with previous clinical 

studies, the cortical activations during caloric [3] and galvanic vestibular stimulation 

[4] had been studied by functional imaging technologies such as positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI). To overcome 

the temporal limitation of the two imaging modalities, some studies have investigated 

the vestibular information transmission in time domain. monitoring the brain dynam-

ics induced by motion-sickness because of its high temporal resolution and portability 

De Waele et al. , for example, applied current pulse stimulation to patients’ vestibular 

nerve to generate vestibular evoked potentials [5]. In the study, thirty active scalp 

electrodes were used to record evoked potentials. By means of dipole imaging 

method, five distinct cortical areas were modeled from the recorded scalp signals. 

However, there is no general consensus on the motion-sickness related brain areas 

among the previous studies.  

The EEG studies related to motion-sickness can be divided into two groups accord-

ing to the types of stimuli: vestibular and visual. Vestibular stimuli were normally 

provided to the subjects with rotating chair [6-7], parallel swing [8], and cross-coupled 

angular stimulation [9] to induce motion-sickness. Theta power increases in the frontal 

and central areas were reported to be associated with  motion-sickness induced by 

parallel swing [8] and rotating drum [6-7]. Chelen et al. [9] employed cross-coupled 

angular stimulation to induce motion-sickness symptoms and found increased delta- 

and theta-band power during sickness but no significant change in alpha power. Visu-

ally induced motion-sickness is also commonly studied in previous studies. Visually 

induced sickness can be provoked with an optokinetic drum rotating around the yaw 

axis. This situation can cause a compelling sense of self-motion (called vection). 

Vestibular cues indicate that the body is stationary, whereas visual cues report the 

body is moving. Hu et al. investigated MS triggered by the viewing of an optokinetic 

rotating drum and found a higher net percentage increase in EEG power in the 0.5-4 

Hz band at electrode sites C3 and C4 than in the baseline spectra. [10]. This study 

employees ahe driving simulator comprised an actual automobile mounted on a Stew-

art motion platform with six degrees of freedom, providing both visual and vestibular 

stimulations to induce motion-sickness and accompanied EEG dynamics.  

2   Materials and Methods 

2.1   Experimental Paradigm 

Unlike the previous studies, we provided both visual and vestibular stimuli to partici-

pant through a compelling VR environment consisting of 360
o
 projection of VR scene 

and a motion platform with six degree-of-freedom to induce motion-sickness.  With 

such a setup, we expected to create motion-sickness in a manner that is close to that in 

daily life.. During the experiment, the subjects were asked to sit inside an actual vehi-

cle mounted on a motion platform, with their hands holding a joystick to report their 

sickness level continuously.  The VR scenes simulating driving in a tunnel were pro-

grammed to eliminate any possible visual distracter and shorten the depth of visual 

field such that motion-sickness could be easily induced. A three-section experimental 

protocol (shown in Fig. 1) was designed to induce motion-sickness. 
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Fig. 1. Experimental design of motion-sickness experiments 

First, the baseline section contained a 10-minute straight road to record the sub-

jects’ baseline state. Then, a 40-minute motion-sickness section, which consisted of a 

long winding road, was presented to the subjects to induce motion-sickness. Finally a 

15-minute rest section with a straight-road condition was displayed for the subjects to 

recover from their sickness. The level of sickness was continuously reported by the 

subjects using a joystick with continuous scale on its side. The experimental setting 

successfully induced motion sickness to more than 80% of subjects in this study. 

2.2   Subjects 

Twenty-four healthy, right-handed volunteers (15 males and 9 females, ages from 21 

to 24 year-old with an average of 22.1 year-old) with no history of gastrointestinal, 

cardiovascular, or vestibular disorders, no drug or alcohol abuse, no current medica-

tion, and having normal or corrected-to-normal vision participated in this experiment. 

Among the 24 participants, four having no motion-sickness at all and one being too 

sick were excluded from further data analysis. Therefore, the EEG data and subjective 

MS level from 19 subjects were included in the further data analysis. 

2.3   Data Acquisition and Analysis 

Thirty two-channel EEG signals were acquired at the sampling rate of 500 Hz using 

NuAmps (BioLink Ltd., Australia). The acquired multi-channel EEG signals were 

first down sampled to 250 Hz. A high pass filter with a cut-off frequency at 1 Hz with 

transition band of 0.2 Hz was used to remove baseline-drifting artifacts. Then, a low-

pass filter with cut-off frequency at 50 Hz with transition band of 7 Hz was applied to 

the signal to remove muscle artifacts and line noise. During the experiment, the sick-

ness level was continuously reported by subject using a joystick with continuous 

scale, which was synchronized with the EEG signals. The sickness level was ranged 

from 0 to 5. The continuous sickness level instead of the traditional motion-sickness 

questionnaire (MSQ) [11] used in this study gave us real-time sickness level ratings 

without interrupting the experiment for the subjects to fill out the questionnaire. The 

new rating system provides continuous information of sickness level and also ensures 

the quality of EEG signals. A moving 100s window was used to smooth the continu-

ous subjective sickness ratings using steps of 1s. 

The acquired EEG signals were analyzed using independent component analysis 

(ICA) and time-frequency analysis to assess the involved brain regions/circuits during 

motion-sickness. Then, components with similar scalp topographies, dipole locations 

and power spectra from many subjects were grouped into component clusters [12]. 

The activations of independent components (ICs) were then correlated to the MS level 

to investigate the changes before, during and after motion-sickness sessions. 
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3   Results 

3.1   Single-Subject Time-Frequency Response 

The EEG dynamics related to the motion-sickness level were investigated by applying 

time-frequency analysis to the ICs in the five selected ICs clusters. Fig. 2 shows the 

time-frequency response of three ICs, the occipital, parietal and right motor compo-

nents, from one of the 19 subjects. Among these ICs, the alpha power of the left  

occipital component (Fig. 2B) increased as the MS level increased. In addition, the 

alpha power changes in parietal and motor areas are also partially co-varied with MS 

level as shown in Fig. 2C and 2D. As a result, these three IC clusters might be most 

related to motion sickness as revealed by their time-frequency dynamics. 

 

Fig. 2. Single-subject time-frequency results in occipital, parietal and right motor components. 

The recorded sickness level was shown as red curve in A. Three ICA components were selected 

as MS-related components in which their time-frequency responses were changed with sickness 

level. ICA power increases with the severity of motion-sickness were observed in alpha band. 

3.2   Cross-Subject EEG Activities Related to MS 

Brain signals can be sensitive to any environmental changes. Thus, the EEG signals 

acquired under different conditions may be confounded by different experimental 

variables. For example, when the experiment entered the winding-road section, the 

car began to sway left and right with the VR scene of the curved road, providing both 

visual and body sensation stimuli to the subjects which might induce large brain re-

sponses. As a result, simply comparing the EEG power associated with motion-sick 

and non-motion sick conditions may fail to dissociate such confounding effects from 

the main motion-sickness ones. This baseline difference among EEG power spectra 

associated with the different road conditions must be considered when the MS-related 

EEG power changes are evaluated. Therefore, the EEG power spectral changes in 

three periods were initially examined: (1) baseline - the first 3 minutes of the baseline 

straight road section, (2) low MS level - the first 3 minutes of the curved road section,  
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Fig. 3. Statistical comparison of IC power spectra under different conditions. The averaged ICA 

power spectra of baseline (straight-road / no-sick) were plotted as green lines, the power spectra 

of low sickness level (curve-road/ no-sick) were shown in blue, and the power spectra of low 

sickness level (curve-road/ sick) were shown in red. The red stars indicated significant different 

between sick and no-sick. A paired-sample Wilcoxon signed rank test was applied to the ICA 

power spectra to verify the significance of the power difference. The significant level was set at 

p <0.01 in this research. 

and (3) high MS level - the first 3 minutes after the highest sickness rating. The power 

spectra in these three time periods (baseline, low-sickness and high-sickness) were 

then averaged among subjects in each selected IC cluster. A paired Wilcoxon signed 

rank test was performed on the averaged ICA power spectra to evaluate the statistical 

significance of relationship between the power difference and both the road condi-

tions and the motion-sickness level.  

Figure 3 compares the mean component power spectra of the IC clusters for  

different MS levels or under various road conditions. The EEG spectral difference 

associated with the different road conditions can be assessed by comparing the base-

line power spectra (green traces in Figs. 3B-F) and the low-MS level spectra (blue 

traces). Evidently, the alpha power of the right, left motor and the parietal compo-

nents were suppressed from the straight-road driving to the winding-road driving as 

the car swayed from side to side. Additionally, significant alpha power suppression in 

the occipital midline IC cluster was also observed (Fig. 3F). Comparing the compo-

nent power spectra under low MS level (blue traces in Fig. 3) and high MS level (red 

traces) revealed MS-related spectra changes. The red asterisks in Fig. 3 indicate the 

frequency bins where the component EEG power differed significantly between the 

maximum and minimum sickness levels under the same curve road condition (p<0.01, 

Wilcoxon signed rank test). The alpha power of the occipital IC cluster (Fig. 3E) 

increased significantly with the MS level, whereas the occipital midline component 

cluster exhibited broadband spectral elevation at high MS. 
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3.3   Correlation between MS Level and EEG Responses 

Figure 4 shows the overall correlations between the component spectra and their cor-

responding MS levels of the five clusters. The correlation coefficients in the alpha 

band exceed those in other frequency bands in all five clusters. The maximum corre-

lation coefficient in the alpha band is 0.5 in the occipital midline components, while 

the correlation coefficients are approximately 0.4 in other IC clusters. 

 

Fig. 4. Correlation between sickness level and the EEG spectra of the five component clusters 

4   Discussion 

The brain activities related to motion-sickness were studied here by using the tech-

nologies of EEG and the dynamic motion platform. ICA was used to separate  distinct 

motion-sickness related EEG processes  in the bilateral motor, parietal, occipital and 

occipital midline regions.  

Alpha power suppressions correlated to motion stimuli (Fig.3 B-D) were found in 

parietal and the two somatosensory areas (the right and left motor areas). The power 

suppression can be referred to the blocking or desynchronization of central mu 

rhythms. This suggests that these brain areas might be influenced by vestibular inputs 

during the experiments. However, the frequency responses in these three brain areas 

were also affected by severity of motion-sickness. In Fig. 3E-F, we found alpha 

power increases with sickness-level, especially in the parietal lobe. The results are 

consistent with a gravity experiment proposed by [13]. They showed that the 10-Hz 

oscillations in the parieto-occipital and sensorimotor areas increased in the absence of 

gravity. They also suggested that since parietal lobe is situated at the conjunction 

between the visual and the sensorimotor cortex and thus it might be involved in inte-

grating the multi-modal sensorimotor inputs. 
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Correlation analysis (Fig. 4) suggested that the power responses in the occipital 

midline components were highly correlated with subjective sickness-level, comparing 

to other brain areas. It suggests that the activations in the occipital midline, followed 

after sensorimotor integration in parietal and motor areas, might be used as a coun-

termeasure to evaluate self-conscious of motion-sickness. 
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Abstract. One of the major deficiencies with the EEG-based classifiers used in 

today’s laboratory settings is that they are often ill suited for the real world.  In 

many cases the classifiers that were painstakingly developed in the controlled 

laboratory environment become unreliable with increased mobility of the user.  

In addition to increased mobility, many real world scenarios impose con-

straints on data collection that cannot be accommodated by the lab-created 

classifier.  Addressing these issues throughout the development process of 

EEG-based classifiers by building hardware, software, and algorithms in-

tended for use in the real world should result in more dependable classifiers.  

With this approach we were able to collect and classify data on a research ves-

sel at sea, in the desert by night, on dismounted soldiers in the training field, 

and everywhere between. 

Keywords: Electroencephalogram (EEG), Mobile EEG, Operational Neurosci-

ence, Engagement, Workload, Drowsiness. 

1   Introduction 

Researchers have been interested in developing electroencephalogram (EEG) based 

classifiers for over forty years, in order to enable brain-computer interface (BCI) and 

neuro-feedback applications. Classifiers have been developed to track global activa-

tion state(s) as well as specific cognitive and medically diagnostic states [1-5].  Many 

commercially available EEG systems allow for the simultaneous recording of high 

quality EEG from a large number of scalp locations (128 – 256) in controlled labora-

tory environments and the advent of powerful digital electronics has allowed a shift in 

focus from simple data collection to development and implementation of complex 

signal processing and pattern recognition techniques that can be programmed to run in 

real-time. EEG metrics have been developed to quantify alertness, engagement, 

drowsiness and working memory, and the integration of EEG metrics into the evalua-

tion of Human-Computer Interfaces provided the foundation for establishing new 

fields including  neuroergonomics [1, 6-14].  However, the use of EEG outside of the 

lab was, until recently hampered by high susceptibility of EEG to movement artifacts, 

as well as environmental and physiological noise with amplitudes several orders of 

magnitude larger than the typical EEG amplitude (20-50 µV). Only in the last decade 
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has EEG left the laboratory, and entered the field with the development of portable 

EEG systems that include the acquisition tools and noise rejection techniques  

necessary for high quality data collection in real world environments.  Having these 

tools and systems enables implementation of EEG-based classifiers in real time in the 

real world. 

Real-world, real-time EEG applications must meet certain requirements to be  

relevant and useful. First, the equipment, software and algorithms required for acqui-

sition and processing must be easy to set-up and use. The hardware needs to be  

mobile, lightweight, robust, flexible, and reliable, whereas the acquisition and proc-

essing software should be intuitive and flexible. Finally, the algorithms should be 

developed with real-world applications in mind. While there are a number of poten-

tial approaches to developing real-world, real-time classifiers, at a minimum the 

hardware, software, and algorithm development methodology must be part of the 

overall game plan. 

2   Methods 

2.1   It’s All about the Hardware 

Hardware for in-field acquisition of EEG must address the following issues: portabil-

ity, ease of set-up and use in the field, durability, and minimization of signal  

acquisition artifacts. Mobility and portability requirements translate into a need for 

lightweight, simplified form factors, and preferably a wireless system. Wireless sys-

tems provide maximal flexibility and platform-independence in addition to improving 

durability while reducing environmental artifact during acquisition. To meet ease of 

use requirements, it should be easy to apply by the end user and once applied, it should 

become “transparent” so the user is able to focus on the task at hand (not the equip-

ment). Finally the system should be easy to trouble shoot with minimal set up time.   

Advanced Brain Monitoring (ABM) has developed a system that meets these re-

quirements.  The physical system consists of 3 basic components plus electrodes: a 

skull cap, and electrode placement strip that is integrated into the skull cap, and an 

electronics headset.  The skull cap and electrode placement strip components are size-

matched, and sizing is derived from the Nasium-to-Occipital distance of the end user, 

allowing selection of small, medium or large sizes. The integrated, size-matched skull 

cap and electrode placement strip incorporates the occipital bone placement to ensure 

accurate and easy placement of the electrodes (according to the 10-20 system). This 

set up has the added advantage of allowing easy identification and correction of incor-

rect sizing that could lead to inappropriate placement of the electrodes and collection 

of faulty data. The number of electrodes used is also important in minimizing the set-

up time, maintaining a light weight system, and reducing power consumption re-

quirements that can decrease portability, durability, and flexibility.  With only three 

electrodes, (Fz, Cz, and POz) the ABM system classifies a subject’s arousal state on a 

spectrum from Sleep Onset to High Engagement [6, 15-25]. By adding only three 

additional electrodes, (F3, C3, and C4), cognitive workload states have been deter-

mined in multiple Augmented Cognition scenarios [17, 19, 26 – 30].  Finally, imped-

ances below 5kOhms are not essential, and therefore need not delay the start of data 
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collection. With the current ABM set-up data can be collected and classified with 

impedances as high as 45kOhms, allowing for much greater flexibility in real-world 

environments. All of the above allow the system to be set-up and begin data collection 

quickly in the field setting, and are particularly advantageous in time sensitive settings 

where access to the subject population may be limited or driven by inflexible third 

party events. 

The system used for the majority of data collection to date is a Bluetooth (BT) 

wireless system that allows for true mobility in any setting. Wireless EEG has been 

acquired and passed to PDA’s, desktops, laptops, and mini-laptops; allowing the user 

to move freely in any environment without fear of catching loose wires, while provid-

ing maximal flexibility in the set-up process.  Additional mobility and comfort is 

found in the design of the EEG cap. Unlike traditional EEG caps, that use a chin strap 

to hold the EEG cap in place, the ABM system uses a skull cap design that holds the 

cap in place by applying tension around the head (similar to a head band) providing a 

greater range of normal movement. The end result is hardware that weighs less than 6 

oz including the electrodes, cap, electronics and batteries in a system with maximal 

run times of over 10 hours on two AAA batteries. 

The hardware discussed herein, has a small vertical and horizontal footprint that al-

lows the system to be integrated into multiple configurations on the end-user. The 

condensed size has allowed the system to be integrated with and under, Kevlar and 

safety helmets, fNIR headsets, gas masks and various head mounted eye trackers  

[31-33]. The system design provided the flexibility that accommodated these various 

configurations: the flexible cap and strip material and configuration provided the ro-

bustness needed to maintain good scalp contact required for high quality data acquisi-

tion with minimal noise in the signal. The electronics that provide amplification and 

digitization, as well as BT transmission are encased in a plastic reinforced with Lexan 

material, for high impact resistance. The durability and robustness of the hardware 

system was perhaps best demonstrated during use in live-fire, Simunitions training 

exercises occurring in a rainstorm at Aberdeen proving grounds [34], where the head-

set sustained a direct hit, yet maintained full functionality, continuing to acquire high 

quality data. In the real world, a system that acquires data for a classifier will need to 

be ready for anything, including: rain, misuse, abuse, and neglect- and yet be able to 

continue to collect high quality EEG signals that are the basis of the classifier.  

Ideally, the hardware design should minimally impact the state of the user; they 

should forget that the system is on. Depending on the level of intrusiveness of the 

hardware, the classifications characterizing distraction, work load, or effort described 

may be from the task, from coping with the data collection system, or any combina-

tion of related factors. By incorporating comfort into the original design of the ABM 

system the end result is a system that has been worn for 24 hours of continuous use, 

and has been worn by over 1000 subjects with minimal awareness of the data collec-

tion system.   

2.2   It’s All about the Software 

Real-world software for acquisition of EEG must address the following issues: At 

minimum, the software required for acquisition and processing must be easy to  

install and intuitive to use. Ideally it should also provide mobility options, along with 
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flexible interfaces, inputs and outputs, and reliably collect and save data. The software 

would be of greater assistance to the non-EEG researcher as well as the experienced 

EEG researcher if it were also able to identify and provide feedback regarding arti-

facts associated with environmental noise and/or physiological noise. Finally, the 

software should allow for flexible interaction with third-party software programs to 

ensure maximal applications of the classifiers developed. 

The B-Alert Acquisition software developed by ABM was designed to meet the 

above needs. The software for running data acquisition in the field is less than 50 

megabytes in size, can be installed in under five minutes, and does not require any 

additional third party software or drivers making it truly plug and play. This platform 

allows acquisition through a desktop, laptop, mini-computer, or PDA. As computer 

issues are not uncommon in real-world applications, this system allows for quick  

adaptation to another collection interface to be adapted as needed (either through 

changing to another similar system such as an additional laptop; or changing  

systems completely as needed such as from a laptop to a PDA). With this high degree 

of simplicity and flexibility, researchers are enabled to develop a plethora of experi-

mental designs and applications.   

The software has simple selection options for acquisition and retransmission allow-

ing for observation of the signal quality from a secondary computer. In addition, prior 

to acquisition the software completes both an impedance check and an artifact evalua-

tion for each electrode. Thus, the researcher can have great confidence in the initial 

signal quality. Finally, while in Acquisition mode(s) the software provides helpful 

feedback (regarding artifact as well as overall signal quality) to the end user allowing 

even an untrained EEG technician to quickly recognize and troubleshoot poor EEG 

signal quality. 

The ABM B-Alert Acquisition software suite has been used to provide input from 

EEG into several other third party systems to enable closed-loop feedback systems.  

The algorithms for identifying arousal and workload states may be passed (as would 

any additional algorithms that may developed), as well as the raw EEG signal. These 

options are easily enabled, and can be used to develop and apply real-time feedback 

systems in field operational environments. The configurations enabled in the B-alert 

acquisition software allow researchers to collect the developmental data for real-

world algorithms in the real world. Perhaps equally important, the system also then 

enables application of these algorithms (once developed and validated) in the real 

world. In several recent collaborations with the Lockheed-Martin Advanced Technol-

ogy Laboratory, the ABM software provided outputs via DLL (digital library link) on 

operator levels of engagement and mental workload that were used to drive changes 

in the display of a Tactical Tomahawks Weapons training simulation. The resulting 

closed-loop system provided an 80% reduction in launch time deviations from opti-

mal and a 55% reduction in the number of late launches [26]. 

2.3   Its All about the Algorithms 

Real world algorithms must be flexible, robust, and developed with real-world appli-

cations in mind. To meet these requirements, the following issues will need to be con-

sidered: the design of the initial data collection experiments upon which the classifiers 

will be built, the feature extraction method for model building, the types of classifier 
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models that may be considered, and the validation of the classifier. Ideally, the  

initial experimental design will be informed by the planned methodology for mathe-

matically building the classifier, and these will both inform the validation process. In 

other words, the development of a classifier should be a well-designed rational proc-

ess based on a plan that takes into account the final application(s) envisioned for the 

classifier. 

Experimental design for initial data collection will need to address many aspects of 

the planned research. First, the overall design of the experiment should be considered, 

to ensure proper experimental control of unexplainable variance that may de-stabilize 

the models that are developed. Full factorial designs are not required, but well thought 

out protocols will ensure that the appropriate data (such as ERPs) are in fact available 

for classifier development. It is also essential that all subjects are exposed to identical 

scenarios for the purposes of development- casual changes will lead to noise that will 

negatively impact algorithm development. The experimental design for the initial data 

collection should include an acknowledgement of real-world concerns: and may bene-

fit greatly from at least some real–world data.  

Next, understanding the number and quality of anticipated features to be extracted 

must be taken into consideration in regard to the sample size selected. In general, sta-

ble mathematical models with good generalization ability require a minimum sample 

size that is at least one order of magnitude larger than the number of features ex-

tracted per unit of observation (e.g. a single-trial ERP waveform) and subsequently 

used for classification. Classifiers that are built on a sample of insufficient size tend to 

memorize rather than learn from the sample, which usually results in poor ‘real 

world’ performance on cross-validation in spite of high classification accuracy 

achieved during the model development. This problem is aggravated by complexity of 

the selected classifier (e.g. non-linear classifiers are more vulnerable than linear,  

neural networks with more hidden layer neurons are more easily over-trained than 

simpler architectures) or by non-linear transformations of the input space, typical for 

support vector machines (SVM), that in a non-transparent way significantly increase 

the real number of features (often as ~O(N
2
) or ~O(N

3
), where N is the number of 

‘visible’, i.e. nominal features in the original input space). Other issues may also im-

pact the sample size that can be reasonably collected, including access to the appro-

priate subjects.   

Building a classifier (in a broad sense of the word) can take a number of paths, but 

it usually consists of three tightly connected phases: choice of feature extraction 

method(s), choice of feature selection method(s) and finally selection of classifier in a 

narrower sense of the word. Feature extraction methods serve to reduce the dimen-

sionality of the original space containing input variables by determining an appropri-

ate subspace of, in most cases, smaller dimensionality. Principal component analysis 

(PCA) is the most popular technique for dimensionality reduction, but other linear 

transforms (factor analysis, linear discriminant analysis, projection pursuit) or non-

linear techniques (Kernel PCA, multi-dimensional scaling, and self-organizing maps) 

can be used instead. One should note that for low-dimensionality input spaces feature 

extraction can be omitted. Feature selection methods take the original or transformed 

set of N input variables and down-selects a subset of M (M<N) variables that provide 

the best discrimination among the different classes into which signals (e.g. an ERP) 

should be classified. Exhaustive search, branch-and-bound search, sequential forward 
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or backward search, plus-L-take-away-R selection and sequential forward and back-

ward floating search are some of the popular methods available to researchers. The 

key for a successful feature selection is the balance between the optimality of a 

method (i.e. how likely it is to find a local rather than the global minimum) and  

the speed of convergence (e.g. branch-and-bound search is optimal but very slow). 

Finally, a variety of techniques is available that will group similar vectors of selected 

features into few desired classes such as the k-nearest neighbor rule, binary decision 

tree, Bayes classifier, logistic classifier, Parzen classifier, Fisher linear discriminants, 

support vector machines and neural networks.  Because of the existence of so many 

(in some respects overlapping) techniques and ready availability of fast computers 

nowadays, attempts at building a classifier easily turn into a fishing expedition. Ide-

ally, the researcher will understand the goal of the classifier and select the appropriate 

techniques in order to arrive at a solid solution.  

Finally, validation of any classifier must be completed prior to finalization and  

application. Validation may be done on the initial data set using various techniques, 

including bootstrapping, and hold out methods. While such an approach is statistically 

legitimate and can save both time and financial resources, it may not be sufficient to 

ensure true real-world generalized applicability. Therefore, it is highly desirable to 

ensure that once developed, the classifier be cross-validated on a unique dataset dif-

ferent from that used for the development of the classifier. Over time, occasional re-

examination of the classifier’s performance as it is used can also serve to ensure that it 

maintains real-world viability.   

3   Results 

Classifiers that have been successfully collected include both arousal state (sleep on-

set-distraction-low engagement-high engagement) and cognitive workload (low-high). 

Over 1000 subjects have had data collected in over 2000 sessions by over 30 in-house 

technicians at ABM, and our client/collaborators have collected hundreds of addi-

tional subjects with over 50 client/collaborator technicians. Through ABM work and 

that of our collaborators, EEG data has been collected on soldiers in the field at 29 

Palms, in live-fire exercises at Aberdeen Training Grounds inNorfolk, Virginia, and 

Camp Pendleton (San Diego, CA), in vehicles, and in the classroom. EEG data has 

been collected from expert imagery analysts, expert marksman, expert chemistry  
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Fig. 1. From left to right: Engagement levels during marksmanship studies, data collection at 

29 Palms, drowsiness classifications for 29 Palms study 
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students, as well as a plethora of healthy control volunteers, novice marksman, sleep 

disordered patients, and other experimental subjects.  Some exemplar data results are 

shown in Figure 1. 

4   Conclusion 

Investigations of human mental activity have employed EEG recordings for nearly a 

century since the first recordings were made by Hans Berger in 1929 [35]. Today 

EEG is routinely used for overnight sleep studies in the laboratory and in neurology to 

characterize epilepsy and neurological disorders, but the great leaps in EEG research 

can be largely attributed to the wealth of information generated by psychologists and 

neuroscientists using EEG to investigate brain, mind and behavior. Although the rela-

tionships between specific mental states and EEG are just beginning to be understood, 

the foundation of work in detecting global state changes is sufficient to begin devel-

oping practical applications. Our team developed hardware and software to facilitate 

the widespread and routine use of EEG outside the laboratory supporting a growing 

number of applications in education and training, human factors evaluations, military 

operations and market research. Our team developed methods for Psychophysiologi-

cal Profiling that can now be accomplished by integrating EEG and EKG with  

cognitive tests. The result is efficient, inexpensive assessment of alertness, attention, 

learning and memory, providing a quantitative profile of impairment that can be used 

for patients with sleep, neurological and psychiatric disorders. These NeuroAssays 

can be used for diagnostic and treatment outcome evaluations, pharmaceutical inves-

tigations, and to identify potential biomarkers for specific diseases [15-17]. 

Field applications for the EEG technology include real-time assessment of drowsi-

ness for truck drivers or airline pilots in military, industrial or other operational  

settings. The integration of EEG monitoring of operator status offers the possibility of 

allocating tasks between machines and humans based on the operator status.  Intelli-

gent feedback or “closed-loop” systems can facilitate active intervention by the opera-

tor or through a third party (man or machine), increasing safety and productivity.  

Another novel approach to this evolving technology is to radically rethink the design 

of human-machine system interfaces to optimize the flow and exchange of data be-

tween humans and machines. The new discipline of neuroergonomics has taken on 

this challenge combining understanding of the neural bases of cognition and behavior 

with the design and implementation of technology.  Our team is collaborating with 

educators in developing next generation EEG technology to build models of student 

learning using EEG for non-intrusive assessment of cognitive processes including 

attention, working memory, workload and problem solving [29-30].  The vision is to 

integrate EEG into interactive tutorials and training simulations. There are no limits to 

the applications of the venerable technology now that it has left the laboratory. 

Although the hardware, software, and algorithms are continually undergoing 

changes to provide better end results, the current complete package to date has been 

used in a variety of locations, weather conditions, and configurations that were previ-

ously impractical if not impossible to collect EEG data in with other commercially  
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available systems.  Our system will continue to be developed to improve the durabil-

ity, flexibility, and applicability in the real world, including the development of classi-

fiers for the real world. 
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Abstract. We present an augmented cognition (AugCog) system that utilizes 

two sources to assess cognitive state as a basis for actions to improve operator 

performance. First, continuous EEG is measured and signal processing algo-

rithms utilized to identify patterns of activity indicative of high cognitive de-

mand.  Second, data from the automobile is used to infer the ongoing driving 

context. Subjects participated as eleven 2-person crews consisting of a driver/ 

navigator and a commander/gunner. While driving a closed-loop test route, the 

driver received through headphones a series of communications and had to per-

form two secondary tasks. Certain segments of the route were designated as 

threat zones. The commander was alerted when entering a threat zone and their 

task was to detect targets mounted on the roadside and engage those targets To 

determine targeting success, a photo was taken with each activation of the trigger 

and these photos were assessed with respect to the position of the reticle relative 

to the target.  In a secondary task, the commander was presented a series of 

communications through headphones. Our results show that it is possible to  

reliably discriminate different cognitive states on the basis of neuronal signals. 

Results also confirmed our hypothesis: improved performance at the crew level 

in the AugCog condition for a secondary communications tasks, as compared to 

a control condition, with no change in performance for the primary tasks. 

1   Introduction 

Currently, crews for military light vehicles face a significant challenge due to infor-

mation overload. Within a context where one individual serves as driver and navigator 

and a second as commander and gunner, each crew member must continuously man-

age their primary and one or more secondary tasks. For instance, the driver may be 

required to simultaneously operate the vehicle, navigate to an objective through un-

familiar roadways and terrain, and monitor radio traffic. In addition, these tasks may 
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need to be performed under the stress of hostile attack or improvised explosive  

device. For the operational effectiveness and safety of these military personnel, tech-

nology solutions are needed that allow crews to operate more effectively in multi-

tasking, information-intensive, high-stress environments. 

This paper describes research conducted by Daimler AG, Research Group and 

Sandia National Laboratories to prototype and test an augmented cognition system for 

enhancing team performance for crews of military light vehicles. In this system, con-

tinuous EEG is measured and signal processing algorithms utilized to identify patterns 

of activity indicative of high cognitive demand. Second, data from the automobile is 

used to infer the ongoing driving context, and corresponding levels of cognitive de-

mand.  Based upon these measures, mitigation mechanisms were initiated to lessen 

the cognitive demand upon crew. During the fall of 2007, experimental tests were 

conducted at Marine Corps facilities at Camp Pendleton, CA with U.S. Marine Corps 

personnel serving as experimental test participants.   

2   Augmented Cognition System 

For this study, a Mercedes G-Wagon was modified to serve as military-relevant ex-

perimental test platform. With respect to the exterior, this primarily consisted of an 

M-45 M240G 7.62 Machine gun mount on the roof of the vehicle. For experimental 

testing, there was no gun in the Machine gun mount.  

 

Fig. 1. Exterior of modified Mercedes G-Wagon used in experimental testing 

The interior was modified in accordance with a two-person concept of operations 

in which one person serves as the driver and the second the commander/gunner. For 

the commander’s station, arm rests on either side of the passenger seat were equipped 

with joysticks. These joysticks provided the interface for controlling the Machine gun 

mount (e.g. rotating the turret, adjusting magnification, and simulated firing). A dash-

mounted display provided the image from a camera positioned on the Machine gun 

mount which was used in aiming by placing a reticle on the desired target. In addition 

to the camera controls, the left joystick had two push buttons which were utilized by  
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Fig. 2. Interior of modified Mercedes G-Wagon to be used for experimental testing 

experimental participants in performing a secondary task. Headphones were utilized  

to present experimental stimuli and provide sounds consistent with test scenarios (i.e. 

simulated gunfire). 

The driver’s station consisted of the standard steering wheel and steering column 

controls, and dash-mounted vehicle displays (i.e. speedometer). A dash mounted 

panel contained push buttons utilized in performing secondary tasks for the experi-

ment. Also, as with the commander, headphones were utilized to present experimental 

stimuli. 

3   Experimental Tasks 

Subjects consisted of 22 U.S. Marine Corps active-duty personnel who participated as 

eleven 2-person crews. Each crew was composed of a driver/navigator and a com-

mander/gunner, with each assigned primary and secondary tasks. 

3.1   Driver Experimental Tasks 

The primary task of the driver was to drive the vehicle. During the experiment, the 

driver operated the vehicle on a prescribed test course along existing roadways. The 

driver was instructed to drive no faster than 30 KPH and a governor was set to pre-

vent the driver from exceeding this speed limit.   

In addition to the primary task of driving, the driver had two secondary tasks.  In 

one, the driver listened to reports that were presented through the headphones and 

categorized the reports by pressing one of five buttons mounted on the dashboard next 

to the steering wheel. In the other secondary task, the driver occasionally heard a call 

sign through the headphones and responded by pressing one of two buttons depending 

on whether the call sign included a designated identifier.   
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3.2   Commander/Gunner Experimental Tasks 

To simulate the detection and engagement of adversaries, targets were placed on the 

roadside within so called “threat zones”.  The primary task of the commander/gunner 

was to aim and fire at targets in accordance with prescribed target sequences. The 

commander/gunner was also given the same call sign task as described above for the 

driver.   

4   Augmented Cognition Mitigation Conditions 

There were three experimental conditions. In the reference condition (REF), partici-
pants performed tests without the aid of mitigation.  In one mitigation condition (i.e. 
Augmented Cognition condition, MIT), the system used the measured workload of the 
participants as a basis for switching tasks between crew. In a second mitigation condi-
tion (i.e. Design-based Mitigation, S_MIT) the system automatically delayed all 
communications that occurred when the participants were engaged in a competing 
task. These conditions provided two bases for comparison on the proposed system.  
One comparison considers mitigation versus no mitigation, whereas the second com-
pares mitigation to a “perfect” state in which there is a priori knowledge of impending 
workload conditions. Each experimental condition involved one trip around the test 
course and took approximately 35 minutes. 

To assess periods of high workload, two EEG classifiers were used: 

(a) Based on 32 channel EEG input, one classifier was trained to assess the 

driver’s workload induced by the categorization task. 

(b) Based on 32 channel EEG input, the second classifier was trained to assess 

the commander’s workload induced by the gunning task. 

Difficult driving situations were determined by the context (vehicle data) classifier 
provided by Sandia National Laboratories. 

Mitigation was applied for the call sign task. As described above, the call sign task 
was continuously presented to the driver and to the commander. In the unmitigated 
condition, a call sign was alternately presented every 30 seconds to the driver and to 
the commander. In the mitigated “AugCog” condition, whenever the EEG classifiers 
detected high workload or the context classifier detected a difficult driving situation, 
the call sign stream was shifted to the crew member experiencing low workload. In 
this case, the respective crew member received the call signs with double the usual 
frequency (i.e. a call sign every 15 seconds). 

In the case where both crew members were in high workload, the call signs were 
stored in a first-in-first-out (FIFO) buffer and as soon as one of the crew members 
went into low workload, the FIFO buffer was emptied with the call signs stored in the 
buffer presented every 5 seconds. 

5   Results 

In assessing the performance of the EEG classifier, we considered the percentage of 

time in which the classifier output coincided with the experimental condition (high or 
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low workload). Classifiers were trained for each subject.  At the beginning of the 

experiment, the EEG data of the two crew members was recorded while they per-

formed the same tasks as during the actual experiment. The EEG data was labeled 

according to the workload attributed to the tasks and fed into the classifier training 

algorithm. The algorithm which determines the classifier parameters with the best 

classification result relative to the labels was chosen. Once the classifier was deter-

mined, it was fixed and left unchanged for the remainder of the experiment. 

In a second step, the classifier performance was evaluated during a reference  

session in which no mitigation was provided, which also served as a baseline for com-

parison with the mitigation session.  

EEG Classifier Training Performance
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Fig. 3. EEG classifier performance (%) for all eleven teams: for the driver’s categorization task 

(CAT, blue) and for the commander’s gunning task (GUN, red) in the reference session (REF) 

Detailed analysis revealed that if the EEG data from the “no mitigation” session 

was fed into the classifier training algorithm, usually a new classifier was obtained, 

leading to better classifier performances. This instability may be caused by either 

endogenous factors (e.g. unstable neurophysiological processes) or exogenous causes 

such as different experimental conditions (i.e. different rounds, different setting, vari-

able electrode impedance, etc.). 

When considering episodes in which the classifier output does not coincide with 

imposed experimental conditions, what may appear to be an imperfection with regard 

to the experimental design is always a correct decision from the classifiers point of 

view. It may be that the subject’s workload was sometimes low during high-workload 

blocks or high during low-workload periods. In the current experimental setup, it was 

not possible to identify periods of high or low workload by means of an additional 

brain-based gauge that operated independent of the EEG cognitive-state classifiers.   
Given the “real” cognitive state is always unknown, it is not possible to exactly de-

termine the performance of mitigation measures. Due to an inbuilt hysteresis, as well 
as system intrinsic runtimes, the augmentation manager usually responded with a 
delay to cognitive-state changes. However, speeding up the reaction time of the sys-
tem would have decreased its reliability. The configuration used in the present study 
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was a reasonable compromise between response speed and classification reliability. 

Delay times after task onsets show that the system was capable of reacting within a 

few seconds. In cases where delays were longer, it has to be assumed that the driver 

actually did not experience an instantaneous cognitive state change. 

5.1   Categorization Task (CAT) 

Being a primary task, no changes in performance were expected between experimen-

tal conditions for the categorization task and results confirmed this hypothesis.  

 

Fig. 4. Mean (n = 11) reaction times (seconds) for the categorization task (CAT) stimuli for all 

three experimental conditions 

5.2   Gunning Task (GUN) 

The gunning task (GUN) was the commander’s primary task and as expected, no 

changes in performance were found between experimental conditions. 

 

 
Fig. 5. Results of the GUN task plotted for three experimental conditions.  (left) percent hits & 

misses, (right) reaction times (in seconds). 

5.3   Call Sign Task (CALL) 

The call sign task was the task that was mitigated and therefore represents a main 

outcome of the experiment.  According to our hypothesis, the crew performance in 
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this task should be better in the mitigated AugCog session (MIT) as compared to the 

unmitigated reference session (REF), as well as compared to the design-driven miti-

gation (S_MIT). 

The crew performance in this task was analyzed with respect to two measures: re-

action time (RT) and discriminability (d’). The results confirm the hypothesis show-

ing that the driver’s best performance was obtained in the cognitive state and driving 

context mitigated condition (MIT) for both reaction times (RT) and discriminability 

(d’). The commander’s performance confirms the hypothesis in part, showing best 

reaction times in the MIT condition, whereas the highest d’ performance was obtained 

in the unmitigated condition (REF). Since the call sign task (CALL) was shared by 

driver and commander and was mitigated between them, it is meaningful to calculate 

the performance measures for the entire team. This analysis shows that both perform-

ance measures are in accordance with the hypothesis, namely the reaction time is 

shortest and the discriminability is highest in the cognitive state and driving context 

based condition (MIT). 

6   Conclusion 

This experiment served two purposes. First, it provided an initial assessment of the 

viability of augmented cognition technology for military platforms.  Second, the study 

provided experimental data to assist developers in refining the technology to enhance 

its potential effectiveness and relevance to military applications. This development is 

important because military forces are being increasingly challenged by the need to 

manage large volumes of information imposing high levels of cognitive load, while 

successfully fulfilling their assigned missions. However, it should be noted that be-

yond the military application targeted in these experiments, vital insights are provided 

for adapting the same technology for incorporation into general automotive applica-

tions providing an opportunity to enhance overall automotive safety. 

 

 

Fig. 6. Mean reaction time (RT – seconds) and mean discriminability (d’ – adimensional) for 

driver (DRVR, left), commander (CMDR, middle) and team (TEAM, right) for three experi-

mental conditions (REF, MIT and S_MIT) 
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To date, Augmented Cognition research by this team has focused on cognitive 

overload situations. Looking toward a complete solution for Augmented Cognition, 

another situation which requires understanding is the concept of task underload.  To-

gether, the measure of overload and underload, allow us a complete measure of opera-

tor “vigilance.” “Vigilance” is defined as a state of mind in which a person has their 

attention focused on a task at a level sufficient to perform that task. When fully rec-

ognized, a vigilant system will minimize the impact of underloaded personnel while 

maximizing the task loading that personnel can successfully execute. 
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Abstract. This study demonstrates the acquisitions of EEG signals from non-

hairy forehead sites and tested the feasibility of using the forehead EEG in de-

tecting drowsiness-related brain activities. A custom-made 15-channel forehead 

EEG-electrode patch and 28 scalp electrodes placed according to the Interna-

tional 10-20 system were used to simultaneously record EEG signals from the 

forehead and whole-head regions, respectively. A total of five subjects were in-

structed to perform a night-time long-haul driving task for an hour in a virtual-

reality based driving simulator comprising a real car mounted on a 6 degree-of-

freedom Steward motion platform and a immersive VR environment with 360 

degree projection scenes. Separate independent component analyses were ap-

plied to the forehead and whole-head EEG data for each individual subject. For 

the whole-head independent component (IC) set, the frontal central midline 

(FCM) IC with an equivalent dipole source located in the anterior cingulate cor-

tex was selected for further analysis. For the forehead IC set, the IC with its 

theta power changes highly correlated with subject’s driving performance was 

selected. The EEG power changes of the selected forehead ICs were then used 

to predict driving performance based on a linear regression model. The results 

of this study showed that it is feasible to accurately estimate quantitatively the 

changing level of driving performance using the EEG features obtained from 

the forehead non-hairy channels, and the estimation accuracy was comparable 

to that using the EEG features of the whole-head recordings.  

Keywords: Forehead EEG, Drowsiness, Driving performance, Independent 

component analysis (ICA). 

1   Introduction 

Drowsiness or sleepiness monitoring has long been a challenging yet important appli-

cation. It has been studied using video-based and/or psychophysical measurements 

such as eye movement, eye blink rate, heart rate, body temperature, neurophysiologi-

cal signals etc. [1][2]. However, among these measures, the neurophysiological 

changes reflected in EEG signals seem to have early onset before the subjective 
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symptoms of fatigue becomes manifest [3]. It has been shown that the EEG theta-

band power or the combination of theta- and alpha-band powers could be highly  

indicative of subjects’ drowsiness or sleepiness level [3][4][5][6][7][8]. Among dif-

ferent EEG channel locations, the frontal brain regions, especially along the frontal 

central midline, were reported more susceptible to the drowsiness compared to, for 

example, the occipital areas [1][2].  

Recently, we developed and reported a prototype four-channel mobile & wireless 

EEG system incorporating miniature data acquisition circuitry and dry Micro-Electro-

Mechanical System (MEMS) EEG electrodes with 400 ganged contacts for acquiring 

signals from non-hairy sites without use of gel or skin preparation. The system allows 

EEG monitoring of freely-moving participants performing ordinary tasks in real-

world environments [9]. Because the non-hairy forehead region is usually more  

accessible to all types of EEG sensors and the current form factor of the abovemen-

tioned EEG system is more applicable to non-hairy sites, this study explored the  

efficacy of using the theta- and alpha-band spectral changes from the forehead EEG to 

detect drowsiness-related brain activities. The results are compared to the drowsiness-

related frontal EEG spectra simultaneous recorded using a modified International  

10-20 whole-head EEG system. 

2   Method 

2.1   Subjects  

Five healthy volunteers (aged from 19 to 25 years, two females) with normal or cor-

rected-to-normal vision participated in this study which was approved by Institutional 

Review Board (IRB) of National Chiao Tung University and Taipei Veterans General 

Hospital. All participants completed informed consent forms before being briefed on 

the task requirements.  

2.2   Experimental Paradigm 

To test the feasibility of monitoring drowsiness-related EEG activities through fore-

head channels, we designed and implemented a simulated hour-long nighttime long-

haul highway driving task [10][11][12] on a safe yet realistic driving simulator. The 

driving simulator comprised a real automobile mounted on a six degree-of-freedom 

Stewart motion platform, installed at the center of an immersive virtual reality (VR) 

environment with a 360-degree display projected from seven LCD projectors. Com-

pared to the traditional driving simulation performed in front of a computer screen, 

the dynamic motion platform provided multi-sensory (visual, auditory and kines-

thetic) stimuli and sensation to match daily life driving experience.  

The VR driving scene was designed to mimic driving at a fixed speed of 100 

Km/Hr on a straight highway. Subjects were instructed to put forth their best effort to 

keep the vehicle cruising at the center of the fast lane. Every 5 to 10 sec, a computer-

generated perturbation was randomly applied to the vehicle to simulate car randomly 

drifting away from the cruising position to the curb or the opposite lane (with equal 

probability and a constant speed of 100 km/hr) to simulate driving on non-ideal road 

surfaces or with poor alignment. The subjects were asked to steer the vehicle back to 
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the previous cruising position using a steering wheel as quickly as possible. Since 

subject response time would be primarily affected by their drowsiness level, the 

longer it took for them to respond, the farther the vehicle would deviate. As a result, 

the deviation of vehicle (or the driving error) could be indicative of the subjects’ 

drowsiness level.  

All driving experiments were conducted in the early afternoon after lunch because 

during daytime sleepiness is greatest over the mid-afternoon [13]. All subjects were 

also asked to return for a second experiment in two weeks.  

2.3   EEG Acquisition 

EEG data were acquired at a sampling rate of 500 Hz using a SynAmps2 NeuroScan 

system (Compumendics, Ltd., VIC, Australia). Thirty (30) scalp electrodes based on a 

modified International 10-20 System was used to collect whole-head EEG data. How-

ever, channels Fp1 and Fp2 were left unconnected to accommodate a 3-by-5 grid of 

Ag/AgCl electrodes mounted on a 10 cm x 6 cm fabric patch. This setup resulted in a 

total of 43 EEG/EOG channels.  

2.4   Data Analysis 

Behavioral Data. In each hour-long EEG session, 200 ~ 300 lane-perturbation events 

were recorded. For each lane-perturbation event, the driving error was assessed by the 

maximum absolute deviation between the perturbation onset and subject’s respond 

onset. Note that, since the vehicle might not always return to the exact center position 

of the cruising lane, the driving error thus could not be simply computed from the 

center of cruising lane. In certain circumstances, subjects might completely fell asleep 

and fail to respond to the deviation before the vehicle ran into the curb on the side. It 

was thus necessary to apply a hard limit to the driving errors. As a result, we could 

exclude episodes of completely falling asleep from the further analysis.  

Then, the temporal profile of the driving errors was smoothed using a 90-sec 

square moving-average window, advancing at 2-sec step to eliminate variance with 

cycle lengths shorter than 1-2 minutes because the cycle of fluctuations of drowsiness 

level was in general longer than 4 minutes [7][8]. Finally, each driving error profile 

was normalized to percentile with respect to the maximum.   

 

EEG data. The acquired EEG signals were first inspected to remove any bad EEG 

channels and/or bad EEG portions with unreasonable artifacts. The screened  

EEG signals were then band-pass filtered with cutoff frequencies of 0.5 and 50 Hz. 

Independent Component Analysis (ICA) was separately applied to decompose the 

forehead and whole-head EEG data into maximally temporally independent EEG 

activities. For each independent component (IC) resulted from the decomposition of 

the whole-head EEG data, its spatial map was subjected to source localization process 

implemented in EEGLAB (DIPFIT2 plug-in, http://sccn.ucsd.edu/eeglab) to find its 

equivalent dipole location(s) [14][15]. The IC, with its equivalent dipole located in 

the frontal central midline area (likely the anterior cingulate cortex, ACC), was 

grouped into a FCM cluster as the EEG power of this IC has been reported highly 

correlated with the drowsiness level [1][2]. The power spectrogram of the FCM IC 
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time course was computed using a short-term Fourier transform (STFT) with 1-sec 

window and 0.75-sec window overlap. Finally, a 90-sec moving-average window was 

applied to the spectrogram. To verify the relationship between the power spectra of 

the FCM ICs and the driving performance, correlations between subjects’ driving 

performance and the theta-band (4-7 Hz) EEG power averaged from the smoothed 

EEG power spectrogram were calculated. 

For the EEG data obtained from the forehead electrodes, ICA resulted in 15 ICs 

with distinct EEG activities. Since there were no guidelines for selecting compo-

nent(s) of interest for the forehead EEG, we correlated the time courses of theta-band 

power of each of the 15 ICs with the driving performance temporal profile and se-

lected ICs with highest correlation between the two time courses, for each of the driv-

ing session, for further analysis.  

 

Estimating driving performance using EEG powers. Since each subject had two 

experimental sessions, it was then possible to test if the EEG power changes could be 

used to estimate subject’s driving performance. Multivariate linear regression model 

was applied to the theta- and alpha-band spectral time series and subject’s driving 

performance obtained from one session and tested on a separate test session for each 

of the 5 subjects [4]. That is, all the coefficients of the linear regression model ob-

tained from one session were applied to the theta- and alpha-band spectral time series 

of another session to estimate the drowsiness level of subject based on the following 

equation: 

εββ θθαα ++= xxy                                                  (1) 

where y is the driving performance in percentile and xα and xθ represent the average 

theta- and alpha-band EEG powers derived from the second session. βα and βθ are the 

regression coefficients derived from the EEG powers and driving performance data of 

the first session (noted as “1→2”). Correlation coefficient between the derived and 

true driving performance was computed to quantitatively evaluate the estimation 

accuracy.  

3   Results 

3.1   ICs of the Forehead EEG  

As mentioned above, in ICA decomposition of the forehead EEG, the IC whose theta-

band spectral time series most correlated with the subject driving performance was 

selected. Across all subjects, the selected ICs consistently maximally projected to the 

forehead electrode grid locations 13 and 14 (as shown in Fig. 1B). On average, the 

correlation coefficient between the theta spectral time series and the driving perform-

ance was 0.83 ± 0.06. This is slightly but not significantly higher than the correlation 

(r = 0.81 ± 0.07) between the times course of theta power of the FCM ICs obtained 

from the decomposition of the whole-head EEG and the driving performance.   

Fig. 1A shows the mean component map or topography of the FCM ICs. 
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Fig. 1. A. The IC map (topography) of the frontal central midline (FCM) cluster obtained by 

averaging all the ICs in the FCM cluster from multiple subjects. B. The “topography” of the IC 

decomposed from the forehead EEG, which is maximally correlated with the driving perform-

ance. This is the IC we then used in predicting the driving performance based on EEG activi-

ties. As can be seen, this IC maximally projected to the electrode grid channels 13 and 14, 

which are located at the center of the top row on the forehead EEG channels.  

3.2   Estimating Driving Performance Using EEG Powers  

Table 1 summarizes the accuracy of estimating driving performance using a linear 

combination of theta- and alpha-band powers of the ICs obtained from either the fore-

head (“FH”) or the whole-head (“FCM” IC) EEG. The accuracy was assessed by the 

correlations between the estimated and the true driving performance. The columns 

labeled “1→2” represents the estimating results using the linear regression model 

trained on Session #1 and tested on a separate test session (Session #2) for each of the 

5 subjects. On average, the goodness-of-fit was 0.89 ± 0.05 for the drowsiness estima-

tion using the combined EEG spectra from the forehead ICs, and 0.84 ± 0.07 using 

the EEG features from the FCM cluster derived from the whole-head EEG. The dif-

ference in the estimation accuracy, however, was not statistically significant (p = 

0.08, paired t-test).  

Table 1. Predicting subjects’ driving performance using theta- and alpha-band EEG powers 

derived from the forehead ICs and FCM ICs obtained from the decomposition of the whole-

head EEG  

 Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 

 1→2 2→1 1→2 2→1 1→2 2→1 1→2 2→1 1→2 2→1 

FH 0.87 0.94 0.89 0.78 0.90 0.91 0.91 0.86 0.94 0.91 

FCM 0.82 0.91 0.91 0.85 0.89 0.92 0.76 0.78 0.86 0.73 

The correlation between the component activations of the drowsiness-related ICs 

of the forehead EEG and those of the IFM ICs were also calculated (r = 0.64 ± 0.12). 

Since the component activities of FCM ICs mainly originated from the ACC, the high 

correlation between the forehead and frontal ICs suggested the selected forehead IC 

might mainly account for the activities from the region.  
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4   Discussion 

In general, the combination of theta- and alpha-band powers of the ICs obtained from 

either the forehead or the whole-head EEG could be used to accurately estimate the 

driving performance (putative subject drowsiness level). The driving errors simply 

reflected the late responses to the vehicle deviation induced by random drifts applied 

to the moving vehicle. Although such driving-error index might not be a direct meas-

ure of drivers’ drowsiness level, it has been proven a close approximation in the pre-

vious studies [6][16][17][18].  

Cajochen and colleagues demonstrated that the low frequency (1-7 Hz) of frontal 

EEG signals highly correlated with the increase of sleepiness due to sustained wake-

fulness [1] or the administration of melatonin [3]. Such a relation has been drawn 

based on the associations between the frontal EEG activities and slow eye move-

ments, eye blink rate, as well as circadian rhythm of plasma melatonin measured from 

the subjects. These physiological measures could be considered direct links to the 

drowsiness or sleepiness as defined in [1]. The current study also found a strong  

correlation between the frontal EEG activities and driving performance, indirectly 

validating the use of the driving performance as an index of subject drowsiness level.  

The spectra of the ICs obtained from the decomposition of the forehead EEG could 

be used to estimate the driving errors as well as, if not better than, using the spectra of 

FCM ICs (cf. Table 1). Furthermore, the component maps of the selected forehead 

ICs consistently maximally projected to only one or two forehead channels (#13 or 14 

in Fig. 1), suggesting drowsiness-related EEG activities might be obtained from as 

few as two non-hair forehead electrodes. However, higher-density forehead electrodes 

might be useful for ICA in separating brain activities from noises or artifacts arising 

from eye blink, eye movements, artifacts, muscle movements, etc.  

The high correlation between the time courses of most drowsiness-relevant fore-

head IC and the time courses of FCM IC suggest that the EEG electrodes placed on 

the non-hairy forehead region might be sufficient to assess informative brain activities 

from the anterior cingulate cortex. In addition, this might also imply it is possible to 

use the forehead EEG channels to detect the brain processes in the prefrontal cortex or 

even other frontal regions, such as the dorsal/ventral lateral prefrontal cortices or 

medial prefrontal regions. As a result, the forehead EEG can be might be informative 

and useful in assessing the brain activities associated with many different cognitive 

functions, such as attention related processes, central executive functions, etc.  

As the non-hairy forehead region is usually easily assessable by dry MEMS or 

any other types of electrodes, compared to the scalp locations covered by the hairs, 

results of this study might lead to broader applications in human-machine interface/ 

interaction design. 
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Abstract. The purpose of this paper is to clarify the brain activities of hu-

man beings engaged in their tasks. Response time, correctness ratios, and Event 

Related Potentials (ERPs) are useful indexes of the brain activities of a subject 

at his task in the experiments. We analyze these indexes by a method called the 

Principle Component Analysis. Then we characterize the brain activities while 

he is engaged in the task. Finally we discuss the effectiveness of feedback con-

trol in a HCI system using these indexes.  

Keywords: event related potentials, feedback control, principle component 

analysis, and response time. 

1   Introduction 

The purpose of this paper is to clarify the relationship among various indexes ob-

tained from brain activities. We examine whether the indexes may be useful to  

improve the effectiveness of the feedback control in a HCI (Human Computer Inter-

action) system. The system consists of a subject (a human being), a computer, a  

display and a keyboard, where Event Related Potentials (ERPs for short) [1,2,4,6-8] 

are used as important information extracted from the brain. ERPs are taken from elec-

troencephalograms (EEGs for short) [5] of the subjects.  

A subject is involved in a series of tasks such that he is asked to choose the correct 

one from three choices shown in the display. ERPs of the subject are closely related to 

his brain activities when he is engaged in the multi-choice tasks. The change of ERPs 

during the execution of the tasks may reflect the change of physiological and/or psy-

chological conditions of the subject as well as the laboratory situation. 

We consider that the display of tasks and the ERPs of a subject are an output from 

the HCI system and feedback signals to the HCI system, respectively. The computer 

in the system may try to adjust the size of characters in the display, time duration, the 

format of the display and others so that the subject can be comfortably engaged in the 
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experiments. The HCI system is depicted in Fig. 1, where two types of feedback lines, 

feedback (a) and feedback (b) are mainly used.  

We intend to show that the HCI system can be adaptive with the conditions of the 

subject as well as the situation of the laboratory. We had a number of experiments to 

evaluate the effectiveness of the feedback control of the HCI system. This research 

may be applied for the design of HCI systems coping with other types of biological 

information. 

a computer a person

a HCI system

(a) (b)

 

Fig. 1. An image of a feedback control HCI system 

2   Experiments and Data Analysis 

We repeat the following experiments from four to ten times: 

1) The subjects: One is 20 years old, and the other is 21 years old. Both are male. We 

use “sub 1” and “sub 2” to identify them. 

2) The place of the experiments: The laboratory of the first author at Hakuoh  

University. 

3) Stimuli: We use 47 kinds of stimuli. A stimulus shown in the display is a contour 

of the geographical shape of a prefecture together with three choices about district 

capitals or prefecture capitals (see Fig. 2). We prepare three different sized stimuli 

for each case, a large sized one (320 ×275 pixels), a medium sized one (260×220 

pixels), and a small sized one (200×160 pixels).   

 

Fig. 2. An example of stimuli; the contour shows the shape of Tokyo, and three words of Chi-

nese characters are Shinjuku, Osaka and Nagano  

4) Tasks: Three types of tasks are used. These are denoted by Task A and Task B, and 

Task C. For Task A, a subject watches the middle sized geographical shape of a 

prefecture shown in the display. Then he chooses its district capital or prefecture 

capital from the three choices. For Task B and Task C, the actions of a subject are 

almost the same as the actions for Task A.  
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5) Display of stimuli: For Task A, a sequence of middle sized stimuli is displayed in a 

CRT (Cathode Ray Tube) of 19 inches placed in front of a subject. A sequence of 

47 stimuli is called a set of stimuli. For Task A, five sets of stimuli are executed in 

one day. For Task B, three sets of stimuli are executed in one day. The small sized 

stimuli, the middle sized stimuli, and the third sized stimuli are used in the first 

set, in the second set, and in the third set, respectively. For Type C, the size of 

each stimulus in a set is randomly chosen. Such a set of stimuli is repeated three 

times. For any sized stimulus displayed in the CRT, the subject can watch it with-

out moving his eyes.   

6) Time duration for the stimulus display: Each stimulus, such as in Fig. 2, is dis-

played for 1 second. The interval between two consecutive stimuli is randomly 

chosen within the range 400 ms to 600 ms.  

7) Time duration of an experiment: About 2 minutes are spent for a set of stimuli. 

The subject takes a minute interval between two consecutive sets of stimuli. Con-

sequently, for Task A the time duration of 5 sets of stimuli excluding the interval 

time is about 10 minutes. The time duration excluding the interval time for Task B 

or Task C is about 6 minutes.  

8) EEGs: Single polar eight channels of “International 10-20 methods” are used for 

the measurement of EEGs. The positions of the measurement are at Fp1, Fp2, C3, 

C4, O3, O4, Cz, and Pz. The base is A1 that is connected to A2. 

9) The sampling frequency for A/D: 1 kHz. 

We process the recorded EEGs to obtain ERPs in the following way: 

1) The recorded EEGs are filtered by an adaptive filter
 
[3] designed and made by the 

first author. 

2) The filtered data are normalized by the average and the standard deviation of the 

data. 

3) The normalized 47 EEGs are averaged to obtain an ERP evoked by experiments of 

Task A, Task B, or Task C. We use ERPkj(t) to indicate the obtained ERP, where k 

denotes the type of tasks, j denotes the order in the repetition of stimuli sets, and t 

is time [ms] (k=A, B, C,  j=1,2,…,5,  t=1,2,…,1000). 

4) Since we repeated an experiment from four to ten times, we take the average of 

the 4 to 10 sampling data for ERPkj(t) to obtain a typical value for an ERP. We use 

SERPk(t) to indicate the average.  

We investigate the relationship among the response time, the frequency of correct 

answers (i.e., the ratio of correct answers), the latency of ERPs, and the amplitudes of 

ERPs by analyzing the data obtained in the experiments. 

3   Results 

3.1   Recorded Data and Filtered Data 

Examples of EEGs that are measured from sub 1 are shown in Fig. 3 (i). The time 

elapse [ms], since a stimulus is given, is shown on the horizontal axis. The amplitude 

of measured data is plotted in the vertical direction. In Fig. 3 (i), the lowest, the sec-

ond lowest, the third lowest and the highest waveforms are plotted data from Fp1, Fp2, 
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C3 and C4, respectively. The measured data contain 50 [Hz] and other types of noises. 

These noises would be caused by electromyography, blinks or body movements of the 

subject and others. Before starting the experiments, the subject is asked that he should 

make an effort to minimize his blinks and body movements. Noises of higher fre-

quency than frequency of EEGs are also minimized. The recorded data are filtered 

and normalized. These data are given in Fig. 3 (ii). 
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                               (i) Recorded EEGs                         (ii) Filtered and normalized data 

Fig. 3. The recorded data, and the filtered and normalized data obtained from sub 1 during the 

second task (Task A) of the first set in the first experiment 

3.2   Typical ERPs for Tasks 

The results obtained from sub 1 are mainly described hereafter. He took the one-day 

experiment of Task A 10 times, the one-day experiment of Task B 4 times, and the 

one-day experiment of Task C 6 times. Consequently he took 47×5×10 stimuli of 

Task A, 47×3×4 stimuli of Task B, and 47×3×6 stimuli of Task C. First he took a  

one-day experiment of Task A once a week. Three months later after the end of the 

experiments of Task A, he took a one-day experiment of Task B and a one-day ex-

periment of Task C in the same day once a week.  

The waveforms shown in Fig. 4 are examples of SERPk(t) (k = A, B, C and 

t=1,2,…,1000) obtained by averaging all filtered and normalized data. These wave-

forms can be considered typical ERPs for Task A, Task B and Task C. See the poten-

tials, P100, N200, P300 and N400 of the waveforms in Fig.4, where P means a positive 

potential and N means a negative potential. The suffix of each of these symbols indi-

cates its latency from the start of the stimulus. Potentials P100, N200 and P300 appear 

clearly in the waveforms for any of Task A, Task B and Task C. On the other hand, 

potential N400 appears clearly in the waveforms for Task B and Task C but not for 

Task A. 

3.3   Comparison among Tasks 

In Fig. 5, we show the tendency of how the “average of Response time” and “fre-

quency of correct answers” for Task A change by repeating the experiments. Each  
 



384 M. Funada et al. 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

A
v

e
ra

g
e 

o
f 

fi
lt

e
r
ed

 

a
n

d
 n

o
r
m

a
li

z
e
d

 d
a

ta

time (ms)

Task A Task B Task C

P100 P300

N200 N400

 

Fig. 4. Typical ERPs (SERPk(t), k=A, B, and C) for Task A, Task B, and Task C 

point in the graph indicates a result for a set of tasks. Five consecutive points linked 

by lines are a result for a one-day experiment. The result for the 6th day is not shown 

in the graph, because we lost the experimental data for the 6th day. The “Frequency of 

correct answers” approaches 100% by repeating the experiments. It becomes about 

97% during the last four days. The “average of Response time” is shortening by  

the repetition, but its tendency is not clear compared with the “frequency of correct 

answers”.   
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Fig. 5. Tendency of how the “average of response time” and the “frequency of correct an-

swers” change  

Let us examine how ERPs are affected by the repetition of the experiments and by 

the task types (Task A, Task B and Task C). When we use the averaged method, as a 

model of the relation between EEGs and ERPs, the following equation is widely used:    

EEG(t) = ERP(t) + Ns(t)  t=1, 2, …, 1000 (1) 

In equation (1) above, Ns(t) is random noise including potentials caused by some-

thing unrelated to the tasks in the experiments. The average of Ns(t) is 0, but it is not 

pure white nose. It contains EEGs caused by unexpected matters in the laboratory, the 

condition of the subject and others. Let us consider the EEG distribution within the 

whole time range. We count the number of data satisfying the following inequality 

(2), where the normalized values for EEGs are used:   
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We count the number of positive data such that EEG(t) > 0.5  

for 1≦t≦1000   
(2) 

Since we first normalize the filtered data, the average and the variance of the data 

distribution of EEGs are 0 and 1, respectively. If the amplitude date of EEGs show 

normal distribution N(0, 1), the probability p(x > 0.5) is nearly 0.3. We count the 

number of data that satisfy inequality (2). These numbers for the 1st day experiment 

and the 5th day experiment are plotted as vertical values in the graph of Fig.5. In one 

day experiment, 235 stimuli (47 stimuli×5 sets = 235 stimuli) are given in the display. 

Each stimulus lasts 1000 ms. The horizontal axis of the graph represents the elapse 

from the start of the stimulus (0 to 1000 ms). The arrows in the graph indicate the 

peak values. 

Let pt be the time point nearest to 300 ms such that number of the EEG data is a 

peak at pt (see the time points indicated by the arrows in Fig. 6). Notation EEGi(t)  

means EEG(t) for the i-th stimulus among the 235 stimuli. We categorize EEGi(t)  

(i = 1, 2, . . . ,235) into 3 classes according to the following rule (3): 

If EEGi(pt) > 0.5, then EEGi(t) belongs to class I 

else if EEGi(pt) >= 0.0 then EEGi(t) belongs to class II 

else EEGi(t) belongs to class III 

(3) 

For the 5th day experiment, the numbers of elements in class I, in class II and in 

class III are 144, 33 and 58, respectively. For each class, the averaged EEGi(pt) of the 

5th day experiment is shown in Fig. 7. For each t (1�t�100), ERP(t) is the weighted 

average of these data of EEGi(t). We first calculate the average of EEGs in each class. 

Then ERP(t) is calculated as the weighted average of the averages of these three 

classes. As shown in Fig. 7, the data in class I has a clear peak P300, but P300 for the 

data in class II is much lower than P300 for the data in class I. The latency of P300 for 

the data in class III is longer than the latency of P300 for other classes. In Fig. 7, we 

notice that there is a small positive peak after P300 for the data in class III. 

We choose all EEG(t)’s in class I, and then calculate the average of these data for 

each type of tasks (Task A, Task B, Task C). The average of EEG(t)’s calculated in 
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Fig. 6. The distribution of normalized EEGs greater than 0.5 
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Fig. 7. The average of EEGi(t) for each of class I, class II and class III 
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Fig. 8. Typical SERP(t)’s calculated from EEG(t)’s in class I 

 

280

300

320

340

360

380

400

420

440

460

L
a

te
n

cy
  o

f 
 P

3
0

0

Repetition of experiments

Task A Task B Task C

1st     2nd     3rd    4th     5th     6th    7th     8th     9th    10th
310

330

350

370

390

410

430

450

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10thA
v
er

a
g
e 

 o
f 

 l
a
te

n
cy

  
o

f 
 P

3
0

0

Repetition of experiments

Task A Task B Task C

 
i) Change of the latency of P300              ii) Average latency of P300 

Fig. 9. The change of the latency of P300 through all the experiments. The horizontal axis is the 

order of the experimental days, and the vertical axis is the latency of P300.  
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this way is denoted by SERP(t). An example of SERP(t) for each type of tasks is 

shown in Fig. 8. A peak potential P300 is considered to be caused by brain activities 

for recognition and judgment. The feature of the SERP(t) is the clear appearance of 

P300. Through all the experiments, the change of the latency of P300 for each type of 

tasks is shown in Fig. 9 (i). The average latency for each day and for each type of 

tasks is shown in Fig. 9 (ii). We carried out the experiments for Task A before the 

experiments for Task B and Task C. For the first three or four days, the latency of P300  

for Task A is longer than the corresponding latency for every type of the experiments 

after 4th day. From this tendency, we consider that the subject needs a few days to 

improve his skill for recognition and judgment in the experiments. The shorter latency 

of P300 reflects the better ratio of correct answers. 

4   Considerations 

4.1   Categories of the Human System Status 

The relation between the latency and the amplitude of P300 is shown in Fig. 10 and 

Fig. 11. The horizontal axis and vertical axis in Fig. 10 are the amplitude of the aver-

age of normalized data and the averaged latency of P300, respectively. Each of small 

circle points, small square points and small rectangle points show the result for a task 

of Task A, Task B and Task C, respectively. In Fig. 10, S1 contains the result for Task 

A obtained in the first experiment, circle S2 contains the results for Task A in the next 

three-days experiments, and so on. The arrows connecting these circles show the 

order of the experiments. Circle S1’ contains the results obtained in the first experi-

ment for Task B and Task C (i.e., in the 5th day experiment). Circle S2’ contains other 

results. The results in S2 and S2’ are resemble each other. The results in S3 and S2’ are 

resemble each other. However, for the latency, the results in S2, and S4 are not much 

different. We can consider that the path indicated by the arrows in Fig. 10 shows the 

process of the change of the brain status. From such consideration of the categories, 

the learning process of the subject for Task B and Task C seems to be different from 

the learning process for Task A. 
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Fig. 10. The change of the average and the latency of P300 during the experiments 
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Fig. 11. The relation between the average response time and the frequency of correct answers 

for each of the task types (Task A, Task B and Task C) 

The relation between the average response time and the frequency of correct an-

swers for each of Task A, Task B and Task C in Fig. 11. The path indicated by the 
arrows in Fig. 11 shows the tendency of how the relation changes through the experi-
ments. As shown in Fig. 11, we cannot simply say that the response time for Task A 
monotonically decreases by iterative learning. If we only use the data such that the 
frequency of correct answers is less than 90%, the correlation between the response 
time and the frequency of correct answers is about – 0.596. On the other hand, for the 
data such that the frequency of correct answers is greater than 90%, the correlation 
between them is about 0.502. 

By applying the Principal Component Analysis to the values for four indexes (re-
sponse time, frequency of correct answers, latency, amplitude of ERPs), we obtain the 
results given in Fig. 12. 
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Fig. 12. The Results obtained by the Principal Component Analysis 

5   Concluding Remarks 

A HCI system can be considered a closed controlled system consisting of human 

beings and a computer system. The computer system is relatively stable compared 
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with human beings. The brain activities are sensitive to the change of various factors. 

To realize a comfortable HCI or to improve the stability of a HCI system, stimuli and 

instructions given to human beings from the compute system should be well adapted 

to the brain status of the human beings. From our experiments and data analysis given 

in this paper, we can say that ERPs would be useful information to adjust stimuli 

and/or instructions from a computer system to human beings. ERPs calculated from 

EEGs of human beings could be used as feedback signals in a HCI system. 
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Abstract. A method for decoding the subjective contents of perceptual systems 

in the human brain would have broad practical utility for communication and as 

a brain-machine interface. Previous approaches to this problem in vision have 

used linear classifiers to solve specific problems, but these approaches were not 

general enough to solve complex problems such as reconstructing subjective 

perceptual states. We have developed a new approach to these problems based 

on quantitative encoding models that explicitly describe how visual stimuli are 

(nonlinearly) transformed into brain activity. We then invert these encoding 

models in order to decode activity evoked by novel images or movies, provid-

ing reconstructions with unprecedented fidelity. Here we briefly review these 

results and the potential uses of perceptual decoding devices.  

Keywords: Bayesian, vision, brain-machine interface, brain-computer inter-

face, brain reading. 

1   Introduction 

The human brain consists of dozens of anatomically and/or functionally distinct proc-

essing systems: sensory systems (vision, audition, etc), cognitive systems, motor sys-

tems and so on. Each subsystem is itself composed of several to several dozen distinct 

areas. For example, the visual system consists of at least 30 distinct areas, and each of 

these areas plays a unique functional role in visual perception [9]. Most areas within 

this complex network can be affected by both external input and output (the sensory 

and motor worlds) and by internal mental states (intention, attention, memory and 

beliefs).  

The architecture of the brain suggests that each sensory or cognitive experience 

will be reflected in a unique pattern of brain activity that will reflect the combined 

influence of the external world and internal mental states. To the degree that these 
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patterns of activity are deterministic and systematic, it should therefore be possible in 

principle to relate measured brain activity to sensory stimuli, motor actions and inter-

nal mental states. By implication, given a measured pattern of brain activity it should 

be possible to decode the corresponding subjective perceptual experiences and inter-

nal mental states.  

The goal of a perceptual brain reading system is to use measurements of brain ac-

tivity to decode the immediate contents of visual perception, or to decode subjective 

perceptual states such as visual imagery and dreaming [7]. A device of this sort could 

be used to solve pressing problems in many fields that require good measurements of 

sensory processing, including psychiatry, neurology, psychology, counseling, market-

ing, entertainment and the legal system. 

Sensory brain decoding has traditionally been viewed as a categorization problem 

[4]: given a stimulus drawn from a small number of known categories (e.g., faces, 

places, animals), use measured brain activity to determine the specific category from 

which the image was drawn. This is usually accomplished by constructing a linear 

classifier that can discriminate the brain activity evoked by each stimulus class. Sev-

eral previous studies have demonstrated that perceptual classification is possible when 

the classifier was trained previously on the specific classes that are to be identified  

[1, 2, 3, 5, 6]. However, the standard classifier approach cannot be used to classify 

images that belong to novel categories of stimuli that were not used to train the classi-

fier. This is because conventional linear classifiers are not based on an explicit model 

that describes how the visual system encodes sensory information. Instead, they sim-

ply operate on labels that are assigned to the images. For the same reason, a classifier 

only enables classification of perceptual states, but does not permit reconstruction of 

the stimulus that evoked measured brain activity. 

2   Bayesian Decoding Based on Explicit Encoding Models 

We have pioneered an alternative approach to brain reading in which the decoding 

algorithm is inferred from one or more explicit encoding models [7]. These encoding 

models describe the systematic relationship between visual stimuli and brain activity. 

They are based on our understanding of visual function, gained from neurological, 

electrophysiological and neurophysiological experiments. To optimize the quality of 

decoding, encoding models are fit to each observer individually. In a typical experi-

ment, several hours of functional MRI (fMRI) data are collected from a single ob-

server while s/he watches flashed natural images or natural movies. These data are 

used to estimate an encoding model for each specific subject and each part of the 

brain. (In fMRI the brain is divided into voxels, or volumetric units. A separate  

encoding model is constructed for each voxel.) Next, the encoding model is used to 

develop an appropriate decoding algorithm. For example, the encoding model can be 

inverted directly via Bayes theorem (see below). Finally, the decoding algorithm is 

tested on separate data set from the same observer that was not used to fit the model. 

The simplest encoding model that is useful for decoding natural images is a Gabor 

wavelet basis model. This model describes how each voxel is tuned for space, orienta-

tion, and spatial frequency. Last year we showed that this encoding model can be used 

to identify, from brain activity alone, which specific image was seen by an observer, 
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even if the image was selected at random from a database consisting of thousands of 

such images [7]. In fact, this approach extracted far more information from functional 

MRI measurements than was generally believed possible. 

More recently we developed a more general spatio-temporal Gabor wavelet encod-

ing model, and we have used this model to decode continuous time-varying natural 

movies from brain activity measurements. In this case we used fMRI to measure brain 

activity of human observers while they watched continuous, time-varying natural 

movies. When these models are used to perform movie identification (on a separate 

set of movies that were not used in fitting), we can identify which specific 20-second 

movie was seen by an observer with almost perfect accuracy. Furthermore, we can 

identify one-second movie clips to within one second of their position in the original 

movie. These results demonstrate that appropriate voxel-based encoding models can 

recover relatively fine spatio-temporal information about continuous visual experi-

ences from brain activity measurements. 

In our most recent work along these lines, we have developed a new Bayesian de-

coding model that can actually reconstruct natural images seen by an observer from 

measured brain activity. The decoder combines three elements: a structural encoding 

model that characterizes signals from early visual areas; a semantic encoding model 

that characterizes signals from higher visual areas; and appropriate priors that incor-

porate statistical information about the structure and semantics of natural scenes. By 

combining all these elements the decoder produces reconstructions that accurately 

reflect the distribution, structure and semantic category of the objects contained in the 

original image. This Bayesian decoding approach is the first practical method for re-

constructing arbitrary natural images from brain activity measurements. 

3   Extensions and Applications 

There are several extensions of our current decoding framework that would increase 

the accuracy and generality of reconstructions. Our current framework uses a Gabor 

wavelet model to describe the structural causes of visual stimuli and a categorical 

model to describe their semantic causes. Alternative models that describe the higher-

order statistical relationships of the structural and semantic information in natural 

images would produce even better reconstructions. 

Our current Bayesian reconstruction algorithm operates on static, grayscale im-

ages. However, since we have also shown that it is possible to identify movies from 

brain activity measurements it should be possible in principle to reconstruct movies. 

Reconstruction of other dimensions such as color should also be possible. To the de-

gree to which the neural mechanisms mediating subjective perceptual states such as 

imagery and dreams are similar to those used for normal perception, then it should 

also be possible to use this Bayesian framework to reconstruct subjective perceptual 

processes such as visual imagery and dreaming.  

At this time we use fMRI to measure hemodynamic brain activity, but our frame-

work can also be applied brain activity measurements gathered by other means: EEG, 

MEG, SPECT and so on. Of course, the temporal and spatial characteristics of brain 

activity measurements will inevitably affect the accuracy, fidelity and resolution of 

the decoded signals. 
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A perceptual brain reading device would have a wide array of potential applica-

tions. It could be used in medicine, to decode the perceptual components of hallucina-

tions or diagnose perceptual dysfunction due to injury and disease. It could be used as 

a biofeedback device during rehabilitation, in order to facilitate development of neural 

circuits that could bypass damaged regions of the brain. More generally it would have 

obvious application as one component of a brain-machine interface, for rehabilitation, 

vehicle control and similar BMI applications. 
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Abstract. Electroencephalographic (EEG) correlates of driving performance 

were studied using an event-related lane-departure paradigm. High-density EEG 

data were analyzed using independent component analysis (ICA) and Fourier 

analysis. Across subjects and sessions, when reaction time to lane-departure 

events increased, several clusters of independent component activities in the oc-

cipital, posterior parietal, and middle temporal cortex showed tonic power in-

creases in the delta, theta, and alpha bands. The strongest of these tonic power 

increases occurred in the alpha band in the occipital and parietal regions. Other 

independent component clusters in the somatomotor and frontal regions showed 

less or no significant increase in all frequency bands as RT increased. This 

study demonstrates additional evidence of the close and specific links between 

cortical brain activities (via changes in EEG spectral power) and performance 

(reaction time) during sustained-attention tasks. These results may also provide 

insights into the development of human-computer interfaces for countermea-

sures for drowsy driving. 

Keywords: EEG, ICA, driving, alertness, delta, theta, alpha, reaction time. 

1   Introduction 

Drowsiness while driving is one of the major factors leading to crashes that result in 

severe injuries and fatalities [1-2]. Two of the basic rules of safe highway driving are 

to remain in the cruising lane and to keep an appropriate distance from other vehicles. 

Small changes in road curvature, uneven or slippery pavement, wind changes, or poor 

wheel alignment could make the vehicle drift out of the cruising lane. Lapses in atten-

tion and response to such lane drifts could result in collisions with other vehicles or 

run-off-road crashes. As drivers become fatigued and then drowsy, they exhibit slowed 

reaction time (RT) to traffic events, and increased deviation of vehicle lateral position 

(swerving) from lane center. Development of effective countermeasures to drowsy 

driving could prevent large numbers of serious accidents. Electro-encephalography 

(EEG) is one of the most direct and effective physiological measures for assessing state 

of arousal. Several studies have demonstrated EEG correlates of fluctuations in  

performance during sustained attention tasks with characteristic time scales on  

the order of one second to several minutes [3-15]. These studies have suggested that 
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low-frequency EEG power, particularly in the alpha (8–12 Hz) and theta (4–7 Hz) 

bands, increase during periods of poor task performance (e.g., periods of high-error 

rate, lengthened RT, or failures to respond to driving challenges). In most studies, EEG 

power spectra were estimated from single-channel recordings at a few scalp sites, not 

allowing localization of the cortical sources of the observed EEG changes. 
Our previous studies using independent component analysis (ICA) applied to high-

density EEG data have demonstrated that an independent component (IC) with 
equivalent dipole sources located in the bilateral occipital cortex exhibits tonic 
changes in power spectral baseline highly correlated with performance fluctuation 
during sustained attention tasks, including simulated driving [12-15]. It is not known, 

however, whether the power spectra of other EEG processes are also strongly modu-

lated by task performance. This study systematically explores tonic power spectral 

changes in the delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (13–20 Hz) 

bands in 13 independent component clusters of brain processes obtained across sub-

jects and sessions during periods of increased reaction time to lane-departure events 

during simulated driving. 

2   Materials and Methods 

2.1   Experimental Paradigm and Participants 

A virtual-reality scene was created to simulate cruising in the fast lane of a straight 

highway at night. The driving simulator was implemented in C/C++ programming 

languages using the Open GL libraries on a desktop computer running the Linux 

operating system. During hour-long continuous driving sessions, computer-simulated 

lane-departure (deviation onset) events occurred every few seconds, during which the 

car drifted towards the curb or into the opposite lane with equal probability (Fig. 1). 

The vehicle did not ‘crash’ if the subject failed to respond but instead hit the virtual 

limit of the curb (after about 3 s of drift), and continued to move along the virtual 

curb until the subject resumed response by holding down an arrow key (response 

onset), and then releasing the key (response offset) when the car returned to the center 

of the cruising lane. 

This paradigm was designed to assess subjects’ responses to perturbing events  

embedded in continuous monotonous driving sessions, and to monitor continuous 

transitions from alertness to drowsiness [12-14]. Subjects’ driving performance was 

measured by their reaction time (RT), defined as the duration between deviation onset 

and their response onset during each lane-departure event (trial). Slowed subject reac-

tion times generally accompanied decreases in attention and alertness (Fig. 2). 

Eleven right-handed healthy subjects with normal or corrected-to-normal vision 

participated in one or more hour-long sessions (20 sessions in all). All subjects gave 

informed consent before participating in an experimental protocol approved by the 

UCSD Human Research Protections Program. None of the subjects reported sleep 

deprivation the night before the experiment. Each subject had lunch about two hours 

before arriving at the lab around 2:00 PM; the driving experiment itself began near 

3:00 PM after EEG cap and electrode set-up. During the experiment, the subject sat 

on a comfortable office chair with armrests 50 cm from a 19-inch monitor sitting in an 

EEG booth in which the background lighting was dim (~ 2–3 lux). 



396 R.-S. Huang, T.-P. Jung, and S. Makeig 

 

Fig. 1. Simulated driving experiment. A. Schematic diagram of the event-related lane departure 

paradigm (modified from a slide presented by R.-S.H. in [12]). B. A screen snapshot during 

cruising. C. A screen snapshot during a lane-departure event. 

2.2   Data Acquisition and Analysis 

256-channel EEG/EKG/EOG signals were recorded at 256 Hz using a BioSemi Ac-

tive II acquisition system. Driving parameters (including lane positions, timing of 

event onsets and offsets) and subject behavioral responses were recorded at 256 Hz at 

the stimulus computer. A sequence of synchronized pulses was sent out from the PC 

parallel port to the BioSemi system for time stamping. The 3-D locations of all elec-

trodes were digitized using a Polhemus system. 

EEG data were digitally filtered using a linear FIR band pass filter (1-45 Hz) be-

fore further analysis. Continuous EEG time courses of all channels were segmented 

into 6-s epochs, from 1 s preceeding to 5 s following deviation onsets. Subjects typi-

cally yawned or nodded a few times during hour-long sessions. These activities 

caused severe artifacts across all the channels in some epochs. Channels and epochs 

that contained severe artifacts, including extreme values of amplitudes, large linear 

trends, and abnormally distributed data (high kurtosis), were rejected semi-

automatically before further analysis using functions of the open source EEGLAB 

toolbox [16] available at http://sccn.ucsd.edu/eeglab. Channels and epochs contami-

nated with other sources of artifacts (blinks, eye movements, cardiac activities, and 

persistent head-muscle noises) were not rejected, as these artifact sources could be 

separated from other EEG processes using ICA described below [17-20]. 

The 6-s EEG epochs were concatenated into a two-dimensional matrix of size 

[channels, frames × epochs] after artifact rejection, and the matrix was reduced to 100 

dimensions using Principle Component Analysis (PCA). Infomax ICA was applied to 

the dimension-reduced matrix, x, using the binica function with the ‘extended’ ICA 

option in EEGLAB. ICA finds an ‘unmixing’ matrix, W, which decomposes or line-

arly unmixes the matrix, x, into a sum of maximally temporally independent and  

spatially fixed components u, where u = Wx. The rows of the output data matrix, u, 
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are time courses of activations of the independent component (IC). The ICA unmixing 

matrix was trained separately for each session and subject. The initial learning rate 

was 10
-4

, and the training was stopped when the learning rate fell below 10
-7

. 

To test cross-subject consistency of brain processes of interest, we grouped inde-

pendent components obtained from multiple sessions and subjects semi-automatically 

into 13 IC clusters (Figs. 3 and 4) based on their scalp maps, dipole source locations, 

and mean power spectral baselines [15, 21-23]. The dipole sources locations were 

estimated according to the digitized 3-D electrode locations and ICA weight matrix 

for each session using the DIPFIT2 function in EEGLAB. 

For each independent component, a logarithmic power spectral baseline was com-

puted from a 1-s window before deviation onset in each 6-s epoch extracted from its 

activation time course using Fast Fourier Transform (FFT). For each component clus-

ter, the logarithmic power spectral baselines of epochs from all subjects and sessions 

were grouped and sorted in ascending order by trial reaction time, resulting in a ma-

trix of size [frequency bins × epochs]. The mean logarithmic power spectra of the first 

10% of epochs below 3-s RT (periods of optimal performance) were subtracted from 

the matrix of RT-sorted power spectral baselines at each frequency bin. The normal-

ized matrix was further subjected to moving average across RT-sorted epochs (trials) 

at each frequency bin using the same window size of the first 10% epochs below 3-s 

RT, with a step of 10 epochs. Mean tonic power changes in delta (1–3 Hz), theta (4–7 

Hz), alpha (8–12 Hz), and beta (13–20 Hz) bands were obtained from the normalized 

and moving-averaged power spectral matrix (Figs. 3 and 4). A two-tailed t-test was 

used to assess if the mean power in each moving window was statistically different 

from that of the first 10% epochs below 3-s RT in each frequency band using a 

threshold of p<0.001 corrected with a Bonferroni multiple comparison test. 

3   Results 

3.1   Driving Performance as Measured by Reaction Time 

Across all sessions, subjects exhibited several fluctuations in their reaction times to 

lane-departure events. Some subjects became drowsy and hit the curb or drove into 

the opposite lane several times during hour-long sessions. Fig. 2A shows the fluctua-

tion of subject reaction times in a representative session, where 666 lane-departure 

events (trials) were recorded. Fig. 2B shows the same trials sorted by reaction time 

(RT), which exhibit a ‘bilinear’ pattern (the majority of trial reaction times were short 

and increased exponentially in a small percentage of trials). The bilinear pattern was 

consistently observed across subjects and sessions, and on average 5% of trial reac-

tion times were higher than 3 s (the approximate time lapsed  before the vehicle hit 

the curb if the subject made no response). 

3.2   Tonic Changes in Power Spectra in Relation to Reaction Time 

As reaction time increased, baseline power spectra of several independent component 

clusters in the occipital, parietal, and temporal regions showed significant increases  
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Fig. 2. Fluctuation of subject reaction times (RT) in a representative 1-hour session. A. Trial 

RTs in chronological order during the session. B. Trial RTs sorted in ascending order. 

relative to the mean power spectra of the first 10% epochs (trials) below 3-s RT  

(Fig. 3). Other independent component clusters showed less significant or no tonic  

changes in their power spectra (Fig. 4). The observed tonic power changes in each 

frequency band are discussed below. 

Delta Band Power (1–3 Hz). Mean baseline power in the delta band showed insig-

nificant variations in short-RT (< 0.8 s) epochs across all IC clusters. Mean delta band 

power started to increase as RT increased above ~0.8 s; these tonic changes were only 

significant in the bilateral occipital cluster (Fig. 2A) during protracted RTs (> 2 s). 

Theta Band Power (4–7 Hz). Mean baseline power in the theta band showed similar 

changes as in the delta band power across all IC clusters. Mean theta band power 

remained unchanged or even decreased slightly as RT increased moderately (< 0.8 s), 

and started to increase at RTs above ~0.8 s. The tonic changes were only significant 

during protracted RTs (near or above 3 s) in the bilateral occipital, medial posterior 

parietal, middle temporal, and somatomotor clusters (Figs. 3 and 4). 

Alpha Band Power (8–12 Hz). Mean baseline power in the alpha band increased 

monotonically as RT increased in the bilateral occipital, medial posterior occipital, 

medial posterior parietal, and middle temporal clusters (Fig. 3). The tonic changes 

were significant at RTs above ~0.8 s in the occipital and parietal clusters, and were 

stronger than the increases in the other frequency bands. In other IC clusters, as RT 

increased mean alpha band power showed both insignificant increases and decreases 

(Fig. 4). 

Beta Band Power (13–20 Hz). As RT increased, mean baseline power in the beta 

band showed moderate increases in the bilateral occipital, medial posterior occipital, 

medial posterior parietal, and middle temporal clusters (Fig. 3). The tonic changes 

were significant at RTs above ~0.8-s in the bilateral occipital (Fig. 3A) and medial 

posterior parietal (Fig. 3D) clusters. As RT increased, mean beta band power showed 

insignificant changes in other IC clusters (Fig. 4). 
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Fig. 3. Mean tonic power changes at four frequency bands for six independent component 

clusters. A. Bilaterally symmetric occipital cluster. B. Tangential occipital cluster. C. Medial 

posterior occipital cluster. D. Medial posterior parietal cluster. E. Right middle temporal clus-

ter. F. Left middle temporal cluster. The scales of the vertical axes are the same in all subplots. 

The horizontal axis ticks include slow/drowsy (3-s) and 1st-3rd RT quartiles. Differences 

across clusters reflect differences in RT distribution in the 8–20 sessions of contributing com-

ponents to each cluster. Color segments enclosed in thick black traces indicate significant (p< 

0.001; corrected) tonic changes from the mean logarithmic power in the fastest 10% of epochs 

with RTs below 3-s. Note the significant changes in alpha band power in the occipital and 

parietal clusters. 
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Fig. 4. Mean power in four frequency bands for seven independent component clusters showing 

no or weaker tonic power changes as RT increased. A. Left somatomotor cluster. B. Right 

somatomotor cluster. C. Left secondary somatosensory cluster. D. Right secondary somatosen-

sory cluster. E. Central medial cluster. F. Frontal medial cluster. G. Left lateral frontal cluster. 

Other details as in Fig. 3. 
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4   Discussion 

In this study, we applied independent component analysis to dissociate multiple brain 

processes whose power spectra were modulated or unaffected by performance fluc-

tuations during simulated driving. As subject reaction time to lane-departure events 

increased, several clusters of independent component activities in the occipital, poste-

rior parietal, and middle temporal cortex showed tonic power increases in the delta, 

theta, and alpha bands across subjects and sessions. The power spectra of other inde-

pendent component clusters in the somatomotor and frontal regions were less affected 

or were not affected by changes in reaction time. These results provide a more com-

prehensive insight into brain processes involved in sustained-attention tasks.  

The event-related lane departure paradigm [12-14] used in this study may provide 

objective and quantitative measures of both instantaneous driving performance over 

shorter time spans (e.g., < 10 s) and measures of average performance over longer 

periods (e.g., on the order of a minute). This paradigm has been replicated in other 

simulated driving experiments performed on a motion platform [24, 25]. Tonic power 

spectral changes in those experiments were similar to the results reported here; details 

will be reported elsewhere. 

The strong tonic increases in alpha-band power in the occipital and parietal regions 

likely index the gradual withdrawal of visuospatial attention as drowsiness increases 

[26]. These increases may also be used to predict reaction time in our task and very 

likely during simulated driving and real-life driving. Results of this study may also 

help guide development of EEG-based drowsiness detection and feedback systems, 

and may provide useful information for evaluating systems that directly detect and 

apply countermeasures to drowsy driving performance, such as lane departure warn-

ing systems (LDWS) and lane keeping assistance systems (LKAS) [27-30]. 
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Abstract. A Brain Computer Interface (BCI) is a device that allows the user to 

communicate with the world without utilizing voluntary muscle activity (i.e., 

using only the electrical activity of the brain). It makes use of the well-studied 

observation that the brain reacts differently to different stimuli, as a function of 

the level of attention allotted to the stimulus stream and the specific processing 

triggered by the stimulus. In this article we present a single trial independent 

component analysis (ICA) method that is working with a BCI system proposed 

by Farwell and Donchin. It can dramatically reduce the signal processing time 

and improve the data communicating rate. This ICA method achieved 76.67% 

accuracy on single trial P300 response identification. 

1   Introduction 

As human beings, we possess a wonderful ability of communicating with other people 

in the world. A healthy person can express his or her ideas, feelings and desires by 

speech, gesturing or writing. This communicating ability makes our daily life easy 

and enjoyable. However, there are some people being locked in their body for differ-

ent reasons. They are fully conscious and aware of what is happening in their envi-

ronment but totally lose their control over any voluntary muscles. Locked-in people 

are not able to communicate with other persons via traditional communication 

method. Fortunately, with the development of neuroscience and computer science, 

researchers have designed a lot of different Brain Computer Interfaces to help locked-

in people get their basic communicating ability back [1]. 

BCI is a channel established between the human brain and computer or other elec-

tronic equipments for communication and control purpose. To implement a reason-

able and practicable brain computer interface there are two major prerequisites have 

to be fulfilled: 1. Signals that reliably describe several distinctive brain states have to 

be available, 2. These signals must be easily extracted and classified on-line [2]. Elec-

troencephalography (EEG) signals meet these two prerequisites and they can be eas-

ily, noninvasively recorded, making EEG currently the best candidate for BCI system 

construction. There are two general types of BCI systems that have been developed 

by researchers using EEG as the information carriers and can be described as: Type 1: 

initiative BCI system [3][4][5], and Type 2: passive BCI system [6][7]. Initiative BCI 

system requires the subjects to learn to produce self-regulated, stable EEG signal, 
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such as alpha or mu rhythm. This learning process will take several weeks and since 

there are only two states, on and off, available, it is not effective when performing 

multiple choices tasks. For the passive BCI system, the subjects will be given auditory 

or visual stimuli and generate response (Event Related Potential) to those stimuli. The 

Event Related Potential (ERP) can be classified after several signal processing proc-

esses and used to identify the subjects’ intent. One of the well-designed passive BCI 

systems, known as P300 speller, was proposed by Farwell and Donchin [6] in 1988. 

This BCI system utilizes the P300 component of the ERP to allow locked-in individu-

als to communicate without using any neuromuscular function. The P300 BCI speller 

presents a selection of characters arranged in a 6×6 matrix. The subject focuses atten-

tion on one of the 36 character cells of the matrix in which each row or column is 

being intensified in a random sequence. The row and column intensifications that 

intersect at the attended cell represent the target stimuli, which occur with a probabil-

ity of 1/6. The rare presentation of the target stimuli in the random sequence of stim-

uli constitutes an Oddball Paradigm [8] and will elicit a P300 response to the target 

stimuli. With proper P300 feature selection and classification, the attended character 

of the matrix can be identified and communicated [9]. This BCI system has been 

widely used by researchers with different signal processing techniques including 

Stepwise Linear Discriminant Analysis (SWLDA) [9], Support Vector Machine 

(SVM) [10], Matched Filter [11] and Wavelet Analysis [12]. Our research is also 

based on P300 speller. 

Although all the techniques mentioned above demonstrated notable performance, 

Dean J Krusienski et al. [13] conclude that SWLDA is the most accurate and practical 

processing method on data collected using the P300 speller paradigm. However 

SWLDA and other techniques share the same drawback. They need to average at least 

several trials to remove the background noises and enhance the magnitude of P300 

response before applying the P300 classifier on EEG signal. This time consuming step 

greatly slows down the whole signal processing and therefore makes them not suit-

able for the online P300 classification with single trial. We need a fast and reliable 

processing technique that can perform the online P300 analysis accurately for effec-

tive communication.  It becomes our motivation of designing algorithms of P300 

analysis based on Independent Component Analysis (ICA). 

ICA is a type of blind source separation method which can break a mixed signal 

down to statistically independent components by maximizing their non-Gaussianity. 

The components are related to different features of the signal. We can map them and 

determine which ones are connected with P300. In other words, ICA has the ability to 

reveal the hidden features even if they are buried in the background noise. This ability 

makes it possible to detect P300 via a single trial. In this article, we discuss an ICA 

based single trial P300 classification algorithm that has shown 76.67% accuracy in 

our study. 

2   Method 

2.1   Data Acquisition 

The subject sat upright in front of a P300 speller, focused attention on a specified 

letter of the matrix on the display and silently counted the number of times the target 
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character intensified, until a new character was specified for selection. The EEG was 

recorded using a cap (Electro-Cap) embedded with 16 electrode locations distributed 

over the entire scalp. The EEG was band pass filtered 0.1–60 Hz and amplified with 

an amplifier (20,000×), digitized at a rate of 160 Hz.  

2.2   Data Structure 

The rows and columns were intensified for 75 ms with 100 ms between intensifica-

tions. Because of the delay of P300 occurrence, the EEG signal segments from 175 

ms to 350 ms following each intensification are used as our experiment segments.  

480 segments from each channel including 80 from target flash (the intensification of 

row or column that contains the desired character) and 400 from non-target flash (the 

intensification of row or column that does not contain the desired character) were 

extracted for the offline analysis.  

Table 1. The EEG data structure in our experiment 

Total number of EEG segments 480×16 Segment length 175 ms 

Sampling Frequency 160 Hz 
Number of samples 

in each segment 
28 

Intensification Duration 75 ms Interval Time 100 ms 

2.3   Preprocessing 

a. All the extracted EEG signals from the 16 channels (electrodes) are low pass fil-

tered to remove the background noise with cut-off frequency setting as 10Hz. 

b. Before the independent components (ICs) of the EEG signals being computed, the 

observed vector x of EEG signals need to be centered and whitened to make its 

components uncorrelated and their variances equal unity. The whitening transfor-

mation is done by using the eigenvalue decomposition (EVD) of the covariance 

matrix ε{xx
T
}=EDE

T
, where E is the orthogonal matrix of eigenvectors of ε{xx

T
}
 

and D is the diagonal matrix of its eigenvalues. The whitening can now be ex-

pressed as: 

 

xEEDx
T2/1~ −=                                            (1) 

If we express x as: 

Asx =                                                     (2) 

where s is the independent components vector and A is the linear transformation from 

s to x, then we have: 

sAAsEEDx
T ~~ 2/1 == −

                                         (3) 
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It can be easily verified that the new transformation matrix A
~

 is orthogonal. Hence 

the number of parameters needs to be estimated reduced from n
2
 (the number of ele-

ments in the original matrix A) to about n(n-1)/2 ( A
~

 contains only n(n-1)/2 degree of 

freedom) [14]. 

2.4   Independent Component Analysis 

Independent component analysis (ICA) is a statistical and computational technique 
for revealing hidden factors that underlie sets of random variables, measurements, or 
signals. It is a good solution for the Blind Source Separation (BSS) problem. For 
example, two speakers (S1 and S2) speak simultaneously in a room with two recorders 
(R1 and R2) recording their speech at different location in the room. The recorded 
signals, R1(t) and R2(t), can be expressed like this: 

)()()(

)()()(

2221212

2121111

tSatSatR

tSatSatR

+=

+=

                                        (4) 

If we know the values of a11, a12, a21 and a22, we can solve these equations for S1 
and S2. Unfortunately these weights (a’s) are unknowns and these equations can only 
be solved under the assumption that S1 and S2 are independent non-Gaussian signals 
by Independent Component Analysis. This is a famous example of “cocktail party” 
problem. Obviously, EEG signal analysis is a type of “cocktail party” problem. The 
electrodes “record” the mixed EEG signal at different locations around the scalp. 
Therefore, it is reasonable to apply ICA on EEG signal to identify those independent 
sources and map them to P300. 

There are a lot of ICA algorithms available, such as Infomax[15], JADE[16] and 

FastICA[17]. All of them can successfully compute the independent components by 

maximizing the non-Gaussianity or negentropy, which is a measurement of non-

Gaussianity [18], of the ICs. In our research, we choose FastICA to perform ICA 

because it converges much faster than other algorithms with high reliability. 

We use the average of 400 of preprocessed 175ms EEG signals from non-target 

flash as the “standard non-target flash” signal, denoted as xnt.    Similarly, the average 

of 80 preprocessed EEG signals from target flash is set as the “standard target flash” 

signal, denoted as xt. By applying FastICA, the independents components vector s and 

the mixing matrix A of xt can be computed and expressed as: 

ttt sAx =
                                                              (5) 

The vectors in st 
are used as the “standard independent components set” of the 

EEG signal and At is used as the “standard coefficients matrix” showing the activation 

status of the ICs underlying in xt. Here we made an assumption that the EEG signal 

from target flash contains more components than those from non-target flash. This is 

reasonable since the EEG signal of target flash is constituted of “background noise” 

and P300 response while the EEG signal of non-target flash is constituted of “back-

ground noise” only. By substituting st 
and xnt in equation (2), we can solve for Ant that 

shows the activation status of the ICs underlying in xnt. We inspected Ant and At and 

noticed the significant differences between them. The coefficients of some ICs are 

positive or negative in At while they have opposite sign in Ant. It implies that some of  
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the ICs in the standard ICs set are strongly related to P300 response. In order to  

confirm this conclusion, we computed the activation matrix A of the 400/80 non-

target/target flashes individually. By inspection, we find out that most of them some-

how follow the “sign rule” mentioned before. This fact inspires us to use the sign of 

the coefficients of the ICs as the feature for P300 identification. 

2.5   Majority Vote Scenario 

There are 5 ICs that are considered to have strong relationship to P300 component can 
be used to determine whether an incoming EEG signal is from a target flash. However 
each of these ICs comes from 16 different channels in which their coefficient sign 
may vary. Therefore we first set up the majority voting rule to determine the vote that 
an IC will give. The 16 coefficients of an IC in different channels form a column of 
the activation matrix A. To make sure there is a “majority” voting, we drop the most 
unstable channel and set the rule as: 

If 

0
*

>
ij

ij

a

a

  
1=iv

; otherwise 
1−=iv

                               (6) 

Where aij is an element of the activation matrix A at the i-th row and the j-th column; 
a

*
ij
 
is an element in activation matrix At at the i-th row and the j-th column; j is the 

index of specific voting IC. Apparently, if aij and a
*
ij have the same sign, vi = 1; if they 

have opposite sign, vi = -1. Therefore, the chosen ICs make their votes according to 
the following rule: 

if 

cv
n

i

i >∑
=1 (n=15), vote for “Target”, otherwise vote for “Non-target”         (7) 

where c is an integer that can be chosen from 0 to 15 to control the type I (target iden-

tified as non-target) and type II (non-target identified as target) error. In our research, 

we set c = 2. The majority votes of the chosen ICs determine the label of an incoming 

EEG signal. 

2.6   Processing Flow 

The processing flow used in this work is given in Fig 1. 
 

 
Fig. 1. The processing flow 
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3   Results and Discussion 

In this work, we choose 3 or 5 P300 related ICs as the voters and classify the incom-

ing EEG signals according to their majority votes. This scenario is tested by 180 EEG 

signals including 150 from non-target flash and 30 from target flash. When 3 ICs are 

employed, 60% of the incoming signals are correctly identified. When 5 ICs are em-

ployed, 76.67% of them are correctly identified. In our research we prefer to reduce 

the type II error because if we fail to identify a target flash, the identification process 

can be repeated till the target successfully identified. But if a signal is falsely identi-

fied as “Target”, this error will not be realized until the final character selection. Con-

sidering this, we may reduce the type II error by increasing the c value. However, the 

tradeoff is that the processing time will increase due to repetition. The P300 based 

single trial ICA algorithm significantly reduces the processing time by removing the 

time consuming step due to “averaging” used in other algorithms. Furthermore, our 

algorithm will stop and start the next “Target searching” whenever it hits a “Target”. 

Thus the expecting target identifying time is given by ε(t) = 3.5flashes = 175×3.5 = 

612.5 ms, which is approximately 1/10 of the best processing time achieved by 

SWLDA [19].  

There is still room for improving the processing speed and accuracy by optimizing 

the algorithm. For example, we can weigh the voters or modify the voting rule to 

improve the performance of voting. In our experiment, we made an assumption that 

the P300 response occurs between 175 ms and 350 ms following a target flash, which 

is not true for some subjects because in some cases P300 shows up in the 350 ms to 

500 ms range. This problem can be solved by using appropriate flashing and interval 

time. We are planning to optimize our algorithm by applying appropriate filter during 

preprocessing, solving the non-stationary problem [20] and involving statistical  

models in our future work. Our goal is to further improve the accuracy of the single 

trial P300 analysis algorithm to make it more suitable for real-world application and 

clinical use. 
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Abstract. Artifacts generated by biophysical sources (such as muscles, eyes, 

and heart) often hamper the use of EEG for the study of brain functions in basic 

research and applied settings.  These artifacts share frequency overlap with the 

EEG, making frequency filtering inappropriate for their removal.  Spatial de-

composition methods, such as principal and independent components analysis, 

have been employed for the removal of the artifacts from the EEG.  However, 

these methods have limitations that prevent their use in operational environ-

ments that require real-time analysis.  We have introduced a directed compo-

nents analysis (DCA) that employs a spatial template to direct the selection of 

target artifacts. This method is computationally efficient, allowing it to be em-

ployed in real-world applications.  In this paper, we evaluate the effect of spa-

tial undersampling of the scalp potential field on the ability of DCA to remove 

blink artifacts. 

Keywords: EEG, artifact, brain activity, neuroergonomic. 

1   Introduction 

The electroencephalogram (EEG) is a scalp measure of electrical currents produced 

by cortical neurons. The EEG is the oldest neuroimaging technique in use today for 

both basic science research and clinical diagnosis. With the development of dense-

sensor arrays (greater than 128-channels) and accurate head models that describe the 

propagation of current from the cortex to the scalp, it is now possible to study the 

brain with excellent spatial (on the order of cm) as well as temporal resolution. This is 

particularly important as researchers and clinicians are interested in both kinds of in-

formation. These same strengths, as well as its low cost and relative portability, make 

EEG technology ideally suited for neuroergonomic applications.   

However, because the EEG is a measure of electrical potentials, it can be easily 

contaminated with artifacts from sources that also generate current. These artifacts 

may interfere with visual interpretations of the EEG as well as analysis. It is now well 

known that noise (i.e., artifacts) contributes significantly to source estimate errors [1]. 

Particularly serious are artifacts of biological origin, such as from the heart or eyes,  
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Fig. 1. Left: Subject with 128-channel Hydrocel Sensor Net.  Middle: Head model with sensors 

registered to scalp surface.  Right: Cortical surface with current source estimate. 

because they may be differentially distributed across experimental conditions, such as 

less blinks during conditions of high workload. If these artifacts are not removed, they 

may be perfectly confounded with the experimental conditions.   

Because they contaminate the energy spectrum of the EEG, these biophysical arti-

facts cannot be removed by simple time-series filtering techniques. Therefore, com-

mon approaches to dealing with these artifacts involve construction of spatial filters 

through different statistical decomposition techniques, such as independent compo-

nents analysis (ICA) or principle components analysis (PCA). These approaches re-

quire the user to manually identify the component(s) that captures the blink activity 

and remove them during data reconstruction. There are several limitations to these 

approaches. First, the spatial distribution of blinks is often described by multiple 

components, making the process of their removal more complicated and arduous. 

Second, these methods tend to be computationally intensive (such as ICA with the 

Infomax technique) and cannot be used for real-time applications.   

Directed Components Analysis (DCA) is an ongoing development of a modular, 

computationally efficient, EEG artifact extraction algorithm [2], based upon the work 

of Ille et al. [3]. DCA segments multichannel EEG data into a sequence of overlap-

ping windows, uniquely modeling each window’s artifactual and cortical activity with 

topographies derived from the data itself. This segmenting approach enables DCA to 

accommodate the temporal evolution of the artifactual and cortical activities that con-

stitute the scalp recorded EEG, from which segment-specific artifactual and cortical 

models are then derived. The segment-specific spatial filters extract any and all activ-

ity that is both spatially correlated to the EEG segment’s artifactual model topogra-

phies and not described by its cortical model topographies. This sharing of variance 

between artifactual and cortical models prevents extraction of cortical activity spa-

tially correlated to the artifacts of interest. 

Since DCA, like ICA and PCA, creates spatial filters to remove artifacts, its per-

formance is dependent upon accurate description of the spatial topography of the 

brain signal as well as the artifact. Like discretization of a time series, wherein the 

Nyquist theorem states that the sampling (i.e., discretization) rate must be two times 

that of the highest frequency to avoid aliasing of energy from the highest frequency 

into lower frequency spectra, accurate discretization of spatial information requires 
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adequate spatial sampling; if not adequately sampled, high spatial frequency informa-

tion will be smeared and mistaken for low-spatial frequency information [4]. 

In this paper, we compare the effects of undersampling the scalp potential field on 

the ability of DCA to remove blink artifacts with minimal distortion of the underlying 

EEG. We start with a 128-channel EEG data set [5] and subsample the data down to 

32-channels. We then applied DCA to both data sets and compared the integrity of 

these two data sets after artifact cleaning.  

2   Method 

The approach that we take to the evaluation of DCA’s ability to clean data sets of 

differing spatial resolution involves the use of event-related potentials (ERPs) as the 

target signal. We evaluated whether DCA would significantly distort the ERP. An 

ERP is an average of single trials of EEG locked to an event of interest (such as tar-

get, feedback, or motor response onsets). An assumption of ERP averaging is that 

brain responses elicited by an event of interest is approximately constant from trial to 

trial. Through averaging, the background EEG will be attenuated (since its amplitude 

is random) and the ERPs will be accentuated.  

The data set employed for this study is described elsewhere [5,6]. The continuous 

EEG record was segmented relative to the onset of the target stimulus (-200 ms before 

to 1000 ms after). Automated detection of blink artifacts was performed on each seg-

ment (i.e., trial or epoch) of the EEG. An EEG expert (one of the authors) reviewed 

the automated artifact detection results to ensure accuracy of the artifact detection. 

The segments were then classified as either being contaminated with blinks or being 

blink-free; this constitutes files of class 1. Next, the original continuous EEG file was 

submitted to DCA.  

To extract eye blinks, DCA first constructs segment-specific spatial filters based 

upon the corresponding segment’s eye blink (i.e., the EEG segment that contains a 

blink artifact) and cortical models (EEG segment that does not contain a blink arti-

fact). DCA eye-blink spatial filters extract the intensity of any activity correlated to 

their segment’s  blink topography that is not in the span of the segment’s cortical 

model eigenvectors. The degree of the extracted intensity is in proportion to the 

amount of correlation, and is computed, at each time point, as the inner product of the 

spatial filter and the scalp-recorded EEG. The result is a time course of eye blink in-

tensity, which, when multiplied by its blink topography, estimates the eye blink po-

tential on each channel at each segment time point. 

DCA spatial filters distinguish between eye blinks and spatially correlated cortical 

activity by virtue of their construction: each segment’s spatial filter is a weighted sum 

of the segment’s left-nullspace eigenvectors. Left-nullspace eigenvectors are the co-

variance-matrix-derived eigenvectors that are not utilized by the segment’s cortical 

model. As the totality of the covariance-matrix-derived eigenvectors span all of chan-

nel space, linear combinations of the left-nullspace eigenvectors model that portion of 

any scalp topography that cannot be otherwise expressed as a linear combination of 

the cortical model eigenvectors. DCA derived spatial filters therefore estimate the 

time course of eye blink intensity based solely upon their correlation to that portion of 

the scalp recorded EEG in the span of the left nullspace. The DCA identification of 
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eye-blink contaminated intervals, and the exclusion of their topographies from the 

cortical model, ensures to the extent possible that the artifactual topographies of inter-

est, eye blinks, are the primary component of the EEG in the left-nullspace’s span. 

DCA optimizes spatial filter performance through a technique we term left-

nullspace filtering. 

1. A cortical model is first composed of eigenvectors that account for ~ 95% of the 

blink-free EEG variance in the current windowed segment.  The exact percentage 

is specified by the user, though 95% is typical. 

2. A Moore-Penrose pseudo-inverse applied to an augmented matrix of the eye blink 

typography and cortical model eigenvectors generates the spatial filter as a 

weighted sum of left-nullspace eigenvectors. 

3. Nullspace filtering deletes from the left nullspace all eigenvectors with blink to-

pography correlation less than a specified threshold, typically 50% of the maxi-

mum value. 

4. The deleted left-nullspace eigenvectors from step 3) are moved into the cortical 

model to augment its span. 

5. The final spatial filter is regenerated as a weighted sum of the remaining left null-

space eigenvectors. 

6. The inner product of this final spatial filter with the EEG electrode potentials at 

each segment time point extracts the time course of intensity of the segment’s blink 

topography. 

After removal of blinks, the file was segmented and submitted to the automated ar-

tifact detection. This constitutes files of class 2. In the class 2 files, the ERP was de-

rived from only those segments that were originally classified as containing blinks, 

from the class 1 files, but are now cleaned of the artifacts (using the same number of 

trials that went into the derivation of the ERP of blink-free data, see below). We then 

evaluated whether this ERP derived from blink-cleaned data contained any statisti-

cally significant distortions.  This was done by estimating error bounds, obtained by 

creating a distribution of ERP of the blink-free segments from the class 1 files.  

The distribution of the blink-free ERP was derived using the following procedure. 

First, from the total blink-free pool we took random subsets of 25% of the trials to 

derive each ERP (the ERP from all files contained no fewer then 25 segments). This 

ensured that as we obtained multiple samples of the ERPs that there would be enough 

variability of the ERP estimates to produce an accurate characterization of the vari-

ability of data points in this distribution. The distribution of the ERPs for each file 

contained 1,000 observations (i.e., averages). Second, from each distribution we iden-

tified the upper and lower 2.5 percentile.   

After these steps are performed, for each EEG channel, we have an ERP derived 

from blink-cleaned data with error bounds to indicate whether the ERP (at each sam-

ple and each EEG channel) has been distorted by the cleaning procedure (see Figure 

2). This procedure was performed on 12 data files (six 128-channel and six 32-

channel files). 

We then computed an error fraction to summarize the results for each data file. The 

error fraction was defined as the fraction of samples in the blink-cleaned data that 

exceeded the error bounds.  An error fraction was computed for each channel and then 

averaged over all channels to produce one summary.   
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Fig. 2. Blink-cleaned ERP with error bound estimates from an EEG channel over the left oc-

cipital scalp region (averaged over 6 files from the 128-channel data set) 

3   Results 

The results are presented in Table 1. The average error fraction for the 128-channel 

data is .22 and .34 for the 32-channel data, indicating that ERPs derived from lower-

channel counts are more distorted by DCA. Examination of the data showed that for 

files 2 and 3 (128-channel) the data tend to be distorted in those EEG channels located 

at the front of the head (by the eyes). When we examined the 32-channel data set, all 

files demonstrated significant distortion of the ERP in those EEG channels over the 

front of the head. 

Table 1. Error fractions by channel-count 

 128-Channels 32-Channels 

 Mean (SD)  

1 .17 (.12) .37 (.26) 

2 .27 (.18) .29 (.31) 

3 .30 (.20) .35 (.32) 

4 .21 (.14) .37 (.27) 

5 .18 (.15) .20 (.18) 

6 .17 (.12) .47 (.30) 

4   Discussion 

This preliminary study showed that the ability to remove blinks from the EEG, using 

DCA (which is a spatial filtering method) is dependent on the accurate characteriza-

tion of the spatial distribution of the blinks. Across the 12 data files, the ERP data 

were consistently more distorted for the 32-channel compared to the 128-channel data 
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sets. The spatial distribution of blinks is poorly captured by the 32-channel data set 

and correspondingly, the cleaned ERP data showed more distortion. 

One question is whether higher-channel data (such as 256-channels) will show less 

distortion. We will examine this in future studies. Related to this question, and rele-

vant to in-field EEG applications, is whether DCA can be made to work with sparse-

array channel counts while minimizing distortion. In-field applications often employ 

lower channel counts (often 3 channels). These lower channel counts systems are be-

lieved to be more acceptable to the end-user because they are perceived as being less 

obtrusive. Data from lower channel counts, obviously, cannot be employed to  

estimate sources of the EEG because they do not accurately describe the scalp distri-

bution of the EEG. With the objective of cleaning artifacts using spatial filtering  

techniques, it is clear that adequate spatial sampling is still required. Therefore, to 

minimize distortions of the EEG with lower channel count configurations, it is un-

avoidable that more sensors are required. However, it may be possible that, for the 

purpose of cleaning eye-related artifacts, additional sensors (perhaps 12 or less) 

placed around the eyes, forehead, and face areas may suffice because it is the artifact 

topography that needs to be accurately characterized. However, how this may bias 

creation of the filters, because the brain signals are now less specified, will need to be 

determined. 

Finally, we are unaware of any study that has employed the approach (permutation 

statistics) we used in the present work for evaluation of the effectiveness of ICA or 

PCA for the removal of artifacts. Thus, it would be informative for future studies to 

compare DCA against these other methods using the same evaluative framework. 
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Abstract. Although neuroimaging has greatly expanded our knowledge about 

the brain-behavior relation, combining multiple neuroimaging modalities with 

complementing strengths can overcome some limitations encountered when us-

ing a single modality. Valuable candidates for a multimodal approach are func-

tional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG). 

fNIRS is an imaging technology that localizes hemodynamic changes within the 

cortex. However, hemodynamic activation is an intrinsically slow process. On 

the other hand, EEG has excellent time resolution by directly measuring the 

manifestation of the brain electrical activity at the scalp. Based on their com-

plementary strengths, the integration of fNIRS and EEG may provide higher 

spatiotemporal resolution than either method alone. In this effort, we integrate 

fNIRS and EEG to evaluate the behavioral performance of six healthy adults in 

a working memory task. To this end, features extracted from fNIRS and EEG 

were used separately, as well as in combination, and their performances were 

compared against each other. 

Keywords: multimodal neuroimaging, functional near-infrared spectroscopy, 

EEG, pattern classification, working memory, n-back, P300. 

1   Introduction 

The last 20 years have seen a rapid advance in neuroimaging technologies that are 

now widely used for non-invasive investigation of human brain functions. Application 

of these technologies to the fields of basic and clinical neuroscience has greatly ex-

panded our knowledge about brain activity associated with perceptual, cognitive, 

emotional and behavioral processes, in health [1],[2] and disease [3],[4]. In particular, 

neuroimaging techniques have contributed to the investigation of the specialization 
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and integration of different cerebral areas in the normal brain and to the study of brain 

dysfunction in varying disorders [5],[6]. Nonetheless, the current understanding of the 

relation between brain activity and behavior is still limited. One of the restricting 

factors is the inherent complexity of the system to be investigated. In fact, most task 

designs in neuroimaging aim at probing or manipulating one cognitive domain at a 

time, but human behavior results from the interaction of multiple components (e.g., 

attention, orienting response, planning or short-term memory). Additionally, the mac-

roscopic brain activity is a multifaceted process and the combined use of multiple 

neuroimaging technologies could capture different aspects of this process.  

On one hand, techniques such as electroencephalography (EEG) and magnetoen-

cephalography (MEG) record the integrated and synchronized electromagnetic activ-

ity of populations of pyramidal neurons in the cerebral cortex [7],[8]. Both EEG and 

MEG have excellent temporal resolution (at the millisecond level), but they also share 

the weakness of a poor three-dimensional spatial localization: the activated cortical 

sources need to be estimated based on the distribution of the electromagnetic fields on 

the scalp (“inverse problem”), which is a mathematically ill-posed problem. 

On the other hand, more recent neuroimaging technologies focus on hemodynamic 

changes, an indirect measure of brain function. These changes consist in variations in 

regional blood flow, in blood oxygenation or in local metabolism and are generally 

assumed to reflect changes in the neural activity [9]. The neuroimaging modalities in 

this group are functional magnetic resonance imaging (fMRI), functional near-

infrared spectroscopy (fNIRS), positron emission tomography (PET) and single pho-

ton emission computed tomography (SPECT). In contrast to EEG and MEG, the 

hemodynamic-based technologies offer the advantage of providing information about 

the spatial location of the recorded activity (with a resolution down to few millime-

ters). However, hemodynamic changes are intrinsically slow processes, happening in 

the range of seconds [10], thus limiting the temporal resolution of the recordings. 

Therefore, given the complexity of the investigated processes and the wide range 

of characteristics for the different imaging technologies, the use of multimodal ap-

proaches is gaining the interest of the scientific community [11],[12],[13],[14]. The 

underlying principle is that all neuroimaging techniques provide in vivo measures of 

brain function but each has its own set of assets and drawbacks. Hence, the combina-

tion of multiple imaging modalities with complementing strengths can partially over-

come the limitations encountered by each individual modality. 

Two valuable candidates for a multimodal approach are fNIRS and EEG. fNIRS is 

a brain imaging technology that relies on optical techniques to detect changes in the 

hemodynamic activity within the cortex in response to sensory, motor, or cognitive 

activation [15],[16]. fNIRS relies on the placement of near-infrared light sources and 

detectors on the scalp. Oxygenated (HbO2) and deoxygenated (HHb) hemoglobin are 

the dominant light absorbing elements within the brain at the near infrared wave-

lengths and have different absorption patterns of light. Thus, fNIRS can record 

changes in HbO2 and HHb concentrations, which occur during brain activation [17]. 

Similar to other hemodynamic-based neuroimaging modalities, fNIRS is able to  

provide information about the specific localization of the recorded hemodynamic 

activity. Compared to fMRI or PET, however, fNIRS is affordable and easily imple-

mentable in a portable system, allowing for a wider range of applications. By associ-

ating fNIRS with EEG, we can additionally take advantage of the good temporal 
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resolution provided by the latter. After all, EEG can capture information about rapid 

cortico-cortical or thalamocortical oscillations that play a crucial role in the elabora-

tion and integration of information in cognitive networks. Therefore, based on the 

complementary strengths offered by EEG and fNIRS, their integration has the poten-

tial to provide higher spatio-temporal resolution than either method alone. 

2   Example of Multimodal Approach 

2.1   Background 

We provide here an example of multimodal imaging approach using fNIRS and EEG. 

The aim is evaluate the performance level of subjects during a task with high working 

memory load. This was pursued by using measures from fNIRS or EEG individually 

or in a combination, the results of which were then compared. The rationale for using 

these modalities among others is two-fold. First, there are indications that the oxy-

genation changes recorded by fNIRS in working memory tasks are related to the task 

load and at the same time are affected by the performance level of the subject [18]. 

Second, EEG has been extensively applied in working memory research. In particular, 

many studies focused on the P300 component, a peak occurring about 300 ms after a 

target stimulus presentation and reflecting the demand on attentional resources [19]. 

Based on its neuropsychological interpretation, the P300 amplitude is expected to 

increase with increasing task complexity [20], but studies have shown a decline when 

the stimulus is objectively harder to discriminate or when the subject is less confident 

in its discrimination [21]. Hence, the combined use of fNIRS and EEG can provide 

insight into the different mechanisms underlying the observed low performance on a 

working memory task. 

2.2   Experimental Protocol 

Six subjects (3 males and 3 females) were selected from a larger pool of healthy par-

ticipants. All subjects were right-handed, with vision correctible to 20/20. Participants 

denied any history of neurological disorders, psychiatric illness, substance abuse or 

being on any current medication. The experimental protocol was approved by the 

Institutional Review Board at Drexel University and all participants gave their  

informed consent. The mean age of the participants was 24.3 years (standard devia-

tion=5.5 years). 

EEG activity was recorded from 12 Ag/AgCl electrodes placed at frontal, central, 

parietal and occipital locations according to the International 10-20 System (F7, F3, 

Fz, F4, F8, C3, Cz, C4, P3, Pz, and Oz). All electrodes were referenced to linked 

mastoid leads. Vertical and horizontal electrooculograms (VEOG and HEOG) were 

monitored via electrodes placed above and below the left eye, and at the left and right 

outer canthi, respectively. EEG signals were collected using NuAmp amplifier (Neu-

roscan Inc., El Paso, TX); all impedances were systematically kept below 10 kΩ and 

the amplification was set to 50 mV/mm. EEG signals were filtered between 0.15 and 

100 Hz and sampled at 500 samples/second. 

The hemodynamic activity of the prefrontal cortex was recorded using a continu-

ous-wave fNIRS device first described by Chance et al. [22] and further developed at 
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Drexel University (Philadelphia, PA). The system consisted of three modules: a flexi-

ble headpiece, a control box for hardware management and a computer that runs the 

data acquisition. The headpiece holds four light sources and 10 photodetectors, with a 

source-detector separation of 2.5 cm, providing a penetration depth of approximately 

1.25 cm. The four light sources were activated in turns: each source shone light with 

input intensity I0 and the four photodetectors surrounding the currently active source 

measured the intensity I of the emerging light. The arrangement of sources and detec-

tors on the headpiece and the configuration for data acquisition yields a total of 16 

active optodes, which were designed to image cortical areas that correspond to the 

dorsal and inferior frontal cortices [16]. Each source emitted light at two different 

wavelengths in the near-infrared spectrum, namely at 730 and 850 nm, and measures 

of emerging light intensity were obtained for each optode with a sampling frequency 

of 2 samples/second. 

Participants were seated in a dimly-lit, sound attenuated room and were asked to 

perform a visual n-back task, a task widely used to investigate working memory proc-

esses [23]. Stimuli were single consonants presented in a pseudo-random sequence on 

a computer screen. Stimulus duration was 500 ms, with a 2500-ms interstimulus in-

terval. Four conditions were used to incrementally vary the working memory load 

from zero to three items. In the 0-back condition, subjects responded to a single pre-

specified target letter (e.g. ‘‘X’’) with their dominant hand (pressing a button to iden-

tify the target). In the 1-back condition, the target was defined as any letter identical 

to the one immediately preceding it (i.e., one trial back). In the 2-back and 3-back 

conditions, the targets were defined as any letter that was identical to the one pre-

sented two or three trials back, respectively. The target probability was about 33% for 

each condition. This strategy incrementally increased working memory load from the 

0-back to the 3-back condition. Seven blocks, each containing the four conditions (0-, 

1-, 2- and 3-back), were presented to the subjects. The sequence of the four conditions 

in the seven blocks was randomized. Each presentation of the n-back conditions was 

followed by a 15 s rest period.  

2.3   Data Processing 

Information about the behavioral performance in the task was recorded for all sub-

jects. The percentage of correct responses was calculated separately for the four work-

ing memory loads and for the overall test. Out of the total pool of subjects, 3 were 

randomly selected from the group with an overall performance higher than the median 

(“high performing” group) and 3 were randomly selected from the group with an 

overall performance below the median (“low performing” group). Table 1 summa-

rizes the behavioral performance for the overall group of subjects.  

fNIRS Recordings. fNIRS data were divided into blocks locked to the repeated pres-

entations of the four working memory conditions. Each block lasted 70 s and a 5 s rest 

baseline was included. The raw data about light absorption acquired by the fNIRS 

device were low-pass filtered and were converted to changes in concentration of 

HbO2 and HHb using the modified Beer-Lambert law [24]. The baseline condition 

used in the modified Beer-Lambert law was the rest period immediately preceding 

each block. For each of the seven presentations of the 3-back condition, the mean 
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change in HbO2 concentration was extracted. In particular, the channels of most in-

terest were those monitoring the rostral portion of the superior and middle frontal gyri 

in the left hemisphere, since they have been previously demonstrated to be signifi-

cantly activated by the n-back task [18]. Therefore, for each subject, average HbO2 

values for each of the seven presentations of the 3-back condition were extracted from 

channels 4, 5 and 6 and used as features in the subsequent classification. Only the  

3-back condition was investigated, based on earlier evidence that the oxygenation 

values recorded during the 3-back condition are affected by the performance level [18]. 

EEG Recordings. Independent component analysis was used to minimize ocular 

artifacts in the EEG recordings [25]. Stimulus-locked event-related potentials (ERPs) 

were extracted from channels Cz and Pz for target stimuli presented in the 3-back 

condition. A 150 ms pre-stimulus baseline window and a 700 ms post-stimulus re-

sponse window were used. All epochs were baseline corrected by subtracting the 

mean of the baseline window form the full epoch. Epochs containing significant 

movement or muscle artifacts were discarded. The P300 peak was automatically iden-

tified at each of the two channels as the largest positive deflection in the 250-600 ms 

post-stimulus response. For each subject, the average amplitude values of the P300 

peak at Cz and Pz were obtained for each of the seven presentations of the 3-back 

condition and used as features in the classification.  

Table 1. Statistics of the behavioral performance (%) in the n-back task for the total pool of 

subjects 
1 

 Mean    (95% Confidence Interval) Median 

0-back condition 90.07 %    (81.29 – 98.84 %)  

1-back condition 92.06 %    (85.63 – 98.47 %)  

2-back condition 85.33 %    (79.23 – 91.42 %)  

3-back condition 78.07 %    (73.76 – 82.37 %)  

Overall 86.38 %    (80.48 – 92.28 %) 89.70 % 

 
Classification. The classification between “high performing” and “low performing” 

subjects was performed using five different features: two features were obtained from 

the EEG recordings (the amplitude of the P300 peak at channels Cz and Pz) and three 

were obtained from the fNRIS recordings (mean change in HbO2 concentration at 

channels 4, 5 and 6).  

For each subject multiple instances of these features were extracted, one for each 

presentation of the 3-back condition. Each instance (xi) was associated with a label yi 

that stated the group of the subject from which the instance was collected (yi =“low 

performing” or yi= “high performing”). The total number of instances xi was 38 (7 

blocks presented to 5 subjects + 3 blocks presented to 1 subject) and constituted the 

overall set S of available instances: S = [xi, yi]. 

Four different approaches were evaluated to determine their ability to identify 

“high performing” or a “low performing” individuals: 

                                                           
1 For one subject, in the “low performing” group, only three of the seven blocks could be  

presented. 
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1. EEG-based classification: only the features extracted from EEG recordings  

were used; the feature vector consisted of two elements: the P300 amplitude at 

Cz and Pz. 

2. fNIRS-based classification: only the features extracted from fNIRS recordings 

were used; the feature vector consisted of three elements: the mean change in 

HbO2 concentration at channels 4, 5 and 6. 

3. Feature-level fusion: features extracted from both EEG and fNIRS recordings 

were used and combined in a single feature vector of five elements. 

4. Decision-level fusion: the classification was performed separately using the  

EEG and fNIRS features, whose results were then combined to reach the final 

decision. 

Two types of classifiers were investigated to be used in the above mentioned ap-

proaches: the Mahalanobis discriminant (MD) and the quadratic classifier (QC). The 

MD is equivalent to the optimum Bayes classifier if the data are normally distributed 

with identical (although arbitrary) covariance matrices for all classes [26]. In QC, 

instances are labeled using a Bayesan error minimization approach, under the more 

general hypothesis that the covariance matrices for all classes can assume any arbi-

trary value [26]. 

For training and testing, a modified k-fold (k=5) cross-validation was implemented. 

In such an approach, the set S is partitioned into k blocks, each one representing the 

two groups (“low performing” and “high performing”) in an approximately balanced 

way. Each of the k blocks was in turn held out for testing (S
(k)

), while the other k-1 

blocks (S
(k-1)

) were used for training using a bagging procedure [27]. In bagging, an 

ensemble of classifiers is created: in this study the ensemble was comprised of 10 

classifiers all sharing the same architecture but trained on different randomly gener-

ated subsets ( ( 1)

( )

k

r

−
TS   r=1,2,…,10) of S

(k-1)
. A label 

( )
ˆ

r
y  is assigned to each instance 

in the testing set S
(k)

 by each of the 10 classifiers, which are then combined using a 

majority voting decision rule. In our implementation, this entire process – of generat-

ing 10 training subsets and training 10 corresponding classifiers – was repeated 5 

times, each time holding out a different subset S
(k)

 for testing. For each of these 5 

repetitions, the accuracy, defined as the probability of correctly classifying an in-

stance, was calculated. 

2.4   Results 

Table 2 summarizes the behavioral performance in the four n-back conditions for the 

3 subjects in the “high performing” group and for the 3 subjects in the “low perform-

ing” group. The difference in behavioral performance between the two groups is  

evident in the overall percentage of correctly identified stimuli and in each of the 

three n-back conditions. 

The distribution, in the features space, of the instances collected from the two 

groups of individuals is presented in Fig. 1A and Fig. 1B. These figures show the 

features extracted respectively from the EEG recordings (P300 amplitude at Pz and 

Cz) and from the fNIRS recordings (change in HbO2 concentration at channels 4, 5 

and 6); in both spaces the two classes are substantially overlapping. A separate analy-

sis confirmed also a dissociation in the HbO2 values during the 3-back condition 
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between the two groups: whereas for the “high performing” group the HbO2 values 

were increasing with the working memory load (1-back condition: 0.0086 mM;  2-

back condition: 0.0096 mM;  3-back condition: 0.0216 mM), for the “low perform-

ing” group this relation was lost and the 3-back condition saw a decrease in the HbO2 

values (1-back condition: -0.0213 mM;  2-back condition: 0.0263 mM;  3-back condi-

tion: -0.0245 mM). 

Table 3 presents the accuracy obtained by the different classification strategies us-

ing each of the two classifiers (QD and MD) as base classifiers. In general, the results 

showed an enhancement in classification performance when features from both EEG 

and fNIRS are used compared to the results obtained when using them separately. In 

fact, the mean accuracy for the feature-level fusion and decision-level fusion strate-

gies were overall higher than the mean accuracy for the EEG-based and fNIRS-based 

classifications. 

Table 2. Mean behavioral performance (%) statistics in the n-back task for the “low perform-

ing” and “high performing” group. Behavioral performance was calculated as the percentage of 

presented stimuli that the subject correctly identified as targets or non-targets. 

 Low performing High performing 

0-back condition 74.95 % 94.87 % 

1-back condition 80.83 % 95.22 % 

2-back condition 77.87 % 88.38 % 

3-back condition 70.56 % 82.03 % 

Overall 76.05 % 90.12 % 

Table 3. Mean and standard deviation of the accuracy (%) reached by the quadratic classifier 

(QC) and Mahalanobis discriminant (MD) used in the four possible classification approaches. 

Accuracy was evaluated across the 5 repetitions of the k-fold cross-validation procedure. 

 QC MD 

EEG-based classification 60.31±18.27 % 62.53±16.44 % 

fNIRS-based classification 62.53±21.78 % 51.74±  7.41 % 

Feature-level fusion 65.39±16.51 % 58.09±18.56 % 

Decision-level fusion 71.11±10.67 % 71.11±10.67 % 

 

Additionally, the two fusion approaches (and in particular the decision-level  

fusion, in agreement with [28]) provided an increase, albeit small, in the generalizing 

ability of the classifiers, as measured by a decrement in the accuracy standard  

deviation.  

2.5   Discussions 

Overall, the classification of instances collected from “high performing” and “low 

performing” subjects benefited from the used of combined fNIRS and EEG features. 

We acknowledge that the results of our statistical analyses cannot be considered con-

clusive at this time due to the limited data of 3 subjects (from each class) that were 

available to us. A larger pool of subjects, and therefore a higher number of instances 

available for training and testing, would allow a better estimation of the accuracy  
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A     B 

  

 

Fig. 1. A. Scatterplot of instances of EEG-based features, the P300 amplitude at Pz and the 

P300 amplitude at Cz.   B. Scatterplot of instances of fNIRS-based features, the mean changes 

in HbO2 concentration at channels 4, 5 and 6 (ΔHbO2 chn4, ΔHbO2 chn5 and ΔHbO2 chn6, 

respectively ). In both part A and part B, instances are categorized as belonging to high per-

forming (filled triangles) or low performing (empty circles) individuals. From each individual, 

multiple instances were collected, one for each presentation of the 3-back condition. 

index. Nonetheless, the combination of fNIRS and EEG improved classification accu-

racy, even if two relatively simple classifiers where used: a linear parametric classifier 

(MC) and a nonlinear parametric classifier (QC). It is reasonable to expect that higher 

accuracies can be obtained using more sophisticated nonlinear classifiers (such as 

neural networks or support vector machines), that are not bounded by assumptions 

about the features distributions. Similarly, the relative performance of other fusion 

algorithms could be investigated, ranging from the simple majority voting (presented 

in this paper) to multinomial methods, to the fusion of discriminant scores.  

3   Concluding Remarks 

We have investigated the feasibility and performance of fNIRS and EEG data fusion 

for the evaluation of the behavioral performance of six healthy adults in a working 

memory task. Although fNIRS and EEG have been co-registered in previous studies 

[29], [30], this is the first attempt at their integration by using them together in a pat-

tern recognition application. For this study, the fNIRS-EEG fusion took advantage of 

both the spatial information about the hemodynamic activity (by including only the 

channels monitoring the rostral portion of the superior and middle frontal gyri in the 

left hemisphere) and the fast temporal dynamic of the cognitive processes of interest 

(by including information about the P300 amplitude). A similar approach can also 

help explain the mechanisms underlying low task performance in case of neurological 
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disorders such as traumatic brain injury or multiple sclerosis, hence providing some 

physiological evidence important for the choice of a proper neurorehabilitation and 

pharmacological intervention. fNIRS-EEG fusion may further be applied to the study 

of other cognitive domains, in particular taking advantage of the flexibility in task 

designs allowed by fNIRS and EEG.  
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Abstract. In this work, we propose the use of Transcranial Doppler Monitoring 

(TCD) as a tool to measure brain activity during the exposure to virtual envi-

ronments (VE) that can be used in Augmented Cognition (AugCog) systems. 

The technique is non-invasive, and can be easily integrated with virtual reality 

(VR) settings. Its high temporal resolution allows the correlation of changes in 

brain activity to specific events in the VE. In this paper, the TCD technique is 

described, and results from two studies developed in our group combining TCD 

with VR are summarized. Possible applications of TCD in the AugCog field are 

finally discussed. 

Keywords: Augmented Cognition, Virtual Reality, Transcranial Doppler,  

Neurophysiological Data, Cognitive State Assessment. 

1   Introduction 

Augmented Cognition (AugCog) can be described as "a field of research that seeks to 

extend a computer user's abilities via technologies that address information-

processing bottelenecks inherent in human-computer interaction" [1]. There are two 

main aspects that should be controlled in an AugCog system. Firstly, the system 

should be able to detect the instantaneous cognitive state of the user, in order to find 

limitations such as overload, cognitive lockup, and underload [2]. Secondly, depend-

ing on the user's detected state, the system has to adapt the computational interface in 

order to improve the user's performance.  

One of the technologies that can be used in the AugCog field is Virtual Reality 

(VR). This technology provides users with a controlled environment where different 

abilities and exercises can be trained. In this context, it is closely related to AugCog 

and can be seen as a test bed for the technology until it has achieved a sufficient tech-

nology readiness level [3].  

Previous research in VR has developed environments that can modify dynamically 

their aspect depending on user's instantaneous state, such as the EMMA system [4]. 

The EMMA system was designed to be used inside clinical therapy sessions, and  

has been applied for the treatment of several psychological disorders such as post 
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traumatic stress disorder, pathological bereavement, and adjustment disorder. The 

main technical feature of this environment is that its aspect can be modified controlled 

by the therapist that conducts the clinical sessions depending on the emotions that the 

patient is feeling at each moment, and depending on the purpose of the clinical ses-

sion. This kind of virtual environment (VE) that can adapt itself to the requirements of 

the user, instead of having the users to adapt to the device, has been described in the 

literature as an adaptive display. Adaptive displays have in common with AugCog 

systems that they have to control the user's instantaneous state and adapt their con-

tents and characteristics depending on this state.  

The logical evolution in this kind of systems is that the user's cognitive state can be 

predicted automatically by the system. Logically, two elements are required for this: 

sensors for monitoring different physiological signals from users, and an inference 

engine or classifier to evaluate the information coming from these signals to deter-

mine the instantaneous cognitive state of the user. In fact, this is one of the key Aug-

Cog research areas: Cognitive State Assessment (CSA) [5]. These sensors acquire 

"physiological and behavioral parameter(s) that can be reliably associated with spe-

cific cognitive states, which can be measured in real-time while an individual or team 

of individuals is engaged with a system" [5]. 

Different measurements have been proposed to be related with specific cognitive 

states of the users [6]. Some of them are based on physiological measurements. For 

example, electrocardiography [7] and skin conductance [8] have been used to provide 

estimates of arousal and general cognitive workload. Other behavioral analyses, such 

as gesture recognition, have been used to monitor levels of attention [9]. Speech and 

facial expression have also been studied as ways to obtain information about the cog-

nitive state of users [10-11]. However, the most direct analysis of the cognitive state 

can be obtained using neurophysiological measures. One of the most common  

measurements in this field is electroencephalogram (EEG), which has been used to 

estimate various types of cognitive states, such as vigilance, arousal, workload, en-

gagement, distraction and working memory [12]. Other techniques such as functional 

near infrared spectroscopy (fNIRS) have also been used as a way to measure brain  
 

 

Fig. 1. Subject with TCD probes placed in their correct location with the help of a probe holder 
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blood oxygenation and volume changes, helping to understand the cognitive and emo-

tional state of the user during mentally demanding operations [13].  

In this paper, we propose another brain activity measurement technique that can be 

used as a cognitive state sensor: Transcranial Doppler (TCD). It was first used in 1982 

as an ultrasound diagnosis technique [14] to control the hemodynamic characteristics 

of major cerebral arteries in normal and pathological conditions with high temporal 

resolution. In order to take the measurements, two probes are placed on the skull of 

the subject using a headband or a probe holder, as can be seen in Fig. 1. Similarly to 

other cognitive state sensors such as EEG and fNIRS, TCD is a non invasive meas-

urement system in real time, which makes it potentially available for everyday use. 

2   Trasncranial Doppler (TCD) 

TCD is based on the Doppler Effect. The probes emit an ultrasound beam that is  

reflected by the blood cells that are moving through the vessels in the brain. The re-

flected signal is received by the probes with a frequency shift that is proportional to 

the velocities of the blood cells. TCD studies use mainly the transtemporal window to 

place the probes that register the ultrasound signal [15]. This window allows the  

direct registration of the information about the Middle Cerebral Arteries (MCAs), 

Anterior Cerebral Arteries (ACAs) and Posterior Cerebral Arteries (PCAs). The probe 

direction, the reference volume depth and the flow direction identify each cerebral 

artery.  

From the reflected signal that is received in the TCD apparatus, it is possible to 

calculate the maximum blood flow velocity (BFV) at each moment in the arteries 

under study. Maximum BFV represents the instantaneous velocity of the quickest 

blood cells. It varies during each cardiac cycle, reaching a maximum shortly after the 

cardiac contraction and falling to a minimum just before the next. Most TCD studies 

do not use directly this maximum BFV. Instead, they use an averaged version of it 

(the mean BFV), which is calculated from the maximum BFV value as the mean  

velocity value during one complete cardiac cycle [16]. These velocity variations con-

stitute a reliable source of information about brain activity. If the neurovascular cou-

pling is adequate [17], these variations reflect changes in cerebral blood flow (CBF). 

And previous research has clearly shown that regional CBF increases during the per-

formance of mental activities [18, 19].  

TCD has important advantages when compared to other techniques. First of all, it 

has a high temporal resolution, which allows instantaneous monitoring of cerebral 

responses to specific events. Furthermore, it is non invasive, so it is possible to use it 

in an ecological way in a great variety of environments. That constitutes its main 

advantage when compared with other techniques such as fMRI, which imposes seri-

ous restrictions to the experiments in which it is used, as long as the subject has to 

remain in supine position inside the magnetic resonance machine with minimum head 

movement while hearing annoying noises.  

The main disadvantage of TCD is its spatial resolution, which is limited by the size 

of the cortical areas supplied by the arteries under study.  
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2.1   Cortical Areas Supplied by TCD Monitored Arteries 

The arteries that supply blood to the greater part of the brain are MCAs. Each MCA 

carries 80% of the blood flow within its cerebral hemisphere [20]. Their perfusion 

territory includes subcortical areas, large fractions of the frontal and parietal lobes, as 

well as the temporal lobes [21], so modifications in MCAs BFV can be produced by 

different kinds of brain activity (related to motor tasks, attention tasks or emotional 

states). For example, parts of the parietal and frontal lobe are involved in the process-

ing of emotions, as well as areas of the temporal lobe with the limbic system, so that 

would justify an increment in MCAs BFV when somebody is experiencing an emo-

tion  [22]. In any case, MCAs can provide interesting information about BFV differ-

ences between hemispheres in different tasks.  

Nevertheless, other vessels that can be monitored with TCD can provide more  

specific information about the areas that are active at each moment, as long as their 

perfusion territory is smaller. ACAs supply most of the medial areas of the brain, 

including the medial frontal cortex and most parts of the limbic system particularly 

the cingulated [20], so their BFV variations are closely related with the emotional 

state of the subject who is being monitored. On the other hand, PCAs are the vessels 

responsible for the irrigation of the primary visual cortex as well as the lateral genicu-

late body and some of the visual association regions in the occipital cortex [23], so 

they are useful to analyze brain activity related with visual stimuli. 

2.2   TCD in Psychophysiological Studies 

TCD has been widely used to monitor cerebral hemodynamics during the perform-

ance of cognitive tasks in psychophysiological research. These studies have shown 

that mean BFV obtained from TCD signals increases when users are doing a cognitive 

activity when compared to baseline periods [15, 24]. Changes in mean BFV or maxi-

mum BFV that can be observed between a baseline period and a phase in which a 

cognitive task is performed can be analyzed as an absolute change (in cm/s) or as a 

relative change (in percentage change from baseline). Different cognitive tasks have 

been considered in these studies, such as reading, arithmetic operations, visual stimu-

lation, attention, verbal tasks, motor tasks, visuospatial tasks and memory.  

Some of these studies have analyzed emotion-related changes in BFV. Monitoring 

emotions can be the basis to obtain a real adaptive display that modifies its aspect 

depending on the user's emotional state. These studies have found an emotion-related 

cerebral asymmetry [25, 26], observing a significantly higher increase in the right 

than in the left MCA during emotional processing. 

2.3   TCD in Vigilance Tasks 

TCD has also been used in studies closely related with the AugCog field. Several 

experiences have been related to the study of brain activity during vigilance tasks [27, 

28]. Some studies [29, 30] have found that the vigilance decrement in detection rate 

over time was accompanied by a decrease in BFV in both MCAs. This reduction only 

happens when the observers are asked to actively monitor the stimuli, and not when 

they are asked just to look at the vigilance displays with no task to be performed. 

However, other studies [31] have focused on abbreviated vigilance tasks and,  
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although there was a significant decline in performance over time, there was no sig-

nificant change in BFV measures over time. This finding does not coincide with ear-

lier findings from long-duration tasks. 

TCD has also been used to monitor the influence of automation cues of varying re-

liability on vigilance performance in a 40 minute simulated air traffic control task 

[32]. Performance effects for cueing found in the experiment were closely followed 

by changes in BFV just in the right MCA in conjunction with low salience signals. 

3   Transcranial Doppler in Virtual Reality Experiences 

Although there have been many previous studies using TCD in neurophysiological 

research, the first studies that analyze brain activity during a VR exposure have been 

developed by our group. We have used TCD as a tool to analyze cognitive states 

related with presence during the exposure of the subjects to a VE in different immer-

sion and navigation conditions. The complete description of the experience can be 

found elsewhere [33, 34], but a short description of some features of these studies is 

also included in this section. 

3.1   TCD Apparatus and Procedure 

A commercially available 2-MHz pulsed-wave TCD unit (Doppler-Box
TM 

Compum-

edics Germany GmbH) was used to obtain a bilateral continuous measurement of the 

Doppler signal. This unit allowed the online calculation of BFV during the experi-

ment. The apparatus was connected to a PC in which DWL® Doppler software (QL 

software) was installed. This software was used to receive the data from the Doppler 

Box and save the selected variables on the PC hard disk for off-line analysis. Two 

dual 2-MHz transducers were connected to the Doppler Box. Probes were attached to 

the user’s head using the probe holder provided with the device, as can be observed in 

Fig. 1. Both hemispheres were simultaneously monitored through the temporal win-

dow using two probes capable of simultaneous explorations at two different depths. In 

the first study [33], both MCAs and ACAs were monitored. The first gate of each 

probe was located between 50-55 mm depth in order to register left and right MCA 

(MCA-L and MCA-R) flow. The second gate was located deeper, between 65-70 mm, 

to take left and right ACA (ACA-L and ACA-R) flow signals.  In the second study, 

[34] only MCAs were monitored.  

3.2   Task Description and Virtual Reality Ssetting 

The first study [33] was carried out in a CAVE-like environment with four sides 

(three walls and the floor). The dimensions of the floor were 2.5 x 2.5 m, and the 

height of the walls was 2.35 m. The device used to navigate was the Flystick (Ad-

vance Realtime Tracking GmbH, Weilheim, Germany), which is a wireless joystick 

with 8 buttons. An optical tracking system, ARTtrack1 (Advance Realtime Tracking 

GmbH, Weilheim, Germany) was also used to track the user's head and the Flystick 

position and orientation. The system used active stereoscopy so liquid crystal shutter 

glasses, CrystalEyes3 (Real D, StereoGraphics, Beverly Hills, USA) were required  
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Fig. 2. User with TCD probes and shutter glasses for visualizing VE with stereoscopy  

for the visualization. In order to use simultaneously the shutter glasses and the TCD 

probes, glasses were adapted as can be observed in Fig. 2. No other special modifica-

tion was required to use TCD in combination with VR hardware. 

In the second study [34], some experimental conditions were held in the CAVE-

like environment that we have just described. However, in other experimental  

conditions the environment was retro-projected in a 2 x 1.5 m metacrilate screen. 

Monoscopic vision was used in this case. The device that was used to navigate inside 

the VE was an Attack
TM 

3 Joystick from Logitech (Logitech, Fremont, CA, USA). 

In both experiences, a VE composed of several rooms and corridors was used. 

3.3   Summary of BFV Variations during the VR Experiences  

The first study [33] showed that it was possible to use TCD to monitor brain activity 

during VR studies. Two different navigation conditions were compared (user-

controlled vs. system-controlled navigation). The percentage variations between mean 

BFV in the user-controlled navigation and its preceding baseline, and between the 

mean BFV in the system-controlled navigation and its preceding baseline, were posi-

tive in all the arteries under study (MCAs and ACAs). The comparison between the 

percentage variations observed in both navigation conditions showed that significant 

differences occurred only in the left arteries: MCA-L and ACA-L. The variations in 

MCA-L could be due to the motor tasks with the right hand to control the Flystick. 

However, the variations in ACA-L are not directly related to this issue, and can only 

be explained by other factors such as differences the emotional state or the level of 

presence that the user is experiencing during the VE exposure in the different naviga-

tion conditions. Presence questionnaires confirmed that the level of presence was 

different between experimental conditions. 

The second study [34] compared the same navigation conditions (user-controlled 

vs. system-controlled) but in two different immersion configurations (corresponding 

to the two VR settings previously described: CAVE-like vs. projection screen). In this 
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case, only MCAs were considered. The highest BFV percentage variations between 

VR exposure and its previous baseline were observed in the user-controlled navigation 

and the CAVE-like configuration. However, only the navigation factor had significant 

influence in BFV variations. In the case of MCA-L, differences could be mainly due to 

differences in motor tasks between navigation conditions, as in the previous study. 

However, differences in MCA-R cannot be explained by these motor tasks, as subjects 

used the right hand to control the joystick. Exact values of mean MCA-R BFV per-

centage variations observed in this study are shown in Table 1. A possible explanation 

of the differences in MCA-R percentage variations between navigation conditions 

could be found in the different degree of involvement of the users to create a motor 

plan in both conditions. The level of presence at each condition (which is different as 

measured by questionnaires) could also be having an influence.  

Table 1. MCA-R BFV Percentage Variations (%) in the different experimental conditions in 

the study about BFV in different navigation and immersion conditions [34]. The mean value 

and the standard error of the mean (between brackets) are included.  

Immersion Navigation MCA-R BFV Var. (%) 

CAVE-like User-guided 9.99 (1.28) 

 System-guided 8.25 (1.30) 

Single screen User-guided 9.04 (2.00) 

 System-guided 3.54 (2.04) 

These significant differences between MCA-R percentage variations in the differ-

ent navigation conditions did not appear in the first study and this is a factor that has 

to be further analyzed. In any case, it can be observed in Table 1 that differences 

between navigation conditions are higher in the case of the single screen than in the 

CAVE-like configuration, and this may be the origin of the significant differences that 

appear between navigation conditions in the second study. Perhaps in the CAVE-like 

environment the immersion is so high that brain activity changes that occur are 

mainly caused by the fact of visualizing the VE inside a CAVE-like configuration, 

and other aspects such as navigation do not have a big influence in MCA-R BFV. 

However, in the single-screen condition, the immersion is not so high, and maybe this 

is why the effect of navigation is not masked and higher differences in percentage 

variations between navigation conditions are observed.  

4   Discussion 

These previous studies [33, 34] show that it is possible to use TCD monitoring during 

the exposure to VE. TCD is a tool that can be easily integrated in VR settings to 

monitor brain activity during the VR experience. It is possible to obtain reliable TCD 

signals during the exposure to VE. Besides, the use of TCD does not interfere with the 

capability of the subjects to focus their attention on the VE. These conclusions show 

the feasibility of using TCD in combination with VR with different applications such 

as clinical therapy, tasks training and processes simulation. The main advantage of 

TCD is that is provides a high temporal resolution that allows the monitoring of fast 
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changes in BFV values caused by neural activity. The use of TCD may help research-

ers to have reliable information about the brain activity of the subjects and correlate 

its changes with specific events in the VR session. 

The studies also show the feasibility of simultaneously monitoring BFV in differ-

ent cerebral vessels during the exposure to VE. Two probes are used, so is possible to 

monitor both hemispheres. In the second study, both MCA-L and MCA-R were stud-

ied. However, the selected system also allows the simultaneous monitoring of two 

different depths (two gates) with the same probe. That allowed us to simultaneously 

monitor both MCAs and ACAs during the first experience. As different vessels sup-

ply different brain areas, an important issue in TCD studies is to identify the brain 

area most related with the task under study, in order to select the more adequate ves-

sel. It is true that MCAs are the vessels most commonly used because they have the 

biggest perfusion territory. Studies with MCAs can provide useful information about 

hemispheric differentiation and temporal evolution, but cannot give detailed informa-

tion about the specific brain areas that are activated during the task evaluated. How-

ever, PCAs and ACAs have smaller perfusion territories, and their spatial resolution 

can be useful in studies about specific tasks. For example, if visual aspects have to be 

analyzed, PCAs should be selected because they irrigate the primary visual cortex. If 

emotional aspects are to be analyzed, ACAs would provide valuable information 

because they supply most parts of the limbic system and the medial frontal cortex. 

Thus, TCD can be used as a cognitive state sensor in AugCog systems. It has al-

ready been used to monitor brain activity during vigilance tasks [27 – 32]. Further-

more, it is possible to use it in AugCog systems in which VR setting are used to train 

different abilities and exercises, combining that way all the different technologies that 

are discussed in this paper.  

Many more applications combining TCD with AugCog systems and VR can be 

thought, such as memory tasks, attention tasks, motor skills training. VR can provide 

the virtual laboratory in which all these tasks can be performed and analyzed, and 

TCD would be the tool to analyze brain activity during task performance to detect 

changes in cognitive load, underloads and overloads. TCD information would be 

valuable for the AugCog system to adopt the adequate mitigation strategies and to 

allocate tasks in an adaptive way. 

Closely related with AugCog systems, TCD can be used to advance in the field of 

adaptive interfaces in VR systems. The EMMA system [4] had the possibility of 

changing its aspect depending on the emotional state of the patient, but environmental 

changes were controlled by the therapist that conducted the clinical sessions. How-

ever, the use of TCD as a cognitive state sensor combined with this VR system can 

transform it in an adaptive display that changes depending on the emotional state 

detected by TCD at each moment. Previous studies have analyzed BFV to monitor 

emotions [25, 26] and could be the basis of this kind of adaptive display. 

Our global conclusion is that TCD is a measure that is worth to study and use as a 

cognitive state sensor of humans while interacting with computing-based systems.  
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Abstract. The posterior parietal cortex (PPC) plays an important role in motor 

planning and execution. Here, we investigated whether noninvasive electroen-

cephalographic (EEG) signals recorded from the human PPC can be used to de-

code intended movement direction. To this end, we recorded whole-head EEG 

with a delayed saccade-or-reach task and found direction-related modulation of 

event-related potentials (ERPs) in the PPC. Using parietal EEG components ex-

tracted by independent component analysis (ICA), we obtained an average ac-

curacy of 80.25% on four subjects in binary single-trial EEG classification (left 

versus right). These results show that in the PPC, neuronal activity associated 

with different movement directions can be distinguished using EEG recording 

and might, thus, be used to drive a noninvasive brain-machine interface (BMI). 

Keywords: posterior parietal cortex (PPC); electroencephalography (EEG); in-

dependent component analysis (ICA); brain-machine interface (BMI). 

1   Introduction 

In current brain-machine interface (BMI) research, predicting intended movement 

trajectory is a widely proposed method for controlling prosthetic limbs [1]. Most 

tested systems for monkey and human subjects are based on neuronal activities re-

corded in the primary motor cortex (M1), where neuron firing patterns encode direc-

tion information about limb movement [2-4]. In neuroscience, it is also well known 

that the parietal cortex plays an important role in movement planning, being in-

volved in sensorimotor transformations from visual input to motor execution. For 

instance, the posterior parietal cortex (PPC) is critically involved in visuo-motor 

control of visually guided reaching movements, continuously updating reaching 

movements to the visual target. According to its role in motor planning, the parietal 

cortex may provide another way to decode intended movement direction, which can 

be potential for BMI applications. In recent monkey studies, direction decoding of 

eye and hand movements has been realized using neuronal signals in the PPC [5]. 

The PPC of monkey brain can be further divided into subareas for different action 

planning, e.g., the lateral intraparietal area (LIP) for saccades and the parietal reach 

region (PRR) for reaches. 
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For real-world application, non-invasive brain-computer interfaces (BCIs) based 

on electroencephalographic (EEG) signals are more practical than invasive BMIs, 

whose human applications are seriously limited by questions about the safety and 

durability of implanted electrodes [6-8]. Various EEG signals have been employed to 

build different kinds of EEG-based BCI systems, e.g., P300 evoked potential, visual 

evoked potential (VEP), and mu/beta rhythm power [7]. So far, movement direction 

decoding using noninvasive methods has been tried only in very few studies [9] [10]. 

In [9], a machine learning paradigm was successfully applied to discriminate  

movement directions using single-trial EEG data recorded during natural and  

delayed reaching tasks. However, the functional brain components contributing most 

to classification have not been specified in this study, and therefore the underlying 

brain dynamics related to direction coding are still unclear. Recently, a magnetoen-

cephalography (MEG) study showed that the direction of hand movements can be 

inferred from brain activities [10]. In their study, movement directions were decoded 

based on power modulation in the low-frequency band (<7Hz) using MEG activities 

from the motor area. To the best of our knowledge, intended direction decoding in the 

PPC based on EEG recordings has been rarely studied, and is ignored in current BCI 

research. In the present study, we investigated brain activity in the human PPC during 

directional movement planning using multichannel event-related potentials (ERPs), 

and propose a BCI scheme based on single-trial EEG classification. 

2   Method 

2.1   Subjects 

Four healthy, right-handed participants (3 males and 1female, mean age 25 years) 

with normal or corrected-to-normal vision performed this experiment. All participants 

were asked to read and sign an informed consent form approved by the UCSD Human 

Research Protections Program before participating in the study. 

2.2   Stimuli and Procedure 

During execution of eye or hand movements, movement artifacts including electro-

oculographic (EOG) and electromyographic (EMG) signals also include direction 

information about the attended movement. To obtain clean brain signals not including 

such information, therefore, a delayed saccade-or-reach task was used in this study, 

allowing us to look for direction information in the EEG during the phase of move-

ment planning. The experiment was comprised of nine conditions differing by move-

ment type (saccade to target, reach without eye movement, or visually guided reach) 

and movement direction (left, center, or right). Each task was indicated to the subject 

by, first, giving an effector cue telling the type of action to be performed, followed by 

a direction cue and, finally, by an imperative action cue. Subjects were seated com-

fortably in an armchair at a distance of 40cm from a 19-inch touch screen. A chin rest 

was used to help them maintain head position.  

Subjects used their right hand to perform reach tasks. At the beginning of each 

trial, the subject’s forearm rested on the table with index finger holding down a key 

on a keypad placed 30cm in front of screen center. The sequence of visual cues in 
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each trial is shown in Fig.1(a). At the beginning of a trial, a fixation cross 

(0.65°×0.65°) was displayed in the center of the screen plus three red crosses 

(0.65°×0.65°) indicating potential target positions. The left and right targets had a 

vertical distance of 6° and a horizontal distance of 15° from the central fixation cross; 

the central target was 12° upwards. After 500ms, an effector cue (0.5°×0.5°, rectan-

gle, ellipse indicating hand and eye movements respectively, see Fig.1(b)) appeared at 

screen center for 1000ms. Next, a central direction cue (0.65°×0.65°, ┤, ┴, ├ for left, 

center, and right respectively) was presented for 700ms. Subjects were asked to main-

tain fixation on the central cue until they started their response, to perform the indi-

cated response as quickly as possible following the disappearance of the direction cue 

(and reappearance of the fixation cross), and finally to return to their initial (key-

down) position. Total trial duration amounted to 3500~4000ms.  

 

 
                                                 (a)                                                                       (b) 

Fig. 1. (a) Time sequence of cue presentation in a trial and (b) visual cues used to indicate 

effector and direction of a task. In each trial, three central cues (first, effector cue, next, direc-

tion cue, and finally, go cue) were presented. The 700 ms delay period between the “Direction 

cue” and “Go cue” was considered the phase of directional movement planning. EEG data 

segment within this period was used for further analysis. 

Auditory feedback was given to help the subjects fulfill the instructions correctly. 

Four different tones were used to mean “correct”, “error”, “early”, and “time out”, 

respectively. In the reach tasks, if the point on the screen touched by the subject was 

outside the boundary of a (5.5°×5.5°) square centered on the target cross, the “error” 

tone sounded. If the response began during the movement preparation period  

(0-700ms after direction cue onset), the “early” warning sounded. The “time out” 

feedback sounded when response time was >500ms. All other trials were followed by 

the “correct” feedback sound. Only those trials are considered here. Subjects were 

instructed to perform tasks accurately to achieve a high score (percentage of correct 

trials). Their score was displayed on the screen at the end of each block. Some  

practice blocks were run before starting the EEG recording. For each subject, the 
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experiment consisted of four blocks (with breaks in between) each including five runs 

of 45 trials. Within each block, there was a 20-second rest between runs. A total of 

900 trials were equally distributed between the nine tasks, which were presented to 

the subject in a pseudorandom sequence. 

2.3   Data Recording 

EEG data were recorded using Ag/AgCl electrodes from 128 scalp positions distrib-

uted over the entire scalp using a BioSemi ActiveTwo EEG system (Biosemi, Inc.). 

Eye movements were monitored by additional bipolar horizontal and vertical EOG 

electrodes. All signals were amplified and digitized at a sample rate of 256 Hz. Elec-

trode locations were measured with a 3-D digitizer system (Polhemus, Inc.). Three 

cue presentation events and two manual response events (“button release” and “screen 

touch”) were recorded on an event channel synchronized to the EEG data by  

DataRiver software (A. Vankov). 

2.4   Data Processing and Analysis 

Here, we only focused on estimations of planned direction of movement. Therefore 

we first separated the trials for each subject into three classes (left, right, and center) 

for offline analysis. In each class, the three tasks with different effectors (hand, eye, 

both) were mixed together. Investigation of effector-specific (hand or eye) EEG acti-

vations will not be included in this paper.  

Data were analyzed using tools in the EEGLAB toolbox [11]. Epochs from the re-

sponse delay period, 0 to 700ms following direction cue onset, were extracted from 

the continuous data, and labeled by movement direction. The period [0, 100ms] was 

used as baseline for each trial. Electrodes with poor skin contact were identified by 

their abnormal activity patterns and then removed from the data. For each subject, 

electrode locations were co-registered with a spherical four-shell head model used for 

dipole source localization. 

Spatial Filtering  

Independent component analysis (ICA) has been widely used in EEG analysis [12-

14]. It can decompose the overlapping source activities constituting the scalp EEG 

into functionally specific component processes. Here, we used ICA as an unsuper-

vised spatial filtering technique to extract parietal EEG independent component (IC) 

activities that excluded noise from eye and muscle components as well as brain activi-

ties from other functional processes (e.g., in motor, visual, and frontal areas). For each 

subject, all trials were band-pass filtered (1-30 Hz), concatenated, and then decom-

posed using the extended infomax ICA algorithm [15]. Two lateralized temporo-

parietal components were easily identified in each subject’s decomposition by their 

spatial projections and significant contributions to the average event-related potential 

(ERP) waveforms time locked to onsets of the movement direction cue.  

Figure 2 shows the scalp projections of the two parietal component clusters for all 

four subjects, plus their mean scalp maps. Clustering was done based on IC scalp 

maps using EEGLAB tools. These components contributed most to the scalp ERPs 

obtained by averaging the channel data over all the trials. To indicate the anatomical 
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source location of these components, IC maps were subjected to equivalent dipole 

localization using the EEGLAB plug-in DIPFIT [11]. Source locations were specified 

in the Talairach coordinate system. Equivalent dipole localization (average Talairach 

coordinates: [-33, -59, 28] in the left hemisphere and [40, -49, 30] in the right hemi-

sphere) indicated that these IC sources originated from the PPC (Brodmann Area 

39/40). These results demonstrate that the PPC is activated during intended movement 

planning. To further explore the underlying neural mechanism of direction coding in 

the PPC, the parietal ICs were selected and back-projected onto the scalp to visualize 

their separate contributions to the scalp data. 

 

                                       (a)                                                                 (b) 

Fig. 2. Two clusters of lateralized temporo-parietal components with equivalent dipole loca-

tions in the (a) left hemisphere and (b) right hemisphere. Large cartoon heads show the mean 

scalp map for each cluster. Small heads show the clustered component maps for each of the 

four subjects. 

ERP Modulation 

To extract the direction-specific portion of the ERPs, we compared the spatiotemporal 

patterns of the parietal EEG components for the different movement directions. For 

all four subjects, we found a consistent hemispheric asymmetry over the parietal cor-

tex during the delay period (0-700ms, 0-100ms used as baseline) in which motor 

planning can be presumed to have continued until cued movement onset (after 

700ms). The projected PPC ICs produced a significant contralateral negativity and 

ipsilateral positivity with respect to intended movement direction. Scalp maps of left, 

right, and center classes for one subject were shown in Fig.3. For the “left” and 

“right” classes, their maps showed significant ipsilateral positivity. For instance, the 

left hemisphere has much higher amplitude than the right hemisphere when planning 

left movements. For the “center” condition, the map has a symmetric distribution on 

both sides and the amplitudes are much lower compared to “left” and “right” condi-

tions. To further investigate the time course of this hemispheric asymmetry, differ-

ence wave was calculated by subtracting the contralateral activity from the ipsilateral 

activity with respect to movement direction. Two electrodes with highest weights in  
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Fig. 3. Scalp maps and ERP waveforms of the summed, back-projected parietal ICs for one 

subject in the three different direction conditions (left, center, and right) at 320ms after the 

direction cue. Note that the color scales of the scalp maps differ. The ERP waveforms were 

from two lateral parietal electrodes with strongest PPC projections. 

 
Fig. 4. Ipsilateral minus contralateral difference waves averaged over the “left” and “right” 

trials. Two peaks centered at 200ms and 320ms were the most significant hemispheric asymme-

tries appearing during planning of directional movements. 

the two parietal IC maps were selected to represent the left and right hemispheres. In 

the difference wave averaged across the “left” and “right” trials, the hemispheric 

asymmetry was characterized by two contralateral negativities peaking 200ms and 

320ms after the direction cue respectively, with mean amplitudes of 1.9µV and 3.8µV 

across subjects (see Fig.4). 

Feature Extraction and Classification 
As a first evaluation of the potential use of EEG activity in PPC for driving a  

BCI system, binary classification of “left” versus “right” trials was performed using 
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standard machine learning techniques that have been successfully employed in current 

BCI research [16-18]. Because this study focused on EEG modulation in the parietal 

cortex, only the parietal IC components were used for feature extraction, although 

other cortical ICs might contribute separate information for classification of intended 

direction (e.g., somatomotor components). Although subjects were instructed not to 

make any response during the movement planning period, covert eye and muscle 

movements might have occurred, giving additional EEG signals informative for  

classifying movement direction contained in ICs accounting for eye or scalp muscle 

activities. Here we constrained the classification performance to reflect only the  

directional EEG information generated in parietal cortex. Subject-specific time- and 

frequency-domain parameters were derived for classification. A sliding window was 

used to optimize the latency and frequency windows giving best classification  

performance. Because we found that the low-frequency activity contributed to the 

classification for all subjects, for simplicity a low-pass filter was used to extract  

the frequency components. The selected time/frequency parameters were listed in 

Table.1. Not unexpectedly, optimized time windows are consistent with the time 

course character of the difference wave shown in Fig.4. 

After low-pass filtering, normalized amplitudes in the selected time window, nor-

malized at each time point to have a range of [-1 1] across trials, were employed as 

features. Feature vectors from both parietal components were concatenated and then 

input to a support vector machine (SVM) classifier using an RBF kernel. The SVM 

algorithm was performed using the LIBSVM toolbox [19]. 10x10-fold cross valida-

tion was run to estimate classification performance. 

3   Results 

We used classification accuracy to evaluate classification performance. An average 

accuracy of 80.25±2.22% was obtained for single-trial classification across the four 

subjects. The classification results are listed in Table 1. Considering that this para-

digm is based on single-trial classification, the accuracy is comparable to most current 

BCI systems, e.g., the P300-based and motor imagery-based BCIs. Moreover, subject 

variety (reflected in the standard deviation across the four subjects of only 2.22%) 

does not appear to be as large as in other BCI system reports, suggesting that this 

method might be usable for more subjects than the other BCI systems. Testing this 

impression would doubtless require more subjects. These results suggest that more 

refined measures of movement intention-related EEG activity arising in the PPC (and 

elsewhere in cortex) might be used to build a robust and noninvasive BCI system. 

Table 1. Time-frequency parameters and classificatioin performance for all subjects 

Subject Time Window (ms) Frequency Window (Hz) Accuracy (%) 

S1 180-500 0-25 79.9±0.45 

S2 150-480 0-25 81.9±0.94 

S3 180-450 0-20 77.2±0.86 

S4 210-510 0-35 81.9±0.81 

Mean   80.25±2.22 
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4   Conclusion and Discussions 

In this EEG study, we designed a movement delay paradigm to investigate brain  

activities in the human PPC during planning of intended movements. The results 

indicated that EEG signals generated in the PPC are altered during movement plan-

ning, and their hemispheric asymmetries carry information about intended movement 

direction. By analyzing multi-channel ERPs at the single-trial level, we obtained sta-

ble classification of “go left” and “go right” planning trials for all subjects. The result-

ing classification accuracy of 80.25% makes this paradigm promising for BCI design. 

Classification performance might be improved by considering the following  

factors. First, during motor planning, the PPC also encodes effector information, pro-

ducing effector-specific brain activity patterns [20]. In the current data analysis, three 

tasks with different kinds of effectors (hand, eye, and both) were not distinguished, 

and may introduce variance linked to the different effectors used. Therefore, classify-

ing trials involving the same effector might be more efficient. Else, a multi-factorial 

classification scheme might be used that included information as to the intended ef-

fector. Finally, the same data might be able to predict both the intended effector and 

movement direction. Second, for feature extraction a simple sliding window was used 

to select the latency window and frequency band used. To find more informative 

parameters, time-frequency decomposition methods might be applied allowing  

additional selection of optimal time-frequency measures. Third, additional features 

derived from EEG power modulation may be complementary to current features ob-

tained from the time-domain waveforms. For example, [21] showed that the direction 

of visuospatial attention could be predicted by measuring alpha band power over the 

two posterior brain hemispheres.  

Several potential applications of this paradigm may be expected. It could be di-

rectly used to implement a BCI based simply on decoding movement direction. Else, 

it could be integrated into current BCI systems to realize more robust or multi-

dimensional control. For example, combining this paradigm with a motor imagery-

based BCI (using EEG changes linked to imagining movements of left hand and right 

hand), might double the number of selective commands (from 2 to 4). Else, motor 

imagery of left and right hand movements might be linked to different directions (e.g., 

by imagining the left hand pointing to the left, or the right hand pointing to the right). 

In this case, by introducing additional parietal EEG components to mu/beta compo-

nents from sensorimotor areas, classification performance can be significantly in-

creased, although in this case the system would remain a two-class mode. 

Before implementing a practical online BCI system based on intended movement 

direction, several issues still need further investigation. First, changes in attention and 

intention both contribute to direction-related EEG modulation. To learn more details 

about the relationship between these two factors, standard spatial attention experi-

ments might be used to identify purely intention-related features. Else, some combina-

tion of subject attention and intention might give more efficient direction-specific 

brain patterns for a BCI communication or control system. In a practical system, 

movement planning without subsequent motor activity might be associated with lower 

BCI performance. The participants in this study were healthy volunteers; a direct test 

of the system concept on patients with motor disabilities will therefore be necessary 

before proposing applications for subjects with motor disabilities. 
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Abstract. Intelligence analysts are faced with the demanding task of identifying 

patterns in large volumes of complex, textual sources and predicting possible 

outcomes based on perceived patterns.  To address this need, the Advanced 

Neurophysiology for Intelligence Text Analysis (ANITA) system is being de-

veloped to provide a real-time analysis system using EEG to monitor analysts’ 

processing of textual data during evidence gathering.  Both conscious and un-

conscious ‘interest’ are identified by the neurophysiological sensors based on 

the analyst’s mental model, as related to specific sentences, indicating relevance 

to the analysis goal. By monitoring the evidence gathering process through neu-

rophysiological sensors and implementation of real-time strategies, more accu-

rate and efficient extraction of evidence may be achieved. This paper outlines 

an experiment that focused on identifying distinct changes in EEG signals that 

can be used to decipher sentences of relevance versus those of irrelevance to a 

given proposition. 

Keywords: EEG, Reading, Relevancy, Alpha, Theta. 

1   Introduction 

Textual data mining for intelligence analysts involves deriving high quality informa-

tion based on relevance, novelty, and distinctiveness from large volumes of complex 

textual sources. The challenge is in transforming information from these unstructured 

and massive collections into small and precise chunks suitable for reasoning [1]. Scan-

ning immense quantities of data can be tedious and takes time away from the goal of 

using this information to draw a conclusion. In fact, analysts often spend the majority 

of their time finding the correct information associated with their research question, 

leaving little time for analyzing and projecting possible outcomes. 

Given that analysts are a key component in the analytic processing of text sources, 

it is important to devise tools that can aid them in both top-down and bottom-up 

analysis processes.  There are a multitude of software systems available and/or being 

developed, designed to search through text sources and focus an information analyst 

on the nugget of information that is important.  However, as stated by Cowell (2006), 

“the majority of analysts use the same techniques they learned in graduate school, 



450 A. Behneman et al. 

including printing out hard copies and highlighting, or copying sources into an elec-

tronic Word document and arranging material into the required template.” [2]  This 

reliance on these basic processes suggests that the tools provided do not target the 

needs of the analyst.  Thus, a distinct point of opportunity is apparent.  

An automated intelligent system could support the data foraging stage [3] of the 

analysis process, within which analysts search vast amounts of information for chunks 

of evidence that may be buried in various sources. Analyst bias and/or inattention 

may enter at this early stage and inhibit the extraction of information so that it is  

unavailable for future hypothesis generation. In order to avoid problems of early  

evidence rejection, a real-time closed-loop system could be implemented that moni-

tors text processing and associated decision making (i.e., selecting relevant data to 

include in analysis) and identifies and tracks subconscious ‘interest’ in unselected text 

and potential cases for mitigation (e.g., potentially relevant information discarded 

based on top-down processing or ‘explaining away’).  Such a tool would ensure that 

all relevant information (both supporting and opposing the original generated hy-

potheses) is taken into account when generating hypotheses during later stages of the  

information analysis process and potentially reduce the effects of analyst bias and 

inattention. 

A real-time analysis system (ANITA) is being developed that uses EEG to monitor 

analysts’ processing of textual data during evidence gathering. The neurophysiological 

relevance indicator, based on changes in sub-bands of EEG frequencies, is used to 

auto-extract text snippets from reviewed documents that are relevant to the current 

analysis goal as reflected in the analyst’s mental model, while still allowing the analyst 

to also manually extract items they perceive as relevant.  By monitoring the evidence 

gathering processes through neurophysiological sensors and implementation of real-

time strategies, a more accurate, faster and less biased extraction of evidence may be 

achieved.  

2   Methods 

A software-based test-bed presented a series of text analysis scenarios to participants 

in which single sentences were presented on digital cue cards. The test-bed allowed 

for real-time data synchronization of EEG and behavioral responses (e.g., key 

presses). The time boundaries identifying the participants’ mental processing of  

each individual sentence were determined by behavioral responses, and were used to  

develop distinct, event-specific neurophysiological indicators to indicate the  

‘relevance’ versus ‘irrelevance’ of assessed information to a provided proposition 

(analysis question).  

2.1   Participants 

A total of 27 healthy subjects (15M/ 12F), with an average age of 26.5 (s.d. 8) partici-

pated in the experiment.  Eighteen participants completed the experiment at the offices 

of Design Interactive, Inc. in Oviedo, FL, and 9 participants completed the study at the 

offices of Advanced Brain Monitoring, Inc. in Carlsbad, CA. Participants were free 

from a history of neurological, psychiatric and attention deficit/hyperactivity disorders, 
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head trauma, use of psychotropic or illicit drugs, or abnormal sleep patterns and sleep 

quality. No participants were pregnant, nor did they excessively consume alcohol 

(>5drinks/day) or caffeine, (>800mg/day). The rationale for use of the screening crite-

ria was to exclude conditions that may affect the EEG. All participants had normal or 

corrected-to-normal vision. 

2.2   Apparatus 

All participants wore the wireless B-Alert® EEG Sensor Headset developed by Ad-

vanced Brain Monitoring (ABM), a portable system to record EEG signals as well as 

heart rate. The initial 18 participants wore the 6-channel differential EEG configura-

tion with electrodes located at Fz, Cz, POz, F3, C3, and C4, according to the interna-

tional 10-20 system [4].  From these electrode sites, five differential channels were 

collected (Fz-POz, Cz-POz, C3-C4, Fz-C3, and F3-Cz).  The subsequent nine partici-

pants wore the 9-channel referential configuration with electrodes located at Fz, Cz, 

POz, F3, F4, C3, C4, P3, P4; linked reference electrodes were located behind each ear 

on the mastoid bone.  The EEG signal was sampled at a frequency of 256 Hz.  To 

capture eye gaze and pupil size, a stand-alone non-intrusive Near-Infrared (NIR) eye-

tracking system was used.  Eye tracking results are outside the scope of this paper, 

and will be reported elsewhere. 

A PC was used to drive visual presentation of experimental conditions on a flat 

panel monitor. Stimuli from the PC were time-synched to the EEG data collection 

system. Investigators used a Java-implemented experimental software-based text 

analysis environment that captures the data stream from the B-Alert EEG-Headset to 

record user neurophysiological data. The test-bed allows for real-time data synchroni-

zation and creation of log files of EEG and behavioral response data (e.g., key 

presses). 

2.3   Experimental Tasks 

Participants were first shown a short background story that provided the analysis 

scenario and a related one-sentence proposition (analysis question), and were then 

asked to view a series of sentences to determine their relevance to the provided 

proposition.  The scenarios were constructed based on two case studies created by Dr. 

Frank Hughes, professor in the Department of Intelligence Research and Analysis at 

the Joint Military Intelligence College (JMIC) [5, 6]. Based on solutions provided by 

Dr. Hughes, 10 relevant (R) sentences were identified. For each proposition, ten addi-

tional sentences were created that were completely irrelevant (CI) to the analysis 

question. Finally, 10 sentences were added to each analysis question that were not 

relevant for the analysis but contained some of the key words found in the proposition 

or case study topic (referred to as semi-irrelevant, SI). Thus, 30 sentences (10 of each 

relevance level) were associated with each analysis question/proposition. The test-bed 

presented sentences from a narrative text, one at a time, on digital cue cards (Fig. 1), 

randomized in terms of relevance level, and allowed the participant to either rate the 

level of interest (directly relevant or not relevant to previously provided proposition) 

of each item or advance to the next sentence if they were not yet ready to make a 

decision. Using this approach, physiological indicators of relevance were collected at  
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Fig. 1. Sentence-by-Sentence Test-bed Screenshot 

the sentence level (i.e., with minimal interference from adjacent textual content), in 

order to develop template signatures of relevance.  

The test-bed presented each sentence as a card on which the participant could click 

to indicate relevance or irrelevance with regard to the analysis question. Left-clicking 

a sentence rated it relevant, changing the color of the card and the associated thumb-

nail at the bottom of the screen to green. Right-clicking a sentence rated it irrelevant, 

changing the color of the card and the associated thumbnail at the bottom of the 

screen to red. If a sentence was left unrated, the card and associated thumbnail re-

mained gray, but the number on the thumbnail changed from blue to black to indicate 

the evidence had been previously viewed. Clicking on previously viewed sentences 

was possible to change responses if desired, but moving forward was only possible in 

numerical order (i.e., go to the next unviewed card).  

2.4   Analysis Procedure 

EEG and test-bed data streams were synchronized in real time. EEG data was  

analyzed based on participant responses; where clicking on a cue card indicated the 

beginning of sentence processing, and a relevance decision (participant rating the 

sentence as either relevant or irrelevant) indicated the end of sentence processing.   

To analyze EEG data, identification and decontamination of spikes, amplifier satu-

ration, and environmental artifacts was accomplished using methods described in 

Berka, 2004 [7].  The EEG signal was then band pass filtered to select for the follow-

ing frequencies: slow theta (3-5Hz), fast theta (5-7Hz), total theta (3-7Hz), slow alpha 

(8-10Hz), fast alpha (10-12Hz) and total alpha (8-12Hz).  To measure the change in 

each EEG frequency band related to sentence processing, the rate of change in power 

of each band was measured for each EEG channel during (a) entire sentence process-

ing, (b) the first second of sentence processing, and (c) the last second of sentence 

processing (the second preceding a response). The rate of change in power of a given 

frequency band was calculated by fitting a line through a sequence of data points 

representing the time evolution of the power of the band over the selected period 

(whole sentence, the first or last second). The slope of the derived regression line was  
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taken as a measure of the rate of change in power of the analyzed frequency band.  A 

positive linear regression value indicates an increase (synchronization) in a frequency 

band, while a negative linear regression value reflects a decrease (desynchronization).  

Only items in which the participant responded correctly the first time a sentence was 

viewed were included in the current analyses.   

3   Results 

EEG analysis focused on single trial evaluation of linear trends in theta and alpha 

activity in order to identify template signatures of processing a relevant item as com-

pared to an irrelevant item.  The 6-channel differential configuration (used to collect 

data from n=18) provides a relatively global view of EEG activity, while the 9-

channel referential configuration (n=9) allows for more localized and lateralized 

analyses. 

3.1   Data Collected with 6-Channel Eeg Configuration 

The slope of regression lines for each frequency sub-band was calculated for each 

differential channel during the entire sentence, first second, and last second of proc-

essing.  An ANOVA revealed a significant effect in slow theta (3-5Hz) for channel 

CzPOz that distinguishes the slope of the regression line for CI sentences from R and 

SI , F (2,1455) = 4.535, p < 0.05.  As seen in Fig. 2, CI sentences had significantly 

greater synchrony in CzPOz than both the R and SI sentences; however R and SI 

sentences were not different from each other  

 

 

Fig. 2. Slope of regression lines of the Slow Theta band (3-5 Hz) during processing of R, SI, 

and CI sentences, averaged across 9 participants. Measurement began at time of sentence pres-

entation, and ended at time of keyed response. 

CI sentences showed an increase in slow theta power from start of sentence presen-

tation until response. SI sentences showed little change in power, and R sentences 

showed a negative change in power.  Because the differential channels emphasize 

differences between brain regions, but make changes occurring synchronously in the 

two regions less visible, the team collected further recordings with the 9-channel mo-

nopolar system.   
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3.2   Data Collected with 9-Channel Eeg Configuration 

The 9-channel referential EEG configuration reveals more localized and lateralized 

patterns.  As can be seen in Fig. 3, the fast theta band (5-7 Hz) increased in power 

during the processing of CI sentences more than during the processing of R or SI 

sentences.  The effect was most prominent at the right-hemisphere sites (F4, C4, P4), 

and at the posterior sites (P3, POz, P4).  An ANOVA revealed significant mean dif-

ferences between fast theta linear regression values of sentences of differing rele-

vancy at electrode sites F4, C4, P4, and POz [F’s (2,370) ≥ 3.382, p’s  ≤ 0.05].  The 

effect was strongest at POz, F (2,370) = 5.684, p < 0.01.  Although CI was signifi-

cantly more synchronized compared to both R and SI categories, R and SI were not 

significantly different from each other.   

 

 

Fig. 3. Slope of regression lines of the Fast Theta band during processing of R, SI, and CI 

sentences, n=9.  Measurement began at time of sentence presentation; ended at keyed response. 

Significant effects were also found in the slopes of regression lines of slow alpha 

(8-10 Hz) during the first second of sentence processing (Fig. 4).  ANOVA tests re-

vealed significant differences at channels F4 [F (2,370) = 6.194, p < 0.01] and C4 [F 

(2,370) = 5.218, p < 0.01].  Post hoc comparisons found that in channels F4 and C4, 

the mean linear regression of CI sentences is significantly different from both R and  
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Fig. 4. Slope of regression lines of the Slow Alpha band during processing of R, SI, and CI 

sentences, n=9.  Measurement began at sentence presentation; ended one second later, regard-

less of when response occurred. 

SI sentence types, although R and SI are not different from each other. These findings 

match the right-lateralized pattern found in fast theta during the entire duration of 

sentence processing.  However, contrary to the fast theta findings, the increase in slow 

alpha for CI sentences is stronger in the frontal and central regions than in the poste-

rior region. 

4   Discussion 

Previous research suggests that phasic (event-related) changes in theta and alpha EEG 

frequencies reflect different types of cognitive processing [8-11].  Theta band syn-

chronization (increase in power) is positively correlated with the encoding of new 

information, i.e. working memory or episodic memory in particular [12], while alpha 

band desynchronization (decrease in power) has been suggested as indicative of 

greater attentional demands [10].   

The current findings suggest that the processing of relevant compared to com-

pletely irrelevant items causes differential changes in the EEG theta and alpha bands, 
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particularly fast theta (5-7 Hz) and slow alpha (8-10 Hz).  The significantly greater 

increase in power of the fast theta frequency band during the processing of CI sen-

tences over that of R or SI sentences most likely reflects the encoding of novel infor-

mation [8-11].  CI sentences contain items of random, non-relevant facts that could 

not be fit into the pre-existing mental model that represents the context of the analysis 

question.  For example, in a scenario regarding suspicious Al-Qaeda activity, a CI 

sentence read, “Most children prefer cookies to vegetables, unfortunately for their 

health-conscious parents.”  Therefore we propose that the processing of these new, 

‘out-of-context’ snippets of information cause the fast theta band to increase in power.  

The opposite pattern is seen in the processing of relevant items.  At all sites other than 

P4, R sentences produce a decrease in fast theta power.  This is most likely due to the 

matching of this information with the participants’ mental model of the analysis con-

text.  SI sentences show a pattern most similar to that of relevant items.  The ‘key 

words’ contained in SI sentences likely cause the participant to immediately try to fit 

the new piece of information within the context of the analysis question.  Therefore 

the same novel response as seen in the CI sentences is not observed.  It should be 

noted that the similarity of the SI and R EEG patterns indicate a risk of False Alarms 

with the current assessments, and this issue will be addressed as we continue to de-

velop the system.  

The localized patterns of fast theta response are also of interest.  The slope of re-

gression lines for CI is most positive in the right-hemisphere sites, and at the posterior 

sites.  The greatest increase in fast theta power for CI is found at POz.  The right-

hemisphere lateralization may reflect the content of the CI sentences that were often 

novel, surprising and even humorous in the context of the serious nature of the mate-

rial deemed relevant to the hypotheses.  The decrease in fast theta during the process-

ing of R sentences is most negative in the left hemisphere, and at frontal sites.  The F3 

electrode site shows the greatest decrease in fast theta for items of relevance.  It is 

possible that the left lateralized theta decrease is related to the perceived match to the 

mental model, thus reducing the requirement for further analysis of the context or the 

semantics of the sentence.  

Responses in the slow alpha band (8-10 Hz) are similar to those observed for fast 

theta: slow alpha power increased significantly more for CI sentences than for R or SI 

sentences.  In fact, slow alpha power for R sentences decreased at most electrode 

sites.  Our findings (alpha desynchronization for relevant sentences) are consistent 

with previous research indicating that demanding and/or relevant tasks are associated 

with a greater level of alpha desynchronization than less demanding and/or irrelevant 

tasks [13].  Additionally, significant differences between CI and SI sentences and R 

sentences are strongest on the right hemisphere at electrode sites F4 and C4.  In-

creased alpha power on the right hemisphere for CI and SI sentences may represent 

increased attention to a surprising or novel event. Boiten (1991) [11] reported  an 

increase in alpha power in the right hemisphere that occurred when an input was sur-

prising, complex or novel, which in our experiment could represent the presentation 

of CI (and to an extent SI) sentences.   

It is important to note that while our study documents significant differences be-

tween CI, SI and R sentences for both fast theta and slow alpha levels, there is still a 

large amount of inter-individual variance.  Fast theta and slow alpha bands were se-

lected to represent 5-7 Hz and 8-10 Hz respectively.  However, these bandwidths are 
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arbitrary and optimal theta and alpha ranges may differ between individuals.  Age, 

brain volume, neurological disorders, education, memory performance etc., all influ-

ence peak alpha and theta frequencies [12-14].  Our fixed frequency bands may in fact 

be an intermingling of “true” alpha and theta for each individual, and thus may not 

accurately isolate the physiological effects of processing R, SI and CI sentences.  In 

other words, our “Fast Theta” may actually represent some slow alpha activity and 

vice versa.  For future studies it may be necessary to define the alpha and theta bands 

individually for each subject, in a similar manner as that described by Klimesch [13], 

in order to accurately isolate the neurophysiological components of processing R, SI 

and CI sentences in single trials. 

Though preliminary, these findings highlight the role of task demands and task 

relevancy in triggering changes in the EEG theta and alpha bands.  The data supports 

the concept of an automated relevancy indicator based on neurophysiological re-

sponses.  By monitoring the evidence gathering process through neurophysiological 

sensors and implementation of real-time strategies, more accurate and efficient extrac-

tion of evidence may be achieved. 
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Abstract. The present study examined physiological measures of affect when 
viewing images from the International Affective Picture System (IAPS),  
computer-generated still images, and computer-generated videos of feared and 
non-feared stimuli. Twenty low fear (LF) and twelve high fear (HF) individuals 
viewed static and moving images of spiders and snakes. In both LF and HF  
subjects, computer-generated video images elicited more intense affective  
responses than the IAPS images and the computer-generated stills. Computer-
generated still images were as effective in eliciting fear responses as the IAPS. 
These results suggest that computer-generated images can be as or more effec-
tive as the IAPS in eliciting fear. Regardless of modality, HF subjects showed 
stronger physiological responses to their specifically feared stimulus (snake or 
spider) than to a non-feared stimulus. 

Keywords: Psychophysiology, Fear, EMG, skin conductance, VR, startle. 

1   Introduction 

Fear is essential to the survival of organisms. From an evolutionary perspective, fear 
was developed in order to facilitate an organism’s response to threat. It motivates 
escape from, and avoidance of, dangerous stimuli in the natural world. Accordingly, 
much empirical attention has been focused on deconstructing the mechanisms through 
which humans process and react to fear-producing stimuli. 

1.1   Elicitation of Fear in the Laboratory  

The study of fear responses in the laboratory has often used emotion laden pictures, 
such as the International Affective Picture System (IAPS, [1]). The IAPS consists of 
pictures meant to evoke negative, positive, or neutral affect. This collection of pic-
tures has become the standard in psychological studies of emotion. The IAPS offers 
many advantages, including extensive normative data and evidence of stability across 
laboratories in different countries [2].  
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Although the IAPS has been instrumental in the study of affect, preliminary evi-
dence suggests that virtual reality (VR) stimuli may be more effective at eliciting 
emotional responses. VR technology allows subjects to be immersed in a three-
dimensional (3D) virtual environment (VE) in which they are free to look around and 
explore. This may create a greater sense of presence, or feeling of “being there” [3].  

Indeed, VEs may elicit arousal responses comparable to those evoked by in vivo 
exposure to real world stimuli. For example, Emmelkamp et al. [4] compared the 
responses of acrophobics randomly assigned to exposure treatment with VR and real 
stimuli. Subjects in the two conditions evidenced similar subjective ratings of anxiety. 
This suggests that VR technology can be used to create realistic environments that are 
as effective in eliciting fear responses as real-world stimuli. Indeed, a recent meta-
analysis of VR exposure therapy outcomes concluded that it is effective in reducing 
phobia and anxiety symptoms [5].  

However, the development of VR systems is still quite costly. Before investing the 
resources necessary for the development of VR stimuli, it is important to assess 
whether computer-generated (CG) images and videos are as effective in eliciting fear 
responses as images of real stimuli. Jang et al. [6] measured psychophysiological 
responses including skin resistance and heart rate variability to assess arousal levels in 
normal subjects exposed to fear of driving and fear of flying VEs. Subjects showed 
lowered levels of skin resistance compared to baseline, indicating higher levels of 
arousal. This suggests that VEs can be physiologically arousing, but direct compari-
sons of VR stimuli to standard pictures in a controlled within-subjects paradigm is 
still lacking.  

In the current study, we assessed whether VR still images and videos of virtual 
spiders and snakes are threatening enough to elicit fear responses that are similar to or 
greater than those elicited by photographs of real spiders and snakes. IAPS slides 
were used as comparisons because they are well-validated and widely-used in the 
study of human affect. A within-subjects design was used to control for individual 
variability in responding. We hypothesize that CG stimuli will be as or more effective 
than IAPS images in eliciting fear responses.  

VR systems are typically equipped with head tracking capabilities to allow the sub-
ject to explore his/her environment. However, IAPS slides do not lend themselves 
well to this type of presentation. Thus, immersive VEs were not used in this study. 
Instead, CG stimuli that could be used in a VE were projected onto a screen in front 
of the subjects to achieve greater control of what the subject was viewing, and to 
prevent the VR stimuli from having an advantage in creating an arousing situation due 
to the novelty of the head tracking capabilities. In addition to investigating the differ-
ences between CG and real stimuli, the current study sought to compare fear re-
sponses elicited by static versus moving images. The breadth of literature that has 
examined differences in psychophysiological responses to moving and static emo-
tional stimuli is quite limited; however,  Detenber, Simons, and Bennett [7] showed 
that participants exhibited stronger skin conductance and heart rate responses to mov-
ing, rather than static, images.  

Moving images may be more physiologically arousing because humans may  
have an innate tendency to attend to moving over stationary objects. Franconeri  
and Simons [8] postulated that humans may have an innate tendency to attend to mov-
ing stimuli because they signal an event that could require urgent action. Thus, we 
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hypothesize that CG videos will be more effective in eliciting fear responses than 
either the CG stills or IAPS images. 

The current study also aimed to understand how these stimuli affect subjects who 
are high in fear of a specific stimulus, and to assess which stimulus modalities work 
best for differentiating a specifically feared stimulus and a generally fear-relevant 
stimulus. Responses of a high-fear (HF) group consisting of subjects who scored 
high on scales of fear of spiders or snakes, but not both, was compared to responses 
of a low-fear (LF) control group. Previous research has shown that specific phobics 
tend to be most responsive to their specifically feared stimuli [9]. The inclusion of 
the HF group allows assessment of which stimulus modality is best for targeting 
emotional responses to a specifically feared stimulus. This information may have 
immediate clinical relevance, as there is growing interest in VR exposure as a treat-
ment for phobias.  

1.2   Physiological Components of Fear 

In measuring fear responses, it is important to consider physiological indices in order 
to gain a more complete understanding of the response. Self-report data are highly 
susceptible to influences outside the subject’s own targeted attitudes [10]. Emotional 
responses are commonly thought of as varying across two dimensions: valence and 
arousal. In this study, we use skin conductance responses as an index of arousal, 
whereas startle eyeblink responses were used as an index of valence.  

Skin conductance responses provide an atypical and useful index of autonomic 
functioning in that they are mediated exclusively by the sympathetic nervous system. 
While skin conductance provides a reliable measure of arousal, or motivational in-
tensity [11], it is not an optimal method for differentiating between appetitive and 
avoidance motivation. Therefore, we also employed electromyographic (EMG) re-
cordings of the startle eyeblink reflex, a widely used psychophysiological index of 
valence. Vrana et al. [12] found that startle responses are facilitated when presented 
in conjunction with a negative stimulus, and inhibited when presented with a positive 
stimulus relative to presentations with neutral stimuli, an effect found to be highly 
reliable [13].  

1.3   Hypotheses 

Our primary objective was to examine the effectiveness of IAPS slides, CG stills, and 
CG videos in eliciting fear responses in HF and LF subjects. We expected that, across 
groups, CG videos would elicit the highest levels of arousal, as indexed by skin con-
ductance responses. Moreover, CG videos were hypothesized to produce the strongest 
potentiation of startle eyeblink. We further hypothesized that CG still images would 
be as effective as IAPS slides in eliciting skin conductance responses and eyeblink 
potentiation. A second set of goals of the current project consisted of investigation of 
the physiological responses to feared versus non-feared stimuli among HF subjects. 
We expected that HF subjects would show stronger responses to their feared stimulus 
(e.g., snake) than to a non-feared stimulus (e.g., spider).  
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2   Methods 

2.1   Participants  

Thirty-two participants (22 females, mean age = 20.59) were selected based on a 
questionnaire screening of 407 college students. Participants were selected based on 
their scores on the Spider Questionnaire (SPQ) and Snake Questionnaire (SNAQ; see 
[14]). Participants were selected for the HF group if their scores were above the  
90th percentile on either the SPQ or the SNAQ and below the mean on the other ques-
tionniare. The HF group consisted of 12 participants (8 spider fearing and 4 snake 
fearing). The LF group was selected to match the range of the HF group's scores  
regarding the non-feared object.   

2.2   Stimuli and Design 

Participants viewed snakes and spiders using three different media types, including 
pictures taken from the International Affective Picture System [1], computer-
generated (CG) videos, and CG still pictures. Each stimulus was projected onto a 
screen (33 inches high, 41 inches wide) for five seconds with a 15 to 20 second inter-
trial interval. 

Four IAPS pictures of both snakes and spiders were selected. Valence and arousal 
ratings were similar across animal types [1]. 

Video clips with 3D graphic virtual reality content of four snakes and four spiders 
were first storyboarded and designed on paper, and then models were built in Maya 
before being converted to OpenGL models. Spiders and snakes varied in shape, form, 
and size. Clips also differed in background environment. 

Four CG still-framed pictures of both spiders and snakes were taken from the CG 
videos. Still images were selected in an attempt to match the way each animal was 
presented in the IAPS pictures, and were considered representative of the video from 
which each was derived .  

The experimental test session consisted of eight blocks of six trials each. A five-
minute break followed the first four blocks. During this break, subjects filled out a 
demographics questionnaire.  Block presentation order was counterbalanced across 
subjects. Each block consisted of one snake and one spider from each of the three 
media types. The six types of stimuli (snake IAPS, snake CG still, snake CG video, 
spider IAPS, spider CG still, and spider CG video) were counterbalanced to appear in 
each ordinal position within the blocks the same average number of times, and each 
stimulus type was presented before and after each other stimulus type the same aver-
age number of times. Each stimulus was presented exactly once during the first four 
blocks and once during the second four blocks. The deleted information was provided 
above. 

An acoustic startle-eliciting stimulus was presented during three of the six trials of 
each block. The startling stimulus was not presented during the same type of stimulus 
on consecutive blocks and no more than three consecutive trials included a startling 
stimulus. A total of 24 startling stimuli were presented in the experiment. The startle 
eliciting stimulus was a 110 dB white noise burst 50 ms in duration with a near  
instantaneous rise/fall time presented binaurally through Telephonics TDH-50P  
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headphones. Decibel levels were measured with a Realistic sound level meter using a 
Quest Electronics earphone coupler.  

2.3   Dependent Variables 

Electromyographic (EMG) and skin conductance responses (SCRs) were recorded 
simultaneously throughout the experiment using Contact Precision Instruments 
equipment and a computer running SAM1 software.  

Startle eyeblink response. EMG startle eyeblink responses were recorded using two 
miniature silver-silver chloride electrodes (4 mm in diameter) placed over the orbicu-
laris oculi muscle of the left eye. One electrode was placed directly below the pupil in 
forward gaze while the other was placed about 1 cm lateral to the first. A large silver-
silver chloride electrode (8 mm in diameter) was placed behind the left ear to serve as 
a ground.  

The raw EMG signal was recorded at a rate of 1000 Hz throughout the experimen-
tal session using a 10 Hz high pass and 200 Hz low pass filter. Startle responses were 
rectified and integrated for analysis using a 20 ms time constant. In order to be scored, 
the onset of the blink response had to occur within a window of 20 to 100 ms follow-
ing the startle probe. The blink response had to reach peak activity within a window 
of 20 to 150 ms following the startle probe. Amplitudes were recorded as the  
difference between the peak activity value and the baseline level that was present 
immediately preceding onset of the blink response. Subjects who failed to reach 1 μV 
amplitudes on more than 50% of startling trials were considered non-responders and 
were dropped from further EMG analyses. Two subjects from the LF group reached 
this criterion. If the subject was blinking during the onset of the startle stimulus, the 
blink was removed from scoring due to artifact. These blinks were replaced with the 
average of that subject's blinks to the other three startled trials of that stimulus type 
(i.e., the same animal and modality). Outliers were defined as being 3 standard devia-
tions above the mean for each subject as well as being 2 standard deviations above the 
next largest response from that subject. Only one response from one subject was de-
termined to be an outlier in the current study and was replaced using the same meth-
ods used to replace blinks removed due to artifact. 

Due to the high levels of variability between subjects in EMG responses, and be-
cause of a relatively small sample size in the HF group, all blink amplitude values 
were standardized using a within subject z-transformation. This helped to ensure that 
all subjects contributed to group means equally. 

Skin conductance response. SCR was measured with the use of 8 mm silver-silver 
chloride electrodes placed on the volar surface of the distal phalanges of the index and 
middle fingers of the non-dominant hand. Electrodes were filled with a 0.05 molar 
isotonic NaCl paste to provide a continuous connection between the electrodes and 
the skin. 

Skin conductance responses were scored as the largest amplitude response begin-
ning in a window of 1 to 3 s following stimulus onset. A response was defined as 
having a peak amplitude greater than 0.01 μS.  
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3   Results 

For each dependent variable a mixed analysis of variance (ANOVA) was run with a 3 
(media) by 2 (animal type) within subjects design and a group (HF vs. LF) between 
subjects factor. Another set of ANOVAs was run for both the HF group and the LF 
control group separately.  In the ANOVA for the HF group, spiders and snakes were 
categorized as being either a “feared” stimulus, meaning those stimuli that the subject 
was specifically afraid of (i.e. snakes for snake-fearing subjects), or a “non-feared” 
stimulus, that is a stimulus that the subject was not specifically afraid of, but which 
may be biologically prepared to be fear inducing (i.e. spiders for snake-fearing sub-
jects). A 3 (media) by 2 (stimulus fear level) repeated measures ANOVA was run to 
examine the effects of these variables on the HF group. A separate 3 (media) by 2 
(animal type) repeated measures ANOVA was run for the LF group in order to check 
for possible differences in responding to the different animal types (snakes versus 
spiders) and media. All significant media main effects were followed up with paired 
samples t-tests in order to identify the precise nature of these effects. A Bonferroni 
correction for multiple comparisons procedure was used to prevent inflation of type 1 
error rates [15]. All significant t-test results reported here are Bonferroni corrected. 

3.1   EMG Results 

In the ANOVA involving all subjects, an overall media main effect was found, F (2, 
30) = 27.85, p < 0.001. This effect was the result of larger eyeblink responses during 
CG video stimuli. Responses to CG video presentations were significantly larger than 
response to IAPS , t (29) = 5.578, p < 0.01, and CG stills, t (29) = 7.946, p < 0.01. 
Responses to IAPS and CG stills did not differ significantly (p = 0.23).  

The analysis of the LF group alone revealed the same main effect of media, F (2, 
18) = 23.648, p < 0.001. Responses during CG video presentations were larger than 
those recorded during IAPS presentations, t (17) = 4.838, p < 0.01, or CG still presen-
tations, t (17) = 6.892,  p < 0.01. Startle eyeblink respnses elicited during IAPS and 
CG still presentations did not differ significantly (p = 0.29). An unexpected animal 
type main effect was also found, F (1, 18) = 5.492, p < 0.05. Larger responses oc-
curred when viewing snakes than when viewing spiders (snake viewing mean stan-
dard score = 0.0987; spider viewing mean = -0.1124).  

The analysis of the HF group alone revealed that HF subjects also showed a main 
effect of media, F (2, 12) = 8.385, p < 0.01 (see Figure 1). Once again, CG videos 
elicited larger responses than IAPS, t (11) = 2.863, p < 0.05, or CG stills, t (11) = 
4.137, p < 0.05. Responses during the IAPS and CG still stimuli did not differ signifi-
cantly (p = 0.51). A main effect of stimulus fear relevance was also found in HF  
subjects, F (1, 12) = 6.019, p < 0.05. Subjects had larger eyeblink responses during 
presentations of their specific feared stimuli (M = 0.1553) than during their non-
feared stimuli (M= -0.1835), and this effect was consistent across the three media.  

3.2   SCR Results 

In the ANOVA of all subjects, there was a significant overall media main effect, F (2, 
30) = 27.851, p < 0.001. SCRs elicited during CG video presentations were significantly  
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Fig. 1. High fear group’s mean startle eye-
blink responses to feared and non-feared 
stimuli across media type 

Fig. 2. High fear group’s mean skin conduc-
tance responses to feared and non-feared 
stimuli across media type 

 
greater than those elicited during IAPS presentations, t (31) = 3.511, p < 0.01, and those 
elicited during CG still presentations, t (31) = 3.165, p < 0.01. SCRs elicited during 
IAPS and CG still presentations did not differ significantly (p = 0.328).  

The LF group showed a main effect of media, F (2, 20) = 5.095, p < 0.05. How-
ever, the pattern of responding was slightly different than that obtained when all sub-
jects were combined.  SCRs elicited during CG video presentations were again larger 
than those recorded during IAPS presentations, though not significantly so after Bon-
ferroni correction, t (19) = 2.374, p < 0.1. SCRs elicited during CG still presentations 
were also greater than those elicited during IAPS presentations, t (19) = 2.641, p < 
0.05. Videos also had a tendency to elicit greater SCRs than CG stills, though not 
significantly so (p = 0.074). Similar to the EMG results, an unexpected main effect for 
animal type was also found in SCRs, though this was only a trend, F (1, 20) = 3.406, 
p = 0.081. Subjects again tended to have larger responses when viewing snake stimuli 
(M = 0.1378) than spider stimuli (M = 0.0885).  

In the HF group, only a trend toward a media main effect was found, F (2, 12) = 
3.27, p = 0.081 (see Figure 2). Subjects tended to have larger SCRs when viewing 
videos (M = 0.3623) than IAPS (M = 0.1876) or CG stills (M = 0.0936), although 
these differences in responding were not significant after Bonferroni correction. A 
paired t-test also revealed a trend of increased responses in feared versus non-feared 
during the CG videos, t (11) = 1.809, p = 0.098.  

4   Discussion 

4.1   Effects of Media Type on Fear Responses 

Previous studies of fear responses have typically relied on static pictorial stimuli such 
as the IAPS. In the current study, we sought to examine the effectiveness of moving 
images in eliciting physiological measures of affect. Consistent with our hypotheses, 
CG video moving stimuli were more arousing than the CG and IAPS still images, as 
measured by the skin conductance responses. When compared to still images, video  
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stimuli also exhibited more negative valence, as indicated by greater startle eyeblink 
responses. These findings suggest that, compared to still images of real objects, VR-
style stimuli can be more effective in instigating arousal in both low fear and high fear 
subjects. 

Across LF and HF groups, subjects displayed increased SCRs to CG video stimuli 
compared to CG still and IAPS pictures. The motion component of video stimuli may 
elicit greater arousal by creating a stronger sense of presence, or "being there," in 
participants. Although presence is typically discussed in relation to virtual environ-
ments, it has also been used in the context of other media forms, such as television 
and film [16]. In the current study, we found a strong effect of media on physiological 
arousal.  

Startle eyeblink responses, which are thought to be a sensitive psychophysiological 
measure of valence [12], were affected by the media manipulation in the same way as 
the SCRs, which are primarily sensitive to arousal [17]. One explanation for these 
seemingly contradictory findings is that startle eyeblinks are potentiated when view-
ing negatively valenced images, but these effects are augmented by arousal [11]. It 
follows that if all stimuli are negatively valenced, as in the current study, it will be 
arousal that contributes to differential responding to different stimuli.  

Psychophysiological responses to IAPS and CG still images were also consistent 
with our hypotheses. Startle eyeblink responses and SCRs did not differ when sub-
jects viewed IAPS and CG still images, suggesting that motion was the key factor in 
eliciting increased responding. These findings also indicate that VR style stimuli can 
be as or more effective than still images of real stimuli, such as the pictures of the 
IAPS, in instigating fear responses.  

4.2   Effects of Animal Type on Fear Responses in LF Subjects 

While the media main effect followed the expected pattern in LF subjects, an unex-
pected main effect of animal type was also present. Snakes elicited larger SCRs than 
spiders. Snakes also elicited larger eyeblink amplitudes overall, though this was 
mainly due to highly differential responses elicited during the CG videos, which in 
turn led to a media by animal type interaction. These results were unexpected because 
part of the selection criteria for LF subjects included having very similar scores on the 
SNAQ and SPQ assessments of snake and spider fear, respectively. Differences in 
unexplored features of the videos may account for this discrepancy. For example, two 
of the snake videos involved significant camera movement in addition to movement 
of the snake, whereas the background was relatively stationary in the spider videos. 
The present findings call for further investigation of the effects of different feature 
aspects of video presentations of affective stimuli.  

4.3   Effects of  Stimulus Fear Level in HF Subjects 

Results for the HF group confirm hypotheses that startle eyeblink responses were 
more pronounced for feared than for non-feared stimuli. HF subjects responded with 
increased startle eyeblink responses when viewing their feared stimuli, as compared 
to non-feared stimuli. Surprisingly, skin conductance was not as sensitive to different  
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levels of stimulus fear in HF subjects. HF subjects only displayed a trend toward 
larger SCRs in responses to the feared stimuli in the CG videos. This pattern of skin 
conductance responding may be a result of the possible confound of snakes eliciting 
higher arousal responses in general in this study, and the presence of more spider 
fearful than snake fearful subjects in the HF group meant that snakes were usually the 
non-feared stimulus. The LF group also had increased SCRs to snakes compared to 
spiders.  While these findings will need to be replicated, the trend toward differential 
responding between stimulus fear levels in CG videos does suggest that the CG vid-
eos are more effective in fear instigating for specifically feared objects.  

4.4   Conclusion 

To our knowledge, this is the first study to examine fear responses to CG videos, 
stills, and IAPS images. One of the main goals of the present research was to provide 
validity for the effectiveness of VR stimuli in eliciting fear responses in HF subjects. 
Results suggest that VR stimuli can be as effective, or more effective, than pictures of 
“real” stimuli, even when viewed on a two-dimensional screen. These findings sug-
gest that VR may be useful in the clinical assessment and treatment of phobias. Future 
research examining fear responses to CG images and videos in an immersive VE may 
further validate the effectiveness of VR stimuli in the study of human defensive  
systems.  
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Abstract. This paper discusses how the fields of augmented cognition and neu-

roergonomics can be expanded into training.  Several classification algorithms 

based upon EEG data and occular data are discussed in terms of their ability to 

classify operator state in real time.  These indices have been shown to enhance 

operator performance within adaptive automation paradigms.  Learning is differ-

ent from performing a task that one is familiar with.  According to cognitive load 

theory (CLT), learning is essentially the act of organizing information from 

working memory into long term memory. However, our working memory sys-

tem has a bottleneck in this process, such that when training exceeds working 

memory capacity, learning is hindered. This paper discusses how CLT can be 

combined with multiple resource theory to create a model of adaptive training.  

This new paradigm hypothesizes that a system that can monitor working mem-

ory capacity in real time and adjust training difficulty can improve learning. 

1   Introduction 

Whether it is called the field of Augmented Cognition or Neuroergonomics [1] there 

has been a recent push to apply findings from the field of neuroscience and the “Dec-

ade of the Brain“ to improve human performance.  While Neuroergonomics focuses 

on how neuroscience can be applied to work and everyday environments, Augmented 

Cognition places an emphasis on the design of closed loop systems based upon real 

time physiological assessment.   Until recently there has not been a focus on how ad-

vances within these two areas could be applied to learning or training.  As the use of 

computers and simulation become an increasingly important component of the learn-

ing process, it seems that applying these two fields and developing a closed loop 

adaptive training system would be a natural extension of these two areas.  Such a sys-

tem could adjust the content, presentation format, and pace of training to match the 

specific skills and abilities of the trainee.  It is proposed that such a system would 

reduce the amount of time required to train an individual by reducing the amount of 

time the trainee is under or overloaded.  The present paper reviews previous research 

in neuroscience and learning which serve as a theoretical basis for the adaptive  

training system. The paper will discuss the research done with respect to real time 
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physiological assessment, describe the cognitive load theory and explain how these 

two separate research areas can be merged into a theory of adaptive training. 

2   Real Time Physiological Assessment 

2.1   Sensors 

At the heart of neuroscience are the tools available to measure activity within the 

brain.  There are a number of different sensor technologies available which provide 

either direct or indirect indices of the brain’s activity. These include measures taken 

from the brain such as electroencephalogram (EEG), functional near-infrared imaging 

(fNIR), magnetoencephalography (MEG), functional magnetic resonance (fMRI), as 

well as indirect physiological measures of brain activity such as cardiorespiratory 

activity, for example heart rate (HR) and heart rate variability (HVR), as well as 

measures of electrodermal activity such as skin conductance and galvanic skin  

response (GSR) and pupilometry. The advantages of each of these methods can be 

assessed along three criteria including spatial resolution, temporal resolution, and ease 

of use [2].  Of these sensor technologies EEG has been the most widely used for real 

time assessment due to its temporal resolution and ease of use.  Although eye tracking 

data only provides an indirect measure of brain activity; it is widely used, unobtrusive 

(particularly with new off the head systems) and easy to collect. For those reasons the 

present paper will focus on advances made with respect to these two different sensors.   

2.2   Real Time Cognitive State 

For a physiological sensor to be useful it must be sensitive to an aspect of operator 

state that has cognitive or performance implications (i.e., stress, arousal, mental work-

load).  Ultimately, much of the research has been looking to find a gauge of mental 

workload:  how hard the brain is working at a given point in time.  One of the key 

aspects of mental workload is the relationship between the task being performed and 

an individual’s limited pool of resources available.  Wickens’ multiple resource  

theory [3] distinguishes between three orthogonal resource dimensions including per-

ceptual modality (e.g., visual, auditory), information code (e.g., verbal, spatial) and 

processing stage (e.g., encoding, central processing, and responding).  Multiple re-

source theory parallels that of Baddeley’s model of working memory [4] which also 

includes a spatial and verbal component.  In fact there is some suggestion that re-

source theory is essentially synonymous with working memory [5].  Mental resource 

capacity can be conceptualized as essentially how much information can be main-

tained and manipulated in working memory.  Theoretical conceptions of both con-

structs make the assumption that capacity is in some way limited and that a given task 

or set of tasks can exceed that capacity.  Individual differences in working memory 

capacity are consistently found and these differences are strongly correlated with per-

formance on a number of different cognitive tasks [6-8].  Because working memory 

capacity affects both the difficulty of and the strategies used for learning complex 

tasks as well as the susceptibility to different forms of distraction [9-11], its assess-

ment may provide a powerful tool for improving existing training protocols.      
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The agreement between the two theories is that an individual’s mental capacity is 

in some way limited and that a given task or set of tasks can exceed that capacity.  A 

cognitive state gauge that provides a real time indicator of an individual’s available 

resources could provide great insight into performance, task design and training.  

However, moving from a physiological signal filled with noise to a real time gauge 

requires a significant amount of signal processing. 

2.3   EEG Algorithms  

A cognitive state gauge that provides a real time indicator of an individual’s current 

level of engagement and the availability of different types of resources could provide 

great insight into performance, task design and training.  However, improving meth-

ods of signal amplification, filtering, and the analog to digital conversions required to 

extract physiological signals from the background of noise is an on-going challenge to 

the successful implementation of real time cognitive state gauges.   

 

Linear Classification. Early real time metrics derived from EEG analyzed the 

changes of spectral power in the five frequency bands (alpha, beta, theta, gamma, and 

delta).  These changes were used to provide an indication of the operator’s engage-

ment, attention and mental workload.    Pope, Bogart, and Bartolome [12] developed 

an index based on a ratio of EEG power, defined as (beta/(alpha + theta)) which can 

be computed in real-time by calculating a running average over a 20 second window. 

This index was said to determine the level of engagement/alertness of an individual 

while performing a task.  The researchers were able to demonstrate the index could be 

used in real time to improve performance on a vigilance task [13] and a complex 

tracking task [14].   

A second linear algorithm for processing cognitive state from EEG is the eXecu-

tive Load Index (XLI) [15], which was designed to monitor changes in cognitive load 

related to processing messages in real-time. This was done by computing the ratio of 

((delta+theta)/alpha) over a moving 2 second window, with the change determined by 

comparing the value to the previous 20 second running average.  

Researchers at Advanced Brain Monitoring (ABM) developed several gauges of 

cognitive state based upon linear and quadratic discriminant function analysis (DFA) 

[16].  The gauges for mental workload and engagement are of particular interest.  The 

index for engagement tracks the demands for sensory processing and attentional re-

sources, whereas the index for mental workload tracks the level of cognitive function 

and is considered to be a correlate of executive function.  The algorithms for both 

indexes are derived for each individual based upon his or her EEG signals on a series 

of baseline vigilance tasks.  The measures have both been validated in a series of ba-

sic cognitive tasks.  The mental workload metric has been shown to track task demand 

in mental arithmetic and digit span tasks as well as show a significant correlation with 

subjective measures of workload and task performance.  The gauge for engagement 

has been shown to decrease as a function of time during a vigilance task whereas 

workload did not.  The algorithms for both engagement and workload output data 

every second. 
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Non-linear classification. Research at the Air Force Research Lab has investigated 

the ability of an Artificial Neural Network (ANN) to classify operator mental work-

load in a complex laboratory task and during a UAV simulation [17, 18].  The ANN 

derives its classification from EEG, EOG, and heart rate data and was successfully 

able to classify high versus low workload with a 85-90% accuracy rate when the 

ANN was trained for each individual.  The ANN was also successfully implemented 

in an adaptive automation UAV paradigm where vehicle speed was reduced during 

periods of high workload.  The adaptive automation system was able to significantly 

improve performance over both a non-adaptive system and a system with random 

changes to the speed.  Although ANN has been shown to be highly successful, it re-

quires a large amount of data to “train” the model.  It is also unclear how stable an 

ANN would be for a particular individual over time.   

2.4   Eye Tracking 

Visual scanning strategies may provide an indication of mental workload. Di Nocera, 

et al. [19] implemented the Nearest Neighbor Index (NNI) to investigate whether a 

statistical index that provides information on dispersion of points, or fixations, would 

have differential patterns for high workload and low workload conditions.  The index 

is based on the Complete Spatial Randomness (CSR) method, which is the spatial 

analysis equivalent of uniformly and independently distributed random variables. The 

index is computationally straightforward and is feasible to compute in near real-time, 

which lends potential to be used as a metric or trigger for adaptive training.  Essen-

tially, higher values in the NNI show higher levels of entropy in scanning.  Prelimi-

nary analysis from a case study showed that higher NNI values were correlated with 

higher workload, and that the NNI was sensitive to varying workload conditions. 

However it was suggested that more studies be performed to fully understand the cor-

relation between the randomness of fixations and mental workload.   

Cognitive workload has also been evaluated using measures of eye movement and 

pupil dilation to detect cognitive strategy shifts [20].  A psycho-physiological index of 

workload based on pupil dilation, the Index of Cognitive Activity (ICA), was used in 

a case study by Marshall et al. to detect shifts in strategy based upon large changes of 

ICA.  ICA does not require averaging over trials or individuals, it can be applied to a 

signal of any given length, and it can be computed in near real-time.  ICA is calcu-

lated as the frequency of a detection of an abrupt discontinuity in the pupil signal 

[21].  Marshall, et al.’s study demonstrated that cognitive strategy shifts can be identi-

fied from eye tracking data, and observed fluctuations of ICA can identify the time 

and location of those strategy shifts.  Identification of cognitive strategy shifts may be 

beneficial not only for instructional design based on cognitive load theory [22], but 

also for adaptive training.   

A recent review identified and evaluated the ability of seven eye tracking metrics 

to classify an operator’s cognitive state, while taking into account the sensitivity and 

specificity of the classification [23].  The metrics under evaluation included the Index 

of Cognitive Activity (ICA), blinks, movement, and divergence between eyes, where 

separate right and left eye values were calculated for the ICA, blink, and movement 

metrics.  Each of the seven metrics can be computed in near real time, making them 

attractive candidates to apply and incorporate into adaptive training applications.   
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For statistical analysis, all metrics were transformed to a common scale ranging 

from 0 to 1.  Two classification models, linear discriminate function analysis and non-

linear neural network analysis were employed, and the sensitivity and specificity were 

evaluated to determine classification adequacy.  Two-state classifications were calcu-

lated for three separate studies (problem solving, driving simulation, and visual 

search) to differentiate between an engaged or relaxed state, focused or distracted 

driving, and a fatigued versus alert state.  For all three studies, both classification 

models were successful in differentiating cognitive states (69% to 92%) based solely 

upon the aforementioned eye metrics.  Discriminant analyses with systematic elimina-

tion of each metric were conducted to confirm that all metrics were needed to obtain 

the same accuracy of results. In addition, it was determined that all metrics were 

needed to obtain the level of demonstrated classification, and that no particular metric 

was salient across all subjects within any study. 

3   Cognitive Load Theory 

Cognitive load theory (CLT) is model of learning based around components of human 

information processing, particularly working memory and long term memory. A core 

principle of CLT theory is that learning places demands on a limited capacity working 

memory system [24, 25].  Since working memory capacity (WMC) is limited [26, 27], 

learning is integrally tied to both the working memory capacity (WMC) of the learner 

and the working memory demand of the instruction and instructional material.  While 

the WMC of an individual is limited, his or her long term memory is almost unlim-

ited.  Thus the theory is concerned with how information from working memory is 

organized and grouped together (into schemata) and stored in long term memory.  

Once information is stored in long term memory, it enables the individual to access it 

later and reduces the burden placed upon the working memory system.  Much of the 

research on CLT has focused on working memory since it serves as the bottleneck to 

learning. 

CLT proposes three specific types of cognitive load with additive effects; the sum 

total of which must not exceed a learner’s working memory resources if optimal 

learning is to be achieved.  The first, termed intrinsic cognitive load is the difficulty 

imposed by the material or task to be learned.  It is heavily influenced by the elemen-

tal interactivity of the material – how many interacting elements must be maintained 

in working memory at any given time.  Complex material may have high elemental 

interactivity.  The more inherent elemental interactivity, the higher the cognitive load. 

Often there is little if anything that instructional design can do to change the intrinsic 

cognitive load of the material or task to be learned.  As expertise develops, schemas 

are formed and elements become grouped together; enabling the individual to deal 

with more elements simultaneously and allowing them to overcome the working 

memory bottleneck.  This process reflects learning and the dynamic nature of intrinsic 

cognitive load within CLT.  The number of elements which make up intrinsic load are 

based upon the individual’s ability to group them together. 

The second form of cognitive load is extraneous cognitive load and this is  

where instructional design has the potential to make vast improvements in training.  

Extraneous load typically refers to how the information is presented, e.g., graphically 
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versus verbally.  Ineffective instructional designs impose an additional level of extra-

neous cognitive load, which is particularly problematic when the intrinsic load is 

high.  Much of CLT has emphasized reducing extraneous load as a method of reduc-

ing overall load and enabling learning. 

Germane cognitive load, the third type, is the process of creating and organizing 

information into schema.  Germane load is the result of the instructional design [28].  

It promotes the development of accurate mental models of the task and relevant 

schemas as well as facilitating the transition from controlled to automatic processing 

that accompanies expertise.  Germane load is influenced by the manner, modality 

and sequence in which the material is presented and the learning activities involved.  

Differential sensitivity has been observed between various measures for each type of 

load [29]. 

Within the framework of cognitive load theory, intrinsic cognitive load is set by the 

task, and extraneous cognitive load is typically manipulated through instructional de-

sign. This ensures an individual’s cognitive resources are not being exceeded, and that 

learning is promoted.  Instructional design that reduces extraneous cognitive load 

frees more resources for germane cognitive load thus facilitating the development of 

schema acquisition and a shift toward automatic processing and expertise.   

4   Adaptive Training 

Although traditionally cognitive load theory has focused on adjusting extraneous load 

simulation based training allows for an adjustment in the amount of intrinsic cognitive 

load presented at a given time.  This ability to manipulate intrinsic load combined 

with the capability to measure working memory capacity in real time provides the 

basis for the development of an adaptive training approach.  

Combining elements from Wickens’ Multiple Resource Theory [3] which is de-

signed to describe workload and ultimately help predict performance and Sweller’s 

CLT [24] we have developed an initial throughput model of learning that can be used 

in a closed loop system.  Within the adaptive training paradigm the intrinsic load acts 

as the input into the system.  How that information is presented in terms of modality 

and processing code produces the extraneous load.  As with the traditional model of 

CLT presenting information in a spatial code versus a verbal code can yield different 

amounts of extraneous load depending on the task/information.  Following multiple 

resource theory and CLT it would be possible to reduce extraneous load by using dif-

ferent modalities and processing codes.  

As with CLT the germane load is still the organization of information into schema.  

The overall load is still the combination of intrinsic, extraneous, and germane load.  

However, as with multiple resource theory there are now potentially multiple capaci-

ties.  Figure 1 represents a simple throughput model of how adaptive training would 

work.  Operator capacity would be assessed in real time based upon a real-time 

physiological metric described above.  Presently their may not be a separate metric 

for each potential resource pool.  However an overall gauge of spare capacity could 

still serve to trigger an adaptive training screen.  Based upon whether the physiologi-

cal metrics indicate spare capacity the screen could add or remove certain elements of  
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Fig. 1. Model of Adaptive Training based upon Wickens’ Multiple Resource Theory and 

Sweller’s Cognitive Load Theory 

intrinsic load or add/reduce the size of a single element (e.g., driving at high speed 

versus low) from the overall material to be learned.   

For example, in a computer simulation designed to teach target identification, the 

cognitive load of the task can be manipulated by adjusting the number of targets pre-

sented at a given time, target speed or salience.  These manipulations do not change 

the intrinsic load of the task, per se.  However, the load imposed on the novice learner 

is adjusted.  Extraneous load may be reduced by making the targets more visible, by 

using an auditory modality to supplement identification of salient aspects of the visual 

targets, etc.   

Germaine cognitive load, which supports skill development, can be increased by 

presenting various targets to be identified in random order rather than for instance all 

enemy tanks and then all enemy helicopters.  The proposed adaptive training system 

would manipulate the amount of overall cognitive load in the scenario based on as-

sessment of the trainee’s current expenditure of mental resources.  When physiologi-

cal metrics indicate that mental workload is high, for example enemy units could 

slow down or decrease in number.  Alternatively, when a trainee displays a low level 

of mental resource utilization, the scenario can be made more difficult.  Changes to 

the cognitive load in the adaptive training system must be based not only on an indi-

vidual’s available resources but also their level of expertise with the system.  There 

is a dynamic relationship between level of expertise and cognitive load required by 

the task.   

The primary difference between a novice and an expert in any given task domain 

hinges on two things.  First, the expert has an extensive knowledge base of well de-

veloped relevant schemas held in long term memory.  Schemas allow a person to treat 

multiple elements as one item.  For example, an expert chess player has literally thou-

sands of schemas for movement patterns stored in long term memory.  Secondly, for 

the expert many of the relevant tasks and skills as well as access to the stored schemas 
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are automatic, no longer requiring resource demanding controlled processing [30].  

Novices have neither extensive or well developed schemas, nor can they initiate many 

of the task components automatically [31].  Problem solving routines and access to 

schemas can become automated as when one automatically knows to solve the alge-

braic equations within the brackets before moving on to the relationships between the 

bracketed and non-bracketed items.  Individual features of letters, nor even individual 

letters need to be processed once a reader has developed sufficient skill.  As schemas 

develop and tasks become automated, working memory load is reduced and learning 

is accelerated.  As learning is accelerated the amount and or rate of information pres-

entation can and should be accelerated.  Monitoring the transition from novice to ex-

pert is essential for efficient learning and is a key element of the proposed adaptive 

training strategy. 

As with CLT the adaptive training paradigm will recognize the task-learner interac-

tion, or expertise reversal effect, meaning that as a learner develops expertise, the 

methods of instruction that are effective should change [28, 32].  Optimal training 

protocols must continuously monitor in real-time both the working memory resources 

being utilized or mental workload of the learner and changes in skill level associated 

with developing expertise. Under or over utilization of working memory processes or 

a mismatch with the learner’s current skill level will result in less efficient learning. 

5   Conclusions 

It is believed that the proposed adaptive training model will be able to significantly 

improve learning by eliminating the time in which the learner is not in an optimal 

state as determined by their working memory capacity.  An adaptive training system 

will be capable of reducing the intrinsic load when working memory capacity is  

exceeded, or adding to the intrinsic load when there is sufficient reserve working 

memory capacity. Additionally the new model allows for a diagnostic approach to 

implementing the adaptive training screen.  Advances in the real time sensors may 

eventually be capable of assessing capacity within the different pools (i.e., spatial 

versus verbal) and therefore allow for more specific changes to the material being 

presented.  Eventually such a system will be capable of moving between information 

codes and processing modalities of the information being presented to capitalize on an 

individual’s multiple resources. 
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Abstract. Psychophysiological assessment in the context of virtual environ-

ments is a promising means for benchmarking the efficacy and ecological valid-

ity of virtual reality scenarios. When applied to human-computer interaction, 

psychophysiological and affective computing approaches may increase facility 

for development of the next generation of human-computer systems. Such sys-

tems have the potential to use psychophysiological signals for user-feedback 

and adaptive responding. As the composition of investigating teams becomes 

diverse in keeping with interdisciplinary trends, there is a need to review de-

facto standards of psychophysiological response quantification and arrive at 

consensus protocols adequately addressing the concerns of basic researchers 

and application developers. The current paper offers a demonstration of the 

ways in which such consensus scoring protocols may be derived. Electromyog-

raphic eye-blink scoring from an immersion investigation is used as an illustra-

tive case study. 

1   Background  

1.1   Psychophysiology in Human Computer Interaction Research 

Psychophysiology is increasingly incorporating virtual reality environments into hu-

man computer interface research [1]. The use of psychophysiological measures in 

studies of persons immersed in high-fidelity virtual environment scenarios offers the 

potential to develop current physiological computing approaches [2] into affective 

computing [3] scenarios. Such scenarios offer the potential for simulated environ-

ments to proffer cogent and calculated response approaches to real-time changes in 

user emotion, neurocognition, and motivation.  The value in using virtual reality tech-

nology to produce simulations targeting emotional, neuropsychological, and motiva-

tional applications has been acknowledged by an encouraging body of research. Some 

of the work in this area has addressed affective processes: anxiety disorders, pain dis-

traction and posttraumatic stress disorder [4]. Other work has assessed neurocognitive 

processes such as attention and executive functioning [5], [6]; memory [7], [8], [9]; 

and visuospatial abilities [10], [11], [12].  
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Thus far, the recording of psychophysiological variables while participants operate 

within virtual environments has produced useful results in studies examining immer-

sion and presence [13], [14], [15].  As such, the VR assets that allow for precise 

stimulus delivery within ecologically enhanced scenarios appears well matched for 

this research. One area of increasing interest in psychophysiological assessment of 

persons immersed in virtual environments is startle eyeblink modification (SEM) 

[16], [17]. The modulatory influence of selective attention as well as generalized 

arousal processes on SEM, is well-established [18]. As such, the SEM is a likely 

source of benchmarking metrics for the efficacy and ecological validity of virtual en-

vironments in therapeutic and training applications. Unfortunately, the long tradition 

of use of the SEM paradigm in basic research in psychophysiology has resulted in a 

de facto standard of response quantification procedures [19]. This “received ap-

proach” may not be amenable to protocols that will be useful for eyeblink-actuated 

human computer interaction systems.  

1.2   Introduction to Current Study 

The eye-blink EMG signals used for analysis in this paper were obtained in a study 

which attempted the SEM paradigm in an investigation of immersion to detect differ-

ences in arousal if any, between persons placed in “low” and “high” immersion sce-

narios. Subjects were asked to passively view a virtual environment (VE) on two 

separate experimental runs consisting of both a highly immersive (HI) viewing condi-

tion and a low immersion (LI) viewing condition. In the HI condition, subjects wore a 

head mounted display (HMD) with full tracking capabilities and were free to explore 

their environment visually. The HI condition also made use of headphones and a tac-

tile transducer floor to simulate riding in a large vehicle.  The LI condition consisted 

of watching the same virtual Iraqi scenario on a 17 inch laptop screen while wearing 

headphones.  During the LI condition, subjects viewed the VE from a static position. 

The VE was comprised of a series of safe and combat zones in an Iraqi city.  In 

both the HI and LI conditions, subjects viewed the VE from the perspective of the 

driver of a Humvee.  The speed and trajectory of the vehicle was kept constant to con-

trol for time spent in each zone of the VE.  Safe zones consisted mainly of a road sur-

rounded by a desert landscape and were free of gunfire and other loud noises. The 

combat zones included improvised explosive devices (IEDs), gunfire, insurgents, and 

screaming voices.  Subjects passed through 3 safe and 3 combat zones on each ex-

perimental run.  The total length of each run was 210 seconds.   

An acoustic startle probe was used to elicit startle eyeblink responses.  The startle 

probe was a 110 dB white noise burst 50 ms in duration with a near instantaneous 

rise/fall time presented binaurally through Telephonics TDH-50P headphones.  Deci-

bel levels were measured with a Realistic sound level meter using a Quest Electronics 

earphone coupler. Startle probes were experienced intermittently throughout the ex-

perimental runs.  A total of 4 startle probes were experienced in both the safe and 

combat zones in each run. 
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1.3   Overview of Considerations for Response Quantification 

According to the “scoring protocol” found within the “received approach” to psycho-
physiological experimentation, a set of signal parameters of interest and associated 
procedures to extract them from raw signal recordings must yield outputs that are 
readily amenable to further standardized analyses and expert interpretations. Due to 
the long tradition of use of the SEM paradigm in basic research in psychophysiology, 
the “received approach” represents a de facto standard of response quantification pro-
cedures [19]. The translation of psychophysiology procedures from “assessment” of 
persons’ responses to computer mediated information to “adaptive human computer 
interfaces” presents the requirement of devising scoring protocols for situations to 
which the existing de facto standards (i.e. received approach) may not be very suit-
able. It is reasonable to expect that the scoring protocols that will be useful for eye-
blink-actuated systems (e.g. BCIs), may be dissimilar to the parameters currently of 

interest in psychophysiological assessment.  

In this paper, some general considerations for designing response quantification 

procedures in non-traditional psychophysiological applications are presented, using 

eyeblink scoring for a Humvee Immersion Experiment as a case study.  

1.4   Open Parameters in the Design of Scoring Protocols for Electromyographic 

Eyeblink Recordings  

Signal acquisition consoles currently popular for electromyographic (i.e. EMG) signal 

acquisition [20] typically incorporate pre-processing procedures like amplification. 

Further signal conditioning stages like filtering and thresholding, which characterize a 

response quantification procedure, were earlier performed using analog hardware  

implementations which are now largely being replaced by digital software implemen-

tations. For the study reported herein, filtering and thresholding were implemented 

using MATLAB®. The following are potential open parameters from which the in-

vestigator may chose while devising a scoring protocol for raw EMG recordings: 

 

Filter parameters. Following the “received approach”, the smoothening (low-pass 
filtering) requirements are determined largely by the quality of the measuring equip-
ment and likely sources of noise. While smoothing is a necessity for noisy signals, it 
has the undesirable side-effect of causing phase distortions and in general, a trade-off 
is sought to give a high signal-to-noise ratio with minimal phase distortion. Through-
out this paper, “box-car” filtering (i.e. running average filter) is implemented with the 
filter width (i.e. window size) as the open parameter. Box-cart filtering was chosen 
herein for illustrative purposes due to its ease of implementation, computational 
speed, and near-ubiquitous use in EMG signal conditioning. 

 
Threshold. Following the “received approach”, portions of the filtered and rectified 
eyeblink trace within a small time-window adjacent to a startle-eliciting stimulus are 
treated as startle blinks if their magnitude exceeds a stipulated threshold. Threshold 
choice is essentially dictated by typical eyeblink EMG amplitudes observed in the 
population under study, and must take into account the amplitude reduction caused by 
the filter settings in the smoothening stage. 
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Region of interest following the startle blink. Following the “received approach”, 

the length of the time window following a startle-eliciting stimulus within which a 

super-threshold signal will be considered a blink associated with that stimulus. This is 

decided mainly on psychophysiological considerations like the average latency of the 

population under study. Herein the length of this time window is fixed at 150 ms 

which is psychophysiologically established as a typical time-to-peak for startle-

elicited eyeblink signals. 

In what follows, results obtained with divergent filter parameter and threshold set-

tings are compared with those obtained from a “reference setting” conforming to the 

“received approach” to in psychophysiological assessment. This is performed to gain 

an increased understanding of the effect of these parameter changes and ultimately 

guide design of augmented scoring protocols for future applications.  

1.5   Immediate Motivations for the Present Study 

In preliminary analyses, two different scoring methods were considered; 1) Received 

Approach: the output of this initial protocol being the superthreshold EMG of the 

smoothed signal in a 150 ms window adjacent to the startle probe; with the threshold 

at 0.0001 mV; and 2) Elementary Signal-Processing Approach (distortion-causing 

signal-smoothening is preferably avoided): the score for this alternative protocol be-

ing the mean amplitude of superthreshold EMG spikes of the unsmoothed signal in a 

150 ms window adjacent to the startle probe, with the threshold at 0.15 mV. An 

analysis of variance between the EMG scores for “high” and “low” immersion did not 

report significant differences (F = 0.091, p = 0.763) for the scoring procedure com-

porting to the “received approach”. Contrariwise, the Elementary Signal-Processing 

Approach scoring procedure resulted in significant differences (F = 17.412, p < 

0.001). This obvious mismatch between the results of two scoring protocols motivated 

the investigations presented in this paper to determine feasible ranges of parameter 

settings for eye-blink scoring protocols. The preliminary findings underscore the need 

for caution in the choice of scoring metrics and proper validation of the same. These 

considerations may be of importance to researchers interested in eyeblink analyses to 

be reliably employed in non-traditional applications psychophysiological data. 

2   Methods 

Eyeblink EMG traces from the physiological recordings obtained from the orbicularis 

oculi muscle of subjects in the Humvee Immersion Experiment using Biopac MP150 

were exported to MATLAB® and scored using multiple protocols to enable compari-

son. Each EMG trace was of duration 210 seconds, during which subjects experienc-

ing the Humvee scenario were administered 9 acoustic startle probes via headphones 

at pre-determined times. The traces were smoothed using a box-car (running average) 

filter and rectified. Figure (2 a) shows part of a typical EMG trace filtered with  

running average filters of different filter-widths and rectified. Trace segments of 150 

milliseconds adjacent to each startle probe were then examined for spikes whose 

magnitude exceeded a pre-determined threshold. These super-threshold spikes were 

treated as startle blinks and a time series of startle-blinks was obtained from each  
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Fig. 1a. Rectification and smoothening of the raw EMG signal (dotted trace) using a running-

average filter with window sizes 50 ms (dashed trace) and 200 ms (bold trace) 

 

Fig. 1b. Startle blink time series (bold traces) obtained with two different settings of filter win-

dow-size and threshold, from the same raw eyeblink signal. The traces shown above are a por-

tion of a 210-second-long electromyographic recording in the Humvee Immersion Experiment 

with acoustic startle probes used to elicit the blink responses. The positions of these startle 

probes are shown by the dashed markers. 

EMG trace. Figure (2b) shows startle-blinks obtained using this procedure, for differ-

ent parameter settings. Each parameter setting corresponds to a scoring protocol. 

The reference protocol adopted to represent the “received approach”, used a box-

car filter window size of 100 samples (corresponding to 100 ms for a sample rate of 1 

kHz) and a threshold of 0.1 microvolt, reasonably conforming to current psycho-

physiological practice. Alternative protocols were generated by varying the filter  

window-size from 10 to 200 samples and the threshold from 0.01 microvolt to 5 mi-

crovolt.  The covariance of the output signals from each of these alternative protocols, 

with the corresponding output of the reference protocol is treated as an index to study 

the effect of parameter variations. The covariance between the startle trains obtained 

from the reference protocol and a test protocol, is of interest because it is a measure of 

how much the two signals ‘vary together’ i.e. how much a signal tends to be above its 

expected value if the other signal is known to be above its own expected value. A 

high positive covariance between the output signal of a particular test protocol  

and that of the reference protocol would suggest that there is a high degree of linear 
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dependence between the two signals. An implication of such a high degree of linear 

independence is that the investigator can treat such a test protocol as practically 

equivalent to the reference protocol. 

The results presented in Section 3 represent the mode of the observations for dif-

ferent subjects. The conclusions of this analysis are expected to guide the design of a 

scoring protocol suited to the ‘most typically encountered’ subject. Therefore the 

measure chosen for this analysis was the ‘mode’ which represents the most frequently 

occurring value in the sample. 

3   Results 

Figure 3 summarizes the effect of two open parameters of interest, namely, boxcar 

filter width and EMG threshold, on the covariance matching score of test protocol 

outputs with the reference protocol.  The electromyographic recordings used for this 

analysis were obtained from 7 subject volunteers of the Humvee Immersion Experi-

ment in the high immersion condition. Each curve in the family of curves in the upper 

panel, shows the effect of filter width on the covariance matching score, for a fixed 

value of threshold (Upper curves are for lower thresholds.). Likewise, each curve in 

the lower panel shows the effect of EMG threshold on the covariance matching score, 

parametric on the filter width. Taken together, these results represent a scan of the 

space of open parameters to determine feasible settings. A visual examination of the 

curves reveals that there is ‘plateau’ of very slow decline around the optimal values of 

maximum covariance outside which the covariance score shows a more rapid decline. 

The range of values in the ‘plateau’ regions represent parameter settings which pro-

vide outputs nearly equivalent to those of the reference protocol. This suggests that 

traditional parameter settings are not tight and strict, but belong to a larger range of 

values of open parameters which a designer can explore, while still conforming rea-

sonably to established psychophysiological practice. 

 

 
Fig. 2. Effect of filter width (upper panel) and effect of EMG threshold (lower panel) on the 

covariance matching score of a test scoring protocol with respect to the reference protocol. 

View text in Section 3 for details and explanation. 
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4   Discussion 

4.1   Consensus between Requirements of Basic Researchers and Application 

Developers  

The “received approach” to scoring protocols parameter settings need not always be 

viewed as a tight requirement. Instead, as the examples in this paper have illustrated, 

they may be viewed as a flexible constraint from which a designer may make judi-

cious use of adjustable parameters based on other application specific demands. For 

example, in an experimental scenario where signal-to-noise ratio is a high priority, the 

designer can choose the highest filter width within the “plateau” region, thus repre-

senting a consensus of the requirements of traditional psychophysiology as well as 

engineering considerations. Although the method of analysis presented herein is 

merely suggestive, it can be readily adapted to other scenarios. Further, its variants 

may be employed to find feasible ranges of parameter settings. As research with psy-

chophysiological modalities becomes more and more interdisciplinary, and the com-

position of investigating teams becomes more and more diverse, such analyses will be 

a useful way to arrive at consensus protocols that address the concerns of career psy-

chophysiologists, signal-processing engineers, and designers of virtual environments. 

A case in point, of the competing concerns of basic researchers in psychophysiol-

ogy and signal processing engineers is the need for signal smoothening. Traditional 

response quantification procedures that are well-established in the psychophysiology 

research community typically involve signal smoothing of the EMG signal as a pre-

processing step, and extraction of peak amplitude and response latency from the 

smoothed signal. Researchers interested in human computer interfaces (i.e. BCIs), 

however, may prefer to average raw unsmoothed signals across trials, to avoid the 

signal distortion and information loss caused by smoothing. A method such as that 

described above can be useful to arrive at a mutually acceptable parameter setting. 

4.2   Emerging Trends and Relevance of Interdisciplinary Dialogue on Response 

Quantification Standards 

In psychophysiological assessment, data scoring is typically performed with ‘off-the-

shelf’ scoring software [21], most often proprietary and provided by the manufactur-

ers of the recording equipment. In recent years, the recognition of several new  

parameters of interest in EMG analysis [22] motivates the need for newer sophisti-

cated data scoring procedures capable of dealing with a greater variety of metrics. 

Investigators, especially in nascent applications, will need to choose parameters tai-

lored to the application, exploiting the additional capabilities of state-of-the-art data 

acquisition equipment and using flexible customizable data-scoring software,  

typically written in MATLAB ®. These developments will lead to a shift from an 

“off-the-shelf” approach to a “drawing-board” approach in designing response quanti-

fication procedures and scoring protocol design. Attempts to contribute (such as the 

one found in this paper) to the ensuing interdisciplinary discourse to arrive at univer-

sally accepted standards for psychophysiological response quantification, deserve due 

attention so that the full potential of the confluence between psychophysiology and 

virtual environments is attained in a genuine, well-founded manner. 
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Abstract. Behavior, such as reaction time and correctness of a response, is the 

most studied output of the mind in the fields of psychology and human factors. 

With the advent of modern neuroimaging technologies, opportunities exist for 

direct study of the mind’s machinery: the brain.  Moreover, there are opportuni-

ties for applying these technologies to solve a host of educational and engineer-

ing challenges, such as how to design better interfaces with computer systems 

or how to better educate and train students.  The electroencephalogram (EEG) is 

a direct reflection of the functioning brain, and technologies that enable re-

cording of the EEG have been in existence for more than 50 years.  Within the 

past decade substantial progress has been made in EEG technology, permitting 

a direct view into the brain.  We cover these advances in this paper, which in-

clude dense-sensor array technology and physics-based computational head 

models, and present several examples of how they have been applied. 

Keywords: Dense-Array EEG, neuroergonomic. 

1   Introduction 

Historically, psychological studies relied on behavioral and self-report data to under-

stand the workings of the mind.  With carefully designed studies, researchers were 

able to explicate various cognitive processes and how these processes may be under-

stood using different models of cognition (e.g., [1]).  However, even with carefully 

designed studies, inferences about cognition remain limited because behavior is the 

final output of the mind, with many cognitive processes contributing to it.  Ultimately, 

to understand behavior and the human mind, the study of cognitive functions must be 

placed within the context of brain function. Prior to the advent of modern neuroimag-

ing technologies, relating cognitive processes to brain function was accomplished 

mainly through animal studies, which permit invasive and destructive techniques, or 

the study of patients with existing brain lesions. These types of studies also have in-

herent limitations (such as disruption of brain network dynamics). 

With the advent of functional magnetic resonance imaging (fMRI), it became pos-

sible to study the human brain non-invasively.  The development of the field of cogni-

tive neuroscience quickly followed.  Using these new technologies, researchers have 

confirmed old findings as well as discovered astonishing new ones (e.g., how quickly 

the brain can reorganize during learning).  The field of human factors engineering is 

now beginning to consider the advantages of understanding human behaviors within 
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the brain framework. This is embodied in the emerging field of neuroergonomics.  

However, requirements of neuroergonomic studies are different from requirements of 

cognitive neuroscience studies.  For the latter, it is adequate to conduct studies in  

controlled laboratory settings with specially built facilities.  However, the goals of 

neuroergonomic studies are more practical, requiring studies to be performed in more 

naturalistic settings.  For these studies, fMRI technology is not practical; more port-

able neuroimaging technologies are required.  

Functional near infrared (fNIR) is akin to fMRI; it is sensitive to blood-oxygen 

level changes and is believed to provide good spatial resolution for the detection of 

superficial (several centimeters deep) sources of brain activation.  These systems are 

often small and portable, making them suitable for in-field neuroergonomic studies.  

However, fNIR is insensitive to deeper sources due to the attenuation, through ab-

sorption and scattering, of the number of photons at greater depths. Moreover, be-

cause photons are also absorbed by hair (particularly dark hair), measurements over 

most of the head of typical subjects are problematic.  

The EEG, like fNIR, is a portable technology that can be made field deployable.  

Although it is true that the electroencephalogram (EEG) existed long before fMRI 

and that it can be considered a neuroimaging technology, it was used mainly as a 

technique that supplemented behavioral analyses.  That is, researchers often treated 

the EEG (or its derivatives, such as the event related potential – ERP) as a dependent 

variable akin to reaction times in behavioral studies, very rarely referring to or con-

sidering the brain that generated the signals.  This may be attributable to the fact that 

only a few sensors were ever used in these early studies, making it difficult to relate 

the EEG to the underlying neural generator.  With recent advances, however, it is 

now possible to relate the EEG to specific activations of the underlying cortex, and 

thus bring the full power of whole-head, direct neuroimaging to neuroergonomic 

applications. 

For EEG to be useful as a neuroimaging technology several requirements must be 

satisfied.  First, the scalp electrical field, which is recorded as the EEG, must be accu-

rately described because it is from this description that estimates of the underlying 

cortical sources are derived.  Inaccuracies in this description result in inaccurate esti-

mates. Because current must flow through resistive tissue (such as the skull), a point-

to-point correspondence between the location of the electrode on the scalp and an 

activated cortical patch cannot be assumed. Therefore, a second requirement is the 

development of head models that accurately describe the propagation of current from 

the cortical sources to scalp electrodes (i.e., the lead field).  Once these two require-

ments are met, various inverse methods can be employed for source estimation [2].  In 

the following sections we briefly describe these two requirements. 

Accurate description of the scalp potential field: Spatial resolution is simply de-

pendent on the density of spatial sampling.  The Nyquist theorem for discrete sam-

pling is well appreciated by electroencephalographers in the time domain.  When the 

time series of an EEG channel is sampled discretely, the highest measurable  

frequency is half the sampling rate.  If the signal contains information at higher fre-

quencies than the Nyquist limit, they are not only poorly characterized: they alias or 

appear misleadingly as increased energy at lower frequencies.  If the EEG time series  
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has been aliased because of undersampling, there is no valid method for removing or 

undoing the distortion by digital signal processing methods.  The Nyquist criterion 

also applies to spatial sampling [3].   

The scalp surface potential at any point in time is a continuous field over the sur-

face of the head.  The sensor (electrode) array effects a discrete sampling of this field, 

and like any discrete sampling is subject to a Nyquist criterion.  However, unlike the 

EEG time series, the spatial signal is acquired discretely.  While the time series at 

each channel can be analog low-pass filtered prior to digitization, the spatial signal 

has information content fixed by both the source distribution and the number of elec-

trodes.  As a consequence, any aliasing due to undersampling cannot be undone, and 

it is critical that an adequate sampling of the potentials be accomplished from the out-

set.  Assuming an even spacing of electrodes, the inter-electrode distance determines 

the highest spatial frequency that can be observed without aliasing.  In addition to the 

requirement of inter-sensor distance, adequate spatial sampling also requires that the 

inferior surface of the head be captured, particularly if one wishes to capture the activ-

ity of the basal surface of the brain, including the orbitofrontal and basal temporal 

lobes.  

Accurate head model: Accurate head models require accurate description of 1) the 

geometry of each head tissue, 2) the conductivity values of each head tissue, 3) the 

location and orientation of potential sources, and 4) the position of the electrode sen-

sors on the scalp.  Together, these four pieces of data form what is referred to as the 

forward model (or lead field) used for source modeling of scalp-recorded data.   

 

Fig. 1. Left: Head model with sensors registered to scalp surface. Right: 3D subject geometry, 

CT registered with MRI, the forward finite difference method solution for a particular set of 

tissue conductivities. Sensor positions, acquired with the Geodesic Photogrammetry System, 

are registered with the head model (top right). 

With dense-array sensors and accurate head models, we can compare source esti-

mate results with fMRI findings to determine convergence.  In this paper, we start 

with a brief review of a dual-system learning model derived from a meta-analysis of 

fMRI results.  This meta-analytic study identifies cortical structures involved in the 

learning process.  We then qualitatively compare these findings with results from two 

learning studies conducted with dense-array EEG [4, 5].  
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2   Method 

In a meta-analytic review of human learning and performance studies using fMRI 

technology, Chein & Schneider [6] identified two systems that are differentially en-

gaged during learning and performance.  They showed that the prefrontal lobes (in-

cluding the inferior frontal gyrus, dorsolateral prefrontal cortex, and medial prefrontal 

cortex) and anterior cingulate cortex (ACC) are strongly engaged early in the learning 

cycle when stimulus-response mappings are actively being established. In later stages 

of learning, however, once contingency mappings have become consolidated, these 

frontal structures exhibit a reduction in activity. In contrast, posterior regions, includ-

ing the posterior cingulate cortex (PCC), precuneus, cuneus, superior parietal lobule, 

and intraparietal sulcus demonstrate increased activity during these later stages. The 

reduction of activity observed in frontal structures in later stages of learning appears 

to represent reduced reliance on top-down executive control systems once learning 

has been established, while the increased activity observed in posterior structures may 

represent the establishment and automatization of the learned action patterns as well 

as continued monitoring of performance. Figure 2 presents the location of some of 

these areas.  These data will serve as the comparison for the dense-array EEG source 

estimate results. 

 

Fig. 2. Cortical structures that make up the dual-system model.  Red circles mark cortical re-

gions that make up the early-learning system.  These include the ACC and inferior frontal gyrus 

(shown).  Blue circles mark the cortical regions that make up the late-learning system.  These 

include the PCC and the superior parietal lobules (shown).  See text for other components. 

The dense-array EEG data are taken from two learning studies we conducted pre-

viously [4, 5].  In these studies, participants were required to learn stimulus-response 

mappings through trial and error.  That is, on some trials, participants had to deter-

mine whether a two digit code (e.g., 12) required a response or not, and if it required a 

response, they head to determine whether to respond with the index or middle finger 

of either the right or left hand.  After each response, participants were provided with a 

feedback stimulus to inform them of the correctness of their response.  All partici-

pants used the feedback to guide their learning.  Participants saw a total of 16 two-

digit numbers (8 required a response and 8 required no response).   

We used a ‘fixed-number of consecutive correct responses’ method for determin-

ing a learning threshold for each participant.  In this method, the learning threshold is 
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defined as the moment when participants made four consecutive correct responses (or 

withholding of a response) for a particular stimulus. On average, participants took 13 

trials with each stimulus to learn the stimulus-response mapping.   

The EEG data were sorted according to pre-learned and post-learned trials. These 

trials types were averaged to form an ERP. The grand-average of all participants’ 

ERPs was then submitted to source estimation using a lead field that was constructed 

with a finite difference model (FDM). The FDM allows accurate characterization of 

the cranial orifices, primarily the optical canals and foramen magnum.  Tissue com-

partments of the FDM were constructed from whole-head MRI (Colin_27) and CT 

scans of a single subject whose head shape closely matches the Montreal Neurologi-

cal Institute (MNI) average MRI (MNI305).  The MRI and CT images were co-

registered prior to segmentation of the brain and cerebral spinal fluid (identified from 

MRI data), and the skull and scalp (identified from CT images), and the individual’s 

MRI and CT images were aligned with the cortex volume from the MNI atlas with 

Talairach registration.  The tissue volumes were parceled using 2 mm voxels to form 

computational elements of the FDM. Conductivity values used in the FDM model are 

as follows: .25 S/m (Siemens/meter) for brain, 1.8 S/m for cerebral spinal fluid, .018 

S/m for skull, and .44 S/m for scalp.  These values reflect recent evidence that the 

skull-to-brain conductivity ratio is about 1:14, compared to the 1:80 ratio traditionally 

assumed. 

 
Fig. 3. Left: See Figure 2 caption.  Right: Activity localized to the inferior frontal gyrus and 

ACC (early-learning system) and PCC and parietal lobules (late-learning system). 

3   Results 

Figure 3 shows the source estimate results from the two learning studies [4, 5] com-

pared to the dual-system learning model.  Of particular significance was that, as pre-

dicted, we found activity in the inferior frontal gyrus, ACC, PCC, parietal lobules, 

cuneus, and precuneus.  We found that the inferior frontal gyrus and medial frontal 
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lobes were indeed involved in the early stages of learning, as predicted, but that their 

activity only decreased after learning in response to viewing the feedback stimuli.  

When viewing the target (i.e., the imperative stimulus), activity in the inferior frontal 

gyrus and ACC remained strong, even after learning.  We also found that activity lo-

calized to the PCC, parietal lobules, cuneus, and precuneus increased after learning, 

as predicted by the dual-system model. 

4   Discussion 

There are existing studies that have simultaneously recorded EEG and fMRI data.  

However, these studies often employed sparse-array channel counts (e.g., [7]) and, 

therefore, EEG source estimate results were poor.  Nevertheless, these studies demon-

strated good convergence between EEG and fMRI data. The results that we obtained 

from our dense-array EEG studies during learning confirm the predictions made by 

the dual-system learning model.  This model predicts that there are separable early- 

and late-learning systems that contribute uniquely to the learning process.  This learn-

ing model was constructed by Chein and Schneider [6] based on data from human 

fMRI studies.  This model is also supported by data from animal studies that point to 

the existence of similar systems.  Therefore, the convergence we found between our 

source results with the predictive model is quite striking.  

However, unlike fMRI and animal studies, data from dense-array EEG studies pro-

vide exquisite temporal information because the EEG directly reflects neuronal activ-

ity..  We found that activities localized to structures of the early-learning system occur 

quite rapidly (~ 250 ms after onset of the imperative stimulus) and that they substan-

tially overlap in time with activities localized to structures of the late-learning system 

(~ 400 ms after onset of the imperative stimulus).  The temporal course of these acti-

vations reflects the dynamic nature of neurophysiological function.  

In summary, evidence shows that source estimates derived from dense-array EEG 

data may have the spatial resolution required for studying brain processes involved in 

cognition. Comparison of EEG results with other neuroimaging modalities, such as 

fMRI, is now possible because EEG data can be analyzed within the same space (i.e., 

neural source space rather than scalp space) as the analysis of fMRI data. As more 

EEG studies demonstrate such convergence of results, the utility and validity of 

dense-array EEG for neuroergonomic studies will be realized.  
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Parsimonious Identification of Physiological Indices for 

Monitoring Cognitive Fatigue 
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Abstract. The objective of this study was to identify a parsimonious set of phy-

siological measures that could be used to best predict cognitive fatigue levels. A 

37 hour sleep deprivation study was conducted to induce reduced levels of 

alertness and cognitive impairment as measured by a psychomotor vigilance 

test. Non-invasive, wearable and ambulatory sensors were used to acquire car-

dio-respiratory and motion data during the sleep deprivation. Subsequently 23 

potential predictors were derived from the raw sensor data. The least absolute 

shrinkage and selection operator, along with a cross validation strategy was 

used to create a sparse model and identify a minimum predictor subset that  

provided the best prediction accuracy. Final predictor selection was found to 

vary with task and context. Depending on context selected predictors indicated 

elevated levels of sympathetic nervous system activity, increased restlessness 

during engaging tasks and increased cardio-respiratory synchronization with in-

creasing cognitive fatigue. 

Keywords: cognitive fatigue, heart rate variability, feature selection, wearable 

sensors. 

1   Introduction 

Fatigue is a growing problem in modern society.  Although sleep experts have found 

that most adults need 8 hours of sleep per night [1], the average American adult is 

sleeping only 6.8 hours per night [2], and as much as 20% of the population appears 

to be acquiring only 6.5 hours of sleep per night [3]. 

In general terms, losing even small amounts of sleep each night will exert cumula-

tive adverse effects on waking performance which include vigilance decrements, 

increased lapses of attention, cognitive slowing, short-term memory failures, deficits 

in frontal lobe functions, and rapid and involuntary sleep onsets [4]. Studies compar-

ing the effects of increased blood alcohol concentrations (BAC) to the effects of sleep 

loss illustrate the seriousness of insufficient sleep on alertness and performance. In-

vestigations have shown that sustained wakefulness of 20-24 hours produces decre-

ments equal to those observed with BAC levels of between 0.08%-0.10% on tests of 

psychomotor performance, grammatical reasoning, vigilance, and simulated driving 

performance [5].  Operator fatigue is frequently responsible for costly accidents and 

mishaps in driving, aviation, shift health care workers and other similar industries.  
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If it were possible to accurately predict when an individual was becoming overly 

fatigued, timely mitigation strategies could be employed to prevent accidents and 

other costly fatigue related problems. Several computer models currently calculate 

performance-readiness predictions that are generally accurate, but none are capable of 

accounting for individual differences in fatigue vulnerability [6].   

Clearly, sleep-wake times are insufficient to model the impact of individual differ-

ences in fatigue vulnerability. Therefore we hypothesized that a more accurate as-

sessment of cognitive fatigue could be made by using measured physiology of an 

individual. To address this, we first ask the question of which physiological variables 

would be the best predictors of cognitive fatigue. This paper focuses on this question 

and seeks to identify a parsimonious subset of physiological variables that best track 

changes in cognitive fatigue and vigilance due to chronic sleep restriction.  

2   Methods 

2.1   Physiological Measurements 

2.1.1   Sensor Technology 

There are many candidate physiological measurements that may have strong predictive 

power of cognitive fatigue. Given that real-world monitoring applications require a 

product that may be used in non-laboratory, ambulatory contexts, we focused only on 

those sensor technologies that met criteria of non-invasive, ambulatory, wearable, 

unobtrusive and artifact resistant. We thus selected a representative commercially 

available ambulatory, wearable monitoring system called the BioHarness (ZephyrTech, 

NZ). This system is a chest strap that is capable of non-invasively, continuously and 

simultaneously monitoring electrocardiography (ECG), respiration, motion, posture 

and skin temperature. The strap is light-weight, comfortable and uses proprietary 

smart-fabric sensing technology. Data is continuously logged using onboard flash 

memory and subsequently downloaded to a PC for further offline processing.  Data 

may also be wirelessly acquired over a BlueTooth connection for further real-time 

development.  

2.1.2   Candidate Feature Derivation 
There is a strong link between cognitive fatigue and cortical arousal as measured with 

electroencephalographic (EEG) activity [7]. However, due to the fact that EEG mea-

surements are better suited for laboratory conditions, we sought to investigate whether 

systemic autonomic arousal demonstrated similar progression to cortical arousal. 

Studies have demonstrated that the fatigue state is associated with a shift of sympa-

thovagal balance toward sympathetic predominance and reduced vagal tone [7].  Thus 

measurements indicative of autonomic balance could have sufficient predictive power 

to discriminate between differing levels of cognitive fatigue.  

Heart rate variability 

The analysis of heart rate variability provides a way to non-invasively study the  

autonomic nervous system (ANS) by acting as a dynamic window into autonomic 

function and balance. Over the years, a variety of metrics have been proposed to  
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succinctly quantify HRV and the associated respiratory sinus arrhythmia (RSA).  Due 

to the variety of metrics, in 1996 the Task Force of the European Society of Cardiolo-

gy and the North American Society of Pacing and Electrophysiology suggested stan-

dard mathematical procedures for short-term HRV evaluation [8]. However the task 

force report only considers HRV from the ECG and a number of laboratory studies 

have documented that changes in respiratory parameters can seriously confound the 

association of RSA and cardiac vagal tone [9]. Thus when respiratory measures are 

also available, several adaptations to these methods, as well as new methods may be 

included. In addition further indices derived from non-linear dynamical analysis are 

also included. Table 1 lists all the candidate predictor features derived from HRV and 

RSA measures. 

Table 1. Candidate HRV features 

Feature name Feature description 

Time domain features 

ANN 

RMSSD 

SDNN 

Frequency domain features 

HF 

LF 

VLF 

LF/HF 

HFnorm 

LFnorm 

Non-linear features 

SampEn 

CD 

MLE 

Cardio-resp features 

RSA 

PSI 

 

Average heart rate 

Root mean square of successive differences 

Standard deviation 

These were derived using the Welch method. 

Spectral power in high frequency rangea 

Spectral power in the low frequency rangeb 

Spectral power in the very low frequency rangec 

Ratio of LF to HF 

HF power normalized to total power 

LF power normalized to total power 

 

Sample Entropy [10] 

Correlation Dimension [10] 

Maximum Luypanov Exponent [10] 

 

Correlation coefficientd 

Phase Synchrony Index [11]e 

 
a
Default range is 0.15-0.4Hz. However, the respiratory rate was calculated from the 

respiration band and the HF range was centered at the respiration frequency, with a 

width of 0.15Hz on either side of this. 
b
Default range is 0.04-0.15Hz 

c
Default range is 0.01-0.04Hz 

d
This was the normalized correlation coefficient between the respiratory signal and 

the heart rate signal over the specified time epoch. The HR signal was resampled 

using a linear interpolation to an even rate of 2Hz. The respiration signal was 

downsampled to 2Hz. 
e
This is a newly developed data analysis technique based on the mathematics of 

nonlinear dynamics and allows any interaction that does occur in even weakly 

coupled complex systems to be observed [11]. It is especially well suited to probe the 

weak interactions between irregular and non-stationary oscillators such as the human 

heart and respiratory system. Phase locking of respiratory and the cardiac rhythms,  
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Table 2. Candidate respiratory features 

Feature name Feature description 

General respiration 

RR 

Vol 

Mvol 

DC 

Respiratory irregularity 

TVI 

DCvar 

BRV 

 

Respiration rate 

Tidal volume (uncalibrated) 

Minute Ventilation 

Duty Cycle 

 

Tidal Volume Instability [12] 

Duty Cycle Variability[12] 

RMS of sucessive differences of breath period [12] 

 
and respiratory modulation of heart rate (RSA), are two competing aspects of cardio-

respiratory interaction.  

Respiratory features 

Everyday observation suggests that psycho-physiologic state is a determinant of respi-

ration and this relationship has been actively investigated dating as early as the begin-

ning of this century. However, contemporary research showing how respiration may 

be used as a surrogate of autonomic balance is relatively sparse. Despite this, there is 

evidence that changes in autonomic balance in general do influence respiration, and 

that different states give rise to different breathing patterns. There are certainly ob-

vious markers such as respiration rate and volume that are typically used to index 

autonomic changes. However in addition to this several studies point to dysregulated 

breathing as having the most potential to index arousal. For example, studies examin-

ing the relationship between respiration and state in the clinical context of anxiety, 

panic disorder and chronic pain all point to irregularity in breathing as a key marker 

of anxiety [12]. Furthermore, it has been demonstrated that irregularity in breathing 

appears to increase under conditions of sympathetic arousal such as emotional upset 

and excitement. Table 2 lists all the candidate predictor features derived from respira-

tory measures. 

Motion features 

In addition to the cardio-respiratory features, two features derived from the trunk 

accelerometer were also used. These features were fairly simple features and were the 

overall level of motion and the variability in motion. These are listed in table 3. 

Table 3. Candidate motion features 

Feature name Feature description 

motion 

motionVar 

Mean acceleration 

Standard deviation of acceleration 

2.2   Vigilance Assessment 

Objective cognitive performance evaluations were accomplished with the Psychomotor 

Vigilance Task (PVT). This is a portable, low-voltage, battery-powered reaction-time 
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test known to be sensitive to sleep loss [13]. The PVT is commonly utilized to track 

changes in vigilance or sustained attention; attributes that underlie the successful ac-

complishment of many types of more complex cognitive tasks.  A variety of data is 

generated from the PVT, but of primary interest were reaction-time measures, accuracy 

measures, and attention-lapse indications since these reflect cognitive slowing and 

response failures. 

2.3   Study Design 

Six subjects were recruited for a continuous 37 hour sleep deprivation study. Partici-

pants were instructed to obtain a minimum of 8 hours of sleep prior to reporting the 

research facility.  They were instructed to awaken at 0700 on day 1 and they subse-

quently had to remain awake until at least 1900 hours on the second day of the study.  

Participants were outfitted with the BioHarness and data quality was verified to en-

sure correct fit and function.  

Starting at 1000 on Day 1, each subject had to complete the first 10-minute test 

session on the PVT. Subsequent PVT sessions occurred every hour until 1800 on Day 

2.  Before and after each PVT, participants reported to the testing room where they 

were seated in a comfortable chair and asked to remain relaxed, still, and quiet with 

eyes open for 3 full minutes to stabilize autonomic activity. In between PVT sessions, 

participants will be free to play computer games, watch TV, or engage in any other 

type of sedentary activity.  Following completion of the study, data was downloaded 

off the on-board flash memory storage to a PC for subsequent analysis. 

2.4   Parsimonious Feature Selection 

The objective of this study was to identify a parsimonious set of physiological meas-

ures that could be used to best predict cognitive fatigue levels.  The importance of 

parsimony in feature selection is emphasized as it tends to improve prediction  

performance and simpler models are preferred for the sake of scientific insight and 

interpretation of the chosen features.  In general, statistical learning theory poses a 

structural risk minimization criterion that balances the trade-off between good empiri-

cal performance (i.e., classification accuracy on training data) and good generalization 

ability (i.e., classification accuracy on unseen data).  Most classifiers will generalize 

badly in the situation of many irrelevant features. Unfortunately, a frequently encoun-

tered constraint when working with physiological data is that the numbers of potential 

or candidate predictors tend to be of the same order of magnitude or larger than the 

number of available observations for training. We therefore sought to perform effec-

tive feature subset identification given this constraint. 

A complete set of candidate features that compactly represent the original physio-

logical data set were identified.  A total of M=23 features were selected for the  

candidate feature set. All features were extracted over a 3 minute quiet period pre-

ceding and following the PVT test and also the 10 minute period during the PVT 

test. Each feature was subsequently normalized to the initial baseline period. 

For each subject, and for each of time period, a vector of features plus a constant 

term was formed:  
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࢞௜ ൌ ሾ1, ,௜ଵݔ ,௜ଶݔ … , ௜ெݔ ሿ் (1) 

The mean reaction times from the PVT tests were pooled together for each subject 

and each test to form a response vector: ࢟ ൌ ሾݕଵ, ,ଶݕ … ,  ேሿ் (2)ݕ

where N is the number of time periods multiplied by the number of subjects. All fea-

tures were pooled together into a single N by M+1 matrix, ࢄ ൌ ሾ࢞ଵ, ࢞, … , ࢞ேሿ். 

When the number of predictors M exceeds the number of training samples N, the 

modeling problem is underdetermined, or ill-posed in the Hadamard sense.  In this 

instance, it is desirable to find a model with significantly fewer predictors and in fact, 

the more sparse the model, the more likely that the predictors are causally related to 

the dependent variable.  In order to achieve this for ill-posed data, the values of the 

regression coefficients b, can be constrained via a shrinkage function.  ࢈ ൌ arg min௕ԡ࢟ െ ԡଶܾࢄ ൅ ߣ ෍ |ܾ௜|௜ୀଵ…ெ  
(3) 

where ߣ is a tuning parameter.  

This method is called the Least Absolute Shrinkage and Selection Operator (LAS-

SO), and is a regularization and selection method [14]. For each value of the tuning 

parameter, the LASSO will generate a sparse solution by setting many of the parame-

ters to 0.  The LASSO is a particularly attractive algorithm as it uses L
1
 norm which 

can be viewed as the most selective shrinkage function that remains convex. Since a 

convex function has a global minimum and no local minima, convexity guarantees 

that we can find the one global solution for a given dataset. We used a highly efficient 

algorithm for solving the LASSO, termed Least Angle Regression (LARS) [15]. This 

algorithm converges to the final solution in M steps.  

For each solution returned by the LARS algorithm, we evaluated the accuracy of 

the result using a leave-one-out cross validation procedure. We iterated through each 

subject, forming a test vector of PVT scores for that subject and a training matrix with 

the remaining subject. At each iteration we calculated a first order correlation coeffi-

cient between the predicted PVT scores and the test PVT scores. These were then 

averaged to provide a single statistic. The set of features that provided the largest 

statistic was subsequently selected as the final reduced feature set. 

Both predictor and response data were centered and normalized to unit deviation 

prior to running the feature selection algorithms. 

3   Results 

Table 4 shows the LASSO selected predictors for each studied epoch. Also displayed 

are the regression accuracies using the leave-one-out cross validation procedure. No 

more than two features were selected for each task and this may be due to the fact that 

many features are well correlated amongst themselves. 

As an illustration of prediction performance, figure 1 shows the prediction results 

for the 3 minute post PVT test period.  Note that the data in this figure is normalized 

and centered to unit deviation.  
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Table 4. Selected features and prediction accuracy 

Task Selected features Accuracy 

3 minutes prior to test BRV; LFnorm 0.52 

PVT test Motion 0.74 

3 minutes post test BRV; PSI 0.72 

 
Fig. 1. Prediction results for the 3 minute period post PVT test. The solid line shows the  

normalized and centered mean PVT reaction time for each continuous hour of wake across 

subjects. The dotted line shows the regression prediction using the LASSO selected features 

(BRV; PSI). 

4   Discussion 

In-between PVT sessions, the participants were free to engage in any type of activity. 

As a result of this, the levels of autonomic activity during the 3 minute quiet period 

prior to the PVT test may have been dominated by the activities during the free pe-

riods. This is potentially why this period showed the poorest correlations. However, it 

remains interesting to note that the features selected during this period both strongly 

represented sympathetic arousal (the breath rate variability and the normalized low 

frequency power of the HRV). Although it is expected that sleep restriction increases 

sympathetic system outflow, the weak prediction accuracy may have been due to 

additional changes in this system caused by uncontrolled activity during the non-test 

periods. 

The feature selection results during the actual PVT test initially appear to be sur-

prising. Here the mean level of body motion was selected as the strongest predictor of 

cognitive fatigue.  Taking a PVT test demands a degree of concentration and during 



502 L.J. Myers and J.H. Downs 

alert periods subjects were more focused and able to concentrate on the task with 

minimal distraction. However, as the subjects became more fatigued, they tended to 

become increasingly restless during administration of the PVT test. This restlessness 

was captured by background body movements as recorded by the accelerometer and 

was directly correlated with PVT performance. 

In the 3 minute stationary rest period following the test, the selected features were 

the breath rate variability (BRV) and the phase synchrony index (PSI). The BRV 

represents increases in sympathetic outflow and it has previously been noted that this 

increases during sustained attention tasks with increasing sleep restriction. The PSI 

represents the synchronization between the cardiac and respiratory systems and this 

increase in synchronization only manifested during the rest period following a de-

manding attention task. It is has been shown that synchronization and modulation 

(RSA) are two different competing aspects of cardio-respiratory interaction. Often 

when synchronization goes up, RSA goes down [11] and thus it may indicate changes 

in sympathetic activity.  It is further possible that synchronization plays a homeostatic 

role in returning the system to baseline levels following increases in sympathetic 

system outflow. This would explain why there is an increased synchronization drive 

following high attention tasks when sleep restricted. However further research is 

required to better understand this feature. 

This study demonstrates the power of the LASSO based feature selection paradigm 

to select a parsimonious physiological feature set. With appropriate individual sleep 

restriction data, this method could be used to perform individualized feature selection 

accounting for individual differences in fatigue vulnerability. It is also important to 

note that accurate context identification is of fundamental importance for any auto-

mated fatigue prediction system. 

5   Conclusion 

The LASSO feature selection technique allows one to
 
select en-masse, via a conti-

nuous subset optimization, the set
 
of variables that together are effective predictors of 

operator alertness status. This technique combined with commercially-available, 

wearable physiologic monitoring systems is a further step toward a system that can 

improve operational safety and effectiveness by accurately assessing cognitive fatigue 

levels during stressful day to day conditions.  
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Abstract. Near-infrared (NIR) sensing in flight applications can provide critical 

objective indicators of crew state.  By monitoring oxy-hemoglobin concentra-

tions, a NIR sensor can detect changes in flight crew physiology in response to 

both cognitive demands and extreme conditions related to flight applications, 

including gravity-induced loss of consciousness (G-LOC) and hypoxia.  A cus-

tom NIR sensor was created for in-helmet monitoring of oxy-hemoglobin in 

flight.  This wearable, wireless sensor addresses requirements for flight applica-

tions and was applied to a case study that examines the raw optical signal and 

oxy-hemoglobin response to Valsalva maneuvers performed at 1g.   

Keywords: Near-infrared sensing, functional brain imaging, oxy-hemoglobin, 

hemodynamics, physiologic monitoring. 

1   Introduction 

Physiologic monitoring is currently not widely used in flight applications but can 

provide critical signals that serve as objective indicators of crew state. An oxy-

hemoglobin concentration monitor for in-flight use can respond to both the high  

cognitive requirements of aircrew as well as the physiologic responses to conditions 

specific to flight applications. As a measure of hemodynamic response, near-infrared 

imaging can detect cognitive tasks in a highly-demanding, multi-tasking flight envi-

ronment for intelligent presentation of subsequent tasks or communications based on 

current cognitive loads [1].  Monitoring cerebral oxy-hemoglobin concentrations can 

reflect physiologic changes evoked by high-G maneuvers or hypoxic conditions [2,3].  

The effects of such conditions are noteworthy.  Between 1982 and 2002, 559 inci-

dents were reported to the USAF Safety Center relating to gravity-induced loss of 

consciousness (G-LOC), with 30% of these incidents resulting in crashes for single-

crewmember aircrafts.  The fatality rate for these crashes is 100% [4].  Symptoms of 

hypoxia range from dizziness, fatigue, and visual impairment to loss of consciousness 

[5]. These symptoms often go unrecognized by flight crew experiencing them.   

To this end, a near-infrared (NIR) sensor has been created for monitoring oxy-

hemoglobin changes from within a flight helmet.  This wearable sensor was designed 

to be mounted within a helmet, above the ear cup, and features wireless communica-

tions and battery power to eliminate any tethering between the flight crew and the 



 In-Helmet Oxy-hemoglobin Change Detection Using Near-Infrared Sensing 505 

cockpit.  The enclosure for the sensor is focused on comfort for long-duration wear, 

but also allows for adjustability of the optics for proper NIR sensing and protects the 

electronics from moisture.   

The capabilities of this sensor were verified in a case study.  Two subjects per-

formed Valsalva maneuvers while wearing the NIR sensor and the oxy-hemoglobin 

concentrations output from the sensors were analyzed for expected signal changes in 

response to the maneuvers.  The results of this study verify both the functionality and 

the sensitivity of the system to regional oxy-hemoglobin concentration changes. 

1.1   Near-Infrared Sensing 

Near-infrared (NIR) sensing technology utilizes the known optical properties of near-

infrared light in human tissue to monitor oxy- and deoxy-hemoglobin concentrations 

[6].  There are two forms of interactions between light and tissue, absorption and 

scattering, with scattering being the more prevalent form. In between visible and 

infrared light, NIR light (750nm-2500nm) is relatively weakly absorbed and scattered 

[7].  Oxy- and deoxy-hemoglobin, present in all living human tissue, have distinct 

absorption spectra of near-infrared light, which is used to calculate the concentrations 

of oxy- and deoxy-hemoglobin in tissue based on the differential changes in received 

NIR light passed non-invasively through this tissue.   

By applying this sensing to the head, the oxy-hemoglobin concentration changes 

can be measured on the cortical surface of the brain.  These changes measure the 

hemodynamic response evoked by cognitive activity in the monitored area, allowing 

for functional brain imaging.  Changes in oxy-hemoglobin concentrations in the head 

can also be measured as the physiologic response to extreme settings, such as high-G 

exposures or hypoxic conditions. 

Although fMRI is a technology that measures similar physiologic signals related to 

cognitive activity, the hardware required for near-infrared sensing can be much more 

compact and less costly.  While not offering the same spatial resolution as fMRI, 

functional near-infrared imaging (fNIR) is more suitable for mobile and/or real-world 

applications in natural environments.  

1.2   In-Helmet Sensor Design 

Archinoetics created a custom near-infrared sensor for oxy-hemoglobin change moni-

toring.  The targeted application was for flight crew so the design focused on sensor 

miniaturization for mounting within a helmet without compromising any safety fea-

tures.  Wireless operation, both for power and communications, was also a priority to 

prevent tethering between the user and the cockpit, as is preferred for flight platform 

integration. 

The wearable near-infrared sensor created, shown below in Figure 1, features non-

invasive NIR sensing through hair for oxy- and deoxy-hemoglobin concentration 

monitoring with wireless data communications and battery power within a sweat-

proof enclosure.  In addition to the real-time, continuous-wave NIR signals, the sensor 

also provides 3-axis accelerometry.  An optional single channel of EEG is included 

and can be used with a clear conductive gel without interfering with the NIR optics. 
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Fig. 1. Archinoetics’ custom in-helmet near-infrared sensor 

Design constraints focused on meeting flight requirements, including eliminating 

any potential tethering for communications or power, comfort for extended wear, and 

adhering to flight platform safety requirements, while maintaining signal integrity and 

strength. 

Sensor electronics underwent miniaturization and power minimization in order to 

enable an in-helmet, wearable design.  Custom optics used contributed to these modi-

fications.  A custom LED array was fabricated to emit the NIR light, requiring fewer 

mechanical components than lasers to stabilize the optical power and time-multiplex 

the three wavelengths used.  Semi-custom silicon photodiodes with embedded gain 

and copper enclosure provides shielding to lower the noise level while still sensitive 

to even the minute changes associated with a hemodynamic response.  Power minimi-

zation allowed for the system to be powered through a rechargeable, Li-Ion battery, 

eliminating the need for a connection to an external power source. 

The inclusion of a 3-axis MEMS accelerometer, while adding little to the overall 

electronics footprint, provides valuable signals for environmental monitoring (such as 

the detection of high-G maneuvers during flight) as well as signals needed for further 

investigation into the detection and/or removal of motion artifacts that affect the NIR 

sensing signal. 

The design of the sensor enclosure centered around subject comfort for extended 

wear and a form factor that would fit into a Navy flight helmet above the ear cup 

without compromising any of the safety features, while still maintaining the optical 

requirements for NIRS sensing.  The resulting enclosure uses low-spring rate com-

pression springs behind the optics to ensure constant but comfortable skin contact 

with the optical fiber penetrating hair for optics-skin coupling over any part of the 

head.  Compressed spring height was balanced with the optical component and outer 

wall height for complete retraction of the optics to avoid skin penetration for flight 

impact safety.  The optics enclosure is semi-spherically shaped with the rounded sur-

face cradled against the top of the compression spring.  This configuration allows 

self-rotation of the optical components to ensure an orthogonal coupling of the optics 

to the surface of the scalp as required of the optical path of the NIR light.   
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Fig. 2. Illustration with an internal view of the sensor enclosure design that fits within a Navy 

flight helmet above the ear cup with spring-mounted optics that allow for self-rotation of the 

optical components 

Channels allow the optics components to move laterally and independently to en-

sure a 2.5 – 3.5 cm lateral separation between the emitter and detector for proper 

NIRS sensing of the cortical surface.  The required spacing between the optics is 

dependent on the area of interest and individual differences in physiology.  Torsion 

springs along the central joints apply low pressure against the imaging surface with 

the overall curvature of the sensor matching the curvature of the top of the ear cup 

when mounted within the helmet.  Any electrical interconnects between components 

are done with sealed flex cables and travel through channels in the enclosure to pro-

tect the internal electronics against potential water or sweat contact. 

To include the optional channel of EEG, an electrode is twisted into place on the 

top surface of the sensor enclosure.  Any electrode can be used that is the same height 

as the optics, has a central void for the NIR optics and a conductive surface that ex-

tends to the back of the electrode.  Electrical contact is made through a spring-loaded 

pin that is mounted on the internal circuit board and protrudes through the enclosure 

against the electrode base.  This EEG channel has been used with Ag/AgCl coated 

probed and gold cup electrodes.  Both types of electrodes were modified by reducing 

the height and adhering the electrode to a conductive washer with conductive epoxy. 

Table 1. Features, advantages, and benefits of the custom NIR sensor created 

Features Advantages Benefits 

Combined EEG & 

NIR sensing 

Multiple physiologic signal 

monitoring in a single package 
Fewer devices to be worn 

Wireless capabilities 
No wiring required for data 

transmission 
No wiring from helmet 

Battery powered 
External power source not 

required 

No wiring between helmet 

and external power source. 

No tethering to cockpit 

power source. 

Miniaturized Small device form factor 

Helmet integration without 

modifications to safety 

features 
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A USB module receives data wirelessly in the ISM 2.4GHz band from an external 

PC for the modularly-expandable C# software application.  Additional layers of proc-
essing or display can be added onto the application using the XML-based scripting to 
include third-party modules in a processing pipeline.  Included modules focus on tools 
for assurance of correct sensor placement, such as a raw light levels display and signal 
quality check through signal-to-noise ratios, graphical displays of the incoming sig-
nals, and data logging. 

2   Case Study:  Oxy-hemoglobin Response to Valsalva Maneuvers 

The capabilities of the wearable sensor were demonstrated in a limited case study.  Two 

subjects performed Valsalva maneuvers based on a protocol used in research published 

by Bluestone [8].  Raw NIRS optical signals were logged along with the 3-axis acceler-

ometer data from the same sensor.  The accelerometer data was used to verify the ab-

sence of significant movement which would cause movement artifacts in the optical 

signal.  The NIRS signal was analyzed for the expected fluctuations in oxy-hemoglobin 

concentrations in response to the performance of Valsalva maneuvers. 

2.1   Methods 

Two subjects participated in this study, resulting in five trials total.  Subjects were 
asked to minimize head movement during the protocol to alleviate the question of 
slippage artifact.  Subjects rested (no task) for 60s, performed a Valsalva for a 30s 
task window, rested for 30s, performed a Valsalva for 30s, rested for 30s, performed a 
Valsalva for 30s, then rested for at least 90s.  The first subject performed two trials as 
described and the second subject performed three trials for a total of five trials. 

Subjects that participated are experienced divers that use Valsalva maneuvers 
while diving to equalize pressure in the ear and sinus cavities. They were instructed to 
perform the Valsalva maneuvers to the extent that they felt comfortable.  Forceful 
Valsalvas for the entire 30s task window were performed by the first subject for his 
second trial.   

The sensor was placed on the left temple of the subject and held in place with a 
Velcro strap.  After sensor placement, signal quality was verified through the visual 
inspection of the raw optical signal for the presence of heartbeats.  The sampling 
frequency used was 256Hz. 

The raw optical near-infrared signal was logged for post-processing.  These signals 
were converted to oxy-hemoglobin concentrations using a modified Beer-Lambert 
equation [9].  A median filter was applied to the raw optical and oxy-hemoglobin 
concentration signals to remove physiologic and high-frequency noise from the elec-
tronics.  The median filter used a one-second window of past data in order to maintain 
the potential for real-time analysis in the future. 

Raw accelerometer data was also logged at 1024Hz for detection of subject move-
ment as a potential source of motion artifact in the optical signal. 

2.2   Results 

Subject raw optical data for the 760nm wavelength and oxy-hemoglobin data were 

converted into percent changes compared to a 30s baseline at the beginning of each  
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Fig. 3. Averaged oxy-hemoglobin concentration changes in response to Valsalva maneuvers 

(shaded periods) 

 

Fig. 4. Averaged 760nm wavelength optical intensity changes in response to Valsalva maneu-

vers (shaded periods) 

trial. These signals were then averaged over the five trials, shown below.  The periods 

when the subjects were performing the Valsalva maneuvers are indicated by the 

shaded areas. 

Oxy-hemoglobin concentration increases ranged from to less than 1% to up to 

nearly 4% for the forceful Valsalvas performed by the first subject in his second trial.  

The 760nm signal shows the characteristic drop in optical intensity (essentially meas-

ured photons) during the maneuvers, but not to the same extent as in the Bluestone [8] 

study referenced due to the subjects choosing not to perform the Valsalva as force-

fully as would normally be performed when not at 1g.  

Data from the first subject’s second trial, in which forceful Valsalvas were per-

formed for the duration of each of the 30s periods, are shown in the figures below. 

These data show a 4% increase in oxy-hemoglobin concentration and an approxi-

mately 40% decrease in optical intensity of the 760nm wavelength optical signal 

during the performance of the Valsalva maneuver. 

The on-board accelerometer data revealed only small deviations from the 1g base-

line with an rms error between the accelerometer output and the 1g baseline ranging  
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Fig. 5. Oxy-hemoglobin concentration changes in response to forceful Valsalva maneuvers 

(shaded periods), first subject, second trial 

 

Fig. 6. 760nm wavelength optical intensity changes in response to forceful Valsalva maneuvers 

(shaded periods), first subject, second trial 

from 0.072g to 0.083g (μ = 0.078g, σ = 0.005).  Some of this deviation can be attrib-

uted to hardware noise, specified at 0.009g rms for the x- and y-axes and 0.011g rms 

for the z-axis for the 1024Hz sampling frequency used.   

2.3   Discussion 

Valsalva maneuvers involve the subject forcing expiration against a closed glottis 

which leads to an increase in arterial blood pressure and venous pressure, amongst 

other physiologic measures [10].  Several studies [11-14] have concluded that Val-

salva maneuvers affect cerebral blood flow, and Bluestone et al suggests that these 

increases in cerebral blood flow are associated with an increase in cerebral oxy-

hemoglobin concentrations [8].  

The fluctuations observed in response to the Valsalva maneuvers performed by  

the subjects in this case study reflect the signal changes expected by the physiologic 

response to the maneuvers as shown in the Bluestone study replicated, although not  

to the same degree of signal change.  The smaller signal change percentage in  
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both the raw optical and oxy-hemoglobin concentration signals may reflect the  

subject-reported decisions not to perform the maneuvers as forcefully as could have 

been done.  The more forceful maneuver performed by the first subject, with data 

shown in Figures 5 and 6, show signal changes of the same magnitude as the Blue-

stone study.  Because the on-board accelerometer showed only small deviations from 

the 1g baseline, the signal changes observed should not be attributed to motion arti-

facts, but rather actual physiologic changes. The signal responses to these Valsalva 

maneuvers confirm both the near-infrared system functionality and its sensitivity to 

regional oxy-hemoglobin changes. 

3   Conclusion 

The custom NIR sensor features wireless operation in a wearable form factor that can 

be mounted within a flight helmet.  Sensor outputs show expected responses to Val-

salva maneuvers in the raw optical and oxy-hemoglobin concentrations signals.   

Although the form factor of the sensor and its sensitivity to physiologic signals that 

may be early indicators of GLOC and hypoxia hint to flight applications, there  

are obstacles associated with integrating into a flight platform, including rigorous 

validation and strict regulatory approvals required.  Other applications of the system 

designed are being researched, including physiologic measurements for clinical appli-

cations and cognitive activity research.  

For these applications, helmet integration is not needed.  An alternative form factor 

has been designed for making contact with the head without a helmet.  Figure 7, be-

low, shows a design for a functional brain imaging application, specifically for analy-

sis of Broca’s area where hair penetration for skin coupling is not required due to the 

location of that region.  The enclosure holds a strap in place to aid in the coupling the 

sensor to the head without a helmet. 

 

Fig. 7. Custom NIR sensor for verbal cognitive activity detection and analysis 

Future work will focus on signal processing and algorithm development for artifact 

removal and extraction of signals of interest.  These signals of interest include vital 

signs, such as heart rate, inter-beat intervals, and respiration rate derived from the 

oxy-hemoglobin concentration signal, as well as cognitive activations when applied to 

imaging of the cerebral cortex.  Artifact removal is based on the application and sig-

nal of interest, with a large focus on motion artifact detection and/or removal (aided 

by the on-board accelerometer). 
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Additional efforts are being directed to the extraction of an accurate heartbeat sig-

nal from the NIR output.  Physiologic signals unavoidably affect oxy- and deoxy-

hemoglobin levels, with the dominant signals consisting of oscillations from the 

heartbeat and respiration.  The heartbeat propagates changes in oxy- and deoxy-

hemoglobin concentrations throughout the body tissue, resulting in changes in tissue 

transparency for NIR wavelengths outside of the isobestic point.  Thus, the heartbeat 

signal is present in fNIR imaging as a pulse waveform, with the inflection points 

determined by the systolic pressure wave [15].  The use of the NIR signal for heart-

beats would enable measurement from a single-site sensor, rather than multiple sensor 

sites as required by ECG-based measures. 
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Abstract. An important question for ecologically valid virtual environments is 

whether cohort characteristics affect immersion. If a method for assessing a cer-

tain neurocognitive capacity (e.g. attentional processing) is adapted to a cohort 

other than the one that was used for the initial normative distribution, data ob-

tained in the new cohort may not be reflective of the neurocognitive capacity in 

question. We assessed the psychophysiological impact of different levels of 

immersion upon persons from two cohorts: 1) civilian university students; and 

2) West Point Cadets. Cadets were found to have diminished startle eyeblink 

amplitude compared with civilians, which may reflect that cadets experienced 

less negative affect during the scenario in general. Further, heart rate data re-

vealed that Cadets had significantly lower heart rates than Civilians in the 

“low” but not “high” immersion condition. This suggests that “low” immersion 

conditions may not have the ecological validity necessary to evoke consistent 

affect across cohorts.   

Keywords: virtual environment; psychophysiological assessment; immersion; 

ecological validity, neuropsychology. 

1   Introduction 

Neuropsychological studies tend to assess neurocognitive performance using stan-

dardized assessments in controlled settings and behavioral (i.e. self and other) rating 

scales for assessment of the subject’s activities in a real-world setting. While tradi-

tional neuropsychological assessments manipulate the complexity of the stimulation, 

they do little to assess the impact of the intensity of the situation. Neuropsychological 

assessment should strive for ecologically valid assessments in which findings may 

reflect the varying levels of intensity found in real world situations. For example, 

simulations that proffer more intense presentations may elicit accompanying  

increase in emotional responses. In a related manner, findings from neuropsychologi-

cal assessments should be generalizable to real-world situations [1]. While controlled 

                                                           
* Corresponding author. 
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settings offer increased psychometric rigor, naturalistic (i.e. observation-based) be-

havioral ratings may have increased ecological validity in that they may better capture 

the subject’s performance in a real world setting. It is important to note that neuropsy-

chological measures in controlled settings and behavioral ratings based upon natural-

istic observations do not proffer consistently parallel findings. Further, dissimilar 

neurocognitive components may be dissociated both by neuropsychological measures 

in controlled settings and behavioral ratings based upon naturalistic observations [2].  

1.1   Ecological Validity: Verisimilitude and Veridicality 

Current approaches to increasing the ecological validity of neuropsychological as-

sessments reflect the face validity of the assessments and the past experience of the 

neuropsychologist in drawing inferences between the results and the subject’s activi-

ties of daily living. There are two approaches to the establishment of ecologically 

valid neuropsychological assessments: verisimilitude and veridicality [3]. From a 

human-computer interaction perspective, “verisimilitude” refers to the similarity be-

tween task demands of the test and demands imposed in the everyday environment. 

The establishment of verisimilitude requires “computer” tests that comprise the eve-

ryday cognitive tasks of the “human”, such that inferences can be easily drawn from 

computer test results and the human’s likely ability to perform those tasks in daily 

life. Contrariwise, “veridicality” of human-computer interaction refers to the extent to 

which results on a computer-based assessment are related to scores on other measures 

(e.g. standardized paper and pencil neuropsychological tests) that predict human per-

formance of real-world tasks [3]. The establishment of veridicality requires that the 

researcher statistically assess the relationship between human performance on com-

puter-based neuropsychological tests and measures of everyday functioning (e.g. 

behavioral observations and rating scales).  

1.2   Virtual Environments for Neuropsychological Assessment 

Virtual environments offer the capacity for merging the benefits of controlled settings 
(e.g. increased psychometric rigor) within ecologically valid virtual environments that 
simulate the naturalistic environment in which behaviors occur. Recent advances in 
simulation technology have produced new methods for the creation of virtual envi-
ronments. With these systems, researchers can present users with ecological veri-
similude reflective of “real world” environments. When delivered via a head-mounted 
display (HMD), an experience of immersion within these captured scenarios can be 
supported in human users. Immersion has been defined as one’s subjective impression 
that she or he is participating in a comprehensive, realistic experience. Immersion 
may be enhanced by design strategies that increase the participant’s suspension of 
disbelief [4]. As such, the VR assets that allow for precise stimulus delivery within 
simulations appear well matched for increasing the ecological validity of neuropsy-
chological assessment.  

The value in using virtual reality technology to produce simulations targeting neu-
rocognitive and behavioral applications has been acknowledged by an encouraging 
body of research. Some of the work in this area has addressed affective processes: 
anxiety disorders, pain distraction, posttraumatic stress disorder [5]. Other work has  
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assessed neurocognitive processes such as attention and executive functioning [6], 

[7]; memory [8], [9], [10]; and visuospatial abilities [11], [12], [13]. While multiple 
attempts have been made to apply theoretical perspectives to the development of 
believable virtual environments, little has been done to “objectively” assess human 
interpretations of immersion in these environments. There is need for the incorpora-
tion of psychophysiological metrics into assessment of human responses while im-
mersed in a virtual environment. As mentioned above, neuropsychological assessment 
should aim to recreate the environment in which the subject will be processing infor-
mation. This is especially important when persons are processing information while 
immersed in environments that have different levels of stimulus intensity. Exposure to 
emotionally intense situations results in regular activation of cerebral metabolism in 
brain areas associated with inhibition of maladaptive associative processes [14]. Iden-
tical neural circuits have been found to be involved in affective regulation across 
affective disorders [15], [16]. Systematic and controlled exposure to physiologically 
intense stimuli may enhance emotional regulation through adjustments of inhibitory 
processes on the amygdala by the medial prefrontal cortex during exposure and 
through structural changes in the hippocampus [17]. 

Thus far, the recording of psychophysiological variables while participants operate 

within virtual environments has produced useful results in studies examining immer-

sion and presence [18], [19], [20]. As such, the VR assets that allow for precise stimu-

lus delivery within ecologically enhanced scenarios appears well matched for this 

research. Researchers have found that the individual characteristics of study partici-

pants may impact the immersiveness and subsequent findings of a given study. Of 

primary importance is the extent to which a participant is capable of “absorption” and 

“hypnotism.” Hence, individual differences may moderate presence and confound 

findings. The propensity of participants to get involved passively in some activity and 

their ability to concentrate and block out distraction are important factors to consider 

when conducting a study. Likewise, evidence suggests that hypnotizability plays a 

role in the outcome of studies using VR. Research into these moderating individual 

traits is of value because such research may augment participant selection [18]. 

An important question for ecologically valid virtual environments is whether co-

hort characteristics affect immersion. If a method for assessing a certain skill is 

adapted to other cohorts and therefore different for each cohort, data obtained in dif-

ferent cohorts are comparable only when changes to the environment designed for one 

cohort are not necessary to demonstrate the studied skill in the cohort concerned.  

For example, neuropsychological assessment of military personnel using a virtual 

environment that was norm referenced to civilians may not have the same predictive 

validity for both cohorts. Herein we assessed the psychophysiological impact of dif-

ferent levels of immersion upon persons from two cohorts: 1) civilian university stu-

dents; and 2) West Point Cadets.  

2   Methods 

2.1   Participants  

A total of 15 subjects participated in this experiment. Six subjects were West Point 

cadets and 9 subjects were civilian students and staff at the University of Southern 
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California. Strict exclusion criteria were enforced so as to minimize the possible  

confounding effects of additional factors known to adversely impact a person’s ability 

to process information, including psychiatric (e.g., mental retardation, psychotic  

disorders, diagnosed learning disabilities, Attention-Deficit/Hyperactivity Disorder, 

and Bipolar Disorders, as well as substance-related disorders within two years of 

evaluation) and neurologic (e.g., seizure disorders, closed head injuries with loss of 

consciousness greater than 15 minutes, and neoplastic diseases) conditions. Subjects 

were comparable in age, education, ethnicity, sex, and self-reported symptoms of 

depression.  

2.2   Procedure 

The University of Southern California’s Institutional Review Board approved the 

study. After informed consent was obtained, basic demographic information and com-

puter experience and usage activities were recorded. While experiencing the VRCPAT, 

participant psychophysiological responses were recorded using the Biopac system. 

Following completion of the VRCPAT protocol, subjects completed the simulator 

sickness questionnaire, which includes a pre-VR exposure symptom checklist.  

2.3   Virtual Reality Cognitive Performance Assessment Test 

The project described herein builds upon a larger (ongoing) project that makes use of 

virtual environments to assess user sensory, perceptual, and neurocognitive perform-

ance on various tasks. Neurocognitive and psychophysiological data gleaned from 

such analyses provides opportunity for implementing systems that can exploit the 

capabilities of nervous systems, rather than simply depending upon human adaptation, 

to improve and optimize human-computer interaction. Monitoring the neurocognitive 

and psychophysiological activity of persons operating within a complex environment, 

however, poses severe measurement challenges. It is also likely that neurocognitive 

and psychophysiological responses in operational versus tightly controlled laboratory 

environments will be significantly, if not fundamentally, different than in controlled 

laboratory settings.  

The VRCPAT project focuses on the refinement of neuropsychological assessment 

using virtual environments to assess persons immersed in ecologically valid virtual 

scenarios. The VRCPAT is a three-dimensional virtual environment (i.e. virtual city 

and Humvee scenarios) designed to run on a Pentium IV notebook computer with one 

gigabyte RAM and a 128 megabyte graphics card. The primary aim of the VRCPAT 

project is to use the already existing library of assets as the basis for creating a VE for 

the standardized assessment of neurocognitive performance within a contextually 

relevant VE. The application uses USC’s FlatWorld Simulation Control Architecture 

(FSCA). The FSCA enables a network-centric system of client displays driven by a 

single controller application.  The controller application broadcasts user-triggered or 

scripted-event data to the display client.  The real-time three-dimensional scenes are 

presented using Numerical Design Limited’s (NDL’s) Gamebryo graphics engine.  

The content was edited and exported to the engine, using Alias’s Maya software. 

Three-dimensional visual imagery is presented using the eMagin z800. Navigation 

through the scenario uses a common USB Logitech game pad device.  
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Virtual reality-based simulation technology approaches, as delineated herein, are 

considered to be the future alternative for devising neuropsychological assessment 

measures that will have better ecological/predictive validity for real-world perform-

ance. As well, the flexibility of stimulus delivery and response capture that are fun-

damental characteristics of such digital environments is viewed as a way for research 

objectives to be addressed in a more efficient fashion for long term needs. The overall 

design of this type of assessment tool allows for 1) Verisimilitude: the presentation of 

realistic environments that reflect activities of daily living; and 2) Veridicality: flexi-

bility in terms of the independent variables that could be studied with this method 

once the psychometric properties of the standardized test are determined.  Such flexi-

bility enables this system to be viewed as an open platform on which a wide range of 

research questions may be addressed. These include the manipulation of: 1) informa-

tion load on the front end via the intensity and complexity of target stimuli to be at-

tended to and the type of information in terms of relevance, similarity, vagueness, 

sensory properties; 2) temporal constraints during varied sustained assessment  

conditions; 3) distracting activities during the neurocognitive assessments; 4) sensory 

modality of the information presentation that needs to be attended to; 5) the reward 

structure used during some tests to assess motivational factors that influence perform-

ance; 6) the presentation of aversive stimuli for stressed performance evaluations;  

and 7) the development of a test bed whereby neurocognitive training and augmented 

cognition strategies could be assessed under known conditions supported by norma-

tive standards. 

2.4   Stimuli and Design 

Subjects were immersed a virtual environment (VE) on two separate experimental 

runs consisting of both a “high” immersion condition and a “low” immersion condi-

tion. In the high immersion condition, subjects wore a head mounted display (HMD) 

with full tracking capabilities and were free to explore their environment visually. The 

high immersion condition also made use of headphones and a tactile transducer floor 

to simulate riding in a large vehicle. The low immersion condition consisted of the 

same virtual Iraqi scenario presented on a 17 inch laptop screen while wearing head-

phones. During the low immersion condition, subjects viewed the VE from a static 

position. 

The VE was comprised of a series of safe and combat zones in an Iraqi city.  In 

both the high immersion and low immersion conditions, subjects viewed the VE from 

the perspective of the driver of a Humvee. The speed and trajectory of the vehicle was 

kept constant to control for time spent in each zone of the VE. Safe zones consisted 

mainly of a road surrounded by a desert landscape and were free of gunfire and other 

loud noises. The combat zones included improvised explosive devices (IEDs), gun-

fire, insurgents, and screaming voices. Subjects passed through 3 safe and 3 combat 

zones on each experimental run. The total length of each run was 210 seconds.   

An acoustic startle probe was used to elicit startle eyeblink responses. The startle 

probe was a 110 dB white noise burst 50 ms in duration with a near instantaneous 

rise/fall time presented binaurally through Telephonics TDH-50P headphones. Deci-

bel levels were measured with a Realistic sound level meter using a Quest Electronics 

earphone coupler. Startle probes were experienced intermittently throughout the  
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experimental runs. A total of 4 startle probes were experienced in both the safe and 

combat zones in each run. 

2.5   Depcholendent Variables 

Psychological Trait Assessment. The following measures were used to assess the 

impact of absorption and immersiveness upon the “believability” of the system. Prior 

to the experiment itself, the subjects were required to fill in the following question-

naires: 1) Tellegen Absorption Scale (TAS). The TAS questionnaire aims to measure 

the subject’s openness to absorbing and self-altering experiences. The TAS is a 34-

item measure of absorption. 2) Immersive tendencies questionnaire (ITQ). The ITQ 

measure individual differences in the tendencies of persons to experience “presence” 

in an immersive VE. The majority of the items relate to a person’s involvement in 

common activities. While some items measure immersive tendencies directly, others 

assess respondents’ current fitness or alertness, and others emphasize the user’s abil-

ity to focus or redirect his or her attention. The ITQ is comprised of 18 items, and 

each is rated on a 7-point scale. 
 

Psychophysiological Assessment. Psychophysiological assessment included:  Elec-

tromyographic activity (EMG), Electrodermal activity (EDA), Electrocardiographic 

activity (ECG), and respiration, which were recorded simultaneously using a Biopac 

MP150 system and a computer running Acknowledge software. 
 

Startle eyeblink response. EMG startle eyeblink responses were recorded using two 

small (4mm in diameter) silver-silver chloride electrodes placed over the orbicularis 

oculi muscle of the left eye and an 8mm silver-silver chloride electrode placed behind 

the left ear to serve as a ground.  One 4mm electrode was placed directly below the 

pupil in forward gaze while the other was placed about 1 cm lateral to the first.  The 

electrodes were placed as close to the eye as possible while still allowing the subject 

to open and close his or her eyes comfortably.  Impedance between the two electrodes 

was measured and deemed acceptable if below 10 kΩ.   

The raw EMG signal was recorded at a rate of 1000 Hz throughout the experiment 

using a 10 Hz high pass and 200 Hz low pass filter.  Raw signals were stored and 

exported for analysis in microvolt (μV) values.   

The raw EMG signal was rectified and integrated for analysis.  In order to qualify 

for scoring, the eyeblink trace had to begin within a window of 20 to 100 ms follow-

ing the offset of the startle probe.  The eyeblink response had to reach peak activity 

within a window of 20 to 150 ms following the startle probe.  Blinks occurring at 

longer latencies were not considered to be the result of the startle probe.  Amplitudes 

were recorded as the difference between the peak activity value and the baseline level 

present immediately preceding onset of the blink response.  If the subject was blink-

ing during the onset of the startle probe, that blink response was removed from further 

analysis due to artifact. 
 

Cardiovascular responding. ECG was recorded with use of a Lead 1 electrode 

placement, with one 8 mm silver-silver chloride electrode placed on the right inner 

forearm about 2 cm below the elbow and another placed in the same position on the 

left inner forearm.  A third 8 mm silver-silver chloride electrode was placed on the 
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left inner wrist to serve as a ground.  Electrode sites were cleaned with alcohol prep 

pads in order to improve contact. Interbeat intervals (IBIs) were scored as the time 

difference in seconds between successive R waves in the ECG signal.  A median 

interbeat interval was recorded during each of the same 5 second sampling periods 

used to assess skin conductance level.   

3   Results 

3.1   Data Analytic Considerations 

First, we assessed the potential impact of psychological characteristics such as ab-
sorption and immersiveness upon the “believability” of the virtual environment. No 
significant differences were found between groups on these measures. After control-
ling for potential confounds related to absorption and immersiveness, physiological 
data were processed using custom-written programs. Within each subject, the median 
data point for each measure and condition was selected for analyses. Assumptions of 
a normal distribution equate the mean and median, and the median is less sensitive to 
outliers. As physiological data are susceptible to introduction of artifact from sources 
both inside of and outside of the body, the median is equivalent to the mean under 
ideal circumstances and superior to the mean when artifact alters some data points. 
Mean-based comparisons between subjects’ medians, however, were considered ap-
propriate because artifact-laden data points were already filtered out. A series of 
ANOVAs were performed on psychophysiological results to assess impact of cohort 
(Cadet vs Civilian) and level of immersion (High Immersion vs Low Immersion). 
First analysis of variance was performed on startle eyeblink amplitudes and next upon 
participants’ heart rates, as measured in interbeat intervals. 

3.2   Startle Eyeblink Amplitudes 

A series of ANOVAs were performed. First, a two (Cadet vs Civilian) by two (High 
Immersion vs Low Immersion) ANOVA was performed on startle eyeblink ampli-
tudes.  This analysis revealed a main effect of group membership as Cadets’ startle 
eyeblink amplitudes were smaller than those of Civilians (F= 7.249, p< 0.05).  While 
Cadets had lower startle amplitudes overall, the difference was more exaggerated in 
the High Immersion condition (F= 4.695, p < 0.05). As increased startle eyeblink 
amplitude is associated with negative affect, these data suggest that Cadets were less 
emotionally impacted by the experience than were Civilians.   

3.3   Heart Rates Measured in Interbeat Intervals 

Participants’ heart rates, as measured in interbeat intervals, were also analyzed using a 
two (Cadet vs Civilian) by two (High Immersion vs Low Immersion) ANOVA. When 
comparing interbeat intervals between groups a strong main effect occurs in the Low 
Immersion condition. In the Low Immersion condition, Cadets show significantly 
larger interbeat intervals, meaning a lower heart rate, than Civilians (F= 17.662, p < 
0.05).  The effect was not seen for the High Immersion condition (F= 0.001, p= 
0.997), suggesting that both Cadets and Civilians were responding to the scenario in a 
similar way. 
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4   Discussion 

Neuropsychological assessment should strive for ecologically valid assessments in 

which findings reflect the varying levels of intensity found in real world situations. 

While controlled settings offer increased psychometric rigor, naturalistic behavioral 

ratings may have increased ecological validity. Unfortunately, neuropsychological 

measures in controlled settings and behavioral ratings based upon naturalistic obser-

vations do not proffer consistently parallel findings. Although virtual environments 

offer the capacity for merging the benefits of controlled settings (e.g. increased  

psychometric rigor) within ecologically valid virtual environments that simulate the 

naturalistic environment in which behaviors occur, the question of whether cohort 

characteristics affect immersion remains to be established. Herein we assessed the 

psychophysiological impact of different levels of immersion upon persons from two 

cohorts: 1) civilian university students; and 2) West Point Cadets.  

West Point Cadets were found to have diminished startle eyeblink amplitude com-

pared with civilian controls. As eyeblink amplitude is thought to increase as negative 

affect increases, so the cadets’ relatively small startle eyeblink responses suggest that 

cadets experienced less negative affect during the scenario in general. For example, 

there were not significant differences in the Cadets’ eyeblinks for level of immersion 

(i.e. high versus low) or level of scenario intensity (i.e. safe versus ambush zones).  

Hence, it was difficult to differentiate the impact of immersion upon both cohorts. For 

both the low and high immersion conditions, Civilians’ eyeblink amplitudes were 

significantly greater than that of Cadets, suggesting that Cadets were well accustomed 

to experiences with high levels of intensity.    

The possibility exists, however, that these data may be interpreted in terms of at-

tention. The startle reflex is often modulated by attentional processing, with more 

focused attention correlating with a decrease in startle eyeblink amplitude. Findings 

within the Cadet cohort may reflect their more intense focus on the task, which may 

have lead to decreased startle responses. Further, it is important to note that startle 

eyeblink amplitudes in this study were most likely modulated by both negative affect 

and attention. Unfortunately, the current design does not disentangle the unique  

contributions of each. Future studies should make use of an attentional processing 

paradigm to support the differentiation of these components. Cardiac data, however, 

corroborates the interpretation that negative affect is an important source of variance 

between Cadets and Civilians. 

Heart rate data, collected using interbeat intervals, found that Cadets had signifi-

cantly lower heart rates than Civilians in the low immersion condition. In the high 

Immersion condition, however, Cadets’ cardiac responses resembled those of Civil-

ians. This suggests that low immersion was insufficient to evoke negative affect in 

Cadets, but that high immersion impacted the Cadets’ affective system. These data 

also serve to support the affective, versus attentional, interpretation of the startle eye-

blink data.  If attention were modulating responses there would be equivalent heart 

rate between the two levels of immersion or a drop in heart rate during high immer-

sion because high immersion engages more attention.  The psychophysiological find-

ings of this study suggest that level of immersion is important for Cadet training in 

order to impact the Cadets’ affective system. 
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In summary, ecologically valid virtual environments may require increased atten-

tion to cohort characteristics. If a method for assessing a certain neurocognitive ca-

pacity (e.g. attentional processing) is adapted to a cohort other than the one that was 

used for the initial normative distribution, data obtained in the new cohort may not be 

reflective of the neurocognitive capacity in question. The psychophysiological impact 

of different levels of immersion upon persons from military and civilian cohorts re-

vealed cohort differences suggesting that “low” immersion conditions may not have 

the ecological validity necessary to evoke consistent affect across cohorts. It is impor-

tant to note that psychophysiological results in this study were most likely modulated 

by attentional processing. Unfortunately, the current design does not disentangle the 

unique contributions of attentional processing. Future studies should make use of an 

attentional processing paradigm in a larger sample to support the differentiation of 

these components.   

References 

1. Foa, E.B., Kozak, M.J.: Emotional processing of fear: exposure to corrective information. 

Psychological Bulletin 99, 20–35 (1986) 

2. Gordon, M., Barkley, R.A., Lovett, B.J.: Tests and observational measures. In: Barkley, 

R.A. (ed.) Attention-deficit hyperactivity disorder: A handbook for diagnosis and treat-

ment, 3rd edn., Guilford, New York, pp. 369–388 (2006) 

3. Spooner, D.M., Pachana, N.A.: Ecological validity in neuropsychological assessment: A 

case for greater consideration in research with neurologically intact populations. Archives 

of Clinical Neuropsychology 21, 327–337 (2006) 

4. Dede, C.: Immersive Interfaces for Engagement and Learning. Science 323, 66–69 (2009) 

5. Parsons, T.D., Rizzo, A.A.: Affective Outcomes of Virtual Reality Exposure Therapy for 

Anxiety and Specific Phobias: A Meta-Analysis. Journal of Behavior Therapy and Ex-

perimental Psychiatry 39, 250–261 (2008) 

6. Parsons, T.D., Bowerly, T., Buckwalter, J.G., Rizzo, A.A.: A controlled clinical compari-

son of attention performance in children with ADHD in a virtual reality classroom com-

pared to standard neuropsychological methods. Child Neuropsychology 13, 363–381 

(2007) 

7. Parsons, T.D., Rizzo, A.A.: Neuropsychological Assessment of Attentional Processing us-

ing Virtual Reality. Annual Review of CyberTherapy and Telemedicine 6, 23–28 (2008) 

8. Parsons, T.D., Rizzo, A.A., Bamattre, J., Brennan, J.: Virtual Reality Cognitive Perform-

ance Assessment Test. Annual Review of CyberTherapy and Telemedicine 5, 163–171 

(2007) 

9. Parsons, T.D., Rizzo, A.A.: Initial Validation of a Virtual Environment for Assessment of 

Memory Functioning: Virtual Reality Cognitive Performance Assessment Test. Cyberpsy-

chology and Behavior 11, 17–25 (2008) 

10. Parsons, T.D., Silva, T.M., Pair, J., Rizzo, A.A.: A Virtual Environment for Assessment of 

Neurocognitive Functioning: Virtual Reality Cognitive Performance Assessment Test. 

Studies in Health Technology and Informatics 132, 351–356 (2008) 

11. Parsons, T.D., Larson, P., Kratz, K., Thiebaux, M., Bluestein, B., Buckwalter, J.G., Rizzo, 

A.A.: Sex differences in mental rotation and spatial rotation in a virtual environment. Neu-

ropsychologia 42, 555–562 (2004) 



 Assessment of Psychophysiological Differences of West Point Cadets 523 

12. Parsons, T.D., Rizzo, A.A., Buckwalter, J.G.: Backpropagation and regression: compara-

tive utility for neuropsychologists. Journal of Clinical and Experimental Neuropsychol-

ogy 26, 95–104 (2004) 

13. Parsons, T.D., Rizzo, A.A., van der Zaag, C., McGee, J.S., Buckwalter, J.G.: Gender and 

cognitive performance: a test of the common cause hypothesis. Aging, Neuropsychology, 

and Cognition 12, 78–88 (2005) 

14. Schwartz, J.M.: Neuroanatomical aspects of cognitive-behavioural therapy response in ob-

sessivecompulsive disorder. An evolving perspective on brain and behaviour. British Jour-

nal of Psychiatry Supplemental, 38–44 (1998) 

15. De Raedt, R.: Does neuroscience hold promise for the further development of behavior 

therapy? The case of emotional change after exposure in anxiety and depression. Scandi-

navian Journal of Psychology 47, 225–236 (2006) 

16. Mineka, S., Watson, D., Clark, L.A.: Comorbidity of anxiety and unipolar mood disorders. 

Annual Review of Psychology 49, 377–412 (1998) 

17. Hariri, A.R., Bookheimer, S.Y., Mazziotta, J.C.: Modulating emotional responses: effects 

of a neocortical network on the limbic system. Neuroreport 11, 43–48 (2000) 

18. Macedonio, M., Parsons, T.D., Rizzo, A.A.: Immersiveness and Physiological Arousal 

within Panoramic Video-based Virtual Reality. Cyberpsychology and Behavior 10, 508–

516 (2007) 

19. Meehan, M., Insko, B., Whitton, M., Brooks, F.: Physiological measures of presence in 

virtual environments. In: Proceedings of 4th Annual Presence Workshop, Philadelphia 

(May 2002) 

20. Pugnetti, L., Meehan, M., Mendozzi, L.: Psychophysiological correlates of virtual reality: 

a review. Presence 10, 384–400 (2001) 



D.D. Schmorrow et al. (Eds.): Augmented Cognition, HCII 2009, LNAI 5638, pp. 524–532, 2009. 

© Springer-Verlag Berlin Heidelberg 2009 

Characterizing the Psychophysiological Profile of Expert 

and Novice Marksmen 

Nicholas Pojman
1
, Adrienne Behneman

1
, Natalie Kintz

1
, Robin Johnson

1
,  

Greg Chung
2
, Sam Nagashima

2
, Paul Espinosa

2
, and Chris Berka

1 

1 Advanced Brain Monitoring, Inc. 2237 Faraday Ave Ste. 100, Carlsbad, CA 92008 

chris@b-alert.com 
2 UCLA/National Center for Research on Evaluation, Standards, and Student Testing.  

10945 Le Conte Ste 1400 Mailbox 957150 Los Angeles, CA 90095-7150 

greg@ucla.edu 

Abstract. Marksmanship training includes a combination of classroom instruc-

tion and field practice involving the instantiation of a well-defined set of  

sensory, motor, and cognitive skills. 10 expert marksmen and 30 novices  

participated in a study that measured marksman performance during simulated 

ballistics shooting of a M4 replica infrared rifle. Participants’ physiology and 

performance were quantified while they completed a battery of neurocognitive 

tests. Experts demonstrated consistent and more accurate shot performance 

across all trials. Compared to novices, experts evidenced lower levels of sympa-

thetic activation as measured by heart rate variability during the neurocognitive 

tasks. Factor analysis identified experts as having above normal visuospatial 

processing speeds and sustained attention, reflecting experts as having better 

performance during vigilance neurocognitive tasks. Identifying physiological 

metrics of experts during neurocognitive testing opens the door to individual-

ized novice instruction to help to improve specific areas flagged as below nor-

mal during or prior to novice marksmanship instruction.  

Keywords: Electroencephalogram (EEG), Electrocardiogram (EKG), Marks-

manship, Expert, Heart Rate Variability, Neurocognitive testing, psychomotor 

skill acquisition. 

1   Introduction 

Rifle marksmanship is a core skill for multiple branches of the armed forces; many 

members are required to qualify annually. Marksmanship training is generally a two-

week program and includes a combination of classroom instruction and field practice 

involving instantiation of a well-defined set of sensory, motor, and cognitive skills. 

This translates into an estimated 352,000 person-weeks per year making individual-

ized coach supervision and instruction difficult. Instruction and development of the 

fundamentals of marksmanship demands a large amount of resources from the mili-

tary. Integrated neuroscience-based evaluation technologies coupled with targeted 

pre-training interventions could provide quantitative markers of successful learning 
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and accelerate marksmanship skill acquisition, thereby saving military resources  

and potentially improving the safety and efficacy of troops. Furthermore, the rapid 

acquisition of expertise in marksmanship could serve as a model for aiding the in-

struction of other physical or mental skills required in military or other educational 

environments. 

Marksmanship is a complicated psychomotor skill that demands high physical and 

mental coordination for proper execution, and can thus be conceptualized as a com-

plex skill. Proper rifle shooting is accomplished through the synchrony of breathing; 

gross motor control of body positioning; fine motor control of muzzle wobble and 

trigger pull; and the processing of rear and front sight alignment with respect to a 

target. Psychomotor skill acquisition is commonly viewed as a progression from the 

initial cognitive phase in which new knowledge is assembled; intermediate associa-

tive phase where newly learned skills are slowly automated with practice; and a final 

autonomous phase in which task execution is automated and demands minimal con-

scious effort [1, 2]. Chung et al. (2006) used this phasic model of skill acquisition as a 

framework to identify five variables of rifle marksmanship that influence the devel-

opment from early to final phases: perceptual-motor, cognitive, affective, equipment, 

and environment. Marksmanship expertise is accomplished through controlling these 

variables through the practice, development, and automation of fundamental marks-

manship skills.  

Previous EEG studies have revealed notable neurophysiological distinctions be-

tween expert and novices marksman during shooting [3-5]. EEG patterning of skilled 

marksmen during the preparatory shooting (pre-shot) period has identified distinct 

alpha and beta wave patterns between executed (fired) and rejected (non-fired, with-

drawn) shots [6]. Several other studies have identified unique cortical activation pat-

terns associated with successful shots in experts [7] and demonstrated distinct patterns 

between experts and novices [8]. Prior research comparing EEG during shooting to 

EEG during comparative novel visuospatial and visuo-analytic tasks found no signifi-

cant differences between novices and experts during the two visual tasks to which 

neither group had been exposed before. However, researchers did discover unique 

alpha, beta, and gamma power differences during shooting. This unique EEG pattern 

has been theorized to be an indicator of experts’ increased efficiency during only 

those visuospatial tasks in which they held expertise [9].  

Heart rate is an additional physiological measure commonly analyzed in marks-

manship studies. The preparatory period, or pre-shot period, is characterized by a 

heart rate deceleration and decrease in electrodermal skin conductance levels [10, 11]. 

Heart rate deceleration during the pre-shot period in experts may reflect the attentive 

and the skill-related aspects of sensory-motor preparation for performance [12]. These 

data indicate that both EEG and HR are measures that previous research has used to 

link physiological patterns to performance in experts marksmen. In addition to these 

factors, assessing physiological metrics during non shooting neurocognitive testing 

may provide reliable predictors of marksmanship expertise. Identification of cognitive 

and physiological metrics that distinguish expert from novice marksmen may prove 

useful in early identification of a novice psychophysiological state which may hinder 

or prevent progression towards expertise.  This identification offers the possibility of 

early triage and potential intervention that may be tailored to meet the unique needs of 

each individual. 
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2   Methods 

10 qualified expert marksmen (off-duty military) and 30 novices were recruited and 

screened for general health.  Experts were all male, with an age range of 21-27 years 

(M= 23.7, SD=1.78). Novices were comprised of UCLA students and volunteers from 

the general population with no prior marksmanship experience. Novice participants (9 

female, 21 male) ranged in age from 18 to 41 years (M=23.17, SD=4.80) and were 

screened to verify minimal shooting experience. 

Ballistics simulation relied on a LaserShot rifle simulation set-up. A LaserShot M4 

rifle trainer with simulated recoil replicates the weight (~ 8 lbs), sound, and kick of a 

real weapon using a CO2 pneumatic recoil system. The weapon is fitted with an infra-

red (invisible) laser that “fires” upon trigger pull.  Shooting performance was captured 

using the rifle’s built-in infrared laser, infrared camera, and a digital projector. Each 

laser “shot” was detected by an Ultra Series Laser detection calibrated using Laser-

Shot Ultra Series Camera Software.  The Ultra Series Camera generates a mouse-click 

using the location of an infrared laser strike on the projected screen. These clicks were 

interpreted by computer to yield x and y coordinates on the target screen. A data inte-

gration program, Fusion 4000, was developed by collaborators at UCLA-CRESST to 

allow for a streamlined data collection. This software scaled targets and captured 

shooting performance. Data was collected in rooms at least 8.3 yards (~300”) long. 

The digitally projected target was scaled by measuring the width of the projected 

screen and the screen’s distance to shooter using. Fusion 4000 then adjusted the dis-

played target to simulate a 20” target at 200 yards [13].  

All participants were asked to shoot from the kneeling position, one of the four re-

quired qualifying shooting positions [14]. Expert participants were given no instruc-

tion or feedback and completed 5 trials of 5 shots. Novices completed at least 8 trials 

of 5 shots each. After each trial, novices were shown the locations of their shots on a 

computer monitor along with number indicators next to each shot so they could iden-

tify when each strike occurred.   All shots were fired at the participants will with no 

time restraint imposed on either the Experts or Novices. The pacing of shots was not 

regulated for any trial. All novices received basic instruction on proper positioning, 

handling, and sight alignment of the weapon prior to trial 1. Initial instruction was 

given by the same researcher for all novices. Novice participants were asked to shoot 

from the kneeling position but were allowed to choose any of the three variations of 

the kneeling position: high, medium, and low kneeling positions. The researcher 

modeled each of these positions and used posters of right and left handed versions of 

each position for additional reference. After the first two trials, novices watched a 15 

minute video of a qualified marksmanship coach providing further details regarding 

proper shooting and positioning techniques.  

A second session for collection of the neurocognitive test battery was completed on 

a separate visit, either before or after the shooting visit. All participants were given a 

battery of neurocognitive tests using the patent-pending Attention and Memory Pro-

filer (AMP
TM

) system. The AMP test battery included 3-Choice-Vigilance-Test (3C-

VT), Standard Image-Recognition (SIR), Image Recognition with Interference (IIR), 

Verbal Paired-Associate-Learning (VPA), Number Image Recognition (NIR), Stern-

berg-Verbal-Memory-Scan (VMS), Eyes Open timed vigilance task (EO), and Eyes 

Closed (EC) timed vigilance task. These tasks were completed by participants using a 
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computer in an isolated room. Participants’ EEG, EKG, and task performance were 

measured while they completed visual memory and vigilance tasks.  

EEG was recorded during both the marksmanship and neurocognitive sessions us-

ing the wireless B-Alert® 6-channel differential EEG headset [Figure 1].  The headset 

was designed with fixed sensor locations for three sizes (e.g., small, medium and 

large) with placement determined according to the International 10 – 20 system coor-

dinates. All participants wore a 6 channel headset with 6 electrode sites at F3, C3, C4, 

Fz, Cz, and POz.  Heart rate (HR) was measured with two sensors placed over the left 

collarbone and under the fifth lower right rib. Four neurocognitive factors are derived 

from the AMP data: sustained attention, processing speed, verbal memory and visu-

ospatial memory, each with a quantitative, normalized score (based on our database of 

over 300 healthy data sets). Alertness, attention, verbal/visuospatial learning, and 

memory are also quantified using a combination of EEG and performance metrics.  

HR is recorded and quantified using PSD [14] to explore the relationship of sympa-

thetic activation during AMP tasks with marksmanship performance.  

Heart rate variability (HRV) was computed by first detecting QRS complexes in 

the EKG, and using the distance between them to calculate heart rate (raw HR). The 

raw HR is interpolated so that instead of a grid defined by heart beats, the grid is 

defined by seconds (HR).  Each 5 minute segment of HR signal is then modeled as a 

25
th

 order AR process, the coefficients of the process are estimated from the data and 

used to calculate the power spectra in the range from 0.001 - 0.05Hz in steps of 

0.001Hz. Low frequency (LF) HRV is equal to the sum of power spectrum from 0.04 

– 0.15Hz.  High Frequency (HF) HRV is the calculated as the sum of power spectrum 

from 0.15 – 0.4Hz. These data were then z-scored to our healthy, fully rested database 

subjects.  

The marksmanship performance measure was shot group precision. We defined 

shot group precision as the mean distance of each shot from the center of the shot 

group, where lower values reflect better precision. Use of shot group precision is a 

useful measure to assess shooter consistency as well as accuracy.  In general, experts’ 

shots were closer to the center of the shot group compared to novices, suggesting 

tighter shot groups. 

Neurocognitive factor scores (NCFS) are comprised of four composite variables 

(factors): Visuo-Spatial Processing Speed (VSPS), Sustained Attention (SA), Recog-

nition Memory Accuracy (RMA) and Recognition Processing Speed (RPS). The  

 

  
 

Fig. 1. 6 Channel B-Alert® (right) system wirelessly records EEG and EKG. AMP set-up (left) 

measures performance and physiology during a battery of neurocognitive tests. 
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factors are derived from the measures of behavioral performance (i.e. mean reaction 

time, and percent of correct responses) during the various AMP
TM

 tasks: Verbal 

Memory Scanning test, standard PAL test, verbal PAL test, interference PAL, num-

bers PAL, whole 3CVT and quartiles (0-5, 5-10, 10-15 and 15-20min) of the 3CVT  

(a total of 20 primary measures). Each raw factor score is then z-transformed with 

respect to the mean and standard deviation of the same score in a large reference 

population of normal subjects. Negative values indicate poor performance whereas 

positive values indicate good performance, with scores less than -2 indicated severe 

deficits. 

3   Results 

Shooting performance was determined using shot group precision on a trial by trial 

basis. Novice trials were summarized at four time points to reflect improvement as 

novices had more practice and instruction [Figure 2]. The worst novice performance 

was seen at baseline (n=30 participants X 2 trials, M=16.63, SD= 14.97), which was 

calculated as the mean distance to shot group center from trials 1&2. Trial 3 

(M=15.77, SD= 11.93) included only the trial immediately following video instruc-

tion (Trial 3). Final (M=12.59, SD=8.54) included trials 7 and 8 for novices and 

showed the greatest shot group precision, thus reflecting the best average performance 

for novices. Expert trials were grouped into two groups, baseline (trials 1 &2) and 

final (trials 4&5). Expert marksmen showed little change from baseline (M=4.23, 

SD=2.70) to final (M=4.28, SD=2.54) trials. The standard deviation (variance) of 

experts’ shots is also smaller, reflecting a higher consistency of shots for experts than 

novices. 

Mann-Whitney U-test was used to compare novices to experts at baseline and final, 

respectively, do to uneven n and unequal variance of the samples.  This analysis 

found that the Novices were significantly worse both at baseline (U=9, Experts=9, 

Novices=30, p < 0.0001) and final (U=5, Experts=9, Novices=28, p < 0.0001) time 

points, see Figure 2.  Novice’s improvement over time was examined with 

RMANOVA comparing baseline trials to final.  RMANOVA found a significant 

improvement over time for the novice subjects [F (1,27)= 5.953, p < .05).  These data 

are shown in Figure 3.  Expert performance did not change over time (p > .05).  

Neurocognitive factor analysis revealed significant performance-based changes be-

tween expert and novice groups in VSPS and SA factors [Figure 3]. Novices were 

randomly down-selected from n=28 to n=15 for ANOVA comparison of VSPS, SA, 

RMA, and RMS between novice and expert participants in order to meet the parame-

ters required for ANOVA.  A t-test was used to compare the subject included in these 

analysis to those that were excluded and found no significant difference (p=.487). 

Expert marksmen had a mean VSPS (M=2.12,) nearly 2 SD greater than the AMP 

normative database. Our novice shooters also had higher VSPS (M=0.65,) than the 

normative database. While both groups had VSPS above normal, experts did show  
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Fig. 2. Experts performed significantly better at both Baseline (Trials 1&2) and Final (Trials 

7&8) compared to novices. Asterisk (*) indicates p<.01. 

 

Fig. 3. Novice performance generally improved as they progressed through the trials. Mean 

distance to shot group center significantly improved from Baseline to Final Experts showed no 

change in performance from Baseline (Trials 1&2), to Final (Trials 4&5). 

significantly higher VSPS as compared to novices according to ANOVA [F (1,23) = 

6.13, p < .05]. ANOVA also found that experts had significantly higher SA [F (1,23) 

= 9.686, p <. 01] compared to novices although more than 1.5SD below the normative 

database. 

Both experts and novices heart rate variability means were z-scored to a database 

of normal, healthy subjects.  ANOVA analysis showed lower sympathetic associated 

(LF) HRV in the low demand tasks EO and EC for the experts compared to the nov-

ices; EO [F (1,23) = 5.061, p <.05], and EC [F (1,23) = 4.817, p <.05]. No group 

differences in HRV were found for any other tasks.   
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Fig. 4. Experts showed significantly higher scores for both Visuospatial Processing Speed 

(VSPS) and Sustained Attention (SA). No significant differences were seen in recognition 

memory accuracy (RMA) and recognition memory speed (RMS). Asterisk (*) indicates p<.05. 

 

Fig. 5. Novices had significantly higher LF HRV compared to experts, reflecting higher anxiety 

in novices during timed vigilance tasks (3C-VT, EO, and EC). Asterisk (*) indicates p<.05. 

4   Discussion 

Assessment of shot group accuracy as measured by mean distance to shot group cen-

ter shows that experts performed significantly better than novices across all trials. 

Experts showed no significant change from baseline to final shot trials reflecting the 

expert’s controlled and consistent ability to replicate exceptional performance within 

and between trials.  Consistent shot performance as indicated by no change across 

expert trials demonstrates that experts have the true ability to consistently apply the 

fundamentals of marksmanship. Neurocognitive factor analysis revealed experts as 

having VSPS more than 2 SD greater than normal levels and SA substantially above  
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normal reflecting better performance on vigilance tasks. SA and VSPS neurocognitive 

factors are heavily derived from performance on the vigilance tasks (3C-VT, EO,  

and EC).  

Experts had lower z-scored LF HRV for EO and EC tasks, compared to Novices. 

Greater LF HRV for novices may reflect increased sympathetic activation possibly 

indicating increased anxiety and mental stress during these neurocognitive vigilance 

tasks [15, 16].  It is important to note that HRV distinctions between experts and nov-

ices were only significantly different during the least cognitively challenging tasks in 

the AMP neurocognitive battery, the two timed vigilance tasks (EO and EC). This 

may indicate that experts are more able to regulate their cardio-respiratory function in 

a task specific/task appropriate manner. Further investigation comparing HRV during 

vigilance tasks and HRV during shooting may find distinct contrasts in HRV change 

between expert and novice group.  

It is unclear whether this apparent ability to regulate expert’s physiology is a ge-

netically determined trait or a skill that can be acquired and refined with training. Our 

results highlight the need to investigate improving visuospatial processing speed, 

attention and cardiovascular regulation as a way to potentially improve novice 

marksmanship performance by early intervention designed to move novices toward 

the psychophysiological state observed in expert marksmen. Novices with below 

average VSPS  may benefit from training using first person video gaming environ-

ments, which research has shown to improve visuospatial speed and attention [17]. 

Heart rate biofeedback or relaxation training may help novices develop control of 

sympathetic and parasympathetic activation to reduce anxiety and stress during vigi-

lance tasks [15, 16, 18].  

These results confirm research that asserts experts are capable of modulating their 

physiology to appropriately match task demands. Targeting physiological areas of 

weakness may increase novice’s ability to automate the psychophysiological skills 

needed during shooting. Our results suggest the need for further research investigating 

whether pre-training interventions aid in the acceleration of learning for novices.  

These metrics may also have applications in other areas of psychomotor skill acquisi-

tion including additional military and education environments. 
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Abstract. The purpose of this effort is to introduce a novel approach which can 

be used to determine how multiple minimally intrusive physiological sensors 

can be used together and validly applied to areas such as Augmented Cognition 

and Neuroergonomics. While researchers in these fields have established the 

utility of many physiological measures for informing when to adapt systems, 

the use of such measures together remains limited. Specifically, this effort will 

provide a contextual explanation of cognitive state, workload, and the meas-

urement of both; provide a brief discussion on several relatively noninvasive 

physiological measures; explore what a modular cognitive state gauge should 

consist of; and finally, propose a framework based on the previous items that 

can be used to determine the interactions of the various measures in relation to 

the change of cognitive state. 

Keywords: Augmented Cognition, Neuroergonomics, Physiological Measures. 

1   Introduction 

Advances in technologies, research, and interest in Augmented Cognition applications 

have all but guaranteed a future in which the physiological state of a human operator 

will impact the interactions with many, if not all, (closed-loop) systems. To the unini-

tiated, this statement almost assuredly conjures images of cyborgs and bionic beings 

that seemingly have given up their humanity. While the issue of being “more machine 

than man” may eventually become an ethical dilemma, current technology has not yet 

required its serious contemplation. Current technologies do, however, offer the oppor-

tunity to create systems in which the user is part of the interface. Through available 

technology, it is now possible to reexamine the human-centered system design (proc-

ess) and include measurements of the human’s state as a means to inform and even 

adapt the system. 

Although researchers in fields such as Augmented Cognition (AUGCOG) and 

Neuroergonomics have begun to establish the utility of physiological measures for 

informing when to adapt systems, the use of such measures remains limited. While 

this may be partially explained by the high cost of equipment, it is more likely due to 

the lack of clear guidance for the use of multiple sensing devices to adapt systems. 
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This need was highlighted in 2007 by Reeves, Stanney, Axelsson, Young and 

Schmorrow [1] in their articulation of the near-, mid- and long-term goals of 

AUGCOG. The authors specifically noted that there were several impediments to the 

adoption of such technologies including: (1) the need for valid, reliable, and gener-

alizable cognitive state gauges based on basic neurophysiological sensors; (2) real-

time cognitive state classification based on basic cognitive psychology science and 

applied neuro-cognitive engineering; and (3) proof of effectiveness which demon-

strates generalizable application of mitigations (i.e., the ability to control how/when 

mitigations are applied). Unfortunately, the ability to detect cognitive state through 

the use of various technologies based on different physiological indices currently 

poses problems. For example, sampling rates (i.e., resolution) of different measures 

may cause one technology to indicate a state change while another is reporting the 

previous state. Additionally, a particular measure may indicate the onset of a state 

change which may not be reported by other measures, and this dissonance may cause 

conflict when determining if an intervention is required. 

As a tool, a “cognitive state gauge” is a vague concept which has the potential to 

include a wide range of contributing factors. When considering all of the possibilities, 

the goal of creating a valid and generalizable cognitive state gauge is a lofty one at 

best. In fact, the very idea of a cognitive state gauge poses issues of ambiguity similar 

to those of its conceptual springboard: mental workload. This vagueness, perhaps, is 

why such a measure has yet to be developed and/or proven effective in meeting the 

goals set by Reeves et al. [1].  

Based on the multiple resource theory model [2],[3] and its idea that we draw from 

multiple distinct pools of cognitive resources, it is therefore proposed that instead of 

taking on the concept of a holistic cognitive state gauge, it is necessary to first ma-

nipulate specific cognitive resources and examine the physiological state as recorded 

by each of several synchronized measures. By using a modular approach which  

targets specific cognitive abilities in a controlled environment, it should be possible  

to build a reliable and generalizable cognitive state gauge based on basic cognitive 

psychology. 

In order to describe a novel approach to assessing cognitive state with multiple 

physiological measures, this paper will provide a contextual explanation of cognitive 

state, workload, and the measurement of both. This will include a brief discussion of 

several relatively noninvasive physiological measures whose use, in concert, are pro-

posed to present a solution to the impediments articulated by Reeves et al. [1]. In-

spired by technologies described in the Augmented Cognition Technical Integration 

Experiment Report [4], the candidate measures that will be discussed include six non-

cortical measures: eye blink rate (EBR); pupil dilation (PD); respiration rate (RR); 

heart rate (HR); heart rate variability (HRV); electrodermal response (EDR), and one 

cortical measure: electroencephalography (EEG). Specifically, this effort will explore 

what a modular cognitive state gauge (MCSG) should consist of and will also propose 

a framework. Additionally, a testbed based on the MCSG and proposed framework 

will be introduced for the purpose of determining the interactions of the various 

measures in relation to the change of cognitive state. 
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2   Measuring Cognitive State 

It would be a futile effort to suggest that there is a way to measure cognitive state 

without first defining what is meant by the term cognitive state. For the purposes of 

this work, the idea that dynamic changes in human cognitive activity can be identified 

during task performance [5] allows us to define cognitive state as consisting of those 

aspects of cognitive ability which are called upon for the completion of a task. 

While this may be an acceptable definition of cognitive state, it must be understood 

that there are numerous factors that contribute to cognitive state. For example, chang-

ing levels of fatigue or stress during task performance are responses, not indicators of 

the capacity of cognitive ability. Simply measuring the physiological response of 

fatigue and/or stress to a task would be to ignore the mechanisms that explain such 

responses. The mental capacity that allows for the successful completion of tasks 

should be the area of interest when investigating cognitive state. Ultimately, it is this 

capacity that, when taxed, results in performance decrements. The taxing of these 

mental capacities has been extensively investigated in various environments in order 

to understand the phenomenon of mental workload. If one intends to work toward the 

goals set forth by Reeves et al., it is necessary to understand what is meant by the 

term workload and to identify approaches that can be used for its measurement. 

2.1   Workload 

At the core, workload can be defined as the amount of demand(s) placed on an opera-

tor while attempting to accomplish something. Researchers have gone to great lengths 

to understand the effect of mental workload on performance. These researchers have 

proposed various theories and analogous models to explain how the human mind 

allocates its ability to handle information and task completion from the mundane to 

the complex. Byrne and Parasuraman [6] state that the general consensus on mental 

workload is based on theoretical models of resource and capacity for information 

processing. For this to be the case, it is accepted that humans have a finite amount of 

available cognitive resources which must be allocated and used to accomplish a task. 

In essence, mental workload is directly related to the proportion of the mental capac-

ity an operator expends on the performance of a task [7],[8]. 

As a construct, workload is difficult to examine due to the seemingly limitless at-

tributing variables. In his 2007 report to the Department of Transportation, Reinach 

[10] suggested that workload can be defined as the interaction between the demands 

of a task and an operator’s ability to meet those demands. When considered in these 

terms, workload is viewed as being dependent upon an operator’s level of training, 

expertise, experience, fatigue, stress, motivation, and his or her available cognitive 

abilities and resources for a given task. Of course, task load is an integral piece of the 

workload puzzle. Task load has been defined as the total amount of demands placed 

on an operator at a given moment in a situation [10]. For a contextual example, Had-

ley, Guttman, and Stringer [9] describe an air traffic controller’s task load to include 

elements such as the volume and composition of traffic, routing complexity, and 

weather conditions. Therefore, in the context of this effort, workload is operationally 

defined as the demands on available cognitive ability and resources placed on an 

operator by the demands and complexity of a given task. 
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In 2002, Wickens provided a review of multiple resource theory (MRT) and its ap-

plication with an updated four-dimensional model [3]. MRT suggests that there is not 

a single information processing source that can be tapped by an operator. Instead, in 

order to perform a task or tasks, Wickens [2],[3] proposes that an operator must draw 

from multiple distinct pools of resources simultaneously. Dependent upon the compo-

sition of the task(s), the operator may have to process information serially (if the 

task(s) require the same resource pool) or in parallel (if the task(s) require differing 

resource pools). 

Central to this effort is the idea that Wickens’ theory would view exceeding op-

erator workload (resulting in a performance decrement) as a shortfall of available 

resources. Further, Wickens suggests that operators have a finite capability for in-

formation processing. In short, cognitive resources are limited and conflicts (operator 

overload) occur when an operator performs two or more tasks that require a single 

resource 

 

Measuring Workload. Not surprisingly, numerous approaches for assessing work-

load have been developed, from relatively simple questionnaires to complex brain 

imaging techniques. Regardless of type, these approaches will generally fall into one 

of three distinct categories: performance, subjective, and physiological [8],[11],[12]. 

The following will discuss selected measures which are proposed for measuring cog-

nitive state in this effort. 
 

Performance Measures. As mentioned above, the measure of task performance is a 

widely used method of inferring the amount of workload experienced during the 

completion of a task. In general, research has shown that if performance is high 

(maintaining acceptable performance) then workload can be considered low. Con-

versely, low performance suggests high workload. However, there are various factors 

that contribute to the workload construct resulting in a non-linear relationship with 

performance. As a contributing factor to workload, performance does provide a quan-

tifiable and potentially real-time (provided the parameters are known) method for 

assessing operator workload. The measurement of performance is generally separated 

into two main subcategories: primary and secondary task measures. 
 

Primary Task Performance. On the surface, measuring primary task performance is a 

simple proposition. Unfortunately, this may not always be the case. Several factors 

can contribute to task difficulty experienced by an operator. For example, an increase 

in time pressure or the demands on cognitive resources may not always degrade per-

formance [13]. The lack of performance decrement can be attributed to the operator’s 

skill level or motivation to exert more effort to maintain an acceptable level of per-

formance. These contributing factors can result in an incorrect assessment of operator 

workload due to the fact that acceptable performance is maintained while the operator 

is approaching the limitations of his or her cognitive capabilities. 
 

Secondary Task Performance. The addition of a concurrently performed task to the 

primary task can be used to detect the workload of a primary task [14]. The goal of 

using a secondary task is to additionally tax the cognitive resources being used to 

complete the primary task. By doing so, an operator who is maintaining an acceptable 

level of performance is required to divert resources to the additional task and could 
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potentially uncover his or her level of workload through an observable performance 

decrement in either the primary or secondary task. As suggested by multiple-resource 

theory [2][3], through the imposition of a secondary task that consumes the same 

resource(s) as the primary task, it should be possible to measure the excess re-

source(s) not utilized by the primary task.  
 

Subjective Measures. One of the most commonly used methods for measuring work-

load is the NASA Task Load Index (TLX). The TLX is a subjective evaluation of 

workload that is completed by an operator upon completion of a task. The TLX is a 

multidimensional approach that measures workload by calculating a total workload 

score from six weighted subscales: mental demand, physical demand, temporal de-

mands, performance, effort, and frustration level. These six subscales are based on 

extensive research and psychometric analyses from a wide range of contexts [15]. 

While asking an operator to evaluate his or her own level of workload following 

completion of a task has utility, most tasks are not static, isolated events and post hoc 

assessment, by its nature, would fail to offer real-time assistance to the operator. Peo-

ple are expected to perform in complex and dynamic environments which tend to 

evolve over time with the emergence of information. The complexity and propensity 

for real world operations to present novel and often hard-to-predict situations makes 

real time and predictive state assessment extremely intriguing as a way to inform 

potential mitigations to operator workload. While subjective ratings such as the TLX 

are useful for eliciting overall task workload assessment, they lack the ability to pro-

vide real-time assessment without intrusion.  
 

Physiological Measures. The idea that physiological measures may assess workload 

is not a new one. For example, in their report for NASA, Scerbo, Parasuraman, Di 

Nocero, and Prinzell discussed the efficacy of using physiological measures for adap-

tive automation [16]. Their effort highlighted four promising physiological measures 

that could be used to assess mental workload: eye blink, respiration, cardiovascular 

activity, and speech measures. Additionally, EEG was discussed as a cortical measure 

that may inform the adaptation of automation. 

It should come as no surprise that there are numerous methods that use physiologi-

cal measurement technologies to assess cognitive state. Each of these methods use a 

unique approach to their measurement and assessment, a detail that must be addressed. 

The argument that one measure is adequate for operational systems will not suffice in 

the face of multidimensional tasks which are carried out in dynamic environments. 

Although, the use of multiple measures, as stated previously, presents confounding 

factors which must be considered. The responsiveness of one measure to the change of 

an operator’s state may not occur within the same time frame as another measure. One 

measure may provide a global view of operator state while another may be better 

suited to detect subtle changes based on discrete events and/or situations. Confusion 

and even catastrophe can occur if system(s) dependent on these differing physiological 

measures are based on conflicting indications of operator state change. In order to 

achieve the goal of assessing cognitive state through the use of multiple physiological 

measures, it is important to discuss candidate physiological measures. These measures 

include six non-cortical measures: EBR; PD; RR; HR; HRV; EDR and one cortical 

measure: EEG. Table 1 provides an overview of each candidate technology. 
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Table 1.  Overview of candidate physiological measures 

Type Description 

EBR Shown to be a useful measure of mental workload [17],[18]. Several labora-

tory and field studies have shown that blink rate decreases with an increase 

in task difficulty (e.g., [19],[20],[21],[22]) 

PD Shown to decrease or increase depending on autonomic response. Pupil dila-

tion is an important measure of mental workload [7] and has been used nu-

merous times as a global measure of workload. Increased pupil diameter 

has been observed with an increase in resource taxation [22] 

RR Proposed as a useful physiological indicator of the state of an operator. In-

creased respiration rate along with a decrease in the depth of inspiration 

have been associated with increases in stress and cognitive demand 

HR Likely candidate for measuring cognitive workload. Wilson & Eggemeier 

[23] suggest that heart rate could predict and be an overall indicator of 

workload. This is supported by a series of workload studies showing that 

heart rate was the most favorable physiological measure 

HRV Decreases with the increase in heart rate. An increase in workload results in a 

decrease in heart rate variability [26] when compared to the rest state [8]. 

Of particular interest for the measurement of mental effort is the varying 

duration of time between heartbeats, the inter-beat interval [27] 

EDR Measurable change of electrical activity of the skin as a result of sweat gland 

activity capable of indicating stress-strain, emotion, and arousal [28]. One 

of the several measures of EDR, Skin Conductance Level (SCL) is meas-

ured by the application of a constant voltage to the skin via electrodes in 

order to measure conductance. Research has shown that there can be a sig-

nificant increase of SCL across workload conditions [29] 

EEG Provides the total amount of the electrical brain activity of active neurons that 

can be recorded on the scalp through the use of electrodes [30]. Berka et al. 

validated use of EEG for measuring task engagement and mental workload. 

An investigation utilizing their task engagement and mental workload 

measures had promising results showing that participants’ EEG-workload 

index increased on tasks with increasing difficulty and working memory 

load. Similarly, EEG-engagement was shown to be related to the processes 

required for completing vigilance tasks [30] 

3   Modular Cognitive State Gauge (MCSG) 

As stated in the introduction, the objective of this work is to define a useful approach 

for using multiple physiological measures to assess one’s cognitive state. The para-

digm presented here aims to segregate specific contributors to mental workload for 

measurement. It is proposed that by systematically exploring the manner in which 

each physiological measure correlates to performance and to each other in targeted 

areas, a cognitive state gauge that meets the validity, reliability, and generalizability 

requirements set forth by Reeves et al. [1] can be created. 
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It is proposed here to use Wicken’s MRT model [2],[3] as a practical guide for  

investigating multiple physiological sensors and their combined ability to predict 

performance decrements in specific cognitive resource areas. After compiling an 

understanding of what to expect for particular cognitive resources through empirical 

research, the MCSG should begin to take shape (Figure 1). Essentially, it is proposed 

that by parsing out individual cognitive resources (e.g., visual, auditory, spatial, etc.) 

into modules, they can be empirically investigated and then integrated into a gener-

alizable cognitive state gauge. 
 

 

Fig. 1. MRT-based cognitive modules towards a modular cognitive state gauge 

By using this modular approach, potential issues with the use of multiple sensors 

can be identified and addressed as the modules are investigated. For example, HRV 

and EEG, as discussed previously, have both been shown to be useful for measuring 

workload. Interestingly, Gohara et al. [31] discovered that HRV becomes less sensi-

tive when measured during a state of fatigue. Discrepancies between measures like 

these could present serious consequences to the accuracy of any cognitive state gauge 

if the input were not understood.  

While it may seem daunting to examine the multitude of cognitive resources in 

such a systematic way, the great potential of previous efforts conducted by various 

academic, private, and government institutions [1],[32] will undoubtedly contribute to 

the compilation of the proposed MCSG. Of course, once a sufficient amount of mod-

ules are understood, the next challenge will be integrating them into a unified gauge. 

There could be a variety of approaches to accomplishing this task and these will un-

doubtedly be discussed in subsequent investigations. 

4   Proposed Implementation 

While the investigation of each module may be unique, the following should provide 

at least the basic heuristics to determine a course of action. It is proposed here to iden-

tify experimental methods from previous foundational studies which focus on the 

cognitive resource of interest and adopt those efforts for investigation with multiple 

physiological sensors. Once an effort has been identified, it is suggested that the three 

types of workload measures described in section 2.1.2 (performance, subjective,  

and physiological) should be collected for the new investigation. By following this 
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implementation, it is assumed that any new confounds should be limited to the new 

measure(s). 

When determining which physiological measures to use, the most relevant devices 

should be considered first. For example, eye tracking would be an obvious choice for 

an investigation exploring visual search and attention but may not provide meaningful 

data for an effort solely focused on the area of auditory attention. 

Once the physiological sensors have been determined it is recommended that all 

experimental components are synchronized. While it would be inappropriate, and in 

some cases impossible, to attempt to force physiological measuring devices into  

having identical sampling rates, they can be synchronized to each other and the ex-

perimental environment. At a minimum, a timestamp indicating the beginning and 

conclusion of an experimental trial common to all data logs should be the included. 

Additionally, synchronously recording performance in the experimental environment 

with the selected physiological measures will allow for successful matching of 

changes in performance for observation. For example, in an effort to use multiple 

sensors for an adaptive learning system, Vartak et al. [33] proposed a block process-

ing model in order to synchronize and evaluate the volumes of physiological data 

from multiple measures. Using an approach similar to the one found in Varatak et 

al.’s model should prove to help streamline the data collection and perhaps even aid in 

the development of future AUGCOG applications. Finally, perceived levels of work-

load can only be obtained by asking. Collecting subjective measures, while not dy-

namic, can be extremely useful in providing consistency across participants. 

5   Future Work and Conclusion 

Previous research using a dynamic spatial task showed that highly skilled participants 

outperformed those with lower skills when evaluated on spatial ability tests [34]. 

Using a similar task and methods, we will investigate the modular approach described 

here through the implementation outlined in section 4.  

This paper proposed an approach that can be used determine under what conditions 

multiple minimally intrusive physiological sensors can be used together and validly 

applied to a cognitive state gauge. Through the use of the model and implementation 

proposed, we are confident that various physiological measures can be used to accu-

rately measure changes in cognitive state while meeting the goals set forth by Reeves 

et al. [1]. 
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Abstract. Analysis method for quick component of NIRS is explained. In order 

to compare quantitatively the amount of quick component, absolute average op-

eration is applied. The result Q is then formulated as the product of magnitude 

M and density D. By characteristic differences of M and D functional features 

of each channel are discussed. The method is applied to text entry task to mo-

bile phone. Most of 34 channels under study D values diverged in rest state, but 

they converged at task state. 6 channels among 34, showed specific responses to 

specific task. 

Keywords: neural activities, NIRS, quick components, text entry, mobile phone. 

1   Introduction 

Fruitful sessions on NIRS (near infrared spectroscopy) were organized by Monica 

Fabiani at HCII 2005 held in Las Vegas. By that time, two Japanese companies have 

developed general purpose NIRS machines, which are capable of simultaneous meas-

uring of oxy and deoxy hemoglobin concentration in the brain surface tissues. Since 

NIRS has been used in the field of hemo-dynamic studies until then, the new ma-

chines are still used mainly to trace oxy hemoglobin and, so far deoxy hemoglobin is 

often disregarded. Tamura [1] emphasized need to develop analysis methods consid-

ering oxy and deoxy hemoglobin at the same time. In HCII 2007 a method to analyze 

NIRS data in the two dimensional coordinate plane, taking the total (oxy + deoxy) and 

difference (oxy - deoxy) variables to the axes. The paper showed the total component 

consisted of, mainly, slow component, while the difference component consisted of 

slow and quick components.  

The slow and the quick components are separated by applying running average of 

2 seconds to the difference component. Slow component normally has continuous 

waveform, while the quick shows the form of pulse train of variable height. The inter-

ests of hemodynamic studies have been in the slow component and the quick compo-

nent is regarded as noise, and no attentions have been paid to the quick component. 

Although hemodynamic studies are not interested in quick component, they already 

know the existence of quick signals and regard it fatal for successful NIRS measure-

ments. Many people tried to decrease noise by taking care of external factors like 

optical contacts to the skin. But the quick component is large in amplitude, often 

much larger than the slow. It is not reasonable to regard it noise.  
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We are convinced that the quick component is not noise but essential physiological 
signal. We have made measurement [2] of quick component distributions using 34 to 
48 channels NIRS, provided by Shimadzu and applied it to various tasks. It was con-
firmed that the quick distributions changes according to the task, such as text input, 
hand up down, finger sign and button selection, etc. Slow component are not stable 
and effected by various factors, but quick components distributions are stable, al-
though they are varying by conditions.  

In this paper, the author presents the model of quick and slow component genera-
tion with regard to blood circulation systems. Secondly analysis method to draw neu-
ral activities included in each NIRS signals is explained. The quick signal from a 
single channel of NIRS is results of summative activities of small brain area, and 
speculative model of activities is introduced in this paper.  

2   Quick Components 

2.1   NIRS Coordinates 

Fig. 1 is showing Oxy, Deoxy, and Total Hb  
(hemoglobin) recording of 6 channels from NIRS. 
The upper traces correspond to oxy, the lower to 
deoxy, and the middle to total Hb. The channel 
number is indicated at the middle of the left side of 
each chart, Looking to the channel 26, oxy and 
deoxy Hb contains big high frequency compo-
nents, which we call quick components, while total 
Hb contains less. The traces of 29 and 32 contain 
less quick components, in both oxy and deoxy, as 
well as total Hb. 

The NIRS variables, oxy and deoxy Hb can be replaced by total and difference Hb 

as below: 

Total Hb:      Total=Oxy+Deoxy   (1) 

Difference Hb:  O_D= Oxy –Deoxy   (2). 

Fig. 2 is showing traces of above variables. The quick components of oxy Hb and de-

oxy Hb are in opposite phases, thus by the addition of quick components, they are almost 

compensated, while by subtraction, the quick component is doubled in amplitude.   
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Fig. 2. Total Hb(red) and difference Hb(green) and the slow O_D (blue) among the middle of 

difference(O_D) trace. Square trace indicates on and off of task. 

Fig. 1. Raw traces of NIRS 



 Neuro-NIRS: Analysis of Neural Activities Using NIRS 545 

Applying moving average of 2 second, quick and slow components of Total and 

O_D can be derived. 

Slow total Hb: slow total=Average (Total)                        (3) 
Slow difference Hb: slow O_D= Average (O_D)                                (4) 

Quick total Hb:  Quick t= Total －Average(Total )                            (5) 

Quick difference Hb:  Quick O_D = O_D－Average(O_D)                  (6) 

Thus the analysis of quick components of NIRS can be concentrated to the quick 

O_D. The quick components derived from eq. (5) and (6) are shown in Fig. 3. The 

magnitude of quick total is about 1/10 of quick O_D, the characteristics of the latter 

are mainly discussed below. 

 

Fig. 3. Traces of Quick O_D and Quick total 

2.2   Analysis of Quick Components 

For the comparison of quick components, derived from various channels at various 

tasks, unified quantitative formulation of quick component is necessary. An appropri-

ate function applicable to noise like signal as quick components is Avedev (Microsoft 

excel function), which is average of absolute difference of data and their mean value. 

In our analysis, slow component is subtracted from O_D signal, thus the mean value 

of quick component is assumed to be zero. In short, avedev can be called the time 

average of absolute value of quick. 

In the previous papers [2], long term (>30second) distributions of quick compo-

nents around different channels and their changes are reported. A distribution proper 

to the case of this paper is shown in Fig. 9 below.  

Avedev is stable in value, when time length is taken 10 seconds or longer. It 

change considerably as averaging time is shorten, reflecting change of brain activities 

under the recording. In this paper, a method to evaluate short term change in brain 

activities is considered by introducing two parameters, M (magnitude)and D (den-

sity), related to Q.( avedev of quick component). The relation of these parameters is 

formulated as below. 

Q = M * D                                                              (7) 

Here  

M = max (max (member), -min (member))                                  (8) 

member: data within time span of averaging, and the number of data is denoted by N. 

Following the above formulation, relation below is derived. 

0< 1/N < D < 1                                                       (9) 
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Inequality (9) states that the density remains with in the bound of 0 and 1. Further 

studies are concentrated to the change of M and D, in succession of averaging cycles, 

which are taken 1, 2 and 5 second, for comparison, depending on the tasks.  

Imagine pulse trains of full, half, quarter, etc density 

as shown in Fig 4a. Relations of Q and M are shown by 

the lines of positive slope in Fig.4b. D is larger at the 

upper side of the slope lines. When quick component 

data are plotted on Q and M plane, scatter graph as in 

Fig. 4c is obtained. The data points are scattered around 

a positive slope line, and the slope is definite to member 

size, independent of channel. The member size increases 

in accordance to averaging interval of avedev (Q). Thus the inclination of slope de-

creases with increase of averaging interval. The degree of scatter is different depend-

ing on channel.  

Generally, the channels with large M show big scattering. The slope changes the 

inclination also depending on the tasks. 

 
 

Fig. 4b. Theoretical relationsof Q and M Fig. 4c. Actual distribution of Q and M 

 
Now the scatter plot of NIRS data is considered on density (D) and magnitude (M) 

plane (Fig. 4d). 

The positive slope lines in Fig. 4b are mapped to separate horizontal lines in  

Fig. 4d. Next the mapping of horizontal lines (Q = constant) in Fig. 4b to Fig. 4d is 

considered. 

 

  

Fig. 4d. Relation of D and M Fig. 4e. Data plot in D and M 
 

Fig. 4a. Pulse trains 
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Fig. 5. Hemodynamic model of O2 circulation 

They are transformed to hyperbola in 

Fig. 4d. The scatter graph Fig. 4c is trans-

formed to Fig. 4e. The ordinate is extended 

in Fig. 4e. The data area of Fig. 4e is the 

square zone between origin and point 0.4, 

0.6) of Fig. 4d. 

When D-M data are plotted for one 

task period, and adjacent dots are con-

nected by lines, trajectory as in Fig. 4f 

are obtained. The channel 20, shown in 

green triangles, include active change of M in short interval of time. On the con-

trary, channel activities are mainly in D change for channel 27 and 12. 

3   Sources of Slow and Quick Components 

3.1   Hemodynamic Systems 

The major NIRS signals, oxy and 

deoxy Hb, have each the different 

source. The source of oxy Hb sup-

ply is in lung oxygen exchange. 

Oxy Hb travels a long way up to 

brain passing through various bar-

riers. Thus the hemodynamic re-

sponses are normally slow. The 

source of deoxy Hb is neural activi-

ties in the brain, which is quick in 

nature. The quick component is 

gradually smoothed as it goes 

through cilliary vessel, and finally 

changes into slow deoxy Hb component. Thus the quick component directly recorded 

by NIRS is most likely reflecting neural activities of brain.Fig.5 is showing the model 

of hemodynamic systems related to NIRS.  

3.2   Oxy/ Deoxy Conversion in Neural Net 

Fig. 6 explains the process converting oxyHb into deoxy Hb after arrival of an neural 

excitation using the quantum model. After the conversion process one unit of oxyHb 

decreased and one unit of deoxyHb increased. Resultantly, double unit of deoxyHb 

increase is observed by one neural excitation. The model is in accordance to the quick 

component increase of O_D. 

 

 

Fig. 4f. D-M trajectory for a Task period. 

1019 1454 HIGHX.
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Neural excitation is energy consuming process. The neural system has to supply 

energy by support of ATP cycle immediately after excitations. In the recovery process 

after excitation, certain autofluorescence is reported [8]. One possibility of quick 

optical activities sensed by NIRS is after effect of neural excitations. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Two types of general purpose NIRS machine are in market. One provided by Hi-

tachi makes use of continuous modulation of infra red light, while the other provided 
by Shimadzu, makes use of sampling method. The latter looked annoying at first 
glance, because of prominent noise like responses. Now we convinced that they are 
providing significant physiological data. In case of machine using continuous modula-
tion light, in order to cut modulation signal component at output stage, strong high cut 
filter is necessary. The filter might cut quick component considerably. But careful 
analyzer might detect quick component as well. 

4   Text Entry Task 

Text entry task to mobile phone is analyzed in this chapter. The user participated in 
experiments were female students of university, informed consented in written form. 
The students are accustomed to enter in multi-tap telephone key entry, and predictive 
Kanji conversion method.  
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Fig. 9. Quick component distribu-

tion around the channels (180sec., 

ordinate in ｍMol/lcm) 
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26 27 28 29 30

31 32 33 34

B  

Fig. 8. Optode arrangement 

(34ch) 

The subject sat in front of CRT, where text of up to 20 characters are shown on the 

task phase, and on rest phase, colored picture of nature are shown. Subject held the 

mobile phone even in rest phase and stayed ready to start. Task and rest phases are 20 

and 10 seconds, and the task rest cycle repeated 6 times. Types of text are different 

cycle by cycle, so that mental effort might be different at each cycle. 

4.1   Task Description 

Text types of 6 task cycles are listed below: 

 
Task 1 is starting part of Japanese alphabet like 

ABC, which has deep meaning. Task 2 is to enter 

reverse order text which has no meaning. Text entry 

speed is not different whether the text is with or 

without meaning. Task 3 and 4 are text entry with 

predictive Kanji conversion. But the text are some-

what different from present-day lettering, subject has 

to think about to overcome the difference. Task 5 and 

6 are number entry, the key location and the number 

of key presses is equal to task 1 and 2. Conversion of 

letter to multi-tap operation is not required. 

4.2   Optode Arrangement 

Optode arrangement for present experiment is shown in Fig.8. The red optode indi-

cate light emitting and blue light sink. The number between optodes indicates channel 

number. The sampling frequency for the arrangement was 100ms. Trace of O_D and 

total Hb for channel 8 is shown in Fig. 2 

together with task/ rest signal.  

The quick component recorded in each 

channel is compared by taking avedev channel 

by channel , averaging time 180sec. 

The result is shown in Fig.9. The highest 

beak is observed at channel 20, and a sub peak 

at channel 16. At the 5 channels in the front 

most, quick components were low.   

4.3   Time Course of Magnitude and Density 

Quick component are clustered by 2 second, and 2 second avedev was applied  

for each data. Then M by using eq.(8), and D by using eq.(7) is determined to each 

cluster.  
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M and D change their value by time. Because D is 10 times larger in value, in 

drawing graph, 0.1D is adopted. Fig 10 is showing 0.1D, M, Q and task on/off signal 

in time. It is interesting, M and Q changes considerable by channel and task, 0.1D is 

changing in definite range. 

 

The variations of D and M are showing the neural processing in task and rest inter-

vals in the channels.  

5   Density Relations in Task and Rest Interval 

For simplicity of discussion, average of 0.1D values of all the channels is compared in 

the course of 6 tasks/rest intervals (Fig. 11). Interesting finding is that density of 

many channels diverges (increase or decrease) at rest, while it converges at task state. 

Most of the channels show the feature. 

In order to confirm the relations, density of all the 34 channels is averaged, and 

standard deviation of densities is calculated at each task and rest state.  

 

 

 

Fig. 11. Density variation at task and rest, 

comparison of 34 channels 1019 1454 HIGHX 

Fig. 12. Average and standard deviation 

density at task and rest 

 

 

 
 

Fig. 10. Change of cluster parameters Q, M, and 0.1*D in time sequence 



 Neuro-NIRS: Analysis of Neural Activities Using NIRS 551 

 

Fig. 14. Density increasing 

at task  

The results are shown in Fig. 12. The blue line shows the average and the ladder 

extended from the average is indicating the standard deviation. The standard deviation 

is lager at rest than at task, at most of the intervals. 

6   Density Characteristics at Different Locations 

Different locations of brain might have different density characteristics. As shown in 

Fig. 8, 34 channels are located in three parts of brain. One is in frontal, the second in 

left apical, and the last in right apical area. Density characteristics with task/rest inter-

val for the channels in each area are illustrated in Fig. 13. The channel location is 

illustrated by the location maps associated to density graph.  

In frontal area, density of most of the channels increases at rest, except for channel 

7 and 12. In the apical area also, most channels are density increasing at rest. Some 

channels which are density increasing at task, 18and 27in left, and 20, 28, 33 in right 

apical area are accumulated Fig. 14. Each channel seems to have specific task at 

which it might show high density. 

 

7   Conclusion 

Extended analysis method for NIRS quick component is presented. Quick component 

analysis is going to be most promising to study working brain. 

Finally, influences of quick brain activities are partly represented to NIRS trajecto-

ries which are derived from slow components. By comparing NIRS trajectories,  

people might realize, there are channels which increase in oxy or total hemoglobin but 

Fig. 13. Average of density within task/rest for all channels 
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less in neural activities. On the contrary, in some channels total or oxy Hb remains 

steady while the channels are busily functioning,  

Hemodynamic studies expect the working brain needs more oxygen supply. Thus 

the areas supplied with rich oxygen are tentatively working. But this is only the ex-

pectation, but not evidence. We have to find evidences related to parts of the brain 

actually functioning.  

Hemodynamic and neural functions are both significant aspects of brain studies. 

Cerebral infarction might cause hemodynamic problems, which might result in neural 

dysfunctions. Rehabilitation is the process of recovering hemodynamics and neural 

function. Neuro-NIRS is a new significant aspect of NIRS studies. 
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Abstract. An oculomotor test is described that uses pupil diameter and eye 

movements during reading to detect deception. Forty participants read and re-

sponded to statements on a computerized questionnaire about their possible in-

volvement in one of two mock crimes. Twenty guilty participants committed 

one of two mock crimes, and 20 innocent participants committed no crime. 

Guilty participants demonstrated speeded and accurate reading when they en-

countered statements about their crime and increases in pupil size. A discrimi-

nant function of oculomotor measures successfully discriminated between 

guilty and innocent participants and between the two groups of guilty partici-

pants. Results suggest that oculomotor tests may be of value for pre-employment 

and security screening applications. 

Keywords: Oculomotor measures, pupil size, deception. 

1   Introduction 

Many government agencies routinely conduct credibility assessments to screen appli-
cants for positions in intelligence, security, law enforcement, immigration, and public 
transportation. Errors in classifying an individual as truthful or deceptive in these 
settings can have serious consequences for the individual and society. Current screen-
ing techniques rely primarily on the polygraph; however, other techniques have been 
used, such as self-report measures of integrity or personality, behavioral analyses, or 
speech content analyses [1-3]. Recently, questions have been raised about the validity 
of the polygraph for screening and its susceptibility to countermeasures.  For exam-
ple, the National Research Council (NRC) was critical of the polygraph for pre-
employment screening and highlighted the need for “an expanded research effort 
directed at methods for detecting and deterring major security threats, including ef-
forts to improve techniques for security screening...” ([4], p. 8). Similarly, self-report 
integrity tests for screening potential employees have been criticized due to questions 
about their effectiveness [2], and behavioral and content analyses have their own 
shortcomings [3].  

We developed an alternative test for deception that relies on measures commonly 
used by cognitive psychologists to study the psychology of reading (e.g., [5]). Spe-
cifically, decisions about truth and deception were based on changes in pupil size and 
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eye movements that occur while participants read and responded to statements about 
their possible involvement in mock crimes.  

The size of the pupil varies with processing load and cognitive resource capacity 
[6]. Task-evoked pupil responses provide a reliable and sensitive psychophysiological 
index of the momentary processing load during performance of a wide variety of 
cognitive activities [7-9]. Although early research suggested that “emotional factors 
are relatively unimportant as determinants of pupillary responses observed in care-
fully controlled information-processing tasks” ([10], p. 288), an association has been 
noted between pupil response and emotional arousal, with larger pupil diameters 
associated with greater arousal [11].   

Regardless of whether the effects of deception on pupil size are associated with 
changes in cognitive effort or emotional arousal, we predicted that participants would 
show greater increases in pupil diameter to statements answered deceptively than to 
statements answered truthfully. Consistent with our prediction, Bradley and Janisse 
[12] and others [13] found that pupil responses to statements on a concealed informa-
tion polygraph test discriminated between truthful and deceptive subjects.  Similarly, 
Webb and colleagues [14] found that pupil responses were as diagnostic and at least 
as useful as electrodermal responses for detecting deception on a comparison question 
polygraph test.  

Results from reading studies have shown that when people experience difficulty in 
reading a word or phrase, their fixations on the text increase in frequency and dura-
tion, and they spend more time reading and rereading [5, 15]. Several investigators 
have used eye movements during reading or viewing images to detect deception. 
Baker, Stern, and Goldstein [16] presented test questions on a computer monitor and 
found that participants’ fixation durations successfully discriminated between truthful 
and deceptive responses in 9 of 10 participants. Deceptive responses were associated 
with longer fixation durations than truthful responses. Other investigators were able to 
detect attempts to conceal information by analyzing patterns of eye movements while 
participants viewed images of crime locations [17] or familiar and unfamiliar stimuli 
[18]. Based on these findings, we predicted that deception would be associated with 
increased fixation frequency and reading time. 

2   Method 

2.1   Participants 

Twenty-eight males and 12 females from the University of Utah community were 
recruited from fliers on campus to participate in a psychological experiment for pay 
and a possible bonus. Participants ranged in age from 18-38 years (M = 22.32), were 
predominantly Caucasian (87.5%), single (75%), and students at the University of 
Utah (97.5%).   

2.2   Apparatus 

Participants’ eye movements were monitored using an Applied Sciences Laboratory 
(ASL) Model 501 head-mounted eye tracker. The eye tracker was interfaced with two 
1.8 GHz Hewlett Packard desktop computers: one ran the eye tracker and recorded 



 Eye Movements and Pupil Size Reveal Deception 555 

the data, and the other ran the experiment. Participants had freedom of head move-
ment while wearing the eye tracker. Viewing was binocular, and eye movement was 
recorded from each participant’s right eye 60 times per second. Participants’ head 
movements and orientation were recorded with a magnetic head tracker, the output of 
which was stored with eye position and pupil diameter at 60 Hz.    

2.3   Materials 

Participants responded to 48 statements; 16 statements were neutral (e.g., “The sky is 
blue on sunny days.”), 16 statements addressed the cash crime, and 16 statements 
addressed the card crime. Each statement type required an equal number of true and 
false responses, and each collection of true and false statements was further divided 
into equal numbers of statements with negation (e.g., “I did not take the $20 from the 
secretary’s purse.”) and without negation (e.g., “I took the $20 from the secretary’s 
purse.”). Eight statements were presented on eight rows on the computer monitor.  
The rows were 3.23 cm apart on a 54 cm monitor in portrait orientation positioned 
approximately 72 cm in front of the subject. Participants used a mouse to select one of 
two radio buttons (True or False) on the right edge of the monitor adjacent to each of 
the eight statements. When participants completed a page, they clicked a button at the 
bottom of the screen to advance to the next display that presented eight new state-
ments. The three types of statements did not differ significantly by number of words, 
but they did differ by number of characters (neutral M = 38.25, cash M = 45.88, card 
M = 50.88; p < .01).  To adjust for differences in statement length, number of fixa-
tions was converted to number of fixations per character, and first- and second-pass 
reading times were converted to ms per character.  

2.4   Measures 

Pupil diameter and three measures of reading were obtained for each statement and 
repetition. All measures were recorded only when participants had fixated within a 
rectangular region-of-interest that surrounded each statement. The region-of-interest 
was 32 mm in height, started with the first character, and ended with the last character 
of the statement. 
 
Pupil diameter. Reading onset was defined as the first sample of the first of four con-
secutive fixations in the region-of-interest. The difference in pupil diameter between 
the first sample and each subsequent sample for a period of 4 s provided an evoked 
pupil response curve. In addition to the response curve, the area under the curve was 
computed to obtain a global measure of the magnitude of the pupil response. Area 
under the pupil response curve was the sum of positive differences between the low 
point that followed reading onset and each subsequent sample until the response  
recovered to the level of the low point or 4 s following reading onset, whichever  
occurred first.  
 
Measures of reading behaviors. Number of fixations was the number of times a partici-
pant fixated in the region-of-interest. First pass duration was the time the participant 
spent fixating on the statement before leaving the region-of-interest and looking  
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elsewhere.  Second pass duration was the total time the participant spent rereading the 
statement after once having left the region-of-interest. Total time was the sum of first 
pass and second pass durations. 

Four criteria were used to define a fixation (Eyenal Manual, Applied Sciences 
Laboratory, Bedford, MA). First, a fixation began at the first of six consecutive sam-
ples that occurred within .5º of visual angle. Second, any three consecutive fixation 
samples farther than 1º of visual angle in the horizontal or vertical direction from the 
running mean position ended the fixation. Third, the final fixation position was the 
mean position of all fixation samples between the beginning and end of the fixation 
period, but any two or fewer consecutive fixation samples that were farther than 1.5 
standard deviations from the mean position were excluded from the calculation of the 
final position. Finally, any fixation duration longer than 1 second was considered an 
artifact and deleted.   

2.5   Procedure 

Participants were recruited by placing fliers for the study at various locations around 
the University of Utah campus. The fliers provided contact information and indicated 
that participants would receive pay and a potential bonus. When they called, prospec-
tive participants were given a brief description of the study, screened for inclusion 
criteria (i.e., over 18 years old, proficient in English, and able to read without correc-
tive lenses), and given an appointment. Participants were then emailed initial instruc-
tions and a map of campus with a description of the study location.  Participants were 
called the day before their scheduled appointment, reminded of their appointment, 
instructed to get a good night’s sleep and not to drink caffeine two hours before their 
appointment time.   

Each participant reported alone to a room on campus, entered the room, closed the 
door, read and signed the consent form, and read the computer-administered instruc-
tions. No researcher was present at the initial study location. After reading the instruc-
tions, the participant was given the option to discontinue the study. For those who 
decided to continue, they were randomly assigned to an innocent condition (n = 20) or 
a guilty condition. Guilty participants were further subdivided into a “Cash” crime 
condition (n = 10) and “Card” crime condition (n = 10). Guilty participants were 
informed that they had no more than 30 min to complete their assigned crime.  Par-
ticipants in the “Cash” crime were instructed to steal $20 from a secretary’s purse.  
Participants in the “Card” crime were instructed to steal credit card information from 
a student’s computer. Innocent participants were given general descriptions of the 
crimes but did not enact them. They were told not to report to the testing room until at 
least 20 minutes after the time they were scheduled to arrive for their appointment.  

At the appointed time, participants reported individually to the reading lab. To mo-
tivate participants to appear truthful, they were told that in addition to a $30 payment 
for participating, a bonus of $30 would be paid if the participant appeared truthful to 
all of the statements on the test. All participants were informed that they should do 
their best to appear truthful on the test, and that the test was based on the idea that a 
person who committed a crime would have a difficult time answering.  Participants’ 
written instructions included the statement, “To appear innocent, you should respond 
as quickly and as accurately as you possibly can.” 
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Participants completed a demographic questionnaire and were seated in front of the 
computer monitor. The ASL eye tracker was attached and calibrated. For various 
reasons (e.g., pupil size, eye shape, corrective lens glare), the eye movements of some 
participants could not be tracked (27% of prospective participants).  Those individuals 
were paid $15 and excused from the experiment. Participants then read a set of in-
structions on the computer screen. The instructions told them that statements would 
be presented on the computer display and they should indicate if the statement is true 
or false. The 48 statements were presented three times in different orders separated by 
an unrelated task that took 5-10 minutes to complete. The presentation of the state-
ments was randomized across participants with the provision that a statement of one 
type was followed an equal number of times by a statement from the other two types 
and never was followed immediately by a statement of the same type.  

After completion of the testing, the eye-tracker apparatus was removed. Innocent 
participants were paid $60, and guilty participants were paid $30. The participant then 
was debriefed about the study and asked not to share this information with anyone 
who might participate in the study.     

3   Results 

We tested two predictions: Participants would show greater increases in pupil diame-
ter to statements answered deceptively than to statements answered truthfully, and 
deception would be associated with increased fixation frequency, reading time, and 
rereading time. Also, because statements were presented three times in different or-
ders, we expected that deceptive participants would demonstrate less attenuation of 
response times across repetitions than innocent participants for statements on which 
they were required to lie. However, repeated-measures analysis of variance 
(RMANOVA) showed no meaningful effects of repetitions on any of the outcome 
measures.     

3.1   Pupil Diameter 

Pupil diameter was analyzed with RMANOVA. Time was a within-subjects factor 
with 40 levels (4 seconds at 10 Hz); statement type was a within-subjects factor with 
three levels (neutral, cash, card); and treatment condition was a between-subjects 
factor with three levels (innocent, cash-crime, card-crime). Huynh-Feldt corrected 
degrees of freedom were used for significance testing. There was a significant interac-
tion between statement type and treatment condition, F(4, 74) = 4.04, p = .005,  

η2 = .18.  In addition, there was a significant three-way interaction between statement 

type, condition, and time, F(76, 1406) = 2.25, p < .001, η2 = .11. Plots of the three-way 
interaction for each treatment condition are shown in Figure 1. Results supported the 
prediction that participants’ pupil diameters were greatest when they read statements 
that they answered deceptively. Participants in the cash condition showed the greatest 
increase in pupil diameter in response to cash items followed by card and neutral  
items. Participants in the card condition showed the greatest increase in response to  
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Fig. 1. Evoked pupil responses to neutral, cash, and card statements. Cash statements evoked 

greater increases in pupil size for participants who stole cash (cash group), and card statements 

evoked greater increases in pupil size for participants who took credit card information (card 

group). 

 
card items, followed by cash and neutral items. For innocent participants, there was 
little difference between cash and card items, but pupil diameter was larger to those 
items than to the neutral items.   

Innocent Group 

Cash Group 

Card Group 
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3.2   Reading Behaviors 

There was no main effect of guilt on number on fixations per character, first pass 
duration (reading time), second pass duration (rereading time), or total reading time.  
The interaction between guilt and type of statement was significant for number of 

fixations per character, F(4, 74) = 4.38, p = .004, η2 = .19; first pass duration, F(4, 74) 

= 2.55, p = .047, η2 = .12, and total reading time, F(4, 74) = 4.19, p = .005, η2 = .18, 
but not second pass duration.  Effects on total reading time are presented in Figure 2.  
As expected, number of fixations and first pass duration were correlated with total 
reading time, and the pattern of results obtained for those three measures were similar.   

Contrary to predictions, participants in the cash condition made fewer fixations and 
spent less time on cash than card items. Likewise, participants in the card condition 
made fewer fixations and spent less time on card items than cash items. Innocent 
participants showed little difference among cash, card, and neutral items.  

3.3   Discriminant Analysis 

The outcome measures included pupil diameter, response time from first fixation, 

number of fixations, first pass, second pass, and total time. For each of the six out-

come measures, we generated three potential predictor variables. One was the par-

ticipant’s mean for neutral items. Another was the difference between the mean for 

crime-related items (cash and card) and the mean for neutral items. The last variable 

was the difference between the mean for cash items and the mean for card items. To 

find an optimal subset of variables to discriminate among innocent, cash, and card 

groups, two preliminary step-wise discriminant analyses were conducted. One analy-

sis selected variables to maximize the separation between guilty and innocent par-

ticipants. The second analysis selected variables to maximize the separation between 

the two guilty groups (cash and card). The selected variables then were included in a 

final multiple group discriminant analysis. This analysis yielded two discriminant 

functions.   
Five predictor variables were included in the two discriminant functions. The first 

function discriminated card participants from cash and innocent participants. It relied 
on the difference between the cash and card statements in total reading time, the dif-
ference between the crime-related and neutral statements in pupil diameter, and the 
difference between cash and card statements in pupil diameter. The second function 
discriminated between the cash and innocent participants.  It relied on the difference 
between cash and card statements in total reading time, the difference between the 
crime-related and neutral statements in rereading time, and the difference between 
crime-related and neutral statements in pupil diameter. 

The mean classification accuracy was 78.3%. In the present study, chance accuracy 
was 37.5%. Ninety-five percent of innocent participants, 80% of card participants, 
and 60% of cash participants were classified correctly. The discriminant functions had 
the most difficulty discriminating between cash and innocent participants. An internal 
validation of the discriminant analysis (jackknife) yielded 58.3% correct classifica-
tions. Seventy-five percent of innocent participants, 70% of card participants, and 
30% of cash participants were classified correctly.   
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Fig. 2. Total time per character for participants guilty of taking cash (Cash Group), download-
ing credit card information (Card Group), or innocent of both mock crimes (Innocent Group).  
Participants in the Cash Group spent more time on card statements than cash statements.  
Conversely, participants in the Card Group spent more time on cash statements than card 
statements.  

4   Discussion 

Our purpose was to develop and evaluate a new test for detecting deception. We ob-
tained oculomotor measures from guilty and innocent participants while they read and 
responded to neutral or crime-related statements on a computerized questionnaire.  
We predicted that participants would show greater increases in pupil diameter to 
statements answered deceptively than to statements answered truthfully, and decep-
tion would be associated with increased fixation frequency, reading time, and reread-
ing time. Only the first prediction was supported. Consistent with other research  
[12-14], deception was associated with increased pupil size. The increase in pupil size 
may have been due to increased cognitive load or emotional arousal. Contrary to 
predictions, deception was not associated with increased fixation frequency or reading 
time. Rather, guilty participants made fewer fixations and spent less time reading 
crime-related statements answered deceptively than crime-related statements an-
swered truthfully. These findings were obtained in the present experiment for both the 
cash-crime group and the card-crime group, and the findings have since been repli-
cated in two other experiments [19-20]. 

Innocent participants spent about the same amount of time on all test items. In con-

trast, guilty participants spent significantly less time on the statements about the crime 

they had committed than about the crime they did not commit. The pupil data suggest 

that guilty participants invested more mental effort in the processing of statements 

answered deceptively than truthfully, and the behavioral data indicate that they were 

successful in reducing the time they spent reading the statement. In fact, they were too 

successful; they overcorrected. If overcorrection was a consequence of a conscious  
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decision to read the incriminating items faster, it should be possible to train individu-

als to avoid detection by adopting a more general strategy to respond to all test items 

similarly.  
On the other hand, overcorrection may be a consequence of a cognitive distortion 

known as a contrast effect or a salience effect [21]. Because the person’s goal is to 
avoid detection when they lie, items answered deceptively stand out against a back-
ground of items answered truthfully. It has been argued that cognitive biases have 
evolved to facilitate information processing and protect the organism from harm  
(e.g., [22]). The cognitive distortion hypothesis is consistent with our findings, and it 
explains those of others (e.g., [23]). If it is correct, then the addition of multiple cate-
gories of items answered truthfully should increase the salience of items answered 
deceptively and the behavioral effects. In addition, training to defeat the test may have 
little effect on reading behaviors. 

Oculomotor and reading measures were used to develop discriminant functions that 
discriminated among the three treatment conditions. The analysis yielded a mean 
correct classification percentage of 78.3% and a mean jackknifed classification per-
centage of 58.3%. The classification accuracies for the original discriminant analysis 
are comparable to those obtained for polygraph testing in screening contexts, but the 
jackknifed classification accuracies are not. The lukewarm results may have been due 
to the presentation of test items in a traditional questionnaire format. We presented 
eight statements on the computer monitor at once. Participants were free to reread 
statements, read statements out of order, and change their answers. Subsequent ex-
periments in which individual statements were presented serially have produced lar-
ger effects and classification accuracies that exceed 85% [19-20]. It appears that the 
lack of constraint inherent in a more traditional questionnaire format introduced error 
in our measurements and attenuated the behavioral and physiological effects.   

 In conclusion, the present findings suggest that reading behaviors may be used to 
detect deception and may supplement or provide an alternative to the polygraph or 
self-report. Additional research is needed to test for effects of countermeasures, assess 
the effects of adding items to cover multiple issues, test if similar effects can be ob-
served in real-world screening contexts, and determine if changes in pupil size in this 
context reflect changes in cognitive load or emotional arousal. 
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Abstract. Russian applied psychophysiology has a wide experience of using the 

heart rate variability (HRV) measures for the assessment of operator workload. 

However, ‘workload indexes’ that have received a wide practical application, 

such as tension index (TI), are not sensitive to the moment-to-moment changes 

of operator physiological arousal level during the performance of cognitive 

tasks. In this connection, a new method of HRV analysis called CS-index is of-

fered. This index permits to identify moment-to-moment changes of operator’s 

functional state. The presented research shows that CS-index is sensitive to task 

load factors, such as task difficulty level and stressful conditions and allows to 

differentiate experienced and novice operators during their performance on a 

simulator. If the CS-index proves to be reliable enough, its combination with 

the Automated Expert Modeling for Automated Student Evaluation (AEMASE) 

approach can considerably raise the efficiency of operator training.  

Keywords: heart rate variability, cognitive workload, training. 

1   Introduction 

Russian applied psychophysiology has accumulated a rich experience of using the 

heart rate variability (HRV) measures for the assessment of operator cognitive and 

emotional workload during professional activity [2-5, 6]. Physiological hardware-

software complexes such as the “Physiologist-M”, used as devices to control the 

success of flight skills development on simulators were already used in the seventies 

of the XX-th century in pilot training in Russia (USSR). Such complexes were in-

tended for pilot workload assessment (“the physiological cost of performance”) at 

certain stages of the flight (takeoff, landing, fighting application, piloting systems 

failure etc.) and were based on the number of psychophysiological measures, such as 

heart rate, respiratory rate, respiratory minute volume, quality of secondary cognitive 

task performance during the performance of the basic training task [14]. Various 

methods of HRV analysis were developed. They enable us to assess cognitive and 

emotional workload level of a human operator during the professional work per-

formance [6, 9, 12, 15].  
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A so-called index of regulatory systems tension by Baevskii (IT) based on the 

analysis of characteristics of R-R intervals distribution for 3-minutes time intervals 

has received a wide practical application [4, 5]. The IT growth points at the increasing 

tone of the sympathetic branch of the autonomic nervous system, which, in turn, 

shows the level of mobilization of physiological regulation system on the estimated 

time interval. However, the IT and other similar methods of HRV analysis are not 

sensitive to moment-to-moment changes of operator physiological arousal level dur-

ing the performance of cognitive tasks, and this complicates their usage for aug-

mented cognition applications. 

In this connection, a new method of HRV analysis called CS-index is offered [7]. 

This index enables to identify moment-to-moment changes of operator functional 

state. The approach based on the analysis of “transitive” (unsteady) phases in instan-

taneous heart rate (IHR) dynamics under cognitive workload intensity change was 

offered along with it.  “Transitive” phase is understood as the period of transition of 

HR regulation system from one steady state to another. In the instantaneous heart 

rate dynamics with increased workload intensity a number of consecutive phases can 

be identifies: “steady-state 1” - an initial state of heart rate regulation, that is  

observed before the increased workload intensity; “transitive (unsteady) state”- the 

state of primary mobilization, characterized by IHR increasing, caused by the work-

load intensity increase; “steady-state 2”- a state of heart rate regulation, character-

ized by IHR indicators stabilization at a new level. It is indicated that in the course of 

training reduction of intensity and duration of “transitive” phases in IHR dynamics 

and decreased physiological cost of adaptation to the workloads is identified among 

students [11, 13]. 

2   Study 

The purpose of the present research was to empirically assess the ability of various 

heart rate regulation indicators to identify changes in cognitive activity of novice and 

experienced operators during their professional tasks performance on simulator.  

Participants. A total of 40 participants, 21 experienced train drivers and 19 novice 

train drivers, aged from 20 to 43 years, took part in this study. The experienced driv-

ers were recruited from locomotive depots. The novice train drivers were recruited 

from the training centers of the “Russian railways” Public Corporation. The experi-

enced train drivers had a mean train driving experience of 10 years. The novice train 

drivers had no experience of driving.  

Procedure. A medium-fidelity fixed-base train simulator, developed by the company 

“Spectrum”, Russia, was used in the experiment. Each participant performed six  

15-minutes scenarios on a simulator. Train driver activity at the performance of the 

following professional tasks was simulated in the course of the scenario performance: 

continuous monitoring of the visual signals appearing from out of cab space, regula-

tion of the locomotive movement speed, speaking with the use of communication  

device. Scenarios had three complexity levels: low, medium, high, which varied in 

intensity of perceived road signals and also in speed and characteristics of simulated 

train movement. Half of scenarios included critical incidents that simulated damages 



 Physiological-Based Assessment of the Resilience of Training to Stressful Conditions 565 

in the locomotive alarm system. The given incidents were connected with sharp in-

crease of perceptive and working memory loads and also required operator multitask 

under time pressure. Simultaneously with the primary driving task participants per-

formed a secondary sensory-motor task: they responded to visual signals appearing on 

the bottom of the simulator display with the frequency of 1 time in 10 seconds. 
Errors made by participants during the performance of the primary driving tasks 

and response time for a secondary task were measured for each scenario. Time den-
sity of the sensory-motor reaction distribution was described by the formula #1 with 
five parameters: 

 

( )DB
TTCTTATP )(exp)()( 00 −⋅−⋅−⋅= . (1) 

 

where T
0
 is an excess factor, 

A - a scale factor 
B –a density of distribution increase factor, 
C and D – a density of distribution decrease factor. 
For each examinee quantities of the mentioned factors were calculated as a result 

of approximation. After that the following measures were defined: (1) mode of distri-
bution (the most probable size, TM) of reaction time values; (2) half-width of distri-
bution (characterizes disorder of quantities, T) of reaction time quantities. Secondary T) of reaction time quantities. Secondary 
sensory-motor task performance measure (SST) was calculated by the formula #2: 

 

TTMSST Δ⋅+⋅= 5.05.0 . (2) 

 
The experiment has begun with the 3-minutes registration of an electrocardiogram 

for the baseline heart rate variability (HRV) assessment. After that participants have 
performed three 15-minutes scenarios, then, after a small break - three more scenar-
ios. After the end of the last scenario 3-minute HR registration in the rest period was 
carried out. 

Cardiovascular Measures. Electrocardiogram signals were continuously recorded 
during the performance of training scenarios by the participants using “Omega-M” 
portable loggers (Dinamica Inc., Russia) with disposable electrodes. A standard three-
electrode configuration was used, as described by Mulder et al. [10]. R-peaks were 
continuously recorded, with an accuracy of 1 ms. Artifacts were corrected using in-
terpolation. Analyses were made according to the recommendations of the task force 
on HRV [8]. Time domain measures of HRV included mean RR interval (RRNN), 
standard deviation of all normal RR intervals (SDNN), and RMSSD (square root of 
the mean squared difference of successive normal RR intervals). Frequency domain 
measures of HRV were quantified through the fast Fourier transform and included 
low frequency power (LF, 0 Hz), high frequency power (HF, 0 Hz), and the LF/HF 
ratio. Along with it the calculation of following measures was carried out [4]: 

Mode (Mo) - most frequently occurring value of R-R. 

Amplitude of a mode (AMo) – a ratio of RR-intervals quantity with the values 
equal to Mo, to the total RR-intervals in percentage. 

Range (∆X) - is calculated as a difference between maximum and minimum values 
of R-R. It reflects the variability level or peak-to-peak value of RR-intervals. 

Index of autonomic balance (IAB) 
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X

AMo
IAB

Δ

=

. 
(3) 

Index of regulatory systems tension (TI) reflects a level of centralization of heart 
rate control  
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(4) 

The analysis of  the heart rate transitive processes under increased workload inten-
sity was carried out by the technique offered by N.I. Sapova [13]. Calculation of peak 
and time measures of the heart rate transitive processes was carried out.  

To assess moment-to-moment changes in HR-variability during the performance of 

training scenarios CS-index calculation was carried out with the formula #3: 
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(5) 

 
Where RRNN - stands for average cardio-intervals value for an observation stage; 
SDNN – standard cardio-intervals deviation for an observation stage; 
<> - averaging on time interval; 
t – observation time (position of the window centre); 
a - baseline state (3 minutes); 
N - averaging procedure for a window which width makes N points. In these calcu-

lations CSN (t) the width of a window (N) is equal to 9 points of RR-intervals. 

3   Results 

3.1   Task Performance Data  

At the stage of data analysis we have confirmed that professional experience and a 
level of task difficulty and critical rail incident appearance affects the successfulness 
of participant performance of the primary training task and secondary sensory-motor 
task.  

The percentage of errors made by the participants was calculated for each scenario. 
Measure of a primary training task’s (PTT) successfulness performance was calcu-
lated on its basis. ANOVA with Task Difficulty (low, medium, high) and Conditions 
(presence vs. absence of critical incidents) as a within-subject factors and Experience 
(Novice vs. Experienced train drivers) as a between-subject factor were used. Suc-
cessful performance of scenarios with critical incidents demanded from participants 
multitask performance during time pressure and was connected with sharp increase of 
cognitive workloads. In this connection we considered Conditions factor as one of the 
task load factors, along with the Task Difficulty factor. 

It was discovered that both task load factors affect the successfulness of the  
primary training task performance. Increase of the training task difficulty leads to 
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deterioration of participant activity and increase in the number of errors (F(2,37) 
=28,2, p<0,001). In the presence of critical incidents train drivers made more errors 
than in their absence (F(1,38) =16,00, p<0,001). The significant differences between 
the groups were determined for driving task performance during stressful scenarios, 
but not for neutral ones. The novice train drivers have committed more errors in driv-
ing in association of critical incidents than experienced train drivers.  

Measures of the secondary sensory-motor task performance were analyzed by the 
same method. Again, both of the task load factors have significantly affected the per-
formance of the sensory-motor task. The response time both for the experienced train 
drivers and for the novice train drivers has essentially increased in association with 
critical incidents, indicating the psychological cost of adaptation to stressful condi-
tions (F(1,38)=18,9, p<0.001). Significant differences between the groups were also 
found (F(1,38) =14,8, p<0,01). The experienced train drivers were more successful in 
performing the secondary task than the novice train drivers. These results indicate that 
both task load factors were strong enough to significantly affect task performance. 
They also indicate that during the performance of training scenarios the majority of 
participants were sensitive to each of the task load factors. 

3.2   Cardiovascular Data 

Turning to the heart rate variability indicators, we have evaluated the ability of each 
indicator to detect changes in cognitive activity of experienced and novice drivers as 
each of the two task load factors varied. Each physiological measure was analyzed by 
the same method as the performance measures. It was found that among the measures 
of heart rate regulation CS measure had the greatest sensitivity to the influence of task 
load factors. This indicator enables to assess changes of heart rate variability for rela-
tively small time intervals (7-9 seconds). An example of the given indicator’s changes 
at occurrence of the critical incident is presented on the figure #1. Increase in the 
value of the indicator points at the increased human physiological arousal. 

It was found that the Task Difficulty factor significantly affects the CS measure 
(F(2,37)=44,7, p<0,001). As the conditions of the training task become more  
complicated, the value of CS-index considerably increases in both groups of  
 

 

Fig. 1. An example of CS-index dynamics during the performance of stressful training task 
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participants. During the performance of training tasks associated with critical inci-
dents, experienced and novice train drivers have shown greater values of CS than at 
the performance of neutral training tasks (F(1,38)=133, p<0,001). Significant inter-
action of the Task Difficulty and the factor Experience was observed (F(2,37)=7,44, 
p<0,05). Experienced train drivers in comparison with novice ones had considera-
bly lower level of physiological arousal at the performance of difficult training 
tasks. It indicates the lower physiological ‘cost’ of their adaptation to raised cogni-
tive workloads. Results of the analysis are presented at the figure #2. 

 

Fig. 2. Influence of Task Difficulty (low, medium, high) and Conditions (neutral, stressful) on 

CS measure at experienced and novice train drivers 

It was established then that a number of HVR-measures offered by R.M. 
Baevskii [2-5] show relative sensitivity to the influence of load factors. The Condi-
tion factor (neutral, stressful) significantly affects the values of the regulatory sys-
tem tension index (TI) (F(1,38)=25,06, p<0,001) and values of index of autonomic 
balance (IAB) (F(1,38) =33,4, p<0,001) in both groups of examinees. Measures of 
the regulatory system tension during the performance of neutral and stressful train-
ing tasks are presented on a figure 3. As follows from fig.3, participants had con-
siderably greater values of a TI-index during the performance of stressful training 
tasks than during the performance of neutral training tasks. The influence of the 
Task Difficulty factor on the values of TI measures was observed (F (2,37) =5,44, 
p<0,05). Significant influence of the Difficulty factor on the values of IAB meas-
ures is not found (F (2,37) =2,178, p>0,05).  

Significant influence of task load factors on frequency domain measures of HRV 
was not observed during the research. 

Further, heart rate transitional characteristics during the occurrence of stressful 
critical incidents have been analyzed for stressful training tasks. Significant between - 
group differences in the measures of heart rate transitive processes duration were 
found (F(1,38) =9,84, p<0,01). Experienced train drivers in comparison with novice 
ones had considerably shorter duration of the heart rate transient phases during  
adaptation to high cognitive workloads caused by the occurrence of critical incidents. 
Influence of the Task Difficulty factor on the measures of transient processes of the 
heart rate was not significant. 
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Fig. 3. Average measures of the regulatory systems tension index (TI) during the performance 

of neutral and stressful training tasks 

4   Discussion 

Russian researchers have developed a substantial number of physiological methods 
to assess the efficiency of operator adaptation to high cognitive workloads. Indica-
tors of heart rate regulation (HRR) got the greatest practical application. Methods of 
variational pulsometry, such as regulatory system tension index ( I), a measure of I), a measure of 
regulation processes adequacy (MRPA), index of autonomic balance (IAB) and other 
methods are widely applied in operator cognitive workloads assessment during the 
real or simulated professional work [2, 4]. These indexes are based on the analysis of 
characteristics of R-R intervals distribution. They are assessed for 3-minute time 
intervals and do not enable to identify moment-to-moment changes in operator cog-
nitive activity.  

In this context a new method of HRV analysis called CS-index is offered [7]. It en-
ables to reveal moment-to-moment changes of operator’s physiological arousal level 
during the performance of professional tasks. The approach based on the analysis of 
heart rate unsteady characteristics was offered along with it, enabling to assess the 
success of student’s adaptation to specific kinds of workloads.  

The purpose of the present research was to empirically assess the ability of various 
heart rate measures to identify changes in cognitive activity of novice and experi-
enced drivers during the professional task performance.  

It was found that during the performance of training scenarios associated with 
stressful incidents participants had considerably greater values of the regulatory 
system tension index (TI) than during the performance of scenarios not connected 
with stress. It confirms the data of other studies indicating that the TI index is a 
reliable sign of the emotional stress level experienced by operator during the work 
performed [5].  
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It was discovered, that the indicator to assess a heart rate variability called the CS-
index is more sensitive to the influence of both workload factors. Increase of the train-
ing task complexity and occurrence of critical incidents led to considerable increase 
of the CS-index average values in both groups of participants.  

The present research has also confirmed the dynamic measure informativity, such 
as duration of the heart rate unsteady processes during changing workloads. It was 
shown that experienced driver measures of unsteady processes duration were signifi-
cantly less than in the novice group. It points to their more successful adaptation to 
the influence of the raised workloads. 

It is obvious that the further research directed to validity and reliability demonstra-
tion of the considered methods of heart rate regulation assessment is necessary. If 
their validity and reliability are proven, it may be perspective to integrate the given 
methods with the Automated Expert Modeling for Automated Student Evaluation 
(AEMASE) approach developed by Sandia National Laboratories [1]. This will per-
mit to raise the efficiency of expert training. 
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Abstract. A tunnel operator monitors and regulates the flow of traffic inside a 

tunnel. Tunnel operators need to train in a simulator regularly in order to main-

tain proficiency in handling incident situations. During quiet working hours, the 

operator has enough time for training. But generally at that time no instructor or 

colleague operators are present to provide instruction, advises, and feedback. As 

a solution, we have designed an automated training system. The system em-

ploys a conversational agent which supports the operator’s situation assessment 

tasks. The agent exhibits peer behavior which is unobtrusively directed by di-

dactic strategies. In this paper we present the design, development and applica-

tion of the agent. 

Keywords: Agent-Based Modeling and Training, Cognitive Modeling, Con-

structive Learning, Intelligent Virtual Agent. 

1   Introduction 

The task of a tunnel operator is to monitor and regulate the flow of traffic inside a 

tunnel. Surveillance cameras are mounted inside the tunnel. Images from the cameras 

are displayed on monitors inside the control room. In case of a large-scale incident, 

the operator takes initial safety measures (e.g. closing traffic lanes) and stays in 

charge; at least until the principle fire-department officer arrives on the scene.  

Tunnel operators need to train regularly in order to maintain proficiency in devel-

oping situation awareness and handling the events occurring in the stressful initial 

minutes of a crisis situation. We have developed a training simulator that enables a 

tunnel operator to train himself in incident management. The simulator presents an 

incident-situation to the operator, which develops in real-time. The operator has to 

make situation assessments and must take appropriate safety measures. 

Since incidents occur infrequently, the tunnel operator’s workload is unevenly 

distributed over time. During quiet working hours, the operator has enough time for 

simulator training. But generally at that time no instructor is present to provide di-

dactic support (e.g. providing instructions and feedback). No other operators are pre-

sent to provide colleague advises either. Therefore, educational support systems need 

to assist the operator during the training. Intelligent virtual agent technology enables 

the creation of virtual characters that conduct a true dialogue with humans [1] [2]. 

Intelligent virtual agent technology combines a realistic real-time three-dimensional 
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visualization of a human, with the cognitive modeling of ‘what is on the human’s 

mind’, and means to communicate in spoken and written word. The application of 

agent technology enables us to create virtual agents that provide didactic support to 

the tunnel operator, for example virtual instructors and virtual co-learners. Yet, not 

much is known about the most effective way of applying these virtual agents for op-

erator training. 

2   Research Goals and Approach 

In this paper we present the design, development and application of an educational 

agent for the training of a tunnel operator. The main research question of this project 

was: What are the necessary agent functionalities for virtual agents that accompany a 

tunnel operator during task training in a tunnel training simulator? Here, we consid-

ered knowledge requirements (i.e. which domain knowledge, didactic knowledge, and 

student knowledge has to be available for the agent?) as well as behavioral require-

ments (i.e. what is the most effective content, form and timing of the agent’s interven-

tions and instructions?). We first performed a literature study on agent-based training 

applications. Based on the results of this study, we composed a generic framework 

that describes the cooperation between a human supervisor and an educational agent 

jointly training a supervisory task, like the tunnel operator task. Based on this frame-

work, we implemented a prototype educational agent in our tunnel training simulator. 

In future projects, this prototype can be used to refine the agent design guidelines by 

means of training experiments. 

This paper provides an overview of the project results. §3 presents an overview of 

generic design guidelines for educational agents obtained from literature. §4 through 

§7 describe the agent-student cooperation framework and the prototype educational 

agent. §8 concludes with a summary and the focus of future training experiments. 

3   Educational Background 

In 2000, Johnson [3] recognized that animated pedagogical agents were in the early 

stages of development, but that they would have a significant impact on education and 

training in the near future [4] [5]. Engaging, expressive pedagogical agents can pro-

vide feedback and advice that have a strong motivating effect on trainees, and may 

even encourage and empathize with these trainees. Moreno et al. [6] conducted a 

study investigating the effectiveness of an animated pedagogical agent on children’s 

learning. One group of trainees learned with on-screen instruction and the help of a 

pedagogical agent and another group learned just by reading on-screen instructions. 

Across two separate experiments, the agent group had a 24-48 % higher success rate 

than the non-agent group. For children, subtle praising for effort proves to provide 

good result; better than praising for accomplishment [7]. 

Another effect that can be expected from a life-like agent is that the trainee will 

build up a relationship with an agent and might become committed to respond to the 

agent in a positive way. According to Kidd and Breazeal [8], the most important fac-

tors for trying to create and maintain a helpful, long-term human-agent relationship 
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are engagement, trust and motivation. The agent used relational strategies such as 

social dialogue, empathy dialogue, meta-relational communication, humor, continuity 

behaviors, and forms of address and politeness strategies [9]. Personality is funda-

mental to social relationships. People automatically perceive a personality in social 

agents even when no personality is intended [10]. This has led to the “computer as a 

social actor” paradigm put forward by Reeves and Nass [11]. In this paradigm all 

computer mediated interaction should take human social assumptions into account. 

Therefore, explicitly adding a personality can direct the social interaction into the 

desired direction. 

The classical student-teacher learning method implies a hierarchical relationship 

between student and instructor instead of a social relationship. The instructor chooses 

the exercises, directs the learner, evaluates task performance, and exactly tells the 

learner how to act in order to improve performance. This classical method does not 

match sufficiently with the “computer as a social actor” paradigm. Modern, self-

directed, constructive learning methods [12] [13] provide a better match. Here the 

trainee is fully responsible for his own task proficiency. The trainee is encouraged to 

improve his proficiency, preferably by experimenting and by cooperating with  

colleague trainees. Trainees discuss their task strategies together, and think about al-

ternative strategies that might improve task performance. As a consequence, social 

interaction between trainees is crucial to the success of these learning methods. 

In order to implement the above-mentioned social, constructive learning approach 

in an agent-based learning environment, like the tunnel training simulator, we need an 

educational agent acting like a co-learner. This companion agent encourages the 

trainee to discuss his thoughts and actions and stimulates discoveries on how to reach 

the learning goals. The agent has the same expertise as the operator does. This means 

that the agent can provide good suggestions, but might also make mistakes. The 

trainee does not have to follow the agent’s advice. The agent just needs to make him 

think over certain situations that occur during the scenario execution.  

In our tunnel training simulator, we implemented a prototype companion agent 

(§4) that supports the trainee in situation assessment tasks (§5). The design frame-

work of the agent is described in §6. §7 exemplifies typical agent interventions. 

4   Demonstration Setup 

Figure 1 shows the tunnel training simulator with companion agent. The tunnel train-

ing simulator implements a virtual model of the tunnel control room. Instead of oper-

ating on a real tunnel control system, commands are sent to a virtual tunnel simulator 

and sensor signals (surveillance camera pictures, alarm messaging from automated 

surveillance systems) are received in return. The trainee and companion agent interact 

socially while executing their joint task. In Figure 1, the companion agent is indicated 

by |, the virtual tunnel control system is indicated by ~, and the virtual tunnel 

monitor is indicated by ¡. In this setup, the operator can switch easily between oper-

ating the control system, monitoring the tunnel, and interacting with his co-learner. 

The companion agent can interact with the trainee through verbal communication, 

with either written or spoken dialogue. The former is implemented by a text based 

input module, the latter by a voice recognition module. The agent is embodied  
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Fig. 1. Tunnel training simulator with a companion agent 

through an animated 3D character model, and a speech synthesis module transforms 

written dialogue to speech, which is fed into a lip-synchronization module. The be-

havior of the agent is discussed in §6.  

5   The Task of the Tunnel Operator  

Tunnel incidents are categorized and ranked by their impact on tunnel safety. For 

each incident type, a different incident procedure exists. The tunnel operator needs to 

execute this procedure in order to return to a safe situation. E.g. for a simple car crash 

without injuries and fire, he needs to close the traffic lane and call in the tow service. 

For a large-scale fire incident, he needs to push an alarm button that activates auto-

matic safety measures (e.g. activating route signing of emergency exits). Table 1 

shows the incident types of the tunnel training simulator. 

Table 1. Incident classifications in the tunnel training simulator 

Incident 

type 

Incident 

name 

Events occurring inside the tunnel 

  Damage Injuries Fire 

0 No incident No No No 

1 Incident with material damage Yes No No 

2 Incident with injuries  Yes No 

3 Fire incident   Yes 
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The task of the tunnel operator is largely a situation assessment task. In order to 

perform well, the tunnel operator must have good situation awareness (SA). End-

sley [14] defines SA as: “the perception of the elements in the environment within a 

volume of time and space, the comprehension of their meaning, and the projection of 

their status in the near future”. Translated to the specific tunnel operator task, the op-

erator needs to do observations (phase 1 of SA, perceptions) and use these to classify 

the current situation in the form of a diagnosis (phase 2 of SA, comprehension). 

Based on the diagnosis, the operator decides on a course of action (the third phase of 

SA, projection).  

 

Learning objectives. From a situation awareness perspective, the learning goals of 

tunnel operator training are threefold: 

1. The trainee is able to find the information that is necessary to make a situation 

assessment (the observation objective, related to the first phase of SA); 

2. The trainee is able to classify an incident situation by combining individual ob-

servations into a correct situation assessment (the diagnosis objective, related to 

the second phase of SA); 

3. The trainee has developed “critical thinking” skills [15]. From time to time, he 

needs to reassess the situation, and decide whether his current situation classifica-

tion is still correct (the critical thinking objective). 

In the current simulator, the learner does not have to decide on the course of action; in 

other words, projection is not a learning objective in this implementation. 

 

Error types. The trainee may fail to perform correct diagnosis formation due to a 

number of reasons. We categorize five error types in total, divided over the learning 

objectives mentioned above. For the observation objective these errors are: 

1. the unseen error: the trainee has failed to notice something;  

2. the hallucination error: the trainee reports something that does not take place. 

 

For the diagnosis objective, there are two typical errors: 

3. the classification error: the trainee has not applied the incident classification 

rules correctly;  

4. the omission error: the trainee has not shared an observation with his peer. 

 

Finally, there is one typical error within the context of the critical thinking objective: 

5. the critical attitude error: the trainee does not reassess the situation frequently, or 

holds on to an obsolete diagnosis too long. 

6   The Cooperation between Learner and Agent 

For effective constructive learning, it is vital that the trainee is able to speak freely 
with his co-learner, without feeling judged. This implies the absence of an authoritar-
ian relationship. Therefore, the agent must act as a true companion to the trainee. As 
such, the agent is required to exhibit peer behavior to create a safe and trustworthy 
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atmosphere. At the same time, the agent should stimulate conversation with the 

trainee in order to encourage him to explain his reasoning and to enable him to do 

new discoveries and construct new knowledge. In order to achieve this, the agent is 

required to guide the didactic process. Didactic guiding must occur only unobtru-

sively and must remain unnoticed by the trainee. 
Figure 2 illustrates how these two principles (peer behavior and didactic guiding) 

are incorporated in the design of the agent. The agent is divided in two separate lay-

ers: the didactic layer and the peer behavior layer. The top layer (didactic module) 

contains domain-independent didactic knowledge. In the bottom layer (peer behavior 

module), the behavior of the agent is modeled to represent the role of a companion to 

the trainee. On this layer the specific domain knowledge is modeled. This design en-
ables easy reuse of the agent for training other supervisory tasks. Only the specific 

domain knowledge in the peer behavior module needs to be remodeled. 

 

Fig. 2. Companion agent design framework 

The agent’s peer behavior is executed by the peer behavior module and directed by 

the didactic module. The didactic module has a complete view on the world, whereas 

the peer behavior module and the trainee only have partial (and possibly incorrect) 

views on the world. These views are based upon events sent by the simulator. 

The trainee can share his beliefs with the agent verbally by expressing statements. 

Each statement can either regard a new observation (e.g. “I see car damage on cam-

era 5.”) or a situation diagnosis (e.g. “There is a fire incident.”). These statements 
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are semantically processed into beliefs, which are added to the learner belief model. 

The didactic module compares the learner’s beliefs to the ground truth in order to 

recognize and classify possible errors (see §5). The result of this classification is used 

to direct the peer behavior of the agent. The didactic module determines if the 

trainee’s observations are correct, sufficient and necessary to support his diagnosis. 

Depending on the classification, different didactic strategies can be applied. The di-

dactic module employs several dialogue models to encourage the trainee to explain 

his diagnosis, including asking the trainee for supportive evidence, encouraging the 

trainee to state his observations, and intervening (e.g. deny an observation, suggest a 

review of the observation, or propose a different action). 

7   Typical Agent Interventions 

For each learning objective, this section describes the most typical agent interven-

tions. 

 

The observation objective. If the trainee’s latest verbal statement indicates a  

new observation, the agent will respond following the flowchart in Figure 3. If the 

observation is incorrect, the provided verbal intervention depends on the type of ob-

servation error. For example, when the trainee incorrectly observes that injuries are 

present (hallucination error), the agent will focus on more detailed observation, and 

respond “I'll go check the number of injuries.” Another example is when the trainee 

incorrectly observes that injuries are not present (unseen error), the agent will focus 

on typical incident characteristics, and respond “There is a chance that people are 

hurt.” For each error type, multiple response phrases are available, such that the 

agent can select a different response phrase when the trainee holds on to an incorrect 

observation. 

If the observation is correct, the agent will stimulate the trainee to investigate if 

this observation changes the diagnosis. 

 

The diagnosis objective. If the trainee’s latest verbal statement indicates a new diag-

nosis, the agent will first ask the trainee to explain his diagnosis by calling out the 

observations that support the diagnosis one at a time. Subsequently, the agent will 

respond following the flowchart in Figure 4. 

If (some of) the supporting observations are incorrect, or if the trainee did not men-

tion crucial information in relation to the provided diagnosis, the agent will stimulate 

the trainee to reconsider his observations. The agent categorizes the incorrect or miss-

ing observations as hallucination errors, unseen cue errors, and omission errors, and 

selects a single error from the observation set. If the selected error is a hallucination 

error or an unseen error, the agent uses verbal responses similar to Figure 3, in order 

to encourage the trainee to reconsider his diagnosis. If the selected error is an omis-

sion error the agent tells the trainee his own beliefs regarding the specific subject. For 

example, suppose the trainee correctly diagnosed the incident situation as an incident 

with injuries (incident type 2 in Table 1). When the trainee did not mention the ab-

sence of fire in his diagnosis explanation, the agent responds “I think there is a fire.” 

This statement is incorrect, and probably the trainee will correct the agent. But at the  
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Fig. 3. Handling new observations Fig. 4. Handling new diagnoses 

 
same time, it will probably make him think over the relation between the pres-

ence/absence of fire and the diagnosis of a type 2 incident. 

If the trainee’s observation set is correct and complete, but his diagnosis is  

incorrect (classification error), the agent will stimulate the operator to reconsider his 

classification by providing his own diagnosis belief. Once more, this belief may even 

be incorrect. 

 
The critical thinking objective. If the trainee’s diagnosis belief does not change 

quickly after an event in the simulated tunnel (i.e. a change of the ground truth), the 

agent concludes the trainee holds on to an obsolete diagnosis. Then, the agent pro-

vides unobtrusive hints in order to stimulate the trainee to suspend his current activi-

ties and start a critical review of his current diagnosis belief. This is likely to occur 

when shortly after a first incident, a second incident occurs. If the second incident 

remains unnoticed by the trainee, the agent will first ask “What is going on?” If the 

trainee holds on to his initial diagnosis the agent will ask “Which procedure did you 

follow?” Subsequently he will ask “When did it happen?” The last-mentioned ques-

tion causes the trainee to place the earlier observed events in a time frame, and en-

courages the trainee to investigate whether current events are in line with the events 

observed earlier. 
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8   Conclusions and Future Work 

In order to apply virtual agents for training, the social relationship between the agent 

and the trainee has to be taken into account. The agent must consciously balance be-

tween motivating and guiding the learner. On the one hand, the agent must promi-

nently act as a true companion to the trainee, and exhibit peer behavior to create a safe 

and trustworthy atmosphere. On the other hand, the agent must unobtrusively guide 

the didactic process: the agent must encourage the trainee to verbally explain his rea-

soning in order to enable him to do new discoveries and construct new knowledge. 

Didactic guiding must remain unnoticed by the trainee. 

Our agent-learner cooperation framework (§6) enables the creation of social educa-

tional agents supporting a human supervisor when training a supervisory task. The 

implemented companion agent prototype for tunnel operator training shows the capa-

bilities at hand within this framework. Future experiments have to show if training 

with this agent indeed results in improved situation awareness and solid incident as-

sessments. These experiments also have to provide the most effective content, form 

and timing of the agent’s interventions and instructions. 
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Abstract. Five different training techniques (classroom, video, game-based, 

computer-based, and simulator) were compared using neurophysiological 

measurements. The best performance was displayed by individuals in the class-

room and video conditions. These participants also displayed the lowest levels 

of cognitive workload and the highest levels of engagement. The poorest per-

formance on the training was exhibited by individuals in the computer-based 

and game conditions. These participants also displayed the highest levels of 

cognitive workload, the lowest levels of engagement, and computer-based had 

the highest levels of drowsiness. As expected, the testing phases of the training 

had the highest levels of workload. In general, engagement dropped and distrac-

tion increased during the training phase when the material was first presented to 

participants. However, participants who could keep engagement high during 

this period performed better. This suggests that mental state monitoring during 

training could help provide a mechanism for alleviating distraction and inatten-

tion and boost training efficacy.  

1   Introduction 

The use of neurophysiological sensors such as electroencephalograph (EEG) to meas-

ure cognitive workload is not a novel concept. Other researchers have investigated the 

relation between mental effort and Gamma band response [1] and power and coher-

ence measures as they relate to mental effort [2]. The research team used a gauge that 

is based on aspects of these underlying responses and provides a quantified measure 

in real time of an individual’s mental state.  

The Sensor-based Mental Assessment in Real Time (SMART) system utilizes  

user-independent algorithms to convert physiological data into multiple gauge read-

ings. These gauges indicate second-by-second variation in mental activity and provide 

insight into the participant’s cognitive processing. Electroencephalograph (EEG) 

sensors are used to provides measurement of voltage fluctuation across the scalp, 

which is indicative of cognitive processing. SMART allows real-time viewing of the 
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calculated mental state gauge values as an individual performs a task. The gauges 

represent a probability of being classified as a particular model. The mental state 

gauges include cognitive workload, distraction, engagement, and drowsiness. The 

former was validated in research conducted by Tremoulet et al. [4], and the other 

gauges have been verified through other research [5]. The cognitive workload value is 

derived from a two-state classifier, and the gauge output reflects the probability of the 

high workload state. The distraction, engagement, and drowsiness values are derived 

from a four-state classifier. 

The SMART system has been used in a military command and control environ-

ment in which an operator’s mental state classification provided feedback to an inter-

face, which allowed the interface to adapt to changes in mental state in real-time [6]. 

Additionally, the SMART system was validated as a tool for improving interface 

design when it was validated against other measures of cognitive workload [4]. Natu-

rally, one can imagine using this valuable mental state information in a training do-

main as well where trainers are keenly interested in the efficacy of various training 

methods as well as maintaining optimal levels of attention and minimal distraction 

during training scenarios.  

The relationship between cognitive workload and training is ambiguous. Intuition 

suggests that one’s workload should decrease on a task as one becomes more familiar 

and better trained. Novice drivers must focus a considerable amount of cognitive 

resources towards the task of driving, but more experienced drivers have developed 

automatic responses that enable them to have more available cognitive resources [7]. 

A study by Fournier, Wilson, and Swan investigated the changes in workload as 

measured by the NASA TLX, and physiology, as measured by alpha wave attenuation 

and theta wave enhancement [8]. Alpha waves are brain waves of approximately 8 to 

12 Hz, and theta waves are approximately 4 to 7 Hz. The study revealed that alpha 

and theta fluctuations did not relate to the amount of training that participants re-

ceived. This lack of relation may possibly be explained by the fact that participants 

only participated in six sessions at approximately two minutes long with the middle 

four sessions serving as training. Taken together, these results suggest that changes in 

EEG as a result of training might be observable, but currently research hasn’t linked 

training to measurable changes in EEG waveforms.  

The purpose of the current study was to determine whether neurophysiologically-

based gauges could detect changes in mental state based on the effectiveness of train-

ing. Additionally, the current study would allow for the investigation of the type of 

changes in mental state which that throughout the course of a training episode.  

2   Method 

Eighteen individuals (15 males and three females) from a military service  

academy participated in the study. The mean age of the participants was 19.6 

years. Of the participants, 12 were right-handed, four were left-handed, and two 

were ambidextrous. 

The experiment was a between-subjects design with each subject randomly as-

signed to one of five training conditions. Participants were trained to identify three 

friendly and three enemy (threat) vehicles within one of five training conditions. The 
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training conditions included a) game-based, b) simulator, c) computer-based training 

(CBT), d) video, and e) classroom. The game-based condition embedded the training 

within a computer game. The simulator condition embedded the training within a 

simulator environment. The CBT condition used flash animation to train participants. 

The classroom and video conditions both used an instructor; in the classroom condi-

tion the instructor was physically present while in the video condition the instructor 

had been recorded at an earlier time. The instructor followed a designated protocol 

when conducting the live classroom training.  

The SMART tool was used to measure the cognitive state of participants during the 

study. The SMART system uses task-independent and user-independent algorithms to 

convert physiological data into multiple gauge readings that indicate second-by-

second variation in mental activity. These mental state gauges, which include cogni-

tive workload, distraction, engagement, and drowsiness, provided insight into the 

participant’s mental processing. SMART provides these objective measures of mental 

state once per second without interrupting performance. 

For this study, two functionally equivalent testing stations were established that 

each used three sensor types. The first two sensor types were collected using an EEG 

sensor cap from Advanced Brain Monitoring (ABM) that is also equipped with two 

EKG leads. EEG data was acquired from a wireless sensor headset developed by 

ABM from five channels using the following bi-polar montage: C3-C4, Cz-PO,  

F3-Cz, Fz-C3, Fz-PO. Bi-polar differential recordings were selected to reduce the 

potential for movement artifacts that can be problematic for applications that require 

ambulatory conditions in operational environments.  

Each participant’s test session lasted approximately one and one half hours. The 

participants received a briefing on the purpose and procedures for the study, and par-

ticipant numbers were assigned to ensure participant anonymity. The participant’s 

name was kept separate from all quantitative data.  

During the five phases (pre-test, training, assessment with feedback, assessment 

without feedback, and post-test), the experimenter marked experiment phases. For the 

purpose of grouping the gauge data appropriately, the training was divided into five 

phases that were marked by the experimenter. A pre-test preceded Phase 2, and a 

post-test followed Phase 4. Phase 2 was the introduction of the six vehicle types. 

Phase 3 was a knowledge assessment including detailed feedback, and Phase 4 was a 

knowledge assessment with accuracy feedback without the additional details con-

tained in Phase 3. 

3   Results 

The training lasted approximately 30 minutes per participant, of which the first 18 

minutes were devoted to learning about the six vehicles (Phase 2). Phase 3 and Phase 

4 were each approximately five minutes long. In order to condense the large volume 

of data, the average values of these second-long measurements for each task phase 

(including pre- and post-tests) were calculated. These four different gauge values 

means are summarized in Figure 1.  
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Fig. 1. Gauge value means with 95% confidence intervals 

3.1   Gauge Values Variation by Task Phase 

One of the principal research goals of this study was to understand how the mental 

state gauges varied by task phase. The following sections provide a description of the 

repeated measures (within subjects) analysis of variance (ANOVA) conducted for 

each of the four gauge means for each of the five task phases.  

The repeated measure ANOVA for cognitive workload was significant (F(4,64) = 

5.40, p < .01). Differences between adjacent phases were inspected using ANOVA 

contrasts, and the difference between Phase 2 and Phase 3 (F(1,16) = 5.41, p < .05) 

and the difference between Phase 4 and Phase 5 (F(1,16) = 6.49, p < .05) were sig-

nificant. Although the difference between Phase 1 and Phase 2 is large, this difference 

failed to be statistically significant. The trend for workload was to start modestly, 

drop lower for Phase 2, increase towards pre-test levels in Phases 3 and 4, and ulti-

mately climbing to its peak in the post-test. 

The repeated measure ANOVA for engagement was significant (F(4,64) = 3.28, p 

< .05). Differences between adjacent phases were inspected using ANOVA contrasts, 

and no phases were statistically different. However, the difference between Phase 1 

and 2 (F(1,16) = 4.01, p = .06) and the difference between Phase 3 and 4 (F(1,16) = 

4.06, p = .06) were marginally significant. Although the difference between Phase 2 

and Phase 3 appears to be large, this difference was not significant. The general trend 

for engagement was that the level started fairly high in Phase 1, dropped lower for 

Phase 2, and then proceeded to recover in Phases 3 through 5.  

The repeated measure ANOVA for distraction was significant (F(4,64) = 5.07,  

p < .01). Differences between adjacent phases were inspected using ANOVA con-

trasts, and the difference between Phase 1 and Phase 2 was significant (F(1,16) = 

13.05, p < .01). Additionally, the difference between Phase 4 and 5 (F(1,16) = 3.87, 

p = .07) was marginally significant. Although the difference between Phase 2 and 

Phase 3 appears to be large, this difference failed to be statistically significant. The  
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general trend for distraction was that the gauge increases significantly such that  

Phase 2 is a higher level of distraction. Distraction then drops off from Phase 2 to the 

post-test. The lowest mean levels of distraction were in the pre and post-test. 

The repeated measure ANOVA for drowsiness was not significant. Differences be-

tween adjacent phases were inspected using ANOVA contrasts, and the difference 

between Phase 1 and Phase 2 was significant (F(1,16) = 4.55, p < .05). Although it is 

difficult to interpret this gauge because of the lack of a main effect, drowsiness ap-

pears to increase between Phase 1 and 2, remain relatively stable from Phase 2 

through 4, and then increase modestly from Phase 4 through Phase 5.  

3.2   Gauge Values by Training Condition and Phase 

The difference in the workload values by condition was also examined. An ANOVA 

was conducted for each combination of gauge value and task phase to determine 

whether, for example, cognitive workload differed in the pre-test phase between the 

game and simulation condition. The means for cognitive workload by task phase and 

condition are presented in Table 1. There were significant differences in cognitive 

workload in the pre-test (F = 4.82, p < .05), Phase 3 (F = 4.20, p < .05), Phase 4 (F = 

4.94, p < .05), and post-test (F = 3.32, p < .05) phases.  

Table 1.  Cognitive workload means by phase and condition 

 Pre-test Phase 2 Phase 3 Phase 4 Post-test 

Game .713 .670 .694 .709 .718 

Simulator .590 .589 .615 .619 .638 

CBT .741 .669 .700 .708 .729 

Video .515 .478 .512 .523 .514 

Classroom .548 .547 .559 .549 .598 

Fisher’s least significant difference (LSD) post hoc analysis revealed that in the 

Pre-test phase the game condition was significantly greater than video (p < .05) and 

classroom (p < .05) and the CBT condition was greater than video (p < .01), class-

room (p < .01), and simulator (p < .05). In Phase 3 the game condition was greater 

than video (p < .01) and classroom (p < .05) and the CBT condition was greater than 

video (p < .05) and classroom (p < .05). Similarly, in Phase 4 the game condition was 

greater than video (p < .01) and classroom (p < .01) and the CBT condition was 

greater than video (p < .01) and classroom (p < .01). Similarly, in the post-test the 

game condition was greater than video (p < .05) and classroom (p < .05) and the CBT 

condition was greater than video (p < .05) and classroom (p < .05). In summary, dur-

ing the pre-test, Phase 3, Phase 4, and the post-test the game and CBT conditions 

were greater than both the video and classroom conditions, and in the pre-test the 

CBT was also greater than the simulator condition.  

The means for engagement by task phase and condition are presented in Table 2. 

There were significant differences in engagement in Phase 2 (F = 5.05, p < .05) and 

Phase 3 (F = 8.64, p < .001). 
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Table 2. Engagement means by phase and condition 

 Pre-test Phase 2 Phase 3 Phase 4 Post-test 

Game .355 .305 .320 .315 .382 

Simulator .457 .269 .336 .500 .470 

CBT .336 .116 .131 .261 .410 

Video .604 .665 .630 .690 .642 

Classroom .507 .408 .473 .464 .496 

Fisher’s LSD post hoc analysis revealed that in Phase 2 the video condition was 

greater than game (p < .05), simulator (p < .01), and CBT (p < .01). Additionally, the 

classroom condition was greater than CBT (p < .05). In Phase 3, video was greater 

than game (p < .01), simulator (p < .01), and CBT (p < .01). Also, the game condition 

(p < .05), simulator (p < .05), and classroom (p < .05) all had greater levels of distrac-

tion than CBT. Classroom had greater levels of distraction than game (p < .05).  

The means for distraction by task phase and condition are presented in Table 3. 

However, there were no significant differences in distraction during any of the task 

phases.  

Table 3.  Distraction means by phase and condition 

 Pre-test Phase 2 Phase 3 Phase 4 Post-test 

Game .087 .129 .116 .106 .100 

Simulator .084 .154 .161 .151 .093 

CBT .001 .067 .029 .015 .010 

Video .014 .067 .046 .030 .018 

Classroom .128 .167 .133 .125 .070 

The means for drowsiness by task phase and condition are presented in Table 4. 

There were significant differences in drowsiness in Phase 2 (F = 4.11, p < .05) and 

Phase 3 (F = 14.56, p < .001). 

Table 4.  Drowsiness means by phase and condition 

 Pre-test Phase 2 Phase 3 Phase 4 Post-test 

Game .001 .007 .006 .011 .030 

Simulator .007 .012 .007 .015 .013 

CBT .028 .037 .059 .032 .013 

Video .009 .001 .003 .001 .023 

Classroom .005 .015 .007 .012 .022 

Fisher’s LSD post hoc analysis revealed that in Phase 2 the CBT condition was 

greater than game (p < .01), simulator (p < .05), video (p < .01), and classroom (p < 

.05). Likewise, in Phase 3 the CBT condition was greater than game, simulator, video, 

and classroom (all p < .001). None of the other conditions significantly differed. from 

one another.  
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3.3   Performance and Learner Groups 

The level of learning was calculated by looking at the difference between the pre- and 

post-tests. To avoid penalizing participants with strong prior knowledge who scored 

well on the pre-test, the amount of learning was calculated based on a percentage of 

possible learning.  

( )
( )correcttestpre

correcttestprecorrecttestpost
learnedPercent

−

−
=

6
 

Table 5.  Performance scores by condition 

 Pre-post change Percent Learned 

Game 1.25 .458 

Simulator 2.50 .688 

CBT 0.67 .278 

Video 4.00 .875 

Classroom 3.60 .910 

The mean performance by subjects was examined by looking at both the change 

score between pre-test and post-test and by the percent learned score. The means of 

these measures is presented in Table 5. An ANOVA was conducted for both pre-post 

change (F = 6.36, p < .01) and percent learned (F = 3.37, p < .05), and both were 

significant. Post-hoc LSD analysis showed that the video condition was significantly 

greater than both the game and CBT, classroom was greater than game and CBT, and 

simulator was greater than CBT. Using percent learned as the performance measure, 

classroom is significantly greater than game and CBT, and video is greater than CBT. 

Therefore, in this population the best performance was obtained using either class-

room or video. 

The gauge values were correlated with the performance measures for percent 

learned. This was judged to be a more appropriate measure of learning because it 

didn’t penalize participants who entered the training with some prior knowledge. The 

correlation between the percent learned performance measure and the gauge values 

through different ask phases is presented in Table 6. The trend is that workload is 

negatively related to performance, engagement is positively related, and drowsiness 

has a mixed relation depending on the task phase.  

Table 6.  Pearson correlation (r) values relating percent learned to gauge values 

 Workload Engagement Distraction Drowsiness 

Pre-test -.431^ NS NS NS 

Phase 2 NS NS NS NS 

Phase 3 -.480* .419^ NS -.472* 

Phase 4 -.530* NS NS NS 

Post-test NS NS NS .401^ 
^
 p < .10, 

*
 p < .05, NS = not significant. 
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Participants were divided into two groups based on the degree to which they 

learned during the task. A mean split was conducted to create high and low learner 

groups based on the percent learned calculation, and these means are presented in 

Table 7. These groups’ means were then compared across different gauge values, and 

due to the small sample size (N = 7 and 11) and relatively large standard deviation 

none of the differences were statistically different although the means of pre-test 

drowsiness (t = 1.86, p = .09) were marginally different. 

Table 7. Table of gauge means by learning rate and phase 

 Workload  Distraction 

 Low learners High learners  Low learners High learners 

Pre-test .639 .586 Pre-test .069 .082 

Phase 2 .593 .591 Phase 2 .140 .111 

Phase 3 .635 .595 Phase 3 .114 .099 

Phase 4 .644 .591 Phase 4 .087 .114 

Post-test .659 .626 Post-test .068 .063 

      

 Engagement  Drowsiness 

 Low learners High learners  Low learners High learners 

Pre-test .479 .407 Pre-test .014 .003 

Phase 2 .324 .352 Phase 2 .018 .012 

Phase 3 .332 .427 Phase 3 .022 .003 

Phase 4 .427 .435 Phase 4 .017 .010 

Post-test .469 .464 Post-test .017 .026 

4   Discussion 

The results of this study suggest that there are observable differences between partici-

pants as they participate in one of five training conditions. These differences exist 

across phases within the training as well as between the different training types (e.g., 

simulator, CBT, etc.). One of the most interesting findings is that, for this population 

sample, the best performance was observed in the classroom and video conditions. 

Individuals who participated in these conditions also experienced the lowest levels of 

cognitive workload during the training and had the highest levels of engagement. 

Conversely, the poorest performance was obtained in the CBT and game conditions, 

and individuals in these conditions experienced the highest levels of cognitive work-

load, some of the lowest levels of engagement, and CBT had the highest levels of 

drowsiness. The simulator condition was moderate on both performance and gauge 

values and didn’t appear to trend with classroom and video or CBT and game.  

The variation in gauge values throughout the training phases was examined, and 

the results indicate that the trend was for workload to start modestly, drop lower for 

Phase 2, increase towards initial levels in Phases 3 and 4, and climb to its peak in the 

post-test. This suggests that the post-test has the highest levels of workload, and this 

is in accordance with one’s expectations that the testing phases of the training should 

be the most difficult. The trend for engagement was to follow a similar pattern to 

workload and drop during Phase 2, which was the initial presentation of the training 
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material. Conversely, distraction was highest during Phase 2. This pattern for en-

gagement and distraction is concerning, and it would be optimal to keep participant’s 

engagement high and distraction low during Phase 2. Subjects in the video and class-

room conditions who maintained high levels of engagement appeared to benefit from 

that in their performance. The trend for drowsiness is influenced by the high drowsi-

ness scores of CBT participants in Phase 2 and 3, and this increase in drowsiness was 

likely associated with decreased performance.  

Because of the nature of the study, it’s not possible to determine whether the varia-

tion in mental state gauges is caused by the learning conditions. Also, it may be the 

case that the small number of participants in the CBT condition also happened to be 

the most drowsy. The value of the gauge data is in helping to determine whether a 

participant is maximizing the training experience. Regardless of whether it’s the train-

ing condition or a participant’s predisposition, if engagement is decreasing and 

drowsiness is increasing then the trainer should be informed. In the case of automated 

training, this information could be used to create an automated system response to 

decrease drowsiness, increase engagement, and likely decrease workload in the proc-

ess. An example mitigation might be to replay the training sequence, give the partici-

pant a break to refocus, or present an engaging secondary task to reinvigorate the 

participant. Since the gauge values are calculated in real time, they could be inte-

grated with the training software to provide a comprehensive solution. 

Knowledge and skill acquisition is a complex cognitive process, and the efficacy of 

particular training methods should be based on both the post-test performance scores 

as well as the level of retention and real-world applicability, which could be verified 

through followup investigation of participants’ skills. The results of this research have 

shown that, if one uses post-test performance as a guideline, monitoring participants’ 

mental state variation provides valuable information to a trainer above and beyond 

task performance. This information has the potential to improve the training itself, 

regardless of training type, by monitoring and helping keep mental states optimal for 

learning. The current results echo the findings of Patten et al. [7] in that the better 

performers used less mental effort (and had lower cognitive workload). Furthermore, 

the current study expands the findings of Fournier et al. [8] and demonstrates that 

neurophysiological data can be valuable in a training environment, even with rela-

tively modest training lengths of approximately 20 minutes. Further research will 

need to continue to clarify the impact that neurophysiological data can have on real-

time monitoring to improve training as well as the development of training methods. 

The results of the current study suggest that a viable option exists in the former ap-

proach and raises expectations that the latter is feasible as well. 

In conclusion, the evidence provided in this study suggests that the mental state 

gauges can provide predictive assessment of training outcome prior to completion of 

the training. The levels of workload and engagement that were observed throughout 

the training phases were indicators of the eventual outcome. This is a powerful con-

cept, particularly when dealing with lengthy training regimes where there is a cost for 

repeating the entire training. Rather than awaiting the post-test assessment scores or 

performing multiple intrusive assessments during training, our results suggest that 

training efficacy could be unintrusively monitored during the training task and allow 

for focused and targeted intervention when workload and engagement deviate from 

ideal levels. Task-dependent mitigations could intervene and regain a participant’s 
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full attention or help reduce workload levels such that they are optimal, and then reset 

the training program to the time just before mental state levels became non-optimal.  

In small classroom settings an instructor can pick up on cues from students and re-

peat information when it is clear that the students were distracted, drowsy, etc. Com-

puter-based instruction doesn’t automatically make these sorts of adjustments for its 

students. Including mental state gauges as part of a computer-based training solution 

would allow the system to make the individual adjustments necessary at distinct 

points in the training without waiting until the training has concluded and poor post-

test performance indicates that they likely lost focus at some point during training. 

Maintaining constant awareness of trainee’s mental state would allow a training pro-

gram to sequentially present new material that builds upon previously presented mate-

rial and to have the confidence that trainees maintained optimal training levels 

throughout. The next logical research step would be to develop a training system that 

presented a moderately lengthy training program, and to include an evaluation of 

training mitigations as part of the system. Concurrently, an in-depth investigation of 

the individual variation in mental state gauges and developing methods for consistent 

identification of non-optimal mental state levels would be required. Together, these 

research efforts would advance the understanding of how mental state gauges benefit 

training efficacy. 
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Abstract. The nature of knowledge retention is not that a student either knows 

or doesn’t. Using signal detection theory, the correct and incorrect responses a 

student provides can each be subdivided into two more levels of knowledge  

using the student’s confidence of answer correctness.  The proposed study will 

attempt to link confidence of answer correctness to the categorized pressures 

applied to a computer mouse allowing for the partitioning of responses.  Twenty 

participants that were part of a pedagogical methods study will be retested using 

a computer-based multiple choice test and pressure sensitive computer mouse.  

Participants will also rate their confidence of answer correctness.  It is hypothe-

sized that the analyzed pressures applied to the computer mouse will indicate 

the confidence of answer correctness. Using the categorized pressures from the 

computer mouse allows for the real-time assessment of a student’s knowledge 

to guide pedagogical follow-up.   

Keywords: knowledge, pressure sensitive computer mouse, confidence of  

correctness. 

1   Introduction 

Assessing how much students truly understand is an age-old challenge for educators. 

An ideal assessment is one that can easily probe a student on materials, but can under-

stand the depth of knowledge about the materials. A good instructor can easily ques-

tion a student to investigate whether they have a complete understanding or if they 

still lack basic knowledge; however, these types of assessments are not always feasi-

ble. Many educators rely on multiple choice exams, which have many benefits such as 

ease of grading, standardization, and scalability. However, how accurate can multiple 

choice exams be for assessing the knowledge of materials? When a student answers a 

multiple choice question correctly, it is assumed that the student has sufficient knowl-

edge about the topic of interest.  Should the student answer incorrectly, it is assumed 

that some form of review is required. However, the answer given, particularly on a 

multiple choice exam, does not give transparency to whether the student actually 

understood the question or the topic. 

The nature of knowledge retention is not that a student either knows or doesn’t, but 

is much more complex.  Using signal detection theory [1], both correct and incorrect 

answers can be subdivided into two categories. 
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1. Correct 

a. Based on appropriate knowledge (i.e., Desired) 

b. Correct – Based on guessing (i.e., Lack of knowledge) 

2. Incorrect 

a. Lack of knowledge 

b. Based on inappropriate knowledge 

Were there a way to identify these four cases, the follow-up to the response could 

be more appropriate.  Case 1a is recognized as the desired educational outcome and 

the student would be rewarded for being correct.  Case 1b and 2a would both require 

review of the topic to increase the student’s knowledge and Case 2b would require 

correction of the inappropriate knowledge.  Without being able to identify the cases, 

Case 1b would not require the needed topic review and Case 2b would not specifi-

cally address identifying and correcting the inappropriate knowledge. 

Detecting these four cases is important to apply the correct educational remedia-

tion.  As described above, not identifying these cases leads to inappropriate education 

follow-up half the time.  Identifying guessing behavior is possible by measuring the 

response time based on previously difficulty rated questions from a large number of 

subjects [2], but this is impractical for regular and small size classes and would re-

quire always using the same difficulty rated test questions.   

 Self-assessment of confidence of judgment of the correct answer is a possible 

method to identifying the four cases.  People generally tend to be over-confident 

about answer correctness, but there is a correlation between confidence and answer 

correctness [3].  The feedback on answer correctness the student sees when viewing 

the results of the post lesson test will tend to better calibrate and reduce the overcon-

fidence of judgment of answer correctness [4].  The problem with the self-assessment 

of confidence of answer correctness is that it is a disruptive burden for the student 

during testing.   

This paper proposes a more automated system for identifying the four cases.  Pre-

liminary pilot studies using the click signature obtained from pressure sensors on a 

computer mouse acquired during the task performance has indicated that a greater 

distortion in the signature occurs when the task increases in difficulty.  It has also 

been shown that the pressures applied to a computer mouse can be use to assess cog-

nitive load [5, 6, 7, 8].  It is hypothesized that the mouse click signature can be used 

to identify the four cases that occur when responding to a question.  

Among the questions this study will attempt to address are: 

1. Is confidence of judgment a good indicator of correctness of answer? 

2. Is the mouse click signature a good indicator of correctness of answer? 

3. Does confidence of judgment correlate with mouse click signatures? 

Table 1 shows in bold the two desired response paths for a student who has knowl-

edge of a topic and has answered a question in a post lesson test upon completing a 

topic.  Then a few months later answers the same or similar question in a retention 

test.  The first desired path of the state of knowledge is that the student retained the 

correct knowledge to respond to a question.  The state of knowledge should be corre-

lated to the student’s confidence rating and in turn also correlated to the categorized 

pressures applied to a computer mouse.  The second desired path of the state of  
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Table 1. Response to the same or similar question in post lesson and retention tests 

Post 

lesson test 

response 

Retention 

test 

response 

State of Knowledge Student’s 

confidence 

rating 

Categorized 

Mouse 

Pressure 

Retained correct knowledge 

of question (1a) 

Certain Lower 

distortion  

Correct 

Initially guessed correct in 

post-test (1b) 

Uncertain 

 

Higher 

distortion  

Did not retain correct  

knowledge (2a) 

Uncertain 

 

Higher 

distortion 

Correct 

Incorrect 

Incorrectly retained  

knowledge (2b) 

Certain Lower 

distortion 

Corrected the state of 

knowledge (1a) 

Certain Lower 

distortion  

Correct  

Correct guess in retention test 

(1b) 

Uncertain 

 

Higher 

distortion  

Did not retain correct  

knowledge (2a) 

Uncertain 

 

Higher  

distortion 

Incorrect 

Incorrect 

Retained Incorrect  

knowledge (2b) 

Certain Lower 

distortion 

knowledge is when a student was incorrect in the post lesson test, but corrected and 

retained the correct state of knowledge. The student would be similarly confident of 

answer correctness and have a correlated mouse pressure response. 

The words marked in bold are the two desired response paths for a student answer-

ing a question in the retention test indicating the state of knowledge, confidence rating 

and categorized mouse pressure. 

2   Method 

Approximately twenty participants will be retested using a computer-based multiple 

choice survey and pressure sensitive computer mouse.  Participants will also rate their 

confidence of answering correctly.   

2.1   Subjects 

Approximately twenty participants that were in a CPATH grant to assess different 

methods of teaching computer science will be recruited for retesting of the knowledge 

they obtained in the computer class.  The class would have ended two to four months 

ago and this test will access the participant’s retention of the content of the class.  

Data of answers to the same or similar questions will be available for analysis. 

2.2   Equipment 

Participants will be taking the retention test using a computer and respond to  

questions by only using the computer mouse.  The computer mouse being used is a  
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Fig. 1. Internal view of a computer mouse with pressure sensors on the buttons 

pressure sensitive computer mouse (PSCM) where data on the pressures applied to the 

PSCM will be collected for analysis and categorization (see Figure 1). 

2.3   Task 

The task will be a set of computer based multiple choice questions.  The first set will 

consist of “confidence of answer correctness” calibration questions.  Then a set of 

topic retention questions from the previously taken computer programming class will 

be given followed by a final set of calibration questions.  

Calibration Questions: The set of calibration questions will consist of ten multiple 

choice response questions selected to create varying levels of “confidence of answer 

correctness.”  An example of a question that should elicit a high “confidence of an-

swer correctness” would be: “What is the sum of 4 + 9 + 10?”  An example of a ques-

tion that should elicit a low level of confidence of answer correctness would be: 

“What is the remainder of 37871 divided by 97?”  Participants will be asked on the 

subsequent question to rate “confidence of answer correctness” for each question.   

Confidence of Answer Correctness Question: A standard 5-level Likert scale will 

be used to assess the participant’s “confidence of answer correctness.”  An example is 

shown below. 
 

The answer I gave to the previous question is correct.  Please select one re-

sponse. 

Strongly disagree  

Disagree  

Neither agree or disagree  

Agree  

Strongly Agree 
 

Retention Questions:  The retention test will be comprised of five to ten multiple 

choice response questions that are similar or the same as those the student had  

been previously tested on in the post lesson test.  Participants will be asked on the 
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subsequent question to rate “confidence of answer correctness” for each question.  An 

example of a retention question is shown below. 

 

What will be the value of i after the statements at the right have been exe-

cuted? 

A. 11   int i = 10; 

B. 33   int j = 33; 

C. 34   while ((3 * ++i) < j) 

D. 10   i = i + j++; 

E. None of the above  

2.4   Procedure 

The participant will be briefed on the three sets of questions (i.e., calibration, confi-

dence & retention) and how to answer the questions.  There will be a time limit for 

each set of questions.  The participant will not be allowed to use any aids when de-

termining the answers to the questions. 

3   Results 

Analysis 1: An analysis on the data collected from the pressure sensitive computer 

mouse (PSCM) during the calibration question will compare high to low “confidence 

of answer correctness” to the pressures applied to the computer mouse.  Previous pilot 

studies indicate that minimal difficulty is indicated by a sudden sharp pressure on the 

mouse button when selecting a response while high difficulty is indicated by a distor-

tion of the pressure on the mouse button.   It is hypothesized that responses to the 

“confidence of answer correctness” will be correlated to the level of distortion of the 

pressures applied to the computer mouse.   

Analysis 2: An analysis on the data collected from the pressure sensitive computer 

mouse (PSCM) during the retention question will compare high to low “confidence of 

answer correctness” to the pressures applied to the computer mouse.  It is hypothe-

sized that to obtain the optimal correlation between “confidence of answer correct-

ness” and the categorization based on the level of distortion of the pressures applied 

to the computer mouse for the set of retention questions, the normal distortion for an 

individual in mouse pressures as determined from Analysis 1 will be needed to nor-

malize the data for each individual.  Previous studies have found individual differ-

ences in pressure variation unique to the individual [9, 10]. 

4   Discussion 

Assuming Analysis 1 and Analysis 2 can produce a reliable categorization of the 

pressures applied to the computer mouse indicative of the “confidence of answer 

correctness” it becomes possible to distinguish with the pressure sensitive computer 

mouse in real-time the four cases of response to a question.  The benefit of real-time 

assessment of a student’s knowledge to a question into four cases is that appropriate 
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pedagogical follow-up can be executed immediately following the response.  Using 

this method can improve both the assessment of a student’s knowledge and appropri-

ately respond to the state of a student’s knowledge improving the learning outcome.      
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Abstract. In this paper, we define adaptive instruction, or Ad-In, as applied to 

sophisticated skills development systems that target learning and assessment in 

a highly individualized and interactive manner. We argue that the successful 

design and use of such systems rely heavily upon the interrelationships among 

learning styles, instructional theories, and assessment methods, in the context of 

personalized learning. We outline and structure the links among these topics by 

drawing upon recent empirical studies of virtual environments and augmented 

realities. The paper also presents a candidate architecture for applying Ad-In 

concepts in an intelligent interactive environment for skills development.  

Keywords: Adaptive instruction, augmented reality, immersion, intelligent tu-

toring assistant, multi-user virtual environment, neomillennial learning styles. 

1   Introduction 

Adaptive Instruction (Ad-In), as argued in this paper, is characterized by dynamic 

programs of instruction that are readily capable of adapting or of being adapted to 

individual learning requirements. Ad-In addresses the unique and situation-specific 

needs of learners by concurrently providing clear information, opportunities for 

thoughtful practice, informative feedback, and a favorable combination of intrinsic 

and extrinsic motivators tailored to the individual learner. Central to Ad-In are inter-

active and immersive technologies that target learning, instruction, and assessment. 

Such learning innovations build on previous research, which demonstrates that tech-

nology enhances learner understanding when it (a) supports learning in real-world 

contexts, (b) connects learners to experts and communities of learners, (c) makes 

possible visualization and analysis tools for thinking with data and datasets, (d) scaf-

folds problem solving that enables more complex reasoning than possible otherwise, 

and (e) provides opportunities for feedback, reflection, and revision of knowledge 

construction [1].  

Delving into and articulating Ad-In, we examine the interrelationships among 

learning styles, instructional theories, and assessment methods, in the context of per-

sonalized learning. We draw upon recent experience in empirical studies of virtual 

environments and augmented realities, and we explore how new learning styles, in-

structional theories, and tools for measuring understanding are emerging from the use 
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of these technologies, which may affect training program development and delivery 

from an adaptive instruction perspective. 

2   Media-Based Learning Styles 

Learning styles are theoretical constructs designed to help explain the learning proc-

ess, a complex and nuanced phenomenon. Learning styles are comprised of (a) cogni-

tive styles, which consider concept formation and retention and sensory reception; (b) 

affective styles, which consider attention, expectancy, and incentive; and (c) physio-

logical styles, which consider the functions and activities of human organisms, includ-

ing all physical and chemical processes [2].  

Early scholars and researchers of learning styles held as axiom that styles were in-

flexible, context-independent, and solely determined by ability and personality [3]. 

Modern conceptualizations of styles reject such principles and view the construct as 

(a) shaped by physical and mental development, personal interests, and sociocultural 

influences; (b) preferences in the use of abilities, not abilities themselves; (c) existing 

within all people in varying degrees, resulting in profiles of styles; (d) variable across 

tasks and situations, having the potential to change over time; (e) measurable, teach-

able, and socializable; and (f) variable in terms of flexibility and adaptability within 

people [4-6]. 

A growing number of researchers and scholars have begun investigating media-

based learning styles, which are modern learning styles understood in relation to three 

complementary human-computer interfaces that are reshaping thinking, learning, and 

instruction [7]. The World-to-the-Desktop, the first and most mature interface, is fa-

cilitated through laptop, desktop, and tablet computers connected to the Internet. By 

bringing the world to the user, this interface provides users access to archives and 

sophisticated databases and also enables collaborations, mentoring relationships, and 

virtual communities-of-practice [8, 9]. Multi-User Virtual Environments (MUVEs), 

the second interface, are characterized by participants controlling digital emissaries to 

engage digital content and interact with fellow users to complete various kinds of 

tasks in three-dimensional virtual contexts. At a time when nine of the ten best selling 

computer games of 2007 are MUVEs, a growing number of projects have developed 

MUVEs specifically for teaching and training [10, 11]. Ubiquitous computing, a third 

human-computer interface, provides dynamic, temporal, and contextually specific 

tools through computers that are no longer perceptually foregrounded [12, 13]. Inter-

activity seamlessly and imperceptibly integrates into activity. On a variety of scales, 

users obtain ever-present connectivity and access to capture, process, send, and  

receive information through multiple devices anytime and anywhere [14-16]. Partici-

patory simulations and augmented realities (ARs) made possible through wireless 

handheld computers have provided the basis for learning and teaching using ubiqui-

tous computing [17-19]. 

One primary difference among the World-to-the-Desktop interface, MUVEs, and 

ARs is immersion. Immersion can induce a user into a perceived state of being  

present with others or in a place other than where the user is physically located; it 

depends in part on the ability to empower actions and activity while facilitating affec-

tive factors that influence learning, such as emotional awareness, self-control, and 
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self-efficacy [20, 21]. Given that the World-to-the-Desktop interface is context inde-

pendent, it cannot bring about a sense of “being there” to the same extent that MU-

VEs and ubiquitous computing can support a sense of “presence” in a virtual world 

or an AR. Such differences make possible learning in MUVEs and ARs that supports 

the situational and distributional nature of cognition with respect to thinking, learn-

ing, and doing in ways that are limited or absent in World-to-the-Desktop computer 

interactions. 

As an illustrative example contrasting learning through an immersive versus non-

immersive interface, a learner studying disease and disease transmission with the 

World-to-the-Desktop might communicate with epidemiologists via email or join a 

listserv devoted to the transmission and control of epidemic diseases, thus beginning 

an ongoing exchange of ideas and questions. The ebb and flow of information through 

the World-to-the-Desktop interface, however, is not generally characterized as im-

mersive. The learner is not part of the events he or she is studying. Rather, he or she is 

a distant observer as compared to an active participant. The River City Project, on the 

other hand, uses a MUVE called “River City” to support the situated study of disease 

and disease transmission [22, 23]. Based on authentic geographical, historical, and 

sociological conditions, River City is a town besieged with health problems that affect 

the wellbeing of its residents. The mayor of River City has commissioned learners to 

travel back in time, bringing their 21st-century knowledge and technology to address 

a 19th-century epidemic. The affordances of the MUVE and its accompanying story-

line allow learners to think and act as scientists in an environment of intermediate 

complexity. It is less complex than the real world, which can be overwhelming, but 

more complex, authentic, and nuanced than a “cookbook” lab, which is designed to be 

instructor- and learner-proof. If asked where learners are located while interacting 

with the River City MUVE, users are likely to state they are in River City and with 

their teammates instead of where they are located physically. 

As a second illustrative example, “Reliving the Revolution” (RtR) uses wireless 

handheld devices to support an AR game that teaches historic inquiry, effective col-

laboration, media fluency, decision-making, and critical thinking skills [24]. RtR 

enables participants to traverse the present-day site of the Battle of Lexington to relive 

this historic battle from the American Revolution through the eyes of one of four 

historic figures. Participants use their device to collect information or evidence to 

determine who fired the first shot in the Battle, a source of continued debate in 

American history. GPS-enabled devices provide participants location-based virtual 

information on the social, historical, economic, geographic, and political processes 

relevant to both the Battle of Lexington and the American Revolution. 

River City and RtR utilize key aspects of Ad-In and are readily capable of (a) 

adapting or of being adapted to individual learning requirements; (b) addressing the 

unique and situation-specific needs of learners by concurrently providing clear infor-

mation, opportunities for thoughtful practice, informative feedback, and a favorable 

combination of intrinsic and extrinsic motivators tailored to the individual learner; 

and (c) utilizing interactive and immersive technologies that target learning, instruc-

tion, and assessment [22, 25]. 
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3   Neomillennial Learning Styles 

The relations between participatory and immersive media and learning styles, shown 

in Figure 1, have become an important new research direction. Research on MUVEs, 

ARs, and other immersive, personalized, and interactive media led Dede and col-

leagues to propose a new classification of media-based learning styles [26]. 

 
Learning Styles–a composite of (a) cognitive styles, which consider concept formation and retention 

and sensory reception; (b) affective styles, which consider attention, expectancy, and incentive; and (c) 
physiological styles, which consider the functions and activities of human organisms, including all physical 
and chemical processes 

Media-Based Learning Styles–psychological constructs that measures the impact of me-
dia on cognitive, affective, and physiological preferences in how people think, learn, and come 
to understand their worlds 

Neomillennial Learning Styles–psychological constructs that measure the 
impact of immersive media on cognitive, affective, and physiological preferences 
in how people think, learn, and come to understand their worlds, the real, the 
augmented, and the virtual 

 
 

Fig. 1. Nested diagram depicting the interconnections between learning styles, media-based 

learning styles, and neomillennial learning styles 

“Neomillennial” Learning Styles (NLS) include a person’s preferred cognitive, af-

fective, and physiological styles in which they think, learn, and come to understand 

their worlds, in the real, augmented, and virtual domains and are characterized by: 

• Fluency in multiple media, valuing each for the types of communication, activities, 

experiences, and expressions it empowers. 

• Learning based on collectively seeking, sieving, and synthesizing experiences 

rather than individually locating and absorbing information from some single best 

source; preferring communal learning in diverse, tacit, situated experiences; valu-

ing knowledge distributed across a community and a context, as well as within an 

individual. 

• Active learning based on experience (real and simulated) that includes frequent 

opportunities for embedded reflection; valuing bicentric, immersive frames of ref-

erence that infuse guidance and reflection into learning-by-doing. 

• Expression through nonlinear, associational webs of representations rather than 

linear stories (for example, authoring a simulation and a Web page to express  

understanding rather than writing a paper); using representations involving richly 

associated, situated simulations. 

• Co-design of learning experiences personalized to individual needs and prefer-

ences. 

NLS are present in varying degrees in learners of all ages and not just “digital na-

tives” [7]. Ongoing interaction with immersive technologies, such as MUVEs and 

ARs, develop and enhance NLS. Dieterle and colleagues have utilized both qualitative 
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and quantitative methods to study NLS in MUVEs and ARs [25, 27, 28]. Such studies 

of the links between MUVEs and ARs and learning theory have produced valuable 

insights for designing more effective ways to adapt instructional processes to the 

learning style of the learner. For example, learners who generally enjoy tasks that 

require creative strategies, such as working with ideas in new ways, and mashing up 

and sharing information, appear to be more well suited for learning scientific problem 

solving skills in MUVEs than those who avoid the same activities and don't share the 

same predilections [27]. 

4   Instructional Theories 

Previous generations of instructional design tended to provide all learners with uni-

form experiences that required learners to adapt to the pedagogy [29]. Cost savings 

from the systemization of schools, resulting from the mass production and distribution 

of materials and techniques, were primary factors motivating the use of the factory 

model of instruction in many formal learning institutions [30]. This instructional phi-

losophy, however, conflicts with contemporary research into how people learn, re-

vealing that, with enough time, access, guidance, and motivation, almost everyone 

can learn just about anything to a great extent and yet, almost no one learns exactly 

the same way, through the same pathways, or to the same degree [31-34].  

Where modern instructional theories advocate for personalized instruction, an  

inability to leverage an economy of scale has limited and restricted the scope and free-

dom to implement personalized instruction widely. Efforts of researchers and engi-

neers, however, are on the verge of changing the way instruction is personalized and 

adapted to individual learners profoundly. Applying scientific knowledge of mind, 

brain, and education to generate economically viable solutions that address the chal-

lenges associated with advancing personalized learning significantly to large numbers 

of individuals is one of the National Academy of Engineers 14 grand challenges [35].  

Ad-In involves orchestration among members of the research team and participat-

ing instructors and learners, which can be understood through a music metaphor with 

the research team as composers, instructors as conductors, and learners as musicians. 

All three groups work in harmony to co-design learning experiences that are personal-

ized to individual needs and preferences, while adhering to the spirit of the curricu-

lum. As composers, the research team develops a curriculum. Instructors, in turn, 

receive the curriculum and act as conductors, using knowledge of the local culture 

and learning setting to getting the most out of their learners. The instructor’s role is to 

guide learners’ performance through immersive and interactive experiences. Diversity 

of prior knowledge among learners provides a wealth of experience and knowledge 

from which teams can draw upon to engage the complexities and challenges the cur-

riculum provides. Just as musicians tend to specialize, not all learners need to master 

every aspect of the curriculum equally well. Instead, teammates play off each other’s 

strengths while buoying up their collective weaknesses to produce the best team per-

formance possible. 

Increased levels of challenge, incremental growth of understanding, and ongoing 

opportunities for success characterize adaptive instruction. The focus of the learning 

environment is the learner, rather than the content or the instructor. Learners are not 
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viewed as blank slates upon entry into the learning environment. One-size does not fit 

the needs, skill levels, interests, or abilities of all learners. Cultural differences and 

prior knowledge add to variation among learners. Learners work through important 

and relevant content topics cohesively (as compared to piecemeal) that encourage 

doing with understanding (as apposed to simply hands-on doing). Learners are regu-

larly given assessment opportunities to demonstrate what they know (and don’t know) 

and can do (and cannot do) within learning activities (as compared to stepping out of 

the activity to complete an assessment). Learners and their instructors use the forma-

tive assessment feedback to understand the learner’s progress and to shape and guide 

instruction. We should carefully distinguish this aspect of learner assessment from the 

process of testing if the learner can be certified as having 'passed the course'. 

5   Assessment Methods and Tools 

We recognize the need for methods of assessing the impacts that the technology (i.e. 

the adaptive instruction and automated tutoring techniques) has upon the learner and 

the learning experience. This is the traditional domain of researchers' experimental 

data gathering and analysis of outcomes. As Sheingold and Frederiksen observe, “to 

change our expectations about what students should know and be able to do will in-

volve also changing both the standards by which student achievements are judged and 

the methods by which student’s accomplishments are assessed” [36].  

An insightful new theoretical frame put forth by Solomon and Perkins identified 

three levels by which technology influences thinking and learning. The immediate 

results are the effects with a technology, which resulting in expanded cognitive capac-

ity and amplified perception. After considerable experience with a technology, users 

exhibit the effects from a technology, the residual impact of a technology when it is no 

longer present. The most profound effects are the effects through a technology, which 

fundamentally reorganize cognitive activity [37]. Accurately assessing effects with, 

from, and through technology requires measurement methodologies and objectives 

that match our evolving expectations for learning outcomes, as well as new ways in 

which they learn. 

Educational MUVEs such as River City  and intelligent tutoring systems  (ITSs)  

have the ability to record and store every keystroke users generate inside the MUVE 

or with the tutor [22, 38]. Through such technologies, researchers can collect, store, 

retrieve, process, and analyze information on the activities of individual users, teams, 

or groups of teams as they participate in the simulation. The level of detail in these 

records is comprehensive, indicating exactly where students went, with whom they 

communicated, what virtual artifacts they activated, and how long each of these ac-

tivities took. This richly varied store of data can couple with other artifacts of learning 

to develop novel, performance-based assessments of complex performances that lev-

erage NLS, disciplinary reasoning, and procedural skills. 

6   Adaptive Instruction in Context 

We now briefly examine how Ad-In can be applied within the context of an intelli-

gent interactive environment for individualized skills development. Figure 2  
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Fig. 2. Integration of an intelligent Ad-In assistant into an interactive, adaptive instructional 

environment 

illustrates how an automated Ad-In tutoring assistant may be used in conjunction with 

a target application system. This example is structured around a typical military train-

ing system, although the concepts discussed are broadly applicable in other applica-

tion domains. 

A human learner interacts with the target application via the training platform (A), 

which may be a standalone unit or, quite frequently, linked to a broader networked 

simulation/training infrastructure (B). The user interface of the platform is instru-

mented so that data and observations on the learner’s activity are sensed and provided 

to the Ad-In assistant in real-time (C). Such sensors may include augmented cognition 

tools, such as eye trackers or EEG devices, as well as more traditional user interaction 

monitors. The assistant also monitors the communications network, possibly both 

voice and data traffic, which helps to situate the context of the learner’s current activi-

ties and goals (D). Information from background user studies and individual survey 

data (E) is available, which the assistant can draw upon to help identify the learner’s 

likely behavioral preferences and learning style.  

These inputs enable the Ad-In system to react to changes observed in the training 

activity, and to provide individualized tutoring support, dynamically and inconspicu-

ously, as the lesson proceeds (F). To do this, it draws upon knowledge bases and 

teaching plans that have been specially structured for use in the Ad-In environment 

(G), and which have been constructed from instructional material, curriculum data, 

and reference manuals, as well as broader background knowledge sources, including 

subject matter experts (H). The assistant also retains and uses the learner's prior lesson 

history, as well as data from integrated progress tests and assessments, to document 

the learner’s areas of improvement, and to identify elements where additional work is 

needed, thus enabling the system to adapt the instructional process to the evolving 

requirements of the individual (I). 
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7   Conclusions 

We believe that the Ad-In approach, in which the independent but interrelated ele-

ments of learning styles, instructional theories, and assessment methods comprise a 

unified whole, is a particularly useful way to characterize adaptive instruction systems 

in the realm of augmented cognition. Although scientists that study how people learn 

have for some time believed that media impacts thinking, learning, and understand-

ing, it is only relatively recently that we have found reliable ways of articulating  

media-based learning styles from empirical evidence. Thus far, quantitative and quali-

tative studies of this type have concentrated upon measuring the cognitive and affec-

tive preferences of the learner with regard to MUVEs and ARs. The addition of new 

data from refined studies of cognitive, affective, and physiological styles will offer 

valuable new insights into future strategies for adaptive instruction and augmented 

cognition. Further research into quantitative measures, which measure the 'what' and 

'how', complimented by qualitative measures, which measure the 'why', can help to 

predict which learners should be directed toward immersive game-like training and 

which should be provided alternative learning experiences.  
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Abstract. This paper will look at the human predisposition to oral tradition and 

its effectiveness as a learning tool to convey mission-critical information. After 

exploring the effectiveness of the conveyance of information, the paper will ex-

amine current adaptive learning research and develop a system that will marry 

the strengths of oral tradition with those of an optimal adaptive learning envi-

ronment. Emphasis will be made in the area of military service personnel sta-

tioned in contested cultures, the aiding of their arrival and once established their 

continual improvement processes. This paper will then illustrate a digital cul-

tural ecosystem that leverages the strengths of current industry thinking in digi-

tal community development and social architecture combining the adaptive 

learning models discussed earlier to create a dynamic digital social ecology that 

could significantly improve the transition process by exposing service personnel 

to the collective learning of all of the personnel currently and previously de-

ployed to a particular region. It will illustrate tools and techniques that can be 

used to filter the quality of the collective intelligence, the dynamic categoriza-

tion of new narrative and the selective recommendation of content as an adap-

tive learning technique. This system will incorporate a virtual environment to 

test the quality of learning before the military personnel are deployed and a cap-

ture and debrief system that will enable the continual improvement of service 

personnel as they complete missions during their deployment. 

1   Introduction 

Military personnel are required to transition to and from assignments in contested 

cultures many times during their careers of service. This transition usually takes the 

form of a six-month cycle at the beginning and end of their tour-of-duty. During the 

transition into an assignment the service person must train on equipment, procedures, 

communications protocols, and more to become prepared to perform effectively. In 

addition to their training, they are required to understand the culture they are about to 

enter in order to effectively communicate, and ultimately survive.  

During recent informal interviews with service personnel returning from an assign-

ment overseas, the author also found a significant number of responses indicating that 

the most effective method for transferring domain and situational knowledge occurred 

through oral tradition. Individuals reported that team members sharing stories of their 
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experiences with them as they arrived made their transition experience significantly 

smoother. While some reported that the information conveyed by their predecessor was 

mistaken, outdated, or misinformed, none reported issues with regards to retaining the 

lessons conveyed during the transition. In contrast, when queried about current knowl-

edge management systems, service personnel reported many difficulties navigating the 

often raw and meaningless volumes of content. One service person told the author, “I 

could either read tons of boring documentation or talk to the guy I was replacing.” It is 

clear that oral tradition, as a fallback knowledge transition tool is more effective and 

more popular than current document based knowledge management systems. Unfortu-

nately in its current form it lacks the ability to capture and distribute cumulative 

knowledge, to provide any record of knowledge transition, and to provide an under-

standing of the extent of the knowledge has been successfully absorbed. Those relying 

on oral tradition as an information source are not rewarded by and therefore not con-

cerned about the benefits of capture, distribution, and measurement.  

Through the design of a novel system that explores the tenants of social cognitive 

theory, storytelling, digital systems, and adaptive learning, this paper will attempt to 

explain not only why oral tradition could be a superior knowledge transition tool, but 

also how a digital community could be developed that passively capture and adap-

tively filter community knowledge in a manner that would streamline transitions into 

a culture and significantly improve situational awareness and continuous learning for 

individuals currently stationed within contested cultures.  

2   Social Cognitive Theory 

Social cognitive theory looks to fundamental human behavior as the key to effective 

learning practices. Human beings, being social creatures, have relied on storytelling 

techniques for thousands of years as their key to survival. Transferred in the form of 

“wives’ tales,” tradition, legends, stories, etc., these social cultural norms have served 

to convey key information in a memorable and applicable manner. 

Social cognitive theory began as a body of work that evolved from thinking in the 

area of social learning proposed by N.E. Miller and J. Dollard in 1941. Miller and 

Dollard believed that if humans were motivated to learn a particular behavior that 

particular behavior would be learned through clear observations. By imitating these 

observed actions the individual observer would solidify that learned action and would 

be rewarded with positive reinforcement [8]. 

Social cognitive theory explains psychosocial functioning in terms of triadic re-

ciprocal causation [3]. The theoretical triad illustrates the causal relationship be-

tween behavior, cognitive factors, and environmental events as having bidirectional 

influence on each other. Behavior as an agent is both a stimuli and a response. Tradi-

tional Skinnerian behaviorism posits that all behavior is a result of environmental 

stimuli. Social cognitive theory differs in that it does not claim an originator but 

instead accepts behavior as a product of other behaviors, environment and cognitive 

determinism. 

Bandura [2] defines social cognitive theory as having three aspects that are particu-

larly relevant to cultural learning and organizational improvement. They are: develop-

ing competencies through mastery modeling, strengthening people’s beliefs in their 
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capabilities so they make better use of their talents, and enhancing self-motivation 

through goal systems.  

2.1   Mastery Modeling 

Modeling is being widely used with good results to develop intellectual, social and 

behavioral competencies [3]. The purest definition of modeling is the internalization 

of concepts through the observation and practice of their demonstrated actions and 

results. It is the process of internalization that creates strong and memorable associa-

tions and hence successful learning.  

Systems that utilize exposure to behaviors, environments, and cognitive determi-

nants and then provide reinforcing manners in which to respond and shape personal 

meaning can provide a development framework that is in alignment with social cogni-

tive theory’s mastery modeling. It is, however, important to recognize the difference 

in observable value between a text-based document and a time-based illustration like 

a video. Actions illustrated natively, as with a video capture, are easier for the indi-

vidual to observe and internalize. While observing videos of oneself is common prac-

tice, caution should be exercised. Simply being shown replays of one’s own behavior 

usually does not produce much improvement [7]. Observing flawed performances can 

weaken trainees’ beliefs in their capabilities [2].   

In addition, successful internalization relies on more than just observation. A suc-

cessful system must introduce and maintain a social element that provides a frame-

work for individuals to share and practice learning. Social cognitive theory calls this 

activity “guided skill perfection.” At its core, guided skills perfection utilizes social 

interaction and validation to positively reinforce self-confidence while introducing 

incremental improvement ideas.  

Finally for learning to complete the transition to successful internalization it must 

be practiced. Much like a second language, level of skill is greatly affected by appli-

cation and repetition.  Social cognitive theory calls this a transfer program. Transfer 

programs not only provide a “safe” environment to test newly formed skills but also 

promote advancement by encouraging the undertaking of more and more complex 

(and difficult) variations of the learned skill as success increases.  

3   Storytelling and Oral Tradition 

Research showing the positive benefits of storytelling in the field of learning is ro-

bust. Cross-culturally, storytelling is a fundamental method of learning even at an 

early age. Children learn storytelling many years before they master logic, persuasion, 

writing, and other forms of information delivery. Story is an essential precursor to 

mastery of expository and logical forms [5]. Humans are, in essence, hard-wired at an 

early age to transfer learning in the form of stories. Shank reports that storytelling has 

demonstrable, measurable, positive, and irreplaceable value in teaching [9]. In addi-

tion, telling stories is one of the most influential techniques because you give the 

information, ground the meaning in structure, provide for emotion, and make the 

content meaningful. Our brain loves storytelling [9]. Narrative details create mental 

images, making possible both understanding and memory [10]. “Stories enhanced 
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recall, retention, application of concepts into new situations, understanding, learner 

enthusiasm for the subject matter.” and “Stories enhanced and accelerated virtually 

every measurable aspect of learning” [4]. 

Storytelling as the presentation form for mastery modeling as part of a social cog-

nitive theory driven approach makes sense and will likely create a vehicle to effec-

tively convey learning, but the question still exists as to how to incorporate guided 

skill perfection and a transfer program.  

4   Designing the Digital Cultural Ecosystem  

To begin the design of our novel system, we look to the future of digital community 

development or specifically the digital cultural ecosystem (DCE). A digital cultural 

ecosystem is any system that is designed to connect individuals of common purpose 

and strengthen their shared understanding of key topics, processes, group dynamics, 

and each other. In short it is a culture that centers on a shared area of interest (SAOI). 

The SAOI could be meeting people (online dating) or as in the case of our system 

gathering better understanding about the community in which our troops have been 

stationed through the eyes of the community that is our troops. DCEs, implemented 

properly will successfully replace today’s knowledge management and intranet sys-

tems with relevant, timely, and community validated content feeds.  

4.1   Goals for the DCE 

As mentioned above, the primary goal of this novel DCE will be to connect our ser-

vice personnel sharing assignment in contested cultures. It will also: 
 

• Strive to provide participants a better understanding of the culture they inhabit and 

each other.  

• Capture, tag, and filter real-time multimedia information feeds for distribution and 

storage for further review.  

• Be built using adaptive learning principles that work collaboratively with expertise 

tagging techniques to identify areas of strength for participants and insure they get 

a well rounded and continuously evolving training program before and during their 

time on station. 

• All opportunities will be taken to minimize the intrusiveness of this system on the 

daily duties of participants.  

• Use emerging technology to measure group interests, activities and areas of focus. 

Providing administrators the tools to continuously improved the communities cul-

tural dynamic both online and offline.  

4.2   Target Culture 

The demographic statistics for our target participants will collectively define stationed 

service personnel: 
 

• Active duty enlisted and officer personnel 

• Ages 18 to 40 
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• Males and Females 

• Computer literate with more than 1 year of experience using the Internet.  

• Access to a computer terminal or mobile device.  
 

When developing a culture of individuals defined above, care needs to be exercised 

to insure that participation is not taken for granted. As with most military initiatives 

there tends to be a “They’ll do what their told” mentality when designing systems. 

While this may or may not be true, the level of quality provided by participation will 

significantly improved if the participants are excited and rewarded for their behaviors. 

Part of this reward will need to include entertainment. Much like America’s current 

fixation with reality television, our DCE will use personal accounts and individual 

personalities to convey cultural learning as perceived.  

4.3   Everybody Is a Celebrity 

Recent news stories of photo sharing sensitive media by military personnel actually 

help us understand our target audience a little better in that we can see that they are 

eager to participate and be validated by their peers in the same way they can on Face-

Book or like public community sites. Several publications of recent have begun to 

discuss the shifting of values among our demographic with regards to privacy and 

celebrity. In the new world, everyone is a celebrity and shares openly even their most 

personal details. Systems like Twitter allow others to feel connected to friends or 

other celebrities as they post glimpses into their current mental state as micro transac-

tions on Twitter.com. The proliferation of digital community systems is a testament to 

their value as an entertainment, knowledge management, and goals achievement me-

dium. Community systems like FaceBook and LinkedIn have proven valuable tools to 

connect individuals on personal and professional levels. It’s not hard to envision the 

convergence between emerging technologies and digital community systems.  

4.4   Technology Architecture 

Instead of text and photos as the primary communication medium our DCE will be 

built to use stereoscopic video recordings of events and then the narration of the indi-

viduals that experienced the events. Additional commentary will be provided by 

teammates who may further enhance the value of the narrative. The technology stack 

will include five key components:  

1. Helmet or chest armor mounted stereoscopic video recorders (similar to those in 

today’s mountain biker cams). Cameras will be activated during primary activi-

ties like patrolling a region or other assignments. Because of the overhead im-

posed by wireless data transmission, these systems will not transmit video live 

but instead record and upload wirelessly before debrief sessions.  

2. Bio/environmental flagging systems – While the cameras will capture the entire 

event (up to 16 hours) bio/environmental sensing technology will be used to flag 

points (time code) on the video that are of interest. Flags will be captured when 

the wearer feels stress, experiences an elevated heart rate or even is exposed to a 

loud noise.  
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3. Debrief stations consisting of:  

a. Wireless downloading facilities  

b. Group presentation and review terminals 

c. Individual and group narrative capture cameras 

4. Information distribution and rating systems 

a. Web portal that displays issues geographically and temporally for re-

view by the collective culture.  

b. Measurement systems designed to capture responses from the culture on 

a specific narrative. This includes direct commentary as well as sharing 

and blocking activity. 

c. Intelligent tagging architecture that dynamically captures tags from the 

original narrative (voice-to-text) and the following cultural responses to 

the narrative.  

5. Virtual modeling facility that, by using video capture to derive three-dimensional 

models, will dynamically build a virtual environment that will allow the replay of 

events and review from multiple angles.  

4.5   A Sample Use Case 

Soldier X is about to go on patrol in a contested region. After picking up her gear 

from the storage locker (uses closed coil technology to charge digital units). She 

mounts up with her team and begins her assignment. Three hours into the patrol an 

IED explodes causing no damage to soldier X but injuring one of her teammates. 

Biosensors tag video as she experiences the explosion and the chaos. Environmental 

sensors also trigger flags as explosions and shocks are logged as significant events.  

As soon as the returning patrol members are within range of the base’s wireless 

network, the camera recording software begins downloading the recorded events. 

Video footage is compared against teammate footage for correlating events (signify-

ing more importance) and prepared for the debriefing session. When the team is ready 

for debriefing they enter a debrief circle that consists of a circle of chairs around a 

display device with screens and cameras for each participant. The debrief unit begins 

playing back flagged footage and inquires to each team member as to their thoughts 

and comments about the events that had been flagged. Team members are allowed to 

add comments to other members’ stories further enriching the narrative. Some events 

are discarded as irrelevant including one when soldier x stubbed her toe while on foot.  

When debriefing is complete the remaining aggregated narratives are uploaded to 

the team portal where they are displayed as new events. The portal displays events as 

they arrive in real-time in a linear timeline presentation format with the most recent at 

the top. New events are also geo-tagged with the location of their occurrence and 

displayed on a map within the portal. Cultural participants download the most recent 

events and rate those of relevance to their understanding as well as provide feedback, 

and support for the original narrators. Their responses are captured and used to gener-

ate tags that further identify the categorization of the event/narrative. Narratives with 

more cultural interest receive higher relevance scores using adaptive collaborative 

filtering (ACF) techniques. Narratives with the greatest volume are pushed to others 

as items of interest and maintain higher ranking in the collective knowledge pool.  
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4.6   Adaptive Learning 

The use case above references intelligent narrative tagging several times but fails to 

illustrate the value and purpose of the tagging technology used. To enable intelligent 

adaptive learning our DCE will capture tags relevant to personal experiences and 

responses the experiences of others and build a digital “experience” fingerprint of 

each participant. The fingerprint will infer areas of interest and expertise based on the 

actions of the participant in the system and the number of tags associated with each 

topic area. With this fingerprint we can begin to understand areas that need improve-

ment and recommend content that is relevant to those areas as needed. One approach 

might be to display narratives that are loosely related to the experiences of the partici-

pant providing them with insights presented by others having similar experiences. 

Another might be to look for opposites or deficits in each participant’s digital finger-

print and present that material to attempt to fill the gaps. Our design will use both 

approaches.  

4.7   Temporal Dimensional Modeling Repository 

Further analysis is often needed for incidents. Video feeds of events and rankings will 

be converted to a three-dimensional environment using technology very similar to 

Microsoft’s Photosynth technology.  Currently Microsoft’s Photosynth technology 

can be connected to still-photo feeds (i.e. Flickr.com) and from them can render di-

mensional navigable experiences. Figures 1, 2 and 3 illustrate a three-dimensional 

model of Notre Dame Cathedral derived entirely from an image search done on 

Flickr.com. 

 

Fig. 1. Photosynth derived Notre Dame mode 

This model is fully navigable and presents the viewer with more than a view of the 

object in a virtual world. It presents a collective memory of the object. Figure 3 illus-

trates a man standing in front of a poster of Notre Dame that the model accepted as 

part of its framework and because of it viewers can navigate into the model through 

the poster as a portal. By grouping photos by date, one can present an accurate history  
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Fig. 2.  Image library used to create Photosynth model 

 

Fig. 3. Notre Dame poster that became an entry point for the Photosynth model 

of an object over time. Scaffolding, for instance may only exist for a few weeks and 

therefore be present in photos dating within those weeks. If one starts to imagine 

video as thousands of images then the value of the collective memory begins to mate-

rialize. Stereoscopic video presents us the ability to create images of individuals that 

can be navigated around. Viewers in our collective memory will be able to walk 

around slow moving or still images of individuals as they experience events creating 

opportunities for analysis and even training/teaching/learning.  

5   Summary 

The possibilities are exciting when one starts to think of the possibilities presented by 

a real-time capture and modeling system that uses the eyes and experiences of every 

single participant as input. Rich and robust knowledge and even wisdom can be  

generated by just one modeling session. It is important to remember that all digital 
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systems must provide insights into the activity they host. These insights are as valu-

able, if not more so, than the original data that is captured.  
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Abstract. A survey study investigated the dynamic interaction between Chinese 

university students’ computer use and their attitudes toward computer in learn-

ing and innovation. The relationships among attitudes toward computer in 

learning (ACL), attitudes toward innovation (ATI), and self-perception on com-

puter skill (SPCS), were also examined. Participants were 292 university stu-

dents from three universities in Beijing, and all of them had used computer and 

Internet before. The results showed that: (a) Previous computer use could pre-

dict recent computer use with ACL, ATI, and SPCS as mediate variables; (b) 

males were more confident than females in SPCS, but there was no gender dif-

ference in either ACL or ATI; and (c) the participants’ notion of innovation was 

significantly more positive than their innovative action. 

Keywords: Computer use; Computer attitude; Attitudes toward innovation; 

Self-perception on computer skill; Gender difference. 

1   Introduction 

The 14th Statistical Survey Reports on the Internet Development in China (China 

Internet Network Information Center, July, 2008) showed that 30.3% of the Internet 

users’ were between the ages of 18 and 24 in China, and 30.0% of the Internet users 

were students. These data implicated that university students were the biggest group 

of Internet users in China. In fact, university students were also potentially the biggest 

group of computer users. Undoubtedly, Computer and Internet have made great influ-

ence on Chinese university students’ learning during the last decade. However, the 

relationship among Chinese university students’ computer use and the related factors 

has not yet received enough attention from researchers.  

There have been a lot of studies all over the world, especially in Europe and Amer-

ica, which addressed the issues of computer use and the related factors, such as atti-

tudes toward computer, attitudes toward innovation, and self-efficacy [6]. However, it 

is not easy to know how their results and conclusions can be generalized to Chinese, 
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because the culture of China is so different from those of other countries. It is neces-

sary to investigate Chinese university students’ computer use and the related factors. 

Recently, computer and internet are more and more popular and widespread in China. 

The behavior and attitudes toward technology of Chinese are enormously influenced 

by the use experience. In the present study, the main studies on computer use, atti-

tudes toward computer and innovation are reviewed firstly. And then, this paper  

reports findings from a questionnaire survey designed to investigate the interaction 

between Chinese university students’ computer use and their attitudes toward com-

puter in learning and innovation.  

1.1   Computer Use 

Smith, Caputi, Crittenden, Jayasuriya, and Rawstorne [18] have reviewed and evalu-

ated the construct of computer experience. They differentiated objective computer 

experience and subjective computer experience and proposed a bi-dimensional view 

of computer experience. The following study [19] provided empirical proof for the bi-

dimensional view. Since objective and subjective experience are different concepts, 

computer use as a measure of objective computer experience was investigated in the 

present research. According to Smith et al. [18], Computer use in the present study 

was defined as the totality of externally observable, direct human-computer interac-

tions that transpire across time. 

Some researchers consistently found that computer use influenced on computer at-

titude or had positive relationship with computer attitude [1, 3, 6, 9, 10, 13, 15, 19]. 

However, most of the previous studies measured computer use by scores of Likert 

scale, and they didn’t differentiate previous computer use and recent computer use. In 

the present study, previous computer use and recent computer use was differentiated 

to investigate the effect of previous experience on recent experience. Previous com-

puter use was measured by estimating computer use history, and recent computer use 

was measured by estimating the time of computer using. 

1.2   Attitudes toward Computer 

Most theorists agreed that evaluation constitutes a central aspect of attitudes. Affec-

tive, cognitive, and behavioral antecedents of attitudes can be distinguished, as can 

affective, cognitive, and behavioral consequences of attitudes [14]. The affective 

component of attitude is the emotion or feeling which includes statements of likes or 

dislikes about some certain objects. The cognitive component is statements of beliefs 

that a certain object can increase significantly the quality of her/his output. And the 

behavioral component is what an individual actually does or intends to do [10]. Ac-

cording to this idea, the Computer Attitude Measure (CAM), developed by Kay [7], 

was composed of demographic information, cognitive, affective, and behavioral atti-

tudes. The Computer Attitude Scale, developed by Loyd and Loyd [11], consisted of 

computer anxiety, computer confidence, computer liking, and computer usefulness. 

These studies measured attitudes toward computer from three components, but the 

central aspect of attitudes, evaluation, was neglected. Eagly and Chaiken (1992) claimed 

attitudes do not form until individuals respond evaluatively to an entity (see 14). Based 
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on this opinion, attitudes toward computer in learning (ACL) were consisted of evalua-

tion, cognitive, affective, and behavioral component in the present study.  

Whitely [20] found that males specifically rated themselves higher than females on 

the following two components: Computer competence and gender-appropriateness 

(see 13). Therefore, self-efficacy was separated from computer attitude and was 

measured as self-perception on computer skill (SPCS) in the present study. 

1.3   Attitudes toward Innovation 

The relationship among attitudes toward innovation, computer attitude, and computer 

use has attracted some researchers’ attention [2, 4, 5, 12]. Adaption-innovation theory 

[8] assumed a continuum of cognitive styles on which individuals were positioned 

according to their preference for a manner of decision-making, problem-solving, and 

creativity that emphasized relative continuity and incremental change (the adaptive 

pole) or relative discontinuity and radical change (the innovative pole) (see 5). Re-

searchers (e.g., 4; 5) found that the number of applications to which the computer was 

put and the frequency of computer using correlated with total scores on the Kirton 

Adaption-Innovation Inventory. Another innovativeness theory described innovative-

ness as a personality characteristic that indicated how relatively early an individual 

was in adopting an innovation relative to others in a social system (see Braak, 2001).  

Attitudes toward innovation (ATI) were defined based on Braak’s research [2] in 

the present study. Different from the previous studies, innovativeness was measured 

from two dimensions in the present study: Notion of innovation and action of innova-

tion. In Chinese culture, golden mean is canonized. Although foreign cultures had 

great influence on Chinese students’ notion, their behavior should be a little conserva-

tive. Therefore, the hypothesis was that Chinese students’ notion of innovation may 

be at variance with their action of innovation.  

1.4   Research Questions in Present Study 

Based on the previous research reviewed above, the specific research question in the 

present study was addressed as follow:  

(1) What kind of the distribution of hours on computer using of Chinese univer-

sity students differed in gender, grade, and major?  

(2) Which of the three variables, gender, grade, and major, were possible factors 

to influence attitudes toward computer and innovation, and self-perception on 

computer skills?  

(3) What kind of possible relationship was among these three aspects and com-

puter use? 

In the present study, previous computer use (years of computer using) and recent 

computer use (hours per day on computer recently) were differentiated. The hypothe-

ses were that previous computer use may influence ACL, ATI, and SPCS, and then 

the three aspects may influence recent computer use in turn.  
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2   Method 

2.1   Participants 

The questionnaires were distributed to three hundred university students in random at 

the main libraries and classrooms of three universities in Beijing. The percentage of 

valid participants was 97.3%. In these 292 students (162 males and 130 females), 100 

were from Peking University, 99 from Tsinghua University, and 93 from Beijing 

Normal University. Their ages ranged from 16 to 25 years (M = 20.28). All partici-

pants had experience of using computer.  

2.2   Instruments 

The survey questionnaire consisted of investigation of basic information and three 

sub-scales.  

Basic information. Basic Information consisted of gender, age, major, grade, years 

of computer using, hours on computer per day recently. 

Three sub-scales. Computer Attitude Scale, Self-Perception Scale, and Innovative-

ness Scale were used. All of the 106 items used 6-point Likert scale (strongly dis-

agree, much disagree, little disagree, little agree, much agree, and strongly agree). All 

of odd number items were positive statements, and even number items were negative 

statements. The data of the negative statements were reversed before statistical dis-

posing. The split-half reliability of the whole scale was 0.86. 

a) Computer Attitude Scale. It measured ACL, and included four dimensions: 

cognitive component (22 items, α = .90), behavioral component (22 items,  

α = .87), affective component (16 items, α = .87), and evaluation (22 items,  

α = .90). 

b) Self-perception Scale. It measured SPCS, and consisted of 4 items (α = .81). 

c) Innovativeness Scale. It measured ATI from two different dimensions: Notion 

(11 items, α = .69) and action (9 items, α = .70).  

3   Results 

3.1   Computer Use 

Most of participants had been using computer for a few years (M = 5.28 years, SD = 

2.66). A 2×2×3 analysis of variance (ANOVA) was performed on the years of com-

puter using with gender, grade, and major as factors. The results showed that females 

had used computer significantly longer than males, 5.60 vs. 4.90, F (1, 279) = 4.47, p 

< .05. The students in high grades had used computer longer than the students in low 

grades, 5.55 vs. 4.95, F (1, 279) = 3.26, p = .07. The main effect of major was also 

significant, F (2, 279) = 5.02, p < .01. The post hoc test revealed that the students who 

majored in Natural Science had used computer significantly longer than the students 

either in Humanity and Social Science or in Engineering (6.05 vs. 4.80, 4.90, respec-

tively). All the interactions were not significant, Fs < 2.00, ps > .05. 
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The average time of using computer per day was 1.61 hours (SD = 1.37). The re-

sults showed that the main effect of gender was not significant, F (1, 272) = 2.87, p = 

.09. The main effect of grade was significant, F (1, 272) = 22.38, p < .001. The stu-

dents in high grades spent significantly more hours on computer than the students in 

low grades (1.84 vs. 1.03). The main effect of major was significant, F (2, 272) = 

6.30, p < .01. The post hoc test revealed that the students majoring in Engineering 

spent significantly more hours on computer per day than those either in Humanity and 

Social Science or in Natural Science (1.89 vs. 1.34, 1.39, respectively). All the inter-

actions were not significant, Fs < 1.70, ps > .05. 

3.2   Three Sub-scales 

The data showed Chinese university students’ attitudes toward computer in learning 

were slightly positive (M = 4.36, SD = 0.64), their attitudes toward innovation were 

apt to positive (M = 3.99, SD = 0.59), and their self-perceptions of computer skill 

were slightly negative (M = 2.98, SD = 1.16).  

A 2×2×3 multivariate analysis of variance (MANOVA) was conducted to deter-

mine the effects of gender, grade, and major on the average of the three sub-scales: 

ACL, ATI, SPCS. The differences between gender were significant, the value of Pil-

lai’s Trace is 0.04, F (3, 278) = 4.08, p < .01. Significant differences were found be-

tween grades on the dependent measures, the value of Pillai’s Trace is 0.11, F (3, 278) 

= 11.86, p < .001. The differences among majors were also significant, the value of 

Pillai’s Trace is 0.06, F (6, 558) = 2.93, p < .01. Analysis of variance (ANOVA) on 

each dependent variable was conducted as follow-up tests to the MANOVA. The dif-

ference between gender was significant on self-perception on computer skill, F (1, 

280) = 10.22, p < .01. Males were more confident than females (3.15 vs. 2.80). The 

difference between grades was significant on self-perception on computer skill, F (1, 

280) = 35.82, p < .001. The students in high grades were more confident than the  

students in low grades (3.33 vs. 2.51). The differences among majors were also sig-

nificant on self-perception on computer skill, F (2, 280) = 4.81, p < .01. The post hoc 

test revealed that students majoring in Natural Science were more confident than stu-

dents majoring in Humanity and Social Science (3.33 vs. 2.81). The differences 

among majors were also significant on innovativeness, F (1, 280) = 3.45, p < .05. The 

students majoring in Engineering and in Natural Science were more innovative than 

those in Humanity and Social Science (4.02, 4.05 vs. 3.82, respectively). All the other 

main effects were not significant, Fs < 3.35, ps > .05. All the interactions were not 

significant, Fs < 2.10, ps > .05. 

The comparison between notion and action of Innovation was reliable, t (291) = 

23.36, p < .001. The scores of notion were higher than scores of action (4.54 vs. 3.60). 

3.3   Path Analysis to Explain the Relationship among Computer Use and the 

Three Sub-scales 

Path analysis was used to examine the relation among computer use, ACL, ATI, and 

SPCS. The basic model and results of the path analysis are presented in Figure 1.  

As indicated in Figure 1, previous computer use influenced SPCS, and then SPCS 

and ACL directly influenced recent computer use. Although ACL and ATI had no  
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Fig. 1. Path-analytic model: The relationships among computer use, ACL, ATI, and SPCS. 

Paths are standardized coefficients. *p < .05, **p< .01. 

significant relationship with previous computer use, previous computer use had indi-

rect influence on ACL and ATI by SPCS. Previous computer use could predict recent 

computer use with ACL, ATI, and SPCS as mediate variables. Six indices used to 

evaluate the hypothetical model supported this conclusion, χ2
(2) = 1.293, p = .524; 

root mean square error of approximation (RMSEA) = 0.000; comparative fit index 

(CFI) = 1.000; Tucker-Lewis index (TLI) = 1.001; Incremental fit index (IFI) = 1.000; 

Normed fit index (NFI) = 1.000. Except the paths from previous computer use to 

ACL and ATI, and the path from ATI to recent computer use, the standardized pa-

rameters of other paths in the model were statistically significant (p < .05). 

4   Discussion 

The present study found that previous computer use could predict recent computer use 

with ACL, ATI, and SPCS as mediate variables. Males were more confident than fe-

males in SPCS, but there was no difference between males and females on either ACL 

or ATI. These university students’ notion of innovation was more radical than their 

action. 

4.1   Computer Use 

The present study found that the university students in this survey general spent 1.61 

hours per day on computer. In contrast, Male students in American university spent 

1.32 hours on computer per day, and female students in American university spent 

0.86 hours on computer per day as reported in the study by Schumacher and Mora-

han-Martin [16]. Comparatively, the Chinese university students as measured by this 

survey had much more experience on computer. The explanation for this finding can 

perhaps be attributed to the rapid popularization of computers in China recently. 
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Females had used computer significantly longer than males (5.64 vs. 4.98 years). 

But no gender difference was found on hours spent on computer and Internet. The 

differences among majors were significant. The students majored in Natural Science 

had used computer significantly more years than the students either in Humanity and 

Social Science or in Engineering. But the students majoring in Engineering spent sig-

nificantly more hours per day on computer and Internet than those either in Humanity 

and Social Science or in Natural Science. Comparison across grades showed that the 

students in higher grades spent more hours than those in lower grades. It seems that 

the students may use computer more and more along with the difficulty and profun-

dity of courses increases. 

The results of path model indicated previous computer use influenced SPCS, and 

then SPCS directly influenced recent computer use. Although ACL and ATI had no 

significant relationship with previous computer use, previous computer use had indi-

rect influence on ACL and ATI by SPCS. ATI influenced recent computer use 

through ACL. Overall, previous computer use could predict recent computer use with 

ACL, ATI, and SPCS as mediate variables. 

Such results are consistent with the findings from a lot of previous research (e.g. 3; 

9), which showed that computer use had positive relationship with computer attitude, 

self-efficacy, and attitudes toward innovation. In the present study, probably because 

the Chinese university students had used computer for a long time, and the three  

universities were well equipped advanced computers and Internet hardware, their 

computer experience made them feel confident in computer technology. Their self-

efficacy and confidence would improve the level of their attitudes toward innovation 

from both of notion and action. If they were willing to accept new computer technol-

ogy, then they should realize the importance of mastering technology. Once they had 

fairly positive attitudes toward computer so that they were willing to use computer. 

According to attitude-behavior theory (see 9), attitude is an important precursor of 

behavior. The positive attitudes toward computer will arise more positive behavior on 

computer using in learning. Therefore, colleges and universities should pay more  

attention to computer education in order to shape the positive attitudes of students 

toward computer and further facilitate their behavior on computer using in learning. 

4.2   Attitudes toward Computer in Learning 

Overall, the results of present study indicated that the participants were willing to 

take positive attitudes toward computer in learning. There was no difference between 

males and females on attitudes toward computer in learning. Both of males and fe-

males had much experience on computer and recognized that technology was very 

serviceable to them. Consequently, they were willing to use technology and felt 

fairly comfortable and satisfied with using technology. It strongly suggests that fe-

males and males would have equal opportunity to enjoy the convenience from hi-

tech equipment. 

4.3   Self-perception on Computer Skill 

The participants’ self-perceptions of computer skill were a little bit negative, though 

they had used computer for a few years. But this result does not necessarily mean that 
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Chinese university students were not confidence in their computer skill. Such result 

might have something to do with the Chinese culture. In China, humility is usually an 

expected virtue for everyone, especially in the education of the youngsters. In Chinese 

traditional culture, youngsters are required to be modest, humble, and open. So, the 

participants in the present research didn’t give higher rating to the computer skill of 

themselves. 

It is worth noting that, although females had used computer previously for a longer 

time, and they felt as same comfortable and satisfied with using technology as males, 

but they were short of confidence in their computer skill. The results are consistent 

with Whitely’s [20] finding. Considering the custom that females are (or culturally 

perceived to be) more modest than males in eastern Asia, we may understand that 

there was no gender difference in attitudes toward computer, while there was gender 

difference in self-perception on computer skill. In Chinese traditional culture, the vir-

tue of females that people praised is goodness, peaceful, humility, and forbearing. 

Based on the tradition, the female participants in the present research would be more 

modest than the male participants, and give even lower rates in their computer skill. 

The results also showed major difference and grade difference in self-perception on 

computer skill. Students in Natural Science were more confident than those in Hu-

manity and Social Science. It is not surprised because the students in Natural Science 

usually have more opportunities to use computer and Internet. Seniors were more  

confident in their computer skill. It is true that college time is an important stage, spe-

cifically as access to hi-tech learning method, for most of Chinese students. As their 

experience and knowledge enriched gradually, the students may improve their skills 

in computer and become more confident. However, the details of the explanation need 

further investigation. 

4.4   Attitudes toward Innovation 

The results showed that participants’ attitudes toward innovation were inclined to 

positive, and had a significantly effect on ACL. It is consistent with Braak’s [2] find-

ings and suggests that attitudes toward innovation may be a strong predictor of ACL. 

We found, most notably, the notion of innovation of these university students was 

more radical than their action. Such pattern may emerge from the fact that the stu-

dents are really willing to adopt all kinds of new hi-tech products, but they have no 

much chance to access them. Although this hypothesis still need testing, it is highly 

possible that more opportunities supplied to the university students would have posi-

tive influence on making their potential of actions become true. On the other side, 

such results might indicate that the university students’ attitudes to innovation could 

be affected by the radical innovative action of their peers; therefore reliable instruc-

tion should be given to the students and lead them to reasonably use new technology. 

The present study showed computer use experience had significant influence on 

Chinese undergraduates’ attitudes toward technology and innovation. The implica-

tions of the result may lie in twofold. First, Chinese students are inclined to accept 

new technology, and this is very positive to the promote computer use in China. Sec-

ond, there should be some reliable restricts to avoid their using computer and Internet 

too much. Nowadays, the addiction to Internet becomes a serious problem in adoles-

cents, and it is another important social issue. 
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Abstract. Marksmanship training involves a combination of classroom instruc-

tional learning and field practice involving the instantiation of a well-defined 

set of sensory, motor and cognitive skills. Current training procedures rely 

heavily on conventional classroom instruction often with qualitative assessment 

based on observation (i.e. coaching). We have developed a novel device called 

the Peak Performance Trainer (PPTTM) which can accelerate the progression 

from novice-to-expert based on automated inferences from neurophysiological 

measurements. Our previous work has revealed specific EEG correlates to 

stages of skill acquisition in simple learning and memory tasks. We have incor-

porated this knowledge as well as an array of other physiological metrics to de-

velop a field-deployable training technology with continuous physiological 

monitoring in combination with simultaneous measures of performance, work-

load, engagement and distraction, accuracy, speed and efficiency. This paper 

outlines the features of the PPT and the preliminary results of its use in marks-

manship training.  

Keywords: EEG, Heart rate, Alpha, Theta, Haptics. 

1   Introduction 

Skill development is thought to occur in stages characterized by distinctive amounts 

of time and mental effort required to exercise the skill: the initial cognitive stage of 

assembling new knowledge, the associative stage where newly assembled procedural 

steps gradually automate as they are practiced, and the autonomous stage where the 

task execution is automated and performed with minimal conscious mental effort  

[1-3]. During the transition from the cognitive to associative stage, both speed and 

accuracy increase as subjects become less reliant on the declarative representations of 

knowledge [4-5]. Transitions between stages can be assessed with expert observations 

and subjective reports but these measures often lack precision and do not offer insight 

into the neurocognitive processes involved during learning. Recent investigations 

suggest that changes in EEG power spectra and event-related EEG can be identified 

as associated with stages of skill acquisition in simple and complex tasks [6-8]. 
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Relationships between EEG parameters and proficiency in real world activities 

have been reported in golf putting [9], archery [10], and marksmanship [11-13]. In 

these real-world task environments, the most predictive data is acquired during the 

period of mental preparation (usually between 8-15 seconds in duration) before the 

skilled movements occur, referred to in sports medicine as the “pre-shot routine” [9]. 

The pre-shot routine is characterized by a progressive increase of the power of EEG 

in the alpha bands (8-12Hz) particularly over the parietal-occipital regions, with 

decreased activation in cortical regions not relevant to skilled visuomotor tasks 

[14,15]. Alpha power in expert marksmen is particularly increased over the left cen-

tral-temporal-parietal region during the seconds preceding trigger pull [14,16]. The 

magnitude of the increase in pre-shot alpha power has been positively correlated 

with the accuracy of the subsequent shot [15,17] n both experts and novices. Less 

EEG activation is observed across all brain regions for experts compared to novices, 

suggesting that the neural networks of experts may be more efficiently organized 

than novices providing a relative economy in the recruitment of cortical resources in 

the expert brain [14]. The pre-shot period is also characterized by heart rate decelera-

tion and a decrease in electrodermal skin conductance levels [18-20]. Heart rate 

changes are believed to reflect the focusing of attention and the skill-related aspects 

of sensory-motor preparation for performance [21]. Consistency and reproducibility 

of the successful pre-shot routine is a major feature that distinguished novice from 

expert [22, 23].   

Our previous work has revealed specific EEG correlates of stages of skill acquisi-

tion in simple learning and memory tasks and in more cognitively complex and  

challenging test environments. Unique event-related EEG signatures detected during 

various stages of skill acquisition were evaluated to assess participants’ ability to 

reflect aspects of learning across tasks and environments. The EEG-engagement 

measure has been shown to correlate with the number and complexity of visual  

stimuli being processed and the allocation of attentional resources in simulation tasks 

[24-26]. EEG-engagement increased as a function of level of interest in a specific 

display (equally sensitive and specific for text or image-based presentations) as well 

as during the encoding period of memory tasks and during review of instructions for 

completing a new task. EEG-engagement and workload levels decreased as a function 

of increasing level of skill acquisition [26, 27].  

Transition from novice to expert requires practice. Repetition alone however, does 

not ensure success and a poor technique repeated can lead to performance deficiencies 

and/or stress injuries. Instructional strategies and feedback are believed to be critical 

to accelerating motor skill learning. Recent investigations have suggested that motor 

skill learning may be dependent upon the availability of cognitive resources including 

attention and working memory and that the speed and efficiency of learning may be 

affected by either state or trait differences in these cognitive capacities [28, 29].   

The Peak Performance Trainer (PPT) is a novel system that incorporates our 

knowledge about EEG signatures as well as an array of other physiological metrics 

that change during stages of learning. The goal of the PPT is to provide continuous 

psychophysiological monitoring and feedback (visual, auditory or haptic) on relevant 

changes in these measures to the trainee in real time. Our hypothesis is that we can 

characterize the psychophysiological profile of expertise, and provide feedback to 

shape the novice into the psychophysiological state of an expert. The laboratory-based 
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PPT was designed to offer multiple options for training including: sensor inputs 

(EEG, EKG, respiration, eye tracking), algorithms for deriving state changes (based 

on single or multiple sensor inputs, designed for shaping to an expert model) and 

feedback delivery (visual, audio, haptic or multimodality). Training can be custom-

ized to meet the needs of the investigators or the trainees. The training protocols can 

then be streamlined and optimized for field deployability. The mobile PPT is then 

designed for portability with fewer options for sensors and/or feedback.   

2   Methods 

In order to first assess the concept and effectiveness of using the PPT
 
to accelerate 

learning, a PPT lab setup was designed, built, and pilot tested on a group of novice 

participants in a current marksmanship study.   

2.1   PPT
 
Apparatus 

Shooting was untimed, completed indoors in the kneeling position, and simulated a 

20” target at 200 yards distance. A demilitarized “airsoft” replica of the M4 was used 

as the instrumented weapon and an infrared laser-based training system from  

LASERSHOT [30] was used for target projection (via an LCD projector) and shot 

detection (via infrared camera). Psychophsysiological metrics associated with shooter 

performance were used to compare experts to novices, to examine the efficacy of 

interventions based on these metrics and to guide interventions leading to rapid skill 

acquisition. An overview of the recorded measures, with their respective source and 

usage is listed in Table-1.  

All necessary sensors and associated electronics incorporated in the PPT
 
setup 

were integrated into a portable package that provided both closed loop real-time feed-

back to the shooter as well as transmitted data to a remote computer for display, stor-

age and offline analysis. A low power 32-bit ARM9 processor was used to interface 

the sensors, for software signal processing and for running the complex feedback 

algorithms. The sensors and data acquisition circuitry of a previously developed 9-

channel wireless B-Alert
®

 sensor headset were integrated to the microprocessor to 

acquire high quality physiological signals such as EEG from sensors placed at F3, F4, 

C3, C4, P3, P4, Fz, Cz and POz positions (according to the international 10-20 sys-

tem) as well as EKG and EOG. The patented EEG sensor dispenses a small amount of 

conductive cream through the hair to make electrical contact, which eliminates the 

need for hair or scalp preparation. The sensors and the headset were attached to a 

comfortable porous cap. Analog circuits combined with EEG amplification close to 

the sensors allowed the shooter freedom to move without generating artifacts.  

The acquired data was processed to identify and decontaminate artifacts using 

hardware filters as well as adaptive filters in the firmware. The filtered data was then 

used by the algorithms running in the microprocessor for real-time feedback and also 

transmitted to a remote computer via Bluetooth protocol for display, storage and 

analysis. The Bluetooth module was interfaced to the microprocessor via the serial 

port to transmit the data, and an off-the-shelf Bluetooth dongle plugged in to the USB  
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Table 1. Metrics recorded for analysis 

Metric Data Source Usage 

Cognitive 

overload 

 

Pre-Shot EEG 

Alpha and 

Theta 

EEG Used as an indicator of how well shooter is 

processing information and accommodating 

task demands. 

Used as an indicator of focused and relaxed 

(“in the zone”) mental state 

Anxiety Heart rate variability Used to measure degree of stress experienced 

by shooter. 

Precision Shots Used to characterize the degree of dispersion 

of shots. 

Accuracy Shots Used to characterize the distance of shots from 

the intended target. 

Respiration Breathing Used to measure inhalations and exhalations. 

Trigger break Switch Used to establish a synchronization point for 

all measures. 

Trigger 

squeeze 

Force pressure sensor Used to examine quality of trigger squeeze - 

slow or rapid.  

Muzzle wob-

ble 

Accelerometer Used to measure the degree of movement in 

the muzzle of the weapon. 

 
port of the computer was used to receive the data at the remote end. Our patented  

B-Alert software was used for display and analysis of the data on the computer. The 

B-Alert software provided capabilities for further processing of the data such as clas-

sifying the brain’s electrical activity into validated measures of engagement, mental 

workload, and distraction/drowsiness. The package had multiple analog and digital 

input ports to interface external sensors. Three primary real-time feedback modalities 

were provided: i) audio feedback via a small speaker interfaced to the microcontroller 

as well as from the remote computer; ii) haptics feedback via two shaft-less vibration 

motors attached behind the neck; and iii) visual display on a projected screen and the 

remote computer.  

Alpha power in expert marksmen has been shown to increase during the seconds 

preceding trigger pull [14, 15]. Preliminary studies suggested that a single EEG chan-

nel is sufficient for the measurement of alpha increase, and that alpha (as well as 

theta) levels in the two seconds preceding the shot were at least 10% higher than dur-

ing inter-shot interval in experts. In order for the PPT to quantify pre-shot theta and 

alpha levels and provide that feedback to the shooter, band pass filters were used to 

extract theta (4-7Hz) and alpha (8-12Hz) bands from channels Fz and Cz of the EEG 

signal and the area under the curve (squared) was calculated to extract the energy per 

unit time of the bands. Individualized baseline alpha levels were calculated during a 

30-second interval before shooting began, and real-time feedback of the current alpha 

levels during the shooting process was provided using audio as well as haptic vibra-

tors. The alpha levels were classified as good (less that 5% above baseline), better  
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(between 5% and 10% above baseline) and best (10% above baseline). Haptic feed-

back was provided using the potential feedback states: two vibrators were both 

switched ON when alpha levels were at or below normal; one stopped vibrating when 

alpha level increased to 5% above normal; and both stopped vibrating when alpha 

increased the at least 10% above normal – indicating to the participant that they were 

in an ideal state and ready to shoot the weapon. Some initial training was required for 

subjects to learn to increase their alpha levels and to rapidly move in and out of the 

desired pre-shot brain state.  
Significant deceleration of HR was found in experts beginning about two seconds 

pre-shot and ending at around 0.5 seconds following shots. Heart rate (HR) and Heart 
Rate Variability (HRV) measures add the dimensions of stress, frustration, arousal 
and anxiety to the EEG-based cognitive metrics. In order for the PPT to provide HR 
feedback to the participant, missed beats and false detections due to movement arti-
facts in the EKG were corrected using software filters. A proprietary adaptive R-wave 
detection algorithm was employed to detect the R-waves in the EKG to provide real-
time feedback of the heartbeat to the shooter. The haptic vibration pattern for the 
alpha feedback was triggered by R-wave detection (the haptic motors vibrated at an 
interval that was in synch with the heart beat) thus superimposing the alpha feedback 
over the heartbeat feedback. This reduced the need to memorize complex feedback 
patterns for the shooter.  

Breath control is another significant factor in marksmanship; firing during the 
natural respiratory pause is accepted as the correct procedure. The expansion and 
contraction of the lungs during the breathing cycle can cause the rounds to be dis-
persed vertically on the target due to the displacement of the muzzle. A respiratory 
belt transducer containing a piezo-electric device that responded linearly to changes in 
length was used to measure changes in thoracic or abdominal circumference during 
respiration. The necessary circuitry for the amplification and filtering of the signal 
was implemented in hardware and the transducer was interfaced to the analog input of 
the microprocessor. The signal representing the respiratory pattern was transmitted to 
the remote computer and was stored and displayed in real-time.  

Trigger control was measured by determining the force profile of the shooter’s 
trigger finger during the aiming period immediately preceding the shot (about 6 sec-
onds) and immediately following the shot. Proper trigger control is important because 
yanking the trigger will cause the weapon to sway laterally. A force pressure sensor 
was attached to the trigger and the resultant pressure on the sensor measured over 
time. The signal was amplified, filtered and transmitted to the remote computer for 
real-time display and storage. The respiratory and the trigger squeeze waveforms 
were superimposed to detect variations from the expert trigger squeeze profile which 
consists of a steady increase in trigger pressure during natural exhalation with the 
trigger break occurring at the end of the exhalation and before the beginning of the 
next inhalation (Fig. 1). We also provided audio feedback of the trigger squeeze  
profile by modulating the frequency of the sound with the amplitude of the pressure 
applied on the trigger.  

Muzzle wobble can never be completely eliminated, however its magnitude was 
found to be considerably depressed in experts. An accelerometer was attached to the 
muzzle of the instrumented weapon to measure the degree of movement in the muzzle 
of the weapon. The signal from the accelerometer was amplified and transmitted to 
the remote computer for real-time display.  
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Fig. 1. Snapshots of the real time display from expert and novice shooters, showing trigger 

break (yellow), trigger squeeze profile (red), and breathing profile (blue) 

Shots were recording using a LaserShot rifle simulation set-up. The target was pro-
jected on a screen and the laser “shot” was detected by a high-resolution infrared 
camera. The strike was interpreted by the system to yield x and y coordinates on the 
target projected on the screen. The main performance measure was the shot group 
precision. The “center of mass” of the first N shots was calculated initially and the 
shot group precision was defined as the mean dispersion across N shots to the center 
of the shot group. Two dimensional standard deviation (x & y axis) of each shot from 
the center was also recorded. 

Incorporating all sensor inputs, the PPT
 
setup provides direct, real-time haptic 

feedback to the shooter regarding their pre-shot alpha level (in relation to their base-
line level) and HR, as well as real-time continuous measures of respiration, trigger 
pressure, and muzzle wobble in relation to shots. In this manner, the PPT

 
setup is 

designed to provide feedback not only regarding the output of their comprehensive 
technique (shot performance), but also feedback on each element of technique that 
contributes to shot performance. 

The PPT lab setup is currently being developed as a generic training/research plat-
form that could be extended to many other activities requiring skill development. It 
is an ideal solution for indoor training; however the multiple display devices such as 
the computer and the LaserSoft rifle simulation make it bulky and not easily port-
able. Based on the results from the lab setup, the most relevant subset of features was 
implemented in a field-deployable version which we call the “PPT-mobile”. We 
developed one such version that extracted EEG alpha level as well as EKG R-wave 
spikes in real-time and provided feedback on alpha level and heart rate via haptics 
and audio. The same ARM9 microprocessor that was used in the lab setup was also 
used in the mobile version, and the EEG / EKG sensors were interfaced to it. A Blue-
tooth module was also interfaced to collect data on a remote computer if required. 
The device was battery operated and was attached to the EEG sensor cap worn com-
fortably by the user. The device had a modular architecture allowing for easy addi-
tion of new features.   

2.2   Pilot Study 

We recruited 9 novice subjects (8 males, 1female; mean age 23.1 years; range 20-27) 

to evaluate the effectiveness of the real-time PPT when applied to marksmanship 
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training. Three participants first completed the protocol without sensory feedback (no 

PPT) and then returned on a later day to complete the PPT protocol. The remaining 

six subjects completed the PPT protocol only. Preliminary studies suggested that 

sensor-based feedback is overwhelming to the novice shooter in the beginning train-

ing stages, and is more useful once the novice is familiar with the positional elements 

of marksmanship. For this reason, real-time feedback using the PPT during shooting 

was not delivered to the novice until the later trials of the study, after they had re-

ceived computer instruction, individualized coaching, and modular training in EEG 

alpha, breath, and trigger control.   

As a preliminary assessment of the efficacy of the PPT, performance improve-

ments achieved using the PPT were compared to two other experimental groups of 

novices, and one group of marksmanship experts. All novice groups (Ground Zero, 

Tx2, and PPT) represented similar age and experience levels, completed the same 

number of trials and watched the same 15-minute introductory marksmanship video. 

All other factors being equal, each novice group completed marksmanship training 

with distinct conditions. The Ground Zero group received no individualized coaching, 

no offline (not while shooting) sensor-based feedback, and no PPT while shooting. 

The Tx2 group received individualized coaching and offline sensor-based feedback, 

but no PPT while shooting. The PPT group received individualized coaching, offline 

sensor-based feedback, and PPT while shooting.  The expert group was comprised of 

10 USMC marksmanship coaches recruited from USMC base Camp Pendleton, each 

of which qualified as expert on their most recent marksmanship qualification. Experts 

were given no instruction or other type of feedback during shooting. 

3   Results 

Preliminary analysis of performance data comparing the performance (mean distance 

of each shot from shot group center) at Baseline (Trials 1 and 2) and Final (two trials 
 

 

Fig. 2. Performance curve of groups trained with & without PPT 

m = 0.05 

m = -3.37 

m = -5.20 

m = -2.18 
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at or after Trial 7 that show best performance) of PPT protocol compared to the same 

measures for other experimental groups revealed an improved learning trajectory 

beyond that attained with the Ground Zero or Tx2 groups. The performance data  

(Fig. 2) is encouraging and suggests that providing offline, real-time physiological 

feedback through the PPT protocol is effective in improving the performance of nov-

ices at a greater rate than for other treatment groups.  

4   Discussion 

The PPT is a part of our effort to create a suite of Interactive Neuro-Educational Tech-

nologies (I-NET) that can be used in multiple training environments. I-NET covers 

four major themes: 1) integrating brain monitoring into paced instructional tutorials, 2) 

identifying psychophysiological characteristics of expertise using expert marksman as 

a model population, 3) developing sensor-based feedback to assist novices in acquiring 

marksmanship skills and 4) identifying neurocognitive factors that are predictive of 

marksmanship skill acquisition to allow early triage and interventions. While the entire 

PPT system is limited in its functionality due to the reliance on computer monitors and 

projectors to display visual feedback, the development of the PPT-mobile opens the 

door for incorporation of real-time neuro- and biofeedback for the first time into many 

psychomotor skill tasks performed outside of the laboratory setting.   

Experiments are currently underway to begin to address the applicability of the 

PPT-mobile in scenarios that more closely approximate combat conditions. It will be 

necessary to introduce threat/fear stressors into the basic marksmanship training set-

up to encourage a combat mindset, as being able to manage such stress is critical. One 

way in which this will be implemented is through the use of first-person shooter 

games. The psychophysiological profile of expert and novice shooters under stressful 

combat conditions is as yet undefined; mitigation is usually performance driven, and 

via intense reality-based training. Thus, developing neurophysiological metrics that 

drive sensor-based feedback is highly desirable. In the current (non-combat) training 

paradigm, the measure of shooter readiness that drives the PPT is based on high alpha 

+ HR deceleration. How this measure relates to performance under more dynamic 

conditions is unclear, particularly when there is a threat component.  

Multiple combinations of pre-training triage and interventions including relaxation 

and attentional training will be evaluated in addition to real-time feedback during 

simulated combat marksmanship. The psychophysiological profile of the expert 

USMC marksmen suggests a finely tuned level of control over physiology that appro-

priately allocates resources to meet task demands [31, 32]. I-NET are being designed 

to assess, characterize and further develop this psychophysiological control system. 

The acquisition of expertise in marksmanship can serve as a model of the key skills 

required for training in military and other educational environments and can be ex-

tended to other activities such as golf, archery and free throw shooting in basketball.  
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Abstract. Today, flight trainers use objective measures of task performance and 

additional estimated, subjective data to assess the cognitive workload and situa-

tion awareness of trainees. This data is very useful in training assessment but 

trainees can succeed at performing a task purely by accident (referred to as 

“miserable success”). Additionally the trainee can be in a less than optimal for 

learning cognitive state when the instructor operator applies brute force training 

tasks and methods with little regard to the learning curve which can result in the 

training being too easy or, more often, too difficult, thereby inducing negative 

learning. In order to provide the instructor with additional quantitative data on 

student performance, we have designed the Quality of Training Effectiveness 

Assessment (QTEA) concept. QTEA is conceived as a system that allows the 

trainer to assess a student in real-time using sensors that can quantify the cogni-

tive and physiological workload.  

Keywords: Neurocognitive measures, operator state characterization, flight 

training.  

1   Introduction  

QTEA is based on a technology called the Cognitive Avionics Tool Set (CATS) that 

has been developed over the last 4-5 years at the Operator Performance Laboratory 

(OPL). CATS uses neurocognitive and physiological signals of the pilot to generate a 

real-time measure of cognitive workload. CATS has been tested in flight simulators, 

research vehicles, and flight test aircraft (Bell 412 at the National Research Council in 

Canada and BE-36 at OPL). QTEA is conceived as a system that allows the trainer to 

assess a trainee in real-time using sensors that can quantify the cognitive and physio-

logical workload. Using QTEA, the trainer can quantify the student’s workload level 
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in real-time so that the scenarios can be adjusted to an optimal intensity. The cogni-

tive and physiological measures also serve as a quantitative manifestation of a  

student’s learning curve and it will be possible for the trainer to detect plateaus in 

learning. Using QTEA, the trainer will be able to assess the needs for further training 

in a student. Using this real-time data, training scenarios can be optimally adapted in 

terms of difficulty to maximize the effectiveness of learning. This will likely reduce 

training costs by reducing training times and may increase operational success levels.  

By using physiologically based measures to corroborate objective and subjective 

measures, trainers will have a quantitative tool to measure training effectiveness. Our 

approach is based on using a battery of neurophysiological and physiological sensors 

on the trainee and to fuse this data with mission data, apply sophisticated signal proc-

essing and classification techniques, to gain a fuller picture of training effectiveness. 

The basic idea of QTEA is to give the trainer a real-time picture of the performance of 

a trainee based on human physiological and cognitive data, flight technical, and mis-

sion specific data. QTEA is a sensor-fused, real-time performance gauge that will 

allow training systems to optimize training scenarios in real-time and provide superior 

information for after-action review.  

Today, trainers do not have access to quantitative cognitive and physiological data 

of their trainees in real-time and they have to subjectively judge cognitive loading 

through observation. For optimal training effectiveness, it is imperative that trainees 

are exposed to scenarios with optimal difficulty levels. In some cases, this means 

pushing the trainee to the edge of cognitive capacity that can be quantified using 

QTEA. This tool will provide the trainer with real-time knowledge of trainee attention 

and cognitive bandwidth so that scenarios can be tuned in real-time to achieve maxi-

mum transfer of training. Since QTEA characterizes behavioral data, it also portrays 

the learning curve of a trainee. For example, the eye tracking sensor shows the trainer 

how the trainee is acquiring visual information, allowing for immediate intervention 

and remediation if poor scan techniques are detected. This prevents formation of bad 

habits in visual scanning. QTEA can tell the trainer if the trainee is cognitively over-

taxed by certain tasks, thus providing instant feedback about workload optimization.  

2   Components of QTEA  

The QTEA system consist of sensors that can be installed in the training environment 

and/or deployed on the trainee to monitor neurophysiological and physiological 

measures. A processor (PC computer) is needed to perform the computational func-

tions such as sensor interfacing, signal processing, operator state classification, and 

interfacing with client applications as indicated in Fig. 1. The processor is a normal 

PC based computer and is a part of the final QTEA product. In addition, QTEA con-

sists of software that interfaces with the sensors, synchronizes the data with mission 

specific performance data, characterizes operator state, and exports that data through-

out the High Level Architecture (HLA, IEEE 1516) for consumption in scenario man-

agement tools such as the Common Distributed Mission Training Station (CDMTS) 

that was selected as the integration platform because it is the controller station where 

the trainer has direct influence on the scenarios and knowledge of results (KR).  
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Fig. 1. Components of QTEA  

Eitelman [1] pointed out the suitability of CDMTS to be enhanced with AugCog 

like technology. QTEA will feature a component that serves as a plug-in into client 

applications such as CDMTS where it will integrate the operator state data with 

other performance data to express the quality of training effectiveness. QTEA is not 

dependent on CDMTS and will be able to connect to any other HLA capable appli-

cation that requires operator state data. The neurocognitive and physiological sensor 

system in QTEA is called the Cognitive Avionics Tool Set (CATS). CATS has been 

discussed by Schnell et al. [2][3][4][5] and was tested in several airborne and auto-

mobile applications. CATS evolved from the architecture used in the Computerized 

Airborne Research Platform (CARP) flight test aircraft at the OPL. The central 

element of CATS is the Input-Output-System (IOS) computer. Data from all sen-

sors onboard the aircraft generate streams that are captured as asynchronous busses 

in the IOS. Our sensors typically have intelligent pre-processors that perform signal 

conditioning functions and the analog-digital conversion. These pre-processors 

communicate with the IOS by means of Ethernet packets. It should be noted that in 

our paradigm, we use human sensor data and (aircraft) system sensor data to clas-

sify operator state. This means that not only data from the physiological sensors is 

used to determine the state of the operator, but also data from the air data computer 

(ADC), Attitude Heading Reference System (AHRS), Global Positioning System 

(GPS), Inertial Navigation System (INS), system switches, and mission data. Thus, 

we use physiological data, flight technical data, and mission specific data to deter-

mine operator state in a robust fashion.  
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2.1   QTEA Sensors  

The sensors used in QTEA can measure a wide range of human neural and physio-

logical characteristics. It is important to note that sensors alone do not facilitate  

operator classification. The sensor signals must be properly filtered to eliminate envi-

ronmentally and physiologically induced noise and artifacts. Processing algorithms 

must be employed to turn raw data into meaningful metrics. The effort involved in 

properly filtering and processing signals is complex and time-consuming, but is ex-

traordinarily important in order to effectively classify. We have conducted extensive 

literature reviews [2][3][4][5] to assess strategies employed by other researchers. The 

CATS framework easily accommodates new sensors and analysis techniques into the 

classification network. Our guiding design philosophy is to initially deploy QTEA 

with a battery of sensors that have a technical readiness level (TRL
1
) of at least 6 (see 

Table 1). We then intend to refine lower TRL sensors to the same or higher level. The 

sensors that we are focusing on include eye tracking (estimated TRL 7), electrocar-

diogram (ECG, estimated TRL 7), respiration (estimated TRL 6), galvanic skin re-

sponse (GSR, estimated TRL 6), and electroencephalogram (EEG, estimated TRL 5).  

Pilots need to visually scan different sources of information (instruments, outside, 

etc.) and integrate this information into situation awareness and situational evidence 

that will support motor control and decision making. The eye scan measurement sys-

tem that we are using can accommodate one to six remote mounted cameras to track 

facial features, head position (6 dof), and to generate a binocular gaze vector in a true 

3D environment. CATS generates eye scanning measures that include fixation dura-

tion, fixation frequency, saccade velocity, saccade length, dispersion measures, and 

link analyses between areas of interest (AIOs). These measures can then be correlated 

with workload by means of a regression model.  

When neurons fire in the brain, they generate electrical pulses that radiate outward 

to the scalp. Electroencephalogram (EEG) measures the electrical potential along the 

scalp to quantify the level of activity in the brain. We use a high density, 128-channel 

sensor at a high update rate (1000 Hz). Our net provides high spatial and temporal 

resolution. The CATS software suite has an extensive set of tools to manage channel 

integrity, detect and suppress artifacts and provide PSD and clinical band analysis. 

The EEG power levels in the different spectral bands are used in CATS to generate 

measures of effectiveness that are regressed against workload using a regression 

model.  

We also use a three channel electrocardiogram (ECG) sensor to measure cardiac 

electrical activity. The ECG strongly reflects sympathetic and parasympathetic activ-

ity in the autonomous nervous system. Heart rate alone is affected by several factors, 

                                                           
1 TRL 1 Basic principles observed and reported, TRL 2 Technology concept and/or application 

formulated, TRL 3 Analytical and experimental critical function and/or characteristic  

proof-of concept, TRL 4 Component and/or breadboard validation in laboratory environment, 

TRL 5 Component and/or breadboard validation in relevant environment, TRL 6 System/ 

subsystem model or prototype demonstration in a relevant, TRL 7 System prototype demon-

stration in a flight environment, TRL 8 Actual system completed and “flight qualified” 

through test and demonstration, TRL 9 Actual system “flight proven” through successful 

mission operations. 
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making it less valuable for assessing autonomic activity. However, heart rate variabil-

ity (HRV), or the change in heart rate from beat to beat, provides strong indication of 

autonomic activity. Several analytical methods have been applied to the analysis of 

HRV including the discrete Fourier transform, the discrete wavelet transform, Poin-

care analysis. The Puls Atem Quotient which compares the heart rate to breathing rate 

also provides an indication of stress. The heart exhibits a unique electrical pattern 

known as the PQRST waveform during each beat. Changes in the PQRST waveform 

from beat to beat can also be used to assess operator state.  

A pulse-oximeter measures oxygen levels in the bloodstream. We measure pulse-

oxigenation on the forehead. Measuring blood oxygen levels is useful for detecting 

the onset of hypoxia during flight. The pulse-ox sensor can also be used to derive 

heart rate. Respiration is measured through a flexible belt worn around the chest, or 

by virtue of gas-flow sensors integrated in an aviator oxygen system. Respiration rate 

and tidal volume can be measured. Respiration provides some information about 

autonomic nervous activity. Respiration modulates heart rate variability (HRV). Ef-

fective analysis of HRV requires knowledge of respiration to correct for the modula-

tion transformation.  

We are currently adapting this capability of QTEA for use in a reduced Oxygen 

Breathing Device (ROBD) application. The Reduced Oxygen Breathing Device is a 

training system that provides mixed gas through an aviator’s oxygen mask for hy-

poxia recognition and recovery training. The ROBD simulates hypoxia by diluting 

room air with nitrogen, resulting in lower oxygen content. The ROBD can simulate 

altitudes in excess of 30,000 ft, with altitudes and profiles selected by the instructor. 

The ROBD can be paired with a simple flight simulator so that pilots can experience 

the symptoms of hypoxia while performing flying tasks. Additionally, ROBD training 

will be provided to Naval Flight Officers. In this case, a simulation of NFO tasks will 

be provided and the trainer networked so that the NFO and pilot can fly the same mis-

sion and practice proper crew communication during the hypoxia scenario. Using 

physiological performance measures, the trainers can thus understand how trainee 

flight performance deteriorates as a function the simulated altitude level under in-

creasing hypoxia.  

2.2   QTEA Performance Metrics  

There are two types of performance measures in QTEA, mission specific and physio-

logical ones. The mission specific measures will change with the use case of QTEA. 

We have selected the close air support (CAS) task using non-precision weapons. This 

task is very demanding in terms of timing, planning, and aircraft control during deliv-

ery of the weapon. For naval aviation in a Close-Air-Support (CAS) task, the meas-

ures of effectiveness include airmanship measures (flight technical), administrative, 

and tactical. The physiological measures describe the body’s reaction to the task and 

include cognitive measures quantifying stress, cognitive resources, and attention 

(alertness). The physiological measures subsystem of QTEA functions automatically 

and in real-time, providing the trainer with a metric that indicates cognitive loading. 

The performance metrics are organized in vectors describing the human (pilot), the 

aircraft, and the environment. A regression model at the heart of the classifier accepts 

multiple input vectors from which it classifies operator workload (Fig. 2.). No single  
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Fig. 2. Simplified Flow of Input Vectors from Sensors to Classifier  

vector alone provides the complete picture. A true understanding of the situation  

requires an understanding of all of the input vectors. It is only from this composite 

picture that the classifier is able to assess operator state. We implemented the multi-

sensory state classification system in CATS using a regression model that was devel-

oped on the basis of empirical data.  

3   Demonstration of Workload Measurement with CATS/QTEA  

To test the ability of the QTEA prototype to measure workload and to demonstrate its 

usability in a distributed training simulation environment, we used the existing Live 

Virtual Constructive (LVC) federation shown in Fig. 3 that is available at OPL. This 

framework consists of a live component in the form of a highly modified Aerovodo-

chody L-29 fighter jet trainer called the Cognitive Delfin (COD), two networked 

flight simulators (full flight deck simulator and fast jet simulator), and constructive 

entities generated by the Joint Semi-Automated Forces (JSAF) system, controlled 

through CDMTS. Sector and forward controllers can participate with respective ap-

plications in this federation through communication over a TeamSpeak channel. The 

live COD is connected to the federation through a long range data link using a 900 

MHz spread spectrum radio with a rotator antenna on the ground station. The ground 

station is connected to the simulator network through an Ethernet connection. The 

pilot in the rear seat crew station is the exercise participant (usual call sign is Herkey 

11). The test director (call sign OZ) is using a Rockwell Collins EPX-500 visualiza-

tion system to maintain overall situation Awareness (SA) of all entities in play and 

two TeamSpeak channels (exercise communications and stealth communication) to 

coordinate the exercise with all participants.  
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Fig. 3. Live Virtual Constructive Framework for Testing Workload  

For this demonstration, neurocognitive (EEG), physiological (ECG, GSR, Respira-

tion), and eye tracking sensors were deployed on the pilot flying the fast jet simulator 

only. Workload is classified by CATS in several sub-categories including cognitive 

(EEG_, physiological (primarily HRV), eye tracking (saccade and fixation durations), 

and flight technical (flight technical errors). The workload scores are exported by 

CATS to HLA.  

The CAS scenario involved two F/A-18s on patrol near Solvang, California, being 

requested to eliminate tanks on the Santa Inez River Bridge (red triangle at river  

in Fig. 4.).  

Although the two jets were virtually on patrol over the California countryside, in 

reality, one of the jets, using the call sign Herkey 11, was a pilot in the rear seat of the 

COD, flying in real airspace near Iowa City, Iowa. The second asset, using the call 

sign Herkey 12, was a pilot in the fast jet simulator. Both the live (COD) and virtual 

(fast jet simulator) pilots could see the virtualized terrain, and standard radio commu-

nication was used to call the mission. The mission started with a call for fire from a 

forward air controller (FAC) with the call sign OBAN. The FAC relayed the call for  
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Fig. 4. LVC Close Air Support Mission: Defense of Santa Inez River Bridge  

fire to a sector controller with the call sign TALISKER. Both controllers were physi-

cally located at the central command and control station at Rockwell Collins in Cedar 

Rapids, Iowa. TALISKER located the two F/A-18s (Herkey flight) in a holding area 

NE of the target. A route was generated and communicated to Herkey flight. The 

route started at the flight’s current location in the holding pattern at CAP. Subsequent 

waypoints were called SHORE, SPILLWAY, AIRPORT (IP), TARGET, and GTFO. 

TALISKER cleared Herkey 1 onto the route and handed communications off to 

OBAN who tasked Herkey flight with a 9-line briefing. Herkey 11 (back seater in 

COD) copied the 9 line and Herkey 12 (fast jet pilot) acknowledged the target as-

signment. Herkey 11 followed the flight plan and Herkey 12 followed in combat 

spread using the outside visualization in the simulator. The virtualized target (bridge 

in Solvang) was set up so that it coincided with a bridge in a similar orientation in 

Iowa. That way, it was possible for Herkey 11 to acquire the target visually. Both 

Herkeys used a popup delivery profile to attack their assigned targets and after the 

attack they cleared six and formed up for egress to GTFO at which point the simula-

tion terminated (SIMEX). Data was recorded with CATS and real-time workload 

scores were broadcast onto HLA for use in CDMTS.  

In order to illustrate the results of the demonstration, we tagged the workload data 

by waypoint as shown in Fig. 5. The EEG scores appear to react very quickly to the 

increased task demand of the mission, whereas the HRV scores appear to lag from 30 

seconds to a minute. Following the waypoints from CAP to AIRPORT is easy from a 

flight technical point of view and this is well reflected in the low EEG workload 

scores. As the flight approaches the IP the workload goes up as the pilot starts to fo-

cus on targeting and visually identifying the target. The actual popup attack is the  
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Fig. 5. Workload Scores for Close Air Support Task  

most demanding portion of the flight, and the EEG scores appear to reflect that de-

mand. The EEG workload score decreases after the pop at TARGET and drops sig-

nificantly during cruise egress to waypoint OUT. The HRV score was relatively high 

during the waypoint sequence and then actually dropped when reaching the IP, in-

creased during the pop at TARGET and was highest right after the pop during egress 

to the nearby waypoint GTFO. It seems that the HRV data has a considerable delay 

on the order of 20 seconds. Thus, the bars for the HRV at each waypoint more accu-

rately describe the workload level that about a minute prior.  

4   Conclusions  

Instrumented aviation training systems such as QTEA provide instructors with quanti-

tative data of the student’s performance. This data can be used by automated scenario 

generation systems to adjust scenario intensity in real-time to maximize learning by 

keeping stimulation at its optimal level. The quantitative data generated by QTEA 

also provides for superior after-action review, offering the instructor and student  

the ability to review deviations in mission or flight technical domains as well as the 

occurrence of cognitive (workload) bottlenecks, poor control manipulation, or inef-

fective eye scanning technique. Through review and discussion of such quantitative 

data, the instructor and student can develop training strategies that achieve the train-

ing goal in a shorter time than would be possible without such advanced tools. With 

its neurocognitive and physiological battery of measures, in conjunction with flight 

technical and mission specific performance measures, QTEA is able to characterize 

the training patterns of experts and compare them to patterns of novices. By compar-

ing generic portions of those “expert” patterns with the patterns obtained by a trainee 

as he/she progresses through the learning curve, we expect to have a quantitative as-

sessment of the quality of training. The simulator training community could benefit 

from quantitative tools such as QTEA that measure the effectiveness of training on 

the basis of human performance data. Using the real-time workload gauge in QTEA, 
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it should be possible to adapt training scenario difficulty to maximize the effective-

ness of learning. This will likely reduce training cost by reducing training time.  
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Abstract. Virtual environments (VE's) are becoming more and more prevalent 

as training tools for both military and civilian applications.  The common as-

sumption is that the more realistic the VE, the better the transfer of training to 

real world tasks.  However, some aspects of task content and fidelity may result 

in stronger transfer of training than even the most high fidelity simulations. 

This research effort seeks to demonstrate the technical feasibility of a Perceptu-

ally-informed Virtual Environment (PerceiVE) Design Tool, capable of dy-

namically detecting changes in operator behavior and physiology throughout a 

VE experience and comparing those changes to operator behavior and physiol-

ogy in real-world tasks. This approach could potentially determine which  

aspects of VE fidelity will have the highest impact on transfer of training. A 

preliminary study was conducted in which psychophysiological and perform-

ance data were compared for a visual search tasks with low and high fidelity 

conditions. While no significant performance effects were found across condi-

tions, event-related potential (ERP) data revealed significant differences be-

tween the low and high fidelity stimulus conditions. These results suggest that 

psychophysiological measures may provide a more sensitive and objective 

measure for determining VE fidelity requirements. 

Keywords: Psychophysiological Measures, Virtual Environments, Fidelity, 

Transfer of Training, Simulation Design. 

1   Introduction 

Virtual environments (VE’s) and simulations are being employed for training applica-

tions in a wide variety of disciplines, both military and civilian.  Technological ad-

vances are enhancing the ability of developers to create VE’s with visual, auditory, 

haptic, and even olfactory realism.  Such VE’s allow the military to train skills that are 

too costly, too dangerous, or are otherwise impossible to practice. While a significant 
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research has been conducted examining the transfer of training from VEs (for example, 

[1, 2]), only a limited number of efforts have used psychophysiological measures to do 

so.  The common assumption is that the more realistic the VE, the better the transfer of 

training to real world tasks.  However, some fidelity components (e.g., display resolu-

tion, frame rate, texture mapping, physics modeling, etc.) may result in stronger trans-

fer of training than others for a given task or domain.  This has traditionally been  

determined by performance measurements compared before and after design iterations.  

With each design modification, end users are tested using the VE and their perform-

ance is compared to performance on the prior VE design.  Improved performance is 

often assumed to be related to improved design and fidelity.  However, it is difficult to 

identify the specific design components that directly relate to transfer of training im-

provements.  Furthermore, this method of design focuses on trial and error, and is 

therefore time consuming, undirected, and may result in false associations between 

performance and VE characteristics.  For example, unless each component of the new 

simulator design is introduced separately, it will not be known which fidelity design 

improvements bear the strongest significance to performance improvements.  Thus, a 

more sensitive, objective, and comprehensive assessment of the quality of interaction 

with a simulation is needed to effectively identify the specific components of simula-

tion that bare relevance to real world operational tasks. 

One of the major questions simulation designers must address is “what components 

of fidelity have the greatest impact on transfer of training?” Fidelity is defined as the 

degree to which features (e.g., visual, auditory, etc) in the Virtual Environment (VE) 

match features in the real environment. Following this premise, one can argue that a 

VE with maximum fidelity would result in transfer of training equivalent to real-

world training since the two environments would be impossible to differentiate [3; 

Martin, 1981). However, developers are limited by practical restrictions such as cost, 

time, and development resources.  Thus, trade-offs are necessary. There is currently a 

limited understanding of the specific trade-offs between increases in simulation fidel-

ity and operator behavior, and essentially no guarantee to developers that a particular 

level/area of simulation fidelity is sufficient to provide effective transfer of training. 

Under an Office of Naval Research-funded Small Business Technology Transfer 

(STTR) effort the authors proposed to develop a Perceptually-informed Virtual  

Environment (PerceiVE) Design Tool, which utilizes physiological measures to de-

termine fidelity requirements with the goal of optimizing transfer of training between 

simulated and real world tasks.  We hypothesized that a physiologically-based system 

capable of dynamically detecting changes in operator behavior and physiology 

throughout a VE experience, and comparing those changes to operator behavior and 

physiology in real-world tasks, could potentially determine which aspects of VE fidel-

ity will have the highest impact on transfer of training.  

EEG and event related potential (ERP) approaches offer excellent temporal  

resolution for tracking of neural activity representing the flow of information from 

sensory processing, detection and identification of relevant objects, and decision-

making.  ERP signature components associated with the identification of target  

stimuli were first reported in 1965 and named “P300s or P3b or Late Positivity”  

[4, 5], (Squires, Squires, & Hillyard, 1975) because target stimulus presentations are 

associated with large positive potentials maximal over parietal cortex with peak la-

tency ranging from 300-800 ms after presentation of the target stimulus. The P300 is 
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generally accepted to be a post-sensory signal elicited when subjects attend and re-

spond to target stimuli and is believed to be related to higher cognitive processes 

including updating working memory [5]. Several reports suggest that when target 

stimuli are degraded, obscured or difficult to recognize, the amplitude of the P300 is 

decreased (Kok, 1985, Kok, 1980), [6].  

In addition to the extensive work on describing the P300, a growing body of ERP 

evidence reveals ERP neural signatures of target recognition and discrimination as 

early as 150-200 milliseconds post-stimulus (Hopf, 2002, Vogel and Luck, 2000),  

[7, 8]. Johnson and Olshausen [9] demonstrated an early object recognition arising 

around 135 ms when low-level feature discrimination was present.  These studies 

suggest that basic discriminative processing (e.g. differentiating faces from words, 

animals from non-animals, shape or color distinctions) is performed so rapidly that it 

must be accomplished in one feed-forward sweep of activity propagated through the 

visual system integrating basic visual processing with top-down template models [10].  

These recent investigations quantify the difference between target and non-target 

ERPs to reveal distinctive ERP signatures occurring as early as 150-200 ms post-

stimulus and maintained for up to 800-1000msec. post-stimulus.  The differences 

have been identified following the presentation of objects that vary only in their target 

status.  These target-related neural signatures provide an index of the time when  

object recognition is sufficiently complete for the brain to initially discriminate  

“targetness”.  These early target-related differences may reflect facilitated sensory 

processing (i.e., enhanced neural responses associated with matching to a top-down 

target template) or to decision-related post-sensory processing and recognition. 

2   Method 

An extensive literature review was conducted to assist in determining the appropriate 

classification of VE fidelity components, the trade-offs between VE fidelity compo-

nents and overall VE fidelity, ways in which fidelity components can be objectively 

measured, and which components are most likely to have a significant impact on an 

observation task.  This review included an investigation of human information  

processing (HIP) and visual perceptual skills; as well as prior research relating per-

formance differences to various levels of VE fidelity, physiological assessment during 

VE-based tasks, and the effects of photorealism on task performance.   

A study was then designed to determine whether physiological measures could be 

used to detect simulation fidelity. The experimental design and VE task environment 

were developed based on the literature review and resulting targeted objectives. A 

static, VE-based visual search task consisting of militarily-relevant vehicles in low 

and high fidelity conditions was developed using computer-aided drafting (CAD) 

software.   

The stimuli consisted of a series of images containing 4 objects, one in each corner 

of the screen.  At least 3 of the objects were distractors; the fourth was either a dis-

tractor or the target object.  The target object was identified prior to the trials and re-

mained consistent throughout the trials. In the low fidelity (LoFi) condition, minimal 

polygon count was used, with each object ranging from 9-14 traingles depending on 

its inherent complexity, and no contrast existed within each object. A sample LoFi  
 



 Perceptually-Informed Virtual Environment (PerceiVE) Design Tool 653 

        

  Fig. 1. Sample low fidelity (LoFi) stimulus           Fig. 2. Sample high fidelity (HiFi) stimulus 

 
stimulus is shown in Figure 1. In the high fidelity condition (HiFi) the polygon count 

of each object was increased by 30x (+/-3%) and contrast was added, emphasizing 

depth and contours within each object.  In both conditions the object color and back-

ground color remained constant (gray and white, respectively). A sample HiFi stimu-

lus is shown in Figure 2. 

At the start of the experiment, subjects were informed that they would be shown a 

series of graphics of varying detail containing a cross in the center of the screen and 

four objects selected from the following: battle tank, commercial truck, pick-up truck, 

humvee, and van.  An instruction screen (shown in Figure 3) was then displayed, pro-

viding the subjects with a likeness of target objects for the low and high fidelity con-

ditions, as well as instructions to keep their eyes focused on the cross throughout the 

search task. 

 

Fig. 3. Task Instruction Screen 

Low and high fidelity images were then displayed in random order on a 19-inch 

monitor. Subjects were positioned 30 inches from the display. Approximately 50% of 

the presentations contained a target object. 

A total of 12 participants each performed two 10-minute consecutive trials consist-

ing of 200 stimuli presentations per trial. Each image was displayed for 2 seconds, 

with a 1 second inter-stimulus interval (ISI).  Trials in which the participant did not 
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provide a response within the 2-second display period were considered missed trials; 

these trials were reported separately from incorrect and correct response trials.   

Physiological measures collected during the trials included electroencephalogram 

(EEG), heart rate, galvanic skin response, and eye tracking. The B-Alert® wireless 

Sensor Headset from Advanced Brian Monitoring (ABM) was used to acquire EEG 

data from 9 sites (F3, F4, C3, C4, P3, P4, Fz, Cz, and POz), referenced to linked-

mastoids. The Wearable Arousal Meter (WAM) collected heart rate data, which was 

used to calculate arousal.  Galvanic Skin Response (GSR) was assessed using the 

Thought Technologies Procomp System; and Eye tracking was measured via an Ar-

rington system. A DLL was implemented to allow the EEG signal to be synchronized 

with the other physiological measures and the task stimuli, which were presented 

within a custom program using E-prime experiment management software.  In addi-

tion to the task performance and physiological data, a post-task questionnaire was 

given to the participants.  

The independent variable for this task was the fidelity condition (low or high). The 

dependent variables included the physiological response data, as well as the task per-

formance data (i.e., reaction time and accuracy). 

3   Results 

3.1   Physiological Results  

Eye Tracking.  For this preliminary study, the eye-tracking data was used for the pur-

pose of identifying if and when subjects looked away from the cross in the center of 

the screen during the task.  Of the 12 subjects, 6 consistently looked around the screen 

at the stimulus objects, while the remaining 6 kept their eyes fixated on the center of 

the screen. 

EEG.  Initial data analysis was conducted for the 6 subjects that completed the task as 

instructed, without moving their eyes from the cross in the center of the screen, and 

included only the midline electrode sites (Fz, Cz and POz) as a preliminary assess-

ment.  Absolute/relative power spectral density (PSD) variables were computed for 

each 1-second epoch.  Metrics for “engagement” and “workload” were calculated 

using quadratic and linear discriminant function analyses of model-selected PSD  

variables (1-Hz bins,1-40Hz).  Event Related Potentials (ERPs) were derived based 

on time-locking to the presentation of the stimuli (1-second post-stimulus) or to the  

1-second prior to the response. acquired from 9 scalp sites at 256 samples/sec. 

ERP waveforms were combined into grand averages.  All ERP waveforms were 

computed using only trials on which the subject correctly identified the test stimulus 

as either a target or a nontarget, and all were time-locked to the presentation of the 

test stimulus. Before averaging, all data were artifact rejected on a trial-by-trial basis 

for eyeblinks, excursions and excessive muscle activity using automated in-house 

software [11].  Trials with predominant alpha activity (present in two of the six  

participants) were not eliminated to allow for sufficient numbers of trials in each  
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Fig. 4. Averaged ERP data for midline electrodes 

average. No additional smoothing or filtering was applied on this preliminary investi-

gational analysis.  Figure 4 presents the averaged ERP waveforms for the Fz, Cz, and 

POz electrodes. 

ERP templates for high fidelity/low fidelity (HiFi/LoFi) and targets/non-targets 

(T/NT) were consistently identified across the six participants.  Distinctions between 

the HiFi/LoFi T/NT ERP templates were evident as early as 200ms post-stimulus on-

set and were sustained for windows in excess of 900ms post-stimulus. Maximal T/NT 

differences varied from 400-900msec   No attempt was made in this pilot study to sort 

ERPs based on reaction times, which varied significantly within- and between partici-

pants (mean reaction times ranging from 550 – 1450 ms.). 

Preliminary data analysis in the present study suggests that an early (onset of  

200-250msec. post-stimulus) frontal-central positivity is present for all correctly  

identified targets and non-targets with an increase in amplitude for degraded (or low 

fidelity) stimuli across all 6 subjects.  A much later parietal positivity (peaking be-

tween 500-700ms post-stimulus) which is likely to be a true P300 or P3b type com-

ponent is evident for correct targets and is of higher amplitude for high fidelity stimuli 

when compared to the low fidelity.   This late P300 component confirms previous 

reports (Kok, 1985) of degraded stimuli eliciting reduced amplitude P300. 

 

Other Results. Arousal levels were averaged and a significant fidelity effect was 

found for 1 of the 6 subjects who performed the task without moving their eyes.  GSR 

cannot be mapped to individual trials due to latency. 

3.2   Performance Results 

No significant effect was found as measured by reaction time and accuracy of re-

sponses for fidelity or fixation conditions; however, the task was quite simple, and 

thus a ceiling effect was evident. 

4   Discussion 

While no significant performance effects were found across conditions, consistent  

and detectable differences in ERP data were observed for subjects performing the 

visual search task in low and high fidelity conditions.  Accurate identification of  

HiFi vs. LoFi targets was shown to elicit distinctive ERP components. Two compo-

nents distinguish LoFi from HiFi: early frontal-central (250-500ms) and late parietal  
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(500-800ms).  The early frontal-central positivity clearly distinguished the LoFi from 

HiFi ERPs for all participants.  Though preliminary, these data suggest evidence of an 

early feature extraction process.  Based on studies of ERPs during visual search, 

where individuals scan through a set of visual stimuli for a particular target, Luck and 

Hillyard, (1994) proposed that a spatial filtering process conducts a preliminary 

analysis of the stimulus array containing relevant features. They identified a compo-

nent of the visual ERP in the range of 200-250msec. post-stimulus elicited by visual 

search arrays that varied in accordance with the filtering of distractors.  When a target 

was distinguished by a salient feature, spatial filtering began approximately 175 ms 

after search onset.  Second, the filtering process is dependent on the outcome of a 

preliminary stimulus analysis capable of rejecting non-targets on the basis of simple 

feature information.  Alternatively the early positivity may be a reflection of working 

memory processes in prefrontal cortex. 

The arousal data results demonstrated that some measures are more sensitive to fi-

delity variations than others. Some sensors can be considered as global measures, 

such as the skin conductance and arousal. The EEG is more specific and localized. In 

future studies, the eyetracking data will also be used to compare pupilometry during 

low and high fidelity conditions. 

These results suggest that psychophysiological measures, specifically ERP, may 

provide a more sensitive and objective measure than traditional metrics for determin-

ing VE fidelity requirements. This research is currently being leveraged within a per-

ceptual skills VE task in which performance is impacted significantly by fidelity deg-

radation.  Future research will compare physiological data collected in equivalent real 

world (RW) and VE tasks to further determine the impact of various fidelity compo-

nents on task performance and training transfer.   
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Abstract. We have explored using neurophysiologic patterns as an approach for 

developing a deeper understanding of how teams collaborate when solving 

time-critical, complex real-world problems. Fifteen students solved substance 

abuse management simulations individually, and then in teams of three while 

measures of mental workload (WL) and engagement (E) were generated by 

electroencephalography (EEG). High and low workload and engagement levels 

were identified at each epoch for each team member and vectors of these meas-

ures were clustered by self organizing artificial neural networks. The resulting 

patterns, termed neurophysiologic synchronies, differed for the five teams re-

flecting the teams’ efficiency. When the neural synchronies were compared 

across the collaboration, segments were identified where different synchronies 

were preferentially expressed. This approach may provide an approach for 

monitoring the quality of team work during complex, real-world and possible 

one of a kind problem solving, and for adaptively modifying the teamwork flow 

when optimal synchronies are not frequent. 

Keywords: Collaboration, EEG, Neurophysiologic synchrony. 

1   Introduction 

A current challenge in studying collaborative teamwork is the measurement of team 

cognition and the separation of it from aspects of individual cognition [16]. Research 

on teamwork and cooperative behaviors often adopts an input-process-output frame-

work (IPO). In this model the interdependent acts of individuals convert inputs such 

as the member and task characteristics to outcomes through behavioral activities di-

rected toward organizing teamwork to achieve collective goals. These activities are 

termed team processes and include goal specification, strategy formulation, systems 

and team monitoring, etc [15]. 

Much of this teamwork research has made use of externalized events focusing on 

who is a member of the team, how they work together and what they do to perform 

their work. The studies often rely on post-hoc elicitation of the subjective relation-

ships among pertinent concepts. There have been fewer studies looking at the when of 

teamwork interactions although the dynamics of team function are known to be com-

plex [4] with temporal models of teamwork suggesting that some processes transpire 
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more frequently in action phases and others in transition periods [1-5]. Closely related 

to team processes are dynamic states that characterize properties of the team that vary 

as a function of team context, inputs, processes and outcome. Emergent states de-

scribe cognitive, motivational and affective states of teams and can serve both as 

outputs and inputs in dynamic IPO models. When viewed this way, the focus shifts to 

when and how fast activities and change occur, and the variables move from amounts, 

dependencies and levels to pace, cycles and synchrony [6]. 

One framework for studying the when of team cognition is macrocognition [7] 

which is defined as the externalized and internalized high-level mental processes 

employed by teams to create new knowledge during complex collaborative problem 

solving. External processes (processes occurring outside the head) are those associ-

ated with actions that are observable and measurable in a consistent, reliable, repeat-

able manner. Internalized processes are those that cannot be expressed externally  

and are generally approached indirectly through qualitative metrics like think aloud 

protocols or surrogate quantitative metrics, (pupil size, EEG metrics, galvanic skin 

responses). To our knowledge, there have been no reports linking neurophysiologic 

correlates of internalized processes across members of a team as they engage in 

teamwork tasks. This however would seem to be an important contribution to the goal 

of better understanding the construct of team cognition. 

Our hypotheses is that as members of a team perform a collaborative task each will 

exhibit varying degrees of cognitive components such as attention, workload, en-

gagement, etc. and the levels of these components at any one time will depend (at 

least) on 1) what that person was doing at a particular time, 2) the progress the team 

has made toward the task goal, and 3) the composition and experience of the team. 

Given the temporal model of team processes, some of the balances of the components 

across team members may also repeat as different phases of the task, like data acquisi-

tion, or communication are repeatedly executed. In this study we have directly tested 

these hypotheses using EEG measures of mental workload and engagement. 

2   Tasks and Methods 

2.1   IMMEX Substance Abuse Simulations (SOS) 

The collaboration task is an IMMEX™ problem set called SOS which are a series of 

substance abuse simulations cast in a reality show format [8-10]. The case begins with 

a short introduction to a person who may / may not be abusing drugs. The challenge 

for the student is to gather sufficient information about this person to answer the ques-

tion “Should this person seek help, and if so, from whom?” The primary interface is a 

timeline that covers up to twelve specific events (such as health, job, social school, 

etc. related activities) and drilling down into this interface provides information in 

eleven areas with contents covering subject history, behavior, medical data and con-

jecture, and help. These 600+ content items are divided into social and scientific areas 

allowing the student to gather information from many perspectives. Prior modeling 

studies have shown that ~20% of the students use science-only approaches, ~40% will 

use social approaches, and ~40% will use a combination of the two. This task pro-

vides a convenient mechanism for the division of teamwork (i.e. social vs. scientific 
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evidence), as well as a potential source of conflict within the group as to what evi-

dence is important relative to the decision. 

Experimentally, students log on to IMMEX™ and individually perform a SOS 

simulation so that each can develop a mental model of the problem space, and so that 

individual levels of EEG-related workload and engagement can be determined. Two 

students then log on to a second SOS problem set where Member A selects data from 

the timeline and reports information from General Health, Anecdotes and Cell & e-

mails (i.e. the social perspective), Member C selects data from all the other science 

categories and reports them to the group (the science perspective) and the leader 

(Member B) integrates the information and decides when to make a decision, and 

what the decision will be. The time allowed is 30 minutes (a time constraint). 

2.2   EEG Metrics 

The EEG data acquired from the wireless headset developed by Advanced Brain 

Monitoring, Inc. uses an integrated hardware and software solution for acquisition and 

real-time analysis of the EEG. It has demonstrated feasibility for acquiring high qual-

ity EEG in real-world environments including workplace, classroom and military 

operational settings. The system contains an easily-applied wireless EEG system that 

includes intelligent software designed to identify and eliminate multiple sources of 

biological and environmental contamination and allow real-time classification of 

cognitive state changes even in challenging environments. The 9-channel wireless 

headset includes sensor site locations: F3, F4, C3, C4, P3, P4, Fz, Cz, POz in a mo-

nopolar configuration referenced to linked mastoids. ABM B-Alert® software ac-

quires the data and quantifies alertness, engagement and mental workload in real-time 

using linear and quadratic discriminant function analyses (DFA) with model-selected 

PSD variables in each of the 1-hz bins from 1-40hz, ratios of power bins, event-

related power (PERP) and/or wavelet transform calculations. 

To monitor “mental workload” (WL) and “engagement” (E) using the B-Alert 

model EEG metrics, values ranging from 0.1-1.0, are calculated for each 1-second 

epoch of EEG. Simple baseline tasks are used to fit the EEG classification algorithms 

to the individual so that the cognitive state models can then be applied to increasingly 

complex task environments, providing a highly sensitive and specific technique for 

identifying an individual’s neural signatures of cognition in both real-time and  

offline analysis. These methods have proven valid in EEG quantification of drowsi-

ness-alertness during driving simulation, simple and complex cognitive tasks and in 

military, industrial and educational simulation environments, quantifying mental 

workload in military simulation environments, distinguishing spatial and verbal proc-

essing in simple and complex tasks, characterizing alertness and memory deficits in 

patients with obstructive sleep apnea, and identifying individual differences in suscep-

tibility to the effects of sleep deprivation [11-13]. 

2.3   Experimental Protocol 

The data flow (Figure 1) is organized into Collection, Processing, Modeling and 

Analysis modules. The teams perform the SOS collaborative tasks while EEG is being 

collected at 256 Hz from 6-electrode portable headsets. The data Collection initiates  
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Fig. 1. Outline of Experimental Protocol 

with the start of the SOS simulations on the time synchronized computers of the two 

team members. The computers also run Morae (Techsmith, Inc.) which records a 

video and audio trace of each participant and generates logs with timestamps of 

mouse clicks screen refreshes, etc. The Processing module aligns the EEG logs con-

taining the second-by-second WL and E values from each of the three team members 

and interleaves them with mouse clicks logs and video/audio logs. 

The values of WL and E were determined for the individual performances of  

each student, as well as for each student during the collaboration event. As shown in 

Figure 2, IMMEX tasks are complex eliciting more WL from the students than on a  

3-choice vigilance task (3-CVT) baseline task. The subjects also expend more WL in 

a teamwork situation than they did when performing the task individually, which may 

relate to the process cost of collaboration discussed by others [16]. 

 

Fig. 2. EEG-WL Levels During Baseline, Individual and Group Conditions. The levels of WL 

were calculated for 15 individuals on a 3-CVT task, during an individual performance of an 

SOS problem, and during a 3-person team performance. 

The values of WL and E were then normalized for each team member by statisti-

cally partitioning them into the upper quartile, the lower quartile, and the half in the 

middle representing high, low and average levels of WL and E. These partitions 

were assigned the values 3, -1, and 2 and were combined for each of the members of 

the team to create training vectors (Figure 1, Modeling) for training self organizing 

artificial neural networks (ANN) as previously described [8,9]. This process results 

in patterns of WL and E measures across the members of the team on a second  

by second time scale. We define these epochs of alignment as neurophysiologic 

synchronies. 
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3   Experimental Results 

3.1   Team Differences in Neurophysiologic Patterns of Collaboration 

We first examined the performances of five collaboration groups to identify common 

and dissimilar neural synchronies (i.e. combinations of WL and E across team mem-

bers) across teams. An example of this analysis is shown in Figure 3 where an ANN 

was trained with the neural synchronies from 5 different groups. The output from 

such an analysis is a series of ANN nodes each representing a synchrony with a dif-

ferent profile of neurophysiologic indicators. After training, twenty three of the 

twenty five nodes contained between 37 and 562 epochs with different patterns of 

neurophysiologic synchrony of WL and E. The most common synchrony was repre-

sented by nodes 14 and 8 which consisted of epochs where all members were engaged 

and working at moderate to high levels.  This may represent the nature of the IMMEX 

task itself which requires more workload than simpler image identification tasks [18]. 

Other frequent synchronies were nodes 23, 4, and 2 where one of the members was 

either not working hard or not highly engaged. 

 

Fig. 3. Neural Synchrony Patterns across Teams. A self organizing ANN was trained with the 

collaboration performances of 5 teams and retested with the individual performances. The 

numbers in the hexagons reflect the number of times the pattern was repeated during the task. 

When the different teams were tested on this combined ANN they showed signifi-

cant differences in the proportions of neural synchronies being expressed. Group 3 for 

instance showed a pattern of synchronies restricted to only half of the neural network 

nodes. Many of the epochs reflected times where the whole team was engaged or 

working, or where only Team Member A was minimally engaged (i.e. node 23). 

Group 4 in contrast showed a greater diversity of neurophysiologic synchronies. 

There were few epochs clustered at node 23 and instead showed more epochs at nodes 

1 and 2 where the common feature was low engagement of the Team Leader,  

and nodes 10, 15 and 20 where Team Member B was not engaged. Group 2 was  

more diverse still showing similarities with both Group 3 (i.e. node 23) and Group 4 

(i.e. nodes 4, 10 and 13). 
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3.2   Do Common Neurophysiologic Patterns Have Collaborative Significance? 

During collaboration effective teams execute processes that often occur in a cyclical 

fashion depending on task demands. In a second set of studies we tried to determine if 

the different patterns of WL and E expression across the team had significance vis a 

vis the collaboration event. Most team tasks, including the IMMEX problem solving 

tasks, can be separated into segments consisting of mental model formation, mental 

model sharing and integration, and mental model consensus and revision. These can 

be further divided into behavioral episodes relating to team processes. Figure 4 shows 

the task breakdown for one collaborative team (Group 2) (1178 epochs or seconds 

duration). The tasks included the reading of the task and initial discussions, explora-

tions of the problem space, deriving a consensus regarding the decision, etc. We have 

highlighted these tasks by the different stages of mental model formation, sharing and 

integration, and convergence and revision.  The epochs reflecting different team syn-

chronies were temporally aligned with the collaborative events. The most common 

synchrony (113 epochs) showed limited mouse click activity, all three members were 

experiencing elevated WL and the Team Leader and Member C were highly engaged. 

 

 

 

Fig. 4. (Top) Team Behaviors during a Sample SOS Collaboration Session. The numbers in 

parentheses indicate the number of epochs for each task. (Bottom) Selective expression of 

neurophysiologic synchrony patterns during different segments of the collaboration task.   



664 R.H. Stevens et al. 

 

Fig. 5. Temporal Analysis of Nodal Transitions. A nearest neighbor correlation analysis was 

performed for the beginning, middle and end of the collaborations for three groups. The dia-

grams show the transitions from one nodal pattern (X-axis) to another (Y-axis). 

This profile was present throughout the collaborative task and may reflect a common 

feature of this team’s interaction. In this regard, examination of the video log indi-

cates that interactions between the leader and team member A were less frequent than 

interactions with team member C. Neurophysiologic synchronies identified by other 

neural network nodes were more selectively expressed during the task with some 

being preferentially expressed during the mental model forming stage whereas others 

were more prevalent during the mental model convergence and revision stage (chi 

square = 1291, p=< 0.001). 

A second approach examined the autocorrelations of the synchronies with a time 

lag of 1, i.e. a sequential nearest neighbor analysis asking ‘If a synchrony pattern is 

being expressed, what pattern is likely to follow next?’ The diagrams in Figure 5 are 

called From >To diagrams and indicate the transition from a node on the X axis to a 

node on the Y axis. Similarly, to determine how a node was arrived at, a Y value can 

be traced across the X axis.  Figure 5 shows such an analysis for Groups 2, 3 and 4. 

To relate the correlations to different stages of the collaborative task, the analyses 

were repeated for the early, middle and late epochs of the teamwork as indicated by 

the epoch numbers above each diagram. Group 2 showed the lowest From-> To corre-

lations (-.14, .19 and -.25 for the early, middle and late epochs), had the lowest pro-

portion (12%) of synchronies where all members were simultaneously engaged and 

working (i.e. nodes 8 and 14), and also took the longest to complete the task. The 

most frequent patterns were where the E of Team Member A was low while the other 

members were fully engaged and working. Group 3 showed the most restricted pat-

tern of synchrony, had the highest From->To correlations and the highest proportion 

of synchronies (19%) where all members were fully engaged and working. The transi-

tion from Node 14 to 14 dominated early during the collaboration, and transited to a 

Node 23->23 transition indicating a state where the engagement of Team Member A 

was reduced while the others were engaged and working. The autocorrelations were 

.77, .58 and .75 respectively for the early, middle and late epochs of the collaboration. 
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In this group Team Member A also had the lowest overall WL and E levels and or-

dered fewer items during the simulation than did the second team member (186 vs. 

234 tests ordered). Of the five teams tested, Group 3 was the most effective as judged 

subjectively from the video logs, as well as objectively with the most rapid solution 

time (11 minutes), and the final answer. 

Group 4 displayed an intermediate diversity of neurophysiologic synchronies com-

pared with the other groups and this was also reflected in the From->To correlations. 

The dominant nodal patterns were nodes 1, 2 and 8, where node 8 is similar to node 

14 with all members are engaged and working, and this constituted 15% of the total 

number of epochs. During the initial part of the teamwork the time-lagged correlation 

was .22 indicating a less stable pattern than for Group 3. The major nodal transitions 

were from nodes 1 to 1 and nodes 2 to 2, and the common feature of nodes 1 and 2 is 

the decreased WL levels in the Team Leader. During the middle portion of the team-

work the nodal correlations increased to .59 with the dominant repeating nodes being 

8 and 4. During task closure the timed lagged correlation dropped to .44 the repeating 

node 8 transition decreased and the transition from node 2 to node 1 returned. In 

Group 4, the Team Leader had the lowest overall WL of any of the team members and 

the second highest E levels. 

4   Discussion 

This study describes our preliminary efforts at determining if neurophysiologic  

synchronies can be observed during problem solving teamwork. We define neuro-

physiologic synchronies as the coordinated expression of different levels of  

neurophysiologic indicators by individuals of a team as they engage in collaborative 

activities. In this study we have used the neurophysiologic correlates of workload and 

engagement as defined by the B-Alert EEG system, although there is no a priori rea-

son that other measures could not be used, or included. The studies to date, while 

involving only five teams, suggest that patterns of neurophysiologic synchrony can be 

observed in different teams which may have collaborative significance. An important 

next step is to link them to other collaboration behaviors, and an important challenge 

will be determining the granularity to conduct these studies. The enrichment of some 

patterns at the early and late stages of the teamwork suggests a temporally related 

contribution which may relate to different aspects of the collaboration task. A more 

granular approach would be to link the synchronies to common behaviors in  

IMMEX
™

 such as the ordering of tests by mouse clicking on menu items or other 

behaviors such as questioning, responding, etc. Such epoch “tagging” may facilitate 

categorizing the macrocognitive constructs that are occurring simultaneously such as 

synthesis, questioning, team consensus, revision / analysis, etc. Neurophysiologic 

synchronies may also be useful for adaptively establishing or modifying the balance 

of team members and their degree of participation. Situations where a member is 

consistently lower in WL and/or E while the other members are fully engaged and 

working hard may indicate a less effective team member. This may be particularly 

important as the efficiency of a team is in completing a task (as measured by time  

to completion) was proportional to the percentage of neural synchronies where all  
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members are both engaged and working. (i.e. nodes 8 and 14). Another possible indi-

cator of effective / ineffective teams may be the persistence of neural synchronization 

indicated by the degree of correlations between synchronies with a time lag of 1 ep-

och. These nearest neighbor correlations may indicate that a team state is more stable 

over a longer period of time, while teams with low or negative From -> To correla-

tions may represent teams where the members are searching for an effective rhythm. 

The nodal neurophysiologic From -> To correlations may also make this approach 

amenable to the development of dynamic and predictive models either through Hid-

den Markov Modeling [9] or through a more dynamical systems approach such as 

phase space reconstruction [14]. 

Finally, the studies may also provide a tool for approaching the process cost  

associated with teamwork. Team workload is a core component of most theories of 

collaborative and cooperative learning, and is described as the resources available by 

a team for a task relative to the demands placed on it. As with individuals, team  

performance is presumed to deteriorate when the task demands exceed available re-

sources. Experimental evidence suggests that this may be so, with the higher the 

workload of the least-loaded team member, the lower the team performance [17]. 

Many factors can contribute to the workload of a member of a team and the overall 

team functioning. At one extreme, the individual may have difficulty with his own 

task which would lead to individual task overload. Depending on the degree of critical 

nature of that task for the overall team goal, this may or may not have an effect on 

team outcome. At the other pole, there may be disruptions in the degree of informa-

tion sharing leading to negative team performance. 

Workload in teams, however, is complex and at its simplest consists of the work-

load of a team member on his/her individual task within the team (Task Awareness) 

as well as more of a team process workload (Teamwork Awareness) which relates to 

the resources required to be an active member of a team. While the ideas of workload 

and work overload are practically appealing, it has been difficult to derive quantitative 

measures of them. The results in Figure 2, suggest that the EEG-WL metric may pro-

vide a useful measure for this added cost. 
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Abstract. Responsive Adaptive Display Anticipates Requests (RADAR) is a 

domain general system that learns to highlight an individual’s preferred infor-

mation displays, given the current context. Previous studies with human sub-

jects in a video game environment demonstrate that RADAR is an effective 

cognitive aid.  RADAR increases situation awareness and reduces cognitive 

load by anticipating and providing task relevant information. Additionally, be-

cause RADAR’s fit to a user’s behavior encapsulates the user’s situation-driven 

information preferences, RADAR also excels as a descriptive and predictive as-

sessment tool.  Here, we focus RADAR as a training aid.  We test the hypothe-

sis that novices can benefit from training under a RADAR model derived from 

an expert’s behavioral patterns.  The results indicate that novices exposed to an 

expert’s information preferences through RADAR rapidly learn to conform to 

the expert’s preferences.  

1   Introduction 

When boarding an airplane, a furtive look into the cockpit reveals a vast array of di-

als, displays, and controls. The expert pilot can make sense of this array of options 

and can appreciate when each instrument is relevant to operating the aircraft. For  

example, expert pilots know which gauges are relevant to different phases of flight.  

In this article, we discuss a context-aware approach to information display named  

Responsive Adaptive Display Anticipates Requests (RADAR).  RADAR learns to 

highlight the situation-relevant information by observing the user.   

We discuss how RADAR can be used to analyze and describe individual differ-

ences in information needs, as well as present evidence that RADAR can be used to 

allow novices to see the world through the eyes of an expert.  When training under an 

expert’s RADAR model, we find that novices’ information use patterns converge to 

those of the expert from whom the model was derived. 

Related work has attempted to predict user information needs by correctly attribut-

ing intentions, beliefs, and goals to the user.  Plan recognition models tend to sub-

scribe to the Belief-Desires-Intention framework [1]. This line of work relies on 

knowledge-based approaches for user modeling and encoding insights from domain-

specific experts [2]. These approaches can involve identifying a user's subgoals 

through task-analysis [3]. Once a user's beliefs, intentions, and goals are understood, a 

display can be adapted appropriately [2]. 
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Alternatively, instead of focusing on identifying the internal state of the user, some 

approaches rely on input from domain experts. For example, human experts can label 

episodes that can serve as training instances for machine learning models that priori-

tize display elements [4].  Alternatively, input from human experts can be used to 

build expert systems or Bayesian models to prioritize displays [5]. This approach re-

lies on extensive input from human experts, and the ability of those experts to intro-

spect on the reasons for their performance. 

Our approach diverges from the aforementioned work.  Rather than prescribe 

which information source a user should prioritize, RADAR highlights the information 

a user would select if the user searched through all possible options. This approach 

may be preferable in domains where it is unclear what is normative.  Unlike work in 

plan recognition, we sidestep the problem of ascribing and ascertaining the user's in-

ternal mental state.  Instead, RADAR learns to directly predict a user's desired display 

from contextual (i.e., situational) features (see Figure 1). 

 

Fig. 1. RADAR takes as input the current context (e.g. Recent game history) and outputs its 

preferred display to the HUD.  The user (e.g., the game player) can override RADAR’s choice. 

Such corrections serve as learning signals to RADAR and increase the likelihood that RADAR 

will select the user’s preferred display in similar situations in the future. Over time, RADAR 

approximates the information preferences of a specific user, allowing the user to offload the 

task of selecting the relevant information source (i.e. display) from numerous options.  

Furthermore, RADAR emphasizes the benefits of continuous learning by the dis-

play, as opposed to preprogrammed interfaces [6]. Adopting a learning approach to an 

adaptive display has a number of positive consequences, including the ability to take 

into account individual differences across users [7]. Another positive consequence is 

that minimal input from subject matter experts is required to build a system.  Like 

other context-aware applications that adopt a keyhole approach [8,9], our approach in-

fers a user's preferences without interfering with or directly querying the user [10]. In-

terfaces that highlight recently selected menu items follow a similar logic [11], though 

our approach is more open ended in terms of possible predictors and learnable rela-

tionships from predictors to display preferences. 

Whereas previous work with RADAR [12], which we review below, has evaluated 

RADAR as a cognitive aid and assessment tool, the current experiment evaluates 

RADAR’s promise as a training companion.  The current experiment asks whether 

RADAR can speed the novice to expert transition by exposing novices to the display 

preferences of an expert (i.e., train under an expert’s RADAR model).  

Our approach has some potential benefits. In some domains, knowledge can be di-

rectly elicited from experts and simple instruction can boost novice performance to 
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expert levels [13]. However, in many domains, an expert’s knowledge is not accessi-

ble by self-report [14,15]. In practice, training methods for novices that rely on both 

direct instruction and pattern recognition methods work best [16]. Indeed, having nov-

ices view expert solutions is more effective than even providing corrective feedback 

[17,18].  These findings suggest that there is more to expertise than what an expert 

can report verbally from introspection. This conclusion is not surprising given that 

human learning is subserved by multiple learning systems, only some of which are 

accessible to introspection and verbal report [19]. 

Our training goal is to make novices conform to the information preferences of ex-

perts in order to improve task performance.  In service of this goal, standard verbal in-

structions, coupled with RADAR, provide users with training opportunities that can 

engage both verbal and non-verbal learning systems. A RADAR system trained based 

on an expert’s performance data is a potentially powerful training tool for novices. 

Such a tool might allow a novice to become sensitive to the information preferences 

of an expert while performing the relevant task. Importantly, such a training system 

does not require eliciting explicit knowledge from an expert and can impart expert 

knowledge that is not readily verbalized. We present an experiment that investigates 

how novices trained with an expert RADAR system perform compared to those 

trained under a control model. 

1.1   RADAR’s Operation 

RADAR is designed to operate in task environments in which the user must select 

which display among numerous displays to monitor.  For example, we evaluate 

RADAR in an arcade game environment in which players select which of eight possi-

ble displays to show on a Head-Up Display (HUD). RADAR takes as input the cur-

rent context (e.g., recent game history) encoded as a feature vector and outputs to the 

HUD the display it predicts the user wishes to view (See Figure 1).  The user is free to 

override RADAR's choice.  RADAR learns from the user's acceptance or rejection of 

its display choices and over time converges to selecting the displays the user desires.  

Alternatively, RADAR can observe and learn to mimic a user's display preferences 

offline. 

RADAR employs a two-stage stochastic decision process at every time step.  In the 

first stage, RADAR estimates the probability that a user will update the HUD given 

the current context.  When the sampled probability from the first stage results in a 

display update, RADAR proceeds to the second stage (otherwise the current display 

remains unchanged). In the second stage, RADAR estimates the probability distribu-

tion for the next display choice given the current context, and samples this probability 

distribution to select the next display. 

The motivation for the two-stage approach is both computational and psychologi-

cal.  Separating display prediction into two stages improves RADAR's ability to  

predict display transitions.  The same display currently desired is highly likely to be 

desired in 250 ms. This constancy would dominate learning if both stages were com-

bined.  The second stage's focus on display transitions allows for improved estimation 

of these relatively rare, but critical, events. 

Psychologically, the first stage corresponds to identifying key events in a continu-

ous (unsegmented) environment, whereas the second stage corresponds to predicting 
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event transitions. To make an analogy to speech perception, people segment the  

continuous speech stream into words (akin to RADAR's first stage) in the absence of 

reliable acoustical gaps between words [20].  Akin to RADAR's second stage, people 

anticipate which word (i.e., event) is likely to follow given the preceding words [21]. 

One view is that event segmentation serves an adaptive function by integrating in-

formation over the recent past to improve predictions about the near future (see [22], 

for a review).  In support of this view, individuals who are better able to segment on-

going activity into events display enhanced memory [23].  People's judgments of 

event boundaries are reliable [24] and tend to show high agreement with others [25].  

For example, two people watching a person make a peanut butter and jelly sandwich 

will tend to agree on the steps involved.  These two people will also both segment off 

surprising or unexpected events, like the sandwich maker dropping the sandwich on 

the floor. 

The probability distributions associated with both stages (event segmentation and 

event prediction) are estimated by simple buffer networks [26]. Buffer networks  

represent time spatially as a series of slots, each containing the context (e.g., game 

situation) at a recent time slice, encoded as a feature vector.  The buffer allows both 

ongoing events and events from the recent past to influence display prediction.  De-

spite their simplicity, buffer networks have been shown to account for a surprising 

number of findings in human sequential learning [27].  At each time step, weights 

from the buffer are increased from activated features to the display option shown in 

the HUD, whereas weights to the other display options are decreased.  Over time, this 

simple error correction learning process approximates a user's information prefer-

ences.  RADAR's weights can be used to assess individual differences and user per-

formance. Details of RADAR’s implementation are discussed elsewhere [12]. 

1.2   Previous Work 

Previous experiments with RADAR have shown that it is an effective cognitive aid 

[12].  RADAR model trained from the aggregated data of several domain experts 

have been shown to be better at highlighting important information, than control 

models which only display information using the same base rates as the experts.  Fur-

thermore, when users are assisted in making display choices by an individually tai-

lored RADAR model, their performance is better than when they are solely responsi-

ble for controlling the display. 

RADAR has also demonstrated its usefulness as an assessment tool. By comparing 

model fits between expert and novice players, RADAR revels that there are  

significant differences in the pattern of information usage between the two groups.  

Furthermore, a novice player’s success in the game is predicted by how well an ex-

pert’s RADAR model fits their display choices.  

As previously discussed, RADAR’s first stage is hypothesized to be akin to scene 

segmentation. The first stage of the model learns to predict when a user  chooses to 

update the display.  The first stage is independent of the second stage which chooses 

the successor display. As discussed above, cognitive load and change in the environ-

ment are greatest at event boundaries (the very times one would want RADAR to  

update the display).  Results from subjects playing our video game without RADAR 

support the notion that RADAR’s first stage is akin to event segmentation.  For an  
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example expert subject, Figure 2 shows the mean number of feature changes in the 

environment over a ten second window before and after display channel changes.  

Figure 2 suggest that change is greatest at display updates, as they are at event 

boundaries.  This consequence of people’s interactions with the environment may ex-

plain why RADAR is effective as a cognitive aid.  Interestingly, there is a lag between 

the change in features and the actual time of the channel change.  We believe this lag 

arises because people are slow to respond to the changing event due to concurrent 

demands in the video game task. 

While experts show individual differences in which channels they choose to view 

at any given moment, they have a remarkable level of agreement on when they should 

change display channels.  This is reflected by assessing the fit of models created un-

der one individual to the actual data provided by another individual. We see that the 

first stage of a given expert fits all experts almost as well as it fits the individual that 

created the model.  In contrast, the second stage shows a marked decrease in fit to 

other experts compared to the individual's own data.  Individual differences arise in 

information preferences (stage 2), but not in event segmentation (stage 1). 

 

Fig. 2. Feature change (a proxy for change in the environment) is plotted in z-scores.Time on 

the horizontal axis (in seconds) is relative to display updates (negative is prior to update, posi-

tive is post update). The plot indicates that feature change is greatest prior to a display change. 

These results support the notion that display updates are akin to event boundaries. 

2   Training Novices with Expert Displays 

We explore the possibility that novices can learn to sample the environment like ex-

perts following training under an expert’s RADAR model. An expert’s RADAR 

model captures the expert’s situational information preferences.  Thus, a novice train-

ing under an expert’s model can potentially benefit from the expert’s perspective.  

Potential advantages of this approach include exposing novices to expert knowledge 

that is not readily verbalizable and providing expert insight in the context of perform-

ing the relevant task. To test this hypothesis, we had novices play in the tank envi-

ronment with display choices determined by either an expert or control RADAR 
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model.  Subjects alternated between having displays provided to them (either by an 

expert or control model) and choosing displays manually.  We compare manual in-

formation selections for these two groups of novice subjects. 

2.1   Methods 

RADAR Training Models  
Subjects trained under various RADAR models.  These models were built from fitting 

three subjects from a previous study.  In the previous study, subjects played for 11 

hours, controlling the display manually for the entire period.  We created an expert 

model for each of three subjects based on the last three hours of play. Rather than use 

all the features available in the game, we determined the features that subjects actu-

ally entertained.  This was done by evaluating subsets of all possible features using 

cross validation [28]. In cross validation, including features that are not psychologi-

cally real decreases performance on the data held out to test for generalization. These 

fits provided our three expert models.  We then created a set of control models.  The 

control models were specified to choose the channel that its corresponding expert 

model is least likely to choose.  The control models also change the channel when the 

expert model is least likely to change, but importantly maintains the same rate of 

changes over time. The first stage of the control models were also decoupled from the 

environment, so that channel changes would not be indicative of the underlying event 

structure.  

Design and Procedure  

Thirty students were recruited from the University of Texas at Austin and were paid 

and given class credit for participation. The subjects played in the tank environment 

for three 1.5 hour sessions over a one-week period.  Subjects were randomly assigned 

to either the expert or control condition.  Subjects in the expert condition were ran-

domly assigned to train under one of the three expert models, whereas subjects in the 

control condition were randomly assigned to one of the three control models. Partici-

pants in both conditions alternated between five-minute blocks of manually control-

ling the display and having their RADAR control the display.  Which RADAR model 

controlled the display is the only difference in procedure across subjects.  

2.2   Results 

Fit of Subjects’ Manual Play Data by their RADAR Model used in Training 
One question is whether subjects conform to the RADAR model that they trained un-

der.  Here, we assess the probability that a subject’s RADAR model correctly predicts 

the subject’s display choices under manual play. Expert condition subjects’ display 

choices were more accurately predicted (.25 vs. .13) by their RADAR model than 

were control subjects, F(1,18) = 36.10, p < .001.  There was also a main effect of ses-

sion (i.e., improvement over time), F(1,18)=4.61, p<.05.  Importantly, there was an 

interaction of these two factors, such that expert condition subjects came to conform 

more to their model over session, F(1,18) = 8.70, p < .01. The left panel of Figure 3 

shows that the interaction is driven by gains made by subjects in the expert condition. 
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Evaluating Novices’ Progression Toward Expert-Like Performance 

The previous analysis demonstrates that subjects come to conform to their display 

model, particularly subjects in the expert condition.  One key question is the degree to 

which people come to behave like experts.  To answer this question, we used all three 

expert models to predict each subject’s display choices and averaged the fit of the 

three models to get a measure of expert-like behavior. There is a main effect of con-

vergence over session, F(1,18) = 13.20, p < .01, although there is no main effect for 

training condition.  Importantly, there is an interaction such that subjects in the expert 

condition become more expert-like over sessions than do subjects in the control con-

dition, F(1,18) = 4.96, p < .05.  In fact, subjects in the control condition show no sig-

nificant difference in expert fit (.24 vs. .25) between the first and last session, t < 1, 

whereas subjects in the expert condition improve (.23 vs. .27) significantly, 

t(15)=3.20, p < .01.  These results suggest that subjects in the expert condition be-

come more expert-like in their information selections, whereas subjects in the control 

condition did not.  Mere experience on task does not appear to guarantee the emer-

gence of expert-like behavior in terms of display choice. 

 

Display Updating as a Function of Training-Mode 
The previous analysis focused on display choice, RADAR’s second stage. One  

question is whether differences between expert and novice condition subjects exist in 

display update (i.e., when to change the display), RADAR’s first stage. Analyses  

indicate a main effect for converging to the average expert fit over session, F(1,18) = 

13.01, p < .01, but no effects of training condition were observed. The change pat-

terns of subjects in both the expert and control conditions were fit equally well by the 

expert models (see the right panel of Figure 3). This result is highly suggestive that 

event segmentation, in contrast to display choice, is something that is learned by ex-

perience on task and is not facilitated by training under an expert model. The lack of 

an interaction between session and training condition also agrees with previous work 

that finds that different expert models’ fist stages have higher inter-agreement than do 

their the second stages. 

 

Fig. 3. The left panel shows that subjects’ RADAR models better predict their display choices 

in the expert condition and this advantage grows with training.  The right panel shows that ex-

pert and control condition subjects make display updates in roughly the same fashion. The av-

erage fit of the three expert models yields similar results for both conditions with regards to 

display update.  
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3   Discussion 

Advances in information technology make large quantities of information available to 

human decision makers. In this deluge of information, finding and selecting the rele-

vant piece of information imposes a burden on the user. This burden is particularly 

onerous for novices within complex, dynamic environments. RADAR is a domain-

general system that learns to approximate the information search processes of an indi-

vidual user.  

RADAR contains two stages.  The first stage is akin to event segmentation and de-

termines when to update the display.  The second stage determines, given a display 

update, which display to select. Previous work demonstrates that RADAR improves 

user performance [12]. Here, we report results that indicate that subjects who train 

under an expert’s RADAR model learn to choose displays consistent with the second 

stage of expert RADAR models. 

The same result did not hold for display update, embodied in RADAR’s first stage.  

In the case of display update, subjects trained under expert and control RADAR mod-

els both converged to expert-like updates over time. This result supports previous re-

search [12, 24, 25] demonstrating reliability and agreement among people perceptions 

of event boundaries.  Mere task experience appears sufficient to identify basic events 

in a novel domain, although the same is not true of determining proper display choice. 

The above results should not be taken to indicate that subjects are slaves to the 

model they trained under and the task environment.  While subjects did converge to 

the display model they were trained under, subjects in the expert condition appeared 

to generalize their knowledge broadly.  These subjects showed increased convergence 

over time to the second stage of all three expert models.  In other words, exposure to 

one expert’s view of the world encouraged more general expert-like behavior, rather 

than behavior that was only closely coupled to the particular training model.  Control 

subjects did not show this systematic improvement in fit to all expert models. While 

control subjects might display idiosyncratic behaviors that agree with one expert 

model, they did not learn behaviors that were consistent across experts. 

Overall, our results suggest that related training methods should prove successful 

in expediting the transition from novice to expert-levels of performance. Using an ex-

pert’s RADAR model to train novices sidesteps several thorny issues. RADAR’s fit of 

an expert quantifies the expert’s action patterns (avoiding the limitations and effort 

involved in self-report) and provides a means to communicate this expertise to a nov-

ice in a task-situated manner. 

There is a lot more research to be done before such training methods can be per-

fected. Although not reported above, expert RADAR models differed greatly in how 

well they fit each subject. One expert model fit particularly well, achieving the best fit 

for 18 of the 30 subjects.  Interestingly, the model of the highest performing expert fit 

the subjects in our study the worst, with only 5 subject being well fit by it.  One im-

portant challenge is determining which expert model is most beneficial for each nov-

ice at each stage in training.  One possibility is that novices will vary in terms of 

which expert model is best. Hopefully, RADAR’s formal approach will allow for best 

practices to be determined. 
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Abstract. The battlefield has become an increasingly more complicated setting 

in which to operate. Additional stressors, complexity, and novel situations have 

challenged not only those in the field, but consequently also those in training. 

More information must be imparted to the trainees, yet more time is not avail-

able. Thus, in this paper, we consider one way to optimize the delivery and ac-

quisition of knowledge that can be meaningfully applied to the field setting. We 

hypothesize that for learning efficiency to be maximized, we need to keep 

learners in a constant state of engagement and absorption. As such, we consider 

neuro-physiological hypotheses that can help prescribe mitigation strategies to 

reduce the impact of sub-optimal learning.   
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1   Introduction 

The battlefield has become an increasingly more complicated setting in which to 

operate. Additional stressors, complexity, and novel situations have challenged not 

only those in the field, but consequently also those in training. More information must 

be imparted to the trainees, yet more time is not available. To accomplish this goal, 

researchers not only need to consider the type of information imparted to the trainees, 

but also the speed of delivery, the rate of acquisition, and the time required to reach 

fully-trained status. Thus, in this paper, we consider one way to optimize the delivery 

and acquisition of knowledge that can be meaningfully applied to the field setting. We 

hypothesize that for learning efficiency to be maximized, we need to keep learners in 

a constant state of engagement and absorption. In response to this goal, current re-

search has identified many issues that can affect learning, including but not limited to 

boredom, arousability, anxiety, stress, working memory overload, and workload. 

To deal with these issues, researchers have investigated mitigation strategies to 

lessen their affect, including principles from cognitive load theory (CLT) [25], infor-

mation presentation strategies [12], feedback, scaffolding [17], working memory 

supports, and others. Today, these strategies are applied based on general principles 
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[6] [12]across groups of people. Our goal, however, is to individualize the application 

of strategies in an effort to increase effectiveness by taking into account individual 

differences. This way, we can apply them only when an individual needs them and we 

can apply only those specific strategies needed by an individual [29]. To accomplish 

this, we are investigating the use of neuro-physiological data to define when a learner 

is in a sub-optimal learning state.  

Thus our ultimate goal is to identify these sub-optimal states and prescribe strate-

gies to mitigate their negative impact on learning. To do this, we must first identify 

those states that most affect learning and then generate hypotheses about how these 

states may be optimized by changes in the learning environment. In this paper, we 

investigate three states that are well supported in the literature to affect learning and 

begin to identify possible strategies to decrease their impact. Our three main areas of 

consideration include workload, arousal, and boredom. 

2   Workload 

First, we consider workload. Workload is a multidimensional construct that describes 

the level of effort expended to complete a task. Some of the dimensions include tem-

poral, spatial, physical, and mental workload [9].  When we apply the concept of 

workload to learning tasks, we typically refer to mental or cognitive workload. To 

determine its impact on learning, we consider Cognitive Load Theory (CLT) [25]. 

CLT posits that there is a limited working memory capacity and when that capacity is 

exceeded, information is lost. In other words, when workload levels are too high or 

too low, learning performance is hindered. Thus, during supra-optimal cognitive load 

conditions, the learner must choose the information to which they will attend and the 

remaining information is ignored. This is particularly problematic in the case of nov-

ice learners because the novice learner is unable to determine the difference between 

relevant and irrelevant information. Consequently, they will commonly shed informa-

tion that is important to achieve the learning goals.  

Low workload can also be problematic as it leads to wayward attention. When the 

learner is operating under limited or sub-optimal workload levels they begin to attend 

to other information aside from the intended learning material. This is particularly 

problematic if the extraneous information becomes the primary focus of learner atten-

tion. As a result, germane information to the learning experience is lost, and learning 

suffers. However, when workload levels are optimal, a learner performs best. The 

combination of mental, physical, and temporal demands is in balance, allowing an 

individual to maintain focus on a task while not being overloaded.  

CLT suggests that workload can be further divided into three different types, 

namely germane, extraneous, and intrinsic [13]. Intrinsic cognitive load is that load 

which is inherent in the learning material, whereas germane cognitive load is the 

effort the learner expends to acquire, assimilate, and file that information into long-

term memory. Finally, extraneous cognitive load is the load that is imposed upon the 

learner and detracts from the learning experience. Currently, to measure workload we 

use either self-report measures (TLX [9]; MRQ [4]; & CLQ [14]), or neuro-

physiological measures [3], inter-heart rate variability, and pupil dilation [24], and to 

date, we cannot distinguish between the three types of cognitive load. One additional 
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problem with all these measures is that they can only tell us what to do in a subse-

quent task. In other words, if workload is too high we can subsequently do less and 

when it is too low we simply do more. However, what is more likely the case is that 

workload varies throughout a learning experience. In other words, there are times 

during the learning experience when the learner is operating with too much cognitive 

load and other times when there is a sub-optimal level of cognitive load. Their levels 

are inconstant flux. Assuming this is the case, then there are times during the learning 

episode when the learner could benefit from additional instructional prompts or sec-

ondary tasks but, at the same time, there are situations under which those same inter-

ventions would be problematic.  

Today, because we can only consider the average workload levels across the whole 

learning cycle, interventions intended to mediate workload are not nearly as precise as 

those that could be provided with real-time measurements. These average scores al-

low us to make few, and likely not very impactful, changes to subsequent learning 

experiences. Thus, we have two goals to improve augmentation of workload. First, we 

need to identify workload levels in real-time and second, we need to be able to pre-

scribe changes to the learning environment immediately. Because efforts to achieve 

the first goal are already underway [27], we focus our attention on the second goal 

which is to determine what to do with the information once we have it. In this paper, 

we aim to determine what we might do to mitigate sub-optimal workload conditions 

to improve learning. To that end, we offer two hypotheses. 

2.1   Decrease Workload 

We hypothesize that when workload is high, the learner is overwhelmed by the  

incoming information and mitigation strategies should be applied to reduce  

task-shedding. To mitigate these effects, we consider strategies that help reduce the 

complexity of the scenario, provide “cheat sheets” or guides to reduce the strain on 

working memory, and identify the most germane elements of the training material in 

order to focus the learner’s attention. More specifically we hypothesize that when 

workload is too high during a learning experience, information should be presented to 

the learner in such a way that it first focuses their attention on the relevant informa-

tion and second, reduces the drain on working memory capacity. For example, if we 

applied this hypothesis to simulation-based training, the most commonly used plat-

form for training and assessing applied, field-based knowledge in the military, we 

would state: 

When a learner's workload is too high, providing full-screen instructional prompts 

will allow the learner to focus exclusively on the prompt and to avoid distraction by 

the overwhelming learning stimuli.  Consequently, the learner’s focus on the relevant 

information needed to achieve the learning goal is increased, positively affecting 

learning efficiency. 

2.2   Increase Workload 

Conversely, when workload is too low the learner is at risk of being distracted by 

extraneous, irrelevant information. In this case, the use of an instructional prompt is 

also warranted, but the goals are different than when workload is too high. Instead of 
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reducing the information on the screen in order to focus the learner's attention, we 

increase the information on the screen and allow them to learn multiple pieces of 

information simultaneously. Providing a secondary task to learners whose workload 

levels are too low may increase their workload levels to an optimal state. This acts as 

a secondary task. Increasing workload levels may further increase learning efficiency 

because the learner is allowed to more quickly, or more efficiently, progress through 

the learning material. If we again apply this hypothesis to simulation-based training 

we would hypothesize: 

When a learner's workload levels are too low, provide a scaffolded instructional 

prompt in addition to the present learning material. As a result, workload levels will 

increase and learning efficiency will improve. 

3   Arousal 

Arousal is another construct for consideration. While there remain many different 

conceptualizations in the literature, for our purposes we use the definition from Schatz 

(2009) where general arousal refers to a person’s physical activity, alertness, and 

emotionality. Theoretically, there is an optimal state of arousal where learners can 

best acquire, encode, and store information [19]. In this case, a mid level of arousal 

leads to better attention. So while arousing stimuli can attract attention, it can also 

distract the learner. As such, similar to workload, when arousal levels are too high or 

too low, learning decrements can occur. The mechanism by which this works is that 

when learners are experiencing a high or low arousal state, they must use some of 

their working memory capacity to either deal with the overwhelming stimuli or to 

maintain alertness. As such, attention is strained and eventually wanes [10] [19]. 

When a person is under-aroused, their processing ability diminishes and their atten-

tion narrows [19] whereas when their arousal is too high, their attention focuses on 

declarative knowledge, reducing focus on comprehension of the material and subse-

quently impeding the learner’s ability to apply that knowledge to real-world settings 

[7]. Thus, with arousal, we consider both the mitigation of under as well as over 

arousal.  

3.1   Decrease Arousal 

Specifically, during high arousal states learners will select, often haphazardly, particu-

lar information on which to focus, ignoring other stimuli and ultimately resulting in 

task-shedding [26]. In this case, the learner fails to acquire the necessary learning 

material. Typically, when this happens the learner chooses to attend to the easiest, or 

most explicit, information and consequently ignores more meaningful or implicit 

information. As a result, high arousal leads to low initial recall but higher long-term 

retention for procedural skills and declarative knowledge [23] yet it inhibits long-term 

retention of semantic or meaningful information [20] [7]. If it were the case that we 

were interested solely in procedural skills or declarative knowledge, we might prefer 

to keep learners in a high arousal state. However, for information to be useful for  

the military, it must be meaningfully acquired so that it can be applied to the field 

setting. To decrease arousal we consider reducing “noise” (extraneous load), providing  
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working memory aids [29], and scaffolding the learner’s training at a slower pace 

[17]. Specifically, when we apply these concepts to simulation-based training we 

hypothesize the following:  

When arousal levels are too high, reducing the complexity of the given scenario 

while simultaneously providing directive instructional prompts, will help the learner 

better focus their attention. Reducing the number of overwhelming stimuli and scaf-

folding the learner’s knowledge to acquire meaningful knowledge will lead to more 

effective and efficient training. 

3.2   Increase Arousal 

During low arousal states, reduced learning can occur because the learner must work 

hard to maintain attention. Fatigue and the reduced availability of working memory 

capacity can interfere with learning. Thus, while low arousal states can lead to better 

short-term memory, long-term memory may suffer [19]. As such, a mid level of 

arousal is preferred. Mitigation strategies for increasing arousal include adding secon-

dary tasks, increasing complexity, progressing the learner, and learning two types of 

material simultaneously. Again if we apply these concepts specifically to simulation 

based training, we offer the following:  

When a learner is under aroused during a scenario, two changes should be made. 

First, increase the complexity of the scenario so as to capture the attention of the 

learner and second, provide instructional prompts to the learner at a faster rate so as to 

more quickly scaffold their learning. As a result, the likelihood that the learner will 

focus attention on the learning material and more quickly acquire knowledge is in-

creased. Consequently, learning effectiveness and efficiency will improve. 

4   Boredom 

Expanding the concept of arousal we consider the effect of arousal combined with 

affect and how they may lead to feelings of boredom. Boredom is a construct that has 

been widely discussed across disciplines, yet has not been so widely studied, either 

systematically or empirically. Thus, while the limited research in this area supports 

the hypothesis that boredom highly and negatively impacts learning, accurate, empiri-

cally tested, solutions to mitigate the impact of boredom, have not yet been well  

investigated [2]. Several different definitions of boredom exist in literature, yet a 

general consensus has yet to be achieved [5] [8] [15] [16] [18] [31]. For the purposes 

of our paper, we define boredom as the combination of low engagement with negative 

affect. We considerate it for this paper because it is often professed to be one of the 

major issues leading to reduced learning, wayward attention, and a lack of motivation 

[1]. Learners experiencing boredom must expend conscious efforts to maintain atten-

tion and eventually their efforts fail resulting in low engagement and, consequently, 

learning suffers [8]. Further, unmotivated students spend approximately only 42% of 

their time on task, which also leads to a reduction in acquisition of knowledge [22]. 

Thus, to combat the effects of boredom we must address both areas of concern. First, 

we need to improve engagement and second, we need to improve affect. 
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We hypothesize that when engagement and workload levels are low and perform-

ance is low, the student is bored and mitigation strategies should be applied to capture 

the learner’s attention. To mitigate these issues, we consider several strategies, gener-

ally focused on information presentation. Specifically, Mayer’s principles (2005) for 

multimedia may help address some of the issues caused by feelings of boredom. Fur-

ther, interest is the opposing force to boredom and as it increases, boredom decreases. 

Topics such as relevancy, presentation type, and challenge have been suggested to 

influence interest [11] [21]. 

4.1   Meyer’s Principles 

First, we consider Mayer’s (2005) multimedia principles to help guide when and how 

to present information to learners in the most effective way possible. Based on CLT, 

Mayer applied their theoretical principles to multimedia presentations in an effort to 

improve learning efficiency. While he has defined and studied numerous principles, 

we consider six that are most relevant to increasing engagement levels, one aspect of 

boredom. Specifically these include the principles of multimedia, split-attention, re-

dundancy, personalization, guided-discovery, and self-explanation. The principle of 

multimedia suggests that providing information in two different formats can improve 

learning efficiency. Split-attention occurs when the learner must attend to two com-

peting modes of presentation such as narration and text simultaneously. The learner is 

forced to split their attention because both tax the auditory channel. The principle of 

redundancy refers to information being presented in excess of that which is necessary 

to achieve the learning goals. Because this information detracts the learner from the 

relevant learning material, it reduces learning efficiency. The principle of personaliza-

tion requires that the learning material be personally relevant to the learner thus in-

creasing their interest in, and subsequently their motivation to learn, the material at 

hand. Guided-discovery involves scaffolding the learner through a learning experi-

ence that helps them distinguish relevant from irrelevant information. Finally, self-

explanation occurs when the learner is expected to explain or describe the learning 

material. It is the difference between having to acquire knowledge and having to ap-

ply knowledge.  

So how do these principles help mitigate the effects of boredom on learning? Util-

izing the principles set forth by Mayer may allow us to improve the level of the 

learner's engagement and by doing so, we address one prong of the boredom con-

struct. Thus, based on Mayer’s work, we recommend the following:  

1. Multimedia presentations should use colloquial language. This makes it easier for 

it the learner to follow the information being presented.  

2. The learning material should be narrated. This allows the learner to be able to both 

attend to pictorial presentations while simultaneously using the auditory channel to 

take in verbal information without having to split attention.  

3. Information should be provided in two modes. Typically this involves pictures and 

narration. 

4. Pictures and narration should be provided simultaneously. This allows for the most 

efficient delivery of information.  
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5. No extraneous information should be included. Again, this helps the learner, espe-

cially the novice learner, focus their attention on only that information that is rele-

vant to the learning goals. 

Thus, if we apply these principles to simulation based training to make more specific 

hypotheses, we provide the following:  

When engagement in the learning material is low, using multimedia presentations 

involving both pictures and narration, using colloquial language, and reducing the 

amount of extraneous information presented will lead to more effective and efficient 

learning. By capturing and maintaining the learner's attention, their engagement in the 

learning material will increase leading to improved learning effectiveness and effi-

ciency. 

4.2   Interest 

The second prong of boredom is negative affect. Here we consider the concept of 

interest as it is the opposite of boredom. High interest leads to high engagement 

which, in turn, leads to high motivation. When motivation is high, we expect deeper 

learning and we also expect learning efficiency to increase. To improve interest, we 

consider the work of Vogel-Walcutt, et al. (2009) who identified seven categories of 

interventions. Specifically, they focused on relevancy, meaning, control, collabora-

tion, change, involvement, and creativity. Relevancy refers to relating the learning 

material to personal interests. Control allows learners to take ownership in the learn-

ing experience, while collaboration requires them to work with others in a team. 

Change or novelty typically involves either surprises or a change of pace in the pres-

entation of the learning material. Involvement refers to keeping the learner at an  

optimal level of stimulation utilizing strategies such as competition. Creativity typi-

cally requires the learner to work with pictures or in a story format to utilize other 

skills and focus on meaningful knowledge. Finally, to create meaning, it is necessary 

to focus on applied learning or using a problem-solving approach. Before we can 

apply these strategies in real-time, we must operationalize interest based on neuro-

physiological measures. To date, engagement levels, which can be measured by an 

electroencephalogram (EEG), provide our best information. However, additional 

work is being conducted to address the need to also quantify affect in real-time [28]. 

Again, applying these principles to simulation based training, we consider the follow-

ing hypotheses: 

When interest is low so, too, is engagement and consequently motivation. Thus, 

when interest in the material is low, as defined by engagement, allowing learners to 

change the material so that they may be able to make it more personally relevant and 

also allowing them to compete with others may increase interest and drive motivation 

to learn. Ultimately, this results in more effective and efficient learning experiences. 

5   Summary 

Thus, in this paper, we consider neuro-physiological hypotheses that can help  

prescribe mitigation strategies to reduce the impact of sub-optimal learning. We pro-

vide recommended strategies, based on current research, to help achieve the goal of 
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keeping learners in a constant state of engagement and absorption. Our overarching 

goal is to individualize the application of mitigation strategies, based on individual 

differences, in order to increase learning efficiency in complex real-world military 

training settings.  
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Abstract. It is often claimed that adapting instruction to an individual’s pro-

gress, personal characteristics or preferences will somehow increase learning, 

and there have been literally thousands of studies over at least the past 100 

years exploring this idea. This presentation will review various approaches to 

adapting instruction, such as changing the rate, difficulty, sequence or structure, 

instructional strategy or instructional media on the basis of learner progress, 

prior knowledge, aptitudes or preferences, under various forms of instructor, 

learner, program, or opponent control.  This paper gives an organizing frame-

work, describes some of the theoretical underpinnings for particular adapta-

tions, and describes experimental and practical criteria for evaluating claims of 

efficacy and efficiency of instructional adaptations. 

1   Introduction 

We have known for over 2000 years how to provide effective instruction to an indi-

vidual: provide expert tutors who personally coach the learner in a shared workspace 

over a period of years.  The tutors continuously adapt instruction to the individual, 

structure the subject matter to be learned, decide on activities to engage and motivate 

the student, determine the sequence of topics to be learned or tasks to be mastered, 

provide instruction and context, model correct performance through worked exam-

ples, focus practice, observe the student’s performance, monitor progress, correct or 

remediate performance lapses, provide feedback and coaching for improvement, con-

duct dialogues about the task and provide amplification and meta-instruction.  This 

was the model of instruction at the time of Aristotle and Alexander and it is still used 

in apprenticeships, coaching, and in graduate-level and professional education.   

The problem, of course, is that one-on-one tutoring is expensive. In the last few 

hundred years, instruction for groups of students became more common, in order to 

achieve efficiency in mass education.  In the 20
th

 century, perhaps as a result of the 

industrial revolution, a view of instruction as assembly-line manufacturing emerged, 

and attempts were begun to automate instructional processes.  Standardized testing 

began during the First World War, “teaching machines” were invented in the 1920s,  

instructional films in the 1940s, programmed instruction in the 1950s, and with the 

development of television and early computers came “educational technology”  in the 

1960s and 1970s.    

Although the usual goal of these instructional technologies is merely to make  

the delivery of instruction less expensive but not less effective than conventional  
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instruction, sometimes a stated goal is to achieve learning gains in mass instruction 

comparable to those routinely achieved by one-on-one tutoring.  Benjamin Bloom [3] 

famously described the “two-sigma problem,” noting that group instructional methods 

rarely achieve gains in performance comparable to the two-standard-deviation gains 

that are often observed in tutoring.  In general, the idea is that if instruction could 

somehow be more responsive to individual students, that is adapted to individuals 

rather than to (the slowest members of) a group, then learning might be more efficient 

or effective.   

2   Adapting Instruction 

A modern general conceptualization of the control of instruction was first mapped out 

by Smallwood [29] in the context of control theory, and substantially formalized by 

Atkinson [1] in a now-classic paper describing “ingredients for a theory of instruc-

tion.”  In Atkinson’s view, control of instruction, and therefore of adaptation involves 

(1) a model of the learning process, (2) specification of admissible instructional ac-

tions, (3) specification of instructional objectives, and (4) a measurement scale for 

costs of actions and payoffs of achievement of objectives.
1
  The model of the learning 

process requires a reasonably precise characterization of an individual’s state of learn-

ing before and after an instructional action, and therefore, by implication, some meas-

ure of the student.  More generally, characterizing the model of learning and the effect 

of instructional actions on learning in any precise way really requires some sort of 

theory of learning and/or behavior change.   

There are many ways to modify or adapt instruction, and they may be mixed.  

Following Atkinson’s [1] characterization, we will describe some dimensions of adap-

tation in terms of models of learning, instructional actions, and implementation of 

control.  In some cases there may be similarities or overlap across these dimensions.   

2.1   Basis for Adaptation 

Perhaps the most important dimension of adaptation is the characterization or model 

of the learning process.  The model specifies some properties of the student’s learning 

process which we will observe and use as a basis for prescribing some instructional 

action or treatment.  This at least requires some measurement of the individual, to-

gether with the theoretical expectation that variation in that measurement has some 

instructional importance.  That is, observed differences for individuals on that meas-

ure will lead to differences in whether and how we will instruct, and therefore to a 

difference in outcome.  Among the properties of individuals and/or their learning or 

performance to which adaptation may occur are at least the following: 

 

                                                           
1 Here the term “objective” refers to a goal or overall outcome of instruction, not a “behavioral 

objective” in the sense of Gagne or Mager.  Atkinson (1972) gave examples of alternative in-

structional goals such as: (1) maximize the mean performance of the whole class, (2) mini-

mize the variance in performance for the whole class, (3) maximize the number of students 

who score at grade level, or (4) maximize the mean performance for each individual. 
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Individual preference.  The easiest way to get a measure from individuals is to sim-

ply ask them whether they feel that they know a concept, or are ready to take a test, or 

are ready to move on, or need additional explanation or practice, or prefer one or an-

other style of instructional presentation  (Also, see learner control below.)  Unfortu-

nately, it has been known for at least half a century that students are not particularly 

good judges of their own states of knowledge [1] and therefore not very good at judg-

ing their needs for explanation, practice, or remediation.  

 

Current progress / result / score on some measure. This may be as simple as 

whether the last answer to a probe test question was correct or incorrect, or some  

estimate of the likelihood that a student has learned a particular concept, or it may be 

a more complex measure, such as a learning rate or a pattern of responses. A very 

common adaptation strategy had its roots in early programmed instruction (cf.  

Skinner, 1954): present a “frame” or block of instruction which concludes with a 

question.  If the response is correct, proceed to the next frame; otherwise inform the 

student of an error and present the frame again.  This style is still used today in 

powerpoint-derived web-based training because it is easy to implement, if not very 

effective.  Much more sophisticated approaches have been based on mathematical 

models of learning (cf. 1), or extensive cognitive analyses of tasks [e.g. 4; 2].  

 

Traits or aptitudes.  It is often claimed that different individuals have different learn-

ing styles or aptitudes, and that adapting instruction to them will somehow increase 

learning. There have been literally thousands of studies over at least the past 100 

years exploring this idea.  Proponents of one or another instructional method gener-

ally seize upon one supposed characteristic (usually a binary one) that might differen-

tiate individuals, and then propose different instructional treatments depending on the 

individual’s classification according to that characteristic.  For example, we see learn-

ers described as: 

• Right-brain vs. Left-brain 

• Active vs. Passive 

• Wholist vs. Serialist 

• Visual vs. Auditory 

• Multi-tasking vs. Sequential 

• Abstract vs. Concrete 

• Convergent vs. Divergent 

• Extravert vs Intravert 

• Type A vs Type B 

• Sensing vs. Intuitive 

• Thinking vs. Feeling 

A quick tour through Wikipedia starting with topics such as “Learning Styles” or  

“Individual Differences” will lead to dozens of these sorts of dichotomies.  More so-

phisticated theorists will combine two or more of these dichotomies into multi-

dimensional constructs.  Unfortunately, these oversimplified approaches rarely work.   

An adaptation to an individual difference actually requires substantial analysis  

and experimentation in order to demonstrate effectiveness.  First, there must be some 
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observable difference between individuals.  Preferably there should be some reasona-

bly scientific theory about why the difference exists and why adaptation to the differ-

ence should have any effect on an instructional outcome.  Second, there must be some 

sort of test or measurement for the difference that reliably differentiates individuals.   

The key here is “reliably”. Further it must be possible to measure this difference 

quickly enough to affect instructional decision making.  Also, the difference must be 

stable long enough for an instructional strategy to be applied and take effect.  Then 

there must be some prescription for an instructional adaptation to the difference, and 

there must be a reliable post-instruction measurement so that differential outcomes 

could be observed.  Finally, there must be an experimental or quasi-experimental 

evaluation of the effectiveness of the adaptation.  Further, results of that evaluation 

ought to show a disordinal interaction between the individual difference variable and 

the adaptation variable. 

Despite hundreds of studies over 40 years of research on what are now called “apti-

tude-treatment interactions”, and several major reviews [13; 12; 33, 30, 37] there is 

almost no evidence of effective and practical adaptation of instruction to individual 

traits or aptitudes. 

According to Tobias [35]:  “Instructional designers are often urged to adapt in-

struction to students’ learning styles. The persistence of the learning style concept is 

amazing—a testament to the gullibility of even well-informed individuals who ought 

to know better.  It seems that advocates of learning styles have never heard of the his-

tory of ATI research, which attempted to provide a database for adapting instruction 

to student characteristics and found many thorny problems.  It is probably fair to say 

that the popularity of adapting instruction to learning styles is matched only by the 

utter absence of support for this idea.” 

 

Prior knowledge / skill or ability level / prior achievement. In contrast to the dis-

mal results for aptitude-treatment interactions, good results have been observed when 

adapting instruction to prior achievement.  It has been shown that students with low 

ability or low knowledge of a particular topic generally need increased instructional 

guidance or support for learning [33, 34, 36, 23].  Also, more complex or broader 

measures are often used for more macro-level instructional decisions.  For example, 

completion of pre-requisites is often a condition for admission to an advanced course, 

or we may decide whether a student is ready for a particular topic based on an aggre-

gate measure of prior achievement or prior knowledge. 

2.2   Instructional Actions for Adaptation 

Rate or Pacing.  Instruction may slow down or speed up, for example by allowing 

more or less time for study on a topic, or by providing more or fewer examples or 

practice opportunities.  Fletcher [16] notes that individualization of pace is by far the 

most common adaptation to individual differences in learning, and is so common that 

it is “frequently, although incorrectly, treated as synonymous with individualization 

of instruction.”   Fletcher [18] describes a “Rule of Thirds” which is a statistical 

summary of meta-analyses of the use of computer-based adaptation of pacing:  it “can 

either reduce instructional time to reach instructional goals by about one-third (a goal 

more characteristic of training than education), or increase the skills and knowledge 
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acquired by about one-third while holding instructional time constant (a goal more 

characteristic of education than training).” 

 

Difficulty.  Chunks of instructional content may be graded or calibrated for difficulty 

or ease of learning, and more or less difficult concepts may be presented.  Topics may 

be skipped or reinforced.  This approach is commonly taken in adaptive testing, where 

items are calibrated, then selected one by one, based on the correctness of previous 

answers, to converge quickly on an estimate of achievement or ability [cf. 38].  It is 

used less commonly to adapt instruction, because it is based on a normative approach 

while instructional content has structural relationships which can be exploited for se-

quencing. 

 

Sequence or Structure.  Instruction may be divided into separate topics on the basis 

of some logical order or content structure.  Topics may be arranged in some heterar-

chy of superordinate-subordinate and relationship links, and instruction may proceed 

up, down, or sideways through the network.  For example, topics thought to be pre-

requisite to others may be presented earlier, or conversely a holistic overview might 

precede more detail on particular topics.  Surprisingly, however, changing the se-

quence of small chunks of instruction seems not to make much difference -- there 

were a number of studies in the 1960s that “scrambled” the order of frames in pro-

grammed instruction and found no differences in learning – unless there were strong 

dependency relationships among problems to be solved [39]. 

 

Method of Instruction. The instructional strategy may be varied.  For example, a 

common instructional strategy called “Rule/Example/Practice” presents conceptual 

generalities or directions, followed by worked examples, followed by practice oppor-

tunity [cf. 24, 25]. Sometimes other orders of these components (e.g. “Example,  

Practice, Rule,” 21) may even work better.  An extension of this is a “problem-based” 

strategy  that might start with an overall task or problem to be solved, and then work 

on separable parts of the problem while building knowledge.  

 

Mode or Medium. The method of delivery of instruction may vary.  For example, 

instructional materials might be presented in verbal or written form, or pictorially, or 

via a computer animation.  In general however, results of research on differential ef-

fects of media are very mixed.  Clark and Salomon [9] ask “why should we expect 

media to teach anyone anything?” and give references to many prior reviews of litera-

ture on media effectiveness.   Clark [8] concludes "The best … evidence is that media 

are mere vehicles that deliver instruction but do not influence student achievement 

any more than the truck that delivers our groceries causes changes in our nutrition. 

Basically, the choice of vehicle might influence the cost or extent of distributing in-

struction, but only the content of the vehicle can influence achievement" (p. 13).    

2.3   Control of Adaptation 

Another dimension of adaptation involves the control of instructional alternatives, that 

is, how a control strategy for the instructional process is implemented. 
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Instructor control.  Traditional instruction is usually directed and controlled by a 

teacher or tutor, who decides on rate of presentation, sequence, instructional strategy, 

and media, and most importantly, diagnosis, feedback, and remediation of perform-

ance problems and misconceptions.   

 

Learner control.  The learner might choose what topics to study, in what order, for 

how long, and may choose alternative delivery media or methods.  There have been 

many studies of learner control, with very mixed results.  Learners may be allowed to 

control the rate of instruction (often called self-pacing), the choice of instructional 

strategy or method, or control of sequence of topics or activities.  In extreme forms, 

such as pure discovery or “constructivist” learning, students may explore instructional 

environments with little guidance.  We referred above to Atkinson’s [1] caution con-

cerning self-pacing.  In a broad review of learner control, Lunts [22] notes:  “Thus, 

the research studies on LC fail to confirm or disconfirm anything.  Consequently, 

there are no right answers on whether LC is beneficial for students and whether a 

higher degree of LC implied in a computer program improves instructional effective-

ness” (pg 68).  Finally, Mayer [23] concluded:  “Pure discovery did not work in the 

1960s, it did not work in the 1970s, and it did not work in the 1980s, so after these 

three strikes, there is little reason to believe that pure discovery will somehow work 

today” (pg 18).  Kirshner, Sweller and Clark (2006) conclude that constructivist ap-

proaches to instruction are less effective than direct instruction. 

 

Program or machine control.  In computer-based instruction, programs can be 

written to choose instructional events, present and score practice or test items, pro-

vide written or pictorial content, and implement different instructional strategies.  

Investigations of the use of automation in instruction for the last 80 years have in-

volved one form or another of program control.  Its roots are in Pressey’s [26] teach-

ing machine, Skinner’s (1954) programmed learning, and Crowder’s [14] intrinsic 

programming.   One approach, based on mathematical learning and memory theory 

and optimization was heavily investigated at Stanford University with good results 

[19]. Suppes, Fletcher & Zanotti [32] used extremely detailed analyses of mathemat-

ics curricula and research on mathematics learning to inform computer control of 

pace and sequence.  Another approach is to design machine-based instructional  

systems based on analyses of tutoring.  This approach began with early work by  

Carbonell, Collins, and colleagues.  [cf. 7, 11, 31, 10]  More recent approaches in 

intelligent tutoring systems involve extensive cognitive task analysis [cf. 28] and 

sophisticated logic for making control decisions [cf. 27].  The lesson learned from all 

of this work is that really deep content and cognitive analysis is necessary to con-

struct effective instructional programs. 

 

Opponent control.  In competitive tasks, such as sports, war games, or business 

simulations, control of instructional events may be based on scripted scenarios, or at 

least on conventions.  Ultimately, however, control of events may depend on what 

actions are chosen by an opponent.  Often an instructor will act as an opponent in  
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order to present instructive events or tune the level of difficulty or provide meaningful 

consequences to a trainee’s actions.  There is little research on the effectiveness of 

such strategies, although it is difficult to see how instruction and practice on competi-

tive tasks could avoid opponent control completely. 

2.4   Other Dimensions of Adaptation  

In addition to the basis, actions, and control, there may be other variables that affect 

adaptation.  One might be the type of content – it is possible that different models of 

learning might apply depending on whether one is learning facts such as in basic 

arithmetic versus high-level rules for problem solving.  There have been many 

schemes for describing different types of content, but only some that then connect 

with alternative instructional actions or adaptations. Merrill’s [24] approach is better 

than most. 

Another dimension involves training individuals versus teams.  Most tasks in the 

world of work actually involve teams or groups working together.  Some  develop-

ment has been done on models of instruction for teams, or team instructional strate-

gies. [e.g. 6], but very little has been done on adapting individual instruction within 

team training.  

3   Conclusion 

So, what we know at this point?  Several points are worth making in summary: 

First, individual tutoring is the most reliable way to achieve individualization and 

adaptation.  When intelligent tutoring systems are carefully designed, they seem to 

achieve some of the same benefits.  Good tutors adapt the pace, sequence of instruc-

tion, instructional strategy, amount of practice, and feedback.  They do this by having 

a deep understanding or analysis of the content to be learned, strategies for explana-

tion, and techniques for diagnosis, feedback, and remediation. 

Second, computer-based adaptation of pacing based on careful models of learning 

and memory works and reliably yields about 30 percent time savings or increase in 

amount learned.   

Third, both computer control of pacing/sequence and intelligent tutoring work best 

when there has been deep analysis and careful characterization of the instructional 

content and of the tutoring process.  It is clearly time to revisit the learning trajectory 

optimization approaches developed at Stanford in the 1960s and 70s, and update them 

in light of more recent cognitive and content analysis techniques.  More research and 

development on understanding and implementing in programs what tutors do to 

achieve Bloom’s two-sigma difference in effectiveness is clearly warranted.  

Finally, while this paper considered Atkinson’s [1] first two ingredients for instruc-

tion, models and methods for adaptation, it has not discussed the third and fourth  

ingredients relating to instructional goals and the cost/effectiveness of actions to 

achieve them, mainly because so little solid work has been done. Fletcher [e.g. 15, 17] 

is one of the few voices in this wilderness. 
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Abstract. Functional Near Infrared Spectroscopy (fNIR) is a promising brain 

imaging technology that relies on optical techniques to detect changes of hemo-

dynamic responses within the prefrontal cortex in response to sensory, motor, or 

cognitive activation. fNIR is safe, non-invasive, affordable, and highly portable. 

The objective of this study is to determine if biomarkers of neural activity gen-

erated by intentional cognitive activity, as measured by fNIR, can be used to 

communicate directly from the brain to a computer. A bar-size-control task 

based on a closed-loop system was designed and tested with 5 healthy subjects 

across two days. Comparisons of the average task and rest period oxygenation 

changes are significantly different (p<0.01). The average task completion time 

(reaching +90%) decreases with practice: day1 (mean 52.3 sec) and day2 (mean 

39.1 sec). These preliminary results suggest that a closed-loop fNIR-based BCI 

can allow for a human-computer interaction with a mind switch task. 

Keywords: Brain Computer Interface, fNIR, Near Infrared Spectroscopy. 

1   Introduction 

The purpose of this research is to develop a new functional Near-Infrared (fNIR) 

based Brain Computer Interface (BCI) to allow communication directly from the 

brain to a computer.  In this paper, we have reported the implementation and initial 

results of a closed-loop fNIR based BCI system and the analysis methods that allow 

classification of two states (rest and task) using single channel two wavelength optical 

signals.  

An individual’s communication with the outside world can cease because of com-

plete paralysis, locked-in syndrome, spinal cord injury or muscular dystrophy. Indi-

viduals suffering from such diseases and conditions, though conscious, may lose all 

voluntary muscle control and thus are often unable to communicate even their most 

basic wishes [1, 2]. Unlike a persistent vegetative state, in which the upper portions of 
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the brain are damaged and the lower portions are spared, an inability to move may be 

caused by damage to specific portions of the lower brain and brainstem or to muscles 

with no damage to the upper brain. Consequently, an individual’s cognitive abilities 

remain relatively intact [2-4].  

BCI is defined as a system that translates neurophysiological signals detected from 

the brain to supply input to a computer or to control a device. BCI research largely 

targets to eliminate the need for motor movement and develop mechanisms to relay 

information directly from the brain to a computer which, in turn, can be used to con-

trol or communicate with outside world. In addition to their use in neuroprosthetics, 

noninvasive BCI systems also have potential applications for healthy individuals 

especially for enhancing or accelerating the learning process, or in entertainment 

domains such as in computer games and multimedia applications as a neurofeedback 

mechanism. Development of alternative communication strategies are a recognized 

need for clinical applications. A technique that bypasses muscles and acquires signals 

directly from brain would be a notable help. Moreover, this technique should be 

minimally intrusive, non-invasive, accessible, and safe to be used continuously. 

1.1   Monitoring Brain Activity 

The key element in a BCI system is monitoring brain activity. There are several avail-

able technologies that utilize different sensors or sensor configurations to collect  

various types of brain signals.  

The most commonly studied interface to monitor brain activity noninvasively has 

been Electroencephalogram (EEG), due to its fine temporal resolution, portability and 

low cost [5-10]. Various electrode placement schemes and advanced signal processing 

methods have been researched for its improved and practical use in BCI applications 

[11]. However, these EEG based systems still have certain drawbacks. For example, 

the end-user has to develop a new thinking mechanism to be able to interact with the 

EEG based BCI system which results in lengthy training times [12]. Furthermore, 

non-invasive EEG recordings from portable devices are highly susceptible to noise 

and hence have much lower signal to noise ratio as compared to signals recorded from 

implanted electrodes [13]. In addition, electrode fixation is difficult and cumbersome 

to use in practice and for long-term use because of the need for applying gel and the 

restrictions on users’ movements. Therefore, existing BCI systems do not yet meet the 

desired characteristics of an optimal BCI. In fact, they are either invasive and hence 

not yet completely safe for continuous use or they are non-invasive but rely on a noisy 

signal and require mental adaptation mechanisms.  

Another potential neuroimaging modality is functional Magnetic Resonance Imag-

ing (fMRI) which is a special type of MRI scan that measures the hemodynamic re-

sponse to neural activity. Recently, this technique has been improved to be used at 

real-time in which output of the system could be used to give biofeedback to the sub-

ject, thus creating a closed-loop system. It has been shown using real-time functional 

magnetic resonance imaging (rt-fMRI) that subjects can voluntarily change activa-

tion/oxygenation levels of certain brain regions [14-22]. This technique is non-

invasive and allows detecting signals anywhere in the brain, and thus provides more 

flexibility for the BCI mental task. However, the downside is that participants have to 
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be scanned in large and expensive MRI machines and thus may not be practical for 

daily and long-term use.  

In order to partially overcome the problems of existing BCI and provide an alterna-

tive communication mechanism for individuals with locked-in syndromes, we pro-

pose to use continuous wave fNIR as a new functional neuroimaging modality for 

Brain Computer Interface. In the next section, we will briefly discuss the fundamen-

tals of fNIR, types of fNIR instrumentation and other BCI studies that have utilized 

fNIR. 

2   fNIR Spectroscopy 

fNIR is a multi-wavelength optical spectroscopy technique introduced as a non-

invasive brain activity monitoring modality [23-27]. fNIR can assess temporal pro-

gression of brain activity, through the measurement of hemodynamic changes within 

reasonable spatial resolution. Neuronal activity is determined with respect to the 

changes in oxygenation since variation in cerebral hemodynamics are related to func-

tional brain activity through a mechanism which is known as neurovascular coupling 

[26]. fNIR is not only non-invasive, safe, affordable and portable [28, 29], it also 

provides a balance between temporal and spatial resolution which makes fNIR a vi-

able option for in-the field neuroimaging. 

2.1   Light Tissue Interaction  

Typically, an optical apparatus for fNIR Spectroscopy consists of at least one light 

source and a light detector that receives light after it has interacted with the tissue. 

Photons that enter tissue undergo two different types of interaction: absorption and 

scattering [30]. Whereas most biological tissues (including water) are relatively trans-

parent to light in the near infrared range between 700 to 900 nm, hemoglobin is a 

strong absorber of lightwaves in this range of the spectrum. 

Two chromophores, oxy- and deoxy-Hb, are strongly linked to tissue oxygenation 

and metabolism [26]. Fortuitously, the absorption spectra of oxy- and deoxy-Hb re-

main significantly different from each other allowing spectroscopic separation of 

these compounds to be possible by using only a few sample wavelengths. Once the 

photons are introduced into the human head, they are either scattered by extra- and 

intracellular boundaries of different layers of the head (skin, skull, cerebrospinal fluid, 

brain, etc.) or absorbed mainly by oxy- and deoxy-Hb. If a photodetector is placed on 

the skin surface at a certain distance from the light source, it can collect the photons 

that are scattered and thus have traveled along a “banana shaped path” from the 

source to the detector [23, 25, 26].  

2.2   Types of fNIR Systems 

A wide variety of both commercial and custom-built fNIR instruments are currently 

in use. There are three distinct types of fNIR spectroscopy implementations; time-

resolved (TR), frequency domain (FD) and continuous wave (CW) systems, each with 

its own strengths and limitations. TR and FD systems provide information on shifts in  
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both phase and amplitude of the light and are necessary for more precise quantifica-

tion of fNIR signals. Lasers are used as light sources and fiber optic light guides are 

utilized in sensors. CW systems apply either continuous or a slow-pulsed light to 

tissue and measure the attenuation of amplitude of the incident light. These systems 

utilize less sophisticated detectors than TR and FD systems, and, therefore, they can-

not determine the pathlength the photons have traveled. As such, CW systems provide 

only a measure of the relative change in light intensity Although CW systems provide 

somewhat less information than TR and FD systems, this tradeoff results in the capac-

ity to design more compact and inexpensive hardware, making it advantageous for 

real-life applications [31]. CW system can use Light-Emitting-Diode (LED), instead 

of Laser, as light sources and do not necessarily require fiber optics in sensors, mak-

ing them less expensive and more comfortable to wear for longer periods of time. 

2.3   fNIR in BCI Research 

There is recent evidence indicating that fNIR can be used for the assessment of atten-

tion [32] and cognitive task loads [33]. Recently, the suitability of optical methods for 

BCI has been investigated by acquiring signals from the motor cortex using motor 

imagery tasks [12, 13, 34, 35] and by acquiring signals from the frontal cortex by 

mental arithmetic [36] and cognitive workload [37-39] tasks. Taken together, the 

results of these studies have focused on offline analysis and use either FD-fNIR or 

laser with fiber optics. The overall aim is to build a CW-fNIR based BCI system that 

will be operated by the volitional activation of the prefrontal cortex assisted by neural 

biofeedback. As a first step, we have investigated the potential of fNIR in discriminat-

ing cognitive activity levels based on different tasks. Our results suggest that with a 

CW-fNIR system, we can detect increased oxygenation within the frontal lobe with 

increased cognitive task load  [38]. In this study, we have investigated a closed-loop 

feedback regulated CW-fNIR based system.  

3   Materials and Methods 

3.1   Drexel fNIR System  

The CW-fNIR system used in this study has a flexible sensor pad that contains 4 LED 

light sources with built in peak wavelengths at 730, 805, 850 nm and 10 detectors 

designed to sample cortical areas underlying the forehead (See Fig. 1). With a fixed 

source-detector separation of 2.5 cm, this configuration generates a total of 16 meas-

urement channels per wavelength. The sampling rate of the system is 2Hz [32, 40, 41].  

3.2   Experiment Setup 

The experimental setup is composed of a Protocol-Computer, a Data-Acquisition 

computer and the Drexel fNIR system parts as described in Fig. 1. The fNIR sensor is 

positioned on the subject that is sitting in front of the Protocol Computer as shown in 

Fig. 2.  
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Fig. 1. Drexel fNIR System Parts 

 

Fig. 2. Experiment Setup 

Information flow starts from at the fNIR Sensor and through the control box, 

reaches the Data-Acquisition Computer. COBI Studio software [41] collects raw fNIR 

signals for 16 channels and 2 wavelengths and transmit them through Ethernet or wire-

less network (via TCP/IP) to the Protocol Computer. The BCI Client software on the 

Protocol-Computer receives the raw fNIR signals, calculates the oxygenation changes 

at run-time using modified Beer Lambert Law and modifies the visual feedback which 

in turn changes the fNIR signals at sensor; thus completing the closed loop. 

3.3   Participants 

Five healthy right-handed subjects (4 males, 1 female) with no neurological or psy-

chiatric history (ages between 24 to 27years) voluntarily participated in the two-day 
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study. Handedness was assessed by the Edinburg Handedness Inventory [42]. All 

subjects gave written informed consent approved by the institutional review board of 

Drexel University for the experiment. 

3.4   Experiment Protocol 

A computerized task, called bar-size-control was developed to control the timing, 

display the visual feedback and to save user input. In a single trial, subjects are first 

asked to rest for 20 seconds with a blank screen, after which a vertical or horizontal 

bar will appear (See Fig. 3.).  

 

Fig. 3. Horizontal/vertical bar cue shown full-screen. The bar size is changed every 500 milli-

seconds according to the oxygenation changes of the subjects. 

 

Fig. 4. Self-assessment screen is shown at the end of each trial. Subjects use left/right cursor 

buttons to change the value and press enter to select the value. 

Initially, the bar is at 50 percent size and is mapped to the oxygenation data calcu-

lated from fNIR data that is updated at a frequency of 2Hz. The subject is asked to 

concentrate on the bar for up to 120 seconds. Finally, the subject is asked to rate their 

effort on scale from 0-10 with 0 lowest and 10 highest effort/difficulty (See Fig. 4.) 

[43]. The subject has 30 seconds to complete this effort rating activity. Each trial lasts 

a maximum of 170 seconds.  

3.5   Signal Analysis 

There are two types of signal processing in this study. The first one is online process-

ing, that is done during the experiment, and the second one is offline processing that 

is completed after the experiment to analyze the data. Both online and offline analyses 

include calculation of oxygenation changes from raw data using the following steps 

[31, 32]. 

The raw optical intensity values in two wavelengths (730nm and 850nm) are 

transmitted and recorded by the fNIR system for all subjects. The physiologically 

irrelevant data (such as respiration and heart pulsation effects) and equipment noise, 
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and so forth is first eliminated from the raw fNIR measurements by using a low-pass 

filter with a cut-off frequency of 0.14Hz.  

The online processing further involves calculating the visual cue size based on the 

oxygenation changes during the experiment. Size of the vertical or horizontal bar is 

modeled as a linear transformation of the oxygenation changes of channel 6 that cor-

responds to a voxel location close to Fp1 in the international 10-20 system. Bar(t) is 

the bar size as a function of time t, where tn is the time when the bar task started. 

BaseOxy for channel 6 and time tn is calculated by the moving average of the last k 

oxygenation change values for the same channel multiplied by the constant α which is 

the difficulty parameter. α= 1.5 was used for all subjects. 
 

 

 

(1) 

 

 
(2) 

 
 

(3) 

For the offline processing blocks for rest and task conditions were identified for 

day1 and day2 of each subject. Averages of oxygenation changes in rest and task 

performing blocks where compared with a-repated measures ANOVA model. Fur-

thermore, select non-parametric classification algorithms and their success rates on 

the available data have been applied. These techniques enable classifying a set of 

observations into predefined classes which in our case are task performing or resting 

conditions. To classify the blocks with a linear and quadratic discriminant algorithm a 

subset of data is used as training set. k-Nearest neighbor search (k-NN) and naive 

Bayes classifier (MATLAB 2008a, MathWorks Inc.) were used with day1 as training 

and day2 as sample, and also, half of day2 as training and the rest of day2 as sample.  

4   Results and Discussion 

For the computerized task, a bar was chosen for its simplicity and familiarity to all 

computer users. Experiments are ongoing.  Comparisons of the means for task and 

rest period oxygenation changes are significantly different (p<0.01). The average task 

completion time (reaching +90%) decreases with practice: day1 (mean 52.3 sec) and 

day2 (mean 39.1 sec) across all subjects. This suggests learning and adaptation is in 

process. 

During offline processing, blocks (rest and task periods within days) are classified 

with the following non-parametric algorithms: k-Nearest Neighborhood and naïve 

Bayes classifier. For the classification the first 16.5 seconds of each block is used. 

First, the algorithms are trained with the Day1 task and rest periods block data and 

asked to identify Day2 blocks whether they are task and rest. This was done for each 

subject individually and also for all subjects. The results are listed in column A in 

Table 1.. Next the same analysis is done with a different training set, instead of Day1, 

the first half of the Day2 data (task and rest periods) was  used. Thus,  condition B has 

half of the training and sample size of the previous condition.  Correct classification 
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success rates are listed in column B of Table 1.. Algorithms were unbiased and did 

not include the behavioral performance score or the self reported performance score.  

The success rate of algorithms varies between subjects suggesting that some subjects 

are better at using the closed loop system than other subjects. Also, column B indi-

cates a lower success rate which in turn might be related to a lower training set than 

column A.  Overall classification rates suggests a pattern across subjects and using the 

training data from all subjects provides a better chance of correct classification than 

individual subjects classification. 

Table 1. Classification algorithm performances as percentage of correct classification in two 

conditions: A and B. The first condition A has training set Day1 and sample set as Day2. 

Second condition has training set as the first half of Day2 and sample set as second half of 

Day2. 

A B 

kNN Bayes kNN Bayes 

 Rest Task Rest Task Rest Task Rest Task 

Subj1 100 100 100 100 100 90.9 100 90.91 

Subj2 100 100 100 100 93.75 68.75 87.5 68.75 

Subj3 100 80 70 55 72.72 63.64 90.1 54.55 

Subj4 75 70 100 60 63.64 100 90.9 100 

Subj5 80 56.67 100 100 75 68.75 87.5 75 

Overall 93.3 72.5 100 95 77.1 73.77 86.89 57.37 

5   Conclusion 

In this study, we have reported the implementation and initial results of a closed-loop 

fNIR based BCI system along with the analysis methods that allows classification of 

two states (rest and task) using only fNIR signals. This system can be used for binary 

selection with volitional activation of the prefrontal cortex. Further experiments are 

pending to study and improve the use of algorithms for online classification. 
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Abstract. An essential component for a practical noninvasive brain-computer 

interface (BCI) system is data recording technology that can access the informa-

tion-processing activity of the brain with high fidelity and throughput. Func-

tional near-infrared spectroscopic (fNIRS) imaging is a methodology that shows 

promise in meeting this need, having a demonstrated sensitivity to both the slow 

hemodynamic response that follows neuroactivation and to the lower amplitude 

fast optical response that is considered a direct correlate of neuroactivation. In 

this report we summarize the technology integration strategy we have devel-

oped that permits detection of both signal types with a single measuring plat-

form, and present results that document the ability to detect these data types 

transcranially in response to two different visual paradigms. Also emphasized is 

the effectiveness of different data analysis approaches that serve to isolate  

signals of interest. The findings support the practical utility of NIRS-based im-

aging methods for development of BCI applications. 

Keywords: Diffuse Optical Tomography, fNIRS imaging, fast signal, combina-

torial Hb States, Neuroactivation, Visual Stimulus, NIRS Technology. 

1   Introduction 

There are many examples where the detailing of the internal properties of otherwise 

opaque materials has significant value. In the late nineteen eighties, SUNY investiga-

tors first recognized that even in the limit where the penetrating energy is diffusely 

scattered, useful images of the internal properties of these materials was nevertheless 

possible [1,2]. A principal application area considered at that time for this type of  

imaging was the use of near infrared (NIR) light to study the optical properties of tis-

sue [3]. Documented was the ability to generate 3D tomographic images of diffusing 
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media whose dimensions have clinical interest based on physical models of light 

transport [4,5]. These preliminary findings have gone on to spur the development of a 

new investigative field known by the name of Diffuse Optical Tomography (DOT), 

or, alternately, NIRS imaging. 

In the ensuing years, much effort has been directed to delineating the cost/ 

performance trade-offs of different sensing strategies for data collection, techniques 

applied to forming tomographic images of diffusely scattering media, and different 

methods for extracting useful information from these images. 

Advantages of NIRS studies include good tissue penetration, exceptional sensitiv-

ity to the hemoglobin (Hb) signal, and recovery of 3D images having a spatial reso-

lution on the order of 1 cm. Other favorable attributes include excellent temporal 

resolution (msec-sec range), information about all Hb components, ease of use in dif-

ferent environments (including freely moving subjects), and low system cost. 

Practical imaging system development is essentially an optimization problem 

whose limits are defined by application needs and cost/performance constraints. Typi-

cal parameters include details of the sensor array, acquisition speed and sensitivity, 

system control and calibration, validating phantoms, and, increasingly, access to so-

phisticated computing environments that support reliable feature extraction. Below 

we briefly outline system design strategies our group has implemented to meet these 

various needs, and follow this with results from experimental studies that document 

the capability of these designs to explore different elements of the response to neuro-

activation. 

1.1   Light Sensing Strategies 

Brain function in the adult can be usefully probed by NIRS imaging techniques to a 

maximum depth of approximately 3 cm. Separation of superficial from deeply lying 

structures requires sampling of backreflected light using fiber-coupled sensors posi-

tioned both near and far from any source. Because fast data collection is needed to 

capture dynamic phenomena (e.g., cerebral response to stimuli), our approach has 

been to employ dense sensor arrays that also have large a dynamic range of measure-

ment. Rapid scanning is achieved by using a fast optical switch that can be operated 

to support all or only one of the available illumination sites. The latter arrangement al-

lows for parallel sampling of the entire sensor array (currently up to 128 sensors) at 

speeds of 70-140 Hz, depending on type of signal handling circuitry. Measurements 

are performed using frequency-encoding techniques with homodyne detection in the 

audio-frequency range to allow for separate detection of light intensities from multi-

ple illuminating wavelengths [6-8]. Tomography studies typically are conducted using 

a time-multiplexed, multi-site illumination approach wherein the full array is read for 

each illuminating site [1,3,4,6-8]. Currently feasible are illumination/sensing ap-

proaches that support sampling from four arrays in parallel, each supporting a 32S × 

32D array and up to six wavelengths (4,096 illumination-detection pairs per wave-

length per image frame). Such configurations can allow for tomographic imaging of 

approximately half the surface area of the cranium. Full head coverage can be 

achieved using more sparsely spaced sensor arrays. This reduces the tomography  

capability to a surface mapping technique known in the scientific literature as  

Optical Topography [9,10]. By achieving spatial separation of light signals in three 
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dimensions, the tomography method can be expected to yield findings with greater 

specificity. 

1.2   Sensor Head Design 

The presence of hair can be an important consideration in sensor head design. Dark 

hair can be strongly attenuating and in such cases, to enable good fiber coupling to the 

scalp, careful displacement of hair is needed to achieve good signal quality. We have 

implemented two different design solutions. One employs open scaffolding that al-

lows attachment of arcs that serve to mechanically support spring-loaded optical fi-

bers. The other is a head-shaped silicone membrane that supports placement of fibers 

within a nearly regular array. In our experience the former is best suited for subjects 

with dense hair, the latter where the expected impact of hair is less important. 

1.3   Anatomical Mapping 

In many instances, an important object of study is to map information gained from the 

imaging studies to the underlying anatomy. This requires knowledge of individual 

head shape, of the position of the sensor array with respect to this head shape, and 

specification of an appropriate atlas. Currently a variety of surface-rendering tools are 

commercially available that have modest complexity and cost. Using methods origi-

nally developed to map EEG findings [11], we have adopted these tools to allow for 

mapping of NIRS image findings.  

The usual case for NIRS imaging, wherein mapping of tomographic findings to an 

atlas is desired, is more complex than is typical of EEG. A key component is the need 

for library files that support computation of tomographic images based on a wide 

range of possible sensor configurations. Our approach has been to introduce a GUI 

that allows for easy specification of selected array configurations. The considered 

files are themselves based on tessellations of a segmented 3D MRI map of an adult 

head. Fiducial measures, along with use of affine interpolation methods, allow for ac-

curate mapping of the sensor array to this selected atlas. Mapping to other atlases, in-

cluding the individual’s MRI map, is also available. 

1.4   Data Analysis 

Many approaches used for analysis of NIRS data for neuroimaging studies are ana-

logues of methods developed for fMRI. Useful endpoints fall into three classes: stud-

ies on resting states, localization of activated regions, and identification of regions 

that are functionally connected. Because of the strong dependence of signal quality on 

optode separation, the quality of data across the sensor array can vary greatly. This 

presents the need for preprocessing schemes wherein channels having poor signal 

quality can be excluded from subsequent analysis [7,8]. 

Preprocessing is followed by use of efficient 3D image reconstruction methods that 

are insensitive to the usual uncertainties of experiments [12-14]. While computation-

ally efficient, these methods tend to produce images whose accuracy and resolution 

can be improved using more computationally intensive techniques. The latter meth-

ods, however, have severe practical limitations when applied to image time-series 
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studies. To this end, we have implemented alternative image correction methods that 

have good performance and efficiency [15-20]. 

1.4.1   Signal Separation Methods 

Many measures from intact systems constitute a complex mixture of information  

over space and time. In the case of NIRS, information is convolved spatially, on a 

macroscopic scale, because of scattering, and temporally because of coincident phe-

nomenology affecting different elements of the vascular tree. Compared to topog-

raphic imaging methods, image reconstruction using model-based techniques provides 

an objective basis for effectively reducing the blurred paths of light in tissue caused 

by scattering [1-5,12-20]. 

Among the temporal decomposition methods are techniques that can provide for 

isolation of signals that are uncorrelated and independent [21,22]. These methods 

have found favor in the functional neuroimaging community because many of the ap-

plied stimulus paradigms produce responses that largely meet these criteria. Neverthe-

less, because biological systems tend to operate in ways less favorable to simplifying 

mathematics, in many instances strict interpretation of the deconvolved time series 

can prove difficult. Regardless, when applied with care, these methods can prove use-

ful and, as shown later, we have adopted one class of ICA methods to isolate the fast 

optical signal. 

Table 1. Definitions of discrete states used to characterize hemodynamic responses. Plus sign 

(+) denotes an instantaneous Hb level greater than the temporal mean value; minus sign (-) de-

notes an instantaneous level less than the temporal mean value.  

 State 1 State 2 State 3 State 4 State 5 State 6 

Hboxy - - - + + + 

Hbdeoxy - + + + - - 

Hbtotal - - + + + - 
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1.4.2   Separation of Correlated Hemodynamic Signals 

A specific data analysis strategy that we have applied to NIRS neuroimaging studies 

follows from the consideration that while there can be a time lag between an O2 de-

mand-linked “cause” and the subsequent blood-delivery “effect,” still it is reasonable 

to associate different combinations of Hb levels with different conditions of balance 

or imbalance between the utilization and supply of O2. For example, if Hbdeoxy is ele-

vated and at the same instant Hboxy and Hbtotal levels are reduced (in all cases, com-

pared to their time-averaged levels in a resting baseline condition), we would interpret 

this as indicating that the tissue is in a state of net O2 demand that the vasculature has 

not (yet) responded to by increasing the inflow of oxygenated blood. In like manner 

we derive the complete set of discrete combinatorial states defined in Table 1, each 
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corresponding to a different pattern of Hb-level deviations from their baseline values 

in accordance with a neuroactivation induced supply-demand imbalance model.  

1.5   Data Analysis Examples 

In the following sections we present illustrative examples of results that have been ob-

tained by applying an ICA algorithm to one set of NIRS imaging data, and the combi-

natorial state analysis to another. Common to both measurements was that a visual 

sensory input was used to stimulate neural activations with a prescribed time course. 

The distinction that determines which analysis approach is the appropriate one is that 

in one case a single illumination site was used (~75 Hz framing rate), and time-

multiplexed, multi-site illumination (~2 Hz) was used in the other. For the first data 

set, ICA was used to identify the event-related fast optical signal, since it was ex-

pected that this signal would be independent of other sources of spatiotemporal vari-

ance in the data. The combinatorial-state decomposition was applied to the slow 

hemodynamic response data collected in the second experiment, where independence 

among the Hb components was not expected. 

2   Methods 

2.1   Data Collection 

For both experiments, a multi-channel continuous wave near-infrared optical tomo-

graphy imager (www.nirx.net) was used to measure, at multiple positions on each  

participant’s scalp, the intensity of backreflected NIR light at 760 nm and 830 nm 

wavelengths. The optodes were positioned to make contact with the scalp, with ~1-cm 

inter-optode spacing, using an adjustable helmet with an open scaffolding design [23].  

For the fast optical-response measurement, a 15-optode (3×5) array was positioned 

on the left side of the forehead. The tissue was illuminated through one of the most 

laterally positioned optodes, and sets of intensity measurements were collected at  

a ~75-Hz scan rate. For the slow hemodynamic-response measurement, measurements 

were performed using 30 optodes, in a 3×10 array positioned symmetrically about the 

midline of the occipital cortex. With each optode serving as both a source and a detec-

tor, a complete scan of the array required approximately 0.5 s. 

The fast optical-response study (10 right-handed participants [6 female], 18-36 

years old, mean age 26.6 yr) employed a target detection task. The visual informa-

tion presented to the subjects consisted of a sequence of landscape scenes, most con-

taining no artificial objects, while a small percentage, randomly placed within the 

sequence, included man-made transportation vehicles. The image presentation rate 

(PR) was either 4 Hz or 6 Hz, with data collected from each subject at both rates . 

The slow hemodynamic-response study (9 right-handed participants [2 female],  

22-36 years old, mean age 27.6 yr) used a reversing-checkerboard (8 Hz) visual 

stimulus to induce an increase in neural activity in the visual cortex. The stimulus 

was presented for 2 s at a time, a total of 120 times, with a randomly varying time in-

terval between presentations. 
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2.2   Data Analysis 

For the fast optical-response experiment, data corresponding to each of the four wave-

length-PR combinations were processed separately. For each combination, the data 

were frequency-filtered with a 2-30 Hz passband. Independent components were 

computed from each set of filtered data [24]. Any independent component (IC) that 

was significantly contaminated with cardiac-rhythm power, or was heavily weighted 

toward the superficial tissue layers, was deleted, and the remaining ICs were re-

summed to produce a set of artifact-cleansed time series. Block-average responses 

were computed for each subject’s responses to images that did and did not contain 

man-made objects (T [i.e., target] and NT [i.e., non-target], respectively). Mann-

Whitney tests were performed to determine which channels and time frames showed 

statistically significant T responses, NT responses, or T-NT differences. Within-

subject averages were computed over all channels yielding statistical significance for 

at least two time frames, and t-tests were performed to determine which time frames 

had a group-average response significantly different from zero. 

In the slow hemodynamic-response case, 3D tomographic image time series Hboxy 

and Hbdeoxy were reconstructed, using the Near-infrared Analysis, Visualization and 

Imaging (NAVI) software package (www.nirx.net) [25]. The images were converted 

into ANALYZE format and exported to allow for additional processing using the 

AFNI image analysis suite (afni.nimh.nih.gov/afni/). Using AFNI, Hbtotal was calcu-

lated by adding the Hboxy and Hbdeoxy time series. Every image-pixel time series was 

normalized to its temporal mean to compensate for any large differences in blood 

flow between individuals. The resulting scaled data were then analyzed as follows: 

Area under curve. A deconvolution analysis was used to calculate an impulse re-

sponse function (IRF) for the visual stimulus. The best-fitting gamma-variate function 

for this IRF was then determined using a nonlinear regression program [26]. This was 

used to calculate the event-related activation by expressing the area under the curve 

(AuC). To compare the AuC across participants, a t-test was performed, using a cor-

rected voxel-level probability threshold of 0.05 (p < 0.01 individual voxel probability; 

54-voxel cluster size). This provided a statistical test of the goodness of fit between 

the experimental manipulation and changes in Hboxy, Hbdeoxy and Hbtotal, using stan-

dard techniques developed for the analysis of fMRI data. The correction for multiple 

comparisons was achieved by imposing a cluster-level threshold in addition to the 

voxel-level probability threshold. The cluster-level threshold, found using Monte 

Carlo simulations [27], was 54 contiguous voxels. 

Time-fraction measures. For each voxel, the corresponding IRF was used to compute 

the fraction of time spent in each of the 6 combinatorial states (Table 1) over the 25 s 

following stimulus presentation. This resulted in a volume of the same dimensions as 

the reconstructed image, in which each voxel contains a number between 0 and 1 rep-

resenting the fraction of time spent in one of the six states during the 25-s interval. 

Thus 6 volumes, one for each state, were computed for each participant. The statisti-

cal significance of the resulting time fractions was determined with t-tests comparing 

the observed time to a null hypothesis that was empirically determined by applying 

the same time-fraction analysis to images from each subject’s baseline time interval. 
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3   Results 

3.1   Measurement of Fast Optical Signal 

The group-average differential T-minus-NT time course, derived from artifact-free 

ICs for the 830-nm, 6-Hz PR data, is plotted in Figure 1. Also included is a sketch of 

the measurement geometry, indicating the dimensions and coverage area of the detec-

tor array and the location of the illumination optode. Presentation of the stimulus be-

gins at time 0 (vertical dashed line), and time frames for which the group-mean T/NT 

difference is statistically significant are marked with asterisks. The time delay be-

tween stimulus presentation and significant response is comparable to that typically 

found in electrical measurements of visual ERPs. 

Fig. 1. Panel A: Normalized group-mean differential responses (target minus non-target) for the 

830-nm, 6-Hz PR data. Dotted lines show standard errors for the corresponding signals at each 

time point; asterisks designate time bins with significant difference between targets and non-

targets (t-test, p < 0.05). Panel B: geometry and location of the 15-optode array, with illumina-

tion site indicated. 

3.2   Measurement of Slow Hemodynamic Response 

Figure 2 shows two orthogonal sections through the center-of-mass of the region of 

activation, in response to the visual stimulus, identified by the group analysis of the 

participants’ Hboxy AuC results. While many of the identified voxels are localized to 

the visual cortex, regions of activation outside of this location also were seen. The as-

sociated temporal response function (not shown) is triphasic, and its shape coincides 

well with the impulse response function seen in BOLD studies. Both the spatial- and 

temporal-domain results for Hbdeoxy and Hbtotal are similar to those for Hboxy, while the 

size of the region identified as active is somewhat different in each case. 

The time-fraction for each of the six combinatorial states was analyzed with a t-test 

across subjects that examined the difference between the fraction of time spent in 

each state during the 25-s stimulation-response periods and during the baseline time 

interval. The same correction for multiple comparisons was performed here as was 

used in the AuC analyses. The results, as shown in Figure 3, were that only State 1 

and State 4 were identified as undergoing significant event-related responses across 

all nine subjects. Fig. 3 shows that the spatial extent of the time-fractions associated 

with States 1 and 4 both are substantially smaller than those identified in the AuC 

analysis of any one Hb component. It is also seen that the State-1 and State-4 regions  
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Fig. 2. Orthogonal sections through the center-of-mass of the region of activation identified by 

the group analysis of the participants’ Hboxy AuC results 

     

Fig. 3. Horizontal sections through the center-of-mass of the region of activation identified by 

the group analysis of the State 1 (Panel A) and State 4 (Panel B) time fractions 

are centered in different locations, in both the Y (front-back) and Z dimensions. These 

results demonstrate that finer spatial resolution is achievable using analysis strategies 

that simultaneously consider multiple Hb components, and that differential informa-

tion is associated with different combinatorial states. 

4   Discussion 

A research-and-development effort on functional NIRS imaging, under way since the 

late 1980s, seeks to identify and address all requirements for the sensing-technology 

associated with brain-computer interface systems. These include the ability to: 1) as-

sess the location and magnitude of neural activity, either directly or through a surro-

gate parameter; 2) distinguish among different aspects of cerebral data processing 

(e.g., sensory vs. cognitive); 3) examine tissue dynamics over a wide range of time 

scales/resolutions, with maximal freedom to specify the area being examined; 4) ex-

tract actionable, accurate information from a measurement, within a usefully brief 

A B 
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time interval. For practicality, it also is necessary that the technology be as “transpar-

ent” as possible to the participants in a BCI application, and that it have a number of 

other qualities that can be classified as the “convenience” factor: ease of use, portabil-

ity, ruggedness, successful performance in significantly non-ideal conditions, and low 

cost. The bulk of our efforts for many years went into satisfying requirements 3 and 4 

above, and into clearing the transparency and convenience hurdles, and this is sum-

marized in the Introduction. At the point that these criteria had been met, then it was 

appropriate to put serious effort into exploring requirements 1 and 2. The illustrative 

results presented here are an indication of our ability to isolate expected features of 

interest, strongly correlated with neural activity, from the NIRS signals generated by 

our technology. It is noteworthy that these encompassed measurements over two dis-

tinct cortical regions, and with very different temporal resolutions, source conditions, 

and data analysis strategies, but were accomplished with a single measuring platform. 
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Abstract. Detection and automated interpretation of attention-related or inten-

tion-related brain activity carries significant promise for many military and  

civilian applications. This interpretation of brain activity could provide infor-

mation about a person’s intended movements, imagined movements, or atten-

tional focus, and thus could be valuable for optimizing or replacing traditional 

motor-based communication between a person and a computer or other output 

devices. We describe here the objective and preliminary results of our studies in 

this area.  

Keywords: Brain-computer interface, BCI, Neural Engineering, Neural Pros-

thesis. 

1   Introduction 

Inquiring a soldier’s directional orientation (e.g., direction of attention) is usually ei-

ther impossible or at least requires motor function.  This requirement is often limiting.  

Directly determining directional orientation from brain signals, not using muscles, 

would have numerous applications for military use.  For example, the locus of atten-

tion and/or intended movements could be used to optimize target acquisition or identi-

fication.  Brain-computer interfaces (BCIs) record signals from the brain and translate 

them into useful outputs.  Recent studies in the rapidly growing field of BCI research 

provide impressive demonstrations, either with non-invasive [1-15], moderately inva-

sive [16-20], or invasive [21-29] techniques, that BCI technology can allow people to 

communicate with others using brain signals alone.  However, current BCI devices do 

not readily support large-scale deployment largely because current techniques are 

either not practical for use in humans [30], require extended user training [31], or 

function only in particular environments. 

Our long-term goal is to develop BCI technologies into a range of practical and 

useful non-muscular communication, control, and monitoring applications. To work 

towards this goal, the objective of current efforts is to create a prototype of a system 

for communication and monitoring of orientation that uses brain signals to provide, in 
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real time, an accurate assessment of the direction of the a person’s attention, move-

ment intention, and eye gaze.   

Its achievement requires that we delineate the brain signal features associated with 

these variables, determine to which degree these features can be detected using non-

invasive sensors, and finally create a system that can translate these features into a set 

of useful output functions in real time. 

2   Methods 

In accord with the objective outlined above, we are currently pursuing three avenues 

in this research.  The first avenue is to delineate the brain signal features associated 

with the direction of attention, intention, and eye gaze.  We do this by recording elec-

trical brain signals invasively from the surface of the brain in human subjects.  These 

subjects are asked to engage in tasks that are designed to vary relevant parameters, 

such the direction of attention.  (These subjects are human patients that have electrode 

grids implanted on the surface of the brain for clinical reasons.  Thus, they are not 

being implanted for the purpose of these research projects.)  Analyses relate the brain 

signals to the parameters of interest described above, and thereby delineate the brain 

signal features that are most predictive of the particular task.  We also plan to deter-

mine the relationship of the observed features across time and space to establish a 

mechanistic understanding of relevant cortical systems. 

The second avenue of research is to determine whether these features can be de-

tected non-invasively.  To provide information that is critical for practical deployment 

of such a system, we plan to determine the degree to which these brain signal features 

and brain systems can also be detected using electrical sensors placed non-invasively 

on the scalp.  To do this, we will use the results gathered using invasive methodolo-

gies to guide electrode placement and analyses. 

The third avenue of research is to validate the use of brain signals for communica-

tion and orientation.  To create a prototype of an intuitive communication and orienta-

tion system, we will design algorithms that are capable of extracting the features  

identified above on a single-trial basis, and incorporate these procedures into a real-

time software system, called BCI2000 [32], that has been developed in our laboratory 

over the past decade.  The resulting system will allow for a real-time assessment of 

the direction of the user’s attention, intended movements, and eye gaze.   

We expect that these efforts will provide the first prototype system that can derive 

these parameters in humans in real time.  These efforts should also contribute funda-

mental neuroscientific understanding in humans. 

3   Preliminary Results 

Preliminary results to date provide encouraging evidence that brain signals in humans 

hold information (which could be extracted in real time) about the direction of atten-

tion (Fig. 1) and eye gaze.   
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Fig. 1. Information about directional attention in one subject.  Red dots indicate all electrode 

locations. Black stars indicate locations that hold statistically significant (p<0.001, Bonferroni 

corrected) information about whether the subject’s attention is focused on the left or right 

hemisphere of the visual field. 

4   Conclusions 

Our ongoing studies are addressing the question whether it is possible to derive, in 

real time, signals from the brain in humans that provide information about a person’s 

directional orientation, i.e., attention, intention, and eye gaze. Preliminary results sup-

port this hypothesis. 
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Abstract. Brain-Computer Interfaces (BCI) are the only means of communica-

tion available to patients who are locked-in, that is for patients who are  

completely paralyzed yet are fully conscious. We focus on the status of the 

P300-BCI first described by Farwell and Donchin (1988). This system has now 

been tested with several dozen ALS patients and some have been using this ap-

proach for communication at a very extensive level. More recently, we have 

adapted this BCI (in collaboration with the laboratory of Dr. Rajiv Dubey) to 

the control of a robotic arm. In this presentation we will discuss the special 

problems of human computer interaction that occur within the context of such a 

BCI. The special needs of the users forced the development of variants of this 

system, each with advantages and disadvantages. The general principles that 

can be derived from the experience we have had with this BCI will be reviewed. 

Keywords: Brain Computer Interface (BCI), P300, wheelchair-mounted  
robotic arm (WMRA). 

1   Introduction 

A Brain Computer Interface (BCI) is a device that allows users to communicate with 

the world without utilizing voluntary muscle activity (i.e., using only the electrical 

activity of the brain). Several BCI programs were established with a focus on devel-

oping new augmentative communication and control technology for those with severe 

neuromuscular disorders. BCI systems utilize what is known about electrical brain 

activity to detect the message that a user has chosen to communicate. These systems 

rely on the finding that the brain reacts differently to different stimuli, based on the 

level of attention given to the stimulus and the specific processing triggered by the 

stimulus. Described by Farewell and Donchin in 1988 [1], the P300 based Speller is 

one such BCI system that relies on a brain response known as the P300, whose attrib-

utes have been studied for over four decades. 

1.1   What Is a P300? 

The P300, first described by Sutton, Braren, Zubin, & John (1965) [2], is one of the 

components of the brain’s response to specific events that can be recorded from the 

scalp. These “event related potentials (ERPs) are manifestations of brain activities 

invoked in the course of information processing. The P300 reaches its maximal  
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amplitude at least 300 ms following rare task-relevant stimuli. It is the largest at the 

parietal electrodes, somewhat smaller at the central electrodes and minimal at the 

frontal electrodes. 

The P300 is elicited by rare task-relevant events and if often recorded in what has 

come to be called the “oddball” paradigm [3]. The “oddball” paradigm requires the 

participant to apply a classification rule to each of the events in a random sequence 

of events so that each event is classified into one of two categories, one of which is 

presented infrequently. The participant is required to perform a task that cannot be 

accomplished without the categorization of the events. As the P300 is elicited by 

events belonging to the rare category, its latency varies with the time required for 

categorizing the events. The amplitude of the P300 varies with the subjective prob-

ability and the task relevance of the eliciting events. Thus, the rarer the event, the 

larger the P300 it elicits. 

1.2   P300 Based BCI 

Two decades ago, Farwell and Donchin [1] developed a P300 based BCI that enables 

individuals to communicate with their environment without using any neuromuscular 

function. This P300 BCI speller uses an Oddball paradigm to elicit a P300 to a charac-

ter that the user is choosing to communicate. The user is presented with a visual  

matrix of characters. The rows and columns of this matrix are flashed in a random 

sequence. The user focuses attention on one character to be communicated. Flashes of 

the row and column of the attended character are the rare events in this “oddball para-

digm”, Flashes of the other rows and columns compose the frequent events. Thus, the 

flashes of rows and columns containing the attended character elicit a P300, while 

rows and columns not containing this letter do not elicit a P300. Therefore, by com-

puting the ERPs associated with flashes of every row and column in the matrix, and 

detecting which row and column elicited a P300 response, the BCI system can iden-

tify in real time the character the user chose to communicate.  

The size of the matrix can be varied according to individual preferences and abil-

ity. The matrix’ cells may contain letters, numbers, words, sentences, pictures and/or 

symbols. Depending on the user’s needs and preferences, the matrix can be as small 

as a 2x2 with 4 stimuli (for example, “yes”, “no”, “stop”, “more”), or as large as a 

9x8 to emulate a computer keyboard. The successful use of the system does not re-

quire any training of the user. However, for optimal use, the algorithm detecting the 

P300 needs to be “calibrated” based on the pattern of electrical brain activity of a 

specific user. 

1.3   Speed-Accuracy Tradeoffs 

As the detection of P300 requires signal averaging, a number of trials are required by 

the system to correctly determine the user’s selection. The speed of the system thus 

depends on the number of sequences of flashes required to achieve a given level of 

accuracy. Traditionally, speed-accuracy tradeoff is estimated by analyzing a dataset 

offline to evaluate the number of events the system needed to average to achieve the 

desired accuracy level. However, the offline analysis does not take into account fac-

tors that are related to the user of the system (e.g., ability to sustain attention during 

longer trials).  
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Fig. 1. Accuracy as a function of number of flashes per trial in real time and as estimated by 

offline analysis 

We have recently examined the speed-accuracy tradeoffs of the P300 BCI speller 
measured in real time while participants selected characters from a 6 by 6 matrix with 
letters and numbers. Six young adults from the University of South Florida attended 
five 2-hour sessions to evaluate accuracy of spelling while manipulating the number 
of events (flash sequences). Accuracy was evaluated while participants spelled 50 
characters under each of seven conditions: when each of the 12 rows and columns 
flashed twelve, ten, eight, six, four times, twice, and once. These speed accuracy data 
are reported in comparison to the data obtained from the offline analysis. Our results 
(Fig. 1) validate the effectiveness of the offline speed-accuracy estimation, although 
greater variability in accuracy was found in real time, particularly when a single se-
quence of flashes was used per character. 

1.4   Adapting the BCI System for the Use of ALS Patients  

As of today, most of the users of the BCI system are patients with Amyotrophic lat-
eral sclerosis (ALS). Approximately 5,600 people in the U.S. are diagnosed with ALS 
each year. ALS, also called Lou Gehrig's disease, is a progressing, neurological dis-
ease that attacks the neurons responsible for controlling voluntary muscles. For the 
vast majority of people with ALS, their minds and thoughts are unaffected, remaining 
mentally sharp despite the progressive degeneration of their bodies. 

With modern technology and advanced healthcare services, patients with ALS live 
longer. About twenty percent of people with ALS live five years or more and up to ten 
percent will survive more than ten years and five percent will live 20 years. As the 
progression of the disease is commonly rapid, and as the loss of the ability to function 
independently is relatively early, it is extremely important to provide these patients 
with a mean of performing everyday tasks even in the “locked-in” stage of the disease 
in which they can stay for years. 

Extensive studies with ALS patients have demonstrated that the P300 BCI system 

can allow communication at the rate of 8 characters per minute. Since 2002, Sellers 

and Donchin [4] have tested the system with some 25 ALS patients at different stages 
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of the disease in the Cognitive Psychophysiological Laboratory at the University of 

South Florida. A study by Sellers and Donchin [4] indicates that a P300-based BCI 

system can be successfully operated by patients suffering from ALS. In this study, a 

simplified version of the P300-speller was used. The reason for this simplification 

was that it was difficult for some patients to use the 6 by 6 letter matrix to spell out 

words. Therefore, the user focused attention to one of just four response options: 

"yes", "no", "pass" and "end", which were displayed and randomly flashed on a com-

puter screen. Users were asked to either focus attention on one item, or to select the 

correct answer to a question asked by the experimenter. The results showed that ALS 

patients are able to reliably use a P300-based BCI.  

Nijboer et al. (2008) [5] evaluated the efficacy of a P300 BCI speller for individu-

als with advanced ALS. In Phase I, six participants used a 6 x 6 matrix on 12 separate 

days with a mean rate of 1.2 selections/min and mean online and offline accuracies of 

62% and 82%, respectively. In Phase II, four participants used either a 6x6 or a 7x7 

matrix to produce novel and spontaneous statements with a mean online rate of 2.1 

selections/min and online accuracy of 79%. The amplitude and latency of the P300 

remained stable over 40 weeks. The results demonstrated that people who are severely 

disabled by ALS could communicate with the P300-based BCI and performance was 

stable over many months.  

1.5   The P300 BCI Controls and Operates a Robotic Arm Mounted to a 

Wheelchair 

Originally, EEG-based BCI systems were adapted to control simple functions, such as 

choosing letters from a screen to spell out words (e.g., [1], [6], [7], [8]), or moving a 

cursor on a screen. More recently, attempts have been made to adapt BCIs to steer 

robots (e.g., [9], [10]) and wheelchairs (e.g., [11], [12], [13], [14]), as well as to con-

trol implantable neuroprostheses [15] and robot arms [16]. Research on BCIs control-

ling these new devices is in a very early stage. We have recently demonstrated that the 

P300 BCI can be used to communicate a selected character from a 5x3 matrix to the 

controller of a wheelchair-mounted robotic arm (WMRA) [17] (see illustration of  

the communication between the BCI and the Robotic arm in Fig 4) [18]. To control 

the WMRA via the BCI the user is presented with a visual matrix whose rows and 

columns intensify randomly. Each of the symbols in the matrix corresponds to a spe-

cific direction or task command (Fig. 2). The chosen character from the BCI display is 

sent to the WMRA control program, which translates it into a Cartesian velocity in the 

proper direction and executes the algorithm to move the arm. 

To test the application of the P300 BCI as a controller of the WMRA, six healthy 

young adults from the University of South Florida were presented with a 5x3 visual 

matrix with letters (see Fig. 3). Every row and column intensified for 75 ms every 50 

ms. Each sequence of flashes contained 8 intensifications (5 columns and 3 rows) and 

lasted for 1 sec. We tested the accuracy of character selection as a function of number 

of sequences of flashes (number of intensifications). The letters in the BCI display 

(Fig. 3) corresponded with the symbol matrix of the WMRA interface (Fig. 2). In 

other words, the user was presented with the alphabet speller matrix, which was 

mapped to the robot actions. For example, the letter “B” corresponds with the arrow 

directing the robot to move forward. 
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Fig. 2. Display of the Robotic arm controller 

 

Fig. 3. A 5 X 3 display of the BCI. Each letter corresponds to a specific direction of the 

WMRA as seen in Fig 2. 

Fig. 4 illustrates the operation of the WMRA via the BCI. In Fig. 5 is a user operat-

ing the WMRA by choosing characters from the BCI display. For safety of the user, 

the movement of the robotic arm was kept slow by keeping the scaling factor low.  

Accuracy level was measured by comparing the character to spell with the charac-

ter selected by the BCI system after it examines the recorded data in real time. Num-

ber of flash sequences may be viewed as the amount of data that were available for 

averaging and signal extraction. It can also be discussed in terms of speed as the more 

flash sequences were collected for each character, the longer the trial was before the 

system reached a decision. As was expected, accuracy dropped as a function of flash 

sequences. However, this reduction in accuracy level was minimal to moderate. When 

asked, participants informed the tester that they preferred the 4 and 6 sequences of 

flashes over the longer sequences. The common explanation was that it was easier to 

stay focused for shorter periods of time. Below is the accuracy data obtained when 

participants spelled 50 characters of each set of sequences (12, 10, 8, 6, 4, and 2). Fig. 

6 shows the mean percentages correct for each sequence. Number of maximum char-

acters per min and number of correct characters per minute are also presented.  
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Fig. 4. An illustration of the communication between the BCI and the controller of the WMRA 

 

Fig. 5. A user controlling the WMRA by choosing characters from the BCI display 
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Fig. 6. Accuracy data (% correct) for each of the # of flash sequences (from left to right: 12, 10, 

8, 6, 4, 2). For each bar of the # of flash sequences we provide the maximum number of charac-

ters per minute (on the bottom of each bar) and the number of correct characters per minute (on 

top of each bar). 

There are a few potential challenges which merit consideration. The step by step 

manipulation of the arm is not effective in reaching our goal for a system that will be 

used for daily activities such as bringing a glass of water from the kitchen or opening 

the door. Rather than characters representing one specific movement, the display of 

the BCI should contain high-level commands, which can then be executed autono-

mously by the robot via task level planning control. The challenge is to develop a 

system that will be able to dynamically estimate and represent the user’s intentions in 

relations to the changing environment, to communicate these intentions in the most 

efficient manner to the robotic arm which will have the intelligence to perform the 

task effectively and safely. More specifically, our current goals are to transform the 

mobile robotic arm into a task oriented system which is programmed to perform tasks 

in a changing environment efficiently, program the Application Module in the BCI 

system to represent the environment and the user’s intentions effectively and in a 

flexible manner, and to improve the speed of task selection by evaluating alternative 

classification techniques with a goal of detecting the P300 using a substantially 

smaller number of trials than is currently required using the Stepwise Discriminant 

analysis in the current version of the P300 Speller.  
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Abstract. A brain-computer interface (BCI) is a new communication channel 

between the human brain and a digital computer. Such systems have been 

designed to support disabled people for communication and environmental 

control. In more recent research also BCI control in combination with Virtual 

Environments (VE) gains more and more interest. Within this study we present 

experiments combining BCI systems and VE for navigation and control 

purposes just by thoughts. Results show that the new P300 based BCI system 

allows a very reliable control of the VR system. Of special importance is the 

possibility to select very rapidly the specific command out of many different 

choices. The study suggests that more than 80% of the population could use 

such a BCI within 5 minutes of training only. This eliminates the usage of 

decision trees as previously done with BCI systems. 

Keywords: Brain-computer interface, virtual reality, P300 evoked potential. 

1   Introduction 

A Brain-Computer interface (BCI) is a new communication channel allowing subjects 

to interact with a computer without using any muscle activity. Such a system repre-

sents an additional output channel without relying on the brain’s normal pathways of 

muscles or peripheral nerves [1, 2]. A BCI converts specific brain signals into control 

commands using pattern recognition methods. In order to properly operate a BCI, the 

system is firstly trained on subject specific brain activity data.  

Brain-computer interface systems have been developed during the last years for 

people with severe disabilities to improve their quality of life. Applications of BCI 

systems comprise the restoration of movements, communication and environmental 

control [1-3].  However, recently BCI applications have been also used in different 

research areas e.g. in the field of virtual reality [4, 5]. There the control of and naviga-

tion in smart homes via BCI interfaces can be studied before realizing the real world 

smart home environment.  

Non-invasive BCI systems have been successfully realized based on different brain 

electrical signal (electroencephalogram, EEG) phenomena: 

Between 1 and 5 degrees of freedom of control have been realized up to now for 

slow cortical potentials [1]. Steady-state visual evoked potentials [6;7] allow mostly 
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up to 12 different decisions and are only limited by the number of distinct frequency 

responses that can be analyzed in the EEG. This approach uses the fact that flickering 

light sources with flickering frequencies in the range of around 8-20 Hz induce brain 

oscillations of the same flickering frequency. Applications so far comprise e.g. robot 

or mobile phone control [8]. 

BCI systems based on induced oscillations use mostly motor imagery strategies to 

generate event-related de-/synchronization (ERD/ERS) in the alpha and beta fre-

quency ranges of the EEG [5, 9] This type of BCI was realized for cursor control on 

computer screens, for navigation of wheelchairs or in virtual environments [5]. About 

2-4 degrees of freedom for control can be realized so far. However, it remains the 

case that the highest information transfer rates are reached with only 2 decisions be-

yond which the accuracy falls dramatically. 
A P300 based BCI system uses the effect that an unlikely event induces a P300 

component in the EEG, i.e. a positive deflection in the EEG signal is occurring around 

300 ms after the event. Such systems are suited for spelling device, because a  

high number of different target characters enhance the BCI communication speed  
[7, 10, 11]. However, recently BCI interfaces in e.g. Japanese language using up to 72 
letters have also been reported [12]. 

In a spelling application characters or icons are ordered in rows and columns on the 
computer screen. There exist two different strategies to realize the P300 speller: (i) 
the row /column (RC) speller highlight multiple characters at once and the single 
character (SC) speller flashes each character individually.  

Therefore a higher P300 amplitude and more reliable control can be expected with 
the SC flasher because it is more unlikely that the target character appears. Sellers 
found that a 3 x 3 matrix had higher accuracy than a 6 x 6 matrix, but a lower com-
munication rate. With an inter-stimulus interval (ISI) of 175 ms and a 3x3 matrix 
Sellers achieved an accuracy of 88 % in the best case [11]. 

This study is divided into two parts:  

Firstly, we were interested in how many people could use such a P300 based BCI 

interface at all. A similar study based on motor imagery has proven that around 6 out 

of 100 naïve subjects participating in a 6 month lasting study setup during a public 

fair could control a BCI immediately after only 20 minutes of training [13]. There-

fore, it was interesting if a similar percentage of the population could use such a P300 

control in the single character study.   

Secondly, as P300 control allows using rather high degree of freedoms compared 

to motor imagery based BCIs, a virtual smart home P300 control interface was de-

signed. Here it was of interest if subjects could also control a more complicated inter-

face with high accuracy and speed in the virtual smart home study.  

2   Material and Methods 

A total of 41 naïve subjects participated in the study. 38 subjects participated in the 

first study to determine the accuracy of a P300 control by investigating a larger popu-

lation of subjects. 3 subjects participated in the second experiment for controlling a 

virtual smart home environment.  

The subjects were seated in front of a laptop computer and were instructed not to 

move and to keep relaxed. Fig. 1B yields the electrode configuration with 8 EEG 
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derivations used for the study. Typical P300 evoked response data for a target from 

one subject are overlaid at the corresponding electrode positions. The EEG data were 

acquired with g.USBamp (24 Bit biosignal amplification unit, g.tec medical engineer-

ing GmbH, Austria) and 256 Hz sampling frequency. The ground electrode was  

located on the forehead; the reference was mounted on the right ear lobe. EEG  

electrodes were made of gold or sintered Ag/AgCl material. 

For both experiments the SC speller was selected as for the smart home environ-

ment also non quadratic display matrices were developed.  

2.1   Single Character Study 

Fig. 1A shows the setup for the SC speller. A total of 36 characters and numbers (A, 

B, … Z; 0, 1, … 9) are displayed in a quadratic matrix on the computer screen. The 

SC speller highlights each character individually for 60 ms.  Between the flashes there 

is a short dark time of 40 ms where nothing is flashing up. The subject has now the 

task to look at the character he/she should spell and count how many times the charac-

ter flashed up. This helps the person to be concentrated on the task. After 15 flashes 

of each character the signal processing unit calculates the evoked potential and per-

forms a classification to find the character that the subject investigated. Then the 

flashing sequence starts again and the subject has to look at the next character. The 

BCI system must be trained firstly on individual EEG data and therefore the subjects 

were asked to sequentially “write” (or look at) the 5 characters ‘W’, ‘A’, ‘T’, ‘E’, and 

‘R’. This process took about 5 minutes.  

A B 

  

Fig. 1. panel A: Screen layout for the 36 characters; panel B: Top view of head and electrode 

setup for P300 experiment. The nose is pointing to the top of the page. Electrode (from top left 

to bottom right indicated as dark shaded disks) positions Fz, Cz, P3, Pz, P4, PO7, Oz and PO8 

are used. A typical P300 evoked potential for a target response averaged across 15 trials is 

indicated near the corresponding electrode positions. 

Then the BCI system was trained on the EEG features based on a linear discrimi-

nant analyzer (LDA). In the next run the subject had to spell the word ‘LUCAS’ 

which took again around 5 minutes. 

The Simulink model shown in Fig. 2 is used for the real-time analysis of the EEG 

data. The g.USBamp block reads in the data from the 8 EEG channels. Then data are 
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band pass filtered between 0.5 and 30 Hz in the Filter block and down-sampled from 

256 Hz to 64 Hz in the Downsample block . The Signal Processing block calculates 

the evoked potentials and performs further averaging across time points and data 

reduction. A total of 12 feature values per P300 evoked potential is sent to a linear 

discriminant analyzer for classification. The Scope and To File blocks are used to 

visualize the EEG data and to store it for later off-line analysis. The whole Simulink 

model is driven by the g.USBamp hardware block which ensures that the model is 

updated every 1/256 s. The Impedance Check block is utilized to ensure low imped-

ance values for the EEG electrodes. 

The Single Character Speller block controls the experiment and highlights the cor-

responding characters randomly. It sends also an identifier ID-Flash of the flashing 

character to the Signal Processing block. The Signal Processing block generates a 

buffer for each character and stores the incoming EEG data 100 ms before and 700 ms 

after the flash occurred (800 ms epoch). This is done until 36 buffers are filled with 

15 epochs (15 flashes of each character). Finally an LDA is used to classify the EEG 

data and to find the buffer closet to the trained P300 response. This classification 

result yields the character that the subject mentally selected and it will be displayed 

on the computer screen. Then the next character can be selected by the subject. For 

offline analysis the time of the Flash onsets and the ID-Flash of each flashing charac-

ter are stored.  

 

Fig. 2. Simulink model P300SpSingleChar_gUSBamp for the Single Character Speller. See 

text for the explanation of the different blocks. 

2.2   Virtual Smart Home Study 

Three subjects participated then in the experiments for smart home control. The elec-

trode setup and recording details were not changed. At the beginning of the experi-

ment the BCI system was trained based on the P300 response of 42 characters of each 

subject with 15 flashes per character (about 40 minutes training time). All 3 subjects 

needed between 3 and 10 flashes (mean 5.2) per character to reach an accuracy of 95 

% for the single character speller. This resulted in a maximum information transfer 

rate of 84 bits/s for the single character speller. 
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Fig. 3. panel A: Bird view of the apartment; the subject concentrates to the little blinking square 

at the table to go to the living room; panel B: Bird view of the virtual apartment representation; 

panel C: Control mask for selecting and controlling features from the TV set; panel D: 3D view 

of the living room 

In the experiment it should be possible for a subject to switch on and off the light, 

to open and close the doors and windows, to control the TV set, to use the phone, to 

play music, to operate a video camera at the entrance, to walk around in the house and 

to move him/herself to a specific place in the smart home. Hence the P300 based BCI 

system was connected to a Virtual Reality (VR) system. A virtual 3D representation 

of a smart home with different control elements was developed based on the XVR 

environment (eXtreme Virtual Reality, University of Pisa). Fig. 3A and 3B yield a 

bird view of the apartment layout. The upper left panel represents the user interface. 

The small squares are flashed on and off in a random manner similar to the SC  

spelling interface. Here the user selected to be set to the living room in a goal  

orientated way and then selected to operate the TV set. The upper right panel gives 

the actual representation of the virtual smart home environment. Fig. 3C yields the 

control masks for controlling the TV set. Fig. 3D yields a 3D view of the living  

room. The Simulink model in Fig. 4 controls the virtual smart home. The main differ-

ence to model P300SingleCharacterFlash mode can be found in Control Flash Smart 

Home block. 
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Fig. 4. Simulink model gUSBampP300SmartHome for controlling the virtual environment. See 

text for the explanation of the different blocks. 

The Control Flash Smarthome block controls the experiment and highlights the 

corresponding icons randomly. It sends also an identifier ID-Flash of the flashing icon 

to the Signal Processing Smarthome block. Similar to the single character speller 

block the signal processing block generates a buffer for each icon and stores the in-

coming EEG data. Finally an LDA is used to classify the EEG data and to find the 

buffer closest to the trained P300 response. This classification result yields the icon 

that the subject mentally selected. This icon represents also the control command for 

the virtual environment and the command is sent via a the Sockets SmartHome block 

to the XVR smart home representation on a separate PC. Then the next icon can be 

selected by the subject. For offline analysis the time of the Flash onsets and the Target 

icon is stored for training of the LDA classifier.  

3   Results 

3.1   Single Character Study 

From all sessions done by the 38 subjects, 55% of the subjects could use the SC 

speller immediately with 100% accuracy. This means all 5 characters of ‘LUCAS’ 

were written correctly. In 76% of the sessions the subjects had only 1 mistake. It must 

be noted that this is an on-line results and not a cross-validation result. Only in 2.5% 

of the sessions the subjects were not able to spell a single character correctly. All 

subjects participated also in a RC study. Results from a RC to SC speller comparison 

and results from an accompanying questionnaire will be published elsewhere. So the 

overall accuracy was > 80%. 

3.2   Virtual Smart Home Study 

Table 2 displays the results of the 3 subjects for the 3 parts of the experiment and for 

the 7 control masks. Interestingly, the light, the phone and the temperature mask were  
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Table 1. Percentage of sessions which were classified with certain accuracy. Results based on 

data from 38 subjects for the single character speller are depicted. 

Classification 

Accuracy in 

[%] 

Percentage of 

Sessions 

[N=38] 

100 55,3 

80-100 76.3 

60-79 10.6 

40-59 7.9 

20-39 2.6 

0-19 2.6 

average 

accuracy of all 

subjects 

82 

Table 2. Accuracy of the BCI system for each part and control mask of the experiment for all 

subjects 

Mask  Part1 Part2 Part3 Total 

Light 100% 100% 100% 100% 
Music - 89,63% - 89,63% 
Phone - 100% - 100% 
Temperature 100% - - 100% 
TV 83,3% - - 83,3% 
Move 88,87% - 93,3% 91,1% 
Go to 100% - 88,87% 94,43% 

controlled by 100 % accuracy. The Go to mask was controlled with 94.4 % accuracy. 

The worst results were achieved for the TV mask with only 83.3 % accuracy. 

Table 3 displays the number of symbols for each mask and he resulting probability 

that a specific symbol flashes up. If more symbols are displayed on one mask, then 

the probability of occurrence is lower resulting in increased amplitudes of the P300 

responses which should be easier to detect. The flashes column shows the total num-

ber of flashes per mask until a decision is made. The translation time per character 

that is longer if more symbols are on the mask. 

Table 3. Number of symbols, occurrence probability per symbol, number of flashes per mask 

(e.g. 25 x 15 = 375) and conversion time per character for each mask 

Mask Symbols Propability Flashes Time per character [s] 

Light 25 4 375 33.75 

Music 50 2 750 67.50 

Phone 30 3.3 450 40.50 
Temperature 38 2.6 570 51.30 
TV 40 2.5 600 54.00 
Move 13 7.7 195 17.55 
Go to 22 4.5 330 29.70 
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4   Discussion 

4.1   Single Character Study 

This study showed that the P300 spelling device works with a very high accuracy 

after only 5 minutes of training. 72.8 % of the subjects were able to spell immediately 

with 100 % accuracy with the RC speller. This can be compared to an earlier study 

performed with 99 subjects and motor imagery in Graz [13]. The subjects had to 

imagine left and right hand movement (20 times each) to move a cursor on the screen 

to the corresponding side.  Then the BCI system was trained on this EEG data (re-

corded from positions C3 and C4). The training time was also around 6 minutes  

and the recursive least square or band power estimation in predefined frequency 

bands with LDA were used for classification. 6.2 % were able to reach accuracy  

between 90 - 100 % as shown in Table 2. This is well below the P300 results achieved 

in this study. Of course the motor imagery BCI worked only with 2 bipolar deriva-

tions compared to 8 EEG electrodes for the P300 experiment, but the assembly time is 

almost equal. 

4.2   Virtual Smart Home Study 

The P300 based BCI system was successfully used to control a smart home environ-

ment with accuracy between 83 and 100 % depending on the mask type. The differ-

ence in accuracy can be explained by the arrangement of the icons.  

However, the experiment yielded 3 important new facts: (i) instead of displaying 

characters and numbers to the subject also different icons can be used, (ii) the BCI 

system must not be trained on each individual character, (iii) from all experiments a 

grand average classifier was built and tested in selected subjects. In contrast to motor 

imagery BCIs were the system must be retrained every time it is used, the P300 ap-

proach can use a standard classifier. The BCI system was trained with EEG data of 

the spelling experiment and the subject specific information was used also for the 

smart home control. This allows using icons for many different tasks without prior 

time consuming and boring training of the subject on each individual icon. This re-

duces the training time in contrast to other BCI implementations were hours or even 

weeks of training are needed [1, 2, 3]. This reduction in training time might be impor-

tant for locked-in and ALS patients who have problems with the concentration over 

longer time periods. The P300 concept works also better if more items are presented 

in the control mask as the P300 response is more pronounced if the likelihood that the 

target character is highlighted drops down [4]. This results of course in a lower  

information transfer rate, but enables to control almost any device with such a BCI 

system. Especially applications which require reliable decisions are highly supported. 

Therefore the P300 based BCI system enables an optimal way for the smart home 

control. The virtual smart home acts in such experiments as a testing installation for 

real smart homes. 

Also wheelchair control, which many authors identify as their target application, 

can be realized with this type of BCI system in a goal oriented way. In a goal oriented 

BCI approach it is then not necessary e.g. to move a robotic hand by thinking about 

hand or foot movements and controlling right, left, up, down commands. In a more 
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natural way humans just think “I want to grasp the glass” and the real command is 

initiated by this type of BCI implementation. 
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Abstract. This study extends our previous work on mobile & wireless EEG ac-

quisition to a truly wearable and wireless human-machine interface, NCTU 

Brain-Computer-Interface-headband (BCI-headband), featuring: (1) dry Micro-

Electro-Mechanical System (MEMS) EEG electrodes with 400 ganged contacts 

for acquiring signals from non-hairy sites without use of gel or skin preparation; 

(2) a miniature data acquisition circuitry; (3) wireless telemetry; and (4) online 

signal processing on a commercially available cell phone or a lightweight, 

wearable digital signal processing module. The applicability of the NCTU BCI-

headband to EEG monitoring in real-world environments was demonstrated in a 

sample study: cognitive-state monitoring and management of participants per-

forming normal tasks. 

Keywords: Dry electrodes, brain computer interface, mobile and wireless EEG. 

1   Introduction 

Electroencephalogram (EEG) is a powerful non-invasive tool widely used by for both 

medical diagnosis and neurobiological research as it provides high temporal resolu-

tion in milliseconds. Another important advantage of EEG is that it involves sensors 

light enough to allow near-complete freedom of movement of the head and body, 

making EEG the clear choice for brain imaging of humans performing normal tasks in 

real-world environments [1]. However, the lack of portable and user-acceptable (e.g., 

comfortably wearable) sensors and miniaturized supporting hardware/software to 

continuously acquire and process EEG has long thwarted the applications of EEG 
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monitoring in the workplace [2]. Recently, we developed and tested a prototype four-

channel mobile and wireless EEG system incorporating a miniature data acquisition 

(DAQ) circuitry and dry Micro-Electro-Mechanical System (MEMS) electrodes with 

400 ganged contacts for acquiring signals from non-hairy sites without use of gel or 

skin preparation [2-4]. This study extends our previous work, NCTU BCI-cap [2-4], 

to a smaller, lighter, wearable & wireless brain-computer interface (BCI), NCTU 

BCI-headband. The NCTU BCI-headband features: (1) disposable dry MEMS elec-

trodes; (2) an 8-channel DAQ unit; (3) wireless telemetry and (4) real-time digital 

signal processing (DSP) implemented on a commercially available cell phone or a 

digital signal processing module. The applicability of the NCTU BCI-headband to 

EEG monitoring in operational environments was demonstrated by a sample study: 

cognitive-state monitoring and management of participants performing normal tasks 

in real-world environments.   

2   Wearable and Wireless Brain-Computer Interface  

Figure 1 shows the system diagram of the mobile and wireless brain-computer inter-

face. The front-end unit integrates (1) clip-on electrode holders for dry MEMS or 

commercially available wet EEG electrodes, (2) a DAQ unit, and (3) wireless-

transmission circuitry, into a quickly and easily donned and doffed headband that can 

acquire and transmit EEG signals from up to eight channels. The back-end unit inte-

grates a wireless signal receiver and on-line DSP. EEG signals are first acquired by 

dry MEMS or commercially available electrodes, amplified by the preamplifier, con-

verted to digital signals, and then wirelessly transmitted to the data receiver. The DSP 

unit processes the EEG data and displays the results. The raw EEG data can also be 

wirelessly transmitted to a remote PC for further offline analysis and/or database 

collection. 

 

Fig. 1. System diagram of a wearable and wireless brain-computer interface 
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2.1   Dry MEMS Electrodes and Electrode Holders 

We previously explored the use of MEMS technology to build a silicon-based spiked 

electrode array or so-called dry electrode, to enable EEG, EOG, ECG, and EMG 

monitoring without conductive paste or scalp preparation [2-4]. However, the connec-

tors between the dry sensors and DAQ board were not very robust in the BCI-cap.  

This study incorporated snap-on electrode holders to house dry electrodes or commer-

cially available EEG sensors. Fig. 2B shows the snap-on connector.  

2.2   Data Acquisition Unit 

The data acquisition unit integrated an analog preamplifier, a filter, and an analog-to-

digital converter (ADC) into a small, lightweight, battery-powered DAQ. EEG signals 

are sampled at 512Hz with 12-bit precision, amplified by 6000 times, and band-pass 

filtered between 1 and 50 Hz. Fig. 2A shows the block diagram of the DAQ unit. Fig. 

2B shows the DAQ unit for each electrode (20mm x 18mm PCB ‘node’). To reduce 

the number of wires for high-density recordings, the power, clocks, and measured 

signals are daisy-chained from one node to another with bit-serial output.  That is, 

adjacent nodes (electrodes) are connected together to (1) share the power, reference 

voltage, and ADC clocks, and (2) daisy chain the digital outputs. 

 (B) 

  

(A) 

 

(C) 

 
(D) 

     

Fig. 2. (A) Block diagram of the data acquisition unit, (B) the DAQ unit for each electrode, (C) 

the wireless transmission unit, and (D) the integrated circuits of the NCTU BCI-headband 
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2.3   Wireless Transmission Unit 

The wireless-transmission unit consisted of a wireless module and a micro-controller. 

It used a Bluetooth module to send the acquired EEG signals to a custom real-time 

DSP unit described below or a Bluetooth-enable cell phone which was used as a real-

time signal-processing unit. The dimension of the wireless transmission circuit was 40 

x 25 mm
2
 (as shown in Figure 2C). Figure 2D shows a picture of the integrated 4-

channel wireless EEG system. A reference and a ground channels were also included 

in the system (not shown). The integrated circuitry can be embedded into a headband, 

NCTU BCI-headband, as shown in Figure 3. The power-consumption of the NCTU 

BCI-headband is very low (a 1100 mAh Li-ion battery can last over 33 hours).  

    
 

Fig. 3. A picture of the wearable & wireless EEG system, NCTU BCI-headband. It comprises 

4- or 8-channel snap-on electrode holders (plus a reference and a ground channels), miniature 

bio-amplifier, a bandpass filter, an ADC and a Bluetooth module. All channels were referred to 

the left mastoid. 

2.4   Real-Time Digital Signal Processing Unit 

To be practical used in operational environments, the signal processing unit must be 

light-weight, portable, low-power, and have on-line data receiving and real-time sig-

nal processing function. Therefore, this study designed and developed a real-time 

digital signal processing unit which used a Bluetooth module to receive the acquired 

EEG signals from the NCTU BCI-headband and process the EEG signals via its core 

processor in near real-time. The core processor is the Blackfin processor (Analog 

Device Incorporation, ADSP-BF533) which provided a high performance, power-

efficient processor choice for demanding signal processing applications. The dimen-

sion of the miniature DSP unit is about 65 x 45 mm
2
 (as shown in Figure 4). 

The maximum high processing performance of the BF533 core processor can reach 

600MHz. Furthermore, the following peripheral modules were also incorporated in 

the unit.  

• SD RAM and FLASH memory 

• RS-232 serial interface 

• Six keypads and a LCD panel (240 by 320 pixels) 

• JTAG interface for debug and FLASH programming 
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(A)   (B)    (C) 

   

Fig. 4. Real-time digital signal processing unit.  (A) Front panel houses an ADI BF533 proces-

sor and six keypads, (B) Back panel houses a SD card adapter, a Bluetooth module and a USB 

module, (C) A LCD is mounted on the frontal panel of the DSP unit to display the received raw 

data or the results of DSP. 

• Bluetooth module 

• USB chargeable and programming module 

2.5   Data-Logging and Digital Signal Processing on a Cell Phone 

To demonstrate the application of the wearable & wireless BCI during long and rou-

tine recording in operational environments, we have developed and installed a data-

logging Java graphical user interface (GUI) on a Bluetooth-enable cell phone. The 

Java program receives EEG signals from the NCTU BCI-headband and plots them on 

the LCD screen. We have also implemented power spectrum density (PSD) estima-

tion using a 512-point Fast Fourier Transform (FFT) on the cell phone.  

3   Testing of Nctu Bci-Headband 

3.1   Comparison between the NCTU BCI-Cap and BCI-Headband  

Lin et al. [2] reported a 4-channel BCI-cap which measured EEG and transmitted it to 

a commercially available DSP kit by Texas Instruments. This study extended the EEG 

recording system into a truly mobile brain-computer interface which acquired and 

processed EEG signals in near real-time. Table 1 compares the specifications and 

features of the BCI-cap and those of the BCI-headband. It is evident that, compared to 

BCI-cap, BCI-headband is lighter, smaller, more power-efficient and accommodates 

more channels with higher sampling rate and digitization precision. 

3.2   Real-Time Alertness Monitoring Using NCTU BCI-Headband and a Cell 

Phone 

Lin et al. [2, 5] recently demonstrated the feasibility of using dry MEMS EEG elec-

trodes, supporting hardware and commercially available TI DSP kit to continuously 

and accurately estimate the driving performance (putative drowsiness level) based on 

EEG data from four frontal non-hairy positions in a realistic VR-based dynamic driv-

ing simulator. This study implemented the cognitive-state monitoring algorithm on a  
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Table 1. Comparison between the NCTU BCI-cap [2] and BCI-headband 

  

NCTU BCI-cap [2] 

 

NCTU BCI-headband 

 

Dimension (mm) 
 

46 x 66 mm2 

    
DAQ: 20 x 18 mm2 (4 pieces) 

 
Wireless Unit: 40 x 25 mm2 

Weight 185 g < 100 g 

Precision 8 bit 12 bit 

Sampling Rate 200Hz 512Hz 

Bandpass Filter 1 - 50 Hz 

Gain 5000 times 6000 times 

Output Current 480 mA 31.58 mA 

Battery Life 

(3.7V, 1100mAh) 
3-4 hours 33-34 hours 

 
Bluetooth-enable cell phone that received EEG signals and processed them with the 

on-board processor. The cell phone delivered arousing feedback when the participants 

were drowsy. Figure 5A shows the flowchart of the signal processing implemented on 

the cell phone. Figure 5B shows the evident alpha activities when the subject was 

drowsy. We have also developed a user-friendly GUI (the pie chart in Figure 5C) to  

 
                    (A)        (B) 

        

Fig. 5. (A) The flowchart of signal processing on a cell phone, (B) Four-channel EEG signals 

were displayed on the cell phone. Alpha rhythm became evident when the subject was drowsy. 

(C) A custom GUI of BCI-based cognitive-state monitoring on a cell phone. 
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(C) 

 

Fig. 5. (continued) 

continuously track and display the cognitive states of the subject. When the subject 

was alert, the whole pie chart was blue. As the subjects became more and more  

drowsy, wedges of the pie chart changed from blue to red, increasing the red area as 

the subject became drowsier. When the subject became very drowsy, the whole pie 

chart became red and the warning set off. 

4   Conclusions 

This study demonstrated a truly portable, lightweight, and readily wearable brain-

computer interface that featured dry MEMS electrodes and a miniaturized DAQ, 

wireless telemetry and online signal processing. The main goal of the design and 

development of wearable and wireless BCI is to maximize their wearability, uncon-

strained mobility, usability and reliability in operational environments. In this study, 

the signal-processing module and the Bluetooth-enable cell phone were programmed 

to assess fluctuations in individuals’ alertness and capacity for cognitive performance 

based on the EEG signals. The BCI delivered arousing feedback to the driver to main-

tain optimal performance. The cell phone and DSP unit, however, can be programmed 

for many other brain-system interface applications. We expect that a truly portable 

and user-acceptable BCI will have enormous future impacts on clinical research and 

practice in neurology, psychiatry, gerontology, and rehabilitation medicine. 
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Abstract. Current brain-computer interface (BCI) research attempts to estimate 

intended operator body or cursor movements from his/her electroencephalo-

graphic (EEG) activity alone. More general methods of monitoring operator 

cognitive state, intentions, motivations, and reactions to events might be based 

on continuous monitoring of the operator’s (EEG) as well as his of her body 

and eye movements and, to the extent possible, her or his multisensory input. 

Joint modeling of this data should attempt to identify individualized modes of 

brain/body activity and/or reactivity that appear in the operator’s brain and/or 

behavior in distinct cognitive contexts, if successful producing, in effect, a new 

mobile brain/body imaging (MoBI) modality. Robust MoBI could allow devel-

opment of new brain/body-system interface (BBI) designs performing multidi-

mensional monitoring of an operator’s changing cognitive state including their 

movement intentions and motivations and (‘top-down’) apprehension of sen-

sory events. 

Keywords: cognitive monitoring; electroencephalography (EEG); motion cap-

ture; independent component analysis (ICA); brain-computer interface (BCI), 

mobile brain/body imaging (MoBI); human-computer interface (HCI). 

1   Introduction 

Over the last decade there has been an explosion of interest in using EEG to monitor 

selected movement intentions of an operator trained to produce changes in the  

amplitude of one or more EEG measures that are mechanically associated by a  

brain-computer interface (BCI) system with two or more intended external actions 

(in simplest form, moving a screen cursor up or down). BCI research was first 

funded to construct systems allowing communication by a relatively few cognitively 

intact but totally paralyzed or ‘locked-in’ subjects though, naturally, first exploratory 

phases of BCI research use normal test subjects. To insure the possibility that the 

methods developed in these phases might be usable by the target locked-in subjects, 

it was important to establish that the EEG changes used to detect movement inten-

tions were not based on non-brain contributions to EEG signals recorded on the 

scalp, e.g., activity arising from subject eye movements or scalp muscle activities. 

Thus, for many researchers the BCI concept became identified with the goal of using 

‘pure’ EEG, apart from non-brain ‘artifacts,’ to convey and decipher a subject’s 

stereotyped cursor (or body) movement intentions.  
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The goal of providing a useful, non-invasive communication system for ‘locked-in’ 

subjects is surely laudable, and actual demonstrations that both a few ‘locked-in’ and 

many normal subjects can communicate (albeit quite slowly) via learned control of 

their macroscopic brain activity patterns, without involvement of direct motor control, 

are novel and intriguing. However, unnecessary adherence to this limited BCI goal 

could slow development of more general classes of human-system interfaces involv-

ing continuous monitoring of non-invasively recorded brain activity.  

1.1   Unexplored Problems in BCI Research 

As a new subject, at least four fundamental questions about the operation, limitations, 

and effects of EEG-based BCI operation remain unexplored: 

1. Key obstacles to widespread acceptance and application of non-invasive EEG-

based BCI systems are the need for a long training regimen, and the failure of a 

significant fraction of subjects to achieve stable, non-invasive BCI control even af-

ter intensive training. Finding specific reasons for these difficulties, and methods 

around them, are fundamental if BCI or more general ‘neurotechnology’ or ‘neuro-

ergonomic’ HCI research is to have broad applications. 

2.  When a subject in a BCI experiment learns to move a computer screen cursor by 

increasing or reducing the amplitude of a selected brain rhythm – whether a mu 

rhythm, near-DC potential, or other phenomenon – what ‘body part’ (or brain sys-

tem) do they use to willfully effect the modulation? While this is a fundamental is-

sue for BCI research, it is one that has so far been nearly ignored.  

3. Although achieving volitional control of a BCI system through EEG modulation 

alone is an intriguing goal, more general questions for HCI systems involving EEG 

monitoring are how to combine EEG analysis with concurrent recording and analy-

sis of subject behavior, eye and muscle activities, and multisensory input to moni-

tor and adapt to changing human cognitive state, intent, and reactivity. 

4.  Another relatively unexplored question is whether there are psychobiological ef-

fects of training and performing volitional control of natural brain rhythms. These 

effects might either be phasic (affecting the operator only during BCI operation) or 

tonic (also affecting their behavior and/or brain activity at other times); they might 

be positive (for example producing a useful strengthening of attentional control), or 

negative (some unforeseen consequence of disrupting natural, non-conscious 

modes of dynamic brain regulation).  

All these questions should and must eventually be addressed by the advancing 

fields of human neuroscience and neurotechnology. This paper discusses a general 

plan of approach to the first three questions above – How can learning of EEG-based 

volitional control be made quicker and more universal? What EEG modulatory sys-

tems do successful BCI subjects use to learn and to effect volitional control of their 

EEG activity? And, how can EEG be combined with other information about operator 

behavior and sensation to allow human-system interactions to estimate and use infor-

mation about operator mental state and cognitive reactions to events? 
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1.2   EEG Modulation 

EEG dynamics have long been characterized by their diverse spectral profiles. For 

example, slow semi-rhythmic activity is characteristic of EEG in deep sleep, while 

awake/alert EEG contains more high-frequency activity. Narrow-band brain rhythms 

appear most predominantly in the (8-12 Hz) alpha band, but also at somewhat higher 

and lower frequencies. Spectral modulations of EEG activity at lower and higher fre-

quencies affect broader frequency bands. A considerable (if insufficient) amount is 

known about several brain systems that modulate the spectrum of local field activity 

in the brain’s cortex, the brain source of most scalp-recorded EEG. A number of these 

systems are the brainstem-centered ‘evaluation’ systems labeled by the specific neu-

rotransmitter they project quite widely (acetylcholine, dopamine, norepinephrine, se-

rotonin, or etc.). However, evidence for the involvement of these or other systems in 

successful BCI control has not been presented. 

1.3   Mobile Brain/Body Imaging (MoBI) 

The fundamental purpose of the brain is to control behavior or more exactly, to opti-

mize the outcome of behavior – maximizing its ensuing rewards and/or minimizing 

ensuing penalties as per subject purposes, needs, and desires. It is now possible to 

record brain activity at relatively high bandwidth – a Mbit/sec or more of EEG, MEG, 

BOLD, single-cell spike/field data, etc. Surprisingly, however, there has been little 

serious effort to concurrently record the behavior the brain is controlling with any-

thing near the same bandwidth. In human brain experiments, behavior is most often 

recorded only in the form of a sparse series of minimal finger button presses – giving 

an effective rate of behavioral data collection near 1 bit/sec. Simply from this 

~1,000,000:1 mismatch, it is no wonder that recent progress in human psychophysiol-

ogy has been relatively slow. 

The obvious remedy for this oversight is to simultaneously record as much behav-

ioral information as possible in paradigms including some range of natural behavior. 

It should be desirable to record as wide and natural a range of behavior as possible, in 

as physically free and natural a behavioral environment as possible. Currently, this 

goal can only be approached only using EEG brain imaging, since its sensors, alone 

among current high-bandwidth brain imaging modalities, are light enough that its 

recording does not require major restriction on subject head or body movements.  

Recently, I have proposed the combination of wearable, high-density EEG and 

body motion capture (combined, ideally, with eye gaze and audiovisual scene re-

cording) may constitute a new brain imaging modality, ‘Mobile Brain/Body Imaging’ 

or MoBI [1]. Once successfully developed and demonstrated, MoBI could allow, for 

the first time, the study of macroscopic brain dynamic patterns supporting natural and 

naturally motivated actions (and interactions) in normal 3-D environments. 

A key first problem to be overcome in realizing the promise of mobile brain imag-

ing is the problem of separating the activities of brain EEG sources from non-brain 

artifacts, particularly head and neck muscle activities and artifacts induced in the EEG 

by eye movements. A workable solution to this problem, at least, is the introduction 

of independent component analysis (ICA) of EEG data [2-6]. Under favorable cir-

cumstances, ICA cleanly separates brain and non-brain data source activities that are 



752 S. Makeig 

mixed by volume conduction in scalp EEG recordings, a process for which much 

open-source software is now available [7]. A second problem is to model the muscu-

lar forces producing the observed motor behavior; for this, open-source biomechani-

cal modeling software is also becoming available [8]. Finally, adequate statistical  

signal processing or machine learning methods are required to discover dynamic links 

between concurrent brain source activities, muscle activations, and other classes of 

MoBI data. 

Supposing the near-future availability of viable MoBI recording and analysis 

methods, we can ask how the concept of BCI can be expanded to consider brain/body 

interface (BBI) designs that acquire and continuously update information about the 

cognitive state, reactions, intentions, and motivations of the system operator from 

joint MoBI recording. 

2   Brain/Body Interface (BBI) Methods 

For a BBI system to be maximally effective, it would seem wise to consider and test 

two design principles:  

a) To best understand the complex associations of ongoing multidimensional 

changes in EEG dynamics with cognitive state, perceptual events, and movement 

intentions and motivations, the analysis should both observe and take into ac-

count the subject’s movements (including limb, body, and eye movements), and 

any other available physiological signals. In other words, to optimally model 

brain activity it is important to take in to account, as much as possible, the behav-

ior the brain is controlling. This suggests the potential importance of the devel-

opment of concurrent brain/body imaging recording and analysis, as in the MoBI 

concept. 

b) The information about cognitive state and action motivations and intentions that 

may be most robustly decoded from joint EEG and behavioral information should 

concern distinctions between circumstances and events in which EEG dynamics 

exhibit spontaneous differences. In particular, it is likely that learned control of 

EEG signals will be most successful when the learned repertoire of EEG modula-

tions used to decode subject control intentions are identical or close to the sub-

ject’s repertoire of spontaneous EEG modulations.  

The identified EEG dynamics used in BBI monitoring and control may either index 

brain dynamics that play supporting roles in these circumstances, or their cortical 

source activities may also play a direct role in shaping the joint timing of distributed 

neural activities, a concept that is gradually being re-introduced into neuroscience by 

new evidence and by theoretical considerations of the utility of mass action in the 

central nervous system for controlling behavior and its outcomes. 

2.1   EEG Modulators 

Standard methods for analyzing EEG data are based on averaging measures of EEG 

dynamics across trials or time windows, thereby collapsing the continuously time-

varying signals into a average representation of activity time-locked to one or more 
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classes of events. Further, most EEG analyses focuses on the individual scalp channel 

signals, though they are each differently weighted mixtures of many brain and non-

brain source signals. Independent component analysis attempts to locate discrete 

sources of information in multidimensional data in which several independent infor-

mation streams are linearly mixed in sensor data. However, the spectrum of each 

identified brain source component signal, like every recorded scalp signal, varies  

irregularly over time. Standard methods for analyzing either independent component 

or scalp channel signals during a period of continued subject task performance  

typically model the exhibited variability as noisy deviations from a stable mean spec-

trum or stable event-related spectral perturbation (ERSP) time/frequency mean, varia-

tion noise in which spectral power at each frequency is implicitly assumed to vary 

independently.  

An alternate approach assumes that the observed power spectral variability sums 

variations in several to many modes of spectral variability (and co-variability) that are 

characteristic of the component source process. Earlier, we introduced the device of 

converting component spectrograms to log power while positing that the motive force 

behind these modal modulations are processes that modulate spectral activity multi-

plicatively, at characteristic frequencies, with independent or near-independent time 

courses or effect distributions across trials [9]. Recently, we have tested the use of 

ICA decomposition the ongoing log power spectrograms of a number of independent 

component processes from single subjects performing eyes-closed imagination exer-

cises
1
. Log spectral decomposition separated second-to-second variations in the log 

spectrogram into a log sum of multiplicative modulator processes, each with a fixed 

spectral and spatial component effect template whose effect on the affected spatial 

component log spectra is determined by multiplication by a single log amplitude time 

series. This approach gave a number of interesting results including alpha band proc-

esses at different frequencies plus harmonics, broader beta and theta band processes, 

and very broadband shifts in power distribution.  

We have also experimented with adding information to the analysis about the time 

locking and other experimental events and the context in which they occur. The goal 

of this analysis approach is to avoid so far as possible the method of planned compari-

sons, the basis for most experimental data analysis, in which measures for pairs of 

conditions are compared, each measure an identically weighted average of measure-

ments characterized by one (or sometimes more) key variable value.  

For example, there have been thousands of EEG studies that compared the average 

responses (typically called ‘P300’) to ‘target’ and ‘non-target’ stimuli in a simple at-

tention task. The underlying assumption here is that the brain emits identical re-

sponses to each ‘target’ or ‘non-target’ stimulus, respectively, regardless of the local 

event context. The hope is that the effect of the ‘target/non-target’ variable is separa-

ble from other variables, and essentially stable across time. Unfortunately, this is not 

the case. P300 ‘target’ responses vary widely in amplitude and scalp distribution from 

trial to trial, and this type of variability limits the performance of simple BCI systems, 

for example one that might attempt to set a fixed threshold to identify the appearance 

of a ‘target’ response, regardless of event context [10].  

                                                           
1 Onton, J. and Makeig, S., unpublished data. 
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I propose that BBI research explore an alternative approach in which multiple 

characteristic relationships between EEG dynamics and single events in context are 

determined directly from the joint EEG, stimulus, and behavioral data. Some facts 

concerning the nature of individual events may be available to at BBI system in real 

time, for example the moment and screen on which a piece of information is pre-

sented, or the screen to which the subject is directing their gaze.  

An example of an unavailable context variable might be the interpretation of the 

subject of a visual event as representing a challenge or threat. In pilot data recorded to 

build an individualized (or collective) BBI model, the level of threat could be varied 

systematically and the level of perceived threat might be estimated from the subject’s 

brain and behavioral responses. In subsequent real-time operation, other variables 

defining the current event and event context may be available from the system event 

log and subject behavioral record.  

Combined with direct observation of the EEG and subject motor behavior, these 

available context variables, combined, may allow estimation of the unavailable vari-

able – here, whether and to what extent the subject perceives a visual event to signal a 

threat to the operation of the system. This information might be used to immediately 

deploy available additional countermeasures whenever a genuine perceived system 

threat is estimated to occur, or possibly to monitor the state of responsiveness of the 

subject when false indications of (test) threats are delivered to the subject, probing 

their advancing level of expertise in recognizing a threatening event, or for estimating 

their current cognitive fitness for duty. 

If the system response to the operator’s appraisal of a threatening event helps the 

operator mount an adequate and timely response, then the system response will serve 

as a powerful reward, and naturally over time and use the operator’s EEG pattern 

should be expected to adapt to give a more distinct perceived-threat signal to the sys-

tem. Thus, a natural cognitive response monitoring system could easily become an 

interactive learned BCI/BBI system. Further, it is natural to hypothesize that when the 

system is based on the operator’s natural brain response modes, it may also be natural 

and relatively easy for the operator to learn to produce the EEG patterns that are most 

distinctly and reliably detected by the system. 

Fig. 1 gives the gist of the concept in graphic form. Three types of MoBI data may 

be recorded concurrently to run a brain/body interface (BBI): high-density EEG data, 

behavioral data, and context data (event information, event, EEG, and behavioral his-

tory, etc.). Standard BCI systems (dotted arrows) attempt to estimate some parameter 

of the behavioral and/or event/context data directly from the scalp EEG using a ma-

chine learning approach. In the proposed BBI model (wide light blue arrows), the 

EEG data are first separated into cortical (and non-brain) EEG source processes (thin 

blue arrows), the spectral modulator processes operating on these source processes 

are estimated from the EEG source data, and the linkage of the EEG source and 

source modulator processes to the behavioral and/or event/context data are deter-

mined. When one or more parameters of the event/context data are unavailable (e.g., 

in real-time operation), any of the available MoBI data may be used in a BBI to esti-

mate the unavailable parameter. The estimation process might be designed to perform 

well even when additional data variables are missing. The MoBI data used for this 

estimation might include available behavioral data (body motion capture, eye gaze 

tracking, etc.) and event/context information as well as EEG dynamics. 
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Fig. 1. Schematic model diagram for a non-invasive brain/behavior system interface (BBI) 

design. Concurrent scalp EEG, behavior, and event/context data are collected in a Mobile 

Brain/body Imaging (MoBI) paradigm (thick ovals). In most currently proposed BCI systems 

(dotted arrows), selected EEG data are processed in near-real time to estimate or predict some 

behavioral or event/context parameter (‘BCI’). In the proposed BBI, the EEG data are first 

separated into cortical EEG source processes (upper middle oval) (plus non-brain artifact proc-

esses, not shown). Then the time/frequency behaviors of the source processes are further sepa-

rated into effects of a number of maximally distinct EEG source modulator processes (upper 

right oval). In the BBI model, both selected EEG time-domain source and frequency-domain 

source modulator data may be integrated with the behavioral and other event/context data  

to estimate or predict selected behavioral and/or event/context parameters (broad light blue 

arrows). 

3   Discussion 

The model of an EEG-based BBI system shown in Fig. 1 has the advantage of involv-

ing volitional control of spatiotemporal EEG dynamic patterns most specifically asso-

ciated with the operator’s spontaneous EEG responses in the targeted event categories 

[11]. While it is natural to hypothesize that strengthening and controlling spontane-

ously active EEG patterns may be more easily and quickly learned, this assumption 

may prove incorrect in some or many cases, and thus basic experiments (and adequate 

analyses) are needed to test it. Earlier, we showed that applying even highly over-

learned BCI control of a single pre-defined EEG feature may involve complex and 

asymmetric EEG changes in and among many cortical regions [12]. Thus, gaining a 

basic understanding of the nature and learning of volitional EEG control may in many 

cases prove to be a complex and difficult process. 

How may we determine which brain modulatory systems are involved in spontane-

ous and learned control of particular EEG or behavioral/EEG dynamics? A full an-

swer to this question may require invasive experiments (potentially involving patient 

volunteers who have been implanted with cortical electrodes for clinical purposes), 

positron emission tomography (PET) experiments that can assess neurotransmitter 

distributions in the brain, various psychopharmacological manipulations, combined 

with carefully selected behavioral paradigms, for example those directly manipulating 
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reward levels known to be linked to dopamine release [13]. However, a number of 

brain modulatory systems may be involved in most state changes and event responses 

of interest, so this investigation should be expected to be involved. 

A possible objection to the model shown in Fig. 1 is that if an adequate BCI func-

tion linking the recorded EEG signal to the target behavioral or event/context parame-

ter(s) of interest proves to be linear, then constructing a more elaborate BBI function 

linking EEG data first to EEG sources, then to their natural modes of spectral modula-

tion, and finally to the estimated event/context or behavioral measure may not give a 

better-performing estimator. The proposed EEG source modulator model, however, is 

nonlinear as it operates on source (log) power spectra. Linear or other functions of the 

estimated source and source modulator time courses, therefore, involve additional 

information and might well have advantages over direct (and particularly, linear) BCI 

estimation. However, use of power spectral estimates ignore source signal phase and 

with it, precise latency information available in the time-domain data. Thus, applying 

a joint linear (or other) estimator to combine time-domain and time/frequency-domain 

data could improve performance over a time-domain estimator alone. 

Recently Bigdely Shamlo and colleagues demonstrated a successful application of 

such an approach [14]. We reported a method for estimating the probability that a 

briefly presented visual image contained a rare target feature – an airplane feature in a 

stream of satellite ground images presented to the subject at a rate of 12 images per 

second. Near-real time performance in correctly detecting the presentation of single 

target-bearing images solely from high-density EEG (by combining source time-

domain and source spectral modulator information in a linear estimator) was high, 

giving an area under the ROC curve of over 90% for most subjects.  

Like most BCI projects, this project did not expressly capture subject behavioral 

information. However, it did allow use of maximally independent EEG sources cap-

turing potentials induced by characteristic subject eye gaze behavior following target 

appraisal, unlike BCI systems built to serve completely paralyzed subjects. Although 

the very rapid serial visual presentation (RSVP) did not reward normal saccadic eye 

movements, independent components accounting for eye movements following target 

perception was found to carry some target classification information (though of less 

value compared to several brain EEG source responses). 

The BBI model shown schematically in Fig. 1 does not propose a method for com-

bining EEG and behavioral data, in particular body motion capture data. This is a 

topic that both requires and deserves much attention and exploration. Of particular 

interest is to determine the extent to which it is desirable to solve the biomechanical 

inverse problem, estimating which muscle actions produce the observed sequence of 

body movements, before estimating links between EEG source activities, body 

movements, and operator mental state or reactions [8]. 

Finally, can the proposed MoBI-based BBI systems be practical for widespread 

application, or must they remain basic research tools? EEG spatial filtering requires 

the availability of a relatively high number of scalp EEG recording channels. Typi-

cally, BCI designers have attempted to maximize signal to noise ratio by restricting 

the number of channels used in the classifier, an approach that might also lower the 

cost of the system, if realized using currently available technology. To date, body 

motion capture (mocap) systems also remain quite expensive. Thus, can the proposed 

MoBI-based BBI systems become practical for routine application, even in (e.g.) 
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high-value military or civilian environments? Here, the rapid progress of electronic 

fabrication methods, allow microminiaturized data acquisition and processing  

units based on flexible thin-film technologies should allow development and rela-

tively low-cost deployment of wearable high-density EEG and behavioral monitoring 

systems within a few years [15]. Such systems should be readily applicable to some 

important problems, for example alertness monitoring of shift-work operators of  

high-value, high-risk systems [16]. Full realization of the MoBI-based BBI concepts 

discussed here will likely require a great deal more basic and applied research in 

many laboratories combining expertise in several fields of neuroscience, mathematics, 

and engineering. 
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Abstract. A Brain-Computer Interface (BCI) directly translates pat-
terns of brain activity to input for controlling a machine. The intro-
duction of methods from statistical machine learning [1] to the field of
brain-computer interfacing (BCI) had a deep impact on classification
accuracy. It also minimized the effort needed to build up the skill of con-
trolling a BCI system [2]. This enabled other fields of research to adapt
methods from BCI research for their own purposes [3, 4]. Team PhyPA,
the research group for physiological parameters of the chair for Human-
Machine Systems (HMS) of the Technical University of Berlin, focuses
on enabling new communication channels for HMS. Especially the use
of passive BCIs (pBCI) [3, 4], not dependent on any intended action of
the user, show a high potential for enhancing the interaction in HMS [5].
Additionally, as actual classification rates are still below the threshold
for efficient primary control [6, 7] in HMS, we focus on establishing a
secondary, BCI-based communication channel. This kind of interaction
does not necessarily disturb the primary mode of interaction, providing
a low usage cost and hence an efficient way of enhancement. We have
designed several applications following this approach. Here we are going
to present briefly the results from two studies, which show the capa-
bilities arising from the use of passive and secondary BCI interaction.
First, we show that a pBCI can be utilized to gain valuable informa-
tion about HMSs, which are hard to detect by exogeneous factors. By
mimicking a typical BCI interaction, we have been able to identify and
isolate a factor inducing non-stationarities with a deep impact on the
feature dynamics. The retained information can be utilized for automat-
ically triggered classifier adaptation. And second, we show that pBCIs
are indeed capable to enhance common HMS interaction outside the lab-
oratory. With this, we would like to feed back our experiences made with
the use of BCIs for HMS. We hope to povide new and useful information
about brain dynamics which might be helpful for ongoing research in
augmented cognition.
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1 Introduction

Consider the following situation: A user clicks on a file on her computer by
mistake. The computer processes the information and starts to open the cor-
responding application. But this takes some time. She immediately recognizes
her mistake and prepares to close the application right after it opens so that
she can continue her intended task. She feels distracted and helpless and her
feelings are accompanied by facial expressions and inner thoughts. How would it
be if the technical system could understand her mistake by analyzing selective
information of her, the user? Like humans do in face-to face communication, the
system would recognize the mistake almost as soon as one did it and adapt ac-
cordingly. This article describes our approach to integrate implicit information
into human-machine interaction.

Human-machine systems are defined as systems that integrate goal-oriented
cooperation of human beings and technical systems to fulfill a specific task. Re-
garding this definition, the user has to communicate with the system to execute
the given task. To do so the human has to interact with the system using some
interface. In most of today’s human-machine systems, this interface requires the
user to explicitly state his or her demands and wishes to the technical system.
This implies that once the command is set by the user the technical system
starts to process the command. The system is not able to detect to what extend
an action actually concurs to the users’ wishes because the system does not have
any means to get a real-time estimation of the situation and the user. To inter-
rupt, or end an erroneous action, the user can only issue another command to
the system. Current human-machine systems lack the ability to detect implicit
information as humans normally do in human face-to-face interaction.

Human-human interaction contains both explicit and implicit information.
Humans use both kinds of information to analyze a situation and this way,
two-way adaptation of behavior is possible, information gets exchanged and the
behavior in a group is regulated. In this context we define explicit interaction
as a conscious action to exchange information, for example language and script.
Implicit interaction can be defined as an unconscious action that is integrated
in another action, for example mimic and gesture. Because of the complexity of
humans, both kinds of information have to be analyzed and interpreted to judge
a situation and to choose an adequate action. Implicit interaction helps hu-
mans to understand situations and behavior and thereby helps to communicate
and cooperate with a wide range of different human beings in an efficient and
effective way.

For the development of new implicit information channels between human
and machine, accessing the human brain seems to be a very promising approach.
Methods from the field of Brain-Computer Interfaces (BCI), based on statistical
machine learning, have proven to be very successful for achieving this goal. A
BCI allows for direct access to cognitive states of the user, without the necessity
of any activity outside the central nervous system. The first idea of using brain
activity directly for communication comes from Vidal in the early 70s. First
steps into the field of application have been realized by Birbaumer and Wolpaw
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Fig. 1. Brain-Computer Interaction - Feedback cycle within the human-machine system
augmented by a BCI-based interpretation input. User states hardly inferable from
exogenous factors are estimated by the BCI and fed back into the technical part of the
system. The states can be handled as explicit or implicit commands.

in the 80s and 90s by building up support systems for patients suffering from
amyotrophic lateral sclerosis (ALS). The introduction of methods from statisti-
cal machine learning to BCI had a deep impact on classification accuracy - it
allowed for transferring the learning effort from the human being to the machine.
Hence, it minimized the effort needed to build up the skill of controlling a BCI
system. Additionally, it enabled other fields of research to adapt methods from
BCI research for their own purposes. When the focus is laid on the applicabil-
ity of BCI while interacting in typical human-machine system environments we
suggest to use the term Brain-Computer Interaction instead of Brain-Computer
Interface.

Team PhyPA, the workgroup for physiological parameters at the department
of Human-Machine Systems of the Technical University of Berlin, aims at the
combining the technologies from Brain-Computer Interfacing (BCI)[8, 9, 1] and
those from the context of Human-Machine Systems (HMS). Therefore, an in-
terdisciplinary team of mathematicians, psychologists and engineers works on
currently seven projects investigating non-stationarities, efficiency and general
applicability of feature extraction methods, single trial detection of motor and
non-motor patterns e.g. error-responses and defining support systems enhancing
HMS. As we focus on the applicability of BCI while interacting in typical HMS
environments we augment the field of Brain-Computer Interfaces to the field
of Brain-Computer Interaction (see fig.1). Therefore, we have developed several
tools allowing us to detect intended and non-intended user states and integrate
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them into existing and new HMS. We categorize the methods derived from BCI
research into active and reactive. By the term active BCI (aBCI) we denote BCIs
which utilize brain activity of direct correlates of intended actions as input. This
includes the detection of motor imagery or execution as well as the control over
slow cortical potentials. A reactive BCI (rBCI) is still controlled via intended
actions. In contrast to the aBCI features are not derived from direct correlates
to these actions, but from cognitive reactions on exogenic stimuli, as e.g. in the
P300 speller. The rBCI features seem to be more robust in general. This might
be due to the fact, that they usually depend on automatic processes of cognition
which are not as easily modulated by conscious processes. According to this line
of thought [3, 4], we now define passive BCI (pBCI). pBCIs are based not on
intended actions of the user, but instead on reactive states of the user’s cognition
automatically induced while interacting in the surrounding system. Hence, the
underlying features used by pBCIs are mostly independent of the primary mode
of interaction within an HMS, be it BCI based or not.

2 Methods

2.1 Specifications of Our BCI System and Experimental Design

2.1.1 BCI Structure
The PhyPA-BCI is a distributed system consisting of a Recording Unit, Feedback
Unit, Processing Unit and the EEG Equipment, managed by a C++ based
scriptable control software (MiniGUI). Signal processing, inference, etc. is done
using our MATLAB based BCI toolbox (PhyPA toolbox) and the user interface
is provided by a C++ based feedback generator. All parts of the system are
loosely coupled to each other and can run of separate machines. Consequently,
a highly controlled information flow is ensured. Stimuli and feedback can be
generated for visual, auditory and tactile output, and input can be received via
several modes such as keyboard and game controllers.

2.1.2 Recording
The EEG system has 32 channels of Ag/AgCl conventional (EasyCap) or
impedance optimized (ActiCap) electrodes. Signals are amplified by a BrainAmp
DC system and recorded by the BrainVision Recorder (BrainProducts). The
electrodes are distributed on standard 10/20 based caps with 128 positions. De-
pending on the type of experiment they are placed over according parts of the
cortex. Additionally, we record electrooculogram (EOG) for controlling feedback-
induced correlated eye movements, and electromyogram (EMG) on the relevant
limbs, for protocolling correlated movements. Both are bipolarly multiplexed by
a BrainAmp (ExG) system and derived with Ag/AgCl electrodes. In order to
retain information on exogenic factors, we also record ambient temperature and
noise level within the laboratory.
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2.1.3 Analyses
For enabling the technical system to detect different brain-states while they
apear, a classifier has to be trained. This is done by collecting sterotype data
(training data) for the to be distinguished classes and extract their statistical
properties in offline analyses. The offline evaluation followes a method known
from machine learning as cross-validation (CV) [10], in which a classifier is re-
peatedly trained and tested on disjoint trial sets. Out of the several data par-
titioning variants, such as randomized CV, blockwise or chronological CV, we
chose randomized 10x repeated 10-fold CV as it is the most widely used method
in the current BCI field. For the estimation of meta-parameters, e.g. for regu-
larization, we performed a 10x repeated 10x10-fold nested CV.

Common to all examined BCI algorithms are the following steps: First, the raw
EEG data for a trial is preprocessed in a strictly causal way. Then, a short feature
vector is extracted from the preprocessed data. Finally, a classifier is employed
to map from the feature vector to a binary decision value. Implementations
closely follow their cited reference descriptions. The CSP and SpecCSP methods
were successfully applied in several online control sessions in our lab e.g. via the
well-known basket paradigm (see video on www.phypa.org). The SCP algorithm
implementation was also validated in an upcoming online study.

The EEG features that enable the discrimination fall into two categories:
Event-Related Potentials (ERPs) features, and Event-Related (De)Synchroniza-
tion [11] (ERD/ERS, henceforth called ERD for brevity) features.

Classifiers are chosen from several linear (LDA, RDA, SVM) and non-linear
(kernel SVM, rQDA, GMM) methods. In all analyses presented subsequently,
(regularized) LDA was the best performing classifier and was therefore selected.
Significance statements are substantiated by standard T-Tests and F-Tests with-
out assumptions on the type of underlying distributions.

Table 1. Categorization of BCI Systems and their fields of of application

Type of BCI Based on features from Used for

Active intended generated cognition direct control
Reactive unintended changes in cognition by direct control,

voluntary focussing on exogenic stimuli brain switch
Passive unintended changes in cognition supporting systems,

induced by common interaction user-state detection

2.1.4 Experimental Design
The stimulus presentation in calibration phases before online feedback is de-
signed for providing high control over exogenous and correlating factors besides
the one of interest. This control is relaxed in certain online feedback sessions
to allow for a more realistic mode of interaction. Notice, that this decrement of
control might allow for a higher number of artifacts but does decrease the signal
to noise ratio. Subjects have been introduced to the main factor of investigation
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by an instructor. Experimental tasks have been presented in a standardized way
on the screen of the Feedback Unit. The course of the experiments contained
several breaks for relaxation and recovering of the subjects. Subjects gave in-
formation on their overall state and their impressions on different blocks of the
experiment by answering questionnaires. All subjects are from age 18 to 45 with
german as primary language. All groups of subjects are of balanced or selected
sex. After all sessions the subject has been paid (20 Euro).

2.2 The RLR Paradigm and Its Directed Restriction, the
RLR-Game

In the Rotation-Left-Right (RLR) paradigm [12] a stimulus on a starting po-
sition has to be rotated left- or rightwise (by a left or right key press) until
it corresponds to a given target figure. The stimulus is either the letter ”L”
or ”R”, indicating the direction of rotation. While the colour of the stimulus
is grey, it can not be rotated. However, every 1000 ms it changes into one of
three colours, indicating A) the possibility to be rotated by a keypress and B)
the degree of rotation. If the stimulus lights up in red, the stimulus will rotate
90 degree, if it is yellow 60 degree and if it is green 30 degree. Please notice,
that each rotation has to be triggered, which only can be done once per colour
change. The subject has to build up an efficient strategy for reaching the tar-
get: to rotate the starting stimulus as fast as possible on the target stimulus
without rotating too far. A derivate of the RLR paradigm is the RLR-Game,
defined in two modes (see figure 2): The first was restricted to standard states
and the second with additional error states. The standard states are restricted to
the colours green and red. The mapping of angles in the error states is directed
downwards, hence an error induces a smaller angle of rotation than indicated by
the colour. Goal of the game is to reach the target stimuli as fast as possible.
Two players can play against each other. Their performance is measured and
fed back in points. A player get a point when hitting the target earlier than his
opponent.

Fig. 2. States of the RLR-Game, rules for rotation in correct and error mode
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3 Experimentel Setups

3.1 A pBCI for Retaining Interaction Relevant Endogenous
Information

3.1.1 Motivation
Shifting BCI applications from laboratory environment to interactive scenarios
enforces losing the control over most of the interfering factors. Hence, one faces
problems connected to the interaction between man and machine. The use of
pBCI might give insights into the correlation between mental states and system
states which are hard to infer from exogenous factors. This study investigated
the factor of perceived Loss of Controllability (LoC). By controllability we refer
to the perceived control the user has over a feedback device. Noticing classifi-
cation errors the user is aimed at regaining control over the machine. Perceived
LoC could cause a change in the mental state of the subject, and therefore
have an impact on feature space. The idea of perceived controllability has been
stated before, for it refers directly to the classification accuracy of a BCI system
[13, 14]. Data based methods face the problem of complexity of online BCI sys-
tems, consisting of two strongly interacting components, namely the user and the
machine, which creates a closed feedback loop. Each of the interacting systems
has to optimize for the same goal - hence ideally adaptations of both systems
should converge. But in the other case it could be, that both systems diverge
from one another, as demonstrated here. LoC is a result of the static translation
algorithms confronted with the variable brain trying to optimize during phases
of classifier errors. LoC can be defined as the classifier output being inconsistent
with expected feedback. Hence, with the RLR paradigm we manipulated the rate
by which the user was able to predict the feedback under controlled conditions,
by artificially inserting machine errors. The study was held in offline mode, to
ensure the control for possible intervening factors and to avoid phases of loss
of control over the feedback device, as they occur in online sessions. This study
has found evidence for a crucial factor causing nonstationarities, which indicate
the percieved LoC. This BCI related problem can be seen from a more abstract
perspective. The identification of the correlated non-stationarities gives insight
into the feeling of losing the control over a device. This factor can be utilized
to enhance human-machine interaction in a special way. It allows for access to
a user state, which is hardly accessible by known apllicable methods. This user
state is hidden from the system standard input or sensing methods. Here it is
accessible by taking physiological parameters into account.

3.1.2 Factor of Investigation
One class of problems is that of non-stationarities resulting from shifts in cogni-
tive states, which have not been represented in the data of the calibration phase.
These might be induced by changes in the mode of interaction or mental pro-
cessing of exogenic factors. As stated by Dornhege, Shenoy and Krauledat (see
www.bbci.de) the loss of controllability (LoC) might be one of these factors.
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3.1.3 Experimental Design
By utilizing the RLR paradigm we have been able to artificially induce phases
of reduced controlability (BUc, see fig. 3 ) in experiments with 24 subjects by
permuting the mapping between colours and angles of rotation. We tracked
features representing the primary mode of interaction, pressing a key, in the
EEG data. One representing the event-related desynchronization (ERD) and
one representing a slow cortical potential (SCP) prior to the movement. Details
on this study can be found in [12].

The CSP Algorithm: Feature extractor for ERDs and SCPs used here is the
Common Spatial Patterns for SCP (CSPfSCP) algorithm [16]. CSP aims to find
linear combinations (patterns) of EEG channels such that the deflection of each
trial projected according to these patterns is most discriminative (i.e., differs
maximally between the two classes).

The SpecCSP algorithm: For the extraction of ERD features we used Spec-
trally Weighted CSP (SpecCSP) [17]. SpecCSP iteratively alternates between
optimizing spatial and the spectral criteria. This way, the algorithm calculates a
set of custom spatial projection together with a set of custom frequency filters.

Classifiers: The classifier we used is Linear Discriminant Analysis (LDA),
which is optimal as long two requirements are met: noise projected must be
Gaussian and uncorrelated to the class membership.

3.2 Dependent Measures of Nonstationarities

To assess the impact of LoC on the classifier’s performance, we calculated pseudo
online classification rates (POC) over time. POC rates were calculated by offline
analysis serving as estimation for online classification results. POC was deter-
mined as following: The appropriate CSP derivate was used, with a time window
of 300ms, six patterns and a band-pass filter of [7-30] Hz. A classifier was trained
on the initial LR block. Then, this classifier was applied to every key press, which
happened over the course of the main experiment (i.e. blocks A1, A2 and B). An
average of approx. 100 gradual classifier outputs in a one-second window before
each key press was averaged and taken as the classifier’s decision for this key
press. The sign of this decision value (by default, left keys, on average, assigned -
1, right keys +1) was remapped according to the key actually pressed, such that
correct decisions were assigned positive values and wrong decisions were assigned
negative values. By this, we got a real number for each key that was pressed by
the subject. We also calculated the Kullback- Leibler divergence (KLD) (for de-
tails see [14]) of the classifier’s feature distributions. All measures were calculated
relative to the training data’s distribution of the initial calibration measurement,
the LR-block. We used the KLD to measure the divergence of the CSP feature
distributions as they build up over the course of the main experiment. Note that
these KLD results have been determined in a classical offline fashion, i.e. one for
each key press. We have found a significant (¡0.05) correlation of the of all KLD
and POC values over all 22 subjects and a significant (¡0.05) difference in KLD
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Fig. 3. Grand average of the KL divergence in CSP features through time

between A1+A2 and BUc in SpecCSP features, but none of this in CSPfSCP
features. The accumulated course of the SpecCSP-KLD is shown in figure 3.

3.3 Applicability of a pBCI for Enhancement of Efficiency in HMS

3.3.1 Motivation
Errors in communication are highly relevant factors regarding the efficiency of
HMS. Especially in automated adaptation of the machine to the interaction
mode of the user [18]. A wrong decision induces effects of surprise and frustration
and in this respect, adaptation reduces the performance and the safety in HMS
[19]. Additionally it triggers a correction action which enforces a shift in the
intention focus of the user. According to this it reduces the overall acceptance
of the adaptation and of the whole system.

3.3.2 Factor of Investigation
In this study we have shown that pBCIs are capable of enhancing such an adap-
tation. For this we have designed the RLR-Game which mimics the interaction
in an HMS and allows for modelling an unexpected and negative effect, the error
states. While this game is based on common interaction channels we have added
a secondary and passive BCI channel capable of correcting the effect of error
states. This correction was triggered by an event related potential reflecting the
mental processing of an error trial. If it is correctly detected by the pBCI during
an error trial, the rotation angle was set to the correct mapping. In case of a
false positive the angle was reduced to that of an error state. Hence, each correct
detection of an error speeds the player up and a false positive slows him down.
Therefore, if the classifier works properly, it will enhance the performance of the
player and it will reduce it otherwise. This approach utilizes BCI methodology
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for instantaneous adaption to the user. And also, like in the LoC study it would
give access to hidden user states. But the information gained is used as a passive
and secondary input methods, which would allow for a more natural and efficient
interaction between men and machine.

3.3.3 Experimental Design
For keeping the environment as realistic as possible, we have chosen the Open
House of the TU Berlin (LNdW 2007) as the setting. Four times two different
players from the audience played the game against each other. Each pair played
three sessions of 50 trials. One for user training, without error states. In the
second session we introduced the error trials. The automatic adaptation has
been applied in the last session, only for one player.

3.3.4 Features
Features have been extracted by a derivate of the pattern matching algorithm
([20]) extended for detection of several extrema of SCPs. 600 ms of data after
the rotation have been selected.
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Fig. 4. Differences of points from two opponents playing the RLR-Game at the Open
House 2007

4 Results

The results of the LoC study (fig. 3) show that in phases with full control (A1,
A2, Ba1, Ba2) the variance of the averaged Kullback-Leibler divergence (KLD) of
both features is bounded. In contrast, the phases of reduced controlability (BUc)
shows an significant increase of the KLD for ERD based features. Hence, the
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KLD of these features is a measure representing the perception of controlability.
Figure 4 shows the results from the sessions from the open house of the TU
Berlin 2007. In the third session one player has been supported by the pBCI.
While the points have been equally distributed between session 1 and 2, the
performance of all pBCI supported players has been increased significantly.

5 Discussion

Here we gave examples of two types of pBCIs. One establishing an informa-
tion flow from the human brain to the HMS reflecting user states correlated to
current modes of interaction. The other one extracting the actual interpreta-
tion of dedicated system states from the users cognition. Both can be applied
in the context of BCI for enhancing classification accuracy. First, for an auto-
mated adaptation of the classifier and second, for correcting machine errors as
proposed in [20, 21]. Also, for application in the field of HMS, it provides infor-
mation about the user, which can only hardly be inferred by typical information
channels in HMS. Especially the idea of utilizing the human brain as sensory
for the subjective interpretation of current states within the HMS seems to be
very promising. These studies are hopefuly a starting point for a whole series of
new approaches. Currently we are investigating pBCIs for detection of mental
workload, cognitive interpretation of the perception of human movements [22]
and information on driver intentions. Please, see www.phypa.org for details.

6 Conclusion

Our experiences with pBCIs show, that these enable new channels of information
within the interaction between man and machine. Here we show two examples
of new approaches for enhancing human-machine interaction. Both are based on
interpretation of brainwaves by BCI methodology, but describe almost orthog-
onal ways of interacting with a technical system. First, within the LoC study,
we show that a BCI equipped system is indeed capable of detecting user states
which are hidden from exogenous interpretation. Besides the LoC there are much
more of these hidden user states, for example like mental workload, attention
focus or arousal. All of these allow for changing the actual system mode and
adapt the system to the user in a broader sense. Hopefully, there will be solu-
tions for providing this information to HMS in near future. The second approach
describes a new way for spontaneous and immediate adaptation of the system
to the needs of the user, in an event-related fashion. Here the system also gains
access to hidden user states, which are hardly detectable by exogenous meth-
ods. But here the input drawn from the EEG is a new passive way of direct
communication between human and machine. These approaches can be utilized
for both BCI and HMS research. Additionally it seems to be very fruitful to
exchange experiences between these two fields of research, which will hopefully
will be done extensively in the near future.
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Abstract. Different types of brain injury are associated with deficits in working 

memory, executive functioning, and information processing speed, which can 

impact performance at work. Augmented Cognition (AugCog), a technology 

developed to improve human performance in complex tasks, may have potential 

for optimizing cognitive functioning in the context of work for those with mild 

to moderate cognitive deficits. AugCog is a way to accommodate or augment 

function thus improving the performance of the operator. This approach may 

facilitate neuroplasticity that can occur following injury to the brain. The au-

thors will provide the rationale, operational structure, and potential application 

to occupational rehabilitation. 

Keywords: Augmented cognition, occupational rehabilitation, cognitive limita-

tions, mild brain injury. 

1   Introduction  

Injury to the human brain can occur following various types of exposures.  Automo-

bile accidents, sports related injuries, and cytotoxic chemicals including those used to 

treat many forms of cancer have all been associated with sequelae that reflect some 

type of mild brain injury. There has been recent concern with the rise in mild trau-

matic brain injury (mTBI), the signature injury of current US military conflicts in Iraq 

and Afghanistan, due to the blast effects of Improvised Explosive Devices (IEDs) [1]. 

A significant number of cancer survivors also report cognitive problems that resemble 

mild forms of brain injury. These problems are thought to be associated with exposure 

to chemotherapy and/or radiation [2, 3, 4, 5]. 

Trauma to the central nervous system is associated with limitations in many areas 

of cognitive function, including difficulties in working memory, executive function, 

and attention [6]. These cognitive functions are essential for optimal performance at 
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work [7]. Accordingly, many of those with mTBI experience difficulties maximizing 

their work abilities, returning to work, or remaining at work [8, 9]. 

Cognitive neuroscience and human factors research and practice have evolved to 

the point where their integration has created a technology designed to optimize human 

function in complex work environments [10, 11].  The development of augmented 

cognition represents one such approach to enhancing human performance during  

military operations [10].  The theory and techniques of augmented cognition may be 

extended to civilian work environments in order to improve cognitive and behavioral 

performance among those working or attempting to work with cognitive limitations 

associated with a mild brain injury.  The application of augmented cognition to the 

modern workplace is especially relevant because much of today’s work involves hu-

man-computer interaction.  

The present paper discusses the assumptions forming the foundation of augmented 

cognition as a means for enhancing cognitive related functional outcomes in those 

with mild cognitive limitations secondary to brain injury.  We first consider a few of 

the similarities in the types of limitations in cognitive function in different mild brain 

injuries. Next are the assumptions that form a basis for applying the augmented  

cognition technology to occupational rehabilitation.  A description of a potential work 

rehabilitation system based on augmented cognition technology will follow. Finally, 

potential applications within a work rehabilitation context are discussed.  

1.1   Cognitive Limitations and Mild Injury to the Brain That Can Impact Work 

Ability    

Regardless of its etiology, while some functional loss is related to damage in focal 

brain areas, mild trauma to the human brain (e.g., classic mTBI, cancer treatment)  

is often associated with a pattern of generic changes in cognitive functions, such as 

information processing speed [12] and working memory [12, 13, 14, 15, 16]. The 

specific problems observed in those with some injury to the brain typically also in-

clude disruption of executive function [7], which is characterized by a difficulty in 

coordinating tasks, multitasking, problem solving, attention, and planning. Addition-

ally, when the exposure is mild and the person’s capabilities were relatively intact 

prior to the trauma, the person is typically aware of such changes when confronted 

with tasks that involve these cognitive functions.  Some have described the changes 

as a “premature aging,” where a person’s cognitive abilities were intact prior to the 

brain insult, but following the injury,  cognitive operations were not as fluid, coordi-

nated, rapid, or error free.  These cognitive-motor changes can occur along with cer-

tain emotional changes such as depression [17], heightened levels of stress including 

some elements of Post-Traumatic Stress Disorder, and what is called sub-clinical 

depression, where a person is not seriously depressed but has symptoms of fatigue, 

negative mood, sleeplessness, etc. [18, 19].  These factors can interact in a manner 

that exacerbates cognitive limitations and thus impact the ability to perform opti-

mally at work [20]. 
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1.2   Basic Assumptions Underlying AugCog Rehab Approach  

As with any new rehabilitation approach, certain assumptions are necessary in order 

to define the process and its potential outcomes. The following assumptions, sup-

ported by varying levels of empirical evidence, are presented in order to justify the 

potential application of augmented cognition for occupational  rehabilitation. 

 

1. The augmented cognition approach has demonstrated some success in im-

proving human performance in complex work situations [11]. 

2. Changes in various neurophysiological signals such as EP and EEG syn-

chronization have been observed in response to cognitive demands in many 

different types of mild brain injury [4, 6, 21, 22].   

3. It is possible to identify neurophysiological correlates of cognitive states re-

ferred to as cognitive signatures, which are unique to the individual and can 

be used as markers of sub-optimal performance [23].  

4. These cognitive signatures can trigger various mitigation strategies that will 

facilitate optimization of performance [24]. 

5. The mitigation strategy and improvement in performance can in turn alter 

brain function (neurophysiology and perhaps blood flow) from a state of a 

“sub-optimal” neural behavioral response to a more “optimal” brain-behavior 

state [24].  

6. Research on brain plasticity has shown that repetitive training in specific 

tasks, which may involve use of prostheses, can facilitate neural changes [25, 

26].  These fundamental concepts can be applied to the context of work.  It is 

expected that the augmented cognition process, when operating repetitively 

with a realistic set of work tasks that engage the cognitive operations that are 

problematic for the affected worker, can improve both the pattern of brain 

activity/function and behavioral correlates involved in improved work per-

formance. The generalization of more functional neural-behavioral patterns 

over time would also be related to improved work performance over time. 

7. The potential underlying mechanism of this relearning is the facilitation of 

brain plasticity/remodeling occurring over time [26].  

2   Elements of AugCog Occupational Rehabilitation System (Fig 1)     

The AugCog Occupational Rehab System involves the monitoring of neural and  

autonomic signals, superficial blood flow on the surface of the brain, and behavioral 

performance in individually relevant work tasks reflecting cognitive-behavioral per-

formance. An executive processor then analyzes this information and triggers specific 

mitigations, which in turn help to improve the performance of the affected worker. 

This can facilitate recovery of brain and behavioral functioning.  
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Fig. 1. General illustration of the elements of the system and their interactions.  This proposed 

system was refined through the input of Honeywell (Trish Ververs and Santosh Mathan), De-

sign Interactive (Kay Stanney), and Archionoetics (Hunter Downs).  

3   Applications  

As the population continues to age and societal regulations and personal preferences 

extend employment for years, there will be a need to improve cognitive work capacity 

in addition to efforts to engineer out the problems faced by many workers with  

and without illnesses that impact cognitive performance. The rehabilitation system 

proposed, if effective, will be able to assist those who are experiencing cognitive limi-

tations that interfere with their work. This would not only include the types of brain 

injuries discussed above, but it also may be applicable to age-related change in cogni-

tion and work performance.  

Another viable application of this methodology would be to create a miniaturized 

version of the system for individuals to use as an ongoing work accommodation tool 

or neural prosthesis.  The system, which would interface with any computer platform, 

would continuously and non-invasively monitor neural cognitive and behavioral per-

formance.  By generating appropriate mitigations in milliseconds, the system would 

assist the affected worker in maintaining optimal work performance.  Such a neural 
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prosthesis would not require long term change in brain function; rather, it would en-

gineer the work process so that neuro-cognitive-behavioral changes that accompany 

performance changes can be rapidly mitigated.  The system would continuously and 

rapidly ensure that the affected worker’s productivity is maintained while the worker 

would simply continue his or her task uninterrupted.     

4   Conclusion 

Once the rehabilitation system is developed, it must be tested to determine its ability 

to perform as expected.  The ability to generate any change in work performance also 

needs to be evaluated.  Changes in neural activity underlying optimization of work 

productivity must also be determined.  Randomized controlled trials must be con-

ducted in order to evaluate the effects of the approach on work performance and work 

retention. If the approach is demonstrated to be effective, studies of markers of plas-

ticity would also be useful in order to reveal potential mechanisms of change. Much 

work needs to be done.  However, this proposed approach derived from the HCI field 

holds much potential in an area lacking effective occupational rehabilitation.   
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Abstract. Through analysis involving components of theory, concept, and se-

mantics, we synthesize a set of insights and relations existing through embodi-

ment that have applicability to the design of cognitive aids.  Of note, we explore 

the areas of embodied interaction, embodied user interfaces, and embodied 

cognition. Additionally, we demonstrate how meaning is created and distributed 

in and through the areas.  We then apply findings to the development of an em-

bodied user interface developed to cognitively aid in renovation projects.  

1   Introduction 

As we move from understanding cognition to augmenting it, we find ourselves faced 

with questions on how to effectively embody cognitive aids within the different envi-

ronments. The concept of embodiment is far reaching within the field of human-

computer interaction (HCI). Areas such as tangible, social, ubiquitous, and mobile 

computing have all subscribed to the fact that the objects of our daily activities are 

grounded in the practices of the world. According to Dourish [13], it is not simply that 

objects exist in a physical reality, but rather that they employ a form of participatory 

status in the world where they are embedded. These objects, whether they are natural 

or man-made, computational or of a genetic makeup, all find the completion of their 

meaning in their involvement with other objects or individuals within a particular 

time interval. It is this involvement that we must capture to take cognitive augmenta-

tion and aids to the next level. 

The usefulness and even the reality of an aid depend on their embeddedness.  

Without a world of involvement, these objects are separate from ideas or concepts, 

isolated from the human cognition. A realization that a particular aid’s use depends on 

the environment where it is exists allows us to connect to human cognition through 

the substance of the object.  In other words, the actions of the objects within a particu-

lar environment give the objects meaning. Meaning then is imparted upon the actions 

and interactions that make up the environment. This is embodiment. 

The paper balance is as follows. Section 2 explores current area work that has im-

plications for cognitive aid design. Section 3 looks at embodiment further, to under-

stand what makes up embodiment based upon related terminologies used in the field.  

Section 4 introduces an implementation of an embodied aid.  Section 5 concludes. 
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2   Current Research Insights 

So if this is how objects gain meaning, what can fields such as tangible computing, 

ubiquitous computing, social computing, or even mobile computing teach us when 

applied to the development of cognitive aids?  Each field understands, at some level, 

that the realization of embodiment is necessary to the successful design of systems.   

Tangible computing is an approach by which computation is moved off the desktop 

and into the hands of individuals for manipulation. It is the realization that for aids to 

be successful in day-to-day activities, objects containing computation need to be 

grasped to have value and meaning within the day-to-day activities for which they 

were designed. This is unlike desktop-based computation where both the size and sta-

tionary nature of the computer requires stepping away from most types of cognitive 

activities in order to focus on the computational system. In other words, traditional 

desktop-based computation disembodies itself from the stream of activities of the 

world and therefore loses value and meaning that could be gained through intertwined 

participatory involvement of an aid. 

Ubiquitous computing is an area first coined by Mark Weiser [26]. Similar to  

tangible computing, ubiquitous computing seeks to move and embody aids in envi-

ronments of activity. A move to focus less on the computer and more on cognitive  

activities surrounding the computer is approached by deploying small computational 

devices throughout the environment. The implication is not only direct participatory 

involvement in a seated environment, but also that the aid’s particular use and mean-

ing would be specific to the environment where they interacted. Thus, just as in  

tangible computing, we see an embodied component to ubiquitous computing.   

For social computing, an understanding of sociology and organizational behavior is 

foundational to research.  In addition to other areas, the work seeks to understand how 

human language, behavior and organizational structure affect and impact the design 

of computational devices. Contrary to the design of most desktop-based computer ap-

plications today is a resistance to viewing the role of computational aids as one that 

carries out processes. Rather, understanding exists that computational devices are em-

bodied in communities of practice. These communities of practice go beyond proc-

esses, to capture the realization that computation exists in a place [19]. A place is 

more than the space and the physical properties which traditional processes consider.  

It realizes that social norms and behaviors also contribute. This is how two identical 

spaces can exhibit very different activities. These social activities bring a set of skills, 

methods and experiences that exist between people and between people and objects, 

whether computational or not. In essence, they define how a community of practice 

carries out processes.  Social computing seeks to “know” the embodied environment 

where computational aids will sit. This realization allows aid design for specific inter-

actions used in a community, rather than just a space where an aid would be used. 

Finally, even mobile computing in moving the computer off the desktop and to the 

user’s hands, has realized that how this movement is done depends on the environ-

ment where it will be used. It involves not only understanding how an object will be 

used, but also how the object gains meaning and value in places of use. No longer is 

the computing device a separate focus of attention but in mobile computing it can be 

more a part of the communities of activity and gain meaning through its interaction. 



784 D. Garrison and V. Garrison 

3   Faces of Embodiment 

Beyond an understanding of embodiment and its requisite standing in active areas of 

computing research, insights are also derived from embodiment’s notions of interac-

tion, user interfaces, and cognition. As we seek to further understand embodiment and 

its role in the design of cognitive aids, we look at the relationships that these areas 

have between them. As such, we answer questions concerning their component na-

ture, sameness, and coexistence.   

Embodied Interaction. Earlier when we used phrases like participatory status,  

involvement, and actions we also were describing an area of embodiment known as 

embodied interaction. Embodied interaction is concerned with how meaning is devel-

oped, agreed upon, and communicated in the introduction of technologies of interac-

tion into communities of practice. This seats embodied interaction within the broader 

area of embodiment, but focuses attention on computational devices as the object of 

interest in the community. Wenger [27] notes that these communities of practice and 

the computational devices in them coexist together. Devices are designed and adapted 

to communities of practice that exist, but these communities of practice are also 

shaped by the devices within. This seemingly paradoxical statement is fundamental to 

understanding the interaction that exists in embedded environments.  While designing 

a cognitive aid for a community of practice is plausible, it is not enough. We must 

also realize that the involvement of the aiding device or technology within the envi-

ronment also changes and shapes the community. Communities of practice cannot be 

understood without considering the computational aids that will be in them, and how 

people cognitively approach and understand the devices. Cognitive aids cannot be  

designed until we understand how the community of practice will change with the ad-

dition of a cognitive aid. 

Understanding the “shaping” effect of embodied interaction was the focus of the 

work of Williams et al. [28] on SignalPlay. Their approach to ubiquitous computing 

sought to understand the interactions that take place when embodying computation in 

an environment. Of interest to embodied interaction was whether an introduction of 

computational devices into the environment would change the cognitive approaches 

currently in place. Would extra computational responsiveness help or hinder compre-

hension at sites of social action and meaning? What they found agrees with our earlier 

point that computational devices actually shape communities of practice. Users were 

influenced by augmented computational objects and their interaction with the objects 

additionally formed a new method of communicating with each other. Additionally, 

users found an awareness of other users necessary to understanding objects that act as 

part of a larger system. This need demonstrates the strong embodied net of interaction 

in environments. Found is that context in environments both guide the “rules of use” 

of a technology while also helping to make the technology understandable. Finally, 

from their study and work of Dourish [13], we see it is not solely an aid’s presence 

but also the device’s orientation that gives environments meaning.  

So from these works, we see that the community of practice and cognitive meaning 

are influenced and guided by the aid technologies within them. It therefore becomes 

more important that we understand how cognitive meaning will be established post-aid 
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introduction, rather than in the current status quo if we are to design more effective 

cognitive aid systems.   

In defining what these design considerations involve, [28] identified three modes 

of embodied interaction contributing to an object’s meaning within an environment of 

action. Intrinsic interaction conveys meaning by how its physical appearance affords 

certain modes of use [23], and requires no previous knowledge of the object. Iconic 

finds meaning in metaphorical associations we make with objects. People tend to in-

teract with objects as if they were the known objects they depict. For example, an im-

age of the Virgin Mary in tree bark has given the tree deeper meaning to many 

thereby producing acts of reverence similar to those they have for the actual Virgin 

Mary. Finally is instrumental interaction, where meaning is conveyed through using 

the object as an instrument. Rather than finding meaning in the physical, meaning is 

found through using the object as equipment [20] and in the results it produces.   

Capitalizing on these modes when designing a cognitive aid can result in a more ef-

fective and natural cognitive load reduction.  

Findings such as these are core to embodied interaction. By understanding how 

meaning is understood, established, and shared, designers of embodied aids can de-

velop more useable systems for environments. It is not enough to just design for a 

space without also realizing the social roles and categories established in these places.  

Ethnographic studies of communities can assist designers in developing systems that 

are appropriate to the practices and places of embodiment. Further, through an under-

standing of how cognitive meaning comes about from the actions in which an embod-

ied aid already exists, designers can understand the issues found with existing aid 

technologies in these communities. Both realizations are important to the design of 

more usable embodied cognitive aid systems. 

Embodied User Interfaces. So we see that it is impossible to engage in environments 

absent of social meaning and organization. Closely related to this embodiment of 

interaction is an impossibility of being part of an environment absent of physical 

structure. Whereas embodied interaction tends to gain most attention in social 

computing, embodied user interfaces are more in focus as an addition to tangible 

computing. This is due to the fact that tangible computing finds embodiment through 

the physical application of it in the world, whereas social computing recognizes 

embodiment in systems of meaning [13]. Both however, share a presence in the 

overarching area of embodiment and developers of embodied cognitive aids must also 

realize that their physical design also communicates meaning. 

So we now step aside from focusing on the social interactions of the environment 

to explore the physical. Prior, we sought to capture cognitive meaning found in the 

embodied actions of social organization and interaction with aids. Now, we seek to 

apply that meaning into the structural design of aiding systems. Physical structure in-

fused with both manipulability and representation while still participating in the envi-

ronment is termed as the embodied user interface. The goal is to move away from 

consciously “using” to unconsciously “doing”, but not necessarily by making an aid’s 

interface invisible, as Dourish confirms [13]. It is the attempt to take the digital 

equivalent of an object, traditionally only informationally similar, and naturally em-

bed it to make it also interactionally similar, thus freeing cognitive processes.   
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For example, providing a pilot in combat with a physical or tactile cognitive aid 

rather than the traditional approach of augmenting cognition through display-based 

information. Physical controls that were most important at that moment could be 

physically highlighted while the rest of the controls slightly dimmed to focus cogni-

tive efforts. Better, these controls could take on manipulability functions that are less 

control-like and more naturally manipulated. The aid during cognitive overload could 

allow pilot hand motions to depict exactly how they would like the plane to land, with 

the palm down and fingers slightly up, and then in real-time act upon these motions.  

Differently, if a pilot was sensed to be incorrectly fixated due to cognitive overload, 

physical areas of fixation could become tactfully unpleasant by the aid, maybe 

through rapid temperature change. This tactful approach could release the cognitive 

fixation and allow refocusing without displaying more visual alert information to an 

individual that may already be experiencing visual overload. An implemented, how-

ever less aid-oriented form of this manipulability is found in the work of Ishii and his 

colleagues as part of the Tangible Media Group at the MIT Media Lab [24].  Not only 

does the embodied approach realize meaning through its physical representation, but 

as we can see, it allows for a more natural description and imagery at the cognitive 

level.  This natural understanding is because the embodied approach is situated in an 

environment in which we operate rather than within a computer that is confined to 

few.  It is a move that focuses more on providing an aid to cognition by freeing the 

mind rather than just an augmentation to cognition focused on providing feedback. 

So we defined the embodied user interface by using words like infused, manipula-

bility and representation. For Fishkin et al. [15] these features are expressed as tasks 

“embodied in a device” containing “coincidence of input and output” that “provide 

highly specific and familiar affordances for particular types of actions”. While we add 

a need for participatory status, it is interesting how these features relate to the intrin-

sic, iconic, and instrumental forms of interaction mentioned under embodied interac-

tion.  This connection reveals further insights for the design of more effective aids.  

When Fishkin et al. [15] mention that a task should be “embodied in a device” they 

are addressing the metaphorical coupling that exists between an embodied aid and an 

object of familiarity. This associative meaning is what Williams et al. [28] term as the 

meaning found in iconic interaction. Dourish [13] notes of this feature, that when 

metaphorical coupling becomes too tight, the metaphor disappears, leaving us with 

just a simulated activity. Iconic meaning is replaced with direct physical meaning [15] 

allowing a different, but still favorable design approach. “Familiar affordances for 

particular types of actions” is the meaning we described earlier in intrinsic interaction.  

Through this, we see the properties of the physical aid device demonstrating a form of 

inherent use whether the object is recognizable or not. This is a powerful way to con-

vey meaning simply through physical design. Alternately stated, “coincidence of in-

put and output” is that embodied aids should allow users to input data, interact, or 

manipulate the device directly, and that outputted feedback should involve a manipu-

lation of the embodied aid. The inputs and outputs should not require a separate com-

puter or computational device that “programs” the object. This is closely related to 

our earlier concept of meaning involving instrumental interactions with objects. “Co-

incidences of input and output” are required for aids to become an instrument or 

equipment effectively used in an assistive way. 
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Embodied Cognition. Without the social meaning found in embodied interaction and 

physical meaning embedded in embodied user interfaces, we only have objects, 

detached from cognitive processes. Do not mistake this as meaning that cognition has 

no part in embodiment. For embodied cognition realizes that the actions and 

interactions of the body are an integral part of guiding the mind. This mind impacts 

the environment by producing changes that come to guide the mind again.  

Holding to cognition as a factor of embodiment is a drastic departure from Carte-

sian cognitive psychology that detaches the mind’s processing from the world’s  

activities [12]. Nevertheless, as shown, there are strong arguments in metaphors, af-

fordances, and interaction, against this traditionalist view. So the embodied view of 

cognition argues that understanding in the mind results from the interactions that take 

place between individuals and objects situated in environments where one ventures.  

In our case these objects would be the cognitive aids.   

Not only do the world and our actions facilitate meaning in cognition, but we often 

use the world to help our cognitive processes. This additional dimension also needs 

consideration in the design of aids as we move from augmenting cognition to aiding 

cognition. We saw this in our discussions of embodied interaction as both object pres-

ence and orientation gave meaning and understanding. But we also often offload and 

embody cognitive tasks in the world through using object orientation to help us re-

member and understand particulars of the environment. One place we see this is 

through the strategic placement and orientation of objects in the environment. An-

other is by allowing users to manipulate objects in the world rather than requiring it to 

be done cognitively [17]. Therefore, understanding the embodied nature of cognition 

proves critical in the effective design of cognitive aids. 

Designing aids for embodied cognition involves consideration however that goes 

beyond the cognitive processing of immediate events. Reconciling two seemingly dis-

connected views held of Wilson [30], is that off-line cognition, such as what we find 

in reminiscing, is a process situated in the realm of the embodied environment. This 

environment is of the past and since has been “freed” from constraints of time. Off-

line methods allow us to rethink choices made within the original environment con-

text by using unnoticeable sensorimotor functions [18]. By sensorimotor functioning 

we mean that motor functioning simulation occurs while using cognitive processes.  

In essence, a body of embodied interaction is serving the needs of the mind.   

We see this taking place in short term memory when we wish to remember a series 

of numbers.  Through repetition, we noticeably or covertly engage motor functioning  

to facilitate our working memory [21,29]. Alternately, when in time-pressured situa-

tions, we often rely on rote memory and long-term recollections held in embodied 

representations [16].  In fact, much of our indeliberate semantic memory may result 

from the implicit and episodic memory of interaction [22]. This suggests that the in-

teraction is necessary to our cognitive system and must be considered in aid design. 

So the evidence presented speaks strongly to the embodiment of cognition while 

also showing that meaning comes from the actions and interaction within environ-

ments. We know the latter as embodied interaction. Embodying meaning, affor-

dances, and input/output representations in the design of computational cognitive aids 

then culminates in the creation of embodied user interfaces. To this end we now pre-

sent an implementation of this type of interface while considering the cognitive and 

interactive components of embodiment. 
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4   An Embodied Aid for Space Renovation 

It is generally accepted that an ethnographic study of an environment is in order when 

designing for workspaces. These studies reveal the communities of practice discussed 

earlier; a contributor to the successful design of embodied user interfaces. In our pro-

totype, we seek to provide a cognitive aid used during space renovations. More spe-

cifically, our ethnographic study focuses on the renovation of the Computer Science 

floor of McBryde Hall at Virginia Tech in Blacksburg, Virginia. Our embodied user 

interface is based on a set of assumptions and determined an ordinary set of renova-

tion functions by reviewing renovation details of a number of universities [4,6-11].  

For illustrative purposes, we present some of the features and design decisions made.   

While our aid can assist in providing exact measurements, our focus group is not 

architects. The client is positioned as a layperson in the renovation cycle and 

equipped with a set of embodied operations that cognitively aid their decision making 

as they brainstorm and decide on the configuration of spaces. In the case of a research 

area of the university these clients are the involved faculty, staff, and students. As a 

prototype, we do not provide an aid full of all the assistance that an individual “may” 

need while renovating a space, but rather focus on functionality a layperson “will” 

need in renovation projects. While our system converges a set of related activities, as 

our discussion on ubiquitous, social, and mobile computing suggests, we adhere to the 

concept of a use-designed cognitive aid rather than an all-purpose aid in renovations.  

Focusing and limiting the functionality allows our system to be more naturally em-

bodied and cognitively accepted by those it assists. 

As a first iteration of the aid, we apply insights found in our discussion of mobile 

computing by equipping the client with a personal digital assistant (PDA) attached to 

the user’s non-writing arm. On their writing hand is a finger-equipped device that in-

trinsically affords cognitive offloading through writing on the PDA. This device also 

serves as sensor input for aid processing, a directional tag reader, and laser pointing 

system. The reader communicates with the tagged PDA using a short-range wireless 

connection. Each component is based upon existing technologies [1-3,5,25]. To better 

aid cognition and embody our system, we desired to give a natural form of selection 

for space configuration rather than relying on a screen-based augmentation approach.  

A finger-based device was chosen over touch-based, head-mounted, or arm-mounted 

devices [14] based upon a series of observational studies. We found that a finger-

based device affords orientated focus along with control over selection as people 

naturally refer to items of interest using a finger. Also, this approach allows for 

smaller levels of movement in specifying start/end sizing and selection points, a more 

appropriate socio-cultural gesture [15]. Utilizing affordances found in renovations, the 

client is equipped to design ethnographically as the system is mobile and tangible 

while remaining unobtrusive. This situatedness reduces cognitive load and encourages 

the user to better design for a community of interactions. 

Rather than offering a new model for renovation, our aid is embedded in current 

renovation practices. Of course this assumes that computationally mimicking a tradi-

tional form of action is the best approach to the action. We however, only take this as 

a means to an end in developing better aids. The benefit is that mimicking allows the 

use of current work practices, thereby lowering the cognitive learning curve and al-

lowing the user to work “through” our system, rather than being distracted from their 
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goals by working “on” our system [20]. The system focuses on aiding major decisions 

that modify internal space use, alter dimensions or configurations, or provide substan-

tial upgrades. From this, we identify three “ends-based” tasks that individuals perform 

in these decisions. They are adding objects, removing objects, and modifying existing 

objects. In order to better understand the areas we cognitively aid and augment, we 

now highlight aspects of these tasks. 

In the renovation space we assume that updatable tags have been placed on infra-

structural components. As all objects within the space are addressable, including the 

structural, electrical, mechanical, plumbing, heating, and cooling systems, this pro-

vides input to our aiding system. These tags are part of a current system that updates 

object tag data when changes affecting the object occur, whether directly or indi-

rectly. Typical tag data includes object location, status, installation date, ontological 

relationships with other same-type objects (e.g. wall joists), and relationships with as-

sociated objects (e.g. wires running through the joists). 

Our aid relies on a system that allows users to configure building and lab spaces 

primarily through the use of the multi-purpose finger-based selection tool. In general, 

extended pointing at an object initiates interaction and returns information on that ob-

ject, while also allowing the system to provide suggestive input, if desired. While ad-

vantages exist to having the cognitive aid suggest ideal configurations, the system, at 

least initially, allows the user to retain control. As the user is more aware of the cli-

mate and interactive nature of the environment, they remain the designer while the aid 

audibly provides details and feedback on their ideas when cognitively necessary. This 

design, as tangible computing suggests, keeps the user part of the environment of 

renovation while also being sensitive to how auditory item lists can retard usability. 

Through awareness of the user’s location, the system cognitively aids in role-

playing how an object could be added into a particular building or lab space. Users  

select the type of object they are considering in their present location, and use the  

finger-based directional pointer up or down to naturally specify ceiling or floor  

placement. When an object for addition exists in the environment, the user selects the 

object for placement by first pointing at the object. Objects not selectable for addition 

but inventoried for installation can also be added. Throughout the role-playing proc-

ess, the cognitive aid uses both the finger-based pointer sensor and voice recognition 

to assist in cognitive state and decision-making recognition. Voice recognized com-

mands afford a naturally embedded interface approach, and as it is also used in the 

renovation device, allow for more natural object selection.  

Cognitive aid techniques require correspondence with the existing system’s rela-

tional tag data. As objects of renovation are added, the system aids client processing 

by also checking previously role-played objects to determine whether the new ob-

ject’s specifications fit within the accepted objects of renovation. If interference or 

suboptimal placement is noticed, the aid monitors client cognitive processing and  

offers location or configuration refinement, when necessary. Also, in modifying or 

deleting objects from the existing space, this relationship data allows the system, if 

cognitively necessary, to alert a user of issues before an object is modified or re-

moved.  An example would be aiding a client if a cognitive slip had them trying to 

remove a wall before removing the door contained in it.  

What we have illustrated are some of the features and design decisions made  

in creating our embodied cognitive aid. Other aid features exist, and while this paper 
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focuses on the design aspects of embodied aids, we expect the results of tests using 

this aid along with further design revisions resulting from understanding the changed 

community of practice to be forthcoming in a future paper. 

5   Conclusion 

What we have mentioned are some design decisions gained from embodiment upon 

which our cognitive aid is based. Other insights however are also apparent from our 

discussion. Offered is a system that does not focus on making decisions, but helps to 

facilitate those that can. As such, we seek to aid individuals through understanding the 

communities of practice, rather than replace them. While our embodied interface ex-

tends the resources available to individuals, the scope of an available decision at any 

one time remains natural and manageable. Decision making requires individuals to be 

immersed in the communities of practice where embodied interaction takes place. By 

limiting interaction to items within a sensed distance, we reduce the level of con-

scious interfacing needed and the complexity of the system. Aspects like these make 

our system a natural embodied experience.   

And so our design is based upon our desire to understand embodiment further and 

how through it we can move beyond simply augmenting cognition to aiding cogni-

tion. Evidenced in our discussion is that embodiment is found in many current threads 

of HCI research. Through a discussion of embodied interaction, user interfaces, and 

cognition we see that these areas “feed” each other in both the understanding and ex-

ploitation of meaning. We can therefore see that embodying computational objects 

into environments facilitates the creation of usable aids that are immersed with inter-

action, meaning, and ultimately more effective cognitive aids. 

References 

1. Bluetooth.com, The Official Bluetooth Wireless Info Site (2005), 

http://www.bluetooth.com/bluetooth/ (Accessed January 20, 2006) 

2. The Gadgeteer - Finger Tip Styli Comparison Review (2000), 

http://www.the-gadgeteer.com/review/  

finger_tip_styli_comparison_review (Accessed January 20, 2006) 

3. Palm - Products - Smartphones (2006), 

http://www.palm.com/us/products/smartphones/  

(Accessed January 20, 2006) 

4. renovateSTL.com (2006), http://www.renovatestl.com/booklet.php (Ac-

cessed January 20, 2006) 

5. RFID Reader Module | SkyeModule M1-mini (2004) 

http://www.skyetek.com/readers_Mini.html (Accessed January 20, 2006)  

6. University of Colorado at Boulder (2006), http://www.colorado.edu/ (Accessed 

January 20, 2006) 

7. University of Connecticut. (2006), http://www.uconn.edu/ (Accessed January 20, 

2006) 

8. University of Delaware (2006), http://www.udel.edu/ (Accessed January 20, 

2006) 



 Embodying Meaning in Bio-cognitive Aid Design 791 

9. University of Illinois at Chicago (UIC) (2006), http://www.uic.edu/ (Accessed 

January 20, 2006) 

10. The University of Texas at Austin (2006), http://www.utexas.edu/ (Accessed 

January 20, 2006) 

11. Washington University in St. Louis (2006), http://www.wustl.edu/ (Accessed 

January 20, 2006) 

12. Descartes, R.: Meditationes. Bobbs-Merrill (1641/1964)  

13. Dourish, P.: Where the action is: the foundations of embodied interaction. MIT Press, 

Cambridge (2001) 

14. Fallman, D.: Enabling physical collaboration in industrial settings by designing for embod-

ied interaction. In: Proceedings of the Latin American conference on Human-computer in-

teraction. ACM Press, Rio de Janeiro (2003) 

15. Fishkin, K.P., Moran, T.P., Harrison, B.L.: Embodied User Interfaces: Towards Invisible 

User Interfaces. In: Proceedings of the IFIP TC2/TC13 WG2.7/WG13.4 Seventh Working 

Conference on Engineering for Human-Computer Interaction, Kluwer, B.V. (1999) 

16. Glenberg, A.M.: What memory is for. Behavioral and Brain Sciences 20(1), 1–55 

17. Glenberg, A.M., Gutierrez, T., Levin, J.R., Japuntich, S., Kaschak, M.P.: Activity and 

imagined activity can enhance young children’s reading comprehension. Journal of Educa-

tional Psychology 96(3), 424–436 

18. Grush, R.: The emulation theory of representation: motor control, imagery, and perception. 

Behavioral and Brain Sciences 27, 377–442 

19. Harrison, S., Dourish, P.: Re-place-ing space: the roles of place and space in collaborative 

systems. In: Proceedings of the 1996 ACM conference on Computer supported cooperative 

work. ACM Press, Boston (1996) 

20. Heidegger, M.: Sein und Zeit. Harper & Row, New York (1927/1962) 

21. Kosslyn, S.M.: Image and brain: the resolution of the imagery debate. MIT Press, Cam-

bridge (1994) 

22. Menon, V., Boyett-Anderson, J.M., Schatzberg, A.F., Reiss, A.L.: Relating semantic and 

episodic memory systems. Cognitive Brain Research 13(2), 261–265 

23. Norman, D.A.: The Design of Everyday Things. Doubleday, New York (1988) 

24. Raffle, H.S., Parkes, A.J., Ishii, H.: Topobo: a constructive assembly system with kinetic 

memory. In: Proceedings of the SIGCHI conference on Human factors in computing sys-

tems. ACM Press, Vienna (2004) 

25. Tsukadaa, K., Yasumurab, M.: Ubi-Finger: Gesture Input Device for Mobile Use. In: 

APCHI, pp. 388–400 (2002) 

26. Weiser, M., Gold, R., Brown, J.S.: The origins of ubiquitous computing research at PARC 

in the late 1980s. IBM Syst. J. 38(4), 693–696 

27. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge Uni-

versity Press, Cambridge (1999) 

28. Williams, A., Kabisch, E., Dourish, P.: From Interaction to Participation: Configuring 

Space Through Embodied Interaction. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. 

(eds.) UbiComp 2005. LNCS, vol. 3660, pp. 287–304. Springer, Heidelberg (2005) 

29. Wilson, M.: The case for sensorimotor coding in working memory. Psychonomic Bulletin 

& Review 8(1), 44–57 

30. Wilson, M.: Six Views of Embodied Cognition. Psychonomic Bulletin & Review 9(4), 

625–636 



D.D. Schmorrow et al. (Eds.): Augmented Cognition, HCII 2009, LNAI 5638, pp. 792–799, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

CI Therapy: A Method for Harnessing  

Neuroplastic Changes to Improve Rehabilitation  

after Damage to the Brain 

L.V. Gauthier and E. Taub 

Department of Psychology 

University of Alabama at Birmingham 

lynnevg@uab.edu, etaub@uab.edu 

Abstract. Constraint-Induced Movement (CI) therapy has been successfully 

implemented for treating motor deficit resulting from a variety of previously in-

tractable neurological conditions such as traumatic brain injury. CI therapy’s ef-

ficacy can be attributed to two interrelated mechanisms: overcoming “learned 

nonuse” and neuroplasticity.  Voxel-based morphometry (VBM) analyses have 

demonstrated that CI therapy produces lasting structural changes to the human 

brain. Patients that received full CI therapy demonstrated profuse grey matter 

increases in sensory and motor areas and hippocampus, whereas those who re-

ceived only intensive motor practice did not.  The magnitude of the observed 

structural changes was correlated with the extent to which the patient regained 

use of the impaired arm for daily activities.  These findings demonstrate that the 

two mechanisms believed to underlie improvement from CI therapy, overcom-

ing “learned nonuse” and neuroplasticity, act synergistically. Therefore, a  

bidirectional approach to treating brain injury, one that targets both brain and 

behavior, is suggested. 

1   Introduction 

Traumatic brain injury (TBI) is a leading cause of death and lifelong disability among 
children and young adults in the United States [1]. The number of young Americans 
experiencing TBI has significantly increased in recent years as a result of combat in 
Iraq and Afghanistan. According to the Joint Theater Trauma Registry, compiled by 
the U.S. Army Institute of Surgical Research, over 22% of the soldiers treated in U.S. 
military hospitals between 2003 and 2005 sustained injuries to the head, neck and 
face [2]. Approximately 50% of those injured in blast suffered a TBI. Among Walter 
Reed admissions of war fighters, 54% sustained moderate-severe brain injury [3,4]. 
Among civilians as well as military personnel, an estimated 5.3 million men, women 
and children are living with permanent TBI-related disability in the United States to-
day [5]. These disabilities, including movement impairments, often permanently alter 
a person’s vocational capabilities and have profound effects on their lives. The TBI 
population consists predominately of young males with a potential for employment. 
Motor disability, combined with cognitive and behavioral deficits, results in poor 
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post-injury employment outcome [6-8]. According to a 1985 study, the annual eco-
nomic burden of TBI in the United States was approximately $37.8 billion [9]. With 
rising healthcare costs since that time, these figures have undoubtedly grown substan-
tially. Effective therapeutic interventions for TBI survivors could therefore dramati-
cally decrease TBI’s cost to society by increasing quality of life for TBI survivors and 
their families as well as reducing its economic burden.  

A new class of therapy, termed Constraint-induced Movement therapy (CI ther-
apy), was developed to substantially reduce the incapacitating motor deficit and to 
greatly increase use of an impaired extremity in the life setting following neurological 
damage. CI therapy was derived from basic behavioral neuroscience research with 
primates by Taub and colleagues. When a single forelimb is deafferented in a mon-
key, the animal does not make use of it in the free situation [10,11], but it can be  
induced to use the deafferented extremity by restricting movement of the intact  
limb and operant training procedures (e.g. conditioned response training, shaping pro-
gressive improvements in movement) [12-14]. Similar training principals were later 
successfully applied to humans with chronic hemiparesis resulting from stroke; CI 
therapy has demonstrated efficacy in multiple studies using between- and within-
subject controls, placebo controls, and convergent measures from multiple domains 
[15-20]. A recent multi-site randomized clinical trial (EXCITE) with subacute pa-
tients 3-9 months post-stroke reported positive results [19]. Although originally  
designed to treat stroke patients, CI therapy has been successfully implemented for 
treating a variety of previously intractable neurological conditions including: TBI 
[21,22] multiple sclerosis (MS) [23], cerebral palsy [24], and juvenile hemispherec-
tomy [24] with similar clinical outcomes. Although CI therapy does not restore nor-
mal movement ability to the arm, individuals who receive the therapy are often able to 
regain substantially improved use of the formerly hemiparetic arm for many activities 
of daily living. Its effectiveness may be attributed to two independent but interrelated 
processes: overcoming learned nonuse of the extremity and altering the structure and 
function of the human brain.  

After any substantial neurological injury, there is a period of suppressed central 
nervous system activity and corresponding decrease in motor function. During this 
period, an operant learning process takes place that involves behaviorally reinforced 
suppression of attempts to move an impaired limb. As a result, individuals with motor 
deficit demonstrate greatly reduced movement of the affected extremity despite a 
gradual spontaneous recovery of at least some of the lost function (i.e. learned non-
use) [15, 25]. Almost 90% of TBI patients with motor deficit evaluated in Taub’s 
laboratory exhibited considerably greater use of one arm than the other. Although the 
brain damage associated with TBI is typically bilateral, damage to the motor network 
may be greater in one hemisphere than in the other. We believe that this motor advan-
tage of one arm compared to the other is accentuated because the learned nonuse 
mechanism is based on the greater reward (i.e., success) produced by use of the more 
effective arm even though the advantage initially may be small. This further increases 
its use relative to the less used arm, and may result in contractions of the cortical rep-
resentation zone for the less used arm and increased cortical space devoted to use of 
the more frequently used extremity [26-30]. This would make the more used extrem-
ity progressively easier to use and it would become increasingly difficult for the pa-
tient to use the less frequently used arm. The process may be described as a vicious 
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spiral downward for the less used arm that results in the appearance of relative  
hemiparesis despite bilateral damage to the brain (we have observed this same phe-
nomenon in patients with progressive MS [23], where the neurological damage is also 
bilateral).  

2   Method: CI Therapy  

CI therapy consists of three main elements with demonstrated efficacy for overcom-
ing learned nonuse [17, 31]. One component is intensive training of the more affected 
arm for three hours per day for ten consecutive weekdays. In some respects, this train-
ing is similar to what would be obtained through traditional physical or occupational 
therapy; however, there are several important distinctions: CI therapy focuses entirely 
on training the more affected extremity, incorporates “shaping” procedures (a desired 
movement goal is approached in small steps, by successive approximations and con-
tinuous feedback), and the duration and intensity of training is greater than is typically 
carried out in other more traditional forms of therapy. A second component is pro-
longed restraint of the less affected upper extremity for a target 90% of waking hours 
to encourage increased use of the more impaired arm. The third and final component 
is a “transfer package” of behavioral techniques designed to facilitate transfer of 
therapeutic gains achieved in the laboratory/clinic to real world activities. The transfer 
package consists of a behavioral contract, monitoring of life situation more-affected 
arm use by daily administration of the Motor Activity Log (a structured interview 
concerning the amount and quality of more affected arm use for 30 activities of daily 
living carried out in the life situation), and problem solving with a therapist to over-
come perceived barriers to using the extremity, among several other elements. The 
transfer package has been shown to be a critical component of the therapy; if absent 
from the intervention, improvements in spontaneous real world arm use are reduced 
approximately threefold [32].  

3   Results: Neuroimaging Studies Involving CI Therapy 

In addition to overcoming learned nonuse, the efficacy of CI therapy may be attrib-
uted to a second, related mechanism: neuroplasticity. Decreases in afferent input, such 
as reduced movement following insult to the brain, have been associated with contrac-
tion of the cortical representation zones of the affected extremity [26-30]. Conversely, 
CI therapy has been shown to increase the cortical representations of affected upper 
extremity muscles within ipsilesional primary motor cortex in stroke patients [26, 27, 
33]. Furthermore, increased recruitment of motor cortex paralleled improvements in 
amount and quality of daily arm use [27]. CI therapy has been shown to produce 
“functional” alterations in the excitability, rate of metabolism, and blood flow in ip-
silesional brain areas associated with the more affected arm [34, 35]. Other investiga-
tors have demonstrated CI therapy-induced functional reorganization in contralesional 
areas of the brain [36,37], presumably reflecting reorganization of function in the less 
affected hemisphere. However, a weakness of these studies is that they were limited 
to using imaging techniques such as transcranial magnetic stimulation [26, 27, 33-35], 
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positron emission tomography [34], and fMRI [35] which record alterations in excit-
ability, rate of metabolism, or blood flow, all of which can fluctuate on a moment-to-
moment basis.  

More recently, results from a voxel-based morphometry (VBM) study demon-

strated that CI therapy produces lasting structural changes to the human brain in addi-

tion to the aforementioned physiological changes in brain function [32]. Chronic 

stroke patients enrolled in a recent randomized controlled trial of CI therapy were 

assigned to receive either intensive motor practice only (the first component of CI 

therapy discussed above) or full CI therapy involving all three components including 

the transfer package. Longitudinal VBM was performed on structural magnetic reso-

nance imaging (MRI) scans obtained immediately before and after patients received 

therapy to determine structural changes in grey matter. The group receiving all com-

ponents of CI therapy exhibited far greater improvement in use of the more affected 

arm in the life situation than the group that received only intensive motor practice. 

Increases in grey matter paralleled improvements in spontaneous use of the more im-

paired arm for activities of daily living. The CI therapy group exhibited profuse in-

creases in grey matter in sensory and motor cortices both contralateral and ipsilateral 

to the affected arm, as well as in bilateral hippocampi. These changes in grey matter 

were restricted to cortical areas typically involved in motor control of the arm/hand 

(and not adjacent areas of motor cortex); they may reflect synaptogenesis [38-43], 

gliosis [44, 45], angiogenesis [46, 47], and possibly neurogenesis [48-51]. The group 

that received only intensive motor practice failed to exhibit significant grey matter 

increases. Furthermore, the magnitude of the observed structural changes was corre-

lated with the extent to which the patient regained use of the impaired arm for daily 

activities. This study demonstrates that real-world arm use is a critical component 

driving rehabilitation-induced neuroplasticity.  

4   Discussion 

Although there are several possible explanations for these data, one hypothesis is that 
neuroplastic changes are sensitive to the behavioral relevance of motor tasks, such as 
use of the more affected arm for activities of daily living at home encouraged by the 
transfer package. A similar phenomenon has been demonstrated by Jenkins, Merzen-
ich and colleagues in the sensory system of monkeys [52]. Their studies showed that 
repetitive “behaviorally relevant” sensory stimulation resulted in plastic expansion of 
the cortical representations of stimulated digits whereas equal amounts of sensory 
stimulation that was not behaviorally relevant did not significantly alter these repre-
sentation zones (behavioral relevance was provided by requiring the monkey to make 
an accurate discrimination response to differences in the tactile stimulation to obtain 
food or liquid reward). Alternatively, motor tasks performed in the home may be 
more complex than the structured tasks used for motor training in the laboratory and 
may involve the simultaneous coordination of more muscle groups and therefore pro-
duce a greater neuroplastic response [39, 40, 46, 53-55]. Empirical investigation could 
further elucidate the mechanisms by which an individual’s behavior influences brain 
structure and function.  
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TBI involves different neuropathology than does stroke. The stretching and shear-
ing associated with brain trauma causes a misalignment in the cytoskeleton followed 
by accumulation of intracellular structures and swelling that can cause a separation of 
the axon [56]. It is therefore unclear whether the neuroplastic response of TBI patients 
to CI therapy differs from that demonstrated within a stroke population. However, 
TBI patients treated with CI therapy show clinical improvements equivalent to those 
observed in the stroke population [21, 22]. One might make the assumption that be-
havioral changes are reflective of changes in brain structure or function. Therefore, it 
is highly possible that neuroplastic mechanisms are operating in the brains of TBI 
patients treated with CI therapy that are similar to those shown to occur in patients 
with stroke.  

5   Conclusion 

What is currently known regarding structural brain changes after CI therapy has sub-
stantial implications for rehabilitation. The aforementioned data demonstrates that the 
two mechanisms believed to underlie improvement from CI therapy, overcoming 
learned nonuse and neuroplasticity, act synergistically. Although the brain produces 
movement, purposeful movement can have an equally profound reciprocal effect on 
brain structure and can be harnessed for therapeutic effect. The magnitude of struc-
tural brain change and therapeutic effect appears to depend on the nature and extent of 
the change in behavior, however. Fundamental behavioral change involving incorpo-
ration of the impaired extremity into activities of daily living was necessary to drive 
neuroplastic reorganization of brain, whereas intensive movement training alone was 
insufficient. In summary, brain structure/function and the behavior of the individual 
appear to be interdependent processes that drive therapeutic improvement following 
insult to the brain. Therefore, a bidirectional approach to treating brain injury, one 
that targets both brain and behavior, is suggested.  
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Abstract. Augmented cognition could serve as an innovative rehabilitation ap-

proach for mild traumatic brain injuries, where issues with cognition, behavior, 

and affective responses are monitored in real-time and mitigation strategies are 

triggered to resolve performance or behavior issues.  Such mitigations could 

guide individuals in addressing the current situation (e.g., performance decre-

ment, undesired behavior, negative affective response), as well as provide  

rehabilitation support to improve performance and behavior in subsequent  

situations. This paper focuses on mitigation strategies that are suitable for an 

augmented cognition rehabilitation setting, with the goal of supporting recovery 

from suboptimal performance and providing rehabilitation tools in real-time, 

operational context.  
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1   Introduction 

Traumatic brain injury (TBI) is caused by a sudden trauma that leads to damage to 

the brain. It is a problem affecting many individuals; with an estimated 5 million 

Americans contending with the challenges TBI brings to daily life [32].  TBI affects 

almost every dimension of human functioning, with some common disabilities in-

cluding problems with cognition, sensory processing, communication, and behavior 

[22].  Specifically, neurophysiological impairments caused by mild TBI have been 

characterized in terms of three functional areas: (1) information-handling aspects of 

behavior (e.g., deficits in sequencing information); (2) control aspects of behavior 

(e.g., doing things slowly to ensure accuracy); and (3) affective response (e.g., ex-

pressing feelings of frustration). Deficits in any one or a combination of these areas 

could negatively impact an individual’s ability to return to work and complete eve-

ryday work tasks; particularly with similar efficiency and effectiveness as realized 

prior to experiencing the injury. Rehabilitation is important in the recovery process, 

where TBI patients seek to return to the normal activities of their daily lives and re-

enter the workforce.  Current approaches to rehabilitation, both cognitive and occu-

pational, focus on helping patients adapt to limitations by providing environmental 

modifications that simplify vocational activities and/or learning compensatory 

strategies for coping with chronic cognitive deficits [27]. There is a clear need to 
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develop innovative, biobehaviorally-plausible, and evidence-based approaches to 

rehabilitation that have the potential to facilitate recovery and the ability to optimize 

work capabilities for those with mild to moderate TBI. 

An innovative rehabilitation approach for addressing this need is augmented cogni-

tion, where cognitive state and human performance can be monitored in real-time to 

identify points of non-optimal performance and activate real-time mitigations that 

support the human-system dyad [29].  Such mitigations could guide individuals in 

addressing the current situation (e.g., performance decrement, undesired behavior, 

negative affective response), as well as provide rehabilitation support to improve per-

formance and behavior in subsequent situations.  This paper focuses on mitigation 

strategies that are suitable for an augmented cognition rehabilitation setting, with the 

goal of supporting recovery from suboptimal performance and providing rehabilita-

tion tools in real-time, operational context. 

Augmented cognition systems to date have focused on optimizing performance of 

operators in highly complex, information-rich environments. Thus, mitigation frame-

works and techniques developed within this domain have focused on optimizing cog-

nitive state (e.g., attention, workload, executive function) and human performance 

during multi-modal, multi-tasking situations [10].  Within rehabilitation settings, both 

mitigation frameworks and specific mitigation techniques will likely differ from those 

in existence today.  Specifically, frameworks may have different event triggers or 

trigger thresholds that indicate a need for system mitigation, and the mitigations built 

into these frameworks would differ in that they would support the three functional 

areas impaired in TBI.  Information-handling mitigations may focus on such aspects 

as supporting memory impairments, reduced attention span, and reduced planning 

capacity; behavioral control mitigations may focus on supporting such aspects as im-

paired self-monitoring and poor impulse control; and affective response mitigations 

may focus on such aspects as stress intolerance, frustration, and motivation [22].  

Such interventions are intended to not only help TBIs effectively perform vocational 

activities, but also enable them to progressively acquire or optimize the requisite skills 

to perform autonomously in the workforce.  The current paper discusses TBI-targeted 

mitigation techniques that could be used to support each of these functional areas. 

2   Information-Handling Mitigation Strategies 

Cognitive deficits are the most common dysfunction associated with mild TBI and the 

most detrimental to restoration of normal functioning [19].  Major cognitive impair-

ments associated with mild TBI are memory, attention, and executive function deficits 

[34].  Information-handling mitigation strategies could help support issues associated 

with these cognitive dysfunctions. 

2.1   Working Memory Impairments  

Working memory is an area of information handling that is especially vulnerable to 

disruption after TBI [21].  Working memory is a temporary storage system requiring 

attentional resources to retain information from different sensory modalities until a 

human operator is able to attend to that information.  While mild TBI do not tend to 
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have decreases in working memory capacity, per se, instead they tend to experience 

difficulty with timing and regulating access to information [20, 21].  In addition, those 

with mild TBI appear to have difficulty allocating processing resources in response to 

moderate to high working memory tasks.  However, if mild TBI are directed to use 

conscious and deliberate strategies to effectively allocate attentional resources and 

manage the rate of information during task performance this helps alleviate perform-

ance decrements [6].  It is crucial to provide mild TBI with such memory compensa-

tory strategies so they can realize an independent life of reasonable quality.  

For working memory, the mitigation challenge becomes – how to assist those with 

mild TBI in allocating appropriate working memory resources to incoming informa-

tion and managing the rate of incoming information?  Augmented cognition could be 

used to assist with this working memory allocation and timing problem.  For example, 

Lockheed Martin Advanced Technology Laboratory used electroencephalogram 

(EEG) indices, galvanic skin response (GSR), pupilometry, and electrocardiogram 

(ECG), in an augmented cognition system to ease working memory limitations by 

activating a sequencing mitigation strategy [10] that held less critical information in 

a cue allowing the operator to deal with only critical information during times of high 

workload [33].  Such a sequencing mitigation strategy could assist mild TBI in allo-

cating working memory resources to critical task information during moderate to high 

task workload (see Table 1).   

Table 1. Information handling mitigations strategies for supporting mild TBI 

Mitigation Objective Mitigation Strategy Intervention 

Support working 

memory 

Sequencing Allocating attention to critical task 

information 

 Pacing Managing the flow of task informa-

tion 

Increase attention span Modality augmenta-

tion and switching 

Supporting selective or divided atten-

tion during performance of complex, 

functional tasks 

Support planning  

capacity 

Cueing Increasing the number of contextual 

cues 

 Decluttering Reducing the amount or complexity 

of information to be displayed to 

suppress irrelevant information 

In terms of timing, Wilson and Russell [36] used a pacing mitigation strategy 

[10], where the speed of display icons (i.e., simulated UAVs) was dynamically re-

duced depending on the current cognitive load of the operator, providing more time to 

successfully complete the task at a cost of longer mission duration.  Such a pacing 

mitigation strategy could assist mild TBI in managing the flow of task information 

during moderate to high task workload.  Once information enters working memory, 

attentional resources must be directed toward the process of retaining a memory and 

supporting human performance.   
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2.2   Reduced Attention Span   

Attentional deficits in mild TBI can affect arousal/alertness, selective and divided 

attention, and energetic components of attention (allocation and speed of processing; 

[23]).  These individuals may experience difficulty concentrating on even simple 

tasks or dividing their attention among multiple tasks [9]. Sohlberg et al. [30] found 

evidence supporting the effectiveness of direct attention training after TBI on com-

plex, functional tasks requiring selective or divided attention.  Training with different 

stimulus modalities has shown particular promise in attention training for those with 

mild TBI [5]; [7].  This type of intervention could readily be supported by an aug-

mented cognition system.  Specifically, an augmented cognition system could monitor 

attention deficits in task demands (e.g., difficulty dividing attention during multi-

tasking).  Mitigations strategies could then be invoked that effectively redirect atten-

tion through the use of varied stimulus modalities.  Such an approach is known as 

modality augmentation and switching [10], which can occur in two forms: (1) Mo-

dality redundancy refers to presenting the same information in multiple modalities, 

and/or providing complimentary information in a second modality, and (2) Modality 

switching replaces one sensory modality with another in order to optimize distribution 

of processing load.  Jones (2005) explored the utility of modality augmentation in a 

simulated unmanned aerial vehicle (UAV) task (note, the system was not a closed-

loop).  The integration of audio cues (as compared to a visual display alone) led to 

increased detection rates of critical mission events and increases in speed of detection, 

while reducing the perceived workload associated with the task.  Furthermore, these 

gains in turn led to increases in accuracy while performing tasks after attention  

was directed to them.  This and other such successes indicate that attentional deficits 

are an appropriate and promising focus area for augmented cognition rehabilitation 

efforts. 

2.3   Reduced Planning Capacity 

Those with mild TBI can experience difficulty in planning and executing tasks, espe-

cially multiple coordinated tasks [9].  Such tasks require conceptual and executive 

functioning abilities, which are diminished in those with mild TBI.  These deficits can 

make it difficult to devise and follow a sequence of job tasks to completion, especially 

when such tasks require flexibility and creative problem solving.  Executive function 

in human information handling is responsible for directing attention, suppressing ir-

relevant information, coordinating cognitive processes during multi-tasking, and han-

dling novel situations (i.e., those with contextual ambiguity; [11]).  An augmented 

cognition system could support the executive function of those with mild TBI by 

identifying inattention during task activity and reducing contextual ambiguity, and 

thus effortful executive function processing, by increasing the number of contextual 

cues (i.e, cueing; [10]) associated with a target task thereby assisting operators in 

quickly reinstating context during multi-tasking.  For example, Boeing [2] used an 

adaptation strategy involving cued retrieval and decluttering, which facilitated  

the chunking of related information and suppression of irrelevant information in a 

UAV display during high levels of decision-making.  Amplification of the executive 

function was also used in the Cognitive Cockpit, where a task interface manager 
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adaptively provided cueing information according to the situational context and pilot 

state [31].  Cueing and decluttering mitigation strategies could assist mild TBI in 

planning and executing tasks during moderate to high task workload. 

3   Behavorial Control Mitigation Strategies 

Lowered self-monitoring ability and impulsivity are nettlesome behavioral problems 

associated with mild TBI [19].  Behavioral control mitigation strategies could support 

such dysfunctions. 

3.1   Self-monitoring of Behavior 

Self-monitoring of behavior is commonly disrupted in those with mild TBI [14].  
Self-monitoring is an ongoing self-assessment involving comparison of actual versus 
expected performance that occurs when an individual is engaged in a task activity.  
Through self-monitoring, an individual generates internal feedback that can be used to 
self-regulate their performance.  In mild TBI, self-monitoring accuracy does not tend 
to generalize across diverse task types and thus interventions often have to be task 
specific.  Increases in self-monitoring ability have been realized by showing an indi-
vidual a replay of their task performance [3], while engaging them in metacognitive 
strategies (reflection, prediction of difficulty of next steps, comparing actual with ex-
pected performance; [19]), as well as by providing verbal and visual performance 
feedback – such as auditory prompts during initial learning - and praise [26].  These 
types of interventions could be readily incorporated into an augmented cognition sys-
tem.  For example, Bose, van Doesburg, van Maanen, and Treur [4] used cognitive 
models to augment metacognition in an augmented cognition system for an air traffic 
control task requiring visual attention.  Specifically, eye gaze was used to detect if an 
operator was paying attention (i.e., actual performance) to the most threatening radar 
tracks (i.e., expected performance) and where deviations were found tasks were allo-
cated to automation.  Similarly, Hudlicka [12] developed a cognitive architecture 
module that performs metacognitive functions involved in monitoring and control of 
cognition.  The module modeled the assessment and projection of a current situation 
onto expectations and prediction of possible future states.  It also directed actions 
when the actual situation was not in line with expectations through metacognitive 
prompting and feedback, including prompting to re-scan the environment, obtain 
contextual and task feedback, and assess the situation.  Such a module could be incor-
porated into a rehabilitation system to support the self-monitoring behavior of those 
with mild TBI (see Table 2).   

Table 2.  Behavioral control mitigations strategies for supporting mild TBI 

Mitigation Objective Mitigation Strategy Intervention 

Support self-monitoring 

of behavior 

Metacognitive prompting 

and feedback  

Encourage ongoing self-assessment 

involving comparison of actual ver-

sus expected performance 

Support impulse control Multimodal warnings Release stimulus boundedness and 

foster holistic situation assessment 

to avert impulsivity 
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3.2   Poor Impulse Control 

Individuals who have suffered mild TBI often an issue with impulsivity, which may 

manifest itself through snap decisions and poor judgment [19].  This poor impulse 

control is often due to a tendency for those with mild TBI to become overly preoccu-

pied with the most salient cue(s) in an environment, without regard to a holistic as-

sessment of a situation (i.e., stimulus boundedness).  This tendency to respond to 

fragmentary, immediate experiences can also lead to a difficulty in shifting focus 

from one task to another.  For such poor impulse control, the mitigation challenge 

thus becomes – how to assist those with mild TBI in overcoming stimulus bounded-

ness and redirect their attention to a more holistic situation assessment.  Multimodal 

warnings have been effectively used in augmented cognition systems as mitigations 

that redirect an operator’s attention from the current task to a more critical task and 

thus may prove effective in resolving stimulus boundedness.  For example, Barker et 

al. [2] used an auditory warning that directed an operator’s attention to a Tactical 

Situation Display to search for time-critical targets.  Mathiak et al. [18] suggest that 

crossmodal effects can be used to enhance perception of such warning cues even un-

der demanding task situations.  Thus, multimodal warnings could be used in aug-

mented cognition rehabilitation systems to try to release an individual with mild TBI 

from stimulus boundedness and foster a more holistic situation assessment in an effort 

to avert impulsivity (see Table 2). 

4   Affective Response Mitigation Strategies 

Those with mild TBI often experience affective instability, such as lower stress toler-

ance, reduced frustration tolerance, and lowered motivation [8].  Affective response 

mitigation strategies could support such issues. 

4.1   Reduced Stress Tolerance 

Those with mild TBI have reduced tolerance to stress [8].  Cognitive behavioral  

therapy (CBT) is a common treatment for such stress disorders.  CBT involves stress 

inoculation (i.e., education about reactions to stress, imaginal exposure to stress-

inducing memories, cognitive restructuring) and graded in vivo exposure to stressful 

re-experiences [15].  Such CBT techniques could be incorporated into augmented 

cognition systems that provide adaptive therapy based on the state of the operator.  

Such a system could allow an individual to initially practice a task without stressors.  

Then, stress activators could be introduced to allow the individual to develop coping 

strategies and review their performance, the latter of which has been shown to signifi-

cantly improve the effectiveness of stress inoculation training [28].  To effectively 

support this approach in an adaptive rehabilitation system, stress levels would be 

monitored in real-time and adaptive rehabilitation would be triggered using a scaf-

folding approach, ensuring that individuals are performing under low-stress condi-

tions initially and increasing stress as level of mastery increases (see Table 3). 
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Table 3. Affective response mitigations strategies for supporting mild TBI 

Mitigation Objective Mitigation Strategy Intervention 

Stress inoculation Phased stress inoculation Phased stress exposure, adjusting 

scenarios from initially low-stress 

conditions, ultimately challenging 

with high-stress conditions 

Frustration tolerance Frustration release 

strategies 

Simplify tasks, slow pace, provide a 

calming environment (e.g., music), 

encourage breaks in activity 

Motivation enhancement Motivational techniques Verbal motivation and goal visuali-

zation techniques 

4.2   Diminished Frustration Tolerance 

Diminished frustration tolerance is a common ailment for those with mild TBI [9].  
Such individuals readily feel overwhelmed by their task circumstances.  Frustration 
can be mediated by simplifying tasks, slowing the pace, providing a calming envi-
ronment (e.g., music), and encouraging breaks in activity when frustration is evident 
[5, 7. 15].  Further, Liebman [16] notes that when an individual experiences unneces-
sary or excessive frustration he tends to become psychologically fixed at the point of 
frustration. Augmented cognition rehabilitation systems should thus be designed to 
monitor for and release such fixation through the use of breaks or other such tech-
niques.  Augmented cognition systems could thus incorporate mitigation strategies 
that serve as frustration release techniques that support rehabilitation (see Table 3).   

4.3   Motivation 

Apathy is a common ailment associated with mild TBI, which can manifest via  

disinterest in daily task activities [25].  Such increased disinterest and decreased mo-

tivation can be persistent, lingering for years after a brain injury [17].  Verbal motiva-

tion and goal visualizing techniques have shown promise in enhancing the motivation 

of those with mild TBI [13].  Such motivation techniques (e.g., positive feedback, 

knowledge of goals/ performance) could be incorporated into mitigations strategies 

for an augmented cognition rehabilitation system.  For example, Qu, Wang, and  

Johnson [24] used eye gaze to characterize a learner’s attention and then infer motiva-

tion factors of the learner in an interactive learning environment.  Further, facial ex-

pressions could be monitored in real-time and used to characterize motivation.  For 

example, Adolphs [1] characterized emotions as discrete entities and temporary inter-

sections within a continuum of states defined in terms of motivation and alertness.  

Once an individual’s motivation state was determined, then verbal motivation and 

goal visualization techniques could be incorporated into mitigation strategies that 

adapt rehabilitation in real-time to foster greater motivation (see Table 3). 

5   Mitigation Framework 

In general, the mitigations strategies described above would be designed as part of a 

rehabilitation system, which provides compensatory tools and techniques that adapt to 
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and are used by the individual to allow functioning in spite of disabilities and restora-

tion through repetitive exercises and activities designed to restore or improve dam-

aged abilities.  Further, as opposed to previously developed mitigation frameworks 

that adopted a step-wise approach, where minimally invasive mitigation techniques 

were employed prior to more intrusive techniques - with the goal of ensuring mitiga-

tion benefits outweighed potential adverse effects [10], a rehabilitation mitigation 

framework would turn this step-wise approach on its head, providing more intrusive 

mitigations initially to correct suboptimal performance or behavior, and subtly reduc-

ing the amount of assistance over time as cognitive state and performance indicators 

show improved capability to handle increased difficulty of tasks.  Such a rehabilita-

tion mitigation approach is similar to past “training wheels” paradigms, where ini-

tially a high-level of support is provided (i.e., automated sequencing of steps, slowed 

information presentation rate), then it is scaled back (i.e., manual sequencing of steps, 

slowed information presentation rates), and then scaled back again (i.e., manual se-

quencing of steps, restored information presentation rates).  While one could base this 

progression on overt behavioral responses, this would be an informed “guess” based 

on performance outcomes.  The use of augmented cognition supports precision reha-

bilitation; i.e., presenting / removing mitigations at precisely the right moment – when 

the individual demonstrates limited or increasing cognitive capacity, impulsivity, 

stress, etc. at the neuropsychological level.  This would allow for targeting of requi-

site neuroplasticity in the brain that drives rehabilitation. 
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Abstract. Based on a number of empirical investigations of cerebral cortical 

dynamics during precision aiming tasks (i.e. marksmanship) employing electro-

encephalography (EEG) refinement of cortical activity and attenuation of non-

essential cortico-cortical communication with the motor planning regions of the 

brain results in superior performance. Employment of EEG neurofeedback dur-

ing the aiming period of target shooting designed to reduce cortical activation 

resulted in improved performance in skilled marksmen. Such an effect implies 

that refinement of cortical activity is causally related to performance. Recently, 

we examined cerebral cortical dynamics during the stress of competitive target 

shooting and observed increased activation and cortico-cortical communication 

between non-motor and motor regions relative to a practice-alone condition.  

As predicted, this finding was associated with degradation of shooting  

performance. These findings imply that neurofeedback targeted to brain regions 

related to emotional responding may preserve the cortical dynamics associated 

with superior performance resulting in improved accuracy of precision aiming 

performance. 

Keywords: electroencephalography (EEG), psychomotor performance, cogni-

tive neuroscience, stress, kinematics. 

1   Introduction 

1.1   Cognitive Neuroscience of Skilled Motor Performance – Cortical Dynamics  

Based on a number of empirical investigations of cerebral cortical dynamics during 

precision aiming tasks (i.e. marksmanship) employing electroencephalography (EEG) 

we have formulated a model of psychomotor efficiency.  In essence, this model posits 

that refinement of cortical activity and attenuation of nonessential cortico-cortical 

communication with the motor planning regions of the brain results in superior per-

formance.  This is likely due to “simplification” of central processes that emerges as 

economy and consistency of limb actions.  More specifically, we have noted a re-

markable relationship between left temporal and parietal activity during the aiming 

period such that quiescence or “relaxation” in this region is related to higher-quality 

performance. 
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1.2   Expert vs. Novice EEG Contrasts 

This principle was clearly supported by Haufler et al. [1]. Specifically, novice and 

expert marksmen were subjected to a target-shooting task as well as comparative ver-

bal (i.e., word recognition) and spatial tasks (i.e., dot localization), with which the 

groups were similar in terms of experience, while recording EEG. The verbal and 

spatial tasks were also performed in the shooting stance posture. As shown in the 

three panels below, lower cortical activation levels in the cerebral cortex were ob-

served in the experts during the aiming period of shooting, as measured by gamma 

40-Hz power, while no differences were revealed during the comparative tasks. The 

left-sided and middle panels of Figure 1 represent comparative log-transformed 

gamma power (36-44 Hz), which is also positively related to cortical activation, from 

the averaged homologous frontal (Panel A) and the averaged homologous temporal 

regions (Panel B). The group differences in activation associated with the frontal re-

gion also suggest that the experts were less reliant on effortful executive processing 

(i.e., planning and coordinating processes) as compared to their novice counterparts. 

Experts also revealed significantly lower beta power, a spectral band that is positively 

related to cortical activation, during shooting while, again, no differences were noted 

during the verbal and spatial tasks. Panel C shows that the experts exhibited higher 

levels of alpha power (8-12 Hz) at site T3 as well as lower levels of beta and gamma 

power. Collectively, the results clearly show task-specific relaxation in the cortex of 

the expert marksman.  

 

Fig. 1. Expert novice contrasts of EEG spectral power: (A) bilateral frontal gamma power (F3, 

F4), (B) bilateral temporal gamma power (T3, T4), (C) spectral power at T3 during shooting 

1.3   Stress and Cortical Dynamics 

Although these expert-novice contrasts and training studies did not involve direct  

manipulations of psychological stress, they do provide support for the notion that the 

individual who is highly skilled and focused shows suppression of task-irrelevant  

associative activity and concomitant activation of task-relevant processes [2]. The 

notion of mental economy is a fundamental building block of the neurobiological 

model of superior performance and the antithesis to the state observed during anxiety. 

The novice or one who is marked by a lack of confidence and much uncertainty of 

their performance would theoretically exhibit hyperactivity of numerous cortical 

processes. In this regard Kerick, Hatfield and Allender [3] recently observed a posi-

tive relationship between cortical activity (i.e., alpha suppression) and cognitive load 

in a study of U. S. Marines executing a target-shooting task.  

 

C
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Cortical coherence and shooting performance. Additional insight can be attained 

into the neurobiology of the skilled performance state by examination of functional 

interconnectivity or cortico-cortical communication between specified topographical 

regions of the brain. Such “networking” activity can be quantified by deriving coher-

ence estimates between selected pairs of electrodes or recording sites [4]. In a recent 

study Deeny et al. [5] assessed inter-electrode coherence between motor planning (Fz) 

and association areas regions of the brain during skilled marksmanship by monitoring 

EEG at sites F3, F4, T3, T4, P3, Pz, P4 as well as the motor cortex (C3, Cz, C4) and 

visual areas (O1 and O2). Coherence was assessed during a 4-second aiming period 

just prior to trigger pull in two groups of participants who differed in competitive per-

formance history (experts and non-experts). The two groups were equally experienced 

(approximately 18 years of practice), but the “experts’ consistently scored higher under 

the stress of competition. Figure 2 illustrates the left hemisphere Fz-F3, Fz-C3, Fz-P3, 

Fz-T3, and Fz-O1 coherence estimates contrasted between the two groups. A signifi-

cant difference between the groups was detected for the Fz-T3 alpha band coherence, 

as experts revealed significantly lower values, although no other differences were ob-

served for either the left or right hemisphere. The general lack of group differences in 

cortical networking seems reasonable as both were similarly experienced with the task 

and challenged in a similar manner. The Fz-T3 results suggest that experts limited 

communication between verbal-analytic and motor control processing, thereby simpli-

fying motor planning and performing in a more accurate and consistent manner.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The left hemisphere Fz-F3, Fz-C3, Fz-P3, Fz-T3, and Fz-O1 coherence estimates con-

trasted between the two groups is illustrated 

Collectively, the results of these studies suggest that superior performance is 

marked by mental economy, particularly of analytical associative processes, and that 

pruning of excessive cortico-cortical communication between such processes and mo-

tor regions underlies enhancement and consistency of psychomotor (shooting) per-

formance and raise the prediction that a reversal of these patterns would be observed 

with the imposition of stress. 

1.4   Affective Neuroscience - Brain Processes during Emotion  

Bear, Conners, and Paradiso [6] recently summarized the neural structures involved in 

a system or circuit, which mediates the psychological and physiological response to 
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stress. Generally, the stress response is orchestrated by the limbic system but the cen-

tral components of this functional circuit are the amygdalae, small almond-shaped 

structures located bilaterally and anterior to the hippocampi on the inferior and medial 

aspect of the temporal lobes [6]. Multiple sensory pathways converge in the basal 

lateral nuclei of the amygdalae so that environmental events are immediately proc-

essed. Depending on the valence of the stimuli, the lateral nuclei then communicate 

with the central nucleus in each amygdala and subsequent connections travel to  

critical forebrain, brainstem, autonomic, and endocrine structures that mediate the 

expression of emotion. Specifically, there are interconnections from the central nuclei 

to the (1) hypothalamus, which results in sympathetic arousal and stimulation of stress 

hormones via the hypothalamic-pituitary-adrenocortical (HPA) axis, (2) the periaque-

ductal grey, which results in motor responses, and (3) the cingulate cortex, which re-

sults in additional cortico-cortical communication with neocortical association regions 

such as the temporo-parietal regions.  

In this manner orchestrated sequelae occur in response to a stressful environment, 

which, collectively, can change the performer's mental and physical state in a pro-

found manner. For example, heart rate and cortisol levels rise, as does muscle tension, 

and the soldier may concomitantly experience excessive self-talk and “too much 

thinking” such that their attention is compromised and the execution of normally 

automated psychomotor skills such as marksmanship become explicitly managed - 

timing and coordination are then altered and likely reduced in quality while attention 

shrinks.  

In light of the mental and physical changes that accrue, the activation of the 

amygdalae serves as a pivotal event in the manifestation of stress and the control of 

activity in the amygdalae would exact a powerful influence on the performer’s men-

tal and physical state. Beyond the structures and processes outlined by Bear et al. [6] 

a critical component of the neurobiology of fear Importantly, the anterior cortical 

regions have extensive anatomical connections with several subcortical limbic struc-

tures implicated in emotional behavior, particularly the amygdala. Davidson and 

colleagues [7,8] have generated a significant body of literature that clearly shows a 

positive association between left frontal activation and positive affect while relative 

right activation is associated with negative affect [7]. Although the lateralization of 

frontal activation is robustly related to the valence of emotion as described above, 

recent evidence points to a more fundamental association such that left frontal acti-

vation mediates approach-oriented behavior while right frontal activation is associ-

ated with avoidance or withdrawal-oriented behavior [8,9]. For example, left frontal 

activation is manifest during hostile behavior, which is certainly not a positive affec-

tive state, but most definitely involves approach toward an intended target. Whether 

positive in nature, approach-oriented, or a combination of the two dimensions, it 

would appear that such a neurobiological state would be highly adaptive for the indi-

vidual who must control his/her arousal level while actively engaged with challeng-

ing tasks while under great mental stress. Therefore, cortical activation in the frontal 

region provides an opportune target for neurofeedback training to enable a height-

ened level of executive control over emotional response and task engagement during 

challenge.  
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1.5   Model of Stress-Induced Cortical Dynamics 

Figure 3 below provides a model of the processes and outcomes underlying stress 

reactivity and integrates affective and cognitive activity with psychomotor perform-

ance. A central tenet is that lack of executive control over subcortical processes would 

result in heightened emotional influence (limbic structures) that, in turn, disrupt 

higher cortical association processes that resulting in alterations in the activation of 

the motor loop – the fronto-basal ganglia structures that initiate and execute move-

ment. Such disregulation interferes with attention and the motor loop connections 

(i.e., basal ganglia) to the motor cortex that largely control corticospinal outflow and 

the resultant quality of motor unit activation [10]. Excessive networking in the cortex 

may result in undesirable alterations in information processing as well as inconsis-

tency of motor performance. In this manner the motor cortex becomes “busy” with 

excessive input from limbic processes via increased neocortical activity in the left 

hemisphere then inconsistent motor behavior would likely result [5].  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 3. Model of stress-induced cortical dynamics 

Refinement or economy of cortical activation would more likely result in enhanced 

attention and smooth, fluid, graceful, and efficient movement. Any reduction of asso-

ciative networking with motor control processes would also help to reduce the com-

plexity of motor planning and should result in greater consistency of performance.  

According to this model individuals under high stress will exhibit reductions in 

prefrontal asymmetry (box 1) compared to a low-stress condition implying a lack of 

executive control over the fronto-meso-limbic circuit. Consequently, participants  

will experience heightened activation of the limbic region (amygdala) (box 7). The 

resultant emotional reactivity, in turn, will result in EEG alpha desynchrony particu-

larly in the left temporal (T3) and parietal (P3) regions (box 8) along with increased 
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cortico-cortical communication between these regions and the motor planning centers 

(box 4). Such disregulation of the cerebral cortex will be expressed as inconsistent 

input to the motor loop (boxes 2 - 5) resulting in inconsistent corticospinal output and 

shooting performance (motor unit activity – trigger pull – boxes 9 and 10). It is well 

established that attention capacity shrinks with arousal and, consistent with this no-

tion, the excessive cortico-cortical networking during heightened stress, as proposed 

here, would compromise information processing. In addition, cardiovascular activity 

(vagal tone) will be inversely related to the activity in the CNS such that vagal tone 

will be reduced in the high-stress condition. Cortisol levels will rise. The magnitude 

of change specified in the model will be related to degradation in shooting perform-

ance (i.e., slower and inaccurate).  

2   Methods 

2.1   Participants 

Members of the Reserve Officers Training Corps (ROTC) participated in the study. 

Subjects were healthy non-smokers, between the ages of 18 and 22 years, who were 

right-handed and exhibited ipsilateral eye-dominance. All subjects provided informed 

consent, health history, and demographic information.  

 

 

 

 

 

 

 

 

Fig. 4. Illustration of pistol shooting task 

2.2   Procedures  

Subjects completed two test sessions varying in stress and mental challenge. Figure 4 
above illustrates the basic recording strategy of EEG monitoring during target shoot-
ing. Shooting scores were calculated as percentage accuracy by summing the point 
value of each target hit, dividing by the total points possible, and multiplying by 100. 
Concentric circles on the target range from 1 to 10, with 10 being the highest possible 
point total on any given shot (i.e., the bullseye). 

During the low-stress condition subjects performed alone in a non-competitive 
state and in the absence of any time constraints to execute 40 shots. During high-
stress the participants competed within a sanctioned in-house match against an oppo-
nent in an adjacent lane and under the constraint of time pressure. Specifically, the 16 
participants were evenly split into two teams and the scores posted during competition 
were publicly displayed and entered into a composite score to determine the winning 
team. The order of conditions was counterbalanced. 
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2.3   Psychophysiological Monitoring - Signal Acquisition / Processing 

High-density EEG records referenced to linked-ears were obtained via subjects wear-
ing a 32-electrode stretch-lycra cap interfaced to high-impedance amplifiers (Neuro-
Scan SynAmps system) supported by dedicated signal acquisition and processing 
software. Electrode impedance was maintained below 5Kohm, amplification was 
20,000x, bandpass filtering was 1-100Hz, and a sampling rate of 512 Hz was em-
ployed. EEG records contained event markers for all shots taken. Vertical eye move-
ments were monitored and amplified 5,000x. Electrocardiographic records (ECG) 
were monitored continuously throughout each session to determine parasympathetic 
or vagal tonus. Strength of HPA axis activity was assessed by periodic sampling of 
salivary cortisol during each condition. Data collection was conducted in accord with 
procedures published by Putnam et al. [11] to reduce risk of infection. 

EEG records corrected for artifact were subjected to Fast Fourier Transform to de-
termine regional activation (power spectral composition) and frontal asymmetry of 
EEG alpha power. Inter-electrode coherence was assessed between association and 
motor planning regions. Furthermore, the EEG records were subjected to Independent 
Components Analysis (ICA), as described by Contreras-Vidal and Kerick [12], to: 1) 
conduct exploratory analyses for the reduction of movement artifact and 2) determine 
specified regional components (with particular emphasis on frontal and left temporal 
regions) and compute coherence between targeted brain regions. 

3   Findings 

Relative to the low-stress condition, the high-stress competitive challenge resulted in: 

1. lower prefrontal asymmetry and heightened state anxiety 
2. suppressed alpha power across the topography of the cortex (Figure 5) 
3. increased number of cortical components clustered with a key component associ-

ated with poor performance during high stress located in the left temporal region 
indicative of greater cognitive complexity 

4. increased alpha band coherence between left temporal and frontally located motor 
planning components 

5. lower heart rate variability or withdrawal of vagal tone  
6. heightened cortisol levels  
7. degraded shooting performance 

 

Fig. 5. Topographical EEG alpha maps during performance alone (low-stress) on left and com-

petition (high-stress) on right at 4 seconds preceding trigger pull (Note darker shade in parietal 

region of low-stress condition indicating higher alpha power) 
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Abstract. Learning disabilities are serious societal problems contributing to a 

loss of quality of life for affected individuals and their families. We hypothe-

sized that the learning disability in Down Syndrome and perhaps in other  

neurodegenerative disorders is due to an imbalance between inhibitory and ex-

citatory tone in the CNS.  Specifically, we predicted that reduction of GABA 

related inhibition would improve learning.  We used the TsDn65 mouse model 

of Down Syndrome and treated adult mice with daily doses of different GABA 

antagonists. Following treatments learning performance of these mice in several 

rodent learning tasks was indistinguishable from the performance of wild type 

mice, and the learning improvement lasted for months after the treatment ended. 

We are now exploring the mechanism of this durable neuroplastic effect and 

asking whether it would generalize to other learning disorders or optimize 

learning in wild type mice. 

Keywords: GABA, picrotoxin, pentylenetetrazole, bilobilide, flumazinil, Down 

Syndrome, TsDn65 mice, novel object recognition. 

1   Introduction 

The incidence of intellectual disability is about 1-2% in western countries, and the 

resulting health costs, opportunity costs, and loss of productivity are in the tens of 

billions of dollars/year. In about three-fourths, one of several hundred single gene 

disorders is the cause; the remainder is due to chromosomal abnormalities, malnutri-

tion, fetal alcohol exposure or brain injury. One of the most common, Down syn-

drome has been found to affect 1 of every 700 live births.  

We are following up on previous work [1] that advanced and tested the hypothesis 

that the cognitive dysfunction in Down Syndrome is due to an excess of inhibitory 

tone in the CNS. It was shown that reducing inhibitory tone with non-competitive 

GABAA antagonists (pentylenetetrazole, bilobilide, and picrotoxin) restored learning 

ability in a mouse model of Down Syndrome (TsDn65 mice), and that this improve-

ment extended months beyond the treatment regimen. The long-term efficacy of these 

treatments indicated that they induced a major and lasting neuroplastic effect.  One 
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indication of the neuroplastic modifications was seen is the fact that LTP in the hip-

pocampus is extremely low in the TsDn65 mice [2, 3, 4], and was normalized by the 

treatment [1]. Moreover, the enhancement of LTP, like the enhancement of learning 

ability lasted for months after the drug treatment ended.  A notable aspect of our pre-

vious work was that it was performed on adult mice. This implies that the reduction in 

cognitive performance caused by the triplication of over 150 syntenic human chromo-

some 21 genes in this Down Syndrome (DS) mouse is not permanent but can be  

improved to normal or near normal functionality at any age.  Perhaps it can also  

optimize learning and memory in individuals without diagnosable disabilities. 

Here we report on ongoing efforts to understand the relationship between GABA 

antagonism and mitigation of learning disability both short term and long term.  We 

have more fully characterized the phenotype and the drug effects through studies of a 

variety of behaviors and electrophysiological measures.  Our behavioral characteri-

zation has included novel object recognition, nest building, fear conditioning, and 

circadian organization of activity.  Clear differences between DS and wild-type 

(WT) mice have been established, and the GABAA antagonist treatment affects all of 

them except poor nest building which we think is a manifestation of attention deficit.  

Notably, the spectral properties of REM sleep EEG, namely power in the theta band, 

are different in the DS and WT mice. High theta activity is also a component of alert 

wakefulness, and the same differences are seen during wakefulness in DS and WT 

mice.  Treatment with the GABAA antagonists normalizes the theta activity in the 

DS mice. 

2   Drugs, Dosing, and Behavior 

The previously reported work explored the actions of non-competitive GABAA an-

tagonists picrotoxin (1.0 mg/kg), bilobilide (5.0 mg/kg), and pentylenetetrazole (PTZ) 

(3.0 mg/kg) delivered orally in milk.  Two behavioral tasks were used to score learn-

ing in the Ts65Dn mice: the novel object recognition task and the spontaneous alter-

nation in a T-maze task.  In both tasks, all three of these non-competitive GABAA 

antagonists when delivered in daily doses over 2 to 3 weeks normalized the learning 

behavior of the Ts65Dn mice when they were tested after the treatment regime had 

finished.  Moreover, the improvement lasted for months after the treatment had ended.  

In contrast, single doses of picrotoxin and PTZ did not produce improvements in the 

learning behavior of the Ts65Dn mice.  Thus, the treatment regimes seemed to pro-

duce gradually a semi-permanent change in the ability of the brains of the Ts65Dn 

mice to process and store new information.  In the new work reported here, we have 

replicated the prior experiments using PTZ and have lowered the dose by an order of 

magnitude, we have extended the phenotyping of the effect of reduction of GABA 

inhibitory tone, and we have explored a new class of GABA antagonists.   

Figure 1 shows the effects of PTZ (0.3 mg/kg ip) on performance of WT and 

Ts65D mice.  Treatment consisted of daily injections of PTZ in saline or just saline 

for 16 days.  The behavioral testing was done 1 week after the last injection.  Novel 

object recognition of the Ts65Dn mice treated with PTZ was normalized.    
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Fig. 1. Performance of WT (2N) and Ts65Dn (TS) mice 1 week after completion of 16 days of 

daily ip injections of PTZ at 0.3 mg/kg or saline. The open bars show that the animals do not 

discriminate between two objects during a 10 min learning opportunity.  24 hrs later (solid bars) 

all mice except the Ts65Dn animals that received vehicle can recognize a novel object from a 

familiar object.  N = 7 to 9 animals per group. 

3   Additional Behavioral Tests 

We have further phenotyped the GABAA antagonism on Ts6Dn mice through fear 

conditioning and nest building tests. Both cued and contextual fear conditioning was 

improved in Ts65Dn mice treated with PTZ (3.0 mg/kg ip) for 3 weeks (Figure 2) . 
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Fig. 2. Fear conditioning in PTZ treated Ts65Dn and WT mice.  In each set of experiments, the 

left most group is the PTZ treated Ts65Dn mice, the second is Ts65Dn mice treated with vehi-

cle, the third is WT mice treated with PTZ, and the fourth is WT mice treated with vehicle.   

Mice were tested for their ability to build nests by placing a small square of com-

pacted fiber (a Nestlet) in their cages (animals housed singly). After an hour the Nes-

tlet (if any remained) was removed and weighed.  Nest building was scored as the 

inverse of the proportion of the Nestlet remaining.  Nests were also scored subjec-

tively on a scale of 1 (no nest) to 5 (excellent nest).  Conditions were home cage vs. 

new cage and thermoneutral vs. cool (to increase motivation).  Ts65Dn mice showed 
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a deficit in nest building in comparison to the WT mice in the familiar, thermoneutral 

environment.  Both WT and Ts65Dn mice performed less well in the novel ther-

moneutral environment, but the deficit was much more pronounced in the Ts6Dn 

mice. In fact, their nest building was practically reduced to zero.   Observations of 

their behavior via remote camera showed that their attention to the nestlets was much 

more fragmented.  They would nudge the nestlet and then move to some other place 

in the cage, then return to the nestlet, and so forth.  When the ambient temperature 

was lowered to increase motivation, both WT and Ts65Dn mice showed better nest 

building even in the novel environment (Figure 3).  Treatment with PTZ had no effect 

on this aspect of the Ts65Dn phenotype, but respiridone did improve the nest building 

of the Ts65Dn mice (data not shown).  Our tentative conclusion is that this aspect of 

the Ts65Dn phenotype represents an attention deficit, and this characteristic is not 

principally under GABAergic control. 

 
 

Fig. 3. Comparison of nest building behavior in Ts65Dn and WT mice 

Another behavior we have studied is circadian rhythmicity.  We have characterized 

the circadian systems of the Ts65Dn mice and compared them to WT mice, both with 

and without 3 weeks of PTZ treatment (3.0 mg/kg oral).  The Ts65Dn mice did not 

show any differences in rhythm consolidation, free running characteristics in DD or 

LL, or ability to re-entrain to a LD cycle.  The only effect of the PTZ treatment was a 

trend to increased activity during the active phase in the Ts65Dn mice, but not in the 

WT mice.  Although not a significant difference, an increase in sample size would 

likely show this difference to be significant (Figure 4). 
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Fig. 4. Summed activity for Ts65Dn and WT mice with and without 3 weeks of treatment with 

daily oral doses of PTZ  (3.0 mg/kg) 

4   A BZD Competitive Antagonist Is also Effective in Ts65Dn 

Mice 

Whereas all of the drugs we tested previously were non-competitive antagonists, we 

have recently tested a competitive BZD antagonist, Flumazenil.  It had been hypothe-

sized that release of endogenous benzodiazepines during learning helps to filter the 

content of consolidated memories [5].  In accordance with this idea, benzodiazepine-

like immunoreactivity is reduced in the cerebral cortex, hippocampus, amygdala, and 

septum following brief periods of novel experience or avoidance conditioning, and 

injections of the competitive antagonist flumazenil in the hippocampus, amygdala, or 

septum improves retention in an inhibitory avoidance task [6].  Flumazenil is an at-

tractive candidate for treatment of the learning disability of DS because it is FDA 

approved and it is also anti-convulsive [7].  WT and Ts65Dn mice were treated for 2 

weeks with daily ip injections of either flumazenil (3 mg/kg) or vehicle.  The flu-

mazenil treated animals showed normalization of performance in the novel object 

recognition test performed 24 hrs after the training (Figure 5).   

A remarkable result from the testing of flumazenil was that unlike PTZ or picro-

toxin, a single dose of flumazenil had a positive effect on learning in the Ts65DN 

mice (Figure 6). The dosage in this experiment was higher (10 mg/kg), but the 

Ts65Dn animals showed dramatic normalization of both short-term and long-term 

memory.  
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Fig. 5. Effect of 2 weeks of daily dosing of WT and Ts65Dn mice with flumazenil (3 mg/kg) or 

vehicle 

 
Fig. 6. Effect of a single dose of flumazenil (10 mg/kg ip) or vehicle on learning in Ts65Dn 

mice.  N=11 in each group. 

5   Electroencephalographic Studies of Effects of GABAA 

Antagonists  

Because sleep disruptions are reported for Down syndrome patients [8], and sleep  

is increasingly implicated in neural plasticity, we were interested in examining the  

effects of GABAA   antagonism on sleep characteristics in the Ts65Dn mice. Previous 

work [9] had only revealed subtle differences in sleep between WT and Ts65Dn mice.   

The Ts65Dn mice had a longer sleep latency after sleep deprivation, had less NREM 

sleep, and had more fragmented REM sleep during the light phase.  With such subtle 

effects, it is not surprising that our EEG study of sleep in the mice did not show any 

dramatic effects of the PTZ treatment with one exception – the intensity of hippocam-

pal theta activity in both REM sleep and waking.   
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Fig. 7. Spectral analysis of the waking EEG in WT and Ts65Dn mice before and after 2 weeks 

of daily ip injections of PTZ (3 mg/kg) or vehicle. The sprectral power in the theta band was 

normalized in the Ts6Dn mice following the treatment. 

 
Colas et al. [9] demonstrated that the Ts65Dn mice had greater spectral power in 

the theta band of the EEG.  That observation was confirmed in the present study.  
Both PTZ treatment (daily ip injections 3 mg/kg for 2 weeks) (Figure 7), or acute 
flumazenil treatment (10 mg/kg) normalized the intensity of the EEG theta band in the 
Ts65Dn mice and this was true for both REM and wake. 

6   Summary and Discussion 

The results from our studies clearly demonstrate that negative GABAA modulators 
can normalize certain aspects of learning and memory in a prominent mouse model of 
Down syndrome. Down syndrome is the leading genetic cause of cognitive impair-
ment in humans, and being able to mitigate that impairment would improve the qual-
ity of life for thousands of afflicted individuals and their families. Most of the drugs 
we have used in our studies could be candidates for human clinical trials.  For decades 
PTZ had been in use in the U.S. for the treatment of Alzheimer’s Disease, but it was 
taken off of the FDA list of approved drugs for lack of evidence for efficacy and not 
for any concerns about safety.  Bilobilide is an extract of the plant Ginko biloba and is 
available as a nutriceutical.  Flumazenil is an FDA approved drug for the treatment of 
benzodiazepine overdoses.  It is likely that additional candidate drugs that would be 
highly selective for specific GABAA receptors exist or will be discovered.  Thus, it 
seems to us that there would be much to gain and little risk to undertake clinical trials 
for pharmacological enhancement of cognition in Down syndrome.  If results are 
positive, it is not at all unlikely that other cases of learning disabilities might also 
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benefit from negative GABAA modulation.  We do recognize that Down syndrome is 
a complex suite of disorders due to the large number of genes that are triplicated. 
GABAA modulation is not going to mitigate the vast majority of these disorders, yet 
cognitive ability is an extremely significant aspect of an individual’s life. 

One aspect of our work that is extremely provocative is the fact that short treatment 
with GABAA    antagonists results in long term changes in neural plasticity.  This ef-
fect has been shown to be expressed at the cellular level in terms of long-term poten-
tiation [1], but the mechanisms involved remain to be elucidated.   

A final question that will occur to many is whether or not normal cognition can be 
optimized by mild GABAA antagonism?  Would this approach be more selective and 
effective than uses of stimulants such as caffeine and amphetamine.  The results from 
the WT mice suggest that the answer is no, but perhaps the behavioral tasks were not 
difficult enough to reveal enhancement in the WT mice due to ceiling effects.  Further 
research will have to be directed to answering this question.  
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Abstract. This paper presents a theoretical framework for the development of 

non-invasive methods for detection and discrimination between mild traumatic 

brain injury (mTBI) and post-traumatic stress disorder (PTSD).  Growing use of 

IEDs and increased pace of multiple deployment cycles in current conflicts has 

lead to significant increases in exposure to risks for these conditions. Co-

morbidity of these conditions is common, diagnostically challenging, and  

controversial.  Development of easy to use, deployable diagnostic tools would 

allow for accurate early identification and intervention.  Early intervention in-

creases the potential for positive outcomes for both the individual and their 

families.  In addition, the appropriately designed system could be used epide-

miologically to screen returning soldiers for these conditions that may other-

wise not be appropriately assessed until much later, if at all.  The framework 

presented here proposes that a wireless, portable EEG/EKG based device may 

be an appropriate platform upon which to develop such an assessment tool.  

Keywords: Electroencephalogram (EEG), Electrocardiogram (EKG), Post-

Traumatic Stress Disorder (PTSD), mild Traumatic Brain Injury (mTBI). 

1   Introduction 

Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) affect a 

growing number of our military personnel. It is thought that TBI is more common in 

Iraq and Afghanistan deployments than in past conflicts [1, 2]; however there is little 

epidemiological data available.  Estimates range from 10-31% incidence rate; how-

ever these estimates are based on those with a known history of blast concussion 

and/or other injury that brought them to a medical unit [2, 3].  The increased use of 

IED (improvise explosive devices), improved body armor and improved care follow-

ing injuries are often cited as the underlying reasons for the increase in TBI incidence 

rates [2, 4]. Despite the increase in TBI incidence rates, there is reason to think they 
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may underestimate the actual incidence of TBI. For instance, blast injuries are the 

most common source of all TBI in today’s military [2, 3]; since a soldier may not lose 

or have altered consciousness in the time frame associated with this form of injury,  

milder cases of TBI may remain undiagnosed. Yet the cumulative impact of incidents 

that individually do not meet diagnostic criteria for TBI may add up to subtle yet 

significant cognitive or behavioral impairments  in otherwise healthy young adults 

actively engaged in warfare.  Multiple exposures may have an additive or even syner-

gistic effect on injury development. This gradual progression of tissue damage may 

go long periods of time before diagnosis, if it is detected at all. 

Further complicating the diagnosis of TBI is the similarity in behavioral sequelae 

to those observed in PTSD.  Both disorders are associated with impaired memory, 

inability to concentrate, inappropriate modulation of anger and other emotions [5-12].  

These neuro-cognitive/neuro-affective symptoms have the greatest impact on sol-

diers’ quality of life, family and social roles and support system maintenance, as well 

as ability to serve.  Neurocognition and affect are behavioral outcomes of complex, 

multi-directional interactions between the central nervous system (CNS), endocrine 

system and immune system.  Adding to the complexity is the ability of behavior to 

influence and alter each of these internal systems bi-directionally as well.  With many 

similarities, it is possible that mTBI that develops over multiple exposures may be 

misdiagnosed as PTSD, leading to incomplete treatment.  Therefore, it is important to 

develop tools that are both sensitive to these conditions, and specific in delineating 

across mTBI, PTSD, and cases of co-morbidity across both conditions. 

The endocrine system interacts with cognition and affect primarily through the hy-

pothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axis.  

PTSD is associated with a circadian cycle dependant decrease in HPA-axis output, 

and the development of glucocorticoid resistance in immune cells (leading to an over-

reactive inflammatory response)   [13-17].  This decrease in output and reactivity may 

lead to memory impairments that increase with age [18].  Hypocortisolism is associ-

ated with anti-social behavior both in veterans and general populations [19-21].  

There is also growing evidence that chronic stress and glucocorticoids can compro-

mise immunity and health. In mTBI, there is some indication that hypocortisolism 

also develops [22] , which would result in the same down-stream consequences for 

social behavior and inflammation.  While assessment of endocrine dysfunction may 

contribute to tools that are able to sensitively detect both conditions, the degree of 

dysfunction and/or how this dysfunction manifests across the immune and neuronal 

systems may aid is distinguishing across the two conditions. 

Immune signaling molecules, such as the inflammatory cytokines IL-1 beta, IL-6 

and TNF-alpha are also known to reduce cognitive function and impair learning and 

memory [23-32]. The endocrine system and immune systems interact through recep-

tors for hormones on immune cells and for cytokines on neurons that control endo-

crine function [33-36].  In addition neuronal interactions also occur as a result of 

neuronal receptors for hormones and cytokines, neuronal production of hormones and 

cytokines, and direct innervation of immune and endocrine organs.  Both PTSD and 

mTBI are associated with dysregulation of immune systems.  PTSD is associated with 

reduced anti-inflammatory activity (IL-8)[37], over-reactive cellular immune function 

[38], and impaired innate immune responsivity [39].  Similarly, mTBI patients have 

been shown to have excessive inflammation as a secondary process associated with 
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the injury [40, 41], however long term inflammatory processes are little studied.  In 

contrast to PTSD, mTBI patients have reduced cellular immunity responses [42].   

Both conditions have altered immune function (allowing for detection); however the 

disparate patterns of impairment/alteration may be useful in delineating across the 

conditions.   

Because of the similar range of neurocognitive impairments, as well as endocrine 

and immune dysregulation that occur with both PTSD and mTBI, it is little wonder 

that controversy exists regarding the co-morbidity rates between these two conditions.  

Some have posited that PTSD is not possible given that TBI patients have significant 

memory loss associated with the  injury incident [43].  However other studies have 

demonstrated co-morbidity up to 43% [4, 44].  Given that memory loss is less severe 

in injuries classified as mTBI, it is perhaps not surprising that one study found that 

PTSD is more common in these patients than in other TBI populations [45]. 

As discussed above mTBI and PTSD have many neurocognitive similarities, as 

well as some similarities across the endocrine, immune systems.  These similarities 

are further complicated by the as yet unknown rate of co-morbidity across both condi-

tions that may be from 0-43% according to various studies. The majority of research 

on mTBI and PTSD focuses on one, and occasionally two of these interactive systems 

(neuronal, cognitive, immune, endocrine), and only on 1-2 biomarkers. Advanced 

Brain Monitoring (ABM), has been developing a method for full neurocognitive/ 

neurophysiological profiling (patent pending) using simultaneous EEG and EKG 

during administration of a basic neurocognitive testbed, in combination with blood 

sampling at strategic points to assess endocrine and immune activation associated 

with the performance in the testbed.  The hypothesis is that such a multi-level ap-

proach will result in a sensitive, specific methodology for detecting and delineating 

across PTSD, mTBI, and co-morbid cases.  This method (using ABM’s B-alert wire-

less, portable EEG) would be both efficient and deployable into multiple environ-

ments, having been used successfully in the Mohave Desert during the summer at 

Twentynine Palms, in the rain at Aberdeen testing grounds, and in winter conditions 

in Calgary, Canada.   

2   Methods 

2.1   Current Assessment Methods 

TBI. Currently, TBI is assessed on multiple levels in deployed environments.  First, 

there is a strong initiative in the military to educate officers and enlisted personnel on 

the signs of TBI, in order to better ensure that those needing medical assessment are 

sent for evaluation [46].  These guidelines include looking for signs of: blurred vision, 

headaches, aggressive behavior, depression and cognitive issues such as trouble con-

centrating; and encouraging each commander to evaluate each of their soldiers regu-

larly. More commonly, soldiers that lose consciousness at the site of engagement (i.e. 

at the site of an IED explosion) will be referred to medical personnel.  Once referred 

for medical services, the soldier will be evaluated through a series of neurocognitive 

and imaging techniques for further referral along the chain of care.  The chain of care 

may start with an in-country facility with basic equipment (e.g. EEG, CAT); however, 



 Development of Sensitive, Specific, and Deployable Methods 829 

TBI cannot fully be evaluated without an fMRI at this time.  fMRI is not a deployable 

technology, however this equipment is available in country in certain cases and in the 

initial evacuation level facilities (i.e. such as those found in Japan and Germany).   

PTSD.PTSD assessment and awareness program were launched simultaneous with 

the mTBI awareness program [46]. Signs of PTSD include: headaches, aggressive 

behavior, depression and cognitive issues such as trouble concentrating, and usually 

include flashbacks.  Sleep disturbances, common in PTSD, have been suggested as 

playing a pathogenic role in the acute and chronic stages of the disease [47, 48].  

Fragmented sleep may further contribute to the profile of neurocognitive impairments 

including memory loss and inability to concentrate.  Assessments are typically done 

though extensive one-on-one evaluation sessions with a medical psychiatrist.   

2.2   Proposed Assessment Methods 

By measuring multiple aspects of physiology that may influence or be influenced by 

cognition, we may be able to build sensitive and specific mathematical models to a) 

detect and discriminate between those with mTBI, PTSD, and mTBI/PTSD co-morbid 

patients, and b) identify potential neuro-feedback intervention strategies for mTBI, 

PTSD, and mTBI/PTSD co-morbid patients. 

Stage1- Pilot study. Initial development would require collecting EEG/EKG/ bio-

marker data from a small sample size to determine feasibility.  Three groups would be 

required: mTBI, PTSD, and healthy.  A broad range of injury areas, confirmed 

through fMRI should be included in the mTBI group.  PTSD subjects should have a 

confirmed diagnosis from a psychiatrist. Patients with diagnosed co-morbidity should 

be excluded from these data at this stage. In order to facilitate the clearest data at this 

stage the PTSD subjects should be screened with fMRI as well to exclude any sub-

jects with potential undiagnosed mTBI.  The minimum sample size for the pilot study 

is n=30/group.  This will allow the feasibility of this approach to be evaluated, with-

out investing the resources that will be required to build a truly stable mathematical 

model (stable models require minimum n=200, with the number of metrics in the 

model adding to this requirement). 

The mathematical model building process would begin with  exploratory descrip-

tive discriminant analysis and/or cluster analysis that will help us narrow down a 

subset of physiological features predictive of each of the group, and then we shall 

move on to build a classifier and cross-validate it on an independent set of subjects 

diagnosed with mTBI, PTSD or a combination. The exact choice of the classifier and 

the underlying statistical model will be driven by the set of physiological features 

used, but we tentatively propose to use the random multinomial logit (RMNL) classi-

fier [49]. The RMNL classifier uses forests of decision trees grown on random input 

vectors, the nodes split on a random subset of features, and conducts repeated multi-

nomial logit analyses on the subsets in order to arrive at an optimal set of features 

while avoiding at the same time the curse of dimensionality. Given the large set and 

variability of parameters that will be examined, the comprehensive approach offered 

by the RMNL is deemed necessary. 

Metrics to be collected would include: EEG, EKG, blood and saliva at regular in-

tervals, and a computerized basic neurocognitive test battery.  The neurocognitive 

battery will include a plethora of memory and problem solving tasks.  The analytes of 
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these metrics that may be used to build the mathematical models will include: raw 

EEG, PSD EEG, ABM’s B-Alert and workload classifications (the EEG metrics will 

access brain activity as well as broad states of alertness, engagement and workload), 

heart rate, heart rate variability (heart rate variables will access stress and sympathetic 

activation), blood and/or salivary samples may be assayed for hormones, cytokines, or 

immune markers.  Cognitive metrics will include at least reaction time, accuracy. In 

addition to monitoring alertness and cognitive activity, EEG characteristics of head 

trauma can be evaluated including automated identification of transient EEG abnor-

malities epileptiform (“seizure-like”) patterns, such as spikes or sharp waves created 

when abnormal neurons synchronize and their currents summate resulting in abrupt 

changes from the baseline recorded as spike or sharp waves [50-52]. Continuous focal 

abnormalities may also be observed as alterations of ongoing EEG background activ-

ity (either attenuation or enhancement), focal slow-wave abnormalities, or periodic 

EEG patterns that consist of rhythmic and repetitive sharp wave or spike patterns. 

Each of these types of abnormalities typically is associated with underlying structural 

abnormality [53, 54].  EEG coherence analysis will then be applied to measure phase 

synchrony or shared activity between brain regions.  Previous investigations have 

accurately identified patients with closed head injury, including assessment of sever-

ity of damage and prediction of outcomes using EEG coherence and phase analyses 

[52, 54, 55].  Mild to moderate TBI is often characterized by increased coherence and 

decreased phase in frontal and frontal-temporal regions [54], decreased power differ-

ence between anterior and posterior cortical regions [53, 56] and reduced alpha power 

in posterior cortical regions [56, 57]. 

Stage 2. If the pilot study indicates that the approach is feasible, then a full study 

will be conducted to meet the objective of a stable, sensitive and specific mathemati-

cal model based on non-invasive neuro-physiological metrics.  The full experimental 

design for this study would include four groups: PTSD, mTBI, PTSD/mTBI comor-

bid, and healthy controls.  Once again, the mTBI subjects should have a broad range 

of injuries, confirmed with fMRI, and the PTSD only group should have mTBI elimi-

nated through fMRI screening.  The minimal sample size from each group will be set 

at n=200, with adjustment based on the metrics indicated from the feasibility/pilot 

stage.  The neurocognitive testbed will be narrowed to include only those tests that 

appear to discriminate across the groups in the feasibility study (i.e. a significant dif-

ference at p < .05).  Similar mathematical model building will occur, not limited to 

the model developed in the feasibility study. Mathematical validation of the model 

will confirm stability and accuracy at this point.  

Stage 3. In order to ensure that the model that has been built is sensitive, specific, 

and valid, a full cross validation data collection should be conducted, with sample 

sizes of n=200/group.   

3   Results 

If successful, the final product would utilize the ABM wireless, portable EEG+EKG 

platform (a highly cost efficient platform compared to fMRI), which is already proven 

deployable. Biological fluids would be collected either with filter paper based blood 

spot techniques or salivettes, both of which are easily used in the field for collection 
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(although salivary samples should be kept frozen until analysis, the blood spots  

need only a plastic bag with a packet of desiccant). Using a suite of products that  

are easily deployable and easy to use in the final product will allow non-technical, 

non-medical staff to screen soldiers on a regular basis with a basic 20-30 minute 

computerized test battery.  This would ideally allow soldiers that have been exposed 

to multiple blasts over the course of multiple deployments to be identified as devel-

oping mTBI before the injuries are exacerbated to a moderate or severe level by an 

additional blast.  Such a solution would also allow early signs of PTSD to be identi-

fied and intervention to occur early in the process. The benefits of such a system are 

multi-level: 1) field deployment benefits of a cost-effective imaging based, objective 

assessment tool for PTSD and mTBI by non-experts; 2) improved diagnostic and 

treatment once in traditional care facilities (such as a Veteran’s Administration hos-

pital);  3) potential for full epidemiological screening of all returning soldiers.   

While this process would require a significant investment in the initial data  

acquisition and model development, the final product would be highly cost-efficient, 

sensitive and specific; ensuring that not only soldiers were diagnosed and treated 

early in the injury process, but also the many persons that acquire mTBI through 

sports injuries and automobile accidents each year.  The ABM platform is currently 

being successfully applied in several large multi-site clinical evaluations of patients 

with sleep disorders.  Feasibility of conducting research comparable to the proposed 

studies 1-3 with samples sizes of 500-1000 has been established. 

4   Discussion 

mTBI and PTSD are the “signature” injuries of the Iraq and Afghanistan wars.  These 

conditions are known to affect a large number of our soldiers.  There are many indica-

tions that while both of these disorders are being diagnosed at greater levels than in 

previous conflicts, even more soldiers continue to go undiagnosed and untreated.  

There are many benefits to developing a system that would allow screening in de-

ployed theatres as well as easy and cost effective epidemiological screening in gen-

eral.   While many brief screening questionnaires have been developed for both PTSD 

and mTBI, it is clear that a more objective system would increase sensitivity. Missed 

diagnoses can have significant, negative consequences for those suffering from either 

PTSD or mTBI. 

While many soldiers with mTBI are able to return to active duty either with or 

without rehabilitation therapy [58], undiagnosed mTBI can result in career ending 

consequences.  As noted earlier, mTBI is associated with conduct-disorder-like be-

havior, and cognitive function impairments.  Conduct-disorder-like behavior may lead 

to inappropriate aggression, physical or verbal confrontations with peers or superiors, 

domestic abuse, and potentially suicidal behavior.  Cognitive function impairment 

may lead to the soldier being incapable of meeting the expectations of their command, 

making inappropriate decisions either during training or deployments that could lead 

to injury for themselves or others.  In addition to the consequences while in service, 

these issues may impact job performance, the ability to acquire employment, and 

other long term consequences. Perhaps the most important undiagnosed PTSD can 
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have similar consequences to military-related performance, personal life, and post-

military development.   

An additional application for the device proposed may include application as a 

neurofeedback rehabilitation device to provide functional therapeutics for mTBI and 

PTSD patients as well.  Because the incidence of PTSD and mTBI are growing each 

year as conflicts in Iraq and Afghanistan continue, and the consequences the devel-

opment of devices, methodologies, and systems that identify all of those that should 

be further diagnosed and/or treated has become essential.   
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Abstract. Creating a platform that allows the fusion of real-time physiological 

measurements and virtual reality (VR) simulation will greatly improve present 

human-computer interaction, adaptive displays, military training, and anxiety 

therapy.  The Virtual Reality Medical Center (VRMC) has developed a physio-

logically-driven rehabilitation platform that correctly assesses user anxiety lev-

els based on multiple real time physiological measures, determines the optimal 

level of physiological arousal for each individual user, and automates the virtual 

simulation to the proper intensity for each user. Additionally, VRMC collabo-

rates with UCF to develop novel, state-of-the-art sensors to be integrated within 

the platform that are capable of measuring electrocardiogram, (EEG), skin con-

ductance, gait, and pupillometry.  In Phase I VRMC developed a capability to 

monitor, fuse, and evaluate physiological measures (heart rate, skin conduc-

tance, skin temperature, and respiration) in real time to assess user anxiety lev-

els. The physiological data collected will be used to assess user anxiety levels in 

real time as neutral, low, or high with 90% accuracy and to determine the opti-

mal level of physiological arousal for each individual user. 

Keywords: physiological measurement, stroke, traumatic brain injury, cere-

brovascular accident, rehabilitation, cognitive rehabilitation, simulation, mixed 

reality. 

1   Introduction 

Modern human-computer interaction (HCI) development has recently been focusing 
on creating user-centered applications that adapt to the mental, or cognitive, state of 
the user. These systems commonly measure EEG [2, 15, Wilson & Russel, 2004), 
pupillometry [16], and cardiac function (Liddle et al., 2005) to evaluate user mental 
load in real time, and adapt the displays accordingly. If cognitive functioning is low, 
the display adapts to engage the user; if the user is overwhelmed, the display lessens 
its demands or stimuli to allow the user to focus. Some systems train users to control 
their physiology, e.g., brainwaves as measured on EEG, to control displays, such as 
driving simulators for those who have acquired brain injury (Lew et al., 2005) or 
communication devices for people who are completely paralyzed [1]. These human-
in-the-loop systems are extremely valuable in training and rehabilitation of these 
populations. 
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There are many challenges, though, in creating such a system. First, the system 
needs a battery of strategies to recognize user mental status; that is, developing tech-
niques (e.g., data fusion) to determine what the physiological input from the user 
means – is the user bored, overwhelmed, or distracted?  Once the system can recog-
nize the mental state of the user, developers must train the system to decide how the 
input will determine the output, and how the output will relate to the user. Next,  
developers must ensure the accuracy of the input recognition and output decisions the 
system is making, as data fusion and processing in real-time places increased de-
mands on the software. Finally, once the system accurately assesses the input from the 
user, it must learn to correctly adapt its display based on the input to create a success-
ful human-in-the-loop system. 

Mixed Reality (MR) is a simulation technology that blends virtual reality with 
physical reality into a seamless landscape. The advantage of MR is that it creates an 
altered or augmented reality without losing the benefits of the physical setting - touch, 
smell, hearing, taste, and visual contact with other humans. The MRRS will enable 
Cerebrovascular (CVA) patients to receive physical and cognitive rehabilitation both 
in the therapist’s office and at home.  CVA patients include those impaired from a 
stroke or traumatic brain injury (TBI).  The Virtual Reality Medical Center (VRMC) 
has developed the MRRS to provide an interactive, engaging rehabilitation tool for 
these patients.  

Approximately 700,000 Americans are affected by stroke annually, costing an es-
timated $62 billion in 2008. A recent RAND survey found that 19.5% (over 320,000) 
of service members may have experienced at least a mild TBI while deployed. Multi-
ple re-deployments, unprecedented in this all-volunteer U.S. military, may compound 
the risk for physical and psychological injuries, potentially resulting in more severe 
and chronic mental health problems. In 2008, the annual level of suicides among sol-
diers was the highest it has been since the Pentagon began tracking the rate 28 years 
ago. Expanded development of the MRRS adds the ability to perform cognitive as-
sessment for CVA and stress injuries, including Post Traumatic Stress Disorder 
(PTSD), by capturing and analyzing the patient’s reactions and performance while in 
a controlled environment. The ability to detect mental health issues with the MRRS 
before and after deployments could save lives. 

2   Review of Literature 

Much research has been done examining the role physiology has in “peak perform-
ance” from athletic to military training. Researchers have determined that most  
individuals are unaware of the effect their thoughts have on their physiology, and  
in turn, the effects their physiology has on their performance or execution of a task 
[3, 5, 10, 17]. 

The Yerkes-Dodson curve, illustrated in Figure 1, shows the inverted U-curve of 
anxiety’s relationship with performance. Physiologically, there is an optimal level of 
anxiety/arousal that influences individual’s performance efficiency. As anxiety in-
creases, performance efficiency improves and reaches an optimal point.  As shown by 
the curve, if a person becomes over-anxious or complacent, his or her performance 
efficiency will suffer. Low anxiety does not allow someone to become invested in  
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Fig. 1. Yerkes-Dodson curve showing the relationship between anxiety (arousal) and performance 

executing an activity, while high anxiety leaves a person unable to cope in a stressful 
situation. Neither extreme is conducive to optimal efficiency in executing a task. 

A CVA patient experiencing phobic stimuli may be at the high-anxiety end of the 
curve. These individuals are left unable to cope or execute tasks when faced with 
stimuli, and may even experience panic attacks or physical discomfort. These types of 
reactions are completely debilitating when trying to perform activities of daily living. 
It is necessary for patients experiencing this discomfort to understand the role physi-
ology has in their reaction to stimuli and how to manage their physiology when faced 
with a provoking situation. Typical physiological reactions of people experiencing 
anxiety include: 

• Increased heart rate (HR). Heart rate has been considered a particularly strong 
measure of anxiety [8, Nesse et al., 1985]. 

• Decreased skin resistance (SR). In 1907, Carl Jung discovered that skin resistance 
(SR, which decreases as sweat gland activity increases) was a means to objectify 
emotional tones previously thought to be invisible. Skin resistance, unlike electro-
myography (EMG) and skin temperature, tends to reflect mental events more 
quickly and with more resolution than other physiological measures [9]. Baseline 
levels of SR vary widely by individual so percentage change from baseline is nor-
mally measured rather than absolute value [13]. 

− Drop in skin temperature. Circulation slows in the extremities during stress,  
causing skin temperature to drop. Although change in skin temperature is less sen-
sitive than and temporally lags changes in heart rate, its response curves are similar 
[6, 11]. 

− Poor respiration. Phobics typically show increased breaths-per-minute and less 
respiratory sinus arrhythmia (RSA) than non-phobics during exposure to phobic 
stimuli [14], and patients with anxiety disorders exhibit decreased RSA in general 
[4, 8]. 

While these physiological changes are often measured during anxiety or phobia 
therapy, whoever is monitoring the physiology must interpret the significance of each 
measure in relation to the patient, as well as in relation to the separate physiological  
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signals. This can lead to discrepancies in treatment. While physiological monitoring 
and biofeedback greatly improve therapy outcomes, these techniques could be greatly 
improved upon by technological advancements, specifically data fusion and signal 
processing to interpret anxiety levels in patients. Having a network that evaluates  
patients’ anxiety levels allows therapists to focus on individualizing treatment by 
teaching patients how their physiology is affecting their everyday living, as well as 
techniques to cope and manage physiology to improve their cognition and lessen their 
anxiety. 

3   Method/Approach 

In an effort to improve cognitive deficits and diminish abnormal behaviors caused by 
brain trauma, VRMC, partnered with the Media Convergence Lab (MCL) at the Uni-
versity of Central Florida (UCF) Institute for Simulation and Training (IST), to create 
a haptics-enhanced true 3D stereo mixed reality system especially designed to stimu-
late and improve cognitive functions in warfighters that suffer from Traumatic Brain 
Injury (TBI) and CVA patients.  

TBI is the most common combat-related injury. It often results in disturbances of 
attention, memory, and executive function; moderate to severe cases can cause sei-
zures. Sixty percent of troops who survive external injuries from bomb blasts, the 
leading cause of death in Operation Iraqi Freedom, could also have brain injury. 
While there are potential drug-based candidates for neuroprotection of brain injuries, 
comprehensive-holistic neuropsychological rehabilitation that attempts to address 
multiple cognitive deficits seems to be effective for the remediation of attention defi-
cits and memory impairments after TBI; however, such intensive daily treatment 
within hospitals would no doubt be costly and has only been shown to be effective in 
mild memory impairments. Finding alternative, cost-effective ways to rehabilitate 
soldiers would help save the military and government a significant amount of re-
sources.  

Recent advances in communication and visualization technologies are resulting in 
the ability for a mobile user to effectively “browse” a physical environment and ob-
tain site-specific information or access representations of real-time data about their 
immediate location. Our research has focused on combining mobile multimedia, vir-
tual reality, and wearable computing technologies, to create systems that provide MR 
experiences.  MR is a type of virtual reality that combines real and computer gener-
ated images to create an augmented reality.  The existing system also provides multi-
sensory feedback, including auditory and tactile feedback. 

The MRRS incorporates scenarios, under the direction of the therapists, that stress 
the importance of activities of daily life (ADLs) and seek to improve patients’ inde-
pendence by retraining them in routine activities necessary for daily living.  The hu-
man factors study examined the ergonomics of the system setup and the validity of 
mixed reality. The MRRS was evaluated by test participants. All participants were 
able to complete the 9 minutes 41 seconds scenario. Every participant was outfitted 
with biofeedback equipment to measure physiological effects of the experience. Four-
teen healthy participants (six males and eight females) were enrolled in this study. 
Participants were recruited at the University of Central Florida. Participant ages 
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ranged from 18 years of age to 63 years of age. They varied in their experience and 
familiarity with video games and mixed reality.  

Participant physiological measurements were monitored by the J&J Engineering’s 
I-330-C2-system. This system measured the participant’s heart rate, skin conductance, 
skin temperature, respiratory effort, and breaths per minute. Participants also filled 
out self-report questionnaires that included: Parent’s Modified Simulator Sickness 
Questionnaire consisting of 38 questions, the seven item Presence Questionnaire, the 
State-Trait Anxiety Inventory, the Tellegen Absorption Scale, and the Dissociative 
Experiences Scale.  

Additionally, participants provided subjective feedback in a structured interview. 
This included verbal rankings on a Likert scale of 0 to 10 for level of enjoyment, 
level of comfort, and ease of use, where 0 was none at all and 10 was most enjoy-
able, comfortable, and/or easy to use. Participants also ranked their accuracy in com-
pleting the tasks assigned and overall performance on a 0-100% scale, in which 
100% resembled the highest accuracy and/or most proficient performance. Each par-
ticipant would also provide subjective feedback regarding the functionality and 
physicality of the system. With negative feedback, the participant provided possible 
ways to improve the system.  

Participants were first required to provide a signed informed consent form follow-
ing a discussion of the possible risks with the consent administrator.  Participants 
were asked to complete a set of two pre-questionnaires. Next the participants were 
familiarized with the MRRS setup. At this time, their role in the scenario and the three 
tasks they would be responsible for were explained. Spatial audio tests and scanner 
instruction tests were also performed. Following these instructions, all participants 
were then fitted with the head-mounted display (HMD). Participants then completed a 
few of the assigned in-game tasks to familiarize themselves with the equipment. Then 
the participants were asked to relax, close their eyes and concentrate on their breath-
ing for five minutes while a physiological baseline was established.  Finally the par-
ticipants completed the three tasks assigned to them in the supply depot scenario.  

Following the scenario, participants were interviewed by a research assistant. Par-
ticipants answered questions that dealt with comfort, ease of use, performance, accu-
racy, and replay value. Three self-evaluated questionnaires were collected at the end 
of the session.  

4   Results 

Physiological measures were collected from all 14 participants that participated in this 
study.  Table 1 below depicts the average physiological measure of heart rate, skin 
conductance, respiratory effort, breaths per minute, and temperature from the baseline 
and the scenario.  The results show increases over baseline readings in heart rate, skin 
conductance, and breaths per minute after participants had executed the scenario. 

All participants filled out a Simulator Sickness Questionnaire following the  
usability testing. This questionnaire presents users with several symptoms, such as 
Headache and Nausea, which may result from interacting in a virtual environment. 
Participants ranked the symptoms on a scale of 0 to 3, indicating if symptoms were  
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Table 1. Average Physiological Measures 

Physiological Measures Situation 

HR SC BPM RESP TEMP 

Baseline 82.03086 7.843363 10.44903 541.589 85.55564 

Scenario 92.36581 15.71259 15.36546 407.133 81.25739 

(0) absent, (1) slight, (2) moderate, or (3) severe. The overall average score for simu-
lator sickness during exploration of the virtual environment was 0.283. Difficulty fo-
cusing and blurred vision were the two most experienced symptoms. Two out of the 
14 participants did not feel any symptoms at all.  

According to user feedback, the MRRS achieved an average enjoyment rating  
of 7.14. Participants gave the level of comfort an average 7.00 rating, while the ease 
of use generated an 8.82 rating. Based on correlations calculated using a Pearson cor-
relation coefficient, the variables level of comfort and level of enjoyment is positively 
correlated.  Figure 2 depicts the level of enjoyment versus the level of comfort. 

 The level of enjoyment is positively correlated with the

level of comfort (N = 14, r = 0.5097, p = 0.0626)
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Fig. 2. Level of Enjoyment Versus the Level of Comfort 

In addition to the Simulator Sickness Questionnaire, participants were asked to 
complete the Presence Questionnaire. Presence was scored on a scale of 1-7. The 
overall average score for the Presence Questionnaire was 5.35. When correlated with 
the ease of use, presence is found to be positively correlated with the system’s ease of 
use. Figure 3 depicts the ease of use versus the presence score. 

Participants considered their accuracy and overall performance to be 74.07% and 
70.77%, respectively. The perceived overall performance rating was positively corre-
lated to the level of comfort.  Figure 4 depicts the level of comfort versus overall per-
formance rating. 

Subjective user feedback revealed that 11 out of the 14 participants encountered 
difficulties reading any type of text through the head-mount device (HMD). Five out 
of the 14 participants mentioned the latency in the HMD. Participants felt that there  
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  The ease of use and presence score is positively correlated (N =

14, r = 0.7617, p = 0.0015)
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Fig. 3. Ease of Use Versus the Presence Score 

  The level of comfort and overall performance rating is positively

correlated (N = 14, r = 0.5334, p = 0.0495)

4 5 6 7 8 9 10 11

Level of Comfort

30

40

60

70

80

90

100

O
v
e
ra

ll 
P

e
rf

o
rm

a
n
c
e
 R

a
tin

g

 
Fig. 4. Level of Comfort versus Overall Performance Rating 

was a lag in the display when moving the head. Ten out of the 14 participants felt the 
audio was realistic and presented no flaws. Among the 4 participants that claimed the 
audio was flawed or stated that it was too loud, which covered the sound of the trucks 
parking in the loading docks. Thus, this prevented them from accomplishing one of 
their tasks.  

The results provide evidence that this MRRS presents a user friendly interface, 
immersive virtual interaction, and an enjoyable experience. The participants gave 
themselves high ratings in accuracy and overall performance, indicating that they 
were engaged and participating fully in the scenario. The correlation between the ease 
of use and presence score indicates that the user’s level of immersion can ultimately 
be improved by making the virtual environment more user friendly. This would  
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include making the controls easier to function and the virtual environment easier  
to navigate. Also, tasks must avoid complication by remaining simple without several 
steps.  

The presence scores suggest that the MRRS commands an immersive experience. 
Based on subjective user feedback, the scenario provided the participants with enough 
activities to keep them busy. Many felt the amount of tasks were sufficient despite the 
constant audio and visual distractions. The scenario displayed higher physiological 
readings in categories of heart rate, skin conductance and breaths per minute. Gener-
ally, an increase in heart rate, skin conductance, and breaths per minute indicates 
more activity and arousal. Temperature can be used as a physiological indicator of 
distress and anxiety, as temperature decreases through stress induced vasoconstriction 
and increases through vasodilation caused by relaxation. Thus, a higher average tem-
perature in the baseline suggests a reduced level of discomfort and anxiety.  

5   Discussion 

The use of novel, miniaturized, portable sensors and electrodes improves patient ac-
ceptance and also broadens the field of possible applications of physiologically-driven 
MRRS. In addition, the new sensors may lead to completely unobtrusive methods for 
physiological data collection, depending on the way MRRS is implemented. The col-
lection and measurement of multiple emotional conditions will help standardize and 
enhance rehabilitation in general. Improved sensor recognition of emotions and be-
havior from speech, EEG, facial expression, and other natural reactions will also pro-
vide the patient with more accurate audio, visual and haptic feedback.  

The MRRS has many capabilities and great potential.  The current state of the sys-
tem could easily be augmented to accommodate various levels of cognitive function-
ing.  For example, a scenario involving making cereal could have various levels of 
complexity.  The easiest level may have all the ingredients open or ready for the user 
to prepare cereal.  An intermediate level may require some prior preparation, such as 
opening the milk carton or cereal box.  To further challenge the patient, he or she may 
have to find and retrieve one or more of the necessary components from around the 
virtual kitchen: a bowl from cabinets, a spoon from the drawer, milk from the refrig-
erator, and cereal box from the pantry.  Other scenarios of task training will have 
similar levels of difficulty. 

6   Conclusions and Recommendations 

There are many reasons why MR applications may be effective for rehabilitation. 
First, MR, like VR, is an interactive, experiential medium. In the same way that chil-
dren and teenagers intuitively grasp computers, MR users become directly engaged 
with the effects of the mixed reality experience. In addition, MR creates a safe set-
ting where patients can explore and act without feeling threatened [7]. Patients can 
make mistakes without fear of dangerous, real, or humiliating consequences. More-
over, unlike human trainers, computers are infinitely patient and consistent. In cogni-
tive rehabilitation, MR can be manipulated in ways that the real world cannot. For 
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example, MR can convey rules and abstract concepts without the use of language or 
symbols for patients with little or no grasp of language.  

MR creates a safe, controlled environment for repetitive practice, which is crucial 
in learning tasks, while providing immediate, real-time feedback about performance. 
Because of its interactive nature, MR can increase compliance by making the experi-
ence fun. While these technologies will have immediate benefit for CVA patients, 
their development will also serve to catalyze improvement and change within clinical 
rehabilitation at large. MR may indeed help create a more enjoyable and effective 
method of rehabilitating patients with brain injuries than the current paradigm. 
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